Sample records for yttrium-doped bazro3 solid

  1. Thermoelectric properties of the yttrium-doped ceramic oxide SrTiO3

    NASA Astrophysics Data System (ADS)

    Khan, Tamal Tahsin; Ur, Soon-Chul

    2017-01-01

    The doping dependence of the thermoelectric figure of merit, ZT, of the ceramic oxide SrTiO3 at high temperature has been studied. In this study, yttrium was used as the doping element. A conventional solid-state reaction method was used for the preparation of Y-doped SrTiO3. The doping level in SrTiO3 was controlled to be in the doping range of 2 - 10 mole%. Almost all the yttrium atoms incorporated into the SrTiO3 provided charge carriers, as was observed by using X-ray diffraction pattern. The relative densities of all the samples varied from 98.53% to 99.45%. The thermoelectric properties, including the electrical conductivity σ, Seebeck coefficient S, thermal conductivity k, and the figure of merit, ZT, were investigated at medium temperatures. The ZT value showed an obvious doping level dependence, in which a value as high as 0.18 is realized at 773 K for a doping of 8 mole%.

  2. Generating mixed morphology BaZrO3 artificial pinning centers for strong and isotropic pinning in BaZrO3-Y2O3 double-doped YBCO thin films

    NASA Astrophysics Data System (ADS)

    Chen, Shihong; Sebastian, Mary Ann; Gautam, Bibek; Wilt, Jamie; Chen, Yanbin; Sun, Lei; Xing, Zhongwen; Haugan, Timothy; Wu, Judy

    2017-12-01

    High concentration artificial pinning centers (APCs), such as BaZrO3 nanorods (BZO 1D APCs) aligned along the c-axis of the high temperature superconductor YBa2Cu3O7 (YBCO) can provide strong pinning of magnetic vortices and are desirable for applications in high magnetic fields. Unfortunately, in YBCO films with single-doping (SD) of BZO 1D APCs, a monotonic decreasing superconducting T c and critical current density J c(H) with BZO doping has been observed due to strain field overlap at high-concentration perfectly c-axis aligned BZO 1D APCs. In order to resolve this issue, double-doping (DD) of 2-6 vol% BZO 1D APCs and 3.0 vol% Y2O3 nanoparticles (Y2O3-NPs) in YBCO films has been explored to promote BZO-NR orientation misalignment from the c-axis. Remarkably, a monotonic increasing J c(H) with BZO 1D APCs concentration has been obtained in the BZO DD samples. Such a microstructure change is evidenced in the much smaller c-lattice parameter expansion of 0.103% in the DD samples as opposed to 0.511% in the SD counterparts and reduced c-axis alignment of the BZO 1D APCs as revealed in TEM. This yields a mixed 1D + 2D + 3D APC morphology and enhanced isotropic pinning with respect to the orientation of the H-field in the BZO DD samples.

  3. Proton trapping in yttrium-doped barium zirconate

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yoshihiro; Blanc, Frédéric; Okuyama, Yuji; Buannic, Lucienne; Lucio-Vega, Juan C.; Grey, Clare P.; Haile, Sossina M.

    2013-07-01

    The environmental benefits of fuel cells have been increasingly appreciated in recent years. Among candidate electrolytes for solid-oxide fuel cells, yttrium-doped barium zirconate has garnered attention because of its high proton conductivity, particularly in the intermediate-temperature region targeted for cost-effective solid-oxide fuel cell operation, and its excellent chemical stability. However, fundamental questions surrounding the defect chemistry and macroscopic proton transport mechanism of this material remain, especially in regard to the possible role of proton trapping. Here we show, through a combined thermogravimetric and a.c. impedance study, that macroscopic proton transport in yttrium-doped barium zirconate is limited by proton-dopant association (proton trapping). Protons must overcome the association energy, 29 kJ mol-1, as well as the general activation energy, 16 kJ mol-1, to achieve long-range transport. Proton nuclear magnetic resonance studies show the presence of two types of proton environment above room temperature, reflecting differences in proton-dopant configurations. This insight motivates efforts to identify suitable alternative dopants with reduced association energies as a route to higher conductivities.

  4. Proton trapping in yttrium-doped barium zirconate.

    PubMed

    Yamazaki, Yoshihiro; Blanc, Frédéric; Okuyama, Yuji; Buannic, Lucienne; Lucio-Vega, Juan C; Grey, Clare P; Haile, Sossina M

    2013-07-01

    The environmental benefits of fuel cells have been increasingly appreciated in recent years. Among candidate electrolytes for solid-oxide fuel cells, yttrium-doped barium zirconate has garnered attention because of its high proton conductivity, particularly in the intermediate-temperature region targeted for cost-effective solid-oxide fuel cell operation, and its excellent chemical stability. However, fundamental questions surrounding the defect chemistry and macroscopic proton transport mechanism of this material remain, especially in regard to the possible role of proton trapping. Here we show, through a combined thermogravimetric and a.c. impedance study, that macroscopic proton transport in yttrium-doped barium zirconate is limited by proton-dopant association (proton trapping). Protons must overcome the association energy, 29 kJ mol(-1), as well as the general activation energy, 16 kJ mol(-1), to achieve long-range transport. Proton nuclear magnetic resonance studies show the presence of two types of proton environment above room temperature, reflecting differences in proton-dopant configurations. This insight motivates efforts to identify suitable alternative dopants with reduced association energies as a route to higher conductivities.

  5. A-Site Cation Substitutions in Strained Y-Doped BaZrO 3 Multilayer Films Leading to Fast Proton Transport Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aruta, Carmela; Han, Chu; Zhou, Si

    Proton-conducting perovskite oxides form a class of solid electrolytes for novel electrochemical devices operating at moderate temperatures. Here, we use hard X-ray photoelectron spectroscopy, scanning transmission electron microscopy, and density functional theory calculations to investigate the structure and elucidate the origin of the fast proton transport properties of strained ultrathin films of Y-doped BaZrO 3 grown by pulsed lased deposition on NdGaO 3. Our study shows that our BaZr 0.8Y 0.2O 3 films incorporate a significant amount of Y dopants, and to a lesser extent also Zr ions, substituting for Ba 2+, and that these substitutional defects agglomerate forming columnarmore » regions crossing vertically from the surface to the interface the entire film. In conclusion, our calculations also show that, in regions rich in Y substitutions for both Zr and Ba, the proton transfer process involves nearly zero-energy barriers, indicating that A-site cation substitutions by Y lead to fast transport pathways and hence are responsible for the previously observed enhanced values of the proton conductivity of these perovskite oxide films.« less

  6. Effect of rare earth doping on optical and spectroscopic characteristics of BaZrO3:Eu3+,Tb3+ perovskites.

    PubMed

    Katyayan, Shambhavi; Agrawal, Sadhana

    2018-04-04

    This paper reports structural investigations of rare earth doped BaZrO 3 phosphors synthesized by Solid state reaction technique with varying concentrations of Eu 3+ and Tb 3+ from 0 mol% to 2 mol%. The synthesized phosphors show enhanced variable emissions in the visible region corresponding to different hypersensitive electronic transitions of Eu 3+ and Tb 3+ ions. With cubic structure confirmed in XRD analysis, the FESEM images show uniform grain connectivity and homogeneity of prepared samples. The TEM micrographs of the synthesized phosphors show agglomerated irregular structures. The synthesized phosphors were also subjected to FTIR, Raman, EDXS analysis along with studies of thermoluminescent and photoluminescent characteristics. On subjecting to 229 nm (UV) excitation, the phosphors show enhanced PL emissions corresponding to 571 nm ( 5 D 0 - 7 F 0 ), 591 nm ( 5 D 0 - 7 F 1 ), 615 nm ( 5 D 0 - 7 F 2 ) and 678 nm ( 5 D 0 - 7 F 4 ) hypersensitive transitions of Eu 3+ ions and emission peaks at 489 nm ( 5 D 4 - 7 F 6 ), 539 nm ( 5 D 4 - 7 F 5 ), 589 nm ( 5 D 4 - 7 F 4 ) and 632 nm ( 5 D 4 - 7 F 3 ) accounting for electronic transitions of Tb 3+ ions respectively. The computed average PL lifetime is 14.014 s. In the TL analysis, the second order of kinetics with the activation energy varying from 5.0 × 10 -1 eV to 6.6 × 10 -1 eV is reported. The maximum TL lifetime is estimated as 19.4985 min in the TL lifetime analysis.

  7. Effect of rare earth doping on optical and spectroscopic characteristics of BaZrO3:Eu3+,Tb3+ perovskites

    NASA Astrophysics Data System (ADS)

    Katyayan, Shambhavi; Agrawal, Sadhana

    2018-06-01

    This paper reports structural investigations of rare earth doped BaZrO3 phosphors synthesized by Solid state reaction technique with varying concentrations of Eu3+ and Tb3+ from 0 mol% to 2 mol%. The synthesized phosphors show enhanced variable emissions in the visible region corresponding to different hypersensitive electronic transitions of Eu3+ and Tb3+ ions. With cubic structure confirmed in XRD analysis, the FESEM images show uniform grain connectivity and homogeneity of prepared samples. The TEM micrographs of the synthesized phosphors show agglomerated irregular structures. The synthesized phosphors were also subjected to FTIR, Raman, EDXS analysis along with studies of thermoluminescent and photoluminescent characteristics. On subjecting to 229 nm (UV) excitation, the phosphors show enhanced PL emissions corresponding to 571 nm (5D0-7F0), 591 nm (5D0-7F1), 615 nm (5D0-7F2) and 678 nm (5D0-7F4) hypersensitive transitions of Eu3+ ions and emission peaks at 489 nm (5D4-7F6), 539 nm (5D4-7F5), 589 nm (5D4-7F4) and 632 nm (5D4-7F3) accounting for electronic transitions of Tb3+ ions respectively. The computed average PL lifetime is 14.014 s. In the TL analysis, the second order of kinetics with the activation energy varying from 5.0 × 10‑1 eV to 6.6 × 10‑1 eV is reported. The maximum TL lifetime is estimated as 19.4985 min in the TL lifetime analysis.

  8. Enhanced Proton Conductivity in Y-Doped BaZrO3 via Strain Engineering.

    PubMed

    Fluri, Aline; Marcolongo, Aris; Roddatis, Vladimir; Wokaun, Alexander; Pergolesi, Daniele; Marzari, Nicola; Lippert, Thomas

    2017-12-01

    The effects of stress-induced lattice distortions (strain) on the conductivity of Y-doped BaZrO 3 , a high-temperature proton conductor with key technological applications for sustainable electrochemical energy conversion, are studied. Highly ordered epitaxial thin films are grown in different strain states while monitoring the stress generation and evolution in situ. Enhanced proton conductivity due to lower activation energies is discovered under controlled conditions of tensile strain. In particular, a twofold increased conductivity is measured at 200 °C along a 0.7% tensile strained lattice. This is at variance with conclusions coming from force-field simulations or the static calculations of diffusion barriers. Here, extensive first-principles molecular dynamic simulations of proton diffusivity in the proton-trapping regime are therefore performed and found to agree with the experiments. The simulations highlight that compressive strain confines protons in planes parallel to the substrate, while tensile strain boosts diffusivity in the perpendicular direction, with the net result that the overall conductivity is enhanced. It is indeed the presence of the dopant and the proton-trapping effect that makes tensile strain favorable for proton conduction.

  9. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells.

    PubMed

    Bae, Kiho; Jang, Dong Young; Choi, Hyung Jong; Kim, Donghwan; Hong, Jongsup; Kim, Byung-Kook; Lee, Jong-Ho; Son, Ji-Won; Shim, Joon Hyung

    2017-02-23

    In reducing the high operating temperatures (≥800 °C) of solid-oxide fuel cells, use of protonic ceramics as an alternative electrolyte material is attractive due to their high conductivity and low activation energy in a low-temperature regime (≤600 °C). Among many protonic ceramics, yttrium-doped barium zirconate has attracted attention due to its excellent chemical stability, which is the main issue in protonic-ceramic fuel cells. However, poor sinterability of yttrium-doped barium zirconate discourages its fabrication as a thin-film electrolyte and integration on porous anode supports, both of which are essential to achieve high performance. Here we fabricate a protonic-ceramic fuel cell using a thin-film-deposited yttrium-doped barium zirconate electrolyte with no impeding grain boundaries owing to the columnar structure tightly integrated with nanogranular cathode and nanoporous anode supports, which to the best of our knowledge exhibits a record high-power output of up to an order of magnitude higher than those of other reported barium zirconate-based fuel cells.

  10. Improving of the electrical and magnetic properties of BiFeO{sub 3} by doping with yttrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilić, Nikola I., E-mail: niksentije@gmail.com; Bobić, Jelena D.; Stojadinović, Bojan S.

    2016-05-15

    Bismuth ferrite is one of the most promising multiferroic materials, and the main barriers for exploiting all of its specific properties are difficulties in obtaining pure, high resistive material with nanosized grains. Doping of BiFeO{sub 3} with different transition metals and rare earth elements is often used way for overcoming these obstacles. Yttrium doped bismuth ferrite, Bi{sub 1−x}Y{sub x}FeO{sub 3} (x = 0; 0.01; 0.03; 0.05; 0.1), was prepared by auto-combustion method. X-ray diffraction patterns and Raman results showed that partial phase transition from rhombohedral to orthorhombic structure took place at around 10 mol% of Y. Effect of Y dopingmore » on microstructure was studied from SEM micrographies, showing the reduction of grain size in doped samples. Electrical measurements showed continuous improvement of resistivity with Y doping, whereas the values of saturation and remnant polarizations exhibit maximums at around 5 mol% of Y. Yttrium doping also enhanced magnetic properties, leading to weak ferromagnetism.« less

  11. Production and characterization of europium doped sol-gel yttrium oxide

    NASA Astrophysics Data System (ADS)

    Krebs, J. K.; Hobson, Christopher; Silversmith, Ann

    2004-03-01

    Sol-gel produced materials have recently gained attention for their use in producing nanoscale dielectric materials for confinement studies. Lanthanide impurities in the dielectric enable experimenters to optically probe the structure and dynamic properties of the nanoparticle hosts. We report on an alkoxide sol-gel production method used to produce trivalent europium doped yttrium oxide. Our process follows the standard hydrolysis of an alkoxide precursor with water containing the lanthanide ions. The sol is then aged and calcined at 800 ^oC to produce the powder samples. X-ray diffraction confirms the structure of the powder is that of Y_2O_3. The emission and excitation of the europium impurities is consistent with that of europium doped single crystal yttrium oxide, where it is known that the europium ions substitute for yttrium in the lattice. We therefore conclude that the sol-gel process enables the incorporation of europium ions into the yttrium oxide structure at temperatures far below the melting temperature. The results of preliminary dynamics measurements will also be discussed.

  12. Solid-State Laser Cooling of Ytterbium-Doped Tungstate Crystals

    DTIC Science & Technology

    2001-01-01

    namely the heavy metal fluoride glass ZBLAN and yttrium aluminum garnet . Favorable properties of the ytterbium-tungstates include exceptionally high...Optical refrigeration in Nd-doped yttrium aluminum garnet ,” Phys. Rev. Lett. 21, 1172 (1968). 2M.S. Chang, S.S. Elliott, T.K. Gustafson, C. Hu, and...idea gained experimental feasibility. Even with this tool, early failures to optically cool condensed media such as Nd3+ doped in yttrium aluminum

  13. Effect of aluminum and yttrium doping on zinc sulphide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Swati, E-mail: sharma.swati1507@gmail.com; Kashyap, Jyoti; Kapoor, A.

    2016-05-06

    In this work, pristine and doped Zinc Sulphide (ZnS) nanoparticles have been synthesized via chemical co-precipitation method. ZnS nanoparticles have been doped with Aluminium (Al) and Yttrium (Y) with doping concentration of 5wt% each. The structural and optical properties of the as prepared nanoparticles have been studied using X-Ray diffraction (XRD) technique and Photoluminescence spectroscopy. Average grain size of 2-3nm is observed through the XRD analysis. Effect of doping on stress, strain and lattice constant of the nanoparticles has also been analyzed. Photoluminescence spectra of the as prepared nanoparticles is enhanced due to Al doping and quenched due to Ymore » doping. EDAX studies confirm the relative doping percentage to be 3.47 % and 3.94% by wt. for Al and Y doped nanoparticles respectively. Morphology of the nanoparticles studied using TEM and SEM indicates uniform distribution of spherical nanoparticles.« less

  14. Dielectric and modulus studies of polycrystalline BaZrO3 ceramic

    NASA Astrophysics Data System (ADS)

    Saini, Deepash S.; Singh, Sunder; Kumar, Anil; Bhattacharya, D.

    2018-05-01

    In the present work, dielectric and modulus studies of polycrystalline BaZrO3 ceramic, prepared by modified combustion method followed by conventional sintering, are investigated over the frequency range of 100 Hz to 106 Hz at different temperatures from 250 to 500 °C in air. The high value of dielectric constant (ɛ' ˜ 103) of BaZrO3 at high temperature and low frequency can be attributed to the Maxwell-Wagner polarization mechanism as well as to the thermally activated mechanism of charge carriers. Electric modulus reveal two type relaxations in the 250 °C to 800 °C temperature region as studied at different frequencies over 100 Hz to 106 Hz in air.

  15. Ion beam irradiation of lanthanum and thorium-doped yttrium titanates

    NASA Astrophysics Data System (ADS)

    Lian, J.; Zhang, F. X.; Peters, M. T.; Wang, L. M.; Ewing, R. C.

    2007-05-01

    Y2Ti2O7 pyrochlores doped with La have been sintered at 1373 K for 12 h with the designed compositions of the (LaxY1-x)2Ti2O7 system (x = 0, 0.08, 0.5, and 1), and the phase compositions were analyzed by X-ray diffraction. Limited amounts of La were incorporated into yttrium titanate pyrochlore structure for La-doped samples; while, the end member composition of La2Ti2O7 formed a layered perovskite structure. Ion beam-induced amorphization occurred for all compositions in the (LaxY1-x)2Ti2O7 binary under 1 MeV Kr2+ irradiation at room temperature, and the critical amorphization dose decreased with increasing amounts of La3+. The critical amorphization temperatures for Y2Ti2O7, (La0.162Y0.838)2Ti2O7 and La2Ti2O7 were determined to be ∼780, 890 and 920 K, respectively. Th4+ and Fe3+-doped yttrium titanate pyrochlores were synthesized at 1373 K by sintering Y2Ti2O7 with (ThO2 + Fe2O3). Pyrochlore structures and the chemical compositions were primarily identified by the X-ray diffraction and energy dispersive X-ray (EDX) measurements. The lattice parameter and the critical amorphization dose (1 MeV Kr2+ at room temperature) increase for yttrium titanate pyrochlores with the addition of Th. The increasing 'resistance' to amorphization with less La and greater Th and Fe contents for (Y1-xLax)2Ti2O7 and Y2Ti2O7-Fe2O3-ThO2 systems, respectively, are consistent with the changes in the average ionic radius ratio at the A-sites and B-sites. These results suggest that the addition of lanthanides and actinides (e.g., Th, U, or Pu) will affect the structural stability, as well as the radiation response behavior of the pyrochlore structure-type.

  16. Controlling BaZrO3 nanostructure orientation in YBa2Cu3O{}_{7-\\delta } films for a three-dimensional pinning landscape

    NASA Astrophysics Data System (ADS)

    Wu, J. Z.; Shi, J. J.; Baca, F. J.; Emergo, R.; Wilt, J.; Haugan, T. J.

    2015-12-01

    The orientation phase diagram of self-assembled BaZrO3 (BZO) nanostructures in c-oriented YBa2Cu3O{}7-δ (YBCO) films on flat and vicinal SrTiO3 substrates was studied experimentally with different dopant concentrations and vicinal angles and theoretically using a micromechanical model based on the theory of elasticity. The organized BZO nanostructure configuration was found to be tunable, between c-axis to ab-plane alignment, by the dopant concentration in the YBCO film matrix strained via lattice mismatched substrates. The correlation between the local strain caused by the BZO doping and the global strain on the matrix provides a unique approach for controllable growth of dopant nanostructure landscapes. In particular, a mixed phase of the c-axis-aligned nanorods and the ab-plane-aligned planar nanostructures can be obtained, leading to a three-dimensional pinning landscape with single impurity doping and much improved J c in almost all directions of applied magnetic field.

  17. Mott insulator-to-metal transition in yttrium-doped CaIrO₃.

    PubMed

    Gunasekera, J; Chen, Y; Kremenak, J W; Miceli, P F; Singh, D K

    2015-02-11

    We report on the study of insulator-to-metal transition in post-perovskite compound CaIrO3. It is discovered that a gradual chemical substitution of calcium by yttrium leads to the onset of strong metallic behavior in this compound. This observation is in stark contrast to BaIrO3, which preserves its Mott insulating behavior despite excess of the charge carriers due to yttrium doping. Magnetic measurements reveal that both compounds tend to exhibit magnetic character irrespective of the chemical substitution of Ca or Ba. We analyze these unusual observations in light of recent researches that suggest that CaIrO3 does not necessarily possess j = 1/2 ground state due to structural distortion. The insulator-to-metal transition in CaIrO3 will spur new researches to explore more exotic ground state, including superconductivity, in post-perovskite Mott insulators.

  18. Introduction of BaSnO3 and BaZrO3 artificial pinning centres into 2G HTS wires based on PLD-GdBCO films. Phase I of the industrial R&D programme at SuperOx

    NASA Astrophysics Data System (ADS)

    Chepikov, V.; Mineev, N.; Degtyarenko, P.; Lee, S.; Petrykin, V.; Ovcharov, A.; Vasiliev, A.; Kaul, A.; Amelichev, V.; Kamenev, A.; Molodyk, A.; Samoilenkov, S.

    2017-12-01

    An industrial R&D programme is ongoing at SuperOx, aimed at improving 2G HTS wire performance in magnetic field. We introduce perovskite artificial pinning centres (APC) into the HTS layer matrix. In contrast to most studies described in the literature, we use the high rate production processing parameters and PLD equipment at SuperOx. This paper reports the results of Phase I of this programme. We fabricated 2G HTS wires by pulsed laser deposition of GdBCO films doped with 6%, 12% and 18% (molar) of BaSnO3 and 6% (molar) of BaZrO3, and compared their performance with an undoped reference sample. The depositions were carried out at production growth rates of 375, 560 and 750 nm min-1 by varying laser pulse frequency. BaZrO3 and BaSnO3 formed columnar semi-coherent nanoinclusions in the GdBCO film matrix. The average transverse size of the nanocolumns was about 5 nm, and their volume density correlated with the dopant concentration. All doped samples exhibited much lower angular anisotropy of in-field critical current and higher lift-factors than the undoped sample. Samples containing 6% BaSnO3 and deposited at the lower growth rates, had higher I c than the undoped sample in the entire temperature range, in a wide range of magnetic field (B//c). The sample containing 6% BaZrO3 had higher I c than the undoped sample at 20 and 4.2 K. These results are an encouraging start of our programme, as they show a positive impact of APC introduced into 2G HTS wires fabricated at production throughput. Phase II work will be focussed on maximising the improvements in specific temperature and field conditions, as well as on the verification of reproducibility of the improvements in production wires.

  19. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    PubMed

    Maeda, Y

    1994-01-10

    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection.

  20. Electric, Magnetic, and Magnetoelectric Properties of Yttrium-Containing BaY0.025Ti0.9625O3-SrFe12O19 Composite

    NASA Astrophysics Data System (ADS)

    Rather, Mehraj ud Din; Samad, Rubiya; Want, Basharat

    2018-03-01

    The physical properties of BaY0.025Ti0.9625O3, SrFe12O19, and 0.90BaY0.025Ti0.9625O3-0.10 SrFe12O19 composite have been studied. The proposed composite was synthesized by solid-state reaction method from yttrium barium titanate processed by solid-state reaction and strontium hexaferrite obtained by a sol-gel process. Microstructural analysis revealed monophasic grains for yttrium barium titanate phase, while loosely packed biphasic structure was observed for the composite. Powder x-ray analysis showed that the individual phases retained their crystal structure in the composite, without formation of any new additional phase. Measurement of magnetic hysteresis loops at room temperature indicated that the magnetic parameters of the composite were diluted by the presence of the ferroelectric phase. The ferroelectric hysteresis of yttrium barium titanate confirmed the ferroelectric transition at 119°C. Meanwhile, the symmetrical ferroelectric loops observed at different fields established the ferroelectric nature of the composite. Improved dielectric properties and low dielectric losses were observed due to yttrium doping in the composite. The diffuseness of the ferroelectric transitions for the composite was confirmed by the Curie-Weiss law. Activation energy calculations revealed the charge-hopping conduction mechanism in the composite. Magnetodielectric studies confirmed that the overall magnetocapacitance in the composite exhibited combined effects of magnetoresistance and magnetoelectric coupling.

  1. Optimization of Sm3+ fluorescence in Sm-doped yttrium aluminum garnet: Application to pressure calibration in diamond-anvil cell at high temperature

    NASA Astrophysics Data System (ADS)

    Sanchez-Valle, Carmen; Daniel, Isabelle; Reynard, Bruno; Abraham, Robert; Goutaudier, Christelle

    2002-10-01

    Sm3+ concentration in Sm-doped yttrium aluminum garnet (Sm3+):YAG has been optimized for fluorescence yield and synthesis procedure for the production of strain-free small grain-size powder established. Concentration of 0.5 wt % Sm3+ displays an optimal fluorescence signal, three to five times stronger than the generally proposed concentration (4 wt %). The fluorescence of the samples has been studied as a function of temperature (300-873 K) and pressure (0-15 GPa). A comparison with standard pressure scales shows that the pressure evolution of Sm3+:YAG fluorescence is insensitive to the doping rate, and that temperature has only a limited effect on the pressure scale established at 300 K. The present results indicate that pressure can be determined from the Y1 line of 0.5 wt % Sm-doped YAG, with temperature correction for pi at room pressure and constant pressure shift, within the 300-873 K and 10-4-15 GPa pressure-temperature range, through the linear relation: P (GPa)=0.127 x([pi0-0.018 xDelta]T)-[pi] where pi0 corresponds to the Y1 frequency value at ambient conditions (16 185 cm-1).

  2. Anisotropic Optical-Response of Eu-doped Yttrium Orthosilicate

    NASA Technical Reports Server (NTRS)

    Liu, Huimin; Santiago, Miguel; Jia, Weiyi; Zhang, Shoudu

    1998-01-01

    Eu-doped yttrium orthosilicate (Eu(3+) : Y2SiO5) had been a subject being investigated for coherent time-domain optical memory and information processing applications since its ultraslow optical dephasing was discovered several years ago. In this crystal the weakly allowed (7)F0 - (5)D0 transition of europium ions exhibits a sufficient long dephasing time and no spectral difli.usion on a time scale of several hours at low temperature, thus an information pattern or data can be stored as a population grating in the ground state hyperfine levels. On the other hand, the study on photon-echo relaxation shows that the dephasing time T2 of Eu (3+) and other rare-earth ions doped YAG, YAlO3 strongly depends on the intensity of the excitation pulses. In Eu (3+) :YAlO3, an exponential decay of photon-echo with T2 = 53 microseconds if the excitation pulses are weak (5 vJ/pulse) was observed. However, when the excitation pulses are strong (80 pJ/pulse) they observed a much shortened T2 with a highly nonexponential decay pattern. The conclusion they derived is that the intensity-dependent dephasing rate effects are quite general, and it depends on how much the excitation intensity varies. In this paper we use transient grating formation technique showing that a temporal lattice distortion may only occur along crystal c axis, caused by EU (3+) excitation. At high excitation level the produced exciton in conduction band may also couple to the dynamical lattice relaxation process, giving rise to an apparently much shortened dephasing time.

  3. Production of Zr-89 using sputtered yttrium coin targets 89Zr using sputtered yttrium coin targets.

    PubMed

    Queern, Stacy Lee; Aweda, Tolulope Aramide; Massicano, Adriana Vidal Fernandes; Clanton, Nicholas Ashby; El Sayed, Retta; Sader, Jayden Andrew; Zyuzin, Alexander; Lapi, Suzanne Elizabeth

    2017-07-01

    An increasing interest in zirconium-89 ( 89 Zr) can be attributed to the isotope's half-life which is compatible with antibody imaging using positron emission tomography (PET). The goal of this work was to develop an efficient means of production for 89 Zr that provides this isotope with high radionuclidic purity and specific activity. We investigated the irradiation of yttrium sputtered niobium coins and compared the yields and separation efficiency to solid yttrium coins. The sputtered coins were irradiated with an incident beam energy of 17.5MeV or 17.8MeV providing a degraded transmitted energy through an aluminum degrader of 12.5MeV or 12.8MeV, respectively, with various currents to determine optimal cyclotron conditions for 89 Zr production. Dissolution of the solid yttrium coin took 2h with 50mL of 2M HCl and dissolution of the sputtered coin took 15-30min with 4mL of 2M HCl. During the separation of 89 Zr from the solid yttrium coins, 77.9 ± 11.2% of the activity was eluted off in an average of 7.3mL of 1M oxalic acid whereas for the sputtered coins, 91 ± 6% was eluted off in an average of 1.2mL of 1M oxalic acid with 100% radionuclidic purity. The effective specific activity determined via DFO-SCN titration from the sputtered coins was 108±7mCi/μmol as compared to 20.3mCi/μmol for the solid yttrium coin production. ICP-MS analysis of the yttrium coin and the sputtered coins showed 99.99% yttrium removed with 178μg of yttrium in the final solution and 99.93-100% of yttrium removed with remaining range of 0-42μg of yttrium in the final solution, respectively. The specific activity calculated for the solid coin and 3 different sputtered coins using the concentration of Zr found via ICP-MS was 140±2mCi/μmol, 300±30mCi/μmol, 410±60mCi/μmol and 1719±5mCi/μmol, respectively. Labeling yields of the 89 Zr produced via sputtered targets for 89 Zr- DFO-trastuzumab were >98%. Overall, these results show the irradiation of yttrium sputtered niobium coins

  4. Synthesis, crystal structures and luminescence properties of the Eu 3+-doped yttrium oxotellurates(IV) Y 2Te 4O 11 and Y 2Te 5O 13

    NASA Astrophysics Data System (ADS)

    Höss, Patrick; Osvet, Andres; Meister, Frank; Batentschuk, Miroslaw; Winnacker, Albrecht; Schleid, Thomas

    2008-10-01

    Y 2Te 4O 11:Eu 3+ and Y 2Te 5O 13:Eu 3+ single crystals in sub-millimeter scale were synthesized from the binary oxides (Y 2O 3, Eu 2O 3 and TeO 2) using CsCl as fluxing agent. Crystallographic structures of the undoped yttrium oxotellurates(IV) Y 2Te 4O 11 and Y 2Te 5O 13 have been determined and refined from single-crystal X-ray diffraction data. In Y 2Te 4O 11, a layered structure is present where the reticulated sheets consisting of edge-sharing [YO 8] 13- polyhedra are interconnected by the oxotellurate(IV) units, whereas in Y 2Te 5O 13 only double chains of condensed yttrium-oxygen polyhedra with coordination numbers of 7 and 8 are left, now linked in two crystallographic directions by the oxotellurate(IV) entities. The Eu 3+ luminescence spectra and the decay time from different energy levels of the doped compounds were investigated and all detected emission levels were identified. Luminescence properties of the Eu 3+ cations have been interpreted in consideration of the now accessible detailed crystallographic data of the yttrium compounds, providing the possibility to examine the influence of the local symmetry of the oxygen coordination spheres.

  5. Scintillation properties of Pr 3+-doped lutetium and yttrium aluminum garnets: Comparison with Ce 3+-doped ones

    NASA Astrophysics Data System (ADS)

    Mares, Jiri A.; Nikl, Martin; Beitlerova, Alena; Blazek, Karel; Horodysky, Petr; Nejezchleb, Karel; D'Ambrosio, Carmelo

    2011-12-01

    Scintillation properties of Pr 3+-doped LuAG and YAG crystals were investigated and compared with those of Ce 3+-doped ones. The highest L.Y.'s were observed with the longest shaping time 10 μs. They can reach up to ˜16,000 ph/MeV or ˜23,500 ph/MeV for LuAG:Pr and LuAG:Ce, respectively. Energy resolutions (FWHM) are a bit better with LuAG:Pr than those of LuAG:Ce, e.g. at 662 keV FWHM are around 6% and between 8-12%, respectively. There were observed no large changes in proportionality of Pr 3+- or Ce 3+-doped LuAG or YAG crystals but the best proportionality has YAP:Ce crystal. Pr 3+- or Ce 3+-doped LuAG crystals exhibit slow decay components in the time range 1.5-3.5 μs while those of YAG ones have shorter decay components between 0.3-1.7 μs.

  6. Photoluminescent and Thermoluminescent Studies of Dy3+ and Eu3+ Doped Y2O3 Phosphors.

    PubMed

    Verma, Tarkeshwari; Agrawal, Sadhana

    2018-01-01

    Eu 3+ doped and Dy 3+ codoped yttrium oxide (Y 2 O 3 ) phosphors have been prepared using solid-state reaction technique (SSR). The prepared phosphors were characterized by X-ray diffractometer (XRD), energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR) techniques. Photoluminescence (PL) and Thermoluminescence (TL) properties were studied in detail. PL emission spectra were recorded for prepared phosphors under excitation wavelength 254 nm, which show a high intense peak at 613 nm for Y 2 O 3 :Dy 3+ , Eu 3+ (1:1.5 mol %) phosphor. The correlated color temperature (CCT) and CIE analysis have been performed for the synthesized phosphors. TL glow curves were recorded for Eu 3+ doped and Dy 3+ codoped phosphors to study the heating rate effect and dose response. The kinetic parameters were calculated using peak shape method for UV and γ exposures through computerized glow curve deconvolution (CGCD) technique. The phosphors show second order kinetics and activation energies varying from 5.823 × 10 - 1 to 18.608 × 10 - 1  eV.

  7. Phase equilibria, crystal structures, and dielectric anomaly in the BaZrO 3-CaZrO 3 system

    NASA Astrophysics Data System (ADS)

    Levin, Igor; Amos, Tammy G.; Bell, Steven M.; Farber, Leon; Vanderah, Terrell A.; Roth, Robert S.; Toby, Brian H.

    2003-11-01

    Phase equilibria in the (1- x)BaZrO 3- xCaZrO 3 system were analyzed using a combination of X-ray and neutron powder diffraction, and transmission electron microscopy. The proposed phase diagram features two extended two-phase fields containing mixtures of a Ba-rich cubic phase and a tetragonal, or orthorhombic Ca-rich phase, all having perovskite-related structures. The symmetry differences in the Ca-rich phases are caused by different tilting patterns of the [ZrO 6] octahedra. In specimens quenched from 1650°C, CaZrO 3 dissolves only a few percent of Ba, whereas the solubility of Ca in BaZrO 3 is approximately 30 at% . The BaZrO 3-CaZrO 3 system features at least two tilting phase transitions, Pm3 m→ I4/ mcm and I4/ mcm→ Pbnm. Rietveld refinements of the Ba 0.8Ca 0.2ZrO 3 structure using variable-temperature neutron powder diffraction data confirmed that the Pm3 m→ I4/ mcm transition corresponds to a rotation of octahedra about one of the cubic axes; successive octahedra along this axis rotate in opposite directions. In situ variable-temperature electron diffraction studies indicated that the transition temperature increases with increasing Ca-substitution on the A-sites, from approximately -120°C at 5 at% Ca to 225°C at 20 at% Ca. Dielectric measurements revealed that the permittivity increases monotonically from 36 for BaZrO 3 to 53 for Ba 0.9Ca 0.1ZrO 3, and then decreases to 50 for Ba 0.8Ca 0.2ZrO 3. This later specimen was the Ca-richest composition for which pellets could be quenched from the single-phase cubic field with presently available equipment. Strongly non-monotonic behavior was also observed for the temperature coefficient of resonant frequency; however, in this case, the maximum occurred at a lower Ca concentration, 0.05⩽ x⩽0.1. The non-linear behavior of the dielectric properties was attributed to two competing structural effects: a positive effect associated with substitution of relatively small Ca cations on the A-sites, resulting

  8. Dielectric properties and activation behavior of gadolinium doped nanocrystalline yttrium chromite

    NASA Astrophysics Data System (ADS)

    Sinha, R.; Basu, S.; Meikap, A. K.

    2018-04-01

    Gadolinium doped Yttrium Chromite nanoparticles are synthesized following sol-gel method. The formation of the nanoparticles are confirmed by XRD and TEM measurements. Dielectric permittivity and dielectric loss are estimated within the temperature range 298K to 523K and in the frequency range 20 Hz to 1 MHz. Dielectric permittivity follows the power law ɛ'(f) ∝ Tm. It is observed that the temperature exponent m increases with the decreasing frequency. The temperature variation of resistivity shows that the samples have semiconducting behavior. The activation energy is also measured.

  9. Rare Earth Doped Yttrium Aluminum Garnet (YAG) Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie T.; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study presents a spectral emittance model for films and cylinders of rare earth doped yttrium aluminum garnets. Good agreement between experimental and theoretical film spectral emittances was found for erbium and holmium aluminum garnets. Spectral emittances of films are sensitive to temperature differences across the film. For operating conditions of interest, the film emitter experiences a linear temperature variation whereas the cylinder emitter has a more advantageous uniform temperature. Emitter efficiency is also a sensitive function of temperature. For holminum aluminum garnet film the efficiency is 0.35 at 1446K but only 0.27 at 1270 K.

  10. Infrared spectroscopy and upconversion luminescence behaviour of erbium doped yttrium (III) oxide phosphor

    NASA Astrophysics Data System (ADS)

    Dubey, Vikas; Tiwari, Ratnesh; Tamrakar, Raunak Kumar; Rathore, Gajendra Singh; Sharma, Chitrakant; Tiwari, Neha

    2014-11-01

    The paper reports upconversion luminescence behaviour and infra-red spectroscopic pattern of erbium doped yttrium (III) oxide phosphor. Sample was synthesized by solid state reaction method with variable concentration or erbium (0.5-2.5 mol%). The conventional solid state method is suitable for large scale production and eco-friendly method. The prepared sample was characterized by X-ray diffraction (XRD) technique. From structural analysis by XRD technique shows cubic structure of prepared sample with variable concentration of erbium and no impurity phase were found when increase the concentration of Er3+. Particle size was calculated by Scherer's formula and it varies from 67 nm to 120 nm. The surface morphology of prepared phosphor was determined by field emission gun scanning electron microscopy (FEGSEM) technique. The surface morphology of the sample shows good connectivity with grains as well as some agglomerates formation occurs in sample. The functional group analysis was done by Fourier transform infra-red technique (FTIR) analysis which confirm the formation of Y2O3:Er3+ phosphor was prepared. The results indicated that the Y2O3:Er3+ phosphors might have high upconversion efficiency because of their low vibrational energy. Under 980 nm laser excitation sample shows intense green emission at 555 nm and orange emission at 590 nm wavelength. For green emission transition occurs 2H11/2 → 4I15/2, 4S3/2 → 4I15/2 for upconversion emissions. Excited state absorption and energy transfer process were discussed as possible upconversion mechanisms. The near infrared luminescence spectra was recorded. The upconversion luminescence intensity increase with increasing the concentration or erbium up to 2 mol% after that luminescence intensity decreases due to concentration quenching occurs. Spectrophotometric determinations of peaks are evaluated by Commission Internationale de I'Eclairage (CIE) technique. From CIE technique the dominant peak of from PL spectra shows

  11. Quantitative description of yttrium aluminate ceramic composition by means of Er+3 microluminescence spectrum

    NASA Astrophysics Data System (ADS)

    Videla, F. A.; Tejerina, M. R.; Moreira-Osorio, L.; Conconi, M. S.; Orzi, D. J. O.; Flores, T.; Ponce, L. V.; Bilmes, G. M.; Torchia, G. A.

    2018-05-01

    The composition of erbium-doped yttrium aluminate ceramics was analyzed by means of confocal luminescence spectroscopy, EDX, and X-ray diffraction. A well-defined linear correlation was found between a proposed estimator computed from the luminescence spectrum and the proportion of ceramic phases coexisting in different samples. This result shows the feasibility of using erbium luminescence spectroscopy to perform a quantitative determination of different phases of yttrium aluminates within a micrometric region in nanograined ceramics.

  12. Thermo-optical characteristics and concentration quenching effects in Nd3+doped yttrium calcium borate glasses

    NASA Astrophysics Data System (ADS)

    Santos, D. R. S.; Santos, C. N.; de Camargo, A. S. S.; Silva, W. F.; Santos, W. Q.; Vermelho, M. V. D.; Astrath, N. G. C.; Malacarne, L. C.; Li, M. S.; Hernandes, A. C.; Ibanez, A.; Jacinto, C.

    2011-03-01

    In this work we present a comprehensive study of the spectroscopic and thermo-optical properties of a set of samples with composition xNd2O3-(5-x)Y2O3-40CaO-55B2O3 (0 ≤ x ≤ 1.0 mol%). Their fluorescence quantum efficiency (η) values were determined using the thermal lens technique and the dependence on the ionic concentration was analyzed in terms of energy transfer processes, based on the Förster-Dexter model of multipolar ion-ion interactions. A maximum η = 0.54 was found to be substantially higher than for yttrium aluminoborate crystals and glasses with comparable Nd3+ content. As for the thermo-optical properties of yttrium calcium borate, they are comparable to other well-known laser glasses. The obtained energy transfer microparameters and the weak dependence of η on the Nd3+ concentration with a high optimum Nd3+ concentration put this system as a strong candidate for photonics applications.

  13. Efficient eye-safe neodymium doped composite yttrium gallium garnet crystal laser.

    PubMed

    Yu, Haohai; Wang, Shuxian; Han, Shuo; Wu, Kui; Su, Liangbi; Zhang, Huaijin; Wang, Zhengping; Xu, Jun; Wang, Jiyang

    2014-03-15

    We report a laser-diode pumped continuous-wave (cw) and passively Q-switched eye-safe laser at about 1.42 μm with the neodymium-doped yttrium gallium garnet (Nd:YGG) crystal for the first time to our knowledge. The composite Nd:YGG crystal was developed originally. A systematic comparison of laser performance between the homogeneously doped and composite Nd:YGG crystal was made, which showed that the composite Nd:YGG manifested less thermally induced effects. Cw output power of 2.06 W was obtained with the slope efficiency of 20.7%. With a V:YAG as a saturable absorber, the passive Q-switching at 1.42 μm was gotten with the pulse width, pulse energy, and peak power of 34 ns, 46.7 μJ, and 1.4 kW, respectively. The present work should provide a potential candidate for the generation of eye-safe lasers.

  14. Hydration Resistance of Y2O3 Doped CaO and Its Application to Melting Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Fanlong, Meng; Zhiwei, Cheng; Guangyao, Chen; Xionggang, Lu; Chonghe, Li

    Various amount Y2O3(1-8 mol%) doped CaO powder was synthesized by the solid state reaction method, the pellete and crucible were fabricated by the cold isostatic pressing and were sintered at 1750°C for 4h. The microstructural characterization was revealed by X-ray diffraction(XRD) and scanning electron microscopy(SEM).The XRD results showed that when Y2O3 doped 2 mol%, metastable CaY2O4 phase existed in CaO grain boundary, when Y2O3 doped 3 mol%-8 mol%, in addition to the above structure, Y2O3 phase also be found in CaO grain boundary. Hydration experiment results showed when Y2O3 doped 0 mol%-4 mol%, CaO had excellent hydration resistance performance, Y2O3 doped 2 mol% had the best hydration resistance, its weight addition stored after 7 weeks (49 days) was only about 0.2 wt%. Melting experiment results showed that it was no reaction between crucible and alloy layer. Oxygen, calcium, titanium, nickle and yttrium element not diffusion between the CaO crucible and TiNi alloy, it was no oxygen content increase after melting.

  15. Thermal effects from modified endodontic laser tips used in the apical third of root canals with erbium-doped yttrium aluminium garnet and erbium, chromium-doped yttrium scandium gallium garnet lasers.

    PubMed

    George, Roy; Walsh, Laurence J

    2010-04-01

    To evaluate the temperature changes occurring on the apical third of root surfaces when erbium-doped yttrium aluminium garnet (Er:YAG) and erbium, chromium-doped yttrium scandium gallium garnet (Er,Cr:YSGG) laser energy was delivered with a tube etched, laterally emitting conical tip and a conventional bare design optical fiber tip. Thermal effects of root canal laser treatments on periodontal ligament cells and alveolar bone are of concern in terms of safety. A total of 64 single-rooted extracted teeth were prepared 1 mm short of the working length using rotary nickel-titanium Pro-Taper files to an apical size corresponding to a F5 Pro-Taper instrument. A thermocouple located 2 mm from the apex was used to record temperature changes arising from delivery of laser energy through laterally emitting conical tips or plain tips, using an Er:YAG or Er,Cr:YSGG laser. For the Er:YAG and Er,Cr:YSGG systems, conical fibers showed greater lateral emissions (452 + 69% and 443 + 64%) and corresponding lower forward emissions (48 + 5% and 49 + 5%) than conventional plain-fiber tips. All four combinations of laser system and fiber design elicited temperature increases less than 2.5 degrees C during lasing. The use of water irrigation attenuated completely the thermal effects of individual lasing cycles. Laterally emitting conical fiber tips can be used safely under defined conditions for intracanal irradiation without harmful thermal effects on the periodontal apparatus.

  16. Further optimization of barium cerate properties via co-doping strategy for potential application as proton-conducting solid oxide fuel cell electrolyte

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Shen, Jianxing; Zhu, Zhiwen; Wang, Zhihao; Cao, Yanxin; Guan, Xiaoli; Wang, Yueyue; Wei, Zhaoling; Chen, Meina

    2018-05-01

    Yttrium-doped BaCeO3 is one of the most promising electrolyte candidates for solid oxide fuel cells because of its high ionic conductivity. Nd and Y co-doped BaCeO3 strategy is adopted for the further optimization of Y-doped BaCeO3 electrolyte properties. X-ray diffraction results indicate that the structure of BaCe0.8Y0.2-xNdxO3-δ (x = 0, 0.05, 0.1, 0.15) with orthorhombic perovskite phase becomes more symmetric with increasing Nd concentration. The scanning electron microscope observation demonstrates that the densification and grain size of the sintered pellets significantly enhance with the increase of Nd doping level. Whether in dry and humid hydrogen or air, the increase of Nd dopant firstly increases the conductivities of BaCe0.8Y0.2-xNdxO3-δ (x = 0, 0.05, 0.1, 0.15) and then decrease them after reaching the peak value at x = 0.05. Electrochemical impedance spectra at 350 °C can distinguish clearly the contribution of grain and grain boundary to total conductivity and the highest conductivity of BaCe0.8Y0.15Nd0.05O3-δ ascribes to the decrease in bulk and grain boundary resistances due to the synergistic effect of Nd and Y doping. The anode-supported single cell with BaCe0.8Y0.15Nd0.05O3-δ electrolyte shows an encouraging peak power density of 660 mW cm-2 at 700 °C, suggesting that BaCe0.8Y0.15Nd0.05O3-δ is a potential electrolyte material for the highly-efficient proton-conducting solid oxide fuel cell.

  17. High-pressure investigations of yttrium(III) oxoarsenate(V): Crystal structure and luminescence properties of Eu3+-doped scheelite-type Y[AsO4] from xenotime-type precursors

    NASA Astrophysics Data System (ADS)

    Ledderboge, Florian; Nowak, Jan; Massonne, Hans-Joachim; Förg, Katharina; Höppe, Henning A.; Schleid, Thomas

    2018-07-01

    Colourless, water- and air-stable single crystals of yttrium(III) oxoarsenate(V) Y[AsO4] in the xenotime-type crystal structure were prepared by the reaction of yttrium sesquioxide (Y2O3) dissolved in aqueous nitric acid (13%) with a solution of arsenic(V) oxide hydrate (As2O5·3H2O) and subsequent neutralization with 1 M caustic soda. Y[AsO4] crystallizes tetragonally in the space group I41/amd with the lattice parameters a = 704.63(6) and c = 628.94(5) pm for Z = 4 and is isotypic to the minerals xenotime RE[PO4] (RE: mainly Y and Yb) and chernovite RE[AsO4] (RE: mainly Y and Ce). This xenotime-type yttrium compound was used as precursor in a high-pressure experiment (20 kbar) at 700 °C to create a new tetragonal modification of Y[AsO4]. It shows the scheelite-type structure (space group: I41/a) with the lattice parameters a = 498.23(4) and c = 1120.71(9) pm for Z = 4, named after the mineral scheelite (Ca[WO4]). Both tetragonal structures are characterized by only one crystallographically unique position for each of the Y3+, As5+ and O2- ions with distances of d(Y-O) = 232 and 241 pm (C.N. = 8) as well as d(As-O) = 169 pm (C.N. = 4) in the case of the scheelite-type structure. The xenotime-type compound shows an unexpected slight decrease in average bond lengths for the yttrium to oxygen (d(Y-O) = 230 and 241 pm, C.N. = 8) as well as for the arsenic to oxygen distances (d(As-O) = 168 pm, C.N. = 4), accompanied by a drastic density increase from Dx = 4.85 (xenotime type) to Dx = 5.44 g • cm-3 (scheelite type). Luminescence spectroscopic measurements of the Eu3+-doped Y[AsO4] samples, obtained in experiments at similar conditions as for the pure compounds, show a bright, reddish lighting for the scheelite type, which does not occur for the xenotime type of yttrium(III) oxoarsenate(V).

  18. Yttrium orthoaluminate nanoperovskite doped with Tm3+ ions as upconversion optical temperature sensor in the near-infrared region.

    PubMed

    Hernández-Rodriguez, M A; Lozano-Gorrín, A D; Lavín, V; Rodríguez-Mendoza, U R; Martín, I R

    2017-10-30

    The thermal sensing capability of the Tm 3+ -doped yttrium orthoaluminate nanoperovskite in the infrared range, synthetized by a sol-gel method, was studied. The temperature dependence of the infrared upconverted emission bands located at around 705 nm ( 3 F 2,33 H 6 ) and 800 nm ( 3 H 4 → 3 H 6 ) of YAP: Tm 3+ nanoperovskite under excitation at 1210 nm was analyzed from RT up to 425 K. Calibration of the optical sensor has been made using the fluorescence intensity ratio technique, showing a high sensitivity in the near-infrared compared to other trivalent rare-earth based optical sensors working in the same range. In addition, a second calibration procedure of the YAP: Tm 3+ optical sensor was performed by using the FIR technique on the emission band associated to the 3 H 4 → 3 H 6 transition in the physiological temperature range (293-333 K), showing a very high relative sensitivity compared with other rare-earth based optical temperature sensors working in the physiological range. Moreover, the main advantage compared with other optical sensors is that the excitation source and the upconverted emissions do not overlap, since they lie in different biological windows, thus allowing its potential use as an optical temperature probe in the near-infrared range for biological applications.

  19. Luminescence studies of rare earth doped yttrium gadolinium mixed oxide phosphor

    NASA Astrophysics Data System (ADS)

    Som, S.; Choubey, A.; Sharma, S. K.

    2012-09-01

    This paper reports the photoluminescence and thermoluminescence properties of gamma ray induced rare earth doped yttrium gadolinium mixed oxide phosphor. The europium (Eu3+) was used as rare earth dopant. The phosphor was prepared by chemical co-precipitation method according to the formula (Y2-x-yGdx) O3: Euy3+ (x=0.5; y=0.05). The photoluminescence emission spectrum of the prepared phosphor shows intense peaks in the red region at 615 nm for 5D0→7F2 transitions and the photoluminescence excitation spectra show a broad band located around 220-270 nm for the emission wavelength fixed at 615 nm. The thermoluminescence studies were carried out after irradiating the phosphor by gamma rays in the dose range from 100 Gy to 1 KGy. In the thermoluminescence glow curves, one single peak was observed at about 300 °C of which the intensity increases linearly in the studied dose range of gamma rays. The glow peak was deconvoluted by GlowFit program and the kinetic parameters associated with the deconvoluted peaks were calculated. The kinetic parameters were also calculated by various glow curve shape and heating rate methods.

  20. Low temperature solid oxide electrolytes (LT-SOE): A review

    NASA Astrophysics Data System (ADS)

    Singh, B.; Ghosh, S.; Aich, S.; Roy, B.

    2017-01-01

    Low temperature solid oxide fuel cell (LT-SOFC) can be a source of power for vehicles, online grid, and at the same time reduce system cost, offer high reliability, and fast start-up. A huge amount of research work, as evident from the literature has been conducted for the enhancement of the ionic conductivity of LT electrolytes in the last few years. The basic conduction mechanisms, advantages and disadvantages of different LT oxide ion conducting electrolytes {BIMEVOX systems, bilayer systems including doped cerium oxide/stabilised bismuth oxide and YSZ/DCO}, mixed ion conducting electrolytes {doped cerium oxides/alkali metal carbonate composites}, and proton conducting electrolytes {doped and undoped BaCeO3, BaZrO3, etc.} are discussed here based on the recent research articles. Effect of various material aspects (composition, doping, layer thickness, etc.), fabrication methods (to achieve different microstructures and particle size), design related strategies (interlayer, sintering aid etc.), characterization temperature & environment on the conductivity of the electrolytes and performance of the fuel cells made from these electrolytes are shown in tabular form and discussed. The conductivity of the electrolytes and performance of the corresponding fuel cells are compared. Other applications of the electrolytes are mentioned. A few considerations regarding the future prospects are pointed.

  1. High Energy Solid State and Free Electron Laser Systems in Tactical Aviation

    DTIC Science & Technology

    2005-06-01

    specifically neodymium and ytterbium doped yttrium aluminum garnet (Nd:YAG and Yb:YAG) have been shown to produce pump absorption efficiencies (i.e...Search Radar Dish Aluminum Alloy 2.71 10.0 0.91 321 932 300 22.1 SAM nosecone Ceramic* 3.0 1.0 0.9 1600 3300 250 12.1 T-72 Tank Armor Steel...development at Lawrence Livermore National Laboratory, is the solid-state heat capacity laser, which is an array of diode- pumped neodymium-doped gadolinium

  2. Growth of rare-earth doped single crystal yttrium aluminum garnet fibers

    NASA Astrophysics Data System (ADS)

    Bera, Subhabrata; Nie, Craig D.; Harrington, James A.; Cheng, Long; Rand, Stephen C.; Li, Yuan; Johnson, Eric G.

    2018-02-01

    Rare-earth doped single crystal (SC) yttrium aluminum garnet (YAG) fibers have great potential as high-power laser gain media. SC fibers combine the superior material properties of crystals with the advantages of a fiber geometry. Improving processing techniques, growth of low-loss YAG SC fibers have been reported. A low-cost technique that allows for the growth of optical quality Ho:YAG single crystal (SC) fibers with different dopant concentrations have been developed and discussed. This technique is a low-cost sol-gel based method which offers greater flexibility in terms of dopant concentration. Self-segregation of Nd ions in YAG SC fibers have been observed. Such a phenomenon can be utilized to fabricate monolithic SC fibers with graded index.

  3. One-step synthesis of layered yttrium hydroxides in immiscible liquid-liquid systems: Intercalation of sterically-bulky hydrophobic organic anions and doping of europium ions

    NASA Astrophysics Data System (ADS)

    Watanabe, Mebae; Fujihara, Shinobu

    2014-02-01

    Inorganic-organic layered rare-earth compounds were synthesized on the basis of a biphasic liquid-liquid system in one pot. Layered yttrium hydroxides (LYHs) were chosen as a host material for the intercalation of hydrophobic organic guest anions such as benzoate, sebacate, or laurate. In a typical synthesis, an organic phase dissolving carboxylic acid was placed in contact with an equal amount of an aqueous phase dissolving yttrium nitrate n-hydrate and urea. At elevated temperatures up to 80 °C, urea was hydrolyzed to release hydroxyl anions which were used to form yttrium hydroxide layers. LYHs were then precipitated with the intercalation of carboxylate anions delivered from the organic phase under the distribution law. The structure and the morphology of the LYHs could be modulated by the intercalated anions. Doped with Eu3+ ions, the LYHs exhibited red photoluminescence which was enhanced by the intercalated anions due to the antenna effect.

  4. Towards Isotropic Vortex Pinning in YBCO Films with Double-doping BHO-Y2O3 and BZO-Y2O3 Artificial Pining Centers

    NASA Astrophysics Data System (ADS)

    Gautam, Bibek; Sebastian, Mary Ann; Chen, Shihong; Haugan, Timothy; Chen, Yanbin; Xing, Zhongwen; Prestigiacomo, Joseph; Osofsky, Mike; Wu, Judy

    2017-12-01

    Strong and isotropic vortex pinning landscape is demanded for high field applications of YaBa2Cu3O7-x (YBCO) epitaxial thin films. Double-doping (DD) of artificial pinning centers (APCs) of mixed morphologies has been identified as a viable approach for this purpose. This work presents a comparative study on the transport critical current density J c (H, θ) of 3.0 vol.%Y2O3+2.0 (or 6.0) vol.% BaZrO3 (BZO DD) and 3.0 vol.%Y2O3+ 2.0 (or 6.0) vol.% BaHfO3 (BHO DD) films. Based on the elastic strain model, BaHfO3 (BHO) nanorods have lower rigidity than their BaZrO3 (BZO) counterparts, which means their c-axis alignment is more susceptible to the local strain generated by the secondary dopant of Y2O3. Considering the increasing strain field with higher BZO (or BHO doping), the higher susceptibility may result in a large portion of the BHO APCs moving away from perfect c-axis alignment and enhancing isotropic pinning with respect to the H orientation. This is confirmed since the BHO DD films illustrate a less pronounced J c peak at H//c-axis and hence more isotropic J c(θ) than their BZO DD counterparts. At 9.0 T, the variation of the J c across the entire θ range (0-90 degree) is less than 18% for the BHO DD film, in contrast to about 100% for the 2.0 vol.% BZO DD counterpart. At the higher BHO concentration of 6.0 vol.%, this higher tunability of the Y2O3 leads to increased ab-plane aligned BHO APCs and hence enhanced J c at H//ab-plane.

  5. Chromium and yttrium-doped magnesium aluminum oxides prepared from layered double hydroxides

    NASA Astrophysics Data System (ADS)

    García-García, J. M.; Pérez-Bernal, M. E.; Ruano-Casero, R. J.; Rives, V.

    2007-12-01

    Layered double hydroxides with the hydrotalcite-like structures, containing Mg 2+ and Al 3+, doped with Cr 3+ and Y 3+, have been prepared by precipitation at constant pH. The weight percentages of Cr 3+ and Y 3+ were 1, 2, or 3%, and 0.5 or 1%, respectively. Single phases were obtained in all cases, whose crystallinity decreased as the content in Cr and Y was increased. The solids have been characterised by element chemical analysis, powder X-ray diffraction, thermal analyses (differential, thermogravimetric and programmed reduction), FT-IR and UV-vis spectroscopies; the specific surface areas have been determined from nitrogen adsorption isotherms at -196 °C. Upon calcination at 1200 °C for 5 h in air all solids display a mixed structure (spinel and rock salt for MgO); these solids have also been characterised by these techniques and their chromatic coordinates (CIE - L∗a∗b∗) have been determined. Their pink colour makes these solids suitable for being used as ceramic pigments.

  6. Solid-state reaction synthesis for mixed-phase Eu3+-doped bismuth molybdate and its luminescence properties

    NASA Astrophysics Data System (ADS)

    Liang, Danyang; Ding, Yu; Wang, Nan; Cai, Xiaomeng; Li, Jia; Han, Linyu; Wang, Shiqi; Han, Yuanyuan; Jia, Guang; Wang, Liyong

    2017-09-01

    A method for mixed-phase bismuth molybdate doped with Eu3+ ions was developed by solid-state reaction assisting with polyvinyl alcohol (PVA). The results of powder X-ray diffraction showed a mixed-phase structure and the microscopical characterization technology revealed the formation process with the addition of PVA. As a structure inducer, the PVA molecules played a vital role in the formation of phase structure. The as-obtained Eu3+-doped bismuth molybdates were also characterized by using different spectroscopic techniques including FTIR and photoluminescence (PL). The results show that doping concentration, PVA addition and calcination temperature affect photoluminescence properties remarkably.

  7. Spin-state crossover and low-temperature magnetic state in yttrium-doped Pr0.7Ca0.3CoO3

    NASA Astrophysics Data System (ADS)

    Knížek, K.; Hejtmánek, J.; Maryško, M.; Novák, P.; Šantavá, E.; Jirák, Z.; Naito, T.; Fujishiro, H.; de la Cruz, Clarina

    2013-12-01

    The structural and magnetic properties of two mixed-valence cobaltites with a formal population of 0.30 Co4+ ions per f.u., (Pr1-yYy)0.7Ca0.3CoO3 (y=0 and 0.15), have been studied down to very low temperatures by means of high-resolution neutron diffraction, SQUID magnetometry, and heat-capacity measurements. The results are interpreted within the scenario of the spin-state crossover from a room-temperature mixture of the intermediate-spin Co3+ and low-spin Co4+ (IS/LS) to the LS/LS mixture in the sample ground states. In contrast to the yttrium-free y=0 that retains the metallic-like character and exhibits ferromagnetic (FM) ordering below 55 K, the doped system y=0.15 undergoes a first-order metal-insulator transition at 132 K, during which not only the crossover to low-spin states but also a partial electron transfer from Pr3+ 4f to cobalt 3d states takes place simultaneously. Taking into account the nonmagnetic character of LS Co3+, such a valence shift electronic transition causes a magnetic dilution, formally to 0.12 LS Co4+ or 0.12 t2g hole spins per f.u., which is the reason for an insulating, highly nonuniform magnetic ground state without long-range order. Nevertheless, even in that case there exists a relatively strong molecular field distributed over all the crystal lattice. It is argued that the spontaneous FM order in y=0 and the existence of strong FM correlations in y=0.15 apparently contradict the single t2g band character of LS/LS phase. The explanation we suggest relies on a model of the defect-induced, itinerant hole-mediated magnetism, where the defects are identified with the magnetic high-spin Co3+ species stabilized near oxygen vacancies.

  8. A silica optical fiber doped with yttrium aluminosilicate nanoparticles for supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Cheng, Tonglei; Liao, Meisong; Xue, Xiaojie; Li, Jiang; Gao, Weiqing; Li, Xia; Chen, Danping; Zheng, Shupei; Pan, Yubai; Suzuki, Takenobu; Ohishi, Yasutake

    2016-03-01

    We design and fabricate a silica optical fiber doped with yttrium aluminosilicate (YAS, Y2O3-Al2O3-SiO2) nanoparticles in the core. The optical fiber is drawn directly from a silica tube with YAG (Y3Al5O12) ceramics and silica powders (the molar ratio 1:18) in the core at the temperature of ∼1950 °C. The YAS nanoparticles are formed during the optical fiber drawing process. Supercontinuum (SC) generation in the optical fiber is investigated at different pump wavelength. At the pump wavelength of ∼1750 nm which is in the deep anomalous dispersion region, SC spectrum evolution is mainly due to multiple solitons and dispersive waves (DWs), and three pairs of multiple optical solitons and DWs are observed. When the pump wavelength shifts to ∼1500 nm which is close to the zero-dispersion wavelength (ZDW), flattened SC spectrum with ±7 dB uniformity is obtained at the wavelength region of ∼990-1980 nm, and only one obvious soliton and DW are observed. At the pump wavelength of ∼1100 nm, a narrow SC spectrum from ∼1020 to 1180 nm is obtained in the normal dispersion region due to self-phase modulation (SPM) effect.

  9. Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers.

    PubMed

    Chandrahalim, Hengky; Fan, Xudong

    2015-12-17

    This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3'-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3'-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm(2) per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm(2) per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip.

  10. Surface-Directed Synthesis of Erbium-Doped Yttrium Oxide Nanoparticles within Organosilane Zeptoliter Containers

    PubMed Central

    2015-01-01

    We introduce an approach to synthesize rare earth oxide nanoparticles using high temperature without aggregation of the nanoparticles. The dispersity of the nanoparticles is controlled at the nanoscale by using small organosilane molds as reaction containers. Zeptoliter reaction vessels prepared from organosilane self-assembled monolayers (SAMs) were used for the surface-directed synthesis of rare earth oxide (REO) nanoparticles. Nanopores of octadecyltrichlorosilane were prepared on Si(111) using particle lithography with immersion steps. The nanopores were filled with a precursor solution of erbium and yttrium salts to confine the crystallization step to occur within individual zeptoliter-sized organosilane reaction vessels. Areas between the nanopores were separated by a matrix film of octadecyltrichlorosilane. With heating, the organosilane template was removed by calcination to generate a surface array of erbium-doped yttria nanoparticles. Nanoparticles synthesized by the surface-directed approach retain the periodic arrangement of the nanopores formed from mesoparticle masks. While bulk rare earth oxides can be readily prepared by solid state methods at high temperature (>900 °C), approaches for preparing REO nanoparticles are limited. Conventional wet chemistry methods are limited to low temperatures according to the boiling points of the solvents used for synthesis. To achieve crystallinity of REO nanoparticles requires steps for high-temperature processing of samples, which can cause self-aggregation and dispersity in sample diameters. The facile steps for particle lithography address the problems of aggregation and the requirement for high-temperature synthesis. PMID:25163977

  11. Formation of Yttrium Oxysulfide Phosphor at Room Temperature

    NASA Astrophysics Data System (ADS)

    Shoji, Masahiko; Sakurai, Kenji

    2005-12-01

    Europium-doped yttrium oxysulfide (Y2O2S:Eu) phosphor was successfully synthesized at room temperature from yttrium oxide, europium oxide, and sulfur. The method employs high-energy ball milling to enable a substitution reaction between oxygen and sulfur, unlike conventional methods, such as heating in a sulfurizing atmosphere. It was found that the material is fluorescent through X-ray irradiation, and the luminescence spectra exhibit four peaks in the wavelength region from 500 to 800 nm.

  12. High-resolution structural characterization and magnetic properties of epitaxial Ce-doped yttrium iron garnet thin films

    NASA Astrophysics Data System (ADS)

    Li, Zhong; Vikram Singh, Amit; Rastogi, Ankur; Gazquez, Jaume; Borisevich, Albina Y.; Mishra, Rohan; Gupta, Arunava

    2017-07-01

    Thin films of magnetic garnet materials, e.g. yttrium iron garnet (Y3Fe5O12, YIG), are useful for a variety of applications including microwave integrated circuits and spintronics. Substitution of rare earth ions, such as cerium, is known to enhance the magneto-optic Kerr effect (MOKE) as compared to pure YIG. Thin films of Ce0.75Y2.25Fe5O12 (Ce:YIG) have been grown using the pulsed laser deposition (PLD) technique and their crystal structure examined using high resolution scanning transmission electron microscopy. Homogeneous substitution of Ce in YIG, without oxidation to form a separate CeO2 phase, can be realized in a narrow process window with resulting enhancement of the MOKE signal. The thermally generated signal due to spin Seebeck effect for the optimally doped Ce:YIG films has also been investigated.

  13. Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers

    NASA Astrophysics Data System (ADS)

    Chandrahalim, Hengky; Fan, Xudong

    2015-12-01

    This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3‧-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3‧-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip.

  14. Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers

    PubMed Central

    Chandrahalim, Hengky; Fan, Xudong

    2015-01-01

    This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3′-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3′-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip. PMID:26674508

  15. Enhanced Electrical Conductivity of Molecularly p-Doped Poly(3-hexylthiophene) through Understanding the Correlation with Solid-State Order

    PubMed Central

    2017-01-01

    Molecular p-doping of the conjugated polymer poly(3-hexylthiophene) (P3HT) with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) is a widely studied model system. Underlying structure–property relationships are poorly understood because processing and doping are often carried out simultaneously. Here, we exploit doping from the vapor phase, which allows us to disentangle the influence of processing and doping. Through this approach, we are able to establish how the electrical conductivity varies with regard to a series of predefined structural parameters. We demonstrate that improving the degree of solid-state order, which we control through the choice of processing solvent and regioregularity, strongly increases the electrical conductivity. As a result, we achieve a value of up to 12.7 S cm–1 for P3HT:F4TCNQ. We determine the F4TCNQ anion concentration and find that the number of (bound + mobile) charge carriers of about 10–4 mol cm–3 is not influenced by the degree of solid-state order. Thus, the observed increase in electrical conductivity by almost 2 orders of magnitude can be attributed to an increase in charge-carrier mobility to more than 10–1 cm2 V–1 s–1. Surprisingly, in contrast to charge transport in undoped P3HT, we find that the molecular weight of the polymer does not strongly influence the electrical conductivity, which highlights the need for studies that elucidate structure–property relationships of strongly doped conjugated polymers. PMID:29093606

  16. Luminescence properties of Tm3+ ions single-doped YF3 materials in an unconventional excitation region.

    PubMed

    Chen, Yuan; Liu, Qing; Lin, Han; Yan, Xiaohong

    2018-05-01

    According to the spectral distribution of solar radiation at the earth's surface, under the excitation region of 1150 to 1350 nm, the up-conversion luminescence of Tm 3+ ions was investigated. The emission bands were matched well with the spectral response region of silicon solar cells, achieved by Tm 3+ ions single-doped yttrium fluoride (YF 3 ) phosphor, which was different from the conventional Tm 3+ /Yb 3+ ion couple co-doped materials. Additionally, the similar emission bands of Tm 3+ ions were achieved under excitation in the ultraviolet region. It is expected that via up-conversion and down-conversion routes, Tm 3+ -sensitized materials could convert photons to the desired wavelengths in order to reduce the energy loss of silicon solar cells, thereby enhancing the photovoltaic efficiency. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Cobalt and Yttrium Modified TiO2 Nanotubes Based Dye-Sensitized Solar Cells for Solar-Energy Conversion

    NASA Astrophysics Data System (ADS)

    Shabanov, N. S.; Isaev, A. B.; Orudzhev, F. F.; Murliev, E. K.

    2018-01-01

    The solar-energy conversion in eosin-sensitized solar cells based on cobalt and yttrium modified TiO2 nanotubes has been studied.It is established that the doping with metal ions shifts the absorption edge for Co and Y doped titanium dioxide samples to longer and shorter wavelengths, respectively. The efficiency of solar energy conversion depends on the wide bandgap of the semiconductor anode and reaches a maximum (4.4%) for yttrium-doped TiO2 in comparison to that (4.1%) for pure titanium dioxide.

  18. Rapid solid-phase microwave synthesis of highly photoluminescent nitrogen-doped carbon dots for Fe3+ detection and cellular bioimaging

    NASA Astrophysics Data System (ADS)

    He, Guili; Xu, Minghan; Shu, Mengjun; Li, Xiaolin; Yang, Zhi; Zhang, Liling; Su, Yanjie; Hu, Nantao; Zhang, Yafei

    2016-09-01

    Recently, carbon dots (CDs) have been playing an increasingly important role in industrial production and biomedical field because of their excellent properties. As such, finding an efficient method to quickly synthesize a large scale of relatively high purity CDs is of great interest. Herein, a facile and novel microwave method has been applied to prepare nitrogen doped CDs (N-doped CDs) within 8 min using L-glutamic acid as the sole reaction precursor in the solid phase condition. The as-prepared N-doped CDs with an average size of 1.64 nm are well dispersed in aqueous solution. The photoluminescence of N-doped CDs is pH-sensitive and excitation-dependent. The N-doped CDs show a strong blue fluorescence with relatively high fluorescent quantum yield of 41.2%, which remains stable even under high ionic strength. Since the surface is rich in oxygen-containing functional groups, N-doped CDs can be applied to selectively detect Fe3+ with the limit of detection of 10-5 M. In addition, they are also used for cellular bioimaging because of their high fluorescent intensity and nearly zero cytotoxicity. The solid-phase microwave method seems to be an effective strategy to rapidly obtain high quality N-doped CDs and expands their applications in ion detection and cellular bioimaging.

  19. Visible emission from bismuth-doped yttrium oxide thin films for lighting and display applications.

    PubMed

    Scarangella, Adriana; Fabbri, Filippo; Reitano, Riccardo; Rossi, Francesca; Priolo, Francesco; Miritello, Maria

    2017-12-11

    Due to the great development of light sources for several applications from displays to lighting, great efforts are devoted to find stable and efficient visible emitting materials. Moreover, the requirement of Si compatibility could enlarge the range of applications inside microelectronic chips. In this scenario, we have studied the emission properties of bismuth doped yttrium oxide thin films grown on crystalline silicon. Under optical pumping at room temperature a stable and strong visible luminescence has been observed. In particular, by the involvement of Bi ions in the two available lattice sites, the emission can be tuned from violet to green by changing the excitation wavelength. Moreover, under electron beam at low accelerating voltages (3 keV) a blue emission with high efficiency and excellent stability has been recorded. The color is generated by the involvement of Bi ions in both the lattice sites. These peculiarities make this material interesting as a luminescent medium for applications in light emitting devices and field emission displays by opening new perspectives for the realization of silicon-technology compatible light sources operating at room temperature.

  20. Influence of doping on thermal diffusivity of single crystals used in photonics: measurements based on thermal wave methods.

    PubMed

    Bodzenta, Jerzy; Kaźmierczak-Bałata, Anna; Wokulska, Krystyna B; Kucytowski, Jacek; Łukasiewicz, Tadeusz; Hofman, Władysław

    2009-03-01

    Three crystals used in solid-state lasers, namely, yttrium aluminum garnet (YAG), yttrium orthovanadate (YVO(4)), and gadolinium calcium oxoborate (GdCOB), were investigated to determine the influence of dopants on their thermal diffusivity. The thermal diffusivity was measured by thermal wave method with a signal detection based on mirage effect. The YAG crystals were doped with Yb or V, the YVO(4) with Nd or Ca and Tm, and the GdCOB crystals contained Nd or Yb. In all cases, the doping caused a decrease in thermal diffusivity. The analysis of complementary measurements of ultrasound velocity changes caused by dopants leads to the conclusion that impurities create phonon scattering centers. This additional scattering reduces the phonon mean free path and accordingly results in the decrease of the thermal diffusivity of the crystal. The influence of doping on lattice parameters was investigated, additionally.

  1. Computational discovery of lanthanide doped and Co-doped Y{sub 3}Al{sub 5}O{sub 12} for optoelectronic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Kamal; Chernatynskiy, Aleksandr; Phillpot, Simon R.

    2015-09-14

    We systematically elucidate the optoelectronic properties of rare-earth doped and Ce co-doped yttrium aluminum garnet (YAG) using hybrid exchange-correlation functional based density functional theory. The predicted optical transitions agree with the experimental observations for single doped Ce:YAG, Pr:YAG, and co-doped Er,Ce:YAG. We find that co-doping of Ce-doped YAG with any lanthanide except Eu and Lu lowers the transition energies; we attribute this behavior to the lanthanide-induced change in bonding environment of the dopant atoms. Furthermore, we find infrared transitions only in case of the Er, Tb, and Tm co-doped Ce:YAG and suggest Tm,Ce:YAG and Tb,Ce:YAG as possible functional materials formore » efficient spectral up-conversion devices.« less

  2. High critical currents in heavily doped (Gd,Y)Ba 2Cu 3O x superconductor tapes

    DOE PAGES

    Selvamanickam, V.; Gharahcheshmeh, M. Heydari; Xu, A.; ...

    2015-01-20

    REBa 2Cu 3O x superconductor tapes with moderate levels of dopants have been optimized for high critical current density in low magnetic fields at 77 K, but they do not exhibit exemplary performance in conditions of interest for practical applications, i.e., temperatures less than 50 K and fields of 2–30 T. Heavy doping of REBCO tapes has been avoided by researchers thus far due to deterioration in properties. Here, we report achievement of critical current densities (J c) above 20 MA/cm 2 at 30 K, 3 T in heavily doped (25 mol. % Zr-added) (Gd,Y)Ba 2Cu 3O x superconductor tapes,more » which is more than three times higher than the J c typically obtained in moderately doped tapes. Pinning force levels above 1000 GN/m 3 have also been attained at 20 K. A composition map of lift factor in J c (ratio of J c at 30 K, 3 T to the J c at 77 K, 0 T) has been developed which reveals the optimum film composition to obtain lift factors above six, which is thrice the typical value. A highly c-axis aligned BaZrO 3 (BZO) nanocolumn defect density of nearly 7 × 10 11 cm –2 as well as 2–3nm sized particles rich in Cu and Zr have been found in the high J c films.« less

  3. Internal photopumping of Nd3+ (2H9/2, 4F5/2) states in yttrium aluminum garnet by excitation transfer from oxygen deficiency centers and Fe3+ continuum emission

    NASA Astrophysics Data System (ADS)

    Hewitt, J. D.; Spinka, T. M.; Senin, A. A.; Eden, J. G.

    2011-07-01

    Photoexcitation of Nd3+ (2H9/2, 4F5/2) states by the broad (˜70 nm FWHM), near-infrared continuum provided by Fe3+ has been observed at 300 K in bulk yttrium aluminum garnet (YAG) crystals doped with trace concentrations (<50 ppm) of Fe, Cr, and Eu. Irradiation of YAG at 248 nm with a KrF laser, which excites the oxygen deficiency center (ODC) in YAG having peak absorption at ˜240 nm, culminates in ODC→Fe3+ excitation transfer and subsequent Fe3+ emission. This internal optical pumping mechanism for rare earth ions is unencumbered by the requirement for donor-acceptor proximity that constrains conventional Förster-Dexter excitation transfer in co-doped crystals.

  4. Effect of europium ion concentration on the structural and photoluminescence properties of novel Li2BaZrO4: Eu3+ nanocrystals

    NASA Astrophysics Data System (ADS)

    Ahemen, I.; Dejene, F. B.; Kroon, R. E.; Swart, H. C.

    2017-12-01

    This work reports the influence of Eu3+ ion concentration on the structure and photoluminescence properties of Li2BaZrO4 nanocrystals including its intrinsic quantum efficiency (IQE). Chemical bath method was employed in the synthesis procedure. X-ray diffraction results showed tetragonal phase for Eu3+ ion concentration in the range 1 and 7 mol% and cubic phase at 8 mol%. The presence of barium oxide (BaO) was confirmed from selected area electron diffraction (SAED). The excitation spectra for these phosphors consisted of broad charge transfer (CT) bands due to the combination of Zr4+ - O2- and Eu3+-O2- charge transfer states. Superimposed on the CT band were direct excitation levels of Eu3+ and Ba2+ ions, in the range 320-450 nm. At high Eu3+ ions concentrations, the intensities of CT bands decreased because some of the ions were coordinated with Ba2+ ions. Photoluminescence emissions for all the doped samples at room temperature appeared to be entirely from intraconfigurational Eu3+ emissions and depended both on the site symmetry as well as the ion concentration. The quadrupole-quadrupole multipolar process was found to be solely responsible for the luminescence quenching. The intensity parameters (Ω2 ,Ω4), asymmetry ratio, R0 and the average decay lifetime of the nanocrystals showed dependence on concentration. High internal quantum efficiency (IQE) values were obtained at low Eu3+ ion concentrations, but efficiency decreased with increasing ion concentration. The CIE coordinates values were comparable to existing red phosphors and in combination with the high IQE make this phosphor a good candidate for red light emitting applications.

  5. Tb3+ and Eu3+ doped zinc phosphate glasses for solid state lighting applications

    NASA Astrophysics Data System (ADS)

    Jha, Kaushal; Vishwakarma, Amit K.; Jayasimhadri, M.; Haranath, D.; Jang, Kiwan

    2018-04-01

    Tb3+ and Eu3+ doped zinc phosphate (ZP) glasses were prepared by conventional melt-quenching technique and their photoluminescence properties were investigated in detail. For, Tb3+ doped glasses the intense emission was at 545 nm corresponding to 5D4→7F5 transition under 377 nm n-UV excitation. The optimized concentration for Tb3+ doped zinc phosphate glass was 3 mol% and above this concentration quenching takes place. The Eu3+ doped zinc phosphate glass revealed intense emission at 613 nm attributed to the 5D0→7F2 transition under intense 392 nm n-UV excitation. The concentration quenching phenomenon was not observed in the Eu3+ doped ZP glasses. The CIE chromaticity coordinates for 3 mol% Tb3+ and 5 mol% Eu3+ doped ZP glasses were found to (0.283, 0.615) and (0.652, 0.331) lying in the green and red regions, respectively. The above mentioned results indicate that the prepared glass are suitable for application in the field of lighting and display devices.

  6. N-Doped Graphene with Low Intrinsic Defect Densities via a Solid Source Doping Technique.

    PubMed

    Liu, Bo; Yang, Chia-Ming; Liu, Zhiwei; Lai, Chao-Sung

    2017-09-30

    N-doped graphene with low intrinsic defect densities was obtained by combining a solid source doping technique and chemical vapor deposition (CVD). The solid source for N-doping was embedded into the copper substrate by NH₃ plasma immersion. During the treatment, NH₃ plasma radicals not only flattened the Cu substrate such that the root-mean-square roughness value gradually decreased from 51.9 nm to 15.5 nm but also enhanced the nitrogen content in the Cu substrate. The smooth surface of copper enables good control of graphene growth and the decoupling of height fluctuations and ripple effects, which compensate for the Coulomb scattering by nitrogen incorporation. On the other hand, the nitrogen atoms on the pre-treated Cu surface enable nitrogen incorporation with low defect densities, causing less damage to the graphene structure during the process. Most incorporated nitrogen atoms are found in the pyrrolic configuration, with the nitrogen fraction ranging from 1.64% to 3.05%, while the samples exhibit low defect densities, as revealed by Raman spectroscopy. In the top-gated graphene transistor measurement, N-doped graphene exhibits n-type behavior, and the obtained carrier mobilities are greater than 1100 cm²·V -1 ·s -1 . In this study, an efficient and minimally damaging n-doping approach was proposed for graphene nanoelectronic applications.

  7. Luminescent down shifting effect of Ce-doped yttrium aluminum garnet thin films on solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Guojian; Lou, Chaogang; Kang, Jian

    2015-12-21

    Ce-doped yttrium aluminum garnet (YAG:Ce) thin films as luminescent down shifting (LDS) materials are introduced into the module of crystalline silicon solar cells. The films are deposited by RF magnetron sputtering on the lower surface of the quartz glass. They convert ultraviolet and blue light into yellow light. Experiments show that the introduction of YAG:Ce films improves the conversion efficiency from 18.45% of the cells to 19.27% of the module. The increasing efficiency is attributed to LDS effect of YAG:Ce films and the reduced reflection of short wavelength photons. Two intentionally selected samples with similar reflectivities are used to evaluatemore » roughly the effect of LDS alone on the solar cells, which leads to a relative increase by 2.68% in the conversion efficiency.« less

  8. Luminescence properties of Y2O3:Bi3+, Yb3+ co-doped phosphor for application in solar cells

    NASA Astrophysics Data System (ADS)

    Lee, E.; Kroon, R. E.; Terblans, J. J.; Swart, H. C.

    2018-04-01

    Bismuth (Bi3+) and ytterbium (Yb3+) co-doped yttrium oxide (Y2O3) phosphor powder was successfully synthesised using the co-precipitation technique. The X-ray diffraction (XRD) patterns confirmed that a single phase cubic structure with a Ia-3 space group was formed. The visible emission confirmed the two symmetry sites, C2 and S6, found in the Y2O3 host material and revealed that Bi3+ ions preferred the S6 site as seen the stronger emission intensity. The near-infrared (NIR) emission of Yb3+ increased significantly by the presence of the Bi3+ ions when compared to the singly doped Y2O3:Yb3+ phosphor with the same Yb3+ concentration. An increase in the NIR emission intensity was also observed by simply increasing the Yb3+ concentration in the Y2O3:Bi3+, Yb3+ phosphor material where the intensity increased up to x = 5.0 mol% of Yb3+ before decreasing due to concentration quenching.

  9. Proton-conducting Micro-solid Oxide Fuel Cells with Improved Cathode Reactions by a Nanoscale Thin Film Gadolinium-doped Ceria Interlayer

    PubMed Central

    Li, Yong; Wang, Shijie; Su, Pei-Chen

    2016-01-01

    An 8 nm-thick gadolinium-doped ceria (GDC) layer was inserted as a cathodic interlayer between the nanoscale proton-conducting yttrium-doped barium zirconate (BZY) electrolyte and the porous platinum cathode of a micro-solid oxide fuel cell (μ-SOFC), which has effectively improved the cathode reaction kinetics and rendered high cell power density. The addition of the GDC interlayer significantly reduced the cathodic activation loss and increased the peak power density of the μ-SOFC by 33% at 400 °C. The peak power density reached 445 mW/cm2 at 425 °C, which is the highest among the reported μ-SOFCs using proton-conducting electrolytes. The impressive performance was attributed to the mixed protonic and oxygen ionic conducting properties of the nano-granular GDC, and also to the high densities of grain boundaries and lattice defects in GDC interlayer that favored the oxygen incorporation and transportation during the oxygen reduction reaction (ORR) and the water evolution reaction at cathode. PMID:26928192

  10. Thermally and optically stimulated radiative processes in Eu and Y co-doped LiCaAlF6 crystal

    NASA Astrophysics Data System (ADS)

    Fukuda, Kentaro; Yanagida, Takayuki; Fujimoto, Yutaka

    2015-06-01

    Yttrium co-doping was attempted to enhance dosimeter performance of Eu doped LiCaAlF6 crystal. Eu doped and Eu, Y co-doped LiCaAlF6 were prepared by the micro-pulling-down technique, and their dosimeter characteristics such as optically stimulated luminescence (OSL) and thermally stimulated luminescence (TSL) were investigated. By yttrium co-doping, emission intensities of OSL and TSL were enhanced by some orders of magnitude. In contrast, scintillation characteristics of yttrium co-doped crystal such as intensity of prompt luminescence induced by X-ray and light yield under neutron irradiation were degraded.

  11. Anisotropy of the Irreversibility Field for Zr-doped (Y,Gd)Ba 2<\\sub>Cu3<\\sub>O<7-x<\\sub> Thin Films up to 45 T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarantini, C.; Jaroszynski, J.; Kametani, F.

    2011-01-01

    The anisotropic irreversibility fieldBIrr of twoYBa2Cu3O7 x thin films dopedwith additional rare earth (RE)= (Gd, Y) and Zr and containing strong correlated pins (splayed BaZrO3 nanorods and RE2O3 anoprecipitates) has been measured over a very broad range up to 45 T at temperatures 56 K < T < Tc. We found that the experimental angular dependence of BIrr ( ) does not follow the mass anisotropy scaling BIrr ( ) = BIrr (0)(cos2 + 2 sin2 ) 1/2, where = (mc/mab)1/2 = 5 6 for the RE-doped Ba2Cu3O7 x (REBCO) crystals, mab and mc are the effective masses along themore » ab plane and the c-axis, respectively, and is the angle between B and the c-axis. For B parallel to the ab planes and to the c-axis correlated pinning strongly enhances BIrr , while at intermediate angles, BIrr ( ) follows the scaling behavior BIrr ( ) (cos2 + 2 RP sin2 ) 1/2 with the effective anisotropy factor RP 3 significantly smaller than the ass anisotropy would suggest. In spite of the strong effects of c-axis BaZrO3 nanorods, we found even greater enhancements of BIrr for fields along the ab planes than for fields parallel to the c-axis, as well as different temperature dependences of the correlated pinning contributions to BIrr for B//ab and B//c. Our results show that the dense and strong pins, which can now be incorporated into REBCO thin films in a controlled way, exert major and diverse effects on the measured vortex pinning anisotropy and the irreversibility field over wide ranges of B and T . In particular, we show that the relative contribution of correlated pinning to BIrr for B//c increases as the temperature increases due to the suppression of thermal fluctuations of vortices by splayed distribution of BaZrO3 nanorods.« less

  12. Nonthermal effects in photostimulated solid state reaction of Mn doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Daraselia, D.; Japaridze, D.; Jibuti, Z.; Shengelaya, A.; Müller, K. A.

    2017-04-01

    The effect of a photostimulated solid state reaction was investigated in Mn doped SrTiO3 samples. Light irradiation was performed by either halogen or UV lamps in order to study the effect of the spectral composition, and the results were compared with samples prepared at the same temperatures in a conventional furnace. The obtained samples were studied by X-ray diffraction for structural characterization and by Electron Paramagnetic Resonance, which provides microscopic information about the local environment as well as the valence state of Mn ions. It was found that light irradiation significantly enhances the solid state reaction rate compared to synthesis in the conventional furnace. Moreover, it was observed that UV lamp irradiation is much more effective compared to halogen lamps. This indicates that the absorption of light with energy larger than the materials band gap plays an important role and points towards the nonthermal mechanism of the photostimulated solid state reaction.

  13. Research on the synergistic doped effects and the catalysis properties of Cu2+ and Zn2+ co-doped CeO2 solid solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Guofang; Li, Yiming; Hou, Zhonghui; Xv, Jianyi; Wang, Qingchun; Zhang, Yanghuan

    2018-08-01

    The Cu2+ and Zn2+ co-doped CeO2-based solid solutions were synthesized via hydrothermal method. The microstructure and the spectra features of the solid solutions were characterized systematically. The XRD results showed that the dopants were incorporated into the CeO2 lattice to form Ce1-xCu0.5xZn0.5xO2 solid solutions when x was lower than 0.14. The cell parameters and the crystalline size decreased linearly, and the lattice strain gradually increased with increasing the doping level. The TEM patterns showed that the particle size in the solid solution was lower than 10 nm which is in accordance with the XRD results. The ICP analysis indicated that the real doped content in the solid solution was close to the nominal proportion. XPS proved that the Ce3+ component was increased by doping. The Raman and PL spectra indicated that the lattice distortion and the oxygen vacancies also increased following the same trend. At the same time, the synergistic effects of two ions co-doped solid solutions were studied by comparing them with that of single ions doped samples. The catalysis effects of Cu2+ and Zn2+ co-doped CeO2-based solid solutions on the hydrogen storage electrochemical and kinetic properties of Mg2Ni alloys were detected. The electrochemistry properties of the Mg2Ni-Ni-5 wt% Ce1-xCu0.5xZn0.5xO2 composites indicated that the doped catalysts could provide better optimizations to improve the maximum discharge capacities and the discharge potentials. On the other hand, the charge transfer abilities on the surface and diffusion rate of H atoms in the bulk of alloys also got improved. The DSC measurements showed that the hydrogen desorption activation of the hydrogenated composites with Ce0.88Cu0.06Zn0.06O2 solid solutions decreased to 77.03 kJ mol-1, while that of the composites with pure CeO2 was 97.62 kJ mol-1. The catalysis effect was enhanced by the doped content increase that means that the catalysis mechanism had close links to the oxygen vacancy

  14. n-Type Doping of Vapor-Liquid-Solid Grown GaAs Nanowires.

    PubMed

    Gutsche, Christoph; Lysov, Andrey; Regolin, Ingo; Blekker, Kai; Prost, Werner; Tegude, Franz-Josef

    2011-12-01

    In this letter, n-type doping of GaAs nanowires grown by metal-organic vapor phase epitaxy in the vapor-liquid-solid growth mode on (111)B GaAs substrates is reported. A low growth temperature of 400°C is adjusted in order to exclude shell growth. The impact of doping precursors on the morphology of GaAs nanowires was investigated. Tetraethyl tin as doping precursor enables heavily n-type doped GaAs nanowires in a relatively small process window while no doping effect could be found for ditertiarybutylsilane. Electrical measurements carried out on single nanowires reveal an axially non-uniform doping profile. Within a number of wires from the same run, the donor concentrations ND of GaAs nanowires are found to vary from 7 × 10(17) cm(-3) to 2 × 10(18) cm(-3). The n-type conductivity is proven by the transfer characteristics of fabricated nanowire metal-insulator-semiconductor field-effect transistor devices.

  15. Superionic Conductivity of Sm3+, Pr3+, and Nd3+ Triple-Doped Ceria through Bulk and Surface Two-Step Doping Approach.

    PubMed

    Liu, Yanyan; Fan, Liangdong; Cai, Yixiao; Zhang, Wei; Wang, Baoyuan; Zhu, Bin

    2017-07-19

    Sufficiently high oxygen ion conductivity of electrolyte is critical for good performance of low-temperature solid oxide fuel cells (LT-SOFCs). Notably, material conductivity, reliability, and manufacturing cost are the major barriers hindering LT-SOFC commercialization. Generally, surface properties control the physical and chemical functionalities of materials. Hereby, we report a Sm 3+ , Pr 3+ , and Nd 3+ triple-doped ceria, exhibiting the highest ionic conductivity among reported doped-ceria oxides, 0.125 S cm -1 at 600 °C. It was designed using a two-step wet-chemical coprecipitation method to realize a desired doping for Sm 3+ at the bulk and Pr 3+ /Nd 3+ at surface domains (abbreviated as PNSDC). The redox couple Pr 3+ /Pr 4+ contributes to the extraordinary ionic conductivity. Moreover, the mechanism for ionic conductivity enhancement is demonstrated. The above findings reveal that a joint bulk and surface doping methodology for ceria is a feasible approach to develop new oxide-ion conductors with high impacts on advanced LT-SOFCs.

  16. Flexible Solar Cells Using Doped Crystalline Si Film Prepared by Self-Biased Sputtering Solid Doping Source in SiCl4/H2 Microwave Plasma.

    PubMed

    Hsieh, Ping-Yen; Lee, Chi-Young; Tai, Nyan-Hwa

    2016-02-01

    We developed an innovative approach of self-biased sputtering solid doping source process to synthesize doped crystalline Si film on flexible polyimide (PI) substrate via microwave-plasma-enhanced chemical vapor deposition (MWPECVD) using SiCl4/H2 mixture. In this process, P dopants or B dopants were introduced by sputtering the solid doping target through charged-ion bombardment in situ during high-density microwave plasma deposition. A strong correlation between the number of solid doping targets and the characteristics of doped Si films was investigated in detail. The results show that both P- and B-doped crystalline Si films possessed a dense columnar structure, and the crystallinity of these structures decreased with increasing the number of solid doping targets. The films also exhibited a high growth rate (>4.0 nm/s). Under optimal conditions, the maximum conductivity and corresponding carrier concentration were, respectively, 9.48 S/cm and 1.2 × 10(20) cm(-3) for P-doped Si film and 7.83 S/cm and 1.5 × 10(20) cm(-3) for B-doped Si film. Such high values indicate that the incorporation of dopant with high doping efficiency (around 40%) into the Si films was achieved regardless of solid doping sources used. Furthermore, a flexible crystalline Si film solar cell with substrate configuration was fabricated by using the structure of PI/Mo film/n-type Si film/i-type Si film/p-type Si film/ITO film/Al grid film. The best solar cell performance was obtained with an open-circuit voltage of 0.54 V, short-circuit current density of 19.18 mA/cm(2), fill factor of 0.65, and high energy conversion of 6.75%. According to the results of bending tests, the critical radius of curvature (RC) was 12.4 mm, and the loss of efficiency was less than 1% after the cyclic bending test for 100 cycles at RC, indicating superior flexibility and bending durability. These results represent important steps toward a low-cost approach to high-performance flexible crystalline Si film

  17. Optical properties of Sm3+ -doped TeO2sbnd WO3sbnd GeO2 glasses for solid state lasers

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, T.; Gopal, K. Rama; Suvarna, R. Padma; Jamalaiah, B. Chinna; Rao, Ch Srinivasa

    2018-03-01

    Sm3+ -doped oxyfluoride tellurite-tungsten (TWGSm) glasses were prepared by conventional melt quenching method. The optical properties were investigated through photoluminescence excitation, emission and luminescence decay analysis. The optical band gap energy was determined as ∼3.425 eV for 1.0 mol% of Sm3+ -doped TWGSm glass. Upon 404 nm excitation, the TWGSm glasses emit luminescence through 4G5/2 → 6H5/2 (563 nm), 4G5/2 → 6H7/2 (600 nm), 4G5/2 → 6H9/2 (645 nm) and 4G5/2 → 6H11/2 (705 nm) transitions. The Judd-Ofelt analysis was performed using absorption spectrum and obtained radiative parameters were used to estimate the laser characteristics of present glasses. The concentration of Sm3+ has been optimized as 1.0 mol% for efficient luminescence. The luminescence decay of 4G5/2 emission level was studied by monitoring the emission and excitation wavelengths at 600 and 404 nm, respectively. The experimental lifetime of 4G5/2 level was decrease with increase of Sm3+ concentration. The 1.0 mol% of Sm3+ -doped TWGSm glass could be the best choice for solid state visible lasers to emit orange luminescence.

  18. Evaluation of critical distances for energy transfer between Pr3+ and Ce3+ in yttrium aluminium garnet

    NASA Astrophysics Data System (ADS)

    Zeng, Peng; Wei, Xiantao; Zhou, Shaoshuai; Yin, Min; Chen, Yonghu

    2016-09-01

    A series of Pr3+/Ce3+ doped yttrium aluminium garnet (Y3Al5O12 or simply YAG) phosphors were synthesized to investigate the energy transfer between Pr3+ and Ce3+ for their potential application in a white light-emitting diode and quantum information storage and processing. The excitation and emission spectra of YAG:Pr3+/Ce3+ were measured and analyzed, and it revealed that the reabsorption between Pr3+ and Ce3+ was so weak that it can be ignored, and the energy transfer from Pr3+ (5d) to Ce3+ (5d) and Ce3+ (5d) to Pr3+ (1D2) did occur. By analyzing the excitation and the emission spectra, the energy transfer from Pr3+ (5d) to Ce3+ (5d) and Ce3+ (5d) to Pr3+ (1D2) was examined in detail with an original strategy deduced from fluorescence dynamics and the Dexter energy transfer theory, and the critical distances of energy transfer were derived to be 7.9 Å and 4.0 Å for Pr3+ (5d) to Ce3+ (5d) and Ce3+ (5d) to Pr3+ (1D2), respectively. The energy transfer rates of the two processes of various concentrations were discussed and evaluated. Furthermore, for the purpose of sensing a single Pr3+ state with a Ce3+ ion, the optimal distance of Ce3+ from Pr3+ was evaluated as 5.60 Å, where the probability of success reaches its maximum value of 78.66%, and meanwhile the probabilities were evaluated for a series of Y3+ sites in a YAG lattice. These results will be of valuable reference for achievement of the optimal energy transfer efficiency in Pr3+/Ce3+ doped YAG and other similar systems.

  19. Solid-state NMR calculations for metal oxides and gallates: Shielding and quadrupolar parameters for perovskites and related phases

    NASA Astrophysics Data System (ADS)

    Middlemiss, Derek S.; Blanc, Frédéric; Pickard, Chris J.; Grey, Clare P.

    2010-05-01

    The NMR parameters obtained from solid-state DFT calculations within the GIPAW approach for 17O- and 69/71Ga-sites in a range of predominantly oxide-based (group II monoxides, SrTiO 3, BaZrO 3, BaSnO 3, BaTiO 3, LaAlO 3, LaGaO 3, SrZrO 3, MgSiO 3 and Ba 2In 2O 5), and gallate (α- and β-Ga 2O 3, LiGaO 2, NaGaO 2, GaPO 4 and LaGaO 3) materials are compared with experimental values, with a view to the future application of a similar approach to doped phases of interest as candidate intermediate temperature solid oxide fuel cell (ITSOFC) electrolytes. Isotropic and anisotropic chemical shift parameters, quadrupolar coupling constants, and associated asymmetries are presented and analyzed. The unusual GaO 5 site occurring in LaGaGe 2O 7 is also fully characterised. In general, it is found that the theoretical results closely track the experimental trends, though some deviations are identified and discussed, particularly in regard to quadrupolar ηQ-values. The high quality of the computed results suggests that this approach can be extended to study more complex and disordered phases.

  20. Doped sesquioxide ceramic for eye-safe solid state laser materials

    NASA Astrophysics Data System (ADS)

    Kim, Woohong; Baker, Colin; Florea, Catalin; Frantz, Jesse; Villalobos, Guillermo; Shaw, Brandon; Bowman, Steve; O'Connor, Shawn; Sadowski, Bryan; Hunt, Michael; Aggalwar, Ishwar; Sanghera, Jasbinder

    2013-03-01

    In this paper, we present our recent results in the development of Ho3+ doped sesquioxides for eye-safe solid state lasers. We have synthesized optical quality Lu2O3 nanopowders doped with concentrations of 0.1, 1.0, 2.0, and 5% Ho3+. The powders were synthesized by a co-precipitation method beginning with nitrates of holmium and lutetium. The nanopowders were hot pressed into optical quality ceramic discs. The optical transmission of the ceramic discs is excellent, nearly approaching the theoretical limit. The optical, spectral and morphological properties as well as the lasing performance from highly transparent ceramics are presented.

  1. Correlation of EMR and optical spectroscopy data for Cr3+ and Mn2+ ions doped into yttrium aluminum borate YAl3(BO3)4 crystal - Extracting low symmetry aspects

    NASA Astrophysics Data System (ADS)

    Rudowicz, Czesław; Gnutek, Paweł; Açıkgöz, Muhammed

    2015-08-01

    In this study, the crystal field analysis for Cr3+ and Mn2+ ions doped into yttrium aluminum borate YAl3(BO3)4, for short YAB, crystal has been carried out to complement earlier study of the zero-field splitting (ZFS) parameters (ZFSPs). This analysis utilizes data on the distortion models obtained from analysis of the ZFSPs obtained experimentally by EMR for Cr3+ and Mn2+ ions at the Y3+ and Al3+ sites in YAB. This approach enables to verify and enhance reliability of the ZFSP modeling based on superposition model (SPM) analysis and the distortion models predicted previously. Subsequently, modeling of the crystal field parameters (CFPs) based on SPM analysis is carried out for Cr3+ and Mn2+ ions located at possible cation sites in YAB. The SPM predicted CFP values serve as input for the Crystal Field Analysis (CFA) package to calculate the CF energy levels. The predicted physical ZFS of the ground spin state, i.e. the 4A2 state for Cr3+ ion and the 6S state Mn2+ ions, enable calculation of the theoretical ZFSP values, D and D & (a-F), respectively, using the microscopic spin Hamiltonian (MSH) module in the CFA package. In this way, data on the distortions around the Cr3+ centers in YAB (and to a certain extent also for Mn2+ centers) obtained using the ZFSP data from EMR measurements may be correlated with data on the CF energy levels measured by optical spectroscopy. This modeling approach uncovers certain incompatibilities in the existing data for Cr3+:YAB, which call for reanalysis of the previous assignments of the energy levels observed in optical spectra and more accurate experimental data.

  2. Characterization of Sb-doped Bi(2)UO(6) solid solutions by X-ray diffraction and X-ray absorption spectroscopy.

    PubMed

    Misra, N L; Yadav, A K; Dhara, Sangita; Mishra, S K; Phatak, Rohan; Poswal, A K; Jha, S N; Sinha, A K; Bhattacharyya, D

    2013-01-01

    The preparation and characterization of Sb-doped Bi(2)UO(6) solid solutions, in a limited composition range, is reported for the first time. The solid solutions were prepared by solid-state reactions of Bi(2)O(3), Sb(2)O(3) and U(3)O(8) in the required stoichiometry. The reaction products were characterized by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements at the Bi and U L(3) edges. The XRD patterns indicate the precipitation of additional phases in the samples when Sb doping exceeds 4 at%. The chemical shifts of the Bi absorption edges in the samples, determined from the XANES spectra, show a systematic variation only up to 4 at% of Sb doping and support the results of XRD measurements. These observations are further supported by the local structure parameters obtained by analysis of the EXAFS spectra. The local structure of U is found to remain unchanged upon Sb doping indicating that Sb(+3) ions replace Bi(+3) during the doping of Bi(2)UO(6) by Sb.

  3. Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition

    DOE PAGES

    Miura, Masashi; Maiorov, Boris; Balakirev, Fedor F.; ...

    2016-02-08

    Here, we show a simple and effective way to improve the vortex irreversibility line up to very high magnetic fields (60T) by increasing the density of second phase BaZrO 3 nanoparticles. (Y 0.77,Gd 0.23)Ba 2Cu 3O y films were grown on metal substrates with different concentration of BaZrO 3 nanoparticles by the metal organic deposition method. We find that upon increase of the BaZrO 3 concentration, the nanoparticle size remains constant but the twin-boundary density increases. Up to the highest nanoparticle concentration (n ~ 1.3 × 10 22/m 3), the irreversibility field (H irr) continues to increase with no signmore » of saturation up to 60 T, although the vortices vastly outnumber pinning centers. We find extremely high H irr, namely H irr = 30 T (H||45°) and 24 T (H||c) at 65 K and 58 T (H||45°) and 45 T (H||c) at 50K. The difference in pinning landscape shifts the vortex solid-liquid transition upwards, increasing the vortex region useful for power applications, while keeping the upper critical field, critical temperature and electronic mass anisotropy unchanged.« less

  4. Revised calibration of the Sm:SrB{sub 4}O{sub 7} pressure sensor using the Sm-doped yttrium-aluminum garnet primary pressure scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashchenko, Sergey V., E-mail: rashchenko@igm.nsc.ru; Litasov, Konstantin D.; Novosibirsk State University, 630090 Novosibirsk

    2015-04-14

    The pressure-induced shift of Sm:SrB{sub 4}O{sub 7} fluorescence was calibrated in a quasi-hydrostatic helium medium up to 60 GPa using the recent Sm-doped yttrium-aluminum garnet primary pressure scale as a reference. The resulting calibration can be written as P = −2836/14.3 [(1 + Δλ/685.51){sup −14.3 }− 1]. Previous calibrations based on the internally inconsistent primary scales are revised, and, after appropriate correction, found to agree with the proposed one. The calibration extended to 120 GPa was also performed using corrected previous data and can be written as P = 4.20 Δλ (1 + 0.020 Δλ)/(1 + 0.036 Δλ)

  5. FOURTH ANNUAL REPORT ON DISTRIBUTION STUDIES BETWEEN MELTS AND SOLID PHASES USING RADIOACTIVE TRACERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, R.; Orr, W.C.; Katz, L.

    Cerium(III) ion in a barium chloride flux does not readily exchangs with any of the ions in solid BaZrO/sub 3/ or BaTiO/sub 3/. It reacts to form new solid phases, which are identified, and does not enter the original crystal lattices at an appreciable rate. The strontium was found to exchange at a measurable rate with barium in BaTiO/sub 3/ and with the corresponding ions in alkaline-earth zirconates. Results of a series of equilibrium and rate measurements were interpreted to ahow that the exchange produces an additional solid phase, SrTiO/sub 3/, rather than the mixed phase, or solid solution, thatmore » ndght have been expected. The significance of this observation is discussed. The self-exchange of yttnium ions between a solid compound of yttrium and an alkali chloride flux in which yttrium chloride is dissolved appears in the systems studied to depend primaaily on the solubility of the solid. Exchange is rapid and complete in the case of yttrium oxychlonide, which is soluble to the extent of 0.6%, but is limited to the surface of yttrium chromium oxide, which has no measurable solubility in the flux. The introduction of yttrium ion vacancies in the lattice of yttrium chromium oxide has no detectable effect in promoting exchange. (For preceding period see NYO-3279.) (auth)« less

  6. Spectral characterization and white light generation by yttrium silicate nanopowders undoped and doped with Ytterbium(III) at different concentrations when excited by a laser diode at 975 nm

    NASA Astrophysics Data System (ADS)

    Cinkaya, Hatun; Eryurek, Gonul; Bilir, Gokhan; Collins, John; Di Bartolo, Baldassare

    2017-01-01

    We have studied nanophosphors of yttrium silicate (YSO) undoped and doped with different concentration of ytterbium (Yb3+) synthesized by using the sol-gel method. Structural and luminescence properties of the nanophosphors were studied experimentally by using different analytical techniques. For the structural analysis, we performed X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectrometry (EDS) measurements. Upconversion (UC) and the white light (WL) emission properties were investigated by using the near infrared cw laser excitation of 975 nm. The spectral properties have been found to depend on several physical parameters.

  7. Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe.

    PubMed

    Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena

    2016-09-28

    The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La 3+ -Mn 4+ and Eu 3+ -Fe 3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La 3+ -Mn 4+ and Eu 3+ -Fe 3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications.

  8. Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe

    PubMed Central

    Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena

    2016-01-01

    The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La3+–Mn4+ and Eu3+–Fe3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La3+–Mn4+ and Eu3+–Fe3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications. PMID:28773925

  9. Refractory Materials of Zirconate. Part 2: Synthesis and some properties of strontium, zirconate, calcium zirconate and barium zirconate

    NASA Technical Reports Server (NTRS)

    Okubo, Tsutomo; Yonemochi, Osamu; Nakamura, Kazuo; Maeda, Minoru

    1988-01-01

    Chemical compounds SrZrO3, CaZrO3, and BaZrO3 were synthesized by solid reaction and arc fusion, and their properties examined. Results were as follows: (1) in the synthesis of CaZrO3 by solid reaction, ZrO2 solid solution with cubic form was produced, which then changed into CaZrO3; (2) the BaZrO3 was a cubic form and did not show any transformation, while SrZrO3 and CaZrO3 with an orthorhombic form transformed to a cubic form at high temperature; and (3) the solubility of BaZrO3 in acid and its vaporization rate at a high temperature were greater than those of zirconates.

  10. MCrAlY bond coat with enhanced Yttrium layer

    DOEpatents

    Jablonski, Paul D; Hawk, Jeffrey A

    2015-04-21

    One or more embodiments relates to an MCrAlY bond coat comprising an MCrAlY layer in contact with a Y--Al.sub.2O.sub.3 layer. The MCrAlY layer is comprised of a .gamma.-M solid solution, a .beta.-MAl intermetallic phase, and Y-type intermetallics. The Y--Al.sub.2O.sub.3 layer is comprised of Yttrium atoms coordinated with oxygen atoms comprising the Al.sub.2O.sub.3 lattice. Both the MCrAlY layer and the Y--Al.sub.2O.sub.3 layer have a substantial absence of Y--Al oxides, providing advantage in the maintainability of the Yttrium reservoir within the MCrAlY bulk. The MCrAlY bond coat may be fabricated through application of a Y.sub.2O.sub.3 paste to an MCrAlY material, followed by heating in a non-oxidizing environment.

  11. 3D Porous Nanoarchitectures Derived from SnS/S-Doped Graphene Hybrid Nanosheets for Flexible All-Solid-State Supercapacitors.

    PubMed

    Liu, Chunyan; Zhao, Shulin; Lu, Yanan; Chang, Yingxue; Xu, Dongdong; Wang, Qi; Dai, Zhihui; Bao, Jianchun; Han, Min

    2017-03-01

    3D porous nanoarchitectures derived from SnS/S-doped graphene hybrid nanosheets are successfully prepared by controllable thermal conversion of oleylamine-capped mixed-phase SnS 2 -SnS nanodisks precursors, and employed as electroactive material to fabricate flexible, symmetric, all-solid-state supercapacitors. The fabricated solid devices exhibit very high areal specific capacitance (2.98 mF cm -2 ), good cycling stability (99% for 10 000 cycles), excellent flexibility, and desirable mechanical stability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Enhancement of thermal stability and water resistance in yttrium-doped GeO{sub 2}/Ge gate stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Cimang, E-mail: cimang@adam.t.u-tokyo.ac.jp; Hyun Lee, Choong; Zhang, Wenfeng

    2014-03-03

    We have systematically investigated the material and electrical properties of yttrium-doped GeO{sub 2} (Y-GeO{sub 2}) on Germanium (Ge). A significant improvement of both thermal stability and water resistance were demonstrated by Y-GeO{sub 2}/Ge stack, compared to that of pure GeO{sub 2}/Ge stack. The excellent electrical properties of Y-GeO{sub 2}/Ge stacks with low D{sub it} were presented as well as enhancement of dielectric constant in Y-GeO{sub 2} layer, which is beneficial for further equivalent oxide thickness scaling of Ge gate stack. The improvement of thermal stability and water resistance are discussed both in terms of the Gibbs free energy lowering andmore » network modification of Y-GeO{sub 2}.« less

  13. Structure, optical and phonon properties of bulk and nanocrystalline Al2-xScx(WO4)3 solid solutions doped with Cr3+

    NASA Astrophysics Data System (ADS)

    Mączka, M.; Hermanowicz, K.; Pietraszko, A.; Yordanova, A.; Koseva, I.

    2014-01-01

    Pure and Cr3+ doped nanosized Al2-xScx(WO4)3 solid solutions were prepared by co-precipitation method as well as Al2-xScx(WO4)3 single crystals were grown by high-temperature flux method. The obtained samples were characterized by X-ray, Raman, IR, absorption and luminescence methods. Single crystal X-ray diffraction showed that AlSc(WO4)3 is orthorhombic at room temperature with space group Pnca and trivalent cations are statistically distributed. Raman and IR studies showed that Al2-xScx(WO4)3 solid solutions show "two mode" behavior. They also showed that vibrational properties of nanosized samples have been weakly modified in comparison with the bulk materials. The luminescence and absorption spectra revealed that chromium ions occupy two sites of weak and strong crystal field strength.

  14. Far-infrared spectra of yttrium-doped gold clusters Au(n)Y (n=1-9).

    PubMed

    Lin, Ling; Claes, Pieterjan; Gruene, Philipp; Meijer, Gerard; Fielicke, André; Nguyen, Minh Tho; Lievens, Peter

    2010-06-21

    The geometric, spectroscopic, and electronic properties of neutral yttrium-doped gold clusters Au(n)Y (n=1-9) are studied by far-infrared multiple photon dissociation (FIR-MPD) spectroscopy and quantum chemical calculations. Comparison of the observed and calculated vibrational spectra allows the structures of the isomers present in the molecular beam to be determined. Most of the isomers for which the IR spectra agree best with experiment are calculated to be the energetically most stable ones. Attachment of xenon to the Au(n)Y cluster can cause changes in the IR spectra, which involve band shifts and band splittings. In some cases symmetry changes, as a result of the attachment of xenon atoms, were also observed. All the Au(n)Y clusters considered prefer a low spin state. In contrast to pure gold clusters, which exhibit exclusively planar lowest-energy structures for small sizes, several of the studied species are three-dimensional. This is particularly the case for Au(4)Y and Au(9)Y, while for some other sizes (n=5, 8) the 3D structures have an energy similar to that of their 2D counterparts. Several of the lowest-energy structures are quasi-2D, that is, slightly distorted from planar shapes. For all the studied species the Y atom prefers high coordination, which is different from other metal dopants in gold clusters.

  15. Structural characterization of Er(3+),Yb(3+)-doped Gd2O3 phosphor, synthesized using the solid-state reaction method, and its luminescence behavior.

    PubMed

    Tamrakar, Raunak Kumar; Bisen, D P; Brahme, Nameeta

    2016-02-01

    We report the synthesis and structural characterization of Er(3+),Yb(3+)-doped Gd2O3 phosphor. The sample was prepared using the conventional solid-state reaction method, which is the most suitable method for large-scale production. The prepared phosphor sample was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermoluminescence (TL), photoluminescence (PL) and CIE techniques. For PL studies, the excitation and emission spectra of Gd2O3 phosphor doped with Er(3+) and Yb(3+) were recorded. The excitation spectrum was recorded at a wavelength of 551 nm and showed an intense peak at 276 nm. The emission spectrum was recorded at 276 nm excitation and showed peaks in all blue, green and red regions, which indicate that the prepared phosphor may act as a single host for white light-emitting diode (WLED) applications, as verified by International de I'Eclairage (CIE) techniques. From the XRD data, the calculated average crystallite size of Er(3+) and Yb(3+) -doped Gd2O3 phosphor is ~ 38 nm. A TL study was carried out for the phosphor using UV irradiation. The TL glow curve was recorded for UV, beta and gamma irradiations, and the kinetic parameters were also calculated. In addition, the trap parameters of the prepared phosphor were also studied using computerized glow curve deconvolution (CGCD). Copyright © 2015 John Wiley & Sons, Ltd.

  16. Synthesis, Processing and Properties of Calcium- and Nickel-Doped Yttrium Chromates(III) Y0.8Ca0.2Cr1-x Ni x O3 (x = 0-0.3) and Studies on Their Potential Application as Coatings for SOFC Interconnects

    NASA Astrophysics Data System (ADS)

    Stygar, M.; Tejchman, W.; Dąbrowa, J.; Kruk, A.; Brylewski, T.

    2018-05-01

    In the present study, a calcium- and nickel-doped yttrium chromates (YCCN)-based, conductive-protective layers for metallic interconnects used in the intermediate-temperature solid oxide fuel cells (IT-SOFCs) were investigated. Synthesis of Y0.8Ca0.2Cr1-x Ni x O3 (x = 0; 0.15 and 0.3) powders was performed using a wet chemistry method with two different complexing agents: ethylenediaminetetraacetic acid and glycine. Based on the result of thermal analysis of obtained precursors, optimal conditions of the calcination process were determined. Powders were then milled, compacted and sintered at different temperatures using free sintering method, into series of dense, polycrystalline sinters. The use of glycine precursor allowed obtaining a single-phase material in all cases. Based on the electrical and sintering properties, the Y0.8Ca0.2Cr0.85Ni0.15O3 material was selected for further studies. It was deposited using cost-effective screen-printing method on the Crofer 22APU ferritic stainless steel. To investigate properties and suitability of the resulting layer/steel system for IT-SOFCs applications, the high-temperature, dual-atmosphere studies were carried out for the first time for ceramic/metallic system, in conditions as close as possible to actual working conditions of the fuel cell. The layer exhibited high stability and good protective properties. The area-specific resistance of the studied ceramic layer/metallic substrate composite was determined, with the obtained value of 0.0366 Ω cm2 being within the arbitrary limit set for these materials (0.1 Ω cm2). The results show that the investigated materials are suitable for the projected application.

  17. Rational design of mixed ionic and electronic conducting perovskite oxides for solid oxide fuel cell anode materials: A case study for doped SrTiO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suthirakun, Suwit; Xiao, Guoliang; Ammal, Salai Cheettu

    2014-01-01

    The effect of p- and n-type dopants on ionic and electronic conductivity of SrTiO3 based perovskites were investigated both computationally and experimentally. Specifically, we performed density functional theory (DFT) calculations of Na- and La-doped SrTiO3 and Na- and Nb-doped SrTiO3 systems. Constrained ab initio thermodynamic calculations were used to evaluate the phase stability and reducibility of doped SrTiO3 under both oxidizing and reducing synthesis conditions, as well as under anodic solid oxide fuel cell (SOFC) conditions. The density of states (DOS) of these materials was analyzed to study the effects of p- and n-doping on the electronic conductivity. Furthermore, Na-more » and La-doped SrTiO3 and Na- and Nb-doped SrTiO3 samples were experimentally prepared and the conductivity was measured to confirm our computational predictions. The experimental observations are in very good agreement with the theoretical predictions that doping n-doped SrTiO3 with small amounts of p-type dopants promotes both the ionic and electronic conductivity of the material. This doping strategy is valid independent of p- and n-doping site and permits the synthesis of perovskite based mixed ionic/electronic conductors.« less

  18. Highly transparent and lower resistivity of yttrium doped ZnO thin films grown on quartz glass by sol-gel method

    NASA Astrophysics Data System (ADS)

    Kaur, Narinder; Sharma, Sanjeev K.; Kim, Deuk Young; Singh, Narinder

    2016-11-01

    We prepared highly transparent yttrium-doped ZnO (YZO) thin films on quartz glass by a sol-gel method, and then annealed them at 600 °C in vacuum. All samples showed hexagonal wurtzite structure with a preferential orientation along the (002) direction. We observed the average grain size of Y: 2 at% thin film to be in the range of 15-20 nm. We observed blue shift in the optical bandgap (3.29 eV→3.32 eV) by increasing the Y concentration (0-2 at%), due to increasing the number of electrons, and replacing the di-valent (Zn2+) with tri-valent (Y3+) dopants. Replacing the higher ionic radii (Y3+) with smaller ionic radii (Zn2+) expanded the local volume of the lattice, which reduced the lattice defects, and increased the intensity ratio of NBE/DLE emission (INBE/IDLE). We also observed the lowest (172 meV) Urbach energy of Y: 2 at% thin film, and confirmed the high structural quality. Incorporation of the appropriate Y concentration (2 at%) improved the crystallinity of YZO thin films, which led to less carrier scattering and lower resistivity.

  19. Phase formation and UV luminescence of Gd3+ doped perovskite-type YScO3

    NASA Astrophysics Data System (ADS)

    Shimizu, Yuhei; Ueda, Kazushige

    2016-10-01

    Synthesis of pure and Gd3+doped perovskite-type YScO3 was attempted by a polymerized complex (PC) method and solid state reaction (SSR) method. Crystalline phases and UV luminescence of samples were examined with varying heating temperatures. The perovskite-type single phase was not simply formed in the SSR method, as reported in some literatures, and two cubic C-type phases of starting oxide materials remained forming slightly mixed solid solutions. UV luminescence of Gd3+ doped samples increased with an increase in heating temperatures and volume of the perovskite-type phase. In contrast, a non-crystalline precursor was crystallized to a single C-type phase at 800 °C in the PC method forming a completely mixed solid solution. Then, the phase of perovskite-type YScO3 formed at 1200 °C and its single phase was obtained at 1400 °C. It was revealed that high homogeneousness of cations was essential to generate the single perovskite-phase of YScO3. Because Gd3+ ions were also dissolved into the single C-type phase in Gd3+ doped samples, intense UV luminescence was observed above 800 °C in both C-type phase and perovskite-type phase.

  20. Application of Atomic Fluorescence to Measurement of Combustion Temperature in Solid Propellants.

    DTIC Science & Technology

    1986-12-04

    into a cytal (yttrium- aluminum -garnet) is shown to be an ideal seed, the fluoresce. f which is stimulated by the ultra-violet output of a Nd:YAG...been successfully employed in atmospheric flames for making thermometric measurements. However, because of the amorphous nature of energetic materials...be determined. R. 6 A .6 An example of this type of behavior is found in trivalent dysprosium, doped at 3% in yttrium- aluminum -garnet (Dy+3 :YAG

  1. Nanoscale doping of compound semiconductors by solid phase dopant diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Jaehyun, E-mail: jaehyun.ahn@utexas.edu; Koh, Donghyi; Roy, Anupam

    2016-03-21

    Achieving damage-free, uniform, abrupt, ultra-shallow junctions while simultaneously controlling the doping concentration on the nanoscale is an ongoing challenge to the scaling down of electronic device dimensions. Here, we demonstrate a simple method of effectively doping ΙΙΙ-V compound semiconductors, specifically InGaAs, by a solid phase doping source. This method is based on the in-diffusion of oxygen and/or silicon from a deposited non-stoichiometric silicon dioxide (SiO{sub x}) film on InGaAs, which then acts as donors upon activation by annealing. The dopant profile and concentration can be controlled by the deposited film thickness and thermal annealing parameters, giving active carrier concentration ofmore » 1.4 × 10{sup 18 }cm{sup −3}. Our results also indicate that conventional silicon based processes must be carefully reviewed for compound semiconductor device fabrication to prevent unintended doping.« less

  2. Solid-state NMR calculations for metal oxides and gallates: shielding and quadrupolar parameters for perovskites and related phases.

    PubMed

    Middlemiss, Derek S; Blanc, Frédéric; Pickard, Chris J; Grey, Clare P

    2010-05-01

    The NMR parameters obtained from solid-state DFT calculations within the GIPAW approach for (17)O- and (69/71)Ga-sites in a range of predominantly oxide-based (group II monoxides, SrTiO(3), BaZrO(3), BaSnO(3), BaTiO(3), LaAlO(3), LaGaO(3), SrZrO(3), MgSiO(3) and Ba(2)In(2)O(5)), and gallate (alpha- and beta-Ga(2)O(3), LiGaO(2), NaGaO(2), GaPO(4) and LaGaO(3)) materials are compared with experimental values, with a view to the future application of a similar approach to doped phases of interest as candidate intermediate temperature solid oxide fuel cell (ITSOFC) electrolytes. Isotropic and anisotropic chemical shift parameters, quadrupolar coupling constants, and associated asymmetries are presented and analyzed. The unusual GaO(5) site occurring in LaGaGe(2)O(7) is also fully characterised. In general, it is found that the theoretical results closely track the experimental trends, though some deviations are identified and discussed, particularly in regard to quadrupolar eta(Q)-values. The high quality of the computed results suggests that this approach can be extended to study more complex and disordered phases. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Fluorine-doped antiperovskite electrolyte for all-solid-state Lithium-ion batteries

    DOE PAGES

    Li, Yutao; Zhou, Weidong; Xin, Sen; ...

    2016-06-30

    A fluorine-doped antiperovskite Li-ion conducto Li 2(OH)X (X=Cl, Br) is shown to be a promising candidat for a solid electrolyte in an all-solid-state Li-ion rechargeabl battery. Substitution of F¯ for OH¯ transforms orthorhombi Li 2OHCl to a room-temperature cubic phase, which show electrochemical stability to 9 V versus Li +/Li and two orders o magnitude higher Li-ion conductivity than that of orthorhombi Li 2OHCl. As a result, an all-solid-state Li/LiFePO 4 with F-dope Li 2OHCl as the solid electrolyte showed good cyclability an a high coulombic efficiency over 40 charge/discharge cycles

  4. Effect of Tb{sup 3+} concentration on the optical and vibrational properties of YBO{sub 3} tri-doped with Eu{sup 3+}, Ce{sup 3+}, and Tb{sup 3+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sohal, S.; Hassanzadeh, E.; Huang, J. Y.

    2014-05-14

    Structural and optical studies are reported of yttrium orthoborate YBO{sub 3} when tri-doped with Eu{sup 3+}, Ce{sup 3+}, and Tb{sup 3+}, focusing on the role of terbium concentration. Incorporation of Tb{sup 3+} affects emission properties for photoluminescence (PL) excited by near ultraviolet light. For constant cerium and europium concentrations, increasing the Tb{sup 3+} results in diminished PL from the Ce{sup 3+} and Tb{sup 3+} color centers. Simultaneously, the PL excitation bands related to both Ce{sup 3+} and Tb{sup 3+} increase in intensity for red emission from the Eu{sup 3+}. Results are consistent with a Ce{sup 3+} → (Tb{sup 3+}){sub n} → Eu{sup 3+} energymore » transfer scheme, where (Tb{sup 3+}){sub n} denotes a chain incorporating n terbium ions. A high red to orange PL intensity ratio is obtained, ranging from 1.34 to 2.09. Raman vibrational bands show a systematic change, with Tb{sup 3+} concentration, in the B{sub 3}O{sub 9} ring terminal oxygen bending mode coordinated with the yttrium site where dopant ions substitute. The structural changes are interpreted as variations in the local neighborhood of these sites in the YBO{sub 3}:Ce{sup 3+},Tb{sup 3+},Eu{sup 3+} crystal structure.« less

  5. Y3Fe5O12/Na,Bi,Sr-doped PZT particulate magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Lisnevskaya, I. V.; Bobrova, I. A.; Lupeiko, T. G.; Agamirzoeva, M. R.; Myagkaya, K. V.

    2016-05-01

    Magnetoelectric (ME) composites of Na, Bi, Sr substituted lead zirconate titanate (PZT) and yttrium iron garnet having representative formula (100-x) wt% Na,Bi,Sr-doped PZT (PZTNB-1)+x wt% Y3Fe5O12 (YIG) with x=10-90 were manufactured using powdered components obtained through sol-gel processes. It is shown that the decrease in sintering temperature provided by the use of finely dispersed PZTNB-1 and YIG powders allows to significantly reduce content of fluorite-like foreign phase based on zirconium oxide, which forms due to the interfacial interaction during heat treatment and becomes stabilized by yttrium oxide. Connectivity has considerable effect on the value of ME coefficient of composite ceramics. With the same x value, ΔE/ΔH characteristic decreases when changing from 0-3-type structured composites (PZT grains embedded in ferrite matrix) to 3-3-(interpenetrating network of two phases) and especially 3-0-type samples (YIG grains embedded in PZT matrix); in the last case this can be attributed to the substrate clamping effect when ferrite grains are clamped with piezoelectric matrix. ΔE/ΔH value of 0-3 composites with x=40-60 wt% was found to be ∼1.6 mV/(cm Oe).

  6. Transformational dynamics of BZO and BHO nanorods imposed by Y2O3 nanoparticles for improved isotropic pinning in YBa2Cu3O7 -δ thin films

    NASA Astrophysics Data System (ADS)

    Gautam, Bibek; Sebastian, Mary Ann; Chen, Shihong; Shi, Jack; Haugan, Timothy; Xing, Zhongwen; Zhang, Wenrui; Huang, Jijie; Wang, Haiyan; Osofsky, Mike; Prestigiacomo, Joseph; Wu, Judy Z.

    2017-07-01

    An elastic strain model was applied to evaluate the rigidity of the c-axis aligned one-dimensional artificial pinning centers (1D-APCs) in YBa2Cu3O7-δ matrix films. Higher rigidity was predicted for BaZrO3 1D-APCs than that of the BaHfO3 1D-APCs. This suggests a secondary APC doping of Y2O3 in the 1D-APC/YBa2Cu3O7-δ nanocomposite films would generate a stronger perturbation to the c-axis alignment of the BaHfO3 1D-APCs and therefore a more isotropic magnetic vortex pinning landscape. In order to experimentally confirm this, we have made a comparative study of the critical current density Jc (H, θ, T) of 2 vol.% BaZrO3 + 3 vol.%Y2O3 and 2 vol.%BaHfO3 + 3 vol.%Y2O3 double-doped (DD) YBa2Cu3O7-δ films deposited at their optimal growth conditions. A much enhanced isotropic pinning was observed in the BaHfO3 DD samples. For example, at 65 K and 9.0 T, the variation of the Jc across the entire θ range from θ=0 (H//c) to θ=90 degree (H//ab) is less than 18% for BaHfO3 DD films, in contrast to about 100% for the BaZrO3 DD counterpart. In addition, lower α values from the Jc(H) ˜ H-α fitting were observed in the BaHfO3 DD films in a large θ range away from the H//c-axis. Since the two samples have comparable Jc values at H//c-axis, the improved isotropic pinning in BaHfO3 DD films confirms the theoretically predicted higher tunability of the BaHfO3 1D-APCs in APC/YBa2Cu3O7-δ nanocomposite films.

  7. Gadolinium Scandium Gallium Garnet (GSGG) as a Solid-State Laser Host

    DTIC Science & Technology

    1987-07-01

    o*SATI CODSi1.SBEC EM (otne nrvrs fnceayad dniy nb)k ubr ~~~~~~~~ Gadolinium Scandium Gallium Garnet (GSGG)asaSldtteLerHt 17. ABSTRACT 6.SUJCTTEM...certain other garnet materials for replacement. It also addresses the solid-state laser host material Gadolinium Scandium Gal- lium Garnet (GSGG) and its...by neodymium-doped yttrium aluminum garnet (Nd:YAG) or other mate- rials for most applications. In the years after the invention of the ruby laser, in

  8. Conductivity measurements on CdCl2 doped PVA solid polymeric electrolyte for battery application

    NASA Astrophysics Data System (ADS)

    Baraker, Basavarajeshwari M.; Lobo, Blaise

    2018-04-01

    Ionic conductivity of pure polyvinyl alcohol (PVA) and 6.3 wt% of CdCl2 doped PVA solid polymeric electrolyte have been studied using DC and AC electrical measurements. From DC electrical results, the determination transference number confirmed that ions are the dominant charge carriers in CdCl2 doped PVA. Interestingly, the ion transference number (ti) for 6.3 wt% CdCl2 doped sample is significantly more (0.993), when compared to that of pure PVA (for which, ti is 0.988). Temperature dependent dielectric studies showed interesting results at different frequencies: 120 Hz, 500 Hz, 1 kHz, 5 kHz, 10 kHz and 100 kHz.

  9. Evolution of structural and transport properties in Y-doped double perovskite Sr2FeIrO6

    NASA Astrophysics Data System (ADS)

    Kharkwal, K. C.; Pramanik, A. K.

    2018-05-01

    The structural and transport properties of Yttrium doped double perovskite Sr2FeIrO6 have been investigated. Structural properties have been investigated by means of x-ray diffraction measurement and Rietveld analysis. Structural transition has not been observed although lattice parameters evolve with the Yttrium doping. All samples have been found to be insulating over the whole temperature range where the resistivity increases with doping. This increase in resistivity with doping may be due to the change in charge state of transition metal.

  10. New, efficient, room temperature mid-infrared laser at 3.9 mu m in holmium:barium yttrium fluoride and visible praseodymium:lithium yttrium fluoride laser for holography

    NASA Astrophysics Data System (ADS)

    Tabirian, Anna Murazian

    This dissertation describes a series of experiments and theoretical studies, which led to the development of two new solid state laser systems: efficient, room temperature mid-infrared solid state laser at 3.9 μm in Ho 3+ doped BaY2F8 and visible Pr:LiYF4 laser at 640 mn for holography. The 3.9 μm laser wavelength matches the peak of mid-IR atmospheric transmission window, which makes it very important for multiple applications such as remote sensing, imaging, IR countermeasures, eye-safe lidars and environmental agent detection. We present the results of spectroscopic evaluations and numerical modeling of energy transfer processes between rare earth ions of Ho3+ doped in two host laser materials: BaY2F8 and LiYF 4. The 3.9 μm laser is based on transition with upper laser lifetime considerably shorter than lower level lifetime, which in general leads to self-terminating laser action in the cw mode or at high repetition rates. Therefore, three different pumping and lasing schemes, that could allow overcoming these limitations have been suggested and studied. First, cascade laser action at 1.4 μm and 3.9 μm was achieved with low thresholds and near-theoretical quantum efficiency in Ho3+ doped BaY2F8 pumped at 532 nm by a Q- switched frequency doubled Nd:YAG laser. Next, the feasibility of achieving 3.9 μm laser with cw resonant cascade pumping at 750 mn by a Ti:Sapphire laser was studied. New energy transfer process, such as upconversion from terminal level of the 3.9 μm laser was observed in high concentration Ho3+ doped BaY2F 8. Finally, we proposed to use high-energy flashlamp pumped tunable Cr:LiSAF laser operating in long pulse regime for the direct pumping of the upper level of the 3.9 μm laser. Pulsed laser oscillation at 3.9 μm is demonstrated in Ho3+ doped BaY2F8 with low threshold of 3 mJ and a slope efficiency of 14.5% with maximal energy of 30 mJ. The second part of the thesis describes the design and the development of the visible Pr:LiYF4 laser

  11. Clinical and Histopathologic Assessment of Facial Melasma After Low-Fluence Q-Switched Neodymium-Doped Yttrium Aluminium Garnet Laser.

    PubMed

    Hofbauer Parra, Camila Anna; Careta, Mariana Figueroa; Valente, Neusa Yuriko Sakai; de Sanches Osório, Nuno Eduardo Guimaraes; Torezan, Luis Antonio Ribeiro

    2016-04-01

    Melasma is a frequent and difficult to treat skin disorder. Results of laser therapy are inconsistent. To determine the safety and efficacy of low-fluence Q-switched neodymium-doped yttrium aluminum garnet (QS Nd:YAG) laser for melasma treatment and assess recurrence rates and histopathologic findings before and after treatment. Twenty patients were treated with 10 weekly sessions of low-fluence 1064-nm QS Nd:YAG laser at 1-week intervals. The modified Melasma Area and Severity Index (mMASI) score was evaluated at baseline; 1 week; and 1, 3, and 6 months after treatment. Epidermal melanin quantification was performed on 10 biopsy samples and compared before and after treatment. All patients showed improvement by mMASI scores, range (21%-75%) compared with that at baseline. No permanent side effects occurred. The recurrence rate was 81%. By histopathology, a slight, nonsignificant (p = .305) decrease in melanin deposition was seen in all layers of the epidermis 1 week after the laser treatments ended. The results confirm the safety and effectiveness of low-fluence QS Nd:YAG laser for treating melasma; however, the high recurrence suggests poor long-term results when the laser is used as a monotherapy.

  12. Nanocomposite scintillator, detector, and method

    DOEpatents

    Cooke, D Wayne [Santa Fe, NM; McKigney, Edward A [Los Alamos, NM; Muenchausen, Ross E [Los Alamos, NM; Bennett, Bryan L [Los Alamos, NM

    2009-04-28

    A compact includes a mixture of a solid binder and at least one nanopowder phosphor chosen from yttrium oxide, yttrium tantalate, barium fluoride, cesium fluoride, bismuth germanate, zinc gallate, calcium magnesium pyrosilicate, calcium molybdate, calcium chlorovanadate, barium titanium pyrophosphate, a metal tungstate, a cerium doped nanophosphor, a bismuth doped nanophosphor, a lead doped nanophosphor, a thallium doped sodium iodide, a doped cesium iodide, a rare earth doped pyrosilicate, or a lanthanide halide. The compact can be used in a radiation detector for detecting ionizing radiation.

  13. Composite solid oxide fuel cell anode based on ceria and strontium titanate

    DOEpatents

    Marina, Olga A.; Pederson, Larry R.

    2008-12-23

    An anode and method of making the same wherein the anode consists of two separate phases, one consisting of a doped strontium titanate phase and one consisting of a doped cerium oxide phase. The strontium titanate phase consists of Sr.sub.1-xM.sub.xTiO.sub.3-.delta., where M is either yttrium (Y), scandium (Sc), or lanthanum (La), where "x" may vary typically from about 0.01 to about 0.5, and where .delta. is indicative of some degree of oxygen non-stoichiometry. A small quantity of cerium may also substitute for titanium in the strontium titanate lattice. The cerium oxide consists of N.sub.yCe.sub.1-yO.sub.2-.delta., where N is either niobium (Nb), vanadium (V), antimony (Sb) or tantalum (Ta) and where "y" may vary typically from about 0.001 to about 0.1 and wherein the ratio of Ti in said first phase to the sum of Ce and N in the second phase is between about 0.2 to about 0.75. Small quantities of strontium, yttrium, and/or lanthanum may additionally substitute into the cerium oxide lattice. The combination of these two phases results in better performance than either phase used separately as an anode for solid oxide fuel cell or other electrochemical device.

  14. Energy transfer mechanism of Sm3+/Eu3+ co-doped 2CaO-B2O3-P2O5 phosphors

    NASA Astrophysics Data System (ADS)

    Prasad, V. Reddy; Damodaraiah, S.; Ratnakaram, Y. C.

    2018-04-01

    Sm3+/Eu3+ co-doped calcium borophosphate phosphors were synthesized by solid state reaction method. 2CaO-B2O3-P2O5: Sm3+/Eu3+ co-doped phosphors were characterized by XRD, SEM, 31P solid state NMR, excitation, photoluminescence (PL) and decay profiles.. XRD profiles showed that the prepared phosphors exhibit a hexagonal phase in crystal structure and SEM results showed that the particles are more irregular morphologies. From 31P NMR spectra of Sm3+/Eu3+ co-doped 2CaO-B2O3-P2O5 phosphors, the chemical shifts located in the positive frequency region indicating the presence of mono-phosphate complexes Q0-(PO43 - ) . Photoluminescence spectra of Sm3+/Eu3+ co-doped 2CaO-B2O3-P2O5 phosphors show enhancement in emission intensity of Eu3+ ion due to co-doping with Sm3+ ions through energy transfer process. The energy level mechanism between Sm3+ and Eu3+ ions has been clearly explained. The energy transfer process has also been evidenced by lifetime decay profiles. These results suggest that the prepared phosphors are potential red luminescent optical materials.

  15. Tunable, rare earth-doped solid state lasers

    DOEpatents

    Emmett, John L.; Jacobs, Ralph R.; Krupke, William F.; Weber, Marvin J.

    1980-01-01

    Laser apparatus comprising combinations of an excimer pump laser and a rare earth-doped solid matrix, utilizing the 5d-4f radiative transition in a rare earth ion to produce visible and ultra-violet laser radiation with high overall efficiency in selected cases and relatively long radiative lifetimes.

  16. Investigation of Ce(3+) Dopant in Appropriate Hosts for Blue Green Lasers.

    DTIC Science & Technology

    1986-11-25

    crystal of La(A10 .8Sc 0 .2 )0 3 doped with 0.01% Ce. During one experiment a small amount of the charge was fused in an iridium crucible. The...from ordering was not observed. Similar results were achieved in Experiment #47 with (LaAlO3 ) 0 .5 (SrZrO 3 )0 5 composition. Small additions of...compositions evaluated, enlarged cubic cells could not be formed by ordering. Small additions of less than 5% of BaZrO 3 or SrZrO 3 to LaAIO 3 produced

  17. Structure and luminescence spectra of lutetium and yttrium borates synthesized from ammonium nitrate melt

    NASA Astrophysics Data System (ADS)

    Klassen, Nikolay V.; Shmurak, Semion Z.; Shmyt'ko, Ivan M.; Strukova, Galina K.; Derenzo, Stephen E.; Weber, Marvin J.

    2005-01-01

    Lutetium and yttrium borates doped with europium, terbium, gadolinium, etc. have been synthesized by dissolving initial oxides and nitrates in ammonium nitrate melt and thermal decomposition of the solvent. Annealings in the range of 500-1100°C modified the dimensions of the grains from 2 to 3 nm to more than 100 nm. Significant dependence of the structure of lutetium borate on slight doping with rare earth ions has been found: terbium makes high-temperature vaterite phase preferential at room temperature, whereas europium stabilizes low-temperature calcite phase. Influence of the structure of the borates on the pattern of the luminescence spectra of europium dopant was observed. Possibilities for manufacturing of scintillating lutetium borate ceramics by means of this method of synthesis are discussed.

  18. Transport (electrical and thermal) properties and surface morphology of Y1-xCaxFeO3 (where x = 0.03 and 0.05) ceramics

    NASA Astrophysics Data System (ADS)

    Suthar, Lokesh; Bhadala, Falguni; Roy, M.; Jha, V. K.

    2018-05-01

    The electrical transport behaviour of polycrystalline Calcium doped Yttrium orthoferrite (Y1-xCaxFeO3, where x = 0.03 and 0.05) have been synthesized by high temperature Solid state reaction route. The I-V characteristics have been measured which revels that Y1-xCaxFeO3 (where x = 0.03 and 0.05), behaves like semiconductor and its conductivity increases with increase in doping concentration. The thermal analysis experiment shows no phase change with the minor weight loss which reflects the high temperature thermal stability of the materials. The surface morphology was analyzed using the AFM. The results are discussed in detail.

  19. Pulmonary Laser Metastasectomy by 1318-nm Neodymium-Doped Yttrium-Aluminum Garnet Laser: A Retrospective Study About Laser Metastasectomy of the Lung.

    PubMed

    Porrello, Calogero; Gullo, Roberto; Vaglica, Antonino; Scerrino, Gregorio; Salamone, Giuseppe; Licari, Leo; Raspanti, Cristina; Gulotta, Eliana; Gulotta, Gaspare; Cocorullo, Gianfranco

    2018-04-01

    The lungs are among the first organ affected by remote metastases from many primary tumors. The surgical resection of isolated pulmonary metastases represents an important and effective element of therapy. This is a retrospective study about our entire experience with pulmonary resection for metastatic cancer using 1318-nm neodymium-doped yttrium-aluminum garnet laser. In this single-institution study, we retrospectively analyzed a group of 209 patients previously treated for primary malignant solid tumors. We excluded 103 patients. The number and location of lesions in the lungs was determined using chest computed tomography and positron emission tomography-computed tomography. Disseminated malignancy was excluded. All pulmonary laser resections are performed via an anteroaxillary muscle-sparing thoracotomy. All lesions were routinely removed by laser with a small (5-10 mm) margin of the healthy lung. Patients received systematic lymph node sampling with intraoperative smear cytology of sampled lymph nodes. Mortality at 2 years from the first surgery is around 20% (10% annually). This value increases to 45% in the third year. The estimated median survival for patients who underwent the first surgery is reported to be approximately 42 months. Our results show that laser resection of lung metastases can achieve good result, in terms of radical resection and survival, as conventional surgical metastasectomy. The great advantage is the possibility of limiting the damage to the lung. Stapler resection of a high number of metastases would mutilate the lung.

  20. Stabilization of cubic Li7La3Hf2O12 by Al-doping

    NASA Astrophysics Data System (ADS)

    Baklanova, Yana V.; Tyutyunnik, Alexander P.; Tarakina, Nadezda V.; Fortes, A. Dominic; Maksimova, Lidiya G.; Korona, Daniil V.; Denisova, Tatyana A.

    2018-07-01

    In this paper we report on the stabilization of cubic Li7La3Hf2O12 by Al3+ doping and present a detailed crystal structure study and lithium ion conductivity measurements of the obtained compound. Polycrystalline Al-doped Li7La3Hf2O12 was prepared by a modified solid state method. The compound consists of micrometer size grains encapsulated by a glassy phase, which helps preventing the volatilization of lithium during annealing. Al-doped Li7La3Hf2O12 crystallizes in the garnet-related structure with a cubic unit cell (sp. gr. Ia 3 bar d (230)). A structural refinement using X-ray and neutron powder diffraction data showed that the Al3+ ions occupy only tetrahedral Li+ sites in the structure. The presence of overextended leading edges of the peaks on the XRD and NPD data is described by the introduction of an additional phase with rhombohedral distortion that occurs through a stretching of the cubic phase along the body diagonal. The activation energy as well as the total conductivity at room temperature are close to values obtained for un-doped cubic Li7La3Zr2O12 and Li7La3Hf2O12 garnets, which make Al-doped Li7La3Hf2O12 a potential candidate for the application as solid electrolyte in solid-state rechargeable lithium-ion batteries.

  1. Infrared spectroscopy of solid normal hydrogen doped with CH3F and O2 at 4.2 K: CH3F:O2 complex and CH3F migration

    NASA Astrophysics Data System (ADS)

    Abouaf-Marguin, L.; Vasserot, A.-M.

    2011-04-01

    Double doping of solid normal hydrogen with CH3F and O2 at about 4.2 K gives evidence of (ortho-H2)n:CH3F clusters and of O2:CH3F complex formation. FTIR analysis of the time evolution of the spectra in the region of the v3 C-F stretching mode indicates that these clusters behave very differently from (ortho-H2)n:H2O clusters. The main point is the observed migration of CH3F molecules in solid para-H2 at 4.2 K which differs from that of H2O under identical experimental conditions. This is confirmed by an increase over time of the integrated intensity of the CH3F:O2 complex with a rate constant K = 2.7(2) . 10-4 s-1.

  2. Nano-Architecture of nitrogen-doped graphene films synthesized from a solid CN source.

    PubMed

    Maddi, Chiranjeevi; Bourquard, Florent; Barnier, Vincent; Avila, José; Asensio, Maria-Carmen; Tite, Teddy; Donnet, Christophe; Garrelie, Florence

    2018-02-19

    New synthesis routes to tailor graphene properties by controlling the concentration and chemical configuration of dopants show great promise. Herein we report the direct reproducible synthesis of 2-3% nitrogen-doped 'few-layer' graphene from a solid state nitrogen carbide a-C:N source synthesized by femtosecond pulsed laser ablation. Analytical investigations, including synchrotron facilities, made it possible to identify the configuration and chemistry of the nitrogen-doped graphene films. Auger mapping successfully quantified the 2D distribution of the number of graphene layers over the surface, and hence offers a new original way to probe the architecture of graphene sheets. The films mainly consist in a Bernal ABA stacking three-layer architecture, with a layer number distribution ranging from 2 to 6. Nitrogen doping affects the charge carrier distribution but has no significant effects on the number of lattice defects or disorders, compared to undoped graphene synthetized in similar conditions. Pyridinic, quaternary and pyrrolic nitrogen are the dominant chemical configurations, pyridinic N being preponderant at the scale of the film architecture. This work opens highly promising perspectives for the development of self-organized nitrogen-doped graphene materials, as synthetized from solid carbon nitride, with various functionalities, and for the characterization of 2D materials using a significant new methodology.

  3. Synthesis and Characterization of a Perovskite Barium Zirconate (BaZrO[subscript 3]): An Experiment for an Advanced Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Thananatthanachon, Todsapon

    2016-01-01

    In this experiment, the students explore the synthesis of a crystalline solid-state material, barium zirconate (BaZrO3) by two different synthetic methods: (a) the wet chemical method using BaCl[subscript 2]·2H[subscript 2]O and ZrOCl[subscript 2]·8H[subscript 2]O as the precursors, and (b) the solid-state reaction from BaCO[subscript 3] and…

  4. Picosecond 532-nm neodymium-doped yttrium aluminium garnet laser-a novel and promising modality for the treatment of café-au-lait macules.

    PubMed

    Artzi, Ofir; Mehrabi, Joseph N; Koren, Amir; Niv, Roni; Lapidoth, Moshe; Levi, Assi

    2018-05-01

    Café-au-lait macules (CALMs) present as benign hyperpigmented, well-circumscribed spots on the skin for which many patients seek treatment for aesthetic reasons. The objective of this study is to report our experience in treating CALMs using a picosecond 532-nm neodymium-doped yttrium aluminium garnet (PS 532 nm) laser. This is a retrospective case series of 16 patients with CALMs who were treated by a PS 532-nm laser (1-4 treatments, 4-8 weeks apart). Response as seen on clinical photographs was assessed by two independent dermatologists and graded on a scale of 0 (exacerbation) to 5 (95-100% improvement). Patient satisfaction and tolerance were documented at final visit. The results of 15 patients demonstrated significant improvement (average 3.43), and their satisfaction and tolerance levels were high. One patient had no response whatsoever to treatment. The PS 532-nm laser is a promising novel modality for the treatment of CALMs.

  5. Ferromagnetic interactions in chromium (III) doped YMnO3

    NASA Astrophysics Data System (ADS)

    Thakur, Rajesh K.; Thakur, Rasna; Kaurav, N.; Okram, G. S.; Gaur, N. K.

    2016-05-01

    Both of the reported compounds with compositions YMn1-xCrxO3 (x = 0.1 and 0.2) are synthesized by using the conventional solid state reaction method and their magnetic properties are analyzed vigilantly. The XRD pattern reveals the hexagonal structure of the reported compounds with space group P63cm (25-1079). The in-depth analysis of the magnetic measurements reveals the enhancement in the ferromagnetic character with Cr doping in YMnO3 compounds. The observed enhancement in the ferromagnetism is found to be due to the increased double exchange interactions among the Cr3+ and Mn3+ ions with Cr doping.

  6. Luminescent rare earth vanadate nanoparticles doped with Eu3+ and Bi3 for sensing and imaging applications

    NASA Astrophysics Data System (ADS)

    Escudero, Alberto; Carrillo-Carrión, Carolina; Zyuzin, Mikhail; Hartmann, Raimo; Ashraf, Sumaira; Parak, Wolfgang J.

    2016-03-01

    Nanoparticles (NPs) are attracting interest in nanomedicine due to their potential medical applications, ranging from optical biolabels and contrast agents for magnetic resonance imaging to carriers for drug and gene delivery for disease therapy.[1] Rare earth (RE) based nanophosphors exhibit important advantages compared with other available luminescent materials, such as quantum dots and nanostructures functionalized with organic dyes, due to their lower toxicities, photostabilities, high thermal and chemical stabilities, high luminescence quantum yields, and sharp emission bands.[2] Yttrium orthovanadate NPs doped with Eu3+ and Bi3+, functionalized with poly acryl acid (PAA), and excitable by near-ultraviolet light have been synthesized by homogeneous precipitation at 120 °C from solutions of rare earth precursors (yttrium acetylacetonate and europium nitrate), bismuth nitrate, sodium orthovanadate, and PAA, in an ethylene glycol/water mixture. Quasispheres with sizes from 93 to 51 nm were obtained. The as synthesized NPs were already functionalized with PAA. The NPs showed the typical red luminescence of Eu3+, which can be excited with near-UV light through an energy transfer from the vanadate anion. The presence of Bi3+ shifts the maximum of the broad excitation band from 280 nm to 342 nm. This excitation path is much more efficient than the direct excitation of the Eu3+ electronic levels, and results in a much higher luminescence. The NPs can be uptaken by HeLa cells, and are eventually located in the lysosomes after being internalized. Finally, the functionalization with PAA provides -COOH anchors for adding functional ligands of biomedical interest that can be used for sensing applications.

  7. A novel design of anode-supported solid oxide fuel cells with Y 2O 3-doped Bi 2O 3, LaGaO 3 and La-doped CeO 2 trilayer electrolyte

    NASA Astrophysics Data System (ADS)

    Guo, Weimin; Liu, Jiang

    Anode-supported solid oxide fuel cells (SOFCs) with a trilayered yttria-doped bismuth oxide (YDB), strontium- and magnesium-doped lanthanum gallate (LSGM) and lanthanum-doped ceria (LDC) composite electrolyte film are developed. The cell with a YDB (18 μm)/LSGM (19 μm)/LDC (13 μm) composite electrolyte film (designated as cell-A) shows the open-circuit voltages (OCVs) slightly higher than that of a cell with an LSGM (31 μm)/LDC (17 μm) electrolyte film (designated as cell-B) in the operating temperature range of 500-700 °C. The cell-A using Ag-YDB composition as cathode exhibits lower polarization resistance and ohmic resistance than those of a cell-B at 700 °C. The results show that the introduction of YDB to an anode-supported SOFC with a LSGM/LDC composite electrolyte film can effectively block electronic transport through the cell and thus increased the OCVs, and can help the cell to achieve higher power output.

  8. Potassium titanyl arsenate based cascaded optical parametric oscillator emit at 2.5 µm derived by neodymium-doped yttrium lithium fluoride laser

    NASA Astrophysics Data System (ADS)

    Duan, Yanmin; Zhang, Jing; Guo, Junhong; Zhu, Haiyong; Zhang, Yongchang; Xu, Changwen; Wang, Hongyan; Zhang, Yaoju

    2018-04-01

    We reported a potassium titanyl arsenate (KTA) based cascaded optical parametric oscillator (OPO). The secondary OPO signal light at 2.5 µm was obtained with two OPO processes in one non-critical phase matching cut KTA crystal. This cascaded OPO was driven by a Q-switched neodymium-doped yttrium lithium fluoride (Nd:YLF) laser at 1047 nm. Making full use of the negative thermal lens effect and long upper level fluorescence lifetime of Nd:YLF, signal power of 605 mW at 2503 nm was achieved with a pulse repetition frequency of 15 kHz and an incident diode pump power of 9.7 W. Therefore, the cascaded OPO derived by Q-switched Nd:YLF laser could provide high peak power pulsed laser emission in mid-infrared band.

  9. Tunable Solid-State Quantum Memory Using Rare-Earth-Ion-Doped Crystal, Nd(3+):GaN

    DTIC Science & Technology

    2017-04-01

    by plasma-assisted molecular beam epitaxy in a modular Gen II reactor using liquid gallium, solid Nd, and a nitrogen plasma. The photoluminescence (PL...provide a tunable memory. To vary the applied field, we designed and grew a series of Nd-doped GaN p-i-n structures, strain- balanced superlattice...27 Fig. 23 Electric field vs. GaN well/ AlxGa(1-x)N barrier thickness for strain- balanced superlattice (SBSL) structures with

  10. Long-Pulsed 532-Nm Neodymium-Doped Yttrium Aluminium Garnet Laser for Treatment of Facial Plane Warts in 160 Yemeni Patients.

    PubMed

    Alshami, Mohammad Ali; Mohana, Mona Jameel; Alshami, Ahlam Mohammad

    2016-11-01

    Warts in general and plane warts in particular pose a therapeutic challenge for dermatologists. Many treatment modalities exist, with variable success rates, side effect profiles, and precautions. The long-pulsed 532-nm neodymium-doped yttrium aluminium garnet (LP Nd:YAG) laser has not been previously used for this indication. This study was conducted to assess the efficacy and safety of the LP Nd:YAG laser for treating facial plane warts. A total of 160 Yemeni patients (62 women, 98 men; age range, 5-55 years) were exposed to 1 laser treatment session with the following parameters: wavelength, 532 nm; pulse duration, 20 millisecond; spot size, 2 to 3 mm; and fluence, 25 J/cm. The end point was graying or whitening of the lesion. Color photographs were taken before and immediately after treatment and at follow-up visits 1, 4, and 16 weeks after the laser session. An overall clearance rate of 92% after only one session was achieved, with minimal and transient side effects. The LP Nd:YAG laser is safe and effective for treating facial plane warts, with a success rate of 92% after only one session.

  11. Influence of Y doping concentration on the properties of nanostructured MxZn1-xO (M=Y) thin film deposited by nebulizer spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Mariappan, R.; Ponnuswamy, V.; Chandra Bose, A.; Suresh, R.; Ragavendar, M.

    2014-09-01

    Yttrium doped Zinc Oxide (YxZn1-xO) thin films deposited at a substrate temperature 400 °C. The effect of substrate temperature on the structural, surface morphology, compositional, optical and electrical properties of YxZn1-xO thin films was studied. X-ray diffraction studies show that all films are polycrystalline in nature with hexagonal crystal structure having highly textured (002) plane parallel to the surface of the substrate. The structural parameters, such as lattice constants (a and c), crystallite size (D), dislocation density (δ), microstrain (σ) and texture coefficient were calculated for different yttrium doping concentrations (x). High resolution scanning electron microscopy measurements reveal that the surface morphology of the films change from platelet like grains to hexagonal structure with grain size increase due to the yttrium doping. Energy dispersive spectroscopy confirms the presence of Y, Zn and O elements in the films prepared. Optical studies showed that all samples have a strong optical transmittance higher than 70% in the visible range. A slight shift of the absorption edge towards the large wavelengths was observed as the Y doping concentration increased. This result shows that the band gap is slightly decreased from 3.10 to 2.05 eV with increase of the yttrium doping concentrations (up to 7.5%) and then slightly increased. Room temperature PL measurements were done and the band-to-band emission energies of films were determined and reported. The complex impedance of the 10%Y doped ZnO film shows two distinguished semicircles and the diameter of the arcs got decreased in diameter as the temperature increases from 70 to 175 °C.

  12. Dielectric characteristics of Mn-doped LaTiO3+δ ceramics

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Cui, Yimin

    A series of ceramic composites of Mn-doped La1- x MnxTiO3+ δ and LaMnxTi1- x O3+ δ (x = 0.1, 0.2) were synthesized by conventional solid-state reaction method. The low-frequency complex dielectric properties of the composites were investigated as functions of temperature (77 K <= T <= 360 K) and frequency (100 Hz <= f <= 1 MHz), respectively. The dielectric constant of A-site doped samples is higher than that of B-site doped samples. The loss tangent of low doped samples is much less than that of high doped samples. The A-site doped composites exhibit intrinsic dielectric response with a dielectric constant of 40 in the temperature below 250 K. Interestingly, the dielectric constants of B-site doped ceramics increase slightly in the temperature range from 77 to 360 K. And it is clearly observed that extraordinarily high dielectric loss tangent ( 6) appear at low frequency (100 Hz) in LaMn0.2Ti0.8O3+ δ , which is 8 times larger than that of LaMn0.1Ti0.9O3+ δ , which indicates that the doped content can affect the intrinsic dielectric characteristics significantly.

  13. Evaluation of critical distances for energy transfer between Pr{sup 3+} and Ce{sup 3+} in yttrium aluminium garnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Peng; Wei, Xiantao; Yin, Min

    A series of Pr{sup 3+}/Ce{sup 3+} doped yttrium aluminium garnet (Y{sub 3}Al{sub 5}O{sub 12} or simply YAG) phosphors were synthesized to investigate the energy transfer between Pr{sup 3+} and Ce{sup 3+} for their potential application in a white light-emitting diode and quantum information storage and processing. The excitation and emission spectra of YAG:Pr{sup 3+}/Ce{sup 3+} were measured and analyzed, and it revealed that the reabsorption between Pr{sup 3+} and Ce{sup 3+} was so weak that it can be ignored, and the energy transfer from Pr{sup 3+} (5d) to Ce{sup 3+} (5d) and Ce{sup 3+} (5d) to Pr{sup 3+} ({sup 1}D{submore » 2}) did occur. By analyzing the excitation and the emission spectra, the energy transfer from Pr{sup 3+} (5d) to Ce{sup 3+} (5d) and Ce{sup 3+} (5d) to Pr{sup 3+} ({sup 1}D{sub 2}) was examined in detail with an original strategy deduced from fluorescence dynamics and the Dexter energy transfer theory, and the critical distances of energy transfer were derived to be 7.9 Å and 4.0 Å for Pr{sup 3+} (5d) to Ce{sup 3+} (5d) and Ce{sup 3+} (5d) to Pr{sup 3+} ({sup 1}D{sub 2}), respectively. The energy transfer rates of the two processes of various concentrations were discussed and evaluated. Furthermore, for the purpose of sensing a single Pr{sup 3+} state with a Ce{sup 3+} ion, the optimal distance of Ce{sup 3+} from Pr{sup 3+} was evaluated as 5.60 Å, where the probability of success reaches its maximum value of 78.66%, and meanwhile the probabilities were evaluated for a series of Y{sup 3+} sites in a YAG lattice. These results will be of valuable reference for achievement of the optimal energy transfer efficiency in Pr{sup 3+}/Ce{sup 3+} doped YAG and other similar systems.« less

  14. Dynamic photopatterning of cells in situ by Q-switched neodymium-doped yttrium ortho-vanadate laser.

    PubMed

    Deka, Gitanjal; Okano, Kazunori; Kao, Fu-Jen

    2014-01-01

    Cellular micropattering has been increasingly adopted in quantitative biological experiments. A Q-switched pulsed neodymium-doped yttrium ortho-vanadate (Nd∶YVO4) laser directed in-situ microfabrication technique for cell patterning is presented. A platform is designed uniquely to achieve laser ablation. The platform is comprised of thin gold coating over a glass surface that functions as a thermal transducer and is over-layered by a cell repellant polymer layer. Micropatterns are engraved on the platform, subsequently exposing specific cell adhesive micro-domains by ablating the gold-polymer coating photothermally. Experimental results indicate that the proposed approach is applicable under culture conditions, viable toward cells, and has a higher engraving speed. Possible uses in arraying isolated single cells on the platform are also shown. Additionally, based on those micro-patterns, dynamic cellular morphological changes and migrational speed in response to geometrical barriers are studied to demonstrate the potential applications of the proposed approach. Our results further demonstrate that cells in narrower geometry had elongated shapes and higher migrational speed than those in wider geometry. Importantly, the proposed approach will provide a valuable reference for efforts to study single cell dynamics and cellular migration related processes for areas such as cell division, wound healing, and cancer invasion.

  15. Method of forming a relatively stable slip of silicon metal particles and yttrium containing particles

    DOEpatents

    Dickie, Ray A.; Mangels, John A.

    1984-01-01

    The method concerns forming a relatively stable slip of silicon metal particles and yttrium containing particles. In one embodiment, a casting slip of silicon metal particles is formed in water. Particles of a yttrium containing sintering aid are added to the casting slip. The yttrium containing sintering aid is a compound which has at least some solubility in water to form Y.sup.+3 ions which have a high potential for totally flocculating the silicon metal particles into a semiporous solid. A small amount of a fluoride salt is added to the casting slip which contains the yttrium containing sintering aid. The fluoride salt is one which will produce fluoride anions when dissolved in water. The small amount of the fluoride anions produced are effective to suppress the flocculation of the silicon metal particles by the Y.sup.+3 ions so that all particles remain in suspension in the casting slip and the casting slip has both an increased shelf life and can be used to cast articles having a relatively thick cross-section. The pH of the casting slip is maintained in a range from 7.5 to 9. Preferably, the fluoride salt used is one which is based on a monovalent cation such as sodium or ammonia. The steps of adding the yttrium containing sintering aid and the fluoride salt may be interchanged if desired, and the salt may be added to a solution containing the sintering aid prior to addition of the silicon metal particles.

  16. Hydrocracking of cumene over Ni/Al 2O 3 as influenced by CeO 2 doping and γ-irradiation

    NASA Astrophysics Data System (ADS)

    El-Shobaky, G. A.; Doheim, M. M.; Ghozza, A. M.

    2004-01-01

    Cumene hydrocracking was carried out over pure and doped Ni/Al 2O 3 solids and also, on these solids after exposure to different doses of γ-rays between 0.4 and 1.6 MGy. The dopant concentration was varied between 1 and 4 mol% CeO 2. Pure and doped samples were subjected to heat treatment at 400°C and cumene hydrocracking reaction was carried out using various solids at temperatures between 250°C and 400°C by means of micropulse technique. The results showed that both CeO 2 doping and γ-irradiation of the investigated system brought about an increase in its specific surface area. γ-irradiation of pure samples increased their catalytic activities effectively. However, the doping caused a decrease in the catalytic activity. γ-irradiation of the doped samples brought about a net decrease in the catalytic activity. The catalytic reaction products over different investigated solids were ethylbenzene as a major product together with different amounts of toluene, benzene and C 1-C 3 gaseous hydrocarbons. The selectivity towards the formation of various reaction products varies with the reaction temperature, doping and γ-irradiation.

  17. Upconversion luminescence and blackbody radiation in tetragonal YSZ co-doped with Tm(3+) and Yb(3+).

    PubMed

    Soares, M R N; Ferro, M; Costa, F M; Monteiro, T

    2015-12-21

    Lanthanide doped inorganic nanoparticles with upconversion luminescence are of utmost importance for biomedical applications, solid state lighting and photovoltaics. In this work we studied the downshifted luminescence, upconversion luminescence (UCL) and blackbody radiation of tetragonal yttrium stabilized zirconia co-doped with Tm(3+) and Yb(3+) single crystals and nanoparticles produced by laser floating zone and laser ablation in liquids, respectively. The photoluminescence (PL) and PL excitation (PLE) were investigated at room temperature (RT). PL spectra exhibit the characteristic lines in UV, blue/green, red and NIR regions of the Tm(3+) (4f(12)) under resonant excitation into the high energy (2S+1)LJ multiplets. Under NIR excitation (980 nm), the samples placed in air display an intense NIR at ∼800 nm due to the (1)G4→(3)H5/(3)H4→(3)H6 transitions. Additionally, red, blue/green and ultraviolet UCL is observed arising from higher excited (1)G4 and (1)D2 multiplets. The power excitation dependence of the UCL intensity indicated that 2-3 low energy absorbed photons are involved in the UCL for low power levels, while for high powers, the identified saturation is dependent on the material size with a enhanced effect on the NPs. The temperature dependence of the UCL was investigated for single crystals and targets used in the ablation. An overall increase of the integrated intensity was found to occur between 12 K and the RT. The thermally activated process is described by activation energies of 10 meV and 30 meV for single crystals and targets, respectively. For the NPs, the UCL was found to be strongly sensitive to pressure conditions. Under vacuum conditions, instead of the narrow lines of the Tm(3+), a wide blackbody radiation was detected, responsible for the change in the emission colour from blue to orange. This phenomenon is totally reversible when the NPs are placed at ambient pressure. The UCL/blackbody radiation in the nanosized material exhibits

  18. Tailoring Nd3+ emission spectrum by a neodymium-doped tellurite all-solid photonic bandgap fiber

    NASA Astrophysics Data System (ADS)

    Tong, Hoang Tuan; Demichi, Daisuke; Suzuki, Takenobu; Ohishi, Yasutake

    2018-02-01

    A tellurite all-solid photonic bandgap fiber (ASPBF) whose cladding consists of 60 high-index rods arranged periodically around a central core was successfully fabricated. The diameter of high-index rod was about 5.0 μm and the distance between the center of two adjacent high-index rods was approximately 8.0 μm. The high-index rod was made of the TeO2-Li2O-WO3-MoO3-Nb2O5 (TLWMN) glass, the cladding was made of the TeO2-ZnO-Na2O-La2O3 (TZNL) glass as the background glass material and the central core was made of TZNL glass doped with 0.5 wt% of Nd2O3. A supercontinuum light from 0.6 to 2.4 μm was coupled into the core of fiber which is 2.2 cm long to measure its transmission spectrum. High transmission bands were obtained in the vicinity of 0.75 and 1.3 μm but the transmission was suppressed in the wavelength range from 1.0 to 1.06 μm. When a titanium∶Sapphire laser source at 0.75 μm was used, the emission spectrum was obtained with two peaks at 1.06 and 1.33 μm which are attributed to the 4F3/2->4I11/2 and 4F3/2->4I13/2 transitions of Nd3+ ion, respectively. The intensities of those emission peaks were compared with those obtained from a bulk glass having the same doping concentration of Nd3+. The results showed that by using tellurite ASPBF, the intensity of the 1.06-μm emission was suppressed by one-twelfth but the intensity of the 1.33-μm emission was maintained. This feature is very advantageous to filter out the 1.06-μm emission of Nd3+ ion in order to realize practical amplifier devices at 1.3 μm.

  19. Neodymium-doped phosphate fiber lasers with an all-solid microstructured inner cladding.

    PubMed

    Zhang, Guang; Zhou, Qinling; Yu, Chunlei; Hu, Lili; Chen, Danping

    2012-06-15

    We report on high-power fiber lasers based on index-guiding, all-solid neodymium-doped (Nd-doped) phosphate photonic crystal fiber (PCF) with a hexagonal-shaped inner cladding. The optimum fiber laser with a 36 cm length active fiber, generated up to 7.92 W output power at 1053 nm, which benefited from a high absorption coefficient for pump power due to its noncircular inner cladding. The guiding properties of the all-solid PCF were also investigated. A stable mode with a donut-shaped profile and a power-dependent laser beam quality have been observed experimentally and analyzed.

  20. Phase formation and UV luminescence of Gd{sup 3+} doped perovskite-type YScO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, Yuhei; Ueda, Kazushige, E-mail: kueda@che.kyutech.ac.jp

    Synthesis of pure and Gd{sup 3+}doped perovskite-type YScO{sub 3} was attempted by a polymerized complex (PC) method and solid state reaction (SSR) method. Crystalline phases and UV luminescence of samples were examined with varying heating temperatures. The perovskite-type single phase was not simply formed in the SSR method, as reported in some literatures, and two cubic C-type phases of starting oxide materials remained forming slightly mixed solid solutions. UV luminescence of Gd{sup 3+} doped samples increased with an increase in heating temperatures and volume of the perovskite-type phase. In contrast, a non-crystalline precursor was crystallized to a single C-type phasemore » at 800 °C in the PC method forming a completely mixed solid solution. Then, the phase of perovskite-type YScO{sub 3} formed at 1200 °C and its single phase was obtained at 1400 °C. It was revealed that high homogeneousness of cations was essential to generate the single perovskite-phase of YScO{sub 3}. Because Gd{sup 3+} ions were also dissolved into the single C-type phase in Gd{sup 3+} doped samples, intense UV luminescence was observed above 800 °C in both C-type phase and perovskite-type phase. - Graphical abstract: A pure perovskite-type YScO{sub 3} phase was successfully synthesized by a polymerized complex (PC) method. The perovskite-type YScO{sub 3} was generated through a solid solution of C-type (Y{sub 0.5}Sc{sub 0.5}){sub 2}O{sub 3} with drastic change of morphology. The PC method enabled a preparation of the single phase of the perovskite-type YScO{sub 3} at lower temperature and in shorter heating time. Gd{sup 3+} doped perovskite-type YScO{sub 3} was found to show a strong sharp UV emission at 314 nm. - Highlights: • Pure YScO{sub 3} phase was successfully synthesized by polymerized complex (PC) method. • Pure perovskite-type YScO{sub 3} phase was generated from pure C-type (Y{sub 0.5}Sc{sub 0.5}){sub 2}O{sub 3} one. • YScO{sub 3} was obtained at lower

  1. Influence of nanopowders sedimentation on characteristics of Yb-doped Y2O3 transparent ceramics

    NASA Astrophysics Data System (ADS)

    Aleksandrov, E. O.; Shitov, V. A.; Maksimov, R. N.; Basyrova, L. R.

    2017-09-01

    In this work we report on the effects induced by different conditions of nanopowders sedimentation on the microstructure features and optical properties of ytterbium-doped yttrium oxide (Yb:Y2O3) transparent ceramics sintered at 1780 °C for 20 h under a vacuum. The nanopowder of (Yb0.005Y0.995)2O3 co-doped with 5 at % ZrO2 was synthesized by laser ablation and used as the starting material for the fabrication of ceramics. The obtained nanoparticles were annealed at 1100 °C for 3 h in air in order to transform a metastable monoclinic phase into a main cubic phase. After sedimentation for 24 h in isopropyl alcohol the useful suspension was dried using a rotary evaporator operating at different temperatures and pressures. The use of lower evaporation temperature (37 °C) and higher vacuum level (10 mbar) lead to complete removal of organic species from the nanopowder and promote homogeneous densification of the powder compact. Under optimal treatment conditions the optical transmittance and the average content of the scattering centers were measured to be 77 % at a wavelength of 1080 nm and 0.25 ppm, respectively.

  2. Rhombohedral R3c to orthorhombic Pnma phase transition induced by Y-doping in BiFeO3.

    PubMed

    Graf, Monica Elisabet; Di Napoli, Solange; Barral, Maria Andrea Andrea; Saleh Medina, Leila; Negri, R Martín; Sepliarsky, Marcelo; Llois, Ana María

    2018-05-23

    In this work we study, by means of <i>ab initio</i> calculations, the structural, electronic and magnetic properties of Y-doped BiFeO<sub>3</sub> compounds. We determine that there is a morphotropic phase boundary at an yttrium concentration of (18 ± 2)%, where the structure changes from <i>R3c</i> to <i>Pnma</i>. This structural transition is driven by the chemical pressure induced by the dopant. By analyzing the evolution of the oxygen octahedral tilts we find an enhanced antiferrodistortive distortion when increasing the Y-doping, together with a reduction of the ferroelectric distorsion, that gives rise to a smaller value of the electric polarization. These cooperative effects should lead to a larger canting of the Fe magnetic moments and to a larger ferromagnetic response in the <i>R3c</i> phase, as it is observed in the experiments. . © 2018 IOP Publishing Ltd.

  3. Single crystal Ce doped scintillator material with garnet structure sensitive to gamma ray and neutron radiation

    NASA Astrophysics Data System (ADS)

    Solodovnikov, D.; Weber, M. H.; Haven, D. T.; Lynn, K. G.

    2012-08-01

    A mixed garnet scintillator host material is obtained from the melt—Yttrium Gadolinium Gallium Aluminum Garnet (YGGAG). In addition to the high thermal and chemical stability and radiation hardness found in garnet crystals, it offers sensitivity to neutrons due to the presence of Gd atoms, has lower melting temperature than yttrium aluminum garnet, and similar crystallization behavior suitable for growth of large volume crystals. Crystals of YGGAG doped with Ce of 10×10×10 mm3 have already demonstrated energy resolution of 10% at 662 keV.

  4. [Synthesis and characterization of chromium doped Y3Al5O12 compound pigment].

    PubMed

    Yue, Shi-Juan; Su, Xiao; Jiang, Han-Jie; Liu, Shao-Xuan; Hong, You-Li; Zhang, Kai; Huang, Wan-Xias; Xiong, Zu-Jiang; Zhao, Ying; Liu, Cui-Ge; Wei, Yong-Ju; Meng, Tao; Xu, Yi-Zhuang; Wu, Jin-Guang

    2012-09-01

    The authors synthesized a new kind of green pigment via co-precipitation method by doping Y3Al5O12 with Cr+. The size of the pigment particles is around 200 nm as observed under scanning electron microscope. XRD results demonstrate that the pigment crystalline form of the pigment is yttrium alluminium garnet. UV-Vis spectra were used to investigate the coordination states and transition behavior of the doping ions. In addition, the colour feature was measured by CIE L* a* b* chroma value. The pigment was blended with polypropylene and then polypropylene fiber was produced using the polypropelene-pigment composite via molten spinning process. The distribution of the pigment particles in the polypropylene fibers was characterized by Xray computed tomography (CT) technique on the Beijing synchrotron radiation facility. The result states that the composite oxide pigment particles are homogeneously dispersed in the polypropylene fibers. The pigments are stable, non-toxic to the environment, and may be applied in non-aqueous dyeing to reduce waste water emitted by textile dyeing and printing industry.

  5. Synthesis of Er-doped Lu2O3 nanoparticles and transparent ceramics

    NASA Astrophysics Data System (ADS)

    Serivalsatit, K.; Wasanapiarnpong, T.; Kucera, C.; Ballato, J.

    2013-05-01

    Transparent rare earth-doped Lu2O3 ceramics have received much attention for use in solid-state scintillator and laser applications. The fabrication of these ceramics, however, requires ultrafine and uniform powders as precursors. Presented here is the synthesis of Er-doped Lu2O3 nanopowders by a solution precipitation method using Er-doped lutetium sulfate solution and hexamethylenetetramine as a precipitant and the fabrication of Er-doped Lu2O3 transparent ceramics from these nanopowders. The precipitated precursors were calcined at 1100 °C for 4 h in order to convert the precursors into Lu2O3 nanoparticles with an average particle size of 60 nm. Thermal decomposition and phase evolution of the precursors were studied by simultaneous thermal analysis (STA), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Er-doped Lu2O3 transparent ceramics were fabricated from these nanopowders using vacuum sintering followed by hot isostatic pressing at 1700 °C for 8 h. The transparent ceramics exhibit an optical transmittance of 78% at a wavelength of 1.55 μm.

  6. Up-conversion green emission of Yb3+/Er3+ ions doped YVO4 nanocrystals obtained via modified Pechini's method

    NASA Astrophysics Data System (ADS)

    Szczeszak, Agata; Runowski, Marcin; Wiglusz, Rafal J.; Grzyb, Tomasz; Lis, Stefan

    2017-12-01

    A series of lanthanide doped yttrium vanadates were prepared by Pechini's method (sol-gel process). The as-prepared precursors, in the presence of citric acid, were calcined in the temperature range of 600-900 °C. The obtained products were composed of small nanoparticles, in the size range of 20-50 nm, depending on the annealing temperature, exhibiting a bright green up-conversion emission, under NIR laser irradiation, and emission lifetimes in the range of 4.7-18.3 μs. Their structural, morphological and spectroscopic properties were investigated in detail by XRD, HR-TEM including FFT analysis, EDX and spectroscopic techniques (emission, power dependence and emission kinetics). The luminescence quenching phenomenon, manifested in a decrease of up-conversion intensity and shortening of emission lifetime, was observed with increasing of the Yb3+ ion concentration and decreasing the particle size. The optimal concentration of the Yb3+ ions was found to be 15 mol% (YVO4: Yb3+ 15 mol%, Er3+ 2 mol%).

  7. Determination of strontium-90 from direct separation of yttrium-90 by solid phase extraction using DGA Resin for seawater monitoring.

    PubMed

    Tazoe, Hirofumi; Obata, Hajime; Yamagata, Takeyasu; Karube, Zin'ichi; Nagai, Hisao; Yamada, Masatoshi

    2016-05-15

    It is important for public safety to monitor strontium-90 in aquatic environments in the vicinity of nuclear related facilities. Strontium-90 concentrations in seawater exceeding the background level have been observed in accidents of nuclear facilities. However, the analytical procedure for measuring strontium-90 in seawater is highly demanding. Here we show a simple and high throughput analytical technique for the determination of strontium-90 in seawater samples using a direct yttrium-90 separation. The DGA Resin is used to determine the abundance of strontium-90 by detecting yttrium-90 decay (beta-emission) in secular equilibrium. The DGA Resin can selectively collect yttrium-90 and remove naturally occurring radionuclides such as (40)K, (210)Pb, (214)Bi, (238)U, and (232)Th and anthropogenic radionuclides such as (140)Ba, and (140)La. Through a sample separation procedure, a high chemical yield of yttrium-90 was achieved at 95.5±2.3%. The result of IAEA-443 certified seawater analysis (107.7±3.4 mBq kg(-1)) was in good agreement with the certified value (110±5 mBq kg(-1)). By developed method, we can finish analyzing 8 samples per day after achieving secular equilibrium, which is a reasonably fast throughput in actual seawater monitoring. By processing 3 L of seawater sample and applying a counting time of 20 h, minimum detectable activity can be as low as 1.5 mBq kg(-1), which could be applied to monitoring for the contaminated marine environment. Reproducibility was found to be 3.4% according to 10 independent analyses of natural seawater samples from the vicinity of the Fukushima Daiichi Nuclear Power Plant in September 2013. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Application of Ce3+ single-doped complexes as solar spectral downshifters for enhancing photoelectric conversion efficiencies of a-Si-based solar cells

    NASA Astrophysics Data System (ADS)

    Song, Pei; Jiang, Chun

    2013-05-01

    The effect on photoelectric conversion efficiency of an a-Si-based solar cell by applying a solar spectral downshifter of rare earth ion Ce3+ single-doped complexes including yttrium aluminum garnet Y3Al5O12 single crystals, nanostructured ceramics, microstructured ceramics and B2O3-SiO2-Gd2O3-BaO glass is studied. The photoluminescence excitation spectra in the region 360-460 nm convert effectively into photoluminescence emission spectra in the region 450-550 nm where a-Si-based solar cells exhibit a higher spectral response. When these Ce3+ single-doped complexes are placed on the top of an a-Si-based solar cell as precursors for solar spectral downshifting, theoretical relative photoelectric conversion efficiencies of nc-Si:H and a-Si:H solar cells approach 1.09-1.13 and 1.04-1.07, respectively, by means of AMPS-1D numerical modeling, potentially benefiting an a-Si-based solar cell with a photoelectric efficiency improvement.

  9. Modified Eu-doped Y2 O3 nanoparticles as turn-off luminescent probes for the sensitive detection of pyridoxine.

    PubMed

    Zobeiri, Eshagh; Bayandori Moghaddam, Abdolmajid; Gudarzy, Forugh; Mohammadi, Hadi; Mozaffari, Shahla; Ganjkhanlou, Yadolah

    2015-05-01

    Europium-doped yttrium oxide nanoparticles (Y2 O3 :Eu NPs) modified by captopril were prepared in aqueous solution. In this study, we report the effect of pyridoxine hydrochloride on the photoluminescence intensity of Y2 O3 :Eu NPs in pH 7.2 buffer solution. By increasing the pyridoxine concentration, the luminescence intensity of Y2 O3 :Eu NPs is quenched. The results show that this method demonstrates high sensitivity for pyridoxine determination. A linear relationship is observed between 0.0 and 62.0 μM with a correlation coefficient of 0.995 and a detection limit of 0.023 μM. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Emergence of microstructure and oxygen diffusion in yttrium-stabilized cubic zirconia

    NASA Astrophysics Data System (ADS)

    Yang, C.; Trachenko, K.; Hull, S.; Todorov, I. T.; Dove, M. T.

    2018-05-01

    Large-scale molecular dynamics simulations have been used to study the microstructure in Y-doped ZrO2. From simulations performed as a function of composition the dependence of microstructure on composition is quantified, showing how it is formed from two coexisting phases, and the transformation to the stabilized cubic form is observed at higher concentrations of yttrium and higher temperatures. The effect of composition and temperature on oxygen diffusion is also studied, showing strong correlations between microstructure and diffusion.

  11. A Comparative Histological Study of Bone Healing in Rat Calvarial Defect Using the Erbium-Doped Yttrium Aluminum Garnet Laser and Rotary Instruments

    NASA Astrophysics Data System (ADS)

    Jung, Mi-Kyung; Kim, Su-Gwan; Oh, Ji-Su; Jin, Seung-Chan; Lee, Sook-Young; Jang, Eun-Sook; Piao, Zheng-Gang; Lim, Sung-Chul; Jeong, Mi-Ae

    2012-01-01

    Erbium-doped yttrium aluminum garnet (Er:YAG) lasers have been used in dentistry for cutting bone and removal of caries. The purpose of this study was to evaluate the bone healing in a skull defect prepared in rats using various instruments including Er:YAG laser. The 7 mm calvarial defects were created in 45 rats and 45 rats were divided into three groups (n = 15): a high-speed rotation engine with carbide round bur (2-mm diameter), a low-speed rotation engine with carbide round bur (2-mm diameter), and an Er:YAG laser. Specimens obtained after 3 days or 4 or 8 weeks were submitted for histological analysis. Three days after surgery, no bone formation had occurred in any of the groups. Four weeks after surgery, 90 ±8.16% new bone formation was observed in the high-speed group, and 8 weeks after surgery, 100 ±0% new bone formation was observed in the low- and high-speed groups. There were significant differences among the periods after surgery, but no significant differences were observed among final results with in different device groups.

  12. Efficient 2 μm emission and energy transfer mechanism of Ho3+ doped fluorophosphate glass sensitized by Er3+ ions

    NASA Astrophysics Data System (ADS)

    Gao, Xinyu; Tian, Ying; Liu, Qunhuo; Yang, Shuai; Jing, Xufeng; Zhang, Junjie; Xu, Shiqing

    2018-06-01

    Fluorophosphate glass co-doped with Er3+ and Ho3+ ions has been synthesized by high temperature melting method. Using a commercially available 980 nm laser diode, intense about 2 μm emissions were successfully obtained in present Ho3+/Er3+ co-doped glasses without obvious quenching. To understand 2 μm fluorescence behaviors of the prepared glasses, 1.55 μm emission spectra, energy transfer mechanism and microparameters from different levels of Er3+ to Ho3+ ions have been obtained and discussed. As a result, the Er3+/Ho3+ co-doped fluorophosphate glass with excellent spectroscopic properties might be appropriate host material for 2 μm solid laser.

  13. CMOS-compatible method for doping of buried vertical polysilicon structures by solid phase diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turkulets, Yury; Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer-Sheva 8410501; Silber, Amir

    2016-03-28

    Polysilicon receives attention nowadays as a means to incorporate 3D-structured photonic devices into silicon processes. However, doping of buried layers of a typical 3D structure has been a challenge. We present a method for doping of buried polysilicon layers by solid phase diffusion. Using an underlying silicon oxide layer as a dopant source facilitates diffusion of dopants into the bottom side of the polysilicon layer. The polysilicon is grown on top of the oxide layer, after the latter has been doped by ion implantation. Post-growth heat treatment drives in the dopant from the oxide into the polysilicon. To model themore » process, we studied the diffusion of the two most common silicon dopants, boron (B) and phosphorus (P), using secondary ion mass spectroscopy profiles. Our results show that shallow concentration profiles can be achieved in a buried polysilicon layer using the proposed technique. We present a quantitative 3D model for the diffusion of B and P in polysilicon, which turns the proposed method into an engineerable technique.« less

  14. Cr/sup 3 +/-doped colquiriite solid state laser material

    DOEpatents

    Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Krupke, W.F.

    1988-03-31

    Chromium doped colquiriite, LiCaAlF/sub 6/:Cr/sup 3 +/, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr/sup 3 +/ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slope efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd/sup 3 +/ or Tm/sup 3 +/ for use in a multimegajoule single shot fusion research facility. 4 figs.

  15. Cr.sup.3+ -doped colquiriite solid state laser material

    DOEpatents

    Payne, Stephen A.; Chase, Lloyd L.; Newkirk, Herbert W.; Krupke, William F.

    1989-01-01

    Chromium doped colquiriite, LiCaAlF.sub.6 :Cr.sup.3+, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr.sup.3+ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slop efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd.sup.3+ or Tm.sup.3+ for use in a multimegajoule single shot fusion research facility.

  16. Novel Mg-Doped SrMoO3 Perovskites Designed as Anode Materials for Solid Oxide Fuel Cells

    PubMed Central

    Cascos, Vanessa; Alonso, José Antonio; Fernández-Díaz, María Teresa

    2016-01-01

    SrMo1−xMxO3−δ (M = Fe and Cr, x = 0.1 and 0.2) oxides have been recently described as excellent anode materials for solid oxide fuel cells at intermediate temperatures (IT-SOFC) with LSGM as the electrolyte. In this work, we have improved their properties by doping with aliovalent Mg ions at the B-site of the parent SrMoO3 perovskite. SrMo1−xMgxO3−δ (x = 0.1, 0.2) oxides have been prepared, characterized and tested as anode materials in single solid-oxide fuel cells, yielding output powers near 900 mW/cm−2 at 850 °C using pure H2 as fuel. We have studied its crystal structure with an “in situ” neutron power diffraction (NPD) experiment at temperatures as high as 800 °C, emulating the working conditions of an SOFC. Adequately high oxygen deficiencies, observed by NPD, together with elevated disk-shaped anisotropic displacement factors suggest a high ionic conductivity at the working temperatures. Furthermore, thermal expansion measurements, chemical compatibility with the LSGM electrolyte, electronic conductivity and reversibility upon cycling in oxidizing-reducing atmospheres have been carried out to find out the correlation between the excellent performance as an anode and the structural features. PMID:28773708

  17. Comparative study of optical and scintillation properties of Tm3+:YAG, and Tm3+:LuAG single crystals

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yutaka; Sugiyama, Makoto; Yanagida, Takayuki; Wakahara, Shingo; Suzuki, Shotaro; Kurosawa, Shunsuke; Chani, Valery; Yoshikawa, Akira

    2013-09-01

    The optical and scintillation properties of Tm3+-doped yttrium aluminum garnet Y3Al5O12 (YAG) and Tm3+-doped lutetium aluminum garnet Lu3Al5O12 (LuAG) are compared. The Tm3+-doped single crystals were grown by the micro-pulling down (μ-PD) technique. Both crystals demonstrated some emission peaks originated from 4f-4f forbidden transition of Tm3+ under 241Am alpha-ray excitation. The scintillation decay time of Tm3+-doped YAG was similar to that of LuAG. When irradiated by the gamma-rays from a 137Cs source, the relative scintillation light yields of Tm:YAG was 90% greater than that of Tm:LuAG.

  18. Alkali metal yttrium neo-pentoxide double alkoxide precursors to alkali metal yttrium oxide nanomaterials

    DOE PAGES

    Boyle, Timothy J.; Neville, Michael L.; Sears, Jeremiah Matthew; ...

    2016-03-15

    In this study, a series of alkali metal yttrium neo-pentoxide ([AY(ONep) 4]) compounds were developed as precursors to alkali yttrium oxide (AYO 2) nanomaterials. The reaction of yttrium amide ([Y(NR 2) 3] where R=Si(CH 3) 3) with four equivalents of H-ONep followed by addition of [A(NR 2)] (A=Li, Na, K) or A o (A o=Rb, Cs) led to the formation of a complex series of A nY(ONep) 3+n species, crystallographically identified as [Y 2Li 33-ONep)(μ 3-HONep)(μ-ONep) 5(ONep) 3(HONep) 2] (1), [YNa 2(μ 3-ONep) 4(ONep)] 2 (2), {[Y 2K 33-ONep) 3(μ-ONep) 4(ONep) 2(ηξ-tol) 2][Y 4K 2(μ 4-O)(μ 3-ONep) 8(ONep)more » 4]•η x-tol]} (3), [Y 4K 2(μ 4-O)(μ 3-ONep) 8(ONep) 4] (3a), [Y 2Rb 3(μ 4-ONep) 3(μ-ONep) 6] (4), and [Y 2Cs 4(μ 6-O)(μ 3-ONep) 6(μ 3-HONep) 2(ONep) 2(η x-tol) 4]•tol (5). Compounds 1–5 were investigated as single source precursors to AYOx nanomaterials following solvothermal routes (pyridine, 185 °C for 24h). The final products after thermal processing were found by powder X-ray diffraction experiments to be Y 2O 3 with variable sized particles based on transmission electron diffraction. Energy dispersive X-ray spectroscopy studies indicated that the heavier alkali metal species were present in the isolated nanomaterials.« less

  19. Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Liu, Xingang; Tan, Jiang; Wang, Qingfu; Wen, Hao; Zhang, Chuhong

    2017-02-01

    Nitrogen-doped graphene nanosheets (NGNS) are prepared by a novel mechanochemical method via all-solid-state ball-milling graphite with urea. The ball-milling process does not only successfully exfoliate the graphite into multi-layer (<10 layers) graphene nanosheets, but at the same time, enables the N element to be doped onto the graphene. Urea, acting as a new solid doping and assist-grinding agents, has the advantages of low cost and good water solubility that can simplify the fabrication process. The as-prepared NGNS are investigated in detail by XRD, SEM, HRTEM, TGA, XPS and Raman spectroscopy. The doping nitrogens are around 3.15% and dominated (>94%) by pyrindic-N and pyrrolic-N which facilitates the NGNS with enhanced electronic conductivity and Li-ion storage capability. For the first time, we demonstrate that the all-solid-state prepared NGNS exhibits, especially at high currents, enhanced cycling stability and rate capability as Lithium ion battery (LIB) anode active material when compared to pristine graphite and undoped graphene in half-cell configuration. The method presented in this article may provide a simple, clean, economical and scalable strategy for preparation of NGNS as a feasible and promising anode material for LIBs.

  20. Spectroscopic investigation of the Cr to Tm energy transfer in Yttrium Aluminum Garnet (YAG) crystals

    NASA Technical Reports Server (NTRS)

    Dibartolo, B.

    1988-01-01

    New and interesting schemes have recently been considered for the efficient operation of solid-state ionic laser systems. Often the available data on these systems were obtained only because they seemed directly related to the laser performance and provide no insight into the physical processes. A more systematic approach is desirable, where more attention is devoted to the elementary basic processes and to the nature of the mechanisms at work. It is with this aim that we have undertaken the present study. Yttrium Aluminum Garnet (Y4Al5O12), called YAG, has two desirable properties as host for rare earth impurities: (1) trivalent rare earth ions can replace the yttrium without any charge compensation problem, and (2) YAG crystals have high cutoff energies. The results of measurements and calculations indicate that the Cr(3+) ion in YAG can be used to sensitize efficiently the Tm(3+) ion.

  1. Transport Properties of La- doped SrTiO3 Ceramics Prepared Using Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Mehdizadeh Dehkordi, Arash; Bhattacharya, Sriparna; Tritt, Terry M.; Alshareef, Husam N.

    2012-02-01

    In this work, thermoelectric transport properties of La-doped SrTiO3 ceramics prepared using conventional solid state reaction and spark plasma sintering have been investigated. Room temperature power factor of single crystal strontium titanate (SrTiO3), comparable to that of Bi2Te3, has brought new attention to this perovskite-type transition metal-oxide as a potential n-type thermoelectric for high temperature applications. Electronic properties of this model complex oxide, SrTiO3 (ABO3), can be tuned in a wide range through different doping mechanisms. In addition to A site (La-doped) or B site (Nb-doped) substitutional doping, introducing oxygen vacancies plays an important role in electrical and thermal properties of these structures. Having multiple doping mechanisms makes the transport properties of these perovskites more dependent on preparation parameters. The effect of these synthesis parameters and consolidation conditions on the transport properties of these materials has been studied.

  2. Integrated study of first principles calculations and experimental measurements for Li-ionic conductivity in Al-doped solid-state LiGe2(PO4)3 electrolyte

    NASA Astrophysics Data System (ADS)

    Kang, Joonhee; Chung, Habin; Doh, Chilhoon; Kang, Byoungwoo; Han, Byungchan

    2015-10-01

    Understanding of the fundamental mechanisms causing significant enhancement of Li-ionic conductivity by Al3+ doping to a solid LiGe2(PO4)3 (LGP) electrolyte is pursued using first principles density functional theory (DFT) calculations combined with experimental measurements. Our results indicate that partial substitution Al3+ for Ge4+ in LiGe2(PO4)3 (LGP) with aliovalent (Li1+xAlxGe2-x(PO4)3, LAGP) improves the Li-ionic conductivity about four-orders of the magnitude. To unveil the atomic origin we calculate plausible diffusion paths of Li in LGP and LAGP materials using DFT calculations and a nudged elastic band method, and discover that LAGP had additional transport paths for Li with activation barriers as low as only 34% of the LGP. Notably, these new atomic channels manifest subtle electrostatic environments facilitating cooperative motions of at least two Li atoms. Ab-initio molecular dynamics predict Li-ionic conductivity for the LAGP system, which is amazingly agreed experimental measurement on in-house made samples. Consequently, we suggest that the excess amounts of Li caused by the aliovalent Al3+ doping to LGP lead to not only enhancing Li concentration but also opening new conducting paths with substantially decreases activation energies and thus high ionic conductivity of LAGP solid-state electrolyte.

  3. Microstructure and dielectric properties of BaTiO{sub 3} ceramic doped with yttrium, magnesium, gallium and silicon for AC capacitor application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Min-Jia; Yang, Hui; Zhejiang California International NanoSystems Institute, Hangzhou 310029

    2014-12-15

    Graphical abstract: Core–shell structure can be obtained in BaTiO{sub 3} ceramics co-doped with Y–Mg-Ga-Si. Y-Mg-Ga-Si co-dopant can obviously reduce dielectric loss, improve AC breakdown voltage and flatten temperature dependence of capacitance curve. - Highlights: • Y-Mg-Ga-Si co-doped BaTiO{sub 3} ceramics with core-shell structure were prepared. • Y{sup 3+}, Mg{sup 2+}, and Ga{sup 3+} dissolved in the lattice BaTiO{sub 3} replacing Ba{sup 2+} site or Ti{sup 4+} site. • Y{sup 3+} and Ga{sup 3+} tended to remain close to the grain boundaries as a shell maker. • Y-Mg-Ga-Si co-doped BaTiO{sub 3} ceramics show high AC breakdown voltage and low tanδ. -more » Abstract: The microstructures and dielectric properties of Y-Mg-Ga-Si co-doped barium titanate ceramics were investigated. Y{sup 3+} dissolved in the lattice of BaTiO{sub 3} replacing both Ba{sup 2+} site and Ti{sup 4+} site, and Mg{sup 2+} replaced Ti{sup 4+} site. The replacements of Y{sup 3+} and Mg{sup 2+} inhibit the grain growth, cause tetragonal-to-pseudocubic phase transition, reduce the dielectric loss, and flatten the temperature dependence of capacitance curve. The incorporation of Ga{sup 3+} can improve sintering and increase permittivity. Y{sup 3+} and Ga{sup 3+} tended to remain close to the grain boundaries, and play an important role as a shell maker in the formation of the core–shell structure in the co-doped BaTiO{sub 3} ceramics. Excellent dielectric properties: ϵ{sub r} = ∼2487, tanδ = ∼0.7% (at 1 kHz), ΔC/C{sub 25} < ∼6.56% (from −55 °C to 125 °C) and alternating current breakdown voltage E < ∼4.02 kV/mm can be achieved in the BaTiO{sub 3}–0.02Y{sub 2}O{sub 3}–0.03MgO–0.01Ga{sub 2}O{sub 3}–0.005SiO{sub 2} ceramics sintered at 1380 °C. This material has a potential application in alternating current multilayer ceramic capacitor.« less

  4. Holmium: yttrium aluminum garnet laser-assisted endoscopic sinus surgery: laboratory experience.

    PubMed

    Shapshay, S M; Rebeiz, E E; Bohigian, R K; Hybels, R L; Aretz, H T; Pankratov, M M

    1991-02-01

    Endoscopic sinus surgery has gained wide acceptance since its introduction into the United States. Complex sinus anatomy and troublesome bleeding have been associated with complications, which vary in severity from synechia to blindness and leakage of cerebrospinal fluid. Endoscopic sinus surgery using a holmium: yttrium aluminum garnet pulsed solid-state laser oscillating at 2.1 microns with fiberoptic delivery was performed in the laboratory, and the results were compared with those of conventional endoscopic sinus surgery. Three beagle dogs, six human cadaver heads, and one calf head were used in the in vivo and in vitro studies to evaluate the bone ablation, tissue coagulation, and hemostatic properties of the holmium: yttrium aluminum garnet laser. Modified endoscopic telescopes for sinus surgery, a newly developed handpiece for fiberoptic delivery, and other surgical instruments were used. The results indicate that the holmium: yttrium aluminum garnet laser and new delivery instrumentation provide good hemostasis and controlled soft-tissue ablation and bone removal. The access to all sinuses in the human cadaver model was very good. The canine in vivo study showed delayed but complete healing on the laser-treated side. Clinical evaluation of the holmium: yttrium aluminum garnet laser is warranted to increase the precision and safety of endoscopic sinus surgery.

  5. Sn-doped β-Ga2O3 nanowires deposited by radio frequency powder sputtering

    NASA Astrophysics Data System (ADS)

    Lee, Su Yong; Kang, Hyon Chol

    2018-01-01

    We report the synthesis and characterization of Sn-doped β-Ga2O3 nanowires (NWs) deposited using radio frequency powder sputtering. The growth sequence of Sn-doped β-Ga2O3 NWs is similar to that of the undoped β-Ga2O3 NWs. Self-assembled Ga clusters act as seeds for initiating the growth of Sn-doped β-Ga2O3 NWs through a vapor-liquid-solid process, while Sn atoms are incorporated into the trunk of NWs uniformly. Different from the straight shape of undoped NWs, the conical shape of NWs is observed, which is attributed to the change in supersaturation conditions and the diffusion of the catalyst tip and reaction species.

  6. Synthesis and luminescent properties of Gd3Ga2Al3O12 phosphors doped with Eu3+ or Ce3+

    NASA Astrophysics Data System (ADS)

    Oh, M. J.; Kim, H. J.

    2016-09-01

    Eu3+-or Ce3+-doped gadolinium gallium aluminum garnet (GGAG), Gd3Ga2Al3O12, phosphors are fabricated using solid-state reactions with Gd2O3, Ga2O3, Al2O3, CeO2 and Eu2O3 powders. The Eu3+-or Ce3+-doped Gd3Ga2Al3O12 phosphors are sintered at 1300 °C or 1600 °C for 5 hours by using an electric furnace under normal atmosphere. X-ray diffraction and field-emission scanning electron microscopy studies are carried out in order to analyze the physical properties of these materials, and their luminescence properties are also measured by using UV and X-ray sources. The Eu3+-or Ce3+-doped Gd3Ga2Al3O12 phosphors show higher light yields in comparison to commercial phosphors such as Gd2O2S:Tb (gadox). This indicates that Gd3Ga2Al3O12:Eu3+ phosphors are promising materials for use in X-ray imaging and dose monitoring at proton beamlines.

  7. An Approach to Solid-State Electrical Double Layer Capacitors Fabricated with Graphene Oxide-Doped, Ionic Liquid-Based Solid Copolymer Electrolytes

    PubMed Central

    Fattah, N. F. A.; Ng, H. M.; Mahipal, Y. K.; Numan, Arshid; Ramesh, S.; Ramesh, K.

    2016-01-01

    Solid polymer electrolyte (SPE) composed of semi-crystalline poly (vinylidene fluoride-hexafluoropropylene) [P(VdF-HFP)] copolymer, 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulphonyl) imide [EMI-BTI] and graphene oxide (GO) was prepared and its performance evaluated. The effects of GO nano-filler were investigated in terms of enhancement in ionic conductivity along with the electrochemical properties of its electrical double layer capacitors (EDLC). The GO-doped SPE shows improvement in ionic conductivity compared to the P(VdF-HFP)-[EMI-BTI] SPE system due to the existence of the abundant oxygen-containing functional group in GO that assists in the improvement of the ion mobility in the polymer matrix. The complexation of the materials in the SPE is confirmed in X-ray diffraction (XRD) and thermogravimetric analysis (TGA) studies. The electrochemical performance of EDLC fabricated with GO-doped SPE is examined using cyclic voltammetry and charge–discharge techniques. The maximum specific capacitance obtained is 29.6 F∙g−1, which is observed at a scan rate of 3 mV/s in 6 wt % GO-doped, SPE-based EDLC. It also has excellent cyclic retention as it is able keep the performance of the EDLC at 94% even after 3000 cycles. These results suggest GO doped SPE plays a significant role in energy storage application. PMID:28773573

  8. An Approach to Solid-State Electrical Double Layer Capacitors Fabricated with Graphene Oxide-Doped, Ionic Liquid-Based Solid Copolymer Electrolytes.

    PubMed

    Fattah, N F A; Ng, H M; Mahipal, Y K; Numan, Arshid; Ramesh, S; Ramesh, K

    2016-06-06

    Solid polymer electrolyte (SPE) composed of semi-crystalline poly (vinylidene fluoride-hexafluoropropylene) [P(VdF-HFP)] copolymer, 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulphonyl) imide [EMI-BTI] and graphene oxide (GO) was prepared and its performance evaluated. The effects of GO nano-filler were investigated in terms of enhancement in ionic conductivity along with the electrochemical properties of its electrical double layer capacitors (EDLC). The GO-doped SPE shows improvement in ionic conductivity compared to the P(VdF-HFP)-[EMI-BTI] SPE system due to the existence of the abundant oxygen-containing functional group in GO that assists in the improvement of the ion mobility in the polymer matrix. The complexation of the materials in the SPE is confirmed in X-ray diffraction (XRD) and thermogravimetric analysis (TGA) studies. The electrochemical performance of EDLC fabricated with GO-doped SPE is examined using cyclic voltammetry and charge-discharge techniques. The maximum specific capacitance obtained is 29.6 F∙g -1 , which is observed at a scan rate of 3 mV/s in 6 wt % GO-doped, SPE-based EDLC. It also has excellent cyclic retention as it is able keep the performance of the EDLC at 94% even after 3000 cycles. These results suggest GO doped SPE plays a significant role in energy storage application.

  9. Tunable emission in Ln3+ (Ce3+/Dy3+, Ce3+/Tb3+) doped KNa3Al4Si4O16 phosphor synthesized by combustion method

    NASA Astrophysics Data System (ADS)

    Kolte, M. M.; Pawade, V. B.; Bhattacharya, A. B.; Dhoble, S. J.

    2018-05-01

    Ln3+ (Ln = Ce3+/Dy3+, Ce3+/Tb3+) doped KNa3Al4Si4O16 phosphor has been synthesized by Combustion method (CS) at 550° C successfully. Ln3+ (Ln = Ce3+, Dy3+, Tb3+) ions when doped in KNa3Al4Si4O16 host lattice, it shows blue and green emission band under the near Ultraviolet (NUV) excitation wavelength. The Photoluminescence excitation (PLE) and emission spectra are observed due to f-f and d-f transition of rare earth ions. Also, an effective energy transfer (ET) study from Ce3+ → Dy3+ and Ce3+ → Tb3+ ions has been studied and confirmed on the basis of Dexter-Foster theory. Further synthesized phosphor is well characterized by XRD, SEM, TEM and decay time measurement. However, the analysis of crystallite size, lattice strain has been studied by using theoretical as well as experimental techniques. Hence, the observed tunable emission in Ln3+ doped KNa3Al4Si4O16 phosphor may be applicable for solid state lighting technology.

  10. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources.

    PubMed

    Ganem, Joseph; Bowman, Steven R

    2013-11-01

    Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence.

  11. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources

    PubMed Central

    2013-01-01

    Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence. PMID:24180684

  12. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources

    NASA Astrophysics Data System (ADS)

    Ganem, Joseph; Bowman, Steven R.

    2013-11-01

    Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence.

  13. Modulation-Doped SrTiO3/SrTi1-xZrxO3 Heterostructures

    NASA Astrophysics Data System (ADS)

    Kajdos, Adam Paul

    Two-dimensional electron gases (2DEGs) in SrTiO3 have attracted considerable attention for exhibiting a variety of interesting physical phenomena, such as superconductivity and magnetism. So far, most of the literature has focused on interfaces between nonpolar SrTiO3 and polar perovskite oxides (e.g. LaAlO3 or rare-earth titanates), where high carrier density 2DEGs (˜3 x 1014 cm-2) are generated by polar discontinuity. Modulation doping is an alternative approach to generating a 2DEG that has been explored extensively in III-V semiconductors but has not heretofore been explored in complex oxides. This approach involves interfacing an undoped semiconductor with a doped semiconductor whose conduction band edge lies at a higher energy, which results in electrons diffusing into the undoped semiconductor transport channel, where scattering from ionized dopants is minimized. Realizing a high-mobility modulation-doped structure with a SrTiO3 transport channel therefore requires both the optimization of the transport channel by minimizing native defects as well as the development of a perovskite oxide which has a suitable band offset with SrTiO3 and can be electron-doped. The growth of high electron mobility SrTiO3 as a suitable transport channel material was previously demonstrated using the hybrid molecular beam epitaxy (MBE) approach, where Sr is delivered via a solid source and Ti is delivered using a metal-organic precursor, titanium (IV) tetra-isopropoxide (TTIP). Expanding on this, in-situ reflection high-energy electron diffraction (RHEED) is used to track the surface and resulting film cation stoichiometry of homoepitaxial SrTiO3 (001) thin films grown by hybrid MBE. It is shown that films with lattice parameters identical to bulk single-crystal substrates within the detection limit of high-resolution X-ray diffraction (XRD) measurements exhibit an evolution in surface reconstruction with increasing TTIP beam-equivalent pressure. The change in the observed

  14. MCrAlY bond coat with enhanced yttrium

    DOEpatents

    Jablonski, Paul D.; Hawk, Jeffrey A.

    2016-08-30

    One or more embodiments relates to a method of producing an MCrAlY bond coat comprising an MCrAlY layer in contact with a Y--Al.sub.2O.sub.3 layer. The MCrAlY layer is comprised of a .gamma.-M solid solution, a .beta.-MAl intermetallic phase, and Y-type intermetallics. The Y--Al.sub.2O.sub.3 layer is comprised of Yttrium atoms coordinated with oxygen atoms comprising the Al.sub.2O.sub.3 lattice. The method comprises depositing an MCrAlY material on a substrate, applying an Y.sub.2O.sub.3 paste, and heating the substrate in a non-oxidizing atmosphere at a temperature between 400-1300.degree. C. for a time sufficient to generate the Y--Al.sub.2O.sub.3 layer. Both the MCrAlY layer and the Y--Al.sub.2O.sub.3 layer have a substantial absence of Y.sub.2O.sub.3, YAG, and YAP phases.

  15. All-solid-state asymmetric supercapacitors based on Fe-doped mesoporous Co3O4 and three-dimensional reduced graphene oxide electrodes with high energy and power densities.

    PubMed

    Zhang, Cheng; Wei, Jun; Chen, Leiyi; Tang, Shaolong; Deng, Mingsen; Du, Youwei

    2017-10-19

    An asymmetric supercapacitor offers opportunities to effectively utilize the full potential of the different potential windows of the two electrodes for a higher operating voltage, resulting in an enhanced specific capacitance and significantly improved energy without sacrificing the power delivery and cycle life. To achieve high energy and power densities, we have synthesized an all-solid-state asymmetric supercapacitor with a wider voltage range using Fe-doped Co 3 O 4 and three-dimensional reduced graphene oxide (3DrGO) as the positive and negative electrodes, respectively. In contrast to undoped Co 3 O 4 , the increased density of states and modified charge spatial separation endow the Fe-doped Co 3 O 4 electrode with greatly improved electrochemical capacitive performance, including high specific capacitance (1997 F g -1 and 1757 F g -1 at current densities of 1 and 20 A g -1 , respectively), excellent rate capability, and superior cycling stability. Remarkably, the optimized all-solid-state asymmetric supercapacitor can be cycled reversibly in a wide range of 0-1.8 V, thus delivering a high energy density (270.3 W h kg -1 ), high power density (9.0 kW kg -1 at 224.2 W h kg -1 ), and excellent cycling stability (91.8% capacitance retention after 10 000 charge-discharge cycles at a constant current density of 10 A g -1 ). The superior capacitive performance suggests that such an all-solid-state asymmetric supercapacitor shows great potential for developing energy storage systems with high levels of energy and power delivery.

  16. Compact Solid-State 213 nm Laser Enables Standoff Deep Ultraviolet Raman Spectrometer: Measurements of Nitrate Photochemistry.

    PubMed

    Bykov, Sergei V; Mao, Michael; Gares, Katie L; Asher, Sanford A

    2015-08-01

    We describe a new compact acousto-optically Q-switched diode-pumped solid-state (DPSS) intracavity frequency-tripled neodymium-doped yttrium vanadate laser capable of producing ~100 mW of 213 nm power quasi-continuous wave as 15 ns pulses at a 30 kHz repetition rate. We use this new laser in a prototype of a deep ultraviolet (UV) Raman standoff spectrometer. We use a novel high-throughput, high-resolution Echelle Raman spectrograph. We measure the deep UV resonance Raman (UVRR) spectra of solid and solution sodium nitrate (NaNO3) and ammonium nitrate (NH4NO3) at a standoff distance of ~2.2 m. For this 2.2 m standoff distance and a 1 min spectral accumulation time, where we only monitor the symmetric stretching band, we find a solid state NaNO3 detection limit of ~100 μg/cm(2). We easily detect ~20 μM nitrate water solutions in 1 cm path length cells. As expected, the aqueous solutions UVRR spectra of NaNO3 and NH4NO3 are similar, showing selective resonance enhancement of the nitrate (NO3(-)) vibrations. The aqueous solution photochemistry is also similar, showing facile conversion of NO3(-) to nitrite (NO2(-)). In contrast, the observed UVRR spectra of NaNO3 and NH4NO3 powders significantly differ, because their solid-state photochemistries differ. Whereas solid NaNO3 photoconverts with a very low quantum yield to NaNO2, the NH4NO3 degrades with an apparent quantum yield of ~0.2 to gaseous species.

  17. A divalent rare earth oxide semiconductor: Yttrium monoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminaga, Kenichi; Sei, Ryosuke; Department of Chemistry, Tohoku University, Sendai 980-8578

    Rare earth oxides are usually widegap insulators like Y{sub 2}O{sub 3} with closed shell trivalent rare earth ions. In this study, solid phase rock salt structure yttrium monoxide, YO, with unusual valence of Y{sup 2+} (4d{sup 1}) was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO has been recognized as gaseous phase in previous studies. In contrast with Y{sub 2}O{sub 3}, YO was dark-brown colored and narrow gap semiconductor. The tunable electrical conductivity ranging from 10{sup −1} to 10{sup 3} Ω{sup −1 }cm{sup −1} was attributed to the presence of oxygen vacancies serving as electron donor.more » Weak antilocalization behavior observed in magnetoresistance indicated significant role of spin-orbit coupling as a manifestation of 4d electron carrier.« less

  18. Preparation and electrochemical properties of Zr-site substituted Li7La3(Zr2-xMx)O12 (M = Ta, Nb) solid electrolytes

    NASA Astrophysics Data System (ADS)

    Huang, Mian; Shoji, Mao; Shen, Yang; Nan, Ce-Wen; Munakata, Hirokazu; Kanamura, Kiyoshi

    2014-09-01

    Li7La3Zr2O12 (LLZ) solid electrolytes with Zr site partially substituted by Ta and Nb elements were prepared via the conventional solid-state reaction. All the compositions could lead to the cubic garnet-type structure after sintering at 1150 °C. The use of γ-Al2O3 as a sintering aid in the preparation of doped LLZ was studied. It was shown that Al could help to improve the micro-structure for Nb doping, but not necessary for Ta doping. The Ta and Nb doping enhanced the ionic conductivity at 25 °C to 4.09 × 10-4 S cm-1 and 4.50 × 10-4 S cm-1, respectively. A conductivity as high as 1.23 × 10-3 S cm-1 was obtained when measured at 50 °C in air for the Nb-doped LLZ. All-solid-state batteries with LLZTa and LLZNb solid electrolytes were assembled and tested. The cyclic voltammetry (CV) measurement indicated the successful working of the batteries.

  19. Increased fluorescence intensity in CaTiO3:Pr3+ phosphor due to NH3 treatment and Nb Co-doping

    NASA Astrophysics Data System (ADS)

    Holliday, K. S.; Kohlgruber, T. A.; Tran, I. C.; Åberg, D.; Seeley, Z. M.; Bagge-Hansen, M.; Srivastava, A. M.; Cherepy, N. J.; Payne, S. A.

    2016-10-01

    Development of next generation red phosphors for commercial lighting requires understanding of how increased luminescence is achieved by various treatment strategies. In this work, we compare co-doping with Nb to NH3 treatment of CaTiO3:Pr phosphors to reveal a general mechanism responsible for the increased luminescence. The phosphors were synthesized using standard solid-state synthesis techniques and the fluorescence was characterized for potential use in fluorescent lighting, with 254 nm excitation. The lifetime of the fluorescence was determined and used to identify a change in a trap state by the co-doping of Nb5+ in the phosphor. The oxidation state of the Pr was probed by NEXAFS and revealed that both Nb5+ co-doping and NH3 treatment reduced the number of non-fluorescing Pr4+ centers. Calculations were performed to determine the energetically favorable defects. Vacuum annealing was also used to further probe the nature of the trap state. It was determined that NH3 treatments reduce the number of Pr4+ non-fluorescing centers, while Nb5+ co-doping additionally reduces the number of excess oxygen trap states that quench the fluorescence.

  20. Increased fluorescence intensity in CaTiO 3:Pr 3+ phosphor due to NH 3 treatment and Nb Co-doping

    DOE PAGES

    Holliday, K. S.; Kohlgruber, T. A.; Tran, I. C.; ...

    2016-08-28

    Development of next generation red phosphors for commercial lighting requires understanding of how increased luminescence is achieved by various treatment strategies. In our work, we compare co-doping with Nb to NH 3 treatment of CaTiO 3:Pr phosphors to reveal a general mechanism responsible for the increased luminescence. The phosphors were synthesized using standard solid-state synthesis techniques and the fluorescence was characterized for potential use in fluorescent lighting, with 254 nm excitation. The lifetime of the fluorescence was determined and used to identify a change in a trap state by the co-doping of Nb 5+ in the phosphor. Furthermore, the oxidationmore » state of the Pr was probed by NEXAFS and revealed that both Nb 5+ co-doping and NH 3 treatment reduced the number of non-fluorescing Pr 4+ centers. We performed calculations in order to determine the energetically favorable defects. Vacuum annealing was also used to further probe the nature of the trap state. It was determined that NH 3 treatments reduce the number of Pr 4+ non-fluorescing centers, while Nb 5+ co-doping additionally reduces the number of excess oxygen trap states that quench the fluorescence.« less

  1. Doping Li and K into Na2ZrO3 Sorbent to Improve Its CO2 Capture Capability

    NASA Astrophysics Data System (ADS)

    Duan, Yuhua

    Carbon dioxide is one of the major combustion products which once released into the air can contribute to global climate change. Solid sorbents have been reported in several previous studies to be promising candidates for CO2 sorbent applications due to their high CO2 absorption capacities at moderate working temperatures. However, at a given CO2 pressure, the turnover temperature (Tt) of an individual solid capture CO2 reaction is fixed and may be outside the operating temperature range (ΔTo) for a particularly capture technology. In order to shift such Tt for a solid into the range of ΔTo, its corresponding thermodynamic property must be changed by changing its structure by reacting (mixing) with other materials or doping with other elements. As an example, by combining thermodynamic database searching with ab initio thermodynamics calculations, in this work, we explored the Li- and K-doping effects on the Tt shifts of Na2ZrO3 at different doping levels. The obtained results showed that compared to pure Na2ZrO3, the Li- and K-doped mixtures Na2-αMαZrO3 (M =Li, K) have lower Tt and higher CO2 capture capacities.

  2. Multi-layered proton-conducting electrolyte

    DOEpatents

    Lee, Tae H.; Dorris, Stephen E.; Balachandran, Uthamalingam

    2017-06-27

    The present invention provides a multilayer anode/electrolyte assembly comprising a porous anode substrate and a layered solid electrolyte in contact therewith. The layered solid electrolyte includes a first dense layer of yttrium-doped barium zirconate (BZY), optionally including another metal besides Y, Ba, and Zr (e.g., a lanthanide metal such as Pr) on one surface thereof, a second dense layer of yttrium-doped barium cerate (BCY), and an interfacial layer between and contacting the BZY and BCY layers. The interfacial layer comprises a solid solution of the BZY and BCY electrolytes. The porous anode substrate comprises at least one porous ceramic material that is stable to carbon dioxide and water (e.g., porous BZY), as well as an electrically conductive metal and/or metal oxide (e.g., Ni, NiO, and the like).

  3. Effect of lithium doping in BaTiO3 ceramics for vibration sensor application

    NASA Astrophysics Data System (ADS)

    Praveen, E.; Murugan, S.; Jayakumar, K.

    2018-04-01

    Phase pure undoped and Lithium doped BaTiO3 particles have been synthesized by high temperature solid-state reaction method. Substitution of Lithium at the Ba2+ site in BaTiO3 lattice has been investigated. The structural, vibrational, electrical and mechanical characterization have been carried out. The poled samples were used as a sensing element for the detection of mechanical oscillations and the presence of 80 Hz pulse in the output spectrum manifest the response of the sensor element to the applied mechanical stress. In comparison with pure BaTiO3 the sensitivity of Li doped BaTiO3 is 14 times greater than the pure BaTiO3. This confirms that Li doped BaTiO3 could be an efficient candidate for the functionalization of vibration sensors in space application.

  4. Investigation of phase segregation using Rietveld refinement in Mg doped BaTiO3 solid solutions and their ferroelectric properties

    NASA Astrophysics Data System (ADS)

    Aanchal, Kaur, Kiranpreet; Singh, Anupinder; Singh, Mandeep

    2018-05-01

    Ba(1-x) Mgx Ti O3 (BMT) samples were synthesised using solid state reaction route with `x' varying from 0.025 to 0.10. The structural and ferroelectric properties of the bulk samples were investigated. The XRD analysis shows the presence of two phases, the first phase being magnesium doped BT (space group P4mm) and the second phase being Ba2TiO4 (space group Pna21). The tetragonal phase was found to be the major phase in the samples. The double phase Rietveld refinement was done and the weight percentage of orthorhombic phase was found to vary from 3.43% to 6.96% for x varying from 0.025≤x≤0.10. The P - E measurements reveal that all the samples exhibit lossy behaviour.

  5. Comparison of two Q-switched lasers and a short-pulse erbium-doped yttrium aluminum garnet laser for treatment of cosmetic tattoos containing titanium and iron in an animal model.

    PubMed

    Wang, Chia-Chen; Huang, Chuen-Lin; Yang, An-Hang; Chen, Chih-Kang; Lee, Shao-Chen; Leu, Fur-Jiang

    2010-11-01

    Cosmetic tattoos contain titanium and ferric oxide and darken through reduction after Q-switched laser irradiation. The optimal treatment for removing these pigments remains unknown. To compare the effects of two Q-switched lasers and a short-pulse erbium-doped yttrium aluminum garnet (SP Er:YAG) laser to remove cosmetic tattoos in an animal model. Rats were tattooed using white, flesh-colored, and brown inks (4 bands of each color) on their backs. For each color, one band was left untreated, and one each was treated with a Q-switched neodymium-doped YAG laser, a Q-switched alexandrite laser, and a SP Er:YAG laser every 3 weeks until the pigments were clear. The two Q-switched lasers were equally effective; all three pigments darkened initially and then resolved gradually. Up to 20, 18, and 10 sessions were required to remove white, flesh-colored, and brown tattoos, respectively. Only six sessions were required with the SP Er:YAG laser. Minimal scarring was observed with all lasers. Skin biopsies confirmed pigment granule fragmentation after Q-switched laser treatment and a decrease in the amount of pigment after SP Er:YAG laser treatment. The SP Er:YAG laser was superior to the Q-switched lasers for removing cosmetic tattoos. © 2010 by the American Society for Dermatologic Surgery, Inc.

  6. High ion conductive Sb2O5-doped β-Li3PS4 with excellent stability against Li for all-solid-state lithium batteries

    NASA Astrophysics Data System (ADS)

    Xie, Dongjiu; Chen, Shaojie; Zhang, Zhihua; Ren, Jie; Yao, Lili; Wu, Linbin; Yao, Xiayin; Xu, Xiaoxiong

    2018-06-01

    The combination of high conductivity and good stability against Li is not easy to achieve for solid electrolytes, hindering the development of high energy solid-state batteries. In this study, doped electrolytes of Li3P1-xSbxS4-2.5xO2.5x are successfully prepared via the high energy ball milling and subsequent heat treatment. Plenty of techniques like XRD, Raman, SEM, EDS and TEM are utilized to characterize the crystal structures, particle sizes, and morphologies of the glass-ceramic electrolytes. Among them, the Li3P0.98Sb0.02S3.95O0.05 (x = 0.02) exhibits the highest ionic conductivity (∼1.08 mS cm-1) at room temperature with an excellent stability against lithium. In addition, all-solid-state lithium batteries are assembled with LiCoO2 as cathode, Li10GeP2S12/Li3P0.98Sb0.02S3.95O0.05 as the bi-layer electrolyte, and lithium as anode. The constructed solid-state batteries delivers a high initial discharge capacity of 133 mAh g-1 at 0.1C in the range of 3.0-4.3 V vs. Li/Li+ at room temperature, and shows a capacity retention of 78.6% after 50 cycles. Most importantly, the all-solid-state lithium batteries with the Li10GeP2S12/Li3P0.98Sb0.02S3.95O0.05 electrolyte can be workable even at -10 °C. This study provides a promising electrolyte with the improved conductivity and stability against Li for the application of all-solid-state lithium batteries.

  7. Sol-gel syntheses of pentaborate β-LaB5O9 and the photoluminescence by doping with Eu3+, Tb3+, Ce3+, Sm3+, and Dy3+

    NASA Astrophysics Data System (ADS)

    Yang, Ruirui; Sun, Xiaorui; Jiang, Pengfei; Gao, Wenliang; Cong, Rihong; Yang, Tao

    2018-02-01

    Rare earth (RE) borates have been extensively studied as good photoluminescent materials, however, the target hosts were limited to "RE3BO6", REBO3, and REB3O6 in the RE2O3-B2O3 phase diagram until the recent discovery of rare earth pentaborate. For the first time, the sol-gel method was employed to synthesize β-LaB5O9 doped with Eu3+, Tb3+, Ce3+, Sm3+, Dy3+. In comparison to the previous synthetic methods, the sol-gel method possesses superiorities including easily-controllable doping concentration, high yield and emission efficiency. Solid solutions of phosphors were prepared and carefully analyzed by powder X-ray diffraction. Concentration quenching or saturation was observed in Eu3+, Tb3+ and Ce3+ doped phosphors at round 10 at%. Eu3+, Tb3+, Sm3+, and Dy3+ emit red, green, orange, and close-to-white light, respectively. The absolute emission efficiency of Ce3+ is high and in the UV range, suggesting the function of being sensitizer once combined with other activators.

  8. Implant Bed Preparation with an Erbium, Chromium Doped Yttrium Scandium Gallium Garnet (Er,Cr: YSGG) Laser Using Stereolithographic Surgical Guide

    PubMed Central

    Seymen, Gülin; Turgut, Zeynep; Berk, Gizem; Bodur, Ayşen

    2013-01-01

    Background: Implant bed preparation with laser is taken into consideration owing to the increased interest in use of lasers in hard tissue surgery. The purpose of this study is to determine the deviations in the position and inclination between the planned and prepared implant beds with Erbium, Chromium doped Yttrium Scandium Gallium Garnet (Er,Cr:YSGG) laser using stereolithographic (SLA) surgical guides. Methods: After 3-dimensional (3D) imaging of six sheep lower jaws, computed tomography (CT) images were transformed into 3D models. Locations of implant beds were determined on these models. Two implant beds in each half jaw were prepared with an Er,Cr:YSGG laser system and a conventional drilling method using a total of 12 SLA surgical guides. A new CT was taken to analyze the deviation values between planned and prepared implant beds. Finally, a software program was used to superimpose the images on 3D models, then the laser and conventional drilling groups were compared. Results: Differences of mean angular deviations between the planned and prepared implant beds were 5.17±4.91° in the laser group and 2.02±1.94° in the conventional drilling group.The mean coronal deviation values were found to be 0.48±0.25 mm and 0.23±0.14 mm in the laser group and conventional drilling group, respectively. While the mean deviation at the apex between the planned and prepared implant beds were 0.70±0.26 mm and 0.26±0.08 ,the mean vertical deviations were 0.06±0.15 mm and 0.02±0.05 mm for the laser group and the conventional drilling group, respectively. Conclusion: It is possible to prepare an implant bed properly with the aid of Er,Cr:YSGGlaser by using SLA surgical guide. PMID:25606303

  9. Hot Corrosion of Yttrium Stabilized Zirconia Coatings Deposited by Air Plasma Spray on a Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Vallejo, N. Diaz; Sanchez, O.; Caicedo, J. C.; Aperador, W.; Zambrano, G.

    In this research, the electrochemical impedance spectroscopy (EIS) and Tafel analysis were utilized to study the hot corrosion performance at 700∘C of air plasma-sprayed (APS) yttria-stabilized zirconia (YSZ) coatings with a NiCrAlY bond coat grown by high velocity oxygen fuel spraying (HVOF), deposited on an INCONEL 625 substrate, in contact with corrosive solids salts as vanadium pentoxide V2O5 and sodium sulfate Na2SO4. The EIS data were interpreted based on proposed equivalent electrical circuits using a suitable fitting procedure performed with Echem AnalystTM Software. Phase transformations and microstructural development were examined using X-ray diffraction (XRD), with Rietveld refinement for quantitative phase analysis, scanning electron microscopy (SEM) was used to determinate the coating morphology and corrosion products. The XRD analysis indicated that the reaction between sodium vanadate (NaVO3) and yttrium oxide (Y2O3) produces yttrium vanadate (YVO4) and leads to the transformation from tetragonal to monoclinic zirconia phase.

  10. Cooperative upconversion luminescence in Tb{sup 3+}:Yb{sup 3+} co-doped Y{sub 2}SiO{sub 5} powders prepared by combustion synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakov, Nikifor, E-mail: nikifor.gomez@univasf.edu.br; Vieira, Simone A.; Guimarães, Renato B.

    2014-03-15

    Frequency upconversion (UC) luminescence via cooperative energy transfer (CET) process between pairs of Yb{sup 3+} and Tb{sup 3+} ions was investigated in Tb{sup 3+}:Yb{sup 3+}:Y{sub 2}SiO{sub 5} crystalline ceramic powders prepared by combustion synthesis. Surface morphology and structure of the powders were investigated by scanning electronic microscopy and X-ray powder diffraction. Photoluminescence experiments were performed in Tb{sup 3+}-singly doped samples using ultraviolet light (λ=255 nm) and in Tb{sup 3+}:Yb{sup 3+} co-doped samples using a near-infrared (NIR) diode laser (λ=975 nm). Upon excitation with the NIR diode laser, UC luminescence with an intense emission band centered at ∼549 nm, corresponding tomore » the 4f intraband {sup 5}D{sub 4}→{sup 7}F{sub 5} transition of Tb{sup 3+}, along with less intense emission bands at ∼490, ∼590 and ∼620 nm, corresponding to other {sup 5}D{sub 4}→{sup 7}F{sub J} transitions, was detected. The CET rate was estimated by analyzing the dynamics of UC luminescence with rate equations model of the electronic populations. -- Graphical Abstract: Left: Cooperative upconversion luminescence spectra of three powder samples prepared by combustion synthesis. Right: The SEM image of the powder showing that it consists of agglomerated flake-like shaped particles of various sizes. Full scale bar is 20 μm. Highlights: • Yttrium orthosilicate (Y{sub 2}SiO{sub 5}) powders were prepared by combustion synthesis. • Cooperative upconversion is observed for the first time in Tb{sup 3+}–Yb{sup 3+} doped Y{sub 2}SiO{sub 5}. • Energy transfer and back-transfer rates between Tb{sup 3+} and Yb{sup 3+} pairs were estimated.« less

  11. Ultraviolet-infrared laser-induced domain inversion in MgO-doped congruent LiNbO3 and near stoichiometric LiTaO3 crystals

    NASA Astrophysics Data System (ADS)

    Zhi, Ya'nan; Qu, Weijuan; Liu, De'an; Sun, Jianfeng; Yan, Aimin; Liu, Liren

    2008-08-01

    Laser-induced domain inversion is a promising technique for domain engineering in LiNbO3 and LiTaO3. The ultraviolet-infrared laser induced domain inversions in MgO-doped congruent LiNbO3 and near stoichiometric LiTaO3 crystals are investigated for the first time here. Within the wavelength range from 351 to 799 nm, the different reductions of nucleation field induced by the focused continuous laser irradiation are systematically investigated in the MgO-doped congruent LiNbO3 crystals. The investigation of ultrashort-pulse laser-induced domain inversion in MgO-doped congruent LiNbO3 is performed with 800 nm wavelength irradiation. The focused continuous ultraviolet laser-induced ferroelectric domain inversion in the near stoichiometric LiTaO3 is also investigated. The different physical explanations, based on space charge field and defect formation, are presented for the laser-induced domain inversion, and the solid experimental proofs are also presented. The results provide the solid experimental proofs and feasible schemes for the further investigation of laser-induced domain engineering in MgO-doped LiNbO3 and near stoichiometric LiTaO3 crystals. The important characteristics of domain inversion, including domain wall and internal field, in LiNbO3 crystals are also investigated by the digital holographic interferometry with an improved reconstruction method, and some creative experimental results and conclusions are achieved.

  12. Electron Scattering and Doping Mechanisms in Solid-Phase-Crystallized In2O3:H Prepared by Atomic Layer Deposition.

    PubMed

    Macco, Bart; Knoops, Harm C M; Kessels, Wilhelmus M M

    2015-08-05

    Hydrogen-doped indium oxide (In2O3:H) has recently emerged as an enabling transparent conductive oxide for solar cells, in particular for silicon heterojunction solar cells because its high electron mobility (>100 cm(2)/(V s)) allows for a simultaneously high electrical conductivity and optical transparency. Here, we report on high-quality In2O3:H prepared by a low-temperature atomic layer deposition (ALD) process and present insights into the doping mechanism and the electron scattering processes that limit the carrier mobility in such films. The process consists of ALD of amorphous In2O3:H at 100 °C and subsequent solid-phase crystallization at 150-200 °C to obtain large-grained polycrystalline In2O3:H films. The changes in optoelectronic properties upon crystallization have been monitored both electrically by Hall measurements and optically by analysis of the Drude response. After crystallization, an excellent carrier mobility of 128 ± 4 cm(2)/(V s) can be obtained at a carrier density of 1.8 × 10(20) cm(-3), irrespective of the annealing temperature. Temperature-dependent Hall measurements have revealed that electron scattering is dominated by unavoidable phonon and ionized impurity scattering from singly charged H-donors. Extrinsic defect scattering related to material quality such as grain boundary and neutral impurity scattering was found to be negligible in crystallized films indicating that the carrier mobility is maximized. Furthermore, by comparison of the absolute H-concentration and the carrier density in crystallized films, it is deduced that <4% of the incorporated H is an active dopant in crystallized films. Therefore, it can be concluded that inactive H atoms do not (significantly) contribute to defect scattering, which potentially explains why In2O3:H films are capable of achieving a much higher carrier mobility than conventional In2O3:Sn (ITO).

  13. Synthesis and photoluminescence properties of Pb2+ doped inorganic borate phosphor NaSr4(BO3)3

    NASA Astrophysics Data System (ADS)

    Chauhan, A. O.; Koparkar, K. A.; Bajaj, N. S.; Omanwar, S. K.

    2016-05-01

    A series of Inorganic borate phosphors NaSr4(BO3)3 doped with Pb2+ was successfully synthesized by modified solid state diffusion method. The crystal structure and the phase purity of sample were characterized by powder X-ray diffraction (XRD). The photoluminescence properties of synthesized materials were investigated using spectrofluorometer at room temperature. The phosphor show strong broad band emission spectra in UVA region maximum at 370 nm under the excitation of 289 nm. The dependence of the emission intensity on the Pb2+ concentration for the NaSr4(BO3)3 were studied in details. The concentration quenching of Pb2+ doped NaSr4(BO3)3 was observed at 0.02 mol. The Stokes shifts of NaSr4(BO3)3: Pb2+ phosphor was calculated to be 7574 cm-1.

  14. Endo-Fullerenes and Doped Diamond Nanocrystallite Based Solid-State Qubits

    NASA Technical Reports Server (NTRS)

    Park, Seongjun; Srivastava, Deepak; Cho, K.

    2001-01-01

    This viewgraph presentation provides information on the use of endo-fullerenes and doped diamond nanocrystallites in the development of a solid state quantum computer. Arrays of qubits, which have 1/2 nuclear spin, are more easily fabricated than arrays of similar bare atoms. H-1 can be encapsulated in a C20D20 fullerene, while P-31 can be encapsulated in a diamond nanocrystallite.

  15. Up-conversion luminescence properties and energy transfer of Tm{sup 3+}/Yb{sup 3+} co-doped BaLa{sub 2}ZnO{sub 5}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jing; Mei, Lefu, E-mail: mlf@cugb.edu.cn; Deng, Junru

    2015-11-15

    Tm{sup 3+}/Yb{sup 3+} co-doped BaLa{sub 2}ZnO{sub 5} up-conversion (UC) phosphors were successfully synthesized by high temperature solid-state reaction method. The X-ray diffraction (XRD) results show that synthesized phosphor co-doped with 0.75% Tm/10% Yb has the optimum pure phase of BaLa{sub 2}ZnO{sub 5} among different co-doping concentrations. The structure of BaLa{sub 2}ZnO{sub 5}:0.75% Tm/10% Yb phosphor was refined by the Rietveld method and results show the decreased unit cell parameters and cell volume after doping Tm{sup 3+}/Yb{sup 3+}, indicating that Tm{sup 3+}/Yb{sup 3+} have successfully replaced La{sup 3+}. Under excitation at 980 nm, Tm{sup 3+}/Yb{sup 3+} co-doped BaLa{sub 2}ZnO{sub 5} phosphorsmore » present bright blue emission near 478 nm generated by the {sup 1}G{sub 4}→{sup 3}H{sub 6} transition and weak red emissions around 653 nm and 692 nm generated by the {sup 1}G{sub 4}→{sup 3}F{sub 4} and {sup 3}F{sub 3}→{sup 3}H{sub 6} transitions of Tm{sup 3+}, respectively. The UC luminescence properties of BaLa{sub 2}ZnO{sub 5} phosphors co-doped with different Tm{sup 3+}/Yb{sup 3+} concentrations were investigated, and the related UC mechanisms of Tm{sup 3+}/Yb{sup 3+} co-doped BaLa{sub 2}ZnO{sub 5} depending on pump power were studied in detail. - Graphical abstract: Up-conversion luminescence of BaLa{sub 2}ZnO{sub 5}:Tm{sup 3+}/Yb{sup 3+} and its crystal structure and up-conversion mechanisms. - Highlights: • Up-conversion phosphors BaLa{sub 2}ZnO{sub 5} co-doped with Tm{sup 3+}/Yb{sup 3+} were synthesized by high temperature solid-state reaction method. • The crystal structure of BaLa{sub 2}ZnO{sub 5} and the changes of cell parameters and volume of BaLa{sub 2}ZnO{sub 5} after doping Tm{sup 3+} and Yb{sup 3+} have been discussed. • Up-conversion luminescence properties and energy transfer between Tm{sup 3+} and Yb{sup 3+} in BaLa{sub 2}ZnO{sub 5} have been discussed in detail.« less

  16. Photoluminescence and doping mechanism of theranostic Eu3+/Fe3+ dual-doped hydroxyapatite nanoparticles.

    PubMed

    Chen, Min-Hua; Yoshioka, Tomohiko; Ikoma, Toshiyuki; Hanagata, Nobutaka; Lin, Feng-Huei; Tanaka, Junzo

    2014-10-01

    Theranostic nanoparticles currently have been regarded as an emerging concept of 'personalized medicine' with diagnostic and therapeutic dual-functions. Eu 3+ doped hydroxyapatite (HAp) has been regarded as a promising fluorescent probe for in vivo imaging applications. Additionally, substitution of Ca 2+ with Fe 3+ in HAp crystal may endow the capability of producing heat upon exposure to a magnetic field. Here we report a preliminary study of doping mechanism and photoluminescence of Eu 3+ and Fe 3+ doped HAp nanoparticles (Eu/Fe:HAp). HAp with varied concentration of Eu 3+ and Fe 3+ doping are presented as Eu(10 mol%):HAp, Eu(7 mol%)-Fe(3 mol%):HAp, Eu(5 mol%)-Fe(5 mol%):HAp, Eu(3 mol%)-Fe(7 mol%):HAp, and Fe(10 mol%):HAp in the study. The results showed that the HAp particles, in nano-size with rod-like morphology, were successfully doped with Eu 3+ and Fe 3+ , and the particles can be well suspended in cell culture medium. Photoluminescence analysis revealed that particles have prominent emissions at 536 nm, 590 nm, 615 nm, 650 nm and 695 nm upon excitation at a wavelength of 397 nm. Moreover, these Eu/Fe:HAp nanoparticles belonged to B-type carbonated HAp, which has been considered an effective biodegradable and biocompatible drug/gene carrier in biological applications.

  17. Photoluminescence and doping mechanism of theranostic Eu3+/Fe3+ dual-doped hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Min-Hua; Yoshioka, Tomohiko; Ikoma, Toshiyuki; Hanagata, Nobutaka; Lin, Feng-Huei; Tanaka, Junzo

    2014-10-01

    Theranostic nanoparticles currently have been regarded as an emerging concept of ‘personalized medicine’ with diagnostic and therapeutic dual-functions. Eu3+ doped hydroxyapatite (HAp) has been regarded as a promising fluorescent probe for in vivo imaging applications. Additionally, substitution of Ca2+ with Fe3+ in HAp crystal may endow the capability of producing heat upon exposure to a magnetic field. Here we report a preliminary study of doping mechanism and photoluminescence of Eu3+ and Fe3+ doped HAp nanoparticles (Eu/Fe:HAp). HAp with varied concentration of Eu3+ and Fe3+ doping are presented as Eu(10 mol%):HAp, Eu(7 mol%)-Fe(3 mol%):HAp, Eu(5 mol%)-Fe(5 mol%):HAp, Eu(3 mol%)-Fe(7 mol%):HAp, and Fe(10 mol%):HAp in the study. The results showed that the HAp particles, in nano-size with rod-like morphology, were successfully doped with Eu3+ and Fe3+, and the particles can be well suspended in cell culture medium. Photoluminescence analysis revealed that particles have prominent emissions at 536 nm, 590 nm, 615 nm, 650 nm and 695 nm upon excitation at a wavelength of 397 nm. Moreover, these Eu/Fe:HAp nanoparticles belonged to B-type carbonated HAp, which has been considered an effective biodegradable and biocompatible drug/gene carrier in biological applications.

  18. Zr doping effect with low-cost solid-state reaction method to synthesize submicron Li4Ti5O12 anode material

    NASA Astrophysics Data System (ADS)

    Seo, Inseok; Lee, Cheul-Ro; Kim, Jae-Kwang

    2017-09-01

    To improve the electrochemical properties, fine Zr-doping Li4Ti5O12 anode materials for rechargeable lithium batteries with a uniform particle size distribution were synthesized by a modified solid-state reaction using fine Li2CO3 and TiO2 (anatase) powders as precursors with a Li:Ti molar ratio of 4:5. The use of fine Li2CO3 and TiO2 (anatase) powders as precursors prevented the formation of ZrO2 at 0.1 mol Zr-doping. XRD analysis revealed that the substitution of Zr for Ti leads to the increase of lattice parameters, allowing improved Li diffusion. The discharge capacity retention increased slightly with Zr-doping and the 0.1 mol Zr-doped Li4Ti5O12 electrode achieved 99% retention of discharge capacity.

  19. Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure

    NASA Astrophysics Data System (ADS)

    Stanton, Ian N.; Belley, Matthew D.; Nguyen, Giao; Rodrigues, Anna; Li, Yifan; Kirsch, David G.; Yoshizumi, Terry T.; Therien, Michael J.

    2014-04-01

    Eu- and Li-doped yttrium oxide nanocrystals [Y2-xO3 Eux, Liy], in which Eu and Li dopant ion concentrations were systematically varied, were developed and characterized (TEM, XRD, Raman spectroscopic, UV-excited lifetime, and ICP-AES data) in order to define the most emissive compositions under specific X-ray excitation conditions. These optimized [Y2-xO3 Eux, Liy] compositions display scintillation responses that: (i) correlate linearly with incident radiation exposure at X-ray energies spanning from 40-220 kVp, and (ii) manifest no evidence of scintillation intensity saturation at the highest evaluated radiation exposures [up to 4 Roentgen per second]. For the most emissive nanoscale scintillator composition, [Y1.9O3; Eu0.1, Li0.16], excitation energies of 40, 120, and 220 kVp were chosen to probe the dependence of the integrated emission intensity upon X-ray exposure-rate in energy regimes having different mass-attenuation coefficients and where either the photoelectric or the Compton effect governs the scintillation mechanism. These experiments demonstrate for the first time for that for comparable radiation exposures, when the scintillation mechanism is governed by the photoelectric effect and a comparably larger mass-attenuation coefficient (120 kVp excitation), greater integrated emission intensities are recorded relative to excitation energies where the Compton effect regulates scintillation (220 kVp) in nanoscale [Y2-xO3 Eux] crystals. Nanoscale [Y1.9O3; Eu0.1, Li0.16] (70 +/- 20 nm) was further exploited as a detector material in a prototype fiber-optic radiation sensor. The scintillation intensity from the [Y1.9O3; Eu0.1, Li0.16]-modified, 400 μm sized optical fiber tip, recorded using a CCD-photodetector and integrated over the 605-617 nm wavelength domain, was correlated with radiation exposure using a Precision XRAD 225Cx small-animal image guided radiation therapy (IGRT) system. For both 80 and 225 kVp energies, this radiotransparent device recorded

  20. Evidence of dilute ferromagnetism in rare-earth doped yttrium aluminium garnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farr, Warrick G.; Goryachev, Maxim; Le Floch, Jean-Michel

    This work demonstrates strong coupling regime between an erbium ion spin ensemble and microwave hybrid cavity-whispering gallery modes in a yttrium aluminium garnet dielectric crystal. Coupling strengths of 220 MHz and mode quality factors in excess of 10{sup 6} are demonstrated. Moreover, the magnetic response of high-Q modes demonstrates behaviour which is unusual for paramagnetic systems. This behaviour includes hysteresis and memory effects. Such qualitative change of the system's magnetic field response is interpreted as a phase transition of rare earth ion impurities. This phenomenon is similar to the phenomenon of dilute ferromagnetism in semiconductors. The clear temperature dependence of themore » phenomenon is demonstrated.« less

  1. Synthesis and characterization of Eu{sup 3+}-doped CaZrO{sub 3}-based perovskite-type phosphors. Part I: Determination of the Eu{sup 3+} occupied site using the ALCHEMI technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaida, Satoshi; Shimokawa, Yohei; Asaka, Toru

    2015-07-15

    Highlights: • Eu{sup 3+}-doped CaZrO{sub 3}-based compounds were synthesized by the solid state reaction. • PL emission intensity at 614 nm was changed by the second dopant cations. • The site substituted by Eu{sup 3+} cations was investigated by using XRD and ALCHEMI technique. • The dominant Eu{sup 3+} substitution site was found as the B site (Zr{sup 4+}) in the CaZrO{sub {sup 3}}. • The dominant Eu{sup 3+} substitution site could be strongly influenced by the co-dopants. - Abstract: Eu{sup 3+}-doped CaZrO{sub 3}, SrZrO{sub 3}, and Mg{sup 2+}- or Sr{sup 2+}-co-doped CaZrO{sub 3} were synthesized by conventional solid statemore » reaction and their photoluminescence (PL) properties were characterized. The Eu{sup 3+}-doped CaZrO{sub 3}-based compounds exhibited characteristic emissions of Eu{sup 3+} (f–f transition). The intensity of the main PL emission peak at 614 nm increased with Mg{sup 2+} co-doping, while it decreased with the amount of co-doped Sr{sup 2+}. The site substituted by Eu{sup 3+} cations in the CaZrO{sub 3}-based compounds was investigated by X-ray diffraction analysis and energy-dispersive X-ray analysis based on the electron channeling effects in transmission electron microscopy. The Eu{sup 3+} cations were determined to occupy mainly the B site (Zr{sup 4+}) in CaZrO{sub 3}. The dominant Eu{sup 3+} substitution site was also strongly influenced by the co-dopant, and the ionic radius of the co-dopant was identified as an important factor that determines the dominant Eu{sup 3+} substitution site.« less

  2. Electronic structure and electron-phonon interaction in hexagonal yttrium by density functional calculations

    NASA Astrophysics Data System (ADS)

    Singh, Prabhakar P.

    2007-03-01

    To understand the pressure-induced changes in the electronic structure and the electron-phonon interaction in yttrium, we have studied hexagonal-close-packed (hcp) yttrium, stable at ambient pressure, and double hexagonal-close-packed (dhcp) yttrium, stable up to around 44GPa , using density-functional-based methods. Our results show that as one goes from hcp yttrium to dhcp yttrium, there are (i) a substantial charge transfer from s→d with extensive modifications of the d band and a sizable reduction in the density of states at the Fermi energy, (ii) a substantial stiffening of phonon modes with the electron-phonon coupling covering the entire frequency range, and (iii) an increase in the electron-phonon coupling constant λ from 0.55 to 1.24, leading to a change in the superconducting transition temperature Tc from 0.3to15.3K for μ*=0.2 .

  3. On the origin of high ionic conductivity in Na-doped SrSiO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, Po-Hsiu; Jee, Youngseok; Huang, Chen

    Understanding the local structure and ion dynamics is at the heart of ion conductor research. This paper reports on high-resolution solid-state 29Si, 23Na, and 17O NMR investigation of the structure, chemical composition, and ion dynamics of a newly discovered fast ion conductor, Na-doped SrSiO 3, which exhibited a much higher ionic conductivity than most of current oxide ion conductors. Quantitative analyses reveal that with a small dose (<10 mol%) of Na, the doped Na integrates into the SrSiO 3 structure to form Na xSr 1-xSiO 3-0.5x, and with >10 mol% Na doping, phase separation occurs, leading to the formation ofmore » an amorphous phase β-Na 2Si 2O 5 and a crystalline Sr-rich phase. Variable-temperature 23Na and 17O magic-angle-spinning NMR up to 618 °C have shown significant changes in Na ion dynamics at high temperatures but little oxide ion motion, suggesting that Na ions are responsible for the observed high ionic conductivity. In addition, β-Na 2Si 2O 5 starts to crystallize at temperatures higher than 480 °C with prolonged heating, resulting in reduction in Na+ motion, and thus degradation of ionic conductivity. This study has contributed critical evidence to the understanding of ionic conduction in Na-doped SrSiO 3 and demonstrated that multinuclear high-resolution and high-temperature solid-state NMR is a uniquely useful tool for investigating ion conductors at their operating conditions.« less

  4. On the origin of high ionic conductivity in Na-doped SrSiO 3

    DOE PAGES

    Chien, Po-Hsiu; Jee, Youngseok; Huang, Chen; ...

    2016-02-17

    Understanding the local structure and ion dynamics is at the heart of ion conductor research. This paper reports on high-resolution solid-state 29Si, 23Na, and 17O NMR investigation of the structure, chemical composition, and ion dynamics of a newly discovered fast ion conductor, Na-doped SrSiO 3, which exhibited a much higher ionic conductivity than most of current oxide ion conductors. Quantitative analyses reveal that with a small dose (<10 mol%) of Na, the doped Na integrates into the SrSiO 3 structure to form Na xSr 1-xSiO 3-0.5x, and with >10 mol% Na doping, phase separation occurs, leading to the formation ofmore » an amorphous phase β-Na 2Si 2O 5 and a crystalline Sr-rich phase. Variable-temperature 23Na and 17O magic-angle-spinning NMR up to 618 °C have shown significant changes in Na ion dynamics at high temperatures but little oxide ion motion, suggesting that Na ions are responsible for the observed high ionic conductivity. In addition, β-Na 2Si 2O 5 starts to crystallize at temperatures higher than 480 °C with prolonged heating, resulting in reduction in Na+ motion, and thus degradation of ionic conductivity. This study has contributed critical evidence to the understanding of ionic conduction in Na-doped SrSiO 3 and demonstrated that multinuclear high-resolution and high-temperature solid-state NMR is a uniquely useful tool for investigating ion conductors at their operating conditions.« less

  5. Color-coded multilayer photopatterned microstructures using lanthanide (III) ion co-doped NaYF4 nanoparticles with upconversion luminescence for possible applications in security.

    PubMed

    Kim, Won Jin; Nyk, Marcin; Prasad, Paras N

    2009-05-06

    We report a method for fabricating predefined photopatterns of upconversion nanophosphors using a chemical amplification reaction for direct writing of films with multilayer color-coded patterning for security applications. To photopattern the nanocrystal film we have synthesized rare-earth ion (Er(3+)/Yb(3+) or Tm(3+)/Yb(3+)) co-doped sodium yttrium fluoride (alpha-NaYF(4)) nanophosphors and functionalized the nanocrystal surfaces by incorporation of a photopatternable ligand such as t-butoxycarbonyl (t-BOC). The surface modification allows photopatterning of the nanophosphor solid state film. Furthermore, upconversion nanophosphors show a nearly quadratic dependence of the upconversion photoluminescence (PL) intensity on the excitation light power, and tailoring of the PL wavelength is possible by changing the lanthanide ions. We have demonstrated the capability of anchoring nanophosphors at desirable locations by a photolithography technique. The photopatterned films exhibit fixed nanophosphor structures clearly identifiable by strong upconversion photoluminescence under IR illumination which is useful for a number of applications in security.

  6. Aging Effects on the Structural and Magnetic Properties of Terbium-Aluminium Co-doping of Yttrium Iron Garnet Films Prepared Using the Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Aldbea, Ftema W.; Yusrianto, Efil; Ibrahim, N. B.

    2018-06-01

    The terbium-aluminium co-doped yttrium iron garnet (Tb0.2Y2.8Al1Fe4O12) nanoparticles films, prepared via a sol-gel method, were aged variously for 2 days, 3 days, 4 days and 5 days. The films were deposited on quartz substrates using a spin coating technique then annealed at 900°C in air for 2 h. The microstructural and magnetic properties of the films were measured using an x-ray diffractometer (XRD), a field emission scanning electron microscope and a vibrating sample magnetometer. The XRD results showed that all the resultant films were a single phase regardless of aging time. A change in the lattice parameter's behavior was observed at the longer aging times. At an aging time of 5 days, the films became highly agglomerated and exhibited the greatest thickness value of 458.9 nm. The saturation magnetization, M s, of the films decreased from 31 kA/m to 6 kA/m as the aging time was increased from 2 days to 5 days, due to the increasing Fe-O bond length resulting from larger grain sizes. The increase in aging time to 5 days caused a reduction in the coercivity, H c, of films due to the multi-domain formation.

  7. Effect of BiFeO3 doping on the structural, dielectric and electrical properties of CaCu3Ti4O12 ceramics

    NASA Astrophysics Data System (ADS)

    Dai, Haiyang; Liu, Dewei; Chen, Jing; Xue, Renzhong; Li, Tao; Xiang, Huiwen; Chen, Zhenping; Liu, Haizeng

    2015-04-01

    (1 - x)CaCu3Ti4O12- xBiFeO3 ( x = 0, 0.003, 0.006, 0.010 and 0.015) ceramics have been fabricated by the solid-state reaction method. The effects of BiFeO3 (BFO) doping on the microstructure, dielectric and electrical properties of CaCu3Ti4O12 (CCTO) ceramics were investigated. It is found that BFO doping can affect the microstructure of the CCTO ceramics, and some properties of CCTO ceramics can hence be improved by BFO doping. The XRD and Raman results show that no phase transition has occurred in the doping content range, but BFO doping induces the crystal structure distortion. Analysis of microstructure indicates that the grain morphology varies significantly with increasing BFO content, and an appropriate amount of BFO can promote the grain growth. Impedance spectroscopy results show that the dielectric constant and loss of the BFO-doped CCTO samples are stable with frequency. The dielectric constant and nonohmic properties can be enhanced markedly in an appropriate doping content. The dielectric loss of all BFO-doped samples was lower than that of undoped CCTO sample in low frequencies. The related mechanism is also discussed in the paper.

  8. A divalent rare earth oxide semiconductor: Yttrium monoxide

    NASA Astrophysics Data System (ADS)

    Kaminaga, Kenichi; Sei, Ryosuke; Hayashi, Kouichi; Happo, Naohisa; Tajiri, Hiroo; Oka, Daichi; Fukumura, Tomoteru; Hasegawa, Tetsuya

    Rare earth sesquioxides like Y2O3 are known as widegap insulators with the highly stable closed shell trivalent rare earth ions. On the other hand, rare earth monoxides such as YO have been recognized as gaseous phase, and only EuO and YbO were thermodynamically stable solid-phase rock salt monoxides. In this study, solid-phase rock salt yttrium monoxide, YO, was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO possesses unusual valence of Y2+ ([Kr] 4d1) . In contrast with Y2O3, YO was narrow gap semiconductor with dark-brown color. The electrical conductivity was tunable from 10-1 to 103 Ω-1 cm-1 by introducing oxygen vacancies as electron donor. Weak antilocalization behavior was observed indicating significant spin-orbit coupling owing to 4 d electron carrier. The absorption spectral shape implies the Mott-Hubbard insulator character of YO. Rare earth monoixdes will be new platform of functional oxides. This work was supported by JST-CREST, the Japan Society for the Promotion of Science (JSPS) with Grant-in-Aid for Scientific Research on Innovative Areas (Nos. 26105002 and 26105006), and Nanotechnology Platform (Project No.12024046) of MEXT, Japan.

  9. Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure.

    PubMed

    Stanton, Ian N; Belley, Matthew D; Nguyen, Giao; Rodrigues, Anna; Li, Yifan; Kirsch, David G; Yoshizumi, Terry T; Therien, Michael J

    2014-05-21

    Eu- and Li-doped yttrium oxide nanocrystals [Y2-xO3; Eux, Liy], in which Eu and Li dopant ion concentrations were systematically varied, were developed and characterized (TEM, XRD, Raman spectroscopic, UV-excited lifetime, and ICP-AES data) in order to define the most emissive compositions under specific X-ray excitation conditions. These optimized [Y2-xO3; Eux, Liy] compositions display scintillation responses that: (i) correlate linearly with incident radiation exposure at X-ray energies spanning from 40-220 kVp, and (ii) manifest no evidence of scintillation intensity saturation at the highest evaluated radiation exposures [up to 4 Roentgen per second]. For the most emissive nanoscale scintillator composition, [Y1.9O3; Eu0.1, Li0.16], excitation energies of 40, 120, and 220 kVp were chosen to probe the dependence of the integrated emission intensity upon X-ray exposure-rate in energy regimes having different mass-attenuation coefficients and where either the photoelectric or the Compton effect governs the scintillation mechanism. These experiments demonstrate for the first time for that for comparable radiation exposures, when the scintillation mechanism is governed by the photoelectric effect and a comparably larger mass-attenuation coefficient (120 kVp excitation), greater integrated emission intensities are recorded relative to excitation energies where the Compton effect regulates scintillation (220 kVp) in nanoscale [Y2-xO3; Eux] crystals. Nanoscale [Y1.9O3; Eu0.1, Li0.16] (70 ± 20 nm) was further exploited as a detector material in a prototype fiber-optic radiation sensor. The scintillation intensity from the [Y1.9O3; Eu0.1, Li0.16]-modified, 400 μm sized optical fiber tip, recorded using a CCD-photodetector and integrated over the 605-617 nm wavelength domain, was correlated with radiation exposure using a Precision XRAD 225Cx small-animal image guided radiation therapy (IGRT) system. For both 80 and 225 kVp energies, this radiotransparent device

  10. Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure†

    PubMed Central

    Stanton, Ian N.; Belley, Matthew D.; Nguyen, Giao; Rodrigues, Anna; Li, Yifan; Kirsch, David G.; Yoshizumi, Terry T.

    2015-01-01

    Eu- and Li-doped yttrium oxide nanocrystals [Y2−xO3; Eux, Liy], in which Eu and Li dopant ion concentrations were systematically varied, were developed and characterized (TEM, XRD, Raman spectroscopic, UV-excited lifetime, and ICP-AES data) in order to define the most emissive compositions under specific X-ray excitation conditions. These optimized [Y2−xO3; Eux, Liy] compositions display scintillation responses that: (i) correlate linearly with incident radiation exposure at X-ray energies spanning from 40–220 kVp, and (ii) manifest no evidence of scintillation intensity saturation at the highest evaluated radiation exposures [up to 4 Roentgen per second]. For the most emissive nanoscale scintillator composition, [Y1.9O3; Eu0.1, Li0.16], excitation energies of 40, 120, and 220 kVp were chosen to probe the dependence of the integrated emission intensity upon X-ray exposure-rate in energy regimes having different mass-attenuation coefficients and where either the photoelectric or the Compton effect governs the scintillation mechanism. These experiments demonstrate for the first time for that for comparable radiation exposures, when the scintillation mechanism is governed by the photoelectric effect and a comparably larger mass-attenuation coefficient (120 kVp excitation), greater integrated emission intensities are recorded relative to excitation energies where the Compton effect regulates scintillation (220 kVp) in nanoscale [Y2−xO3; Eux] crystals. Nanoscale [Y1.9O3; Eu0.1, Li0.16] (70 ± 20 nm) was further exploited as a detector material in a prototype fiber-optic radiation sensor. The scintillation intensity from the [Y1.9O3; Eu0.1, Li0.16]-modified, 400 μm sized optical fiber tip, recorded using a CCD-photodetector and integrated over the 605–617 nm wavelength domain, was correlated with radiation exposure using a Precision XRAD 225Cx small-animal image guided radiation therapy (IGRT) system. For both 80 and 225 kVp energies, this radio transparent

  11. Improving the Performance of Gold-Nanoparticle-Doped Solid-State Dye Laser Using Thermal Conversion Effect

    NASA Astrophysics Data System (ADS)

    An, N. T. M.; Lien, N. T. H.; Hoang, N. D.; Hoa, D. Q.

    2018-04-01

    Energy transfer between spherical gold nanoparticles with size of more than 15 nm and molecules of organic dye 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4 H-pyran (DCM) has been studied. Such radiative energy transfer led to high local temperature, giving rise to a bleaching effect that resulted in rapid degradation of the laser medium. Gold nanoparticles were dispersed at concentrations from 5 × 109 particles/mL to 5 × 1010 particles/mL in DCM polymethylmethacrylate polymer using a radical polymerization process with 2,2'-azobis(isobutyronitrile) (AIBN) as initiator. Using the fast thermoelectric cooling method, the laser medium stability was significantly improved. The output stability of a distributed feedback dye laser pumped by second-harmonic generation from a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser was investigated. Moreover, bidirectional energy transfer between gold nanoparticles and dye molecules was observed.

  12. Optical Properties of Nd Doped Rare Earth Vanadates (Preprint)

    DTIC Science & Technology

    2010-07-01

    Rare earth orthovanadates are being used as substitute for traditional solid state laser hosts such as yttrium aluminium garnet (YAG). While the most...common of these is yttrium orthovanadate, other rare earth vanadates such as lutetium vanadate and gadolinium vanadate are being used for their... gadolinium vanadate are being used for their special properties in certain applications. We report new measurements of the refractive indices and thermo

  13. Fractional erbium-doped yttrium aluminum garnet laser-assisted drug delivery of hydroquinone in the treatment of melasma

    PubMed Central

    Badawi, Ashraf M; Osman, Mai Abdelraouf

    2018-01-01

    Background Melasma is a difficult-to-treat hyperpigmentary disorder. Ablative fractional laser (AFL)-assisted delivery of topically applied drugs to varied targets in the skin has been an area of ongoing study and research. Objective The objective of this study was to evaluate the efficacy and safety of fractional erbium-doped yttrium aluminum garnet (Er:YAG) laser as an assisted drug delivery for enhancing topical hydroquinone (HQ) permeation into the skin of melasma patients. Patients and methods Thirty female patients with bilateral melasma were randomly treated in a split-face controlled manner with a fractional Er:YAG laser followed by 4% HQ cream on one side and 4% HQ cream alone on the other side. All patients received six laser sessions with a 2-week interval. The efficacy of treatments was determined through photographs, dermoscopic photomicrographs and Melasma Area Severity Index (MASI) score, all performed at baseline and at 12 weeks of starting therapy. The patient’s level of satisfaction was also recorded. Results Er:YAG laser + HQ showed significantly better results (p<0.005) with regard to decrease in the degree of pigmentation as assessed on the 4-point scale than HQ alone. There was a significant decrease in MASI scores on Er:YAG laser + HQ side vs HQ side. Minor reversible side effects were observed on both sides. Conclusion AFL-assisted delivery of HQ is a safe and effective method for the treatment of melasma. PMID:29379308

  14. Determining the structure of tetragonal Y 2WO 6 and the site occupation of Eu 3+ dopant

    NASA Astrophysics Data System (ADS)

    Huang, Jinping; Xu, Jun; Li, Hexing; Luo, Hongshan; Yu, Xibin; Li, Yikang

    2011-04-01

    The compound Y 2WO 6 is prepared by solid state reaction at 750 °C using sodium chloride as mineralizer. Its structure is solved by ab-initio methods from X-ray powder diffraction data. This low temperature phase of yttrium tungstate crystallizes in tetragonal space group P4/ nmm (No. 129), Z=2, a=5.2596(2) Å, c=8.4158(4) Å. The tungsten atoms in the structure adopt an unusual [WO 6] distorted cubes coordination, connecting [YO 6] distorted cubes with oxygen vacancies at the O 2 layers while other yttrium ions Y 2 form [YO 8] cube coordination. Y 3+ ions occupy two crystallographic sites of 2 c ( C4v symmetry) and 2 a ( D2d symmetry) in the Y 2WO 6 host lattice. With Eu 3+ ions doped, the high resolution emission spectrum of Y 2WO 6:Eu 3+ suggests that Eu 3+ partly substituted for Y 3+ in these two sites. The result of the Rietveld structure refinement shows that the Eu 3+ dopants preferentially enter the 2 a site. The uniform cube coordination environment of Eu 3+ ions with the identical eight Eu-O bond lengths is proposed to be responsible for the intense excitation of long wavelength ultraviolet at 466-535 nm.

  15. Size-dependent cytotoxicity of yttrium oxide nanoparticles on primary osteoblasts in vitro

    NASA Astrophysics Data System (ADS)

    Zhou, Guoqiang; Li, Yunfei; Ma, Yanyan; Liu, Zhu; Cao, Lili; Wang, Da; Liu, Sudan; Xu, Wenshi; Wang, Wenying

    2016-05-01

    Yttrium oxide nanoparticles are an excellent host material for the rare earth metals and have high luminescence efficiency providing a potential application in photodynamic therapy and biological imaging. In this study, the effects of yttrium oxide nanoparticles with four different sizes were investigated using primary osteoblasts in vitro. The results demonstrated that the cytotoxicity generated by yttrium oxide nanoparticles depended on the particle size, and smaller particles possessed higher toxicological effects. For the purpose to elucidate the relationship between reactive oxygen species generation and cell damage, cytomembrane integrity, intracellular reactive oxygen species level, mitochondrial membrane potential, cell apoptosis rate, and activity of caspase-3 in cells were then measured. Increased reactive oxygen species level was also observed in a size-dependent way. Thus, our data demonstrated that exposure to yttrium oxide nanoparticles resulted in a size-dependent cytotoxicity in cultured primary osteoblasts, and reactive oxygen species generation should be one possible damage pathway for the toxicological effects produced by yttrium oxide particles. The results may provide useful information for more rational applications of yttrium oxide nanoparticles in the future.

  16. Optical study of Tm-doped solid solution (Sc0.5Y0.5)2SiO5 crystal

    NASA Astrophysics Data System (ADS)

    Shi, Jiaojiao; Liu, Bin; Zheng, Lihe; Wang, Qingguo; Tang, Huili; Liu, Junfang; Su, Liangbi; Wu, Feng; Zhao, Hengyu; He, Nuotian; Li, Na; Li, Qiu; Guo, Chao; Xu, Jun; Yang, Kejian; Xu, Xiaodong; Ryba-Romanowski, Witold; Lisiecki, Radosław; Solarz, Piotr

    2018-04-01

    Tm-doped (Sc0.5Y0.5)2SiO5 (SYSO) crystals were grown by Czochralski method. The UV-VIR-NIR absorption spectra and the near-infrared emission spectra were measured and analysed by the Judd-Ofelt approach. Temperature influence on both absorption and emission spectra has been determined from the data recorded at room temperature and 10 K. It has been found that the structural disorder resulting from dissimilar ionic radii of Sc3+ and Y3+ in the solid solution (Sc0.5Y0.5)2SiO5 crystal brings about a strong inhomogeneous broadening of Tm3+ ions spectra. However, it affects the excited state relaxation dynamics inherent to thulium-doped Y2SiO5 and Sc2SiO5 hosts weakly.

  17. Dual functions of YF3:Eu3+ for improving photovoltaic performance of dye-sensitized solar cells

    PubMed Central

    Wu, Jihuai; Wang, Jiangli; Lin, Jianming; Xiao, Yaoming; Yue, Gentian; Huang, Miaoliang; Lan, Zhang; Huang, Yunfang; Fan, Leqing; Yin, Shu; Sato, Tsugio

    2013-01-01

    In order to enhance the photovoltaic performance of dye-sensitized solar cell (DSSC), a novel design is demonstrated by introducing rare-earth compound europium ion doped yttrium fluoride (YF3:Eu3+) in TiO2 film in the DSSC. As a conversion luminescence medium, YF3:Eu3+ transfers ultraviolet light to visible light via down-conversion, and increases incident harvest and photocurrent of DSSC. As a p-type dopant, Eu3+ elevates the Fermi level of TiO2 film and thus heightens photovoltage of the DSSC. The conversion luminescence and p-type doping effect are demonstrated by photoluminescence spectra and Mott-Schottky plots. When the ratio of YF3:Eu3+/TiO2 in the doping layer is optimized as 5 wt.%, the light-to-electric energy conversion efficiency of the DSSC reaches 7.74%, which is increased by 32% compared to that of the DSSC without YF3:Eu3+ doping. Double functions of doped rare-earth compound provide a new route for enhancing the photovoltaic performance of solar cells. PMID:23792787

  18. Broadband ∼3 μm mid-infrared emission in Dy3+/Yb3+ co-doped germanate glasses

    NASA Astrophysics Data System (ADS)

    Shen, Lingling; Wang, Ning; Dou, Aoju; Cai, Yangjian; Tian, Ying; Huang, Feifei; Xu, Shiqing; Zhang, Junjie

    2018-01-01

    The Dy3+/Yb3+ co-doped germanate glasses with good thermal stability have been prepared by the conventional melt quenching method. The J-O intensity parameters and radiative properties such as spontaneous transition probilities (Arad), fluorescence branching ratios (β) and radiative lifetimes (τrad) were investigated according to the absorption spectrum based on Judd-Ofelt theory. An intense emission around ∼3 μm with the FWHM reaching to 322 nm was obtained in present glasses excited by 980 nm LD. The high spontaneous transition probability (63.94 s-1), large emission cross section (6.0 × 10-21 cm2) and superior gain performance corresponding to the Dy3+: 6H13/2 → 6H15/2 transition were obtained. Moreover, the energy transfer mechanism was analyzed qualitatively, and it was found that the energy transfer from Yb3+: 2F5/2 to Dy3+: 6H5/2 level could be quite efficient. Hence, the results indicated that the prepared Dy3+/Yb3+ co-doped germanate glass could be a potential candidate for ∼3 μm mid-infrared solid state lasers.

  19. Phase Constitution in Sr and Mg doped LaGaO3 System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, F; Bordia, Rajendra K.; Pederson, Larry R.

    Sr and Mg doped lanthanum gallate perovskites (La1-xSrxGa1-yMgyO3-delta, shortened as LSGM-XY where X and Y are the doping levels in mole percentage (mol%) at the La- or A-site and the Ga- or B-site, respectively) are promising electrolyte materials for intermediate temperature solid oxide fuel cells (SOFCs). In this study, we have investigated the primary perovskites as well as the secondary phases formed in terms of doping content changes and A/B ratio variations in these materials. Fifteen powder compositions (three doping levels, X = Y = 0, 0.1, and 0.2 mol; and five A/B ratios 0.95, 0.98, 1.00, 1.02, and 1.05)more » were synthesized by the glycine-nitrate combustion process (GNP). These powders were equilibrated by calcining at 1500 degreesC for 9 h prior to crystalline phase characterization by X-ray powder diffraction (XRD). From the results of this study and the available phase diagrams in the literature on constituent binary oxide systems, we propose a crystalline phase diagram of the La2O3-SrO-Ga2O3-MgO quaternary system at elevated temperature (1500 degreesC). (C) 2003 Elsevier Ltd. All rights reserved« less

  20. Enhanced Emission from Li2CaSiO4:Dy3+ Phosphors by Doping with Al3+ and B3+

    NASA Astrophysics Data System (ADS)

    Erdoğmuş, E.

    2016-05-01

    Pure Li2CaSiO4, Li2CaSiO4:Dy3+ and Al3+, B3+ co-doped materials were prepared by a solid-state reaction in air at 900°C for 6 h and characterized by using powder XRD. The luminescence properties of the synthesized phosphors were measured at room temperature with a spectrofluorometer. Li2CaSiO4:Dy3+ emits at 484, 575, and 660 nm upon 352 nm excitation. The emission spectrum intensity of Dy3+ increased from 0.01 to 0.06 mol.%, and beyond 0.06 mol.%, concentration quenching was observed. Also, in this study, the effects of boric acid and aluminum oxide concentration on the photoluminescence properties of Dy3+ doped phosphors were investigated. The results showed that boric acid and aluminum oxide were effective in improving the photoluminescence intensity of Li2CaSiO4:Dy3+ compounds.

  1. Development of 2024 AA-Yttrium composites by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Vidyasagar, CH S.; Karunakar, D. B.

    2018-04-01

    The method of fabrication of MMNCs is quite a challenge, which includes advanced processing techniques like Spark Plasma Sintering (SPS), etc. The objective of the present work is to fabricate aluminium based MMNCs with the addition of small amounts of yttrium using Spark Plasma Sintering and to evaluate their mechanical and microstructure properties. Samples of 2024 AA with yttrium ranging from 0.1% to 0.5 wt% are fabricated by Spark Plasma Sintering (SPS). Hardness of the samples is determined using Vickers hardness testing machine. The metallurgical characterization of the samples is evaluated by Optical Microscopy (OM), Field Emission Scanning Electron Microscopy (FE-SEM). Unreinforced 2024 AA sample is also fabricated as a benchmark to compare its properties with those of the composite developed. It is found that the yttrium addition increases the above mentioned properties by altering the precipitation kinetics and intermetallic formation to some extent and then decreases gradually when yttrium wt% increases beyond 0.3 wt%. High density (˂ 99.75) is achieved in the samples and highest hardness achieved is 114 Hv, fabricated by spark plasma sintering and uniform distribution of yttrium is observed.

  2. [Structure and luminescence properties of Ga2O3 : Cr3+ by Al doping].

    PubMed

    Wang, Xian-Sheng; Wan, Min-Hua; Wang, Yin-Hai; Zhao, Hui; Hu, Zheng-Fa; Li, Hai-Ling

    2013-11-01

    The Al doping gallate phosphor (Ga(1-x)Al(x))2O3 : Cr3+ (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) was synthesized by a high temperature solid-state reaction method. The X-ray diffractions show that the phase of the phosphors remains to be Ga2 O3 structure with increase in the contents of Al3+ ion. Beside, the fact that the X-ray diffraction peak shifts towards big angles with increasing Al3+ ions content shows that Al3+ ions entered the Ga2 O3 lattice. The peaks of the excitation spectra located at 258, 300, 410 and 550 nm are attributed to the band to band transition of the matrix, charge transfer band transition, and 4A2 --> 4T1 and 4A2 --> 4T2 transition of Cr3+ ions, respectively. Those excitation spectrum peak positions show different degrees of blue shift with the increase in the Al3+ ions content. The blue shift of the first two peaks are due to the band gap energy of substrate and the electronegativity between Cr3+ ions and ligands increasing, respectively. The blue shift of the energy level transition of Cr3+ ion is attributed to crystal field strength increasing. The Cr3+ ion luminescence changes from a broadband emission to a narrow-band emission with Al3+ doping, because the emission of Cr3+ ion changed from 4 T2 --> 4A2 to 2E --> 4A2 transition with the crystal field change after Al3+ ions doping. The Al3+ ions doping improved the long afterglow luminescence properties of samples, and the sample showed a longer visible near infrared when Al3+ ions content reaches 0.5. The thermoluminescence curve shows the sample with suitable trap energy level, and this is also the cause of the long afterglow luminescence materials.

  3. Structural analysis and ferroelectric properties of Fe doped BaTiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Ashutosh, E-mail: a.mansuri14@gmail.com, E-mail: amishra1960@yahoo.co.in; Mansuri, Amantulla, E-mail: a.mansuri14@gmail.com, E-mail: amishra1960@yahoo.co.in; Dwivedi, J. P.

    2016-05-23

    The polycrystalline samples of Fe doped BaTiO{sub 3} (BTO) with compositional formula BaTi{sub 1-x}Fe{sub x}O{sub 3} (x = 0, 0.03, 0.04 and 0.05) were prepared by solid-state reaction route. The influence of the Fe content on the structural, vibrational and electric properties of BaTiO{sub 3} was investigated using X-ray powder diffraction (XRD), Raman spectroscopy and Polarization techniques. XRD analysis indicates the formation of single-phase tetragonal structure for all the prepared samples. Tetragonal cubic structure with space group P4mm of all samples is further approved by Rietveld refinement. Room temperature Raman spectra of pure BaTiO{sub 3} show four active modes ofmore » vibration whose intensity decreases with increasing Fe doping. Small shift in Raman modes and increment in the line width has been observed with the doping ions. The hysteresis loop is very well performed with regular sharp characteristic of ferroelectric materials.« less

  4. Synthesis, structural and semiconducting properties of Ba(Cu1/3 Sb2/3)O3-PbTiO3 solid solutions

    NASA Astrophysics Data System (ADS)

    Singh, Chandra Bhal; Kumar, Dinesh; Prashant, Verma, Narendra Kumar; Singh, Akhilesh Kumar

    2018-05-01

    We report the synthesis and properties of a new solid solution 0.05Ba(Cu1/3Sb2/3)O3-0.95PbTiO3 (BCS-PT) which shows the semiconducting properties. In this study, we have designed new perovskite-type (ABO3) solid solution of BCS-PT that have tunable optical band gap. BCS-PT compounds were prepared by conventional solid-state reaction method and their structural, micro-structural and optical properties were analyzed. The calcination temperature for BCS-PT solid solutions has been optimized to obtain a phase pure system. The Reitveld analysis of X-ray data show that all samples crystallize in tetragonal crystal structure with space group P4mm. X-ray investigation revealed that increase in calcination temperature led to increase of lattice parameter `a' while `c' parameter value lowered. The band gap of PbTiO3 is reduced from 3.2 eV to 2.8 eV with BCS doping and with increasing calcination temperature it further reduces to 2.56 eV. The reduced band gap indicated that the compounds are semiconducting and can be used for photovoltaic device applications.

  5. Absolute measurements of fast neutrons using yttrium.

    PubMed

    Roshan, M V; Springham, S V; Rawat, R S; Lee, P; Krishnan, M

    2010-08-01

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be f(n) approximately 4.1x10(-4) with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 10(8) neutrons per discharge.

  6. Intense 2.7 µm emission and structural origin in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass.

    PubMed

    Guo, Yanyan; Li, Ming; Hu, Lili; Zhang, Junjie

    2012-01-15

    The 2.7 μm emission properties in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass were investigated in the present Letter. An intense 2.7 μm emission in Er3+-doped bismuthate glass was observed. It is found that Er3+-doped bismuthate glass possesses high spontaneous transition probability A (65.26 s(-1)) and large 2.7 μm emission cross section σ(em) (9.53×10(-21) cm2) corresponding to the stimulated emission of Er3+:4I11/2→4I13/2 transition. The emission characteristic and energy transfer process upon excitation of a conventional 980 nm laser diode in bismuthate glass were analyzed. Additionally, the structure of bismuthate glass was analyzed by the Raman spectrum. The advantageous spectroscopic characteristics of Er3+ single-doped bismuthate glass together with the prominent thermal property indicate that bismuthate glass might become an attractive host for developing solid-state lasers around 2.7 μm.

  7. Synthesis of SrAl2O4:Eu2+ phosphors co-doped with Dy3+, Tb3+, Si4+ and optimization of co-doping amount by response surface method

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Liang, Xiaoping; Liu, Kai; Zhou, Qianqian; Chen, Peng; Wang, Jun; Li, Jianxin

    2016-03-01

    Dy3+ doped SrAl2O4:Eu2+ phosphors were synthesized by high temperature solid phase method in a weak reducing atmosphere (5% H2 + 95% N2). The relationship between the crushed granularity and the phosphors brightness was studied. The effect of co-doping amount of Dy3+, Tb3+ and Si4+ on the structure and properties of SrAl2O4:Eu2+ via response surface method was investigated. Photoluminescence measurement results showed that the initial afterglow brightness of 0.002 mol% Dy3+ doped SrAl2O4:Eu2+0.002 phosphors decreased after first increased within the sintering temperature range from 1150 to 1400 °C, which created the highest value of 12,101 mcd/m2 at 1300 °C. Numerous coarse particles in the powder ought to be crushed for the practical application, however, the brightness became lower accompanied by the decrease of the granularity. The luminescence property of SrAl2O4:Eu2+ sintered at 1200 °C improved by co-doping Dy3+-Tb3+-Si4+. The results of response surface method showed that the influence extent on the luminescence property was Dy3+ > Tb3+ > Si4+. When the co-doping amount in SrAl2O4:Eu2+0.002 phosphors of Dy3+, Tb3+ and Si4+ was 0.001 mol%, 0.0005 mol% and 0.002 mol%, respectively, the initial afterglow brightness of SrAl2O4 was up to the highest value of 12,231 mcd/m2, which was in good agreement on the predicted maximum value of 12,519 mcd/m2 with the optimum co-doping amount of 0.0015 mol% Dy3+, 0.0005 mol% Tb3+ and 0.0017 mol% Si4+. The brightness of co-doped phosphors not only increased by 56.79% than that of SrAl2O4:Eu2+0.002, Dy3+0.002 sintered at 1200 °C, but also was above that of 1300 °C. The emission spectra results showed that, compared with 0.001 mol% Dy3+ doped phosphor, the emission peak of 0.001 mol% Dy3+-0.001 mol% Tb3+ co-doped phosphor generated red shift and increased by 9.3% in emission intensity; 0.001 mol% Dy3+-0.004 mol% Si4+ and 0.001 mol% Dy3+-0.001 mol% Tb3+-0.004 mol% Si4+ co-doped SrAl2O4:Eu2+0.002 emission peak created blue

  8. First-principles study of (Ba ,Ca ) TiO3 and Ba (Ti ,Zr ) O3 solid solutions

    NASA Astrophysics Data System (ADS)

    Amoroso, Danila; Cano, Andrés; Ghosez, Philippe

    2018-05-01

    (Ba ,Ca ) TiO3 and Ba (Ti ,Zr ) O3 solid solutions are the building blocks of lead-free piezoelectric materials that attract a renewed interest. We investigate the properties of these systems by means of first-principles calculations, with a focus on the lattice dynamics and the competition between different ferroelectric phases. We first analyze the four parent compounds in order to compare their properties and their different tendency towards ferroelectricity. The core of our study is systematic characterization of the binary systems (Ba ,Ca ) TiO3 and Ba (Ti ,Zr ) O3 within both the virtual crystal approximation and direct supercell calculations. In the case of Ca doping, we find a gradual transformation from B -site to A -site ferroelectricity due to steric effects that largely determines the behavior of the system. In the case of Zr doping, in contrast, the behavior is eventually dominated by cooperative Zr-Ti motions and the local electrostatics. In addition, our comparative study reveals that the specific microscopic physics of these solids sets severe limits to the applicability of the virtual crystal approximation for these systems.

  9. Colossal permittivity and the polarization mechanism of (Mg, Mn) co-doped LaGaO3 ceramics

    NASA Astrophysics Data System (ADS)

    Luo, Tingting; Liu, Zhifu; Zhang, Faqiang; Li, Yongxiang

    2018-03-01

    Mg and Mn co-doped LaGa0.7-xMgxMn0.3O3 (x = 0, 0.05, 0.10, 0.15) ceramics were prepared by a solid-state reaction method. The electrical properties of the LaGa0.7-xMgxMn0.3O3 ceramics were studied in detail by dielectric spectra, impedance spectra, and I-V characteristic analysis. Colossal permittivity up to 104 could be obtained across the frequency range up to 104 Hz. The impedance analysis of the co-doped LaGaO3 ceramics indicated that the Mott's variable range hopping (VRH) polarization should be the main origin of colossal permittivity. Mg and Mn co-doping suppressed the formation of Mn3+ and enhanced the VRH polarization, resulting in increased permittivity. Partial localization of electrons by Mg reduced the long-range electron hopping and led to the decrease in dielectric loss.

  10. Inducing tunable host luminescence in Zn2GeO4 tetrahedral materials via doping Cr3+

    NASA Astrophysics Data System (ADS)

    Bai, Qiongyu; Li, Panlai; Wang, Zhijun; Xu, Shuchao; Li, Ting; Yang, Zhiping; Xu, Zheng

    2018-06-01

    Zn2GeO4 consisting of tetrahedron, and it is a self-luminescent material due to the presence of the native defects and shows a bluish white emission excited by ultraviolet. Although Cr3+ doped in a tetrahedron generally cannot show luminescence, in this research, new defects are formed as Cr3+ doped in Zn2GeO4, hence a green emission band can be obtained. Meanwhile, the intensity of host emission is also decreased. Therefore, Zn2GeO4:Cr3+ are synthesized using a high-temperature solid-phase method. Thermoluminescence (TL) and luminescence decay curves are used to investigate the variation of native defects. The emission colour can be tuned from bluish white to green when Cr3+ doped in Zn2GeO4. This result has guidance for controlling the native emission of self-luminescent material.

  11. Growth and luminescent properties of Yb:YAG and Ca co-doped Yb:YAG ultrafast scintillation crystals

    NASA Astrophysics Data System (ADS)

    Zhu, Maodong; Qi, Hongji; Pan, Mingyan; Hou, Qing; Jiang, Benxue; Jin, Yaxue; Han, Hetong; Song, Zhaohui; Zhang, Hui

    2018-05-01

    In this work, Yb-doped Y3Al5O12 [yttrium aluminum garnet (YAG)] crystals and Ca co-doped Yb:YAG crystals were grown by the Czochralski (CZ) method. The chemical formulas of the two crystals are (Yb0.1Y0.9)3Al5O12 and (Ca0.001Yb0.1Y0.899)3Al5O12, respectively. The structural, optical and luminescent properties of the Yb:YAG and Ca, Yb:YAG crystals were investigated by X-ray rocking curve, X-ray diffraction, Raman spectra, UV-Visble-NIR absorption spectra and X-ray fluorescence. X-ray fluorescence spectrum with two emission peaks at 330 nm and 490 nm were observed in the two kinds of crystals, which would increase slightly after the annealing. Comparing to the Yb:YAG crystal, Ca co-doped Yb:YAG crystal behaved the better luminescent intensity without changing the crystal structure and vibrational modes. This indicates that by doping Ca2+ in Yb:YAG crystal may be an appropriate way to enhance the luminescent property of the scintillation crystal.

  12. Nanophotonic photon echo memory based on rare-earth-doped crystals

    NASA Astrophysics Data System (ADS)

    Zhong, Tian; Kindem, Jonathan; Miyazono, Evan; Faraon, Andrei; Caltech nano quantum optics Team

    2015-03-01

    Rare earth ions (REIs) are promising candidates for implementing solid-state quantum memories and quantum repeater devices. Their high spectral stability and long coherence times make REIs a good choice for integration in an on-chip quantum nano-photonic platform. We report the coupling of the 883 nm transition of Neodymium (Nd) to a Yttrium orthosilicate (YSO) photonic crystal nano-beam resonator, achieving Purcell enhanced spontaneous emission by 21 times and increased optical absorption. Photon echoes were observed in nano-beams of different doping concentrations, yielding optical coherence times T2 up to 80 μs that are comparable to unprocessed bulk samples. This indicates the remarkable coherence properties of Nd are preserved during nanofabrication, therefore opening the possibility of efficient on-chip optical quantum memories. The nano-resonator with mode volume of 1 . 6(λ / n) 3 was fabricated using focused ion beam, and a quality factor of 3200 was measured. Purcell enhanced absorption of 80% by an ensemble of ~ 1 × 106 ions in the resonator was measured, which fulfills the cavity impedance matching condition that is necessary to achieve quantum storage of photons with unity efficiency.

  13. Luminescence of Tb-doped Ca 3Y 2(Si 3O 9) 2 oxide upon UV and VUV synchrotron radiation excitation

    NASA Astrophysics Data System (ADS)

    Dobrowolska, Anna; Zych, Eugeniusz

    2011-07-01

    Powders of calcium yttrium silicate, Ca 3Y 2(Si 3O 9) 2, containing 0.1-3% Tb 3+ were prepared using a sol-gel method and characterized with XRD, IR, UV-vis and UV-VUV spectroscopies at room temperature and 10 K. Structural analysis revealed pure monoclinic phase of Ca 3Y 2(Si 3O 9) 2 after heat-treatment at 1000 °C. Infrared spectroscopy showed that between 800 and 900 °C a short-range structural organization of the components proceeded, yet without crystallization. A strong emission of Tb 3+ had been observed both in the green part of the spectrum due to the 5D4→ 7FJ transitions and in the blue-violet region owing to the 5D3→ 7FJ radiative relaxation. The color of the light could be tuned from yellowish-green to bluish-white both by means of the dopant content and the temperature of synthesis. Efficient luminescence of Tb 3+-doped Ca 3Y 2(Si 3O 9) 2 phosphors could also be obtained upon stimulation with vacuum ultraviolet synchrotron radiation demonstrating that an energy transfer from the host to the Tb 3+ ions takes place.

  14. Combined vitamin C sonophoresis and neodymium-doped yttrium aluminum garnet (NdYAG) laser for facial hyperpigmentation: An outcome observation study in Asian patients.

    PubMed

    Chen, Yu-Tsung; Chang, Chang-Cheng; Hsu, Cherng-Ru; Shen, Jen-Hsiang; Shih, Chao-Jen; Lin, Bor-Shyh

    2016-01-01

    The neodymium-doped yttrium aluminum garnet (NdYAG) laser therapy has been a popular technique for facial rejuvenation but certain adverse effects like post-inflammatory hyperpigmentation are issues of concern to Asian patients. To assess the outcome following combined treatment with vitamin C sonophoresis and NdYAG laser, in selected cases of facial hyperpigmentation. Twenty three women with dyschromia or melasma who had undergone five sessions of Q-switched NdYAG laser therapy followed by transdermal delivery of vitamin C via sonophoresis were selected after a retrospective review of case records. The objective and subjective clinical outcomes and the side effects, including erythema, scaling, pruritus, dryness and post-inflammatory hyperpigmentation were evaluated. In both objective or subjective outcomes, 91.3% (21/23) of the patients showed an excellent or better outcome, while 8.7% (2/23) showed no change. A majority of the patients (73.9%, 17/23) experienced no post-inflammatory hyperpigmentation or had slight post-inflammatory hyperpigmentation which quickly resolved within 1 week. Only one (4.3%) patient had extreme post-inflammatory hyperpigmentation which lasted for over a month. This was a retrospective study without a control group; a comparative study with a control group (patients treated with the laser alone, without vitamin C sonopheresis) is needed to determine the difference in the outcome. The use of vitamin C sonophoresis along with NdYAG laser may reduce the incidence of adverse effects in Asian patients. Patients experienced obvious improvement in hyperpigmentation and had lower chances of experiencing extreme or severe post-inflammatory hyperpigmentation.

  15. Efficacy and safety of erbium-doped yttrium aluminium garnet fractional resurfacing laser for treatment of facial acne scars.

    PubMed

    Nirmal, Balakrishnan; Pai, Sathish B; Sripathi, Handattu; Rao, Raghavendra; Prabhu, Smitha; Kudur, Mohan H; Nayak, Sudhir U K

    2013-01-01

    Treatment of acne scars with ablative fractional laser resurfacing has given good improvement. But, data on Indian skin are limited. A study comparing qualitative, quantitative, and subjective assessments is also lacking. Our aim was to assess the improvement of facial acne scars with Erbium-doped Yttrium Aluminium Garnet (Er:YAG) 2940 nm fractional laser resurfacing and its adverse effects in 25 patients at a tertiary care teaching hospital. All 25 patients received four treatment sessions with Er:YAG fractional laser at 1-month interval. The laser parameters were kept constant for each of the four sittings in all patients. Qualitative and quantitative assessments were done using Goodman and Barron grading. Subjective assessment in percentage of improvement was also documented 1 month after each session. Photographs were taken before each treatment session and 1 month after the final session. Two unbiased dermatologists performed independent clinical assessments by comparing the photographs. The kappa statistics was used to monitor the agreement between the dermatologists and patients. Most patients (96%) showed atleast fair improvement. Rolling and superficial box scars showed higher significant improvement when compared with ice pick and deep box scars. Patient's satisfaction of improvement was higher when compared to physician's observations. No serious adverse effects were noted with exacerbation of acne lesions forming the majority. Ablative fractional photothermolysis is both effective and safe treatment for atrophic acne scars in Indian skin.Precise evaluation of acne scar treatment can be done by taking consistent digital photographs.

  16. Preparation and morphology, magnetic properties of yttrium iron garnet nanodot arrays on Gd3Ga5O12 substrate

    NASA Astrophysics Data System (ADS)

    Xu, Zhiwang; Zheng, Hui; Han, Mangui

    2017-07-01

    In this work, yttrium iron garnet nanodot array has been deposited on Gd3Ga5O12 substrate by pulsed laser deposition through an ultrathin alumina mask. The morphology and magnetic properties of YIG nanodot array have been investigated. Scanning electron microscopy displays the prepared nanodot array has a sharp distribution in diameter centered at 330 nm with standard deviation of 20 nm. X-ray diffraction θ-2θ and pole figure analysis show the yttrium iron garnet nanodot array has oriented growth. Moreover, typical hysteresis loops and ferromagnetic resonance spectra display larger coercivity and multi-resonance peaks which are ascribed to this unique structure.

  17. Enhancement of luminescence emission from GdVO{sub 4}:Er{sup 3+}/Yb{sup 3+} phosphor by Li{sup +} co-doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavrilović, Tamara V.; Jovanović, Dragana J., E-mail: draganaj@vinca.rs; Lojpur, Vesna M.

    2014-09-15

    This paper demonstrates the effects of Li{sup +} co-doping on the structure, morphology, and luminescence properties of GdVO{sub 4}:Er{sup 3+}/Yb{sup 3+} phosphor prepared using a high-temperature solid-state chemistry method. The GdVO{sub 4}:Er{sup 3+}/Yb{sup 3+} powders synthesized with the Li{sup +} co-dopant (in concentrations of 0, 5, 10, and 15 mol%) are characterized by X-ray powder diffraction, scanning electron microscopy, and photoluminescence spectroscopy. Structural analysis showed that powders co-doped with Li{sup +} have larger crystallite sizes and slightly smaller crystal lattice parameters than powders prepared without Li{sup +} ions. Photoluminescence down-conversion (345-nm excitation) and up-conversion (980-nm excitation) spectra show characteristic Er{supmore » 3+} emissions, with the most intense bands peaking at 525 nm ({sup 2}H{sub 11/2}→{sup 4}I{sub 15/2} transition) and 552 nm ({sup 4}S{sub 3/2}→{sup 4}I{sub 15/2}). The intensity of up-conversion emission from GdVO{sub 4}:Er{sup 3+}/Yb{sup 3+} is enhanced (by a factor of four) by co-doping with 5 mol% of Li{sup +} ions. The mechanisms responsible for this emission enhancement are discussed. - Graphical abstract: UC emission spectra for GdVO{sub 4}:1.5-mol% Er{sup 3+}/20-mol% Yb{sup 3+} powders co-doped with different concentrations of Li{sup +} ions, recorded under 980-nm excitation. - Highlights: • 5-mol% Li{sup +} co-doped powders have 400% enhanced up-conversion emission intensity. • 15-mol% Li{sup +} co-doping produces 40% higher emission in down-conversion. • Li{sup +} co-doped powders have larger crystallite size and smaller lattice parameters.« less

  18. Layered-MnO₂ Nanosheet Grown on Nitrogen-Doped Graphene Template as a Composite Cathode for Flexible Solid-State Asymmetric Supercapacitor.

    PubMed

    Liu, Yongchuan; Miao, Xiaofei; Fang, Jianhui; Zhang, Xiangxin; Chen, Sujing; Li, Wei; Feng, Wendou; Chen, Yuanqiang; Wang, Wei; Zhang, Yining

    2016-03-02

    Flexible solid-state supercapacitors provide a promising energy-storage alternative for the rapidly growing flexible and wearable electronic industry. Further improving device energy density and developing a cheap flexible current collector are two major challenges in pushing the technology forward. In this work, we synthesize a nitrogen-doped graphene/MnO2 nanosheet (NGMn) composite by a simple hydrothermal method. Nitrogen-doped graphene acts as a template to induce the growth of layered δ-MnO2 and improves the electronic conductivity of the composite. The NGMn composite exhibits a large specific capacitance of about 305 F g(-1) at a scan rate of 5 mV s(-1). We also create a cheap and highly conductive flexible current collector using Scotch tape. Flexible solid-state asymmetric supercapacitors are fabricated with NGMn cathode, activated carbon anode, and PVA-LiCl gel electrolyte. The device can achieve a high operation voltage of 1.8 V and exhibits a maximum energy density of 3.5 mWh cm(-3) at a power density of 0.019 W cm(-3). Moreover, it retains >90% of its initial capacitance after 1500 cycles. Because of its flexibility, high energy density, and good cycle life, NGMn-based flexible solid state asymmetric supercapacitors have great potential for application in next-generation portable and wearable electronics.

  19. Hydrothermally formed three-dimensional hexagon-like P doped Ni(OH)2 rod arrays for high performance all-solid-state asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Kunzhen; Li, Shikuo; Huang, Fangzhi; Lu, Yan; Wang, Lei; Chen, Hong; Zhang, Hui

    2018-01-01

    Three dimensional hexagon-like phosphrous (P) doped Ni(OH)2 rod arrays grown on Ni foam (NF) are fabricated by a facile and green one-step hydrothermal process. Ni foam is only reacted in a certain concentration of P containing H2O2 aqueous solution. The possible growth mechanism of the P doped Ni(OH)2 rod arrays is discussed. As a battery-type electrode material in situ formed on Ni foam, the binder-free P doped Ni(OH)2 rod arrays electrode displays a ultrahigh specific areal capacitance of 2.11C cm-2 (3.51 F cm-2) at 2 mA cm-2, and excellent cycling stability (95.5% capacitance retention after 7500 cycles). The assembled all-solid-state asymmetric supercapacitor (AAS) based on such P doped Ni(OH)2 rod arrays as the positive electrode and activated carbon as the negative electrode achieves an energy density of 81.3 Wh kg-1 at the power density of 635 W kg-1. The AAS device also exhibits excellent practical performance, which can easily drive an electric fan (3 W rated power) when two AAS devices are assembled in series. Thus, our synthesized P doped Ni(OH)2 rod arrays has a lot of potential applications in future energy storage prospects.

  20. An All-Solid-State pH Sensor Employing Fluorine-Terminated Polycrystalline Boron-Doped Diamond as a pH-Insensitive Solution-Gate Field-Effect Transistor.

    PubMed

    Shintani, Yukihiro; Kobayashi, Mikinori; Kawarada, Hiroshi

    2017-05-05

    A fluorine-terminated polycrystalline boron-doped diamond surface is successfully employed as a pH-insensitive SGFET (solution-gate field-effect transistor) for an all-solid-state pH sensor. The fluorinated polycrystalline boron-doped diamond (BDD) channel possesses a pH-insensitivity of less than 3mV/pH compared with a pH-sensitive oxygenated channel. With differential FET (field-effect transistor) sensing, a sensitivity of 27 mv/pH was obtained in the pH range of 2-10; therefore, it demonstrated excellent performance for an all-solid-state pH sensor with a pH-sensitive oxygen-terminated polycrystalline BDD SGFET and a platinum quasi-reference electrode, respectively.

  1. Red luminescence from Eu3+-doped TeO2-WO3-GeO2 glasses for solid state lasers

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, Tallam; Gopal, Kotalo Rama; Suvarna, Reniguntla Padma; Jamalaiah, Bungala Chinna

    2018-05-01

    Eu3+-doped oxyfluoro tellurite (TWGEu) glasses were prepared by conventional melt quenching method. The optical band gap energy and covalence between Eu3+ and O2-/F- ions were determined from optical absorption spectra. Using the 5D0 → 7F1,2,4 emission transitions, the Ω2 and Ω4 intensity parameters were determined. These intensity parameters were used to evaluate the radiative parameters such as emission probability rate (AR), luminescence branching ratio (βR) and radiative life time (τR) of 5D0 → 7FJ transitions. The laser characteristic parameters such as stimulated emission cross-section, gain bandwidth and quantum efficiency were determined. The luminescence decay profiles of 5D0 emission level were well fitted to single exponential function for all the concentrations. The experimental results show that the 0.5 mol% of Eu3+-doped TWGEu glass could be the best choice to design red laser sources.

  2. Nb5+-Doped SrCoO3-δ Perovskites as Potential Cathodes for Solid-Oxide Fuel Cells.

    PubMed

    Cascos, Vanessa; Alonso, José Antonio; Fernández-Díaz, María Teresa

    2016-07-15

    SrCoO 3- δ outperforms as cathode material in solid-oxide fuel cells (SOFC) when the three-dimensional (3C-type) perovskite structure is stabilized by the inclusion of highly-charged transition-metal ions at the octahedral positions. In a previous work we studied the Nb incorporation at the Co positions in the SrCo 1- x Nb x O 3- δ system, in which the stabilization of a tetragonal P4 / mmm perovskite superstructure was described for the x = 0.05 composition. In the present study we extend this investigation to the x = 0.10-0.15 range, also observing the formation of the tetragonal P4 / mmm structure instead of the unwanted hexagonal phase corresponding to the 2H polytype. We also investigated the effect of Nb 5+ doping on the thermal, electrical, and electrochemical properties of SrCo 1- x Nb x O 3- δ ( x = 0.1 and 0.15) perovskite oxides performing as cathodes in SOFC. In comparison with the undoped hexagonal SrCoO 3- δ phase, the resulting compounds present high thermal stability and an increase of the electrical conductivity. The single-cell tests for these compositions ( x = 0.10 and 0.15) with La 0.8 Sr 0.2 Ga 0.83 Mg 0.17 O 3- δ (LSGM) as electrolyte and SrMo 0.8 Fe 0.2 CoO 3- δ as anode gave maximum power densities of 693 and 550 mW∙cm -2 at 850 °C respectively, using pure H₂ as fuel and air as oxidant.

  3. Laser ceramic materials for subpicosecond solid-state lasers using Nd3+-doped mixed scandium garnets.

    PubMed

    Okada, Hajime; Tanaka, Momoko; Kiriyama, Hiromitsu; Nakai, Yoshiki; Ochi, Yoshihiro; Sugiyama, Akira; Daido, Hiroyuki; Kimura, Toyoaki; Yanagitani, Takagimi; Yagi, Hideki; Meichin, Noriyuki

    2010-09-15

    We have successfully developed and demonstrated broadband emission Nd-doped mixed scandium garnets based on laser ceramic technology. The inhomogeneous broadening of Nd(3+) fluorescence lines results in a bandwidth above 5 nm that is significantly broader than that for Nd:YAG and enables subpicosecond mode-locked pulse durations. We have also found the emission cross section of 7.8 × 10(-20) cm(2) to be adequate for efficient energy extraction and thermal conductivity of 4.7 W/mK from these new Nd-doped laser ceramics. The new laser ceramics are good candidates for laser host material in a diode-pumped subpicosecond laser system with high efficiency and high repetition rate.

  4. Nd3+-doped heavy metal oxide based multicomponent borate glasses for 1.06 μm solid-state NIR laser and O-band optical amplification applications

    NASA Astrophysics Data System (ADS)

    Lakshminarayana, G.; Kaky, Kawa M.; Baki, S. O.; Lira, A.; Meza-Rocha, A. N.; Falcony, C.; Caldiño, U.; Kityk, I. V.; Méndez-Blas, A.; Abas, A. F.; Alresheedi, M. T.; Mahdi, M. A.

    2018-04-01

    Nd3+-doped glasses in the composition (50-x) B2O3-10 PbO-10 BaO-10 Al2O3-10 ZnO-10 Na2O-(x) Nd2O3 (x = 0.0, 0.1, 0.25, 0.5, 0.75, 1.0, 1.5, and 2.0 mol %) were fabricated using melt quenching method. Upon 592 nm visible and 808 nm LD excitations, the luminescence spectra show a strong 4F3/2 → 4I11/2 (1.06 μm) emission transition, and two less intense 4F3/2 → 4I9/2 (0.89 μm) and 4F3/2 → 4I13/2 (1.331 μm) emission transitions. The intensity of such emissions increases up to 0.5 mol % Nd3+, and above this doping level, quenching occurs. For 0.5 mol % Nd3+-doped glass, following Judd-Ofelt intensity parameters and emission spectrum, AR, τR, βR and βexp, including Δλeff,σem(λp), (σem × (Δλeff)) and (σem × (τrad)), are derived for Nd3+ ion 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 fluorescence transitions. The highest σem(λp) for the 1.06 and 1.331 μm fluorescence bands are found to be 6.216 × 10-20 and 2.295 × 10-20cm2, respectively. The 4F3/2 level lifetimes are found to decrease with an increase in Nd2O3 content and the decay curves of the glass up to 1.5 mol % Nd3+ exhibit single exponential nature. From 'τexp' of the Nd3+: 4F3/2 level, quantum efficiency (η), (σem × (τexp)), and saturation intensity (IS) are 48.87%, 51.09 × 10-25 cm2s and 3.67 × 108 W/m2, respectively, for the 0.5 mol % Nd3+-doped glass. Higher thermal stability, very low χ, high AR, large βexp., moderate τR, large gain bandwidth and high optical gain values indicate that 0.5 mol % Nd3+-doped glass could be a potential gain medium for solid-state NIR lasers at 1.06 μm. Moreover, for the 1.331 μm emission, large Δλeff and the theoretical gain coefficient value of 1.579 dB/cm, evaluated with an excited Nd3+ ion fractional factor of 0.6, indicate that this glass might be a promising candidate in developing O-band optical fiber amplifiers.

  5. Spectral hole lifetimes and spin population relaxation dynamics in neodymium-doped yttrium orthosilicate

    NASA Astrophysics Data System (ADS)

    Cruzeiro, E. Zambrini; Tiranov, A.; Usmani, I.; Laplane, C.; Lavoie, J.; Ferrier, A.; Goldner, P.; Gisin, N.; Afzelius, M.

    2017-05-01

    We present a detailed study of the lifetime of optical spectral holes due to population storage in Zeeman sublevels of Nd3 +:Y2SiO5 . The lifetime is measured as a function of magnetic field strength and orientation, temperature, and Nd3 + doping concentration. At the lowest temperature of 3 K we find a general trend where the lifetime is short at low field strengths, then increases to a maximum lifetime at a few hundred mT, and then finally decays rapidly for high field strengths. This behavior can be modeled with a relaxation rate dominated by Nd3 +-Nd3 + cross relaxation at low fields and spin lattice relaxation at high magnetic fields. The maximum lifetime depends strongly on both the field strength and orientation, due to the competition between these processes and their different angular dependencies. The cross relaxation limits the maximum lifetime for concentrations as low as 30 ppm of Nd3 + ions. By decreasing the concentration to less than 1 ppm we could completely eliminate the cross relaxation, reaching a lifetime of 3.8 s at 3 K. At higher temperatures the spectral hole lifetime is limited by the magnetic-field-independent Raman and Orbach processes. In addition we show that the cross relaxation rate can be strongly reduced by creating spectrally large holes of the order of the optical inhomogeneous broadening. Our results are important for the development and design of new rare-earth-ion doped crystals for quantum information processing and narrow-band spectral filtering for biological tissue imaging.

  6. Extremely dense microstructure and enhanced ionic conductivity in hot-isostatic pressing treated cubic garnet-type solid electrolyte of Ga2O3-doped Li7La3Zr2O12

    NASA Astrophysics Data System (ADS)

    Qin, Shiying; Zhu, Xiaohong; Jiang, Yue; Ling, Ming’En; Hu, Zhiwei; Zhu, Jiliang

    A large number of pores and a low relative density that are frequently observed in solid electrolytes reduce severely their ionic conductivity and thus limit their applicability. Here, we report on the use of hot isostatic pressing (HIP) for ameliorating the garnet-type lithium-ion conducting solid electrolyte of Ga2O3-doped Li7La3Zr2O12 (Ga-LLZO) with nominal composition of Li6.55Ga0.15La3Zr2O12. The Ga-LLZO pellets were conventionally sintered at 1075∘C for 12h, and then were followed by HIP treatment at 120MPa and 1160∘C under an Ar atmosphere. It is found that the HIP-treated Ga-LLZO shows an extremely dense microstructure and a significantly enhanced ionic conductivity. Coherent with the increase in relative density from 90.5% (untreated) to 97.5% (HIP-treated), the ionic conductivity of the HIP-treated Ga-LLZO reaches as high as 1.13×10‑3S/cm at room temperature (25∘C), being two times higher than that of 4.58×10‑4S/cm for the untreated one.

  7. Synthetic and spectroscopic studies of vanadate glaserites II: Photoluminescence studies of Ln:K{sub 3}Y(VO{sub 4}){sub 2} (Ln=Eu, Er, Sm, Ho, or Tm)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimani, Martin M., E-mail: kimani@g.clemson.edu; McMillen, Colin D., E-mail: cmcmill@g.clemson.edu; Kolis, Joseph W., E-mail: kjoseph@clemson.edu

    2015-03-15

    Glaserite-type potassium yttrium double vanadates (K{sub 3}Y(VO{sub 4}){sub 2}) doped with Eu{sup 3+}, Er{sup 3+}, Sm{sup 3+}, Ho{sup 3+}, or Tm{sup 3+} have been synthesized by solid state reactions at 1000 °C for 48 h and their photoluminescence properties investigated. Efficient energy transfer from the vanadate group to the rare earth ion has been established by photoluminescence investigation. Ultraviolet excitation into the metal to ligand charge transfer band of the vanadate groups results in orange-red, blue and green emissions from Eu{sup 3+} (592 nm), Sm{sup 3+} (602 nm), Tm{sup 3+} (475 nm), Er{sup 3+} (553 nm), and Ho{sup 3+} (541–551more » nm) dopant ions. The emission intensities of the lanthanide-doped K{sub 3}Y(VO{sub 4}){sub 2} powders were studied as a function of dopant ion concentrations. Over the concentration ranges studied, no emission quenching was observed for Eu{sup 3+} or Ho{sup 3+} dopants, while Er{sup 3+}, Sm{sup 3+} and Tm{sup 3+} dopants did exhibit such effects for dopant ion concentrations greater than 5%, probably due to cross relaxation processes. - Graphical abstract: Synthesis and photoluminescence in vanadate glaserites. - Highlights: • K{sub 3}Y(VO{sub 4}){sub 2} doped with Eu, Er, Tm, Sm, or Ho were synthesized via solid-state reactions. • Photoluminescence properties are investigated. • The lanthanide doped K{sub 3}Y(VO{sub 4}){sub 2} compounds revealed efficient energy transfer from the vanadate group to the rare earth ions. • The presented compounds are promising materials for light display systems, lasers, and optoelectronic devices.« less

  8. Comparative thermometric properties of bi-functional Er3+-Yb3+ doped rare earth (RE = Y, Gd and La) molybdates

    NASA Astrophysics Data System (ADS)

    Sinha, Shriya; Mahata, Manoj Kumar; Kumar, Kaushal

    2018-02-01

    The molybdate compounds as luminescent medium have received great attention of recent research due to their excellent intrinsic optical properties. Therefore, the investigation on the optical thermometry and nanoheating effect in Er3+-Yb3+ doped molybdates of yttrium (EYYMO), gadolinium (EYGMO) and lanthanum (EYLMO) nanophosphors is reported herein. The temperature dependent fluorescence intensity ratio of green (525 and 548 nm) emission bands of Er3+ ions were analyzed within 300-500 K temperature range to determine the thermal behavior. The comparative temperature sensitivity of the materials has been found to depend on the phonon energy of their own. The thermal sensitivity is higher in the materials with low phonon energy. The intensity ratio of the green emission bands has been found to alter with the laser excitation density, which can be used to estimate the induced temperature in the materials. Furthermore, the photothermal conversion efficiency is calculated in the water dispersed samples and the maximum photothermal conversion efficiency of 49.6% is achieved for EYGMO nanophosphor. Comparative experimental results explore unequal thermal sensing and induced optical heating in the three rare earth molybdates. The optical properties of the green emitting molybdates are interesting for temperature sensing and optical heating applications.

  9. Room temperature magnetic and dielectric properties of cobalt doped CaCu3Ti4O12 ceramics

    NASA Astrophysics Data System (ADS)

    Mu, Chunhong; Song, Yuanqiang; Wang, Haibin; Wang, Xiaoning

    2015-05-01

    CaCu3Ti4-xCoxO12 (x = 0, 0.2, 0.4) ceramics were prepared by a conventional solid state reaction, and the effects of cobalt doping on the room temperature magnetic and dielectric properties were investigated. Both X-ray diffraction and energy dispersive X-ray spectroscopy confirmed the presence of Cu and Co rich phase at grain boundaries of Co-doped ceramics. Scanning electron microscopy micrographs of Co-doped samples showed a striking change from regular polyhedral particle type in pure CaCu3Ti4O12 (CCTO) to sheet-like grains with certain growth orientation. Undoped CaCu3Ti4O12 is well known for its colossal dielectric constant in a broad temperature and frequency range. The dielectric constant value was slightly changed by 5 at. % and 10 at. % Co doping, whereas the second relaxation process was clearly separated in low frequency region at room temperature. A multirelaxation mechanism was proposed to be the origin of the colossal dielectric constant. In addition, the permeability spectra measurements indicated Co-doped CCTO with good magnetic properties, showing the initial permeability (μ') as high as 5.5 and low magnetic loss (μ″ < 0.2) below 3 MHz. And the interesting ferromagnetic superexchange coupling in Co-doped CaCu3Ti4O12 was discussed.

  10. Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites.

    PubMed

    Lv, Qiying; Wang, Shang; Sun, Hongyu; Luo, Jun; Xiao, Jian; Xiao, JunWu; Xiao, Fei; Wang, Shuai

    2016-01-13

    Although carbonaceous materials possess long cycle stability and high power density, their low-energy density greatly limits their applications. On the contrary, metal oxides are promising pseudocapacitive electrode materials for supercapacitors due to their high-energy density. Nevertheless, poor electrical conductivity of metal oxides constitutes a primary challenge that significantly limits their energy storage capacity. Here, an advanced integrated electrode for high-performance pseudocapacitors has been designed by growing N-doped-carbon-tubes/Au-nanoparticles-doped-MnO2 (NCTs/ANPDM) nanocomposite on carbon fabric. The excellent electrical conductivity and well-ordered tunnels of NCTs together with Au nanoparticles of the electrode cause low internal resistance, good ionic contact, and thus enhance redox reactions for high specific capacitance of pure MnO2 in aqueous electrolyte, even at high scan rates. A prototype solid-state thin-film symmetric supercapacitor (SSC) device based on NCTs/ANPDM exhibits large energy density (51 Wh/kg) and superior cycling performance (93% after 5000 cycles). In addition, the asymmetric supercapacitor (ASC) device assembled from NCTs/ANPDM and Fe2O3 nanorods demonstrates ultrafast charge/discharge (10 V/s), which is among the best reported for solid-state thin-film supercapacitors with both electrodes made of metal oxide electroactive materials. Moreover, its superior charge/discharge behavior is comparable to electrical double layer type supercapacitors. The ASC device also shows superior cycling performance (97% after 5000 cycles). The NCTs/ANPDM nanomaterial demonstrates great potential as a power source for energy storage devices.

  11. Growth of a Lightly Doped Pr^3+:LaCl3 Crystal to Determine Radiative Transition Rates

    NASA Astrophysics Data System (ADS)

    Watters, J. Michael; Ganem, Joseph; Shaw, L. B.; Bowman, S. R.; Feldman, B. J.

    1996-03-01

    The recent demontration of 5.2 and 7.2 micron lasers using Pr^3+:LaCl3 ,(S. R. Bowman, Joseph Ganem, B. J. Feldman and A. W. Kueny, IEEE J. Quant. Elect. 30, 2925(1994).)^,(S. R. Bowman, L. B. Shaw, B. J. Feldman and Joseph Ganem, postdeadline paper CPD 26 at CLEO(1995).) the longest known wavelengths for any rare earth solid-state laser, has motivated further studies of this material. Design of mid-infrared lasers that use Pr^3+:LaCl3 would benefit from the ability to model population dynamics under different pumping conditions of the lower levels of the Pr^3+ ion. The lower levels, that are the basis for the new mid-infrared lasers, have many energetic overlaps resulting in several competing energy transfer processes when Pr^3+ concentrations approach 1 percent or higher. To minimize these processes we have grown and studied a lightly doped Pr^3+:LaCl3 crystal in order to determine the underlying radiative transition rates. We report how knowledge of the radiative rates can be incorporated into a model describing energy transfer processes in more heavily doped crystals.

  12. Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Innocenzi, Valentina, E-mail: valentina.innocenzi1@univaq.it; De Michelis, Ida; Ferella, Francesco

    2013-11-15

    Highlights: • Treatment of fluorescent powder of CRT waste. • Factorial experimental designs to study acid leaching of fluorescent powder and the purification of leach liquors. • Recover of yttrium by precipitation using oxalic acid. • Suitable flowsheet to recover yttrium from fluorescent powder. - Abstract: This work is focused on the recovery of yttrium and zinc from fluorescent powder of cathode ray tube (CRT). Metals are extracted by sulphuric acid in the presence of hydrogen peroxide. Leaching tests are carried out according to a 2{sup 2} full factorial plan and the highest extraction yields for yttrium and zinc equalmore » to 100% are observed under the following conditions: 3 M of sulphuric acid, 10% v/v of H{sub 2}O{sub 2} concentrated solution at 30% v/v, 10% w/w pulp density, 70 °C and 3 h of reaction. Two series of precipitation tests for zinc are carried out: a 2{sup 2} full factorial design and a completely randomized factorial design. In these series the factors investigated are pH of solution during the precipitation and the amount of sodium sulphide added to precipitate zinc sulphide. The data of these tests are used to describe two empirical mathematical models for zinc and yttrium precipitation yields by regression analysis. The highest precipitation yields for zinc are obtained under the following conditions: pH equal to 2–2.5% and 10–12% v/v of Na{sub 2}S concentrated solution at 10% w/v. In these conditions the coprecipitation of yttrium is of 15–20%. Finally further yttrium precipitation experiments by oxalic acid on the residual solutions, after removing of zinc, show that yttrium could be recovered and calcined to obtain the final product as yttrium oxide. The achieved results allow to propose a CRT recycling process based on leaching of fluorescent powder from cathode ray tube and recovery of yttrium oxide after removing of zinc by precipitation. The final recovery of yttrium is 75–80%.« less

  13. Synthesis of dense yttrium-stabilised hafnia pellets for nuclear applications by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Tyrpekl, Vaclav; Holzhäuser, Michael; Hein, Herwin; Vigier, Jean-Francois; Somers, Joseph; Svora, Petr

    2014-11-01

    Dense yttrium-stabilised hafnia pellets (91.35 wt.% HfO2 and 8.65 wt.% Y2O3) were prepared by spark plasma sintering consolidation of micro-beads synthesised by the "external gelation" sol-gel technique. This technique allows a preparation of HfO2-Y2O3 beads with homogenous yttria-hafnia solid solution. A sintering time of 5 min at 1600 °C was sufficient to produce high density pellets (over 90% of the theoretical density) with significant reproducibility. The pellets have been machined in a lathe to the correct dimensions for use as neutron absorbers in an experimental test irradiation in the High Flux Reactor (HFR) in Petten, Holland, in order to investigate the safety of americium based nuclear fuels.

  14. Energy transfer and color tunable emission in Tb3+,Eu3+ co-doped Sr3LaNa(PO4)3F phosphors.

    PubMed

    Li, Shuo; Guo, Ning; Liang, Qimeng; Ding, Yu; Zhou, Huitao; Ouyang, Ruizhuo; Lü, Wei

    2018-02-05

    A group of color tunable Sr 3 LaNa(PO 4 ) 3 F:Tb 3+ ,Eu 3+ phosphors were prepared by conventional high temperature solid state method. The phase structures, luminescence properties, fluorescence lifetimes and energy transfer were investigated in detail. Under 369nm excitation, owing to efficient energy transfer of Tb 3+ →Eu 3+ , the emission spectra both have green emission of Tb 3+ and red emission of Eu 3+ . An efficient energy transfer occur in Tb 3+ , Eu 3+ co-doped Sr 3 LaNa(PO 4 ) 3 F phosphors. The most possible mechanism of energy transfer is dipole-dipole interaction by Dexter's theoretical model. The energy transfer of Tb 3+ and Eu 3+ was confirmed by the variations of emission and excitation spectra and Tb 3+ /Eu 3+ decay lifetimes in Sr 3 LaNa(PO 4 ) 3 F:Tb 3+ ,Eu 3+ . The color tone can tuned from yellowish-green through yellow and eventually to reddish-orange with fixed Tb 3+ content by changing Eu 3+ concentrations. The results show that the prepared Tb 3+ , Eu 3+ co-doped color tunable Sr 3 LaNa(PO 4 ) 3 F phosphor can be used for white LED. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Energy transfer and color tunable emission in Tb3 +,Eu3 + co-doped Sr3LaNa(PO4)3F phosphors

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Guo, Ning; Liang, Qimeng; Ding, Yu; Zhou, Huitao; Ouyang, Ruizhuo; Lü, Wei

    2018-02-01

    A group of color tunable Sr3LaNa(PO4)3F:Tb3 +,Eu3 + phosphors were prepared by conventional high temperature solid state method. The phase structures, luminescence properties, fluorescence lifetimes and energy transfer were investigated in detail. Under 369 nm excitation, owing to efficient energy transfer of Tb3 + → Eu3 +, the emission spectra both have green emission of Tb3 + and red emission of Eu3 +. An efficient energy transfer occur in Tb3 +, Eu3 + co-doped Sr3LaNa(PO4)3F phosphors. The most possible mechanism of energy transfer is dipole-dipole interaction by Dexter's theoretical model. The energy transfer of Tb3 + and Eu3 + was confirmed by the variations of emission and excitation spectra and Tb3 +/Eu3 + decay lifetimes in Sr3LaNa(PO4)3F:Tb3 +,Eu3 +. The color tone can tuned from yellowish-green through yellow and eventually to reddish-orange with fixed Tb3 + content by changing Eu3 + concentrations. The results show that the prepared Tb3 +, Eu3 + co-doped color tunable Sr3LaNa(PO4)3F phosphor can be used for white LED.

  16. Phase constitution in Sr and Mg doped LaGaO{sub 3} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Feng; Bordia, Rajendra K.; Pederson, Larry R

    2004-01-03

    Sr and Mg doped lanthanum gallate perovskites (La{sub 1-x}Sr{sub x}Ga{sub 1-y}Mg{sub y}O{sub 3-{delta}}, shortened as LSGM-XY where X and Y are the doping levels in mole percentage (mol%) at the La- or A-site and the Ga- or B-site, respectively) are promising electrolyte materials for intermediate temperature solid oxide fuel cells (SOFCs). In this study, we have investigated the primary perovskites as well as the secondary phases formed in terms of doping content changes and A/B ratio variations in these materials. Fifteen powder compositions (three doping levels, X=Y=0, 0.1, and 0.2 mol; and five A/B ratios 0.95, 0.98, 1.00, 1.02, andmore » 1.05) were synthesized by the glycine-nitrate combustion process (GNP). These powders were equilibrated by calcining at 1500 deg. C for 9 h prior to crystalline phase characterization by X-ray powder diffraction (XRD). From the results of this study and the available phase diagrams in the literature on constituent binary oxide systems, we propose a crystalline phase diagram of the La{sub 2}O{sub 3}-SrO-Ga{sub 2}O{sub 3}-MgO quaternary system at elevated temperature (1500 deg. C)« less

  17. Thermoelectric Properties of the Chemically Doped Ca3Co4O9 System: A Structural Perspective

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Tyson, Trevor; Wang, Hsin; Li, Qiang

    2010-03-01

    Cu doped and Y doped [Ca2CoO3][CoO2]1.61 (referred to as Ca3Co4O9) were prepared by solid state reaction. Temperature dependent thermoelectric properties, resistivity (ρ), Seeback coefficient (S) and thermal conductivity (κ), were measured. As seen before, it is found that doping by Cu and Y significantly enhances the thermoelectric properties. In order to understand the origin of these changes in properties in terms of the atomic structure, synchrotron x-ray diffraction and x-ray absorption spectroscopy were applied to probe the change in the average structure and the location of the dopants. The details of the location and coordination of Co and Y in the host lattice and the effect on the figure of merit are discussed. This work is supported by DOE Grant DE-FG02-07ER46402.

  18. Enhanced thermoelectric performance of Pb doped Cu2SnSe3 synthesized employing spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Shyam Prasad, K.; Rao, Ashok; Tyagi, Kriti; Singh Chauhan, Nagendra; Gahtori, Bhasker; Bathula, Sivaiah; Dhar, Ajay

    2017-05-01

    We report an enhancement in the thermoelectric performance of Cu2SnSe3 alloy on Pb doping, owing to a sharp increase in its power factor. The powder XRD pattern of all samples of Cu2Sn1-xPbxSe3 (0≤x≤0.03), prepared using solid state reaction, exhibited a cubic structure with a space group of F 4 ̅ 3 m . The results show that temperature dependent electrical resistivity, ρ(T) increases with increasing temperature thereby demonstrating that the samples display heavily doped semiconducting nature, which could be satisfactorily described by small polaron hopping model in the whole temperature range of measurement for all the samples. Both the resistivity and the Seebeck coefficient are reduced with 2 vol% Pb doping. The thermal conductivity of all the samples reduces with increasing temperature. Despite a decrease in Seebeck coefficient the power factor shows an increase on Pb doping, owing to a sharp surge in the electrical conductivity which results in an enhanced ZTmax 0.64 at 700 K for an optimized composition of Cu2Sn0.98Pb0.02Se3, which is nearly twice the value of the corresponding undoped counterpart.

  19. Synthesis of highly conductive thin-walled Al-doped ZnO single-crystal microtubes by a solid state method

    NASA Astrophysics Data System (ADS)

    Hu, Shuopeng; Wang, Yue; Wang, Qiang; Xing, Cheng; Yan, Yinzhou; Jiang, Yijian

    2018-06-01

    ZnO has attracted considerable attention in fundamental studies and practical applications for the past decade due to its outstanding performance in gas sensing, photocatalytic degradation, light harvesting, UV-light emitting/lasing, etc. The large-sized thin-walled ZnO (TW-ZnO) microtube with stable and rich VZn-related acceptors grown by optical vapor supersaturated precipitation (OVSP) is a novel multifunctional optoelectronic material. Unfortunately, the OVSP cannot achieve doping due to the vapor growth process. To obtain doped TW-ZnO microtubes, a solid state method is introduced in this work to achieve thin-walled Al-doping ZnO (TW-ZnO:Al) microtubes with high electrical conductivity. The morphology and microstructures of ZnO:Al microtubes are similar to undoped ones. The Al3+ ions are confirmed to substitute Zn2+ sites and Zn(0/-1) vacancies in the lattice of ZnO by EDS, XRD, Raman and temperature-dependent photoluminescence analyses. The Al dopant acting as a donor level offers massive free electrons to increase the carrier concentrations. The resistivity of the ZnO:Al microtube is reduced down to ∼10-3 Ω·cm, which is one order of magnitude lower than that of the undoped microtube. The present work provides a simple way to achieve doped ZnO tubular components for potential device applications in optoelectronics.

  20. Microstructure and thermoelectric properties of doped p-type CoSb3 under TGZM effect

    NASA Astrophysics Data System (ADS)

    Wang, Hongqiang; Li, Shuangming; Li, Xin; Zhong, Hong

    2017-05-01

    The Co-96.9 wt% Sb hypoeutectic alloy doped by 0.12 wt% YbFe was solidified in a Bridgman-type furnace based on temperature gradient zone melting (TGZM) effect. A mushy zone was observed between the complete liquid zone and the solid zone at different thermal stabilization time ranging from 15 min to 40 h. The mushy-zone solidified microstructures of the alloy only consist of CoSb3 and Sb phase. After 40 h thermal stabilization time, the volume fraction of CoSb3 in the mushy zone increases significantly up to 99.6% close to the solid-liquid interface. The hardness and fracture toughness of doped CoSb3 can reach 7.01 ± 0.69 GPa and 0.78 ± 0.08 MPa·m1/2, respectively. Meanwhile, the thermoelectric properties of the alloy were measured ranging from room temperature (RT) to 850 K. The Seebeck coefficient of the specimen prepared by TGZM effect after 40 h could reach 155 μV/K and the ZT value is 0.47 at 660 K, showing that it is feasible to prepare CoSb3 bulk material via TGZM effect. As a simple and one-step solidification method, the TGZM technique could be applied in the preparation of skutterudite compounds.

  1. A molecular dynamics study of thermal transport in nanoparticle doped Argon like solid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahadat, Muhammad Rubayat Bin, E-mail: rubayat37@gmail.com; Ahmed, Shafkat; Morshed, A. K. M. M.

    2016-07-12

    Interfacial phenomena such as mass and type of the interstitial atom, nano scale material defect influence heat transfer and the effect become very significant with the reduction of the material size. Non Equilibrium Molecular Dynamics (NEMD) simulation was carried out in this study to investigate the effect of the interfacial phenomena on solid. Argon like solid was considered in this study and LJ potential was used for atomic interaction. Nanoparticles of different masses and different molecular defects were inserted inside the solid. From the molecular simulation, it was observed that a large interfacial mismatch due to change in mass inmore » the homogenous solid causes distortion of the phonon frequency causing increase in thermal resistance. Position of the doped nanoparticles have more profound effect on the thermal conductivity of the solid whereas influence of the mass ratio is not very significant. Interstitial atom positioned perpendicular to the heat flow causes sharp reduction in thermal conductivity. Structural defect caused by the molecular defect (void) also observed to significantly affect the thermal conductivity of the solid.« less

  2. Relationship between fabrication method and chemical stability of Ni-BaZr0.8Y0.2O3-δ membrane

    NASA Astrophysics Data System (ADS)

    Fang, Shumin; Wang, Siwei; Brinkman, Kyle S.; Su, Qing; Wang, Haiyan; Chen, Fanglin

    2015-03-01

    NiO effectively promotes the sintering of highly refractory Y-doped BaZrO3 (BZY) through the formation of BaY2NiO5, providing a simple and cost-effective method for the fabrication of dense BZY electrolyte and Ni-BZY hydrogen separation membrane at ∼1400 °C. Unfortunately, insulating BaCO3 and Y2O3 phases formed on the surface of BZY and Ni-BZY prepared by solid state reaction method with NiO after annealing in wet CO2. Ni-BZY membranes prepared from different methods suffered different degree of performance loss in wet H2 at 900 °C. The chemical instability of Ni-BZY is attributed to the formation of a secondary phase (BaY2O4) generated from the reduction of BaY2NiO5 in H2 during the sintering process. Both BaY2O4 and BaY2NiO5 react with H2O, and CO2 at elevated temperatures, generating insulating Ba(OH)2 and BaCO3 phases, respectively. The less BaY2O4 is formed in the fabrication process, the better chemical stability the Ni-BZY membranes possess. Therefore, a new Ni-BZY membrane is prepared through a judicial combination of BZY powders prepared from combined EDTA-citric and solid state reaction methods, and demonstrates exceptional chemical stability in H2O and CO2, enabling stable and even improved hydrogen flux in wet 50% CO2 at 900 °C.

  3. Luminomagnetic Eu3+- and Dy3+-doped hydroxyapatite for multimodal imaging.

    PubMed

    Tesch, Annemarie; Wenisch, Christoph; Herrmann, Karl-Heinz; Reichenbach, Jürgen R; Warncke, Paul; Fischer, Dagmar; Müller, Frank A

    2017-12-01

    Multimodal imaging has recently attracted much attention due to the advantageous combination of different imaging modalities, like photoluminescence (PL) and magnetic resonance imaging (MRI). In the present study, luminescent and magnetic hydroxyapatites (HAp) were prepared via doping with europium (Eu 3+ ) and dysprosium (Dy 3+ ), respectively. Co-doping of Eu 3+ and Dy 3+ was used to combine the desired physical properties. Both lanthanide ions were successfully incorporated in the HAp crystal lattice, where they preferentially occupied calcium(I) sites. While Eu-doped HAp (Eu:HAp) exhibits dopant concentration dependent persistent PL properties, Dy-doped HAp (Dy:HAp) shows paramagnetic behavior due to the high magnetic moment of Dy 3+ . Co-doped HAp (Eu:Dy:HAp) nanoparticles combine both properties in one single crystal. Remarkably, multimodal co-doped HAp features enhanced PL properties due to an energy transfer from Dy 3+ sensitizer to Eu 3+ activator ions. Eu:Dy:HAp exhibits strong transverse relaxation effects with a maximum transverse relaxivity of 83.3L/(mmol·s). Due to their tunable PL, magnetic properties and cytocompatibility Eu:-, Dy:- and Eu:Dy:HAp represent promising biocompatible ceramic materials for luminescence imaging that simultaneously may serve as a contrast agent for MRI in permanent implants or functional coatings. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Direct synthesis of nitrogen-doped graphene on platinum wire as a new fiber coating method for the solid-phase microextraction of BXes in water samples: Comparison of headspace and cold-fiber headspace modes.

    PubMed

    Memarian, Elham; Hosseiny Davarani, Saied Saeed; Nojavan, Saeed; Movahed, Siyavash Kazemi

    2016-09-07

    In this work, a new solid-phase microextraction fiber was prepared based on nitrogen-doped graphene (N-doped G). Moreover, a new strategy was proposed to solve problems dealt in direct coating of N-doped G. For this purpose, first, Graphene oxide (GO) was coated on Pt wire by electrophoretic deposition method. Then, chemical reduction of coated GO to N-doped G was accomplished by hydrazine and NH3. The prepared fiber showed good mechanical and thermal stabilities. The obtained fiber was used in two different modes (conventional headspace solid-phase microextraction and cold-fiber headspace solid-phase microextraction (CF-HS-SPME)). Both modes were optimized and applied for the extraction of benzene and xylenes from different aqueous samples. All effective parameters including extraction time, salt content, stirring rate, and desorption time were optimized. The optimized CF-HS-SPME combined with GC-FID showed good limit of detections (LODs) (0.3-2.3 μg/L), limit of quantifications (LOQs) (1.0-7.0 μg/L) and linear ranges (1.0-5000 μg/L). The developed method was applied for the analysis of benzene and xylenes in rainwater and some wastewater samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Synthesis of Non-uniformly Pr-doped SrTiO3 Ceramics and Their Thermoelectric Properties

    PubMed Central

    Mehdizadeh Dehkordi, Arash; Bhattacharya, Sriparna; Darroudi, Taghi; Zeng, Xiaoyu; Alshareef, Husam N.; Tritt, Terry M.

    2015-01-01

    We demonstrate a novel synthesis strategy for the preparation of Pr-doped SrTiO3 ceramics via a combination of solid state reaction and spark plasma sintering techniques. Polycrystalline ceramics possessing a unique morphology can be achieved by optimizing the process parameters, particularly spark plasma sintering heating rate. The phase and morphology of the synthesized ceramics were investigated in detail using X-ray diffraction, scanning electron microcopy and energy-dispersive X-ray spectroscopy. It was observed that the grains of these bulk Pr-doped SrTiO3 ceramics were enhanced with Pr-rich grain boundaries. Electronic and thermal transport properties were also investigated as a function of temperature and doping concentration. Such a microstructure was found to give rise to improved thermoelectric properties. Specifically, it resulted in a significant improvement in carrier mobility and the thermoelectric power factor. Simultaneously, it also led to a marked reduction in the thermal conductivity. As a result, a significant improvement (> 30%) in the thermoelectric figure of merit was achieved for the whole temperature range over all previously reported maximum values for SrTiO3-based ceramics. This synthesis demonstrates the steps for the preparation of bulk polycrystalline ceramics of non-uniformly Pr-doped SrTiO3. PMID:26327483

  6. Synthesis of Non-uniformly Pr-doped SrTiO3 Ceramics and Their Thermoelectric Properties.

    PubMed

    Mehdizadeh Dehkordi, Arash; Bhattacharya, Sriparna; Darroudi, Taghi; Zeng, Xiaoyu; Alshareef, Husam N; Tritt, Terry M

    2015-08-15

    We demonstrate a novel synthesis strategy for the preparation of Pr-doped SrTiO3 ceramics via a combination of solid state reaction and spark plasma sintering techniques. Polycrystalline ceramics possessing a unique morphology can be achieved by optimizing the process parameters, particularly spark plasma sintering heating rate. The phase and morphology of the synthesized ceramics were investigated in detail using X-ray diffraction, scanning electron microcopy and energy-dispersive X-ray spectroscopy. It was observed that the grains of these bulk Pr-doped SrTiO3 ceramics were enhanced with Pr-rich grain boundaries. Electronic and thermal transport properties were also investigated as a function of temperature and doping concentration. Such a microstructure was found to give rise to improved thermoelectric properties. Specifically, it resulted in a significant improvement in carrier mobility and the thermoelectric power factor. Simultaneously, it also led to a marked reduction in the thermal conductivity. As a result, a significant improvement (> 30%) in the thermoelectric figure of merit was achieved for the whole temperature range over all previously reported maximum values for SrTiO3-based ceramics. This synthesis demonstrates the steps for the preparation of bulk polycrystalline ceramics of non-uniformly Pr-doped SrTiO3.

  7. Influence of Ga doping ratio on the saturable absorption mechanism in Ga doped ZnO thin solid films processed by sol-gel spin coating technique

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.; Byrappa, K.

    2017-03-01

    In the present study, the nonlinear optical properties of sol-gel spin coated gallium doped zinc oxide (GZO) thin solid films are explored with nanosecond laser pulses using the z-scan technique. The higher doping ratios of Ga result in a large redshift of the energy gap (0.38 eV) due to the existence of enhanced grain boundary defects in GZO films. A positive nonlinear absorption coefficient is observed in undoped 1 at.wt.% GZO and 2 at.wt.% GZO films, and a negative nonlinear absorption coefficient in 3 at.wt.% GZO film. Fewer defects in undoped 1% GZO and 2% GZO films resulted in reverse saturable absorption (RSA), whereas a saturable absorption (SA) mechanism is observed in 3% GZO films and is attributed to the enhanced defect concentration in the band structure of GZO. However, all the films showed a self-defocusing mechanism, derived by a closed aperture z-scan technique. The present work sheds light on the defect mechanism involved in the observed nonlinear properties of GZO films.

  8. Thermoelectric Properties of Bi2Te3: CuI and the Effect of Its Doping with Pb Atoms

    PubMed Central

    Han, Mi-Kyung; Lee, Da-Hee; Kim, Sung-Jin

    2017-01-01

    In order to understand the effect of Pb-CuI co-doping on the thermoelectric performance of Bi2Te3, n-type Bi2Te3 co-doped with x at % CuI and 1/2x at % Pb (x = 0, 0.01, 0.03, 0.05, 0.07, and 0.10) were prepared via high temperature solid state reaction and consolidated using spark plasma sintering. Electron and thermal transport properties, i.e., electrical conductivity, carrier concentration, Hall mobility, Seebeck coefficient, and thermal conductivity, of CuI-Pb co-doped Bi2Te3 were measured in the temperature range from 300 K to 523 K, and compared to corresponding x% of CuI-doped Bi2Te3 and undoped Bi2Te3. The addition of a small amount of Pb significantly decreased the carrier concentration, which could be attributed to the holes from Pb atoms, thus the CuI-Pb co-doped samples show a lower electrical conductivity and a higher Seebeck coefficient when compared to CuI-doped samples with similar x values. The incorporation of Pb into CuI-doped Bi2Te3 rarely changed the power factor because of the trade-off relationship between the electrical conductivity and the Seebeck coefficient. The total thermal conductivity(κtot) of co-doped samples (κtot ~ 1.4 W/m∙K at 300 K) is slightly lower than that of 1% CuI-doped Bi2Te3 (κtot ~ 1.5 W/m∙K at 300 K) and undoped Bi2Te3 (κtot ~ 1.6 W/m∙K at 300 K) due to the alloy scattering. The 1% CuI-Pb co-doped Bi2Te3 sample shows the highest ZT value of 0.96 at 370 K. All data on electrical and thermal transport properties suggest that the thermoelectric properties of Bi2Te3 and its operating temperature can be controlled by co-doping. PMID:29072613

  9. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-03-02

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  10. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-11-23

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  11. Biokinetics of yttrium and comparison with its geochemical twin holmium

    DOE PAGES

    Leggett, Rich

    2017-06-01

    The transition metal yttrium (Y, atomic number 39) is chemically similar to elements in the lanthanide family (atomic numbers 57-71, lanthanum through lutetium) and is always present with the lanthanides in rare earth ores. Yttrium and the lanthanide holmium are particularly close chemical and physical analogues and are referred to as geochemical twins because they typically show little fractionation in geological material. Extensive measurements on rocks, soils, and meteorites indicate that the Y/Ho mass concentration ratio rarely falls far from the “chondritic” or “solar system” ratio of ~26. Our paper presents a new biokinetic model for yttrium in adult humansmore » and examines whether yttrium and holmium may be biological as well as geochemical twins. Collected data on yttrium and holmium in plants and human tissues do not allow precise derivations of Y/Ho concentration ratios but with occasional exceptions yield ratios that are reasonably consistent with chondritic values. Predictions of the time-dependent behavior of yttrium in adult humans based on the yttrium model presented here closely approximate predictions of the behavior of holmium based on a previously developed model for holmium. We know that yttrium and holmium are close biological analogues, but the available comparative data are too limited and imprecise to reveal whether there are any significant differences in their biological behavior.« less

  12. Effect of K3PO4 addition as sintering inhibitor during calcination of Y2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Soga, K.; Okumura, Y.; Tsuji, K.; Venkatachalam, N.

    2009-11-01

    Erbium-doped yttrium oxide nanoparticle is one of the most important for fluorescence bioimaging under near infrared excitation. Particle size of it below 100 nm is an important requirement for a cellular bioimaging. However, the synthesis with such small particles is difficult at the calcination temperature above 1200 °C due to the sintering and crystal growth of the particles. In this study, yttrium oxide nanoparticles with average size of 30 nm were successfully synthesized by using K3PO4 as a sintering inhibitor during the calcination. A single phase of cubic Y2O3 as the resultant material was confirmed by XRD, which was also confirmed to emit a bright upconversion emission under 980-nm excitation. Improvement of chemical durability due to the introduction of phosphate group on the surface of the Y2O3 particles is also reported.

  13. Electrolytic Deposition and Diffusion of Lithium onto Magnesium-9 Wt Pct Yttrium Bulk Alloy in Low-Temperature Molten Salt of Lithium Chloride and Potassium Chloride

    NASA Astrophysics Data System (ADS)

    Dong, Hanwu; Wu, Yaoming; Wang, Lidong; Wang, Limin

    2009-10-01

    The electrolytic deposition and diffusion of lithium onto bulk magnesium-9 wt pct yttrium alloy cathode in molten salt of 47 wt pct lithium chloride and 53 wt pct potassium chloride at 693 K were investigated. Results show that magnesium-yttrium-lithium ternary alloys are formed on the surface of the cathodes, and a penetration depth of 642 μm is acquired after 2 hours of electrolysis at the cathodic current density of 0.06 A·cm-2. The diffusion of lithium results in a great amount of precipitates in the lithium containing layer. These precipitates are the compound of Mg41Y5, which arrange along the grain boundaries and hinder the diffusion of lithium, and solid solution of yttrium in magnesium. The grain boundaries and the twins of the magnesium-9 wt pct yttrium substrate also have negative effects on the diffusion of lithium.

  14. Fabrication and microstructure of cerium doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics by solid-state reaction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Junlang, E-mail: lijunlangx@163.com; Xu, Jian, E-mail: xu.jian.57z@st.kyoto-u.ac.jp; Graduate School of Human and Environmental Studies, Division of Materials Function, Kyoto University, Kyoto 606-8501

    2014-07-01

    Highlights: • We fabricate Ce doped lutetium aluminum garnet ceramics by solid-state method. • The raw materials include Lu{sub 2}O{sub 3} nanopowders synthesized by co-precipitation method. • The density of the transparent ceramics reach 99.7% of the theoretical value. • The optical transmittance of the bulk ceramic at 550 nm was 57.48%. • Some scattering centers decrease the optical characteristic of the ceramic. - Abstract: Polycrystalline Ce{sup 3+} doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics fabricated by one step solid-state reaction method using synthetic nano-sized Lu{sub 2}O{sub 3}, commercial α-Al{sub 2}O{sub 3} and CeO{sub 2} powders were investigated in thismore » paper. The green compacts shaped by the mixed powders were successfully densified into Ce:LuAG transparent ceramics after vacuum sintering at 1750 °C for 10 h. The in-line optical transmittance of the Ce:LuAG ceramic made by home-made Lu{sub 2}O{sub 3} powders could reach 57.48% at 550 nm, which was higher than that of the ceramic made by commercial Lu{sub 2}O{sub 3} powders (22.96%). The microstructure observation showed that light scattering centers caused by micro-pores, aluminum segregation and refraction index inhomogeneities induced the decrease of optical transparency of the Ce:LuAG ceramics, which should be removed and optimized in the future work.« less

  15. Rare earths, the lanthanides, yttrium and scandium

    USGS Publications Warehouse

    Hedrick, J.B.

    2006-01-01

    In 2005, rare earths were not mined in the United States. The major supplier, Molycorp, continued to maintain a large stockpile of rare-earth concentrates and compounds. Consumption decreased of refined rare-earth products. The United States remained a major importer and exporter of rare earths in 2005. During the same period, yttrium was not mined or refined in the US. Hence, supply of yttrium compounds for refined yttrium products came from China, France and Japan. Scandium was not also mined. World production was primarily in China, Russia and Ukraine. Demand for rare earths in 2006 is expected to be closely tied to economic conditions in the US.

  16. Broadband near-infrared downconversion luminescence in Yb3+-doped BaZn2(BO3)2

    NASA Astrophysics Data System (ADS)

    Yu, Hua; Deng, Degang; Su, Weitao; Li, Chenxia; Xu, Shiqing

    2018-06-01

    BaZn2(BO3)2 self-activated phosphors were prepared by the conventional high temperature solid-state method. The PL spectra of BaZn2(BO3)2 powders prepared under reductive and air atmosphere consist of a weak ultraviolet emission band (∼410 nm) and a broad emission band which were centered at ∼ 500 and 545 nm, respectively. According to the spectral analysis and EPR results, the green and yellow emissions may arise from the transitions of photo-generated electron close to the conduction band to the deeply trapped hole in single ionized oxygen vacancy (V+ o) centers and single negatively charged interstitial oxygen ion (O- i), respectively. An efficient broadband near-infrared (NIR) quantum cutting was demonstrated in Yb3+ doped BaZn2(BO3)2 phosphor. Upon excitation with an ultraviolet photon at 375 nm, the emissions of two NIR photons at 983 nm from Yb3+ ions were achieved. The dependences of the visible and NIR emissions, the decay lifetime, the energy transfer efficiency, and the quantum efficiency on the Yb3+ doping content were investigated in detail. The results indicated that the maximum energy transfer and the corresponding downconversion quantum efficiency could reach between 68.5% and 168.5%.

  17. High power density cell using nanostructured Sr-doped SmCoO3 and Sm-doped CeO2 composite powder synthesized by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Shimada, Hiroyuki; Yamaguchi, Toshiaki; Suzuki, Toshio; Sumi, Hirofumi; Hamamoto, Koichi; Fujishiro, Yoshinobu

    2016-01-01

    High power density solid oxide electrochemical cells were developed using nanostructure-controlled composite powder consisting of Sr-doped SmCoO3 (SSC) and Sm-doped CeO2 (SDC) for electrode material. The SSC-SDC nano-composite powder, which was synthesized by spray pyrolysis, had a narrow particle size distribution (D10, D50, and D90 of 0.59, 0.71, and 0.94 μm, respectively), and individual particles were spherical, composing of nano-size SSC and SDC fragments (approximately 10-15 nm). The application of the powder to a cathode for an anode-supported solid oxide fuel cell (SOFC) realized extremely fine cathode microstructure and excellent cell performance. The anode-supported SOFC with the SSC-SDC cathode achieved maximum power density of 3.65, 2.44, 1.43, and 0.76 W cm-2 at 800, 750, 700, and 650 °C, respectively, using humidified H2 as fuel and air as oxidant. This result could be explained by the extended electrochemically active region in the cathode induced by controlling the structure of the starting powder at the nano-order level.

  18. Energetics of Intermediate Temperature Solid Oxide Fuel Cell Electrolytes: Singly and Doubly doped Ceria Systems

    NASA Astrophysics Data System (ADS)

    Buyukkilic, Salih

    Solid oxide fuel cells (SOFCs) have potential to convert chemical energy directly to electrical energy with high efficiency, with only water vapor as a by-product. However, the requirement of extremely high operating temperatures (~1000 °C) limits the use of SOFCs to only in large scale stationary applications. In order to make SOFCs a viable energy solution, enormous effort has been focused on lowering the operating temperatures below 700 °C. A low temperature operation would reduce manufacturing costs by slowing component degradation, lessening thermal mismatch problems, and sharply reducing costs of operation. In order to optimize SOFC applications, it is critical to understand the thermodynamic stabilities of electrolytes since they directly influence device stability, sustainability and performance. Rare-earth doped ceria electrolytes have emerged as promising materials for SOFC applications due to their high ionic conductivity at the intermediate temperatures (500--700 °C). However there is a fundamental lack of understanding regarding their structure, thermodynamic stability and properties. Therefore, the enthalpies of formation from constituent oxides and ionic conductivities were determined to investigate a relationship between the stability, composition, structural defects and ionic conductivity in rare earth doped ceria systems. For singly doped ceria electrolytes, we investigated the solid solution phase of bulk Ce1-xLnxO2-0.5x where Ln = Sm and Nd (0 ≤ x ≤ 0.30) and analyzed their enthalpies of formation, mixing and association, and bulk ionic conductivities while considering cation size mismatch and defect associations. It was shown that for ambient temperatures in the dilute dopant region, the positive heat of formation reaches a maximum as the system becomes increasingly less stable due to size mismatch. In concentrated region, stabilization to a certain solubility limit was observed probably due to the defect association of trivalent cations

  19. A comparison study of rhodamine B photodegradation over nitrogen-doped lamellar niobic acid and titanic acid under visible-light irradiation.

    PubMed

    Li, Xiukai; Kikugawa, Naoki; Ye, Jinhua

    2009-01-01

    A solid-state reaction method with urea as a nitrogen precursor was used to prepare nitrogen-doped lamellar niobic and titanic solid acids (i.e., HNb(3)O(8) and H(2)Ti(4)O(9)) with different acidities for visible-light photocatalysis. The photocatalytic activities of the nitrogen-doped solid acids were evaluated for rhodamine B (RhB) degradation and the results were compared with those obtained over the corresponding nitrogen-doped potassium salts. Techniques such as XRD, BET, SEM, X-ray photoelectron spectroscopy, and UV-visible diffuse reflectance spectroscopy were adopted to explore the nature of the materials as well as the characteristics of the doped nitrogen species. It was found that the intercalation of the urea precursor helped to stabilize the layered structures of both lamellar solid acids and enabled easier nitrogen doping. The effects of urea intercalation were more significant for the more acidic HNb(3)O(8) sample than for the less acidic H(2)Ti(4)O(9). Compared with the nitrogen-doped KNb(3)O(8) and K(2)Ti(4)O(9) samples, the nitrogen-doped HNb(3)O(8) and H(2)Ti(4)O(9) solid acids absorb more visible light and exhibit a superior activity for RhB photodegradation under visible-light irradiation. The nitrogen-doped HNb(3)O(8) sample performed the best among all the samples. The results of the current study suggest that the protonic acidity of the lamellar solid-acid sample is a key factor that influences nitrogen doping and the resultant visible-light photocatalysis.

  20. Preparation and Characterization of Chromium(III)-Activated Yttrium Aluminum Borate: A New Thermographic Phosphor for Optical Sensing and Imaging at Ambient Temperatures

    PubMed Central

    2010-01-01

    A new thermographic phosphor based on chromium(III)-doped yttrium aluminum borate (YAB) is obtained as single crystals by high temperature flux growth and as a microcrystalline powder via solution combustion synthesis. The phosphor is excitable both in the blue (λmax 422 nm) and in the red part of the spectrum (λmax 600 nm) and shows bright NIR emission. The brightness of the phosphor is comparable to that of a well-known lamp phosphor Mn(IV)-doped magnesium fluorogermanate. At ambient temperatures, the Cr(III)-doped YAB shows high temperature dependence of the luminescence decay time, which approaches 1% per deg. The material shows no decrease in luminescence intensity at higher temperatures. The new phosphor is particularly promising for applications in temperature-compensated optical chemosensors (including those based on NIR-emitting indicators) and in pressure-sensitive paints. PMID:20473368

  1. Seven-core neodymium-doped phosphate all-solid photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Wang, Longfei; He, Dongbing; Feng, Suya; Yu, Chunlei; Hu, Lili; Chen, Danping

    2016-01-01

    We demonstrate a single-mode seven-core Nd-doped phosphate photonic crystal fiber with all-solid structure with an effective mode field diameter of 108 μm. The multicore fiber is first theoretically investigated through the finite-difference time-domain method. Then the in-phase mode is selected experimentally by a far-field mode-filtering method. The obtained in-phase mode has 7 mrad mode field divergences, which approximately agrees with the predicted 5.6 mrad in seven-core fiber. Output power of 15.5 W was extracted from a 25 cm fiber with slope efficiency of 57%.

  2. Shape-Controlled Synthesis of Isotopic Yttrium-90-Labeled Rare Earth Fluoride Nanocrystals for Multimodal Imaging.

    PubMed

    Paik, Taejong; Chacko, Ann-Marie; Mikitsh, John L; Friedberg, Joseph S; Pryma, Daniel A; Murray, Christopher B

    2015-09-22

    Isotopically labeled nanomaterials have recently attracted much attention in biomedical research, environmental health studies, and clinical medicine because radioactive probes allow the elucidation of in vitro and in vivo cellular transport mechanisms, as well as the unambiguous distribution and localization of nanomaterials in vivo. In addition, nanocrystal-based inorganic materials have a unique capability of customizing size, shape, and composition; with the potential to be designed as multimodal imaging probes. Size and shape of nanocrystals can directly influence interactions with biological systems, hence it is important to develop synthetic methods to design radiolabeled nanocrystals with precise control of size and shape. Here, we report size- and shape-controlled synthesis of rare earth fluoride nanocrystals doped with the β-emitting radioisotope yttrium-90 ((90)Y). Size and shape of nanocrystals are tailored via tight control of reaction parameters and the type of rare earth hosts (e.g., Gd or Y) employed. Radiolabeled nanocrystals are synthesized in high radiochemical yield and purity as well as excellent radiolabel stability in the face of surface modification with different polymeric ligands. We demonstrate the Cerenkov radioluminescence imaging and magnetic resonance imaging capabilities of (90)Y-doped GdF3 nanoplates, which offer unique opportunities as a promising platform for multimodal imaging and targeted therapy.

  3. Harmonic technology versus neodymium-doped yttrium aluminium garnet laser and electrocautery for lung metastasectomy: an experimental study.

    PubMed

    Fiorelli, Alfonso; Accardo, Marina; Carelli, Emanuele; Del Prete, Assunta; Messina, Gaetana; Reginelli, Alfonso; Berritto, Daniela; Papale, Ferdinando; Armenia, Emilia; Chiodini, Paolo; Grassi, Roberto; Santini, Mario

    2016-07-01

    We compared the efficacy of non-anatomical lung resections with that of three other techniques: monopolar electrocautery; neodymium-doped yttrium aluminium garnet laser and harmonic technology. We hypothesized that the thermal damage with harmonic technology could be reduced because of the lower temperatures generated by harmonic technology compared with that of other devices. Initial studies were performed in 13 isolated pig lungs for each group. A 1.5-cm capsule was inserted within the lung to mimic a tumour and a total of 25 non-anatomical resections were performed with each device. The damage of the resected lung surface and of the tumour border were evaluated according to the colour (ranging from 0-pink colour to 4-black colour), histological (ranging from Score 0-no changes to Score 3-presence of necrotic tissue) and radiological (ranging from Score 0-isointense T2 signal at magnetic resonance imaging to Score 3-hyperintense T2 signal) criteria. A total of seven non-anatomical resections with harmonic technology were also performed in two live pigs to assess if ex vivo results could be reproducible in live pigs with particular attention to haemostatic and air-tightness properties. In the ex vivo lung, there was a statistical significant difference between depth of thermal damage (P < 0.0001) in electrocautery (1.3 [1.2-1.4]), laser (0.9 [0.6-0.9]) and harmonic (0.4 [0.3-0.5]) groups. Electrocautery had a higher depth of thermal damage compared with that of the laser (P = 0.01) and harmonic groups (P = 0.0005). The harmonic group had a less depth of thermal damage than that of the laser group (P = 0.01). Also, histological damages of tumour borders (P < 0.001) and resected lung surface (P < 0.001), radiological damage of tumour borders (P < 0.001) and resected lung surface (P < 0.001) and colour changes (P < 0.001) were statistically different between three study groups. Resections of in vivo pig lungs showed no bleeding; 2 of 7 cases of low air leaks were

  4. Structural phase transitions in yttrium under ultrahigh pressures

    NASA Astrophysics Data System (ADS)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Vohra, Yogesh K.

    2012-09-01

    X-ray diffraction studies were carried out on the rare earth metal yttrium up to 177 GPa in a diamond anvil cell at room temperature. Yttrium was compressed to 37% of its initial volume at the highest pressure. The rare earth crystal structure sequence hcp → Sm type → dhcp → mixed(dhcp + fcc) → distorted fcc (dfcc) is observed in yttrium below 50 GPa. The dfcc (hR24) phase has been observed to persist in the pressure range of 50-95 GPa. A structural transition from dfcc to a low symmetry phase has been observed in yttrium at 99 ± 4 GPa with a volume change of - 2.6%. This low symmetry phase has been identified as a monoclinic C2/m phase, which has also been observed in other rare earth elements under high pressures. The appearance of this low symmetry monoclinic phase in yttrium shows that its electronic structure under extreme conditions resembles that of heavy rare earth metals, with a significant increase in d-band character of the valence electrons and possibly some f-electron states near the Fermi level.

  5. Structural phase transitions in yttrium under ultrahigh pressures.

    PubMed

    Samudrala, Gopi K; Tsoi, Georgiy M; Vohra, Yogesh K

    2012-09-12

    X-ray diffraction studies were carried out on the rare earth metal yttrium up to 177 GPa in a diamond anvil cell at room temperature. Yttrium was compressed to 37% of its initial volume at the highest pressure. The rare earth crystal structure sequence hcp → Sm type → dhcp → mixed(dhcp + fcc) → distorted fcc (dfcc) is observed in yttrium below 50 GPa. The dfcc (hR24) phase has been observed to persist in the pressure range of 50-95 GPa. A structural transition from dfcc to a low symmetry phase has been observed in yttrium at 99 ± 4 GPa with a volume change of - 2.6%. This low symmetry phase has been identified as a monoclinic C2/m phase, which has also been observed in other rare earth elements under high pressures. The appearance of this low symmetry monoclinic phase in yttrium shows that its electronic structure under extreme conditions resembles that of heavy rare earth metals, with a significant increase in d-band character of the valence electrons and possibly some f-electron states near the Fermi level.

  6. Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W

    PubMed Central

    Wang, Longfei; He, Dongbing; Feng, Suya; Yu, Chunlei; Hu, Lili; Qiu, Jianrong; Chen, Danping

    2015-01-01

    Single-mode ytterbium-doped phosphate all-solid photonic crystal fiber (AS-PCF) with 13.8 W output power and 32% slope efficiency was reported. By altering the diameter of the rods around the doped core and thus breaking the symmetry of the fiber, a polarization-maintaining AS-PCF with degree of polarization of >85% was also achieved, for the first time to knowledge, in a phosphate PCF. PMID:25684731

  7. Magnetic N-doped mesoporous carbon as an adsorbent for the magnetic solid-phase extraction of phthalate esters from soft drinks.

    PubMed

    Li, Menghua; Jiao, Caina; Yang, Xiumin; Wang, Chun; Wu, Qiuhua; Wang, Zhi

    2017-04-01

    A new kind of magnetic N-doped mesoporous carbon was prepared by the one-step carbonization of a hybrid precursor (glucose, melamine, and iron chloride) in a N 2 atmosphere with a eutectic salt (KCl/ZnCl 2 ) as the porogen. The obtained magnetic N-doped mesoporous carbon showed excellent characteristics, such as strong magnetic response, high surface area, large pore volume, and abundant π-electron system, which endow it with a great potential as a magnetic solid-phase extraction adsorbent. To evaluate its adsorption performance, the magnetic N-doped mesoporous carbon was used for the extraction of three phthalate esters from soft drink samples followed by high-performance liquid chromatographic analysis. Under the optimum conditions, the developed method showed a good linearity (1.0-120.0 ng/mL), low limit of detection (0.1-0.3 ng/mL, S/N = 3), and good recoveries (83.2-119.0%) in soft drink samples. The results indicated that the magnetic N-doped mesoporous carbon has an excellent adsorption capacity for phthalate esters and the present method is simple, accurate, and highly efficient for the extraction and determination of phthalate esters in complex matrix samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Molecular-scale properties of MoO3 -doped pentacene

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Meyer, Jens; Kahn, Antoine

    2010-10-01

    The mechanisms of molecular doping in organic electronic materials are explored through investigation of pentacene p -doped with molybdenum trioxide (MoO3) . Doping is confirmed with ultraviolet photoelectron spectroscopy. Isolated dopants are imaged at the molecular scale using scanning tunneling microscopy (STM) and effects due to localized holes are observed. The results demonstrate that donated charges are localized by the counterpotential of ionized dopants in MoO3 -doped pentacene, generalizing similar effects previously observed for pentacene doped with tetrafluoro-tetracyanoquinodimethane. Such localized hole effects are only observed for low molecular weight MoO3 species. It is shown that for larger MoO3 polymers and clusters, the ionized dopant potential is sufficiently large as to mask the effect of the localized hole in STM images. Current-voltage measurements recorded using scanning tunneling spectroscopy reveal that electron conductivity decreases in MoO3 -doped films, as expected for electron capture and p -doping.

  9. Computational model for operation of 2 mum co-doped Tm,Ho solid state lasers.

    PubMed

    Louchev, Oleg A; Urata, Yoshiharu; Saito, Norihito; Wada, Satoshi

    2007-09-17

    A computational model for operation of co-doped Tm,Ho solid-state lasers is developed coupling (i) 8-level rate equations with (ii) TEM00 laser beam distribution, and (iii) complex heat dissipation model. Simulations done for Q-switched approximately 0.1 J giant pulse generation by Tm,Ho:YLF laser show that approximately 43% of the 785 nm light diode side-pumped energy is directly transformed into the heat inside the crystal, whereas approximately 45% is the spontaneously emitted radiation from (3)F(4), (5)I(7) , (3)H(4) and (3)H(5) levels. In water-cooled operation this radiation is absorbed inside the thermal boundary layer where the heat transfer is dominated by heat conduction. In high-power operation the resulting temperature increase is shown to lead to (i) significant decrease in giant pulse energy and (ii) thermal lensing.

  10. Kelp-derived three-dimensional hierarchical porous N, O-doped carbon for flexible solid-state symmetrical supercapacitors with excellent performance

    NASA Astrophysics Data System (ADS)

    Zhang, Yifu; Jiang, Hanmei; Wang, Qiushi; Zheng, Jiqi; Meng, Changgong

    2018-07-01

    Three-dimensional (3D) porous N, O-doped carbon with hierarchical structures composed of micropores, mesopores and macropores were synthesized by the direct carbonization of kelp with a "self-activation" process. The as-obtained 3D N, O-doped carbon remained abundant N and O functional groups and the BET specific surface area measured 656 m2 g-1. 3D hierarchical porous structures with the pore size ranged from several nanometers to hundred nanometers and lots of pores were attributed to mesopores with the average pore size of about 5.4 nm. Electrochemical properties of the 3D hierarchical porous N, O-doped carbon as a supercapactior (SC) electrode were investigated and it delivered excellent capacitance of 669 mF cm-2 at 1 mA cm-2 due to its 3D hierarchical porous structures with high specific surface area which is beneficial for improving ionic storage and transportation in electrodes. This kelp-derived carbon exhibited excellent cyclic performance with the retention of 104% after 10,000 cycles. A flexible solid-state symmetric SC (SSC) device was fabricated using the 3D hierarchical porous N, O-doped carbon and delivered an excellent capacitance of 412 mF cm-2 at 2 mA cm-2 and satisfying cyclic stability with the retention of 85% after 10,000 cycles. The areal energy density of the SSC device reach up to 0.146 mWh cm-2 at the power density of 0.8 mW cm-2. This facile route for low-cost carbonaceous materials with novel architecture and functionality can be as a promising alternative to synthesize biomass carbon for practical SC application.

  11. Synthesis and photoluminescence properties of Pb{sup 2+} doped inorganic borate phosphor NaSr{sub 4}(BO{sub 3}){sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, A. O., E-mail: abhi2718@gmail.com; Koparkar, K. A.; Omanwar, S. K.

    2016-05-06

    A series of Inorganic borate phosphors NaSr{sub 4}(BO{sub 3}){sub 3} doped with Pb{sup 2+} was successfully synthesized by modified solid state diffusion method. The crystal structure and the phase purity of sample were characterized by powder X-ray diffraction (XRD). The photoluminescence properties of synthesized materials were investigated using spectrofluorometer at room temperature. The phosphor show strong broad band emission spectra in UVA region maximum at 370 nm under the excitation of 289 nm. The dependence of the emission intensity on the Pb{sup 2+} concentration for the NaSr{sub 4}(BO{sub 3}){sub 3} were studied in details. The concentration quenching of Pb{sup 2+}more » doped NaSr{sub 4}(BO{sub 3}){sub 3} was observed at 0.02 mol. The Stokes shifts of NaSr{sub 4}(BO{sub 3}){sub 3}: Pb{sup 2+} phosphor was calculated to be 7574 cm{sup −1}.« less

  12. Facilitated Oxygen Chemisorption in Heteroatom-Doped Carbon for Improved Oxygen Reaction Activity in All-Solid-State Zinc-Air Batteries.

    PubMed

    Liu, Sisi; Wang, Mengfan; Sun, Xinyi; Xu, Na; Liu, Jie; Wang, Yuzhou; Qian, Tao; Yan, Chenglin

    2018-01-01

    Driven by the intensified demand for energy storage systems with high-power density and safety, all-solid-state zinc-air batteries have drawn extensive attention. However, the electrocatalyst active sites and the underlying mechanisms occurring in zinc-air batteries remain confusing due to the lack of in situ analytical techniques. In this work, the in situ observations, including X-ray diffraction and Raman spectroscopy, of a heteroatom-doped carbon air cathode are reported, in which the chemisorption of oxygen molecules and oxygen-containing intermediates on the carbon material can be facilitated by the electron deficiency caused by heteroatom doping, thus improving the oxygen reaction activity for zinc-air batteries. As expected, solid-state zinc-air batteries equipped with such air cathodes exhibit superior reversibility and durability. This work thus provides a profound understanding of the reaction principles of heteroatom-doped carbon materials in zinc-air batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Aluminum-doped ceria-zirconia solid solutions with enhanced thermal stability and high oxygen storage capacity.

    PubMed

    Dong, Qiang; Yin, Shu; Guo, Chongshen; Sato, Tsugio

    2012-10-01

    A facile solvothermal method to synthesize aluminum-doped ceria-zirconia (Ce0.5Zr0.5-xAlxO2-x/2, x = 0.1 to 0.4) solid solutions was carried out using Ce(NH4)2(NO3)6, Zr(NO3)3·2H2O Al(NO3)3·9H2O, and NH4OH as the starting materials at 200°C for 24 h. The obtained solid solutions from the solvothermal reaction were calcined at 1,000°C for 20 h in air atmosphere to evaluate the thermal stability. The synthesized Ce0.5Zr0.3Al0.2O1.9 particle was characterized for the oxygen storage capacity (OSC) in automotive catalysis. For the characterization, X-ray diffraction, transmission electron microscopy, and the Brunauer-Emmet-Teller (BET) technique were employed. The OSC values of all samples were measured at 600°C using thermogravimetric-differential thermal analysis. Ce0.5Zr0.3Al0.2O1.9 solid solutions calcined at 1,000°C for 20 h with a BET surface area of 18 m2 g-1 exhibited a considerably high OSC of 427 μmol-O g-1 and good OSC performance stability. The same synthesis route was employed for the preparation of the CeO2 and Ce0.5Zr0.5O2. The incorporation of aluminum ion in the lattice of ceria-based catalyst greatly enhanced the thermal stability and OSC.

  14. Sol-Gel Synthesis and Antioxidant Properties of Yttrium Oxide Nanocrystallites Incorporating P-123

    PubMed Central

    Mellado-Vázquez, Rebeca; García-Hernández, Margarita; López-Marure, Arturo; López-Camacho, Perla Yolanda; Morales-Ramírez, Ángel de Jesús; Beltrán-Conde, Hiram Isaac

    2014-01-01

    Yttrium oxide (Y2O3) nanocrystallites were synthesized by mean of a sol-gel method using two different precursors. Raw materials used were yttrium nitrate and yttrium chloride, in methanol. In order to promote oxygen vacancies, P-123 poloxamer was incorporated. Synthesized systems were heat-treated at temperatures from 700 °C to 900 °C. Systems at 900 °C were prepared in the presence and absence of P-123 using different molar ratios (P-123:Y = 1:1 and 2:1). Fourier transform infrared spectroscopy (FTIR) results revealed a characteristic absorption band of Y–O vibrations typical of Y2O3 matrix. The structural phase was analyzed by X-ray diffraction (XRD), showing the characteristic cubic phase in all systems. The diffraction peak that presented the major intensity corresponded to the sample prepared from yttrium chloride incorporating P-123 in a molar ratio of P-123:Y = 2:1 at 900 °C. Crystallites sizes were determined by Scherrer equation as between 21 nm and 32 nm. Antioxidant properties were estimated by 2,2-diphenyl-1-picrylhydrazyl (DPPH•) assays; the results are discussed. PMID:28788211

  15. Chrystal structure properties of Al-doped Li{sub 4}Ti{sub 5}O{sub 12} synthesized by solid state reaction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandi, Dianisa Khoirum, E-mail: dianisa875@gmail.com; Suryana, Risa, E-mail: rsuryana@staff.uns.ac.id; Priyono, Slamet, E-mail: slam013@lipi.go.id

    2016-02-08

    This research aim is to analyze the effect of Aluminum (Al) doping in the structural properties of Al-doped Li{sub 4}Ti{sub 5}O{sub 12} as anode in lithium ion battery. Al-doped Li{sub 4}Ti{sub 5}O{sub 12} powders were synthesized by solid state reaction method. LiOH.H{sub 2}O, TiO{sub 2}, and Al{sub 2}O{sub 3} were raw materials. These materials were milled for 15 h, calcined at temperature of 750{sup o}C and sintered at temperature of 800{sup o}C. Mole percentage of doping Al (x) was varied at x=0; x=0.025; and x =0.05. Al-doped Li{sub 4}Ti{sub 5}O{sub 12} powders were synthesized by solid state reaction method. X-ray diffractionmore » was employed to determine the structure of Li{sub 4}Ti{sub 5}O{sub 12}. The PDXL software was performed on the x-ray diffraction data to estimate the phase percentage, the lattice parameter, the unit cell volume, and the crystal density. Al-doped Li{sub 4}Ti{sub 5}O{sub 12} has cubic crystal structure. Al-doping at x=0 and x=0.025 does not change the phase as Li{sub 4}Ti{sub 5}O{sub 12} while at x=0.050 the phase changes to the LiTiAlO{sub 4}. The diffraction patterns show that the angle shifted to the right as the increase of x which indicated that Al substitute Ti site. Percentage of Li{sub 4}Ti{sub 5}O{sub 12} phase at x=0 and x=0.025 was 97.8% and 96.8%, respectively. However, the lattice parameters, the unit cell volume, and the crystal density does not change significantly at x=0; x=0.025; and x=0.050. Based on the percentage of Li{sub 4}Ti{sub 5}O{sub 12} phase, the Al-doped Li at x=0 and x=0.025 is promising as a lithium battery anode.« less

  16. Rare earth activated yttrium aluminate phosphors with modulated luminescence.

    PubMed

    Muresan, L E; Popovici, E J; Perhaita, I; Indrea, E; Oro, J; Casan Pastor, N

    2016-06-01

    Yttrium aluminate (Y3 A5 O12 ) was doped with different rare earth ions (i.e. Gd(3+) , Ce(3+) , Eu(3+) and/or Tb(3+) ) in order to obtain phosphors (YAG:RE) with general formula,Y3-x-a Gdx REa Al5 O12 (x = 0; 1.485; 2.97 and a = 0.03). The synthesis of the phosphor samples was done using the simultaneous addition of reagents technique. This study reveals new aspects regarding the influence of different activator ions on the morpho-structural and luminescent characteristics of garnet type phosphor. All YAG:RE phosphors are well crystallized powders containing a cubic-Y3 Al5 O12 phase as major component along with monoclinic-Y4 Al2 O9 and orthorhombic-YAlO3 phases as the impurity. The crystallites dimensions of YAG:RE phosphors vary between 38 nm and 88 nm, while the unit cell slowly increase as the ionic radius of the activator increases. Under UV excitation, YAG:Ce exhibits yellow emission due to electron transition in Ce(3+) from the 5d level to the ground state levels ((2) F5/2 , (2) F7/2 ). The emission intensity of Ce(3+) is enhanced in the presence of the Tb(3+) ions and is decreased in the presence of Eu(3+) ions due to some radiative or non-radiative processes that take place between activator ions. By varying the rare earth ions, the emission colour can be modulated from green to white and red. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Symmetric supercapacitors using urea-modified lignin derived N-doped porous carbon as electrode materials in liquid and solid electrolytes

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Xu, Ming; Gu, Yan; Gu, Zhengrong; Fan, Qi Hua

    2016-11-01

    N-doped porous carbon materials derived from urea-modified lignin were prepared via efficient KOH activation under carbonization. The synthesized N-doped carbon materials, which displayed a well-developed porous morphology with high specific surface area of 3130 m2 g-1, were used as electrode materials in symmetric supercapacitors with aqueous and solid electrolytes. In consistent with the observed physical structures and properties, the supercapacitors exhibited specific capacitances of 273 and 306 F g-1, small resistances of 2.6 and 7.7 Ω, stable charge/discharge at different current densities for over 5000 cycles and comparable energy and power density in 6 mol L-1 KOH liquid and KOH-PVA solid electrolytes, respectively.

  18. Hydrothermal synthesis, crystal structures and photoluminescence properties of mixed europium-yttrium organic frameworks

    NASA Astrophysics Data System (ADS)

    Han, Yinfeng; Fu, Lianshe; Mafra, Luís; Shi, Fa-Nian

    2012-02-01

    Three mixed europium-yttrium organic frameworks: Eu2-xYx(Mel)(H2O)6 (Mel=mellitic acid or benzene-1,2,3,4,5,6-hexacarboxylic acid, x=0.38 1, 0.74 2, and 0.86 3) have been synthesized and characterized. All the compounds contain a 3-D net with (4, 8)-flu topology. The study indicates that the photoluminescence properties are effectively affected by the different ratios of europium and yttrium ions, the quantum efficiency is increased and the Eu3+ lifetime becomes longer in these MOFs than those of the Eu analog.

  19. Fabrication of Ce3+ doped Gd3Ga3Al2O12 ceramics by reactive sintering method

    NASA Astrophysics Data System (ADS)

    Ye, Yong; Liu, Peng; Yan, Dongyue; Xu, Xiaodong; Zhang, Jian

    2017-09-01

    Ce3+ doped Gd3Ga3Al2O12 (Ce:GGAG) ceramics were fabricated by solid state reactive sintering method in this study. The ceramics were pre-sintered in normal muffle furnace in air at various temperature range from 1410 °C to 1550 °C for 10 h and post-treated by hot isostatic press at 1400 °C/2 h in 200 MPa Ar. The phase and microstructure evolution of Ce: GGAG samples during the densification process were investigated by X-ray diffraction and scanning electron microscope. Pure GGAG phase appeared with the temperature increased to 1200 °C. The fully dense and translucent GGAG ceramics were fabricated by pre-sintering at 1450 °C and followed by HIP treatment.

  20. Upconversion improvement in KLaF4:Yb3+/Er3+ nanoparticles by doping Al3+ ions

    NASA Astrophysics Data System (ADS)

    Zhou, Haifang; Wang, Xiechun; Lai, Yunfeng; Cheng, Shuying; Zheng, Qiao; Yu, Jinlin

    2017-10-01

    Rare-earth ion-doped upconversion (UC) materials show great potential applications in optical and optoelectronic devices due to their novel optical properties. In this work, hexagonal KLaF4:Yb3+/Er3+ nanoparticles (NPs) were successfully synthesized by a hydrothermal method, and remarkably enhanced upconversion luminescence in green and red emission bands in KLaF4:Yb3+/Er3+ NPs has been achieved by doping Al3+ ions under 980 nm excitation. Compared to the aluminum-free KLaF4:Yb3+/Er3+ NPs sample, the UC fluorescence intensities of the green and red emissions of NPs doped with 10 at.% Al3+ ions were significantly enhanced by 5.9 and 7.3 times, respectively. Longer lifetimes of the doped samples were observed for the 4S3/2 state and 4F9/2 state. The underlying reason for the UC enhancement by doping Al3+ ions was mainly ascribed to distortion of the local symmetry around Er3+ ions and adsorption reduction of organic ligands on the surface of NPs. In addition, the influence of doping Al3+ ions on the structure and morphology of the NPs samples was also discussed.

  1. Structure and intense UV up-conversion emissions in RE3+-doped sol-gel glass-ceramics containing KYF4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Yanes, A. C.; Santana-Alonso, A.; Méndez-Ramos, J.; del-Castillo, J.

    2013-12-01

    Transparent nano-glass-ceramics containing KYF4 nanocrystals were successfully obtained by the sol-gel method, doped with Eu3+ and co-doped with Yb3+ and Tm3+ ions. Precipitation of cubic KYF4 nanocrystals was confirmed by X-ray diffraction and high-resolution transmission electron microscope images. Excitation and emission spectra let us to discern between ions into KYF4 nanocrystals and those remaining in a glassy environment, supplemented with time-resolved photoluminescence decays, that also clearly reveal differences between local environments. Unusual high-energy up-conversion emissions in the UV range were obtained in Yb3+-Tm3+ co-doped samples, and involved mechanisms were discussed. The intensity of these high-energy emissions was analyzed as a function of Yb3+ concentration, heat treatment temperature of precursor sol-gel glasses and pump power, determining the optimum values for potential optical applications as highly efficient UV up-conversion materials in UV solid-state lasers.

  2. Study of the photocatalytic activity of Fe 3+, Cr 3+, La 3+ and Eu 3+ single-doped and co-doped TiO 2 catalysts produced by aqueous sol-gel processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malengreaux, Charline M.; Pirard, Sophie L.; Léonard, Géraldine

    An aqueous sol-gel process, previously developed for producing undoped and Cu 2+, Ni 2+, Zn 2+ or Pb 2+ doped TiO 2 photocatalysts with remarkably high photocatalytic activity without requiring any calcination step, has been adapted to produce Fe 3+, Cr 3+, La 3+ or Eu 3+ single-doped TiO 2 photocatalysts as well as La3+-Fe3+ and Eu3+-Fe3+ co-doped TiO 2 catalysts. The physicochemical properties of the obtained catalysts have been characterized using a suite of complementary techniques, including ICP-AES, XRD, UV-Vis spectroscopy, nitrogen adsorption-desorption and Fe-57 M ssbauer. The active crystalline phase is obtained without requiring any calcination step andmore » all the different catalysts are composed of nanocrystallites of anatase with a size of 6-7 nm and a high specific surface area varying from 181 to 298 m 2 g -1. In this study, the effect of the NO 3:Ti(IV) mole ratio used to induce the peptisation reaction during the synthesis has been studied and the results revealed that this ratio can influence significantly the textural properties of the resulting catalyst. A screening of the photocatalytic activity of the undoped and Fe 3+, Cr 3+, La 3+ or Eu 3+ single-doped and co-doped photocatalysts has been performed by evaluating the degradation of 4-nitrophenol under UV-Visible light (330 nm < < 800 nm). This study suggests that the photocatalytic activity is significantly influenced by the dopant nature and content with an optimal dopant content being observed in the case of Fe 3+ or La 3+ single-doped as well as in the case of La 3+-Fe 3+ and Eu 3+-Fe 3+ co-doped catalysts. In the case of Cr 3+ single-doped catalysts, a detrimental effect of the dopant on the photocatalytic degradation of 4-nitrophenol has been observed while no significant influence of the dopant has been detected in the case of Eu 3+ single-doped catalysts. In conclusion, the role of the different dopants in modulating the photocatalytic activity is discussed.« less

  3. Study of the photocatalytic activity of Fe 3+, Cr 3+, La 3+ and Eu 3+ single-doped and co-doped TiO 2 catalysts produced by aqueous sol-gel processing

    DOE PAGES

    Malengreaux, Charline M.; Pirard, Sophie L.; Léonard, Géraldine; ...

    2016-08-30

    An aqueous sol-gel process, previously developed for producing undoped and Cu 2+, Ni 2+, Zn 2+ or Pb 2+ doped TiO 2 photocatalysts with remarkably high photocatalytic activity without requiring any calcination step, has been adapted to produce Fe 3+, Cr 3+, La 3+ or Eu 3+ single-doped TiO 2 photocatalysts as well as La3+-Fe3+ and Eu3+-Fe3+ co-doped TiO 2 catalysts. The physicochemical properties of the obtained catalysts have been characterized using a suite of complementary techniques, including ICP-AES, XRD, UV-Vis spectroscopy, nitrogen adsorption-desorption and Fe-57 M ssbauer. The active crystalline phase is obtained without requiring any calcination step andmore » all the different catalysts are composed of nanocrystallites of anatase with a size of 6-7 nm and a high specific surface area varying from 181 to 298 m 2 g -1. In this study, the effect of the NO 3:Ti(IV) mole ratio used to induce the peptisation reaction during the synthesis has been studied and the results revealed that this ratio can influence significantly the textural properties of the resulting catalyst. A screening of the photocatalytic activity of the undoped and Fe 3+, Cr 3+, La 3+ or Eu 3+ single-doped and co-doped photocatalysts has been performed by evaluating the degradation of 4-nitrophenol under UV-Visible light (330 nm < < 800 nm). This study suggests that the photocatalytic activity is significantly influenced by the dopant nature and content with an optimal dopant content being observed in the case of Fe 3+ or La 3+ single-doped as well as in the case of La 3+-Fe 3+ and Eu 3+-Fe 3+ co-doped catalysts. In the case of Cr 3+ single-doped catalysts, a detrimental effect of the dopant on the photocatalytic degradation of 4-nitrophenol has been observed while no significant influence of the dopant has been detected in the case of Eu 3+ single-doped catalysts. In conclusion, the role of the different dopants in modulating the photocatalytic activity is discussed.« less

  4. Spectroscopic properties of Tm3+/Al3+ co-doped sol-gel silica glass

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Lou, Fengguang; Wang, Shikai; Yu, Chunlei; Chen, Danping; Hu, Lili

    2015-04-01

    Tm3+/Al3+ co-doped silica glass was prepared by sol-gel method combined with high temperature sintering. Glasses with compositions of xTm2O3-15xAl2O3-(100 - 16x) SiO2 (in mol%, x = 0.1, 0.3, 0.5, 0.8 and 1.0) were prepared. The high thulium doped silica glass was realized. Their spectroscopic parameters were calculated and analyzed by Judd-Ofelt theory. Large absorption cross section (4.65 × 10-21 cm2 at 1668 nm) and stimulated emission cross section (6.00 × 10-21 cm2 at 1812 nm), as well as low hydroxyl content (0.180 cm-1), long fluorescence lifetime (834 μs at 1800 nm), large σem × τrad (30.05 × 10-21 cm2 ms) and large relative intensity ratio of the 1.8 μm (3F4 → 3H6) to 1.46 (3H4 → 3F4) emissions (90.33) are achieved in this Tm3+/Al3+ co-doped silica glasses. According to emission characteristics, the optimum thulium doping concentration is around 0.8 mol%. The cross relaxation (CR) between ground and excited states of Tm3+ ions was used to explain the optimum thulium doping concentration. These results suggest that the sol-gel method is an effective way to prepare Tm3+ doped silica glass with high Tm3+ doping and prospective spectroscopic properties.

  5. Enhanced luminescence in Mg{sup 2+} codoped CaTiO{sub 3}:Eu{sup 3+} phosphor prepared by solid state reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandana, C. Sai; Rudramadevi, B. Hemalatha

    2016-05-23

    CaTiO{sub 3} phosphors doped with Eu{sup 3+} and codoped with Mg{sup 2+} were prepared by Solid State Reaction method. The powders were characterized by X-ray diffraction, SEM with EDS, Raman scattering, and photoluminescence spectroscopy. The Crystalline phase and vibrational modes of the phosphors were studied using XRD pattern and Raman Spectrum respectively. The morphological studies of the phosphor samples were carried out using SEM analysis. From PL spectra we have observed two prominent red emission peaks around at 595 nm ({sup 5}D{sub 0}→{sup 7}F{sub 1}), 619 nm ({sup 5}D{sub 0}→{sup 7}F{sub 2}) with the excitation of 399 nm for Eu{supmore » 3+} doped CaTiO{sub 3} powders. The PL intensity of CaTiO{sub 3}:Eu{sup 3+} phosphor is enhanced significantly on codoping with Mg{sup 2+}. The observed enhanced emissions are due to energy transfer from Mg{sup 2+} to Eu{sup 3+}, which is due to radiative recombination. Eu{sup 3+} doped phosphors are well known to be promising materials for electroluminescent devices, optical amplifiers, and lasers.« less

  6. Luminescence study of Eu(3+) doped Li6 Y(BO3 )3 phosphor for solid-state lighting.

    PubMed

    Yawalkar, Mrunal M; Zade, G D; Dabre, K V; Dhoble, S J

    2016-06-01

    In this study, Li6 Y1-x Eux (BO3 )3 phosphor was successfully synthesized using a modified solid-state diffusion method. The Eu(3+) ion concentration was varied at 0.05, 0.1, 0.2, 0.5 and 1 mol%. The phosphor was characterized for phase purity, morphology, luminescent properties and molecular transmission at room temperature. The XRD pattern suggests a result closely matching the standard JCPDS file (#80-0843). The emission and excitation spectra were followed to discover the luminescence traits. The excitation spectra indicate that the current phosphor can be efficiently excited at 395 nm and at 466 nm (blue light) to give emission at 595 and 614 nm due to the (5) D0  → (7) Fj transition of Eu(3+) ions. Concentration quenching was observed at 0.5 mol% Eu(3+) in the Li6 Y1-x Eux (BO3 )3 host lattice. Strong red emission with CIE chromaticity coordinates of phosphor is x = 0.63 and y = 0.36 achieved with dominant red emission at 614 nm the (5) D0  → (7)  F2 electric dipole transition of Eu(3+) ions. The novel Li6 Y1-x Eux (BO3 )3 phosphor may be a suitable red-emitting component for solid-state lighting using double-excited wavelengths, i.e. near-UV at 395 nm and blue light at 466 nm. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Luminescence Characteristics of ZnGa2O4 Thick Film Doped with Mn2+ and Cr3+ at Various Sintering Temperatures

    NASA Astrophysics Data System (ADS)

    Cha, Jae Hyeok; Kim, Kyung Hwan; Park, Yong Seo; Kwon, Sang Jik; Choi, Hyung Wook

    2007-10-01

    ZnGa2O4 phosphor separately doped with Mn2+ and Cr3+ was synthesized by solid-state reaction, and thick films were deposited by screen printing. The X-ray diffraction (XRD) patterns of ZnGa2O4 phosphor thick films show a (311) main peak and a spinal phase. Uniform distribution and filled morphology of the doped ZnGa2O4 phosphor thick films were formed at the sintering temperature of 1100 °C. The CL spectrum of Mn2+-doped ZnGa2O4 shows the main peak of 512 nm green emission with the 4T1→6A1 transition of Mn2+ ions and the CL spectrum of Cr3+-doped ZnGa2O4 shows the main peak of 716 nm red emission with the 2E→4A2 transition of Cr3+ ions.

  8. Recent advances in rare earth doped alkali-alkaline earth borates for solid state lighting applications

    NASA Astrophysics Data System (ADS)

    Verma, Shefali; Verma, Kartikey; Kumar, Deepak; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    As a novel class of inorganic phosphor, the alkali-alkaline earth borate phosphors have gained huge attention due to their charming applications in solid-state lighting (SSL) and display devices. The current research drive shows that phosphors based on the alkali-alkaline earth borates have transformed the science and technology due to their high transparency over a broad spectral range, their flexibility in structure and durability for mechanical and high-laser applications. Recent advances in various aspects of rare-earth (RE) doped borate based phosphors and their utilizations in SSL and light emitting diodes are summarized in this review article. Moreover, the present status and upcoming scenario of RE-doped borate phosphors were reviewed in general along with the proper credential from the existing literature. It is believed that this review is a sole compilation of crucial information about the RE-doped borate phosphors in a single platform.

  9. Origin of giant dielectric permittivity and weak ferromagnetic behavior in (1-x)LaFeO3-xBaTiO3 (0.0 ≤ x ≤ 0.25) solid solutions

    NASA Astrophysics Data System (ADS)

    Sreenivasu, T.; Tirupathi, P.; Prabahar, K.; Suryanarayana, B.; Chandra Mouli, K.

    The solid solutions of (1-x) LaFeO3-xBaTiO3 (0.0≤x≤0.25) have been synthesized successfully by the conventional solid-state reaction method. Room temperature (RT) X-ray diffraction studies reveal the stabilization of orthorhombic phase with Pbnm space group. Complete solubility in the perovskite series was demonstrated up to x=0.25. The dielectric permittivity shows colossal dielectric constant (CDC) at RT. The doping of BaTiO3 in LaFeO3 exhibit pronounced CDC up to a composition x=0.15, further it starts to decrease. The frequency-dependent dielectric loss exhibits polaronic conduction, which can attribute to presence of multiple valence of iron. The relaxation frequency and polaronic conduction mechanism was shifted towards RT as function of x. Moreover, large magnetic moment with weak ferromagnetic behavior is observed in doped LaFeO3 solid solution, which might be the destruction of spin cycloid structure due to insertion of Ti in Fe-O-Fe network of LaFeO3.

  10. Temperature dependent fluorescence spectra arise from change in excited-state intramolecular proton transfer potential of 4‧-N,N-dimethylamino-3-hydroxyflavone-doped acetonitrile crystals

    NASA Astrophysics Data System (ADS)

    Furukawa, Kazuki; Yamamoto, Norifumi; Hino, Kazuyuki; Sekiya, Hiroshi

    2016-01-01

    The effect of intermolecular interaction on excited-state intramolecular proton transfer (ESIPT) in 4‧-N,N-dimethylamino-3-hydroxyflavone (DMHF) doped in acetonitrile crystals was investigated by measuring the temperature dependence of fluorescence excitation and fluorescence spectra. A solid/solid phase transition of DMHF-doped acetonitrile crystals occurred in the temperature between 210 and 218 K. Significant differences in the spectral profiles and shifts in the fluorescence spectra were observed in the low- and high-temperature regions of the phase transition. The temperature dependence of the ESIPT potential of DMHF is discussed.

  11. Structure Evolution of BaTiO3 on Co Doping: X-ray diffraction and Raman study

    NASA Astrophysics Data System (ADS)

    Mansuri, Amantulla; Mishra, Ashutosh

    2016-10-01

    In the present study, we have synthesize polycrystalline samples of BaTi1-xCoxO3 (x = 0, 0.05 and 0.1) with standard solid state reaction technique. The obtained samples are characterized by X-ray diffraction (XRD) and Raman spectroscopy. The detail structural analysis has been performed by Rietveld refinement using Fullprof program. The structural analysis reveal the samples are chemical pure and crystallize in tetragonal phase with space group Pm3m. We observe an increase in lattice parameters which results due to substitution of Co2+ with large ionic radii (0.9) for smaller ionic radii (0.6) Ti4+. Moreover peak at 45.5° shift to 45° on Co doping, which is due to structure phase transition from tetragonal to cubic. Raman study infers that the intensity of characteristic peaks decreases and linewidth increases with Co doping. The bands linked with the tetragonal structure (307 cm1) decreased due to the tetragonal-towards-cubic phase transition with Co doping. Our structural study reveals the expansion of BTO unit cell and tetragonal-to-cubic phase transformation takes place, results from different characterization techniques are conclusive and show structural evolution with Co doping.

  12. A low-fluence 1064-nm Q-switched neodymium-doped yttrium aluminium garnet laser for the treatment of café-au-lait macules.

    PubMed

    Kim, Hyeong-Rae; Ha, Jeong-Min; Park, Min-Soo; Lee, Young; Seo, Young-Joon; Kim, Chang-Deok; Lee, Jeung-Hoon; Im, Myung

    2015-09-01

    Café-au-lait macules (CALMs) are a common pigmentary disorder. Although a variety of laser modalities have been used to treat CALMs, their efficacies vary and dyspigmentation may develop. We evaluated the clinical efficacy and safety of a low-fluence 1064-nm Q-switched neodymium-doped yttrium aluminium garnet (Nd:YAG) laser for the treatment of CALMs. In a preliminary investigation, 6 patients underwent a split-lesion comparative study with 532- and 1064-nm Q-switched Nd:YAG laser treatment. In total, 32 patients with 39 CALMs were enrolled in a subsequent prospective trial to evaluate the treatment with a low-fluence 1064-nm Q-switched Nd:YAG laser. In the preliminary study, the 1064-nm treatment group had a more favorable response and a shorter recovery time. In a subsequent prospective trial of a 1064-nm laser, 74.4% of the lesions showed a clinical response with clearance of ≥50.0%. The treatment regimen was well tolerated; 15.4% of patients experienced adverse events. The study participants were followed for 6 months, and there were no relevant treatment controls in the prospective trial group. Low-fluence 1064-nm Q-switched Nd:YAG laser therapy afforded good clinical improvement for treating CALMs. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  13. Sm 3+-doped polymer optical waveguide amplifiers

    NASA Astrophysics Data System (ADS)

    Huang, Lihui; Tsang, Kwokchu; Pun, Edwin Yue-Bun; Xu, Shiqing

    2010-04-01

    Trivalent samarium ion (Sm 3+) doped SU8 polymer materials were synthesized and characterized. Intense red emission at 645 nm was observed under UV laser light excitation. Spectroscopic investigations show that the doped materials are suitable for realizing planar optical waveguide amplifiers. About 100 μm wide multimode Sm 3+-doped SU8 channel waveguides were fabricated using a simple UV exposure process. At 250 mW, 351 nm UV pump power, a signal enhancement of ˜7.4 dB at 645 nm was obtained for a 15 mm long channel waveguide.

  14. Microstructure evolution and electrical characterization of Lanthanum doped Barium Titanate (BaTiO{sub 3}) ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billah, Masum, E-mail: masum.buet09@gmail.com; Ahmed, A., E-mail: jhinukbuetmme@gmail.com; Rahman, Md. Miftaur, E-mail: miftaurrahman@mme.buet.ac.bd

    2016-07-12

    In the current work, we investigated the structural and dielectric properties of Lanthanum oxide (La{sub 2}O{sub 3}) doped Barium Titanate (BaTiO{sub 3}) ceramics and established a correlation between them. Solid state sintering method was used to dope BaTiO{sub 3} with 0.3, 0.5 and 0.7 mole% La{sub 2}O{sub 3} under different sintering parameters. The raw materials used were La{sub 2}O{sub 3} nano powder of ~80 nm grain size and 99.995% purity and BaTiO{sub 3} nano powder of 100 nm grain size and 99.99% purity. Grain size distribution and morphology of fracture surface of sintered pellets were examined by Field Emission Scanningmore » Electron Microscope and X-Ray Diffraction analysis was conducted to confirm the formation of desired crystal structure. The research result reveal that grain size and electrical properties of BaTiO{sub 3} ceramic significantly enhanced for small amount of doping (up to 0.5 mole% La{sub 2}O{sub 3}) and then decreased with increasing doping concentration. Desired grain growth (0.80-1.3 µm) and high densification (<90% theoretical density) were found by proper combination of temperature, sintering parameters and doping concentration. We found the resultant stable value of dielectric constant was 10000-12000 at 100-300 Hz in the temperature range of 30°-50° C for 0.5 mole% La{sub 2}O{sub 3} with corresponding shift of curie temperature around 30° C. So overall this research showed that proper La{sup 3+} concentration can control the grain size, increase density, lower curie temperature and hence significantly improve the electrical properties of BaTiO{sub 3} ceramics.« less

  15. Photovoltaic properties of Cu-doped CH3NH3PbI3 with perovskite structure

    NASA Astrophysics Data System (ADS)

    Shirahata, Yasuhiro; Oku, Takeo

    2017-01-01

    Photovoltaic properties of copper (Cu)-doped perovskite (CH3NH3PbCuxI3+x) photovoltaic devices with different Cu content were investigated. The CH3NH3PbCuxI3+x films were polycrystalline with a tetragonal system, and their lattice constants and crystallite size varied with Cu doping. Compared to conversion efficiencies of non-doped CH3NH3PbI3 photovoltaic device, those of CH3NH3PbCuxI3+x photovoltaic devises increased. The improvement of photovoltaic properties was attributed to partial substitution of Cu at the Pb sites.

  16. Preventing structural degradation from Na3V2(PO4)3 to V2(PO4)3: F-doped Na3V2(PO4)3/C cathode composite with stable lifetime for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Yanjun; Xu, Youlong; Sun, Xiaofei; Zhang, Baofeng; He, Shengnan; Li, Long; Wang, Chao

    2018-02-01

    A prospective NASICON-type F-doped Na3V2(PO4)2.93F0.07/C (F-0.07-NVP/C) composite is synthesized by a solid-state reaction method. F-doping can restrain the structural degradation from Na3V2(PO4)3 to V2(PO4)3 and enhance the structural stability. Meanwhile, it can decrease the particle size to diminish the pathway of Na+ diffusion, which can increase ionic conductivity efficiently. The kinetic behavior is significantly improved and it is beneficial to reinforcing the electrochemical performance of F-doping composites. Compared with Undoped-NVP/C sample, F-0.07-NVP/C composite delivers a 113 mAh g-1 discharge capacity at 10 mA g-1, which is very close to the theoretical capacity (117 mAh g-1). As for cycle performance, a reversible capacity of 97.8 mAh g-1 can be obtained and it retains 86% capacity after 1000 cycles at 200 mA g-1. F-0.07-NVP/C composite presents the highest DNa+ (2.62 × 10-15 cm2s-1), two orders of magnitude higher than the undoped sample (4.8 × 10-17 cm2s-1). This outstanding electrochemical performance is ascribed to the synergetic effect from improved kinetic behavior and enhanced structural stability due to F-doping. Hence, the F-doped composite would be a promising cathode material in SIB for energy storage and conversion.

  17. Simple fabrication of solid phase microextraction fiber employing nitrogen-doped ordered mesoporous polymer by in situ polymerization.

    PubMed

    Zheng, Juan; Liang, Yeru; Liu, Shuqin; Jiang, Ruifen; Zhu, Fang; Wu, Dingcai; Ouyang, Gangfeng

    2016-01-04

    A combination of nitrogen-doped ordered mesoporous polymer (NOMP) and stainless steel wires led to highly sensitive, selective, and stable solid phase microextraction (SPME) fibers by in situ polymerization for the first time. The ordered structure of synthesized NOMP coating was illustrated by transmission electron microscopy (TEM) and X-ray diffraction (XRD), and microscopy analysis by scanning electron microscopy (SEM) confirmed a homogenous morphology of the NOMP-coated fiber. The NOMP-coated fiber was further applied for the extraction of organochlorine pesticides (OCPs) with direct-immersion solid-phase microextraction (DI-SPME) method followed by gas chromatography-mass spectrometry (GC-MS) quantification. Under the optimized conditions, low detection limits (0.023-0.77 ng L(-1)), a wide linear range (9-1500 ng L(-1)), good repeatability (3.5-8.1%, n=6) and excellent reproducibility (1.5-8.3%, n=3) were achieved. Moreover, the practical feasibility of the proposed method was evaluated by determining OCPs in environmental water samples with satisfactory recoveries. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Enhanced scintillation of Ba3In(B3O6)3 based on nitrogen doping

    NASA Astrophysics Data System (ADS)

    Wang, Z. X.; Pei, H.; Tao, X. M.; Cai, G. M.; Mao, R. H.; Jin, Z. P.

    2018-02-01

    Scintillating materials, as a class of luminescent materials, are highly demanded for practical use in the high-energy detection. However, the applications are often hampered by their low light yield (LY) or long decay time for many traditional scintillators. In this work, upon nitrogen anion doping, scintillation performance in layered borate Ba3In(B3O6)3 (BIB) has been excellently enhanced with high XEL intensity of ~3 times as large as that of commercial Bi4Ge3O12 (BGO) and ultra-fast fluorescent decay time of ~1.25 ns. To shed light on origins of the intrinsic violet-blue emission, we measured the in-situ vacuum ultraviolet excited (VUV) emission spectra of N-BIB ceramic. Combined with experiments and first principles calculations, the band-gap reduction and donor-acceptor density increasing by nitrogen (N) doping is responsible for the enhancement of scintillation performance for N-doped Ba3In(B3O6)3. Moreover, nitrogen anion doping rather than conventional cation doping is found to be also applicable to other intrinsic luminescent materials for enhancing performance.

  19. Study of structural, spectroscopic and dielectric properties of multiferroic cadmium doped Samarium manganite synthesized by solid state reaction method

    NASA Astrophysics Data System (ADS)

    Gupta, Vandana; Raina, Bindu; Verma, Seema; Bamzai, K. K.

    2018-05-01

    Samarium manganite doped with cadmium having general formula Sm1-xCdxMnO3 for x = 0.05, 0.15 were synthesized by solid state reaction technique. These compositions were characterized by various techniques like X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and dielectric. XRD analysis confirms the single phase formation with pervoskites structure having orthorhombic phase. Densities were determined and compared with the results obtained by Archimedes principle. The scanning electron micrograph shows that the particle size distribution is almost homogeneous and spherical in shape. FTIR analysis confirms the presence of various atomic bonds within a molecule. A very large value of dielectric constant was observed at low frequencies due to the presence of grains and interfaces. The dielectric constant value decreases with increase in cadmium doping at samarium site.

  20. Rare earths, the lanthanides, yttrium and scandium

    USGS Publications Warehouse

    Bedinger, G.; Bleiwas, D.

    2012-01-01

    In 2011, rare earths were recovered from bastnasite concentrates at the Mountain Pass Mine in California. Consumption of refined rare-earth products decreased in 2011 from 2010. U.S. rare-earth imports originated primarily from China, with lesser amounts from Austria, Estonia, France and Japan. The United States imported all of its demand for yttrium metal and yttrium compounds, with most of it originating from China. Scandium was imported in various forms and processed domestically.

  1. Microstructure, ferromagnetic and photoluminescence properties of ITO and Cr doped ITO nanoparticles using solid state reaction

    NASA Astrophysics Data System (ADS)

    Babu, S. Harinath; Kaleemulla, S.; Rao, N. Madhusudhana; Rao, G. Venugopal; Krishnamoorthi, C.

    2016-11-01

    Indium-tin-oxide (ITO) (In0.95Sn0.05)2O3 and Cr doped indium-tin-oxide (In0.90Sn0.05Cr0.05)2O3 nanoparticles were prepared using simple low cost solid state reaction method and characterized by different techniques to study their structural, optical and magnetic properties. Microstructures, surface morphology, crystallite size of the nanoparticles were studied using X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM). From these methods it was found that the particles were about 45 nm. Chemical composition and valence states of the nanoparticles were studied using energy dispersive analysis of X-rays (EDAX) and X-ray photoelectron spectroscopy (XPS). From these techniques it was observed that the elements of indium, tin, chromium and oxygen were present in the system in appropriate ratios and they were in +3, +4, +3 and -2 oxidation states. Raman studies confirmed that the nanoparticle were free from unintentional impurities. Two broad emission peaks were observed at 330 nm and 460 nm when excited wavelength of 300 nm. Magnetic studies were carried out at 300 K and 100 K using vibrating sample magnetometer (VSM) and found that the ITO nanoparticles were ferromagnetic at 100 K and 300 K. Where-as the room temperature ferromagnetism completely disappeared in Cr doped ITO nanoparticles at 100 K and 300 K.

  2. Review on dielectric properties of rare earth doped barium titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, Fatin Adila, E-mail: fatinadilaismail@gmail.com; Osman, Rozana Aina Maulat, E-mail: rozana@unimap.edu.my; Frontier Materials Research, Seriab, 01000 Kangar, Perlis

    2016-07-19

    Rare earth doped Barium Titanate (BaTiO{sub 3}) were studied due to high permittivity, excellent electrical properties and have wide usage in various applications. This paper reviewed on the electrical properties of RE doped BaTiO{sub 3} (RE: Lanthanum (La), Erbium (Er), Samarium (Sm), Neodymium (Nd), Cerium (Ce)), processing method, phase transition occurred and solid solution range for complete study. Most of the RE doped BaTiO{sub 3} downshifted the Curie temperature (T{sub C}). Transition temperature also known as Curie temperature, T{sub C} where the ceramics had a transition from ferroelectric to a paraelectric phase. In this review, the dielectric constant of La-dopedmore » BaTiO{sub 3}, Er-doped BaTiO{sub 3}, Sm-doped BaTiO{sub 3}, Nd-doped BaTiO{sub 3} and Ce-doped BaTiO{sub 3} had been proved to increase and the transition temperature or also known as T{sub C} also lowered down to room temperature as for all the RE doped BaTiO{sub 3} except for Er-doped BaTiO{sub 3}.« less

  3. Enhancement of efficiency by embedding ZnS and Mn-doped ZnS nanoparticles in P3HT:PCBM hybrid solid state solar cells

    NASA Astrophysics Data System (ADS)

    Jabeen, Uzma; Adhikari, Tham; Shah, Syed Mujtaba; Nunzi, Jean-Michel; Badshah, Amin; Ahmad, Iqbal

    2017-06-01

    Zinc sulphide (ZnS) and Mn-doped ZnS nanoparticles were synthesized by wet chemical method. The synthesized nanoparticles were characterized by UV-visible, fluorescence, X-ray diffraction (XRD), fourier transform infra-red (FTIR) spectrometer, field emission scanning electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM). Scanning electron microscope (SEM) was used to find particle size while chemical composition of the synthesized materials was investigated by EDAX. UV-visible absorption spectrum of Mn-doped ZnS was slightly shifted to lower wavelength with respect to the un-doped zinc sulphide with decrease in the size of nanoparticles. Consequently, the band gap was tuned from 3.04 to 3.13 eV. The photoluminescence (PL) emission positioned at 597 nm was ascribed to 4T1 → 6A1 transition within the 3d shell of Mn2+. X-ray diffraction (XRD) analysis revealed that the synthesized nanomaterials existed in cubic crystalline state. The effect of embedding un-doped and doped ZnS nanoparticles in the active layer and changing the ratio of PCBM ([6, 6]-phenyl-C61-butyric acid methyl ester) to nanoparticles on the performance of hybrid solar cell was studied. The device with active layer consisting of poly(3-hexylthiophene) (P3HT), [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM), and un-doped ZnS nanoparticles combined in the ratio of (1:0.5:0.5) attained an efficiency of 2.42% which was found 71% higher than the reference device under the same conditions but not containing nanoparticles. Replacing ZnS nanoparticles with Mn-doped ZnS had a little effect on the enhancement of efficiency. The packing behavior and morphology of blend of nanoparticles with P3HT:PCBM were examined using atomic force microscope (AFM) and XRD. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  4. AC conductivity studies of La doped Ba0.5Sr0.5TiO3

    NASA Astrophysics Data System (ADS)

    D'Souza, Slavia Deeksha; Rohith, Kotla Surya; Bhatnagar, Anil K.; Kumar, A. Sendil

    2017-05-01

    Ferroelectric material with high dielectric constant of Ba0.5Sr0.5TiO3 is synthesized through Solid State Reaction and fraction of Lanthanum is substituted to introduce hole concentration. XRay Diffraction shows all the samples are stabilized in cubic crystal structure. With La doped samples the Cole-Cole plot is modified and AC conductivity increases at higher temperatures as well as higher frequencies compared to undoped sample.

  5. Hydrothermal synthesis, crystal structures and photoluminescence properties of mixed europium-yttrium organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han Yinfeng; Department of Chemistry and Environmental Science, Taishan University, Taian 271021; Fu Lianshe

    Three mixed europium-yttrium organic frameworks: Eu{sub 2-x}Y{sub x}(Mel)(H{sub 2}O){sub 6} (Mel=mellitic acid or benzene-1,2,3,4,5,6-hexacarboxylic acid, x=0.38 1, 0.74 2, and 0.86 3) have been synthesized and characterized. All the compounds contain a 3-D net with (4, 8)-flu topology. The study indicates that the photoluminescence properties are effectively affected by the different ratios of europium and yttrium ions, the quantum efficiency is increased and the Eu{sup 3+} lifetime becomes longer in these MOFs than those of the Eu analog. - Graphical abstract: Three mixed europium and yttrium organic frameworks: Eu{sub 2-x}Y{sub x}(Mel)(H{sub 2}O){sub 6} (Mel=mellitic acid) have been synthesized and characterized.more » All the compounds contain a 3-D net with (4, 8)-flu topology. The study indicates that the photoluminescence properties are effectively affected by the different ratios of europium and yttrium ions, the quantum efficiency is increased and the Eu{sup 3+} lifetime becomes longer in these MOFs than those of the Eu analog. Highlights: Black-Right-Pointing-Pointer Three (4, 8)-flu topological mixed Eu and Y MOFs were synthesized under mild conditions. Black-Right-Pointing-Pointer Metal ratios were refined by the single crystal data consistent with the EDS analysis. Black-Right-Pointing-Pointer Mixed Eu and Y MOFs show longer lifetime and higher quantum efficiency than the Eu analog. Black-Right-Pointing-Pointer Adding inert lanthanide into luminescent MOFs enlarges the field of luminescent MOFs.« less

  6. Growth, improved thermal stability and spectral properties of Yb3+-ions doped high temperature phase α-Ba3Gd(BO3)3 crystals co-doped by Sr2+, Ca2+ and La3+ ions

    NASA Astrophysics Data System (ADS)

    Pan, Shangke; Zhang, Jianyu; Pan, Jianguo

    2018-02-01

    To investigate the cause of the thermal instability of Yb3+-ions doped Ba3Gd(BO3)3 crystal grown from Czochralski technique, the low temperature phase β-Ba3Gd(BO3)3 powder was synthesized at the temperature of 800 °C. To inhibit the phase transition of high temperature phase Yb:α-Ba3Gd(BO3)3 during the crystal growth process, co-doping ions Sr2+, Ca2+ and La3+ ions were introduced in Yb:α-Ba3Gd(BO3)3 crystal. The melting point increased and the thermal stability of Yb:α-Ba3Gd(BO3)3 crystal was improved by co-doping ions. The absorption peaks of co-doped crystals centered at 976 nm with FWHM of 11, 11 and 12 nm and the absorption cross sections were 3.40 × 10-21 cm2, 4.00 × 10-21 cm2 and 2.66 × 10-21 cm2, respectively. The emission cross sections at 1040 nm were 2.19 × 10-21 cm2, 2.53 × 10-21 cm2 and 1.93 × 10-21 cm2, respectively. The fluorescence times of co-doped by Sr2+, Ca2+ and La3+ ions were shorter than that of Yb:α-Ba3Gd(BO3)3 crystal. So Yb:α-Ba3Gd(BO3)3 crystals co-doped by Sr2+, Ca2+ and La3+ ions will be more suitable for LD-pumping laser.

  7. Tm3+/Yb3+ co-doped tellurite glass with silver nanoparticles for 1.85 μm band laser material

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Zhou, Yaxun; Cheng, Pan; Zhou, Zizhong; Li, Jun; Jin, Wei

    2016-10-01

    Tm3+/Yb3+ co-doped tellurite glasses with different silver nanoparticles (Ag NPs) concentrations were prepared using the conventional melt-quenching technique and characterized by the UV/Vis/NIR absorption spectra, 1.85 μm band fluorescence emission spectra, transmission electron microscopy (TEM) images, differential scanning calorimeter (DSC) curves and X-ray diffraction (XRD) patterns to investigate the effects of Ag NPs on the 1.85 μm band spectroscopic properties of Tm3+ ions, thermal stability and structural nature of glass hosts. Under the excitation of 980 nm laser diode (LD), the 1.85 μm band fluorescence emission of Tm3+ ions enhances significantly in the presence of Ag NPs with average diameter of ∼8 nm and local surface Plasmon resonance (LSPR) band of ∼590 nm, which is mainly attributed to the increased local electric field induced by Ag NPs at the proximity of doped rare-earth ions on the basis of energy transfer from Yb3+ to Tm3+ ions. An improvement by about 110% of fluorescence intensity is observed in the Tm3+/Yb3+ co-doped tellurite glass containing 0.5 mol% amount of AgNO3 while the prepared glass samples possess good thermal stability and amorphous structural nature. Meanwhile, the Judd-Ofelt intensity parameters Ωt (t = 2,4,6), spontaneous radiative transition probabilities, fluorescence branching ratios and radiative lifetimes of relevant excited levels of Tm3+ ions were determined based on the Judd-Ofelt theory to reveal the enhanced effects of Ag NPs on the 1.85 μm band spectroscopic properties, and the energy transfer micro-parameters and phonon contribution ratios were calculated based on the non-resonant energy transfer theory to elucidate the energy transfer mechanism between Yb3+ and Tm3+ ions. The present results indicate that the prepared Tm3+/Yb3+ co-doped tellurite glass with an appropriate amount of Ag NPs is a promising lasing media applied for 1.85 μm band solid-state lasers and amplifiers.

  8. Scintillation properties of Li6Y0.5Gd0.5(BO3)3: Ce3+ single crystal

    NASA Astrophysics Data System (ADS)

    Fawad, U.; Rooh, Gul; Kim, H. J.; Park, H.; Kim, Sunghwan; Khan, Sajid

    2015-01-01

    The Ce3+ doped mixed crystals of Li6Y(BO3)3 and Li6Gd(BO3)3 are grown by Czochralski technique with equal mole ratios of both Yttrium and Gadolinium i.e. Li6Y0.5Gd0.5(BO3)3. The grown crystals have the dimensions of ∅10×30 mm2. Powder X-ray diffraction (XRD) analysis confirmed single phase of the grown crystals. X-ray and laser induced luminescence spectra are presented. Scintillation properties such as energy resolution, light yield, decay time and α/β ratio under the excitation of 137Cs γ-ray photons and 241Am α-particles are also reported in this article.

  9. Y-doped Li 8ZrO 6: A Li-Ion Battery Cathode Material with High Capacity

    DOE PAGES

    Huang, Shuping; Wilson, Benjamin E.; Wang, Bo; ...

    2015-08-11

    We study—experimentally and theoretically—the energetics, structural changes, and charge flows during the charging and discharging processes for a new high-capacity cathode material, Li 8ZrO 6 (LZO), which we study both pure and yttrium-doped. We quantum mechanically calculated the stable delithiated configurations, the delithiation energy, the charge flow during delithiation, and the stability of the delithiated materials. We find that Li atoms are easier to extract from tetrahedral sites than octahedral ones. We calculate a large average voltage of 4.04 eV vs Li/Li + for delithiation of the first Li atom in a primitive cell, which is confirmed by galvanostatic charge/dischargemore » cycling data. Energy calculations indicate that topotactic delithiation is kinetically favored over decomposition into Li, ZrO 2, and O 2 during the charging process, although the thermodynamic energy of the topotactic reaction is less favorable. When one or two lithium atoms are extracted from a primitive cell of LZO, its volume and structure change little, whereas extraction of the third lithium greatly distorts the layered structure. The Li 6ZrO 6 and Li 5ZrO 6 delithiation products can be thermodynamically metastable to release of O 2. Experimentally, materials with sufficiently small particle size for efficient delithiation and relithiation were achieved within an yttrium-doped LZO/carbon composite cathode that exhibited an initial discharge capacity of at least 200 mAh/g over the first 10 cycles, with 142 mAh/g maintained after 60 cycles. Computations predict that during the charging process, the oxygen ion near the Li vacancy is oxidized for both pure LZO and yttrium-doped LZO, which leads to a small-polaron hole.« less

  10. Y-doped Li 8ZrO 6: A Li-Ion Battery Cathode Material with High Capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Shuping; Wilson, Benjamin E.; Wang, Bo

    We study—experimentally and theoretically—the energetics, structural changes, and charge flows during the charging and discharging processes for a new high-capacity cathode material, Li 8ZrO 6 (LZO), which we study both pure and yttrium-doped. We quantum mechanically calculated the stable delithiated configurations, the delithiation energy, the charge flow during delithiation, and the stability of the delithiated materials. We find that Li atoms are easier to extract from tetrahedral sites than octahedral ones. We calculate a large average voltage of 4.04 eV vs Li/Li + for delithiation of the first Li atom in a primitive cell, which is confirmed by galvanostatic charge/dischargemore » cycling data. Energy calculations indicate that topotactic delithiation is kinetically favored over decomposition into Li, ZrO 2, and O 2 during the charging process, although the thermodynamic energy of the topotactic reaction is less favorable. When one or two lithium atoms are extracted from a primitive cell of LZO, its volume and structure change little, whereas extraction of the third lithium greatly distorts the layered structure. The Li 6ZrO 6 and Li 5ZrO 6 delithiation products can be thermodynamically metastable to release of O 2. Experimentally, materials with sufficiently small particle size for efficient delithiation and relithiation were achieved within an yttrium-doped LZO/carbon composite cathode that exhibited an initial discharge capacity of at least 200 mAh/g over the first 10 cycles, with 142 mAh/g maintained after 60 cycles. Computations predict that during the charging process, the oxygen ion near the Li vacancy is oxidized for both pure LZO and yttrium-doped LZO, which leads to a small-polaron hole.« less

  11. Nd/sup 3 +/ fluorescence quantum-efficiency measurements with photoacoustics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosencwaig, A.; Hildum, E.A.

    1981-04-01

    We have investigated the use of photoacoustic techniques for obtaining absolute values of fluorescence quantum efficiencies in lightly doped Nd/sup 3 +/ laser materials. We have found that surface absorptions play an important role in gas-microphone measurements, and that thermal profiles are important in piezoelectric measurements. We have obtained fluorescence quantum efficiencies for Nd/sup 3 +/ in yttrium aluminum garnet, and in silicate and borate glasses that are in good agreement with lifetime measurements and Judd-Ofelt calculations.

  12. THE GREEN PHOSPHOR SrAl2O4:Eu2+, R3+ (R=Y, Dy) AND ITS APPLICATION IN ALTERNATING CURRENT LIGHT-EMITTING DIODES

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zhang, Yao; Xue, Shaochan; Deng, Xiaorong; Anqi; Luo; Liu, Fayong; Jiang, Yang; Chen, Shifu; Bahader, Ali

    2013-07-01

    The aim of the present investigation was to develop a phosphor to solve the flickering luminescence of alternating current (AC) light-emitting diodes (LED) by compensating the dark duration with appropriately persistent luminescence. The phosphor SrAl2O4:Eu2+ co-doped with Y3+ or Dy3+ was synthesized via solid-state reaction with H3BO3 as flux. The crystal structure and morphology were characterized by using X-ray diffraction (XRD) and Scanning Electron Microscope (SEM), respectively. The photoluminescence spectra were collected with a fluorescence spectrometer. The results demonstrated that appropriate amount of Y3+ or DY3+ doped was beneficial to suppress the by-product of Sr4Al14O25 which easily co-existed with the SrAl2O4 phase brought by the flux of H3BO3. However, too much Y3+ or DY3+ doped resulted in the formation of another impurity phase, i.e., the yttrium aluminum garnet of Y3Al5O12 and Dy3Al5O12. Comparatively, the doped DY3+ was more helpful in prolonging the persistent luminescence, while Y3+ was more efficient in enhancing luminescence intensity. To demonstrate the feasibility of the phosphor applied in AC LEDs, a nearly white AC LED was fabricated by coating the phosphor on a blue AC LED chip. The persistent luminescence was radiated from the AC LED device after turning power off. Moreover, the effect of the phosphor on compensating the AC LED dark duration through persistent luminescence was revealed by using the Keyence VW-9000 High-speed Microscope for the first time.

  13. Laser intervention on trabeculo-Descemet's membrane after resistant viscocanalostomy: Selective 532 nm gonioreconditioning or conventional 1064 nm neodymium-doped yttrium aluminum garnet laser goniopuncture?

    PubMed Central

    Sabur, Huri; Baykara, Mehmet; Can, Basak

    2016-01-01

    Purpose: To compare the results of conventional 1064 nm neodymium-doped yttrium-aluminum garnet laser goniopuncture (Nd:YAG-GP) and selective 532 nm Nd:YAG laser (selective laser trabeculoplasty [SLT]) gonioreconditioning (GR) on trabeculo-Descemet's membrane in eyes resistant to viscocanalostomy surgery. Methods: Thirty-eight eyes of 35 patients who underwent laser procedure after successful viscocanalostomy surgery were included in the study. When postoperative intraocular pressure (IOP) was above the individual target, the eyes were scheduled for laser procedure. Nineteen eyes underwent 532 nm SLT-GR (Group 1), and the remaining 19 eyes underwent conventional 1064 nm Nd:YAG-GP (Group 2). IOPs before and after laser (1 week, 1 month, 3 months, 6 months, 1 year, and last visit), follow-up periods, number of glaucoma medications, and complications were recorded for both groups. Results: Mean times from surgery to laser procedures were 17.3 ± 9.6 months in Group 1 and 13.0 ± 11.4 months in Group 2. Mean IOPs before laser procedures were 21.2 ± 1.7 mmHg in Group 1 and 22.8 ± 1.9 mmHg in Group 2 (P = 0.454). Postlaser IOP measurements of Group 1 were 12.1 ± 3.4 mmHg and 13.8 ± 1.7 mmHg in the 1st week and last visit, respectively; in Group 2, these measurements were 13.6 ± 3.7 mmHg and 14.9 ± 4.8 mmHg, respectively. There were statistically significant differences (P < 0.001) in IOP reduction at all visits in both groups; the results of the two groups were similar (P > 0.05). Mean follow-up was 16.6 ± 6.4 months after SLT-GR and 18.9 ± 11.2 months after Nd:YAG-GP. Conclusions: While conventional Nd:YAG-GP and SLT-GR, a novel procedure, are both effective choices in eyes resistant to viscocanalostomy, there are fewer complications with SLT-GR. SLT-GR can be an alternative to conventional Nd:YAG-GP. PMID:27688277

  14. Luminescence properties of Sm3+-doped alkaline earth ortho-stannates

    NASA Astrophysics Data System (ADS)

    Stanulis, Andrius; Katelnikovas, Artūras; Enseling, David; Dutczak, Danuta; Šakirzanovas, Simas; Bael, Marlies Van; Hardy, An; Kareiva, Aivaras; Jüstel, Thomas

    2014-05-01

    A series of Sm3+ doped M2SnO4 (M = Ca, Sr and Ba) samples were prepared by a conventional high temperature solid-state reaction route. All samples were characterized by powder X-ray diffraction (XRD) analysis, photoluminescence (PL), photoluminescence thermal quenching (TQ) and fluorescence lifetime (FL) measurements. The morphology of synthesized phosphor powders was examined by scanning electron microscopy (SEM). Moreover, luminous efficacies (LE) and color points of the CIE 1931 color space diagram were calculated and discussed. Synthesized powders showed bright orange-red emission under UV excitation. Based on the results obtained we demonstrate that Sm3+ ions occupy Ca and Sr sites in the Ca2SnO4 and Sr2SnO4 ortho-stannate structures, respectively. In contrast, Sm3+ substitutes Sn in the barium ortho-stannate Ba2SnO4 structure.

  15. YAlO3:Ce3+ powders: Synthesis, characterization, thermoluminescence and optical studies

    NASA Astrophysics Data System (ADS)

    Parganiha, Yogita; Kaur, Jagjeet; Dubey, Vikas; Shrivastava, Ravi

    2015-09-01

    Yttrium aluminum perovskite (YAP) is a promising high temperature ceramic material, known for its mechanical, structural and optical properties. YAP's also known as an ideal host material for solid-state lasers and phosphors. In this work, Ce3+ doped YAlO3 phosphors were synthesized by solid state reaction method, which is very suitable technique for large scale production. A prepared phosphor was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Photoluminescence spectra and Thermoluminescence (TL) glow curve study. The starting reagents used for sample preparation are Y2O3, Al2O3 and CeO2, boric acid used as a flux. Ratio of Y:Al was 1:1 which shows perovskite structure confirmed by the X-ray diffraction (XRD) study. The entire prepared sample was studied by PL excitation and emission spectra. Prominent peak at 446 nm (blue emission) which shows broad emission spectra of photoluminescence. It proves that prepared phosphor can act as a single host for blue emission of light and can be used for display applications. Commission Internationale de I'Eclairage (CIE) techniques proves the blue emission of light (x = .148, y = .117). TL glow curve analysis of prepared phosphor shows the prominent peak at 189 °C for the variable UV exposure time and high temperature peak shows the more stability and less fading in the prepared phosphor. Kinetic data of prepared phosphor were evaluated by peak shape method for variable UV exposure time (5-25 min).

  16. Preparation and luminescence properties of organogel doped with Eu(TTA)3phen complex

    NASA Astrophysics Data System (ADS)

    Cocca, M.; Di Lorenzo, M. L.; Avella, M.; Gentile, G.; Aubouy, L.; Della Pirreira, M.; Gutiérrez-Tauste, D.; Kennedy, M.; Doran, J.; Norton, B.

    2012-07-01

    In this contribution we report the preparation and the luminescence property of Eu(TTA)3phen complex doped toluene gels. Gels were prepared by using either a low molecular weight gelator, 12-hydroxystearic acid (HSA), or a macromolecular gelator, syndiotactic polymethylmethacrylate (s-PMMA). The gelation properties and their reversible behavior from solid-like to liquid systems have been investigated. In addition, photophysical investigations, as well as morphology, thermal properties and ageing behavior of the gels were analyzed as a function of composition of the gels.

  17. Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazono, Evan; Zhong, Tian; Craiciu, Ioana

    Erbium dopants in crystals exhibit highly coherent optical transitions well suited for solid-state optical quantum memories operating in the telecom band. Here, we demonstrate coupling of erbium dopant ions in yttrium orthosilicate to a photonic crystal cavity fabricated directly in the host crystal using focused ion beam milling. The coupling leads to reduction of the photoluminescence lifetime and enhancement of the optical depth in microns-long devices, which will enable on-chip quantum memories.

  18. Luminescence properties and electronic structure of Ce{sup 3+}-doped gadolinium aluminum garnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dotsenko, V.P., E-mail: ssclab@ukr.net; Berezovskaya, I.V.; Voloshinovskii, A.S.

    2015-04-15

    Highlights: • The luminescence properties of Ce{sup 3+} ions in (Y, Gd){sub 3}Al{sub 5}O{sub 12} are analyzed. • The Gd{sup 3+} → Y{sup 3+} substitution leads to increasing of Ce{sup 3+} noncubic crystal field splitting parameter. • The excitation spectra for the Ce{sup 3+} emission in GdAG contain bands at 6.67, 7.75, and 9.76 eV. • These features are due to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions. • Contributions from Al atoms to the conduction-band density of states are quite essential. - Abstract: Yttrium-gadolinium aluminum garnets (YGdAG) doped with Ce{sup 3+} ions havemore » been prepared by co-precipitation method. The luminescent properties of Ce{sup 3+} ions in Gd{sub 3(1−x)}Ce{sub 3x}Al{sub 5}O{sub 12} (x = 0.01) have been studied upon excitation in the 2–20 eV region. The substitution of Gd{sup 3+} for Y{sup 3+} in the garnet structure results in broadening the emission band and shifting its maximum towards the longer wavelengths. It was found that in addition to the 4f → 5d excitation bands of Ce{sup 3+} ions, the excitation spectra for the Ce{sup 3+} emission contain bands at 6.67, 7.75, and 9.76 eV. These bands are attributed to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions, respectively. Although gadolinium states dominate near the bottom of the conduction band of Gd{sub 3}Al{sub 5}O{sub 12}, contributions from Al{sub tetr} and Al{sub oct} atoms to the conduction-band density of states are evaluated as quite essential.« less

  19. Spectroscopic study of trivalent praseodymium in barium yttrium fluoride

    NASA Astrophysics Data System (ADS)

    Bowlby, Brian Edward

    1998-09-01

    This work investigates the spectroscopic properties of trivalent praseodymium (Pr3+) in barium yttrium fluoride (BaY2F8). Two doping concentrations were studied: BaY2F8:Pr3+ (.3%) and BaY2F8:Pr3+ (1%). Absorption spectra were taken at 77K and 300K and these were then used to calculate the Judd-Ofelt coefficients for both samples. These coefficients were then used to calculate the theoretical lifetimes and radiative branching ratios for all manifolds. Continuous luminescence spectra and lifetime measurements were also performed, and from these, experimentally determined values for the branching ratio and lifetimes were determined. These were then compared to their theoretical counterparts. It was found that while the theory gave values that were qualitatively correct, the quantitative correlation between theory and experiment shows the complexity of the physical reality and the difficulty of synthesizing an encompassing theoretical model. Absorption spectra and continuous luminescence spectra were also used to determine the energy levels of all manifolds in both samples. A total of 59 energy levels in 11 manifolds were identified in the BaY2F8:Pr3+ (1%) sample, while 51 levels in 11 manifolds were identified in the BaY2F8:Pr3+ (.3%) sample. Finally, the effects of temperature on the line width and line position for several radiative transitions was studied. It was found that while most transitions exhibited the expected broadening and shifting towards longer wavelengths at higher temperatures (a 'red shift'), the transition from the 3P0 level to the 3H4 ground state showed a shift towards shorter wavelengths at higher temperature (a 'blue shift'). Again this highlights the complexity of the ion- host interaction.

  20. Room temperature magnetic and dielectric properties of cobalt doped CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Chunhong; Song, Yuanqiang, E-mail: yuanqiangsong@uestc.edu.cn; Wang, Xiaoning

    2015-05-07

    CaCu{sub 3}Ti{sub 4−x}Co{sub x}O{sub 12} (x = 0, 0.2, 0.4) ceramics were prepared by a conventional solid state reaction, and the effects of cobalt doping on the room temperature magnetic and dielectric properties were investigated. Both X-ray diffraction and energy dispersive X-ray spectroscopy confirmed the presence of Cu and Co rich phase at grain boundaries of Co-doped ceramics. Scanning electron microscopy micrographs of Co-doped samples showed a striking change from regular polyhedral particle type in pure CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) to sheet-like grains with certain growth orientation. Undoped CaCu{sub 3}Ti{sub 4}O{sub 12} is well known for its colossal dielectric constant inmore » a broad temperature and frequency range. The dielectric constant value was slightly changed by 5 at. % and 10 at. % Co doping, whereas the second relaxation process was clearly separated in low frequency region at room temperature. A multirelaxation mechanism was proposed to be the origin of the colossal dielectric constant. In addition, the permeability spectra measurements indicated Co-doped CCTO with good magnetic properties, showing the initial permeability (μ′) as high as 5.5 and low magnetic loss (μ″ < 0.2) below 3 MHz. And the interesting ferromagnetic superexchange coupling in Co-doped CaCu{sub 3}Ti{sub 4}O{sub 12} was discussed.« less

  1. Tunable magnetism of 3d transition metal doped BiFeO3

    NASA Astrophysics Data System (ADS)

    Lu, S.; Li, C.; Zhao, Y. F.; Gong, Y. Y.; Niu, L. Y.; Liu, X. J.; Wang, T.

    2017-10-01

    Electronic polarization or bond relaxation can effectively alter the electronic and magnetic behavior of materials by doping impurity atom. For this aim, the thermodynamic, electronic and magnetic performances of cubic BiFeO3 have been modulated by the 3d transition metal (TM) dopants (Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn) based on the density functional theory. Results show that the doped specimen with low impurity concentration is more stable than that with high impurity concentration. The Mulliken charge values and spin magnetic moments of TM element are making major changes, while those of all host atoms are making any major changes. Especially, it is the linear relation between the spin magnetic moments of TM dopants and the total magnetic moment of doped specimens; thus, the variations of total magnetic moment of doped specimens are decided by the spin magnetic moments of TM dopants, thought the total magnetic moments of doped specimens mainly come from Fe atom and TM dopants. Besides, as double TM atoms substitution the Fe atoms, the Sc-, Ti-, Mn-, Co- and Zn-doped specimens show AFM state, while the V-, Cr-, Ni- and Cu-doped specimens show FM state.

  2. Alkali earth co-doping effects on luminescence and scintillation properties of Ce doped Gd3Al2Ga3O12 scintillator

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Nikl, Martin; Kurosawa, Shunsuke; Beitlerova, Alena; Nagura, Aya; Shoji, Yasuhiro; Pejchal, Jan; Ohashi, Yuji; Yokota, Yuui; Yoshikawa, Akira

    2015-03-01

    The Mg and Ca co-doped Ce:Gd3Al2Ga3O12 single crystals were prepared by micro pulling down method with a wide concentration range 0-1000 ppm of the codopants. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of Mg and Ca co-doping. The scintillation decays were accelerated by both Mg and Ca codopants. Comparing to Ca co-doping, the Mg co-doped samples showed much faster decay and comparatively smaller light output decrease with increasing Mg dopant concentration.

  3. Development of Ceramic Solid-State Laser Host Material

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  4. Praseodymium Cuprate Thin Film Cathodes for Intermediate Temperature Solid Oxide Fuel Cells: Roles of Doping, Orientation, and Crystal Structure.

    PubMed

    Mukherjee, Kunal; Hayamizu, Yoshiaki; Kim, Chang Sub; Kolchina, Liudmila M; Mazo, Galina N; Istomin, Sergey Ya; Bishop, Sean R; Tuller, Harry L

    2016-12-21

    Highly textured thin films of undoped, Ce-doped, and Sr-doped Pr 2 CuO 4 were synthesized on single crystal YSZ substrates using pulsed laser deposition to investigate their area-specific resistance (ASR) as cathodes in solid-oxide fuel cells (SOFCs). The effects of T' and T* crystal structures, donor and acceptor doping, and a-axis and c-axis orientation on ASR were systematically studied using electrochemical impedance spectroscopy on half cells. The addition of both Ce and Sr dopants resulted in improvements in ASR in c-axis oriented films, as did the T* crystal structure with the a-axis orientation. Pr 1.6 Sr 0.4 CuO 4 is identified as a potential cathode material with nearly an order of magnitude faster oxygen reduction reaction kinetics at 600 °C compared to thin films of the commonly studied cathode material La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3-δ . Orientation control of the cuprate films on YSZ was achieved using seed layers, and the anisotropy in the ASR was found to be less than an order of magnitude. The rare-earth doped cuprate was found to be a versatile system for study of relationships between bulk properties and the oxygen reduction reaction, critical for improving SOFC performance.

  5. Concentration quenching of Eu{sup 2+} doped Ca{sub 2}BO{sub 3}Cl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seed Ahmed, H.A.A.; Department of Physics, University of Khartoum, Khartoum; Swart, H.C.

    2016-03-15

    Highlights: • Ca{sub 2}BO{sub 3}Cl doped with Eu{sup 2+} prepared by solid state reaction. • Concentration quenching studied by intensity and lifetime measurements. • Accurate determination of the critical transfer distance. • Interaction mechanism verified to be dipole–dipole interactions. - Abstract: With the aim of determining the concentration quenching mechanism of Eu{sup 2+} doped Ca{sub 2}BO{sub 3}Cl, a series of phosphors with a varied Eu{sup 2+} concentration (Ca{sub 2−x}BO{sub 3}Cl:xEu{sup 2+}) was synthesized by the solid state reaction method. The phase structure was determined by X-ray diffraction. Photoluminescence (PL) measurements showed broad excitation and emission signatures of the allowed f–dmore » transition of Eu{sup 2+} ions. The PL emission intensity was found to be increased by increasing the concentration of Eu{sup 2+} ions up to x = 0.03 and then decreased as a result of the concentration quenching effect. The lifetime of the emission from the Eu{sup 2+} ions was measured and the decrease in the lifetime with increasing Eu{sup 2+} concentration confirmed that non-radiative energy transfer occurred between Eu{sup 2+} ions. From the luminescence data, the value of the critical transfer distance was calculated as 1.5 nm and the corresponding concentration quenching mechanism was verified to be a dipole–dipole interaction.« less

  6. Highly efficient red-emitting BaMgBO3F:Eu3+,R+ (R: Li, Na, K, Rb) phosphor for near-UV excitation synthesized via glass precursor solid-state reaction

    NASA Astrophysics Data System (ADS)

    Shinozaki, Kenji; Akai, Tomoko

    2017-09-01

    Eu3+-doped fluoroborate crystals of BaMgBO3F were synthesized by a solid-state reaction using a glassy precursor material, and their photoluminescence (PL) was investigated. To compensate for the incorporation of Eu3+ into Ba2+ sites, samples codoped with alkali ions (Li+, Na+, K+, Rb+) were also prepared. The Eu3+-doped sample showed red PL with a quantum yield (QY) of 65% caused by near-UV excitation (λ = 393 nm), and PL intensity and QY increased with the codoping of Eu3+ and alkali ions. It was found that the Eu3+,Li+-codoped sample showed the highest PL intensity and a QY of 83%.

  7. Upconversion properties of Er3+/Yb3+ co-doped TeO2-TiO2-K2O glasses.

    PubMed

    Su, Fangning; Deng, Zaide

    2006-01-01

    The Er3+/Yb3+ co-doped TeO2-TiO2-K2O glasses were prepared by conventional melting procedures, and their upconversion spectra were performed. The dependence of luminescence intensity on the ratio of Yb3+/Er3+ was studied, and the relationship between green upconversion luminescence intensity and Er3+ concentration is discussed in detail. The 546 nm green upconversion luminescence intensity is optimised in the studied glasses either when the Yb3+/Er3+ ratio is 25/1 and Er3+ concentration is 0.1 mol%, or when the Yb3+/Er3+ ratio is 10/1 and Er3+ concentration is 0.15 mol%. These glasses could be one of the potential candidates for LD pumping microchip solid-state lasers.

  8. Influence of Zn doping on structural, optical and dielectric properties of LaFeO3

    NASA Astrophysics Data System (ADS)

    Manzoor, Samiya; Husain, Shahid

    2018-05-01

    The effect of Zn doping on structural, optical and dielectric properties of nano-crystalline LaFe1‑xZnxO3 (0.0 ≤ x ≤ 0.3) samples have been investigated. These samples are synthesized using conventional solid state reaction route. X-ray diffraction patterns with Rietveld analysis confirm the single phase nature of samples. Further, the sample formation has been confirmed by FTIR spectroscopy. All the samples are formed in orthorhombic crystal symmetry with Pbnm space group. The average crystallite sizes, calculated from the Scherer’s formula, lie in the range below 50 nm. Rietveld refinement technique is used to determine lattice parameters, bond lengths and unit cell volume. Williamson-Hall analysis has been performed to calculate the crystallite size and lattice strain. Crystallite sizes are found to be of nanometer range while the strain is of the order of 10‑3. Zn doping leads to the expansion of volume due to the tensile strain. Optical bandgap has been determined from Kubelka-Munk function using Tauc’s relation. Zinc doping in LaFeO3 leads to decrease in optical bandgap. Dielectric constant as a function of frequency is measured in the frequency range of 75 kHz–5 MHz. The dielectric behavior has been investigated by analyzing ‘universal dielectric response’ (UDR) model. The dielectric constant (ε‧) shows colossal value with Zn doping in the whole frequency range. However, the imaginary part (ε″) shows relaxational behavior which may be attributed to the strong correlation that exists between conduction mechanism and dielectric behavior in ferrites. Cole-Cole analysis has been done that confirms the dielectric material does not follow the ideal Debye theory but shows distribution of relaxation times. The a.c conductivity increases with frequency and with Zn doping due to the increased polaron hopping.

  9. Determination of the Tribological Fundamentals of Solid Lubricated Ceramics. Volume 3. Appendices P through II

    DTIC Science & Technology

    1991-09-01

    9H and tungsten silicides may also be present in the microstructure. The non-SiC eiemental concentrations for NC-203 would not be expected to exceed...lesser amounts of yttrium silicate and tungsten silicide . Trace amounts of a-Si 3N4 , silicon oxynitride, tungsten-iron- silicide , and yttrium silicon...SiC ESK On this sample, we detect Silicon, Carbon, and also Oxygen and Nitrogen, as well as Calcium and Sodium traces. After ionic etching up to about

  10. Synthesis and spectral characterizations of trivalent ions (Cr3+, Fe3+) doped CdO nanopowders

    NASA Astrophysics Data System (ADS)

    Aswani, T.; Babu, B.; Pushpa Manjari, V.; Joyce Stella, R.; Thirumala Rao, G.; Rama Krishna, Ch.; Ravikumar, R. V. S. S. N.

    2014-03-01

    Trivalent transition metal ions (Cr3+, Fe3+) doped CdO nanopowders via sonication in the presence of Sodium lauryl sulfate as stabilizing agent were synthesized and characterized. Powder XRD studies indicate that the obtained CdO has a cubic phase and concluded that the trivalent ions doping induced the lattice constants to change some extent. Optical absorption spectra exhibited the characteristic bands of Cr3+ and Fe3+ ions in octahedral site symmetry. Crystal field (Dq) and inter-electronic repulsion (B and C) parameters are evaluated for Cr3+ doped CdO nanopowders as Dq = 1540, B = 619 and C = 3327 cm-1 and for Fe3+ doped CdO nanopowders Dq = 920, B = 690, C = 2750 cm-1. EPR spectra of the Cr3+ and Fe3+ doped CdO nanopowders exhibited resonances at g = 1.973 and g = 2 respectively which indicate distorted octahedral site for both ions with the host. Photoluminescence spectra shows the emission bands in violet and bluish green regions for Cr3+ doped CdO, ultraviolet and blue emissions for Fe3+ doped CdO nanopowders. The CIE chromaticity coordinates were also evaluated from the emission spectrum. FT-IR spectra indicate the presence of various functional groups of host lattice.

  11. Color-tunable up-conversion emission from Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} tri-doped T-AgGd(W,Mo){sub 2}O{sub 8} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jijian; Liu, Ni; Xu, Ling, E-mail: xuling@snnu.edu.cn

    Graphical abstract: The doping ions tune the UC luminescence of the T- AgGd(W,Mo){sub 2}O{sub 8}:Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} material. - Highlights: • AgGd(W,Mo){sub 2}O{sub 8}:Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} phosphors show color-tunable blue, green, and red UC emissions. • The samples’ UC emission color can be switched with the concentrations of doped ions. • The blue, green and red UC mechanisms are interpreted reasonably as three- and two- photon process. - Abstract: Tetragonal Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} tri-doped AgGd(W,Mo){sub 2}O{sub 8} phosphors were prepared by the high-temperature solid-state method. When the phosphors were excited at 980 nm, the UC emission ofmore » blue at 475 nm, green at 525 and 550 nm, and red at 656 nm were corresponding to the {sup 1}G{sub 4} → {sup 3}H{sub 6} transition of Tm{sup 3+} ions, the {sup 2}H{sub 11/2},{sup 4}S{sub 3/2} → {sup 4}I{sub 15/2} transitions of Er{sup 3+} ions, and the {sup 4}F{sub 9/2} → {sup 4}I{sub 15/2} transition of Er{sup 3+} ions, respectively. The blue UC emissions originate from a three-photon mechanism, while the green and red ones of Er{sup 3+} from two-photon process. The UC emission color of the Yb{sup 3+}/Er{sup 3+}/Tm{sup 3+} tri-doped AgGdW{sub 2}O{sub 8} samples switched from green to white, and then to red depending on the concentrations of Er{sup 3+} and Tm{sup 3+}. After doping with Mo(VI), tetragonal AgGdW{sub 2}O{sub 8} was transformed into tetragonal AgGdMo{sub 2}O{sub 8}, resulting in a slightly enhanced UC luminescence intensity with the favor of the red emission of Er{sup 3+} ion.« less

  12. Optimization Recovery of Yttrium Oxide in Precipitation, Extraction, and Stripping Process

    NASA Astrophysics Data System (ADS)

    Perwira, N. I.; Basuki, K. T.; Biyantoro, D.; Effendy, N.

    2018-04-01

    Yttrium oxide can be used as a dopant control rod of nuclear reactors in YSH material and superconductors. Yttrium oxide is obtained in the Xenotime mineral derived from byproduct of tin mining PT Timah Bangka which contain rare earth elements (REE) dominant Y, Dy, and Gd whose content respectively about 29.53%, 7.76%, and 2.58%. Both usage in the field of nuclear and non-nuclear science and technology is need to pure from the impurities. The presence of impurities in the yttrium oxide may affect the characteristic of the material and the efficiency of its use. Thus it needs to be separated by precipitation and extraction-stripping and calcination in the making of the oxide. However, to obtain higher levels of Yttrium oxide, it is necessary to determine the optimum conditions for its separation. The purpose of this research was to determine the optimum pH of precipitation, determine acid media and concentration optimum in extraction and stripping process and determine the efficiency of the separation of Y from REE concentrate. This research was conducted with pH variation in the precipitation process that pHs were 4 - 8, the difference of acid media for the extraction process, i.e., HNO3, HCl and H2SO4 with each concentration of 0,5 M; 1 M; 1,5 M; and 2 M and for stripping process were HNO3, HCl, and H2SO4 with each concentration of 1 M; 2M; and 3 M. Based on the result, the optimum pH of precipitation process was 6,5, the optimumacid media was HNO3 0,5 M, and for stripping process media was HNO3 3 M. The efficiency of precipitation process at pH 6,5 was 69,53 %, extraction process was 96.39% and stripping process was 4,50%. The separation process from precipitation to extraction had increased the purity and the highest efficiency recovery of Y was in the extraction process and obtained Y2O3 purer compared to the feed with the Y2O3 content of 92.87%.

  13. Efficient upconversion emission in Ho3+/Nd3+ co-doped oxyfluorosilicate glasses

    NASA Astrophysics Data System (ADS)

    Devarajulu, G.; Raju, B. Deva Prasad

    2018-04-01

    We report on an efficient Ho3+ and Ho3+/Nd3+ co-doped oxyfluorosilicate glasses upon excitation with an 808 nm laser diode. The detailed fluorescence have been studied under this excitation source and energy transfer mechanisms in Ho3+/Nd3+ co-doped oxyfluorosilicate glasses. The upconversion peaks at 486, 547 and 596 nm were observed in Nd3+/Ho3+ co-doped sample. The intensity of upconversion emission transitions in Ho3+ depends on the neodymium codopent concentration. These results indicate that Nd3+ ions can be potentially used as sensitizer for Ho3+ ions to stimulate the intense upconversion emission. The energy transfer mechanism between Nd3+ and Ho3+ was analyzed pursuant to the absorption spectra, upconversion spectra and the energy level structures of Nd3+ and Ho3+ ions have been briefly discussed.

  14. Scintillation properties of rare-earth doped NaPO3-Al(PO3)3 glasses

    NASA Astrophysics Data System (ADS)

    Kuro, Tomoaki; Okada, Go; Kawaguchi, Noriaki; Fujimoto, Yutaka; Masai, Hirokazu; Yanagida, Takayuki

    2016-12-01

    We systematically investigated photoluminescence (PL), scintillation and dosimeter properties of rare-earth (RE) doped NaPO3-Al(PO3)3 (NAP) glasses. The NAP glasses doped with a series of RE ions (La-Yb, except Pm) with a consistent concentration (0.3 wt%) were prepared by the conventional melt-quenching method. The PL and scintillation decay time profiles showed fast (ns) and slow (μs or ms) components: the fast components from 15 to 100 ns were due to the host or 5d-4f transition emission, and the slow components from 15 μs to 5 ms were due to the 4f-4f transitions of RE. The thermally stimulated luminescence (TSL) was evaluated as a dosimeter property, and glow peaks appeared around 400 °C in all the samples. The TSL dose response function was examined in the dose range from 10 mGy to 10 Gy. Among the samples tested, Nd and Tb doped glasses showed higher signal by at least one order of magnitude than those of non-doped and other RE-doped samples. Over the dose range tested, the TSL signals are linearly related with the incident X-ray dose, showing a potential for practical applications.

  15. Biochemical investigation of yttrium(III) complex containing 1,10-phenanthroline: DNA binding and antibacterial activity.

    PubMed

    Khorasani-Motlagh, Mozhgan; Noroozifar, Meissam; Moodi, Asieh; Niroomand, Sona

    2013-03-05

    Characterization of the interaction between yttrium(III) complex containing 1,10-phenanthroline as ligand, [Y(phen)2Cl(OH2)3]Cl2⋅H2O, and DNA has been carried out by UV absorption, fluorescence spectra and viscosity measurements in order to investigate binding mode. The experimental results indicate that the yttrium(III) complex binds to DNA and absorption is decreasing in charge transfer band with the increase in amount of DNA. The binding constant (Kb) at different temperatures as well as thermodynamic parameters, enthalpy change (ΔH°) and entropy change (ΔS°), were calculated according to relevant fluorescent data and Vant' Hoff equation. The results of interaction mechanism studies, suggested that groove binding plays a major role in the binding of the complex and DNA. The activity of yttrium(III) complex against some bacteria was tested and antimicrobial screening tests shown growth inhibitory activity in the presence of yttrium(III) complex. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Optical temperature sensing properties of Sm3+ doped SrWO4 phosphor

    NASA Astrophysics Data System (ADS)

    Song, Huiling; Han, Qun; Wang, Chao; Tang, Xiaoyun; Yan, Wenchuan; Chen, Yaofei; Zhao, Xueru; Jiang, Junfeng; Liu, Tiegen

    2018-04-01

    Sm3+ doped SrWO4 was synthesized by the high temperature solid-state reaction method to explore its possible application in optical thermometry. Under a 404 nm excitation, the fluorescence intensity ratios (FIRs) between the down conversion emissions of the Sm3+:4G5/2 → 6H5/2 (564 nm) to the Sm3+:4G5/2 → 6H7/2 (600 nm) and Sm3+:4G5/2 → 6H9/2 (647 nm), respectively, were measured as a function of temperature in the range of 300-573 K. A maximum temperature sensitivity of 0.016 K-1 at 300 K is achieved. The results indicate that the SrWO4:Sm3+ is a promising candidate for optical thermometry.

  17. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods.

    PubMed

    Chen, Feng; Huang, Peng; Zhu, Ying-Jie; Wu, Jin; Zhang, Chun-Lei; Cui, Da-Xiang

    2011-12-01

    The design and synthesis of multifunctional systems with high biocompatibility are very significant for the future of clinical applications. Herein, we report a microwave-assisted rapid synthesis of multifunctional Eu(3+)/Gd(3+) dual-doped hydroxyapatite (HAp) nanorods, and the photoluminescence (PL), drug delivery and in vivo imaging of as-prepared Eu(3+)/Gd(3+) doped HAp nanorods. The photoluminescent and magnetic multifunctions of HAp nanorods are realized by the dual-doping with Eu(3+) and Gd(3+). The PL intensity of doped HAp nanorods can be adjusted by varying Eu(3+) and Gd(3+) concentrations. The magnetization of doped HAp nanorods increases with the concentration of doped Gd(3+). The as-prepared Eu(3+)/Gd(3+)-doped HAp nanorods exhibit inappreciable toxicity to the cells in vitro. More importantly, the Eu(3+)/Gd(3+)-doped HAp nanorods show a high drug adsorption capacity and sustained drug release using ibuprofen as a model drug, and the drug release is governed by a diffusion process. Furthermore, the noninvasive visualization of nude mice with subcutaneous injection indicates that the Eu(3+)/Gd(3+)-doped HAp nanorods with the photoluminescent function are suitable for in vivo imaging. In vitro and in vivo imaging tests indicate that Eu(3+)/Gd(3+)-doped HAp nanorods have a potential in applications such as a multiple-model imaging agent for magnetic resonance (MR) imaging, photoluminescence imaging and computed tomography (CT) imaging. The Eu(3+)/Gd(3+) dual-doped HAp nanorods are promising for applications in the biomedical fields such as multifunctional drug delivery systems with imaging guidance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Mesoporous nitrogen-doped carbon-glass ceramic cathodes for solid-state lithium-oxygen batteries.

    PubMed

    Kichambare, Padmakar; Rodrigues, Stanley; Kumar, Jitendra

    2012-01-01

    The composite of nitrogen-doped carbon (N-C) blend with lithium aluminum germanium phosphate (LAGP) was studied as cathode material in a solid-state lithium-oxygen cell. Composite electrodes exhibit high electrochemical activity toward oxygen reduction. Compared to the cell capacity of N-C blend cathode, N-C/LAGP composite cathode exhibits six times higher discharge cell capacity. A significant enhancement in cell capacity is attributed to higher electrocatalytic activity and fast lithium ion conduction ability of LAGP in the cathode. © 2011 American Chemical Society

  19. Tuning the magnetocaloric properties of La0.7Ca0.3MnO3 manganites through Ni-doping

    NASA Astrophysics Data System (ADS)

    Gómez, A.; Chavarriaga, E.; Supelano, I.; Parra, C. A.; Morán, O.

    2018-04-01

    The effect of Ni2+ doping on the magnetic and magnetocaloric properties of La0.7Ca0.3MnO3 manganites synthesized via the auto-combustion method is reported. The aim of studying Ni2+-substituted La0.7Ca0.3Mn1 - xNixO3 (x = 0 , 0.02 , 0.07, and 0.1) manganites was to explore the possibility of increasing the operating temperature range for the magnetocaloric effect through tuning of the magnetic transition temperature. X-ray diffraction analysis confirmed the phase purity of the synthesized samples. The substitution of Mn3+ ions by Ni2+ ions in the La0.7Ca0.3MnO3 lattice was also corroborated through this technique. The dependence of the magnetization on the temperature reveals that all the compositions exhibit a well-defined ferromagnetic to paramagnetic transition near the Curie temperature. A systematic decrease in the values of the Curie temperature is clearly observed upon Ni2+ doping. Probably the replacement of Mn3+ by Ni2+ ions in the La0.7Ca0.3MnO3 lattice weakens the Mn3+-O-Mn4+ double exchange interaction, which leads to a decrease in the transition temperature and the magnetic moment in the samples. By using Arrott plots, it was found that the phase transition from ferromagnetic to paramagnetic is second order. The maximum magnetic entropy changes observed for the x = 0 , 0.02 , 0.07, and 0.1 composites was 0.85, 0.77, 0.63, and 0.59 J/kg K, respectively, under a magnetic field of 1.5 T. In general, it was verified that the magnetic entropy change achieved for La0.7Ca0.3Mn1 - xNixO3 manganites synthesized via the auto-combustion method is higher than those reported for other manganites with comparable Ni2+-doping levels synthesized via standard solid state reaction. The addition of Ni2+ increases the value of the relative cooling power as compared to that of the parent compound. The highest value of this parameter (∼60 J/kg) is found for a Ni-doping level of 2% around 230 K in a field of 1.5 T.

  20. YPdSn and YPd{sub 2}Sn: Structure, {sup 89}Y solid state NMR and {sup 119}Sn Moessbauer spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoeting, Christoph; Eckert, Hellmut; Langer, Thorsten

    2012-06-15

    The stannides YPdSn and YPd{sub 2}Sn were synthesized by high-frequency melting of the elements in sealed tantalum tubes. Both structures were refined on the basis of single crystal X-ray diffractometer data: TiNiSi type, Pnma, a=715.4(1), b=458.8(1), c=789.1(1) pm, wR2=0.0461, 510 F{sup 2} values, 20 variables for YPdSn and MnCu{sub 2}Al type, Fm3 Macron m, a=671.44(8), wR2=0.0740, 55 F{sup 2} values, 5 parameters for YPd{sub 2}Sn. The yttrium atoms in the new stannide YPdSn are coordinated by two tilted Pd{sub 3}Sn{sub 3} hexagons (ordered AlB{sub 2} superstructure). In the Heusler phase YPd{sub 2}Sn each yttrium atom has octahedral tin coordination andmore » additionally eight palladium neighbors. The cubic site symmetry of yttrium is reflected in the {sup 119}Sn Moessbauer spectrum which shows no quadrupole splitting. In contrast, YPdSn shows a single signal at {delta}=1.82(1) mm/s subjected to quadrupole splitting of {Delta}E{sub Q}=0.93(1) mm/s. Both compounds have been characterized by high-resolution {sup 89}Y solid state NMR spectroscopy, which indicates the presence of strong Knight shifts. The spectrum of YPd{sub 2}Sn is characterized by an unusually large linewidth, suggesting the presence of a Knight shift distribution reflecting local disordering effects. The range of {sup 89}Y Knight shifts of several binary and ternary intermetallic yttrium compounds is briefly discussed. - Graphical abstract: YPdSn and YPd{sub 2}Sn: Structure, {sup 89}Y solid state NMR and {sup 119}Sn Moessbauer spectroscopy. Highlights: Black-Right-Pointing-Pointer Synthesis and structure of ternary stannides YPdSn and YPd{sub 2}Sn. Black-Right-Pointing-Pointer {sup 119}Sn Moessbauer spectroscopic investigation of YPdSn and YPd{sub 2}Sn. Black-Right-Pointing-Pointer {sup 89}Y solid state NMR of intermetallics.« less

  1. Dy3+ doped cubic zirconia nanostructures prepared via ultrasound route for display applications

    NASA Astrophysics Data System (ADS)

    Yadav, H. J. Amith; Eraiah, B.; Nagabhushana, H.; Basavaraj, R. B.; Deepthi, N. H.

    2017-05-01

    White light emitting dysprosium (Dy) doped Zirconia (ZrO2) nanostructures were prepared first time via ultrasound assisted sonochemical synthesis route using cetyltrimethylammonium bromide (CTAB) surfactant. The obtained product was well characterized. The powder X-ray diffraction (PXRD) profiles confirmed that the product was highly crystalline in nature with cubic phase. Various reaction parameters such as, effect of sonication time, concentration of the surfactant was studied in detail. Diffuse reflectance spectroscopy (DRS) was studied to evaluate the band gap energy of the products and the values were found in the range of 4.13 - 4.53 eV. The particle size was estimated by transmission electron microscope (TEM) and it was found in the range of 10-20 nm. Photoluminescence (PL) properties were studied in detail by recording emission spectra of all the Dy doped Zirconia nanostructures at an excitation wavelength of 350 nm. The emission peaks were observed at 480, 574 and 666 nm which corresponds to Dy3+ ion transitions. The 3 mol% Dy3+ doped ZrO2 nanostructures showed maximum intensity. Further photometric measurements were done by evaluating, Commission International De I-Eclairage (CIE) and correlated color temperature (CCT). From CIE it was observed that the color coordinates lies in white region. The color purity and quantum efficiency were also estimated and the results indicate that the nanophosphor obtained in this route can be used in preparing solid state lighting application.

  2. Crystal structure and phase transformations of calcium yttrium orthophosphate, Ca 3Y(PO 4) 3

    NASA Astrophysics Data System (ADS)

    Fukuda, Koichiro; Iwata, Tomoyuki; Niwa, Takahiro

    2006-11-01

    Crystal structure and phase transformations of calcium yttrium orthophosphate Ca 3Y(PO 4) 3 were investigated by X-ray powder diffraction, selected-area electron diffraction, transmission electron microscopy and optical microscopy. The high-temperature phase is isostructural with eulytite, cubic (space group I4¯3d) with a=0.983320(5) nm, V=0.950790(8) nm 3, Z=4 and D x=3.45 Mg m -3. The crystal structure was refined with a split-atom model, in which the oxygen atoms are distributed over two partially occupied sites. Below the stable temperature range of eulytite, the crystal underwent a martensitic transformation, which is accompanied by the formation of platelike surface reliefs. The inverted crystal is triclinic (space group P1) with a=1.5726(1) nm, b=0.84267(9) nm, c=0.81244(8) nm, α=109.739(4)°, β=90.119(5)°, γ=89.908(7)°, V=1.0134(1) nm 3, Z=4 and D x=3.24 Mg m -3. The crystal grains were composed of pseudo-merohedral twins. The adjacent twin domains were related by the pseudo-symmetry mirror planes parallel to {101¯} with the composition surface {101¯}. When the eulytite was cooled relatively slowly from the stable temperature range, the decomposition reaction of Ca 3Y(PO 4) 3→ β-Ca 3(PO 4) 2+YPO 4 occurred.

  3. Modulated two-dimensional charge-carrier density in LaTiO3-layer-doped LaAlO3/SrTiO3 heterostructure.

    PubMed

    Nazir, Safdar; Bernal, Camille; Yang, Kesong

    2015-03-11

    The highly mobile two-dimensional electron gas (2DEG) formed at the polar/nonpolar LaAlO3/SrTiO3 (LAO/STO) heterostructure (HS) is a matter of great interest because of its potential applications in nanoscale solid-state devices. To realize practical implementation of the 2DEG in device design, desired physical properties such as tuned charge carrier density and mobility are necessary. In this regard, polar perovskite-based transition metal oxides can act as doping layers at the interface and are expected to tune the electronic properties of 2DEG of STO-based HS systems dramatically. Herein, we investigated the doping effects of LaTiO3(LTO) layers on the electronic properties of 2DEG at n-type (LaO)(+1)/(TiO2)(0) interface in the LAO/STO HS using spin-polarized density functional theory calculations. Our results indicate an enhancement of orbital occupation near the Fermi energy, which increases with respect to the number of LTO unit cells, resulting in a higher charge carrier density of 2DEG than that of undoped system. The enhanced charge carrier density is attributed to an extra electron introduced by the Ti 3d(1) orbitals from the LTO dopant unit cells. This conclusion is consistent with the recent experimental findings (Appl. Phys. Lett. 2013, 102, 091601). Detailed charge density and partial density of states analysis suggests that the 2DEG in the LTO-doped HS systems primarily comes from partially occupied dyz and dxz orbitals.

  4. Preparation of nitrogen-doped carbon tubes

    DOEpatents

    Chung, Hoon Taek; Zelenay, Piotr

    2015-12-22

    A method for synthesizing nitrogen-doped carbon tubes involves preparing a solution of cyanamide and a suitable transition metal-containing salt in a solvent, evaporating the solvent to form a solid, and pyrolyzing the solid under an inert atmosphere under conditions suitable for the production of nitrogen-doped carbon tubes from the solid. Pyrolyzing for a shorter period of time followed by rapid cooling resulted in a tubes with a narrower average diameter.

  5. Fabrication of dense yttrium oxyfluoride ceramics by hot pressing and their mechanical, thermal, and electrical properties

    NASA Astrophysics Data System (ADS)

    Tahara, Ryuki; Tsunoura, Toru; Yoshida, Katsumi; Yano, Toyohiko; Kishi, Yukio

    2018-06-01

    Excellent corrosion-resistant materials have been strongly required to reduce particle contamination during the plasma process in semiconductor production. Yttrium oxyfluoride can be a candidate as highly corrosion-resistant material. In this study, three types of dense yttrium oxyfluoride ceramics with different oxygen contents, namely, YOF, Y5O4F7 and Y5O4F7 + YF3, were fabricated by hot pressing, and their mechanical, thermal, and electrical properties were evaluated. Y5O4F7 ceramics showed an excellent thermal stability up to 800 °C, a low loss factor, and volume resistivity comparable to conventional plasma-resistant oxides, such as Y2O3. From these results, yttrium oxyfluoride ceramics are strongly suggested to be used as electrostatic chucks in semiconductor production.

  6. Luminescent properties of Ln3+ doped tellurite glasses containing AlF3

    NASA Astrophysics Data System (ADS)

    Walas, Michalina; Pastwa, Agata; Lewandowski, Tomasz; Synak, Anna; Gryczyński, Ignacy; Sadowski, Wojciech; Kościelska, Barbara

    2016-09-01

    The low-phonon energy tellurite glasses TeO2-BaO-Bi2O3 and TeO2-BaO-Bi2O3-AlF3 triply doped with Eu3+, Tb3+, Tm3+ ions in two different molar ratios were synthesized using melt-quenching technique. Their structure and luminescence properties were widely investigated by X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence Spectroscopy (PL). The luminescence spectra of Eu3+, Tb3+, Tm3+ co-doped glasses show apart of the bands corresponding to the 4f-4f transitions of lanthanide ions also band corresponding to glass matrix. AlF3 doping increases emission intensity, although to improve overall emission color further studies on molar composition of samples and the molar ratio of the components should be carried out.

  7. Melanogenesis inhibition in mice using a low-fluence 1064-nm Q-switched neodymium-doped yttrium aluminum garnet laser: a pilot study.

    PubMed

    Nam, Jae-Hui; Min, Joon Hong; Kim, Wang-Kyun; Yim, Sunmin; Kim, Won-Serk

    2017-07-01

    A low-fluence 1064-nm Q-switched neodymium-doped yttrium aluminum garnet laser, or laser toning, has yielded favorable outcomes in various benign pigmented disorders. However, the exact mechanism of action of laser toning has not been fully elucidated. We sought to determine the inhibitory effect of laser toning on melanogenesis and to assess how laser passes influence the outcomes. To produce perceptible pigmentation, nine HRM-2 melanin-possessing hairless mice were treated with ultraviolet (UV) B radiation on the dorsal skin. This was followed by zero, two, four, or six passes of laser toning twice in 2 weeks on each designated quadrant. The spectrophotometric values and pigmentation-related protein expressions were measured. Pigment changes were found in the mice skin using the Fontana-Masson stain for histopathological analysis. Four- and six-pass laser toning significantly improved the lightness compared to that in the unirradiated control (p < 0.002). The Fontana-Masson stain showed that melanin was considerably decreased in laser-irradiated skin. As the number of laser passes increased, the expression of tyrosinase decreased (p < 0.008). The following parameters also decreased in proportion to the number of laser passes: MITF, TRP-1, TRP-2, p-ERK, and p-Akt. In contrast, TGF-β increased in proportion to the number of laser passes. However, the changes in these six proteins were not statistically significant. Our study demonstrates that laser toning improves skin pigmentation with increased number of passes in a dose-dependent manner. This effect is mediated by tyrosinase inhibition.

  8. Advanced High Temperature Coating Systems Beyond Current State of the Art Systems.

    DTIC Science & Technology

    1986-04-15

    cobalt and chromium rich oxides. The A120 3 scales developed on the NiCrAl and CoCrAI alloys doped with yttrium or hafnium were relatively flat and...third element such as Cr is present in the alloy. Chromium acts as a getter which prevents oxygen from entering the alloy, so A12 0 3 tends to develop...or Cr doped alumina. Yttrium is isovalent with aluminum so it is not expected to alter the intrinsic defect structure of alumina, however

  9. Investigation of the thermoelectric properties of Nb and oxygen vacancy co-doped SrTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Gong, Jing; Yuan, Zhanhui; Xu, Shikui; Li, Zhuangzhi; Xu, Jingzhou; Tang, Guide

    2017-05-01

    High quality Nb doped SrTi1-x Nb x O3 polycrystalline ceramics were fabricated using a conventional solid state reaction method. By annealing in a reducing atmosphere at an elevated temperature, a series of Nb and oxygen vacancy co-doped SrTi1-x Nb x O3-δ (0  ⩽  x  ⩽  0.2) samples was obtained. The thermoelectric properties of the samples were measured in the temperature range from 15 K to 380 K. These measurements showed that the transport behavior of these samples is consistent with the small polaron conduction mechanism for the temperature range from room temperature to 380 K. Furthermore, after annealing, samples with a lower Nb doping were found to give a relative higher ZT value, while excess Nb led to a reduced ZT value. The x  =  0.02 sample gave the optimal thermoelectric properties, with a ZT value of 0.023 at 300 K, and 0.028 at 380 K.

  10. Polarizing Ytterbium-Doped all-Solid Photonic Bandgap Fiber with 1150 micrometers2 Effective Mode Area

    DTIC Science & Technology

    2015-02-11

    RESPONSIBLE PERSON 19b. TELEPHONE NUMBER Liang Dong Fanting Kong,, Guancheng Gu,, Thomas W. Hawkins ,, Joshua Parsons, Maxwell Jones,, Christopher...Dunn,, Monica T. Kalichevsky-Dong,, Benjamin Pulford,, Iyad Dajani,, Kunimasa Saitoh,, Stephen P. Palese,, Eric Cheung,, Liang Dong c. THIS PAGE The...ytterbium-doped all-solid photonic bandgap fiber with ~1150µm2 effective mode area Fanting Kong,1,* Guancheng Gu,1 Thomas W. Hawkins ,1 Joshua Parsons

  11. Comparison of Micro-Leakage from Resin-Modified Glass Ionomer Restorations in Cavities Prepared by Er:YAG (Erbium-Doped Yttrium Aluminum Garnet) Laser and Conventional Method in Primary Teeth

    PubMed Central

    Bahrololoomi, Zahra; Razavi, Forooghosadat; Soleymani, Ali Asghar

    2014-01-01

    Introduction: In recent years, significant developments have been taking place in caries removal and cavity preparation using laser in dentistry. As laser use is considered for cavity preparation, it is necessary to determine the quality of restoration margins. Glass ionomer cements have great applications for conservative restoration in the pediatric field. The purpose of this in vitro study was to compare resin-modified glass ionomer restorations micro-leakage in cavities prepared by Er:YAG (Erbium-Doped Yttrium Aluminum Garnet) laser irradiation and conventional method in primary teeth. Methods: This was an in vitro experimental study. Forty primary canine teeth were divided into 2 groups: group 1 represented cavities prepared by the no. 008 diamond bur, group 2 represented cavities prepared by Er:YAG laser. After cavity preparation, samples were restored by resin-modified glass ionomer. The teeth were thermocycled for 700 cycles, placed in 2% methylene blue for 24h and sectioned in the buccolingual direction. The degree of dye penetration was scored by 3 examiners. Data was analyzed using Mann-Whitney Test. Results: There was no statistical difference in micro-leakage between the two modes of cavity preparation (P=0.862) Conclusion: Since preparing conservative cavities is very important in pediatric dentistry, it is possible to use Er:YAG laser because of its novel and portable technology. However, further investigations of other restorative materials and other laser powers are required. PMID:25653819

  12. Rapid solid-state metathesis route to transition-metal doped titanias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Nathaniel; Perera, Sujith; Gillan, Edward G., E-mail: edward-gillan@uiowa.edu

    2015-12-15

    Rapid solid-state metathesis (SSM) reactions are often short-lived highly exothermic reactions that yield a molten alkali halide salt that aids in product growth and crystallization. SSM reactions may also produce kinetically stabilized structures due to the short (seconds) reaction times. This report describes the investigation of rapid SSM reactions in the synthesis of transition-metal doped titanias (M–TiO{sub 2}). The dopant targeted compositions were ten mol percent and based on elemental analysis, many of the M–TiO{sub 2} samples were close to this targeted level. Based on surface analysis, some samples showed large enrichment in surface dopant content, particularly chromium and manganesemore » doped samples. Due to the highly exothermic nature of these reactions, rutile structured TiO{sub 2} was observed in all cases. The M–TiO{sub 2} samples are visible colored and show magnetic and optical properties consistent with the dopant in an oxide environment. UV and visible photocatalytic experiments with these visibly colored rutile M–TiO{sub 2} powders showed that many of them are strongly absorbent for methylene blue dye and degrade the dye under both UV and visible light illumination. This work may open up SSM reactions as an alternate non-thermodynamic reaction strategy for dopant incorporation into a wide range of oxide and non-oxides.« less

  13. Bioactivity of Y2O3 and CeO2 doped SiO2-SrO-Na2O glass-ceramics.

    PubMed

    Placek, L M; Keenan, T J; Wren, A W

    2016-08-01

    The bioactivity of yttrium and cerium are investigated when substituted for Sodium (Na) in a 0.52SiO2-0.24SrO-0.24-xNa2O-xMO glass-ceramics (where x = 0.08 and MO = Y2O3 or CeO2). Bioactivity is monitored through pH and inductively coupled plasma-optical emission spectrometry where pH of simulated body fluid ranged from 7.5 to 7.6 and increased between 8.2 and 10.0 after 14-day incubation with the glass-ceramic disks. Calcium (Ca) and phosphorus (P) levels in simulated body fluid after incubation with yttrium and cerium containing disks show a continual decline over the 14-day period. In contrast, Con disks (not containing yttrium or cerium) caused the elimination of Ca in solution after 1 day and throughout the incubation period, and initially showed a decline in P levels followed by an increase at 14 days. Scanning electron microscopy and energy dispersive spectroscopy confirmed the presence of Ca and P on the surface of the simulated body fluid-incubated disks and showed precipitates on Con and HCe (8 mol% cerium) samples. Cell viability of MC3T3 osteoblasts was not significantly affected at a 9% extract concentration. Optical microscopy after 24 h cell incubation with disks showed that Con samples do not support osteoblast or Schwann cell growth, while all yttrium and cerium containing disks have direct contact with osteoblasts spread across the wells. Schwann cells attached in all wells, but only showed spreading with the HY-S (8 mol% yttrium, heated to sintering temperature) and YCe (4 mol% yttrium and cerium) disks. Scanning electron microscopy of the compatible disks shows osteoblast and sNF96.2 Schwann cells attachment and spreading directly on the disk surfaces. © The Author(s) 2016.

  14. Ultra-broad range organic solid-state laser from a dye-doped holographic grating quasi-waveguide configuration

    NASA Astrophysics Data System (ADS)

    Liu, Minghuan; Liu, Yonggang; Peng, Zenghui; Mu, Quanquan; Cao, Zhaoliang; Lu, Xinghai; Ma, Ji; Xuan, Li

    2017-08-01

    This paper reports the ultra-broad 149.1 nm lasing emission from 573.2 to 722.3 nm using a simple [4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran] (DCM)-doped holographic polymer-dispersed liquid crystal (HPDLC) grating quasi-waveguide configuration by varying the grating period. The lasing emission beams show s-polarization property. The quasi-waveguide structure, which contained the cover glass, the DCM-doped HPDLC grating, the semiconducting polymer film poly[-methoxy-5-(2‧-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-PPV), and the substrate were confirmed to decrease lasing threshold and broaden lasing wavelength. The operational lifetime of the device is 240 000 pulses, which corresponds to an overall laser duration of more than 6 h at a repetition rate of 10 Hz. In addition, the dual-wavelength lasing range from the 8th and 9th order is over 40 nm. The electrical tunability of the dual-wavelength lasing emission is over 1 nm. The experimental results facilitated the decreased lasing threshold and broadened lasing wavelength range of organic solid-state lasers.

  15. Thermoelectric properties of a doped LaNiO3 perovskite system prepared using a spark-plasma sintering process

    NASA Astrophysics Data System (ADS)

    Tak, Jang-Yeul; Choi, Soon-Mok; Seo, Won-Seon; Cho, Hyung Koun

    2013-07-01

    Both perovskites LaNiO3 and LaCuO3 have a limitation associated with phase transitions for high-temperature thermoelectric applications. The optimized conditions were investigated to obtain the LaNi1- x Cu x O3- δ perovskite single phase showing a Cu-doping effect into Ni sites against unintended deoxidized phases. Three advantages of synergetic effects due to the simultaneous presence of nickel and copper were investigated: a low melting temperature of CuO as compared to that of NiO, the absence of intermediated deoxidized phases in the LaCuO3 system, and the Cu doping effect, which suppresses the formation of intermediate secondary phases. A solid solution was also fabricated using a spark-plasma sintering (SPS) process for the purpose of sintering LaNi1- x Cu x O3- δ compositions at a low sintering temperature.

  16. Thermoelectric properties of doped BaHfO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Chandra Kr., E-mail: ckparadise@gmail.com, E-mail: sharmarameshfgiet@gmail.com; Bhamu, K. C.; Sharma, Ramesh, E-mail: ckparadise@gmail.com, E-mail: sharmarameshfgiet@gmail.com

    2016-05-06

    We have studied the structural stability, electronic structure, optical properties and thermoelectric properties of doped BaHfO{sub 3} by full potential linearized augmented plane wave (FP-LAPW) method. The electronic structure of BaHfO{sub 3} doped with Sr shows enhances the indirect band gaps of 3.53 eV, 3.58 eV. The charge density plots show strong ionic bonding in Ba-Hf, and ionic and covalent bonding between Hf and O. Calculations of the optical spectra, viz., the dielectric function, refractive index and extinction coefficient are performed for the energy range are calculated and analyzed. Thermoelectric properties of semi conducting are also reported first time. Themore » doped BaHfO{sub 3} is approximately wide band gap semiconductor with the large p-type Seebeck coefficient. The power factor of BaHfO{sub 3} is increased with Sr doping, decreases because of low electrical resistivity and thermal conductivity.« less

  17. Observation of ferromagnetism in Mn doped KNbO3

    NASA Astrophysics Data System (ADS)

    Manikandan, M.; Venkateswaran, C.

    2015-06-01

    Pure and Mn doped KNbO3 have been prepared by ball milling assisted ceramic method. Mn ion had been doped at Nb site to induce ferromagnetism at room temperature. X-ray diffraction (XRD) patterns reveal the formation of orthorhombic phase. High resolution scanning electron micrograph (HR-SEM) of both pure and Mn doped samples show a mixture of spherical and plate like particles. Room temperature magnetic behavior of both the samples were analyzed using vibrating sample magnetometer (VSM). 5% Mn doped KNbO3 exhibits ferromagnetic behavior. Observed ferromagnetic feature has been explained by interactions between bound magnetic polarons which are created by Mn4+ ions.

  18. Effects of local structure of Ce3+ ions on luminescent properties of Y3Al5O12:Ce nanoparticles

    PubMed Central

    He, Xiaowu; Liu, Xiaofang; Li, Rongfeng; Yang, Bai; Yu, Kaili; Zeng, Min; Yu, Ronghai

    2016-01-01

    Ce3+-doped yttrium aluminum garnet (YAG:Ce) nanocrystals were successfully synthesized via a facile sol-gel method. Multiple characterization techniques were employed to study the structure, morphology, composition and photoluminescence properties of YAG:Ce nanophosphors. The YAG:Ce0.0055 sintered at 1030 °C exhibited a typical 5d1-4f1 emission band with the maximum peak located at 525 nm, and owned a short fluorescence lifetime τ1 (~28 ns) and a long fluorescence lifetime τ2 (~94 ns). Calcination temperature and Ce3+ doping concentration have significant effects on the photoluminescence properties of the YAG:Ce nanophosphors. The emission intensity was enhanced as the calcination temperature increased from 830 to 1030 °C, but decreased dramatically with the increase of Ce3+ doping concentration from 0.55 to 5.50 at.% due to the concentration quenching. By optimizing the synthesized condition, the strongest photoluminescence emission intensity was achieved at 1030 °C with Ce3+ concentration of 0.55 at.%. PMID:26935980

  19. Enhanced dielectric response of GeO{sub 2}-doped CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaral, F.; School of Technology and Management of Oliveira do Hospital, Oliveira do Hospital, 3400-124 Oliveira; Rubinger, C. P. L.

    2009-02-01

    CaCu{sub 3}Ti{sub 4}O{sub 12} ceramic samples were prepared by solid state conventional route using stoichiometric amounts of CuO, TiO{sub 2}, and CaCO{sub 3}. Afterward the material was doped with GeO{sub 2} with concentrations up to 6% by weight and sintered at 1050 deg. C for 12 h. The influence of doping on the microstructure, vibrational modes, and dielectric properties of the material was investigated by x-ray diffraction, scanning electron microscopy coupled with an energy dispersive spectrometer, and infrared and dielectric measurements between 100 Hz and 30 MHz. The materials presented huge dielectric response, which increases with doping level relative tomore » undoped CaCu{sub 3}Ti{sub 4}O{sub 12}. The main effect of doping on the microstructure is the segregation of Cu-rich phase in the ceramic grain boundaries. Cole-Cole modeling correlates well the effects of this segregation with the relaxation parameters obtained. The intrinsic phonon contributions for the dielectric response were obtained and discussed together with the structural evolution of the system.« less

  20. Tin doped PrBaFe 2O 5+δ anode material for solid oxide fuel cells

    DOE PAGES

    Dong, Guohui; Yang, Chunyang; He, Fei; ...

    2017-04-25

    Ceramic anodes have many advantages over cermet anodes for solid oxide fuel cells. We report the synthesis and characterization of Sn doped double perovskite PrBaFe (2-x)Sn xO 5+δ (x = 0–0.3) anode materials. Different crystal structures were observed depending on the Sn doping level and gas atmosphere. The materials demonstrated excellent stability in both reducing and redox atmospheres at elevated temperatures. The oxygen content in the as-prepared PrBaFe (2-x)Sn xO 5+δ was nonlinearly correlated to the Sn doping level and reached maximum values around x = 0.1. After the reducing treatment, the oxygen content linearly decreased with increasing Sn dopingmore » level. The electrical conductivity of bulk PrBaFe (2-x)Sn xO 5+δ (x = 0.1) reached 63.6 S cm -1 at 800 °C in humidified hydrogen. At 750 °C, the surface exchange coefficient and bulk diffusivity of PrBaFe (2-x)Sn xO 5+δ reached the maximum values of 4.42 × 10 -6 m s -1 and 6.04 × 10 -7 m 2 s -1, respectively, in the reducing process when the Sn doping level was x = 0.1. The activation energies of surface exchange coefficient and bulk diffusivity of PrBaFe (2-x)Sn xO 5+δ (x = 0.1) were 0.22 eV and 0.16 eV, respectively, in the reducing process. The area specific resistance of the PrBaFe (2-x)Sn xO 5+δ (x = 0.1) anode was 0.095–0.285 Ω cm 2 from 850–750 °C in humidified hydrogen, better than or comparable to the best ceramic anodes in the literature.« less

  1. Influences of annealing temperature on structural characterization and magnetic properties of Mn-doped BaTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Phan, The-Long; Zhang, P.; Grinting, D.; Yu, S. C.; Nghia, N. X.; Dang, N. V.; Lam, V. D.

    2012-07-01

    Polycrystalline samples of BaTiO3 doped with 2.0 at. % Mn were prepared by solid-state reaction at various temperatures (Tan) ranging from 500 to 1350 °C, used high-pure powders of BaCO3, TiO2, and MnCO3 as precursors. Experimental results obtained from x-ray diffraction patterns and Raman scattering spectra reveal that tetragonal Mn-doped BaTiO3 starts constituting as Tan ≈ 500 °C. The Tan increase leads to the development of this phase. Interestingly, there is the tetragonal-hexagonal transformation in the crystal structure of BaTiO3 as Tan ≈ 1100 °C. Such the variations influence directly magnetic properties of the samples. Besides paramagnetic contributions of Mn2+ centers traced to electron spin resonance, the room-temperature ferromagnetism found in the samples is assigned to exchange interactions taking place between Mn3+ and Mn4+ ions located in tetragonal BaTiO3 crystals.

  2. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1995-01-01

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO.sub.3 particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr.sub.2 O.sub.3 on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO.sub.3 layer coated with CaO and Cr.sub.2 O.sub.3 surface deposit at from about 1000.degree. C. to 1200.degree. C. to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO.sub.3 layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power.

  3. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    DOEpatents

    Singh, P.; Ruka, R.J.

    1995-02-14

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO{sub 3} particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO{sub 3} particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr{sub 2}O{sub 3} on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO{sub 3} layer coated with CaO and Cr{sub 2}O{sub 3} surface deposit at from about 1,000 C to 1,200 C to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO{sub 3} layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power. 5 figs.

  4. Electrical properties of Ba doped LSGM for electrolyte material of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Raghvendra, Singh, Prabhakar; Singh, Rajesh Kumar

    2013-02-01

    We report our investigations on Lanthanum Strontium Magnesium Gallate, LSGM, La0.8Sr0.2Ga0.8Mg0.2O3doped with Barium at Strontium site having composition La0.8(Sr0.1Ba0.1)Ga0.8Mg0.2O3-δ (LSBGM). The pure cubic phase along with some additional phase was confirmed by XRD pattern. Electrical properties of the Composition LSBGM [La0.8(Sr0.1Ba0.1)Ga0.8Mg0.2O3-δ] prepared by solid state route, was studied employing impedance spectroscopy in the temperature range 573 K-993 K and frequency range 20 Hz-1MHz. The total ionic conductivity of the composition was found to be 0.072 S.cm-1 at 953 K and the activation energy from Arrhenius plot was found to be 1.16 eV in the measured temperature range. This confirms oxygen ion conductivity in the system. SEM micrograph shows the uniform densed particle morphology with gains of average size 200 nm.

  5. Interfacial Engineered Polyaniline/Sulfur-Doped TiO2 Nanotube Arrays for Ultralong Cycle Lifetime Fiber-Shaped, Solid-State Supercapacitors.

    PubMed

    Li, Chun; Wang, Zhuanpei; Li, Shengwen; Cheng, Jianli; Zhang, Yanning; Zhou, Jingwen; Yang, Dan; Tong, Dong-Ge; Wang, Bin

    2018-05-30

    Fiber-shaped supercapacitors (FSCs) have great promises in wearable electronics applications. However, the limited specific surface area and inadequate structural stability caused by the weak interfacial interactions of the electrodes result in relatively low specific capacitance and unsatisfactory cycle lifetime. Herein, solid-state FSCs with high energy density and ultralong cycle lifetime based on polyaniline (PANI)/sulfur-doped TiO 2 nanotube arrays (PANI/S-TiO 2 ) are fabricated by interfacial engineering. The experimental results and ab initio calculations reveal that S doping can effectively promote the conductivity of titania nanotubes and increase the binding energy of PANI anchored on the electrode surface, leading to a much stronger binding of PANI on the surface of the electrode and excellent electrode structure stability. As a result, the FSCs using the PANI/S-TiO 2 electrodes deliver a high specific capacitance of 91.9 mF cm -2 , a capacitance retention of 93.78% after 12 000 charge-discharge cycles, and an areal energy density of 3.2 μW h cm -2 . Meanwhile, the all-solid-state FSC device retains its excellent flexibility and stable electrochemical capacitance even after bending 150 cycles. The enhanced performances of FSCs could be attributed to the large surface area, reduced ion diffusion path, improved electrical conductivity, and engineered interfacial interaction of the rationally designed electrodes.

  6. Electron Doping a Kagome Spin Liquid

    NASA Astrophysics Data System (ADS)

    Kelly, Zachary; Gallagher, Miranda; McQueen, Tyrel

    In 1987, Anderson proposed that charge doping a material with the resonating valance bond (RVB) state would yield a superconducting state. Ever since, there has been a search for these RVB containing spin liquid materials and their charge doped counterparts. Studies on the most promising spin liquid candidate, Herbertsmithite, ZnCu3(OH)6Cl2, a two dimensional kagomé lattice, show evidence of fractionalized excitations and a gapped ground state. In this work, we report the synthesis and characterization of a newly synthesized electron doped spin liquid, ZnLixCu3(OH)6Cl2 from x = 0 to x = 1.8 (3 / 5 th per Cu2+). Despite heavy doping, the series remains insulating and the magnetism is systematically suppressed. We have done extensive structural studies of the doped series to determine the effect of the intercalated atoms on the structure, and whether these structural differences induce strong localization effects that suppress the metallic and superconducting states. Other doped spin liquid candidates are also being explored to understand if this localization is system dependent or systemic to all doped spin liquid systems. NSF, Division of Materials Research (DMR), Solid State Chemistry (SSMC), CAREER Grant under Award No. DMR- 1253562, Institute for Quantum Matter under Grant No.DE-FG02- 08ER46544, and the David and Lucile Packard Foundation.

  7. Mixed conductivity, structural and microstructural characterization of titania-doped yttria tetragonal zirconia polycrystalline/titania-doped yttria stabilized zirconia composite anode matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colomer, M.T., E-mail: tcolomer@icv.csic.e; Maczka, M.

    2011-02-15

    Taking advantage of the fact that TiO{sub 2} additions to 8YSZ cause not only the formation of a titania-doped YSZ solid solution but also a titania-doped YTZP solid solution, composite materials based on both solutions were prepared by solid state reaction. In particular, additions of 15 mol% of TiO{sub 2} give rise to composite materials constituted by 0.51 mol fraction titania-doped yttria tetragonal zirconia polycrystalline and 0.49 mol fraction titania-doped yttria stabilized zirconia (0.51TiYTZP/0.49TiYSZ). Furthermore, Y{sub 2}(Ti{sub 1-y}Zr{sub y}){sub 2}O{sub 7} pyrochlore is present as an impurity phase with y close to 1, according to FT-Raman results. Lower and highermore » additions of titania than that of 15 mol%, i.e., x=0, 5, 10, 20, 25 and 30 mol% were considered to study the evolution of 8YSZ phase as a function of the TiO{sub 2} content. Furthermore, zirconium titanate phase (ZrTiO{sub 4}) is detected when the titania content is equal or higher than 20 mol% and this phase admits Y{sub 2}O{sub 3} in solid solution according to FE-SEM-EDX. The 0.51TiYTZP/0.49TiYSZ duplex material was selected in this study to establish the mechanism of its electronic conduction under low oxygen partial pressures. In the pO{sub 2} range from 0.21 to 10{sup -7.5} atm. the conductivity is predominantly ionic and constant over the range and its value is 0.01 S/cm. The ionic plus electronic conductivity is 0.02 S/cm at 1000 {sup o}C and 10{sup -12.3} atm. Furthermore, the onset of electronic conductivity under reducing conditions exhibits a -1/4 pO{sub 2} dependence. Therefore, it is concluded that the n-type electronic conduction in the duplex material can be due to a small polaron-hopping between Ti{sup 3+} and Ti{sup 4+}. -- Graphical abstract: FE-SEM micrograph of a polished and thermal etched surface of a Ti-doped YTZP/Ti-doped YSZ composite material. Display Omitted Research highlights: {yields} Ti-doped YTZP/Ti-doped YSZ composite materials are mixed conductors

  8. Magnetic solid phase extraction of brominated flame retardants and pentachlorophenol from environmental waters with carbon doped Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Li, Jia-yuan; Qiao, Jun-qin; Cui, Shi-hai; Lian, Hong-zhen; Chen, Hong-yuan

    2014-12-01

    Carbon doped Fe3O4 nanoparticles (Fe3O4/C) prepared by a facile hydrothermal reaction of glucose with iron resource have been applied as magnetic solid-phase extraction (MSPE) sorbent, for the first time, to extract trace brominated flame retardants (BFRs) and pentachlorophenol (PCP) from environmental waters. Various MSPE parameters were optimized including amount of Fe3O4/C nanoparticles, pH of sample solution, enrichment factor of analytes and reusability of Fe3O4/C sorbent. The reliability of the MSPE method was evaluated by the recoveries of BFRs and PCP in spiked water samples. Good recoveries (80.0-110.0%) were achieved with the relative standard deviations range from 0.3% to 6.8%. In this paper, the extraction characteristics of Fe3O4/C sorbent were further elucidated. It is found that the adsorption process of Fe3O4/C to analytes predominates the MSPE efficiency. There is hybrid hydrophobic interaction and hydrogen bonding or dipole-dipole attraction between Fe3O4/C and analytes. Notably, the chemical components of carbon layer on the surface of Fe3O4 nanoparticles were identified by X-ray photoelectron spectroscopy and thermogravimetry-mass spectrometry, and in consequence the covalent bonds between Fe3O4 and the coated carbon have been observed. In addition, the straight influence of synthesis condition of Fe3O4/C nanoparticles including glucose concentration and hydrothermal reaction time on extraction performance for BFRs and PCP has been investigated. It is confirmed that the existence of organic carbon containing functional groups over Fe3O4/C sorbent is responsible for the MSPE extraction.

  9. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shulei; Zheng, Shili; Wang, Zheming

    The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li 2TiO 3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x ≤ 0.15, Fe-doping led to grain shrinkage as compared to Limore » 2TiO 3 and at the same time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g -1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH solutions (1.8 g L -1 Li, pH 12) reached 53.3 mg g -1 within 24 h, which was higher than that of pristine Li 2TiO 3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.« less

  10. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shulei; Zheng, Shili; Wang, Zheming

    The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li2TiO3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x0.15, Fe-doping led to grain shrinkage as compared to Li2TiO3 and at the samemore » time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g-1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH 2 solutions (1.8 g L-1 Li, pH 12) reached 53.3 mg g-1 within 24 h, which was higher than that of pristine Li2TiO3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.« less

  11. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves

    DOE PAGES

    Wang, Shulei; Zheng, Shili; Wang, Zheming; ...

    2018-09-09

    The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li 2TiO 3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x ≤ 0.15, Fe-doping led to grain shrinkage as compared to Limore » 2TiO 3 and at the same time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g -1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH solutions (1.8 g L -1 Li, pH 12) reached 53.3 mg g -1 within 24 h, which was higher than that of pristine Li 2TiO 3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.« less

  12. Thermochemistry of rare earth doped uranium oxides LnxU1-xO2-0.5x+y (Ln = La, Y, Nd)

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Navrotsky, Alexandra

    2015-10-01

    Lanthanum, yttrium, and neodymium doped uranium dioxide samples in the fluorite structure have been synthesized, characterized in terms of metal ratio and oxygen content, and their enthalpies of formation measured by high temperature oxide melt solution calorimetry. For oxides doped with 10-50 mol % rare earth (Ln) cations, the formation enthalpies from constituent oxides (LnO1.5, UO2 and UO3 in a reaction not involving oxidation or reduction) become increasingly exothermic with increasing rare earth content, while showing no significant dependence on the varying uranium oxidation state. The oxidation enthalpy of LnxU1-xO2-0.5x+y is similar to that of UO2 to UO3 for all three rare earth doped systems. Though this may suggest that the oxidized uranium in these systems is energetically similar to that in the hexavalent state, thermochemical data alone can not constrain whether the uranium is present as U5+, U6+, or a mixture of oxidation states. The formation enthalpies from elements calculated from the calorimetric data are generally consistent with those from free energy measurements.

  13. Structural analysis of nickel doped cerium oxide catalysts for fuel reforming in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Cavendish, Rio

    As world energy demands increase, research into more efficient energy production methods has become imperative. Heterogeneous catalysis and nanoscience are used to promote chemical transformations important for energy production. These concepts are important in solid oxide fuel cells (SOFCs) which have attracted attention because of their potential to provide an efficient and environmentally favorable power generation system. The SOFC is also fuel-flexible with the ability to run directly on many fuels other than hydrogen. Internal fuel reforming directly in the anode of the SOFC would greatly reduce the cost and complexity of the device. Methane is the simplest hydrocarbon and a main component in natural gas, making it useful when testing catalysts on the laboratory scale. Nickel (Ni) and gadolinium (Gd) doped ceria (CeO 2) catalysts for potential use in the SOFC anode were synthesized with a spray drying method and tested for catalytic performance using partial oxidation of methane and steam reforming. The relationships between catalytic performance and structure were then investigated using X-ray diffraction, transmission electron microscopy, and environmental transmission electron microscopy. The possibility of solid solutions, segregated phases, and surface layers of Ni were explored. Results for a 10 at.% Ni in CeO2 catalyst reveal a poor catalytic behavior while a 20 at.% Ni in CeO2 catalyst is shown to have superior activity. The inclusion of both 10 at.% Gd and 10 at.% Ni in CeO2 enhances the catalytic performance. Analysis of the presence of Ni in all 3 samples reveals Ni heterogeneity and little evidence for extensive solid solution doping. Ni is found in small domains throughout CeO2 particles. In the 20 at.% Ni sample a segregated, catalytically active NiO phase is observed. Overall, it is found that significant interaction between Ni and CeO2 occurs that could affect the synthesis and functionality of the SOFC anode.

  14. Preparation and Luminescent Properties of the antibacterial materials of the La3+ Doped Sm3+-Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Lv, Yuguang; Shi, Qi; Jin, Yuling; Ren, Hengxin; Qin, Yushan; Wang, Bo; Song, Shanshan

    2018-03-01

    In this paper, the La3+-doped Sm3+ hydroxyapatite (La/Sm/HAP) complexes were prepared by a precipitation method. The sample was defined by IR spectra, fluorescence spectra and X ray diffraction analysis et al. The structure of complexes were discussed. The emission wavelength of heat treatment of Sm3+ do not change, but will affect the intensity of the peak Sm3+ luminescence properties and the occupy hydroxyapatite in the lattice Ca( II )and Ca( I ) loci with Sm3+ doped concentration and the proportion of the sintering temperature change and change: The nano hydroxyapatite complex of the La3+ doped samarium obtain the good fluorescence intensity, by La3+ doping content of Sm3+ were hydroxyapatite 6% (La3+, Sm3+ mole ratio) device. The complex of La3+ doped samarium HAP have Stable chemical property, fluorescence property and excellent biological activity. The ligand HAP absorbs energy or captures an electron-hole pair and then transfers it to the lanthanide ions. The catalytic activity influence of the La3+-doped Sm3+hydroxyapatite was discussed, the La/Sm/HAP had excellent antibacterial property, which used as potential biological antibacterial material.

  15. Luminescent Enhancement of Na+ and Sm3+ Co-doping Reddish Orange SrCa3Si2O8 Phosphors

    NASA Astrophysics Data System (ADS)

    Chun, Fengjun; Zhang, Binbin; Li, Wen; Liu, Honggang; Deng, Wen; Chu, Xiang; Osman, Hanan; Zhang, Haitao; Yang, Weiqing

    2018-04-01

    Reddish orange SrCa3Si2O8 phosphors, prepared by the facile solid state reaction method, are a luminescent enhancement of Na+ and Sm3+ co-doping luminescent material. Na+ was designed to compensate the charge imbalance of Sm3+ ion substituting for the Sr2+ ion of orthorhombic SrCa3Si2O8 crystals. The results suggest that Na+ can effectively enhance the luminescent intensity of the reddish orange light peaked at about 562 nm (4 G 5/2 → 6 H 5/2), 600 nm (4 G 5/2 → 6 H 7/2) and 645 nm (4 G 5/2 → 6 H 9/2) excited by the near ultraviolet excited light 404 nm (4 L 13/2 → 6 H 5/2). The energy transfer has been further verified by the florescence lifetime. Additionally, the luminescent lifetime τ of as-grown phosphors was separated into two parts, a rapid lifetime and a slow lifetime. The average lifetime results ranged from 2.098 to 1.329 ms which were influenced by the concentration of Sm3+ doping. The systematic researches of as-grown phosphors have clearly suggested a potential application for white-light-emitting diodes ( w-LEDs).

  16. Effect of doping and chemical ordering on the optoelectronic properties of complex oxides: Fe 2 O 3 –V 2 O 3 solid solutions and hetero-structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayyar, Iffat H.; Chamberlin, Sara E.; Kaspar, Tiffany C.

    2017-01-01

    The electronic and optical properties of a-(Fe1xVx)2O3 at low (x = 0.04) and high (x = 0.5) doping levels are investigated using a combination of periodic and embedded cluster approaches, and time dependent density functional theory. At low V concentrations the onset of the optical absorption is B0.5 eV (i.e., nearly 1.6 eV lower than that in pure a-Fe2O3) and corresponds to the electron transitions from V 3d to Fe 3d* orbitals. At high V concentrations, optical absorption energies and intensities are sensitive to specific arrangements of Fe and V atoms and their spin configuration that determine Fe–V hybridization. Themore » onset of the lowest inter-vanadium absorption band in the case of Fe2O3/V2O3 hetero-structures is as low as B0.3 eV and the corresponding peak is at B0.7 eV. In contrast, in the case of solid solutions this peak has lower intensity and is shifted to higher energy (B1.2 eV). Analysis of the orbital character of electronic excitation suggests that Fe2O3/V2O3 hetero-structures absorb light much more effectively than random alloys, thus promoting efficient photo-induced carrier generation. These predictions can be tested in a-(Fe1xVx)2O3 thin films synthesized with well-controlled spatial distribution of Fe and V species.« less

  17. Spectral evolution of distributed feedback laser of gold nanoparticles doped solid-state dye laser medium

    NASA Astrophysics Data System (ADS)

    An, N. T. M.; Lien, N. T. H.; Hoang, N. D.; Nghia, N. T.; Hoa, D. Q.

    2017-10-01

    Characteristics of suppressed relaxation oscillation of a distributed feedback dye laser (DFDL) based on the energy transfer process in a mixture of spherical gold nanoparticles-doped solid-state polymethylmetacrylate dissolved 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran dye was theoretically and experimentally studied. Single pulse generation regime of the DFDL can be obtained with a suitable gold nanoparticle concentration and ratio of pump power over lasing threshold. Numerical analysis and experimental approach showed that in this regime, the first-pulse laser pulsewidth is rather unchanged while varying the gold nanoparticles concentration in the range of 2.0 × 109-2.0 × 1010 par cm-3. The enhancement of first pulse and the suppression of the secondary pulses by bi-direction energy transfer of spherical gold nanoparticles were experimentally observed.

  18. Performance evaluation of Mn and Fe doped SrCo0.9Nb0.1O3-δ cathode for IT-SOFC application

    NASA Astrophysics Data System (ADS)

    Bele, Lokesh; Lenka, R. K.; Patro, P. K.; Muhmood, L.; Mahata, T.; Sinha, P. K.

    2018-02-01

    Cathode materials of Mn and Fe doped SrCo0.9Nb0.1O3-δ, are synthesized by solid state route for intermediate temperature fuel cell applications. Phase pure material is obtained after calcining the precursors at 1100 °C. Phase compatibility is observed between this novel cathode material with gadolinia doped ceria (GDC) electrolyte material as reflected in the diffraction pattern. The state of art YSZ electrolyte is not compatible with this cathode material. Average thermal expansion coefficient of the material varies between 17 to 22 X 10-6 K-1 on doping, from room temperature to 800 °C. Increase in thermal expansion coefficient is observed with Mn and Fe doping associated with the loss of oxygen from the crystal. The electrical conductivity of the cathode material decreases with Fe and Mn doping. Mn doped samples show lowest conductivity. From the symmetric cell measurement lower area specific resistance (0.16 Ω-cm2) is obtained for un-doped samples, at 850 °C. From the initial results it can be inferred that Mn/Fe doping improves neither the thermal expansion co-efficient nor the electrochemical activity.

  19. Photoluminescence studies on holmium (III) and praseodymium (III) doped calcium borophosphate (CBP) phosphors

    NASA Astrophysics Data System (ADS)

    Reddy Prasad, V.; Damodaraiah, S.; Devara, S. N.; Ratnakaram, Y. C.

    2018-05-01

    Using solid state reaction method, Ho3+ and Pr3+ doped calcium borophosphate (CBP) phosphors were prepared. These phosphors were characterized using XRD, SEM, FT-IR, 31P solid state NMR, photoluminescence (PL) and decay profiles. Structural details were discussed from XRD and FT-IR spectra. From 31P NMR spectra of these phosphors, mono-phosphate complexes Q0-(PO43-) were observed. Photoluminescence spectra were measured for both Ho3+ and Pr3+ doped calcium borophosphate phosphors and the spectra were studied for different concentrations. Decay curves were obtained for the excited level, 5F4+5S2 of Ho3+ and 1D2 level of Pr3+ in these calcium borophosphate phosphors and lifetimes were measured. CIE color chromaticity diagrams are drawn for these two rare earth ions in calcium borophosphate phosphors. Results show that Ho3+ and Pr3+ doped CBP phosphors might be served as green and red luminescence materials.

  20. SOLID-STATE SYNTHESIS AND SOME PROPERTIES OF MAGNESIUM-DOPED COPPER ALUMINUM OXIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chang; Ren, Fei; Wang, Hsin

    2010-01-01

    Copper aluminum oxide (CuAlO2) with delafossite structure is a promising candidate for high temperature thermoelectric applications because of its modest band gap, high stability and low cost. We investigate magnesium doping on the aluminum site as a means of producing higher electrical conductivity and optimized Seebeck coefficient. Powder samples were synthesized using solid-state reaction and bulk samples were prepared using both cold-pressing and hot-pressing techniques. Composition analysis, microstructural examination and transport property measurements were performed, and the results suggest that while hot-pressing can achieve high density samples, secondary phases tend to form and lower the performance of the materials.

  1. Spectroscopic optimization of all-solid-state electrochromic devices using PANI

    NASA Astrophysics Data System (ADS)

    Hugot-Le Goff, Anne; Bernard, Marie-Claude; Bich, Vu T.; Binh, Nguyen T.; Zeng, Wen

    1997-12-01

    The interesting optical properties of polyaniline (PANI) allowed its utilization in all solid-state electrochromic devices. Using a sulfonic acid polymer as solid electrolyte gave to PANI an unusual optical behavior leading to electrochromic properties very superior to the properties that it has in any liquid inorganic electrolyte. The improved conductivity of PANI doped with AMP-sulfonate is displayed by the presence of a free-carriers tail even at pH as high as 4.5. The free-carriers tail is studied using UV/vis/near IR spectroscopy, and the kinetics of coloration/bleaching are studied using Optical Multichannel Analysis in the 1.5 - 3 eV range. The modifications of the PANI optical features by solid-state doping are examined. The possibility to still improve the performances of these devices--in particular their rate of color change--by using `secondarily doped' PANI is investigated, which requires a preliminary spectrochemical analysis of PANI films doped with camphorsulfonic acid and treated in m-cresol during their electrochemical polarization.

  2. Shallow Heavily Doped n++ Germanium by Organo-Antimony Monolayer Doping.

    PubMed

    Alphazan, Thibault; Díaz Álvarez, Adrian; Martin, François; Grampeix, Helen; Enyedi, Virginie; Martinez, Eugénie; Rochat, Névine; Veillerot, Marc; Dewitte, Marc; Nys, Jean-Philippe; Berthe, Maxime; Stiévenard, Didier; Thieuleux, Chloé; Grandidier, Bruno

    2017-06-14

    Functionalization of Ge surfaces with the aim of incorporating specific dopant atoms to form high-quality junctions is of particular importance for the development of solid-state devices. In this study, we report the shallow doping of Ge wafers with a monolayer doping strategy that is based on the controlled grafting of Sb precursors and the subsequent diffusion of Sb into the wafer upon annealing. We also highlight the key role of citric acid in passivating the surface before its reaction with the Sb precursors and the benefit of a protective SiO 2 overlayer that enables an efficient incorporation of Sb dopants with a concentration higher than 10 20 cm -3 . Microscopic four-point probe measurements and photoconductivity experiments show the full electrical activation of the Sb dopants, giving rise to the formation of an n++ Sb-doped layer and an enhanced local field-effect passivation at the surface of the Ge wafer.

  3. Heavily Yb-doped phosphate large-mode area all-solid photonic crystal fiber operating at 990 nm

    NASA Astrophysics Data System (ADS)

    Wang, Longfei; He, Dongbing; Feng, Suya; Yu, Chunlei; Hu, Lili; Qiu, Jianrong; Chen, Danping

    2015-07-01

    We demonstrate, for the first time to our knowledge, a 16 wt.% Yb-doped phosphate large-mode area all-solid photonic crystal fiber (AS-PCF) laser operating at 990 nm. By carefully tailoring the absorption and emission properties of the active glass and designing the structure of AS-PCF, the excitation of the 990 nm laser and the depression of the laser above 1 µm can be easily realized even without any wavelength-selective optics. The single-mode behavior of PCF with a 35 µm doped core, the largest core diameter of approximately 1 µm in phosphate fiber, is theoretically investigated by finite-difference time-domain method and experimentally confirmed.

  4. The reactive element effect of yttrium and yttrium silicon on high temperature oxidation of NiCrAl coating

    NASA Astrophysics Data System (ADS)

    Ramandhany, S.; Sugiarti, E.; Desiati, R. D.; Martides, E.; Junianto, E.; Prawara, B.; Sukarto, A.; Tjahjono, A.

    2018-03-01

    The microstructure formed on the bond coat affects the oxidation resistance, particularly the formation of a protective oxide layer. The adhesion of bond coat and TGO increased significantly by addition of reactive element. In the present work, the effect of yttrium and yttrium silicon as reactive element (RE) on NiCrAl coating was investigated. The NiCrAl (without RE) and NiCrAlX (X:Y or YSi) bond coating were deposited on Hastelloy C-276 substrate by High Velocity Oxygen Fuel (HVOF) method. Isothermal oxidation was carried out at 1000 °C for 100 hours. The results showed that the addition of RE could prevent the breakaway oxidation. Therefore, the coating with reactive element were more protective against high temperature oxidation. Furthermore, the oxidation rate of NiCrAlY coating was lower than NiCrAlYSi coating with the total mass change was ±2.394 mg/cm2 after 100 hours of oxidation. The thickness of oxide scale was approximately 1.18 μm consisting of duplex oxide scale of spinel NiCr2O4 in outer scale and protective α-Al2O3 in inner scale.

  5. Self-propagating high-temperature synthesis and luminescent properties of ytterbium doped rare earth (Y, Sc, Lu) oxides nanopowders

    NASA Astrophysics Data System (ADS)

    Permin, D. A.; Novikova, A. V.; Balabanov, S. S.; Gavrishchuk, E. M.; Kurashkin, S. V.; Savikin, A. P.

    2018-04-01

    This paper describes a comparative study of structural and luminescent properties of 5%Yb-doped yttrium, scandium, and lutetium oxides (Yb:RE2O3) powders and ceramics fabricated by self-propagating high-temperature synthesis. According to X-ray diffractometry and electron microscopy the chosen method ensures preparation of low-agglomerated cubic Ctype crystal structured powders at one step. No crucial differences in luminescence spectra were found the Yb:RE2O3 powders and ceramics. It was shown that the emission lifetimes of the Yb:RE2O3 powders are lowered by crystal structure defects, while its values for ceramics samples are compared to that of monocrystals and more influenced by rare earth impurities.

  6. Enhancement of Superconductivity of Lanthanum and Yttrium Sesquicarbide

    DOEpatents

    Krupka, M. C.; Giorgi, A. L.; Krikorian, N. H.; Szklarz, E. G.

    1972-06-22

    A method of enhancing the superconductivity of body-centered cubic lanthanum and yttrium sesquicarbide through formation of the sesquicarbides from ternary alloys of novel composition (N/sub x/M/sub 1-x/)C/sub z/, where N is yttrium or lanthanum, M is thorium, any of the Group IV and VI transition metals, or gold, germanium or silicon, and z is approximately 1.2 to 1.6. These ternary sesquicarbides have superconducting transition temperatures as high as 17.0/sup 0/K.

  7. Enhancement of superconductivity of lanthanum and yttrium sesquicarbide

    DOEpatents

    Krupka, M.C.; Giorgi, A.L.; Krikorian, N.H.; Szklarz, E.G.

    1971-06-22

    A method of enhancing the superconductivity of body-centered cubic lanthanum and yttrium sesquicarbide through formation of the sesquicarbides from ternary alloys of novel composition (N/sub x/M/sub 1-x/)C/sub z/, where N is yttrium or lanthanum, M is thorium, any of the Group IV and VI transition metals, or gold, germanium or silicon, and z is approximately 1.2 to 1.6. These ternary sesquicarbides have superconducting transition temperatures as high as 17.0/sup 0/K.

  8. Electrical and optical properties of Si-doped Ga2O3

    NASA Astrophysics Data System (ADS)

    Li, Yin; Yang, Chuanghua; Wu, Liyuan; Zhang, Ru

    2017-05-01

    The charge densities, band structure, density of states, dielectric functions of Si-doped β-Ga2O3 have been investigated based on the density functional theory (DFT) within the hybrid functional HSE06. The heavy doping makes conduction band split out more bands and further influences the band structure. It decreases the band gap and changes from a direct gap to an indirect gap. After doping, the top of the valence bands is mainly composed by the O-2p states, Si-3p states and Ga-4p states and the bottom of the conduction bands is almost formed by the Si-3s, Si-3p and Ga-4s orbits. The anisotropic optical properties have been investigated by means of the complex dielectric function. After the heavy Si doping, the position of absorption band edges did not change much. The slope of the absorption curve descends and indicates that the absorption became more slow for Si-doped β-Ga2O3 than undoped one due to the indirect gap of Si-doped β-Ga2O3.

  9. Solid electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Isaacs, H. S.

    Progress in the development of functioning solid electrolyte fuel cells is summarized. The solid electrolyte cells perform at 1000 C, a temperature elevated enough to indicate high efficiencies are available, especially if the cell is combined with a steam generator/turbine system. The system is noted to be sulfur tolerant, so coal containing significant amounts of sulfur is expected to yield satisfactory performances with low parasitic losses for gasification and purification. Solid oxide systems are electrically reversible, and are usable in both fuel cell and electrolysis modes. Employing zirconium and yttrium in the electrolyte provides component stability with time, a feature not present with other fuel cells. The chemical reactions producing the cell current are reviewed, along with materials choices for the cathodes, anodes, and interconnections.

  10. Magnetic Properties of Electron-Doped LaCoO3

    NASA Astrophysics Data System (ADS)

    Tomiyasu, Keisuke; Sato, Mika; Koyama, Shun-Ichi; Nojima, Tsutomu; Kajimoto, Ryoichi; Ji, Sungdae; Iwasa, Kazuaki

    2017-09-01

    We studied electron-doped LaCo1 - yTey6 + O3 by magnetization measurements and neutron scattering. The effective Bohr magneton, estimated by Curie-Weiss fitting around room temperature, is independent of y. This suggests that magnetic Co3+(HS), not nonmagnetic Co3+(LS), is mainly replaced by doped magnetic Co2+(HS). At the lowest temperatures, a Brillouin-function-like saturating behavior persists in the magnetization curves even in the high-y samples, and neither a clear magnetic reflection nor magnetic dispersion is observed by neutron scattering. These findings indicate that the magnetic correlation is very weak, in contrast to the well-known hole-doped LaCoO3 accompanied by a drastic transition to a ferromagnetic metal. However, we also found that the low-y samples exhibit nonnegligible enhancement of the saturated magnetization by ˜2μB per a doped electron. All these characteristics are discussed in the light of the activation and inactivation of a spin-state blockade.

  11. Amphoteric doping of praseodymium Pr 3+ in SrTiO 3 grain boundaries

    DOE PAGES

    Yang, H.; Lee, H. S.; Kotula, P. G.; ...

    2015-03-26

    Charge Compensation in rare-earth Praseodymium (Pr 3+) doped SrTiO 3 plays an important role in determining the overall photoluminescence properties of the system. Here, the Pr 3+ doping behavior in SrTiO 3 grain boundaries (GBs) is analyzed using aberration corrected scanning transmission electron microscopy (STEM). The presence of Pr 3+ induces structure variations and changes the statistical prevalence of GB structures. In contrast to the assumption that Pr 3+ substitutes for A site as expected in the bulk, Pr 3+ is found to substitute both Sr and Ti sites inside GBs with the highest concentration in the Ti sites. Asmore » a result, this amphoteric doping behavior in the boundary plane is further confirmed by first principles theoretical calculations.« less

  12. Amphoteric Doping of Praseodymium Pr3+ in SrTiO3 Grain Boundaries

    DOE PAGES

    Yang, Hao; Lee, H. S.; Kotula, Paul G.; ...

    2015-03-23

    Charge Compensation in rare-earth Praseodymium (Pr 3+) doped SrTiO 3 plays an important role in determining the overall photoluminescence properties of the system. Here, the Pr 3+ doping behavior in SrTiO 3 grain boundaries (GBs) is analyzed using aberration corrected scanning transmission electron microscopy (STEM). The presence of Pr 3+ induces structure variations and changes the statistical prevalence of GB structures. In contrast to the assumption that Pr 3+ substitutes for A site as expected in the bulk, Pr 3+ is found to substitute both Sr and Ti sites inside GBs with the highest concentration in the Ti sites. Asmore » a result, this amphoteric doping behavior in the boundary plane is further confirmed by first principles theoretical calculations.« less

  13. Local geometric and electronic structures and origin of magnetism in Co-doped BaTiO3 multiferroics

    NASA Astrophysics Data System (ADS)

    Phan, The-Long; Thang, P. D.; Ho, T. A.; Manh, T. V.; Thanh, Tran Dang; Lam, V. D.; Dang, N. T.; Yu, S. C.

    2015-05-01

    We have prepared polycrystalline samples BaTi1-xCoxO3 (x = 0-0.1) by solid-state reaction. X-ray diffraction and Raman-scattering studies reveal the phase separation in crystal structure as changing Co-doping content (x). The samples with x = 0-0.01 are single phase in a tetragonal structure. At higher doping contents (x > 0.01), there is the formation and development of a secondary hexagonal phase. Magnetization measurements at room temperature indicate a coexistence of paramagnetic and weak-ferromagnetic behaviors in BaTi1-xCoxO3 samples with x > 0, while pure BaTiO3 is diamagnetic. Both these properties increase with increasing x. Analyses of X-ray absorption spectra recorded from BaTi1-xCoxO3 for the Co and Ti K-edges indicate the presence of Co2+ and Co3+ ions. They locate in the Ti4+ site of the tetragonal and hexagonal BaTiO3 structures. Particularly, there is a shift of oxidation state from Co2+ to Co3+ when Co-doping content increases. We believe that the paramagnetic nature in BaTi1-xCoxO3 samples is due to isolated Co2+ and Co3+ centers. The addition of Co3+ ions enhances the paramagnetic behavior. Meanwhile, the origin of ferromagnetism is due to lattice defects, which is less influenced by the changes caused by the variation in concentration of Co2+ and Co3+ ions.

  14. Structure-Dependent Spectroscopic Properties of Yb3+-Doped Phosphosilicate Glasses Modified by SiO₂.

    PubMed

    Wang, Ling; Zeng, Huidan; Yang, Bin; Ye, Feng; Chen, Jianding; Chen, Guorong; Smith, Andew T; Sun, Luyi

    2017-02-28

    Yb 3+ -doped phosphate glasses containing different amounts of SiO₂ were successfully synthesized by the conventional melt-quenching method. The influence mechanism of SiO₂ on the structural and spectroscopic properties was investigated systematically using the micro-Raman technique. It was worth noting that the glass with 26.7 mol % SiO₂ possessed the longest fluorescence lifetime (1.51 ms), the highest gain coefficient (1.10 ms·pm²), the maximum Stark splitting manifold of ²F 7/2 level (781 cm -1 ), and the largest scalar crystal-field N J and Yb 3+ asymmetry degree. Micro-Raman spectra revealed that introducing SiO₂ promoted the formation of P=O linkages, but broke the P=O linkages when the SiO₂ content was greater than 26.7 mol %. Based on the previous 29 Si MAS NMR experimental results, these findings further demonstrated that the formation of [SiO₆] may significantly affect the formation of P=O linkages, and thus influences the spectroscopic properties of the glass. These results indicate that phosphosilicate glasses may have potential applications as a Yb 3+ -doped gain medium for solid-state lasers and optical fiber amplifiers.

  15. The behaviour of selected yttrium containing bioactive glass microspheres in simulated body environments.

    PubMed

    Cacaina, D; Ylänen, H; Simon, S; Hupa, M

    2008-03-01

    The study aims at the manufacture and investigation of biodegradable glass microspheres incorporated with yttrium potentially useful for radionuclide therapy of cancer. The glass microspheres in the SiO2-Na2O-P2O5-CaO-K2O-MgO system containing yttrium were prepared by conventional melting and flame spheroidization. The behaviour of the yttrium silicate glass microspheres was investigated under in vitro conditions using simulated body fluid (SBF) and Tris buffer solution (TBS), for different periods of time, according to half-life time of the Y-90. The local structure of the glasses and the effect of yttrium on the biodegradability process were evaluated by Fourier Transform Infrared (FT-IR) spectroscopy and Back Scattered Electron Imaging of Scanning Electron Microscopy (BEI-SEM) equipped with Energy Dispersive X-ray (EDX) analysis. UV-VIS spectrometry and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used for analyzing the release behaviour of silica and yttrium in the two used solutions. The results indicate that the addition of yttrium to a bioactive glass increases its structural stability which therefore, induced a different behaviour of the glasses in simulated body environments.

  16. Controlling n-type doping in MoO 3

    DOE PAGES

    Peelaers, H.; Chabinyc, M. L.; Van de Walle, C. G.

    2017-02-27

    Here, we study the electronic properties of native defects and intentional dopant impurities in MoO 3, a widely used transparent conductor. Using first-principles hybrid functional calculations, we show that electron polarons can be self-trapped, but they can also bind to defects; thus, they play an important role in understanding the properties of doped MoO 3. Our calculations show that oxygen vacancies can cause unintentional n-type doping in MoO 3. Mo vacancies are unlikely to form. Tc and Re impurities on the Mo site and halogens (F, Cl, and Br) on the O site all act as shallow donors but trapmore » electron polarons. Fe, Ru, and Os impurities are amphoteric and will compensate n-type MoO 3. Mn dopants are also amphoteric, and they show interesting magnetic properties. These results support the design of doping approaches that optimally exploit functionality.« less

  17. Solid phase extraction of magnetic carbon doped Fe3O4 nanoparticles.

    PubMed

    Yang, Jing; Li, Jia-yuan; Qiao, Jun-qin; Lian, Hong-zhen; Chen, Hong-yuan

    2014-01-17

    Carbon decorated Fe3O4 nanoparticles (Fe3O4/C) are promising magnetic solid-phase extraction (MSPE) sorbents in environmental and biological analysis. Fe3O4/C based MSPE method shows advantages of easy operation, rapidness, high sensitivity, and environmental friendliness. In this paper, the MSPE mechanism of Fe3O4/C nanoparticles has been comprehensively investigated, for the first time, through the following three efforts: (1) the comparison of extraction efficiency for polycyclic aromatic hydrocarbons (PAHs) between the Fe3O4/C sorbents and activated carbon; (2) the chromatographic retention behaviors of hydrophobic and hydrophilic compounds on Fe3O4/C nanoparticles as stationary phase; (3) related MSPE experiments for several typical compounds such as pyrene, naphthalene, benzene, phenol, resorcinol, anisole and thioanisole. It can be concluded that there are hybrid hydrophobic interaction and hydrogen bonding interaction or dipole-dipole attraction between Fe3O4/C sorbents and analytes. It is the existence of carbon and oxygen-containing functional groups coated on the surface of Fe3O4/C nanoparticles that is responsible for the effective extraction process. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Evidence of yttrium silicate inclusions in YSZ-porcelain veneers.

    PubMed

    Stoner, Brian R; Griggs, Jason A; Neidigh, John; Piascik, Jeffrey R

    2014-04-01

    This report introduces the discovery of crystalline defects that can form in the porcelain veneering layer when in contact with yttria-stabilized zirconia (YSZ). The focus was on dental prostheses and understanding the defects that form in the YSZ/porcelain system; however the data reported herein may have broader implications toward the use and stability of YSZ-based ceramics in general. Specimens were cut from fully sintered YSZ plates and veneering porcelain was applied (<1 mm thick) to one surface and fired under manufacturer's recommended protocol. Scanning electron microscopy (SEM) with integrated electron dispersive X-ray (EDAX) was used for microstructural and elemental analysis. EDAX, for chemical analysis and transmission electron diffraction (TED) for structural analysis were both performed in the transmission electron microscope (TEM). Additionally, in order to spatially resolve Y-rich precipitates, micro-CT scans were conducted at varying depths within the porcelain veneer. Local EDAX (SEM) was performed in the regions of visible inclusions and showed significant increases in yttrium concentration. TEM specimens also showed apparent inclusions in the porcelain and selected area electron diffraction was performed on these regions and found the inclusions to be crystalline and identified as either yttrium-silicate (Y2 SiO5 ) or yttrium-disilicate (Y2 Si2 O7 ). Micro-CT data showed that yttrium-silicate precipitates were distributed throughout the thickness of the porcelain veneer. Future studies are needed to determine whether many of the premature failures associated with this materials system may be the result of crystalline flaws that form as a result of high temperature yttrium diffusion near the surfaces of YSZ. © 2013 Wiley Periodicals, Inc.

  19. Photoluminescence and thermoluminescence properties of Eu2+ doped and Eu2+ ,Dy3+ co-doped Ba2 MgSi2 O7 phosphors.

    PubMed

    Sao, Sanjay Kumar; Brahme, Nameeta; Bisen, D P; Tiwari, Geetanjali

    2016-11-01

    In this work, we report the preparation, characterization, comparison and luminescence mechanisms of Eu 2 + -doped and Eu 2 + ,Dy 3 + -co-doped Ba 2 MgSi 2 O 7 (BMSO) phosphors. Prepared phosphors were synthesized via a high temperature solid-state reaction method. All prepared phosphors appeared white. The phase structure, particle size, and elemental analysis were analyzed using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) analysis. The luminescence properties of the phosphors were investigated by thermoluminescence (TL) and photoluminescence (PL). The PL excitation and emission spectra of Ba 2 MgSi 2 O 7 :Eu 2 + showed the peak to be around 381 nm and 490 nm respectively. The PL excitation spectrum of Ba 2 MgSi 2 O 7 :Eu 2 + Dy 3 + showed the peak to be around 341 nm and 388 nm, and the emission spectrum had a broad band around 488 nm. These emissions originated from the 4f 6 5d 1 to 4f 7 transition of Eu 2 + . TL analysis revealed that the maximum TL intensity was found at 5 mol% of Eu 2 + doping in Ba 2 MgSi 2 O 7 phosphors after 15 min of ultraviolet (UV) light exposure. TL intensity was increased when Dy 3 + ions were co-doped in Ba 2 MgSi 2 O 7 :Eu 2 + and maximum TL intensity was observed for 2 mol% of Dy 3 + . TL emission spectra of Ba 1.95 MgSi 2 O 7 :0.05Eu 2 + and Ba 1.93 MgSi 2 O 7 :0.05Eu 2 + ,0.02Dy 3 + phosphors were found at 500 nm. TL intensity increased with UV exposure time up to 15 min, then decreased for the higher UV radiation dose for both Eu doping and Eu,Dy co-doping. The trap depths were calculated to be 0.54 eV for Ba 1.95 MgSi 2 O 7 :0.05Eu 2 + and 0.54 eV and 0.75 eV for Ba 1.93 MgSi 2 O 7 :0.05Eu 2 + ,0.02Dy 3 + phosphors. It was observed that co-doping with small amounts of Dy 3 + enhanced the thermoluminescence properties of Ba 2 MgSi 2 O 7 phosphor. Copyright © 2016 John Wiley & Sons, Ltd. [Correction added on 5 April 2016, after first online publication: The

  20. Electric and dielectric properties of Bi-doped CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo Fengchao; He Jinliang; Hu Jun

    2009-04-01

    Pure and Bi-doped Bi{sub x}CaCu{sub 3}Ti{sub 4}O{sub 12+1.5x} (BCCTO, x=0, 0.15, 0.25, and 0.3) ceramics were fabricated by the solid-state sintering method. The results indicate that the additional bismuth has a great influence on both the microstructures and the electric properties. A new phase (Bi{sub 4}Ti{sub 3}O{sub 12}) can be observed in the doped samples from the x-ray diffraction patterns. Additionally, the CCTO gain size can be controlled by bismuth content. All of the BCCTO samples show high dielectric permittivity ({approx}10{sup 4} at 10{sup 3} Hz) and varistor effect, and the relaxation peak shifts to higher frequency. The resistance risesmore » with the increase in bismuth, and the activation energy at the grain boundary is reduced from 0.65 to 0.47 eV.« less

  1. Development of Eu3+ activated monoclinic, perovskite, and garnet compounds in the Gd2O3-Al2O3 phase diagram as efficient red-emitting phosphors

    NASA Astrophysics Data System (ADS)

    Li, Jinkai; Li, Ji-Guang; Li, Jing; Liu, Shaohong; Li, Xiaodong; Sun, Xudong; Sakka, Yoshio

    2013-10-01

    Eu3+ doped Gd4Al2O9 (GdAM), GdAlO3 (GdAP), and Gd3Al5O12 (GdAG, containing 10 at% of Lu3+ for lattice stabilization) have been developed in this work as efficient red-emitting phosphors. With coprecipitated carbonate precursors, phase evolution studies found minimum processing temperatures of ~1000, 1100, and 1300 °C for the three phosphors to crystallize as pure phases, respectively. Compared with their yttrium aluminate counterparts, the gadolinium-based phosphors exhibit red-shifted O2--Eu3+ charge transfer excitation band (CTB) centers due to the lower electronegativity of Gd3+ and appreciably higher quantum yields of photoluminescence owing to the occurrence of efficient Gd3+→Eu3+energy transfer. The optimal Eu3+ contents were determined to be ~7.5 at% for GdAM and 5.0 at% for both GdAP and GdAG, and concentration quenching of luminescence was suggested to be due to exchange interactions. Fluorescence decay analysis found a shorter lifetime for the phosphor powder processed at a higher temperature or with a higher Eu3+ content, and the underlying mechanism was discussed. Fluorescence lifetimes were also compared between the yttrium and gadolinium phosphor systems for the dominant emissions.

  2. Structural and luminescence properties of CaTiO{sub 3}:Eu{sup 3+} phosphor synthesized by chemical co-precipitation method for the application of solid state lighting devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Dhananjay Kumar, E-mail: dksism89@gmail.com; Manam, J., E-mail: jairam.manam@gmail.com

    2016-05-06

    The present work report a series of trivalent Europium (Eu{sup 3+}) doped well crystallized perovskite CaTiO{sub 3} phosphors successfully synthesized by chemical co-precipitation method. The crystal structure was confirmed by X-ray diffraction (XRD) which is in good agreement with pure orthorhombic phase with space group Pbnm, and it also indicated that the incorporation of the dopant did not affect the crystal structure. The impact of doping on the photoluminescence performances of the sample has been investigated by emission, excitation, and diffuse reflectance spectra at the room temperature. Photoluminescence spectra of Eu{sup 3+} doped CaTiO{sub 3} nanophosphor revealed the characteristic emissionmore » peak around wavelength 618 nm in the visible region upon the excitation of near-UV light at wavelength 397 nm due to {sup 5}D{sub 0} → {sup 7}F{sub 2} transition in Eu{sup 3+}. It was further proved that the dipole– dipole interactions results in the concentration quenching of Eu{sup 3+} in CaTiO{sub 3}:Eu{sup 3+} nanophosphors. The elemental composition of sample carried out by energy dispersive spectroscopy (EDS). EDS analysis reveals that the Eu{sup 3+} doped successfully into host CaTiO{sub 3}. The experimental result reveals that prepared nanophosphor can be used in the application of solid state lighting devices.« less

  3. Unification of the negative electrocaloric effect in Bi{sub 1/2}Na{sub 1/2}TiO{sub 3}-BaTiO{sub 3} solid solutions by Ba{sub 1/2}Sr{sub 1/2}TiO{sub 3} doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uddin, Sarir; Materials Research Laboratory, Institute of Physics and Electronics, University of Peshawar, Peshawar 25120; Zheng, Guang-Ping, E-mail: mmzheng@polyu.edu.hk

    2013-12-07

    The microscopic mechanisms of the negative electrocaloric effect (ECE) of the single-phase (1−x)(0.94Bi{sub 1/2}Na{sub 1/2}TiO{sub 3}-0.06BaTiO{sub 3})-xBa{sub 1/2}Sr{sub 1/2}TiO{sub 3} (BNT-BT-BST) perovskite solid solutions fabricated via the sol-gel technique are explored in this study. Dielectric and mechanical relaxation analyses are employed to investigate the ferroelectric and structural transitions of the samples. The electrocaloric properties of the samples were measured by thermodynamics Maxwell relations. The difference between the depolarization temperature (T{sub d}) and the maximum dielectric constant temperature (T{sub m}) was found to decrease with increasing BST content. Doping with BST stabilized the ferroelectric phase along with unifying the EC temperaturemore » changes (ΔT) to only negative values. The origin of the uniform negative ECE of BNT-BT-BST is discussed.« less

  4. Density functional theory study of defect energies and space charge distribution at a solid-oxide electrolyte surface

    NASA Astrophysics Data System (ADS)

    Han, Chu; Bongiorno, Angelo

    2014-03-01

    Yttrium-doped barium zirconate (BZY) is a proton conducting electrolyte forming a class of novel materials for new generation of solid oxide fuel cells, for hydrogen separation and purification, and for electrolysis of water. Here we use density functional theory calculations to compute the energy of protons and oxygen vacancies at the surface and in the bulk of lightly Y-doped BZY materials. We found that protons are energetically more stable at the surface termination than in the bulk of BZY by about 1 eV. In contrast, doubly-positively charged oxygen vacancies are found to form iso-energetic defects at both the terminal surface layer and in the bulk of BZY, while in the sub-surface region the defect energy raises by about 1 eV with respect to the value in the bulk. The energetic behavior of protons and oxygen vacancies in the near surface region of BZY is attributed to the competition of strain and electrostatic effects. Lattice model representations of BZY surfaces are then used in combination with Monte Carlo simulations to solve the Poisson-Boltzmann equation and investigate the implication of the results above on the structure of the space charge region at the surface of BZY materials.

  5. Large-mode-area single-mode-output Neodymium-doped silicate glass all-solid photonic crystal fiber

    PubMed Central

    Li, Wentao; Chen, Danping; Qinling, Zhou; Hu, Lili

    2015-01-01

    We have demonstrated a 45 μm core diameter Neodymium-doped all-solid silicate glass photonic crystal fiber laser with a single mode laser output. The structure parameters and modes information of the fiber are both demonstrated by theoretical calculations using Finite Difference Time Domain (FDTD) method and experimental measurements. Maximum 0.8 W output power limited by launched pump power has been generated in 1064 nm with laser beam quality factor M2 1.18. PMID:26205850

  6. Graphite-like carbon nitride (C3N4) modified N-doped LaTiO3 nanocomposite for higher visible light photocatalytic and photo-electrochemical performance

    NASA Astrophysics Data System (ADS)

    Rakibuddin, Md; Kim, Haekyoung; Ehtisham Khan, Mohammad

    2018-09-01

    A novel g-C3N4/N doped-LaTiO3 organic-inorganic hybrid (CLT) is synthesized via a sol-gel polymerized complex method followed by a facile solid state transformation route. The as synthesized hybrid is characterized using powder X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, UV-visible diffuse reflectance spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis. The results show that the band gap of LaTiO3 is narrowed and also could absorb visible light after doping of N into the LaTiO3 lattice. It is observed that N-doped LaTiO3 nanoparticles are wrapped with the g-C3N4 nano-sheet layers, forming a heterojunction structure, in the CLT hybrid. The CLT hybrid exhibits not only longer wavelength absorption in the visible region but also an enhancement in the photocatalytic and photocurrent activity under visible light compared to pure N-doped LaTiO3 and g-C3N4. Moreover, the hybrid is photo-stable and reusable. The improved visible light photocatalytic activity of the CLT hybrid is ascribed to its suitable band edge potential, better separation of photoinduced charge carriers owing to the heterojunction, and the synergistic effect of g-C3N4 and N-LaTiO3. Based on the results of photoluminescence, electrochemical impedance, and radical scavenger studies, a possible photocatalytic mechanism for the hybrid is also proposed. The g-C3N4/N-LaTiO3 hetero-structure is expected to provide new insight for the application of rare-earth-metal based perovskite oxides in environmental remediation and could be suitable for water splitting and other energy related applications as well.

  7. Magnetic and electrical properties in Co-doped KNbO3 bulk samples

    NASA Astrophysics Data System (ADS)

    Astudillo, Jairo A.; Dionizio, Stivens A.; Izquierdo, Jorge L.; Morán, Oswaldo; Heiras, Jesús; Bolaños, Gilberto

    2018-05-01

    Multiferroic materials exhibit in the same phase at least two of the ferroic properties: ferroelectricity, ferromagnetism, and ferroelasticity, which may be coupled to each other. In this work, we investigated bulk materials with a nominal composition KNb0.95Co0.05O3 (KN:Co) fabricated by the standard solid-state reaction technique. X-ray diffraction analysis of the polycrystalline sample shows the respective polycrystalline perovskite structure of the KNbO3 phase with only small variation due to the Co doping. No secondary or segregated phases are observed. The values of the extracted lattice parameters are very close to those reported in the literature for KNbO3 with orthorhombic symmetry (a = 5.696 Å, b = 3.975 Å, and c = 5.721 Å) with space group Bmm2. Measurements of the electric polarization as a function of the electric field at different temperatures indicate the presence of ferroelectricity in our samples. Magnetic response of the pellets, detected by high sensitivity measurements of magnetization as a function of field, reveal weak ferromagnetic behavior in the doped sample at room temperature. Also, ferroelectric hysteresis loops were measured in a magnetic field of 1 T, applied perpendicular to the plane of the sample. Values of the remnant polarization as high as 7.19 and 7.69 μC/cm2 are obtained for 0 applied field and for 1 T, respectively; the value for the strength of the magnetoelectric coupling obtained is 6.9 %.

  8. P-doped strontium titanate grown using two target pulsed laser deposition for thin film solar cells

    NASA Astrophysics Data System (ADS)

    Man, Hamdi

    Thin-film solar cells made of Mg-doped SrTiO3 p-type absorbers are promising candidates for clean energy generation. This material shows p-type conductivity and also demonstrates reasonable absorption of light. In addition, p-type SrTiO3 can be deposited as thin films so that the cost can be lower than the competing methods. In this work, Mg-doped SrTiO3 (STO) thin-films were synthesized and analyzed in order to observe their potential to be employed as the base semiconductor in photovoltaic applications. Mg-doped STO thin-films were grown by using pulsed laser deposition (PLD) using a frequency quadrupled Yttrium Aluminum Garnet (YAG) laser and with a substrate that was heated by back surface absorption of infrared (IR) laser light. The samples were characterized using X-ray photoelectron spectroscopy (XPS) and it was observed that Mg atoms were doped successfully in the stoichiometry. Reflection high energy electron diffraction (RHEED) spectroscopy proved that the thin films were polycrystalline. Kelvin Probe work function measurements indicated that the work function of the films were 4.167 eV after annealing. UV/Vis Reflection spectroscopy showed that Mg-doped STO thin-films do not reflect significantly except in the ultraviolet region of the spectrum where the reflection percentage increased up to 80%. Self-doped STO thin-films, Indium Tin Oxide (ITO) thin films and stainless steel foil (SSF) were studied in order to observe their characteristics before employing them in Mg-doped STO based solar cells. Self-doped STO thin films were grown using PLD and the results showed that they are capable of serving as the n-type semiconductor in solar cell applications with oxygen vacancies in their structure and low reflectivity. Indium Tin Oxide thin-films grown by PLD system showed low 25-50 ?/square sheet resistance and very low reflection features. Finally, commercially available stainless steel foil substrates were excellent substrates for the inexpensive growth of

  9. Efficient lasing in Yb:(YLa){sub 2}O{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snetkov, I L; Mukhin, I B; Palashov, O V

    2015-02-28

    A high-optical-quality sample of Yb{sub 0.1}Y{sub 1.7}La{sub 0.2}O{sub 3} ceramics is prepared using a recently developed technique of selfpropagating high-temperature synthesis of rare-earth-doped yttrium oxide nanopowder from acetate – nitrates of metals. Its optical and spectral characteristics are studied, and quasi-cw lasing at a wavelength of 1033 nm is achieved with a power of 7 W and a slope efficiency of 25%. (lasers)

  10. Structural and magnetic properties of yttrium and lanthanum-doped Ni-Co and Ni-Co-Zn spinel ferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stergiou, Charalampos, E-mail: stergiou@cperi.certh.gr; Litsardakis, George, E-mail: lits@eng.auth.gr

    2014-11-05

    Rare earth doping of Co-rich spinel ferrites is investigated through the preparation of two groups of polycrystalline Ni-Co and Ni-Co-Zn ferrites, where Fe is partly substituted by Y and La. The characterization of the sintered ferrites by means of X-ray powder diffraction and Rietveld profile analysis, indicates the subtle expansion of the spinel unit cell and the cation redistribution in the doped ferrites in order to accommodate the incorporation of Y and La in the lattice. The impurity traces, detected only in the Ni-Co-Zn group, is ascribed to the Zn population in the tetrahedral A-sites impeding the cation transfer. Moreover,more » the examined microstructure of the doped Ni-Co samples comprises enlarged and more homogeneous grains, whereas grain growth is moderated in the doped Ni-Co-Zn ferrites. The discussed characteristics of the crystal and magnetic structure along with the morphological aspects define the impact of Y and La doping on the static magnetic properties of Ni-Co and Ni-Co-Zn ferrites, saturation magnetization MS and coercivity HC, which were extracted from the respective hysteresis loops.« less

  11. Dielectric properties of A- and B-site doped BaTiO 3: Effect of La and Ga

    NASA Astrophysics Data System (ADS)

    Gulwade, Devidas; Gopalan, Prakash

    2009-06-01

    Extremely small amounts of La and Ga doping on the A- and B-site of BaTiO 3, respectively, resulting in a solid solution of the type Ba 1-3xLa 2xTi 1-3yGa 4yO 3 have been investigated. The present work dwells on the influence of the individual dopants, namely La and Ga, on the dielectric properties of BaTiO 3. The compositions have been prepared by solid-state reaction. X-ray diffraction (XRD) reveals the presence of tetragonal (P4/mmm) phase. The XRD data has been analyzed using FULLPROF, a Rietveld refinement package. The microstructure have been studied by orientation imaging microscopy (OIM). The compositions have been characterized by dielectric spectroscopy between room temperature and 250 °C. Further, the nature of phase transition has been studied using high temperature XRD. The resulting compounds exhibit high dielectric constant, enhanced diffuseness and low temperature coefficient of capacitance.

  12. Yttrium and rare earth stabilized fast reactor metal fuel

    DOEpatents

    Guon, Jerold; Grantham, LeRoy F.; Specht, Eugene R.

    1992-01-01

    To increase the operating temperature of a reactor, the melting point and mechanical properties of the fuel must be increased. For an actinide-rich fuel, yttrium, lanthanum and/or rare earth elements can be added, as stabilizers, to uranium and plutonium and/or a mixture of other actinides to raise the melting point of the fuel and improve its mechanical properties. Since only about 1% of the actinide fuel may be yttrium, lanthanum, or a rare earth element, the neutron penalty is low, the reactor core size can be reduced, the fuel can be burned efficiently, reprocessing requirements are reduced, and the nuclear waste disposal volumes reduced. A further advantage occurs when yttrium, lanthanum, and/or other rare earth elements are exposed to radiation in a reactor, they produce only short half life radioisotopes, which reduce nuclear waste disposal problems through much shorter assured-isolation requirements.

  13. Investigation on growth and macro-defects of Er3+-doped BaY2F8 laser crystal

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Ruan, Yongfeng; Tsuboi, Taiju; Zhang, Shouchao; Wang, Youfa; Tong, Hongshuang

    2013-08-01

    Large BaY2F8 and Er3+-doped BaY2F8 single crystals were grown by the temperature gradient method. Three kinds of macro-defects were found in BaY2F8 single crystals. These macro-defects include cracks, growth striations and straight pipes. The morphologies and distribution regularities of these macro-defects were observed and studied using a solid polarization microscope. The formation mechanisms and the methods of eliminating these defects were discussed.

  14. Synthesis and characterization of white light-emitting Dy3+-doped Gd2O3 nanophosphors

    NASA Astrophysics Data System (ADS)

    Nambram, S.; Singh, S. D.; Meetei, S. D.

    2016-03-01

    A series of Gd2O3 nanophosphors doped with different concentration of Dy3+ has been synthesized by chemical precipitation method. X-ray diffraction study of the undoped and doped samples suggests that Dy3+ atoms remain in the crystallite cubic lattice of the host. The particle sizes are in the range of 14-19 nm. Energy-dispersive analysis of X-ray spectroscopy study and Fourier transform infrared spectroscopy studies are also performed to analyze the elements present in the samples. Photoluminescence emission peak of Dy3+ in doped samples are observed at 487, 575 and 672 nm corresponding to the 4F9/2-6H15/2, 4F9/2-6H13/2 and 4F9/2-6H11/2 transition, respectively. Effective energy transfer from Gd3+ to Dy3+ is observed, yielding efficient emission under UV excitation. The maximum emission intensity is found at 1.5 at.% Dy3+-doped Gd2O3 sample. The enhancement in the emission intensity with the increase in Dy3+ is due to the increase in energy transfer from Gd3+ of host to Dy3+ ions. The CIE ( Commission Internationale de l'é clairage) coordinates of the doped samples are found to be very close to that of standard white color (0.33, 0.33).

  15. Effects of erbium-and chromium-doped yttrium scandium gallium garnet and diode lasers on the surfaces of restorative dental materials: a scanning electron microscope study.

    PubMed

    Hatipoglu, M; Barutcigil, C

    2015-01-01

    The aim of this study is to evaluate the potential effects of laser irradiation, which is commonly performed in periodontal surgery, on the surfaces of restorative materials. Five different restorative dental materials were used in this study, as follows: (1) Resin composite, (2) poly acid-modified resin composite (compomer), (3) conventional glass ionomer cement (GIC), (4) resin-modified glass ionomer cement (RMGIC), and (5) amalgam. Four cylindrical samples (8 mm diameter, 2 mm height) were prepared for each restorative material. In addition, four freshly extracted, sound human incisors teeth were selected. Two different laser systems commonly used in periodontal surgery were examined in this study: A 810 nm diode laser at a setting of 1 W with continuous-phase laser irradiation for 10 s, and an erbium-and chromium-doped yttrium scandium gallium garnet (Er, Cr: YSGG) laser at settings of 2.5 W, 3.25 W, and 4 W with 25 Hz laser irradiation for 10 s. Scanning electron microscopy (SEM) analysis was performed to evaluate the morphology and surface deformation of the restorative materials and tooth surfaces. According to the SEM images, the Er, Cr: YSGG laser causes irradiation markings that appear as demineralized surfaces on tooth samples. The Er, Cr: YSGG laser also caused deep defects on composite, compomer, and RMGIC surfaces because of its high power, and the ablation was deeper for these samples. High-magnification SEM images of GIC samples showed the melting and combustion effects of the Er, Cr: YSGG laser, which increased as the laser power was increased. In amalgam samples, neither laser left significant harmful effects at the lowest power setting. The diode laser did cause irradiation markings, but they were insignificant compared with those left by the Er, Cr: YSGG laser on the surfaces of the different materials and teeth. Within the limitations of this study, it can be concluded that Er, Cr: YSGG laser irradiation could cause distortions of the surfaces

  16. Mn-Site Doped CaMnO 3: Creation of the CMR Effect

    NASA Astrophysics Data System (ADS)

    Raveau, B.; Zhao, Y. M.; Martin, C.; Hervieu, M.; Maignan, A.

    2000-01-01

    The doping of CaMnO3-δ at Mn sites with pentavalent and hexavalent d0 elements - Nb, Ta, W, Mo - modifies the resistivity behavior of this phase, extending the insulating domain and increasing significantly the resistivity at low temperature as the doping element content increases. The higher valency of the doping element introduces electrons; i.e., Mn3+ species are formed in the Mn4+ matrix. Double exchange phenomena then allow ferromagnetic interactions, by application of external magnetic fields which are similar to those observed for electron-doped manganites Ca1-xLnxMnO3 (x≤0.15), but with smaller magnetic moments. Consequently, this Mn site doping induces CMR properties with resistivity ratios considerably larger than those for CaMnO3-δ.

  17. Color tunable emission through energy transfer from Yb3+ co-doped SrSnO3: Ho3+ perovskite nano-phosphor

    NASA Astrophysics Data System (ADS)

    Jain, Neha; Singh, Rajan Kr.; Sinha, Shriya; Singh, R. A.; Singh, Jai

    2018-04-01

    First time color tunable lighting observed from Ho3+ and Yb3+ co-doped SrSnO3 perovskite. Down-conversion and up-conversion (UC) photoluminescence emission spectra were recorded to understand the whole mechanism of energy migration between Ho3+ and Yb3+ ions. The intensity of green and red emission varies with Yb3+ doping which causes multicolour emissions from nano-phosphor. The intensity of UC red emission (654 nm) obtained from 1 at.% Ho3+ and 3 at.% Yb3+ co-doped nano-phosphor is nine times higher than from 1 at.% Ho3+ doped SrSnO3 nano-phosphor. Enhanced brightness of 654 nm in UC process belongs in biological transparency window so that it might be a promising phosphor in the bio-medical field. Moreover, for the other Yb3+ co-doped nano-phosphor, Commission Internationale de l'Éclairage chromaticity co-ordinates were found near the white region and their CCT values lie in the range 4900-5100 K indicating cool white. Decay time was measured for 545 nm emission of Ho3+ ion found in 7.652 and 8.734 µs at 355 nm excitation. The variation in lifetime was observed in ascending order with increasing Yb3+ concentration which supports PL emission spectra observation that with increasing Yb3+ concentration, rate of transition has changed. These studies reveal that Ho3+ and Yb3+ co-doped phosphor is useful for fabrication of white LEDs.

  18. Mo-doped Na3V2(PO4)3@C composites for high stable sodium ion battery cathode

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxiao; Wang, Wanwan; Zhu, Baichuan; Qian, Fangfang; Fang, Zhen

    2018-03-01

    NASICON-type Na3V2(PO4)3 (NVP) with superior electrochemical performance has attracted enormous attention with the development of sodium ion batteries. The structural aggregation as well as poor conductivity of NVP hinder its application in high rate perforamance cathode with long stablity. In this paper, Na3V2- x Mo x (PO4)3@C was successfully prepared through two steps method, including sol-gel and solid state thermal reduction. The optimal doping amount of Mo was defined by experiment. When x was 0.15, the Na3V1.85Mo0.15(PO4)3@C sample has the best cycle performance and rate performance. The discharge capacity of Na3V1.85Mo0.15(PO4)3@C could reach 117.26 mA·h·g-1 at 0.1 C. The discharge capacity retention was found to be 94.5% after 600 cycles at 5 C.

  19. Preparation and characterization of Miocene clay powders in the region of Taza (Morocco) after doping with metal oxides Al2O3

    NASA Astrophysics Data System (ADS)

    Mesrar, L.; Lakrim, M.; Akdim, M.; Benmar, A.; –Sbai, N. ES; Jabrane, R.

    2017-03-01

    The marl’s minerals are abundant untreated material in several areas worldwide. They are often under-valued for human use. However, due to demands of the society in terms of sustainability and energy saving, the valuation of these resources to develop new materials, most environmentally friendly has become a concern both scientific and industrial aims. Ceramics are the growing research to obtain materials with good chemical stability and good hot properties [1]. The balance between these properties and industrial requirements allowed clay materials uses at craft departure (pottery, tile), to progress towards high-tech applications such as electrical and thermal insulation, electric candle, sound insulation [2]. The behavior of the doping (Al2O3), which has more scientific research interest, has been a renewed interest since 1980 [3] with the emergence of alumina very high purity. Miocene marl is one of the widespread geological substrates in Fez-Taza vicinity (Central Morocco). In this study we proceed by a physicochemical characterization of the marl after doping with metal oxides, by various analytical techniques, namely the X-ray fluorescence, the mineralogical analysis and geotechnical test. The doping of these marl was conducted by solid oxides of Al2O3 at different percentages (5%, 10% and 15%). The results of chemical analysis showed the Al2O3 increase during doping. So, the mineralogical analysis of doped clays shows peaks’ increases for kaolin. The marl doped acquired the property of their good plasticity and good mechanical resistance compared to crass marl.

  20. Nitrogen doped carbon derived from polyimide/multiwall carbon nanotube composites for high performance flexible all-solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Kim, Dae Kyom; Kim, Nam Dong; Park, Seung-Keun; Seong, Kwang-dong; Hwang, Minsik; You, Nam-Ho; Piao, Yuanzhe

    2018-03-01

    Flexible all-solid-state supercapacitors are desirable as potential energy storage systems for wearable technologies. Herein, we synthesize aminophenyl multiwall carbon nanotube (AP-MWCNT) grafted polyimide precursor by in situ polymerization method as a nitrogen-doped carbon precursor. Flexible supercapacitor electrodes are fabricated via a coating of carbon precursor on carbon cloth surface and carbonization at high temperature directly. The as-obtained electrodes, which can be directly used without any binders or additives, can deliver a high specific capacitance of 333.4 F g-1 at 1 A g-1 (based on active material mass) and excellent cycle stability with 103% capacitance retention after 10,000 cycles in a three-electrode system. The flexible all-solid-state supercapacitor device exhibits a high volumetric capacitance of 3.88 F cm-3 at a current density of 0.02 mA cm-3. And also the device can deliver a maximum volumetric energy density of 0.50 mWh cm-3 and presents good cycling stability with 85.3% capacitance retention after 10,000 cycles. This device cell can not only show extraordinary mechanical flexibilities allowing folding, twisting, and rolling but also demonstrate remarkable stable electrochemical performances under their forms. This work provides a novel approach to obtain carbon textile-based flexible supercapacitors with high electrochemical performance and mechanical flexibility.

  1. Protective Effect of Adhesive Systems associated with Neodymium-doped Yttrium Aluminum Garnet Laser on Enamel Erosive/Abrasive Wear.

    PubMed

    Crastechini, Erica; Borges, Alessandra B; Becker, Klaus; Attin, Thomas; Torres, Carlos Rg

    2017-10-01

    This study evaluated the efficacy of self-etching adhesive systems associated or not associated with the neodymium-doped yttrium aluminum garnet (Nd:YAG) laser on the protection against enamel erosive/abrasive wear. Bovine enamel specimens were demineralized with 0.3% citric acid (5 minutes). The samples were randomly assigned to eight groups (n = 20): SB - Single Bond Universal (3M/ESPE); SB+L - Single Bond Universal + laser (80 mJ/10 Hz); FB - Futurabond U (Voco); FB+L -Futurabond U + laser; GEN - G-aenial bond (GC); GEN+L -G-aenial bond + laser; L - laser irradiation; and C - no treatment. The laser was applied before light curing. The samples were subjected to erosive/abrasive challenges (0.3% citric acid - 2 minutes and tooth brushing four times daily for 5 days). Enamel surface loss was recovered profilometrically by comparison of baseline and final profiles. The adhesive layer thickness, retention percentage of the protective layer, and microhardness of cured adhesive were measured. Data were analyzed using one-way analysis of variance and Tukey's test (5%). There were significant differences for all parameters (p = 0.0001). Mean values ± SD and results of the Tukey's test were: Surface wear: GEN - 4.88 (±1.09)a, L - 5.04 ± 0.99)a, FB - 5.32 (±0.93)ab, GEN + L - 5.46 (±1.27)abc, SB + L - 5.78 (±1.12)abc, FB + L - 6.23 (±1.25)bc, SB - 6.35 (±1.11)c, and C - 6.46 (±0.61)c; layer thickness: GEN - 15.2 (±8.63)c, FB - 5.06 (±1.96)a, GEN + L - 13.96 (±7.07)bc, SB + L - 4.24 (±2.68)a, FB + L - 9.03 (±13.02)abc, and SB - 7.49 (±2.80)ab; retention: GEN - 68.89 (±20.62)c, FB - 54.53 (±24.80)abc, GEN + L - 59.90 (±19.79)abc, SB + L - 63.37 (±19.30)bc, FB + L - 42.23 (±17.68) a, and SB - 47.78 (±18.29)ab; microhardness: GEN - 9.27 (±1.75)c; FB - 6.99 (±0.89)b; GEN + L - 6.22 (±0.87)ab; SB + L - 15.48 (±2.51)d; FB + L - 10.67 (±1.58)c; SB - 5.00 (±1.60)a. The application of Futurabond U and G-aenial bond on enamel surface, as well as the Nd

  2. Histological Evaluation of Retina after Photo Disruption for Vitreous Humor by Q-Switched Neodymium-Doped Yttrium Aluminium Garnet (Nd:YAG) Laser

    PubMed Central

    Kameel Ghaly, Sally; Foad Ghoneim, Dina; Abdelkawi Ahmed, Salwa; Medhat Abdel-Salam, Ahmed

    2013-01-01

    Introduction: Rabbits’ eyes were exposed to vitreous humor liquefaction with Q - switched (sometimes called “ giant pulses”) Neodymium-Doped Yttrium Aluminium Garnet (Nd:YAG) laser using two different energy protocols (5 mJ X 100 pulse and 10 mJ X 50 pulse)with and without vitamin C administration. The histological changes in the retina were investigated to evaluate the protective role of vitamin C. Methods: The rabbits were divided into four main groups (n= 12 each). The first group was divided into three subgroups (n=4) and then treated with 5 mJ X 100 pulse (X means times) delivered to the anterior, middle and posterior vitreous humor respectively. The second group received a daily dose of 25 mg/Kg vitamin C for two weeks then was divided into three subgroups and treated with laser in the same manner as the first group.The third group was divided into three subgroups (n=4) and then treated with 10 mJ X 50 pulse delivered to the anterior, middle and posterior vitreous respectively. The fourth group received a daily dose of 25 mg/Kg vitamin C for two weeks then was divided into three subgroups and treated with laser in the same manner as the third group. After two weeks, rabbits were decapitated and histological examination for the retina was performed. Results: The results showed that, the anterior vitreous group exposed to 5mJX100 pulse and supplemented with vitamin C, showed no obvious change. Furthermore, all other treated groups showed alteration in retina’s tissues histology after laser. Conclusion: Application of Q-switched Nd: YAG laser in vitreous humor liquefaction induces changes in retina’s layers. Although there were some sorts of improvements in retinas supplemented with vitamin C, it cannot protect them against laser oxidative damage. PMID:25606329

  3. Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles

    PubMed Central

    Lellouche, Jonathan; Friedman, Alexandra; Gedanken, Aharon; Banin, Ehud

    2012-01-01

    Antibiotic resistance has prompted the search for new agents that can inhibit bacterial growth. Moreover, colonization of abiotic surfaces by microorganisms and the formation of biofilms is a major cause of infections associated with medical implants, resulting in prolonged hospitalization periods and patient mortality. In this study we describe a water-based synthesis of yttrium fluoride (YF3) nanoparticles (NPs) using sonochemistry. The sonochemical irradiation of an aqueous solution of yttrium (III) acetate tetrahydrate [Y(Ac)3 · (H2O)4], containing acidic HF as the fluorine ion source, yielded nanocrystalline needle-shaped YF3 particles. The obtained NPs were characterized by scanning electron microscopy and X-ray elemental analysis. NP crystallinity was confirmed by electron and powder X-ray diffractions. YF3 NPs showed antibacterial properties against two common bacterial pathogens (Escherichia coli and Staphylococcus aureus) at a μg/mL range. We were also able to demonstrate that antimicrobial activity was dependent on NP size. In addition, catheters were surface modified with YF3 NPs using a one-step synthesis and coating process. The coating procedure yielded a homogeneous YF3 NP layer on the catheter, as analyzed by scanning electron microscopy and energy dispersive spectroscopy. These YF3 NP-modified catheters were investigated for their ability to restrict bacterial biofilm formation. The YF3 NP-coated catheters were able to significantly reduce bacterial colonization compared to the uncoated surface. Taken together, our results highlight the potential to further develop the concept of utilizing these metal fluoride NPs as novel antimicrobial and antibiofilm agents, taking advantage of their low solubility and providing extended protection. PMID:23152681

  4. Multimodal emissions from Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate glass: Upconversion, downshifting and quantum cutting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahadur, A.; Yadav, R.S.; Yadav, R.V.

    This paper reports the optical properties of Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method. The absorption spectrum of the Yb{sup 3+} doped LB glass contains intense NIR band centered at 976 nm due to {sup 2}F{sub 7/2}→{sup 2}F{sub 5/2} transition. The emission spectra of the prepared glasses have been monitored on excitation with 266, 355 and 976 nm. The Yb{sup 3+} doped glass emits a broad NIR band centered at 976 nm whereas the Tb{sup 3+} doped glass gives off visible bands on excitations with 266 and 355 nm. When the Tb{sup 3+} andmore » Yb{sup 3+} ions are co-doped together, the emission intensity in the visible region decreases whereas it increases in the NIR region significantly. The increase in the emission intensity in the NIR region is due to efficient cooperative energy transfer (CET) from Tb{sup 3+} to Yb{sup 3+} ions. The quantum cutting efficiency for Tb{sup 3+}/Yb{sup 3+} co-doped glass has been calculated and compared for 266 and 355 nm excitations. The quantum cutting efficiency is larger for 355 nm excitation (137%). The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass also emits upconverted visible bands on excitation with 976 nm. The mechanisms involved in the energy transfer have been discussed using schematic energy level diagram. The Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may be used in the optical devices and in solar cell for solar spectral conversion and behaves as a multi-modal photo-luminescent material. - Graphical abstract: The Tb{sup 3+}/Yb{sup 3+} co-doped lithium borate (LB) glass prepared by melt quench method emits upconverted visible emissions through upconversion CET from Yb{sup 3+} to Tb{sup 3+} ions and quantum cutting emissions through downconversion CET from Tb{sup 3+} to Yb{sup 3+} ions. Therefore, the Tb{sup 3+}/Yb{sup 3+} co-doped LB glass may find applications in optical devices and solar cell and behaves as a multi-modal photo-luminescent material. - Highlights: • The Tb{sup 3

  5. A new V-doped Bi2(O,S)3 oxysulfide catalyst for highly efficient catalytic reduction of 2-nitroaniline and organic dyes.

    PubMed

    Abay, Angaw Kelemework; Kuo, Dong-Hau; Chen, Xiaoyun; Saragih, Albert Daniel

    2017-12-01

    A new type of convenient, and environmentally friendly, Vanadium (V)-doped Bi 2 (O,S) 3 oxysulfide catalyst with different V contents was successfully synthesized via a simple and facile method. The obtained V-doped Bi 2 (O,S) 3 solid solution catalysts were fully characterized by conventional methods. The catalytic performance of the samples was tested by using the reduction of 2-nitroaniline (2-NA) in aqueous solution. The reduction/decolorization of methylene blue (MB) and rhodamine B (RhB) was also chosen to evaluate the universality of catalysts. It was observed that the introduction of V can improve the catalytic performance, and 20%V-Bi 2 (O,S) 3 was found to be the optimal V doping concentration for the reduction of 2-NA, MB, and RhB dyes. For comparative purposes, a related V-free Bi 2 (O, S) 3 oxysulfide material was synthesized and tested as the catalyst. The superior activity of V-doped Bi 2 (O,S) 3 over pure Bi 2 (O,S) 3 was ascribed mainly to an increase in active sites of the material and also due to the presence of synergistic effects. The presence of V 5+ as found from XPS analysis may interact with Bi atoms and enhancing the catalytic activity of the sample. In the catalytic reduction of 2-NA, MB and RhB, the obtained V-doped Bi 2 (O,S) 3 oxysulfide catalyst exhibited excellent catalytic activity as compared with other reported catalysts. Furthermore this highly efficient, low-cost and easily reusable V-doped Bi 2 (O,S) 3 catalyst is anticipated to be of great potential in catalysis in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A flux-free method for synthesis of Ce{sup 3+}-doped YAG phosphor for white LEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiang, Yaochun; Yu, Yuxi, E-mail: yu_heart@xmu.edu.cn; Chen, Guolong

    2016-02-15

    Highlights: • A series of CeF{sub 3}-doped YAG phosphors were successfully synthesized. • CeF{sub 3} not only can be used as the Ce{sup 3+} source but also can play the role of a flux. • The QY of YAG:CeF{sub 3} phosphor is 91% but the QY of YAG:Ce{sub 2}O{sub 3} phosphor is just 80%. • YAG:CeF{sub 3} phosphor exhibits excellent thermal stability. • Using CeF{sub 3} as the Ce{sup 3+} source is a promising flux-free method to prepare YAG:Ce{sup 3+}. - Abstract: A series of CeF{sub 3}-doped Y{sub 3}Al{sub 5}O{sub 12} (YAG:CeF{sub 3}) phosphor, CeO{sub 2}-doped Y{sub 3}Al{sub 5}O{sub 12}more » (YAG:Ce{sub 2}O{sub 3}) phosphor and 5 wt% BaF{sub 2} added YAG:Ce{sub 2}O{sub 3} (YAG:Ce{sub 2}O{sub 3} + BaF{sub 2}) phosphor were successfully synthesized by a solid-state reaction method. The microstructure, morphology, luminescence spectra, luminescence quantum yield (QY) and thermal quenching of the phosphors were investigated. The QY of YAG:CeF{sub 3} phosphor is 91% but the QY of YAG:Ce{sub 2}O{sub 3} phosphor is just 80%. At 150 °C, the luminescence intensity of YAG:CeF{sub 3} phosphor, YAG:Ce{sub 2}O{sub 3} phosphor and YAG:Ce{sub 2}O{sub 3} + BaF{sub 2} phosphor was 85%, 86% and 89% of that measured at 25 °C, respectively. The comprehensive performance of the white LED lamp employing YAG:CeF{sub 3} phosphor is even better than that of the white LED lamp employing YAG:Ce{sub 2}O{sub 3} + BaF{sub 2} phosphor. The experimental results show that it is a promising flux-free method to synthesize Ce{sup 3+}-doped YAG phosphor by employing CeF{sub 3} as the Ce{sup 3+} source.« less

  7. Cationic surfactant assisted sonochemical synthesis of Nd3+ doped Zn2SiO4 nanostructures for solid state lighting applications

    NASA Astrophysics Data System (ADS)

    Basavaraj, R. B.; Malleshappa, J.; Darshan, G. P.; Prasad, B. Daruka; Nagabhushana, H.

    2018-04-01

    For the first time cationic surfactant assisted ultrasound synthesis route has been used for the preparation of pure and Nd3+ (0.5-9 mol %) doped Zn2SiO4 nanophosphors. The shape, size and morphology of the products were tuned by controlling the various experimental parameters. The final product was well characterized by sophisticated techniques viz. powder X-ray diffraction (PXRD), Ultraviolet visible spectroscopy (UV-Vis) and photoluminescence (PL). The powder X-ray diffraction patterns confirmed that the synthesized samples exhibit hexagonal phase without any impurity. The DRS spectra showed major peaks at 275, 360, 529, 586, 680, 742 and 806 nm due to the transitions of the 4f electrons of Nd3+ from the ground-state 4I9/2 to 2F5/2, 4D3/2 + 4D5/2 + 2I11/2, 2K13/2 + 4G7/2 + 4G9/2, 4G5/2 + 2G7/2, 4F7/2 + 4S3/2, 4F5/2 + 2H9/2 and 4F3/2 respectively. The band energy gap (Eg) of the samples were estimated and found to be in the range 5.32 - 5.52 eV. Under 421 nm excitation, PL spectra exhibit strong near ultraviolet emission peaks at˜444 nm, 459 nm and 520 nm were attributed to 2P3/2 → 4I13/2, 2P3/2 → 4I15/2, 1I6 → 3H4, 2P1/2 → 4I9/2 and 4G7/2 → 4I9/2 transitions respectively. The photometric studies indicate that the synthesized Zn2SiO4: Nd3+ nanophosphors can be tuned from blue to pale green by varying the dopant concentration. The current synthesis route is rapid, environmentally benign, cost-effective and useful for industrial applications such as solid state lighting and display devices.

  8. Properties of solid solutions, doped film, and nanocomposite structures based on zinc oxide

    NASA Astrophysics Data System (ADS)

    Lashkarev, G. V.; Shtepliuk, I. I.; Ievtushenko, A. I.; Khyzhun, O. Y.; Kartuzov, V. V.; Ovsiannikova, L. I.; Karpyna, V. A.; Myroniuk, D. V.; Khomyak, V. V.; Tkach, V. N.; Timofeeva, I. I.; Popovich, V. I.; Dranchuk, N. V.; Khranovskyy, V. D.; Demydiuk, P. V.

    2015-02-01

    A study of the properties of materials based on the wide bandgap zinc oxide semiconductor, which are promising for application in optoelectronics, photovoltaics and nanoplasmonics. The structural and optical properties of solid solution Zn1-xCdxO films with different cadmium content, are studied. The samples are grown using magnetron sputtering on sapphire backing. Low-temperature photoluminescence spectra revealed emission peaks associated with radiative recombination processes in those areas of the film that have varying amounts of cadmium. X-ray phase analysis showed the presence of a cadmium oxide cubic phase in these films. Theoretical studies of the solid solution thermodynamic properties allowed for a qualitative interpretation of the observed experimental phenomena. It is established that the growth of the homogeneous solid solution film is possible only at high temperatures, whereas regions of inhomogeneous composition can be narrowed through elastic deformation, caused by the mismatch of the film-backing lattice constants. The driving forces of the spinodal decomposition of the Zn1-xCdxO system are identified. Fullerene-like clusters of Znn-xCdxOn are used to calculate the bandgap and the cohesive energy of ZnCdO solid solutions. The properties of transparent conductive ZnO films, doped with Group III donor impurities (Al, Ga, In), are examined. It is shown that oxygen vacancies are responsible for the hole trap centers in the zinc oxide photoconductivity process. We also examine the photoluminescence properties of metal-ZnO nanocomposite structures, caused by surface plasmons.

  9. La{sup 3+} doping of the Sr{sub 2}CoWO{sub 6} double perovskite: A structural and magnetic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, C.A.; Viola, M.C.; Pedregosa, J.C.

    2008-11-15

    La-doped Sr{sub 2}CoWO{sub 6} double perovskites have been prepared in air in polycrystalline form by solid-state reaction. These materials have been studied by X-ray powder diffraction (XRPD), neutron powder diffraction (NPD) and magnetic susceptibility. The structural refinement was performed from combined XRPD and NPD data (D2B instrument, {lambda}=1.594 A). At room temperature, the replacement of Sr{sup 2+} by La{sup 3+} induces a change of the tetragonal structure, space group I4/m of the undoped Sr{sub 2}CoWO{sub 6} into the distorted monoclinic crystal structure, space group P2{sub 1}/n, Z=2. The structure of La-doped phases contains alternating CoO{sub 6} and (Co/W)O{sub 6} octahedra,more » almost fully ordered. On the other hand, the replacement of Sr{sup 2+} by La{sup 3+} induces a partial replacement of W{sup 6+} by Co{sup 2+} into the B sites, i.e. Sr{sub 2-x}La{sub x}CoW{sub 1-y}Co{sub y}O{sub 6} (y=x/4) with segregation of SrWO{sub 4}. Magnetic and neutron diffraction measurements indicate an antiferromagnetic ordering below T{sub N}=24 K independently of the La-substitution. - Graphical abstract: La-doped Sr{sub 2}CoWO{sub 6} double perovskites have been prepared in polycrystalline form by solid-state reaction. The general formula of these compounds is Sr{sub 2-x}La{sub x}CoW{sub 1-y}Co{sub y}O{sub 6} (y=x/4). XRPD, NPD and magnetic susceptibility studies were performed. The structure of monoclinic La-doped phases contains alternating CoO{sub 6} and (Co/W)O{sub 6} octahedra, almost fully ordered. NPD and magnetic measurements indicate an antiferromagnetic ordering at low temperature.« less

  10. Enhancing luminescence of Lu{sub 2}MoO{sub 6}:Eu{sup 3+} phosphors by doping with Li{sup +} ions for near ultraviolet based solid state lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Li, E-mail: lilic@cqupt.edu.cn; Shen, Jun; Pan, Yu

    Graphical abstract: The emission spectra of Lu{sub 2}MoO{sub 6}:3%Eu{sup 3+}, x%Li{sup +} phosphors under 365 nm excitation. The inset represents emission intensity of 610 nm as a function of Li{sup +} molar concentration. - Highlights: • Lu{sub 2}MoO{sub 6}:3%Eu{sup 3+}, x%Li{sup +} phosphors were synthesized by solid-state reaction method. • All the prepared phosphors can be assigned to its monoclinic phase. • The optimal concentration of Li{sup +} ions is 30mol%. • The luminescent intensity of Lu{sub 2}MoO{sub 6}:Eu{sup 3+} phosphors has been greatly enhanced by codoping Li{sup +} ions. - Abstract: Lu{sub 2}MoO{sub 6}: 3% Eu{sup 3+} co-doped withmore » x% Li{sup +} (x = 0–40 mol) phosphors were synthesized by high-temperature solid-state reaction method. The structure and luminescent properties of these phosphors were investigated. The X-ray diffraction (XRD) results show that all prepared phosphors can be assigned to monoclinic phase and codoping with Li{sup +} ions does not change their crystallographic structure. The excitation and emission spectra show that the samples can be effectively excited by the near ultraviolet light at 365 nm and exhibit strong red emission centered at 610 nm. The experimental results indicate the red luminescent intensity of Lu{sub 2}MoO{sub 6}:Eu{sup 3+} phosphors has been greatly enhanced by codoping with Li{sup +} ions. The enhancement of the luminescent intensity can be the consequence of the modification of the local field symmetry around the Eu{sup 3+} ion, improved crystallization, and the enlarged grain size induced by the Li{sup +} ions.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathanael, A. Joseph; Department of Nanomaterials Engineering, Chungnam National University, Daejeon, 305-764; Mangalaraj, D., E-mail: dmraj800@yahoo.com

    In this study, undoped and yttrium (Y) doped nanocrystalline hydroxyapatite crystals were synthesized by the hydrothermal method at 180 Degree-Sign C for 24 h. Highly ordered and oriented hydroxyapatite (HAp) nanorods were prepared by yttrium doping and their nanostructure and physical properties were compared with those of undoped HAp rods. FESEM images showed that the doping with Y ions reduced the diameter (from 25 nm to 15 nm) and increased the length (from 95 nm to 115 nm) of the synthesized rods. The aspect ratio of the undoped and Y-doped nanorods were calculated to be 4.303 (SD = 0.0959) andmore » 7.61 (SD = 0.0355), respectively. Specific surface area (SSA) analysis showed that SSA also increased from 66.74 m{sup 2}/g to 68.57 m{sup 2}/g with the addition of yttrium. Y-doped HAp nanorod reinforced HMWPE composites displayed the better mechanical performance than those reinforced with pure HAp nanorods. The possible strengthening of nanorods and the increase of SSA due to the reduction in the size of nanorods in the presence of yttrium may have contributed to the strengthening of Y-doped HAp/HMWPE composites. - Graphical Abstract: Highly ordered and oriented yttrium doped hydroxyapatite (HAp) nanorods were prepared by hydrothermal method. For undoped HAp the average length of the nanorod is 95 nm with mean diameter of 24 nm and for a Y doped nanorod the average length is {approx} 115 nm and the mean diameter is 15 nm. Mechanical analysis was carried out by polymer/nanoparticle composite method. Highlights: Black-Right-Pointing-Pointer Yttrium doped hydroxyapatite nanorods were prepared by hydrothermal method. Black-Right-Pointing-Pointer The nanorods have highly uniform size distribution. Black-Right-Pointing-Pointer Yttrium substitution and nanostructure formation was confirmed by careful analysis. Black-Right-Pointing-Pointer Mechanical strength was analyzed by polymer nanoparticle reinforcement method.« less

  12. Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Sriram; Xia, Zhanbo; Joishi, Chandan; Zhang, Yuewei; McGlone, Joe; Johnson, Jared; Brenner, Mark; Arehart, Aaron R.; Hwang, Jinwoo; Lodha, Saurabh; Rajan, Siddharth

    2017-07-01

    Modulation-doped heterostructures are a key enabler for realizing high mobility and better scaling properties for high performance transistors. We report the realization of a modulation-doped two-dimensional electron gas (2DEG) at the β-(Al0.2Ga0.8)2O3/Ga2O3 heterojunction by silicon delta doping. The formation of a 2DEG was confirmed using capacitance voltage measurements. A modulation-doped 2DEG channel was used to realize a modulation-doped field-effect transistor. The demonstration of modulation doping in the β-(Al0.2Ga0.8)2O3/Ga2O3 material system could enable heterojunction devices for high performance electronics.

  13. Sodium-Doped Mesoporous Ni2P2O7 Hexagonal Tablets for High-Performance Flexible All-Solid-State Hybrid Supercapacitors.

    PubMed

    Wei, Chengzhen; Cheng, Cheng; Wang, Shanshan; Xu, Yazhou; Wang, Jindi; Pang, Huan

    2015-08-01

    A simple hydrothermal method has been developed to prepare hexagonal tablet precursors, which are then transformed into porous sodium-doped Ni2P2O7 hexagonal tablets by a simple calcination method. The obtained samples were evaluated as electrode materials for supercapacitors. Electrochemical measurements show that the electrode based on the porous sodium-doped Ni2P2O7 hexagonal tablets exhibits a specific capacitance of 557.7 F g(-1) at a current density of 1.2 A g(-1) . Furthermore, the porous sodium-doped Ni2P2O7 hexagonal tablets were successfully used to construct flexible solid-state hybrid supercapacitors. The device is highly flexible and achieves a maximum energy density of 23.4 Wh kg(-1) and a good cycling stability after 5000 cycles, which confirms that the porous sodium-doped Ni2P2 O7 hexagonal tablets are promising active materials for flexible supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Strain induced atomic structure at the Ir-doped LaAlO3/SrTiO3 interface.

    PubMed

    Lee, M; Arras, R; Warot-Fonrose, B; Hungria, T; Lippmaa, M; Daimon, H; Casanove, M J

    2017-11-01

    The structure of Ir-doped LaAlO 3 /SrTiO 3 (001) interfaces was investigated on the atomic scale using probe-corrected transmission electron microscopy in high-angle annular dark-field scanning mode (HAADF-STEM) and electron energy loss spectroscopy (EELS), combined with first-principles calculations. We report the evolution of the strain state experimentally measured in a 5 unit-cell thick LaAlO 3 film as a function of the Ir concentration in the topmost SrTiO 3 layer. It is shown that the LaAlO 3 layers remain fully elastically strained up to 3% of Ir doping, whereas a higher doping level seems to promote strain relaxation through enhanced cationic interdiffusion. The observed differences between the energy loss near edge structure (ELNES) of Ti-L 2,3 and O-K edges at non-doped and Ir-doped interfaces are consistent with the location of the Ir dopants at the interface, up to 3% of Ir doping. These findings, supported by the results of density functional theory (DFT) calculations, provide strong evidence that the effect of dopant concentrations on the properties of this kind of interface should not be analyzed without obtaining essential information from the fine structural and chemical analysis of the grown structures.

  15. Nd³⁺-Yb³⁺ doped powder for near-infrared optical temperature sensing.

    PubMed

    Rakov, Nikifor; Maciel, Glauco S

    2014-07-01

    Er³⁺ doped powders are generally used for fluorescence-based temperature sensing application when near-infrared lasers are the excitation sources of choice. The fluorescence of Er³⁺ is produced by nonlinear (upconversion) processes, which generate strong internal heat. Lowering the excitation power causes drastic reduction of the fluorescence signal, and as a consequence the sensor applicability of Er³⁺ doped powders becomes compromised. Here we propose the use of the downconverted fluorescence of Yb³⁺ produced by efficient energy transfer from Nd³⁺ as an alternative temperature sensing system. Our results are presented for yttrium silicate powders prepared by combustion synthesis.

  16. Effects of rare earth ionic doping on microstructures and electrical properties of CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Renzhong; Department of Technology and Physics, Zhengzhou University of Light Industry, Zhengzhou 450002; Chen, Zhenping, E-mail: xrzbotao@163.com

    2015-06-15

    Graphical abstract: The dielectric constant decreases monotonically with reduced RE doping ion radius and is more frequency independent compared with that of pure CCTO sample. - Highlights: • The mean grain sizes decrease monotonically with reduced RE doping ionic radius. • Doping gives rise to the monotonic decrease of ϵ{sub r} with reduced RE ionic radius. • The nonlinear coefficient and breakdown field increase with RE ionic doping. • α of all the samples is associated with the potential barrier width rather than Φ{sub b}. - Abstract: Ca{sub 1–x}R{sub x}Cu{sub 3}Ti{sub 4}O{sub 12}(R = La, Nd, Eu, Gd, Er; xmore » = 0 and 0.005) ceramics were prepared by the conventional solid-state method. The influences of rare earth (RE) ion doping on the microstructure, dielectric and electrical properties of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) ceramics were investigated systematically. Single-phase formation is confirmed by XRD analyses. The mean grain size decreases monotonically with reduced RE ion radius. The EDS results reveal that RE ionic doping reduces Cu-rich phase segregation at the grain boundaries (GBs). Doping gives rise to the monotonic decrease of dielectric constant with reduced RE ionic radius but significantly improves stability with frequency. The lower dielectric loss of doped samples is obtained due to the increase of GB resistance. In addition, the nonlinear coefficient and breakdown field increase with RE ionic doping. Both the fine grains and the enhancement of potential barrier at GBs are responsible for the improvement of the nonlinear current–voltage properties in doped CCTO samples.« less

  17. Synthesis and photoluminescence in Yb doped cerium phosphate CePO4

    NASA Astrophysics Data System (ADS)

    Bhonsule, S. U.; Wankhede, S. P.; Moharil, S. V.

    2018-05-01

    This paper presents the preparation of CePO4 and Yb doped CePO4 using simple solid state reaction method. PL measurements indicated significant energy transfer from Ce3+ to Yb3+ ions. Further evidence of energy transfer was provided by analysis of Luminescence Decay measurements. Energy transfer efficiency of 50% was obtained for 5%Yb doping. Energy transfer from Ce3+ to Yb3+ ions takes place by Cooperative energy transfer mechanism. Such phosphors can be used in white LED's, Lasers and energy saving fluorescent lamps.

  18. Doping of germanium nanowires grown in presence of PH3

    NASA Astrophysics Data System (ADS)

    Tutuc, E.; Chu, J. O.; Ott, J. A.; Guha, S.

    2006-12-01

    The authors study the Au-catalyzed chemical vapor growth of germanium (Ge) nanowires in the presence of phosphine (PH3), used as a dopant precursor. The device characteristics of the ensuing nanowire field effect transistors (FETs) indicate n-type, highly doped nanowires. Using a combination of different nanowire growth sequences and their FET characteristics, the authors determine that phosphorus incorporates predominately via the conformal growth, which accompanies the acicular, nanowire growth. As such, the Ge nanowires grown in the presence of PH3 contain a phosphorus doped shell and an undoped core. The authors determine the doping level in the shell to be ≃(1-4)×1019cm-3.

  19. Solid state saturable absorbers for Q-switching at 1 and 1.3μm: investigation and modeling

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Arátor, Pavel; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav; Kokta, Milan R.

    2008-02-01

    Yttrium and Lutecium garnets (YAG and LuAG) doped by Chromium or Vanadium ions (Cr 4+ or V 3+) were investigated as saturable absorbers potentially useful for passive Q-switching at wavelengths 1 μm and/or 1.3 μm. For comparison also color center saturable absorber LiF:F - II and Cobalt doped spinel (Co:MALO) were studied. Firstly, low power absorption spectra were recorded for all samples. Next, absorbers transmission in dependence on incident energy/power density was measured using the z-scan method. Crystals Cr:YAG, Cr:LuAG, V:YAG, and LiF:F - II were tested at wavelength 1064 nm. Therefore Alexandrite laser pumped Q-switched Nd:YAG laser was used as a radiation source (pulse length 6.9 ns, energy up to 1.5 mJ). Crystals V:YAG, V:LuAG, and Co:MALO were tested at wavelength 1338 nm. So diode pumped Nd:YAG/V:YAG microchip laser was used as a radiation source (pulse length 6.2 ns, energy up to 0.1 mJ). Using measured data fitting, and by their comparison with numerical model of a "thick" saturable absorber transmission for Q-switched Gaussian laser beam, following parameters were estimated: saturable absorber initial transmission T 0, saturation energy density w s, ground state absorption cross-section σ GSA, saturated absorber transmission T s, excited state absorption cross-section σ ESA, ratio γ = σ GSA/σ ESA, and absorbing ions density. For V:YAG crystal, a polarization dependence of T s was also investigated. With the help of rate equation numerical solution, an impact of saturable absorber parameters on generated Q-switched pulse properties was studied in plane wave approximation. Selected saturable absorbers were also investigated as a Q-switch and results were compared with the model.

  20. Novel Na(+) doped Alq3 hybrid materials for organic light-emitting diode (OLED) devices and flat panel displays.

    PubMed

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2015-05-01

    Pure and Na(+) -doped Alq3 complexes were synthesized by a simple precipitation method at room temperature, maintaining a stoichiometric ratio. These complexes were characterized by X-ray diffraction, Fourier transform infrared (FTIR), UV/Vis absorption and photoluminescence (PL) spectra. The X-ray diffractogram exhibits well-resolved peaks, revealing the crystalline nature of the synthesized complexes, FTIR confirms the molecular structure and the completion of quinoline ring formation in the metal complex. UV/Vis absorption and PL spectra of sodium-doped Alq3 complexes exhibit high emission intensity in comparison with Alq3 phosphor, proving that when doped in Alq3 , Na(+) enhances PL emission intensity. The excitation spectra of the synthesized complexes lie in the range 242-457 nm when weak shoulders are also considered. Because the sharp excitation peak falls in the blue region of visible radiation, the complexes can be employed for blue chip excitation. The emission wavelength of all the synthesized complexes lies in the bluish green/green region ranging between 485 and 531 nm. The intensity of the emission wavelength was found to be elevated when Na(+) is doped into Alq3 . Because both the excitation and emission wavelengths fall in the visible region of electromagnetic radiation, these phosphors can also be employed to improve the power conversion efficiency of photovoltaic cells by using the solar spectral conversion principle. Thus, the synthesized phosphors can be used as bluish green/green light-emitting phosphors for organic light-emitting diodes, flat panel displays, solid-state lighting technology - a step towards the desire to reduce energy consumption and generate pollution free light. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Generation of high powers from diode pumped chromium-3+ doped colquiriites

    NASA Astrophysics Data System (ADS)

    Eichenholz, Jason Matthew

    1998-12-01

    There is considerable interest in the area of laser diode pumped solid-state lasers. Diode pumped solid-state lasers (DPSSL) operating at high average power levels are attractive light sources for various applications such as materials processing, laser radar, and fundamental physics experiments. These laser systems have become more commonplace because of their efficiency, reliability, compactness, low relative cost, and long operational lifetimes. Induced thermal effects in the solid-state laser medium hinder the scaling of DPSSL's to higher average power levels. Therefore a deep insight into the thermo-mechanical properties of the solid state laser is crucial in order to ensure a laser design which is optimized for high average power operation. A comprehensive study of the factors that contribute to thermal loading of the colquiriites was performed. A three-dimensional thermal model has been created to determine the temperature rise inside the laser crystal. This new model calculates the temperature distribution by considering quantum defect, upconversion, and upper-state lifetime quenching as heating sources. The thermally induced lensing in end pumped Cr3+ doped LiSrAlF6, LiSrGaF6, LiSrCaAlF6, and LiCaAlF6 were experimentally measured. Several diode pumped colquiriite laser systems were assembled to quantitatively observe and identify thermally induced effects. Significant differences in each of the colquiriite materials were observed. These differences are explained by the differences in the thermo-mechanical and thermo-optical properties of the material and are explained by the theoretical thermal model.

  2. Ferromagnetic and photocatalytic behaviors observed in Ca-doped BiFeO3 nanofibres

    NASA Astrophysics Data System (ADS)

    Feng, Yan-Nan; Wang, Huan-Chun; Luo, Yi-Dong; Shen, Yang; Lin, Yuan-Hua

    2013-04-01

    Ca-doped BiFeO3 nanofibres have been fabricated by electrospinning method. Our results indicate that phase transition from space group R3c to C222 can be observed by the Ca doping. These BiFeO3 nanofibres show obvious room temperature ferromagnetic behaviors, and saturation magnetization can be enhanced with the Ca-doping concentration increasing, which could be correlated with the variation of the ratio of Fe2+/Fe3+ valence state. The BiFeO3 nanofibres show obvious photocatalytic performance and can be improved by the Ca-doping.

  3. Luminescent manganese-doped CsPbCl3 perovskite quantum dots

    PubMed Central

    Lin, Chun Che; Xu, Kun Yuan; Wang, Da; Meijerink, Andries

    2017-01-01

    Nanocrystalline cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I) form an exciting new class of semiconductor materials showing quantum confinement. The emission color can be tuned over the full visible spectral region making them promising for light‒emitting applications. Further control over the optical and magnetic properties of quantum dots (QDs) can be achieved through doping of transition metal (TM) ions such as Mn2+ or Co2+. Here we demonstrate how, following QD synthesis in the presence of a Mn‒precursor, dropwise addition of silicon tetrachloride (SiCl4) to the QDs in toluene results in the formation of Mn‒doped CsPbCl3 QDs showing bright orange Mn2+ emission around 600 nm. Evidence for successful doping is provided by excitation spectra of the Mn2+ emission, with all features of the CsPbCl3 QD absorption spectrum and a decrease of the 410 nm excitonic emission life time with increasing Mn‒concentration, giving evidence for enhanced exciton to Mn2+ energy transfer. As a doping mechanism we propose a combination of surface etching and reconstruction and diffusion doping. The presently reported approach provides a promising avenue for doping TM ions into perovskites QDs enabling a wider control over optical and magnetic properties for this new class of QDs. PMID:28401894

  4. Luminescent manganese-doped CsPbCl3 perovskite quantum dots

    NASA Astrophysics Data System (ADS)

    Lin, Chun Che; Xu, Kun Yuan; Wang, Da; Meijerink, Andries

    2017-04-01

    Nanocrystalline cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I) form an exciting new class of semiconductor materials showing quantum confinement. The emission color can be tuned over the full visible spectral region making them promising for light‒emitting applications. Further control over the optical and magnetic properties of quantum dots (QDs) can be achieved through doping of transition metal (TM) ions such as Mn2+ or Co2+. Here we demonstrate how, following QD synthesis in the presence of a Mn‒precursor, dropwise addition of silicon tetrachloride (SiCl4) to the QDs in toluene results in the formation of Mn‒doped CsPbCl3 QDs showing bright orange Mn2+ emission around 600 nm. Evidence for successful doping is provided by excitation spectra of the Mn2+ emission, with all features of the CsPbCl3 QD absorption spectrum and a decrease of the 410 nm excitonic emission life time with increasing Mn‒concentration, giving evidence for enhanced exciton to Mn2+ energy transfer. As a doping mechanism we propose a combination of surface etching and reconstruction and diffusion doping. The presently reported approach provides a promising avenue for doping TM ions into perovskites QDs enabling a wider control over optical and magnetic properties for this new class of QDs.

  5. Luminescent manganese-doped CsPbCl3 perovskite quantum dots.

    PubMed

    Lin, Chun Che; Xu, Kun Yuan; Wang, Da; Meijerink, Andries

    2017-04-12

    Nanocrystalline cesium lead halide perovskites (CsPbX 3 , X = Cl, Br, and I) form an exciting new class of semiconductor materials showing quantum confinement. The emission color can be tuned over the full visible spectral region making them promising for light‒emitting applications. Further control over the optical and magnetic properties of quantum dots (QDs) can be achieved through doping of transition metal (TM) ions such as Mn 2+ or Co 2+ . Here we demonstrate how, following QD synthesis in the presence of a Mn‒precursor, dropwise addition of silicon tetrachloride (SiCl 4 ) to the QDs in toluene results in the formation of Mn‒doped CsPbCl 3 QDs showing bright orange Mn 2+ emission around 600 nm. Evidence for successful doping is provided by excitation spectra of the Mn 2+ emission, with all features of the CsPbCl 3 QD absorption spectrum and a decrease of the 410 nm excitonic emission life time with increasing Mn‒concentration, giving evidence for enhanced exciton to Mn 2+ energy transfer. As a doping mechanism we propose a combination of surface etching and reconstruction and diffusion doping. The presently reported approach provides a promising avenue for doping TM ions into perovskites QDs enabling a wider control over optical and magnetic properties for this new class of QDs.

  6. High-spin europium and gadolinium centers in yttrium-aluminum garnet

    NASA Astrophysics Data System (ADS)

    Vazhenin, V. A.; Potapov, A. P.; Asatryan, G. R.; Uspenskaya, Yu. A.; Petrosyan, A. G.; Fokin, A. V.

    2016-08-01

    Electron-spin resonance spectra of Eu2+ and Gd3+ centers substituting Y3+ ions in single-crystal yttrium-aluminum garnet have been studied and the parameters of their rhombic spin Hamiltonian have been determined. The fine-structure parameters of the above ions have been calculated in the superposition model disregarding changes in the angular coordinates of the ligand environment of the impurity defect thus demonstrating the necessity of taking these changes into account.

  7. Solid oxide electrochemical cell fabrication process

    DOEpatents

    Dollard, Walter J.; Folser, George R.; Pal, Uday B.; Singhal, Subhash C.

    1992-01-01

    A method to form an electrochemical cell (12) is characterized by the steps of thermal spraying stabilized zirconia over a doped lanthanum manganite air electrode tube (14) to provide an electrolyte layer (15), coating conductive particles over the electrolyte, pressurizing the outside of the electrolyte layer, feeding halide vapors of yttrium and zirconium to the outside of the electrolyte layer and feeding a source of oxygen to the inside of the electrolyte layer, heating to cause oxygen reaction with the halide vapors to close electrolyte pores if there are any and to form a metal oxide coating on and between the particles and provide a fuel electrode (16).

  8. Transverse diode-pumped neodymium-doped yttrium vanadate laser of simple design

    NASA Astrophysics Data System (ADS)

    Agüero, Mónica B.; Hnilo, Alejandro A.; Kovalsky, Marcelo G.

    2010-03-01

    The design and performance of an all-solid-state Nd:YVO4 laser, transversely pumped by a single 20-W (at 808 nm) diode with no coupling optics, are presented. The prototype, which is devised to be the source of a micro-LIDAR station, is very simple, easy to align, compact, and stable. The key element is a roof prism as the end mirror of the laser cavity, which is used to symmetrize the effects of the thermal distortion and the inhomogeneity of the population inversion distribution. Typical numbers are 4.2-W cw with a slightly astigmatic (3:2) homogeneous spot and a divergence of 0.5 mrad. The protoype is also tested in the active Q-switching mode, providing pulses 50-ns full width at half maximum (FWHM) at 14 KHz, 3.5 W average. Frequency doubling external to the cavity in a nonoptimized configuration provides 700 mW at 532 nm.

  9. Spectroscopic studies of Dy3 + ion doped tellurite glasses for solid state lasers and white LEDs

    NASA Astrophysics Data System (ADS)

    Himamaheswara Rao, V.; Syam Prasad, P.; Mohan Babu, M.; Venkateswara Rao, P.; Satyanarayana, T.; Luís F., Santos; Veeraiah, N.

    2018-01-01

    Rare earth ion Dy3 +-doped tellurite glasses were synthesised in the system of (75-x)TeO2-15Sb2O3-10WO3-xDy2O3 (TSWD glasses). XRD and FTIR characterizations were used to find the crystalline and structural properties. The intensities of the electronic transitions and the ligand environment around the Dy3 + ion were determined using the Judd-Ofelt (J-O) theory on the absorption spectra of the glasses. The measured luminescence spectra exhibit intense emissions at 574 and 484 nm along with less intense emissions around 662 and 751 nm. Various radiative properties of the 4F9/2 excited level of Dy3 + ion were calculated for the glasses. Decay profiles were measured to find the life times and quantum efficiencies. Yellow to blue intensity ratio (Y/B), CIE chromaticity coordinates and correlated color temperature (CCT) values are calculated using the emission spectra to evaluate the emitted light. The obtained results suggest the utility of the glasses for potential yellow laser and white LED's applications.

  10. Recovery of yttrium from cathode ray tubes and lamps’ fluorescent powders: experimental results and economic simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Innocenzi, V., E-mail: valentina.innocenzi1@univaq.it; De Michelis, I.; Ferella, F.

    2013-11-15

    Highlights: • Fluorescent powder of lamps. • Fluorescent powder of cathode ray rubes. • Recovery of yttrium from fluorescent powders. • Economic simulation for the processes to recover yttrium from WEEE. - Abstract: In this paper, yttrium recovery from fluorescent powder of lamps and cathode ray tubes (CRTs) is described. The process for treating these materials includes the following: (a) acid leaching, (b) purification of the leach liquors using sodium hydroxide and sodium sulfide, (c) precipitation of yttrium using oxalic acid, and (d) calcinations of oxalates for production of yttrium oxides. Experimental results have shown that process conditions necessary tomore » purify the solutions and recover yttrium strongly depend on composition of the leach liquor, in other words, whether the powder comes from treatment of CRTs or lamp. In the optimal experimental conditions, the recoveries of yttrium oxide are about 95%, 55%, and 65% for CRT, lamps, and CRT/lamp mixture (called MIX) powders, respectively. The lower yields obtained during treatments of MIX and lamp powders are probably due to the co-precipitation of yttrium together with other metals contained in the lamps powder only. Yttrium loss can be reduced to minimum changing the experimental conditions with respect to the case of the CRT process. In any case, the purity of final products from CRT, lamps, and MIX is greater than 95%. Moreover, the possibility to treat simultaneously both CRT and lamp powders is very important and interesting from an industrial point of view since it could be possible to run a single plant treating fluorescent powder coming from two different electronic wastes.« less

  11. Study of the Effect on Ionic Conductivity and Structral Morphology of the SR Doped Lanthanum Gallate Solid Electrolyte

    NASA Astrophysics Data System (ADS)

    Sood, Kapil; Singh, K.; Pandey, O. P.

    2013-07-01

    In the present study, lanthanum gallate and Sr-doped lanthanum gallate samples were prepared by conventional solid state reaction method. The phase conformation has been performed by using X-ray diffraction (XRD) study. The elemental composition has been confirmed using energy dispersive spectroscopy (EDS) analysis. Ac conductivity of the samples has been measured in the frequency range 0.1-106 Hz and from 50-800 °C. The impedance plots among real and complex impedances at particular temperature have been discussed. The behavior shows the effect of bulk and grain boundary effects of the doped sample. The impedance plots with frequency have been analyzed. The plots have been well fitted to equivalent circuit model. The conductivity shows the Arrhenius type of behavior. The activation energy has been calculated from the plots and represents that the conductivity through the material is mainly ionic. The structural morphology of the samples has been investigated using scanning electron microscope (SEM). The micrograph shows that the porosity and grain size both decreases with Sr-doping.

  12. Radiative and Nonradiative Transitions of the Rare-Earth Ions Tm(3+) and Ho(3+) in Y3AI5O12 and LiYF4

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Armagan, Guzin; Dibartolo, Baldassare; Modlin, Edward A.

    1995-01-01

    The optical spectra of rare earth ions in solids arise primarily from electric and magnetic dipole transitions between stark split multiplets of the 4f(sup N) electronic configuration. Electric dipole transitions are parity forbidden between levels of the 4f(sup N) configuration, while those of magnetic dipole origin are allowed. It is known from experiment, however, that the significant contributions to the intensities of most transitions are electric dipole in nature. Judd and Ofelt developed the theory of forced electric dipole transitions of rare-earth ions. This study is devoted to determining electric dipole transition probabilities and branching ratios for Tm(3+) and Ho(3+) ions in Yttrium Aluminum Garnet (YAG) and Yttrium Lithium Fluoride (YLF) using the theory of Judd and Ofelt. The radiative rates determined from the Judd-Ofelt analysis are used with measured lifetimes to find nonradiative rates of relaxation.

  13. Thermoluminescence glow curve analysis and CGCD method for erbium doped CaZrO{sub 3} phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Ratnesh, E-mail: 31rati@gmail.com; Chopra, Seema

    2016-05-06

    The manuscript report the synthesis, thermoluminescence study at fixed concentration of Er{sup 3+} (1 mol%) doped CaZrO{sub 3} phosphor. The phosphors were prepared by modified solid state reaction method. The powder sample was characterized by thermoluminescence (TL) glow curve analysis. In TL glow curve the optimized concentration in 1mol% for UV irradiated sample. The kinetic parameters were calculated by computerized glow curve deconvolution (CGCD) techniaue. Trapping parameters gives the information of dosimetry loss in prepared phosphor and its usability in environmental monitoring and for personal monitoring. CGCD is the advance tool for analysis of complicated TL glow curves.

  14. A study of suppressed formation of low-conductivity phases in doped Li 7La 3Zr 2O 12 garnets by in situ neutron diffraction

    DOE PAGES

    Chen, Yan; Rangasamy, Ezhiylmurugan; dela Cruz, Clarina R.; ...

    2015-09-28

    Doped Li 7La 3Zr 2O 12 garnets, oxide-based solids with good Li + conductivity and compatibility, show great potential as leading electrolyte material candidates for all-solid-state lithium ion batteries. Still yet, the conductive bulk usually suffers from the presence of secondary phases and the transition towards a low-conductivity tetragonal phase during synthesis. Dopants are designed to stabilize the high-conductive cubic phase and suppress the formation of the low-conductivity phases. In situ neutron diffraction enables a direct observation of the doping effects by monitoring the phase evolutions during garnet synthesis. It reveals the reaction mechanism involving the temporary presence of intermediatemore » phases. The off-stoichiometry due to the liquid Li 2CO 3 evaporation leads to the residual of the low-conductivity intermediate phase in the as-synthesized bulk. Appropriate doping of an active element may alter the component of the intermediate phases and promote the completion of the reaction. While the dopants aid to stabilize most of the cubic phase, a small amount of tetragonal phase tends to form under a diffusion process. Lastly, the in situ observations provide the guideline of process optimization to suppress the formation of unwanted low-conductivity phases.« less

  15. Enhancing light harvesting and charge transport in organic solar cells via integrating lanthanide-doped upconversation materials

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Yang, Xiao-Yu; Niu, Meng-si; Feng, Lin; Lv, Cheng-kun; Zhang, Kang-ning; Bi, Peng-qing; Yang, Junliang; Hao, Xiao-Tao

    2018-07-01

    Irradiation of lanthanide-doped upconversion nanoparticles with infrared light can lead to the emission of visible light, which is subsequently absorbed by the organic photoactive layer resulting in the performance enhancement of organic solar cells (OSCs). In this work, OSCs based on poly (3-hexylthiophene) (P3HT) and Phenyl C61 butyric acid methyl ester (PC61BM) blending ytterbium(III), erbium(III) co-doped sodium yttrium fluoride (NaYF4: Yb3+, Er3+) nanoparticles were fabricated with inverted structures. The results indicated that the short current density (J sc) and fill factor were apparently enhanced from 8.60 mA cm‑2 to 9.31 mA cm‑2 and from 57.96% to 64.84%, respectively, leading to an increment of power conversion efficiency (PCE). The photocurrent improvement may have attributed to the additional absorption light generated from upconversion with 980 nm excitation. The active layers with upconversion nanoparticles were investigated to prove enhanced light harvesting, charge transport and energy transfer from upconversion nanoparticles to P3HT. A synergistic effect of broadening light harvesting, efficient energy transfer process, increased carrier mobility and enhanced exciton dissociation in the polymer bulk heterojunction may contribute to the performance enhancement.

  16. FABRICATION AND PHOTOCATALYTIC PROPERTIES OF TiO2 NANOFILMS CO-DOPED WITH Fe3+ AND Bi3+ IONS

    NASA Astrophysics Data System (ADS)

    Gao, Qiongzhi; Liu, Xin; Liu, Wei; Liu, Fang; Fang, Yueping; Zhang, Shiying; Zhou, Wuyi

    2016-12-01

    In this work, the titanium dioxide (TiO2) nanofilms co-doped with Fe3+ and Bi3+ ions were successfully fabricated by the sol-gel method with dip-coating process. Methylene blue was used as the target degradation chemical to study the photocatalytic properties affected by different doping contents of Fe3+ and Bi3+ ions. The samples were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and infrared (IR) spectroscopy. The results indicated that both pure TiO2 nanofilms and single-doped samples possessed the photocatalytic activity in degradation of methylene blue. However, when the nanofilms co-doped with Fe3+ and Bi3+ ions were fabricated at the molar ratio of 3:1 (Fe3+:Bi3+), they exhibited the best photocatalytic activity after the heat treatment at 500∘C for 2h. The wettability property test indicated that the TiO2 nanofilms co-doped with Fe3+ and Bi3+ ions in the molar ratio 3:1 owned an excellent hydrophilic property.

  17. White emission materials from glass doped with rare Earth ions: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasaka, P.; Kaewkhao, J., E-mail: mink110@hotmail.com; Physics Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, 73000

    2016-03-11

    Solid State Lighting (SSL) based devices are predicted to play a crucial role in the coming years. Development of W-LED, which have an edge over traditional lighting sources due to their compact size, higher reliability, shock resistance, interesting design possibilities, higher transparency and an extremely long lifetime. Over the fifteen trivalent lanthanide ions, Dy{sup 3+} ions doped glasses are most appropriate for white light generation because of the fact that it exhibits two intense emission bands corresponds to the {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} (magnetic dipole) and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} (electric dipole) transitions at around 480-500 nm and 580-600 nmmore » pertaining to blue and yellow regions respectively. In this work, the developments of Dy3+ doped in several glass structures for white emitting materials application have reviewed. Properties of Dy{sup 3+} doped in glasses were discussed for use as a solid state lighting materials application.« less

  18. Effect of Al/Ga substitution on the structural and luminescence properties of Y3(Al1-xGax)5O12: Ce3+ phosphors

    NASA Astrophysics Data System (ADS)

    Fu, Sheng; Tan, Jin; Bai, Xin; Yang, Shanjie; You, Lei; Du, Zhengkang

    2018-01-01

    As candidates for display and lighting materials, a series of gallium-substituted cerium-doped yttrium aluminum garnet (Y3(GaxAl1-x)5O12: Ce3+) phosphors were synthesized by high temperature solid-state reaction. The phases, morphology, luminescence spectra and thermal stability of the phosphors were investigated. The volatilization of Ga2O3 induces the constituents out of stoichiometric ratio and different impurities in the system. The excitation and emission spectra occur red shift (339 nm - 351 nm) and blue shift (465 nm - 437 nm), and blue shift (541 nm - 517 nm), respectively. The spectra have no further blue shift and the luminescence intensity decrease with x over 0.4. Combining crystal structure with PL spectrum, the distortion of dodecahedron and crystal field splitting of 5d level of Ce3+ are influenced by Ga3+ in octahedral coordination polyhedron rather than tetrahedron. The crystalline perfection and Ga3+ occupying the tetrahedron induce less garnet phase formation, more impurities and the 5d level located in the conductive bands, thus accounting for the x = 0.4 turning points of the PL and PLE intensity. Based on the thermal quenching and CIE, the Y3(GaxAl1-x)5O12: Ce3+0.06 phosphors have great potential for use on the w-LED.

  19. Structural and optical characterization of Eu3+ doped beta-Ga2O3 nanoparticles using a liquid-phase precursor method.

    PubMed

    Kim, Moung-O; Kang, Bongkyun; Yoon, Daeho

    2013-08-01

    Eu3+ doped beta-Ga2O3 and non-doped beta-Ga2O3 nanoparticles were synthesized at 800 degrees C using a liquid-phase precursor (LPP) method, with different annealing times and Eu3+ ion concentrations. Eu3+ doped beta-Ga2O3 nanoparticles showed broad XRD peaks, revealing a second phase compared with the non-doped beta-Ga2O3 nanoparticles. The cathode luminescence (CL) spectra of beta-Ga2O3 and Eu3+ doped beta-Ga2O3 nanoparticles showed a broad band emission (300-500 nm) of imperfection and two component emissions. The luminescence quenching properties of Eu3+ dopant ion concentration appeared gradually beyond 5 mol% in our investigation.

  20. Preparation and laser properties of Yb3+-doped microstructure fiber based on hydrolysis-melting technique

    NASA Astrophysics Data System (ADS)

    Wang, Chao

    2017-01-01

    The Yb3+-doped silica glass was prepared by the SiCl4 hydrolysis doping and powder melting technology based on high frequency plasma. The absorption and emission characteristics of the Yb3+-doped silica glass are studied at room temperature. The integrated absorption cross section, stimulated emission cross section and fluorescence lifetime are calculated to be 8.56×104 pm3, 1.39 pm2 and 0.56 ms, respectively. The Yb3+-doped microstructure fiber (MSF) was also fabricated by using the Yb3+-doped silica glass as fiber core. What's more, the laser properties of the Yb3+-doped MSF are studied.

  1. Stability of solid oxide fuel cell materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, T.R.; Bates, J.L.; Chick, L.A.

    1996-04-01

    Interconnection materials in a solid oxide fuel cell are exposed to both highly oxidizing conditions at the cathode and to highly reducing conditions at the anode. The thermal expansion characteristics of substituted lanthanum and yttrium chromite interconnect materials were evaluated by dilatometry as a function of oxygen partial pressures from 1 atm to 10{sup -18} atm, controlled using a carbon dioxide/hydrogen buffer.

  2. Microbiologic results after non-surgical erbium-doped:yttrium, aluminum, and garnet laser or air-abrasive treatment of peri-implantitis: a randomized clinical trial.

    PubMed

    Persson, G Rutger; Roos-Jansåker, Ann-Marie; Lindahl, Christel; Renvert, Stefan

    2011-09-01

    The purpose of this study is to assess clinical and microbiologic effects of the non-surgical treatment of peri-implantitis lesions using either an erbium-doped:yttrium, aluminum, and garnet (Er:YAG) laser or an air-abrasive subgingival polishing method. In a 6-month clinical trial, 42 patients with peri-implantitis were treated at one time with an Er:YAG laser or an air-abrasive device. Routine clinical methods were used to monitor clinical conditions. Baseline and 6-month intraoral radiographs were assessed with a software program. The checkerboard DNA-DNA hybridization method was used to assess 74 bacterial species from the site with the deepest probing depth (PD) at the implant. Non-parametric tests were applied to microbiology data. PD reductions (mean ± SD) were 0.9 ± 0.8 mm and 0.8 ± 0.5 mm in the laser and air-abrasive groups, respectively (not significant). No baseline differences in bacterial counts between groups were found. In the air-abrasive group, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus anaerobius were found at lower counts at 1 month after therapy (P <0.001) and with lower counts in the laser group for Fusobacterium nucleatum naviforme (P = 0.002), and Fusobacterium nucleatum nucleatum (P = 0.002). Both treatments failed to reduce bacterial counts at 6 months. Porphyromonas gingivalis counts were higher in cases with progressive peri-implantitis (P <0.001). At 1 month, P. aeruginosa, S. aureus, and S. anaerobius were reduced in the air-abrasive group, and Fusobacterium spp. were reduced in the laser group. Six-month data demonstrated that both methods failed to reduce bacterial counts. Clinical improvements were limited.

  3. Effect of yttrium on martensite-austenite phase transformation temperatures and high temperature oxidation kinetics of Ti-Ni-Hf high-temperature shape memory alloys

    NASA Astrophysics Data System (ADS)

    Kim, Jeoung Han; Kim, Kyong Min; Yeom, Jong Taek; Young, Sung

    2016-03-01

    The effect of yttrium (< 5.5 at%) on the martensite-austenite phase transformation temperatures, microstructural evolution, and hot workability of Ti-Ni-Hf high-temperature shape memory alloys is investigated. For these purposes, differential scanning calorimetry, hot compression, and thermo-gravimetric tests are conducted. The phase transformation temperatures are not noticeably influenced by the addition of yttrium up to 4.5 at%. Furthermore, the hot workability is not significantly affected by the yttrium addition up to 1.0 at%. However, when the amount of yttrium addition exceeds 1.0 at%, the hot workability deteriorates significantly. In contrast, remarkable improvement in the high temperature oxidation resistance due to the yttrium addition is demonstrated. The total thickness of the oxide layers is substantially thinner in the Y-added specimen. In particular, the thickness of (Ti,Hf) oxide layer is reduced from 200 µm to 120 µm by the addition of 0.3 at% Y.

  4. Room temperature enhanced red emission from novel Eu(3+) doped ZnO nanocrystals uniformly dispersed in nanofibers.

    PubMed

    Zhang, Yongzhe; Liu, Yanxia; Li, Xiaodong; Wang, Qi Jie; Xie, Erqing

    2011-10-14

    Achieving red emission from ZnO-based materials has long been a goal for researchers in order to realize, for instance, full-color display panels and solid-state light-emitting devices. However, the current technique using Eu(3+) doped ZnO for red emission generation has a significant drawback in that the energy transfer from ZnO to Eu(3+) is inefficient, resulting in a low intensity red emission. In this paper, we report an efficient energy transfer scheme for enhanced red emission from Eu(3+) doped ZnO nanocrystals by fabricating polymer nanofibers embedded with Eu(3+) doped ZnO nanocrystals to facilitate the energy transfer. In the fabrication, ZnO nanocrystals are uniformly dispersed in polymer nanofibers prepared by the high electrical field electrospinning technique. Enhanced red emission without defect radiation from the ZnO matrix is observed. Three physical mechanisms for this observation are provided and explained, namely a small ZnO crystal size, uniformity distribution of ZnO nanocrystals in polymers (PVA in this case), and strong bonding between ZnO and polymer through the -OH group bonding. These explanations are supported by high resolution transmission emission microscopy measurements, resonant Raman scattering characterizations, photoluminescence spectra and photoluminescence excitation spectra measurements. In addition, two models exploring the 'accumulation layer' and 'depletion layer' are developed to explain the reasons for the more efficient energy transfer in our ZnO nanocrystal system compared to that in the previous reports. This study provides an important approach to achieve enhanced energy transfer from nanocrystals to ions which could be widely adopted in rare earth ion doped materials. These discoveries also provide more insights into other energy transfer problems in, for example, dye-sensitized solar cells and quantum dot solar cells.

  5. Polythermal investigation of viscosity of solution of metal carboxylates in VIK-grade mixed carboxylic acids: Yttrium and gadolinium carboxylates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezhov, E.A.; Samatov, A.V.; Troyanovskii, L.V.

    Kinematic viscosities have been measured for solutions of yttrium and gadolinium carboxylates in grade VIK mixed carboxylic acids (MCA). It has been established that the optimal fluidity of these metal carboxylate solutions for application to articles is reached at 333 K. A regression model has been developed to describe the concentration and temperature dependences of the viscosity of yttrium- and gadolinium-containing MCA solutions. 2 refs., 3 tabs.

  6. Rapid Synthesis and Formation Mechanism of Core-Shell-Structured La-Doped SrTiO3 with a Nb-Doped Shell

    PubMed Central

    Park, Nam-Hee; Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck

    2015-01-01

    To provide a convenient and practical synthesis process for metal ion doping on the surface of nanoparticles in an assembled nanostructure, core-shell-structured La-doped SrTiO3 nanocubes with a Nb-doped surface layer were synthesized via a rapid synthesis combining a rapid sol-precipitation and hydrothermal process. The La-doped SrTiO3 nanocubes were formed at room temperature by a rapid dissolution of NaOH pellets during the rapid sol-precipitation process, and the Nb-doped surface (shell) along with Nb-rich edges formed on the core nanocubes via the hydrothermal process. The formation mechanism of the core-shell-structured nanocubes and their shape evolution as a function of the Nb doping level were investigated. The synthesized core-shell-structured nanocubes could be arranged face-to-face on a SiO2/Si substrate by a slow evaporation process, and this nanostructured 10 μm thick thin film showed a smooth surface. PMID:28793420

  7. Eu 3+-doped wide band gap Zn 2SnO 4 semiconductor nanoparticles: Structure and luminescence

    DOE PAGES

    Dimitrievska, Mirjana; Ivetić, Tamara B.; Litvinchuk, Alexander P.; ...

    2016-08-03

    Nanocrystalline Zn 2SnO 4 powders doped with Eu 3+ ions were synthesized via a mechanochemical solid-state reaction method followed by postannealing in air at 1200 °C. X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Raman and photoluminescence (PL) spectroscopies provide convincing evidence for the incorporation of Eu 3+ ions into the host matrix on noncentrosymmetric sites of the cubic inverse spinel lattice. Microstructural analysis shows that the crystalline grain size decreases with the addition of Eu 3+. Formation of a nanocrystalline Eu 2Sn 2O 7 secondary phase is also observed. Luminescence spectra of Eu 3+-doped samples show several emissions, including narrow-bandmore » magnetic dipole emission at 595 nm and electric dipole emission at 615 nm of the Eu 3+ ions. Excitation spectra and lifetime measurements suggest that Eu 3+ ions are incorporated at only one symmetry site. According to the crystal field theory, it is assumed that Eu 3+ ions participate at octahedral sites of Zn 2+ or Sn 4+ under a weak crystal field, rather than at the tetrahedral sites of Zn2+, because of the high octahedral stabilization energy for Eu 3+. Activation of symmetry forbidden (IR-active and silent) modes is observed in the Raman scattering spectra of both pure and doped samples, indicating a disorder of the cation sublattice of Zn 2SnO 4 nanocrystallites. These results were further supported by the first principle lattice dynamics calculations. The spinel-type Zn 2SnO 4 shows effectiveness in hosting Eu 3+ ions, which could be used as a prospective green/red emitter. As a result, this work also illustrates how sustainable and simple preparation methods could be used for effective engineering of material properties.« less

  8. Re{sup 3+} : YAG laser ceramics: synthesis, optical properties and laser characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagayev, S N; Vatnik, S M; Vedin, I A

    2015-05-31

    Highly transparent yttrium aluminium garnet ceramics doped with holmium or ytterbium or neodymium are synthesised. The ceramics were made of a mixture of nanopowders synthesised by laser ablation. The structural and spectral characteristics of ceramics are studied. In the samples with holmium Ho{sup 3+} and neodymium Nd{sup 3+} ions, lasing was achieved with a slope efficiency of 40% and 35.3%, respectively; the maximum laser power exceeded 4 W. The internal absorption and scattering losses for 1% Nd : YAG ceramics are estimated to be 1.6 × 10{sup -2} cm{sup -1}. (extreme light fields and their applications)

  9. Dy3TaO7, A stoichiometric spin glass and the effect of disorder via chemical substitution in the Dy3-xYxTaO7 (0 ≤ x ≤ 3) solid solution

    NASA Astrophysics Data System (ADS)

    Gómez-García, J. Francisco; Bucio, Lauro; Tavizon, Gustavo

    2018-01-01

    In this work, we present both structural and magnetic (DC magnetization and AC susceptibility) studies of the Dy3-xYxTaO7 solid solution. The structural characterization of samples was performed by Rietveld refinements of the X-ray diffraction data. All compounds crystallized in a weberite-related structure in the orthorhombic C2221 space group (No. 20); the variations of the lattice parameters obey the Vegard´s law in the whole range of composition. DC magnetic measurements of the Dy3-xYxTaO7 system showed a Curie-Weiss paramagnetic behaviour, with antiferromagnetic interactions at T>150 K. Below 3 K a spin glass behaviour in the 0 ≤ x ≤ 1 range of the solid solution was observed. The stoichiometric Dy3TaO7 compound showed spin glass behaviour although there is no evidence of structural disorder. For some Y3+ doped compounds (x = 0.33, 0.66 and 1.0), chemical disorder reduced the freezing temperature (Tg) values with a ×1/3 dependence. Cole-Cole analysis of the AC magnetic field response showed similar phenomenological parameters for the stoichiometric (x = 0) and the Y3+ doped compounds with spin glassiness, suggesting an analogous mechanism for these compounds. For the Dy3-xYxTaO7 system, in which the spin glass behaviour seems to exhibit a critical concentration, a magnetic phase diagram is proposed.

  10. Ultra High p-doping Material Research for GaN Based Light Emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vladimir Dmitriev

    2007-06-30

    The main goal of the Project is to investigate doping mechanisms in p-type GaN and AlGaN and controllably fabricate ultra high doped p-GaN materials and epitaxial structures. Highly doped p-type GaN-based materials with low electrical resistivity and abrupt doping profiles are of great importance for efficient light emitters for solid state lighting (SSL) applications. Cost-effective hydride vapor phase epitaxial (HVPE) technology was proposed to investigate and develop p-GaN materials for SSL. High p-type doping is required to improve (i) carrier injection efficiency in light emitting p-n junctions that will result in increasing of light emitting efficiency, (ii) current spreading inmore » light emitting structures that will improve external quantum efficiency, and (iii) parameters of Ohmic contacts to reduce operating voltage and tolerate higher forward currents needed for the high output power operation of light emitters. Highly doped p-type GaN layers and AlGaN/GaN heterostructures with low electrical resistivity will lead to novel device and contact metallization designs for high-power high efficiency GaN-based light emitters. Overall, highly doped p-GaN is a key element to develop light emitting devices for the DOE SSL program. The project was focused on material research for highly doped p-type GaN materials and device structures for applications in high performance light emitters for general illumination P-GaN and p-AlGaN layers and multi-layer structures were grown by HVPE and investigated in terms of surface morphology and structure, doping concentrations and profiles, optical, electrical, and structural properties. Tasks of the project were successfully accomplished. Highly doped GaN materials with p-type conductivity were fabricated. As-grown GaN layers had concentration N{sub a}-N{sub d} as high as 3 x 10{sup 19} cm{sup -3}. Mechanisms of doping were investigated and results of material studies were reported at several International conferences

  11. Ytterbium-doped borate fluoride laser crystals and lasers

    DOEpatents

    Schaffers, Kathleen I.; DeLoach, Laura D.; Payne, Stephen A.; Keszler, Douglas A.

    1997-01-01

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM'(BO.sub.3)F, where M, M' are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO.sub.3 F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator.

  12. Chloroform- and water-soluble sol-gel derived Eu+++/Y2O3 (red) and Tb+++/Y2O3 (green) nanophosphors: synthesis, characterization, and surface modification.

    PubMed

    Pandey, Ashutosh; Roy, M K; Pandey, Anjana; Zanella, Marco; Sperling, Ralph A; Parak, Wolfgang J; Samaddar, A B; Verma, H C

    2009-03-01

    Eu+++ and Tb+++ ions have been incorporated into nanodimensional yttrium oxide host matrices via a sol-gel process using Y5O(OPr(i))13 as precursor (OPr(i) = isopropoxy). The as-synthesized white powders have been annealed at different temperatures. Photoluminescence (PL) spectroscopy and X-ray diffraction (XRD) have been used as tools for documenting the characteristics of these powders. For Eu+++-doped powders, a comparison of the Eu+++, 5D0-->7F1, and 5D0-->7F2 peak intensities in the emission spectra reveals that the dopant ions are occupying unsymmetrical sites in the host yttrium oxide in all the samples. For Tb+++-doped powders, the characteristic terbium 5D3-->7Fn and 5D-->7Fn (n = 2-6) transitions were visible only in the samples that had been annealed above 500 degrees C. Samples of the doped particle powders were suspended in chloroform by fragmenting the powder with and without sonification under the presence of trioctylphosphine oxide, or a mixture of oleic acid and dioctyl ether. The resulting clear colorless (for Eu+++) and light green translucent (for Tb+++) solutions of the suspended particles showed red and green luminescence upon UV excitation, respectively. In addition, suspension in water has been achieved by fragmenting the powder in the presence of dichloroacetic acid. Transmission electron micrograph investigation of the soluble particles shows single dispersed particles along with agglomerates. The changes in the luminescence due to fragmentation of the particle powder and due the influence of the surfactant of the suspended colloidal particles are discussed.

  13. Advancing radiation balanced lasers (RBLs) in rare-earth (RE)-doped solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hehlen, Markus Peter

    2016-11-21

    These slides cover the following topics: Mid-IR lasers in crystals using two-tone RBL (Single-dopant two-tone RBLs: Tm 3+, Er 3+, and Co-doped two-tone RBLs: (Yb 3+, Nd 3+) and (Ho 3+, Tm 3+); Advanced approaches to RBL crystals (Precursor purification, Micro-pulling-down crystal growth, and Bridgman crystal growth); Advanced approaches to RBL fibers (Materials for RBL glass fibers, Micro-structured fibers for RBL, and Fiber preform synthesis); and finally objectives.

  14. Structure-Dependent Spectroscopic Properties of Yb3+-Doped Phosphosilicate Glasses Modified by SiO2

    PubMed Central

    Wang, Ling; Zeng, Huidan; Yang, Bin; Ye, Feng; Chen, Jianding; Chen, Guorong; Smith, Andew T.; Sun, Luyi

    2017-01-01

    Yb3+-doped phosphate glasses containing different amounts of SiO2 were successfully synthesized by the conventional melt-quenching method. The influence mechanism of SiO2 on the structural and spectroscopic properties was investigated systematically using the micro-Raman technique. It was worth noting that the glass with 26.7 mol % SiO2 possessed the longest fluorescence lifetime (1.51 ms), the highest gain coefficient (1.10 ms·pm2), the maximum Stark splitting manifold of 2F7/2 level (781 cm−1), and the largest scalar crystal-field NJ and Yb3+ asymmetry degree. Micro-Raman spectra revealed that introducing SiO2 promoted the formation of P=O linkages, but broke the P=O linkages when the SiO2 content was greater than 26.7 mol %. Based on the previous 29Si MAS NMR experimental results, these findings further demonstrated that the formation of [SiO6] may significantly affect the formation of P=O linkages, and thus influences the spectroscopic properties of the glass. These results indicate that phosphosilicate glasses may have potential applications as a Yb3+-doped gain medium for solid-state lasers and optical fiber amplifiers. PMID:28772601

  15. Crystal growth and near infrared optical properties of Pr 3+ doped lead halide materials for resonantly pumped eye safe laser applications

    NASA Astrophysics Data System (ADS)

    Jones, Ivy Krystal

    In this dissertation the material development and optical spectroscopy of Pr3+ activated low phonon energy halide crystals is presented for possible applications in resonantly pumped eye-safe solid-state laser gain media. In the last twenty years, the developments in fiber and diode lasers have enabled highly efficient resonant pumping of Pr3+ doped crystals for possible lasing in the 1.6--1.7 microm region. In this work, the results of the purification, crystal growth, and near-infrared (NIR) spectroscopic characterization of Pr3+ doped lead (II) chloride, PbCl2 and lead (II) bromide, PbBr2 are presented. The investigated PbCl2 and PbBr2 crystals are non-hygroscopic with maximum phonon energies between ~180--200 cm-1, which enable efficient emission in the NIR spectral region (~ 1.6 microm) from the 3F3/3F4 → 3H4 transition of Pr3+ ions. The commercial available starting materials were purchased as ultra dry, high purity (~ 99.999 %) beads and purified through a combination of zone-refinement and halogenation. The crystal growth of Pr3+ doped PbCl 2 and PbBr2 was performed via vertical Bridgman technique using a two-zone furnace. The resulting Pr3+ doped PbCl 2 and PbBr2 crystals exhibited characteristic IR absorption bands in the 1.5--1.7 microm region (3H4 → 3F3/3F4), which allow for resonant pumping using commercial diode lasers. A broad IR emission band centered at ~1.6 microm was observed under ~1445 nm diode laser excitation from both Pr3+ doped halides. This dissertation presents comparative spectroscopic results for Pr 3+:PbCl2 and Pr3+:PbBr2 including NIR absorption and emission studies, lifetime measurements, modelling of radiative and non-radiative decay rates, determination of transition cross-section, and the net effective gain cross sections.

  16. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion

    NASA Astrophysics Data System (ADS)

    Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Sirringhaus, Henning

    2016-08-01

    Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility.

  17. Coherent Transient Systems Evaluation

    DTIC Science & Technology

    1993-06-17

    europium doped yttrium silicate in collaboration with IBM Almaden Research Center. Research into divalent ion doped crystals as photon gated materials...noise limited model and ignore the non-ideal properties of the medium, nonlinear effects, spatial crosstalk, gating efficiencies, local heating, the...demonstration of the coherent transient continuous optical processor was performed in europium doped yttrium silicate. Though hyperfine split ground

  18. Enhanced frequency upconversion study in Er3+/Yb3+ doped/codoped TWTi glasses

    NASA Astrophysics Data System (ADS)

    Azam, Mohd; Rai, Vineet Kumar

    2018-04-01

    Er3+/Yb3+ doped/codoped TeO2-WO3-TiO2 (TWTi) glasses have been prepared by using the melt-quenching technique. The upconversion (UC) emission spectra of the developed glasses have been recorded upon 980 nm laser excitation. Three intense UC emission bands have been observed within the green and red region centered at ˜532 nm, ˜553 nm and ˜669 nm corresponding to the 2H11/2→4I15/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions respectively in the singly Er3+ doped glass. On introducing Yb3+ ions in the singly Er3+ doped glass, an enhancement of about ˜ 12 times and ˜50 times in the green and red bands respectively have been observed even at low pump power ˜ 364 mW followed by two photon absorption process. Colour tunability from yellowish green to pure green colour region has been observed on varying the pump power. The prepared glass can be used to produce NIR to green upconverter and colour tunable display devices.

  19. Structure-substitution limit correlation study on Cr{sup 3+} substituted polycrystalline yttrium iron garnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modi, K. B.; Saija, K. G.; Sharma, P. U.

    2016-05-06

    Polycrystalline samples of Cr{sup 3+} - substituted yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}) system with general chemical formula, Y{sub 3}Fe{sub 5-x}Cr{sub x}O{sub 12}, x = 0.0, 0.2, 0.4 and 0.6 were synthesized by double sintering ceramic technique and characterized by X-ray powder diffractometry. The Rietveld fitted X-ray diffraction patterns analysis revealed mono phase formation for x = 0.0 - 0.4 compositions while x = 0.6 composition possesses mixed phase character. The observed substitution limit has been discussed in the light of ionic size of substituent, electrostatic energy, electronic configuration and synthesis parameters. These observations strongly suggest that the electronicmore » configuration of Cr{sup 3+}, which is favorable to the formation of d2sp3 (octahedral) type bonds, must be important. In the case of Cr{sup 3+}, the substitution does not appear to proceed well for x much greater than 0.5, this limitation probably is a consequence of the strong preference of a smaller ion Cr{sup 3+}, for a larger octahedral site which quickly leads to a condition not comparable with the requirement of the structure. The distribution of cations, mean ionic radii and theoretical lattice constant values have been determined.« less

  20. Effect of anode firing on the performance of lanthanum and nickel co-doped SrTiO3 (La0.2Sr0.8Ti0.9Ni0.1O3-δ) anode of solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Park, Byung Hyun; Choi, Gyeong Man

    2015-10-01

    Perovskite oxides have potential for use as alternative anode materials in solid oxide fuel cells (SOFCs) due to stability in anode atmosphere; donor-doped SrTiO3 (e.g., La0.2Sr0.8TiO3-δ) is a good candidate for this purpose. Electro-catalytic nanoparticles can be produced in oxide anodes by the ex-solution method, e.g., by incorporating Ni into a perovskite oxide in air, then reducing the oxide in H2 atmosphere. In this study, we varied the temperature (1100, 1250 °C) and atmosphere (air, H2) of La0.2Sr0.8Ti0.9Ni0.1O3-δ (LSTN) anode firing to control the degree of Ni ex-solution and microstructure. LSTN fired at 1250 °C in H2 showed the best anodic performance for scandia-stabilized zirconia (ScSZ) electrolyte-supported cells in H2 and CH4 fuels due to the favorable microstructure and Ni ex-solution.