Sample records for z-pinch ablation structure

  1. Dynamical analysis of surface-insulated planar wire array Z-pinches

    NASA Astrophysics Data System (ADS)

    Li, Yang; Sheng, Liang; Hei, Dongwei; Li, Xingwen; Zhang, Jinhai; Li, Mo; Qiu, Aici

    2018-05-01

    The ablation and implosion dynamics of planar wire array Z-pinches with and without surface insulation are compared and discussed in this paper. This paper first presents a phenomenological model named the ablation and cascade snowplow implosion (ACSI) model, which accounts for the ablation and implosion phases of a planar wire array Z-pinch in a single simulation. The comparison between experimental data and simulation results shows that the ACSI model could give a fairly good description about the dynamical characteristics of planar wire array Z-pinches. Surface insulation introduces notable differences in the ablation phase of planar wire array Z-pinches. The ablation phase is divided into two stages: insulation layer ablation and tungsten wire ablation. The two-stage ablation process of insulated wires is simulated in the ACSI model by updating the formulas describing the ablation process.

  2. Oblique shock structures formed during the ablation phase of aluminium wire array z-pinches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Lebedev, S. V.; Niasse, N.

    A series of experiments has been conducted in order to investigate the azimuthal structures formed by the interactions of cylindrically converging plasma flows during the ablation phase of aluminium wire array Z pinch implosions. These experiments were carried out using the 1.4 MA, 240 ns MAGPIE generator at Imperial College London. The main diagnostic used in this study was a two-colour, end-on, Mach-Zehnder imaging interferometer, sensitive to the axially integrated electron density of the plasma. The data collected in these experiments reveal the strongly collisional dynamics of the aluminium ablation streams. The structure of the flows is dominated by amore » dense network of oblique shock fronts, formed by supersonic collisions between adjacent ablation streams. An estimate for the range of the flow Mach number (M = 6.2-9.2) has been made based on an analysis of the observed shock geometry. Combining this measurement with previously published Thomson Scattering measurements of the plasma flow velocity by Harvey-Thompson et al.[Physics of Plasmas 19, 056303 (2012)] allowed us to place limits on the range of the ZT{sub e} of the plasma. The detailed and quantitative nature of the dataset lends itself well as a source for model validation and code verification exercises, as the exact shock geometry is sensitive to many of the plasma parameters. Comparison of electron density data produced through numerical modelling with the Gorgon 3D MHD code demonstrates that the code is able to reproduce the collisional dynamics observed in aluminium arrays reasonably well.« less

  3. Dynamics of conical wire array Z-pinch implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ampleford, D. J.; Lebedev, S. V.; Bland, S. N.

    2007-10-15

    A modification of the wire array Z pinch, the conical wire array, has applications to the understanding of wire array implosions and potentially to pulse shaping relevant to inertial confinement fusion. Results are presented from imploding conical wire array experiments performed on university scale 1 MA generators--the MAGPIE generator (1 MA, 240 ns) at Imperial College London [I. H. Mitchell et al., Rev. Sci Instrum. 67, 1533 (1996)] and the Nevada Terawatt Facility's Zebra generator (1 MA, 100 ns) at the University of Nevada, Reno [B. Bauer et al., in Dense Z-Pinches, edited by N. Pereira, J. Davis, and P.more » Pulsifer (AIP, New York, 1997), Vol. 409, p. 153]. This paper will discuss the implosion dynamics of conical wire arrays. Data indicate that mass ablation from the wires in this complex system can be reproduced with a rocket model with fixed ablation velocity. Modulations in the ablated plasma are present, the wavelength of which is invariant to a threefold variation in magnetic field strength. The axial variation in the array leads to a zippered precursor column formation. An initial implosion of a magnetic bubble near the cathode is followed by the implosion zippering upwards. Spectroscopic data demonstrating a variation of plasma parameters (e.g., electron temperature) along the Z-pinch axis is discussed, and experimental data are compared to magnetohydrodynamic simulations.« less

  4. Theoretical z -pinch scaling relations for thermonuclear-fusion experiments.

    PubMed

    Stygar, W A; Cuneo, M E; Vesey, R A; Ives, H C; Mazarakis, M G; Chandler, G A; Fehl, D L; Leeper, R J; Matzen, M K; McDaniel, D H; McGurn, J S; McKenney, J L; Muron, D J; Olson, C L; Porter, J L; Ramirez, J J; Seamen, J F; Speas, C S; Spielman, R B; Struve, K W; Torres, J A; Waisman, E M; Wagoner, T C; Gilliland, T L

    2005-08-01

    We have developed wire-array z -pinch scaling relations for plasma-physics and inertial-confinement-fusion (ICF) experiments. The relations can be applied to the design of z -pinch accelerators for high-fusion-yield (approximately 0.4 GJ/shot) and inertial-fusion-energy (approximately 3 GJ/shot) research. We find that (delta(a)/delta(RT)) proportional (m/l)1/4 (Rgamma)(-1/2), where delta(a) is the imploding-sheath thickness of a wire-ablation-dominated pinch, delta(RT) is the sheath thickness of a Rayleigh-Taylor-dominated pinch, m is the total wire-array mass, l is the axial length of the array, R is the initial array radius, and gamma is a dimensionless functional of the shape of the current pulse that drives the pinch implosion. When the product Rgamma is held constant the sheath thickness is, at sufficiently large values of m/l, determined primarily by wire ablation. For an ablation-dominated pinch, we estimate that the peak radiated x-ray power P(r) proportional (I/tau(i))(3/2)Rlphigamma, where I is the peak pinch current, tau(i) is the pinch implosion time, and phi is a dimensionless functional of the current-pulse shape. This scaling relation is consistent with experiment when 13 MA < or = I < or = 20 MA, 93 ns < or = tau(i) < or = 169 ns, 10 mm < or = R < or = 20 mm, 10 mm < or = l < or = 20 mm, and 2.0 mg/cm < or = m/l < or = 7.3 mg/cm. Assuming an ablation-dominated pinch and that Rlphigamma is held constant, we find that the x-ray-power efficiency eta(x) congruent to P(r)/P(a) of a coupled pinch-accelerator system is proportional to (tau(i)P(r)(7/9 ))(-1), where P(a) is the peak accelerator power. The pinch current and accelerator power required to achieve a given value of P(r) are proportional to tau(i), and the requisite accelerator energy E(a) is proportional to tau2(i). These results suggest that the performance of an ablation-dominated pinch, and the efficiency of a coupled pinch-accelerator system, can be improved substantially by decreasing the

  5. Study of the internal structure, instabilities, and magnetic fields in the dense Z-pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Vladimir V.

    Z-pinches are sources of hot dense plasma which generates powerful x-ray bursts and can been applied to various areas of high-energy-density physics (HEDP). The 26-MA Z machine is at the forefront of many of these applications, but important aspects of HEDP have been studied on generators at the 1 MA current level. Recent development of laser diagnostics and upgrade of the Leopard laser at Nevada Terawatt Facility (NTF) give new opportunities for the dense Z-pinch study. The goal of this project is the investigation of the internal structure of the stagnated Z pinch including sub-mm and micron-scale instabilities, plasma dynamics,more » magnetic fields, and hot spots formation and initiation. New plasma diagnostics will be developed for this project. A 3D structure and instabilities of the pinch will be compared with 3D MHD and spectroscopic modeling and theoretical analysis. The structure and dynamics of stagnated Z pinches has been studied with x-ray self-radiation diagnostics which derive a temperature map of the pinch with a spatial resolution of 70-150 µm. The regular laser diagnostics at 532 nm does not penetrate in the dense pinch due to strong absorption and refraction in trailing plasma. Recent experiments at NTF showed that shadowgraphy at the UV wavelength of 266 nm unfolds a fine structure of the stagnated Z-pinch with unprecedented detail. We propose to develop laser UV diagnostics for Z pinches with a spatial resolution <5 μm to study the small-scale plasma structures, implement two-frame shadowgraphy/interferometry, and develop methods for investigation of strong magnetic fields. New diagnostics will help to understand better basic physical processes in Z pinches. A 3D internal structure of the pinch and characteristic instabilities will be studied in wire arrays with different configurations and compared with 3D MHD simulations and analytical models. Mechanisms of “enhanced heating” of Z-pinch plasma will be studied. Fast dynamics of

  6. Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Ning, E-mail: ding-ning@iapcm.ac.cn; Zhang, Yang, E-mail: ding-ning@iapcm.ac.cn; Xiao, Delong, E-mail: ding-ning@iapcm.ac.cn

    2014-12-15

    Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosionmore » phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the “Qiangguang I” facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of

  7. Designs and Plans for MAIZE: a 1 MA LTD-Driven Z-Pinch

    NASA Astrophysics Data System (ADS)

    Gilgenbach, R. M.; Gomez, M. R.; Zier, J.; Tang, W.; French, D. M.; Hoff, B. W.; Jordan, N.; Cruz, E.; Lau, Y. Y.; Fowler-Guzzardo, T.; Meisel, J.; Mazarakis, M. G.; Cuneo, M. E.; Johnston, M. D.; Mehlhorn, T. A.; Kim, A. A.; Sinebryukhov, V. A.

    2007-11-01

    We present designs and experimental plans of the first 1 MA z-pinch in the USA to be driven by a Linear Transformer Driver (LTD). The Michigan Accelerator for Inductive Z-pinch Experiments, (MAIZE), is based on the LTD developed at the Institute for High Current Electronics, utilizing 80 capacitors and 40 spark gap switches to deliver a 1 MA, 100 kV pulse with <100 ns risetime. Designs will be presented of a low-inductance MITL terminated in a wire-array z-pinch. Initial, planned experiments will evaluate the LTD driving time-changing inductance of imploding 4-16 wire-array z-pinches. Wire ablation dynamics, axial-correlations and instability development will be explored. *This work was supported by U. S. DoE through Sandia National Laboratories award number 240985 to the University of Michigan. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  8. Z-Pinch Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Miernik, Janie

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Shorter trips are better for humans in the harmful radiation environment of deep space. Nuclear propulsion and power plants can enable high Ispand payload mass fractions because they require less fuel mass. Fusion energy research has characterized the Z-Pinch dense plasma focus method. (1) Lightning is form of pinched plasma electrical discharge phenomena. (2) Wire array Z-Pinch experiments are commonly studied and nuclear power plant configurations have been proposed. (3) Used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, nuclear weapon x-rays are simulated through Z-Pinch phenomena.

  9. Optimization of Capsule Symmetry in Z-Pinch Driven Hohlraums

    NASA Astrophysics Data System (ADS)

    Vesey, R. A.; Cuneo, M.; Hanson, D.; Porter, J.; Mehlhorn, T.; Ruggles, L.; Simpson, W.; Vargas, M.; Hammer, J.; Landen, O.

    1999-11-01

    The uniformity of the radiation flux incident on the capsule is a critical issue for indirect drive fusion using the z-pinch driven hohlraum high-yield concept(J.H. Hammer et al., Phys. Plas. 6), 2129 (1999).. Experiments on the Z accelerator at Sandia have demonstrated the ability to diagnose the uniformity of the flux striking a foam ball (surrogate capsule)(P.A. Amendt et al., Phys. Plas. 4), 1862 (1997); S.G. Glendinning et al. Rev. Sci. Instrum. 70, 536 (1999).. These single-sided drive experiments have been modeled using radiosity and radiation-hydrodynamics codes, yielding agreement with the measured ablation rate vs. angle on the foam ball. Flux uniformity at the 1-2% level needed for high-convergence capsule implosions requires a 2-sided drive (top and bottom z-pinch) configuration. Constrained optimization methods have identified hohlraum geometries with improved symmetry.

  10. Review of effects of dielectric coatings on electrical exploding wires and Z pinches

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Li, Xingwen; Li, Mo; Li, Yang; Qiu, Aici

    2017-10-01

    As the most powerful x-ray source in the laboratories, the wire array Z pinches have been of great relevance to inertial confinement fusions, laboratory astrophysics, and other high-energy density applications. In order to produce x-ray with greater power and higher efficiency, the dynamics of wire array has been investigated extensively, and various methods have been proposed to improve the implosion quality of the wire array. This review focuses on the experimental and theoretical investigations regarding the effects of the dielectric coatings on electrical exploding wires and Z pinches. Since the early 2000, the electrical wire explosion related to the first stage of the wire array Z pinches has been studied extensively, and the results indicated that the dielectric coatings can significantly increase the joule energy deposition into a wire in the initial stage, and even the corona free explosion of tungsten wires can be achieved. Recently, there is an increasing interest in the dynamics of insulated wire array Z pinches. By applying dielectric coatings, the ablation process is suppressed, the x-ray start time is delayed, and the possibility of multi-peak radiation is decreased. This review is organized by the evolution dynamics of wire array Z pinches, and a broad introduction to relevant scientific concepts and various other applications are presented. According to the current research status, the challenges, opportunities and further developments of Z pinch loads using dielectric coatings are proposed to further promote the researches and their applications.

  11. Z-Pinch Pulsed Plasma Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Adams, Robert B.; Fabisinski, Leo; Fincher, Sharon; Maples, C. Dauphne; Miernik, Janie; Percy, Tom; Statham, Geoff; Turner, Matt; Cassibry, Jason; hide

    2010-01-01

    . Vehicle Design: To understand the applicability of Z-Pinch propulsion to interplanetary travel, it is necessary to design a concept vehicle that uses it -- the propulsion system significantly impacts the design of the electrical, thermal control, avionics and structural subsystems of a vehicle. The study team developed a conceptual design of an interplanetary vehicle that transports crew and cargo to Mars and back and can be reused for other missions. Several aspects of this vehicle are based on a previous crewed fusion vehicle study -- the Human Outer Planet Exploration (HOPE) Magnetized Target Fusion (MTF) vehicle. Portions of the vehicle design were used outright and others were modified from the MTF design in order to maintain comparability.

  12. Investigation of trailing mass in Z-pinch implosions and comparison to experiment

    NASA Astrophysics Data System (ADS)

    Yu, Edmund

    2007-11-01

    Wire-array Z pinches represent efficient, high-power x-ray sources with application to inertial confinement fusion, high energy density plasmas, and laboratory astrophysics. The first stage of a wire-array Z pinch is described by a mass ablation phase, during which stationary wires cook off material, which is then accelerated radially inwards by the JxB force. The mass injection rate varies axially and azimuthally, so that once the ablation phase concludes, the subsequent implosion is highly 3D in nature. In particular, a network of trailing mass and current is left behind the imploding plasma sheath, which can significantly affect pinch performance. In this work we focus on the implosion phase, electing to model the mass ablation via a mass injection scheme. Such a scheme has a number of injection parameters, but this freedom also allows us to gain understanding into the nature of the trailing mass network. For instance, a new result illustrates the role of azimuthal correlation. For an implosion which is 100% azimuthally correlated (corresponding to an azimuthally symmetric 2D r-z problem), current is forced to flow on the imploding plasma sheath, resulting in strong Rayleigh-Taylor (RT) growth. If, however, the implosion is not azimuthally symmetric, the additional azimuthal degree of freedom opens up new conducting paths of lower magnetic energy through the trailing mass network, effectively reducing RT growth. Consequently the 3D implosion experiences lower RT growth than the 2D r-z equivalent, and actually results in a more shell-like implosion. A second major goal of this work is to constrain the injection parameters by comparison to a well-diagnosed experimental data set, in which array mass was varied. In collaboration with R. Lemke, M. Desjarlais, M. Cuneo, C. Jennings, D. Sinars, E. Waisman

  13. Neutron generation from Z-pinches

    NASA Astrophysics Data System (ADS)

    Vikhrev, V. V.; Korolev, V. D.

    2007-05-01

    Recent advances in both experimental and theoretical studies on neutron generation in various Z-pinch facilities are reviewed. The main methods for enhancing neutron emission from the Z-pinch plasma are described, and the problems of igniting a thermonuclear burn wave in this plasma are discussed.

  14. Current redistribution and generation of kinetic energy in the stagnated Z pinch.

    PubMed

    Ivanov, V V; Anderson, A A; Papp, D; Astanovitskiy, A L; Talbot, B R; Chittenden, J P; Niasse, N

    2013-07-01

    The structure of magnetic fields was investigated in stagnated wire-array Z pinches using a Faraday rotation diagnostic at the wavelength of 266 nm. The distribution of current in the pinch and trailing material was reconstructed. A significant part of current can switch from the main pinch to the trailing plasma preheated by x-ray radiation of the pinch. Secondary implosions of trailing plasma generate kinetic energy and provide enhanced heating and radiation of plasma at stagnation. Hot spots in wire-array Z pinches also provide enhanced radiation of the Z pinch. A collapse of a single hot spot radiates 1%-3% of x-ray energy of the Z pinch with a total contribution of hot spots of 10%-30%.

  15. Z-Pinch Fusion for Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SPIELMAN,RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  16. Preconditioned wire array Z-pinches driven by a double pulse current generator

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Lu, Yihan; Sun, Fengju; Li, Xingwen; Jiang, Xiaofeng; Wang, Zhiguo; Zhang, Daoyuan; Qiu, Aici; Lebedev, Sergey

    2018-07-01

    Suppression of the core-corona structure and wire ablation in wire array Z-pinches is investigated using a novel double pulse current generator ‘Qin-1’ facility. The ‘Qin-1’ facility allows coupling a ∼10 kA 20 ns prepulse generator with a ∼0.8 MA 160 ns main current generator. The tailored prepulse current preheats wires to a gaseous state and the time interval between the prepulse and the main current pulse allows formation of a more uniform mass distribution for the implosion. The implosion of a gasified two aluminum-wire array showed no ablation phase and allowed all array mass to participate in the implosion. The initial perturbations formed from the inhomogeneous ablation were suppressed, however, the magneto Rayleigh–Taylor (MRT) instability during the implosion was still significant and further researches on the generation and development of the MRT instabilities of this gasified wire array are needed.

  17. Fusion in a staged Z-pinch

    NASA Astrophysics Data System (ADS)

    Wessel, F. J.; Rahman, H. U.; Ney, P.; Valenzuela, J.; Beg, F.; McKee, E.; Darling, T.

    2016-03-01

    This paper is dedicated to Norman Rostoker, our (FJW and HUR) mentor and long-term collaborator, who will always be remembered for the incredible inspiration that he has provided us. Norman's illustrious career dealt with a broad range of fundamental-physics problems and we were fortunate to have worked with him on many important topics: intense-charged-particle beams, field-reversed configurations, and Z-pinches. Rostoker 's group at the University of CA, Irvine was well known for having implemented many refinements to the Z-pinch, that make it more stable, scalable, and efficient, including the development of: the gas-puff Z-pinch [1], which provides for the use of an expanded range of pinch-load materials; the gas-mixture Z-pinch [2], which enhances the pinch stability and increases its radiation efficiency; e-beam pre-ionization [3], which enhances the uniformity of the initial-breakdown process in a gas pinch; magnetic-flux-compression [4, 5], which allows for the amplification of an axial-magnetic field Bz; the Zpinch [6], which predicts fusion in a pinch-on-fiber configuration; the Staged Z-pinch (SZP) [7], which allows for the amplification of the pinch self-magnetic field, Bθ , in addition to a Bz, and leads to a stable implosion and high-gain fusion [8, 9, 10]. This paper describes the physical basis for a magneto-inertial compression in a liner-on-target SZP [11]. Initially a high-atomic-number liner implodes under the action of the J →×B → , Lorentz Force. As the implosion becomes super Alfvénic, magnetosonic waves form, transporting current and magnetic field through the liner toward the interface of the low-atomic-number target. The target implosion remains subsonic with its surface bounded by a stable-shock front. Shock waves that pass into the target provide a source of target plasma pre-heat. At peak compression the assembly is compressed by liner inertia, with flux compression producing an intense-magnetic field near the target

  18. Capsule symmetry sensitivity and hohlraum symmetry calculations for the z-pinch driven hohlraum high-yield concept

    NASA Astrophysics Data System (ADS)

    Vesey, Roger; Cuneo, M. E.; Hanson Porter, D. L., Jr.; Mehlhorn, T. A.; Ruggles, L. E.; Simpson, W. W.; Hammer, J. H.; Landen, O.

    2000-10-01

    Capsule radiation symmetry is a crucial issue in the design of the z-pinch driven hohlraum approach to high-yield inertial confinement fusion [1]. Capsule symmetry may be influenced by power imbalance of the two z-pinch x-ray sources, and by hohlraum effects (geometry, time-dependent albedo, wall motion). We have conducted two-dimensional radiation-hydrodynamics calculations to estimate the symmetry sensitivity of the 220 eV beryllium ablator capsule that nominally yields 400 MJ in this concept. These estimates then determine the symmetry requirements to be met by the hohlraum design (for even Legendre modes) and by the top-bottom pinch imbalance and mistiming (for odd Legendre modes). We have used a combination of 2- and 3-D radiosity ("viewfactor"), and 2-D radiation-hydrodynamics calculations to identify hohlraum geometries that meet these symmetry requirements for high-yield, and are testing these models against ongoing Z foam ball symmetry experiments. 1. J. H. Hammer et al., Phys. Plas. 6, 2129 (1999).

  19. Overview of the Fusion Z-Pinch Experiment FuZE

    NASA Astrophysics Data System (ADS)

    Weber, T. R.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; UW/LLNL Team

    2016-10-01

    Previously, the ZaP device, at the University of Washington, demonstrated sheared flow stabilized (SFS) Z-pinch plasmas. Instabilities that have historically plagued Z-pinch plasma confinement were mitigated using sheared flows generated from a coaxial plasma gun of the Marshall type. Based on these results, a new SFS Z-pinch experiment, the Fusion Z-pinch Experiment (FuZE), has been constructed. FuZE is designed to investigate the scaling of SFS Z-pinch plasmas towards fusion conditions. The experiment will be supported by high fidelity physics modeling using kinetic and fluid simulations. Initial plans are in place for a pulsed fusion reactor following the results of FuZE. Notably, the design relies on proven commercial technologies, including a modest discharge current (1.5 MA) and voltage (40 kV), and liquid metal electrodes. Supported by DoE FES, NNSA, and ARPA-E ALPHA.

  20. On the Heating of Ions in Noncylindrical Z-Pinches

    NASA Astrophysics Data System (ADS)

    Svirsky, E. B.

    2018-01-01

    The method proposed here for analyzing processes in a hot plasma of noncylindrical Z-pinches is based on separation of the group of high-energy ions into a special fraction. Such ions constitute an insignificant fraction ( 10%) of the total volume of the Z-pinch plasma, but these ions contribute the most to the formation of conditions in which the pinch becomes a source of nuclear fusion products and X-ray radiation. The method allows a quite correct approach to obtaining quantitative estimates of the plasma parameters, the nuclear fusion energy yield, and the features of neutron fluxes in experiments with Z-pinches.

  1. Experimental study of surface insulated-standard hybrid tungsten planar wire array Z-pinches at "QiangGuang-I" facility

    NASA Astrophysics Data System (ADS)

    Sheng, Liang; Peng, Bodong; Li, Yang; Yuan, Yuan; Li, Mo; Zhang, Mei; Zhao, Chen; Zhao, Jizhen; Wang, Liangping

    2016-01-01

    The experimental results of the insulated-standard hybrid wire array Z pinches carried out on "QiangGuang-I" facility at Northwest Institute of Nuclear Technology were presented and discussed. The surface insulating can impose a significant influence on the dynamics and radiation characteristics of the hybrid wire array Z pinches, especially on the early stage (t/timp < 0.6). The expansion of insulated wires at the ablation stage is suppressed, while the streams stripped from the insulated wires move faster than that from the standard wires. The foot radiation of X-ray is enhanced by increment of the number of insulated wires, 19.6 GW, 33.6 GW, and 68.6 GW for shots 14037S, 14028H, and 14039I, respectively. The surface insulation also introduces nonhomogeneity along the single wire—the streams move much faster near the electrodes. The colliding boundary of the hybrid wire array Z pinches is bias to the insulated side approximately 0.6 mm.

  2. Radiation characteristics and implosion dynamics of tungsten wire array Z-pinches on the YANG accelerator

    NASA Astrophysics Data System (ADS)

    Huang, Xian-Bin; Yang, Li-Bing; Li, Jing; Zhou, Shao-Tong; Ren, Xiao-Dong; Zhang, Si-Qun; Dan, Jia-Kun; Cai, Hong-Chun; Duan, Shu-Chao; Chen, Guang-Hua; Zhang, Zheng-Wei; Ouyang, Kai; Li, Jun; Zhang, Zhao-Hui; Zhou, Rong-Guo; Wang, Gui-Lin

    2012-05-01

    We investigated the radiation characteristics and implosion dynamics of low-wire-number cylindrical tungsten wire array Z-pinches on the YANG accelerator with a peak current 0.8-1.1 MA and a rising time ~ 90 ns. The arrays are made up of (8-32) × 5 μm wires 6/10 mm in diameter and 15 mm in height. The highest X-ray power obtained in the experiments was about 0.37 TW with the total radiation energy ~ 13 kJ and the energy conversion efficiency ~ 9% (24 × 5 μm wires, 6 mm in diameter). Most of the X-ray emissions from tungsten Z-pinch plasmas were distributed in the spectral band of 100-600 eV, peaked at 250 and 375 eV. The dominant wavelengths of the wire ablation and the magneto-Rayleigh—Taylor instability were found and analyzed through measuring the time-gated self-emission and laser interferometric images. Through analyzing the implosion trajectories obtained by an optical streak camera, the run-in velocities of the Z-pinch plasmas at the end of the implosion phase were determined to be about (1.3-2.1) × 107 cm/s.

  3. About plasma points' generation in Z-pinch

    NASA Astrophysics Data System (ADS)

    Afonin, V. I.; Potapov, A. V.; Lazarchuk, V. P.; Murugov, V. M.; Senik, A. V.

    1997-05-01

    The streak tube study results (at visible and x-ray ranges) of dynamics of fast Z-pinch formed at explosion of metal wire in diode of high current generator are presented. Amplitude of current in the load reached ˜180 kA at increase time ˜50 ns. The results' analysis points to capability of controlling hot plasma points generation process in Z-pinch.

  4. Dynamic characteristics of azimuthally correlated structures of axial instability of wire-array Z pinches

    NASA Astrophysics Data System (ADS)

    Dan, Jia Kun; Huang, Xian Bin; Ren, Xiao Dong; Chen, Guang Hua; Xu, Qiang; Wang, Kun Lun; Ouyang, Kai; Wei, Bing

    2017-04-01

    Particular attention was placed on observations of dynamic properties of the azimuthally correlated structures of axial instability of wire-array Z pinches, which were conducted at 10-MA (for short circuit load) pulsed power generator-the Primary Test Stand facility. Not well fabricated loads, which were expected to preset bubble or spike in plasma, were used to degrade the implosion symmetry in order to magnify the phenomenon of instability. The side-view sequence of evolution of correlation given by laser shadowgraphy clearly demonstrates the dynamic processes of azimuthal correlation of the bubble and spike. A possible mechanism presented here suggests that it is the substantial current redistribution especially in regions surrounding the bubble/spike resulting from change of inductance due to the presence of the bubble/spike that plays an essential part in establishment of azimuthal correlation of wire array and liner Z pinches.

  5. Measurement of Radiation Symmetry in Z-Pinch Driven Hohlraums

    NASA Astrophysics Data System (ADS)

    Hanson, David L.

    2001-10-01

    The z-pinch driven hohlraum (ZPDH) is a promising approach to high yield inertial confinement fusion currently being characterized in experiments on the Sandia Z accelerator [1]. In this concept [2], x rays are produced by an axial z-pinch in a primary hohlraum at each end of a secondary hohlraum. A fusion capsule in the secondary is imploded by a symmetric x-ray flux distribution, effectively smoothed by wall reemission during transport to the capsule position. Capsule radiation symmetry, a critical issue in the design of such a system, is influenced by hohlraum geometry, wall motion and time-dependent albedo, as well as power balance and pinch timing between the two z-pinch x-ray sources. In initial symmetry studies on Z, we used solid low density burnthrough spheres to diagnose highly asymmetric, single-sided-drive hohlraum geometries. We then applied this technique to the more symmetric double z-pinch geometry [3]. As a result of design improvements, radiation flux symmetry in Z double-pinch wire array experiments now exceeds the measurement sensitivity of this self-backlit foam ball symmetry diagnostic (15% max-min flux asymmetry). To diagnose radiation symmetry at the 2 - 5% level attainable with our present ZPDH designs, we are using high-energy x rays produced by the recently-completed Z-Beamlet laser backlighter for point-projection imaging of thin-wall implosion and symmetry capsules. We will present the results of polar flux symmetry measuremets on Z for several ZPDH capsule geometries together with radiosity and radiation-hydrodynamics simulations for comparison. [1] M. E. Cuneo et al., Phys. Plasmas 8,2257(2001); [2] J. H. Hammer et al., Phys. Plasmas 6,2129(1999); [3] D. L. Hanson et al., Bull. Am. Phys. Soc. 45,360(2000).

  6. Energy balance in a Z pinch with suppressed Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Baksht, R. B.; Oreshkin, V. I.; Rousskikh, A. G.; Zhigalin, A. S.

    2018-03-01

    At present Z-pinch has evolved into a powerful plasma source of soft x-ray. This paper considers the energy balance in a radiating metallic gas-puff Z pinch. In this type of Z pinch, a power-law density distribution is realized, promoting suppression of Rayleigh-Taylor (RT) instabilities that occur in the pinch plasma during compression. The energy coupled into the pinch plasma, is determined as the difference between the total energy delivered to the load from the generator and the magnetic energy of the load inductance. A calibrated voltage divider and a Rogowski coil were used to determine the coupled energy and the load inductance. Time-gated optical imaging of the pinch plasma showed its stable compression up to the stagnation phase. The pinch implosion was simulated using a 1D two-temperature radiative magnetohydrodynamic code. Comparison of the experimental and simulation results has shown that the simulation adequately describes the pinch dynamics for conditions in which RT instability is suppressed. It has been found that the proportion of the Ohmic heating in the energy balance of a Z pinch with suppressed RT instability is determined by Spitzer resistance and makes no more than ten percent.

  7. Overview of the FuZE Fusion Z-Pinch Experiment

    NASA Astrophysics Data System (ADS)

    Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Golingo, R. P.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.; McLean, H. S.; Higginson, D. P.; Schmidt, A.; Tummel, K. K.

    2017-10-01

    Successful results of the sheared flow stabilized (SFS) Z-pinch from ZaP and ZaP-HD have motivated the new FuZE project to scale the plasma performance to fusion conditions. The SFS Z-pinch is immune to the instabilities that plague the conventional Z-pinch yet maintains the same favorable radial scaling. The plasma density and temperature increase rapidly with decreasing plasma radius, which naturally leads to a compact configuration at fusion conditions. The SFS Z-pinch is being investigated as a novel approach to a compact fusion device in a collaborative ARPA-E ALPHA project with the University of Washington and Lawrence Livermore National Laboratory. The project includes an experimental effort coupled with high-fidelity physics modeling using kinetic and fluid simulations. Along with scaling law analysis, computational and experimental results from the FuZE device are presented. This work is supported by an award from US ARPA-E.

  8. α Heating in a Stagnated Z-pinch

    NASA Astrophysics Data System (ADS)

    Appelbe, Brian; Chittenden, Jeremy

    2009-01-01

    A computational investigation of a scheme for magneto-inertial confinement fusion in a Z-pinch is carried out. In the scheme implosion of a deuterium-tritium fuel mass is preceded by formation of a hotspot containing warm, dense plasma on axis. The presence of the hotspot increases energy yield. Compression of the hotspot by the main fuel mass initiates thermonuclear burn. There is significant heating of the plasma by thermonuclear α particles which are confined by the strong magnetic field of the Z-pinch.

  9. Experimental study of surface insulated-standard hybrid tungsten planar wire array Z-pinches at “QiangGuang-I” facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Liang; Peng, Bodong; Yuan, Yuan

    The experimental results of the insulated-standard hybrid wire array Z pinches carried out on “QiangGuang-I” facility at Northwest Institute of Nuclear Technology were presented and discussed. The surface insulating can impose a significant influence on the dynamics and radiation characteristics of the hybrid wire array Z pinches, especially on the early stage (t/t{sub imp} < 0.6). The expansion of insulated wires at the ablation stage is suppressed, while the streams stripped from the insulated wires move faster than that from the standard wires. The foot radiation of X-ray is enhanced by increment of the number of insulated wires, 19.6 GW, 33.6 GW, and 68.6 GWmore » for shots 14037S, 14028H, and 14039I, respectively. The surface insulation also introduces nonhomogeneity along the single wire—the streams move much faster near the electrodes. The colliding boundary of the hybrid wire array Z pinches is bias to the insulated side approximately 0.6 mm.« less

  10. High energy density Z-pinch plasmas using flow stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. Amore » sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results

  11. Finite-Larmor-radius effects on z-pinch stability

    NASA Astrophysics Data System (ADS)

    Scheffel, Jan; Faghihi, Mostafa

    1989-06-01

    The effect of finite Larmor radius (FLR) on the stability of m = 1 small-axial-wavelength kinks in a z-pinch with purely poloidal magnetic field is investigated. We use the incompressible FLR MHD model; a collisionless fluid model that consistently includes the relevant FLR terms due to ion gyroviscosity, Hall effect and electron diamagnetism. With FLR terms absent, the Kadomtsev criterion of ideal MHD, 2r dp/dr + m2B2/μ0 ≥ 0 predicts instability for internal modes unless the current density is singular at the centre of the pinch. The same result is obtained in the present model, with FLR terms absent. When the FLR terms are included, a normal-mode analysis of the linearized equations yields the following results. Marginally unstable (ideal) modes are stabilized by gyroviscosity. The Hall term has a damping (but not absolutely stabilizing) effect - in agreement with earlier work. On specifying a constant current and particle density equilibrium, the effect of electron diamagnetism vanishes. For a z-pinch with parameters relevant to the EXTRAP experiment, the m = 1 modes are then fully stabilized over the crosssection for wavelengths λ/a ≤ 1, where a denotes the pinch radius. As a general z-pinch result a critical line-density limit Nmax = 5 × 1018 m-1 is found, above which gyroviscous stabilization near the plasma boundary becomes insufficient. This limit corresponds to about five Larmor radii along the pinch radius. The result holds for wavelengths close to, or smaller than, the pinch radius and for realistic equilibrium profiles. This limit is far below the required limit for a reactor with contained alpha particles, which is in excess of 1020 m-1.

  12. Z-Pinch Plasma Neutron Sources

    DTIC Science & Technology

    2006-03-24

    deuterium into 9 to 14 keV (around 10 keV), which is well in the fusion energy range we are interested in. To make plasma radiation sources work, we...showing the 1-D dynamics of the pinch plasma implosion, temperature, fusion energy production and deposition for the conditions of shot Z1422. The minimum...histories of ion and electron temperatures, fusion energy production and energy deposition in ID RMHD run modeling deuterium shot Z1422. In our simulations

  13. Polytropic scaling of a flow Z-pinch

    NASA Astrophysics Data System (ADS)

    Hughes, M. C.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Kim, B.; Ross, M. P.; Weed, J. R.

    2015-11-01

    The ZaP Flow Z-Pinch project investigates the use of velocity shear to mitigate MHD instabilities. The ZaP-HD experiment produces 50 cm long pinches of varying radii. The power to the experiment is split between the plasma formation and acceleration process and the pinch assembly and compression process. Once the pinch is formed, low magnetic fluctuations indicate a quiescent, long-lived pinch. The split power supply allows more control of the pinch current than previous machine iterations, with a designed range from 50 to 150 kA. Radial force balance leads to the Bennett relation which indicates that as the pinch compresses due to increasing currents, the plasma pressure and/or linear density must change. Through ion spectroscopy and digital holographic interferometry coupled with magnetic measurements of the pinch current, the components of the Bennett relation can be fully measured. A scaling relation is then assumed to follow a polytrope as the pinch pressure, initially approximately 250 kPa, increases from an initially formed state to much higher values, approaching 100 MPa. A preliminary analysis of pinch scaling is shown corroborating with other diagnostics on the machine along with extrapolations to required currents for an HEDLP machine. This work is supported by grants from the U.S. Department of Energy and the U.S. National Nuclear Security Administration.

  14. Linear Transformer Drivers for Z-pinch Based Propulsion

    NASA Technical Reports Server (NTRS)

    Adams, Robert; Seidler, William; Giddens, Patrick; Fabisinski, Leo; Cassibry, Jason

    2017-01-01

    The MSFC/UAH team has been developing of a novel power management and distribution system called a Linear Transformer Driver (LTD). LTD's hold the promise of dramatically reducing the required mass to drive a z-pinch by replacing the capacitor banks which constitute half the mass of the entire system. The MSFC?UAH tea, is developing this technology in hope of integrating it with the Pulsed Fission Fusion (PuFF) propulsion concept. High-Voltage pulsed power systems used for Z-Pinch experimentation have in the past largely been based on Marx Generators. Marx generators deliver the voltage and current required for the Z-Pinch, but suffer from two significant drawbacks when applied to a flight system: they are very massive, consisting of high-voltage capacitor banks insulated in oil-filled tanks and they do not lend themselves to rapid pulsing. The overall goal of Phase 2 is to demonstrate the construction of a higher voltage stack from a number of cavities each of the design proven in Phase 1 and to characterize and understand the techniques for designing the stack. The overall goal of Phase 3 is to demonstrate the feasibility of constructing a higher energy cavity from a number of smaller LTD stacks, to characterize and understand the way in which the constituent stacks combine, and to extend this demonstration LTD to serve as the basis for a 64 kJ pulse generator for Z-Pinch experiments.

  15. A Multiple Z-Pinch Configuration for the Generation of High-Density, Magnetized Plasmas

    NASA Astrophysics Data System (ADS)

    Tarditi, Alfonso G.

    2015-11-01

    The z-pinch is arguably the most straightforward and economical approach for the generation and confinement of hot plasmas, with a long history of theoretical investigations and experimental developments. While most of the past studies were focused on countering the natural tendency of z-pinches to develop instabilities, this study attempts to take advantage of those unstable regimes to form a quasi-stable plasma, with higher density and temperature, possibly of interest for a fusion reactor concept. For this purpose, a configuration with four z-pinch discharges, with axis parallel to each other and symmetrically positioned, is considered. Electrodes for the generation of the discharges and magnetic coils are arranged to favor the formation of concave discharge patterns. The mutual attraction from the co-streaming discharge currents enhances this pattern, leading to bent plasma streams, all nearing towards the axis. This configuration is intended to excite and sustain a ``kink'' unstable mode for each z-pinch, eventually producing either plasmoid structures, detached from each discharge, or sustained kink patterns: both these cases appear to lead to plasmas merging in the central region. The feasibility of this approach in creating a higher density, hotter, meta-stable plasma regime is investigated computationally, addressing both the kink excitation phase and the dynamics of the converging plasma columns.

  16. Producing High-Performance, Stable, Sheared-Flow Z-Pinches in the FuZE project

    NASA Astrophysics Data System (ADS)

    Golingo, R. P.; Shumlak, U.,; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; University of Washington (UW) Collaboration; Lawrence Livermore National Laboratory (LLNL) Collaboration

    2017-10-01

    The Fusion Z-Pinch Experiment (FuZE) has made significant strides towards generating high-performance, stable Z-pinch plasmas with goals of ne = 1018 cm-3 and T =1 keV. The Z-pinch plasmas are stabilized with a sheared axial flow that is driven by a coaxial accelerator. The new FuZE device has been constructed and reproduces the major scientific achievements the ZaP project at the University of Washington; ne = 1016 cm-3,T = 100 eV, r<1 cm, and tstable >20 μs. These parameters are measured with an array of magnetic field probes, spectroscopy, and fast framing cameras. The plasma parameters are achieved using a small fraction of the maximum energy storage and gas injection capability of the FuZE device. Higher density, ne = 5×1017 cm-3, and temperature, T = 500 eV, Z-pinch plasmas are formed by increasing the pinch current. At the higher voltages and currents, the ionization rates in the accelerator increase. By modifying the neutral gas profile in the accelerator, the plasma flow from the accelerator is maintained, driving the flow shear. Formation and sustainment of the sheared-flow Z-pinch plasma will be discussed. Experimental data demonstrating high performance plasmas in a stable Z-pinches will be shown. This work is supported by an award from US ARPA-E.

  17. Effect of Initial Conditions on Gas-Puff Z-Pinch Dynamics.

    NASA Astrophysics Data System (ADS)

    Peterson, Gus Gordon

    This dissertation concerns the effects initial conditions have on the dynamics of an imploded, annular gas-puff z-pinch. The influence of axial magnetic fields, nozzle size and composition, different gases, pre-ionization, and electrode design on pinch quality and x-ray yield is investigated. The experiment uses a 5-kJ capacitor bank to deliver 0.35 MA to the pinch load in 1.4 mu rm s. This research establishes parameters important to increasing the x-ray yield of dense z-pinches. The initial stage of the implosion is diagnosed with a framing camera that photographs visible light emitted from z-pinch gas breakdown. Data from subsequent stages of the pinch is recorded with a B-dot probe, filtered x-ray diodes, an x-ray filtered pinhole camera, and a nitrogen laser interferometer. Applied axial magnetic fields of ~100 gauss increase average x-ray yield by more than 20%. A substantial increase of K-shell x -ray yield of more than 200% was obtained by increasing the energy delivered to the plasma by enlarging the nozzle diameter from 4 to 5 cm. The use of a Teflon outer-mantle for the nozzle resulted in less uniform gas breakdown as compared to graphite and copper outer-mantles, but x-ray yield and final state uniformity were not reduced. Lower Z gases showed poorer breakdown uniformity. Pre-ionization improved the uniformity of helium and neon breakdown but did not appear to affect subsequent dynamics. X-ray yield was significantly higher using a knife-edge annular anode, as opposed to a flat stainless steel honeycomb anode. Annular anodes with diameters more than a few millimeters different than the nozzle diameter produced low quality pinches with substantially lower x-ray yield.

  18. Z-Pinch fusion-based nuclear propulsion

    NASA Astrophysics Data System (ADS)

    Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.; Percy, T.

    2013-02-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human space flight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly [1]. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield [2]. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10-6 s). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) [3] propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle. The analysis of the Z-Pinch MIF propulsion system concludes that a 40-fold increase of Isp over chemical propulsion is predicted. An Isp of 19,436 s and thrust of 3812 N s/pulse, along with nearly doubling the predicted payload mass fraction, warrants further development of enabling technologies.

  19. Numerical simulation of fiber and wire array Z-pinches with Trac-II

    NASA Astrophysics Data System (ADS)

    Reisman, David Barton

    Trac-II is a two dimensional axisymmetric resistive MHD code. It simulates all three spatial components (r, z, φ) of the magnetic field and fluid velocity vectors, and the plasma is treated as a single fluid with two temperatures (Te,Ti). In addition, it can optionally include a self-consistent external circuit. Recent modifications to the code include the addition of the 3-T radiation model, a 4-phase (solid- liquid-vapor-plasma) equation of state model (QEOS), a 4- phase electrical/thermal conductivity model, and an implicit solution of poloidal (Bz,Br) magnetic field diffusion. These changes permit a detailed study of fiber and wire array Z-pinches. Specifically, Trac-II is used to study the wire array Z-pinch at the PBFA-Z pulse power generator at Sandia National Laboratory. First, in 1-D we examine the behavior of a single wire in the Z-pinch. Then, using these results as initial radial conditions in 2-D, we investigate the dynamics of wire array configurations in the r-z and r-θ plane. In the r- z plane we examine the growth of the m = 0 or ``sausage'' instability in single wires within the array. In the r-θ plane we examine the merging behavior between neighboring wires. Special emphasis is placed on trying to explain how instability growth affects the performance of the Z-pinch. Lastly, we introduce Trac-III, a 3-D MHD code, and illustrate the m = 1 or ``kink'' instability. We also discuss how Trac-III can be modified to simulate the wire array Z-pinch.

  20. Resolving microstructures in Z pinches with intensity interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apruzese, J. P.; Kroupp, E.; Maron, Y.

    2014-03-15

    Nearly 60 years ago, Hanbury Brown and Twiss [R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046 (1956)] succeeded in measuring the 30 nrad angular diameter of Sirius using a new type of interferometry that exploited the interference of photons independently emitted from different regions of the stellar disk. Its basis was the measurement of intensity correlations as a function of detector spacing, with no beam splitting or preservation of phase information needed. Applied to Z pinches, X pinches, or laser-produced plasmas, this method could potentially provide spatial resolution under one micron. A quantitative analysis based on the workmore » of Purcell [E. M. Purcell, Nature 178, 1449 (1956)] reveals that obtaining adequate statistics from x-ray interferometry of a Z-pinch microstructure would require using the highest-current generators available. However, using visible light interferometry would reduce the needed photon count and could enable its use on sub-MA machines.« less

  1. ZaP-HD: High Energy Density Z-Pinch Plasmas using Sheared Flow Stabilization

    NASA Astrophysics Data System (ADS)

    Golingo, R. P.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Hughes, M. C.; Kim, B.; Ross, M. P.; Weed, J. R.

    2015-11-01

    The ZaP-HD flow Z-pinch project investigates scaling the flow Z-pinch to High Energy Density Plasma, HEDP, conditions by using sheared flow stabilization. ZaP used a single power supply to produce 100 cm long Z-pinches that were quiescent for many radial Alfven times and axial flow-through times. The flow Z-pinch concept provides an approach to achieve HED plasmas, which are dimensionally large and persist for extended durations. The ZaP-HD device replaces the single power supply from ZaP with two separate power supplies to independently control the plasma flow and current in the Z-pinch. Equilibrium is determined by diagnostic measurements of the density with interferometry and digital holography, the plasma flow and temperature with passive spectroscopy, the magnetic field with surface magnetic probes, and plasma emission with optical imaging. The diagnostics fully characterize the plasma from its initiation in the coaxial accelerator, through the pinch, and exhaust from the assembly region. The plasma evolution is modeled with high resolution codes: Mach2, WARPX, and NIMROD. Experimental results and scaling analyses are presented. This work is supported by grants from the U.S. Department of Energy and the U.S. National Nuclear Security Administration.

  2. Z-Pinch Magneto-Inertial Fusion Propulsion Engine Design Concept

    NASA Technical Reports Server (NTRS)

    Miernik, Janie H.; Statham, Geoffrey; Adams, Robert B.; Polsgrove, Tara; Fincher, Sharon; Fabisinski, Leo; Maples, C. Dauphne; Percy, Thomas K.; Cortez, Ross J.; Cassibry, Jason

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human spaceflight missions. Magneto-Inertial Fusion (MIF) is an approach which has been shown to potentially lead to a low cost, small fusion reactor/engine assembly (1). The Z-Pinch dense plasma focus method is an MIF concept in which a column of gas is compressed to thermonuclear conditions by an estimated axial current of approximately 100 MA. Recent advancements in experiments and the theoretical understanding of this concept suggest favorable scaling of fusion power output yield as I(sup 4) (2). The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this is repeated over short timescales (10(exp -6) sec). This plasma formation is widely used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, as well as in fusion energy research. There is a wealth of literature characterizing Z-Pinch physics and existing models (3-5). In order to be useful in engineering analysis, a simplified Z-Pinch fusion thermodynamic model was developed to determine the quantity of plasma, plasma temperature, rate of expansion, energy production, etc. to calculate the parameters that characterize a propulsion system. The amount of nuclear fuel per pulse, mixture ratio of the D-T and nozzle liner propellant, and assumptions about the efficiency of the engine, enabled the sizing of the propulsion system and resulted in an estimate of the thrust and Isp of a Z-Pinch fusion propulsion system for the concept vehicle. MIF requires a magnetic nozzle to contain and direct the nuclear pulses, as well as a robust structure and radiation shielding. The structure

  3. The effects of insulating coatings and current prepulse on tungsten planar wire array Z-pinches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, M., E-mail: limo@nint.ac.cn; Li, Y.; State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024

    2015-12-15

    This paper presents experimental results on the effects of insulating coatings and current prepulse on tungsten planar wire array Z-pinches on ∼100 ns main current facility. Optical framing images indicated that without a current prepulse the wire ablation process was asymmetrical and the implosion was zippered. The x-ray peak power was ∼320 GW. By using insulating coatings on the wire surface the asymmetry remained, and the processes of ablation and implosion were delayed by ∼30 ns. The x-ray burst was narrow and decreased to ∼200 GW. When current prepulses were used on both standard and insulated wire arrays, implosion symmetry was improved and themore » x-ray burst was improved (to ∼520 GW peak power). In addition, there was a strong emitting precursor column for insulated loads with the current prepulse.« less

  4. Efficient Neutron Production from a Novel Configuration of Deuterium Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    Klir, D.; Kubes, P.; Rezac, K.; Cikhardt, J.; Kravarik, J.; Sila, O.; Shishlov, A. V.; Kovalchuk, B. M.; Ratakhin, N. A.; Kokshenev, V. A.; Labetsky, A. Yu.; Cherdizov, R. K.; Fursov, F. I.; Kurmaev, N. E.; Dudkin, G. N.; Nechaev, B. A.; Padalko, V. N.; Orcikova, H.; Turek, K.

    2014-03-01

    A novel configuration of a deuterium z pinch has been used to generate fusion neutrons. Injecting an outer hollow cylindrical plasma shell around an inner deuterium gas puff, neutron yields from DD reactions reached Yn=(2.9±0.3)×1012 at 700 ns implosion time and 2.7 MA current. Such a neutron yield means a tenfold increase in comparison with previous deuterium gas puff experiments at the same current generator. The increase of beam-target yields was obtained by a larger amount of current assembled on the z-pinch axis, and subsequently by higher induced voltage and higher energies of deuterons. A stack of CR-39 track detectors on the z-pinch axis showed hydrogen ions up to 38 MeV. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial time-of-flight detectors, respectively. The number of DD neutrons per one joule of stored plasma energy approached 5×107. This implies that deuterium gas puff z pinches belong to the most efficient plasma-based sources of DD neutrons.

  5. 2D Kinetic Particle in Cell Simulations of a Shear-Flow Stabilized Z-Pinch

    NASA Astrophysics Data System (ADS)

    Tummel, Kurt; Higginson, Drew; Schmidt, Andrea; Link, Anthony; McLean, Harry; Shumlak, Uri; Nelson, Brian; Golingo, Raymond; Claveau, Elliot; Lawrence Livermore National Lab Team; University of Washington Team

    2016-10-01

    The Z-pinch is a relatively simple and attractive potential fusion reactor design, but attempts to develop such a reactor have consistently struggled to overcome Z-pinch instabilities. The ``sausage'' and ``kink'' modes are among the most robust and prevalent Z-pinch instabilities, but theory and simulations suggest that axial flow-shear, dvz / dr ≠ 0 , can suppress these modes. Experiments have confirmed that Z-pinch plasmas with embedded axial flow-shear display a significantly enhanced resilience to the sausage and kink modes at a demonstration current of 50kAmps. A new experiment is under way to test the concept at higher current, and efforts to model these plasmas are being expanded. The performance and stability of these devices will depend on features like the plasma viscosity, anomalous resistivity, and finite Larmor radius effects, which are most accurately characterized in kinetic models. To predict these features, kinetic simulations using the particle in cell code LSP are now in development, and initial benchmarking and 2D stability analyses of the sausage mode are presented here. These results represent the first kinetic modeling of the flow-shear stabilized Z-pinch. This work is funded by the USDOE/ARPAe Alpha Program. Prepared by LLNL under Contract DE-AC52-07NA27344.

  6. Analysis of staged Z-pinch implosion trajectories from experiments on Zebra

    NASA Astrophysics Data System (ADS)

    Ross, Mike P.; Conti, F.; Darling, T. W.; Ruskov, E.; Valenzuela, J.; Wessel, F. J.; Beg, F.; Narkis, J.; Rahman, H. U.

    2017-10-01

    The Staged Z-pinch plasma confinement concept relies on compressing an annular liner of high-Z plasma onto a target plasma column of deuterium fuel. The interface between the liner and target is stable against the Magneto-Rayleigh-Taylor Instability, which leads to effective fuel compression and makes the concept interesting as a potential fusion reactor. The liner initiates as a neutral gas puff, while the target plasma is a partially ionized (Zeff < 10 percent column ejected from a coaxial plasma gun. The Zebra pulsed power generator (1 MA peak current, 100 ns rise time) provides the discharge that ionizes the liner and drives the Z-pinch implosion. Diverse diagnostics observe the 100-300 km/s implosions including silicon diodes, photo-conducting detectors (PCDs), laser shadowgraphy, an XUV framing camera, and a visible streak camera. The imaging diagnostics track instabilities smaller than 0.1 mm, and Z-pinch diameters below 2.5 mm are seen at peak compression. This poster correlates the data from these diagnostics to elucidate implosion behavior dependencies on liner gas, liner pressure, target pressure, and applied, axial-magnetic field. Funded by the Advanced Research Projects Agency - Energy, DE-AR0000569.

  7. Pulse Power Compression by Cutting a Dense Z-Pinch with a Laser Beam

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    1999-07-01

    A thin cut made through a z-pinch by an intense laser beam can become a magnetically insulated diode crossed by an intense ion beam. For larger cuts, the gap is crossed by an intense relativistic electron beam, stopped by magnetic bremsstrahlung resulting in a pointlike intense x-ray source. In either case, the impedance of the pinch discharge is increased, with the power delivered rising in the same pro-portion. A magnetically insulated cut is advantageous for three reasons: First, with the ion current com-parable to the Alfvèn ion current, the pinch instabilities are reduced. Second, with the energy deposit-ed into fast ions, a non-Maxwellian velocity distribution is established increasing<σ ν> value for nuclear fusion reactions taking place in the pinch discharge. Third, in a high density z-pinch plasma, the intense ion beam can launch a thermonuclear detonation wave propagating along the pinch discharge channel. For larger cuts the soft x-rays produced by magnetic bremsstrahlung can be used to drive a thermonuclear hohlraum target. Finally, the proposed pulse power compression scheme permits to use a cheap low power d.c. source charging a magnetic storage coil delivering the magnetically stored energy to the pinch discharge load by an exploding wire opening switch.

  8. Digital holographic interferometry employing Fresnel transform reconstruction for the study of flow shear stabilized Z-pinch plasmas.

    PubMed

    Ross, M P; Shumlak, U

    2016-10-01

    The ZaP-HD flow Z-pinch project provides a platform to explore how shear flow stabilized Z-pinches could scale to high-energy-density plasma (plasma with pressures exceeding 1 Mbar) and fusion reactor conditions. The Z-pinch is a linear plasma confinement geometry in which the plasma carries axial electric current and is confined by its self-induced magnetic field. ZaP-HD generates shear stabilized, axisymmetric Z-pinches with stable lifetimes approaching 60 μs. The goal of the project is to increase the plasma density and temperature compared to the previous ZaP project by compressing the plasma to smaller radii (≈1 mm). Radial and axial plasma electron density structure is measured using digital holographic interferometry (DHI), which provides the necessary fine spatial resolution. ZaP-HD's DHI system uses a 2 ns Nd:YAG laser pulse with a second harmonic generator (λ = 532 nm) to produce holograms recorded by a Nikon D3200 digital camera. The holograms are numerically reconstructed with the Fresnel transform reconstruction method to obtain the phase shift caused by the interaction of the laser beam with the plasma. This provides a two-dimensional map of line-integrated electron density, which can be Abel inverted to determine the local number density. The DHI resolves line-integrated densities down to 3 × 10 20 m -2 with spatial resolution near 10 μm. This paper presents the first application of Fresnel transform reconstruction as an analysis technique for a plasma diagnostic, and it analyzes the method's accuracy through study of synthetic data. It then presents an Abel inversion procedure that utilizes data on both sides of a Z-pinch local number density profile to maximize profile symmetry. Error estimation and Abel inversion are applied to the measured data.

  9. The microscopic Z-pinch process of current-carrying rarefied deuterium plasma shell

    NASA Astrophysics Data System (ADS)

    Ning, Cheng; Feng, Zhixing; Xue, Chuang; Li, Baiwen

    2015-02-01

    For insight into the microscopic mechanism of Z-pinch dynamic processes, a code of two-dimensional particle-in-cell (PIC) simulation has been developed in cylindrical coordinates. In principle, the Z-pinch of current-carrying rarefied deuterium plasma shell has been simulated by means of this code. Many results related to the microscopic processes of the Z-pinch are obtained. They include the spatio-temporal distributions of electromagnetic field, current density, forces experienced by the ions and electrons, positions and energy distributions of particles, and trailing mass and current. In radial direction, the electric and magnetic forces exerted on the electrons are comparable in magnitude, while the forces exerted on the ions are mainly the electric forces. So in the Z-pinch process, the electrons are first accelerated in Z direction and get higher velocities; then, they are driven inwards to the axis at the same time by the radial magnetic forces (i.e., Lorentz forces) of them. That causes the separations between the electrons and ions because the ion mass is much larger than the electron's, and in turn a strong electrostatic field is produced. The produced electrostatic field attracts the ions to move towards the electrons. When the electrons are driven along the radial direction to arrive at the axis, they shortly move inversely due to the static repellency among them and their tiny mass, while the ions continue to move inertially inwards, and later get into stagnation, and finally scatter outwards. Near the stagnation, the energies of the deuterium ions mostly range from 0.3 to 6 keV, while the electron energies are mostly from 5 to 35 keV. The radial components, which can contribute to the pinched plasma temperature, of the most probable energies of electron and ion at the stagnation are comparable to the Bennett equilibrium temperature (about 1 keV), and also to the highest temperatures of electron and ion obtained in one dimensional radiation

  10. Fusion Propulsion Z-Pinch Engine Concept

    NASA Technical Reports Server (NTRS)

    Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.; hide

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human spaceflight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly1. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield 2. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10(exp -6 sec). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Decade Module 2 (DM2), approx.500 KJ pulsed-power is coming to the RSA Aerophysics Lab managed by UAHuntsville in January, 2012. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) 3 propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle.

  11. Cinematic Characterization of Convected Coherent Structures Within an Continuous Flow Z-Pinch

    NASA Astrophysics Data System (ADS)

    Underwood, Thomas; Rodriguez, Jesse; Loebner, Keith; Cappelli, Mark

    2017-10-01

    In this study, two separate diagnostics are applied to a plasma jet produced from a coaxial accelerator with characteristic velocities exceeding 105 m/s and timescales of 10 μs. In the first of these, an ultra-high frame rate CMOS camera coupled to a Z-type laser Schlieren apparatus is used to obtain flow-field refractometry data for the continuous flow Z-pinch formed within the plasma deflagration jet. The 10 MHz frame rate for 256 consecutive frames provides high temporal resolution, enabling turbulent fluctuations and plasma instabilities to be visualized over the course of a single pulse. The unique advantage of this diagnostic is its ability to simultaneously resolve both structural and temporal evolution of instabilities and density gradients within the flow. To allow for a more meaningful statistical analysis of the resulting wave motion, a multiple B-dot probe array was constructed and calibrated to operate over a broadband frequency range up to 100 MHz. The resulting probe measurements are incorporated into a wavelet analysis to uncover the dispersion relation of recorded wave motion and furthermore uncover instability growth rates. Finally these results are compared with theoretical growth rate estimates to identify underlying physics. This work is supported by the U.S. Department of Energy Stewardship Science Academic Program in addition to the National Defense Science Engineering Graduate Fellowship.

  12. Polar Radiation-Flux Symmetry Measurements in Z-Pinch-Driven Hohlraums with Symmetric Double-Pinch Drive

    NASA Astrophysics Data System (ADS)

    Hanson, D. L.; Vesey, R. A.; Cuneo Porter, M. E., Jr.; Chandler, G. A.; Ruggles, L. E.; Simpson, W. W.; Seamen, H.; Primm, P.; Torres, J.; McGurn, J.; Gilliland, T. L.; Reynolds, P.; Hebron, D. E.; Dropinski, S. C.; Schroen-Carey, D. G.; Hammer, J. H.; Landen, O.; Koch, J.

    2000-10-01

    We are currently exploring symmetry requirements of the z-pinch-driven hohlraum concept [1] for high-yield inertial confinement fusion. In experiments on the Z accelerator, the burnthrough of a low-density self-backlit foam ball has been used to diagnose the large time-dependent flux asymmetry of several single-sided-drive hohlraum geometries [2]. We are currently applying this technique to study polar radiation flux symmetry in a symmetric double z-pinch geometry. Wire arrays on opposite ends of the hohlraum, connected in series to a single current drive of 18 MA, implode and stagnate on axis, efficiently radiating about 100 TW of x rays which heat the secondary to 75 eV. Comparisons with 3-D radiosity and 2-D rad-hydro models of hohlraum symmetry performance will be presented. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. 1 J. H. Hammer et al., Phys. Plasmas 6, 2129 (1999). 2 D. L. Hanson et al., Bull. Am. Phys. Soc. 44, 40 (1999).

  13. Coronal plasma development in wire-array z-pinches made of twisted-pairs

    NASA Astrophysics Data System (ADS)

    Hoyt, C. L.; Greenly, J. B.; Gourdain, P. A.; Knapp, P. F.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Kusse, B. R.

    2009-11-01

    We have investigated coronal and core plasma development in wire array z-pinches in which single fine wires are replaced by twisted-pairs (``cable'') on the 1 MA, 100 ns rise time COBRA pulsed power generator. X-ray radiography, employed to investigate dense wire core expansion, showed periodic axial nonuniformity and evidence for shock waves developing where the individual wire plasmas collide. Laser shadowgraphy images indicated that the axial instability properties of the coronal plasma are substantially modified from ordinary wire arrays. Cable mass per unit length, material and the twist wavelength were varied in order to study their effects upon the instability wavelength. Implosion uniformity and bright-spot formation, as well as magnetic topology evolution, have also been investigated using self-emission imaging, x-ray diagnostics and small B-dot probes, respectively. Results from the cable-array z-pinches will be compared with results from ordinary wire-array z-pinches. This research was supported by the SSAA program of the National Nuclear Security Administration under DOE Cooperative agreement DE-FC03-02NA00057.

  14. Increasing Plasma Parameters using Sheared Flow Stabilization of a Z-Pinch

    NASA Astrophysics Data System (ADS)

    Shumlak, Uri

    2016-10-01

    Recent experiments on the ZaP Flow Z-Pinch at the University of Washington have been successful in compressing the plasma column to smaller radii, producing the predicted increases in plasma density (1018 cm-3), temperature (200 eV), and magnetic fields (4 T), while maintaining plasma stability for many Alfven times (over 40 μs) using sheared plasma flows. These results indicate the suitability of the device as a discovery science platform for astrophysical and high energy density plasma research, and keeps open a possible path to achieving burning plasma conditions in a compact fusion device. Long-lived Z-pinch plasmas have been produced with dimensions of 1 cm radius and 100 cm long that are stabilized by sheared axial flows for over 1000 Alfven radial transit times. The observed plasma stability is coincident with the presence of a sheared flow as measured by time-resolved multi-chord ion Doppler spectroscopy applied to impurity ion radiation. These measurements yield insights into the evolution of the velocity profile and show that the stabilizing behavior of flow shear agrees with theoretical calculations and 2-D MHD computational simulations. The flow shear value, extent, and duration are shown to be consistent with theoretical models of the plasma viscosity, which places a design constraint on the maximum axial length of a sheared flow stabilized Z-pinch. Measurements of the magnetic field topology indicate simultaneous azimuthal symmetry and axial uniformity along the entire 100 cm length of the Z-pinch plasma. Separate control of plasma acceleration and compression have increased the accessible plasma parameters and have generated stable plasmas with radii below 0.5 cm, as measured with a high resolution digital holographic interferometer. This work was supported by Grants from U.S. DOE, NNSA, and ARPA-E.

  15. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SANFORD,THOMAS W. L.

    2000-05-23

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here.

  16. Scaling the Shear-flow Stabilized Z-pinch to Reactor Conditions

    NASA Astrophysics Data System (ADS)

    McLean, H. S.; Schmidt, A.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Cleveau, E.

    2015-11-01

    We present a conceptual design along with scaling calculations for a pulsed fusion reactor based on the shear-flow-stabilized Z-pinch device. Experiments performed on the ZaP device, at the University of Washington, have demonstrated stable operation for durations of 20 usec at ~100kA discharge current for pinches that are ~1 cm in diameter and 100 cm long. The inverse of the pinch diameter and plasma energy density scale strongly with pinch current and calculations show that maintaining stabilization durations of ~7 usec for increased discharge current (~15x) in a shortened pinch (10 cm) results in a pinch diameter of ~200 um and plasma conditions that approach those needed to support significant fusion burn and energy gain (Ti ~ 30keV, density ~ 3e26/m3, ntau ~1.4e20 sec/m3). Compelling features of the concept include operation at modest discharge current (1.5 MA) and voltage (40kV) along with direct adoption of liquid metals for at least one electrode--technological capabilities that have been proven in existing, commercial, pulse power devices such as large ignitrons. LLNL-ABS-674920. This work performed under the auspices of the U.S. Department of Energy ARPAe ALPHA Program by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Magnetoelectric confinement and stabilization of Z pinch in a soft-x-ray Ar(+8) laser.

    PubMed

    Szasz, J; Kiss, M; Santa, I; Szatmari, S; Kukhlevsky, S V

    2013-05-03

    Magnetoelectric confinement and stabilization of the plasma column in a soft-x-ray Ar(+8) laser, which is excited by a capillary Z pinch, via the combined magnetic and electric fields of the gliding surface discharge is experimentally demonstrated. Unlike soft-x-ray lasers excited by the conventional capillary Z pinches, the magnetoelectric confinement and stabilization of plasma do provide the laser operation without using any external preionization circuit.

  18. Measurement and analysis of x-ray absorption in Al and MgF2 plasmas heated by Z-pinch radiation.

    PubMed

    Rochau, Gregory A; Bailey, J E; Macfarlane, J J

    2005-12-01

    High-power Z pinches on Sandia National Laboratories' Z facility can be used in a variety of experiments to radiatively heat samples placed some distance away from the Z-pinch plasma. In such experiments, the heating radiation spectrum is influenced by both the Z-pinch emission and the re-emission of radiation from the high-Z surfaces that make up the Z-pinch diode. To test the understanding of the amplitude and spectral distribution of the heating radiation, thin foils containing both Al and MgF2 were heated by a 100-130 TW Z pinch. The heating of these samples was studied through the ionization distribution in each material as measured by x-ray absorption spectra. The resulting plasma conditions are inferred from a least-squares comparison between the measured spectra and calculations of the Al and Mg 1s-->2p absorption over a large range of temperatures and densities. These plasma conditions are then compared to radiation-hydrodynamics simulations of the sample dynamics and are found to agree within 1sigma to the best-fit conditions. This agreement indicates that both the driving radiation spectrum and the heating of the Al and MgF2 samples is understood within the accuracy of the spectroscopic method.

  19. A Reactor Development Scenario for the FUZE Shear-flow Stabilized Z-pinch

    NASA Astrophysics Data System (ADS)

    McLean, H. S.; Higginson, D. P.; Schmidt, A.; Tummel, K. K.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Golingo, R. P.; Weber, T. R.

    2016-10-01

    We present a conceptual design, scaling calculations, and a development path for a pulsed fusion reactor based on the shear-flow-stabilized Z-pinch device. Experiments performed on the ZaP device have demonstrated stable operation for 40 us at 150 kA total discharge current (with 100 kA in the pinch) for pinches that are 1cm in diameter and 100 cm long. Scaling calculations show that achieving stabilization for a pulse of 100 usec, for discharge current 1.5 MA, in a shortened pinch 50 cm, results in a pinch diameter of 200 um and a reactor plant Q 5 for reasonable assumptions of the various system efficiencies. We propose several key intermediate performance levels in order to justify further development. These include achieving operation at pinch currents of 300 kA, where Te and Ti are calculated to exceed 1 keV, 700 kA where fusion power exceeds pinch input power, and 1 MA where fusion energy per pulse exceeds input energy per pulse. This work funded by USDOE ARPAe ALPHA Program and performed under the auspices of Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-697801.

  20. A reassessment study of multi-material-shell gas puff z-pinches as a pulsed neutron source on the sandia ZR

    NASA Astrophysics Data System (ADS)

    Chong, Y. K.; Velikovich, A. L.; Thornhil, J. W.; Giuliani, J. L.; Knapp, P.; Jennings, C.

    2013-10-01

    Over the last few years, numerous 1D and 2D MHD simulation studies of deuterium (D) based double-shell gas-puff Z-pinch implosions driven by the Sandia ZR accelerator have been carried out to assess the Z-pinch as a pulsed thermal fusion neutron source. In these studies, an ad-hoc time-dependent shunt impedance model was used within the external driving circuit model in order to account for the unresolved current loss in the MITL and the load. In this study, we incorporate an improved ZR circuit model recently formulated based on the recent Sandia argon gas-puff experiment circuit data into the multi-material version of the Mach +DDTCRE RMHD code. We reinvestigate the effects of multidimensional structure and nonuniform gradients as well as the outer- and inner-shell material interaction on the implosion physics and dynamics of both D-on-D and argon-on-D Z-pinch loads using the model. Then, we characterize the neutron production performance of the Z-pinch loads as a function of total mass, mass ratio and/or radius toward their optimization as a pulsed thernonuclear neutron source. Work supported by DOE/NNSA. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's NNSA under contract DE-AC04-94AL85000.

  1. Hotspot ignition using a Z-pinch precursor plasma in a magneto-inertial ICF scheme

    NASA Astrophysics Data System (ADS)

    Chittenden, J. P.; Vincent, P.; Jennings, C. A.; Ciardi, A.

    2006-01-01

    Precursor plasma flow is a common feature of wire array Z-pinches. The precursor flow represents a fraction of the mass of the array which arrives on the axis early in time and remains confined at high density by the inertia of further material bombarding the axis. Later on, the main implosion of the Z-pinch then compresses this precursor to substantially higher density. We show that if the same system can be generated with a Deuterium-Tritium plasma then the precursor provides an ideal target for a cylindrical magneto-inertial ICF scheme. The implosion of the DT Z-pinch produces a dense, low temperature shell which compressively heats the precursor target to high temperatures and tamps its expansion. The azimuthal magnetic field in the hotspot is sufficient to reduce the Larmor radius for the alpha particles to much less than the hotspot size, which dramatically reduces the pR required for ignition. A computational analysis of this approach is presented, including a study of the thermonuclear burn wave propagation. The robustness of the scheme with respect to instabilities, confinement time and drive parameters is examined. The results indicate that a high energy gain can be achieved using Z-pinches with 50-100 MA currents and a few hundred nanosecond rise-times. This work was partially supported by the U.S. Department of Energy through cooperative agreement DE-FC03-02NA00057.

  2. AN ACCELERATION MECHANISM FOR NEUTRON PRODUCTION IN Z-PINCH DISCHARGES,

    DTIC Science & Technology

    A model has been developed for the acceleration of deuterons in the tightly compressed column of a z-pinch discharge, in particular that of a plasma ... focus discharge. It was assumed that an annular current distribution undergoes a rapidly contracting transition to an axially peaked distribution, and

  3. The Physics of the Dense Z-Pinch in Theory and in Experiment With Application to Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Haines, M. G.

    1982-01-01

    A new generation of Z-pinches employing high voltage, high current pulsed lines as power sources produce dense hot plasmas with enhanced stability properties. Three methods of Z-pinch formation are currently in use: (1) cylindrical collapse and compression of a pre-ionised gas; (2) laser initiation and Joule heating of a gas embedded pinch, and (3) hollow gas puff and subsequent collapse to the axis. The first method shows no dynamic bounce and no instability over about ten radial Alfvén transit times. The laser initiated Z-pinch shows benign helical structures, whilst the gas puff experiments are known for their high X-ray energy conversion associated with m = 0 instabilities. The first two experimental conditions are relevant for fusion. A calculation of energy balance for satisfying Lawson conditions with axial and radial energy losses and radiation loss shows that a current I of ~ 106 A and a line density N of 6 × 1018m-1 are required. This leads to two coincidences of physical quantities that are very favourable for controlled fusion. The first is that at this line density and under pressure balance the ratio of the ion Larmor radius to pinch radius is of order 1 so that a marked stabilisation of the configuration is expected. The second coincidence is that the current is only just below the Pease-Braginskii limit; this will permit the possibility of radiative collapse to attain the high density (~ 4 × 1027 m-3) and small radius (~ 20 μm) required for a compact (0.1 m long) discharge. The confining self-magnetic field is 104 T, the confinement time ~ 100 ns, and a matrix of pulsed discharges is envisaged in a moderator and breeding medium which does not have the wall-loading limitations of tokamaks.

  4. Measurement and analysis of x-ray absorption in Al and MgF2 plasmas heated by Z-pinch radiation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacFarlane, Joseph John; Rochau, Gregory Alan; Bailey, James E.

    2005-06-01

    High-power Z pinches on Sandia National Laboratories Z facility can be used in a variety of experiments to radiatively heat samples placed some distance away from the Z-pinch plasma. In such experiments, the heating radiation spectrum is influenced by both the Z-pinch emission and the re-emission of radiation from the high-Z surfaces that make up the Z-pinch diode. To test the understanding of the amplitude and spectral distribution of the heating radiation, thin foils containing both Al and MgF{sub 2} were heated by a 100-130 TW Z pinch. The heating of these samples was studied through the ionization distribution inmore » each material as measured by x-ray absorption spectra. The resulting plasma conditions are inferred from a least-squares comparison between the measured spectra and calculations of the Al and Mg 1s {yields} 2p absorption over a large range of temperatures and densities. These plasma conditions are then compared to radiation-hydrodynamics simulations of the sample dynamics and are found to agree within 1{sigma} to the best-fit conditions. This agreement indicates that both the driving radiation spectrum and the heating of the Al and MgF{sub 2} samples is understood within the accuracy of the spectroscopic method.« less

  5. The inverse skin effect in the Z-pinch and plasma focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usenko, P. L., E-mail: otd4@expd.vniief.ru; Gaganov, V. V.

    The inverse skin effect and its influence on the dynamics of high-current Z-pinch and plasma focus discharges in deuterium are analyzed. It is shown that the second compression responsible for the major fraction of the neutron yield can be interpreted as a result of the inverse skin effect resulting in the axial concentration of the longitudinal current density and the appearance of a reversed current in the outer layers of plasma pinches. Possible conditions leading to the enhancement of the inverse skin effect and accessible for experimental verification by modern diagnostics are formulated.

  6. A Reactor Development Scenario for the FuZE Sheared-Flow Stabilized Z-pinch

    NASA Astrophysics Data System (ADS)

    McLean, Harry S.; Higginson, D. P.; Schmidt, A.; Tummel, K. K.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Golingo, R. P.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.

    2017-10-01

    We present a conceptual design, scaling calculations, and development path for a pulsed fusion reactor based on a flow-stabilized Z-pinch. Experiments performed on the ZaP and ZaP-HD devices have largely demonstrated the basic physics of sheared-flow stabilization at pinch currents up to 100 kA. Initial experiments on the FuZE device, a high-power upgrade of ZaP, have achieved 20 usec of stability at pinch current 100-200 kA and pinch diameter few mm for a pinch length of 50 cm. Scaling calculations based on a quasi-steady-state power balance show that extending stable duration to 100 usec at a pinch current of 1.5 MA and pinch length of 50 cm, results in a reactor plant Q 5. Future performance milestones are proposed for pinch currents of: 300 kA, where Te and Ti are calculated to exceed 1-2 keV; 700 kA, where DT fusion power would be expected to exceed pinch input power; and 1 MA, where fusion energy per pulse exceeds input energy per pulse. This work funded by USDOE ARPA-E and performed under the auspices of Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-734770.

  7. Conceptual Design of a Z-Pinch Fusion Propulsion System

    NASA Technical Reports Server (NTRS)

    Adams, Robert; Polsgrove, Tara; Fincher, Sharon; Fabinski, Leo; Maples, Charlotte; Miernik, Janie; Stratham, Geoffrey; Cassibry, Jason; Cortez, Ross; Turner, Matthew; hide

    2010-01-01

    This slide presentation reviews a project that aims to develop a conceptual design for a Z-pinch thruster, that could be applied to develop advanced thruster designs which promise high thrust/high specific impulse propulsion. Overviews shows the concept of the design, which use annular nozzles with deuterium-tritium (D-T) fuel and a Lithium mixture as a cathode, Charts show the engine performance as a function of linear mass, nozzle performance (i.e., plasma segment trajectories), and mission analysis for possible Mars and Jupiter missions using this concept for propulsion. Slides show views of the concepts for the vehicle configuration, thrust coil configuration, the power management system, the structural analysis of the magnetic nozzle, the thermal management system, and the avionics suite,

  8. Performance of a Liner-on-Target Injector for Staged Z-Pinch Experiments

    NASA Astrophysics Data System (ADS)

    Conti, F.; Valenzuela, J. C.; Narkis, J.; Krasheninnikov, I.; Beg, F.; Wessel, F. J.; Ruskov, E.; Rahman, H. U.; McGee, E.

    2016-10-01

    We present the design and characterization of a compact liner-on-target injector, used in the Staged Z-pinch experiments conducted on the UNR-NTF Zebra Facility. Previous experiments and analysis indicate that high-Z gas liners produce a uniform and efficient implosion on a low-Z target plasma. The liner gas shell is produced by an annular solenoid valve and a converging-diverging nozzle designed to achieve a collimated, supersonic, Mach-5 flow. The on-axis target is produced by a coaxial plasma gun, where a high voltage pulse is applied to ionize neutral gas and accelerate the plasma by the J-> × B-> force. Measurements of the liner and target dynamics, resolved by interferometry in space and time, fast imaging, and collection of the emitted light, are presented. The results are compared to the predictions from Computational Fluid Dynamics and MHD simulations that model the injector. Optimization of the design parameters, for upcoming Staged Z-pinch experiments, will be discussed. Advanced Research Projects Agency - Energy, DE-AR0000569.

  9. Diagnostics for Z-pinch implosion experiments on PTS

    NASA Astrophysics Data System (ADS)

    Ren, X. D.; Huang, X. B.; Zhou, S. T.; Zhang, S. Q.; Dan, J. K.; Li, J.; Cai, H. C.; Wang, K. L.; Ouyang, K.; Xu, Q.; Duan, S. C.; Chen, G. H.; Wang, M.; Feng, S. P.; Yang, L. B.; Xie, W. P.; Deng, J. J.

    2014-12-01

    The preliminary experiments of wire array implosion were performed on PTS, a 10 MA z-pinch driver with a 70 ns rise time. A set of diagnostics have been developed and fielded on PTS to study pinch physics and implosion dynamics of wire array. Radiated power measurement for soft x-rays was performed by multichannel filtered x-ray diode array, and flat spectral responses x-ray diode detector. Total x-ray yield was measured by a calibrated, unfiltered nickel bolometer which was also used to obtain pinch power. Multiple time-gated pinhole cameras were used to produce spatial-resolved images of x-ray self-emission from plasmas. Two time-integrated pinhole cameras were used respectively with 20-μm Be filter and with multilayer mirrors to record images produced by >1-keV and 277±5 eV self-emission. An optical streak camera was used to produce radial implosion trajectories, and an x-ray streak camera paired with a horizontal slit was used to record a continuous time-history of emission with one-dimensional spatial resolution. A frequency-doubled Nd:YAG laser (532 nm) was used to produce four frame laser shadowgraph images with 6 ns time interval. We will briefly describe each of these diagnostics and present some typical results from them.

  10. History of HERMES III diode to z-pinch breakthrough and beyond :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanford, Thomas Williamlou.

    HERMES III and Z are two flagship accelerators of Sandias pulsed-power program developed to generate intense -ray fields for the study of nuclear radiation effects, and to explore high energy-density physics (including the production of intense x-ray fields for Inertia Confinement Fusion [ICF]), respectively. A diode at the exit of HERMES III converts its 20-MeV electron beam into -rays. In contrast, at the center of Z, a z-pinch is used to convert its 20-MA current into an intense burst of x-rays. Here the history of how the HERMES III diode emerged from theoretical considerations to actual hardware is discussed. Next,more » the reverse process of how the experimental discovery of wire-array stabilization in a z-pinch, led to a better theory of wirearray implosions and its application to one of the ICF concepts on Z--the DH (Dynamic Hohlraum) is reviewed. Lastly, the report concludes with how the unexpected axial radiation asymmetry measured in the DH is understood. The first discussion illustrates the evolution of physics from theory-to-observationto- refinement. The second two illustrate the reverse process of observationto- theory-to refinement. The histories are discussed through the vehicle of my research at Sandia, illustrating the unique environment Sandia provides for personal growth and development into a scientific leader.« less

  11. Simulations of Ar gas-puff Z-pinch radiation sources with double shells and central jets on the Z generator

    DOE PAGES

    Tangri, V.; Harvey-Thompson, Adam James; Giuliani, J. L.; ...

    2016-10-19

    Radiation-magnetohydrodynamic simulations using the non-LTE Mach2-TCRE code in (r,z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1.

  12. Design of Z-Pinch and Dense Plasma Focus Powered Vehicles

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Fincher, Sharon; Adams, Robert B.; Cassibry, Jason; Cortez, Ross; Turner, Matthew; Maples, C. Daphne; Miermik, Janie N.; Statham, Geoffrey N.; Fabisinski, Leo; hide

    2011-01-01

    Z-pinch and Dense Plasma Focus (DPF) are two promising techniques for bringing fusion power to the field of in-space propulsion. A design team comprising of engineers and scientists from UAHuntsville, NASA's George C. Marshall Space Flight Center and the University of Wisconsin developed concept vehicles for a crewed round trip mission to Mars and an interstellar precursor mission. Outlined in this paper are vehicle concepts, complete with conceptual analysis of the mission profile, operations, structural and thermal analysis and power/avionics design. Additionally engineering design of the thruster itself is included. The design efforts adds greatly to the fidelity of estimates for power density (alpha) and overall performance for these thruster concepts

  13. Investigating plasma viscosity with fast framing photography in the ZaP-HD Flow Z-Pinch experiment

    NASA Astrophysics Data System (ADS)

    Weed, Jonathan Robert

    The ZaP-HD Flow Z-Pinch experiment investigates the stabilizing effect of sheared axial flows while scaling toward a high-energy-density laboratory plasma (HEDLP > 100 GPa). Stabilizing flows may persist until viscous forces dissipate a sheared flow profile. Plasma viscosity is investigated by measuring scale lengths in turbulence intentionally introduced in the plasma flow. A boron nitride turbulence-tripping probe excites small scale length turbulence in the plasma, and fast framing optical cameras are used to study time-evolved turbulent structures and viscous dissipation. A Hadland Imacon 790 fast framing camera is modified for digital image capture, but features insufficient resolution to study turbulent structures. A Shimadzu HPV-X camera captures the evolution of turbulent structures with great spatial and temporal resolution, but is unable to resolve the anticipated Kolmogorov scale in ZaP-HD as predicted by a simplified pinch model.

  14. A short-pulse mode for the SPHINX LTD Z-pinch driver

    NASA Astrophysics Data System (ADS)

    D'Almeida, Thierry; Lassalle, Francis; Zucchini, Frederic; Loyen, Arnaud; Morell, Alain; Chuvatin, Alexander

    2015-11-01

    The SPHINX machine is a 6MA, 1 μs, LTD Z-pinch driver at CEA Gramat (France) and primarily used for studying radiation effects. Different power amplification concepts were examined in order to reduce the current rise time without modifying the generator discharge scheme, including the Dynamic Load Current Multiplier (DLCM) proposed by Chuvatin. A DLCM device, capable of shaping the current pulse without reducing the rise time, was developed at CEA. This device proved valuable for isentropic compression experiments in cylindrical geometry. Recently, we achieved a short pulse operation mode by inserting a vacuum closing switch between the DLCM and the load. The current rise time was reduced to ~300 ns. We explored the use of a reduced-height wire array for the Dynamic Flux Extruder in order to improve the wire array compression rate and increase the efficiency of the current transfer to the load. These developments are presented. Potential benefits of these developments for future Z pinch experiments are discussed.

  15. Experimental study of z-pinch driven radiative shocks in low density gases

    NASA Astrophysics Data System (ADS)

    Skidmore, Jonathan; Lebedev, S. V.; Suzuki-Vidal, F.; Swadling, G.; Bland, S. N.; Burdiak, G.; Chittenden, J. P.; de Grouchy, P.; Hall, G. N.; Pickworth, L.; Suttle, L.; Bennett, M.; Ciardi, A.

    2012-10-01

    Results of experiments performed on MAGPIE pulsed power facility (1.4MA, 250ns) will be presented. Shocks with velocities of 50-70km/s are driven in Ar, Xe and He gases at density ˜10-5g/cc using radial foil z-pinch configuration [1]. Measurements of the structure of the shocks obtained with laser probing will be presented and observations of the development of instabilities will be discussed. It was found that the structure of the shocks and the development of instabilities strongly depend on the rate of radiative cooling, increasing for gases with higher atomic numbers.[4pt] [1] F. Suzuki-Vidal et al., PoP 19, 022708 (2012)

  16. Preliminary experimental results of tungsten wire-array Z-pinches on primary test stand

    NASA Astrophysics Data System (ADS)

    Huang, Xian-Bin; Zhou, Shao-Tong; Dan, Jia-Kun; Ren, Xiao-Dong; Wang, Kun-Lun; Zhang, Si-Qun; Li, Jing; Xu, Qiang; Cai, Hong-Chun; Duan, Shu-Chao; Ouyang, Kai; Chen, Guang-Hua; Ji, Ce; Wei, Bing; Feng, Shu-Ping; Wang, Meng; Xie, Wei-Ping; Deng, Jian-Jun; Zhou, Xiu-Wen; Yang, Yi

    2015-07-01

    The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a 20 TW pulsed power driver, which can deliver a ˜10 MA, 70 ns rise-time (10%-90%) current to a short-circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. Preliminary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 13 mm to 30 mm, consisting of 132-300 tungsten wires with 5-10 μm in diameter. Multiple diagnostics were fielded to characterize the x-ray radiation from wire-array Z pinches. The x-ray peak power (˜50 TW) and total radiated energy (˜500 kJ) were obtained from a single 20-mm-diam array with 80-ns stagnation time. The highest x-ray peak power up to 80 TW with 2.4 ns FWHM was achieved by using a nested array with 20-mm outer diameter, and the total x-ray energy from the nested array is comparable to that of single array. Implosion velocity estimated from the time-resolved image measurement exceeds 30 cm/μs. The detailed experimental results and other findings are presented and discussed.

  17. Implosion dynamics of condensed Z-pinch at the Angara-5-1 facility

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. V.; Grabovski, E. V.; Gritsuk, A. N.; Volobuev, I. V.; Kazakov, E. D.; Kalinin, Yu. G.; Korolev, V. D.; Laukhin, Ya. I.; Medovshchikov, S. F.; Mitrofanov, K. N.; Oleinik, G. M.; Pimenov, V. G.; Smirnova, E. A.; Ustroev, G. I.; Frolov, I. N.

    2017-08-01

    The implosion dynamics of a condensed Z-pinch at load currents of up to 3.5 MA and a current rise time of 100 ns was studied experimentally at the Angara-5-1 facility. To increase the energy density, 1- to 3-mm-diameter cylinders made of a deuterated polyethylene-agar-agar mixture or microporous deuterated polyethylene with a mass density of 0.03-0.5 g/cm3 were installed in the central region of the loads. The plasma spatiotemporal characteristics were studied using the diagnostic complex of the Angara-5-1 facility, including electron-optical streak and frame imaging, time-integrated X-ray imaging, soft X-ray (SXR) measurements, and vacuum UV spectroscopy. Most information on the plasma dynamics was obtained using a ten-frame X-ray camera ( E > 100 eV) with an exposure of 4 ns. SXR pulses were recorded using photoemissive vacuum X-ray detectors. The energy characteristics of neutron emission were measured using the time-offlight method with the help of scintillation detectors arranged along and across the pinch axis. The neutron yield was measured by activation detectors. The experimental results indicate that the plasma dynamics depends weakly on the load density. As a rule, two stages of plasma implosion were observed. The formation of hot plasma spots in the initial stage of plasma expansion from the pinch axis was accompanied by short pulses of SXR and neutron emission. The neutron yield reached (0.4-3) × 1010 neutrons/shot and was almost independent of the load density due to specific features of Z-pinch dynamics.

  18. A conservative MHD scheme on unstructured Lagrangian grids for Z-pinch hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Wu, Fuyuan; Ramis, Rafael; Li, Zhenghong

    2018-03-01

    A new algorithm to model resistive magnetohydrodynamics (MHD) in Z-pinches has been developed. Two-dimensional axisymmetric geometry with azimuthal magnetic field Bθ is considered. Discretization is carried out using unstructured meshes made up of arbitrarily connected polygons. The algorithm is fully conservative for mass, momentum, and energy. Matter energy and magnetic energy are managed separately. The diffusion of magnetic field is solved using a derivative of the Symmetric-Semi-Implicit scheme, Livne et al. (1985) [23], where unconditional stability is obtained without needing to solve large sparse systems of equations. This MHD package has been integrated into the radiation-hydrodynamics code MULTI-2D, Ramis et al. (2009) [20], that includes hydrodynamics, laser energy deposition, heat conduction, and radiation transport. This setup allows to simulate Z-pinch configurations relevant for Inertial Confinement Fusion.

  19. Primary experimental results of wire-array Z-pinches on PTS

    NASA Astrophysics Data System (ADS)

    Huang, X. B.; Zhou, S. T.; Ren, X. D.; Dan, J. K.; Wang, K. L.; Zhang, S. Q.; Li, J.; Xu, Q.; Cai, H. C.; Duan, S. C.; Ouyang, K.; Chen, G. H.; Ji, C.; Wang, M.; Feng, S. P.; Yang, L. B.; Xie, W. P.; Deng, J. J.

    2014-12-01

    The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a multiterawatt pulsed power driver, which can deliver a ˜10 MA, 70 ns rise-time (10%-90%) current to a short circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. In this paper, primary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 14.4-26.4 mm, and consisting of 132˜276 tungsten wires with 5˜10 μm in diameter. Multiple diagnostics were fielded to determine the characteristics of x-ray radiations and to obtain self-emitting images of imploding plasmas. X-ray power up to 80 TW with ˜3 ns FWMH is achieved by using nested wire arrays. The total x-ray energy exceeds 500 kJ and the peak radiation temperature is about 150 eV. Typical velocity of imploding plasmas goes around 3˜5×107 cm/s and the radial convergence ratio is between 10 and 20.

  20. Multicolor, time-gated, soft x-ray pinhole imaging of wire array and gas puff Z pinches on the Z and Saturn pulsed power generators.

    PubMed

    Jones, B; Coverdale, C A; Nielsen, D S; Jones, M C; Deeney, C; Serrano, J D; Nielsen-Weber, L B; Meyer, C J; Apruzese, J P; Clark, R W; Coleman, P L

    2008-10-01

    A multicolor, time-gated, soft x-ray pinhole imaging instrument is fielded as part of the core diagnostic set on the 25 MA Z machine [M. E. Savage et al., in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, New York, 2007), p. 979] for studying intense wire array and gas puff Z-pinch soft x-ray sources. Pinhole images are reflected from a planar multilayer mirror, passing 277 eV photons with <10 eV bandwidth. An adjacent pinhole camera uses filtration alone to view 1-10 keV photons simultaneously. Overlaying these data provides composite images that contain both spectral as well as spatial information, allowing for the study of radiation production in dense Z-pinch plasmas. Cu wire arrays at 20 MA on Z show the implosion of a colder cloud of material onto a hot dense core where K-shell photons are excited. A 528 eV imaging configuration has been developed on the 8 MA Saturn generator [R. B. Spielman et al., and A. I. P. Conf, Proc. 195, 3 (1989)] for imaging a bright Li-like Ar L-shell line. Ar gas puff Z pinches show an intense K-shell emission from a zippering stagnation front with L-shell emission dominating as the plasma cools.

  1. Particle drift model for Z-pinch-driven magneto-Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Dan, Jia Kun; Xu, Qiang; Wang, Kun Lun; Ren, Xiao Dong; Huang, Xian Bin

    2016-09-01

    A theoretical model of Z-pinch driven magneto-Rayleigh-Taylor instability is proposed based on the particle drift point of view, which can explain the helical instability structure observed in premagnetized imploding liner experiments. It is demonstrated that all possible drift motions, including polarization drift, gradient drift, and curvature drift, which can lead to charge separations, each will attribute to an effective gravity acceleration. Theoretical predictions given by this model are dramatically different from those given by previous theories which have been readily recovered in the theory presented here as a limiting case. The theory shows qualitative agreement with available experimental data of the pitch angle and provides certain predictions to be verified.

  2. Effect of driver impedance on dense plasma focus Z-pinch neutron yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sears, Jason, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov; Link, Anthony, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov; Schmidt, Andrea, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov

    2014-12-15

    The Z-pinch phase of a dense plasma focus (DPF) heats the plasma by rapid compression and accelerates ions across its intense electric fields, producing neutrons through both thermonuclear and beam-target fusion. Driver characteristics have empirically been shown to affect performance, as measured by neutron yield per unit of stored energy. We are exploring the effect of driver characteristics on DPF performance using particle-in-cell (PIC) simulations of a kJ scale DPF. In this work, our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase, capturing kinetic instabilities, anomalous resistivity, and beam formation duringmore » the pinch. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. It is known that the driver impedance plays an important role in the neutron yield: first, it sets the peak current achieved at pinch time; and second, it affects how much current continues to flow through the pinch when the pinch inductance and resistance suddenly increase. Here we show from fully kinetic simulations how total neutron yield depends on the impedance of the driver and the distributed parameters of the transmission circuit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for neutron source applications.« less

  3. Staged Z-pinch Experiments on Cobra and Zebra

    NASA Astrophysics Data System (ADS)

    Wessel, Frank J.; Anderson, A.; Banasek, J. T.; Byvank, T.; Conti, F.; Darling, T. W.; Dutra, E.; Glebov, V.; Greenly, J.; Hammer, D. A.; Potter, W. M.; Rocco, S. V.; Ross, M. P.; Ruskov, E.; Valenzuela, J.; Beg, F.; Covington, A.; Narkis, J.; Rahman, H. U.

    2017-10-01

    A Staged Z-pinch (SZP), configured as a pre-magnetized, high-Z (Ar, or Kr) annular liner imploding onto a low-Z (H, or D) target, was tested on the Cornell University, Cobra Facility and the University of Nevada, Reno, Zebra Facility; each characterized similarly by a nominal 1-MA current and 100-ns risetime while possessing different diagnostic packages. XUV-fast imaging reveals that the SZP implosion dynamics is similar on both machines and that it is more stable with an axial (Bz) magnetic field, a target, or both, than without. On Zebra, where neutron production is possible, reproducible thermonuclear (DD) yields were recorded at levels in excess of 109/shot. Flux compression in the SZP is also expected to produce magnetic field intensities of the order of kilo-Tesla. Thus, the DD reaction produced tritions should also yield secondary DT neutrons. Indeed, secondaries are measured above the noise threshold at levels approaching 106/shot. Funded by the Advanced Research Projects Agency - Energy, under Grant Number DE-AR0000569.

  4. Benefits of Moderate-Z Ablators for Direct-Drive Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Lafon, M.; Betti, R.; Anderson, K. S.; Collins, T. J. B.; Skupsky, S.; McKenty, P. W.

    2014-10-01

    Control of hydrodynamic instabilities and DT-fuel preheating by hot electrons produced by laser-plasma interaction is crucial in inertial confinement fusion. Moderate- Z ablators have been shown to reduce the laser imprinting on target and suppress the generation of hot electrons from the two-plasmon-decay instability. These results have motivated the use of ablators of higher- Z than pure plastic in direct-drive-ignition target designs for the National Ignition Facility (NIF). Two-dimensional radiation-hydrodynamic simulations assess the robustness of these ignition designs to laser imprint and capsule nonuniformities. The complex behavior of the hydrodynamic stability of mid- Z ablators is investigated through single and multimode simulations. A polar-drive configuration is developed within the NIF Laser System specifications for each ablator material. The use of multilayer ablators is also investigated to enhance the hydrodynamic stability. Results indicate that ignition target designs using mid- Z ablators exhibit good hydrodynamic properties, leading to high target gain for direct-drive implosions on the NIF. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and the Office of Fusion Energy Sciences Number DE-FG02-04ER54786.

  5. Spatially resolved single crystal x-ray spectropolarimetry of wire array z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Wallace, M. S.; Haque, S.; Neill, P.; Pereira, N. R.; Presura, R.

    2018-01-01

    A recently developed single-crystal x-ray spectropolarimeter has been used to record paired sets of polarization-dependent and axially resolved x-ray spectra emitted by wire array z-pinches. In this measurement, two internal planes inside a suitable crystal diffract the x-rays into two perpendicular directions that are normal to each other, thereby separating incident x-rays into their linearly polarized components. This paper gives considerations for fielding the instrument on extended sources. Results from extended sources are difficult to interpret because generally the incident x-rays are not separated properly by the crystal. This difficulty is mitigated by using a series of collimating slits to select incident x-rays that propagate in a plane of symmetry between the polarization-splitting planes. The resulting instrument and some of the spatially resolved polarized x-ray spectra recorded for a 1-MA aluminum wire array z-pinch at the Nevada Terawatt Facility at the University of Nevada, Reno will be presented.

  6. Spatially resolved single crystal x-ray spectropolarimetry of wire array z-pinch plasmas.

    PubMed

    Wallace, M S; Haque, S; Neill, P; Pereira, N R; Presura, R

    2018-01-01

    A recently developed single-crystal x-ray spectropolarimeter has been used to record paired sets of polarization-dependent and axially resolved x-ray spectra emitted by wire array z-pinches. In this measurement, two internal planes inside a suitable crystal diffract the x-rays into two perpendicular directions that are normal to each other, thereby separating incident x-rays into their linearly polarized components. This paper gives considerations for fielding the instrument on extended sources. Results from extended sources are difficult to interpret because generally the incident x-rays are not separated properly by the crystal. This difficulty is mitigated by using a series of collimating slits to select incident x-rays that propagate in a plane of symmetry between the polarization-splitting planes. The resulting instrument and some of the spatially resolved polarized x-ray spectra recorded for a 1-MA aluminum wire array z-pinch at the Nevada Terawatt Facility at the University of Nevada, Reno will be presented.

  7. The quest for a z-pinch based fusion energy source—a historical perspective

    NASA Astrophysics Data System (ADS)

    Sethian, John

    1997-05-01

    Ever since 1958, when Oscar Anderson observed copious neutrons emanating from a "magnetically self-constricted column of deuterium plasma," scientists have attempted to develop the simple linear pinch into a fusion power source. After all, simple calculations show that if one can pass a current of slightly less than 2 million amperes through a stable D-T plasma, then one could achieve not just thermonuclear break-even, but thermonuclear gain. Moreover, several reactor studies have shown that a simple linear pinch could be the basis for a very attractive fusion system. The problem is, of course, that the seemingly simple act of passing 2 MA through a stable pinch has proven to be quite difficult to accomplish. The pinch tends to disrupt due to instabilities, either by the m=0 (sausage) or m=1 (kink) modes. Curtailing the growth of these instabilities has been the primary thrust of z-pinch fusion research, and over the years a wide variety of formation techniques have been tried. The early pinches were driven by relatively slow capacitive discharges and were formed by imploding a plasma column. The advent of fast pulsed power technology brought on a whole new repertoire of formation techniques, including: fast implosions, laser or field-enhanced breakdown in a uniform volume of gas, a discharge inside a small capillary, a frozen deuterium fiber isolated by vacuum, and staged concepts in which one pinch implodes upon another. And although none of these have yet to be successful, some have come tantalizingly close. This paper will review the history of this four-decade long quest for fusion power.

  8. Small-amplitude magnetic Rayleigh-Taylor instability growth in cylindrical liners and Z-pinches imploded in an axial magnetic field

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Clark, R. W.; Mikitchuk, D.; Kroupp, E.; Maron, Y.; Fisher, A.; Schmit, P. F.

    2014-10-01

    Recent progress in developing the MagLIF approach to pulsed-power driven inertial confinement fusion has stimulated the interest in observation and mitigation of the magnetic Rayleigh-Taylor instability (MRTI) of liners and Z-pinches imploded in an axial magnetic field. Theoretical analysis of these issues is particularly important because direct numerical simulation of the MRTI development is challenging due to intrinsically 3D helical structure of the fastest-growing modes. We review the analytical small-amplitude theory of the MRTI perturbation development and the weakly nonlinear theory of MRTI mode interaction, emphasizing basic physics, opportunity for 3D code verification against exact analytical solutions, and stabilization criteria. The theory is compared to the experimental results obtained at Weizmann Institute with gas-puff Z pinches and on the Z facility at Sandia with solid liners imploded in an axial magnetic field. Work supported by the US DOE/NNSA, and by the US-Israel Binational Science Foundation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  9. Electron beam generation in the turbulent plasma of Z-pinch discharges

    NASA Astrophysics Data System (ADS)

    Vikhrev, Victor V.; Baronova, Elena O.

    1997-05-01

    Numerical modeling of the process of electron beam generation in z-pinch discharges are presented. The proposed model represents the electron beam generation under turbulent plasma conditions. Strong current distribution inhomogeneity in the plasma column has been accounted for the adequate generation process investigation. Electron beam is generated near the maximum of compression due to run away mechanism and it is not related with the current break effect.

  10. Evaluation of Turner relaxed state as a model of long-lived ion-trapping structures in plasma focus and Z-pinches

    NASA Astrophysics Data System (ADS)

    Auluck, S. K. H.

    2011-03-01

    Relatively long-lived spheroidal structures coincident with the neutron emission phase have been observed in frozen deuterium fiber Z-pinch and some plasma focus devices. Existence of energetic ion-trapping mechanism in plasma focus has also been inferred from experimental data. It has been conjectured that these are related phenomena. This paper applies Turner's theory [L. Turner, IEEE Trans. Plasma Sci. 14, 849 (1986)] of relaxation of a Hall magnetofluid to construct a model of these structures and ion-trapping mechanism. Turner's solution modified for a finite-length plasma is used to obtain expressions for the magnetic field, velocity, and equilibrium pressure fields and is shown to represent an entity which is simultaneously a fluid vortex, a force-free magnetic field, a confined finite-pressure plasma, a charged object, and a trapped energetic ion beam. Characteristic features expected from diagnostic experiments are evaluated and shown to resemble experimental observations.

  11. Parameter scaling toward high-energy density in a quasi-steady flow Z-pinch

    NASA Astrophysics Data System (ADS)

    Hughes, M. C.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Kim, B.; Ross, M. P.

    2016-10-01

    Sheared axial flows are utilized by the ZaP Flow Z-Pinch Experiment to stabilize MHD instabilities. The pinches formed are 50 cm long with radii ranging from 0.3 to 1.0 cm. The plasma is generated in a coaxial acceleration region, similar to a Marshall gun, which provides a steady supply of plasma for approximately 100 us. The power to the plasma is partially decoupled between the acceleration and pinch assembly regions through the use of separate power supplies. Adiabatic scaling of the Bennett relation gives targets for future devices to reach high-energy density conditions or fusion reactors. The applicability of an adiabatic assumption is explored and work is done experimentally to clarify the plasma compression process, which may be more generally polytropic. The device is capable of a much larger parameter space than previous machine iterations, allowing flexibility in the initial conditions of the compression process to preserve stability. This work is supported by DoE FES and NNSA.

  12. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    DOE PAGES

    Vogman, G. V.; Shumlak, U.

    2011-10-13

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian functionmore » associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. As a result, these measurements are used to gain a better understanding of Z-pinch equilibria.« less

  13. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogman, G. V.; Shumlak, U.

    2011-10-15

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian functionmore » associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. These measurements are used to gain a better understanding of Z-pinch equilibria.« less

  14. 250 kA compact linear transformer driver for wire array z-pinch loads

    NASA Astrophysics Data System (ADS)

    Bott, S. C.; Haas, D. M.; Madden, R. E.; Ueda, U.; Eshaq, Y.; Collins, G., IV; Gunasekera, K.; Mariscal, D.; Peebles, J.; Beg, F. N.; Mazarakis, M.; Struve, K.; Sharpe, R.

    2011-05-01

    We present the application of a short rise (˜150ns) 250 kA linear transformer driver (LTD) to wire array z-pinch loads for the first time. The generator is a modification of a previous driver in which a new conical power feed provides a low inductance coupling to wire loads. Performance of the new design using both short circuit and plasma loads is presented and discussed. The final design delivers ˜200kA to a wire array load which is in good agreement with SCREAMER calculations using a simplified representative circuit. Example results demonstrate successful experiments using cylindrical, conical, and inverse wire arrays as well as previously published work on x-pinch loads.

  15. Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility

    NASA Astrophysics Data System (ADS)

    Huang, Xian Bin; Ren, Xiao Dong; Dan, Jia Kun; Wang, Kun Lun; Xu, Qiang; Zhou, Shao Tong; Zhang, Si Qun; Cai, Hong Chun; Li, Jing; Wei, Bing; Ji, Ce; Feng, Shu Ping; Wang, Meng; Xie, Wei Ping; Deng, Jian Jun

    2017-09-01

    The preliminary experimental results of Z-pinch dynamic hohlraums conducted on the Primary Test Stand (PTS) facility are presented herein. Six different types of dynamic hohlraums were used in order to study the influence of load parameters on radiation characteristics and implosion dynamics, including dynamic hohlraums driven by single and nested arrays with different array parameters and different foams. The PTS facility can deliver a current of 6-8 MA in the peak current and 60-70 ns in the 10%-90% rising time to dynamic hohlraum loads. A set of diagnostics monitor the implosion dynamics of plasmas, the evolution of shock waves in the foam and the axial/radial X-ray radiation, giving the key parameters characterizing the features of dynamic hohlraums, such as the trajectory and related velocity of shock waves, radiation temperature, and so on. The experimental results presented here put our future study on Z-pinch dynamic hohlraums on the PTS facility on a firm basis.

  16. Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion

    NASA Astrophysics Data System (ADS)

    Calamy, H.; Lassalle, F.; Loyen, A.; Zucchini, F.; Chittenden, J. P.; Hamann, F.; Maury, P.; Georges, A.; Bedoch, J. P.; Morell, A.

    2008-01-01

    The Sphinx machine [F. Lassalle et al., "Status on the SPHINX machine based on the 1microsecond LTD technology"] based on microsecond linear transformer driver (LTD) technology is used to implode an aluminium wire array with an outer diameter up to 140mm and maximum current from 3.5to5MA. 700to800ns implosion Z-pinch experiments are performed on this driver essentially with aluminium. Best results obtained before the improvement described in this paper were 1-3TW radial total power, 100-300kJ total yield, and 20-30kJ energy above 1keV. An auxiliary generator was added to the Sphinx machine in order to allow a multi microsecond current to be injected through the wire array load before the start of the main current. Amplitude and duration of this current prepulse are adjustable, with maxima ˜10kA and 50μs. This prepulse dramatically changes the ablation phase leading to an improvement of the axial homogeneity of both the implosion and the final radiating column. Total power was multiplied by a factor of 6, total yield by a factor of 2.5 with a reproducible behavior. This paper presents experimental results, magnetohydrodynamic simulations, and analysis of the effect of such a long current prepulse.

  17. Recombination-pumped XUV lasing in capillary discharges and dynamic z-pinches

    NASA Astrophysics Data System (ADS)

    Pöckl, M.; Hebenstreit, M.; Fertner, R.; Neger, T.; Aumayr, F.

    1996-08-01

    A fully time-dependent collisional - radiative model is employed to calculate relevant population densities in a recombining carbon/hydrogen z-pinch plasma. In particular, the dependence of the small signal gain G on the maximum electron temperature and cooling rate, as well as the influence of Lyman-0022-3727/29/8/005/img8 reabsorption, are studied. Although in conditions typical for dynamic z-pinches the maximum electron temperature and cooling rates would, in principle, be sufficiently high, gain on the Balmer-0022-3727/29/8/005/img8 transition is strongly reduced by Lyman-0022-3727/29/8/005/img8 reabsorption. In order to investigate vacuum spark capillary discharges, the system of rate equations is coupled with balance equations of the plasma energy and the total number of heavy particles. The resulting set of equations is solved self-consistently. Results are presented that show the systematic dependence of the small signal gain on electrical input power, wall material, and capillary geometry. High gain coefficients 0022-3727/29/8/005/img11 could be achieved by modelling high-voltage discharges with short ringing periods through capillaries containing boron or carbon. While the maximum achievable gain coefficient for lithium is rather poor 0022-3727/29/8/005/img12 the duration of population inversion would be long enough (a few tens of nanoseconds) to make multi-pass operation possible.

  18. Grazing incidence extreme ultraviolet spectrometer fielded with time resolution in a hostile z-pinch environment.

    PubMed

    Williamson, K M; Kantsyrev, V L; Safronova, A S; Wilcox, P G; Cline, W; Batie, S; LeGalloudec, B; Nalajala, V; Astanovitsky, A

    2011-09-01

    This recently developed diagnostic was designed to allow for time-gated spectroscopic study of the EUV radiation (4 nm < λ < 15 nm) present during harsh wire array z-pinch implosions. The spectrometer utilizes a 25 μm slit, an array of 3 spherical blazed gratings at grazing incidence, and a microchannel plate (MCP) detector placed in an off-Rowland position. Each grating is positioned such that its diffracted radiation is cast over two of the six total independently timed frames of the MCP. The off-Rowland configuration allows for a much greater spectral density on the imaging plate but only focuses at one wavelength per grating. The focal wavelengths are chosen for their diagnostic significance. Testing was conducted at the Zebra pulsed-power generator (1 MA, 100 ns risetime) at the University of Nevada, Reno on a series of wire array z-pinch loads. Within this harsh z-pinch environment, radiation yields routinely exceed 20 kJ in the EUV and soft x-ray. There are also strong mechanical shocks, high velocity debris, sudden vacuum changes during operation, energic ion beams, and hard x-ray radiation in excess of 50 keV. The spectra obtained from the precursor plasma of an Al double planar wire array contained lines of Al IX and AlX ions indicating a temperature near 60 eV during precursor formation. Detailed results will be presented showing the fielding specifications and the techniques used to extract important plasma parameters using this spectrometer. © 2011 American Institute of Physics

  19. The application of high-speed photography in z-pinch high-temperature plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Wang, Kui-lu; Qiu, Meng-tong; Hei, Dong-wei

    2007-01-01

    This invited paper is presented to discuss the application of high speed photography in z-pinch high temperature plasma diagnostics in recent years in Northwest Institute of Nuclear Technology in concentrative mode. The developments and applications of soft x-ray framing camera, soft x-ray curved crystal spectrometer, optical framing camera, ultraviolet four-frame framing camera and ultraviolet-visible spectrometer are introduced.

  20. Long implosion time (240 ns) Z-pinch experiments with a large diameter (12 cm) double-shell nozzle

    NASA Astrophysics Data System (ADS)

    Levine, J. S.; Banister, J. W.; Failor, B. H.; Qi, N.; Song, Y.; Sze, H. M.; Fisher, A.

    2004-05-01

    Recently, an 8 cm diameter double-shell nozzle has produced argon Z pinches with high K-shell yields with implosion time of 210 ns. To produce even longer implosion time Z pinches for facilities such as Decade Quad [D. Price, et al., "Electrical and Mechanical Design of the Decade Quad in PRS Mode," in Proceedings of the 12th IEEE Pulsed Power Conference, Monterey, CA, edited by C. Stallings and H. Kirbie (IEEE, New York, 1999), p. 489] (9 MA short circuit current at 300 ns), a larger nozzle (12 cm outer diameter) was designed and fabricated. During initial testing on Double-EAGLE [P. Sincerny et al., Proceedings of the 5th IEEE Pulsed Power Conference, Arlington, VA, edited by M. F. Rose and P. J. Turchi (IEEE, New York, 1985), p. 151], 9 kJ of argon K-shell radiation in a 6 ns full width at half maximum pulse was produced with a 240 ns implosion. The initial gas distributions produced by various nozzle configurations have been measured and their impact on the final radiative characteristics of the pinch are presented. The addition of a central jet to increase the initial gas density near the axis is observed to enhance the pinch quality, increasing K-shell yield by 17% and power by 40% in the best configuration tested.

  1. Analytic model to estimate thermonuclear neutron yield in z-pinches using the magnetic Noh problem

    NASA Astrophysics Data System (ADS)

    Allen, Robert C.

    The objective was to build a model which could be used to estimate neutron yield in pulsed z-pinch experiments, benchmark future z-pinch simulation tools and to assist scaling for breakeven systems. To accomplish this, a recent solution to the magnetic Noh problem was utilized which incorporates a self-similar solution with cylindrical symmetry and azimuthal magnetic field (Velikovich, 2012). The self-similar solution provides the conditions needed to calculate the time dependent implosion dynamics from which batch burn is assumed and used to calculate neutron yield. The solution to the model is presented. The ion densities and time scales fix the initial mass and implosion velocity, providing estimates of the experimental results given specific initial conditions. Agreement is shown with experimental data (Coverdale, 2007). A parameter sweep was done to find the neutron yield, implosion velocity and gain for a range of densities and time scales for DD reactions and a curve fit was done to predict the scaling as a function of preshock conditions.

  2. Fully kinetic simulations of dense plasma focus Z-pinch devices.

    PubMed

    Schmidt, A; Tang, V; Welch, D

    2012-11-16

    Dense plasma focus Z-pinch devices are sources of copious high energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood. We now have, for the first time, demonstrated a capability to model these plasmas fully kinetically, allowing us to simulate the pinch process at the particle scale. We present here the results of the initial kinetic simulations, which reproduce experimental neutron yields (~10(7)) and high-energy (MeV) beams for the first time. We compare our fluid, hybrid (kinetic ions and fluid electrons), and fully kinetic simulations. Fluid simulations predict no neutrons and do not allow for nonthermal ions, while hybrid simulations underpredict neutron yield by ~100x and exhibit an ion tail that does not exceed 200 keV. Only fully kinetic simulations predict MeV-energy ions and experimental neutron yields. A frequency analysis in a fully kinetic simulation shows plasma fluctuations near the lower hybrid frequency, possibly implicating lower hybrid drift instability as a contributor to anomalous resistivity in the plasma.

  3. Effect of the axial magnetic field on a metallic gas-puff pinch implosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousskikh, A. G.; Zhigalin, A. S.; Frolova, V.

    2016-06-15

    The effect of an axial magnetic field B{sub z} on an imploding metallic gas-puff Z-pinch was studied using 2D time-gated visible self-emission imaging. Experiments were performed on the IMRI-5 generator (450 kA, 450 ns). The ambient field B{sub z} was varied from 0.15 to 1.35 T. It was found that the initial density profile of a metallic gas-puff Z-pinch can be approximated by a power law. Time-gated images showed that the magneto-Rayleigh–Taylor instabilities were suppressed during the run-in phase both without axial magnetic field and with axial magnetic field. Helical instability structures were detected during the stagnation phase for B{sub z} < 1.1 T. For B{submore » z} = 1.35 T, the pinch plasma boundary was observed to be stable in both run-in and stagnation phases. When a magnetic field of 0.3 T was applied to the pinch, the soft x-ray energy was about twice that generated without axial magnetic field, mostly due to longer dwell time at stagnation.« less

  4. Measurements of high energy photons in Z-pinch experiments on primary test stand

    NASA Astrophysics Data System (ADS)

    Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-08-01

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 1010 cm-2 (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.

  5. Measurements of high energy photons in Z-pinch experiments on primary test stand.

    PubMed

    Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-08-01

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 10(10) cm(-2) (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.

  6. Wire Array Z-pinches on Sphinx Machine: Experimental Results and Relevant Points of Microsecond Implosion Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calamy, H.; Hamann, F.; Lassalle, F.

    Centre d'Etudes de Gramat (France) has developed an efficient long implosion time (800 ns) Aluminum plasma radiation source (PRS). Based on the LTD technology, the SPHINX facility is developed as a 1-3MJ, 1{mu}s rise time, 4-10 MA current driver. In this paper, it was used in 1MJ, 4MA configuration to drive Aluminum nested wire arrays Z-pinches with K-shell yield up to 20 kJ and a FWHM of the x-ray pulse of about 50 ns. We present latest SPHINX experiments and some of the main physic issues of the microsecond regime. Experimental setup and results are described with the aim ofmore » giving trends that have been obtained. The main features of microsecond implosion of wire arrays can be analyzed thanks to same methods and theories as used for faster Z-pinches. The effect of load polarity was examined. The stability of the implosion , one of the critical point of microsecond wire arrays due to the load dimensions imposed by the time scale, is tackled. A simple scaling from 100 ns Z-pinch results to 800 ns ones gives good results and the use of nested arrays improves dramatically the implosion quality and the Kshell yield of the load. However, additional effects such as the impact of the return current can geometry on the implosion have to be taken into account on our loads. Axial inhomogeneity of the implosion the origin of which is not yet well understood occurs in some shots and impacts the radiation output. The shape of the radiative pulse is discussed and compared with the homogeneity of the implosion. Numerical 2D R-Z and R-{theta} simulations are used to highlight some experimental results and understand the plasma conditions during these microsecond wire arrays implosions.« less

  7. Wire Array Z-pinches on Sphinx Machine: Experimental Results and Relevant Points of Microsecond Implosion Physics

    NASA Astrophysics Data System (ADS)

    Calamy, H.; Hamann, F.; Lassalle, F.; Bayol, F.; Mangeant, C.; Morell, A.; Huet, D.; Bedoch, J. P.; Chittenden, J. P.; Lebedev, S. V.; Jennings, C. A.; Bland, S. N.

    2006-01-01

    Centre d'Etudes de Gramat (France) has developed an efficient long implosion time (800 ns) Aluminum plasma radiation source (PRS). Based on the LTD technology, the SPHINX facility is developed as a 1-3MJ, 1μs rise time, 4-10 MA current driver. In this paper, it was used in 1MJ, 4MA configuration to drive Aluminum nested wire arrays Z-pinches with K-shell yield up to 20 kJ and a FWHM of the x-ray pulse of about 50 ns. We present latest SPHINX experiments and some of the main physic issues of the microsecond regime. Experimental setup and results are described with the aim of giving trends that have been obtained. The main features of microsecond implosion of wire arrays can be analyzed thanks to same methods and theories as used for faster Z-pinches. The effect of load polarity was examined. The stability of the implosion , one of the critical point of microsecond wire arrays due to the load dimensions imposed by the time scale, is tackled. A simple scaling from 100 ns Z-pinch results to 800 ns ones gives good results and the use of nested arrays improves dramatically the implosion quality and the Kshell yield of the load. However, additional effects such as the impact of the return current can geometry on the implosion have to be taken into account on our loads. Axial inhomogeneity of the implosion the origin of which is not yet well understood occurs in some shots and impacts the radiation output. The shape of the radiative pulse is discussed and compared with the homogeneity of the implosion. Numerical 2D R-Z and R-θ simulations are used to highlight some experimental results and understand the plasma conditions during these microsecond wire arrays implosions.

  8. High brightness electrodeless Z-Pinch EUV source for mask inspection tools

    NASA Astrophysics Data System (ADS)

    Horne, Stephen F.; Partlow, Matthew J.; Gustafson, Deborah S.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.

    2012-03-01

    Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinchTM light source since 1995. The source is currently being used for metrology, mask inspection, and resist development. Energetiq's higher brightness source has been selected as the source for pre-production actinic mask inspection tools. This improved source enables the mask inspection tool suppliers to build prototype tools with capabilities of defect detection and review down to 16nm design rules. In this presentation we will present new source technology being developed at Energetiq to address the critical source brightness issue. The new technology will be shown to be capable of delivering brightness levels sufficient to meet the HVM requirements of AIMS and ABI and potentially API tools. The basis of the source technology is to use the stable pinch of the electrodeless light source and have a brightness of up to 100W/mm(carat)2-sr. We will explain the source design concepts, discuss the expected performance and present the modeling results for the new design.

  9. Measurements of high-current electron beams from X pinches and wire array Z pinches.

    PubMed

    Shelkovenko, T A; Pikuz, S A; Blesener, I C; McBride, R D; Bell, K S; Hammer, D A; Agafonov, A V; Romanova, V M; Mingaleev, A R

    2008-10-01

    Some issues concerning high-current electron beam transport from the X pinch cross point to the diagnostic system and measurements of the beam current by Faraday cups are discussed. Results of computer simulation of electron beam propagation from the pinch to the Faraday cup give limits for the measured current for beams having different energy spreads. The beam is partially neutralized as it propagates from the X pinch to a diagnostic system, but within a Faraday cup diagnostic, space charge effects can be very important. Experimental results show evidence of such effects.

  10. Using a Z-pinch precursor plasma to produce a cylindrical, hotspot ignition, ICF

    NASA Astrophysics Data System (ADS)

    Chittenden, Jeremy

    2005-10-01

    We show that if the same precursor plasma that exists in metal wire arrays can be generated with a Deuterium-Tritium plasma then this precursor provides an ideal target for a cylindrical magneto-inertial ICF scheme. The precursor is generated from a fraction of the mass of the array which arrives on the axis early in time and remains confined at high density by the inertia of further material bombarding the axis. Later on, the main implosion of the DT Z-pinch produces a dense, low temperature shell which compressively heats the precursor target to high temperatures and tamps its expansion. The azimuthal magnetic field in the hotspot is sufficient to reduce the Larmor radius for the alpha particles to much less than the hotspot size, which dramatically reduces the ρR required for ignition. A computational analysis of this approach is presented, including a study of the thermonuclear burn wave propagation. The robustness of the scheme with respect to instabilities, confinement time and drive parameters is examined. The results indicate that a high energy gain can be achieved using Z-pinches with 50-100 MA currents and a few hundred nanosecond rise-times. This work was partially supported by the U.S. Department of Energy through cooperative agreement DE-FC03-02NA00057.

  11. The study of hard x-ray emission and electron beam generation in wire array Z-pinch and X-pinch plasmas at university-scale generators

    NASA Astrophysics Data System (ADS)

    Shrestha, Ishor Kumar

    The studies of hard x-ray (HXR) emission and electron beam generation in Z-pinch plasmas are very important for Inertial Confinement Fusion (ICF) research and HXR emission application for sources of K-shell and L-shell radiation. Energetic electron beams from Z-pinch plasmas are potentially a problem in the development of ICF. The electron beams and the accompanying HXR emission can preheat the fuel of a thermonuclear target, thereby preventing the fuel compression from reaching densities required for the ignition of a fusion reaction. The photons above 3-4 keV radiated from a Z pinch can provide detailed information about the high energy density plasmas produced at stagnation. Hence, the investigation of characteristics of hard x-rays and electron beams produced during implosions of wire array loads on university scale-generators may provide important data for future ICF, sources of K-shell and L-shell radiations and basic plasma research. This dissertation presents the results of experimental studies of HXR and electron beam generation in wire-array and X-pinch on the 1.7 MA, 100-ns current rise time Zebra generator at University of Nevada, Reno and 1-MA 100-ns current rise-time Cornell Beam Research Accelerator (COBRA) at Cornell University. The experimental study of characteristics of HXR produced by multi-planar wire arrays, compact cylindrical wire array (CCWA) and nested cylindrical wire array (NCWA) made from Al, Cu, Mo, Ag, W and Au were analyzed. The dependence of the HXR yield and power on geometry of the load, the wire material, and load mass was observed. The presence of aluminum wires in the load with the main material such as stainless steel, Cu, Mo, Ag, W or Au in combined wire array decreases HXR yield. The comparison of emission characteristics of HXR and generation of electron beams in CCWA and NCWA on both the high impedance Zebra generator and low impedance COBRA generator were investigated. Some of the "cold" K- shell spectral lines (0.7-2.3

  12. Acceleration of Hydrogen Ions up to 30 MeV and Generation of 3 × 1012 Neutrons in Megaampere Deuterium Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    Klir, D.; Cikhardt, J.; Kravarik, J.; Kubes, P.; Rezac, K.; Sila, O.; Shishlov, A.; Cherdizov, R.; Fursov, F.; Kokshenev, V.; Kovalchuk, B.; Kurmaev, N.; Labetsky, A.; Ratakhin, N.; Orcikova, H.; Turek, K.

    2013-10-01

    Fusion neutrons were produced with a deuterium gas-puff z-pinch on the GIT-12 generator at the Institute of High Current Electronics in Tomsk. The peak neutron yield from DD reactions reached Yn = (2 . 9 +/- 0 . 3) ×1012 at 100 μg/cm linear mass density of deuterium, 700 ns implosion time and 2.7 MA current. Such a neutron yield means that the scaling law of deuterium z-pinches Yn ~I4 was extended to 3 MA currents. The further increase of neutron yields up to (3 . 7 +/- 0 . 4) ×1012 was achieved by placing a deuterated polyethylene catcher onto the axis. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial nToF detectors, respectively. A stack of CR-39 track detectors showed up to 40 MeV deuterons (or 30 MeV protons) on the z-pinch axis. Since the energy input into plasmas was 70 kJ, the number of DD neutrons per one joule of stored plasma energy exceeded the value of 5 ×107 . This value implies that deuterium gas-puff z-pinches belong to the most efficient plasma-based sources of DD neutrons. This work was partially supported by the GACR grant No. P205/12/0454 and by the RFBR research project No. 13-08-00479-a.

  13. A non-LTE kinetic model for quick analysis of K-shell spectra from Z-pinch plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J., E-mail: s.duan@163.com; Huang, X. B., E-mail: s.duan@163.com; Cai, H. C., E-mail: s.duan@163.com

    Analyzing and modeling K-shell spectra emitted by low-to moderate-atomic number plasma is a useful and effective way to retrieve temperature density of z-pinch plasmas. In this paper, a non-LTE population kinetic model for quick analysis of K-shell spectra was proposed. The model contains ionization stages from bare nucleus to neutral atoms and includes all the important atomic processes. In the present form of the model, the plasma is assumed to be both optically thin and homogeneous with constant temperature and density, and only steady-state situation is considered. According to the detailed calculations for aluminum plasmas, contours of ratios of certainmore » K-shell lines in electron temperature and density plane as well as typical synthesized spectra were presented and discussed. The usefulness of the model is demonstrated by analyzing the spectrum from a neon gas-puff Z-pinch experiment performed on a 1 MA pulsed-power accelerator.« less

  14. Z pinches as intense x-ray sources for high-energy density physics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzen, M.K.

    1997-05-01

    Fast Z-pinch implosions can efficiently convert the stored electrical energy in a pulsed-power accelerator into x rays. These x rays are produced when an imploding cylindrical plasma, driven by the magnetic field pressure associated with very large axial currents, stagnates upon the cylindrical axis of symmetry. On the Saturn pulsed-power accelerator [R. B. Spielman {ital et al.}, in {ital Proceedings of the 2nd International Conference on Dense Z Pinches}, Laguna Beach, CA, 1989, edited by N. R. Pereira, J. Davis, and N. Rostoker (American Institute of Physics, New York, 1989), p. 3] at Sandia National Laboratories, for example, currents ofmore » 6{endash}8 MA with a rise time of less than 50 ns are driven through cylindrically symmetric loads, producing implosion velocities as high as 10{sup 8}cm/s and x-ray energies exceeding 400 kJ. Hydromagnetic Rayleigh{endash}Taylor instabilities and cylindrical load symmetry are critical, limiting factors in determining the assembled plasma densities and temperatures, and thus in the x-ray energies and pulse widths that can be produced on these accelerators. In recent experiments on the Saturn accelerator, these implosion nonuniformities have been minimized by using wire arrays with as many as 192 wires. Increasing the wire number produced significant improvements in the pinched plasma quality, reproducibility, and x-ray output power. X-ray pulse widths of less than 5 ns and peak powers of 75{plus_minus}10TW have been achieved with arrays of 120 tungsten wires. Similar loads have recently been fielded on the Particle Beam Fusion Accelerator (PBFA II), producing x-ray energies in excess of 1.8 MJ at powers in excess of 160 TW. These intense x-ray sources offer the potential for performing many new basic physics and fusion-relevant experiments. {copyright} {ital 1997 American Institute of Physics.}« less

  15. Investigating radial wire array Z pinches as a compact x-ray source on the Saturn generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ampleford, David J.; Bland, S. N.; Jennings, Christopher A.

    2015-08-27

    Radial wire array z pinches, where wires are positioned radially outward from a central cathode to a concentric anode, can act as a compact bright x-ray source that could potentially be used to drive a hohlraum. Experiments were performed on the 7-MA Saturn generator using radial wire arrays. These experiments studied a number of potential risks in scaling radial wire arrays up from the 1-MA level, where they have been shown to be a promising compact X-ray source. Data indicates that at 7 MA, radial wire arrays can radiate ~9 TW with 10-ns full-width at half-maximum from a compact pinch.

  16. Analytic model for the dynamic Z-pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R., E-mail: roberto.piriz@uclm.es; Sun, Y. B.; Tahir, N. A.

    2015-06-15

    A model is presented for describing the cylindrical implosion of a shock wave driven by an accelerated piston. It is based in the identification of the acceleration of the shocked mass with the acceleration of the piston. The model yields the separate paths of the piston and the shock. In addition, by considering that the shocked region evolves isentropically, the approximate profiles of all the magnitudes in the shocked region are obtained. The application to the dynamic Z-pinch is presented and the results are compared with the well known snowplow and slug models which are also derived as limiting casesmore » of the present model. The snowplow model is seen to yield a trajectory in between those of the shock and the piston. Instead, the neglect of the inertial effects in the slug model is seen to produce a too fast implosion, and the pressure uniformity is shown to lead to an unphysical instantaneous piston stopping when the shock arrives to the axis.« less

  17. Enhanced energy coupling and x-ray emission in Z-pinch plasma implosions

    NASA Astrophysics Data System (ADS)

    Whitney, K. G.; Thornhill, J. W.; Apruzese, J. P.; Davis, J.; Deeney, C.; Coverdale, C. A.

    2004-08-01

    Recent experiments conducted on the Saturn pulsed-power generator at Sandia National Laboratories [R. B. Spielman et al., in Proceedings of the Second International Conference on Dense Z Pinches, Laguna Beach, CA, 1989, edited by N. R. Pereira, J. Davis, and N. Rostoker (American Institute of Physics, New York, 1989), p. 3] have produced large amounts of x-ray output, which cannot be accounted for in conventional magnetohydrodynamic (MHD) calculations. In these experiments, the Saturn current had a rise time of ~180 ns in contrast to a rise time of ~60 ns in Saturn's earlier mode of operation. In both aluminum and tungsten wire-array Z-pinch implosions, 2-4 times more x-ray output was generated than could be supplied according to one-dimensional (1D) magnetohydrodynamic calculations by the combined action of the j×B acceleration forces and ohmic heating (as described by a classical Braginskii resistivity). In this paper, we reexamine the problem of coupling transmission line circuits to plasma fluid equations and derive expressions for the Z-pinch load circuit resistance and inductance that relate these quantities in a 1D analysis to the surface resistivity of the fluid, and to the magnetic field energy that is stored in the vacuum diode, respectively. Enhanced energy coupling in this analysis, therefore, comes from enhancements to the surface resistivity, and we show that plasma resistivities approximately three orders of magnitude larger than classical are needed in order to achieve energy inputs that are comparable to the Saturn experiment x-ray outputs. Large enhancements of the plasma resistivity increase the rate of magnetic field and current diffusion, significantly modify the qualitative features of the MHD, and raise important questions as to how the plasma fluid dynamics converts enhanced energy inputs into enhanced x-ray outputs. One-dimensional MHD calculations in which resistivity values are adjusted phenomenologically are used to illustrate how

  18. Inertial confinement fusion ablator physics experiments on Saturn and Nova

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, R.E.; Porter, J.L.; Chandler, G.A.

    1997-05-01

    The Saturn pulsed power accelerator [R. B. Spielman {ital et al.}, in {ital Proceedings of the 2nd International Conference on Dense} Z-{ital pinches}, Laguna Beach, CA, 1989, edited by N. R. Pereira, J. Davis, and N. Rostoker (American Institute of Physics, New York, 1989), p. 3] at Sandia National Laboratories (SNL) and the Nova laser [J. T. Hunt and D. R. Speck, Opt. Eng. {bold 28}, 461 (1989)] at Lawrence Livermore National Laboratory (LLNL) have been used to explore techniques for studying the behavior of ablator material in x-ray radiation environments comparable in magnitude, spectrum, and duration to those thatmore » would be experienced in National Ignition Facility (NIF) hohlraums [J. D. Lindl, Phys. Plasmas {bold 2}, 3933 (1995)]. The large x-ray outputs available from the Saturn pulsed-power-driven z pinch have enabled us to drive hohlraums of full NIF ignition scale size at radiation temperatures and time scales comparable to those required for the low-power foot pulse of an ignition capsule. The high-intensity drives available in the Nova laser have allowed us to study capsule ablator physics in smaller-scale hohlraums at radiation temperatures and time scales relevant to the peak power pulse for an ignition capsule. Taken together, these experiments have pointed the way to possible techniques for testing radiation-hydrodynamics code predictions of radiation flow, opacity, equation of state, and ablator shock velocity over the range of radiation environments that will be encountered in a NIF hohlraum. {copyright} {ital 1997 American Institute of Physics.}« less

  19. Observation of emission process in hydrogen-like nitrogen Z-pinch discharge with time integrated soft X-ray spectrum pinhole image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Y.; Kumai, H.; Nakanishi, Y.

    2013-02-15

    The emission spectra of hydrogen-like nitrogen Balmer at the wavelength of 13.4 nm in capillary Z-pinch discharge plasma are experimentally examined. Ionization to fully strip nitrogen at the pinch maximum, and subsequent rapid expansion cooling are required to establish the population inversion between the principal quantum number of n = 2 and n = 3. The ionization and recombination processes with estimated plasma parameters are evaluated by utilizing a time integrated spectrum pinhole image containing radial spatial information. A cylindrical capillary plasma is pinched by a triangular pulsed current with peak amplitude of 50 kA and pulse width of 50more » ns.« less

  20. Conversion of electromagnetic energy in Z-pinch process of single planar wire arrays at 1.5 MA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liangping, Wang; Mo, Li; Juanjuan, Han

    The electromagnetic energy conversion in the Z-pinch process of single planar wire arrays was studied on Qiangguang generator (1.5 MA, 100 ns). Electrical diagnostics were established to monitor the voltage of the cathode-anode gap and the load current for calculating the electromagnetic energy. Lumped-element circuit model of wire arrays was employed to analyze the electromagnetic energy conversion. Inductance as well as resistance of a wire array during the Z-pinch process was also investigated. Experimental data indicate that the electromagnetic energy is mainly converted to magnetic energy and kinetic energy and ohmic heating energy can be neglected before the final stagnation. Themore » kinetic energy can be responsible for the x-ray radiation before the peak power. After the stagnation, the electromagnetic energy coupled by the load continues increasing and the resistance of the load achieves its maximum of 0.6–1.0 Ω in about 10–20 ns.« less

  1. A kind of fast shutter for Z pinch diagnosis device.

    PubMed

    Wang, Liangping; Zhang, Xinjun; Sun, Tieping; Mao, Wentin

    2016-09-01

    A kind of fast shutter for protecting the diagnosis devices in Z pinch experiments is introduced in this paper. The shutter is composed of a pulling rod, a magnetic core, and a solenoid. Different from the traditional coils which were used at the voltage of 220 V, the solenoid we used must endure the high voltage of 5-10 kV and the deformation which maybe caused by the 5-10 T intense magnetic field. A creative configuration for the solenoid is developed including the winding guide, insulating sleeve, and stainless-steel sleeve. The experimental results show that the configuration of the solenoid is effective. The velocity of the valve is nearly 19 m/s and the time jitter of the shutdown is within 75 μs.

  2. A kind of fast shutter for Z pinch diagnosis device

    NASA Astrophysics Data System (ADS)

    Wang, Liangping; Zhang, Xinjun; Sun, Tieping; Mao, Wentin

    2016-09-01

    A kind of fast shutter for protecting the diagnosis devices in Z pinch experiments is introduced in this paper. The shutter is composed of a pulling rod, a magnetic core, and a solenoid. Different from the traditional coils which were used at the voltage of 220 V, the solenoid we used must endure the high voltage of 5-10 kV and the deformation which maybe caused by the 5-10 T intense magnetic field. A creative configuration for the solenoid is developed including the winding guide, insulating sleeve, and stainless-steel sleeve. The experimental results show that the configuration of the solenoid is effective. The velocity of the valve is nearly 19 m/s and the time jitter of the shutdown is within 75 μs.

  3. Electron temperature diagnostics of aluminium plasma in a z-pinch experiment at the “QiangGuang-1" facility

    NASA Astrophysics Data System (ADS)

    Li, Mo; Wu, Jian; Wang, Liang-Ping; Wu, Gang; Han, Juan-Juan; Guo, Ning; Qiu, Meng-Tong

    2012-12-01

    Two curved crystal spectrometers are set up on the “QiangGuang-1" generator to measure the z-pinch plasma spectra emitted from planar aluminum wire array loads. Kodak Biomax-MS film and an IRD AXUVHS5# array are employed to record time-integrated and time-resolved free-bound radiation, respectively. The photon energy recorded by each detector is ascertained by using the L-shell lines of molybdenum plasma. Based on the exponential relation between the continuum power and photon energies, the aluminum plasma electron temperatures are measured. For the time-integrated diagnosis, several “bright spots" indicate electron temperatures between (450 eV ~ 520 eV) ± 35%. And for the time-resolved ones, the result shows that the electron temperature reaches about 800 eV ± 30% at peak power. The system satisfies the demand of z-pinch plasma electron temperature diagnosis on a ~ 1 MA facility.

  4. Effect of Pressure Anisotropy on the m = 1 Small Wavelength Modes in Z-Pinches

    NASA Astrophysics Data System (ADS)

    Faghihi, M.

    1987-05-01

    A generalization of Freidberg's perpendicular MHD model is used to investigate the effect of pressure anisotropy on the small wavelength internal kink (m = 1) mode instability in a Z-Pinch. A normal mode analysis of perturbed motion of an incompressible, collisionless and cylindrical plasma is performed. The stability criterion is (rΣB2)' <= 0, where Σ = 1 - (P|| - P⊥)/B2. It cannot be fulfilled without violation of the fire hose stability condition Σ >= 0.

  5. 3D MHD Simulations of Radial Wire Array Z-pinches

    NASA Astrophysics Data System (ADS)

    Niasse, N.; Chittenden, J. P.; Bland, S. N.; Suzuki-Vidal, F. A.; Hall, G. N.; Lebedev, S. V.; Calamy, H.; Zucchini, F.; Lassalle, F.; Bedoch, J. P.

    2009-01-01

    Recent experiments carried out on the MAGPIE (1 MA, 250 ns), OEDIPE (730 kA, 1.5 μs) and SPHINX (4 MA, 700 ns)[1] facilities have shown the relatively high level of scalability of the Radial Wire Array Z-pinches. These configurations where the wires stretch radially outwards from a central cathode offer numerous advantages over standard cylindrical arrays. In particular, imploding in a very stable and compact way, they seem suitable for coupling to small scale hohlraums. Making use of the 3D resistive magneto-hydrodynamic code GORGON[2] developed at Imperial College, the dynamic of the radial wire arrays is investigated. Influence of the cathode hotspots and wires angle on the x-ray emissions is also discussed. Comparison with experiments is offered to validate the numerical studies.

  6. Current halo structures in high-current plasma experiments: θ-pinch

    NASA Astrophysics Data System (ADS)

    Matveev, Yu. V.

    2007-03-01

    Experimental data elucidating mechanisms for halo formation in θ-pinch discharges are presented and discussed. The experiments were performed with different gases (H2, D2, He, and Ar) in a theta-pinch device with a porcelain vacuum chamber and an excitation coil 15 cm in diameter and 30 cm in length. The stored energy, the current in the excitation coil, and the current half-period were W = 10 kJ, I = 400 kA, and T/2 = 14 μs, respectively. It is found that the plasma rings (halos) surrounding the pinch core arise as a result of coaxial pinch stratification due to both the excitation of closed currents (inductons) inside the pinch and the radial convergence of the plasma current sheaths produced after the explosion of T-layers formed near the wall in the initial stage of the discharge. It is concluded that halo structures observed in pinches, tokamaks, and other high-current devices used in controlled fusion research have the same nature.

  7. Dynamics of current sheath in a hollow electrode Z-pinch discharge using slug model

    NASA Astrophysics Data System (ADS)

    Abd Al-Halim, Mohamed A.; Afify, M. S.

    2017-03-01

    The hollow electrode Z-pinch (HEZP) experiment is a new construction for the electromagnetic propulsion application in which the plasma is formed by the discharge between a plate and ring electrodes through which the plasma is propelled. The experimental results for 8 kV charging voltage shows that the peak discharge current is about 109 kA, which is in good agreement with the value obtained from the simulation in the slug model that simulates the sheath dynamics in the HEZP. The fitting of the discharge current from the slug model indicates that the total system inductance is 238 nH which is relatively a high static inductance accompanied with a deeper pinch depth indicating that the fitted anomalous resistance would be about 95 mΩ. The current and mass factors vary with the changing the gas pressure and the charging voltage. The current factor is between 0.4 and 0.5 on average which is relatively low value. The mass factor decreases by increasing the gas pressure indicating that the sheath is heavy to be driven by the magnetic pressure, which is also indicated from the decreases of the drive factor, hence the radial sheath velocity decreases. The plasma inductance and temperature increase with the increase of the drive factor while the minimum pinch radius decreases.

  8. Charger 1: A New Facility for Z-Pinch Research

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Cassibry, Jason; Cortez, Ross; Doughty, Glen; Adams, Robert; DeCicco, Anthony

    2017-01-01

    Charger 1 is a multipurpose pulsed power laboratory located on Redstone Arsenal, with a focus on fusion propulsion relevant experiments involving testing z-pinch diodes, pulsed magnetic nozzle and other related physics experiments. UAH and its team of pulsed power researchers are investigating ways to increase and optimize fusion production from Charger 1. Currently the team has reached high-power testing. Due to the unique safety issues related to high power operations the UAH/MSFC team has slowed repair efforts to develop safety and operations protocols. The facility is expected to be operational by the time DZP 2017 convenes. Charger 1 began life as the Decade Module 2, an experimental prototype built to prove the Decade Quad pinch configuration. The system was donated to UAH by the Defense Threat Reduction Agency (DRTA) in 2012. For the past 5 years a UAH/MSFC/Boeing team has worked to refurbish, assemble and test the system. With completion of high power testing in summer 2017 Charger 1 will become operational for experimentation. Charger 1 utilizes a Marx Bank of 72 100-kV capacitors that are charged in parallel and discharged in series. The Marx output is compressed to a pulse width of approximately 200 ns via a pulse forming network of 32 coaxial stainless steel tubes using water as a dielectric. After pulse compression a set of SF6 switches are triggered, allowing the wave front to propagate through the output line to the load. Charger 1 is capable of storing 572-kJ of energy and time compressing discharge to less than 250 ns discharge time producing a discharge of about 1 TW of discharge with 1 MV and 1 MA peak voltage and current, respectively. This capability will be used to study energy yield scaling and physics from solid density target as applied to advanced propulsion research.

  9. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin, E-mail: caephxb2003@aliyun.com

    2015-11-15

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter tomore » yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.« less

  10. Impact of cross-field motion on ablation of high-Z dust in fusion edge plasmas

    DOE PAGES

    Smirnov, R. D.; Krasheninnikov, S. I.

    2017-07-05

    The impact of cross-field motion of high-Z dust grains on their shielding by ablation cloud in edge plasmas of tokamaks is analyzed. The modification of the existing high-Z dust shielding theory is developed, which takes the dust motion effects into account. We show that the cross-field motion can lead to a large factor increase of the dust ablation rate, as compared to the previous model. It is also shown that the motion effects take place when the dust cross-field velocity exceeds a threshold value. We also obtain the dependencies of the dust ablation flux on the dust velocity and ofmore » the threshold velocity on the dust size and the ambient plasma temperature.« less

  11. Impact of cross-field motion on ablation of high-Z dust in fusion edge plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, R. D.; Krasheninnikov, S. I.

    The impact of cross-field motion of high-Z dust grains on their shielding by ablation cloud in edge plasmas of tokamaks is analyzed. The modification of the existing high-Z dust shielding theory is developed, which takes the dust motion effects into account. We show that the cross-field motion can lead to a large factor increase of the dust ablation rate, as compared to the previous model. It is also shown that the motion effects take place when the dust cross-field velocity exceeds a threshold value. We also obtain the dependencies of the dust ablation flux on the dust velocity and ofmore » the threshold velocity on the dust size and the ambient plasma temperature.« less

  12. Impact of High-Z Coatings on the Ablation Pressure of Laser Driven Targets.

    NASA Astrophysics Data System (ADS)

    Mostovych, Andrew; Oh, Jaechul; Schmitt, Andrew; Weaver, James

    2007-11-01

    Recent hydrodynamic experiments [1] with planar high-Z coated targets at the Naval Research Laboratory and spherical implosion experiments with high-Z coated shell targets [2] at the Omega facility all show significant improvement in target stability as a result of the high-Z coatings. For better understanding of the hydrodynamic processes it is important to know the changes in ablation pressure as a result of the high-Z layers. Using the Nike Laser, we have conducted new experiments to measure the change in shock speed of planar CH targets that are irradiated with and without the presence of a 200 Ang. gold high-Z coating. The evolution of shock propagation inside the targets is diagnosed with VISAR probing while average shock velocities are also measured by shock breakout detection from the stepped rear surface of the targets. We find that the high-Z layers produce a time dependent ablation pressure which is detected via the observation of non-steady shocks in the targets. Experimental results and comparisons to hydrodynamic simulations will be presented. Work supported by U. S. Department of Energy. [1] S.P. Obenschain et al., Phys. Plasmas 9, 2234 (2002). [2] A.N. Mostovych et al., APS Abstracts DPPFO3002M, (2005).

  13. EQ-10 electrodeless Z-pinch EUV source for metrology applications

    NASA Astrophysics Data System (ADS)

    Gustafson, Deborah; Horne, Stephen F.; Partlow, Matthew J.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.

    2011-11-01

    With EUV Lithography systems shipping, the requirements for highly reliable EUV sources for mask inspection and resist outgassing are becoming better defined, and more urgent. The sources needed for metrology applications are very different than that needed for lithography; brightness (not power) is the key requirement. Suppliers for HVM EUV sources have all resources working on high power and have not entered the smaller market for metrology. Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinchTM light source since 19951. The source is currently being used for metrology, mask inspection, and resist development2-4. These applications require especially stable performance in both output power and plasma size and position. Over the last 6 years Energetiq has made many source modifications which have included better thermal management to increase the brightness and power of the source. We now have introduced a new source that will meet requirements of some of the mask metrology first generation tools; this source will be reviewed.

  14. A Compact Soft X-Ray Microscope using an Electrode-less Z-Pinch Source.

    PubMed

    Horne, S F; Silterra, J; Holber, W

    2009-01-01

    Soft X-rays (< 1Kev) are of medical interest both for imaging and microdosimetry applications. X-ray sources at this low energy present a technological challenge. Synchrotrons, while very powerful and flexible, are enormously expensive national research facilities. Conventional X-ray sources based on electron bombardment can be compact and inexpensive, but low x-ray production efficiencies at low electron energies restrict this approach to very low power applications. Laser-based sources tend to be expensive and unreliable. Energetiq Technology, Inc. (Woburn, MA, USA) markets a 92 eV, 10W(2pi sr) electrode-less Z-pinch source developed for advanced semiconductor lithography. A modified version of this commercial product has produced 400 mW at 430 eV (2pi sr), appropriate for water window soft X-ray microscopy. The US NIH has funded Energetiq to design and construct a demonstration microscope using this source, coupled to a condenser optic, as the illumination system. The design of the condenser optic matches the unique characteristics of the source to the illumination requirements of the microscope, which is otherwise a conventional design. A separate program is underway to develop a microbeam system, in conjunction with the RARAF facility at Columbia University, NY, USA. The objective is to develop a focused, sub-micron beam capable of delivering > 1 Gy/second to the nucleus of a living cell. While most facilities of this type are coupled to a large and expensive particle accelerator, the Z-pinch X-ray source enables a compact, stand-alone design suitable to a small laboratory. The major technical issues in this system involve development of suitable focusing X-ray optics. Current status of these programs will be reported.

  15. A Compact Soft X-Ray Microscope using an Electrode-less Z-Pinch Source

    PubMed Central

    Silterra, J; Holber, W

    2009-01-01

    Soft X-rays (< 1Kev) are of medical interest both for imaging and microdosimetry applications. X-ray sources at this low energy present a technological challenge. Synchrotrons, while very powerful and flexible, are enormously expensive national research facilities. Conventional X-ray sources based on electron bombardment can be compact and inexpensive, but low x-ray production efficiencies at low electron energies restrict this approach to very low power applications. Laser-based sources tend to be expensive and unreliable. Energetiq Technology, Inc. (Woburn, MA, USA) markets a 92 eV, 10W(2pi sr) electrode-less Z-pinch source developed for advanced semiconductor lithography. A modified version of this commercial product has produced 400 mW at 430 eV (2pi sr), appropriate for water window soft X-ray microscopy. The US NIH has funded Energetiq to design and construct a demonstration microscope using this source, coupled to a condenser optic, as the illumination system. The design of the condenser optic matches the unique characteristics of the source to the illumination requirements of the microscope, which is otherwise a conventional design. A separate program is underway to develop a microbeam system, in conjunction with the RARAF facility at Columbia University, NY, USA. The objective is to develop a focused, sub-micron beam capable of delivering > 1 Gy/second to the nucleus of a living cell. While most facilities of this type are coupled to a large and expensive particle accelerator, the Z-pinch X-ray source enables a compact, stand-alone design suitable to a small laboratory. The major technical issues in this system involve development of suitable focusing X-ray optics. Current status of these programs will be reported. PMID:20198115

  16. Staged Z-pinch Experiments at the 1MA Zebra pulsed-power generator: Neutron measurements

    NASA Astrophysics Data System (ADS)

    Ruskov, Emil; Darling, T.; Glebov, V.; Wessel, F. J.; Anderson, A.; Beg, F.; Conti, F.; Covington, A.; Dutra, E.; Narkis, J.; Rahman, H.; Ross, M.; Valenzuela, J.

    2017-10-01

    We report on neutron measurements from the latest Staged Z-pinch experiments at the 1MA Zebra pulsed-power generator. In these experiments a hollow shell of argon or krypton gas liner, injected between the 1 cm anode-cathode gap, compresses a deuterium plasma target of varying density. Axial magnetic field Bz <= 2 kGs, applied throughout the pinch region, stabilizes the Rayleigh-Taylor instability. The standard silver activation diagnostics and 4 plastic scintillator neutron Time of Flight (nTOF) detectors are augmented with a large area ( 1400 cm2) liquid scintillator detector to which fast gatedPhotek photomultipliers are attached. Sample data from these neutron diagnostics systems is presented. Consistently high neutron yields YDD >109 are measured, with highest yield of 2.6 ×109 . A pair of horizontally and vertically placed plastic scintillator nTOFs suggest isotropic i.e. thermonuclear origin of the neutrons produced. nTOF data from the liquid scintillator detector was cross-calibrated with the silver activation detector, and can be used for accurate calculation of the neutron yield. Funded by the Advanced Research Projects Agency - Energy, under Grant Number DE-AR0000569.

  17. Wire array Z-pinch insights for enhanced x-ray production

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Mock, R. C.; Spielman, R. B.; Haines, M. G.; Chittenden, J. P.; Whitney, K. G.; Apruzese, J. P.; Peterson, D. L.; Greenly, J. B.; Sinars, D. B.; Reisman, D. B.; Mosher, D.

    1999-05-01

    Comparisons of measured total radiated x-ray power from annular wire-array z-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci. 26, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh-Taylor instability in the r-z plane, develop. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the two-dimensional Eulerian-radiation- magnetohydrodynamics code (E-RMHC) [Phys. Plasmas 3, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh-Taylor instability in the r-z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels.

  18. PINCHED PLASMA REACTOR

    DOEpatents

    Phillips, J.A.; Suydam, R.; Tuck, J.L.

    1961-07-01

    BS>A plasma confining and heating reactor is described which has the form of a torus with a B/sub 2/ producing winding on the outside of the torus and a helical winding of insulated overlapping tunns on the inside of the torus. The inner helical winding performs the double function of shielding the plasma from the vitreous container and generating a second B/sub z/ field in the opposite direction to the first B/sub z/ field after the pinch is established.

  19. Development and demonstration of a water-window soft x-ray microscope using a Z-pinching capillary discharge source

    NASA Astrophysics Data System (ADS)

    Nawaz, M. F.; Jancarek, Alexandr; Nevrkla, Michal; Duda, Martin Jakub; Pina, Ladislav

    2017-05-01

    The development and demonstration of a soft X-ray (SXR) microscope, based on a Z-pinching capillary discharge source has been realized. The Z-pinching plasma acts as a source of SXR radiation. A ceramic capacitor bank is pulsed charged up to 80 kV, and discharged through a pre- ionized nitrogen filled ceramic capillary. The discharge current has an amplitude of 25 kA. Working within the water-window spectral region (λ = 2.88 nm), corresponding to the 1s2-1s2p quantum transition of helium-like nitrogen (N5+), the microscope has a potential in exploiting the natural contrast existing between the K-absorption edges of carbon and oxygen as the main constituents of biological materials, and hence imaging them with high spatial resolution. The SXR microscope uses the grazing incidence ellipsoidal condenser mirror for the illumination, and the Fresnel zone plate optics for the imaging of samples onto a BI-CCD camera. The half- pitch spatial resolution of 100 nm [1] was achieved, as demonstrated by the knife-edge test. In order to enhance the photon-flux at the sample plane, a new scheme for focusing the radiation, from multiple capillary sources has been investigated. Details about the source, and the construction of the microscope are presented and discussed.

  20. MAIZE: a 1 MA LTD-Driven Z-Pinch at The University of Michigan

    NASA Astrophysics Data System (ADS)

    Gilgenbach, R. M.; Gomez, M. R.; Zier, J. C.; Tang, W. W.; French, D. M.; Lau, Y. Y.; Mazarakis, M. G.; Cuneo, M. E.; Johnston, M. D.; Oliver, B. V.; Mehlhorn, T. A.; Kim, A. A.; Sinebryukhov, V. A.

    2009-01-01

    Researchers at The University of Michigan have constructed and tested a 1-MA Linear Transformer Driver (LTD), the first of its type to reach the USA. The Michigan Accelerator for Inductive Z-pinch Experiments, (MAIZE), is based on the LTD developed at the Institute of High Current Electronics in collaboration with Sandia National Labs and UM. This LTD utilizes 80 capacitors and 40 spark gap switches, arranged in 40 "bricks," to deliver a 1 MA, 100 kV pulse with 100 ns risetime into a matched resistive load. Preliminary resistive-load test results are presented for the LTD facility. Planned experimental research programs at UM include: a) Studies of Magneto-Raleigh-Taylor instability of planar foils, and b) Vacuum convolute studies including cathode and anode plasma.

  1. Radial and Azimuthal Velocity Profiles in Gas-Puff Z-Pinches

    NASA Astrophysics Data System (ADS)

    Rocco, Sophia; Engelbrecht, Joseph; Banasek, Jacob; de Grouchy, Philip; Qi, Niansheng; Hammer, David

    2016-10-01

    The dynamics of neon, argon, and krypton (either singly or in combination) gas puff z-pinch plasmas are studied on Cornell's 1MA, 100-200ns rise-time COBRA pulsed power generator. The triple-nozzle gas puff valve, consisting of two annular gas puffs and a central jet, allows radial tailoring of the gas puff mass-density profile and the use of 1, 2 or 3 different gases at different pressures. Interferometry supplies information on sheath thickness and electron density, variously filtered PCDs and silicon diodes measure hard and soft x-ray production, and multi frame visible and extreme UV imaging systems allow tracking of the morphology of the plasma. A 527nm, 10J Thomson scattering diagnostic system is used to determine radial and azimuthal velocities. Implosion velocities of 170km/s (Kr) and 300km/s (Ne/Ar) are observed. We are investigating the correlations between instability growth, plasma density profile, velocity partitioning as a function of radius, and radiation production. Research supported by the NNSA Stewardship Sciences Academic Programs under DOE Cooperative Agreement No. DE-NA0001836.

  2. Compression of an Applied Bz field by a z-pinch onto a Tamped DT Fiber for Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Nash, Tom

    2009-11-01

    Simulations of a z-pinch compressing an applied 100 kG Bz field onto an on-axis DT fiber tamped with beryllium show the field reaching over 100 MG in the tamp, sufficient to confine DT alpha particles and to form a thermal barrier. The barrier allows the DT plasma to burn at a rho*r value as low as 0.045 g/cm^2, and at temperatures over 50 keV for a 63 MA drive current. Driving currents between 21 and 63 MA are considered with cryogenic DT fiber diameters between 600 μm and 1.6 mm. Pinch implosion times are 120 ns with a peak implosion velocity of 35 cm/μs. 1D simulations are of a foil pinch, but for improved stability we propose a nested wire-array. Simulated fusion yields with this system scale as the sixth power of the current, with burn fractions scaling as the fourth power of the current. At 63 MA the simulated yield is 521 MJ from 4.2 mg/cm of DT with a 37% burn fraction at a rho*r of only 0.18 g/cm^2.

  3. Use of vacuum arc plasma guns for a metal puff Z-pinch system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousskikh, A. G.; Zhigalin, A. S.; Oreshkin, V. I.

    The performance of a metal puff Z-pinch system has been studied experimentally. In this type of system, the initial cylindrical shell 4 cm in diameter was produced by ten plasma guns. Each gun initiates a vacuum arc operating between magnesium electrodes. The net current of the guns was 80 kA. The arc-produced plasma shell was compressed by using a 450-kA, 450-ns driver, and as a result, a plasma column 0.3 cm in diameter was formed. The electron temperature of the plasma reached 400 eV at an average ion concentration of 1.85 {center_dot} 10{sup 18} cm{sup -3}. The power of themore » Mg K-line radiation emitted by the plasma for 15-30 ns was 300 MW/cm.« less

  4. Hard X-ray and Particle Beams Research on 1.7 MA Z-pinch and Laser Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Shrestha, Ishor; Kantsyrev, Victor; Safronova, Alla; Esaulov, Andrey; Nishio, Mineyuki; Shlyaptseva, Veronica; Keim, Steven; Weller, Michael; Stafford, Austin; Petkov, Emil; Schultz, Kimberly; Cooper, Matthew; PPDL Team

    2013-10-01

    Studies of hard x-ray (HXR) emission, electron and ion beam generation in z-pinch and laser plasmas are important for Inertial Confinement Fusion (ICF) and development of HXR sources from K-shell and L-shell radiation. The characteristics of HXR and particle beams produced by implosions of planar wire arrays, nested and single cylindrical wire arrays, and X-pinches were analyzed on 100 ns UNR Zebra generator with current up to 1.7 MA. In addition, the comparison of characteristics of HXR and electron beams on Zebra and 350 fs UNR Leopard laser experiments with foils has been performed. The diagnostics include Faraday cups, HXR diodes, different x-ray spectrometers and imaging systems, and ion mass spectrometer using the technique of Thomson parabola. Future work on HXRs and particle beams in HED plasmas is discussed. This work was supported by the DOE/NNSA Cooperative agreement DE-NA0001984 and in part by DE-FC52-06NA27616. This work was also supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-13-1-0033, to University of Nevada, Reno.

  5. Neutron Activation Diagnostics in Deuterium Gas-Puff Experiments on the 3 MA GIT-12 Z-Pinch

    NASA Astrophysics Data System (ADS)

    Cikhardt, J.; Klir, D.; Rezac, K.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A. V.; Cherdizov, R. K.; Fursov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu; Ratakhin, N. A.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.; Turek, K.

    2016-10-01

    The experiments with a deuterium z-pinch on the GIT-12 generator at IHCE in Tomsk were performed in the frame of the Czech-Russian agreement. A set of neutron diagnostics included scintillation time-of-flight detectors, bubble detectors, and several kinds of threshold nuclear activation detectors in the order to obtain information about the yield, anisotropy, and spectrum of the neutrons produced by a deuterium gas-puff. The average neutron yield in these experiments was of the order of 1012 neutrons per a single shot. The energy spectrum of the produced neutrons was evaluated using neutron time-of-flight detectors and a set of neutron activation detectors. Because the deuterons in the pinch achieve multi-MeV energies, non-DD neutrons are produced by nuclear reactions of deuterons with a stainless steel vacuum chamber and aluminum components of diagnostics inside the chamber. An estimated number of the non-DD was of the order of 1011. GACR (Grant No. 16-07036S), CME (Grant Nos. LD14089, LG13029, and LH13283), MESRF (Grant No. RFMEFI59114X0001), IAEA (Grant No. RC17088), CTU (Grant No. SGS 16/223/OHK3/3T/13).

  6. Efficient generation of fast neutrons by magnetized deuterons in an optimized deuterium gas-puff z-pinch

    NASA Astrophysics Data System (ADS)

    Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cherdizov, R. K.; Cikhardt, J.; Cikhardtova, B.; Dudkin, G. N.; Fursov, F. I.; Garapatsky, A. A.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Orcikova, H.; Padalko, V. N.; Ratakhin, N. A.; Sila, O.; Turek, K.; Varlachev, V. A.

    2015-04-01

    Z-pinch experiments with deuterium gas puffs have been carried out on the GIT-12 generator at 3 MA currents. Recently, a novel configuration of a deuterium gas-puff z-pinch was used to accelerate deuterons and to generate fast neutrons. In order to form a homogeneous, uniformly conducting layer at a large initial radius, an inner deuterium gas puff was surrounded by an outer hollow cylindrical plasma shell. The plasma shell consisting of hydrogen and carbon ions was formed at the diameter of 350 mm by 48 plasma guns. A linear mass of the plasma shell was about 5 µg cm-1 whereas a total linear mass of deuterium gas in single or double shell gas puffs was about 100 µg cm-1. The implosion lasted 700 ns and seemed to be stable up to a 5 mm radius. During stagnation, m = 0 instabilities became more pronounced. When a disruption of necks occurred, the plasma impedance reached 0.4 Ω and high energy (>2 MeV) bremsstrahlung radiation together with high energy deuterons were produced. Maximum neutron energies of 33 MeV were observed by axial time-of-flight detectors. The observed neutron spectra could be explained by a suprathermal distribution of deuterons with a high energy tail f≤ft({{E}\\text{d}}\\right)\\propto E\\text{d}-(1.8+/- 0.2) . Neutron yields reached 3.6 × 1012 at a 2.7 MA current. A high neutron production efficiency of 6 × 107 neutrons per one joule of plasma energy resulted from the generation of high energy deuterons and from their magnetization inside plasmas.

  7. Compression mechanisms in the plasma focus pinch

    NASA Astrophysics Data System (ADS)

    Lee, S.; Saw, S. H.; Ali, Jalil

    2017-03-01

    The compression of the plasma focus pinch is a dynamic process, governed by the electrodynamics of pinch elongation and opposed by the negative rate of change of current dI/dt associated with the current dip. The compressibility of the plasma is influenced by the thermodynamics primarily the specific heat ratio; with greater compressibility as the specific heat ratio γ reduces with increasing degree of freedom f of the plasma ensemble due to ionization energy for the higher Z (atomic number) gases. The most drastic compression occurs when the emitted radiation of a high-Z plasma dominates the dynamics leading in extreme cases to radiative collapse which is terminated only when the compressed density is sufficiently high for the inevitable self-absorption of radiation to occur. We discuss the central pinch equation which contains the basic electrodynamic terms with built-in thermodynamic factors and a dQ/dt term; with Q made up of a Joule heat component and absorption-corrected radiative terms. Deuterium is considered as a thermodynamic reference (fully ionized perfect gas with f = 3) as well as a zero-radiation reference (bremsstrahlung only; with radiation power negligible compared with electrodynamic power). Higher Z gases are then considered and regimes of thermodynamic enhancement of compression are systematically identified as are regimes of radiation-enhancement. The code which incorporates all these effects is used to compute pinch radius ratios in various gases as a measure of compression. Systematic numerical experiments reveal increasing severity in radiation-enhancement of compressions as atomic number increases. The work progresses towards a scaling law for radiative collapse and a generalized specific heat ratio incorporating radiation.

  8. Investigation of magnetic flux transport and shock formation in a staged Z-pinch

    NASA Astrophysics Data System (ADS)

    Narkis, J.; Rahman, H. U.; Wessel, F. J.; Beg, F. N.

    2017-10-01

    Target preheating is an integral component of magnetized inertial fusion in reducing convergence ratio. In the staged Z-pinch concept, it is achieved via one or more shocks. Previous work [Narkis et al., Phys. Plasmas 23, 122706 (2016)] found that shock formation in the target occurred earlier in higher-Z liners due to faster flux transport to the target/liner interface. However, a corresponding increase in magnitude of magnetic pressure was not observed, and target implosion velocity (and therefore shock strength) remained unchanged. To investigate other means of increasing the magnitude of transported flux, a Korteweg-de Vries-Burgers equation from the 1-D single-fluid, resistive magnetohydrodynamic equations is obtained. Solutions to the nondispersive (i.e., Burgers) equation depend on nondimensional coefficients, whose dependence on liner density, temperature, etc., suggests an increase in target implosion velocity, and therefore shock strength, can be obtained by tailoring the mass of a single-liner gas puff to a double-liner configuration. In the selected test cases of 1-D simulated implosions of krypton on deuterium, the peak Mach number increased from ˜ 5 to ˜ 8 . While a notable increase was seen, Mach numbers exceeding 10 (implosion velocities exceeding ˜25 cm/μs) are necessary for adequate shock preheating.

  9. Wide range scaling laws for radiation driven shock speed, wall albedo and ablation parameters for high-Z materials

    NASA Astrophysics Data System (ADS)

    Mishra, Gaurav; Ghosh, Karabi; Ray, Aditi; Gupta, N. K.

    2018-06-01

    Radiation hydrodynamic (RHD) simulations for four different potential high-Z hohlraum materials, namely Tungsten (W), Gold (Au), Lead (Pb), and Uranium (U) are performed in order to investigate their performance with respect to x-ray absorption, re-emission and ablation properties, when irradiated by constant temperature drives. A universal functional form is derived for estimating time dependent wall albedo for high-Z materials. Among the high-Z materials studied, it is observed that for a fixed simulation time the albedo is maximum for Au below 250 eV, whereas it is maximum for U above 250 eV. New scaling laws for shock speed vs drive temperature, applicable over a wide temperature range of 100 eV to 500 eV, are proposed based on the physics of x-ray driven stationary ablation. The resulting scaling relation for a reference material Aluminium (Al), shows good agreement with that of Kauffman's power law for temperatures ranging from 100 eV to 275 eV. New scaling relations are also obtained for temperature dependent mass ablation rate and ablation pressure, through RHD simulation. Finally, our study reveals that for temperatures above 250 eV, U serves as a better hohlraum material since it offers maximum re-emission for x-rays along with comparable mass ablation rate. Nevertheless, traditional choice, Au works well for temperatures below 250 eV. Besides inertial confinement fusion (ICF), the new scaling relations may find its application in view-factor codes, which generally ignore atomic physics calculations of opacities and emissivities, details of laser-plasma interaction and hydrodynamic motions.

  10. Linking natural microstructures with numerical modeling of pinch-and-swell structures

    NASA Astrophysics Data System (ADS)

    Peters, Max; Berger, Alfons; Herwegh, Marco; Regenauer-Lieb, Klaus

    2016-04-01

    For a variety of geological problems, the change from homogeneous to localized deformation and the establishment of steady-state conditions are equally important. Here, we show that pinch-and-swell structures are ideal candidates for the study of the switch in deformation style and mechanism during ductile creep. We present an interdisciplinary approach to the onset of pinch-and-swell structures and to the flow conditions during pre- to post-localization stages in ductile rocks. For this reason, naturally boudinaged calcite veins, embedded in a calc-mylonite, and their microfabrics were investigated quantitatively. Remnants of slightly deformed calcite hosts build up the swells, showing twinning and minor dislocation glide as crystal plastic deformation mechanisms which are accompanied by subgrain rotation recrystallization (SGR). Towards the pinches, we find a gradient of severe grain size reduction through progressive SGR, developing a characteristic dislocation creep crystallographic preferred orientation (CPO). Along this gradient, the finest recrystallized calcite grains appear randomly oriented, expressed by a "smearing-out" of the CPO and missing systematics of misorientation angles in the most extended areas. We interpret this microstructure as a switch from dislocation dominated creep to grain boundary sliding processes. Further, we show that the onset of boudinage is independent on both the original orientation and grain size of calcite hosts. We implemented these microstructural observations into a layered elasto-visco-plastic finite element framework, tracing variations in grain size (Peters et al., 2015). We base the microstructural evolution on thermo-mechanical-chemical principles and end-member flow laws (Herwegh et al., 2014). The simulated pinch-and-swell structures indicate that low strain rates in the swells favor dislocation creep, whereas accelerated rates provoke continuous grain size reduction allowing strain accommodation by diffusion creep

  11. One- and two-dimensional modeling of argon K-shell emission from gas-puff Z-pinch plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornhill, J. W.; Chong, Y. K.; Apruzese, J. P.

    2007-06-15

    In this paper, a theoretical model is described and demonstrated that serves as a useful tool for understanding K-shell radiating Z-pinch plasma behavior. Such understanding requires a self-consistent solution to the complete nonlocal thermodynamic equilibrium kinetics and radiation transport in order to realistically model opacity effects and the high-temperature state of the plasma. For this purpose, we have incorporated into the MACH2 two-dimensional magnetohydrodynamic (MHD) code [R. E. Peterkin et al., J. Comput. Phys. 140, 148 (1998)] an equation of state, called the tabular collisional radiative equilibrium (TCRE) model [J. W. Thornhill et al., Phys. Plasmas 8, 3480 (2001)], thatmore » provides reasonable approximations to the plasma's opacity state. MACH2 with TCRE is applied toward analyzing the multidimensional implosion behavior that occurred in Decade Quad (DQ) [D. Price et al., Proceedings of the 12th IEEE Pulsed Power Conference, Monterey, CA, edited by C. Stallings and H. Kirbie (IEEE, New York, 1999), p. 489] argon gas puff experiments that employed a 12 cm diameter nozzle with and without a central gas jet on axis. Typical peak drive currents and implosion times in these experiments were {approx}6 MA and {approx}230 ns. By using Planar Laser Induced Fluorescence measured initial density profiles as input to the calculations, the effect these profiles have on the ability of the pinch to efficiently produce K-shell emission can be analyzed with this combined radiation-MHD model. The calculated results are in agreement with the experimental result that the DQ central-jet configuration is superior to the no-central-jet experiment in terms of producing more K-shell emission. These theoretical results support the contention that the improved operation of the central-jet nozzle is due to the better suppression of instabilities and the higher-density K-shell radiating conditions that the central-jet configuration promotes. When we applied the model

  12. Studies of the Plasma Triggering Mechanism of Inverse Pinch Switch

    DTIC Science & Technology

    1993-11-10

    plasma - focus driven plasma-puff was also discussed in comparison with the hypocycloidal pinch plasma-puff triggering. The main discharge of inverse pinch switch with plasma - focus driven plasma-puff trigger is found to be more azimuthally uniform than that with hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr. A comparative study of the INPIStron and a spark gap also reveals that the INPIStron with a low impedance Z = 9 ohms can transfer a high voltage pulse with a superior pulse-shape fidelity over that with

  13. Evolution of sausage and helical modes in magnetized thin-foil cylindrical liners driven by a Z-pinch

    NASA Astrophysics Data System (ADS)

    Yager-Elorriaga, D. A.; Lau, Y. Y.; Zhang, P.; Campbell, P. C.; Steiner, A. M.; Jordan, N. M.; McBride, R. D.; Gilgenbach, R. M.

    2018-05-01

    In this paper, we present experimental results on axially magnetized (Bz = 0.5 - 2.0 T), thin-foil (400 nm-thick) cylindrical liner-plasmas driven with ˜600 kA by the Michigan Accelerator for Inductive Z-Pinch Experiments, which is a linear transformer driver at the University of Michigan. We show that: (1) the applied axial magnetic field, irrespective of its direction (e.g., parallel or anti-parallel to the flow of current), reduces the instability amplitude for pure magnetohydrodynamic (MHD) modes [defined as modes devoid of the acceleration-driven magneto-Rayleigh-Taylor (MRT) instability]; (2) axially magnetized, imploding liners (where MHD modes couple to MRT) generate m = 1 or m = 2 helical modes that persist from the implosion to the subsequent explosion stage; (3) the merging of instability structures is a mechanism that enables the appearance of an exponential instability growth rate for a longer than expected time-period; and (4) an inverse cascade in both the axial and azimuthal wavenumbers, k and m, may be responsible for the final m = 2 helical structure observed in our experiments. These experiments are particularly relevant to the magnetized liner inertial fusion program pursued at Sandia National Laboratories, where helical instabilities have been observed.

  14. Simulations of Ar gas-puff Z-pinch radiation sources with double shells and central jets on the Z generator

    NASA Astrophysics Data System (ADS)

    Tangri, V.; Harvey-Thompson, A. J.; Giuliani, J. L.; Thornhill, J. W.; Velikovich, A. L.; Apruzese, J. P.; Ouart, N. D.; Dasgupta, A.; Jones, B.; Jennings, C. A.

    2016-10-01

    Radiation-magnetohydrodynamic simulations using the non-local thermodynamic equilibrium Mach2-Tabular Collisional-Radiative Equilibrium code in (r, z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1. In each pair, one of the shots had a central jet. The experimental trends in the Ar K-shell yield and power are reproduced in the calculations. However, the K-shell yield and power are significantly lower than the other three shots for the case of a double-shell puff of 1:1 mass ratio and no central jet configuration. Further simulations of a hypothetical experiment with the same relative density profile of this configuration, but higher total mass, show that the coupled energy from the generator and the K-shell yield can be increased to levels achieved in the other three configurations, but not the K-shell power. Based on various measures of effective plasma radius, the compression in the 1:1 mass ratio and no central jet case is found to be less because the plasma inside the magnetic piston is hotter and of lower density. Because of the reduced density, and the reduced radiation cooling (which is proportional to the square of the density), the core plasma is hotter. Consequently, for the 1:1 outer-to-inner shell mass ratio, the load mass controls the yield and the center jet controls the power.

  15. Influence of pinches on magnetic reconnection in turbulent space plasmas

    NASA Astrophysics Data System (ADS)

    Olshevsky, Vyacheslav; Lapenta, Giovanni; Markidis, Stefano; Divin, Andrey

    A generally accepted scenario of magnetic reconnection in space plasmas is the breakage of magnetic field lines in X-points. In laboratory, reconnection is widely studied in pinches, current channels embedded into twisted magnetic fields. No model of magnetic reconnection in space plasmas considers both null-points and pinches as peers. We have performed a particle-in-cell simulation of magnetic reconnection in a three-dimensional configuration where null-points are present nitially, and Z-pinches are formed during the simulation. The X-points are relatively stable, and no substantial energy dissipation is associated with them. On contrary, turbulent magnetic reconnection in the pinches causes the magnetic energy to decay at a rate of approximately 1.5 percent per ion gyro period. Current channels and twisted magnetic fields are ubiquitous in turbulent space plasmas, so pinches can be responsible for the observed high magnetic reconnection rates.

  16. The influence of the self-consistent mode structure on the Coriolis pinch effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeters, A. G.; Camenen, Y.; Casson, F. J.

    This paper discusses the effect of the mode structure on the Coriolis pinch effect [A. G. Peeters, C. Angioni, and D. Strintzi, Phys. Rev. Lett. 98, 265003 (2007)]. It is shown that the Coriolis drift effect can be compensated for by a finite parallel wave vector, resulting in a reduced momentum pinch velocity. Gyrokinetic simulations in full toroidal geometry reveal that parallel dynamics effectively removes the Coriolis pinch for the case of adiabatic electrons, while the compensation due to the parallel dynamics is incomplete for the case of kinetic electrons, resulting in a finite pinch velocity. The finite flux inmore » the case of kinetic electrons is interpreted to be related to the electron trapping, which prevents a strong asymmetry in the electrostatic potential with respect to the low field side position. The physics picture developed here leads to the discovery and explanation of two unexpected effects: First the pinch velocity scales with the trapped particle fraction (root of the inverse aspect ratio), and second there is no strong collisionality dependence. The latter is related to the role of the trapped electrons, which retain some symmetry in the eigenmode, but play no role in the perturbed parallel velocity.« less

  17. The electro-thermal stability of tantalum relative to aluminum and titanium in cylindrical liner ablation experiments at 550 kA

    NASA Astrophysics Data System (ADS)

    Steiner, Adam M.; Campbell, Paul C.; Yager-Elorriaga, David A.; Cochrane, Kyle R.; Mattsson, Thomas R.; Jordan, Nicholas M.; McBride, Ryan D.; Lau, Y. Y.; Gilgenbach, Ronald M.

    2018-03-01

    Presented are the results from the liner ablation experiments conducted at 550 kA on the Michigan Accelerator for Inductive Z-Pinch Experiments. These experiments were performed to evaluate a hypothesis that the electrothermal instability (ETI) is responsible for the seeding of magnetohydrodynamic instabilities and that the cumulative growth of ETI is primarily dependent on the material-specific ratio of critical temperature to melting temperature. This ratio is lower in refractory metals (e.g., tantalum) than in non-refractory metals (e.g., aluminum or titanium). The experimental observations presented herein reveal that the plasma-vacuum interface is remarkably stable in tantalum liner ablations. This stability is particularly evident when contrasted with the observations from aluminum and titanium experiments. These results are important to various programs in pulsed-power-driven plasma physics that depend on liner implosion stability. Examples include the magnetized liner inertial fusion (MagLIF) program and the cylindrical dynamic material properties program at Sandia National Laboratories, where liner experiments are conducted on the 27-MA Z facility.

  18. What can asymmetry tell us? Investigation of asymmetric versus symmetric pinch and swell structures in nature and simulation

    NASA Astrophysics Data System (ADS)

    Gardner, Robyn; Piazolo, Sandra; Daczko, Nathan

    2015-04-01

    Pinch and swell structures occur from microscopic to landscape scales where a more competent layer in a weaker matrix is deformed by pure shear, often in rifting environments. The Anita Shear Zone (ASZ) in Fiordland, New Zealand has an example of landscape scale (1 km width) asymmetric pinch and swell structures developed in ultramafic rocks. Field work suggests that the asymmetry is a result of variations in the surrounding 'matrix' flow properties as the ultramafic band is surrounded to the east by an orthogneiss (Milford Orthogneiss) and to the west by a paragneiss (Thurso Paragneiss). In addition, there is a narrow and a much wider shear zone between the ultramafics and the orthogneiss and paragneiss, respectively. Detailed EBSD analysis of samples from a traverse across the pinch and swell structure indicate the ultramafics in the shear zone on the orthogneiss side have larger grain size than the ultramafics in the shear zone on the paragneiss side. Ultramafic samples from the highly strained paragneiss and orthogneiss shear zones show dislocation creep behaviour, and, on the paragneiss side, also significant deformation by grain boundary sliding. To test if asymmetry of pinch and swell structures can be used to derive the rheological properties of not only the pinch and swell lithologies, but also of the matrix, numerical simulations were performed. Numerical modelling of pure shear (extension) was undertaken with (I) initially three layers and then (II) five layers by adding soft high strain zones on both sides of the rheological hard layer. The matrix was given first symmetric, then asymmetric viscosity. Matrix viscosity was found to impact the formation of pinch and swell structures with the weaker layer causing increased tortuosity of the competent layer edge due to increased local differential stress. Results highlight that local, rheologically soft layers and the relative viscosity of matrix both impact significantly the shape and symmetry of developing

  19. Scaling of X pinches from 1 MA to 6 MA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bland, Simon Nicholas; McBride, Ryan D.; Wenger, David Franklin

    This final report for Project 117863 summarizes progress made toward understanding how X-pinch load designs scale to high currents. The X-pinch load geometry was conceived in 1982 as a method to study the formation and properties of bright x-ray spots in z-pinch plasmas. X-pinch plasmas driven by 0.2 MA currents were found to have source sizes of 1 micron, temperatures >1 keV, lifetimes of 10-100 ps, and densities >0.1 times solid density. These conditions are believed to result from the direct magnetic compression of matter. Physical models that capture the behavior of 0.2 MA X pinches predict more extreme parametersmore » at currents >1 MA. This project developed load designs for up to 6 MA on the SATURN facility and attempted to measure the resulting plasma parameters. Source sizes of 5-8 microns were observed in some cases along with evidence for high temperatures (several keV) and short time durations (<500 ps).« less

  20. Temperature Evolution of a 1 MA Triple-Nozzle Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    de Grouchy, Philip; Banasek, Jacob; Engelbrecht, Joey; Qi, Niansheng; Atoyan, Levon; Byvank, Tom; Cahill, Adam; Moore, Hannah; Potter, William; Ransohoff, Lauren; Hammer, David; Kusse, Bruce; Laboratory of Plasma Studies Team

    2015-11-01

    Mitigation of the Rayleigh-Taylor instability (RTI) plays a critical role in optimizing x-ray output at high-energy ~ 13 keV using the triple-nozzle Krypton gas-puff at Sandia National Laboratory. RTI mitigation by gas-puff density profiling using a triple-nozzle gas-puff valve has recently been recently demonstrated on the COBRA 1MA z-pinch at Cornell University. In support of this work we investigate the role of shell cooling in the growth of RTI during gas-puff implosions. Temperature measurements within the imploding plasma shell are recorded using a 527 nm, 10 GW Thomson scattering diagnostic for Neon, Argon and Krypton puffs. The mass-density profile is held constant at 22 microgram per centimeter for all three puffs and the temperature evolution of the imploding material is recorded. In the case of Argon puffs we find that the shell ion and electron effective temperatures remain in equilibrium at around 1keV for the majority of the implosion phase. In contrast scattered spectra from Krypton are dominated by of order 10 keV effective ion temperatures. Supported by the NNSA Stewardship Sciences Academic Programs.

  1. Construction and Initial Tests of MAIZE: 1 MA LTD-Driven Z-Pinch *

    NASA Astrophysics Data System (ADS)

    Gilgenbach, R. M.; Gomez, M. R.; Zier, J. C.; Tang, W.; French, D. M.; Lau, Y. Y.; Mazarakis, M. G.; Cuneo, M. E.; Johnston, M. D.; Oliver, B. V.; Mehlhorn, T. A.; Kim, A. A.; Sinebryukhov, V. A.

    2008-11-01

    We report construction and initial testing of a 1-MA Linear Transformer Driver (LTD), The Michigan Accelerator for Inductive Z-pinch Experiments, (MAIZE). This machine, the first of its type to reach the USA, is based on the joint HCEI, Sandia Laboratories, and UM development effort. The compact LTD uses 80 capacitors and 40 spark gap switches, in 40 ``bricks'', to deliver 1 MA, 100 kV pulses with 70 ns risetime into a matched resistive load. Test results will be presented for a single brick and the full LTD. Design and construction will be presented of a low-inductance MITL. Experimental research programs under design and construction at UM include: a) Studies of Magneto-Raleigh-Taylor Instability of planar foils, and b) Vacuum convolute studies including cathode and anode plasma. Theory and simulation results will be presented for these planned experiments. Initial experimental designs and moderate-current feasibility experiments will be discussed. *Research supported by U. S. DoE through Sandia National Laboratories award document numbers 240985, 768225, 790791 and 805234 to the UM. MRG supported by NNSA Fellowship and JCZ supported by NPSC Fellowship / Sandia National Labs.

  2. Neutron spectra from beam-target reactions in dense Z-pinches

    NASA Astrophysics Data System (ADS)

    Appelbe, B.; Chittenden, J.

    2015-10-01

    The energy spectrum of neutrons emitted by a range of deuterium and deuterium-tritium Z-pinch devices is investigated computationally using a hybrid kinetic-MHD model. 3D MHD simulations are used to model the implosion, stagnation, and break-up of dense plasma focus devices at currents of 70 kA, 500 kA, and 2 MA and also a 15 MA gas puff. Instabilities in the MHD simulations generate large electric and magnetic fields, which accelerate ions during the stagnation and break-up phases. A kinetic model is used to calculate the trajectories of these ions and the neutron spectra produced due to the interaction of these ions with the background plasma. It is found that these beam-target neutron spectra are sensitive to the electric and magnetic fields at stagnation resulting in significant differences in the spectra emitted by each device. Most notably, magnetization of the accelerated ions causes the beam-target spectra to be isotropic for the gas puff simulations. It is also shown that beam-target spectra can have a peak intensity located at a lower energy than the peak intensity of a thermonuclear spectrum. A number of other differences in the shapes of beam-target and thermonuclear spectra are also observed for each device. Finally, significant differences between the shapes of beam-target DD and DT neutron spectra, due to differences in the reaction cross-sections, are illustrated.

  3. Study of the formation, stability, and X-ray emission of the Z-pinch formed during implosion of fiber arrays at the Angara-5-1 facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, V. V.; Volkov, G. S.; Grabovski, E. V.

    Results from experimental studies on the implosion of arrays made of kapron fibers coated with different metals (Al, In, Sn, and Bi) are presented. It is shown that the power, total energy, and spectrum of radiation emitted by the imploding array depend on the number of metallized fibers and the mass of the metal layer deposited on them but are independent of the metal characteristics (density, atomic number, etc.). Analysis of frame X-ray images shows that the Z-pinches formed in the implosion of metallized kapron fiber arrays are more stable than those formed in wire arrays and that MHD perturbationsmore » in them develop at a slower growth rate. Due to the lower rate of plasma production from kapron fibers, the plasma formed at the periphery of the array forms a layer that plays the role of a hohlraum wall partially trapping soft X-ray emission of the Z-pinch formed in the implosion of the material of the deposited metal layer. The closure of the anode aperture doubles the energy of radiation emitted in the radial direction.« less

  4. Fusion neutron detector for time-of-flight measurements in z-pinch and plasma focus experiments.

    PubMed

    Klir, D; Kravarik, J; Kubes, P; Rezac, K; Litseva, E; Tomaszewski, K; Karpinski, L; Paduch, M; Scholz, M

    2011-03-01

    We have developed and tested sensitive neutron detectors for neutron time-of-flight measurements in z-pinch and plasma focus experiments with neutron emission times in tens of nanoseconds and with neutron yields between 10(6) and 10(12) per one shot. The neutron detectors are composed of a BC-408 fast plastic scintillator and Hamamatsu H1949-51 photomultiplier tube (PMT). During the calibration procedure, a PMT delay was determined for various operating voltages. The temporal resolution of the neutron detector was measured for the most commonly used PMT voltage of 1.4 kV. At the PF-1000 plasma focus, a novel method of the acquisition of a pulse height distribution has been used. This pulse height analysis enabled to determine the single neutron sensitivity for various neutron energies and to calibrate the neutron detector for absolute neutron yields at about 2.45 MeV.

  5. On the Evolution From Micrometer-Scale Inhomogeneity to Global Overheated Structure During the Intense Joule Heating of a z-Pinch Rod

    DOE PAGES

    Awe, T. J.; Yu, E. P.; Yates, K. C.; ...

    2017-02-21

    Ultrafast optical microscopy of metal z-pinch rods pulsed with megaampere current is contributing new data and critical insight into what provides the fundamental seed for the magneto-Rayleigh-Taylor (MRT) instability. A two-frame near infrared/visible intensified-charge-coupled device gated imager with 2-ns temporal resolution and 3-μm spatial resolution captured emissions from the nonuniformly Joule heated surfaces of ultrasmooth aluminum (Al) rods. Nonuniform surface emissions are consistently first observed from discrete, 10-μm scale, subelectronvolt spots. Aluminum 6061 alloy, with micrometer-scale nonmetallic resistive inclusions, forms several times more spots than 99.999% pure Al 5N; 5-10 ns later, azimuthally stretched elliptical spots and distinct strata (40-100more » μm wide by 10 μm tall) are observed on Al 6061, but not on Al 5N. In such overheat strata, aligned parallel to the magnetic field, we find that they are highly effective seeds for MRT instability growth. Our data give credence to the hypothesis that early nonuniform Joule heating, such as the electrothermal instability, may provide the dominant seed for MRT.« less

  6. A z-pinch photo-pumped pulsed atomic iodine laser

    NASA Astrophysics Data System (ADS)

    Stone, D. H.; Saunders, D. P.; Clark, M. C.

    1984-03-01

    A pulsed atomic iodine laser (CF3I) was designed and constructed using a coaxial xenon flash lamp as a pump source. The flash lamp was operated at low pressure to obtain pulse compression via xenon self-pinch. Electrical and optical diagnostics were performed for various xenon and CF3I pressures. Calorimeter data and burn patterns were obtained for the laser. Time-resolved spectroscopic data were taken throughout the CF3I pump band.

  7. Dynamics of a Z-pinch x-ray source for heating inertial-confinement-fusion relevant hohlraums to 120-160 eV

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Olson, R. E.; Mock, R. C.; Chandler, G. A.; Leeper, R. J.; Nash, T. J.; Ruggles, L. E.; Simpson, W. W.; Struve, K. W.; Peterson, D. L.; Bowers, R. L.; Matuska, W.

    2000-11-01

    A Z-pinch radiation source has been developed that generates 60±20 kJ of x rays with a peak power of 13±4 TW through a 4-mm-diam axial aperture on the Z facility. The source has heated National Ignition Facility-scale (6-mm-diam by 7-mm-high) hohlraums to 122±6 eV and reduced-scale (4-mm-diam by 4-mm-high) hohlraums to 155±8 eV—providing environments suitable for indirect-drive inertial confinement fusion studies. Eulerian-RMHC (radiation-magnetohydrodynamics code) simulations that take into account the development of the Rayleigh-Taylor instability in the r-z plane provide integrated calculations of the implosion, x-ray generation, and hohlraum heating, as well as estimates of wall motion and plasma fill within the hohlraums. Lagrangian-RMHC simulations suggest that the addition of a 6 mg/cm3 CH2 fill in the reduced-scale hohlraum decreases hohlraum inner-wall velocity by ˜40% with only a 3%-5% decrease in peak temperature, in agreement with measurements.

  8. Staged Z-pinch experiments on the Mega-Ampere current driver COBRA

    NASA Astrophysics Data System (ADS)

    Valenzuela, Julio; Banasek, Jacob; Byvank, Thomas; Conti, Fabio; Greenly, John; Hammer, David; Potter, William; Rocco, Sophia; Ross, Michael; Wessel, Frank; Narkis, Jeff; Rahman, Hafiz; Ruskov, Emil; Beg, Farhat

    2017-10-01

    Experiments were conducted on the Cornell's 1 MA, 100 ns current driver COBRA with the goal of better understanding the Staged Z-pinch physics and validating MHD codes. We used a gas injector composed of an annular (1.2 cm radius) high atomic number (e.g., Ar or Kr) gas-puff and an on-axis plasma gun that delivers the ionized hydrogen target. Liner implosion velocity and stability were studied using laser shadowgraphy and interferometry as well as XUV imaging. From the data, the signature of the MRT instability and zippering effect can be seen, but time integrated X-ray imaging show a stable target plasma. A key component of the experiment was the use of optical Thomson scattering (TS) diagnostics to characterize the liner and target plasmas. By fitting the experimental scattered spectra with synthetic data, electron and ion temperature as well as density can be obtained. Preliminary analysis shows significant scattered line broadening from the plasma on-axis ( 0.5 mm diameter) which can be explained by either a low temperature H plasma with Te =Ti =75eV, or by a hot plasma with Ti =3keV, Te =350eV if an Ar-H mixture is present with an Ar fraction higher than 10%. Funded by the Advanced Research Projects Agency - Energy, DE-AR0000569.

  9. Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Mock, R. C.; Spielman, R. B.; Peterson, D. L.; Mosher, D.; Roderick, N. F.

    1998-10-01

    A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. 77, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh-Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of ˜40 TW and energy of ˜325 kJ show little change outside of a ±15% shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak K-shell (lines plus continuum) power of ˜8 TW and energy of ˜70 kJ show little change with radius. The minimal change in K-shell yield is in agreement with simple K-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh-Taylor instability observed in small-wire-number imploding loads.

  10. X-ray absorption spectroscopy of aluminum z-pinch plasma with tungsten backlighter planar wire array source.

    PubMed

    Osborne, G C; Kantsyrev, V L; Safronova, A S; Esaulov, A A; Weller, M E; Shrestha, I; Shlyaptseva, V V; Ouart, N D

    2012-10-01

    Absorption features from K-shell aluminum z-pinch plasmas have recently been studied on Zebra, the 1.7 MA pulse power generator at the Nevada Terawatt Facility. In particular, tungsten plasma has been used as a semi-backlighter source in the generation of aluminum K-shell absorption spectra by placing a single Al wire at or near the end of a single planar W array. All spectroscopic experimental results were recorded using a time-integrated, spatially resolved convex potassium hydrogen phthalate (KAP) crystal spectrometer. Other diagnostics used to study these plasmas included x-ray detectors, optical imaging, laser shadowgraphy, and time-gated and time-integrated x-ray pinhole imagers. Through comparisons with previous publications, Al K-shell absorption lines are shown to be from much lower electron temperature (∼10-40 eV) plasmas than emission spectra (∼350-500 eV).

  11. [Contrast of Z-Pinch X-Ray Yield Measure Technique].

    PubMed

    Li, Mo; Wang, Liang-ping; Sheng, Liang; Lu, Yi

    2015-03-01

    Resistive bolometer and scintillant detection system are two mainly Z-pinch X-ray yield measure techniques which are based on different diagnostic principles. Contrasting the results from two methods can help with increasing precision of X-ray yield measurement. Experiments with different load material and shape were carried out on the "QiangGuang-I" facility. For Al wire arrays, X-ray yields measured by the two techniques were largely consistent. However, for insulating coating W wire arrays, X-ray yields taken from bolometer changed with load parameters while data from scintillant detection system hardly changed. Simulation and analysis draw conclusions as follows: (1) Scintillant detection system is much more sensitive to X-ray photons with low energy and its spectral response is wider than the resistive bolometer. Thus, results from the former method are always larger than the latter. (2) The responses of the two systems are both flat to Al plasma radiation. Thus, their results are consistent for Al wire array loads. (3) Radiation form planar W wire arrays is mainly composed of sub-keV soft X-ray. X-ray yields measured by the bolometer is supposed to be accurate because of the nickel foil can absorb almost all the soft X-ray. (4) By contrast, using planar W wire arrays, data from scintillant detection system hardly change with load parameters. A possible explanation is that while the distance between wires increases, plasma temperature at stagnation reduces and spectra moves toward the soft X-ray region. Scintillator is much more sensitive to the soft X-ray below 200 eV. Thus, although the total X-ray yield reduces with large diameter load, signal from the scintillant detection system is almost the same. (5) Both Techniques affected by electron beams produced by the loads.

  12. Investigation of ablation of thin foil aluminum ribbon array at 1.5 MA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Fan, E-mail: yefan1931@126.com; Li, Zhenghong; Chen, Faxin

    We present experimental studies of initiation and ablation of a thin foil aluminum ribbon array at the 1.5 MA current level. In contrast to the previous work, we employ ribbon arrays with different ribbon gap parameters to investigate how this affects plasma initiation and foil ablation. Gated narrowband ultraviolet imaging indicated that the current was disorderly distributed at early period of discharge. But later on, it became axially stable and azimuthally symmetrical even for load with a gap as small as 0.1 mm. Using magnetic field probes installed inside and outside the array, we also observed that precursor current at positionsmore » with a distance of less than 2.7 mm to the central axis for 4-mm-radius arrays decreased when ribbon gap became small. Results of 0.2 mm gap ribbon array showed an evidence that ribbons can be merged. These observations imply that thin foil ribbon arrays may have potential applications in z-pinch experiments on large scale pulsed power facilities.« less

  13. Characterization of laser-cut copper foil X-pinches

    NASA Astrophysics Data System (ADS)

    Collins, G. W.; Valenzuela, J. C.; Hansen, S. B.; Wei, M. S.; Reed, C. T.; Forsman, A. C.; Beg, F. N.

    2016-10-01

    Quantitative data analyses of laser-cut Cu foil X-pinch experiments on the 150 ns quarter-period, ˜250 kA GenASIS driver are presented. Three different foil designs are tested to determine the effects of initial structure on pinch outcome. Foil X-pinch data are also presented alongside the results from wire X-pinches with comparable mass. The X-ray flux and temporal profile of the emission from foil X-pinches differed significantly from that of wire X-pinches, with all emission from the foil X-pinches confined to a ˜3 ns period as opposed to the delayed, long-lasting electron beam emission common in wire X-pinches. Spectroscopic data show K-shell as well as significant L-shell emission from both foil and wire X-pinches. Fits to synthetic spectra using the SCRAM code suggest that pinching foil X's produced a ˜1 keV, ne ≥ 1023 cm-3 plasma. The spectral data combined with the improved reliability of the source timing, flux, and location indicate that foil X-pinches generate a reproducible, K-shell point-projection radiography source that can be easily modified and tailored to suit backlighting needs across a variety of applications.

  14. Experimental investigations of ablation stream interaction dynamics in tungsten wire arrays: Interpenetration, magnetic field advection, and ion deflection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Lebedev, S. V.; Hall, G. N.

    2016-05-01

    Experiments have been carried out to investigate the collisional dynamics of ablation streams produced by cylindrical wire array z-pinches. A combination of laser interferometric imaging, Thomson scattering, and Faraday rotation imaging has been used to make a range of measurements of the temporal evolution of various plasma and flow parameters. Our paper presents a summary of previously published data, drawing together a range of different measurements in order to give an overview of the key results. The paper focuses mainly on the results of experiments with tungsten wire arrays. Early interferometric imaging measurements are reviewed, then more recent Thomson scatteringmore » measurements are discussed; these measurements provided the first direct evidence of ablation stream interpenetration in a wire array experiment. Combining the data from these experiments gives a view of the temporal evolution of the tungsten stream collisional dynamics. In the final part of the paper, we present new experimental measurements made using an imaging Faraday rotation diagnostic. Our experiments investigated the structure of magnetic fields near the array axis directly; the presence of a magnetic field has previously been inferred based on Thomson scattering measurements of ion deflection near the array axis. Although the Thomson and Faraday measurements are not in full quantitative agreement, the Faraday data do qualitatively supports the conjecture that the observed deflections are induced by a static toroidal magnetic field, which has been advected to the array axis by the ablation streams. It is likely that detailed modeling will be needed in order to fully understand the dynamics observed in the experiment.« less

  15. Experimental investigations of ablation stream interaction dynamics in tungsten wire arrays: Interpenetration, magnetic field advection, and ion deflection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Lebedev, S. V.; Hall, G. N.

    2016-05-15

    Experiments have been carried out to investigate the collisional dynamics of ablation streams produced by cylindrical wire array z-pinches. A combination of laser interferometric imaging, Thomson scattering, and Faraday rotation imaging has been used to make a range of measurements of the temporal evolution of various plasma and flow parameters. This paper presents a summary of previously published data, drawing together a range of different measurements in order to give an overview of the key results. The paper focuses mainly on the results of experiments with tungsten wire arrays. Early interferometric imaging measurements are reviewed, then more recent Thomson scatteringmore » measurements are discussed; these measurements provided the first direct evidence of ablation stream interpenetration in a wire array experiment. Combining the data from these experiments gives a view of the temporal evolution of the tungsten stream collisional dynamics. In the final part of the paper, we present new experimental measurements made using an imaging Faraday rotation diagnostic. These experiments investigated the structure of magnetic fields near the array axis directly; the presence of a magnetic field has previously been inferred based on Thomson scattering measurements of ion deflection near the array axis. Although the Thomson and Faraday measurements are not in full quantitative agreement, the Faraday data do qualitatively supports the conjecture that the observed deflections are induced by a static toroidal magnetic field, which has been advected to the array axis by the ablation streams. It is likely that detailed modeling will be needed in order to fully understand the dynamics observed in the experiment.« less

  16. Diagnostics of deuterium gas-puff z-pinch experiments on the GIT-12 generator

    NASA Astrophysics Data System (ADS)

    Cikhardt, J.; Klir, D.; Rezac, K.; Kubes, P.; Kravarik, J.; Batobolotova, B.; Sila, O.; Turek, K.; Shishlov, A.; Labetsky, A.; Kokshenev, V.; Chedizov, R.; Ratakhin, N.; Varlachev, V.; Garapatsky, A.; Dudkin, G.; Padalko, V.; GIT-12 Team

    2014-10-01

    Z-pinch experiments with a deuterium gas-puff and an outer plasma shell generated by plasma guns were carried out on the GIT-12 generator at the IHCE in Tomsk. Using this novel configuration of the load, the neutron yields from the DD reaction were significantly increased from 2×1011 up to 3×1012 neutrons per shot at the current level of about 3 MA. In addition to recent experiments, the threshold activation detectors were used in order to get the information about the energy spectrum of the generated neutrons. The copper, indium, and lead samples were irradiated by the pulse of the neutrons generated during the experimental shot. The decay radiation of the products from the reactions 63Cu(n,2n)62Cu, 115In(n, γ) 116 mIn and 206Pb (n,3n)204mPb was observed using gamma spectrometer. According to the used neutron ToF scintillation detectors, the energy of neutrons reaches up to 20 MeV. The work was supported by the MSMT of the Czech Republic research Programs No. ME090871, No. LG13029, by the GACR Grant No. P205/12/0454, Grant CRA IAEA No. 17088 and RFBR research Project No. 13-08-00479-a.

  17. Development And Characterization Of A Liner-On-Target Injector For Staged Z-Pinch Experiments

    NASA Astrophysics Data System (ADS)

    Valenzuela, J. C.; Conti, F.; Krasheninnikov, I.; Narkis, J.; Beg, F.; Wessel, F. J.; Rahman, H. U.

    2016-10-01

    We present the design and optimization of a liner-on-target injector for Staged Z-pinch experiments. The injector is composed of an annular high atomic number (e.g. Ar, Kr) gas-puff and an on-axis plasma gun that delivers the ionized deuterium target. The liner nozzle injector has been carefully studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated 1 cm radius gas profile that satisfies the theoretical requirement for best performance on the 1 MA Zebra current driver. The CFD simulations produce density profiles as a function of the nozzle shape and gas. These profiles are initialized in the MHD MACH2 code to find the optimal liner density for a stable, uniform implosion. We use a simple Snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector. We have performed line-integrated density measurements using a CW He-Ne laser to characterize the liner gas and the plasma gun density as a function of time. The measurements are compared with models and calculations and benchmarked accordingly. Advanced Research Projects Agency - Energy, DE-AR0000569.

  18. X-ray power and yield measurements at the refurbished Z machine

    DOE PAGES

    Jones, M. C.; Ampleford, D. J.; Cuneo, M. E.; ...

    2014-08-04

    Advancements have been made in the diagnostic techniques to measure accurately the total radiated x-ray yield and power from z-pinch loads at the Z Machine with high accuracy. The Z-accelerator is capable of outputting 2MJ and 330 TW of x-ray yield and power, and accurately measuring these quantities is imperative. We will describe work over the past several years which include the development of new diagnostics, improvements to existing diagnostics, and implementation of automated data analysis routines. A set of experiments were conducted on the Z machine where the load and machine configuration were held constant. During this shot series,more » it was observed that total z-pinch x-ray emission power determined from the two common techniques for inferring the x-ray power, Kimfol filtered x-ray diode diagnostic and the Total Power and Energy diagnostic gave 450 TW and 327 TW respectively. Our analysis shows the latter to be the more accurate interpretation. More broadly, the comparison demonstrates the necessity to consider spectral response and field of view when inferring xray powers from z-pinch sources.« less

  19. Coherent structures and anomalous transport in reversed field pinch plasmas

    NASA Astrophysics Data System (ADS)

    Antoni, V.; Drake, J. R.; Spada, E.; Spolaore, M.; Vianello, N.; Bergsåker, H.; Cavazzana, R.; Cecconello, M.; Martines, E.; Serianni, G.

    2006-02-01

    The results leading to the identification of coherent structures emerging from the background turbulence in the edge region of the reversed field pinch experiments EXTRAP-T2R and RFX are reviewed. These structures have traits of vortices in velocity field and blobs in density, and the reconstruction of their spatial structure and of their time evolution is discussed focusing on the analysis tools applied. The role of these structures in the particle anomalous transport is addressed, showing that their collisions can contribute up to 50% the total particle losses.This process is shown to be responsible for bursts in particle flux and it is found to set a characteristic collision time, which is in agreement with the statistical properties of laminar times for particle flux bursts.

  20. P2 Asymmetry of Au's M-band Flux and its smoothing effect due to high-Z ablator dopants

    NASA Astrophysics Data System (ADS)

    Li, Yongsheng; Zhai, Chuanlei; Ren, Guoli; Gu, Jianfa; Huo, Wenyi; Meng, Xujun; Ye, Wenhua; Lan, Ke; Zhang, Weiyan

    2017-10-01

    X-ray drive asymmetry is one of the main seeds of low-mode implosion asymmetry that blocks further improvement of the nuclear performance of ``high-foot'' experiments on the National Ignition Facility. More particularly, the P2 asymmetry of Au's M-band flux can also severely influence the implosion performance. Here we study the smoothing effect of mid- and/or high-Z dopants in ablator on M-band flux asymmetries, by modeling and comparing the implosion processes of a Ge-doped and a Si-doped ignition capsule driven by x-ray sources with asymmetric M-band flux. As the results, (1) mid- or high-Z dopants absorb M-band flux and re-emit isotropically, helping to smooth M-band flux arriving at the ablation front, therefore reducing the P2 asymmetries of the imploding shell and hot spot; (2) the smoothing effect of Ge-dopant is more remarkable than Si-dopant due to its higher opacity than the latter in Au's M-band; and (3) placing the doped layer at a larger radius in ablator is more efficient. Applying this effect may not be a main measure to reduce the low-mode implosion asymmetry, but might be of significance in some critical situations such as Inertial Confinement Fusion (ICF) experiments very near the performance cliffs of asymmetric x-ray drives.

  1. X-ray Spectropolarimetry of Z-pinch Plasmas with a Single-Crystal Technique

    NASA Astrophysics Data System (ADS)

    Wallace, Matt; Haque, Showera; Neill, Paul; Pereira, Nino; Presura, Radu

    2017-10-01

    When directed beams of energetic electrons exist in a plasma the resulting x-rays emitted by the plasma can be partially polarized. This makes plasma x-ray polarization spectroscopy, spectropolarimetry, useful for revealing information about the anisotropy of the electron velocity distribution. X-ray spectropolarimetry has indeed been used for this in both space and laboratory plasmas. X-ray polarization measurements are typically performed employing two crystals, both at a 45° Bragg angle. A single-crystal spectropolarimeter can replace two crystal schemes by utilizing two matching sets of internal planes for polarization-splitting. The polarization-splitting planes diffract the incident x-rays into two directions that are perpendicular to each other and the incident beam as well, so the two sets of diffracted x-rays are linearly polarized perpendicularly to each other. An X-cut quartz crystal with surface along the [11-20] planes and a paired set of [10-10] planes in polarization-splitting orientation is now being used on aluminum z-pinches at the University of Nevada, Reno. Past x-ray polarization measurements have been reserved for point-like sources. Recently a slotted collimating aperture has been used to maintain the required geometry for polarization-splitting enabling the spectropolarimetry of extended sources. The design of a single-crystal x-ray spectropolarimeter and experimental results will be presented. Work was supported by U.S. DOE, NNSA Grant DE-NA0001834 and cooperative agreement DE-FC52-06NA27616.

  2. Application of pinch-and-swell structure rheology gauge to determine rock paleo-rheological parameters in Taili, western Liaoning, NE China

    NASA Astrophysics Data System (ADS)

    Sun, Zhengquan; Zeng, Zuoxun; Wu, Linbo; Xu, Shaopeng; Yang, Shuang; Chen, Deli; Wang, Jianxiu

    2017-05-01

    New results, in combination with previously published ones, reveal that when the Stress Exponent of the Competent layer (SEC) ranges from 1 to 10 (1 < n < 10), Pinch-and-Swell structure Rheology Gauge (PSRG) can only be available under the condition that the Viscosity ratio between the Competent layer and its corresponding Matrix layer (VCM) is larger than 10. Therefore, we made the attempt to calculate the viscosity ratio of pinch-and-swell structure of competent layer to the related matrix and stress exponent. Based on this knowledge, we applied this gauge to calculate SECs and VCMs of eight types of pinch-and-swell structures, which are widely developed in the Taili area of the west Liaoning Province in China. Statistical analysis of the SEC resulted in intervals of four types of competent layers, that is, Medium-scale Granitic coarse-to-pegmatitic Veins, Small-scale Augen Granite aplite Veins, Small-scale Granite aplite Veins, and Small-scale Augen Quartz-K-feldspar veins, with intervals of [3.50, 4.63], [2.64, 4.29], [2.70, 3.51], and [2.50, 3.36] respectively. The preferred intervals of VCM of the five types of pinch-and-swell structures, Small-scale Augen Granite aplite Veins + Fine-grained Biotite-Hornblende-plagioclase Gneiss, Medium-scale Granitic coarse-to-pegmatitic Veins + Fine-grained Biotite-Hornblende-plagioclase Gneiss, Small-scale Augen Granite aplite Veins + medium-to-fine-grained granitic gneiss, Medium-scale Granitic coarse-to-pegmatitic Veins + medium-to-fine-grained granitic gneiss, and Small-scale Augen Granite aplite Veins + fine-grained biotite-plagioclase gneiss, are [19.98, 62.51], [15.90, 61.17], [26.72, 93.27], [22.21, 107.26], and [76.33, 309.39] respectively. The similarities between these calculated SEC statistical preferred intervals and the physical experimental results verify the validity of the PSRG. The competent layers of the pinch-and-swell structures were presented in this study as power-law flow with SEC values that

  3. Neutron production in deuterium gas-puff z-pinch with outer plasma shell at current of 3 MA

    NASA Astrophysics Data System (ADS)

    Cikhardt, J.; Klir, D.; Rezac, K.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A. V.; Cherdizov, R. K.; Frusov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu.; Ratakhin, N. A.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.; Turek, K.; Krasa, J.

    2015-11-01

    Z-pinch experiments at the current of about 3 MA were carried out on the GIT-12 generator. The outer plasma shell of deuterium gas-puff was generated by the system of 48 plasma guns. This configuration exhibits a high efficiency of the production of DD fusion neutrons with the yield of above 1012 neutrons produced in a single shot with the duration of about 20 ns. The maximum energy of the neutrons produced in this pulse exceeded 30 MeV. The neutron radiation was measured using scintillation TOF detectors, CR-39 nuclear track detectors, bubble detectors BD-PND and BDS-10000 and by several types of nuclear activation detectors. These diagnostic tools were used to measure the anisotropy of neutron fluence and neutron energy spectra. It allows us to estimate the total number of DD neutrons, the contribution of other nuclear reactions, the amount of scattered neutrons, and other parameters of neutron production. This work was supported by the MSMT grants LH13283, LD14089.

  4. New compact hohlraum configuration research at the 1.7 MA Z-pinch generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kantsyrev, V. L., E-mail: victor@unr.edu; Shrestha, I. K.; Esaulov, A. A.

    A new compact Z-pinch x-ray hohlraum design with parallel-driven x-ray sources was experimentally demonstrated in a full configuration with a central target and tailored shine shields (to provide a symmetric temperature distribution on the target) at the 1.7 MA Zebra generator. This presentation reports on the joint success of two independent lines of research. One of these was the development of new sources – planar wire arrays (PWAs). PWAs turned out to be a prolific radiator. Another success was the drastic improvement in energy efficiency of pulsed-power systems, such as the Load Current Multiplier (LCM). The Zebra/LCM generator almost doubledmore » the plasma load current to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum design for ICF, as jointly proposed by SNL and UNR. Good agreement between simulated and measured radiation temperature of the central target is shown. Experimental comparison of PWAs with planar foil liners (PFL) - another viable alternative to wire array loads at multi-MA generators show promising data. Results of research at the University of Nevada Reno allowed for the study of hohlraum coupling physics at University-scale generators. The advantages of new hohlraum design applications for multi-MA facilities with W or Au double PWAs or PFL x-ray sources are discussed.« less

  5. Numerical simulations of Z-Pinch experiments to create supersonic differentially-rotating plasma flows

    NASA Astrophysics Data System (ADS)

    Bochi, Matteo; Ummels, Sebastiaan; Chittenden, Jeremy; Lebedev, Sergey

    2011-10-01

    Recently, it was proposed that a small number of plasma jets produced by lasers could be used to generate a plasma configuration relevant to some features of astrophysical accretion disc physics. We propose complementary experimental configurations which employ converging flows generated in a cylindrical wire array Z-pinch modified to produce a rotating plasma. In this paper we present 3D MHD simulations using the code GORGON which show how this approach can be implemented at the MAGPIE facility at Imperial College, London. We will present the general scenario and the results of a parametric study relating the parameters of the array with the features of the resulting plasma. In particular, we will show how a rotating plasma cylinder or ring, with typical rotation velocity 30 Km/s and Mach number 8 is formed, and how, after about 1-2 revolutions, the material of the plasma ring is ejected in a pair of thermally driven, conical outflows propagating along the rotation axis. We will discuss to what aspects of the physics of accretion discs, the results of such experiments could be relevant. We will also consider the effects of different magnetic configurations, which further expand the possibility to relate the experiments with the astrophysical discs. Experimental implementation of some of these setups is currently in progress on MAGPIE.

  6. X-ray Power Increase from Symmetrized Wire-Array z-Pinch Implosions on Saturn.*

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Allshouse, G. O.; Marder, B. M.; Nash, T. J.; Mock, R. C.; Douglas, M. R.; Spielman, R. B.; Seaman, J. F.; McGurn, J. S.; Jobe, D.; Gilliland, T. L.; Vargas, M.; Struve, K. W.; Stygar, W. A.; Hammer, J. H.; Degroot, J. S.; Eddleman, J. L.; Peterson, D. L.; Whitney, K. G.; Thornhill, J. W.; Pulsifer, P. E.; Apruzese, J. P.; Mosher, D.; Maron, Y.

    1996-11-01

    A systematic experimental study of annular aluminum wire z-pinches on the Saturn accelerator at Sandia National Laboratories shows that, for the first time, many of the measured spatial characteristics and x-ray powers can be correlated to 1D and 2D, radiation-magneto-hydrodynamic code (RMHC) simulations when large numbers of wires are used. Calculations show that the implosion begins to transition from that of individual wire plasmas to that of a continuous plasma shell when the circumferential gap between wires in the array is reduced below 1.4 +1.3/-0.7 mm. This calculated gap coincides with the measured transition of 1.4±0.4 mm between the observed regimes of slow and rapid improvement in power output with decreasing gap. In the plasma-shell regime, x-ray power has been more than tripled over that generated in the wire-plasma regime. In the full paper, measured characteristics in the plasma-shell regime are compared with 2D, 1- and 20-mm axial length simulations of the implosion using a multi-photon-group Lagrangian RMHC^1 and a three-temperature Eulerian RMHC,^2 respectively. ^1J.H. Hammer, et al., Phys. Plasmas 3, 2063 (1996). ^2D.L. Peterson, et al., Phys. Plasmas 3, 368 (1996). Work supported by U.S. DOE Contract No. DE-AC04-94AL85000.

  7. Experimental study on ablative stabilization of Rayleigh-Taylor instability of laser-irradiated targets

    NASA Astrophysics Data System (ADS)

    Shigemori, Keisuke; Sakaiya, Tatsuhiko; Otani, Kazuto; Fujioka, Shinsuke; Nakai, Mitsuo; Azechi, Hiroshi; Shiraga, Hiroyuki; Tamari, Yohei; Okuno, Kazuki; Sunahara, Atsushi; Nagatomo, Hideo; Murakami, Masakatsu; Nishihara, Katsunobu; Izawa, Yasukazu

    2004-09-01

    Hydrodynamic instabilities are key issues of the physics of inertial confinement fusion (ICF) targets. Among the instabilities, Rayleigh-Taylor (RT) instability is the most important because it gives the largest growth factor in the ICF targets. Perturbations on the laser irradiated surface grow exponentially, but the growth rate is reduced by ablation flow. The growth rate γ is written as Takabe-Betti formula: γ = [kg/(1+kL)]1/2-βkm/pa, where k is wave number of the perturbation, g is acceleration, L is density scale-length, β is a coefficient, m is mass ablation rate per unit surface, and ρa is density at the ablation front. We experimentally measured all the parameters in the formula for polystyrene (CH) targets. Experiments were done on the HIPER laser facility at Institute of Laser Engineering, Osaka University. We found that the β value in the formula is ~ 1.7, which is in good agreements with the theoretical prediction, whereas the β for certain perturbation wavelengths are larger than the prediction. This disagreement between the experiment and the theory is mainly due to the deformation of the cutoff surface, which is created by non-uniform ablation flow from the ablation surface. We also found that high-Z doped plastic targets have multiablation structure, which can reduce the RT growth rate. When a low-Z target with high-Z dopant is irradiated by laser, radiation due to the high-Z dopant creates secondary ablation front deep inside the target. Since, the secondary ablation front is ablated by x-rays, the mass ablation rate is larger than the laser-irradiated ablation surface, that is, further reduction of the RT growth is expected. We measured the RT growth rate of Br-doped polystyrene targets. The experimental results indicate that of the CHBr targets show significantly small growth rate, which is very good news for the design of the ICF targets.

  8. Variation of high-power aluminum-wire array Z-pinch dynamics with wire number, load mass, and array radius

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Mock, R. C.; Marder, B. M.; Nash, T. J.; Spielman, R. B.; Peterson, D. L.; Roderick, N. F.; Hammer, J. H.; De Groot, J. S.; Mosher, D.; Whitney, K. G.; Apruzese, J. P.

    1997-05-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, (as measured by the radial convergence, the radiated energy, pulse width, and power), increases with wire number. Radiation magnetohydrodynamic (RMHC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below ˜1.4 mm. In this "plasma-shell regime," many of the global radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. In this regime, measured changes in the radiation pulse width with variations in load mass and array radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple radiation-scaling models.

  9. Status On Multi-microsecond Prepulse Technique On Sphinx Machine Going From Nested To Single Wire Array For 800 ns Implosion Time Z-pinch

    NASA Astrophysics Data System (ADS)

    Maury, P.; Calamy, H.; Grunenwald, J.; Lassalle, F.; Zucchini, F.; Loyen, A.; Georges, A.; Morell, A.; Bedoch, J. P.

    2009-01-01

    The Sphinx machine[1] is a 6 MA, 1 μS driver based on the LTD technology, used for Z-pinch experiments. Important improvements of Sphinx radiation output were recently obtained using a multi-microsecond current prepulse[2]. Total power per unit of length is multiplied by a factor of 6 and FWHM divided by a factor of 2.5. Early breakdown of the wires during the prepulse phase dramatically changes the ablation phase leading to an improvement of axial homogeneity of both the implosion and the final radiating column. As a consequence, the cathode bubble observed on classical shots is definitively removed. The implosion is then centered and zippering effect is reduced, leading to simultaneous x-ray emission of the whole length. A great reproducibility is obtained. Nested arrays were used before to mitigate the Rayleigh-Taylor instabilities during the implosion phase. Further experiments with pre-pulse technique are described here were inner array was removed. The goal of these experiments was to see if long prepulse could give stable enough implosion with single array and at the same time increase the η parameter by reducing the mass of the load. Experimental results of single wire array loads of typical dimension 5 cm in height with implosion time between 700 and 900 ns and diameter varying between 80 and 140 mm are given. Parameters of the loads were varying in term of radius and number of wires. Comparisons with nested wire array loads are done and trends are proposed. Characteristics of both the implosion and the final radiating column are shown. 2D MHD numerical simulations of single wire array become easier as there is no interaction between outer and inner array anymore. A systematic study was done using injection mass model to benchmark simulation with experiments.

  10. Depletion zones and crystallography on pinched spheres

    NASA Astrophysics Data System (ADS)

    Chen, Jingyuan; Xing, Xiangjun; Yao, Zhenwei

    2018-03-01

    Understanding the interplay between ordered structures and substrate curvature is an interesting problem with versatile applications, including functionalization of charged supramolecular surfaces and modern microfluidic technologies. In this work, we investigate the two-dimensional packing structures of charged particles confined on a pinched sphere. By continuously pinching the sphere, we observe cleavage of elongated scars into pleats, proliferation of disclinations, and subsequently, emergence of a depletion zone at the negatively curved waist that is completely void of particles. We systematically study the geometrics and energetics of the depletion zone, and reveal its physical origin as a finite size effect, due to the interplay between Coulomb repulsion and concave geometry of the pinched sphere. These results further our understanding of crystallography on curved surfaces, and have implications in design and manipulation of charged, deformable interfaces in various applications.

  11. Radiofrequency catheter ablation of ventricular tachycardia in patients without structural heart disease.

    PubMed

    Klein, L S; Shih, H T; Hackett, F K; Zipes, D P; Miles, W M

    1992-05-01

    Radiofrequency energy has been used safely and successfully to eliminate accessory pathways in patients with the Wolff-Parkinson-White syndrome and the substrate for atrioventricular nodal reentrant tachycardia. However, this form of ablation has had only limited success in eliminating ventricular tachycardia in patients with structural heart disease. In contrast, direct-current catheter ablation has been used successfully to eliminate ventricular tachycardia in patients with and without structural heart disease. The purpose of this study was to test whether radiofrequency energy can safely and effectively ablate ventricular tachycardia in patients without structural heart disease. Sixteen patients (nine women and seven men; mean age, 38 years; range, 18-55 years) without structural heart disease who had ventricular tachycardia underwent radiofrequency catheter ablation to eliminate the ventricular tachycardia. Two patients presented with syncope, nine with presyncope, and five with palpitations only. Mean duration of symptoms was 6.7 years (range, 0.5-20 years). Radiofrequency catheter ablation successfully eliminated ventricular tachycardia in 15 of 16 patients (94%). Sites of ventricular tachycardia origin included the high right ventricular outflow tract (12 patients), the right ventricular septum near the tricuspid valve (three patients), and the left ventricular septum (one patient). The only ablation failure was in a patient whose ventricular tachycardia arose from a region near the His bundle. An accurate pace map, early local endocardial activation, and firm catheter contact with endocardium were associated with successful ablation. Radiofrequency ablation did not cause arrhythmias, produced minimal cardiac enzyme rise, and resulted in no detectable change in cardiac function by Doppler echocardiography. Radiofrequency catheter ablation of ventricular tachycardia in patients without structural heart disease is effective and safe and may be considered as

  12. STABILIZED PINCH MACHINE

    DOEpatents

    Anderson, O.A.

    1962-04-24

    A device for heating and confining a high temperature gas or plasma utilizing the linear pinch effect is described. The pinch discharge produced is the form of an elongated cylinder. The electrical discharge current is returned in parallel along an axial and a concentric conductor whereby the magnetic field of the conductors compresses and stabilizes the pinch discharge against lateral instability. (AEC)

  13. Characterisation of the current switch mechanism in two-stage wire array Z-pinches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdiak, G. C.; Lebedev, S. V.; Harvey-Thompson, A. J.

    2015-11-15

    In this paper, we describe the operation of a two-stage wire array z-pinch driven by the 1.4 MA, 240 ns rise-time Magpie pulsed-power device at Imperial College London. In this setup, an inverse wire array acts as a fast current switch, delivering a current pre-pulse into a cylindrical load wire array, before rapidly switching the majority of the generator current into the load after a 100–150 ns dwell time. A detailed analysis of the evolution of the load array during the pre-pulse is presented. Measurements of the load resistivity and energy deposition suggest significant bulk heating of the array mass occurs. Themore » ∼5 kA pre-pulse delivers ∼0.8 J of energy to the load, leaving it in a mixed, predominantly liquid-vapour state. The main current switch occurs as the inverse array begins to explode and plasma expands into the load region. Electrical and imaging diagnostics indicate that the main current switch may evolve in part as a plasma flow switch, driven by the expansion of a magnetic cavity and plasma bubble along the length of the load array. Analysis of implosion trajectories suggests that approximately 1 MA switches into the load in 100 ns, corresponding to a doubling of the generator dI/dt. Potential scaling of the device to higher current machines is discussed.« less

  14. Simulation of Pellet Ablation

    NASA Astrophysics Data System (ADS)

    Parks, P. B.; Ishizaki, Ryuichi

    2000-10-01

    In order to clarify the structure of the ablation flow, 2D simulation is carried out with a fluid code solving temporal evolution of MHD equations. The code includes electrostatic sheath effect at the cloud interface.(P.B. Parks et al.), Plasma Phys. Contr. Fusion 38, 571 (1996). An Eulerian cylindrical coordinate system (r,z) is used with z in a spherical pellet. The code uses the Cubic-Interpolated Psudoparticle (CIP) method(H. Takewaki and T. Yabe, J. Comput. Phys. 70), 355 (1987). that divides the fluid equations into non-advection and advection phases. The most essential element of the CIP method is in calculation of the advection phase. In this phase, a cubic interpolated spatial profile is shifted in space according to the total derivative equations, similarly to a particle scheme. Since the profile is interpolated by using the value and the spatial derivative value at each grid point, there is no numerical oscillation in space, that often appears in conventional spline interpolation. A free boundary condition is used in the code. The possibility of a stationary shock will also be shown in the presentation because the supersonic ablation flow across the magnetic field is impeded.

  15. Plasma diagnostics for x-ray driven foils at Z

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R F; Bailey, J E; Cuneo, M E

    We report the development of techniques to diagnose plasmas produced by X-ray photoionization of thin foils placed near the Z-pinch on the Sandia Z Machine. The development of 100+ TW X-ray sources enables access to novel plasma regimes, such as the photoionization equilibrium. To diagnose these plasmas one must simultaneously characterize both the foil and the driving pinch. The desired photoionized plasma equilibrium is only reached transiently for a 2-ns window, placing stringent requirements on diagnostic synchronization. We have adapted existing Sandia diagnostics and fielded an additional gated 3-crystal Johann spectrometer with dual lines of sight to meet these requirements.more » We present sample data from experiments in which 1 cm, 180 eV tungsten pinches photoionized foils composed of 200{angstrom} Fe and 300{angstrom} NaF co-mixed and sandwiched between 1000{angstrom} layers of Lexan (CHO), and discuss the application of this work to benchmarking astrophysical models.« less

  16. Plasma diagnostics for x-ray driven foils at Z

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R. F.; Bailey, J. E.; Cuneo, M. E.

    We report the development of techniques to diagnose plasmas produced by x-ray photoionization of thin foils placed near the Z-pinch on the Sandia Z Machine. The development of 100+ TW x-ray sources enables access to novel plasma regimes, such as the photoionization equilibrium. To diagnose these plasmas one must simultaneously characterize both the foil and the driving pinch. The desired photoionized plasma equilibrium is only reached transiently for a 2-ns window, placing stringent requirements on diagnostic synchronization. We have adapted existing Sandia diagnostics and fielded an additional gated three-crystal Johann spectrometer with dual lines of sight to meet these requirements.more » We present sample data from experiments using 1-cm, 180-eV tungsten pinches to photoionize foils made of 200 Aa Fe and 300 Aa NaF co-mixed and sandwiched between 1000 Aa layers of Lexan (C16H14O3), and discuss the application of this work to benchmarking astrophysical models.« less

  17. Pin-Ching Maness | NREL

    Science.gov Websites

    Pin-Ching Maness Photo of Pin-Ching Maness Pin-Ching Maness Group Research Manager III-Molecular University, 1974 Professional Experience Principal Group Manager, Photobiology Group, National Renewable in Rubrivivax gelatinosus," PLOS ONE (2014) Illustration of a model of carbon monoxide and

  18. Optimization of K-shell emission in aluminum z-pinch implosions: Theory versus experiment

    NASA Astrophysics Data System (ADS)

    Whitney, K. G.; Thornhill, J. W.; Giuliani, J. L.; Davis, J.; Miles, L. A.; Nolting, E. E.; Kenyon, V. L.; Speicer, W. A.; Draper, J. A.; Parsons, C. R.; Dang, P.; Spielman, R. B.; Nash, T. J.; McGurn, J. S.; Ruggles, L. E.; Deeney, C.; Prasad, R. R.; Warren, L.

    1994-09-01

    Two sets of z-pinch experiments were recently completed at the Saturn and Phoenix facilities of Sandia National Laboratories and the Naval Surface Warfare Center, respectively, using aluminum wire arrays of different wire and array diameters. Measurements of the total x-ray yield from the K shell of aluminum were made. In this paper, a comparison of these measurements is made to both theoretical predictions and to a similar set of earlier measurements that were made at the Double Eagle facility of Physics International Company. These three sets of yield measurements have points of agreement with predicted yields and with each other, but they also show points of mutual disagreement, whose significance is discussed. The data are analyzed using a slightly revised version of a previously published K-shell yield scaling law, and they support the existence of a reasonably well defined region in (load mass)-(implosion velocity) space in which plasma kinetic energy is efficiently converted into K-shell x rays. Furthermore, a correlation is observed between the inferred conversion efficiencies and the times in which the implosions occur relative to the times when each generator's short-circuit current reaches its peak value. Finally, unlike the Double Eagle experiments, the largest measured yields in the new experiments were observed to occur at the upper velocity boundary of the efficient emission region. Moreover, the observed yields are in fairly good quantitative agreement with an earlier scaling law prediction of the maximum K-shell x-ray yield from aluminum as a function of load mass assuming kinetic energy conversion alone.

  19. The structures of non-CG-repeat Z-DNAs co-crystallized with the Z-DNA-binding domain, hZ alpha(ADAR1).

    PubMed

    Ha, Sung Chul; Choi, Jongkeun; Hwang, Hye-Yeon; Rich, Alexander; Kim, Yang-Gyun; Kim, Kyeong Kyu

    2009-02-01

    The Z-DNA conformation preferentially occurs at alternating purine-pyrimidine repeats, and is specifically recognized by Z alpha domains identified in several Z-DNA-binding proteins. The binding of Z alpha to foreign or chromosomal DNA in various sequence contexts is known to influence various biological functions, including the DNA-mediated innate immune response and transcriptional modulation of gene expression. For these reasons, understanding its binding mode and the conformational diversity of Z alpha bound Z-DNAs is of considerable importance. However, structural studies of Z alpha bound Z-DNA have been mostly limited to standard CG-repeat DNAs. Here, we have solved the crystal structures of three representative non-CG repeat DNAs, d(CACGTG)(2), d(CGTACG)(2) and d(CGGCCG)(2) complexed to hZ alpha(ADAR1) and compared those structures with that of hZ alpha(ADAR1)/d(CGCGCG)(2) and the Z alpha-free Z-DNAs. hZ alpha(ADAR1) bound to each of the three Z-DNAs showed a well conserved binding mode with very limited structural deviation irrespective of the DNA sequence, although varying numbers of residues were in contact with Z-DNA. Z-DNAs display less structural alterations in the Z alpha-bound state than in their free form, thereby suggesting that conformational diversities of Z-DNAs are restrained by the binding pocket of Z alpha. These data suggest that Z-DNAs are recognized by Z alpha through common conformational features regardless of the sequence and structural alterations.

  20. Simulation of K-α Emission from Highly Charged Cu ions for Pinches on ZR

    NASA Astrophysics Data System (ADS)

    Dasgupta, A.; Giuliani, J. L.; Clark, R. W.; Ouart, N. D.; Jones, B.; Ampleford, D. J.

    2012-10-01

    Recent spectral data of Cu shots Z1975 and Z2122 from Sandia's ZR machine are believed to show strong K-α emissions. As these K-α lines provide good diagnostics, a detailed spectral model will be developed to investigate these line emissions for analyzing the data. In a Z pinch plasma, K-α emission can occur due to e-beams, hot electrons at the tail of a Maxwellian and also pumping from hot photons emitted near the axis. K-α emission that originates from collisional processes involving hot electrons in the final phase of the pinching plasmas are associated with radiationless electron capture, inner-shell electron collisional excitation and ionization. K-α lines from various ionization stages of various materials such as Fe, Cr, Ni, and Mn were also observed in the ZR data. Contributions from ions with strong K-α transitions will be included for this study which is a preliminary attempt to investigate Cu K-α lines due to hot electrons and photons. Photo-pumped K-α emission from an outer shell is spatially distinguishable from that produced by e-beam on axis.

  1. Structural Evolution and Atom Clustering in β-SiAlON: β-Si 6–z Al z O z N 8–z

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzan, Clayton; Griffith, Kent J.; Laurita, Geneva

    2017-02-06

    SiAlON ceramics, solid solutions based on the Si 3N 4 structure, are important, lightweight structural materials with intrinsically high strength, high hardness, and high thermal and chemical stability. Described by the chemical formula β-Si 6–zAl zO zN 8–z, from a compositional viewpoint, these materials can be regarded as solid solutions between Si 3N 4 and Al 3O 3N. A key aspect of the structural evolution with increasing Al and O (z in the formula) is to understand how these elements are distributed on the β-Si 3N 4 framework. The average and local structural evolution of highly phase-pure samples of β-Simore » 6–zAl zO zN 8–z with z = 0.050, 0.075, and 0.125 are studied here, using a combination of X-ray diffraction, NMR studies, and density functional theory calculations. Synchrotron X-ray diffraction establishes sample purity and indicates subtle changes in the average structure with increasing Al content in these compounds. Solid-state magic-angle-spinning 27Al NMR experiments, coupled with detailed ab initio calculations of NMR spectra of Al in different AlO qN 4–q tetrahedra (0 ≤ q ≤ 4), reveal a tendency of Al and O to cluster in these materials. Independently, the calculations suggest an energetic preference for Al–O bond formation, instead of a random distribution, in the β-SiAlON system.« less

  2. Impedance Dynamics in the Self-Magnetic Pinch (SMP) Diode on the RITS-6 Accelerator

    NASA Astrophysics Data System (ADS)

    Renk, Timothy; Johnston, Mark; Leckbee, Joshua; Webb, Timothy; Mazarakis, Michael; Kiefer, Mark; Bennett, Nichelle

    2014-10-01

    The RITS-6 inductive voltage adder (IVA) accelerator (3.5-8.5 MeV) at Sandia National Laboratories produces high-power (TW) focused electron beams (<3 mm diameter) for flash x-ray radiography applications. The Self-Magnetic Pinch (SMP) diode utilizes a hollowed metal cathode to produce a pinched focus onto a high Z metal converter. The electron flow from the IVA driver into the load region complicates understanding of diode evolution. There is growing evidence that reducing cathode size below some ``optimum'' value in order to achieve desired spot size reduction results in pinch instabilities leading to either reduced dose-rate, early radiation power termination, or both. We are studying evolving pinch dynamics with current and x-ray monitors, optical diagnostics, and spectroscopy, as well as with LSP [1] code simulations. We are also planning changes to anode-cathode materials as well as changes to the diode aspect ratio in an attempt to mitigate the above trends and improve pinch stability while achieving simultaneous spot size reduction. Experiments are ongoing, and latest results will be reported [1]. LSP is a software product of ATK Mission Research, Albuquerque, NM. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Adminis-tration under Contract DE-AC04-94AL85000.

  3. A volumetric ablation model of EPDM considering complex physicochemical process in porous structure of char layer

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Xiao-Jing, Yu; Jian-Ming, Ma; Yi-Wen, Guan; Jiang, Li; Qiang, Li; Sa, Yang

    2017-06-01

    A volumetric ablation model for EPDM (ethylene- propylene-diene monomer) is established in this paper. This model considers the complex physicochemical process in the porous structure of a char layer. An ablation physics model based on a porous structure of a char layer and another model of heterogeneous volumetric ablation char layer physics are then built. In the model, porosity is used to describe the porous structure of a char layer. Gas diffusion and chemical reactions are introduced to the entire porous structure. Through detailed formation analysis, the causes of the compact or loose structure in the char layer and chemical vapor deposition (CVD) reaction between pyrolysis gas and char layer skeleton are introduced. The Arrhenius formula is adopted to determine the methods for calculating carbon deposition rate C which is the consumption rate caused by thermochemical reactions in the char layer, and porosity evolution. The critical porosity value is used as a criterion for char layer porous structure failure under gas flow and particle erosion. This critical porosity value is obtained by fitting experimental parameters and surface porosity of the char layer. Linear ablation and mass ablation rates are confirmed with the critical porosity value. Results of linear ablation and mass ablation rate calculations generally coincide with experimental results, suggesting that the ablation analysis proposed in this paper can accurately reflect practical situations and that the physics and mathematics models built are accurate and reasonable.

  4. CUSP-PINCH DEVICE

    DOEpatents

    Baker, W.R.; Watteau, J.P.H.

    1962-06-01

    An ion-electron plasma heating device of the pinch tube class is designed with novel means for counteracting the instabilities of an ordinary linear pinch discharge. A plasma-forming discharge is created between two spacedapart coaxial electiodes through a gas such as deuterium. A pair of spaced coaxial magnetic field coils encircle the discharge and carry opposing currents so that a magnetic field having a cuspate configuration is created around the plasma, the field being formed after the plasma has been established but before significant instability arises. Thus, containment time is increased and intensified heating is obtained. In addition to the pinch compression heating additional heating is obtained by high-frequency magnetic field modulation. (AEC)

  5. Protein structural failure in mid-IR laser ablation of cornea

    NASA Astrophysics Data System (ADS)

    Hutson, M. Shane; Xiao, Yaowu; Guo, Mingsheng

    2006-05-01

    Researchers have previously observed that tissue ablation with a free electron laser tuned to wavelengths between 6-7 μm is accompanied by remarkably little collateral damage. Attempts to explain these observations have invoked a wavelength-dependent loss of protein structural integrity; however, the molecular nature of this structural failure has been heretofore ill-defined. In this report, we evaluate several candidates for the relevant transition by analyzing the non-volatile debris ejected during ablation. Porcine corneas were ablated with a free electron laser tuned to either 2.77 or 6.45 μm - wavelengths that are equally well absorbed by hydrated corneas, but that respectively target water or protein as the primary chromophore. The ejected debris was characterized via gel electrophoresis, as well as FTIR, micro-Raman and 13C-NMR spectroscopy. We find that high-fluence (240 J/cm2) ablation at 6.45 μm, but not at 2.77 μm, leads to protein fragmentation. This fragmentation is accompanied by the accumulation of nitrile and alkyne species. Although these initial experiments did not detect significant protein unfolding, the loss of collagen triple-helix structure was evident using UV and vibrational circular dichroism. The candidate transition most consistent with all these observations is scission of the collagen protein backbone at N-alkylamide bonds. Identifying this transition is a key step towards understanding the observed wavelength-dependence of collateral damage.

  6. Multi-scale characterization of an upcurrent turbiditic pinch-out

    NASA Astrophysics Data System (ADS)

    Daghdevirenian, L. J. P.; Migeon, S.; Rubino, J. L., Sr.; Raisson, F.

    2017-12-01

    Continental margins with a steep topographic profile between their continental shelf and the basin exhibit a sudden slope break at the base of their continental slope. This slope break favors strong erosion or a by-pass and a fast accumulation of sediments on the base of the continental slope due to the hydraulic jump phenomena. Such a process is responsible for the construction of thick accumulations of limited extension and generally disconnected from the feeding tributaries. These accumulations usually onlap against the continental slope but their modality of pinch out is still questioned and it is the subject of this work. The Tabernas basin is located in South East of Spain, in the continuity of the Sorbas basin. Recent field works allowed identifying a "sedimentary" onlap associated with a small-scale sandy turbidite system that we discovered near the so-called El Buho area. The superb quality of the outcrops revealed, the presence of three successive onlap structures consisting in each case of a direct contact between fluvial conglomerates / marines conglomerates / marine marls / turbidite sands. Reconstruction of paleo-current direction gives a flow direction around N00, from north to south, suggesting the outcrops are cutting the pinch out of the sandy system in a longitudinal direction. A longitudinal and vertical transition of facies can be thus observed from marines' conglomerates to turbidite sands, respectively over distances of 500 m and 70 m. The complete evolution of facies along the pinch out consists of thick conglomerates in the proximal part to sandy turbidite channels then lobes in the distal part. The three successive onlap structures are located inside the channelize part of the system, just above a slope break structure. The basal units of the pinch out consist of an alternation of conglomerates and sandy bed, while the overlying units exhibits more sandy dominated beds. In order to reconstruct the architecture of the pinch out and to

  7. Coherent structure diffusivity in the edge region of Reversed Field Pinch experiments

    NASA Astrophysics Data System (ADS)

    Spolaore, M.; Antoni, V.; Spada, E.; Bergsåker, H.; Cavazzana, R.; Drake, J. R.; Martines, E.; Regnoli, G.; Serianni, G.; Vianello, N.

    2005-01-01

    Coherent structures emerging from the background turbulence have been detected by electrostatic measurements in the edge region of two Reversed Field Pinch experiments, RFX (Padua) and Extrap-T2R (Stockholm). Measurements have been performed by arrays of Langmuir probes which allowed simultaneous measurements of temperature, potential and density to be carried out. These structures have been interpreted as a dynamic balance of dipolar and monopolar vortices, whose relative population are found to depend on the local mean E × B flow shear. The contribution to the anomalous transport of these structures has been investigated and it has been found that the corresponding diffusion coeffcient accounts up to 50% of the total diffusivity. The experimental findings indicate that the diffusion coeffcient associated to the coherent structures depends on the relative population of the two types of vortices and is minimum when the two populations are equal. An interpretative model is proposed to explain this feature.

  8. Experimental research of neutron yield and spectrum from deuterium gas-puff z-pinch on the GIT-12 generator at current above 2 MA

    NASA Astrophysics Data System (ADS)

    Cherdizov, R. K.; Fursov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu; Ratakhin, N. A.; Shishlov, A. V.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.

    2017-05-01

    The Z-pinch experiments with deuterium gas-puff surrounded by an outer plasma shell were carried out on the GIT-12 generator (Tomsk, Russia) at currents of 2 MA. The plasma shell consisting of hydrogen and carbon ions was formed by 48 plasma guns. The deuterium gas-puff was created by a fast electromagnetic valve. This configuration provides an efficient mode of the neutron production in DD reaction, and the neutron yield reaches a value above 1012 neutrons per shot. Neutron diagnostics included scintillation TOF detectors for determination of the neutron energy spectrum, bubble detectors BD-PND, a silver activation detector, and several activation samples for determination of the neutron yield analysed by a Sodium Iodide (NaI) and a high-purity Germanium (HPGe) detectors. Using this neutron diagnostic complex, we measured the total neutron yield and amount of high-energy neutrons.

  9. Using FT-IR Spectroscopy to Elucidate the Structures of Ablative Polymers

    NASA Technical Reports Server (NTRS)

    Fan, Wendy

    2011-01-01

    The composition and structure of an ablative polymer has a multifaceted influence on its thermal, mechanical and ablative properties. Understanding the molecular level information is critical to the optimization of material performance because it helps to establish correlations with the macroscopic properties of the material, the so-called structure-property relationship. Moreover, accurate information of molecular structures is also essential to predict the thermal decomposition pathways as well as to identify decomposition species that are fundamentally important to modeling work. In this presentation, I will describe the use of infrared transmission spectroscopy (FT-IR) as a convenient tool to aid the discovery and development of thermal protection system materials.

  10. Comparison of X-ray Radiation Process in Single and Nested Wire Array Implosions

    NASA Astrophysics Data System (ADS)

    Li, Z. H.; Xu, Z. P.; Yang, J. L.; Xu, R. K.; Guo, C.; Grabovsky, E. V.; Oleynic, G. M.; Smirnov, V. P.

    2006-01-01

    In order to understanding the difference between tungsten single-wire-array and tungsten nested-wire-array Z-pinches, we have measured the x-ray power, the temporal-spatial distributions of x-ray radiation from each of the two loads. The measurements were performed with 0.1mm spatial and 1 ns temporal resolutions at 2.5- and 3.5-MA currents. The experimental conditions, including wire material, number of wires, wire-array length, electrode design, and implosion time, remained unchanged from shot to shot. Analysis of the radiation power profiles suggests that the nested-wire-array radiate slightly less x-ray energy in relatively shorter time interval than the single wire-array, leading to a much greater x-ray power in nested-wire-array implosion. The temporal-spatial distributions of x-ray power show that in both cases, plasmas formed by wire-array ablation radiate not simultaneously along load axis. For nested-wire-array Z-pinch, plasmas near the anode begin to radiate in 2ns later than that near the cathode. As a contrast, the temporal divergence of radiation among different plasma zones of single-wire-array Z-pinch along Z-axis is more than 6ns. Measurements of the x-ray emissions from small segments of pinch (2mm length along axis) indicate that local radiation power profiles almost do not vary for the two loads. Photographs taken by X-ray framing camera give a same description about the radiation process of pinch. One may expect that, as a result of this study, if the single-wire-array can be redesigned so ingeniously that the x-rays are emitted at the same time all over the pinch zone, the radiation power of single wire array Z-pinch may be much greater than what have been achieved.

  11. An investigation of transient pressures and plasma properties in a pinched plasma column. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Stover, E. K.; York, T. M.

    1971-01-01

    The transient pinched plasma column generated in a linear Z-pinch was studied experimentally and analytically. The plasma column was investigated experimentally with several plasma diagnostics; they were: a rapid response pressure transducer, a magnetic field probe, a voltage probe, and discharge luminosity. Axial pressure profiles on the discharge chamber axis were used to identify three characteristic regions of plasma column behavior: (1) strong axial pressure asymmetry noted early in plasma column lifetime, (2) followed by plasma heating in which there is a rapid rise in static pressure, and (3) a slight decrease static pressure before plasma column breakup. Plasma column lifetime was approximately 5 microseconds. The axial pressure asymmetry was attributed to nonsimultaneous pinching of the imploding current sheet along the discharge chamber axis. The rapid heating could be attributed in part to viscous effects introduced by radial gradients in the axial streaming velocity.

  12. Impact of grain size evolution on necking and pinch-and-swell formation in calcite layers

    NASA Astrophysics Data System (ADS)

    Schmalholz, Stefan Markus; Duretz, Thibault

    2017-04-01

    The formation of necking zones and the associated formation of pinch-and-swell structure is one form of strain localization in extending, competent layers. Natural pinch-and-swell structure in centimetre-thick calcite layers typically shows a reduction of grain size from swell towards pinch. However, the impact of grain size evolution on necking and pinch-and-swell formation is incompletely understood. We perform zero-dimensional (0D) and 2D thermo-mechanical numerical simulations to quantify the impact of grain size evolution on necking for extension rates between 10-12s^-1and10^-14 s-1 and temperatures around 350°C. For a combination of diffusion and dislocation creep we calculate grain size evolution according to the paleowattmeter (grain size is proportional to mechanical work rate) or the paleopiezometer (grain size is proportional to stress). Numerical results fit two observations: (i) grain size reduction from swells towards pinches, and (ii) dislocation creep dominated deformation in swells and significant contribution of diffusion creep in pinches. Modelled grain size in pinches (10 to 60 μm) and swells (70 to 800 μm) is close to observed grain size in pinches (15 to 27 μm) and in swells (250 to 1500 μm). Grain size evolution has only a minor impact on necking suggesting that grain size evolution is a consequence, and not the cause of necking. Viscous shear heating and grain size evolution had a negligible thermal impact in the simulations.

  13. Implosion dynamics of a megampere wire-array Z-pinch with an inner low-density foam shell at the Angara-5-1 facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, V. V.; Bolkhovitinov, E. A.; Volkov, G. S., E-mail: volkov@triniti.ru

    The implosion dynamics of a pinch with a highly inhomogeneous initial axial distribution of the load mass was studied experimentally. A cascade array consisting of a double nested tungsten wire array and a coaxial inner cylindrical shell located symmetrically with respect to the high-voltage electrodes was used as a load of the Angara-5-1 high-current generator. The cylindrical foam shell was half as long as the cathode− anode gap, and its diameter was equal to the diameter of the inner wire array. It is shown experimentally that two stages are typical of the implosion dynamics of such a load: the formationmore » of two separate pinches formed as a result of implosion of the wire array near the cathode and anode and the subsequent implosion of the central part of the load containing the cylindrical foam shell. The conditions are determined at which the implosion of the central part of the pinch with the foam cylinder is preceded by intense irradiation of the foam with the soft X-ray (SXR) emission generated by the near-electrode pinches and converting it into the plasma state. Using such a load, which models the main elements of the scheme of a dynamic hohlraum for inertial confinement fusion, it is possible to increase the efficiency of interaction between the outer accelerated plasma sheath and the inner foam shell by preionizing the foam with the SXR emission of the near-electrode pinches.« less

  14. Study of a non-equilibrium plasma pinch with application for microwave generation

    NASA Astrophysics Data System (ADS)

    Al Agry, Ahmad Farouk

    The Non-Equilibrium Plasma Pinch (NEPP), also known as the Dense Plasma Focus (DPF) is well known as a source of energetic ions, relativistic electrons and neutrons as well as electromagnetic radiation extending from the infrared to X-ray. In this dissertation, the operation of a 15 kJ, Mather type, NEPP machine is studied in detail. A large number of experiments are carried out to tune the machine parameters for best performance using helium and hydrogen as filling gases. The NEPP machine is modified to be able to extract the copious number of electrons generated at the pinch. A hollow anode with small hole at the flat end, and a mock magnetron without biasing magnetic field are built. The electrons generated at the pinch are very difficult to capture, therefore a novel device is built to capture and transport the electrons from the pinch to the magnetron. The novel cup-rod-needle device successfully serves the purpose to capture and transport electrons to monitor the pinch current. Further, the device has the potential to field emit charges from its needle end acting as a pulsed electron source for other devices such as the magnetron. Diagnostics tools are designed, modeled, built, calibrated, and implemented in the machine to measure the pinch dynamics. A novel, UNLV patented electromagnetic dot sensors are successfully calibrated, and implemented in the machine. A new calibration technique is developed and test stands designed and built to measure the dot's ability to track the impetus signal over its dynamic range starting and ending in the noise region. The patented EM-dot sensor shows superior performance over traditional electromagnetic sensors, such as Rogowski coils. On the other hand, the cup-rod structure, when grounded on the rod side, serves as a diagnostic tool to monitor the pinch current by sampling the actual current, a quantity that has been always very challenging to measure without perturbing the pinch. To the best of our knowledge, this method

  15. Ride-along data LOS 130, 170 & LO330 shots z3139, 3140 and 3141

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loisel, Guillaume Pascal

    Each instrument records the x-ray emission from the Z-pinch dynamic hohlraum (ZPDH); LOS 130 TIXTLs instruments record the absorption of the pinch backlighter through an expanding NaF/Mg foil; LOS 170 MLM instruments record monochromatic images at 276 and 528 eV energies near and before ZPDH stagnation time; LOS 330 TREX 6A & B: recoded time resolved absorption spectra from a radiatively heated Ne gas.

  16. An investigation of transient pressure and plasma properties in a pinched plasma column. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Stover, E. K.; York, T. M.

    1971-01-01

    The transient pinched plasma column generated in a linear Z-pinch was studied experimentally and analytically. The plasma column was investigated experimentally with the following plasma diagnostics: a special rapid response pressure transducer, a magnetic field probe, a voltage probe and discharge luminosity. Axial pressure profiles on the discharge chamber axis were used to identify three characteristic regions of plasma column behavior; they were in temporal sequence: strong axial pressure asymmetry noted early in plasma column lifetime followed by plasma heating in which there is a rapid rise in static pressure and a slight decrease static pressure before plasma column breakup. Plasma column lifetime was approximately 5 microseconds. The axial pressure asymmetry was attributed to nonsimultaneous pinching of the imploding current sheet along the discharge chamber axis. The rapid heating is attributed in part to viscous effects introduced by radial gradients in the axial streaming velocity. Turbulent heating arising from discharge current excitation of the ion acoustic wave instability is also considered a possible heating mechanism.

  17. Effects of smartphone overuse on hand function, pinch strength, and the median nerve.

    PubMed

    İnal, Esra Erkol; Demİrcİ, kadİr; Çetİntürk, Azİze; Akgönül, Mehmet; Savaş, Serpİl

    2015-08-01

    In this study we investigated the flexor pollicis longus (FPL) tendon and median nerve in smartphone users by ultrasonography to assess the effects of smartphone addiction on the clinical and functional status of the hands. One hundred two students were divided into 3 groups: non-users, and high or low smartphone users. Smartphone Addiction Scale (SAS) scores and grip and pinch strengths were recorded. Pain in thumb movement and rest and hand function were evaluated on the visual analog scale (VAS) and the Duruöz Hand Index (DHI), respectively. The cross-sectional areas (CSAs) of the median nerve and the FPL tendon were calculated bilaterally using ultrasonography. Significantly higher median nerve CSAs were observed in the dominant hands of the high smartphone users than in the non-dominant hands (P<0.001). SAS scores correlated with VAS pain for movement and rest, DHI scores, and pinch strength (P<0.05; r=0.345, 0.272, 0.245, and 0.281, respectively). Smartphone overuse enlarges the median nerve, causes pain in the thumb, and decreases pinch strength and hand functions. © 2015 Wiley Periodicals, Inc.

  18. Simulations of Radiation-Driven Shock Wave Experiments

    NASA Astrophysics Data System (ADS)

    Dukart, R. J.; Asay, J. R.; Porter, J. L.; Matzen, M. K.

    1997-07-01

    For inertial confinement fusion (I.C.F.) target design, we need to understand material properties between 1- and 150-Mbar pressure. In this presentation we will show that we can use radiatively-driven ablation to generate high pressures in a wide variety of materials. PBFA-Z is being developed to generate centimeter scale hohlraums with temperatures from 80 to 150 eV. 1-D radiation/hydrodynamic simulations using these hohlraums predict the generation 1- to 15-Mbar pressures in a wide variety of materials through direct ablation. Through the use of thick ablators, we can obtain 4.5- to 25-Mbar pressures in Aluminum. This pressure regime can be extended to 40 Mbar for 200-eV hohlraums predicted for the X1, next generation, Z-pinch driver.

  19. Quasi-linear gyrokinetic predictions of the Coriolis momentum pinch in NSTX

    DOE Data Explorer

    Guttenfelder, W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kaye, S. M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ren, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Solomon, W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bell, R. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Candy, J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); LeBlanc, B. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Yuh, H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-04-01

    This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio NSTX H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostatic ballooning modes are also unstable, which are effective at transporting energy, particles and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes in a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. As the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.

  20. A spin-liquid with pinch-line singularities on the pyrochlore lattice.

    PubMed

    Benton, Owen; Jaubert, L D C; Yan, Han; Shannon, Nic

    2016-05-26

    The mathematics of gauge theories lies behind many of the most profound advances in physics in the past 200 years, from Maxwell's theory of electromagnetism to Einstein's theory of general relativity. More recently it has become clear that gauge theories also emerge in condensed matter, a prime example being the spin-ice materials which host an emergent electromagnetic gauge field. In spin-ice, the underlying gauge structure is revealed by the presence of pinch-point singularities in neutron-scattering measurements. Here we report the discovery of a spin-liquid where the low-temperature physics is naturally described by the fluctuations of a tensor field with a continuous gauge freedom. This gauge structure underpins an unusual form of spin correlations, giving rise to pinch-line singularities: line-like analogues of the pinch points observed in spin-ice. Remarkably, these features may already have been observed in the pyrochlore material Tb2Ti2O7.

  1. A spin-liquid with pinch-line singularities on the pyrochlore lattice

    PubMed Central

    Benton, Owen; Jaubert, L.D.C.; Yan, Han; Shannon, Nic

    2016-01-01

    The mathematics of gauge theories lies behind many of the most profound advances in physics in the past 200 years, from Maxwell's theory of electromagnetism to Einstein's theory of general relativity. More recently it has become clear that gauge theories also emerge in condensed matter, a prime example being the spin-ice materials which host an emergent electromagnetic gauge field. In spin-ice, the underlying gauge structure is revealed by the presence of pinch-point singularities in neutron-scattering measurements. Here we report the discovery of a spin-liquid where the low-temperature physics is naturally described by the fluctuations of a tensor field with a continuous gauge freedom. This gauge structure underpins an unusual form of spin correlations, giving rise to pinch-line singularities: line-like analogues of the pinch points observed in spin-ice. Remarkably, these features may already have been observed in the pyrochlore material Tb2Ti2O7. PMID:27225400

  2. Axial plasma jet characterization on a microsecond x-pinch

    NASA Astrophysics Data System (ADS)

    Jaar, G. S.; Appartaim, R. K.

    2018-06-01

    The jets produced on a microsecond x-pinch (quarter period T1/4 ˜ 1 μs, dI/dt ˜ 0.35 kA/ns) have been studied through light-field schlieren imaging and optical framing photographs across 4 different materials: Al, Ti, Mo, and W. The axial velocity of the jets was measured and exhibited no dependence on atomic number (Z) of the wire material. There may be a dependence on another factor(s), namely, the current rise rate. The average axial jet velocity across all four materials was measured to be 2.9 ± 0.5 × 106 cm/s. The average jet diameter and the average radial jet expansion rate displayed inverse relationships with Z, which may be attributed to radiative cooling and inertia. Asymmetry between the anode and cathode jet behavior was observed and is thought to be caused by electron beam activity. The mean divergence angle of the jet was found to vary with wire material and correlated inversely with the thermal conductivity of the cold wire. Optical images indicated a two-layer structure in Al jets which may be caused by standing shocks and resemble phenomena observed in astrophysical jet formation and collimation. Kinks in the jets have also been observed which may be caused by m = 1 MHD instability modes or by the interaction of the jet with the electrode plasma.

  3. Crystal structure of the EnvZ periplasmic domain with CHAPS.

    PubMed

    Hwang, Eunha; Cheong, Hae-Kap; Kim, Sang-Yoon; Kwon, Ohsuk; Blain, Katherine Y; Choe, Senyon; Yeo, Kwon Joo; Jung, Yong Woo; Jeon, Young Ho; Cheong, Chaejoon

    2017-05-01

    Bacteria sense and respond to osmolarity through the EnvZ-OmpR two-component system. The structure of the periplasmic sensor domain of EnvZ (EnvZ-PD) is not available yet. Here, we present the crystal structure of EnvZ-PD in the presence of CHAPS detergent. The structure of EnvZ-PD shows similar folding topology to the PDC domains of PhoQ, DcuS, and CitA, but distinct orientations of helices and β-hairpin structures. The CD and NMR spectra of EnvZ-PD in the presence of cholate, a major component of bile salts, are similar to those with CHAPS. Chemical cross-linking shows that the dimerization of EnvZ-PD is significantly inhibited by the CHAPS and cholate. Together with β-galactosidase assay, these results suggest that bile salts may affect the EnvZ structure and function in Escherichia coli. © 2017 Federation of European Biochemical Societies.

  4. Pinch-off Scaling Law of Soap Bubbles

    NASA Astrophysics Data System (ADS)

    Davidson, John; Ryu, Sangjin

    2014-11-01

    Three common interfacial phenomena that occur daily are liquid drops in gas, gas bubbles in liquid and thin-film bubbles. One aspect that has been studied for these phenomena is the formation or pinch-off of the drop/bubble from the liquid/gas threads. In contrast to the formation of liquid drops in gas and gas bubbles in liquid, thin-film bubble pinch-off has not been well documented. Having thin-film interfaces may alter the pinch-off process due to the limiting factor of the film thickness. We observed the pinch-off of one common thin-film bubble, soap bubbles, in order to characterize its pinch-off behavior. We achieved this by constructing an experimental model replicating the process of a human producing soap bubbles. Using high-speed videography and image processing, we determined that the minimal neck radius scaled with the time left till pinch-off, and that the scaling law exponent was 2/3, similar to that of liquid drops in gas.

  5. Low-symmetry structures of Au32Z (Z = +1, 0, -1) clusters.

    PubMed

    Jalbout, Abraham F; Contreras-Torres, Flavio F; Pérez, Luis A; Garzón, Ignacio L

    2008-01-24

    In this work, we have explored new stable structures of the Au32Z (Z = +1, 0, -1) clusters. Theoretical calculations using density functional theory within the generalized-gradient approximation were performed. Our results show that, in the anion state (Au32-), low-symmetry (disordered) structures are preferred over the caged fullerene-like isomer. In addition, the cationic cluster (Au32+) also exhibits a disordered low-symmetry structure as its lowest energy configuration, but it is much closer in energy to the fullerene-like isomer. These results, obtained at T = 0 K, indicate that disordered structures for the Au32- and Au32+ clusters may be detected not only at room temperature, as was experimentally verified for the Au32- one, but also at much lower temperatures.

  6. Pinch current limitation effect in plasma focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.; Saw, S. H.; INTI International University College, 71800 Nilai

    The Lee model couples the electrical circuit with plasma focus dynamics, thermodynamics, and radiation. It is used to design and simulate experiments. A beam-target mechanism is incorporated, resulting in realistic neutron yield scaling with pinch current and increasing its versatility for investigating all Mather-type machines. Recent runs indicate a previously unsuspected 'pinch current limitation' effect. The pinch current does not increase beyond a certain value however low the static inductance is reduced to. The results indicate that decreasing the present static inductance of the PF1000 machine will neither increase the pinch current nor the neutron yield, contrary to expectations.

  7. Pulsed Flow Pinch

    NASA Astrophysics Data System (ADS)

    Hartman, Charles

    2005-10-01

    Formation of a Pulsed Flow Pinch is discussed, based on 2-D, MHD numerical calculations. The PFP utilizes the observed stable, Btheta magnetic ``bubble'' which propagates from breach to muzzle during the run-down phase of the coaxial Marshall gun. We consider two ways of launching a PFP onto a fiber or cylindrical gas cloud: 1) by propagating the bubble to small radius along an exponentially-decreasing-radius center conductor and, 2) by a radial launch to form reflex PFP's propagating in opposite directions along a fiber. We show that the bubble velocity increases to high values as the radius is decreased making the rise time of Btheta at an axial point very short. A bubble, launched into uniform gas is found to undergo unstable pinching of the front. Results will be presented of calculations of a PFP driven, neutron-producing, snow-plow pinch. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  8. Correlative anatomy for the electrophysiologist: ablation for atrial fibrillation. Part II: regional anatomy of the atria and relevance to damage of adjacent structures during AF ablation.

    PubMed

    Macedo, Paula G; Kapa, Suraj; Mears, Jennifer A; Fratianni, Amy; Asirvatham, Samuel J

    2010-07-01

    Ablation procedures for atrial fibrillation have become an established and increasingly used option for managing patients with symptomatic arrhythmia. The anatomic structures relevant to the pathogenesis of atrial fibrillation and ablation procedures are varied and include the pulmonary veins, other thoracic veins, the left atrial myocardium, and autonomic ganglia. Exact regional anatomic knowledge of these structures is essential to allow correlation with fluoroscopy and electrograms and, importantly, to avoid complications from damage of adjacent structures within the chest. We present this information as a series of 2 articles. In a prior issue, we have discussed the thoracic vein anatomy relevant to paroxysmal atrial fibrillation. In the present article, we focus on the atria themselves, the autonomic ganglia, and anatomic issues relevant for minimizing complications during atrial fibrillation ablation.

  9. Structure of the Z Ring-associated Protein, ZapD, Bound to the C-terminal Domain of the Tubulin-like Protein, FtsZ, Suggests Mechanism of Z Ring Stabilization through FtsZ Cross-linking.

    PubMed

    Schumacher, Maria A; Huang, Kuo-Hsiang; Zeng, Wenjie; Janakiraman, Anuradha

    2017-03-03

    Cell division in most bacteria is mediated by the tubulin-like FtsZ protein, which polymerizes in a GTP-dependent manner to form the cytokinetic Z ring. A diverse repertoire of FtsZ-binding proteins affects FtsZ localization and polymerization to ensure correct Z ring formation. Many of these proteins bind the C-terminal domain (CTD) of FtsZ, which serves as a hub for FtsZ regulation. FtsZ ring-associated proteins, ZapA-D (Zaps), are important FtsZ regulatory proteins that stabilize FtsZ assembly and enhance Z ring formation by increasing lateral assembly of FtsZ protofilaments, which then form the Z ring. There are no structures of a Zap protein bound to FtsZ; therefore, how these proteins affect FtsZ polymerization has been unclear. Recent data showed ZapD binds specifically to the FtsZ CTD. Thus, to obtain insight into the ZapD-CTD interaction and how it may mediate FtsZ protofilament assembly, we determined the Escherichia coli ZapD-FtsZ CTD structure to 2.67 Å resolution. The structure shows that the CTD docks within a hydrophobic cleft in the ZapD helical domain and adopts an unusual structure composed of two turns of helix separated by a proline kink. FtsZ CTD residue Phe-377 inserts into the ZapD pocket, anchoring the CTD in place and permitting hydrophobic contacts between FtsZ residues Ile-374, Pro-375, and Leu-378 with ZapD residues Leu-74, Trp-77, Leu-91, and Leu-174. The structural findings were supported by mutagenesis coupled with biochemical and in vivo studies. The combined data suggest that ZapD acts as a molecular cross-linking reagent between FtsZ protofilaments to enhance FtsZ assembly. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Investigation on the pinch point position in heat exchangers

    NASA Astrophysics Data System (ADS)

    Pan, Lisheng; Shi, Weixiu

    2016-06-01

    The pinch point is important for analyzing heat transfer in thermodynamic cycles. With the aim to reveal the importance of determining the accurate pinch point, the research on the pinch point position is carried out by theoretical method. The results show that the pinch point position depends on the parameters of the heat transfer fluids and the major fluid properties. In most cases, the pinch point locates at the bubble point for the evaporator and the dew point for the condenser. However, the pinch point shifts to the supercooled liquid state in the near critical conditions for the evaporator. Similarly, it shifts to the superheated vapor state with the condensing temperature approaching the critical temperature for the condenser. It even can shift to the working fluid entrance of the evaporator or the supercritical heater when the heat source fluid temperature is very high compared with the absorbing heat temperature. A wrong position for the pinch point may generate serious mistake. In brief, the pinch point should be founded by the iterative method in all conditions rather than taking for granted.

  11. Self-pinched lithium beam transport experiments on SABRE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, D.L.; Olson, C.L.; Poukey, J.W.

    Self-pinched transport of ion beams has many advantages for ion-driven ICF applications involving high yield and energy production. The authors are currently preparing for a self-pinched lithium beam transport experiment on the SABRE accelerator. There are three transport elements that must eventually be demonstrated: (1) efficient lithium beam generation and ballistic transport to a focus at the self-pinched transport channel entrance; (2) self-pinched transport in the channel, requiring optimized injection conditions and gas breakdown; and (3) self-pinched transport of the equilibrated beam from the channel into free space, with associated aiming and stability considerations. In the present experiment, a hollowmore » annular lithium beam from an applied-B extraction ion diode will be focused to small radius (r {le} 2 cm) in a 60 cm long ballistic focus section containing argon gas at a pressure of a few Torr. The self-pinched transport channel will contain a low pressure background gas of 10--40 mTorr argon to allow sufficient net current to confine the beam for long distance transport. IPROP simulations are in progress to optimize the design of the ballistic and self-pinched transport sections. Progress on preparation of this lithium self-pinched transport experiment, including a discussion of transport system design, important gas breakdown issues, and diagnostics, will be presented.« less

  12. Contemporary Tools and Techniques for Substrate Ablation of Ventricular Tachycardia in Structural Heart Disease.

    PubMed

    Hutchinson, Mathew D; Garza, Hyon-He K

    2018-02-24

    As we have witnessed in other arenas of catheter-based therapeutics, ventricular tachycardia (VT) ablation has become increasingly anatomical in its execution. Multi-modality imaging provides anatomical detail in substrate characterization, which is often complex in nonischemic cardiomyopathy patients. Patients with intramural, intraseptal, and epicardial substrates provide challenges in delivering effective ablation to the critical arrhythmia substrate due to the depth of origin or the presence of adjacent critical structures. Novel ablation techniques such as simultaneous unipolar or bipolar ablation can be useful to achieve greater lesion depth, though at the expense of increasing collateral damage. Disruptive technologies like stereotactic radioablation may provide a tailored approach to these complex patients while minimizing procedural risk. Substrate ablation is a cornerstone of the contemporary VT ablation procedure, and recent data suggest that it is as effective and more efficient that conventional activation guided ablation. A number of specific targets and techniques for substrate ablation have been described, and all have shown a fairly high success in achieving their acute procedural endpoint. Substrate ablation also provides a novel and reproducible procedural endpoint, which may add predictive value for VT recurrence beyond conventional programmed stimulation. Extrapolation of outcome data to nonischemic phenotypes requires caution given both the variability in substrate nonischemic distribution and the underrepresentation of these patients in previous trials.

  13. Crystal and electronic structures, luminescence properties of Eu 2+-doped Si 6-zAl zO zN 8-z and M ySi 6-zAl z-yO z+yN 8-z-y ( M=2Li, Mg, Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Li, Y. Q.; Hirosaki, N.; Xie, R. J.; Takeda, T.; Mitomo, M.

    2008-12-01

    The crystal structure, electronic structure, and photoluminescence properties of Eu xSi 6-zAl z-xO z+xN 8-z-x ( x=0-0.1, 0< z<1) and Eu xM ySi 6-zAl z-x-yO z+x+yN 8-z-x-y ( M=2Li, Mg, Ca, Sr, Ba) have been studied. Single-phase Eu xSi 6-zAl z-xO z+xN 8-z-x can be obtained in very narrow ranges of x⩽0.06 ( z=0.15) and z<0.5 ( x=0.3), indicating that limited Eu 2+ ions can be incorporated into nitrogen-rich Si 6-zAl zO zN 8-z. The Eu 2+ ion is found to occupy the 2 b site in a hexagonal unit cell ( P6 3/ m) and directly connected by six adjacent nitrogen/oxygen atoms ranging 2.4850-2.5089 Å. The calculated host band gaps by the relativistic DV-X α method are about 5.55 and 5.45 eV (without Eu 2+ 4 f5 d levels) for x=0 and 0.013 in Eu xSi 6-zAl z-xO z+xN 8-z-x ( z=0.15), in which the top of the 5 d orbitals overlap with the Si-3 s3 p and N-2 p orbitals within the bottom of the conduction band of the host. Eu xSi 6-zAl z-xO z+xN 8-z-x shows a strong green emission with a broad Eu 2+ band centered at about 530 nm under UV to near-UV excitation range. The excitation and emission spectra are hardly modified by Eu concentration and dual-doping ions of Li and other alkaline-earth ions with Eu. Higher Eu concentrations can significantly quench the luminescence of Eu 2+ and decrease the thermal quenching temperature. In addition, the emission spectrum can only be slightly tuned to the longer wavelengths (˜529-545 nm) by increasing z within the solid solution range of z<0.5. Furthermore, the luminescence intensity of Eu xSi 6-zAl z-xO z+xN 8-z-x can be improved by increasing z and the dual-doping of Li and Ba.

  14. Ablative thermal management structural material on the hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Shortland, H.; Tsai, C.

    A hypersonic vehicle is designed to fly at high Mach number in the earth's atmosphere that will result in higher aerodynamic heating loads on specific areas of the vehicle. A thermal protection system is required for these areas that may exceed the operating temperature limit of structural materials. This paper delineates the application of ablative material as the passive type of thermal protection system for the nose or wing leading edges. A simplified quasi-steady-state one-dimensional computer model was developed to evaluate the performance and thermal design of a leading edge. The detailed description of the governing mathematical equations and results are presented. This model provides a quantitative information to support the design estimate, performance optimization, and assess preliminary feasibility of using ablation as a design approach.

  15. Existence of a return direction for plasma escaping from a pinched column in a plasma focus discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubes, P.; Cikhardt, J.; Klir, D.

    2015-05-15

    The use of multi-frame interferometry used on the PF-1000 device with the deuterium filling showed the existence of a return motion of the top of several lobules of the pinched column formed at the pinched plasma column. This phenomenon was observed in the presence of an over-optimal mass in front of the anode, which depressed the intensity of the implosion and the smooth surface of the pinched plasma column. The observed evolution was explored through the use of closed poloidal currents transmitted outside the pinched plasma. This interpretation complements the scenario of the closed currents flowing within the structures insidemore » the pinched column, which has been published recently on the basis of observations from interferometry, neutron, and magnetic probe diagnostics on this device.« less

  16. Ablation properties of carbon/carbon composites with tungsten carbide

    NASA Astrophysics Data System (ADS)

    Yin, Jian; Zhang, Hongbo; Xiong, Xiang; Huang, Baiyun; Zuo, Jinlv

    2009-02-01

    The ablation properties and morphologies of carbon/carbon (C/C) composites with tungsten carbide (WC) filaments were investigated by ablation test on an arc heater and scanning electron microscopy. And the results were compared with those without tungsten carbide (WC) filaments tested under the same conditions. It shows that there is a big difference between C/C composites with and without WC filaments on both macroscopic and microscopic ablation morphologies and the ablation rates of the former are higher than the latter. It is found that the ablation process of C/C composites with WC filaments includes oxidation of carbon fibers, carbon matrices and WC, melting of WC and WO 3, and denudation of WC, WO 3 and C/C composites. Oxidation and melting of WC leads to the formation of holes in z directional carbon fiber bundles, which increases the coarseness of the ablation surfaces of the composites, speeds up ablation and leads to the higher ablation rate. Moreover, it is further found that the molten WC and WO 3 cannot form a continuous film on the ablation surface to prevent further ablation of C/C composites.

  17. Advanced Kr Atomic Structure and Ionization Kinetics for Pinches on ZR

    NASA Astrophysics Data System (ADS)

    Dasgupta, Arati; Clark, Robert; Giuliani, John; Ouart, Nick; Davis, Jack; Jones, Brent; Ampleford, Dave; Hansen, Stephanie

    2011-10-01

    High fluence photon sources above 10 keV are a challenge for HED plasmas. This motivates Kr atomic modeling as its K-shell radiation starts at 13 keV. We have developed atomic structure and collisional-radiatve data for the full K-and L-shell and much of the M-shell using the the state-of-the-art Flexible Atomic Code. All relevant atomic collisional and radiative processes that affect ionization balance and are necessary to accurately model the pinch dynamics and the spectroscopic details of the emitted radiation are included in constructing the model. This non-LTE CRE model will be used to generate synthetic spectra for fixed densities and temperatures relevant for Kr gas-puff simulations in ZR. Work supported by DOE/NNSA. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Pinched-flow hydrodynamic stretching of single-cells.

    PubMed

    Dudani, Jaideep S; Gossett, Daniel R; Tse, Henry T K; Di Carlo, Dino

    2013-09-21

    Reorganization of cytoskeletal networks, condensation and decondensation of chromatin, and other whole cell structural changes often accompany changes in cell state and can reflect underlying disease processes. As such, the observable mechanical properties, or mechanophenotype, which is closely linked to intracellular architecture, can be a useful label-free biomarker of disease. In order to make use of this biomarker, a tool to measure cell mechanical properties should accurately characterize clinical specimens that consist of heterogeneous cell populations or contain small diseased subpopulations. Because of the heterogeneity and potential for rare populations in clinical samples, single-cell, high-throughput assays are ideally suited. Hydrodynamic stretching has recently emerged as a powerful method for carrying out mechanical phenotyping. Importantly, this method operates independently of molecular probes, reducing cost and sample preparation time, and yields information-rich signatures of cell populations through significant image analysis automation, promoting more widespread adoption. In this work, we present an alternative mode of hydrodynamic stretching where inertially-focused cells are squeezed in flow by perpendicular high-speed pinch flows that are extracted from the single inputted cell suspension. The pinched-flow stretching method reveals expected differences in cell deformability in two model systems. Furthermore, hydraulic circuit design is used to tune stretching forces and carry out multiple stretching modes (pinched-flow and extensional) in the same microfluidic channel with a single fluid input. The ability to create a self-sheathing flow from a single input solution should have general utility for other cytometry systems and the pinched-flow design enables an order of magnitude higher throughput (65,000 cells s(-1)) compared to our previously reported deformability cytometry method, which will be especially useful for identification of rare

  19. Pinch aperture proprioception: reliability and feasibility study

    PubMed Central

    Yahya, Abdalghani; von Behren, Timothy; Levine, Shira; dos Santos, Marcio

    2018-01-01

    [Purpose] To establish the reliability and feasibility of a novel pinch aperture device to measure proprioceptive joint position sense. [Subjects and Methods] Reliability of the pinch aperture device was assessed in 21 healthy subjects. Following familiarization with a 15° target position of the index finger and thumb, subjects performed 5 trials in which they attempted to actively reproduce the target position without visual feedback. This procedure was repeated at a testing session on a separate date, and the between-session intraclass correlation coefficient (ICC) was calculated. In addition, extensor tendon vibration was applied to 19 healthy subjects, and paired t-tests were conducted to compare performance under vibration and no-vibration conditions. Pinch aperture proprioception was also assessed in two individuals with known diabetic neuropathy. [Results] The pinch aperture device demonstrated excellent reliability in healthy subjects (ICC 0.88, 95% confidence interval 0.70–0.95). Tendon vibration disrupted pinch aperture proprioception, causing subjects to undershoot the target position (18.1 ± 2.6° vs. 14.8° ± 0.76, p<0.001). This tendency to undershoot the target position was also noted in individuals with diabetic neuropathy. [Conclusion] This study describes a reliable, feasible, and functional means of measuring finger proprioception. Further research should investigate the assessment and implications of pinch aperture proprioception in neurological and orthopedic populations. PMID:29765192

  20. Self-Pinched Transport Theory for the SABRE Ion Diode

    NASA Astrophysics Data System (ADS)

    Welch, Dale R.; Olson, Craig L.; Hanson, David L.

    1997-05-01

    In anticipation of a 90 kA 4 MV SABRE ion diode experiment, we have been examining self-pinch transport of ions for application to ion-driven inertial confinement fusion. The Li^+3 beam will exit the diode with a 30-40 mradian divergence and a shallow focusing angle of 75 mradians. The beam is annular with an 4.6-cm inner radius and a 6.8-cm outer radius. Self-pinch theory and simulation predict that large residual currents are possible in 2-20 mtorr argon gas. The simulations suggest that ≈ 50 kA of Li particle current is necessary to contain the beam's transverse momentum. Some non-ideal effects include large beam divergence, large focusing angle and beam annularity. To address these problems, we have been studying the benefits of beam conditioning in the focus region between the diode and the self pinch region after the beam has reached a small radius. We have found some benefit from including a passive conical structure and a low-pressure gas. A significant lens effect can be attained using only the beam fields in vacuum or a low pressure gas. In this configuration, a large focusing force, that keeps the ions off an inner cone and outer wall as the beam converges, has been calculated using the numerical simulation code uc(iprop.) Results from integrated simulation of the condition cell and self-pinch region look encouraging.

  1. Surface ablation with iris recognition and dynamic rotational eye tracking-based tissue saving treatment with the Technolas 217z excimer laser.

    PubMed

    Prakash, Gaurav; Agarwal, Amar; Kumar, Dhivya Ashok; Jacob, Soosan; Agarwal, Athiya; Maity, Amrita

    2011-03-01

    To evaluate the visual and refractive outcomes and expected benefits of Tissue Saving Treatment algorithm-guided surface ablation with iris recognition and dynamic rotational eye tracking. This prospective, interventional case series comprised 122 eyes (70 patients). Pre- and postoperative assessment included uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), refraction, and higher order aberrations. All patients underwent Tissue Saving Treatment algorithm-guided surface ablation with iris recognition and dynamic rotational eye tracking using the Technolas 217z 100-Hz excimer platform (Technolas Perfect Vision GmbH). Follow-up was performed up to 6 months postoperatively. Theoretical benefit analysis was performed to evaluate the algorithm's outcomes compared to others. Preoperative spherocylindrical power was sphere -3.62 ± 1.60 diopters (D) (range: 0 to -6.75 D), cylinder -1.15 ± 1.00 D (range: 0 to -3.50 D), and spherical equivalent -4.19 ± 1.60 D (range: -7.75 to -2.00 D). At 6 months, 91% (111/122) of eyes were within ± 0.50 D of attempted correction. Postoperative UDVA was comparable to preoperative CDVA at 1 month (P=.47) and progressively improved at 6 months (P=.004). Two eyes lost one line of CDVA at 6 months. Theoretical benefit analysis revealed that of 101 eyes with astigmatism, 29 would have had cyclotorsion-induced astigmatism of ≥ 10% if iris recognition and dynamic rotational eye tracking were not used. Furthermore, the mean percentage decrease in maximum depth of ablation by using the Tissue Saving Treatment was 11.8 ± 2.9% over Aspheric, 17.8 ± 6.2% over Personalized, and 18.2 ± 2.8% over Planoscan algorithms. Tissue saving surface ablation with iris recognition and dynamic rotational eye tracking was safe and effective in this series of eyes. Copyright 2011, SLACK Incorporated.

  2. Characterization of neutron emission from mega-ampere deuterium gas puff Z-pinch at microsecond implosion times

    NASA Astrophysics Data System (ADS)

    Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cikhardt, J.; Fursov, F. I.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Ratakhin, N. A.; Sila, O.; Stodulka, J.

    2013-08-01

    Experiments with deuterium (D2) triple shell gas puffs were carried out on the GIT-12 generator at a 3 MA current level and microsecond implosion times. The outer, middle and inner nozzle diameters were 160 mm, 80 mm and 30 mm, respectively. The influence of the mass of deuterium shells on neutron emission times, neutron yields and neutron energy spectra was studied. The injected linear mass of deuterium varied between 50 and 255 µg cm-1. Gas puffs imploded onto the axis before the peak of generator current at 700-1100 ns. Most of the neutrons were emitted during the second neutron pulse after the development of instabilities. Despite higher currents, heavier gas puffs produced lower neutron yields. Optimal mass and a short time delay between the valve opening and the generator triggering were more important than the better coincidence of stagnation with peak current. The peak neutron yield from D(d, n)3He reactions reached 3 × 1011 at 2.8 MA current, 90 µg cm-1 injected linear mass and 37 mm anode-cathode gap. In the case of lower mass shots, a large number of 10 MeV neutrons were produced either by secondary DT reactions or by DD reactions of deuterons with energies above 7 MeV. The average neutron yield ratio Y>10 MeV/Y2.5 MeV reached (6 ± 3) × 10-4. Such a result can be explained by a power law distribution for deuterons as \\rmd N_d/\\rmd E_d\\propto E_d^{-3} . The optimization of a D2 gas puff Z-pinch and similarities to a plasma focus and its drive parameter are described.

  3. Structure-based analysis of CysZ-mediated cellular uptake of sulfate

    PubMed Central

    Assur Sanghai, Zahra; Liu, Qun; Clarke, Oliver B; Belcher-Dufrisne, Meagan; Wiriyasermkul, Pattama; Giese, M Hunter; Leal-Pinto, Edgar; Kloss, Brian; Tabuso, Shantelle; Love, James; Punta, Marco; Banerjee, Surajit; Rajashankar, Kanagalaghatta R; Rost, Burkhard; Logothetis, Diomedes; Quick, Matthias; Hendrickson, Wayne A

    2018-01-01

    Sulfur, most abundantly found in the environment as sulfate (SO42-), is an essential element in metabolites required by all living cells, including amino acids, co-factors and vitamins. However, current understanding of the cellular delivery of SO42- at the molecular level is limited. CysZ has been described as a SO42- permease, but its sequence family is without known structural precedent. Based on crystallographic structure information, SO42- binding and flux experiments, we provide insight into the molecular mechanism of CysZ-mediated translocation of SO42- across membranes. CysZ structures from three different bacterial species display a hitherto unknown fold and have subunits organized with inverted transmembrane topology. CysZ from Pseudomonas denitrificans assembles as a trimer of antiparallel dimers and the CysZ structures from two other species recapitulate dimers from this assembly. Mutational studies highlight the functional relevance of conserved CysZ residues. PMID:29792261

  4. Structure-based analysis of CysZ-mediated cellular uptake of sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assur Sanghai, Zahra; Liu, Qun; Clarke, Oliver B.

    Sulfur, most abundantly found in the environment as sulfate (SO 4 2-), is an essential element in metabolites required by all living cells, including amino acids, co-factors and vitamins. However, current understanding of the cellular delivery of SO 4 2- at the molecular level is limited. CysZ has been described as a SO 4 2- permease, but its sequence family is without known structural precedent. Based on crystallographic structure information, SO 4 2- binding and flux experiments, we provide insight into the molecular mechanism of CysZ-mediated translocation of SO 4 2- across membranes. CysZ structures from three different bacterial speciesmore » display a hitherto unknown fold and have subunits organized with inverted transmembrane topology. CysZ from Pseudomonas denitrificans assembles as a trimer of antiparallel dimers and the CysZ structures from two other species recapitulate dimers from this assembly. In conclusion, mutational studies highlight the functional relevance of conserved CysZ residues.« less

  5. Structure-based analysis of CysZ-mediated cellular uptake of sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assur Sanghai, Zahra; Liu, Qun; Clarke, Oliver B.

    Sulfur, most abundantly found in the environment as sulfate (SO42-), is an essential element in metabolites required by all living cells, including amino acids, co-factors and vitamins. However, current understanding of the cellular delivery of SO42- at the molecular level is limited. CysZ has been described as a SO42- permease, but its sequence family is without known structural precedent. Based on crystallographic structure information, SO42- binding and flux experiments, we provide insight into the molecular mechanism of CysZ-mediated translocation of SO42- across membranes. CysZ structures from three different bacterial species display a hitherto unknown fold and have subunits organized withmore » inverted transmembrane topology. CysZ from Pseudomonas denitrificans assembles as a trimer of antiparallel dimers and the CysZ structures from two other species recapitulate dimers from this assembly. Mutational studies highlight the functional relevance of conserved CysZ residues.« less

  6. Structure-based analysis of CysZ-mediated cellular uptake of sulfate

    DOE PAGES

    Assur Sanghai, Zahra; Liu, Qun; Clarke, Oliver B.; ...

    2018-05-24

    Sulfur, most abundantly found in the environment as sulfate (SO 4 2-), is an essential element in metabolites required by all living cells, including amino acids, co-factors and vitamins. However, current understanding of the cellular delivery of SO 4 2- at the molecular level is limited. CysZ has been described as a SO 4 2- permease, but its sequence family is without known structural precedent. Based on crystallographic structure information, SO 4 2- binding and flux experiments, we provide insight into the molecular mechanism of CysZ-mediated translocation of SO 4 2- across membranes. CysZ structures from three different bacterial speciesmore » display a hitherto unknown fold and have subunits organized with inverted transmembrane topology. CysZ from Pseudomonas denitrificans assembles as a trimer of antiparallel dimers and the CysZ structures from two other species recapitulate dimers from this assembly. In conclusion, mutational studies highlight the functional relevance of conserved CysZ residues.« less

  7. Quasi-linear gyrokinetic predictions of the Coriolis momentum pinch in National Spherical Torus Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guttenfelder, W.; Kaye, S. M.; Ren, Y.

    This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio National Spherical Torus Experiment (NSTX) H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostaticballooning modes are also unstable, which are effective at transporting energy, particles, and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes inmore » a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at a finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. Lastly, as the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.« less

  8. Quasi-linear gyrokinetic predictions of the Coriolis momentum pinch in National Spherical Torus Experiment

    DOE PAGES

    Guttenfelder, W.; Kaye, S. M.; Ren, Y.; ...

    2016-05-11

    This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio National Spherical Torus Experiment (NSTX) H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostaticballooning modes are also unstable, which are effective at transporting energy, particles, and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes inmore » a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at a finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. Lastly, as the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.« less

  9. Comparative study of excimer and erbium:YAG lasers for ablation of structural components of the knee

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; Shi, Wei-Qiang; van der Veen, Maurits J.; Fishbein, Michael C.; Miller, J. M.; Papaioannou, Thanassis; Grundfest, Warren S.

    1991-05-01

    This study was designed to compare the efficiency and thermal effect of a 135 ns pulsed-stretched XeCl excimer laser (308 nm) and a free-running Erbium:YAG laser (2940 nm) with 200 microsecond(s) pulse duration for ablation of knee joint structures (hyaline and fibrous cartilage, tendon and bone). The radiant exposure used for tissue ablation ranged from 2 to 15 J/cm2 for the XeCl excimer and from 33 to 120 J/cm2 for Er:YAG. The excimer and Er:YAG lasers were operated at 4 and 5 Hz respectively. The ablative laser energy was delivered to tissue through fibers. Ablation rates of soft tissues (hyaline and fibrous cartilage, tendon) varied from 8.5 to 203 micrometers /pulse for excimer and from 8.2 to 273 micrometers /pulse for Er:YAG lasers. Ablation rates of soft tissues are linearly dependent on the radiant exposure. Within the range of parameters tested all the tissues except the bone could be rapidly ablated by both lasers. Bone ablation was much less efficient, requiring 15 J/cm2 and 110 J/cm2 radiant exposure for excimer and Er:YAG lasers to ablate 9.5 and 8.2 micrometers tissue per pulse. However, excimer laser ablation produced less thermal damage in the tissues studied compared to Er:YAG at the same laser parameters. The authors conclude that both lasers are capable of efficient knee joint tissue ablation. XeCl excimer laser requires an order of magnitude less energy than Er:YAG laser for comparable tissue ablation.

  10. General process improvements through pinch technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linnhoff, B.; Polley, G.T.; Sahdev, V.

    1988-06-01

    Over the last ten years pinch technology has emerged as somewhat of a ''maverick'' development in the process design and energy conservation scene. Running contrary to general trends by taking the computer out of the loop and putting the engineer back in control, it has been questioned by some and welcomed by others. Regardless of persuasion, however, critics and advocates alike have largely failed to notice that pinch technology is more than an energy conservation tool. This is probably because soon after the advent of pinch technology in the 1970s, the process design scene became dominated by the oil crisis.more » Energy savings became the primary task of process designers and, therefore, the primary focus of the technology. Application during this period typically demonstrated energy cost savings in the range of 20 to 50 percent and payback periods of one year or less. Only recently have the other benefits of the technology reemerged. While it is true that pinch technology is essentially a heat-flow-based technique it is also true that it can be used to address a very diverse range of objectives.« less

  11. Crystal Structure of the Oligomeric Form of Lassa Virus Matrix Protein Z.

    PubMed

    Hastie, Kathryn M; Zandonatti, Michelle; Liu, Tong; Li, Sheng; Woods, Virgil L; Saphire, Erica Ollmann

    2016-05-01

    The arenavirus matrix protein Z is highly multifunctional and occurs in both monomeric and oligomeric forms. The crystal structure of a dodecamer of Z from Lassa virus, presented here, illustrates a ring-like structure with a highly basic center. Mutagenesis demonstrates that the dimeric interface within the dodecamer and a Lys-Trp-Lys triad at the center of the ring are important for oligomerization. This structure provides an additional template to explore the many functions of Z. The arenavirus Lassa virus causes hundreds of thousands of infections each year, many of which develop into fatal hemorrhagic fever. The arenavirus matrix protein Z is multifunctional, with at least four distinct roles. Z exists in both monomeric and oligomeric forms, each of which likely serves a specific function in the viral life cycle. Here we present the dodecameric form of Lassa virus Z and demonstrate that Z forms a "wreath" with a highly basic center. This structure and that of monomeric Z now provide a pair of critical templates by which the multiple roles of Z in the viral life cycle may be interpreted. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Formation of a pinched electron beam and an intense x-ray source in radial foil rod-pinch diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorokin, S. A.

    2016-04-15

    Low-impedance rod-pinch diode experiments were performed on the MIG generator at Institute of High Current Electronics using an aluminum foil placed between concentric electrodes of a rod-pinch diode. The J × B force accelerates the foil plasma in the axial and radial directions. After the foil plasma is pushed beyond the tip of the rod, a vacuum gap and a pinched electron beam form. The anode and cathode plasmas expansion and the following plasmas sweeping up by the J × B force can result in repetitive gap formations and closures, which are evident in the several successive intense x-ray pulses. A 0.7-mm-size point-like x-raymore » source was realized using a 1-mm-diameter tungsten rod, tapered to a point over the last 10 mm. The results of experiments show that the foil-shorted rod-pinch diode configuration has the potential to form low-impedance diodes, to shorten x-ray pulse duration and to realize submillimeter spot-size x-ray sources.« less

  13. Contribution of flexor pollicis longus to pinch strength: an in vivo study.

    PubMed

    Goetz, Thomas J; Costa, Joseph A; Slobogean, Gerard; Patel, Satyam; Mulpuri, Kishore; Travlos, Andrew

    2012-11-01

    To estimate the contribution of the flexor pollicis longus (FPL) to key pinch strength. Secondary outcomes include tip pinch, 3-point chuck pinch, and grip strength. Eleven healthy volunteers consented to participate in the study. We recorded baseline measures for key, 3-point chuck, and tip pinch and for grip strength. In order to control for instability of the interphalangeal (IP) joint after FPL paralysis, pinch measurements were repeated after immobilizing the thumb IP joint. Measures were repeated after subjects underwent electromyography-guided lidocaine blockade of the FPL muscle. Nerve conduction studies and clinical examinations were used to confirm FPL blockade and to rule out median nerve blockade. Paired t-tests were used to compare pre- and postblock means for both unsplinted and splinted measures. The difference in means was used to estimate the contribution of FPL to pinch strength. All 3 types of pinch strength showed a significant decrease between pre- and postblock measurements. The relative contribution of FPL for each pinch type was 56%, 44%, and 43% for key, chuck, and tip pinch, respectively. Mean grip strength did not decrease significantly. Splinting of the IP joint had no significant effect on pinch measurements. FPL paralysis resulted in a statistically significant decrease in pinch strength. IP joint immobilization to simulate IP joint fusion did not affect results. Reconstruction after acute or chronic loss of FPL function should be considered when restoration of pinch strength is important. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  14. Physical mechanisms of SiN{sub x} layer structuring with ultrafast lasers by direct and confined laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, S., E-mail: rapp@hm.edu; Erlangen Graduate School in Advanced Optical Technologies; Heinrich, G.

    2015-03-14

    In the production process of silicon microelectronic devices and high efficiency silicon solar cells, local contact openings in thin dielectric layers are required. Instead of photolithography, these openings can be selectively structured with ultra-short laser pulses by confined laser ablation in a fast and efficient lift off production step. Thereby, the ultrafast laser pulse is transmitted by the dielectric layer and absorbed at the substrate surface leading to a selective layer removal in the nanosecond time domain. Thermal damage in the substrate due to absorption is an unwanted side effect. The aim of this work is to obtain a deepermore » understanding of the physical laser-material interaction with the goal of finding a damage-free ablation mechanism. For this, thin silicon nitride (SiN{sub x}) layers on planar silicon (Si) wafers are processed with infrared fs-laser pulses. Two ablation types can be distinguished: The known confined ablation at fluences below 300 mJ/cm{sup 2} and a combined partial confined and partial direct ablation at higher fluences. The partial direct ablation process is caused by nonlinear absorption in the SiN{sub x} layer in the center of the applied Gaussian shaped laser pulses. Pump-probe investigations of the central area show ultra-fast reflectivity changes typical for direct laser ablation. Transmission electron microscopy results demonstrate that the Si surface under the remaining SiN{sub x} island is not damaged by the laser ablation process. At optimized process parameters, the method of direct laser ablation could be a good candidate for damage-free selective structuring of dielectric layers on absorbing substrates.« less

  15. Left-handed Z-DNA: structure and function

    NASA Technical Reports Server (NTRS)

    Herbert, A.; Rich, A.

    1999-01-01

    Z-DNA is a high energy conformer of B-DNA that forms in vivo during transcription as a result of torsional strain generated by a moving polymerase. An understanding of the biological role of Z-DNA has advanced with the discovery that the RNA editing enzyme double-stranded RNA adenosine deaminase type I (ADAR1) has motifs specific for the Z-DNA conformation. Editing by ADAR1 requires a double-stranded RNA substrate. In the cases known, the substrate is formed by folding an intron back onto the exon that is targeted for modification. The use of introns to direct processing of exons requires that editing occurs before splicing. Recognition of Z-DNA by ADAR1 may allow editing of nascent transcripts to be initiated immediately after transcription, ensuring that editing and splicing are performed in the correct sequence. Structural characterization of the Z-DNA binding domain indicates that it belongs to the winged helix-turn-helix class of proteins and is similar to the globular domain of histone-H5.

  16. Scaling in two-fluid pinch-off

    NASA Astrophysics Data System (ADS)

    Pommer, Chris; Suryo, Ronald; Subramani, Hariprasad; Harris, Michael; Basaran, Osman

    2009-11-01

    Two-fluid pinch-off is encountered when drops or bubbles of one fluid are ejected from a nozzle into another fluid or when a compound jet breaks. While the breakup of a drop in a passive environment and that of a passive bubble in a liquid are well understood, the physics of pinch-off when both the inner and outer fluids are dynamically active is inadequately understood. In this talk, the breakup of a compound jet whose core and shell are both incompressible Newtonian fluids is analyzed computationally by a method of lines ALE algorithm which uses finite elements with elliptic mesh generation for spatial discretization and adaptive finite differences for time integration. Pinch-off dynamics are investigated well beyond the limit of experiments set by the wavelength of visible light and that of various algorithms used in the literature. Simulations show that the minimum neck radius r initially scales with time τ before breakup as &αcirc; where α varies over a certain range. However, depending on the values of the governing dimensionless groups, this initial scaling regime may be transitory and, closer to pinch-off, the dynamics may transition to a final asymptotic regime for which r ˜&βcirc;, where β!=α.

  17. A non-LTE analysis of high energy density Kr plasmas on Z and NIF

    DOE PAGES

    Dasgupta, A.; Clark, R. W.; Ouart, N.; ...

    2016-10-20

    We report that multi-keV X-ray radiation sources have a wide range of applications, from biomedical studies and research on thermonuclear fusion to materials science and astrophysics. The refurbished Z pulsed power machine at the Sandia National Laboratories produces intense multi-keV X-rays from argon Z-pinches, but for a krypton Z-pinch, the yield decreases much faster with atomic number Z A than similar sources on the National Ignition Facility (NIF) laser at the Lawrence Livermore National Laboratory. To investigate whether fundamental energy deposition differences between pulsed power and lasers could account for the yield differences, we consider the Kr plasma on themore » two machines. The analysis assumes the plasma not in local thermodynamic equilibrium, with a detailed coupling between the hydrodynamics, the radiation field, and the ionization physics. While for the plasma parameters of interest the details of krypton’s M-shell are not crucial, both the L-shell and the K-shell must be modeled in reasonable detail, including the state-specific dielectronic recombination processes that significantly affect Kr’s ionization balance and the resulting X-ray spectrum. We present a detailed description of the atomic model, provide synthetic K- and L-shell spectra, and compare these with the available experimental data from the Z-machine and from NIF to show that the K-shell yield behavior versus Z A is indeed related to the energy input characteristics. In conclusion, this work aims at understanding the probable causes that might explain the differences in the X-ray conversion efficiencies of several radiation sources on Z and« less

  18. A non-LTE analysis of high energy density Kr plasmas on Z and NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, A.; Clark, R. W.; Ouart, N.

    We report that multi-keV X-ray radiation sources have a wide range of applications, from biomedical studies and research on thermonuclear fusion to materials science and astrophysics. The refurbished Z pulsed power machine at the Sandia National Laboratories produces intense multi-keV X-rays from argon Z-pinches, but for a krypton Z-pinch, the yield decreases much faster with atomic number Z A than similar sources on the National Ignition Facility (NIF) laser at the Lawrence Livermore National Laboratory. To investigate whether fundamental energy deposition differences between pulsed power and lasers could account for the yield differences, we consider the Kr plasma on themore » two machines. The analysis assumes the plasma not in local thermodynamic equilibrium, with a detailed coupling between the hydrodynamics, the radiation field, and the ionization physics. While for the plasma parameters of interest the details of krypton’s M-shell are not crucial, both the L-shell and the K-shell must be modeled in reasonable detail, including the state-specific dielectronic recombination processes that significantly affect Kr’s ionization balance and the resulting X-ray spectrum. We present a detailed description of the atomic model, provide synthetic K- and L-shell spectra, and compare these with the available experimental data from the Z-machine and from NIF to show that the K-shell yield behavior versus Z A is indeed related to the energy input characteristics. In conclusion, this work aims at understanding the probable causes that might explain the differences in the X-ray conversion efficiencies of several radiation sources on Z and« less

  19. Atomic kinetics of a neon photoionized plasma experiment at Z

    NASA Astrophysics Data System (ADS)

    Mayes, D. C.; Mancini, R. C.; Schoenfeld, R. P.; Bailey, J. E.; Loisel, G. P.; Rochau, G. A.; ZAPP Collaboration

    2017-10-01

    We discuss an experimental effort to study the atomic kinetics in neon photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at various distances from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 120 Torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma from about 5 to 80 erg*cm/s. Thus, the experiment allows for the study of trends in ionization distribution as a function of the ionization parameter. An x-ray crystal spectrometer capable of collecting both time-integrated and time-gated data is used to collect absorption spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal-densities and charge state distributions, which can be compared with results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.

  20. Pinch-off dynamics, extensional viscosity and relaxation time of dilute and ultradilute aqueous polymer solutions

    NASA Astrophysics Data System (ADS)

    Biagioli, Madeleine; Dinic, Jelena; Jimenez, Leidy Nallely; Sharma, Vivek

    Free surface flows and drop formation processes present in printing, jetting, spraying, and coating involve the development of columnar necks that undergo spontaneous surface-tension driven instability, thinning, and pinch-off. Stream-wise velocity gradients that arise within the thinning neck create and extensional flow field, which induces micro-structural changes within complex fluids that contribute elastic stresses, changing the thinning and pinch-off dynamics. In this contribution, we use dripping-onto-substrate (DoS) extensional rheometry technique for visualization and analysis of the pinch-off dynamics of dilute and ultra-dilute aqueous polyethylene oxide (PEO) solutions. Using a range of molecular weights, we study the effect of both elasticity and finite extensibility. Both effective relaxation time and the transient extensional viscosity are found to be strongly concentration-dependent even for highly dilute solutions.

  1. Visualization of risk structures for interactive planning of image guided radiofrequency ablation of liver tumors

    NASA Astrophysics Data System (ADS)

    Rieder, Christian; Schwier, Michael; Weihusen, Andreas; Zidowitz, Stephan; Peitgen, Heinz-Otto

    2009-02-01

    Image guided radiofrequency ablation (RFA) is becoming a standard procedure as a minimally invasive method for tumor treatment in the clinical routine. The visualization of pathological tissue and potential risk structures like vessels or important organs gives essential support in image guided pre-interventional RFA planning. In this work our aim is to present novel visualization techniques for interactive RFA planning to support the physician with spatial information of pathological structures as well as the finding of trajectories without harming vitally important tissue. Furthermore, we illustrate three-dimensional applicator models of different manufactures combined with corresponding ablation areas in homogenous tissue, as specified by the manufacturers, to enhance the estimated amount of cell destruction caused by ablation. The visualization techniques are embedded in a workflow oriented application, designed for the use in the clinical routine. To allow a high-quality volume rendering we integrated a visualization method using the fuzzy c-means algorithm. This method automatically defines a transfer function for volume visualization of vessels without the need of a segmentation mask. However, insufficient visualization results of the displayed vessels caused by low data quality can be improved using local vessel segmentation in the vicinity of the lesion. We also provide an interactive segmentation technique of liver tumors for the volumetric measurement and for the visualization of pathological tissue combined with anatomical structures. In order to support coagulation estimation with respect to the heat-sink effect of the cooling blood flow which decreases thermal ablation, a numerical simulation of the heat distribution is provided.

  2. X-Pinch And Its Applications In X-ray Radiograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou Xiaobing; Wang Xinxin; Liu Rui

    2009-07-07

    An X-pinch device and the related diagnostics of x-ray emission from X-pinch were briefly described. The time-resolved x-ray measurements with photoconducting diodes show that the x-ray pulse usually consists of two subnanosecond peaks with a time interval of about 0.5 ns. Being consistent with these two peaks of the x-ray pulse, two point x-ray sources of size ranging from 100 mum to 5 mum and depending on cut-off x-ray photon energy were usually observed on the pinhole pictures. The x-pinch was used as x-ray source for backlighting of the electrical explosion of single wire and the evolution of X-pinch, andmore » for phase-contrast imaging of soft biological objects such as a small shrimp and a mosquito.« less

  3. Measurements of Laser Imprint with High-Z Coated targets on Omega EP

    NASA Astrophysics Data System (ADS)

    Karasik, Max; Oh, J.; Stoeckl, C.; Aglitskiy, Y.; Schmitt, A. J.; Bates, J. W.; Obenschain, S. P.

    2015-11-01

    Previous experiments on Nike KrF laser (λ = 248nm) at NRL found that a thin (400-800 Å) high-Z (Au or Pd) overcoat on the laser side of the target is effective in suppressing broadband imprint and reducing ablative Richtmyer-Meshkov growth. The overcoat initially absorbs the laser and emits soft x-rays that ablate the target, forming a large stand-off distance between laser absorption and ablation and driving the target at higher mass ablation rate. Implementation of this technique on the frequency-tripled Nd:glass (351 nm) NIF would enable a wider range direct drive experiments there. To this end, we are carrying out experiments using the NIF-like beams of Omega EP. Analogous to experiments on Nike, areal mass perturbations due to RT-amplified laser imprint are measured using curved crystal imaging coupled to a streak camera. High-Z coating dynamics and target trajectory are imaged side-on. First results indicate that imprint suppression is observed, albeit with thicker coatings. Work supported by the Department of Energy/NNSA.

  4. A non-LTE analysis of high energy density Kr plasmas on Z and NIF

    NASA Astrophysics Data System (ADS)

    Dasgupta, A.; Clark, R. W.; Ouart, N.; Giuliani, J.; Velikovich, A.; Ampleford, D. J.; Hansen, S. B.; Jennings, C.; Harvey-Thompson, A. J.; Jones, B.; Flanagan, T. M.; Bell, K. S.; Apruzese, J. P.; Fournier, K. B.; Scott, H. A.; May, M. J.; Barrios, M. A.; Colvin, J. D.; Kemp, G. E.

    2016-10-01

    Multi-keV X-ray radiation sources have a wide range of applications, from biomedical studies and research on thermonuclear fusion to materials science and astrophysics. The refurbished Z pulsed power machine at the Sandia National Laboratories produces intense multi-keV X-rays from argon Z-pinches, but for a krypton Z-pinch, the yield decreases much faster with atomic number ZA than similar sources on the National Ignition Facility (NIF) laser at the Lawrence Livermore National Laboratory. To investigate whether fundamental energy deposition differences between pulsed power and lasers could account for the yield differences, we consider the Kr plasma on the two machines. The analysis assumes the plasma not in local thermodynamic equilibrium, with a detailed coupling between the hydrodynamics, the radiation field, and the ionization physics. While for the plasma parameters of interest the details of krypton's M-shell are not crucial, both the L-shell and the K-shell must be modeled in reasonable detail, including the state-specific dielectronic recombination processes that significantly affect Kr's ionization balance and the resulting X-ray spectrum. We present a detailed description of the atomic model, provide synthetic K- and L-shell spectra, and compare these with the available experimental data from the Z-machine and from NIF to show that the K-shell yield behavior versus ZA is indeed related to the energy input characteristics. This work aims at understanding the probable causes that might explain the differences in the X-ray conversion efficiencies of several radiation sources on Z and NIF.

  5. Using 1D theory to understand 3D stagnation of a wire-array Z pinch in the absence of radiation

    NASA Astrophysics Data System (ADS)

    Yu, Edmund

    2015-11-01

    Many high-energy-density systems implode towards the axis of symmetry, where it collides on itself, forming a hot plasma. However, experiments show these imploding plasmas develop three-dimensional (3D) structures. As a result, the plasma cannot completely dissipate its kinetic energy at stagnation, instead retaining significant 3D flow. A useful tool for understanding the effects of this residual flow is 3D simulation, but the amount and complexity of information can be daunting. To address this problem, we explore the connection between 3D simulation and one-dimensional (1D) theory. Such a connection, if it exists, is mutually beneficial: 1D theory can provide a clear picture of the underlying dynamics of 3D stagnation. On the other hand, deviations between theory and simulation suggest how 1D theory must be modified to account for 3D effects. In this work, we focus on a 3D, magnetohydrodynamic simulation of a compact wire-array Z pinch. To provide a simpler background against which to test our ideas, we artificially turn off radiation during the stagnation phase. Examination of the initial accumulation of mass on axis reveals oblique collision between jets, shock accretion, and vortex formation. Despite evidence for shock-dominated stagnation, a 1D shockless stagnation solution is more appropriate for describing the global dynamics, in that it reproduces the increase of on-axis density with time. However, the 1D solution must be modified to account for 3D effects: the flows suggest enhanced thermal transport as well as centrifugal force. Upon reaching peak compression, the stagnation transitions to a second phase, in which the high-pressure core on axis expands outward into the remaining imploding plasma. During this phase, a 1D shock solution describes the growth of the shock accretion region, as well as the decrease of on-axis density with time. However, the effect of 3D flows is still present: the on-axis temperature does not cool during expansion, which

  6. Effect of transcranial magnetic stimulation on force of finger pinch

    NASA Astrophysics Data System (ADS)

    Odagaki, Masato; Fukuda, Hiroshi; Hiwaki, Osamu

    2009-04-01

    Transcranial magnetic stimulation (TMS) is used to explore many aspects of brain function, and to treat neurological disorders. Cortical motor neuronal activation by TMS over the primary motor cortex (M1) produces efferent signals that pass through the corticospinal tracts. Motor-evoked potentials (MEPs) are observed in muscles innervated by the stimulated motor cortex. TMS can cause a silent period (SP) following MEP in voluntary electromyography (EMG). The present study examined the effects of TMS eliciting MEP and SP on the force of pinching using two fingers. Subjects pinched a wooden block with the thumb and index finger. TMS was applied to M1 during the pinch task. EMG of first dorsal interosseous muscles and pinch forces were measured. Force output increased after the TMS, and then oscillated. The results indicated that the motor control system to keep isotonic forces of the muscles participated in the finger pinch was disrupted by the TMS.

  7. Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation

    NASA Astrophysics Data System (ADS)

    Geohegan, David B.; Puretzky, Alex A.; Duscher, Gerd; Pennycook, Stephen J.

    1998-06-01

    The dynamics of nanoparticle formation, transport, and deposition by pulsed laser ablation of c-Si into 1-10 Torr He and Ar gases are revealed by imaging laser-induced photoluminescence and Rayleigh-scattered light from gas-suspended 1-10 nm SiOx particles. Two sets of dynamic phenomena are presented for times up to 15 s after KrF-laser ablation. Ablation of Si into heavier Ar results in a uniform, stationary plume of nanoparticles, while Si ablation into lighter He results in a turbulent ring of particles which propagates forward at 10 m/s. Nanoparticles unambiguously formed in the gas phase were collected on transmission electron microscope grids for Z-contrast imaging and electron energy loss spectroscopy analysis. The effects of gas flow on nanoparticle formation, photoluminescence, and collection are described.

  8. Turbulent equipartition pinch of toroidal momentum in spherical torus

    NASA Astrophysics Data System (ADS)

    Hahm, T. S.; Lee, J.; Wang, W. X.; Diamond, P. H.; Choi, G. J.; Na, D. H.; Na, Y. S.; Chung, K. J.; Hwang, Y. S.

    2014-12-01

    We present a new analytic expression for turbulent equipartition (TEP) pinch of toroidal angular momentum originating from magnetic field inhomogeneity of spherical torus (ST) plasmas. Starting from a conservative modern nonlinear gyrokinetic equation (Hahm et al 1988 Phys. Fluids 31 2670), we derive an expression for pinch to momentum diffusivity ratio without using a usual tokamak approximation of B ∝ 1/R which has been previously employed for TEP momentum pinch derivation in tokamaks (Hahm et al 2007 Phys. Plasmas 14 072302). Our new formula is evaluated for model equilibria of National Spherical Torus eXperiment (NSTX) (Ono et al 2001 Nucl. Fusion 41 1435) and Versatile Experiment Spherical Torus (VEST) (Chung et al 2013 Plasma Sci. Technol. 15 244) plasmas. Our result predicts stronger inward pinch for both cases, as compared to the prediction based on the tokamak formula.

  9. Beam heated linear theta-pinch device for producing hot plasmas

    DOEpatents

    Bohachevsky, Ihor O.

    1981-01-01

    A device for producing hot plasmas comprising a single turn theta-pinch coil, a fast discharge capacitor bank connected to the coil, a fuel element disposed along the center axis of the coil, a predetermined gas disposed within the theta-pinch coil, and a high power photon, electron or ion beam generator concentrically aligned to the theta-pinch coil. Discharge of the capacitor bank generates a cylindrical plasma sheath within the theta-pinch coil which heats the outer layer of the fuel element to form a fuel element plasma layer. The beam deposits energy in either the cylindrical plasma sheath or the fuel element plasma layer to assist the implosion of the fuel element to produce a hot plasma.

  10. Long-Term Effects of Atrial Ganglionated Plexi Ablation on Function and Structure of Sinoatrial and Atrioventricular Node in Canine.

    PubMed

    Zhang, Ming; Wang, Ximin; Xie, Xinxing; Wang, Zhongsu; Liu, Xiaoyan; Guan, Juan; Wang, Weizong; Li, Zhan; Wang, Jiangrong; Gao, Mei; Hou, Yinglong

    2015-10-01

    Long-term effects of ganglionated plexi (GP) ablation on sinoatrial node (SAN) and atrioventricular node (AVN) remain unclear. This study is to investigate the long-term effects of ablation of cardiac anterior right GP (ARGP) and inferior right GP (IRGP) on function and structure of SAN and AVN in canine. Thirty-two dogs were randomly divided into an operated group (n = 24) and sham-operated group (n = 8). ARGP and IRGP were ablated in operated group which was randomly divided into three subgroups according to the period of evaluation after operation (1 month, 6 months, 12 months). The functional and histological characteristics of SAN and AVN, as well as the expression of connexin (Cx) 43 and Cx 45 in SAN and AVN, were evaluated before and after ablation. Resting heart rate was increased and AVN effective refractory period was prolonged and sinus node recovery time (SNRT) and corrected SNRT were shortened immediately after ablation. These changes were reverted to preablation level after 1 month. At 1 month, ventricular rate during atrial fibrillation was slowed, atria-His intervals were prolonged, and Cx43 and Cx45 expression in SAN and AVN were downregulated. At 6 months, all changes were reverted to preablation level. The histological characteristics of SAN and AVN did not change. Ablation of ARGP and IRGP has short-term effects on function and structure of SAN and AVN rather than long-term effects, which suggests that ablation of ARGP and IRGP is safe. Atrioventricular conduction dysfunction after ablation may be related to downregulated Cx43 and Cx45 expression in AVN. © 2015 Wiley Periodicals, Inc.

  11. Structural evaluation of the 2736Z Building for seismic loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giller, R.A.

    The 2736Z building structure is evaluated for high-hazard loads. The 2736Z building is analyzed herein for normal and seismic loads and is found to successfully meet the guidelines of UCRL-15910 along with the related codes requirements.

  12. Method for plasma formation for extreme ultraviolet lithography-theta pinch

    DOEpatents

    Hassanein, Ahmed [Naperville, IL; Konkashbaev, Isak [Bolingbrook, IL; Rice, Bryan [Hillsboro, OR

    2007-02-20

    A device and method for generating extremely short-wave ultraviolet electromagnetic wave, utilizing a theta pinch plasma generator to produce electromagnetic radiation in the range of 10 to 20 nm. The device comprises an axially aligned open-ended pinch chamber defining a plasma zone adapted to contain a plasma generating gas within the plasma zone; a means for generating a magnetic field radially outward of the open-ended pinch chamber to produce a discharge plasma from the plasma generating gas, thereby producing a electromagnetic wave in the extreme ultraviolet range; a collecting means in optical communication with the pinch chamber to collect the electromagnetic radiation; and focusing means in optical communication with the collecting means to concentrate the electromagnetic radiation.

  13. Morphology and structure of TixOy nanoparticles generated by femtosecond laser ablation in water

    NASA Astrophysics Data System (ADS)

    Donėlienė, Jolanta; Rudzikas, Matas; Rades, Steffi; Dörfel, Ilona; Peplinski, Burkhard; Sahre, Mario; Pellegrino, Francesco; Maurino, Valter; Ulbikas, Juras; Galdikas, Algirdas; Hodoroaba, Vasile-Dan

    2018-04-01

    In this work femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD (two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation.

  14. Investigation on Bond-Slip Behavior of Z-Pin Interfaces in X-Cor® Sandwich Structures Using Z-Pin Pull-Out Test

    NASA Astrophysics Data System (ADS)

    Shan, Hangying; Xiao, Jun; Chu, Qiyi

    2018-05-01

    The Z-Pin interfacial bond properties play an important role in the structural performance of X-Cor® sandwich structures. This paper presents an experimental investigation on bond-slip behavior of Z-Pin interfaces using Z-Pin pull-out test. Based on the experimental data the whole Z-Pin pull-out process consists of three stages: initial bonding, debonding and frictional sliding. Comparative experimental study on the influence of design parameters on bond-slip behavior of Z-Pin interfaces has also been performed. Numerical analyses were conducted with the ABAQUS finite element (FE) program to simulate the Z-Pins bond-slip response of the pull-out test. The Z-Pins interfacial bond-slip behavior was implemented using nonlinear spring elements characterized with the constitutive relation from experimental results. Numerical results were validated by comparison with experimental data, and reasonably good agreement was achieved between experimental and analytical pull-out force-slip curves.

  15. Tissue heterogeneity in structure and conductivity contribute to cell survival during irreversible electroporation ablation by "electric field sinks".

    PubMed

    Golberg, Alexander; Bruinsma, Bote G; Uygun, Basak E; Yarmush, Martin L

    2015-02-16

    Irreversible electroporation (IRE) is an emerging, minimally invasive technique for solid tumors ablation, under clinical investigation for cancer therapy. IRE affects only the cell membrane, killing cells while preserving the extracellular matrix structure. Current reports indicate tumors recurrence rate after IRE averaging 31% of the cases, of which 10% are local recurrences. The mechanisms for these recurrences are not known and new explanations for incomplete cell death are needed. Using finite elements method for electric field distribution, we show that presence of vascular structures with blood leads to the redistribution of electric fields leading to the areas with more than 60% reduced electric field strength in proximity to large blood vessels and clustered vessel structures. In an in vivo rat model of liver IRE ablation, we show that cells located in the proximity of larger vessel structures and in proximity of clustered vessel structures appear less affected by IRE ablation than cells in the tissue parenchyma or in the proximity of small, more isolated vessels. These findings suggest a role for "electric field sinks" in local tumors recurrences after IRE and emphasize the importance of the precise mapping of the targeted organ structure and conductivity for planning of electroporation procedures.

  16. X-pinch dynamics: Neck formation and implosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oreshkin, V. I.; National Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634050; Chaikovsky, S. A.

    2014-10-15

    We propose a model that describes the neck formation and implosion in an X-pinch. The process is simulated to go in two stages. The first stage is neck formation. This stage begins with an electrical explosion of the wires forming the X-pinch, and at the end of the stage, a micropinch (neck) is formed in the region where the wires are crossed. The second stage is neck implosion. The implosion is accompanied by outflow of matter from the neck region, resulting in the formation of a “hot spot”. Analytical estimates obtained in the study under consideration indicate that these stagesmore » are approximately equal in duration. Having analyzed the neck implosion dynamics, we have verified a scaling which makes it possible to explain the observed dependences of the time of occurrence of an x-ray pulse on the X-pinch current and mass.« less

  17. Pinch technique and the Batalin-Vilkovisky formalism

    NASA Astrophysics Data System (ADS)

    Binosi, Daniele; Papavassiliou, Joannis

    2002-07-01

    In this paper we take the first step towards a nondiagrammatic formulation of the pinch technique. In particular we proceed into a systematic identification of the parts of the one-loop and two-loop Feynman diagrams that are exchanged during the pinching process in terms of unphysical ghost Green's functions; the latter appear in the standard Slavnov-Taylor identity satisfied by the tree-level and one-loop three-gluon vertex. This identification allows for the consistent generalization of the intrinsic pinch technique to two loops, through the collective treatment of entire sets of diagrams, instead of the laborious algebraic manipulation of individual graphs, and sets up the stage for the generalization of the method to all orders. We show that the task of comparing the effective Green's functions obtained by the pinch technique with those computed in the background field method Feynman gauge is significantly facilitated when employing the powerful quantization framework of Batalin and Vilkovisky. This formalism allows for the derivation of a set of useful nonlinear identities, which express the background field method Green's functions in terms of the conventional (quantum) ones and auxiliary Green's functions involving the background source and the gluonic antifield; these latter Green's functions are subsequently related by means of a Schwinger-Dyson type of equation to the ghost Green's functions appearing in the aforementioned Slavnov-Taylor identity.

  18. Experimental Investigation of the Effects of an Axial Magnetic Field on the Magneto-Rayleigh-Taylor Instability in Ablating Planar Foils

    NASA Astrophysics Data System (ADS)

    Yager-Elorriaga, D. A.; Patel, S. G.; Steiner, A. M.; Jordan, N. M.; Weiss, M. R.; Gilgenbach, R. M.; Lau, Y. Y.

    2014-10-01

    Experiments are underway to study the effects an axial magnetic field on the magneto-Rayleigh-Taylor instability (MRT) in ablating planar foils on the 1-MA LTD at the Michigan Accelerator for Inductive Z-pinch Experiments (MAIZE) facility at the University of Michigan. For 600 kA drive current, a 15 T axial magnetic field is produced using helical return current posts. During the current pulse, the magnetic field may diffuse into the foil, creating a sheared magnetic field along with the possibility of shear stabilization of the MRT instability. Theoretical investigation at UM has shown that a sheared azimuthal magnetic field coupled with an axial magnetic field reduces the MRT growth rate in general. In order to study this effect, the amount of magnetic shear is controlled by offsetting the initial position of the foil. A 775 nm Ti:sapphire laser will be used to shadowgraph the foil in order to measure the MRT growth rate. By comparing these results to previous experiments at UM, the effects of magnetic shear and an axial magnetic field will be determined. This work was supported by US DoE. S.G. Patel and A.M. Steiner supported by NPSC funded by Sandia. D.A. Yager-Elorriaga supported by NSF fellowship Grant DGE 1256260.

  19. Interaction of infectious spleen and kidney necrosis virus ORF119L with PINCH leads to dominant-negative inhibition of integrin-linked kinase and cardiovascular defects in zebrafish.

    PubMed

    Yuan, Ji-Min; He, Bai-Liang; Yang, Lu-Yun; Guo, Chang-Jun; Weng, Shao-Ping; Li, Shengwen Calvin; He, Jian-Guo

    2015-01-01

    Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the Megalocytivirus genus, Iridoviridae family, causing a severe systemic disease with high mortality in mandarin fish (Siniperca chuatsi) in China and Southeast Asia. At present, the pathogenesis of ISKNV infection is still not fully understood. Based on a genome-wide bioinformatics analysis of ISKNV-encoded proteins, we found that ISKNV open reading frame 119L (ORF119L) is predicted to encode a three-ankyrin-repeat (3ANK)-domain-containing protein, which shows high similarity to the dominant negative form of integrin-linked kinase (ILK); i.e., viral ORF119L lacks the ILK kinase domain. Thus, we speculated that viral ORF119L might affect the host ILK complex. Here, we demonstrated that viral ORF119L directly interacts with particularly interesting Cys-His-rich protein (PINCH) and affects the host ILK-PINCH interaction in vitro in fathead minnow (FHM) cells. In vivo ORF119L overexpression in zebrafish (Danio rerio) embryos resulted in myocardial dysfunctions with disintegration of the sarcomeric Z disk. Importantly, ORF119L overexpression in zebrafish highly resembles the phenotype of endogenous ILK inhibition, either by overexpressing a dominant negative form of ILK or by injecting an ILK antisense morpholino oligonucleotide. Intriguingly, ISKNV-infected mandarin fish develop disorganized sarcomeric Z disks in cardiomyocytes. Furthermore, phosphorylation of AKT, a downstream effector of ILK, was remarkably decreased in ORF119L-overexpressing zebrafish embryos. With these results, we show that ISKNV ORF119L acts as a domain-negative inhibitor of the host ILK, providing a novel mechanism for the megalocytivirus pathogenesis. Our work is the first to show the role of a dominant negative inhibitor of the host ILK from ISKNV (an iridovirus). Mechanistically, the viral ORF119L directly binds to the host PINCH, attenuates the host PINCH-ILK interaction, and thus impairs ILK signaling. Intriguingly

  20. Age-Related and Sex-Related Differences in Hand and Pinch Grip Strength in Adults

    ERIC Educational Resources Information Center

    Puh, Urska

    2010-01-01

    The purpose of the study was to quantify age-related changes in hand grip strength and three types of pinch grip strength (key pinch, tip pinch, and palmar pinch) among male and female participants. The study included 199 healthy participants (100 females, 99 males) aged 20-79 years, who were divided into four age groups. The Baseline Hydraulic…

  1. Hybrid X-pinch Experiments on a MA Linear Transformer Driver

    NASA Astrophysics Data System (ADS)

    Patel, S. G.; Yager-Elorriaga, D. A.; Steiner, A. M.; Gilgenbach, R. M.; Jordan, N. M.; Chalenski, D. A.; Lau, Y. Y.

    2013-10-01

    X-pinch experiments have been conducted on the Linear Transformer Driver (LTD) at the University of Michigan. The x-pinch consists of a single wire separated by conical electrodes between two current return plates. The LTD was charged to +/-70 kV resulting in approximately 0.5 MA passing through a 35 μm Al wire. Multiple, short x-ray bursts were detected over the 400 ns current pulse. Ultimately the x-pinch will be located in parallel with a planar foil in order to backlight the Magneto-Rayleigh-Taylor instability. A smaller 100 kA driver is also in development and may be used to independently energize the x-pinch. The x-pinch chamber has been constructed and the results of these experiments will be presented. This work was supported by DoE award number DE-SC0002590, NSF grant number PHY 0903340, and US DoE through Sandia National Labs award numbers 240985 and 76822 to the U of Michigan. S.G Patel and A.M Steiner are supported by NPSC funded by Sandia National Labs. D.A. Yager-Elorriaga is supported by an NSF fellowship under grant number DGE 1256260.

  2. Atomic kinetics of a neon photoionized plasma experiment at Z

    NASA Astrophysics Data System (ADS)

    Mayes, Daniel C.; Mancini, Roberto; Bailey, James E.; Loisel, Guillaume; Rochau, Gregory; ZAPP Collaboration

    2018-06-01

    We discuss an experimental effort to study the atomic kinetics in astrophysically relevant photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at a variable distance from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 30 Torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma at the peak of the x-ray drive from about 5 to 80 erg*cm/s. Thus, the experiment allows for the study of trends in ionization distribution as a function of the ionization parameter. An x-ray crystal spectrometer capable of time-integrated and/or time-gated configurations is used to collect absorption spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal densities and charge state distributions, which can be compared with simulation results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas.

  3. Bubble pinch-off and scaling during liquid drop impact on liquid pool

    NASA Astrophysics Data System (ADS)

    Ray, Bahni; Biswas, Gautam; Sharma, Ashutosh

    2012-08-01

    Simulations are performed to show entrapment of air bubble accompanied by high speed upward and downward water jets when a water drop impacts a pool of water surface. A new bubble entrapment zone characterised by small bubble pinch-off and long thick jet is found. Depending on the bubble and jet behaviour, the bubble entrapment zone is subdivided into three sub-regimes. The entrapped bubble size and jet height depends on the crater shape and its maximum depth. During the bubble formation, bubble neck develops an almost singular shape as it pinches off. The final pinch-off shape and the power law governing the pinching, rneck ∝ A(t0 - t)αvaries with the Weber number. Weber dependence of the function describing the radius of the bubble during the pinch-off only affects the coefficient A and not the power exponent α.

  4. Core/shell structured Zn/ZnO nanoparticles synthesized by gaseous laser ablation with enhanced photocatalysis efficiency

    NASA Astrophysics Data System (ADS)

    Song, Lu; Wang, Yafei; Ma, Jing; Zhang, Qinghua; Shen, Zhijian

    2018-06-01

    Zinc oxide (ZnO) is a competitive candidate in semiconductor photocatalysts, only if the efficiency could be fully optimized especially by tailored nanostructures. Here we report a kind of core/shell structured Zn/ZnO nanoparticles with enhanced photocatalysis efficiency, which were synthesized by a highly-productive gaseous laser ablation method. The nanodroplets generated by laser ablation would be reduced to zinc in the protective atmosphere, and further be oxidized at surface to form a specific core/shell structured Zn/ZnO nanoparticles within seconds. Thanks to the formation of this Zn-ZnO Schottky junction, the photocatalysis degradation efficiency of such core/shell Zn/ZnO nanostructure is significantly improved owing to the enhanced visible light absorption and inhibited carrier recombination by introducing the metallic zinc.

  5. Tissue heterogeneity in structure and conductivity contribute to cell survival during irreversible electroporation ablation by “electric field sinks”

    PubMed Central

    Golberg, Alexander; Bruinsma, Bote G.; Uygun, Basak E.; Yarmush, Martin L.

    2015-01-01

    Irreversible electroporation (IRE) is an emerging, minimally invasive technique for solid tumors ablation, under clinical investigation for cancer therapy. IRE affects only the cell membrane, killing cells while preserving the extracellular matrix structure. Current reports indicate tumors recurrence rate after IRE averaging 31% of the cases, of which 10% are local recurrences. The mechanisms for these recurrences are not known and new explanations for incomplete cell death are needed. Using finite elements method for electric field distribution, we show that presence of vascular structures with blood leads to the redistribution of electric fields leading to the areas with more than 60% reduced electric field strength in proximity to large blood vessels and clustered vessel structures. In an in vivo rat model of liver IRE ablation, we show that cells located in the proximity of larger vessel structures and in proximity of clustered vessel structures appear less affected by IRE ablation than cells in the tissue parenchyma or in the proximity of small, more isolated vessels. These findings suggest a role for “electric field sinks” in local tumors recurrences after IRE and emphasize the importance of the precise mapping of the targeted organ structure and conductivity for planning of electroporation procedures. PMID:25684630

  6. Modeling topology formation during laser ablation

    NASA Astrophysics Data System (ADS)

    Hodapp, T. W.; Fleming, P. R.

    1998-07-01

    Micromachining high aspect-ratio structures can be accomplished through ablation of surfaces with high-powered lasers. Industrial manufacturers now use these methods to form complex and regular surfaces at the 10-1000 μm feature size range. Despite its increasingly wide acceptance on the manufacturing floor, the underlying photochemistry of the ablation mechanism, and hence the dynamics of the machining process, is still a question of considerable debate. We have constructed a computer model to investigate and predict the topological formation of ablated structures. Qualitative as well as quantitative agreement with excimer-laser machined polyimide substrates has been demonstrated. This model provides insights into the drilling process for high-aspect-ratio holes.

  7. Acute and repeated activation of male sexual behavior by tail pinch: opioid and dopaminergic mechanisms.

    PubMed

    Leyton, M; Stewart, J

    1996-07-01

    We studied the effect of tail pinch on male sexual behavior and its neurochemical basis. Male rats were gonadectomized and maintained on low doses of testosterone propionate (20.0 micrograms/day). Tail pinch significantly increased the percentage of males that mounted, intromitted, and ejaculated within a 30-min test, and these increases were attenuated by both pimozide (1.0 mg/kg, i.p.) and by naloxone (0.5, 1.0, and 2.0 mg/kg, s.c.). Moreover, tail pinch in the presence of an estrous female led to significantly increased female-directed behavior 48 h later during a test without tail pinch. Repeated tail pinch tests led to progressively more sexual activity, and the development of this behavioral sensitization was prevented by naloxone. These findings suggest that tail pinch increases the salience of the incentive characteristics of the female. Furthermore, during subsequent tests, with or without tail pinch, the increased salience of the female remains, as measured by the continued increases in sexual activity. These acute and sensitized behavioral increases might result from tail pinch-induced activation of the midbrain dopamine system via an opioid mechanism; either preventing tail pinch-induced dopamine activation (by an opioid antagonist) or blocking the effects of dopamine activation (by a dopamine antagonist) attenuated the long-term facilitation of sexual behavior seen after pairing the female with tail pinch.

  8. Reducing the effects of X-ray pre-heat in double shell NIF capsules by over-coating the high Z shell

    NASA Astrophysics Data System (ADS)

    Wilson, Douglas; Milovich, J. L.; Daughton, W. S.; Loomis, E. N.; Sauppe, J. P.; Dodd, E. S.; Merritt, E. C.; Montgomery, D. S.; Renner, D. B.; Haines, B. M.; Cardenas, T.; Desjardins, T.; Palaniyappan, S.; Batha, S. H.

    2017-10-01

    Hohlraum generated X-rays will penetrate the ablator of a double shell capsule and be absorbed in the outer surface of the inner capsule. The ablative pressure this generates drives a shock into the central fuel, and a reflected shock that reaches the inner high-Z shell surface before the main shock even enters the fuel. With a beryllium over-coat preheat X-rays deposit just inside the beryllium/high z interface. The beryllium tamps the preheat expansion, eliminating ablation, and dramatically reducing pressure. The slow shock or pressure wave it generates is then overtaken by the main shock, avoiding an early shock in the fuel and increasing capsule yield.

  9. Radiation characteristics of Al wire arrays on Z*

    NASA Astrophysics Data System (ADS)

    Coverdale, C. A.; Ampleford, D. J.; Jones, B.; Cuneo, M. E.; Hansen, S.; Jennings, C. A.; Moore, N.; Jones, S. C.; Deeney, C.

    2011-10-01

    Analysis of mixed material nested wire array experiments at Z have shown that the inner wire array dominates the hottest regions of the stagnated z pinch. In those experiments, substantial free-bound continuum radiation was observed when Al was fielded on the inner wire array. Experiments with Al (5% Mg) on both wire arrays have also been fielded, with variations in the free-bound continuum observed. These variations appear to be tied to the initial mass and diameter of the wire array. The results presented here will investigate the trends in the measured emission (Al and Mg K-shell and free-bound continuum) and will compare the measured output to more recent Al wire array experimental results on the refurbished Z accelerator. *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. +current address: NNSA/DOE Headquarters, Washington D.C.

  10. Recent developments in linear theta-pinch research: experiment and theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKenna, K.F.; Bartsch, R.R.; Commisso, R.J.

    1978-01-01

    High energy plasmas offusion interest can be generated in linear theta pinches. However, end losses present a fundamental limitation on the plasma containment time. This paper discusses recent progress in end-loss and end-stoppering experiments and in the theoretical understanding of linear theta-pinch physics.

  11. Mechanism of single-pulse ablative generation of laser-induced periodic surface structures

    NASA Astrophysics Data System (ADS)

    Shugaev, Maxim V.; Gnilitskyi, Iaroslav; Bulgakova, Nadezhda M.; Zhigilei, Leonid V.

    2017-11-01

    One of the remarkable capabilities of ultrashort polarized laser pulses is the generation of laser-induced periodic surface structures (LIPSS). The origin of this phenomenon is largely attributed to the interference of the incident laser wave and surface electromagnetic wave that creates a periodic absorption pattern. Although, commonly, LIPSS are produced by repetitive irradiation of the same area by multiple laser pulses in the regime of surface melting and resolidification, recent reports demonstrate the formation of LIPSS in the single-pulse irradiation regime at laser fluences well above the ablation threshold. In this paper, we report results of a large-scale molecular dynamics simulation aimed at providing insights into the mechanisms of single-pulse ablative LIPSS formation. The simulation performed for a Cr target reveals an interplay of material removal and redistribution in the course of spatially modulated ablation, leading to the transient formation of an elongated liquid wall extending up to ˜600 nm above the surface of the target at the locations of the minima of the laser energy deposition. The upper part of the liquid wall disintegrates into droplets while the base of the wall solidifies on the time scale of ˜2 ns, producing a ˜100 -nm-tall frozen surface feature extending above the level of the initial surface of the target. The properties of the surface region of the target are modified by the presence of high densities of dislocations and vacancies generated due to the rapid and highly nonequilibrium nature of the melting and resolidification processes. The insights into the LIPSS formation mechanisms may help in designing approaches for increasing the processing speed and improving the quality of the laser-patterned periodic surface structures.

  12. Determination of plasma pinch time and effective current radius of double planar wire array implosions from current measurements on a 1-MA linear transformer driver

    NASA Astrophysics Data System (ADS)

    Steiner, Adam M.; Yager-Elorriaga, David A.; Patel, Sonal G.; Jordan, Nicholas M.; Gilgenbach, Ronald M.; Safronova, Alla S.; Kantsyrev, Victor L.; Shlyaptseva, Veronica V.; Shrestha, Ishor; Schmidt-Petersen, Maximillian T.

    2016-10-01

    Implosions of planar wire arrays were performed on the Michigan Accelerator for Inductive Z-pinch Experiments, a linear transformer driver (LTD) at the University of Michigan. These experiments were characterized by lower than expected peak currents and significantly longer risetimes compared to studies performed on higher impedance machines. A circuit analysis showed that the load inductance has a significant impact on the current output due to the comparatively low impedance of the driver; the long risetimes were also attributed to high variability in LTD switch closing times. A circuit model accounting for these effects was employed to measure changes in load inductance as a function of time to determine plasma pinch timing and calculate a minimum effective current-carrying radius. These calculations showed good agreement with available shadowgraphy and x-ray diode measurements.

  13. Bipolar radiofrequency ablation of spinal tumors: predictability, safety and outcome.

    PubMed

    Gazis, Angelos N; Beuing, Oliver; Franke, Jörg; Jöllenbeck, Boris; Skalej, Martin

    2014-04-01

    Bone metastases are often the cause of tumor-associated pain and reduction of quality of life. For patients that cannot be treated by surgery, a local minimally invasive therapy such as radiofrequency ablation can be a useful option. In cases in which tumorous masses are adjacent to vulnerable structures, the monopolar radiofrequency can cause severe neuronal damage because of the unpredictability of current flow. The aim of this study is to show that the bipolar radiofrequency ablation provides an opportunity to safely treat such spinal lesions because of precise predictability of the emerging ablation zone. Prospective cohort study of 36 patients undergoing treatment at a single institution. Thirty-six patients in advanced tumor stage with primary or secondary tumor involvement of spine undergoing radiofrequency ablation. Prediction of emerging ablation zone. Clinical outcome of treated patients. X-ray-controlled treatment of 39 lesions by bipolar radiofrequency ablation. Magnetic resonance imaging was performed pre- and postinterventionally. Patients were observed clinically during their postinterventional stay. The extent of the ablation zones was predictable to the millimeter because it did not cross the peri-interventional planned dorsal and ventral boundaries in any case. No complications were observed. Ablation of tumorous masses adjacent to vulnerable structures is feasible and predictable by using the bipolar radiofrequency ablation. Damage of neuronal structures can be avoided through precise prediction of the ablation area. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Starting buoyant plumes and vortex ring pinch-off

    NASA Astrophysics Data System (ADS)

    Pottebaum, Tait; Gharib, Mory

    2003-11-01

    The vortex ring formation process of a starting buoyant plume was studied experimentally. Buoyant plumes were produced using a heating element at the base of a water tank. The velocity and temperature fields in the flow were measured using digital particle image thermometry and velocimetry (DPITV), allowing the density and vorticity fields to be determined. The vortex ring initially grew, with additional circulation being supplied by the trailing plume. At later times, the vortex ring became disconnected from the trailing plume. This is analogous to the pinch-off of a vortex ring produced by a piston-cylinder apparatus reported by Gharib et al (1998 JFM 360: 121-140). The existence of a pinch-off process for starting buoyant plumes has many implications for environmental flows. Of particular interest is the effect of vortex ring pinch-off on the dispersal of particulates and contaminants in intermittent or sudden convection events.

  15. "Marginal pinching" in soap films

    NASA Astrophysics Data System (ADS)

    Aradian, A.; Raphaël, E.; de Gennes, P.-G.

    2001-09-01

    We discuss the behaviour of a thin soap film facing a frame element: the pressure in the Plateau border around the frame is lower than the film pressure, and the film thins out over a certain distance λ(t), due to the formation of a well-localized pinched region of thickness h(t) and extension w(t). We construct a hydrodynamic theory for this thinning process, assuming a constant surface tension: Marangoni effects are probably important only at late stages, where instabilities set in. We find λ(t) ~ t1/4, and for the pinch dimensions, h(t) ~ t-1/2 and w(t) ~ t-1/4. These results may play a useful role for the discussion of later instabilities leading to a global film thinning and drainage, as first discussed by K. Mysels under the name "marginal regeneration".

  16. Laser ablation under different electron heat conduction models in inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Li, Shuanggui; Ren, Guoli; Huo, Wen Yi

    2018-06-01

    In this paper, we study the influence of three different electron heat conduction models on the laser ablation of gold plane target. Different from previous studies, we concentrate on the plasma conditions, the conversion efficiency from laser into soft x rays and the scaling relation of mass ablation, which are relevant to hohlraum physics study in indirect drive inertial confinement fusion. We find that the simulated electron temperature in corona region is sensitive to the electron heat conduction models. For different electron heat conduction models, there are obvious differences in magnitude and spatial profile of electron temperature. For the flux limit model, the calculated conversion efficiency is sensitive to flux limiters. In the laser ablation of gold, most of the laser energies are converted into x rays. So the scaling relation of mass ablation rate is quite different from that of low Z materials.

  17. Computing with volatile memristors: an application of non-pinched hysteresis

    NASA Astrophysics Data System (ADS)

    Pershin, Y. V.; Shevchenko, S. N.

    2017-02-01

    The possibility of in-memory computing with volatile memristive devices, namely, memristors requiring a power source to sustain their memory, is demonstrated theoretically. We have adopted a hysteretic graphene-based field emission structure as a prototype of a volatile memristor, which is characterized by a non-pinched hysteresis loop. A memristive model of the structure is developed and used to simulate a polymorphic circuit implementing stateful logic gates, such as the material implication. Specific regions of parameter space realizing useful logic functions are identified. Our results are applicable to other realizations of volatile memory devices, such as certain NEMS switches.

  18. Dynamical Study of Femtosecond-Laser-Ablated Liquid-Aluminum Nanoparticles Using Spatiotemporally Resolved X-Ray-Absorption Fine-Structure Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oguri, Katsuya; Okano, Yasuaki; Nishikawa, Tadashi

    2007-10-19

    We study the temperature evolution of aluminum nanoparticles generated by femtosecond laser ablation with spatiotemporally resolved x-ray-absorption fine-structure spectroscopy. We successfully identify the nanoparticles based on the L-edge absorption fine structure of the ablation plume in combination with the dependence of the edge structure on the irradiation intensity and the expansion velocity of the plume. In particular, we show that the lattice temperature of the nanoparticles is estimated from the L-edge slope, and that its spatial dependence reflects the cooling of the nanoparticles during plume expansion. The results reveal that the emitted nanoparticles travel in a vacuum as a condensedmore » liquid phase with a lattice temperature of about 2500 to 4200 K in the early stage of plume expansion.« less

  19. Structural basis for stabilization of Z-DNA by cobalt hexaammine and magnesium cations

    NASA Technical Reports Server (NTRS)

    Gessner, R. V.; Quigley, G. J.; Wang, A. H.; van der Marel, G. A.; van Boom, J. H.; Rich, A.

    1985-01-01

    In the equilibrium between B-DNA and Z-DNA in poly(dC-dG), the [Co(NH3)6]3+ ion stabilizes the Z form 4 orders of magnitude more effectively than the Mg2+ ion. The structural basis of this difference is revealed in Z-DNA crystal structures of d(CpGpCpGpCpG) stabilized by either Na+/Mg2+ or Na+/Mg2+ plus [Co(NH3)6]3+. The crystals diffract X-rays to high resolution, and the structures were refined at 1.25 A. The [Co(NH3)6]3+ ion forms five hydrogen bonds onto the surface of Z-DNA, bonding to a guanine O6 and N7 as well as to a phosphate group in the ZII conformation. The Mg2+ ion binds through its hydration shell with up to three hydrogen bonds to guanine N7 and O6. Higher charge, specific fitting of more hydrogen bonds, and a more stable complex all contribute to the great effectiveness of [Co(NH3)6]3+ in stabilizing Z-DNA.

  20. In vivo structure of the E. coli FtsZ-ring revealed by photoactivated localization microscopy (PALM).

    PubMed

    Fu, Guo; Huang, Tao; Buss, Jackson; Coltharp, Carla; Hensel, Zach; Xiao, Jie

    2010-09-13

    The FtsZ protein, a tubulin-like GTPase, plays a pivotal role in prokaryotic cell division. In vivo it localizes to the midcell and assembles into a ring-like structure-the Z-ring. The Z-ring serves as an essential scaffold to recruit all other division proteins and generates contractile force for cytokinesis, but its supramolecular structure remains unknown. Electron microscopy (EM) has been unsuccessful in detecting the Z-ring due to the dense cytoplasm of bacterial cells, and conventional fluorescence light microscopy (FLM) has only provided images with limited spatial resolution (200-300 nm) due to the diffraction of light. Hence, given the small sizes of bacteria cells, identifying the in vivo structure of the Z-ring presents a substantial challenge. Here, we used photoactivated localization microscopy (PALM), a single molecule-based super-resolution imaging technique, to characterize the in vivo structure of the Z-ring in E. coli. We achieved a spatial resolution of ∼35 nm and discovered that in addition to the expected ring-like conformation, the Z-ring of E. coli adopts a novel compressed helical conformation with variable helical length and pitch. We measured the thickness of the Z-ring to be ∼110 nm and the packing density of FtsZ molecules inside the Z-ring to be greater than what is expected for a single-layered flat ribbon configuration. Our results strongly suggest that the Z-ring is composed of a loose bundle of FtsZ protofilaments that randomly overlap with each other in both longitudinal and radial directions of the cell. Our results provide significant insight into the spatial organization of the Z-ring and open the door for further investigations of structure-function relationships and cell cycle-dependent regulation of the Z-ring.

  1. Towards the determination of deformation rates - pinch-and-swell structures as a natural and simulated paleo-strain rate gage

    NASA Astrophysics Data System (ADS)

    Peters, Max; Poulet, Thomas; Karrech, Ali; Regenauer-Lieb, Klaus; Herwegh, Marco

    2014-05-01

    Layered rocks deformed under viscous deformation conditions frequently show boudinage, a phenomenon that results from differences in effective viscosity between the involved layers. In the case of continuous necking of a mechanically stiffer layer embedded in a weaker matrix, symmetric boudins are interpreted as the result of dominant visco-plastic deformation (Goscombe et al., 2004). However, information on the physical conditions, material properties and deformation processes are yet unknown. Natural samples deformed under low-grade (T<350°C) metamorphic conditions were studied in detail in the Dent de Morcles and Doldenhorn nappes of the Helvetic Alps in order to accurately simulate their deformation styles by numerical models. In these samples, monomineralic calcite (Cc) veins were repeatedly boudinaged on cm- to µm-scale. Remnants of incompletely recrystallized original vein Cc grains in the swells indicate a sequence of deformation twinning, followed by progressive dynamic recrystallization along former twin planes up to complete recrystallization in the pinches (Schmalholz and Maeder, 2012). This sequence suggests dislocation creep to be active as important deformation mechanism. In contrast to the pinch-and-swell structures, the grain size of the Cc in the surrounding matrix is much finer-grained due to pinning by secondary particles, forcing the matrix to deform under viscous granular creep, i.e. by diffusion accommodated grain boundary sliding. The deformation processes observed in the natural samples were incorporated into a numerical model in order to evaluate the rheology of both layer and matrix, using an extension to a user material subroutine (Karrech et al., 2011a) for the finite element solver ABAQUS. We implemented thermo-mechanical coupling allowing elastic, viscous and plastic deformation of Cc (Herwegh et al., in press). We simulate a pure-shear box using finite elements, each representing a grain size distribution, which undergo layer

  2. Functional sensibility assessment. Part I: develop a reliable apparatus to assess momentary pinch force control.

    PubMed

    Chiu, Haw-Yen; Hsu, Hsiu-Yun; Kuo, Li-Chieh; Chang, Jer-Hao; Su, Fong-Chin

    2009-08-01

    A precise magnitude and timing control of pinch performance is based on accurate feed-forward and feedback control mechanisms. Ratio of peak pinch force and maximum load force during a functional performance is a sensitive parameter to reflect the ability to scale pinch force output according to actual loads. A pinch apparatus was constructed to detect momentary pinch force modulation of 20 subjects with normal hand sensation. The results indicated high intra-class correlation coefficient and small coefficient of variation of the detected force ratio among three repeated tests, which represented that the stability test of the measured response confirmed the feasibility of this apparatus. The force ratio for a 480 g object with a steel surface ranged between 1.77 and 1.98. Normal subjects were able to scale and contribute pinch force precisely to a pinch-holding-up test. This study may provide clinicians a reliable apparatus and method to analyze the recovery of functional sensibility in patients with nerve injuries. Copyright 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Crabs grab strongly depending on mechanical advantages of pinching and disarticulation of chela.

    PubMed

    Fujiwara, Shin-Ichi; Kawai, Hiroki

    2016-10-01

    A small morphological variation of an organ may cause a major change of its function in animal evolution. The function of decapod chela varies considerably among taxa, between sex, and even within an individual, but also retains a simple mechanism of motion. Therefore, the decapod chela is a suitable structure to study the evolutionary process of functional diversifications, although the relationship of form and function is inadequately understood, yet. We estimated the mechanical advantages of pinching and passive disarticulation resistance, and chela size relative to the carapace in 317 chelae of 168 decapod specimens, and compared these indices with the functions of each chela. Our study revealed that mechanical advantages of pinching efficiency and passive disarticulation resistance were greatest in shell-crushing chelae, followed by gripping and pinching chelae, whereas the chela size relative to the carapace was not related to differences among these functions. We also found that the chelae are designed to retain the ratio between depth and width of the proximal dactylus. In the evolutionary process of decapods, the diversifications of chela functions were accompanied by the diversifications of the mechanical advantages, and played an essential role in their ecological diversification. J. Morphol. 277:1259-1272, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Estimations of Mo X-pinch plasma parameters on QiangGuang-1 facility by L-shell spectral analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jian; Qiu, Aici; State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024

    2013-08-15

    Plasma parameters of molybdenum (Mo) X-pinches on the 1-MA QiangGuang-1 facility were estimated by L-shell spectral analysis. X-ray radiation from X-pinches had a pulsed width of 1 ns, and its spectra in 2–3 keV were measured with a time-integrated X-ray spectrometer. Relative intensities of spectral features were derived by correcting for the spectral sensitivity of the spectrometer. With an open source, atomic code FAC (flexible atomic code), ion structures, and various atomic radiative-collisional rates for O-, F-, Ne-, Na-, Mg-, and Al-like ionization stages were calculated, and synthetic spectra were constructed at given plasma parameters. By fitting the measured spectramore » with the modeled, Mo X-pinch plasmas on the QiangGuang-1 facility had an electron density of about 10{sup 21} cm{sup −3} and the electron temperature of about 1.2 keV.« less

  5. Comparison of remote magnetic navigation ablation and manual ablation of idiopathic ventricular arrhythmia after failed manual ablation.

    PubMed

    Kawamura, Mitsuharu; Scheinman, Melvin M; Tseng, Zian H; Lee, Byron K; Marcus, Gregory M; Badhwar, Nitish

    2017-01-01

    Catheter ablation for idiopathic ventricular arrhythmia (VA) is effective and safe, but efficacy is frequently limited due to an epicardial origin and difficult anatomy. The remote magnetic navigation (RMN) catheter has a flexible catheter design allowing access to difficult anatomy. We describe the efficacy of the RMN for ablation of idiopathic VA after failed manual ablation. Among 235 patients with idiopathic VA referred for catheter ablation, we identified 51 patients who were referred for repeat ablation after a failed manual ablation. We analyzed the clinical characteristics, including the successful ablation site and findings at electrophysiology study, in repeat procedures conducted using RMN as compared with manual ablation. Among these patients, 22 (43 %) underwent repeat ablation with the RMN and 29 (57 %) underwent repeat ablation with a manual ablation. Overall, successful ablation rate was significantly higher using RMN as compared with manual ablation (91 vs. 69 %, P = 0.02). Fluoroscopy time in the RMN was 17 ± 12 min as compared with 43 ± 18 min in the manual ablation (P = 0.009). Successful ablation rate in the posterior right ventricular outflow tract (RVOT) plus posterior-tricuspid annulus was higher with RMN as compared with manual ablation (92 vs. 50 %, P = 0.03). Neither groups exhibited any major complications. The RMN is more effective in selected patients with recurrent idiopathic VA after failed manual ablation and is associated with less fluoroscopy time. The RMN catheters have a flexible design enabling them to access otherwise difficult anatomy including the posterior tricuspid annulus and posterior RVOT.

  6. Avoiding Complications in Bone and Soft Tissue Ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurup, A. Nicholas, E-mail: kurup.anil@mayo.edu; Schmit, Grant D., E-mail: schmit.grant@mayo.edu; Morris, Jonathan M., E-mail: morris.jonathan@mayo.edu

    As with percutaneous ablation of tumors in the liver, lungs, and kidneys, ablation of bone and non-visceral soft tissue tumors carries risk, primarily from collateral damage to vital structures in proximity to the target tumor. Certain risks are of particular interest when ablating bone and non-visceral soft tissue tumors, namely neural or skin injury, bowel injury, fracture, and gas embolism from damaged applicators. Ablation of large volume tumors also carries special risk. Many techniques may be employed by the interventional radiologist to minimize complications when treating tumors in the musculoskeletal system. These methods include those to depict, displace, or monitormore » critical structures. Thus, measures to provide thermoprotection may be active, such as careful ablation applicator placement and use of various displacement techniques, as well as passive, including employment of direct temperature, radiographic, or neurophysiologic monitoring techniques. Cementoplasty should be considered in certain skeletal locations at risk of fracture. Patients treated with large volume tumors should be monitored for renal dysfunction and properly hydrated. Finally, ablation applicators should be cautiously placed in the constrained environment of intact bone.« less

  7. Electron density and plasma dynamics of a spherical theta pinch

    NASA Astrophysics Data System (ADS)

    Teske, C.; Liu, Y.; Blaes, S.; Jacoby, J.

    2012-03-01

    A spherical theta pinch for plasma stripper applications has been developed and investigated regarding the electron density and the plasma confinement during the pinching sequence. The setup consists of a 6 μH induction coil surrounding a 4000 ml spherical discharge vessel and a capacitor bank with interchangeable capacitors leading to an overall capacitance of 34 μF and 50 μF, respectively. A thyristor switch is used for driving the resonant circuit. Pulsed coil currents reached values of up to 26 kA with maximum induction of 500 mT. Typical gas pressures were 0.7 Pa up to 120 Pa with ArH2 (2.8% H2)-gas as a discharge medium. Stark broadening measurements of the Hβ emission line were carried out in order to evaluate the electron density of the discharge. In accordance with the density measurements, the transfer efficiency was estimated and a scaling law between electron density and discharge energy was established for the current setup. The densities reached values of up to 8 × 1022 m-3 for an energy of 1.6 kJ transferred into the plasma. Further, the pinching of the discharge plasma was documented and the different stages of the pinching process were analyzed. The experimental evidence suggests that concerning the recent setup of the spherical theta pinch, a linear scaling law between the transferred energy and the achievable plasma density can be applied for various applications like plasma strippers and pulsed ion sources.

  8. Equation of state and shock compression of carbon-hydrogen and other ablator materials

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Militzer, B.; Whitley, H.

    2017-12-01

    Dynamic compression experiments in planetary interior studies and fusion sciences often implement carbon-hydrogen or other low-Z elements or compounds as ablators. Accurate quantum simulations of these materials enables theoretical investigation of the equation of state (EOS) over temperatures and pressures that are difficult to access experimentally, and can help guide the design of targets for future experiments. In this work, we use path integral Monte Carlo and density functional molecular dynamics to calculate the equation of state of a series of hydrocarbons and other low-Z materials (B, B4C, and BN). For the hydrocarbon with C:H=1:1, we predict the pressure-compression profile to agree remarkably with experiments at low pressures. At high pressures, we find the Hugoniot curve displays a single compression maximum of 4.7 that corresponds to K-shell ionization. This is slightly higher than that of glow-discharge polymers but both occur at the same pressure (0.47 Gbar). We study the linear mixing approximation for the EOS of hydrocarbons and demonstrate its validity at stellar core conditions. We examine the sensitivity of the fusion yield to the EOS of these candidate ablator materials in radiation-hydrodynamic simulations of a direct-drive implosion. We also make detailed comparisons of the EOS and atomic and electronic structure of C and BN, which is useful for systematic improvement of existing EOS models. Prepared by LLNL under Contract DE-AC52-07NA27344.

  9. Double salt décollements: Effect of pinch-out overlapping in experimental thrust wedges

    NASA Astrophysics Data System (ADS)

    Santolaria, P.; Vendeville, B.; Graveleau, F.; Casas, A.; Soto, R.

    2013-12-01

    The presence of one or more evaporitic horizons acting as detachment levels in fold-and-thrust belts is common. Numerous works have dealt with the analysis of the role played by basal detachments on the deformation style of fold-and-thrust belts, but less attention has been paid to the interaction between two décollements and strain transfer between them. In this study, 10 sand-silicone analogue experiments with two detachment levels and different stratigraphic pinch-out configurations were carried out: the basal décollement was located hinterlandwards, and the upper one was located forelandwards, with or without geographic underlap or overlap. These geometrical arrangements simulate evaporites deposited in foreland basins progressively involved in shortening. To analyze their influence on the geometry and kinematics of thrust wedges, we tested successively the following parameters: i) the amount of vertical overlapping between the two décollement pinch-outs, ii) the total amount of shortening, and iii) the geometry of the intermediate décollement (pinch-out line parallel or oblique with respect to the pinch-out line of the basal décollement). All experiments were quantitatively monitored by carrying DEM (Digital Elevation Models) and PIV (Particle Image Velocimetry) measurements. All models had a similar style: (i) an inner domain, characterized by a thicker sand cover, with three forward verging thrusts rooted in the basal décollement, (ii) an outer domain with thinner sand cover, whose deformation pattern was characterized by 2 to 6 structures detaching on the upper décollement and (iii) a 'step zone' located between the inner and outer domains having varying geometry and kinematics. In longer-lived models, structures were reworked and salt migration deformed the early emplaced folds and thrusts. Our experimental results point out that the amount of vertical overlapping between the two décollement pinch outs is a first order parameter that conditions not

  10. Comparing aspheric ablation profile with standard corneal ablation for correction of myopia and myopic astigmatism, a contralateral eye study.

    PubMed

    Ghoreishi, Mohammad; Naderi Beni, Afsaneh; Naderi Beni, Zahra; Zandi, Alireza; Kianersi, Farzan

    2017-12-01

    The purpose of this study is to compare visual outcomes of myopic refractive surgery, using tissue saving (TS), a standard ablation profile by a Technolas 217z100, and aberration smart ablation (ASA), an aspheric algorithm by a MEL 80 excimer laser in two eyes of one patient. In this prospective interventional paired-eye controlled study, a total of 100 eyes of 50 participants with myopia with or without astigmatism underwent thin-flap Femto-LASIK, using a Femto LDV femtosecond laser (Ziemer Ophthalmic Systems AG, Port, Switzerland). For each patient, one eye was randomly treated with tissue-saving algorithm (TS group) by the Technolas 217z100 excimer laser and the other eye was treated with optimized smart ablation profile (ASA group) by the MEL 80 excimer laser. Outcome measures were uncorrected distance visual acuities (UDVAs), corrected distance visual acuities (CDVAs), manifest refraction, higher-order aberrations (HOAs), contrast sensitivity, and patient satisfaction 12 months after surgery. At 12 months postoperative, "45 subjects returned with mean" UDVA was - 0.02 ± 0.08 Logarithm of mean angle of resolution (LogMAR) for TS group and - 0.02 ± 0.09 LogMAR for ASA group (P = 0.91). Of the TS eyes, 42/45 (93.3%) and 32/45 (71.1%) were within ± 0.5 D and ± 0.25 D of target refraction, respectively, and of the ASA eyes, 41/45 (91.1%) and 30/45 (66.6%) were within ± 0.5 D and ± 0.25 D of target refraction, respectively. No statistically significant differences were observed between groups in HOAs changes and contrast sensitivity function. Aspheric and non-aspheric LASIKs using the two different excimer lasers provide similar results in myopic and myopic astigmatism patients.

  11. Structural, Electronic and Elastic Properties of Half-Heusler Alloys CrNiZ (Z = Al, Si, Ge and As)

    NASA Astrophysics Data System (ADS)

    Zitouni, A.; Benstaali, W.; Abbad, A.; Lantri, T.; Bouadjemi, B.; Aziz, Z.

    2018-06-01

    In the present work, a self-consistent ab-initio calculation using the full- potential linearized augmented plane wave (FP-LAPW) method within the framework of the spin-polarized density functional theory (DFT) was used to study the structural, electronic, magnetic and elastic properties of the half Heusler alloys CrNiZ (Z = Al, Si, Ge and As) in three phases ( α, β and γ phases). The generalized gradient approximation (GGA) described by Perdew-Burke-Ernzerhof (PBE) was used. The results obtained for the spin-polarized band structure and the density of states show a halfmetallic behavior for the four compounds. The elastic constants ( C ij ) show that our compounds are ductile, stiff and anisotropic.

  12. Strength training improves the tri-digit finger-pinch force control of older adults.

    PubMed

    Keogh, Justin W; Morrison, Steve; Barrett, Rod

    2007-08-01

    To investigate the effect of unilateral upper-limb strength training on the finger-pinch force control of older men. Pretest and post-test 6-week intervention study. Exercise science research laboratory. Eleven neurologically fit older men (age range, 70-80y). The strength training group (n=7) trained twice a week for 6 weeks, performing dumbbell bicep curls, wrist flexions, and wrists extensions, while the control group subjects (n=4) maintained their normal activities. Changes in force variability, targeting error, peak power frequency, proportional power, sample entropy, digit force sharing, and coupling relations were assessed during a series of finger-pinch tasks. These tasks involved maintaining a constant or sinusoidal force output at 20% and 40% of each subject's maximum voluntary contraction. All participants performed the finger-pinch tasks with both the preferred and nonpreferred limbs. Analysis of covariance for between-group change scores indicated that the strength training group (trained limb) experienced significantly greater reductions in finger-pinch force variability and targeting error, as well as significantly greater increases in finger-pinch force, sample entropy, bicep curl, and wrist flexion strength than did the control group. A nonspecific upper-limb strength-training program may improve the finger-pinch force control of older men.

  13. The electronic, structural and magnetic properties of Heusler compounds ZrCrCoZ(Z=B, Al, Ga, In): A first-principles study

    NASA Astrophysics Data System (ADS)

    Guo, R. K.; Liu, G. D.; Lin, T. T.; Wang, W.; Wang, L. Y.; Dai, X. F.

    2018-02-01

    It is predicted that the ZrCrCoZ(Z=B, Al, Ga, In) compounds with LiMnPbSn-type structure are half-metallic ferrimagnets with a large half-metallic gap by the first-principles calculations. The half-metallicity of the ZrCrCoZ(Z=B, Al, Ga, In) compounds are quite robust to the axial and uniaxial strain. The total magnetic moments in per unit cell are 4 μB for the ZrCrCoZ(Z=B, Al, Ga, In) compounds and follow the Slater-Pauling rule, which can be attributed to the great spin-splitting. The calculated formation energies are negative for all the ZrCrCoZ(Z=B, Al, Ga, In) compounds, which indicates that those compounds are in the thermodynamic stability and the possibility of synthesis in experiment.

  14. Normative Measurements of Grip and Pinch Strengths of 21st Century Korean Population

    PubMed Central

    Shim, Jin Hee; Kim, Jin Soo; Lee, Dong Chul; Ki, Sae Hwi; Yang, Jae Won; Jeon, Man Kyung; Lee, Sang Myung

    2013-01-01

    Background Measuring grip and pinch strength is an important part of hand injury evaluation. Currently, there are no standardized values of normal grip and pinch strength among the Korean population, and lack of such data prevents objective evaluation of post-surgical recovery in strength. This study was designed to establish the normal values of grip and pinch strength among the healthy Korean population and to identify any dependent variables affecting grip and pinch strength. Methods A cross-sectional study was carried out. The inclusion criterion was being a healthy Korean person without a previous history of hand trauma. The grip strength was measured using a Jamar dynamometer. Pulp and key pinch strength were measured with a hydraulic pinch gauge. Intra-individual and inter-individual variations in these variables were analyzed in a standardized statistical manner. Results There were a total of 336 healthy participants between 13 and 77 years of age. As would be expected in any given population, the mean grip and pinch strength was greater in the right hand than the left. Male participants (137) showed mean strengths greater than female participants (199) when adjusted for age. Among the male participants, anthropometric variables correlated positively with grip strength, but no such correlations were identifiable in female participants in a statistically significant way. Conclusions Objective measurements of hand strength are an important component of hand injury evaluation, and population-specific normative data are essential for clinical and research purposes. This study reports updated normative hand strengths of the South Korean population in the 21st century. PMID:23362480

  15. Investigating the effect of adding an on-axis jet to Ar gas puff Z pinches on Z.

    DOE PAGES

    Harvey-Thompson, Adam James; Jennings, Christopher Ashley; Jones, Brent M.; ...

    2016-10-20

    Double-shell Ar gas puff implosions driven by 16.5±0.5 MA on the Z generator at Sandia National Laboratories are very effective emitters of Ar K-shell radiation (photon energy >3 keV), producing yields of 330 ± 9% kJ (B. Jones et al., Phys. Plasmas, 22, 020706, 2015). In addition, previous simulations and experiments have reported dramatic increases in K-shell yields when adding an on-axis jet to double shell gas puffs for some configurations.

  16. Ablation plume structure and dynamics in ambient gas observed by laser-induced fluorescence imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Miyabe, M.; Oba, M.; Iimura, H.; Akaoka, K.; Khumaeni, A.; Kato, M.; Wakaida, I.

    2015-08-01

    The dynamic behavior of an ablation plume in ambient gas has been investigated by laser-induced fluorescence imaging spectroscopy. The second harmonic beam from an Nd:YAG laser (0.5-6 J/cm2) was focused on a sintered oxide pellet or a metal chip of gadolinium. The produced plume was subsequently intersected with a sheet-shaped UV beam from a dye laser so that time-resolved fluorescence images were acquired with an intensified CCD camera at various delay times. The obtained cross-sectional images of the plume indicate that the ablated ground state atoms and ions of gadolinium accumulate in a hemispherical contact layer between the plume and the ambient gas, and a cavity containing a smaller density of ablated species is formed near the center of the plume. At earlier expansion stage, another luminous component also expands in the cavity so that it coalesces into the hemispherical layer. The splitting and coalescence for atomic plume occur later than those for ionic plume. Furthermore, the hemispherical layer of neutral atoms appears later than that of ions; however, the locations of the layers are nearly identical. This coincidence of the appearance locations of the layers strongly suggests that the neutral atoms in the hemispherical layer are produced as a consequence of three-body recombination of ions through collisions with gas atoms. The obtained knowledge regarding plume expansion dynamics and detailed plume structure is useful for optimizing the experimental conditions for ablation-based spectroscopic analysis.

  17. Self-pinched transport for ion-driven inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, D.R.; Olson, C.L.

    Efficient transport of intense ion beams is necessary for ion-driven inertial confinement fusion (ICF). The self-pinched transport scheme involves the focusing of an ion beam to a radius of about 1 cm or less. At this radius, using the beam`s self-magnetic field for confinement, the ion beam propagates through the reactor chamber to an ICF target. A promising regime for self-pinched transport involves the injection of a high current beam into an initially neutral gas at about 200 mTorr less. A simple equilibrium theory of a beam with a temporally pinching radial envelope predicts that large confining magnetic fields aremore » possible with net currents of more than 50% of the beam current. The magnitude of these fields is strongly dependent on the rate of ionization of the given ion species. The authors have simulated ion-beam propagation, using the hybrid code IPROP, which self-consistently calculates the gas breakdown and electromagnetic fields. In agreement, with the theory, a propagation window of 20-200 mTorr of argon is calculated for a 50 kA, 5 MeV proton beam similar to the parameters of the SABRE accelerator at Sandia National Laboratories. The authors present simulations of the focusing and propagation of the SABRE beam, with the purpose of designing a self-pinch experiment.« less

  18. Experimental scaling law for mass ablation rate from a Sn plasma generated by a 1064 nm laser

    NASA Astrophysics Data System (ADS)

    Burdt, Russell A.; Yuspeh, Sam; Sequoia, Kevin L.; Tao, Yezheng; Tillack, Mark S.; Najmabadi, Farrokh

    2009-08-01

    The ablation depth in planar Sn targets irradiated with a pulsed 1064 nm laser was investigated over laser intensities from 3×1011 to 2×1012 W/cm2. The ablation depth was measured by irradiating a thin layer of Sn evaporated onto a Si wafer, and looking for signatures of Si ions in the expanding plasma with spectroscopic and particle diagnostics. It was found that ablation depth scales with laser intensity to the (5/9)th power, which is consistent with analytical models of steady-state laser ablation, as well as empirical formulae from previous studies of mass ablation rate in overlapping parameter space. In addition, the scaling of mass ablation rate with atomic number of the target as given by empirical formulae in previous studies using targets such as C and Al, are shown to remain valid for the higher atomic number of the target (Z =50) used in these experiments.

  19. Selective femtosecond laser structuring of dielectric thin films with different band gaps: a time-resolved study of ablation mechanisms

    NASA Astrophysics Data System (ADS)

    Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2016-12-01

    Ultrashort pulse lasers have been increasingly gaining importance for the selective structuring of dielectric thin films in industrial applications. In a variety of works the ablation of thin SiO2 and SiNx films from Si substrates has been investigated with near infrared laser wavelengths with photon energies of about 1.2 eV where both dielectrics are transparent (E_{{gap,SiO2}}≈ 8 eV; E_{{gap,SiN}x}≈ 2.5 eV). In these works it was found that few 100 nm thick SiO2 films are selectively ablated with a "lift-off" initiated by confined laser ablation whereas the SiN_{{x}} films are ablated by a combination of confined and direct laser ablation. In the work at hand, ultrafast pump-probe imaging was applied to compare the laser ablation dynamics of the two thin film systems directly with the uncoated Si substrate—on the same setup and under identical parameters. On the SiO2 sample, results show the pulse absorption in the Si substrate, leading to the confined ablation of the SiO2 layer by the expansion of the substrate. On the SiN_{{x}} sample, direct absorption in the layer is observed leading to its removal by evaporation. The pump-probe measurements combined with reflectivity corrected threshold fluence investigations suggest that melting of the Si substrate is sufficient to initiate the lift-off of an overlaying transparent film—evaporation of the substrate seems not to be necessary.

  20. Observation of fast expansion velocity with insulating tungsten wires on ∼80 kA facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, M.; Li, Y.; State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024

    2016-07-15

    This paper presents experimental results on the effects of insulating coatings on tungsten planar wire array Z-pinches on an 80 kA, 100 ns current facility. Expansion velocity is obviously increased from ∼0.25 km/s to ∼3.5 km/s by using the insulating coatings. It can be inferred that the wire cores are in gaseous state with this fast expansion velocity. An optical framing camera and laser probing images show that the standard wire arrays have typical ablation process which is similar to their behaviors on mega-ampere facilities. The ablation process and precursor plasma are suppressed for dielectric tungsten wires. The wire array implosion might be improvedmore » if these phenomena can be reproduced on Mega-ampere facilities.« less

  1. Toggle mechanism for pinching metal tubes

    NASA Technical Reports Server (NTRS)

    Stengard, E. O. (Inventor)

    1979-01-01

    A toggle mechanism pinches a metal tube and maintains the tube in a pinched condition, without fracturing. The toggle mechanism includes a plunger translatable along a longitudinal axis, as well as a pair of links pivoted about a common axis extending through an end of the plunger. One of the links also pivots about a fixed axis. A free end of the other link carries a push link which the other link translates at right angles to the plunger longitudinal axis. First and second sides of the tube bear against a first stop block and are engaged by the push link when a compression spring, attached to the plunger, is suddenly released to irreversibly drive the plunger along its longitudinal axis so the pivot point of the two links is driven to an over travel position.

  2. Selective rear side ablation of thin nickel-chromium-alloy films using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Pabst, Linda; Ullmann, Frank; Ebert, Robby; Exner, Horst

    2018-03-01

    In recent years, the selective laser structuring from the transparent substrate side plays an increased role in thin film processing. The rear side ablation is a highly effective ablation method for thin film structuring and revels a high structuring quality. Therefore, the rear side ablation of nickel-chromium-alloy thin films on glass substrate was investigated using femtosecond laser irradiation. Single and multiple pulses ablation thresholds as well as the incubation coefficient were determined. By irradiation from the transparent substrate side at low fluences a cracking or a partly delamination of the film could be observed. By increasing the fluence the most part of the film was ablated, however, a very thin film remained at the interface of the glass substrate. This thin remaining layer could be completely ablated by two pulses. A further increase of the pulse number had no influence on the ablation morphology. The ablated film was still intact and an entire disc or fragments could be collected near the ablation area. The fragments showed no morphology change and were still in solid state.

  3. Staged Z-pinch for the production of high-flux neutrons and net energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wessel, Frank J.; Rahman, Hafiz Ur; Rostoker, Norman

    A fusible target is embedded in a high Z liner, ohmically heated and then shock wave heated by implosion of an enveloping high Z liner. The target is adiabatically heated by compression, fusibly ignited and charged-particle heated as it is being ignited. A shock front forms as the liner implodes which shock front detaches from the more slowly moving liner, collides with the outer surface of the target, accelerates inward, rapidly heating the target, adiabatically compressing the target and liner and amplifying the current to converge the liner mass toward a central axis thereby compressing the target to a fusionmore » condition when it begins to ignite and produce charged particles. The charged particles are trapped in a large magnetic field surrounding the target. The energy of the charged particles is deposited into the target to further heat the target to produce an energy gain.« less

  4. Conformity of modified O-ring test and maximal pinch strength for cross tape application direction.

    PubMed

    Lee, Jung-Hoon; Choi, Hyun-Su

    2018-06-01

    Although cross tape has recently been used by clinicians for various musculoskeletal conditions, scientific studies on the direction of cross tape application are lacking. The present study aimed to investigate whether the direction of cross tape application affected the outcomes of the modified O-ring test and maximal pinch strength using a pinch gauge and the conformity between these 2 tests when cross tape was applied to the forearm muscles of individuals with no upper extremity pain and no restriction of joint range of motion.This study used a single-blinding crossover design. The subjects comprised 39 adults (16 men and 23 women). Cross tape was applied to the dominant hand so that the 4 rows were at an angle of 45° to the right or left of the direction of the flexor digitorum superficialis muscle fibers, and then the subjects underwent a modified O-ring test and a test of maximal pinch strength using a pinch gauge. Both tests were performed in both directions, and the order of the directions and tests was randomized. SPSS 18.0 was used for statistical analysis. Cohen's kappa coefficient was used to analyze the conformity of the results from the 2 tests. The statistical significance level was P < .05. A positive response in the modified O-ring test and maximal pinch strength were both affected by cross tape direction. The modified O-ring test and maximal pinch strength using pinch gauge results were in agreement (P < .00), and the kappa coefficient was significant at 1.00. The direction of cross tape application that produced a positive response in the modified O-ring test also produced greater maximal pinch strength. Thus, we propose that when applying cross tape to muscles, the direction of the 4 lines of the cross tape should be 45° relative to the direction of the muscle fibers, toward the side that produces a positive response in the modified O-ring test or produces the greatest maximal pinch strength using a pinch gauge.

  5. Parametric Study of an Ablative TPS and Hot Structure Heatshield for a Mars Entry Capsule Vehicle

    NASA Technical Reports Server (NTRS)

    Langston, Sarah L.; Lang, Christapher G.; Samareh, Jamshid A.

    2017-01-01

    The National Aeronautics and Space Administration is planning to send humans to Mars. As part of the Evolvable Mars Campaign, different en- try vehicle configurations are being designed and considered for delivering larger payloads than have been previously sent to the surface of Mars. Mass and packing volume are driving factors in the vehicle design, and the thermal protection for planetary entry is an area in which advances in technology can offer potential mass and volume savings. The feasibility and potential benefits of a carbon-carbon hot structure concept for a Mars entry vehicle is explored in this paper. The windward heat shield of a capsule design is assessed for the hot structure concept as well as an ablative thermal protection system (TPS) attached to a honeycomb sandwich structure. Independent thermal and structural analyses are performed to determine the minimum mass design. The analyses are repeated for a range of design parameters, which include the trajectory, vehicle size, and payload. Polynomial response functions are created from the analysis results to study the capsule mass with respect to the design parameters. Results from the polynomial response functions created from the thermal and structural analyses indicate that the mass of the capsule was higher for the hot structure concept as compared to the ablative TPS for the parameter space considered in this study.

  6. Comparison of grip and pinch strength in young women with and without hyperkyphosis: A cross-sectional study.

    PubMed

    Yoosefinejad, Amin Kordi; Ghaffarinejad, Farahnaz; Hemati, Mahbubeh; Jamshidi, Narges

    2018-05-21

    Hyperkyphosis is a common postural defect with high prevalence in the 20 to 50 year old population. It appears to compromise proximal scapular stability. Grip and pinch strength are used to evaluate general upper extremity function. The aim of this study was to compare pinch and grip strength between young women with and without hyperkyphosis. Thirty young women (18-40 years old) with hyperkyphosis and 30 healthy women matched for age and body mass index participated in the study. Hyperkyphosis was confirmed by measuring the kyphosis angle with a flexible ruler. Grip strength was measured with the Waisa method and a dynamometer. Pinch strength was assessed with a pinch meter. Grip (P= 0.03) and pinch strength (P= 0.04) were significantly lower in women with hyperkyphosis compared to the control group. Kyphosis angle correlated weakly with grip (r= 0.26) and pinch strength (r= 0.23). Hyperkyphotic posture has led to decreased grip and pinch strength compared to people without hyperkyphosis.

  7. Lanthanum induced B-to-Z transition in self-assembled Y-shaped branched DNA structure

    PubMed Central

    Nayak, Ashok K.; Mishra, Aseem; Jena, Bhabani S.; Mishra, Barada K.; Subudhi, Umakanta

    2016-01-01

    Controlled conversion of right-handed B-DNA to left-handed Z-DNA is one of the greatest conformational transitions in biology. Recently, the B-Z transition has been explored from nanotechnological points of view and used as the driving machinery of many nanomechanical devices. Using a combination of CD spectroscopy, fluorescence spectroscopy, and PAGE, we demonstrate that low concentration of lanthanum chloride can mediate B-to-Z transition in self-assembled Y-shaped branched DNA (bDNA) structure. The transition is sensitive to the sequence and structure of the bDNA. Thermal melting and competitive dye binding experiments suggest that La3+ ions are loaded to the major and minor grooves of DNA and stabilize the Z-conformation. Our studies also show that EDTA and EtBr play an active role in reversing the transition from Z-to-B DNA. PMID:27241949

  8. Lanthanum induced B-to-Z transition in self-assembled Y-shaped branched DNA structure

    NASA Astrophysics Data System (ADS)

    Nayak, Ashok K.; Mishra, Aseem; Jena, Bhabani S.; Mishra, Barada K.; Subudhi, Umakanta

    2016-05-01

    Controlled conversion of right-handed B-DNA to left-handed Z-DNA is one of the greatest conformational transitions in biology. Recently, the B-Z transition has been explored from nanotechnological points of view and used as the driving machinery of many nanomechanical devices. Using a combination of CD spectroscopy, fluorescence spectroscopy, and PAGE, we demonstrate that low concentration of lanthanum chloride can mediate B-to-Z transition in self-assembled Y-shaped branched DNA (bDNA) structure. The transition is sensitive to the sequence and structure of the bDNA. Thermal melting and competitive dye binding experiments suggest that La3+ ions are loaded to the major and minor grooves of DNA and stabilize the Z-conformation. Our studies also show that EDTA and EtBr play an active role in reversing the transition from Z-to-B DNA.

  9. The design and implementation of a windowing interface pinch force measurement system

    NASA Astrophysics Data System (ADS)

    Ho, Tze-Yee; Chen, Yuanu-Joan; Chung, Chin-Teng; Hsiao, Ming-Heng

    2010-02-01

    This paper presents a novel windowing interface pinch force measurement system that is basically based on an USB (Universal Series Bus) microcontroller which mainly processes the sensing data from the force sensing resistance sensors mounted on five digits. It possesses several friendly functions, such as the value and curve trace of the applied force by a hand injured patient displayed in real time on a monitoring screen, consequently, not only the physician can easily evaluate the effect of hand injury rehabilitation, but also the patients get more progressive during the hand physical therapy by interacting with the screen of pinch force measurement. In order to facilitate the pinch force measurement system and make it friendly, the detail hardware design and software programming flowchart are described in this paper. Through a series of carefully and detailed experimental tests, first of all, the relationship between the applying force and the FSR sensors are measured and verified. Later, the different type of pinch force measurements are verified by the oscilloscope and compared with the corresponding values and waveform traces in the window interface display panel to obtain the consistency. Finally, a windowing interface pinch force measurement system based on the USB microcontroller is implemented and demonstrated. The experimental results show the verification and feasibility of the designed system.

  10. Pinch-force-magnification mechanism of low degree of freedom EMG prosthetic hand for children.

    PubMed

    Ye, Hesong; Sakoda, Shintaro; Jiang, Yinlai; Morishita, Soichiro; Yokoi, Hiroshi

    2015-01-01

    EMG prosthetic hands are being extensively studied for the disabled who need them not only for cosmesis but also for the functions to help them with basic daily activities. However, most EMG prosthetic hands are developed for adults. Since the early use of prosthetic hands is important for the children to accept and adapt to them, we are developing low degrees of freedom (DoF) prosthetic hand that is suitable for children. Due to the limited size of a child's hand, the servo motor which drives the MP joint are small-sized and low-power. Hence, a pinch-force-magnification mechanism is required to improve the pinch force of the EMG prosthetic hand. In this paper we designed a wire-driven mechanism which can magnify pinch force by increasing the length of the MP joint's moment arm. Pinch force measurement experiment validated that the pinch force of the prosthetic hand with the mechanism is more than twice of that of the hand with direct drive.

  11. Advanced Rigid Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew J.

    2011-01-01

    NASA Exploration Systems Mission Directorate s (ESMD) Entry, Descent, and Landing (EDL) Technology Development Project (TDP) and the NASA Aeronautics Research Mission Directorate s (ARMD) Hypersonics Project are developing new advanced rigid ablators in an effort to substantially increase reliability, decrease mass, and reduce life cycle cost of rigid aeroshell-based entry systems for multiple missions. Advanced Rigid Ablators combine ablation resistant top layers capable of high heat flux entry and enable high-speed EDL with insulating mass-efficient bottom that, insulate the structure and lower the areal weight. These materials may benefit Commercial Orbital Transportation Services (COTS) vendors and may potentially enable new NASA missions for higher velocity returns (e.g. asteroid, Mars). The materials have been thermally tested to 400-450 W/sq cm at the Laser Hardened Materials Evaluation Lab (LHMEL), Hypersonics Materials Evaluation Test System (HyMETS) and in arcjet facilities. Tested materials exhibit much lower backface temperatures and reduced recession over the baseline materials (PICA). Although the EDL project is ending in FY11, NASA in-house development of advanced ablators will continue with a focus on varying resin systems and fiber/resin interactions.

  12. Studies on linear, nonlinear optical and excited state dynamics of silicon nanoparticles prepared by picosecond laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamad, Syed; Nageswara Rao, S. V. S.; Pathak, A. P.

    2015-12-15

    We report results from our studies on the fabrication and characterization of silicon (Si) nanoparticles (NPs) and nanostructures (NSs) achieved through the ablation of Si target in four different liquids using ∼2 picosecond (ps) pulses. The consequence of using different liquid media on the ablation of Si target was investigated by studying the surface morphology along with material composition of Si based NPs. The recorded mean sizes of these NPs were ∼9.5 nm, ∼37 nm, ∼45 nm and ∼42 nm obtained in acetone, water, dichloromethane (DCM) and chloroform, respectively. The generated NPs were characterized by selected area electron diffraction (SAED),more » high resolution transmission microscopy (HRTEM), Raman spectroscopic techniques and Photoluminescence (PL) studies. SAED, HRTEM and Raman spectroscopy data confirmed that the material composition was Si NPs in acetone, Si/SiO{sub 2} NPs in water, Si-C NPs in DCM and Si-C NPs in chloroform and all of them were confirmed to be polycrystalline in nature. Surface morphological information of the fabricated Si substrates was obtained using the field emission scanning electron microscopic (FESEM) technique. FESEM data revealed the formation of laser induced periodic surface structures (LIPSS) for the case of ablation in acetone and water while random NSs were observed for the case of ablation in DCM and chloroform. Femtosecond (fs) nonlinear optical properties and excited state dynamics of these colloidal Si NPs were investigated using the Z-scan and pump-probe techniques with ∼150 fs (100 MHz) and ∼70 fs (1 kHz) laser pulses, respectively. The fs pump-probe data obtained at 600 nm consisted of single and double exponential decays which were tentatively assigned to electron-electron collisional relaxation (<1 ps) and non-radiative transitions (>1 ps). Large third order optical nonlinearities (∼10{sup −14} e.s.u.) for these colloids have been estimated from Z-scan data at an excitation wavelength of 680

  13. Spectroscopic Study of Neon Z-Pinch Plasma for Sodium-Neon Photopumping Experiments

    DTIC Science & Technology

    1992-01-06

    enhancement of the 11-A radiation from the n=4 level of neon when the sodium pump was present. For the 25-GV pump power, theoretical calculations predict...when the neon plasma is photopumped. Extensive theoretical analysis has been devoted to establishing the appropriate conditions for these plasmas. 5 ,44...producing thermonuclear neutrons. 63-65 Extensive theoretical modeling of the stability of these plasmas has guided this work.66 An imploding-liner Z

  14. Hydrodynamic mode associated with the pinch flow in RFP simulations

    NASA Astrophysics Data System (ADS)

    Delzanno, Gian Luca; Chacon, Luis; Finn, John

    2007-11-01

    We present a systematic study of single helicity (SH) states and quasi-single helicity (QSH) states in RFPs. We begin with cylindrical paramagnetic pinch equilibria with uniform resistivity, characterized by a single dimensionless parameter proportional to the toroidal electric field, or the RFP toroidal current parameter θ. For sufficiently high θ, there are several unstable m=1 ideal MHD instabilities, typically one of which is nonresonant, with 1/n just above q(r=0). We evolve these modes nonlinearly to saturation for low Hartmann number H. We show the existence of a new class of unstable modes [1], besides the electromagnetic kink modes typically responsible for the reversal of the axial magnetic field at the edge in RFPs. This new instability is hydrodynamic in nature and is due to the inward equilibrium pinch flow and suitable boundary conditions. In these circumstances, the total angular momentum of the system must grow in response to the flux of particles coming from the boundary. The hydrodynamic mode dominates the nonlinear phase of the velocity field but has little effect on the dynamics of the magnetic field. [1] G.L. Delzanno, L. Chac'on, J.M. Finn, Hydrodynamic mode associated with the pinch flow in Reversed Field Pinch simulations, submitted (2007).

  15. Optical, structural and morphological properties of zirconia nanoparticles prepared by laser ablation in liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borodina, T I; Val'yano, G E; Gololobova, O A

    2014-09-30

    Absorption, fluorescence and Raman spectra, the structural composition and morphology of zirconia nanoparticles synthesised via the laser ablation of a metal in water and aqueous solutions of the sodium dodecyl sulphate (SDS) surfactant have been studied using absorption spectroscopy, Raman spectroscopy, X-ray diffraction and scanning electron microscopy. The results demonstrate that, exposing zirconium to intense nanosecond laser pulses at a high repetition rate in these liquids, one can obtain stable cubic, tetragonal and monoclinic crystalline phases of nanozirconia with a particle size in the range 40 – 100 nm and a Zr – SDS organic – inorganic composite. The absorptionmore » and fluorescence of the synthesised zirconia strongly depend on the SDS concentration in the starting solution. The gas – vapour bubbles forming during ablation are shown to serve as templates for the formation of hollow nanoand microstructures. (nanostructures)« less

  16. Dynamics of laser ablative shock waves from one dimensional periodic structured surfaces

    NASA Astrophysics Data System (ADS)

    Paturi, Prem Kiran; Chelikani, Leela; Pinnoju, Venkateshwarlu; Acrhem Team

    2015-06-01

    Spatio-temporal evolution of Laser ablative shock waves (LASWs) from one dimensional periodic structured surfaces (1D-PSS) of Aluminum is studied using time resolved defocused shadowgraphy technique. LASWs are generated by focusing 7 ns pulses from second harmonic of Nd:YAG (532 nm, 10 Hz) laser on to 1D-PSS with sinusoidal and triangular modulations of varying periodicity. An expanded He-Ne laser (632.8 nm) is used as probe beam for shadowgraphy. Evolution of ablative shock front (SF) with 1.5 ns temporal resolution is used to measure position of the SF, its nature, density and pressure behind the SF. The effect of surface modulation on the LASW and contact front dynamics was compared to those from a flat surface (FS) of Aluminum. SWs from FS and PSS obeyed Taylor's solution for spherical and planar nature, respectively. The velocity of SF from 1D PSS had a twofold increase compared to the FS. This was further enhanced for structures whose periodicity is of the order of excitation wavelength. Variation of SF properties with varying periodicity over a range of 3.3 μm to 0.55 μm has the potential to tailor shockwaves of required parameters. The work is supported by Defence Research and Developement Organization, India through Grants-in-Aid Program. The periodic surfaces were procured with financial support from BRFST project No. NFP-MAT-A12-04.

  17. Effects of pulse durations and environments on femtosecond laser ablation of stainless steel

    NASA Astrophysics Data System (ADS)

    Xu, Shizhen; Ding, Renjie; Yao, Caizhen; Liu, Hao; Wan, Yi; Wang, Jingxuan; Ye, Yayun; Yuan, Xiaodong

    2018-04-01

    The influence of pulse durations (35fs and 260 fs) and environments (air and vacuum) on the laser-induced damage thresholds (LIDTs) and ablation rates of 304 stainless steel were studied. Two distinct ablation regimes were obtained from the ablation rate curves. At low fluence regime, the ablation rates were similar in spite of the differences of pulse durations and experiment environments. At high fluence regime, the ablation rates of 35 fs pulse duration in vacuum were obviously higher than others. The ablation craters showed smooth edges, moth-eye such as structures, and laser-induced periodic surface structures (LIPSSs). At a fixed fluence, the periods of LIPSSs decreased monotonously in their mean spatial period between 700 nm (5 pulses) and 540 nm (200 pulses) with the increase of pulse numbers in air with 35 fs pulse duration. The formation mechanisms of moth-eye like structures and LIPSSs were also discussed.

  18. Ablation article and method

    NASA Technical Reports Server (NTRS)

    Erickson, W. D.; Sullivan, E. M. (Inventor)

    1973-01-01

    An ablation article, such as a conical heat shield, having an ablating surface is provided with at least one discrete area of at least one seed material, such as aluminum. When subjected to ablation conditions, the seed material is ablated. Radiation emanating from the ablated seed material is detected to analyze ablation effects without disturbing the ablation surface. By providing different seed materials having different radiation characteristics, the ablating effects on various areas of the ablating surface can be analyzed under any prevailing ablation conditions. The ablating article can be provided with means for detecting the radiation characteristics of the ablated seed material to provide a self-contained analysis unit.

  19. Simulation of the radiation from the hot spot of an X-pinch

    NASA Astrophysics Data System (ADS)

    Oreshkin, V. I.; Artyomov, A. P.; Chaikovsky, S. A.; Oreshkin, E. V.; Rousskikh, A. G.

    2017-01-01

    The results of X-pinch experiments performed using a small-sized pulse generator are analyzed. The generator, capable of producing a 200-kA, 180-ns current, was loaded with an X-pinch made of four 35-μm-diameter aluminum wires. The analysis consists of a one-dimensional radiation magnetohydrodynamic simulation of the formation of a hot spot in an X-pinch, taking into account the outflow of material from the neck region. The radiation loss and the ion species composition of the pinch plasma are calculated based on a stationary collisional-radiative model, including balance equations for the populations of individual levels. With this model, good agreement between simulation predictions and experimental data has been achieved: the experimental and the calculated radiation power and pulse duration differ by no more than twofold. It has been shown that the x-ray pulse is formed in the radiative collapse region, near its boundary.

  20. Turbulence, flow and transport: hints from reversed field pinch

    NASA Astrophysics Data System (ADS)

    Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Cavazzana, R.; Bergsåker, H.; Cecconello, M.; Drake, J. R.

    2006-04-01

    The interplay between sheared E × B flows and turbulence has been experimentally investigated in the edge region of the Extrap-T2R reversed field pinch experiment. Electrostatic fluctuations are found to rule the momentum balance equation representing the main driving term for sheared flows which counterbalances anomalous viscous damping. The driving role of electrostatic fluctuations is proved by the spatial structure of the Reynolds stress and by the time behaviour of the mean energy production term which supports the existence of an energy exchange from the small scales of turbulence to the larger scales of the mean flow.

  1. Imprinting of Pre-Imposed Laser Perturbations on Targets With a High-Z Overcoat

    NASA Astrophysics Data System (ADS)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Oh, J.; Schmitt, A. J.; Bates, J. W.; Serlin, V.; Obenschain, S. P.

    2014-10-01

    In direct drive ICF, most of the laser imprint is expected to occur during the initial part of the laser pulse, which generates the first shocks necessary to compress the target to achieve high gain. Previous experiments found that a thin (400-800Å) high-Z (Au or Pd) overcoat on the laser side of the target is effective in suppressing broadband imprint. The overcoat initially absorbs the laser and emits soft x-rays that ablate the target, forming a large stand-off distance between laser absorption and ablation and smoothing the drive perturbations. We investigate the effectiveness of imprint suppression for different spatial wavelengths via perturbations imposed on top of the beams smoothed by Induced Spatial Incoherence (ISI). Measurements of areal mass non-uniformity on planar targets driven by the Nike KrF laser are made by curved crystal x-ray radiography. Simultaneous side-on radiography allows observation of the layer dynamics and monitoring of the laser absorption - target ablation stand-off. X-ray flux from the high-Z layer is monitored using absolutely calibrated time-resolved x-ray spectrometers. Work supported by the Department of Energy/NNSA.

  2. Magnetic pinch compression of silica glass

    NASA Technical Reports Server (NTRS)

    Bless, S. J.

    1974-01-01

    SiO2 glass has been irreversibly densified by pressures up to 250 kbar produced in a magnetic pinch apparatus. The threshold for significant densification was about 60 kbar. The recovered densities agree better with published shock wave results than with static results.

  3. Structure-function analysis of the extracellular domain of the pneumococcal cell division site positioning protein MapZ

    NASA Astrophysics Data System (ADS)

    Manuse, Sylvie; Jean, Nicolas L.; Guinot, Mégane; Lavergne, Jean-Pierre; Laguri, Cédric; Bougault, Catherine M.; Vannieuwenhze, Michael S.; Grangeasse, Christophe; Simorre, Jean-Pierre

    2016-06-01

    Accurate placement of the bacterial division site is a prerequisite for the generation of two viable and identical daughter cells. In Streptococcus pneumoniae, the positive regulatory mechanism involving the membrane protein MapZ positions precisely the conserved cell division protein FtsZ at the cell centre. Here we characterize the structure of the extracellular domain of MapZ and show that it displays a bi-modular structure composed of two subdomains separated by a flexible serine-rich linker. We further demonstrate in vivo that the N-terminal subdomain serves as a pedestal for the C-terminal subdomain, which determines the ability of MapZ to mark the division site. The C-terminal subdomain displays a patch of conserved amino acids and we show that this patch defines a structural motif crucial for MapZ function. Altogether, this structure-function analysis of MapZ provides the first molecular characterization of a positive regulatory process of bacterial cell division.

  4. Comparative study of millennials' (age 20-34 years) grip and lateral pinch with the norms.

    PubMed

    Fain, Elizabeth; Weatherford, Cara

    Cross-sectional research design. Clinical practice continues to use normative data for grip and pinch measurements that were established in 1985. There is no updated norms despite different hand usage patterns in today's society. Measuring and comparing grip and pinch strengths with normative data is a valid method to determine hand function. This research was implemented to compare the grip and pinch measurements obtained from healthy millennials to the established norms and to describe hand usage patterns for millennials. Grip and lateral pinch measurements were obtained from a sample of 237 healthy millennials (ages 20-34 years). Strength scores were statistically lower that older normative data in all millennial grip strengths, with the exception of the women in the age group of 30-34 years. Specifically, this statistically significant trend was observed in all male grip strengths, as well as in women in the age group of 20-24 years (bilateral grip) and 25-29 years (right grip). However, the lateral pinch data reflected was similar to the older norms with variances of 0.5-1 kg. Current data reflect statistically significant differences from the norms for all male grip measurements, as well as for women in the age group of 20-24 years (bilateral grip) and 25-29 years (right grip). No statistical significance was observed in the independent-sample t tests for the lateral pinch in men of all age groups. Statistical significance was noted for lateral pinch for female age groups for the left hand (20-24 years) and for bilateral lateral pinches (30-34 years). IV. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  5. Functional sensibility assessment. Part II: Effects of sensory improvement on precise pinch force modulation after transverse carpal tunnel release.

    PubMed

    Hsu, Hsiu-Yun; Kuo, Li-Chieh; Chiu, Haw-Yen; Jou, I-Ming; Su, Fong-Chin

    2009-11-01

    Patients with median nerve compression at the carpal tunnel often have poor sensory afferents. Without adequate sensory modulation control, these patients frequently exhibit clumsy performance and excessive force output in the affected hand. We analyzed precision grip function after the sensory recovery of patients with carpal tunnel syndrome (CTS) who underwent carpal tunnel release (CTR). Thirteen CTS patients were evaluated using a custom-designed pinch device and conventional sensory tools before and after CTR to measure sensibility, maximum pinch strength, and anticipated pinch force adjustments to movement-induced load fluctuations in a pinch-holding-up activity. Based on these tests, five force-related parameters and sensory measurements were used to determine improvements in pinch performance after sensory recovery. The force ratio between the exerted pinch force and maximum load force of the lifting object was used to determine pinch force coordination and to prove that CTR enabled precision motor output. The magnitude of peak pinch force indicated an economic force output during manipulations following CTR. The peak pinch force, force ratio, and percentage of maximum pinch force also demonstrated a moderate correlation with the Semmes-Weinstein test. Analysis of these tests revealed that improved sensory function helped restore patients' performance in precise pinch force control evaluations. These results suggest that sensory information plays an important role in adjusting balanced force output in dexterous manipulation. (c) 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Current scaling of radiated power for 40-mm diameter single wire arrays on Z

    NASA Astrophysics Data System (ADS)

    Nash, T. J.; Cuneo, M. E.; Spielman, R. B.; Chandler, G. A.; Leeper, R. J.; Seaman, J. F.; McGurn, J.; Lazier, S.; Torres, J.; Jobe, D.; Gilliland, T.; Nielsen, D.; Hawn, R.; Bailey, J. E.; Lake, P.; Carlson, A. L.; Seamen, H.; Moore, T.; Smelser, R.; Pyle, J.; Wagoner, T. C.; LePell, P. D.; Deeney, C.; Douglas, M. R.; McDaniel, D.; Struve, K.; Mazarakis, M.; Stygar, W. A.

    2004-11-01

    In order to estimate the radiated power that can be expected from the next-generation Z-pinch driver such as ZR at 28 MA, current-scaling experiments have been conducted on the 20 MA driver Z. We report on the current scaling of single 40 mm diameter tungsten 240 wire arrays with a fixed 110 ns implosion time. The wire diameter is decreased in proportion to the load current. Reducing the charge voltage on the Marx banks reduces the load current. On one shot, firing only three of the four levels of the Z machine further reduced the load current. The radiated energy scaled as the current squared as expected but the radiated power scaled as the current to the 3.52±0.42 power due to increased x-ray pulse width at lower current. As the current is reduced, the rise time of the x-ray pulse increases and at the lowest current value of 10.4 MA, a shoulder appears on the leading edge of the x-ray pulse. In order to determine the nature of the plasma producing the leading edge of the x-ray pulse at low currents further shots were taken with an on-axis aperture to view on-axis precursor plasma. This aperture appeared to perturb the pinch in a favorable manner such that with the aperture in place there was no leading edge to the x-ray pulses at lower currents and the radiated power scaled as the current squared ±0.75. For a full-current shot we will present x-ray images that show precursor plasma emitting on-axis 77 ns before the main x-ray burst.

  7. Structural and decay properties of Z = 132, 138 superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Rather, Asloob A.; Ikram, M.; Usmani, A. A.; Kumar, Bharat; Patra, S. K.

    2016-12-01

    In this paper, we analyze the structural properties of Z = 132 and Z = 138 superheavy nuclei within the ambit of axially deformed relativistic mean-field framework with NL3 * parametrization and calculate the total binding energies, radii, quadrupole deformation parameter, separation energies, density distributions. We also investigate the phenomenon of shape coexistence by performing the calculations for prolate, oblate and spherical configurations. For clear presentation of nucleon distributions, the two-dimensional contour representation of individual nucleon density and total matter density has been made. Further, a competition between possible decay modes such as α-decay, β-decay and spontaneous fission of the isotopic chain of superheavy nuclei with Z = 132 within the range 312 ≤ A ≤ 392 and 318 ≤ A ≤ 398 for Z = 138 is systematically analyzed within self-consistent relativistic mean-field model. From our analysis, we inferred that the α-decay and spontaneous fission are the principal modes of decay in majority of the isotopes of superheavy nuclei under investigation apart from β-decay as dominant mode of decay in 318-322138 isotopes.

  8. Tungsten and iridium multilayered structure by DGP as ablation-resistance coatings for graphite

    NASA Astrophysics Data System (ADS)

    Wu, Wangping; Chen, Zhaofeng; Cheng, Han; Wang, Liangbing; Zhang, Ying

    2011-06-01

    Oxidation protection of carbon material under ultra-high temperature is a serious problem. In this paper, a newly designed multilayer coating of W/Ir was produced onto the graphite substrate by double glow plasma. As comparison, the Ir single-layer coating on the graphite was also prepared. The ablation property and thermal stability of the coatings were studied at 2000 °C in an oxyacetylene torch flame. Ablation tests showed that the coated graphite substrates were protected more effectively by W/Ir multilayer coating than Ir single-layer coating. Ir single-layer coating after ablation kept the integrality, although there was a poor adhesion of the Ir coating to the graphite substrate because of the thermal expansion mismatch and the non-wetting of the carbon by Ir coating. The mass loss rate of the W/Ir-coated specimen after ablation was about 1.62%. The interface of W/Ir multilayer coating and the graphite substrate exhibited good adherence no evidence of delamination after ablation. W/Ir multilayer coating could be useful for protecting graphite in high-temperature application for a short time.

  9. Influence of GTP/GDP and magnesium ion on the solvated structure of the protein FtsZ: a molecular dynamics study.

    PubMed

    Jamous, Carla; Basdevant, Nathalie; Ha-Duong, Tap

    2014-01-01

    We present here a structural analysis of ten extensive all-atom molecular dynamics simulations of the monomeric protein FtsZ in various binding states. Since the polymerization and GTPase activities of FtsZ depend on the nature of a bound nucleotide as well as on the presence of a magnesium ion, we studied the structural differences between the average conformations of the following five systems: FtsZ-Apo, FtsZ-GTP, FtsZ-GDP, FtsZ-GTP-Mg, and FtsZ-GDP-Mg. The in silico solvated average structure of FtsZ-Apo significantly differs from the crystallographic structure 1W59 of FtsZ which was crystallized in a dimeric form without nucleotide and magnesium. The simulated Apo form of the protein also clearly differs from the FtsZ structures when it is bound to its ligand, the most important discrepancies being located in the loops surrounding the nucleotide binding pocket. The three average structures of FtsZ-GTP, FtsZ-GDP, and FtsZ-GTP-Mg are overall similar, except for the loop T7 located at the opposite side of the binding pocket and whose conformation in FtsZ-GDP notably differs from the one in FtsZ-GTP and FtsZ-GTP-Mg. The presence of a magnesium ion in the binding pocket has no impact on the FtsZ conformation when it is bound to GTP. In contrast, when the protein is bound to GDP, the divalent cation causes a translation of the nucleotide outwards the pocket, inducing a significant conformational change of the loop H6-H7 and the top of helix H7.

  10. The Carla Survey: Insights From The Densest Carla Structures At 1.4 < Z < 2.8.

    NASA Astrophysics Data System (ADS)

    Noirot, Gaël; Stern, Daniel; Wylezalek, Dominika; Cooke, Elizabeth A.; Mei, Simona; De Breuck, Carlos; Vernet, Joël; Brodwin, Mark; Eisenhardt, Peter; Galametz, Audrey; Gonzalez, Anthony H.; Hatch, Nina A.; Jarvis, Matt; Rettura, Alessandro; Seymour, Nick; Stanford, S. A.

    2017-06-01

    Radio-loud AGN (RLAGN) tend to reside in the most massive dark matter halos, and have a long history of being used to efficiently identify rich high-z structures (i.e., clusters and protoclusters). Our team contributed to this effort with a targeted 400hr Spitzer program surveying 420 RLAGN (radio-loud quasars and high-z radio galaxies) at z=1.3-3.2 across the full sky: Clusters Around RLAGN (CARLA; Wylezalek+2013,2014). The CARLA Survey identified 200 cluster candidates at z=1.3-3.2 as 2-8σ overdensities of red color-selected Spitzer/IRAC galaxies around the targeted powerful RLAGN. We present results from our follow-up 40-orbit HST program on the 20 densest CARLA cluster candidates at z=1.4-2.8 (Noirot+2016,2017). We spectroscopically confirm 16/20 distant structures associated with the RLAGN, up to z=2.8. For the first time at these redshifts, we statistically investigate the star-formation content of a large sample of galaxies in dense structures. We show that >10^(10) M⊙ cluster galaxies form significantly fewer stars than their field star-forming counterparts at all redshifts within 1.4 ≤ z ≤ 2. This survey represents a unique and large homogenous sample of spectroscopically confirmed clusters at high redshifts, ideal to investigate quenching mechanisms in dense environments.

  11. Observation of >400-eV precursor plasmas from low-wire-number copper arrays at the 1-MA zebra facility.

    PubMed

    Coverdale, C A; Safronova, A S; Kantsyrev, V L; Ouart, N D; Esaulov, A A; Deeney, C; Williamson, K M; Osborne, G C; Shrestha, I; Ampleford, D J; Jones, B

    2009-04-17

    Experiments with cylindrical copper wire arrays at the 1-MA Zebra facility show that high temperatures exist in the precursor plasmas formed when ablated wire array material accretes on the axis prior to the stagnation of a z pinch. In these experiments, the precursor radiated approximately 20% of the >1000 eV x-ray output, and time-resolved spectra show substantial emission from Cu L-shell lines. Modeling of the spectra shows an increase in temperature as the precursor forms, up to approximately 450 eV, after which the temperature decreases to approximately 220-320 eV until the main implosion.

  12. Artificial ascites and pneumoperitoneum to facilitate thermal ablation of liver tumors: a pictorial essay.

    PubMed

    Bhagavatula, Sharath K; Chick, Jeffrey F B; Chauhan, Nikunj R; Shyn, Paul B

    2017-02-01

    Image-guided percutaneous thermal ablation is increasingly utilized in the treatment of hepatic malignancies. Peripherally located hepatic tumors can be difficult to access or located adjacent to critical structures that can be injured. As a result, ablation of peripheral tumors may be avoided or may be performed too cautiously, leading to inadequate ablation coverage. In these cases, separating the tumor from adjacent critical structures can increase the efficacy and safety of procedures. Artificial ascites and artificial pneumoperitoneum are techniques that utilize fluid and gas, respectively, to insulate critical structures from the thermal ablation zone. Induction of artificial ascites and artificial pneumoperitoneum can enable complete ablation of otherwise inaccessible hepatic tumors, improve tumor visualization, minimize unintended thermal injury to surrounding organs, and reduce post-procedural pain. This pictorial essay illustrates and discusses the proper technique and clinical considerations for successful artificial ascites and pneumoperitoneum creation to facilitate safe peripheral hepatic tumor ablation.

  13. Design and experimental research on a self-magnetic pinch diode under MV

    NASA Astrophysics Data System (ADS)

    Pengfei, ZHANG; Yang, HU; Jiang, SUN; Yan, SONG; Jianfeng, SUN; Zhiming, YAO; Peitian, CONG; Mengtong, QIU; Aici, QIU

    2018-01-01

    A self-magnetic pinch diode (SMPD) integrating an anode foil-reinforced electron beam pinch focus and a small high-dose x-ray spot output was designed and optimized. An x-ray focal spot measuring system was developed in accordance with the principle of pinhole imaging. The designed SMPD and the corresponding measuring system were tested under ∼MV, with 1.75 × 2 mm2 oval x-ray spots (AWE defined) and forward directed dose 1.6 rad at 1 m. Results confirmed that the anode foil can significantly strengthen the electron beam pinch focus, and the focal spot measuring system can collect clear focal spot images. This finding indicated that the principle and method are feasible.

  14. Fracture in Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Chavez-Garcia, Jose; Pham, John

    2013-01-01

    This paper describes the development of a novel technique to understand the failure mechanisms inside thermal protection materials. The focus of this research is on the class of materials known as phenolic impregnated carbon ablators. It has successfully flown on the Stardust spacecraft and is the thermal protection system material chosen for the Mars Science Laboratory and SpaceX Dragon spacecraft. Although it has good thermal properties, structurally, it is a weak material. To understand failure mechanisms in carbon ablators, fracture tests were performed on FiberForm(Registered TradeMark) (precursor), virgin, and charred ablator materials. Several samples of these materials were tested to investigate failure mechanisms at a microstructural scale. Stress-strain data were obtained simultaneously to estimate the tensile strength and toughness. It was observed that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred carbon ablators, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred carbon ablators showed greater strength values compared with FiberForm samples, confirming that the presence of the porous matrix helps in absorbing the fracture energy.

  15. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  16. Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches

    DOE PAGES

    Seyler, C. E.; Martin, M. R.

    2011-01-14

    In this study, it is shown that the two-fluid model under a generalized Ohm’s law formulation and the resistive magnetohydrodynamics (MHD) can both be described as relaxation systems. In the relaxation model, the under-resolved stiff source terms constrain the dynamics of a set of hyperbolic equations to give the correct asymptotic solution. When applied to the collisional two-fluid model, the relaxation of fast time scales associated with displacement current and finite electron mass allows for a natural transition from a system where Ohm’s law determines the current density to a system where Ohm’s law determines the electric field. This resultmore » is used to derive novel algorithms, which allow for multiscale simulation of low and high frequency extended-MHD physics. This relaxation formulation offers an efficient way to implicitly advance the Hall term and naturally simulate a plasma-vacuum interface without invoking phenomenological models. The relaxation model is implemented as an extended-MHD code, which is used to analyze pulsed power loads such as wire arrays and ablating foils. Two-dimensional simulations of pulsed power loads are compared for extended-MHD and MHD. For these simulations, it is also shown that the relaxation model properly recovers the resistive-MHD limit.« less

  17. Ultrahigh-resolution crystal structures of Z-DNA in complex with Mn(2+) and Zn(2+) ions.

    PubMed

    Drozdzal, Pawel; Gilski, Miroslaw; Kierzek, Ryszard; Lomozik, Lechoslaw; Jaskolski, Mariusz

    2013-06-01

    X-ray crystal structures of the spermine(4+) form of the Z-DNA duplex with the self-complementary d(CG)3 sequence in complexes with Mn(2+) and Zn(2+) cations have been determined at the ultrahigh resolutions of 0.75 and 0.85 Å, respectively. Stereochemical restraints were only used for the sperminium cation (in both structures) and for nucleotides with dual conformation in the Zn(2+) complex. The Mn(2+) and Zn(2+) cations at the major site, designated M(2+)(1), bind at the N7 position of G6 by direct coordination. The coordination geometry of this site was octahedral, with complete hydration shells. An additional Zn(2+)(2) cation was bis-coordinated in a tetrahedral fashion by the N7 atoms of G10 and G12 from a symmetry-related molecule. The coordination distances of Zn(2+)(1) and Zn(2+)(2) to the O6 atom of the guanine residues were 3.613 (6) and 3.258 (5) Å, respectively. Moreover, a chloride ion was also identified in the coordination sphere of Zn(2+)(2). Alternate conformations were observed in the Z-DNA-Zn(2+) structure not only at internucleotide linkages but also at the terminal C3'-OH group of G12. The conformation of the sperminium chain in the Z-DNA-Mn(2+) complex is similar to the spermine(4+) conformation in analogous Z-DNA-Mg(2+) structures. In the Z-DNA-Zn(2+) complex the sperminium cation is disordered and partially invisible in electron-density maps. In the Z-DNA-Zn(2+) complex the sperminium cation only interacts with the phosphate groups of the Z-DNA molecules, while in the Z-DNA-Mn(2+) structure it forms hydrogen bonds to both the phosphate groups and DNA bases.

  18. Suppression of laser nonuniformity imprinting using a thin high-z coating.

    PubMed

    Karasik, Max; Weaver, J L; Aglitskiy, Y; Oh, J; Obenschain, S P

    2015-02-27

    Imprinting of laser nonuniformity is a limiting factor in direct-drive inertial confinement fusion experiments, particularly when available laser smoothing is limited. A thin (∼400  Å) high-Z metal coating is found to substantially suppress laser imprint for planar targets driven by pulse shapes and intensities relevant to implosions on the National Ignition Facility while retaining low adiabat target acceleration. A hybrid of indirect and direct drive, this configuration results in initial ablation by x rays from the heated high-Z layer, creating a large standoff for perturbation smoothing.

  19. Quantification of hand function by power grip and pinch strength force measurements in ulnar nerve lesion simulated by ulnar nerve block.

    PubMed

    Wachter, Nikolaus Johannes; Mentzel, Martin; Krischak, Gert D; Gülke, Joachim

    2017-06-24

    In the assessment of hand and upper limb function, grip strength is of the major importance. The measurement by dynamometers has been established. In this study, the effect of a simulated ulnar nerve lesion on different grip force measurements was evaluated. In 25 healthy volunteers, grip force measurement was done by the JAMAR dynamometer (Fabrication Enterprises Inc, Irvington, NY) for power grip and by a pinch strength dynamometer for tip pinch strength, tripod grip, and key pinch strength. A within-subject research design was used in this prospective study. Each subject served as the control by preinjection measurements of grip and pinch strength. Subsequent measurements after ulnar nerve block were used to examine within-subject change. In power grip, there was a significant reduction of maximum grip force of 26.9% with ulnar nerve block compared with grip force without block (P < .0001). Larger reductions in pinch strength were observed with block: 57.5% in tip pinch strength (P < .0001), 61.0% in tripod grip (P < .0001), and 58.3% in key pinch strength (P < .0001). The effect of the distal ulnar nerve block on grip and pinch force could be confirmed. However, the assessment of other dimensions of hand strength as tip pinch, tripod pinch and key pinch had more relevance in demonstrating hand strength changes resulting from an distal ulnar nerve lesion. The measurement of tip pinch, tripod grip and key pinch can improve the follow-up in hand rehabilitation. II. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  20. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  1. Structure of exotic light nuclei: Z = 2, 3, 4

    NASA Astrophysics Data System (ADS)

    Fortune, H. T.

    2018-03-01

    I examine the history and current state of knowledge of the structure of so-called "exotic" light nuclei with Z=2-4, from 7He to 16Be . I review the available experimental information and the models that have been applied to these nuclei. I pay particular attention to the interplay among energies, widths (or strengths), and microscopic structure. Throughout the presentation, I focus on a unified description of these nuclei. I point out contradictions within the data, and I suggest experiments that are still needed.

  2. Optical and structural properties of Bi-based nanoparticles prepared via pulsed Nd:YAG laser ablation in organic liquids

    NASA Astrophysics Data System (ADS)

    Dadashi, S.; Poursalehi, R.; Delavari, H.

    2018-06-01

    Colloidal Bi/Bi2O3 and single phase Bi nanoparticles were synthesized by pulsed Nd:YAG laser ablation of metallic bismuth target in different organic liquids. In this research, the structural characteristic, optical properties, and colloidal stability of Bi and Bi/Bi2O3 nanoparticles have been studied. Furthermore, the mechanism of nanoparticles formation in liquid media by laser ablation of Bi-based nanoparticles was proposed in different liquid environments based on their chemical nature. X-ray diffraction, scanning electron microscopy and optical extinction spectroscopy indicate the formation of pure Bi and Bi/Bi2O3 nanoparticles with mean size of 32, 43 and 54 nm in methanol, ethanol, and EMK, respectively, which indicate a mixture of different phases including rhombohedra crystal structure of Bi, monoclinic α-Bi2O3, and tetragonal β-Bi2O3. Finally, this research demonstrates the effect of the surrounding environment on characteristic properties of nanoparticles and clarifies the size, structural characteristics, and optical properties of the synthesized nanoparticles.

  3. Advanced spectroscopic analysis of 0.8-1.0-MA Mo x pinches and the influence of plasma electron beams on L-shell spectra of Mo ions.

    PubMed

    Shlyaptseva, A S; Hansen, S B; Kantsyrev, V L; Fedin, D A; Ouart, N; Fournier, K B; Safronova, U I

    2003-02-01

    This paper presents a detailed investigation of the temporal, spatial, and spectroscopic properties of L-shell radiation from 0.8 to 1.0 MA Mo x pinches. Time-resolved measurements of x-ray radiation and both time-gated and time-integrated spectra and pinhole images are presented and analyzed. High-current x pinches are found to have complex spatial and temporal structures. A collisional-radiative kinetic model has been developed and used to interpret L-shell Mo spectra. The model includes the ground state of every ionization stage of Mo and detailed structure for the O-, F-, Ne-, Na-, and Mg-like ionization stages. Hot electron beams generated by current-carrying electrons in the x pinch are modeled by a non-Maxwellian electron distribution function and have significant influence on L-shell spectra. The results of 20 Mo x-pinch shots with wire diameters from 24 to 62 microm have been modeled. Overall, the modeled spectra fit the experimental spectra well and indicate for time-integrated spectra electron densities between 2 x 10(21) and 2 x 10(22) cm(-3), electron temperatures between 700 and 850 eV, and hot electron fractions between 3% and 7%. Time-gated spectra exhibit wide variations in temperature and density of plasma hot spots during the same discharge.

  4. Development and simulation study of a new inverse-pinch high Coulomb transfer switch

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.

    1989-01-01

    The inverse-pinch plasma switch was studied using a computer simulation code. The code was based on a 2-D, 2-temperature magnetohydrodynamic (MHD) model. The application of this code was limited to the disk-type inverse-pinch plasma switch. The results of the computer analysis appear to be in agreement with the experimental results when the same parameters are used. An inverse-pinch plasma switch for closing has been designed and tested for high-power switching requirements. An azimuthally uniform initiation of breakdown is a key factor in achieving an inverse-pinch current path in the switch. Thus, various types of triggers, such as trigger pins, wire-brush, ring trigger, and hypocycloidal-pinch (HCP) devices have been tested for uniform breakdown. Recently, triggering was achieved by injection of a plasma-ring (plasma puff) that is produced separately with hypocycloidal-pinch electrodes placed under the cathode of the main gap. The current paths at switch closing, initiated by the injection of a plasma-ring from the HCP trigger are azimuthally uniform, and the local current density is significantly reduced, so that damage to the electrodes and the insulator surfaces is minimized. The test results indicate that electron bombardment on the electrodes and the insulator surfaces is minimized. The test results indicate that electron bombardment on the electrodes is four orders of magnitude less than that of a spark-gap switch for the same switching power. Indeed, a few thousand shots with peak current exceeding a mega-ampere and with hold-off voltage up to 20 kV have been conducted without showing measurable damage to the electrodes and insulators.

  5. Flexible Ablators: Applications and Arcjet Testing

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Venkatapathy, Ethiraj; Beck, Robin A S.; Mcguire, Kathy; Prabhu, Dinesh K.; Gorbunov, Sergey

    2011-01-01

    Flexible ablators were conceived in 2009 to meet the technology pull for large, human Mars Exploration Class, 23 m diameter hypersonic inflatable aerodynamic decelerators. As described elsewhere, they have been recently undergoing initial technical readiness (TRL) advancement by NASA. The performance limits of flexible ablators in terms of maximum heat rates, pressure and shear remain to be defined. Further, it is hoped that this emerging technology will vastly expand the capability of future NASA missions involving atmospheric entry systems. This paper considers four topics of relevance to flexible ablators: (1) Their potential applications to near/far term human and robotic missions (2) Brief consideration of the balance between heat shield diameter, flexible ablator performance limits, entry vehicle controllability and aft-body shear layer impingement of interest to designers of very large entry vehicles, (3) The approach for developing bonding processes of flexible ablators for use on rigid entry bodies and (4) Design of large arcjet test articles that will enable the testing of flexible ablators in flight-like, combined environments (heat flux, pressure, shear and structural tensile loading). Based on a review of thermal protection system performance requirements for future entry vehicles, it is concluded that flexible ablators have broad applications to conventional, rigid entry body systems and are enabling to large deployable (both inflatable and mechanical) heat shields. Because of the game-changing nature of flexible ablators, it appears that NASA's Office of the Chief Technologist (OCT) will fund a focused, 3-year TRL advancement of the new materials capable of performance in heat fluxes in the range of 200-600 W/sq. cm. This support will enable the manufacture and use of the large-scale arcjet test designs that will be a key element of this OCT funded activity.

  6. Assessment of the impact that the capsule fill tube has on implosions conducted with high density carbon ablators

    NASA Astrophysics Data System (ADS)

    Pak, Arthur; Benedetti, L. R.; Berzak Hopkins, L. F.; Clark, D.; Divol, L.; Dewald, E. L.; Fittinghoff, D.; Izumi, N.; Khan, S. F.; Landen, O.; Lepape, S.; Ma, T.; Marley, E.; Nagel, S.; Volegov, P.; Weber, C.; Bradley, D. K.; Callahan, D.; Grim, G.; Hurricane, O. A.; Patel, P.; Schneider, M. B.; Edwards, M. J.

    2017-10-01

    In recent inertial confinement implosion experiments conducted at the National Ignition Facility, bright and spatially localized x-ray emission within the hot spot at stagnation has been observed. This emission is associated with higher Z ablator material that is injected into the hot spot by the hydrodynamic perturbation induced by the 5-10 um diameter capsule fill tube. The reactivity of the DT fuel and subsequent yield of the implosion are strongly dependent on the density, temperature, and confinement time achieved throughout the stagnation of the implosion. Radiative losses from higher Z ablator material that mixes into the hot spot as well as non-uniformities in the compression and confinement induced by the fill tube perturbation can degrade the yield of the implosion. This work will examine the impact to conditions at stagnation that results from the fill tube perturbation. This assessment will be based from a pair of experiments conducted with a high density carbon ablator where the only deliberate change was reduction in fill tube diameter from 10 to 5 um. An estimate of the radiative losses and impact on performance from ablator mix injected into the hot spot by the fill tube perturbation will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Electric Ablation with Irreversible Electroporation (IRE) in Vital Hepatic Structures and Follow-up Investigation.

    PubMed

    Chen, Xinhua; Ren, Zhigang; Zhu, Tongyin; Zhang, Xiongxin; Peng, Zhiyi; Xie, Haiyang; Zhou, Lin; Yin, Shengyong; Sun, Junhui; Zheng, Shusen

    2015-11-09

    Irreversible electroporation (IRE) with microsecond-pulsed electric fields (μsPEFs) can effectively ablate hepatocellular carcinomas in animal models. This preclinical study evaluates the feasibility and safety of IRE on porcine livers. Altogether, 10 pigs were included. Computed tomography (CT) was used to guide two-needle electrodes that were inserted near the hilus hepatis and gall bladder. Animals were followed-up at 2 hours and at 2, 7 and 14 days post-treatment. During and after μsPEF ablation, electrocardiographs found no cardiovascular events, and contrast CT found no portal vein thrombosis. There was necrosis in the ablation zone. Mild cystic oedema around the gall bladder was found 2 hours post-treatment. Pathological studies showed extensive cell death. There was no large vessel damage, but there was mild endothelial damage in some small vessels. Follow-up liver function tests and routine blood tests showed immediate liver function damage and recovery from the damage, which correlated to the pathological changes. These results indicate that μsPEF ablation affects liver tissue and is less effective in vessels, which enable μsPEFs to ablate central tumour lesions close to the hilus hepatis and near large vessels and bile ducts, removing some of the limitations and contraindications of conventional thermal ablation.

  8. Electric Ablation with Irreversible Electroporation (IRE) in Vital Hepatic Structures and Follow-up Investigation

    PubMed Central

    Chen, Xinhua; Ren, Zhigang; Zhu, Tongyin; Zhang, Xiongxin; Peng, Zhiyi; Xie, Haiyang; Zhou, Lin; Yin, Shengyong; Sun, Junhui; Zheng, Shusen

    2015-01-01

    Irreversible electroporation (IRE) with microsecond-pulsed electric fields (μsPEFs) can effectively ablate hepatocellular carcinomas in animal models. This preclinical study evaluates the feasibility and safety of IRE on porcine livers. Altogether, 10 pigs were included. Computed tomography (CT) was used to guide two-needle electrodes that were inserted near the hilus hepatis and gall bladder. Animals were followed-up at 2 hours and at 2, 7 and 14 days post-treatment. During and after μsPEF ablation, electrocardiographs found no cardiovascular events, and contrast CT found no portal vein thrombosis. There was necrosis in the ablation zone. Mild cystic oedema around the gall bladder was found 2 hours post-treatment. Pathological studies showed extensive cell death. There was no large vessel damage, but there was mild endothelial damage in some small vessels. Follow-up liver function tests and routine blood tests showed immediate liver function damage and recovery from the damage, which correlated to the pathological changes. These results indicate that μsPEF ablation affects liver tissue and is less effective in vessels, which enable μsPEFs to ablate central tumour lesions close to the hilus hepatis and near large vessels and bile ducts, removing some of the limitations and contraindications of conventional thermal ablation. PMID:26549662

  9. Dusty Starbursts within a z=3 Large Scale Structure revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Umehata, Hideki

    The role of the large-scale structure is one of the most important theme in studying galaxy formation and evolution. However, it has been still mystery especially at z>2. On the basis of our ALMA 1.1 mm observations in a z ~ 3 protocluster field, it is suggested that submillimeter galaxies (SMGs) preferentially reside in the densest environment at z ~ 3. Furthermore we find a rich cluster of AGN-host SMGs at the core of the protocluster, combining with Chandra X-ray data. Our results indicate the vigorous star-formation and accelerated super massive black hole (SMBH) growth in the node of the cosmic web.

  10. Femtosecond laser ablation of bovine cortical bone

    NASA Astrophysics Data System (ADS)

    Cangueiro, Liliana T.; Vilar, Rui; Botelho do Rego, Ana M.; Muralha, Vania S. F.

    2012-12-01

    We study the surface topographical, structural, and compositional modifications induced in bovine cortical bone by femtosecond laser ablation. The tests are performed in air, with a Yb:KYW chirped-pulse-regenerative amplification laser system (500 fs, 1030 nm) at fluences ranging from 0.55 to 2.24 J/cm2. The ablation process is monitored by acoustic emission measurements. The topography of the laser-treated surfaces is studied by scanning electron microscopy, and their constitution is characterized by glancing incidence x-ray diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and micro-Raman spectroscopy. The results show that femtosecond laser ablation allows removing bone without melting, carbonization, or cracking. The structure and composition of the remaining tissue are essentially preserved, the only constitutional changes observed being a reduction of the organic material content and a partial recrystallization of hydroxyapatite in the most superficial region of samples. The results suggest that, within this fluence range, ablation occurs by a combination of thermal and electrostatic mechanisms, with the first type of mechanism predominating at lower fluences. The associated thermal effects explain the constitutional changes observed. We show that femtosecond lasers are a promising tool for delicate orthopaedic surgeries, where small amounts of bone must be cut with negligible damage, thus minimizing surgical trauma.

  11. Laser Imprint Suppression for Spike Pulseshapes using a Thin High-Z Overcoat

    NASA Astrophysics Data System (ADS)

    Karasik, Max; Aglitskiy, Y.; Oh, J.; Weaver, J. L.; Bates, J. W.; Serlin, V.; Obenschain, S. P.

    2013-10-01

    In directly driven ICF, most of the laser imprint is expected to occur during the initial part of the laser pulse, which generates the first shocks necessary to compress the target to achieve high gain. Previous experiments where the laser pulse had a low intensity foot to generate the first shock found that a thin (< 1000 Å) high-Z overcoat is effective in suppressing imprint [PoP 9, 2234 (2002)]. The overcoat initially absorbs the laser and emits soft x-rays that ablate the target, allowing a large stand-off distance between laser absorption and ablation and giving higher ablation velocity. The coating is thin so that it becomes transparent to the main part of the pulse, minimizing x-ray preheat. The present experiments aim to extend this method to spike pulseshapes used in current target designs, with a view to direct drive on the NIF. Measurements of RT-amplified areal mass non-uniformity on planar targets driven by ISI-smoothed Nike KrF laser are made by curved crystal x-ray radiography. X-ray flux from the high-Z layer is monitored using absolutely calibrated time-resolved x-ray spectrometers. Simultaneous side-on radiography allows observation of the layer dynamics as well as target trajectory. The effect on imprint as well as pre-imposed ripple growth will be presented. Work supported by DOE/NNSA.

  12. Left Atrial Anatomy Relevant to Catheter Ablation

    PubMed Central

    Sánchez-Quintana, Damián; Cabrera, José Angel; Saremi, Farhood

    2014-01-01

    The rapid development of interventional procedures for the treatment of arrhythmias in humans, especially the use of catheter ablation techniques, has renewed interest in cardiac anatomy. Although the substrates of atrial fibrillation (AF), its initiation and maintenance, remain to be fully elucidated, catheter ablation in the left atrium (LA) has become a common therapeutic option for patients with this arrhythmia. Using ablation catheters, various isolation lines and focal targets are created, the majority of which are based on gross anatomical, electroanatomical, and myoarchitectual patterns of the left atrial wall. Our aim was therefore to review the gross morphological and architectural features of the LA and their relations to extracardiac structures. The latter have also become relevant because extracardiac complications of AF ablation can occur, due to injuries to the phrenic and vagal plexus nerves, adjacent coronary arteries, or the esophageal wall causing devastating consequences. PMID:25057427

  13. Effect of nonparallel placement of in-circle bipolar radiofrequency ablation probes on volume of tissue ablated with heat sink.

    PubMed

    Pillai, Krishna; Al-Alem, Ihssan; Akhter, Javed; Chua, Terence C; Shehata, Mena; Morris, David L

    2015-06-01

    Percutaneous bipolar radiofrequency ablation (RFA) is a minimally invasive technique for treating liver tumors. It is not always possible to insert the bipolar probes parallel to each other on either side of tumor, since it restricts maneuverability away from vital structures or ablate certain tumor shape. Therefore, we investigated how nonparallel placement of probes affected ablation. Bipolar RFA in parallel and in divergent positions were submerged in tissue model (800 mL egg white) at 37°C and ablated. Temperature probes, T1 and T2 were placed 8.00 mm below the tip of the probes, T3 in between the probe coil elements and T4 and T5 at water inlet and outlet, respectively. Both models with heat sink (+HS) and without (-HS) were investigated. The mean ablated tissue volume, mass, density and height increased linearly with unit angle increase for -HS model. With +HS, a smaller increase in mean volume and mass, a slightly greater increase in mean density but a reduction in height of tissue was seen. The mean ablation time and duration of maximum temperature with +HS was slightly larger, compared with -HS, while -HS ablated at a slightly higher temperature. The heat sink present was minimal for probes in parallel position compared to nonparallel positions. Divergence from parallel insertion of bipolar RFA probes increased the mean volume, mass, and density of tissue ablated. However, the presence of large heat sinks may limit the application of this technique, when tumors border on larger vessels. © The Author(s) 2014.

  14. Treatment Planning and Image Guidance for Radiofrequency Ablations of Large Tumors

    PubMed Central

    Ren, Hongliang; Campos-Nanez, Enrique; Yaniv, Ziv; Banovac, Filip; Abeledo, Hernan; Hata, Nobuhiko; Cleary, Kevin

    2014-01-01

    This article addresses the two key challenges in computer-assisted percutaneous tumor ablation: planning multiple overlapping ablations for large tumors while avoiding critical structures, and executing the prescribed plan. Towards semi-automatic treatment planning for image-guided surgical interventions, we develop a systematic approach to the needle-based ablation placement task, ranging from pre-operative planning algorithms to an intra-operative execution platform. The planning system incorporates clinical constraints on ablations and trajectories using a multiple objective optimization formulation, which consists of optimal path selection and ablation coverage optimization based on integer programming. The system implementation is presented and validated in phantom studies and on an animal model. The presented system can potentially be further extended for other ablation techniques such as cryotherapy. PMID:24235279

  15. Drop formation, pinch-off dynamics and liquid transfer of simple and complex fluids

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Sharma, Vivek

    Liquid transfer and drop formation processes underlying jetting, spraying, coating, and printing - inkjet, screen, roller-coating, gravure, nanoimprint hot embossing, 3D - often involve formation of unstable columnar necks. Capillary-driven thinning of such necks and their pinchoff dynamics are determined by a complex interplay of inertial, viscous and capillary stresses for simple, Newtonian fluids. Micro-structural changes in response to extensional flow field that arises within the thinning neck give rise to additional viscoelastic stresses in complex, non- Newtonian fluids. Using FLOW-3D, we simulate flows realized in prototypical geometries (dripping and liquid bridge stretched between two parallel plates) used for studying pinch-off dynamics and influence of microstructure and viscoelasticity. In contrast with often-used 1D or 2D models, FLOW-3D allows a robust evaluation of the magnitude of the underlying stresses and extensional flow field (both uniformity and magnitude). We find that the simulated radius evolution profiles match the pinch-off dynamics that are experimentally-observed and theoretically-predicted for model Newtonian fluids and complex fluids.

  16. Picosecond laser ablation of polyamide electrospun nanofibers

    NASA Astrophysics Data System (ADS)

    Götze, Marco; Krimig, Olaf; Kürbitz, Tobias; Henning, Sven; Heilmann, Andreas; Hillrichs, Georg

    2017-02-01

    Electrospun nanofibers mats have a great potential in tissue engineering and regenerative medicine. Their high porosity and enormous volume to surface ratio stimulate the growth and adhesion of mammalian cells and serve as a stable support structure. These suitable properties can be further optimized by structuring of the nanofibers. Ultrashort pulsed lasers can be used for modifying of the electrospun nanofibers without significant heat exposure. It seems also possible to generate very fine cuts from the fiber mats. In this study, polyamide electrospun nanofibers samples were processed with picosecond UV-laser irradiation (λ = 355 nm, τ = 15 ps). The samples were processed in dry, wet and immersed condition. To optimize cutting and structuring of nanofiber tissue flakes, the influence of different laser parameters on line widths, edge quality, heat-affected zone (HAZ) and the contamination of the fibers by ablated particles (debris) were examined. One additional aim was the minimization of the flake size. It was possible to generate nanofiber flakes in the sub-millimeter range. The quality of the nanofiber flakes could be improved by ablation near the ablation threshold of the material. For cutting under wet conditions shrinking of the flakes has to be taken into account.

  17. Use of bipolar radiofrequency catheter ablation in treatment of cardiac arrhythmias.

    PubMed

    Soucek, Filip; Starek, Zdenek

    2018-05-23

    Background Arrhythmia management is a complex process involving both pharmacological and non-pharmacological approaches. Radiofrequency ablation is the pillar of non-pharmacological arrhythmia treatment. Unipolar ablation is considered to be the gold standard in the treatment of the majority of arrhythmias; however, its efficacy is limited to specific cases. In particular, the creation of deep or transmural lesions to eliminate intramurally originating arrhythmias remains inadequate. Bipolar ablation is proposed as an alternative to overcome unipolar ablation boundaries. Results Despite promising results gained from in vitro and animal studies showing that bipolar ablation is superior in creating transmural lesions, the use of bipolar ablation in daily clinical practice is limited. Several studies have been published showing that bipolar ablation is effective in the treatment of clinical arrhythmias after failed unipolar ablation, however there is inconsistency regarding safety of bipolar ablation within the available research papers. According to research evidence the most common indications for bipolar ablation use are ventricular originating rhythmic disorders in patients with structural heart disease resistant to standard radiofrequency ablation. Conclusions To allow wider clinical application the efficiency and safety of bipolar ablation need to be verified in future studies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Structure and properties of nanoparticles fabricated by laser ablation of Zn metal targets in water and ethanol

    NASA Astrophysics Data System (ADS)

    Svetlichnyi, V. A.; Lapin, I. N.

    2013-10-01

    Size characteristics, structure, and spectral and luminescent properties of nanoparticles fabricated by laser ablation of zinc metal targets in water and ethanol are experimentally investigated upon excitation by Nd:YAG-laser radiation (1064 nm, 7 ns, and 15 Hz). It is demonstrated that zinc oxide nanoparticles with average sizes of 10 nm (in water) and 16 nm (in ethanol) are formed in the initial stage as a result of ablation. The kinetics of the absorption and luminescence spectra, transmission electron microscopy, and x-ray structural analysis demonstrate that during long storage of water dispersions and their drying, nanoparticles efficiently interact with carbon dioxide gas of air that leads to the formation of water-soluble Zn(CO3)2(OH)6. In ethanol, Zn oxidation leads to the formation of stable dispersions of ZnO nanoparticles with 99% of the wurtzite phase; in this case, the fluorescence spectra of ZnO nanoparticles change with time, shifting toward longer wavelength region from 550 to 620 nm, which is caused by the changed nature of defects.

  19. The Pinch Pot Technique and Raku.

    ERIC Educational Resources Information Center

    Demery, Marie

    Since the 16th century, the small Japanese raku tea bowl has reflected the merged cultural influences of art, religion, and other countries on the art of Japanese pottery. Artistically, the bowl is a combination of ceramics (pinching) and sculpture (carving). The dictates of the Zen Buddhist tea masters determine its sculptural process and steps,…

  20. Optical, structural and nonlinear optical properties of laser ablation synthesized Ag nanoparticles and photopolymer nanocomposites based on them

    NASA Astrophysics Data System (ADS)

    Zulina, Natalia A.; Pavlovetc, Ilia M.; Baranov, Mikhail A.; Denisyuk, Igor Yu.

    2017-03-01

    In this work Ag nanoparticles (NPs) stable colloid solution were prepared by laser ablation of chemically pure silver rod in liquid monomer isodecyl acrylate (IDA). Sizes of obtained nanoparticles were determined by scanning electron microscope and vary from 27 to 120 nm. Nanocomposites films were prepared from obtained stable colloid solution of AgNPs by photocuring. For aliphatic polymer IDA long molecules cross-linking Diurethane dimethacrylate, 1,6-Hexandiol diacrylate and Tetra (ethylene glycol) diacrylate were used. Prepared nanomaterials exhibit strong third-order nonlinear optical responses, which was estimated by using z-scan technique. The third-order nonlinear optical coefficients of the studied nanocomposites were found to be up to Reχ(3)=1.31×10-5 (esu) and Imχ(3)=7.64×10-5 (esu).

  1. Efficiency of planetesimal ablation in giant planetary envelopes

    NASA Astrophysics Data System (ADS)

    Pinhas, Arazi; Madhusudhan, Nikku; Clarke, Cathie

    2016-12-01

    Observations of exoplanetary spectra are leading to unprecedented constraints on their atmospheric elemental abundances, particularly O/H, C/H, and C/O ratios. Recent studies suggest that elemental ratios could provide important constraints on formation and migration mechanisms of giant exoplanets. A fundamental assumption in such studies is that the chemical composition of the planetary envelope represents the sum-total of compositions of the accreted gas and solids during the formation history of the planet. We investigate the efficiency with which accreted planetesimals ablate in a giant planetary envelope thereby contributing to its composition rather than sinking to the core. From considerations of aerodynamic drag causing `frictional ablation' and the envelope temperature structure causing `thermal ablation', we compute mass ablations for impacting planetesimals of radii 30 m to 1 km for different compositions (ice to iron) and a wide range of velocities and impact angles, assuming spherical symmetry. Icy impactors are fully ablated in the outer envelope for a wide range of parameters. Even for Fe impactors substantial ablation occurs in the envelope for a wide range of sizes and velocities. For example, iron impactors of sizes below ˜0.5 km and velocities above ˜30 km s-1 are found to ablate by ˜60-80 per cent within the outer envelope at pressures below 103 bar due to frictional ablation alone. For deeper pressures (˜107 bar), substantial ablation happens over a wider range of parameters. Therefore, our exploratory study suggests that atmospheric abundances of volatile elements in giant planets reflect their accretion history during formation.

  2. Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes.

    PubMed

    Laeseke, Paul F; Lee, Fred T; Sampson, Lisa A; van der Weide, Daniel W; Brace, Christopher L

    2009-09-01

    To determine whether microwave ablation with high-power triaxial antennas creates significantly larger ablation zones than radiofrequency (RF) ablation with similarly sized internally cooled electrodes. Twenty-eight 12-minute ablations were performed in an in vivo porcine kidney model. RF ablations were performed with a 200-W pulsed generator and either a single 17-gauge cooled electrode (n = 9) or three switched electrodes spaced 1.5 cm apart (n = 7). Microwave ablations were performed with one (n = 7), two (n = 3), or three (n = 2) 17-gauge triaxial antennas to deliver 90 W continuous power per antenna. Multiple antennas were powered simultaneously. Temperatures 1 cm from the applicator were measured during two RF and microwave ablations each. Animals were euthanized after ablation and ablation zone diameter, cross-sectional area, and circularity were measured. Comparisons between groups were performed with use of a mixed-effects model with P values less than .05 indicating statistical significance. No adverse events occurred during the procedures. Three-electrode RF (mean area, 14.7 cm(2)) and single-antenna microwave (mean area, 10.9 cm(2)) ablation zones were significantly larger than single-electrode RF zones (mean area, 5.6 cm(2); P = .001 and P = .0355, respectively). No significant differences were detected between single-antenna microwave and multiple-electrode RF. Ablation zone circularity was similar across groups (P > .05). Tissue temperatures were higher during microwave ablation (maximum temperature of 123 degrees C vs 100 degrees C for RF). Microwave ablation with high-power triaxial antennas created larger ablation zones in normal porcine kidneys than RF ablation with similarly sized applicators.

  3. Ablation of aluminum nitride films by nanosecond and femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly; Tzou, Robert; Salakhutdinov, Ildar; Danylyuk, Yuriy; McCullen, Erik; Auner, Gregory

    2009-02-01

    We present results of comparative study of laser-induced ablation of AlN films with variable content of oxygen as a surface-doping element. The films deposited on sapphire substrate were ablated by a single nanosecond pulse at wavelength 248 nm, and by a single femtosecond pulse at wavelength 775 nm in air at normal pressure. Ablation craters were inspected by AFM and Nomarski high-resolution microscope. Irradiation by nanosecond pulses leads to a significant removal of material accompanied by extensive thermal effects, chemical modification of the films around the ablation craters and formation of specific defect structures next to the craters. Remarkable feature of the nanosecond experiments was total absence of thermo-mechanical fracturing near the edges of ablation craters. The femtosecond pulses produced very gentle ablation removing sub-micrometer layers of the films. No remarkable signs of thermal, thermo-mechanical or chemical effects were found on the films after the femtosecond ablation. We discuss mechanisms responsible for the specific ablation effects and morphology of the ablation craters.

  4. Ablation mass features in multi-pulses femtosecond laser ablate molybdenum target

    NASA Astrophysics Data System (ADS)

    Zhao, Dongye; Gierse, Niels; Wegner, Julian; Pretzler, Georg; Oelmann, Jannis; Brezinsek, Sebastijan; Liang, Yunfeng; Neubauer, Olaf; Rasinski, Marcin; Linsmeier, Christian; Ding, Hongbin

    2018-03-01

    In this study, the ablation mass features related to reflectivity of bulk Molybdenum (Mo) were investigated by a Ti: Sa 6 fs laser pulse at central wavelength 790 nm. The ablated mass removal was determined using Confocal Microscopy (CM) technique. The surface reflectivity was calibrated and measured by a Lambda 950 spectrophotometer as well as a CCD camera during laser ablation. The ablation mass loss per pulse increase with the increasing of laser shots, meanwhile the surface reflectivity decrease. The multi-pulses (100 shots) ablation threshold of Mo was determined to be 0.15 J/cm2. The incubation coefficient was estimated as 0.835. The reflectivity change of the Mo target surface following multi-pulses laser ablation were studied as a function of laser ablation shots at various laser fluences from 1.07 J/cm2 to 36.23 J/cm2. The results of measured reflectivity indicate that surface reflectivity of Mo target has a significant decline in the first 3-laser pulses at the various fluences. These results are important for developing a quantitative analysis model for laser induced ablation and laser induced breakdown spectroscopy for the first wall diagnosis of EAST tokamak.

  5. Low pressure laser ablation coupled to inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Fliegel, Daniel; Günther, Detlef

    2006-07-01

    The particle size distribution in laser ablation inductively coupled plasma mass spectrometry is known to be a critical parameter for complete vaporization of particles. Any strategy to reduce the particle size distribution of laser generated aerosols has the potential to increase the ion signal intensity and to reduce fractionation effects. Due to the fact that vapor generation, nucleation, condensation, and agglomeration take place within an extremely short period of time, ablation under atmospheric pressure might not allow influencing these processes while under reduced pressure condition the cooling of the aerosol and therefore the condensation is expected to be slower. In this study, a low pressure laser ablation cell for the generation of laser aerosols was coupled to an ICP-MS. In contrast to the previously developed trapped ablation mode, the newly designed cell allows the adjustment of the pressure in the ablation cell between 20 and 1400 mbar prior to the ablation. Ablation experiments carried out using this configuration showed a dependence of the aerosol properties (size distribution and particle structure) on the ablation cell pressure. The intensity ratio U/Th measured as a figure of merit for complete vaporization within the ICP indicated a change in the aerosol structure at approximately 500 mbar toward smaller particle size. A significant difference between low pressure and at ambient pressure ablated aerosol was observed. The intensity ratios (U/Th) of the ablated sample moves closer to the bulk composition at lower pressures at the expense of sensitivity. Therefore the decrease in the ICP-MS signal intensity in the low pressure cell can be attributed to vapor deposition within the ablation cell walls. Moreover, scanning electron microscope images of aerosols collected on filters after the low pressure ablation cell suggest the possibility of a slower cooling velocity of the aerosol, which was observed in the condensed material on the surface of

  6. Structuring by field enhancement of glass, Ag, Au, and Co thin films using short pulse laser ablation

    NASA Astrophysics Data System (ADS)

    Ulmeanu, M.; Zamfirescu, M.; Rusen, L.; Luculescu, C.; Moldovan, A.; Stratan, A.; Dabu, R.

    2009-12-01

    Single pulse laser ablation of glass, Ag, Au, and Co thin films was experimentally investigated with a laser pulse width of 400 ps at a wavelength of 532 nm both in the far and near fields. In the far-field regime, the electromagnetic field results from a focused laser beam, while the near-field regime is realized by a combination of the focused laser beam incident on a spherical colloidal particle. For the near-field experiments we have used polystyrene colloidal particles of 700 nm diameter self-assembled or spin coated on top of the surfaces. Laser fluences applied are in the range of 0.01-10 J/cm2. The diameter and the morphologies of the ablated holes were investigated by optical microscopy, profilometry, scanning electron microscopy, and atomic force microscopy. The dependence of the shape of the holes reflects the fluence regime and the thermophysical properties, i.e., melting temperature and thermal diffusivity of the surfaces involved in the experiments. We give quantitative data about the fluence threshold, diameter, and depth ablation dependence for the far and near fields and discuss their values with respect to the enhancement factor of the intensity of the electromagnetic field due to the use of the colloidal particles. Theoretical estimations of the intensity enhancement were done using the finite-difference time-domain method by using the RSOFT software. The application of near fields allows structuring of the surfaces with structure dimension in the order of 100 nm and even below.

  7. Theory of formation of helical structures in a perfectly conducting, premagnetized Z-pinch liner

    NASA Astrophysics Data System (ADS)

    Yu, Edmund; Velikovich, Alexander; Peterson, Kyle

    2014-10-01

    The magnetized liner inertial fusion (MagLIF) concept uses an azimuthal magnetic field to collapse a thick metallic liner containing preheated fusion fuel. A critical component of the concept is an axial magnetic field, permeating both the fuel and surrounding liner, which reduces the compression necessary to achieve fusion conditions. Recent experiments demonstrate that a liner premagnetized with a 10 T axial field develops helical structures with a pitch significantly larger than an estimate of Bz /Bθ would suggest. The cause of the helical perturbations is still not understood. In this work, we present an analytic, linear theory in which we model the liner as a perfectly conducting metal, and study how bumps and divots on its surface redirect current flow, resulting in perturbations to B as well as j × B . We show that in the presence of axial and azimuthal magnetic field, the theory predicts divots will grow and deform at an angle determined by the magnetic field. We compare theoretical results with three dimensional, resistive MHD simulations. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under DE-AC04-94AL85000.

  8. Relationship between grip, pinch strengths and anthropometric variables, types of pitch throwing among Japanese high school baseball pitchers.

    PubMed

    Tajika, Tsuyoshi; Kobayashi, Tsutomu; Yamamoto, Atsushi; Shitara, Hitoshi; Ichinose, Tsuyoshi; Shimoyama, Daisuke; Okura, Chisa; Kanazawa, Saeko; Nagai, Ayako; Takagishi, Kenji

    2015-03-01

    Grip and pinch strength are crucially important attributes and standard parameters related to the functional integrity of the hand. It seems significant to investigate normative data for grip and pinch strength of baseball players to evaluate their performance and condition. Nevertheless, few reports have explained the association between grip and pinch strength and anthropometric variables and types of pitch throwing for baseball pitchers. The aim of this study was to measure and evaluate clinical normative data for grip and tip, key, palmar pinch strength and to assess the relationship between these data and anthropometric variables and types of pitch throwing among Japanese high-school baseball pitchers. One hundred-thirty three healthy high school baseball pitchers were examined and had completed a self-administered questionnaire including items related to age, hand dominance, throwing ratio of type of pitch. A digital dynamometer was used to measure grip strength and a pinch gauge to measure tip, key and palmer pinch in both dominant and nondominant side. Body composition was measured by the multi frequency segmental body composition analyzer. Grip strength and tip and palmer pinch strength in dominant side were statistically greater than them in nondominant side (P < 0.05). There were significant associations between grip strength and height (r = 0.33, P < 0.001), body mass (r = 0.50, P < 0.001), BMI (r = 0.37, P < 0.001), muscle mass of upper extremity (r = 0.56, P < 0.001), fat free mass (r = 0.57, P < 0.001), fat mass (r = 0.22, P < 0.05) in dominant side. A stepwise multiple regression analysis revealed that fat free mass and tip, palmer, key pinch strength were predictors of grip strength in dominant side. No statistical significant correlations were found between the throwing ratio of types of pitches thrown and grip strength and tip, key, palmar pinch strength. Our result provides normative values and evidences for grip and pinch strengths in high

  9. Recent Structural Evolution of Early-Type Galaxies: Size Growth from z = 1 to z = 0

    NASA Astrophysics Data System (ADS)

    van der Wel, Arjen; Holden, Bradford P.; Zirm, Andrew W.; Franx, Marijn; Rettura, Alessandro; Illingworth, Garth D.; Ford, Holland C.

    2008-11-01

    Strong size and internal density evolution of early-type galaxies between z ~ 2 and the present has been reported by several authors. Here we analyze samples of nearby and distant (z ~ 1) galaxies with dynamically measured masses in order to confirm the previous, model-dependent results and constrain the uncertainties that may play a role. Velocity dispersion (σ) measurements are taken from the literature for 50 morphologically selected 0.8 < z < 1.2 field and cluster early-type galaxies with typical masses Mdyn = 2 × 1011 M⊙. Sizes (Reff) are determined with Advanced Camera for Surveys imaging. We compare the distant sample with a large sample of nearby (0.04 < z < 0.08) early-type galaxies extracted from the Sloan Digital Sky Survey for which we determine sizes, masses, and densities in a consistent manner, using simulations to quantify systematic differences between the size measurements of nearby and distant galaxies. We find a highly significant difference between the σ - Reff distributions of the nearby and distant samples, regardless of sample selection effects. The implied evolution in Reff at fixed mass between z = 1 and the present is a factor of 1.97 +/- 0.15. This is in qualitative agreement with semianalytic models; however, the observed evolution is much faster than the predicted evolution. Our results reinforce and are quantitatively consistent with previous, photometric studies that found size evolution of up to a factor of 5 since z ~ 2. A combination of structural evolution of individual galaxies through the accretion of companions and the continuous formation of early-type galaxies through increasingly gas-poor mergers is one plausible explanation of the observations. Based on observations with the Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555, and observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory

  10. Efficacy and safety of Hybrid-APC for the ablation of Barrett's esophagus.

    PubMed

    Manner, Hendrik; May, Andrea; Kouti, Ioanna; Pech, Oliver; Vieth, Michael; Ell, Christian

    2016-04-01

    After thermal ablation of Barrett's esophagus (BE), stricture formation is reported in 5 to over 10% of patients. The question arises whether submucosal fluid injection prior to ablation may lower the risk of stricture formation. The aim of the present study was to evaluate the efficacy and safety of the new technique of Hybrid-APC which combines submucosal injection with APC. Patients who had a residual BE segment of at least 1 cm after endoscopic resection of early Barrett's neoplasia underwent thermal ablation of BE by Hybrid-APC. Prior to thermal ablation, submucosal injection of sodium chloride 0.9% was carried out using a flexible water-jet probe (Erbejet 2; Erbe Elektromedizin, Tuebingen, Germany). Check-up upper GI endoscopy was carried out 3 months after macroscopically complete ablation including biopsies from the neo-Z-line and the former BE segment, and recording of stricture formation. From May 2011 to November 2012, a total of 60 patients (pt) were included in the study [55 pt male (92%); mean age 62 ± 9 years, range 42-79]. Ten patients were excluded from the study. In the remaining 50 pt, Hybrid-APC ablation and check-up endoscopy at 3 months were carried out. Forty-eight out of 50 pt (96%; ITT: 49/60, 82%) achieved macroscopically complete remission after a median of 3.5 APC sessions [SD 2.4; range 1-10]. Freedom from BE was histopathologically observed in 39/50 patients (78%). There was one treatment-related stricture (2%). Minor adverse events of Hybrid-APC were observed in 11 patients (22%). According to this pilot series, Hybrid-APC was effective and safe for BE ablation in a tertiary referral center. The rate of stricture formation was only 2%. Further studies are required to confirm the present results. DRKS00003369.

  11. Global ablation techniques.

    PubMed

    Woods, Sarah; Taylor, Betsy

    2013-12-01

    Global endometrial ablation techniques are a relatively new surgical technology for the treatment of heavy menstrual bleeding that can now be used even in an outpatient clinic setting. A comparison of global ablation versus earlier ablation technologies notes no significant differences in success rates and some improvement in patient satisfaction. The advantages of the newer global endometrial ablation systems include less operative time, improved recovery time, and decreased anesthetic risk. Ablation procedures performed in an outpatient surgical or clinic setting provide advantages both of potential cost savings for patients and the health care system and improved patient convenience. Copyright © 2013. Published by Elsevier Inc.

  12. Toroidal momentum pinch velocity due to the coriolis drift effect on small scale instabilities in a toroidal plasma.

    PubMed

    Peeters, A G; Angioni, C; Strintzi, D

    2007-06-29

    In this Letter, the influence of the "Coriolis drift" on small scale instabilities in toroidal plasmas is shown to generate a toroidal momentum pinch velocity. Such a pinch results because the Coriolis drift generates a coupling between the density and temperature perturbations on the one hand and the perturbed parallel flow velocity on the other. A simple fluid model is used to highlight the physics mechanism and gyro-kinetic calculations are performed to accurately assess the magnitude of the pinch. The derived pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torque on the plasma and is predicted to generate a peaking of the toroidal velocity profile similar to the peaking of the density profile. Finally, the pinch also affects the interpretation of current experiments.

  13. Analyses in Support of Z-IFE: LLNL Progress Report for FY-04

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, W; Abbott, R; Latkowski, J

    2004-10-06

    During the last quarter of FY2004, Lawrence Livermore National Laboratory (LLNL) conducted a brief study of power plant options for a z-pinch-based inertial fusion energy (Z-IFE) power plant. Areas that were covered include chamber design, thick-liquid response, neutronics and activation, and systems studies. This report summarizes the progress made in each of these areas, provides recommendations for improvements to the basic design concept, and identifies future work that is needed. As a starting point to the LLNL studies, we have taken information provided in several publications and presentations. In particular, many of the basic parameters were taken from the ZP-3more » study, which is described in reference 4. The ZP-3 design called for 12 separate target chambers, with any 10 of them operating at a given time. Each chamber would be pulsed at a repetition rate of 0.1 Hz with a target yield of 3 GJ. Thus, each chamber would have a fusion power of 300 MW for a power plant total of 3000 MW. The ZP-3 study considered several options for the recyclable transmission lines (RTL). Early in the study, the LLNL group questioned the use of many chambers as well as the yield limitation of 3 GJ. The feeling was that a large number of chambers would invariably lead to a considerably higher system cost than for a system with fewer chambers. Naturally, this trend would be somewhat offset by the increased availability that might be possible with many chambers. Reference 4 points out that target yields as high as 20 GJ would be possible with currently available manufacturing technology. The LLNL team considered yields ranging from 3 to 20 GJ. Our findings indicate that higher yields, which lead one to fewer chambers, make the most sense from an economic point of view. Systems modeling, including relative economics, is covered in Section 2. Regardless of the number of chambers of the fusion yield per target, a Z-IFE power plant would make use of a thick-liquid wall protection

  14. The integrin effector PINCH regulates JNK activity and epithelial migration in concert with Ras suppressor 1

    PubMed Central

    Kadrmas, Julie L.; Smith, Mark A.; Clark, Kathleen A.; Pronovost, Stephen M.; Muster, Nemone; Yates, John R.; Beckerle, Mary C.

    2004-01-01

    Cell adhesion and migration are dynamic processes requiring the coordinated action of multiple signaling pathways, but the mechanisms underlying signal integration have remained elusive. Drosophila embryonic dorsal closure (DC) requires both integrin function and c-Jun amino-terminal kinase (JNK) signaling for opposed epithelial sheets to migrate, meet, and suture. Here, we show that PINCH, a protein required for integrin-dependent cell adhesion and actin–membrane anchorage, is present at the leading edge of these migrating epithelia and is required for DC. By analysis of native protein complexes, we identify RSU-1, a regulator of Ras signaling in mammalian cells, as a novel PINCH binding partner that contributes to PINCH stability. Mutation of the gene encoding RSU-1 results in wing blistering in Drosophila, demonstrating its role in integrin-dependent cell adhesion. Genetic interaction analyses reveal that both PINCH and RSU-1 antagonize JNK signaling during DC. Our results suggest that PINCH and RSU-1 contribute to the integration of JNK and integrin functions during Drosophila development. PMID:15596544

  15. Nd:YAG laser ablation and acid resistance of enamel.

    PubMed

    Kwon, Yong Hoon; Kwon, Oh-Won; Kim, Hyung-Il; Kim, Kyo-Han

    2003-09-01

    The acid resistance of Nd:YAG laser-ablated enamel surfaces was studied by evaluating crystal structure, mineral distribution, and fluorescence radiance and image in the present study. For comparison, 37% phosphoric acid etching was performed. The formation of beta-tricalcium phosphate (beta-TCP) was confirmed in the laser-ablated surface. The Ca/P ratio increased after ablation due to mineral re-distribution. In contrast, the Ca/P ratio decreased after acid etching due to mineral loss. The laser-ablated enamels showed a smaller increase of fluorescence radiances and less clear laser confocal scanning microscope images than those observed in the acid-etched enamels. The former suggests a minimized mineral loss. The Nd:YAG laser irradiation will enhance the acid resistance and retard the carious progression in enamel.

  16. Modelling ultrafast laser ablation

    NASA Astrophysics Data System (ADS)

    Rethfeld, Baerbel; Ivanov, Dmitriy S.; E Garcia, Martin; Anisimov, Sergei I.

    2017-05-01

    This review is devoted to the study of ultrafast laser ablation of solids and liquids. The ablation of condensed matter under exposure to subpicosecond laser pulses has a number of peculiar properties which distinguish this process from ablation induced by nanosecond and longer laser pulses. The process of ultrafast ablation includes light absorption by electrons in the skin layer, energy transfer from the skin layer to target interior by nonlinear electronic heat conduction, relaxation of the electron and ion temperatures, ultrafast melting, hydrodynamic expansion of heated matter accompanied by the formation of metastable states and subsequent formation of breaks in condensed matter. In case of ultrashort laser excitation, these processes are temporally separated and can thus be studied separately. As for energy absorption, we consider peculiarities of the case of metal irradiation in contrast to dielectrics and semiconductors. We discuss the energy dissipation processes of electronic thermal wave and lattice heating. Different types of phase transitions after ultrashort laser pulse irradiation as melting, vaporization or transitions to warm dense matter are discussed. Also nonthermal phase transitions, directly caused by the electronic excitation before considerable lattice heating, are considered. The final material removal occurs from the physical point of view as expansion of heated matter; here we discuss approaches of hydrodynamics, as well as molecular dynamic simulations directly following the atomic movements. Hybrid approaches tracing the dynamics of excited electrons, energy dissipation and structural dynamics in a combined simulation are reviewed as well.

  17. Global microwave endometrial ablation for menorrhagia treatment

    NASA Astrophysics Data System (ADS)

    Fallahi, Hojjatollah; Å ebek, Jan; Frattura, Eric; Schenck, Jessica; Prakash, Punit

    2017-02-01

    Thermal ablation is a dominant therapeutic option for minimally invasive treatment of menorrhagia. Compared to other energy modalities for ablation, microwaves offer the advantages of conformal energy delivery to tissue within short times. The objective of endometrial ablation is to destroy the endometrial lining of the uterine cavity, with the clinical goal of achieving reduction in bleeding. Previous efforts have demonstrated clinical use of microwaves for endometrial ablation. A considerable shortcoming of most systems is that they achieve ablation of the target by translating the applicator in a point-to-point fashion. Consequently, treatment outcome may be highly dependent on physician skill. Global endometrial ablation (GEA) not only eliminates this operator dependence and simplifies the procedure but also facilitates shorter and more reliable treatments. The objective of our study was to investigate antenna structures and microwave energy delivery parameters to achieve GEA. Another objective was to investigate a method for automatic and reliable determination of treatment end-point. A 3D-coupled FEM electromagnetic and heat transfer model with temperature and frequency dependent material properties was implemented to characterize microwave GEA. The unique triangular geometry of the uterus where lateral narrow walls extend from the cervix to the fundus forming a wide base and access afforded through an endocervical approach limit the overall diameter of the final device. We investigated microwave antenna designs in a deployed state inside the uterus. The impact of ablation duration on treatment outcome was investigated. Prototype applicators were fabricated and experimentally evaluated in ex vivo tissue to verify the simulation results and demonstrate proof-of-concept.

  18. Analysis of ablation debris from natural and artificial iron meteorites

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Davis, A. S.

    1977-01-01

    Artificial ablation studies were performed on iron and nickel-iron samples using an arc-heated plasma of ionized air. Experiment conditions simulated a meteoroid traveling about 12 km/sec at an altitude of 70 km. The artificially produced fusion crusts and ablation debris show features very similar to natural fusion crusts of the iron meteorites Boguslavka, Norfork, and N'Kandhla and to magnetic spherules recovered from Mn nodules. X-ray diffraction, electron microprobe, optical, and scanning electron microscope analyses reveal that important mineralogical, elemental, and textural changes occur during ablation. Some metal is melted and ablated. The outer margin of the melted rind is oxidized and recrystallizes as a discontinuous crust of magnetite and wustite. Adjacent to the oxidized metallic ablation zone is an unoxidized metallic ablation zone in which structures such as Widmannstatten bands are obliterated as the metal is transformed to unequilibrated alpha 2 nickel-iron. Volatile elements are vaporized and less volatile elements undergo fractionation.

  19. Robotically assisted ablation produces more rapid and greater signal attenuation than manual ablation.

    PubMed

    Koa-Wing, Michael; Kojodjojo, Pipin; Malcolme-Lawes, Louisa C; Salukhe, Tushar V; Linton, Nick W F; Grogan, Aaron P; Bergman, Dale; Lim, Phang Boon; Whinnett, Zachary I; McCarthy, Karen; Ho, Siew Yen; O'Neill, Mark D; Peters, Nicholas S; Davies, D Wyn; Kanagaratnam, Prapa

    2009-12-01

    Robotic remote catheter ablation potentially provides improved catheter-tip stability, which should improve the efficiency of radiofrequency energy delivery. Percentage reduction in electrogram peak-to-peak voltage has been used as a measure of effectiveness of ablation. We tested the hypothesis that improved catheter-tip stability of robotic ablation can diminish signals to a greater degree than manual ablation. In vivo NavX maps of 7 pig atria were constructed. Separate lines of ablation were performed robotically and manually, recording pre- and postablation peak-to-peak voltages at 10, 20, 30, and 60 seconds and calculating signal amplitude reduction. Catheter ablation settings were constant (25W, 50 degrees , 17 mL/min, 20-30 g catheter tip pressure). The pigs were sacrificed and ablation lesions correlated with NavX maps. Robotic ablation reduced signal amplitude to a greater degree than manual ablation (49 +/- 2.6% vs 29 +/- 4.5% signal reduction after 1 minute [P = 0.0002]). The mean energy delivered (223 +/- 184 J vs 231 +/- 190 J, P = 0.42), power (19 +/- 3.5 W vs 19 +/- 4 W, P = 0.84), and duration of ablation (15 +/- 9 seconds vs 15 +/- 9 seconds, P = 0.89) was the same for manual and robotic. The mean peak catheter-tip temperature was higher for robotic (45 +/- 5 degrees C vs 42 +/- 3 degrees C [P < 0.0001]). The incidence of >50% signal reduction was greater for robotic (37%) than manual (21%) ablation (P = 0.0001). Robotically assisted ablation appears to be more effective than manual ablation at signal amplitude reduction, therefore may be expected to produce improved clinical outcomes.

  20. Analysis of iodinated contrast delivered during thermal ablation: is material trapped in the ablation zone?

    PubMed

    Wu, Po-Hung; Brace, Chris L

    2016-08-21

    Intra-procedural contrast-enhanced CT (CECT) has been proposed to evaluate treatment efficacy of thermal ablation. We hypothesized that contrast material delivered concurrently with thermal ablation may become trapped in the ablation zone, and set out to determine whether such an effect would impact ablation visualization. CECT images were acquired during microwave ablation in normal porcine liver with: (A) normal blood perfusion and no iodinated contrast, (B) normal perfusion and iodinated contrast infusion or (C) no blood perfusion and residual iodinated contrast. Changes in CT attenuation were analyzed from before, during and after ablation to evaluate whether contrast was trapped inside of the ablation zone. Visualization was compared between groups using post-ablation contrast-to-noise ratio (CNR). Attenuation gradients were calculated at the ablation boundary and background to quantitate ablation conspicuity. In Group A, attenuation decreased during ablation due to thermal expansion of tissue water and water vaporization. The ablation zone was difficult to visualize (CNR  =  1.57  ±  0.73, boundary gradient  =  0.7  ±  0.4 HU mm(-1)), leading to ablation diameter underestimation compared to gross pathology. Group B ablations saw attenuation increase, suggesting that iodine was trapped inside the ablation zone. However, because the normally perfused liver increased even more, Group B ablations were more visible than Group A (CNR  =  2.04  ±  0.84, boundary gradient  =  6.3  ±  1.1 HU mm(-1)) and allowed accurate estimation of the ablation zone dimensions compared to gross pathology. Substantial water vaporization led to substantial attenuation changes in Group C, though the ablation zone boundary was not highly visible (boundary gradient  =  3.9  ±  1.1 HU mm(-1)). Our results demonstrate that despite iodinated contrast being trapped in the ablation zone, ablation visibility

  1. [DNA structure from A to Z--biological implications of structural diversity of DNA].

    PubMed

    Bukowiecka-Matusiak, Małgorzata; Woźniak, Lucyna A

    2006-01-01

    Deoxyribonucleic acid (DNA) is a biopolymer of nucleotides, usually adopting a double-stranded helical form in cells, with complementary base pairing holding the two strands together. The most stable is B-DNA conformation, although numerous other double helical structures can occur under specific conditions (A-DNA, Z-DNA, P-DNA). The existence of multiple-stranded (triplex, tetraplex) forms in vivo and their biological function in cells are subject of intensive studies.

  2. The Origin of Clusters and Large-Scale Structures: Panoramic View of the High-z Universe

    NASA Astrophysics Data System (ADS)

    Ouchi, Masami

    We will report results of our on-going survey for proto-clusters and large-scale structures at z=3-6. We carried out very wide and deep optical imaging down to i=27 for a 1 deg^2 field of the Subaru/XMM Deep Field with 8.2m Subaru Telescope. We obtain maps of the Universe traced by ~1,000 Ly-a galaxies at z=3, 4, and 6 and by ~10,000 Lyman break galaxies at z=3-6. These cosmic maps have a transverse dimension of ~150 Mpc x 150 Mpc in comoving units at these redshifts, and provide us, for the first time, a panoramic view of the high-z Universe from the scales of galaxies, clusters to large-scale structures. Major results and implications will be presented in our talk. (Part of this work is subject to press embargo.)

  3. Toroidal Momentum Pinch Velocity due to the Coriolis Drift Effect on Small Scale Instabilities in a Toroidal Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeters, A. G.; Angioni, C.; Strintzi, D.

    In this Letter, the influence of the ''Coriolis drift'' on small scale instabilities in toroidal plasmas is shown to generate a toroidal momentum pinch velocity. Such a pinch results because the Coriolis drift generates a coupling between the density and temperature perturbations on the one hand and the perturbed parallel flow velocity on the other. A simple fluid model is used to highlight the physics mechanism and gyro-kinetic calculations are performed to accurately assess the magnitude of the pinch. The derived pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torquemore » on the plasma and is predicted to generate a peaking of the toroidal velocity profile similar to the peaking of the density profile. Finally, the pinch also affects the interpretation of current experiment000.« less

  4. Formation of a dual-stage pinch-accelerator in a Z-pinch (plasma focus) device

    NASA Astrophysics Data System (ADS)

    Behbahani, R. A.; Hirose, A.; Xiao, C.

    2018-01-01

    A novel dense plasma focus configuration with two separate concentric current sheet run-down regions has been demonstrated to produce several consecutive plasma focusing events. In a proof-of-principle experiment on a low-energy plasma focus device, the measured tube voltages and discharge current have been explained by using circuit analyses of the device. Based on the calculated plasma voltages the occurrence of flash-over phase, axial phase, and compression phase has been discussed. The electrical signals along with the calculated plasma voltages suggest the occurrence of several focusing events in the new structure.

  5. Understanding the links between composition, polyhedral distortion, and luminescence properties in green-emitting β-Si 6–zAl zO zN 8–z:Eu 2+ phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzan, Clayton; Laurita, Geneva; Gaultois, Michael W.

    Inorganic phosphor materials play a crucial role in the creation of white light from blue and near-UV solid-state light-emitting diodes. Understanding the intricacies of the phosphor structure is key for setting the stage for improved, more efficient functionality. Average structure and coordination environment analysis of the robust and efficient green-emitting phosphor, β-SiAlON:Eu 2+ (β-Si 6–zAl zO zN 8–zEu 0.009), is combined here with a range of property measurements to elucidate the role of Al content ( z) in luminescence properties, including the red shift of emission and the thermal quenching of luminescence as a function of increasing Al content z.more » Average structure techniques reveal changes in polyhedral distortion with increasing z for the 9-coordinate Eu site in β-SiAlON:Eu 2+. X-ray absorption near edge structure (XANES) is used to confirm that the majority of the activator Eu is in the Eu 2+ state, exhibiting the symmetry-allowed and efficient 4f 75d 0 → 4f 65d 1 transitions. As a result, room temperature and temperature-dependent luminescence indicate a curious increase in thermal stability with increasing z over a small range due to an increasing barrier for thermal ionization, which is correlated to an increase in the quantum yield of the phosphor.« less

  6. Understanding the links between composition, polyhedral distortion, and luminescence properties in green-emitting β-Si 6–zAl zO zN 8–z:Eu 2+ phosphors

    DOE PAGES

    Cozzan, Clayton; Laurita, Geneva; Gaultois, Michael W.; ...

    2017-09-21

    Inorganic phosphor materials play a crucial role in the creation of white light from blue and near-UV solid-state light-emitting diodes. Understanding the intricacies of the phosphor structure is key for setting the stage for improved, more efficient functionality. Average structure and coordination environment analysis of the robust and efficient green-emitting phosphor, β-SiAlON:Eu 2+ (β-Si 6–zAl zO zN 8–zEu 0.009), is combined here with a range of property measurements to elucidate the role of Al content ( z) in luminescence properties, including the red shift of emission and the thermal quenching of luminescence as a function of increasing Al content z.more » Average structure techniques reveal changes in polyhedral distortion with increasing z for the 9-coordinate Eu site in β-SiAlON:Eu 2+. X-ray absorption near edge structure (XANES) is used to confirm that the majority of the activator Eu is in the Eu 2+ state, exhibiting the symmetry-allowed and efficient 4f 75d 0 → 4f 65d 1 transitions. As a result, room temperature and temperature-dependent luminescence indicate a curious increase in thermal stability with increasing z over a small range due to an increasing barrier for thermal ionization, which is correlated to an increase in the quantum yield of the phosphor.« less

  7. Enhanced direct-drive implosions with thin high-Z ablation layers.

    PubMed

    Mostovych, Andrew N; Colombant, Denis G; Karasik, Max; Knauer, James P; Schmitt, Andrew J; Weaver, James L

    2008-02-22

    New direct-drive spherical implosion experiments with deuterium filled plastic shells have demonstrated significant and absolute (2x) improvements in neutron yield when the shells are coated with a very thin layer ( approximately 200-400 A) of high-Z material such as palladium. This improvement is interpreted as resulting from increased stability of the imploding shell. These results provide for a possible path to control laser imprint and stability in laser-fusion-energy target designs.

  8. Ablation enhancement of silicon by ultrashort double-pulse laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xin; Shin, Yung C.

    In this study, the ultrashort double-pulse ablation of silicon is investigated. An atomistic simulation model is developed to analyze the underlying physics. It is revealed that the double-pulse ablation could significantly increase the ablation rate of silicon, compared with the single pulse ablation with the same total pulse energy, which is totally different from the case of metals. In the long pulse delay range (over 1 ps), the enhancement is caused by the metallic transition of melted silicon with the corresponding absorption efficiency. At ultrashort pulse delay (below 1 ps), the enhancement is due to the electron excitation by the first pulse.more » The enhancement only occurs at low and moderate laser fluence. The ablation is suppressed at high fluence due to the strong plasma shielding effect.« less

  9. Pinch-off syndrome: transection of implantable central venous access device.

    PubMed

    Sugimoto, Takuya; Nagata, Hiroshi; Hayashi, Ken; Kano, Nobuyasu

    2012-11-30

    As the population of people with cancer increases so does the number of patients who take chemotherapy. Majority of them are administered parentally continuously. Implantable central venous catheter device is a good choice for those patients; however, severe complication would occur concerning the devices. Pinch-off syndrome is one of the most severe complications. The authors report a severe case of pinch-off syndrome. The patient with the implantable central venous device could not take chemotherapy because the device occluded. Further examination revealed the transection of the catheter. The transected fragment of the catheter in the heart was successfully removed by using a loop snare placed through the right femoral vein.

  10. Controlled injection using a channel pinch in a plasma-channel-guided laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Liu, Jiaqi; Zhang, Zhijun; Liu, Jiansheng; Li, Wentao; Wang, Wentao; Yu, Changhai; Qi, Rong; Qin, Zhiyong; Fang, Ming; Wu, Ying; Feng, Ke; Ke, Lintong; Wang, Cheng; Li, Ruxin

    2018-06-01

    Plasma-channel-guided laser plasma accelerators make it possible to drive high-brilliance compact radiation sources and have high-energy physics applications. Achieving tunable internal injection of the electron beam (e beam) inside the plasma channel, which realizes a tunable radiation source, is a challenging method to extend such applications. In this paper, we propose the use of a channel pinch, which is designed as an initial reduction followed by an expansion of the channel radius along the plasma channel, to achieve internal controlled off-axis e beam injection in a channel-guided laser plasma accelerator. The off-axis injection is triggered by bubble deformation in the expansion region. The dynamics of the plasma wake is explored, and the trapping threshold is found to be reduced radially in the channel pinch. Simulation results show that the channel pinch not only triggers injection process localized at the pinch but also modulates the parameters of the e beam by adjusting its density profile, which can additionally accommodate a tunable radiation source via betatron oscillation.

  11. Endometrial Ablation

    MedlinePlus

    ... or lighter levels. If ablation does not control heavy bleeding, further treatment or surgery may be needed. ... ablation is used to treat many causes of heavy bleeding. In most cases, women with heavy bleeding ...

  12. Characteristics of plasma-puff trigger for a inverse-pinch plasma switch

    NASA Technical Reports Server (NTRS)

    Choi, Eun H.; Venable, Demetrius D.; Han, Kwang S.; Lee, Ja H.

    1993-01-01

    The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for the azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressure of Ar, He and N2. The optimal fill-gas pressure range for the azimuthally uniform plasma-puff was about 120 mTorr less than or equal to P(sub op) less than or equal to 450 Torr for He and N2. For Argon 120 mTorr is less than or equal to P(sub op) is less than or equal to 5 Torr. The inverse-pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. The azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff will be discussed in comparison with the current hypocycloidal-pinch plasma-puff triggering.

  13. Parallel Operation of Multiple Closely Spaced Small Aspect Ratio Rod Pinches

    DOE PAGES

    Harper-Slaboszewicz, Victor J.; Leckbee, Joshua; Bennett, Nichelle; ...

    2014-12-10

    A series of simulations and experiments to resolve questions about the operation of arrays of closely spaced small aspect ratio rod pinches has been performed. Design and post-shot analysis of the experimental results are supported by 3D particle-in-cell simulations. Both simulations and experiments support these conclusions. Penetration of current to the interior of the array appears to be efficient, as the current on the center rods is essentially equal to the current on the outer rods. Current loss in the feed due to the formation of magnetic nulls was avoided in these experiments by design of the feed surface ofmore » the cathode and control of the gap to keep the electric fields on the cathode below the emission threshold. Some asymmetry in the electron flow to the rod was observed, but the flow appeared to symmetrize as it reached the end of the rod. Interaction between the rod pinches can be controlled to allow the stable and consistent operation of arrays of rod pinches.« less

  14. In-Situ Anode Heating and Its Effects on Atomic Constituents in the A-K Gap in Self-Magnetic Pinch (SMP) Experiments

    NASA Astrophysics Data System (ADS)

    Simpson, Sean; Renk, Timothy; Johnston, Mark; Mazarakis, Mike; Patel, Sonal

    2015-11-01

    The RITS-6 inductive voltage adder (IVA) accelerator (3.5-8.5 MeV) at Sandia National Laboratories produces high-power (TW) focused electron beams (<3mm diameter) for flash x-ray radiography applications. The Self-Magnetic Pinch (SMP) diode utilizes a hollowed metal cathode to produce a pinched focus onto a high-Z metal anode converter. There is not a clear understanding as to the effects various contaminants such as C, CO, H, H2O, HmCn, O2, and N2, on the anode surface or in the bulk may have on impedance dynamics, beam stability, beam spot size, and reproducibility. Heating pure Ta anodes with and without a thin Al coating have been investigated using temperatures ranging from 400 °C to 1000 °C. Initial experiments indicate a significant reduction in H and C as seen in high-speed spectral analysis of plasmas at the converter and a reduction in the back-streaming proton current. Experiments are ongoing, and latest results will be reported. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. A Pressure-Based Analysis of Vortex Ring Pinch-Off

    NASA Astrophysics Data System (ADS)

    Schlueter, Kristy; Braun, Noah; Dabiri, John

    2014-11-01

    This study investigated the development of vortex rings over a range of maximum stroke ratios, and analyzed vorticity and pressure data for clues to the physical mechanisms underlying vortex pinch-off. An impulsive piston velocity profile and Reynolds number of 3000 were used for all cases. The formation number was consistently found to be 3.6 +/-0.3. A recently developed algorithm was used to generate pressure fields by integrating the pressure gradient along several paths through the velocity field and taking the median to get explicit values for pressure. The formation time at the occurrence of a local maximum in the pressure between the vortex ring and the lip of the nozzle, known as the trailing pressure maximum, was found to occur concurrently with the formation number for each case, within the error associated with the temporal resolution of the data. This suggests that the trailing pressure maximum is an indicator of vortex ring pinch-off. This is consistent with the results of Lawson and Dawson (2014), who found that the appearance of the trailing pressure maximum was coincident with the formation number. This pressure based approach to determining vortex ring pinch-off will be applied to a biological flow to examine the efficiency of such a flow. This research was partially supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  16. Pulsed laser ablation of complex oxides: The role of congruent ablation and preferential scattering for the film stoichiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wicklein, S.; Koehl, A.; Dittmann, R.

    2012-09-24

    By combining structural and chemical thin film analysis with detailed plume diagnostics and modeling of the laser plume dynamics, we are able to elucidate the different physical mechanisms determining the stoichiometry of the complex oxides model material SrTiO{sub 3} during pulsed laser deposition. Deviations between thin film and target stoichiometry are basically a result of two effects, namely, incongruent ablation and preferential scattering of lighter ablated species during their motion towards the substrate in the O{sub 2} background gas. On the one hand, a progressive preferential ablation of the Ti species with increasing laser fluence leads to a regime ofmore » Ti-rich thin film growth at larger fluences. On the other hand, in the low laser fluence regime, a more effective scattering of the lighter Ti plume species results in Sr rich films.« less

  17. Failure analysis of pinch-torsion tests as a thermal runaway risk evaluation method of Li-ion cells

    NASA Astrophysics Data System (ADS)

    Xia, Yuzhi; Li, Tianlei; Ren, Fei; Gao, Yanfei; Wang, Hsin

    2014-11-01

    Recently a pinch-torsion test is developed for safety testing of Li-ion batteries. It has been demonstrated that this test can generate small internal short-circuit spots in the separator in a controllable and repeatable manner. In the current research, the failure mechanism is examined by numerical simulations and comparisons to experimental observations. Finite element models are developed to evaluate the deformation of the separators under both pure pinch and pinch-torsion loading conditions. It is discovered that the addition of the torsion component significantly increased the maximum first principal strain, which is believed to induce the internal short circuit. In addition, the applied load in the pinch-torsion test is significantly less than in the pure pinch test, thus dramatically improving the applicability of this method to ultra-thick batteries which otherwise require heavy load in excess of machine capability. It is further found that the separator failure is achieved in the early stage of torsion (within a few degree of rotation). Effect of coefficient of friction on the maximum first principal strain is also examined.

  18. Four highly pseudosymmetric and/or twinned structures of d(CGCGCG) 2 extend the repertoire of crystal structures of Z-DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Zhipu; Dauter, Zbigniew; Gilski, Miroslaw

    DNA oligomer duplexes containing alternating cytosines and guanines in their sequences tend to form left-handed helices of the Z-DNA type, with the sugar and phosphate backbone in a zigzag conformation and a helical repeat of two successive nucleotides. Z-DNA duplexes usually crystallize as hexagonally arranged parallel helical tubes, with various relative orientations and translation of neighboring duplexes. Four novel high-resolution crystal structures of d(CGCGCG) 2duplexes are described here. They are characterized by a high degree of pseudosymmetry and/or twinning, with three or four independent duplexes differently oriented in a monoclinicP2 1lattice of hexagonal metric. The various twinning criteria give somewhatmore » conflicting indications in these complicated cases of crystal pathology. The details of molecular packing in these crystal structures are compared with other known crystal forms of Z-DNA.« less

  19. Numerical study of double-pulse laser ablation of Al

    NASA Astrophysics Data System (ADS)

    Förster, G. D.; Lewis, Laurent J.

    2018-06-01

    The effect of double laser pulses (DPs) on the ablation process in solids is studied using a hybrid two-temperature model combining a continuum description of the conduction band electrons with a classical molecular dynamics (MD) approach for the ions. The study is concerned with double pulses with delays in the range of 0-50 ps and absorbed laser fluences of 0.5, 1.0, and 1.5 J/m 2 [i.e., 1-3 times the ablation threshold for single-pulse ablation (SP)], taking Al as a generic example of simple metals. A detailed analysis, including the assessment of thermodynamic pathways and cavitation rates, leads to a comprehensive picture of the mechanisms active during the different stages of the ablation process initiated by DPs. This study provides an explanation for several phenomena observed in DP ablation experiments. In particular, with respect to SP ablation, crater depths are reduced, which can be explained by the compensation of the rarefaction wave from the first laser pulse with the compression wave from the second pulse, or, at higher fluences and larger delays, by the fact that the target surface is shielded with matter ablated by the first laser pulse. Also, we discuss how smoother surface structures obtained using DPs may be related to features found in the simulations—viz., reduced mechanical strain and peak lattice temperatures. Finally, vaporization appears to be enhanced in DP ablation, which may improve the resolution of emission spectra.

  20. Investigations of morphological features of picosecond dual-wavelength laser ablation of stainless steel

    NASA Astrophysics Data System (ADS)

    Zhao, Wanqin; Wang, Wenjun; Mei, Xuesong; Jiang, Gedong; Liu, Bin

    2014-06-01

    Investigations on the morphological features of holes and grooves ablated on the surface of stainless steel using the picosecond dual-wavelength laser system with different powers combinations are presented based on the scarce researches on morphology of dual-wavelength laser ablation. The experimental results show the profiles of holes ablated by the visible beam appear V-shaped while those for the near-infrared have large openings and display U-shaped, which are independent of the ablation mechanism of ultrafast laser. For the dual-wavelength beam (a combination of visible beam and near-infrared), the holes resemble sunflower-like structures and have smoother ring patterns on the bottom. In general, the holes ablated by the dual-wavelength beam appear to have much flatter bottoms, linearly sloped side-walls and spinodal structures between the bottoms of the holes and the side-walls. Furthermore, through judiciously combining the powers of the dual-wavelength beam, high-quality grooves could be obtained with a flat worm-like structure at the bottom surface and less resolidified melt ejection edges. This study provides insight into optimizing ultrafast laser micromachining in order to obtain desired morphology.

  1. Resistive wall modes in the EXTRAP T2R reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Malmberg, J.-A.; Yadikin, D.; Cecconello, M.

    2003-10-01

    Resistive wall modes (RWM) in the reversed field pinch are studied and a detailed comparison of experimental growth rates and linear magnetohydrodynamic (MHD) theory is made. RWM growth rates are experimentally measured in the thin shell device EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Controlled Fusion 43, 1 (2001)]. Linear MHD calculations of RWM growth rates are based on experimental equilibria. Experimental and linear MHD RWM growth rate dependency on the equilibrium profiles is investigated experimentally by varying the pinch parameter Θ=Bθ(a)/ in the range Θ=1.5-1.8. Quantitative agreement between experimental and linear MHD growth rates is seen. The dominating RWMs are the internal on-axis modes (having the same helicity as the central equilibrium field). At high Θ, external nonresonant modes are also observed. For internal modes experimental growth rates decrease with Θ while for external modes, growth rates increase with Θ. The effect of RWMs on the reversed-field pinch plasma performance is discussed.

  2. Theta-Pinch Thruster for Piloted Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    LaPointe, Mike R.; Reddy, Dhanireddy (Technical Monitor)

    2000-01-01

    A new high-power propulsion concept that combines a rapidly pulsed theta-pinch discharge with upstream particle reflection by a magnetic mirror was evaluated under a Phase 1 grant awarded through the NASA Institute for Advanced Concepts. Analytic and numerical models were developed to predict the performance of a theta-pinch thruster operated over a wide range of initial gas pressures and discharge periods. The models indicate that a 1 m radius, 10 m long thruster operated with hydrogen propellant could provide impulse-bits ranging from 1 N-s to 330 N-s with specific impulse values of 7,500 s to 2,500 s, respectively. A pulsed magnetic field strength of 2 T is required to compress and heat the preionized hydrogen over a 10(exp -3) second discharge period, with about 60% of the heated plasma exiting the chamber each period to produce thrust. The unoptimized thruster efficiency is low, peaking at approximately 16% for an initial hydrogen chamber pressure of 100 Torr. The specific impulse and impulse-bit at this operating condition are 3,500 s and 90 N-s, respectively, and the required discharge energy is approximately 9x10(exp 6) J. For a pulse repetition rate of 10 Hz, the engine would produce an average thrust of 900 N at 3,500 s specific impulse. Combined with the electrodeless nature of the device, these performance parameters indicate that theta-pinch thrusters could provide unique, long-life propulsion systems for piloted deep space mission applications.

  3. Analysis of pinching in deterministic particle separation

    NASA Astrophysics Data System (ADS)

    Risbud, Sumedh; Luo, Mingxiang; Frechette, Joelle; Drazer, German

    2011-11-01

    We investigate the problem of spherical particles vertically settling parallel to Y-axis (under gravity), through a pinching gap created by an obstacle (spherical or cylindrical, center at the origin) and a wall (normal to X axis), to uncover the physics governing microfluidic separation techniques such as deterministic lateral displacement and pinched flow fractionation: (1) theoretically, by linearly superimposing the resistances offered by the wall and the obstacle separately, (2) computationally, using the lattice Boltzmann method for particulate systems and (3) experimentally, by conducting macroscopic experiments. Both, theory and simulations, show that for a given initial separation between the particle centre and the Y-axis, presence of a wall pushes the particles closer to the obstacle, than its absence. Experimentally, this is expected to result in an early onset of the short-range repulsive forces caused by solid-solid contact. We indeed observe such an early onset, which we quantify by measuring the asymmetry in the trajectories of the spherical particles around the obstacle. This work is partially supported by the National Science Foundation Grant Nos. CBET- 0731032, CMMI-0748094, and CBET-0954840.

  4. Core-Shell Structure of Intermediate Precipitates in a Nb-Based Z-Phase Strengthened 12% Cr Steel.

    PubMed

    Rashidi, Masoud; Andrén, Hans-Olof; Liu, Fang

    2017-04-01

    In creep resistant Z-phase strengthened 12% Cr steels, MX (M=Nb, Ta, or V, and X=C and/or N) to Z-phase (CrMN, M=Ta, Nb, or V) transformation plays an important role in achieving a fine distribution of Z-phase precipitates for creep strengthening. Atom probe tomography was employed to investigate the phase transformation in a Nb-based Z-phase strengthened trial steel. Using iso-concentration surfaces with different concentration values, and subtracting the matrix contribution enabled us to reveal the core-shell structure of the transient precipitates between MX and Z-phase. It was shown that Z-phase forms by diffusion of Cr into NbN upon ageing, and Z-phase has a composition corresponding to Cr1+x Nb1-x N with x=0.08.

  5. Low Left Atrial Compliance Contributes to the Clinical Recurrence of Atrial Fibrillation after Catheter Ablation in Patients with Structurally and Functionally Normal Heart.

    PubMed

    Park, Junbeom; Yang, Pil-sung; Kim, Tae-Hoon; Uhm, Jae-Sun; Kim, Joung-Youn; Joung, Boyoung; Lee, Moon-Hyoung; Hwang, Chun; Pak, Hui-Nam

    2015-01-01

    Stiff left atrial (LA) syndrome was initially reported in post-cardiac surgery patients and known to be associated with low LA compliance. We investigated the physiological and clinical implications of LA compliance by estimating LA pulse pressure (LApp) among patients with atrial fibrillation (AF) and structurally and functionally normal heart. Among 1038 consecutive patients with LA pressure measurements before AF ablation, we included 334 patients with structurally and functionally normal heart (81.7% male, 54.1±10.6 years, 77.0% paroxysmal AF) after excluding those with hypertension, diabetes, and previous ablation or cardiac surgery. We measured LApp (peak-nadir LA pressure) at the beginning of the ablation procedure and compared the values with clinical parameters and the AF recurrence rate. AF patients with normal heart were younger and more frequently male and had paroxysmal AF, a lower body mass index, and a lower LApp compared to others (all p<0.05). Based on the median value, the low LA compliance group (LApp≥13 mmHg) had a smaller LA volume index and lower LA voltage (all p<0.05) compared to the high LA compliance group. During a mean follow-up of 16.7±11.8 months, low LA compliance was independently associated with two fold-higher risk of clinical AF recurrence (HR:2.202; 95%CI:1.077-4.503; p = 0.031). Low LA compliance, as determined by an elevated LApp, was associated with a smaller LA volume index and lower LA voltage and independently associated with higher clinical recurrence after catheter ablation in AF patients with structurally and functionally normal heart.

  6. Pinching Solutions of Slender Cylindrical Jets

    DTIC Science & Technology

    1993-06-01

    NASA Langley Research Center, Hampton, VA 23681.2This research was supported in part by Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDE...concentrate on inviscid irrotational flows of liquid jets. A review article has been written by Bogy [2]. Of relevance is also the work of Chandrasekhar...equations become elliptic and allow the possibility of admissible pinching solutions described in this article . It is interesting to find that for jets

  7. Development of lightweight ceramic ablators and arc-jet test results

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.

    1994-01-01

    Lightweight ceramic ablators (LCA's) were recently developed at Ames to investigate the use of low density fibrous substrates and organic resins as high temperature, high strength ablative heat shields. Unlike the traditional ablators, LCA's use porous ceramic/carbon fiber matrices as substrates for structural support, and polymeric resins as fillers. Several substrates and resins were selected for the initial studies, and the best performing candidates were further characterized. Three arcjet tests were conducted to determine the LCA's thermal performance and ablation characteristics in a high enthalpy, hypersonic flow environment. Mass loss and recession measurements were obtained for each sample at post test, and the recession rates were determined from high speed motion films. Surface temperatures were also obtained from optical pyrometers.

  8. Resonant-Plasmon-Assisted Subwavelength Ablation by a Femtosecond Oscillator

    DOE PAGES

    Shi, Liping; Iwan, Bianca; Ripault, Quentin; ...

    2018-02-02

    Here, we experimentally demonstrate the use of subwavelength optical nanoantennas to assist a direct nanoscale ablation using the ultralow fluence of a Ti:sapphire oscillator through the excitation of surface plasmon waves. The mechanism is attributed to nonthermal transient unbonding and electrostatic ablation, which is triggered by the surface plasmon-enhanced field electron emission and acceleration in vacuum. We show that the electron-driven ablation appears for both nanoscale metallic as well as dielectric materials. While the observed surface plasmon-enhanced local ablation may limit the applications of nanostructured surfaces in extreme nonlinear nanophotonics, it, nevertheless, also provides a method for nanomachining, manipulation, andmore » modification of nanoscale materials. Lastly, collateral thermal damage to the antenna structure can be suitably avoided, and nonlinear conversion processes can be stabilized by a dielectric overcoating of the antenna.« less

  9. Testing of Advanced Conformal Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew; Agrawal, Parul; Beck, Robin

    2013-01-01

    In support of the CA250 project, this paper details the results of a test campaign that was conducted at the Ames Arcjet Facility, wherein several novel low density thermal protection (TPS) materials were evaluated in an entry like environment. The motivation for these tests was to investigate whether novel conformal ablative TPS materials can perform under high heat flux and shear environment as a viable alternative to rigid ablators like PICA or Avcoat for missions like MSL and beyond. A conformable TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials (such as tiled Phenolic Impregnated Carbon Ablator (PICA) system on MSL, and honeycomb-based Avcoat on the Orion Multi Purpose Crew Vehicle (MPCV)). The compliant (high strain to failure) nature of the conformable ablative materials will allow better integration of the TPS with the underlying aeroshell structure and enable monolithic-like configuration and larger segments to be used in fabrication.A novel SPRITE1 architecture, developed by the researchers at NASA Ames was used for arcjet testing. This small probe like configuration with 450 spherecone, enabled us to test the materials in a combination of high heat flux, pressure and shear environment. The heat flux near the nose were in the range of 500-1000 W/sq cm whereas in the flank section of the test article the magnitudes were about 50 of the nose, 250-500W/sq cm range. There were two candidate conformable materials under consideration for this test series. Both test materials are low density (0.28 g/cu cm) similar to Phenolic Impregnated Carbon Ablator (PICA) or Silicone Impregnated Refractory Ceramic Ablator (SIRCA) and are comprised of: A flexible carbon substrate (Carbon felt) infiltrated with an ablative resin system: phenolic (Conformal-PICA) or silicone (Conformal-SICA). The test demonstrated a successful performance of both the conformable ablators for heat flux conditions between 50

  10. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Toshihiro, E-mail: toshihir@bf6.so-net.ne.jp; Westphal, Saskia, E-mail: swestphal@ukaachen.de; Isfort, Peter, E-mail: isfort@hia.rwth-aachen.de

    2012-08-15

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 {+-} 0.14, 1.45 {+-} 0.13, and 1.74 {+-} 0.11 cm for MWmore » ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 {+-} 0.09 and 1.26 {+-} 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 {+-} 0.65, 2.85 {+-} 0.72, and 4.45 {+-} 0.47 cm{sup 3} for MW ablation at outputs of 25W, 35W, and 45W and 1.18 {+-} 0.30 and 2.29 {+-} 0.55 cm{sup 3} got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.« less

  11. Benign thyroid nodule unresponsive to radiofrequency ablation treated with laser ablation: a case report.

    PubMed

    Oddo, Silvia; Balestra, Margherita; Vera, Lara; Giusti, Massimo

    2018-05-11

    Radiofrequency ablation and laser ablation are safe and effective techniques for reducing thyroid nodule volume, neck symptoms, and cosmetic complaints. Therapeutic success is defined as a nodule reduction > 50% between 6 and 12 months after the procedure, but a percentage of nodules inexplicably do not respond to thermal ablation. We describe the case of a young Caucasian woman with a solid benign thyroid nodule who refused surgery and who had undergone radiofrequency ablation in 2013. The nodule did not respond in terms of either volume reduction or improvement in neck symptoms. After 2 years, given the patient's continued refusal of thyroidectomy, we proposed laser ablation. The nodule displayed a significant volume reduction (- 50% from radiofrequency ablation baseline volume, - 57% from laser ablation baseline), and the patient reported a significant improvement in neck symptoms (from 6/10 to 1/10 on a visual analogue scale). We conjecture that some benign thyroid nodules may be intrinsically resistant to necrosis when one specific ablation technique is used, but may respond to another technique. To the best of our knowledge, this is the first description of the effect of performing a different percutaneous ablation technique in a nodule that does not respond to radiofrequency ablation.

  12. Visualization of Capsule Reentry Vehicle Heat Shield Ablation Using Naphthalene PLIF

    NASA Technical Reports Server (NTRS)

    Combs, Christopher S.; Clemens, Noel T.; Danehy, Paul M.

    2014-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) will use an ablative heat shield and improved understanding of the ablation process would be beneficial for design purposes. Given that ablation is a multi-physics process involving heat and mass transfer, codes aiming to predict heat shield ablation are in need of experimental data pertaining to the turbulent transport of ablation products for validation. At The University of Texas at Austin, a technique is being developed that uses planar laser-induced fluorescence (PLIF) of a low-temperature sublimating ablator (naphthalene) to visualize the transport of ablation products in a supersonic flow. Since ablation at reentry temperatures can be difficult to recreate in a laboratory setting it is desirable to create a limited physics problem and simulate the ablation process at relatively low temperature conditions using naphthalene. A scaled Orion MPCV model with a solid naphthalene heat shield has been tested in a Mach 5 wind tunnel at various angles of attack in the current work. PLIF imaging reveals the distribution of the ablation products as they are transported into the heat-shield boundary layer and over the capsule shoulders into the separated shear layer and backshell recirculation region. Visualizations of the capsule shear layer using both naphthalene PLIF and Schlieren imaging compared favorably. High concentrations of naphthalene in the capsule separated flow region, intermittent turbulent structures on the heat shield surface, and interesting details of the capsule shear layer structure were observed using the naphthalene PLIF technique. The capsule shear layer was also shown to generally appear to be more turbulent at lower angles of attack. Furthermore, the PLIF signal increased steadily over the course of a run indicating that during a wind tunnel run the model heated up and the rate of naphthalene ablation increased. The shear layer showed increasing signs of turbulence over the course of a wind tunnel run

  13. Deformation of periodic nanovoid structures in Mg single crystals

    NASA Astrophysics Data System (ADS)

    Xu, Shuozhi; Su, Yanqing; Zare Chavoshi, Saeed

    2018-01-01

    Large scale molecular dynamics (MD) simulations in Mg single crystal containing periodic cylindrical voids subject to uniaxial tension along the z direction are carried out. Models with different initial void sizes and crystallographic orientations are explored using two interatomic potentials. It is found that (i) a larger initial void always leads to a lower yield stress, in agreement with an analytic prediction; (ii) in the model with x[\\bar{1}100]-y[0001]-z[11\\bar{2}0] orientations, the two potentials predict different types of tension twins and phase transformation; (iii) in the model with x[0001]-y[11\\bar{2}0]-z[\\bar{1}100] orientations, the two potentials identically predict the nucleation of edge dislocations on the prismatic plane, which then glide away from the void, resulting in extrusions at the void surface; in the case of the smallest initial void, these surface extrusions pinch the void into two voids. Besides bringing new physical understanding of the nanovoid structures, our work highlights the variability and uncertainty in MD simulations arising from the interatomic potential, an issue relatively lightly addressed in the literature to date.

  14. Effects of material composition on the ablation performance of low density elastomeric ablators

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Kabana, W. P.

    1973-01-01

    The ablation performance of materials composed of various concentrations of nylon, hollow silica spheres, hollow phenolic spheres, and four elastomeric resins was determined. Both blunt-body and flat-panel specimens were used, the cold-wall heating-rate ranges being 0.11 to 0.8 MW/sq m, respectively. The corresponding surface pressure ranges for these tests were 0.017 to 0.037 atmosphere and 0.004 to 0.005 atmosphere. Some of the results show that (1) the addition of nylon significantly improved the ablation performance, but the nylon was not compatible with one resin system; (2) panel and blunt-body specimen data do not show the same effect of phenolic sphere content on ablation effectiveness; and (3) there appears to be an optimum concentration of hollow silica spheres for good ablation performance. The composition of an efficient, nonproprietary ablator for lifting body application is identified and the ablation performance of this ablator is compared with the performance of three commercially available materials.

  15. Electronic structure of free and doped actinides: N and Z dependences of energy levels and electronic structure parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulagin, N.

    2005-02-15

    Theoretical study of electronic structure of antinide ions and its dependence on N and Z are presented in this paper. The main 5f{sup N} and excited 5f{sup N}n'l'{sup N'} configurations of actinides have been studied using Hartree-Fock-Pauli approximation. Results of calculations of radial integrals and the energy of X-ray lines for all 5f ions with electronic state AC{sup +1}-AC{sup +4} show approximate dependence on N and Z. A square of N and cubic of Z are ewalized for the primary electronic parameters of the actinides. Theoretical values of radial integrals for free actinides and for ions in a cluster AC{supmore » +n}:[L]{sub k} are compared, too.« less

  16. Moderately reverberant learning ultrasonic pinch panel.

    PubMed

    Nikolovski, Jean-Pierre

    2013-10-01

    Tactile sensing is widely used in human-computer interfaces. However, mechanical integration of touch technologies is often perceived as difficult by engineers because it often limits the freedom of style or form factor requested by designers. Recent work in active ultrasonic touch technologies has made it possible to transform thin glass plates, metallic sheets, or plastic shells into interactive surfaces. The method is based on a learning process of touch-induced, amplitude-disturbed diffraction patterns. This paper proposes, first, an evolution in the design with multiple dipole transducers that improves touch sensitivity or maximum panel size by a factor of ten, and improves robustness and usability in moderately reverberant panels, and second, defines a set of acoustic variables in the signal processing for the evaluation of sensitivity and radiating features. For proof of concept purposes, the design and process are applied to 3.2- and 6-mm-thick glass plates with variable damping conditions. Transducers are bonded to only one short side of the rectangular substrates. Measurements show that the highly sensitive free lateral sides are perfectly adapted for pinch-touch and pinch-slide interactions. The advantage of relative versus absolute touch disturbance measurement is discussed, together with tolerance to abutting contaminants.

  17. Electron temperature measurements inside the ablating plasma of gas-filled hohlraums at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Barrios, M. A.; Liedahl, D. A.; Schneider, M. B.; Jones, O.; Brown, G. V.; Regan, S. P.; Fournier, K. B.; Moore, A. S.; Ross, J. S.; Landen, O.; Kauffman, R. L.; Nikroo, A.; Kroll, J.; Jaquez, J.; Huang, H.; Hansen, S. B.; Callahan, D. A.; Hinkel, D. E.; Bradley, D.; Moody, J. D.

    2016-05-01

    The first measurement of the electron temperature (Te) inside a National Ignition Facility hohlraum is obtained using temporally resolved K-shell X-ray spectroscopy of a mid-Z tracer dot. Both isoelectronic- and interstage-line ratios are used to calculate the local Te via the collisional-radiative atomic physics code SCRAM [Hansen et al., High Energy Density Phys 3, 109 (2007)]. The trajectory of the mid-Z dot as it is ablated from the capsule surface and moves toward the laser entrance hole (LEH) is measured using side-on x-ray imaging, characterizing the plasma flow of the ablating capsule. Data show that the measured dot location is farther away from the LEH in comparison to the radiation-hydrodynamics simulation prediction using HYDRA [Marinak et al., Phys. Plasmas 3, 2070 (1996)]. To account for this discrepancy, the predicted simulation Te is evaluated at the measured dot trajectory. The peak Te, measured to be 4.2 keV ± 0.2 keV, is ˜0.5 keV hotter than the simulation prediction.

  18. Femtosecond laser ablation of dentin and enamel: relationship between laser fluence and ablation efficiency.

    PubMed

    Chen, Hu; Liu, Jing; Li, Hong; Ge, Wenqi; Sun, Yuchun; Wang, Yong; Lü, Peijun

    2015-02-01

    The objective was to study the relationship between laser fluence and ablation efficiency of a femtosecond laser with a Gaussian-shaped pulse used to ablate dentin and enamel for prosthodontic tooth preparation. A diode-pumped thin-disk femtosecond laser with wavelength of 1025 nm and pulse width of 400 fs was used for the ablation of dentin and enamel. The laser spot was guided in a line on the dentin and enamel surfaces to form a groove-shaped ablation zone under a series of laser pulse energies. The width and volume of the ablated line were measured under a three-dimensional confocal microscope to calculate the ablation efficiency. Ablation efficiency for dentin reached a maximum value of 0.020 mm3∕J when the laser fluence was set at 6.51 J∕cm2. For enamel, the maximum ablation efficiency was 0.009 mm3∕J at a fluence of 7.59 J∕cm2.Ablation efficiency of the femtosecond laser on dentin and enamel is closely related to the laser fluence and may reach a maximum when the laser fluence is set to an appropriate value. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)

  19. Influence of effective number of pulses on the morphological structure of teeth and bovine femur after femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Nicolodelli, Gustavo; de Fátima Zanirato Lizarelli, Rosane; Salvador Bagnato, Vanderlei

    2012-04-01

    Femtosecond lasers have been widely used in laser surgery as an instrument for contact-free tissue removal of hard dental, restorative materials, and osseous tissues, complementing conventional drilling or cutting tools. In order to obtain a laser system that provides an ablation efficiency comparable to mechanical instruments, the laser pulse rate must be maximal without causing thermal damage. The aim of this study was to compare the different morphological characteristics of the hard tissue after exposure to lasers operating in the femtosecond pulse regime. Two different kinds of samples were irradiated: dentin from human extracted teeth and bovine femur samples. Different procedures were applied, while paying special care to preserving the structures. The incubation factor S was calculated to be 0.788+/-0.004 for the bovine femur bone. These results indicate that the incubation effect is still substantial during the femtosecond laser ablation of hard tissues. The plasma-induced ablation has reduced side effects, i.e., we observe less thermal and mechanical damage when using a superficial femtosecond laser irradiation close to the threshold conditions. In the femtosecond regime, the morphology characteristics of the cavity were strongly influenced by the change of the effective number of pulses.

  20. Particle pinch with fully noninductive lower hybrid current drive in Tore Supra.

    PubMed

    Hoang, G T; Bourdelle, C; Pégourié, B; Schunke, B; Artaud, J F; Bucalossi, J; Clairet, F; Fenzi-Bonizec, C; Garbet, X; Gil, C; Guirlet, R; Imbeaux, F; Lasalle, J; Loarer, T; Lowry, C; Travère, J M; Tsitrone, E

    2003-04-18

    Recently, plasmas exceeding 4 min have been obtained with lower hybrid current drive (LHCD) in Tore Supra. These LHCD plasmas extend for over 80 times the resistive current diffusion time with zero loop voltage. Under such unique conditions the neoclassical particle pinch driven by the toroidal electric field vanishes. Nevertheless, the density profile remains peaked for more than 4 min. For the first time, the existence of an inward particle pinch in steady-state plasma without toroidal electric field, much larger than the value predicted by the collisional neoclassical theory, is experimentally demonstrated.

  1. Structural insights of Staphylococcus aureus FtsZ inhibitors through molecular docking, 3D-QSAR and molecular dynamics simulations.

    PubMed

    Ballu, Srilata; Itteboina, Ramesh; Sivan, Sree Kanth; Manga, Vijjulatha

    2018-02-01

    Filamentous temperature-sensitive protein Z (FtsZ) is a protein encoded by the FtsZ gene that assembles into a Z-ring at the future site of the septum of bacterial cell division. Structurally, FtsZ is a homolog of eukaryotic tubulin but has low sequence similarity; this makes it possible to obtain FtsZ inhibitors without affecting the eukaryotic cell division. Computational studies were performed on a series of substituted 3-arylalkoxybenzamide derivatives reported as inhibitors of FtsZ activity in Staphylococcus aureus. Quantitative structure-activity relationship models (QSAR) models generated showed good statistical reliability, which is evident from r 2 ncv and r 2 loo values. The predictive ability of these models was determined and an acceptable predictive correlation (r 2 Pred ) values were obtained. Finally, we performed molecular dynamics simulations in order to examine the stability of protein-ligand interactions. This facilitated us to compare free binding energies of cocrystal ligand and newly designed molecule B1. The good concordance between the docking results and comparative molecular field analysis (CoMFA)/comparative molecular similarity indices analysis (CoMSIA) contour maps afforded obliging clues for the rational modification of molecules to design more potent FtsZ inhibitors.

  2. Localization of gaps during redo ablations of paroxysmal atrial fibrillation: Preferential patterns depending on the choice of cryoballoon ablation or radiofrequency ablation for the initial procedure.

    PubMed

    Galand, Vincent; Pavin, Dominique; Behar, Nathalie; Auffret, Vincent; Fénéon, Damien; Behaghel, Albin; Daubert, Jean-Claude; Mabo, Philippe; Martins, Raphaël P

    2016-11-01

    Pulmonary vein (PV) isolation, using cryoballoon or radiofrequency ablation, is the cornerstone therapy for symptomatic paroxysmal atrial fibrillation (AF) refractory to antiarrhythmic drugs. One-third of the patients have recurrences, mainly due to PV reconnections. To describe the different locations of reconnection sites in patients who had previously undergone radiofrequency or cryoballoon ablation, and to compare the characteristics of the redo procedures in both instances. Demographic data and characteristics of the initial ablation (cryoballoon or radiofrequency) were collected. Number and localization of reconduction gaps, and redo characteristics were reviewed. Seventy-four patients scheduled for a redo ablation of paroxysmal AF were included; 38 had been treated by radiofrequency ablation and 36 by cryoballoon ablation during the first procedure. For the initial ablation, procedural and fluoroscopy times were significantly shorter for cryoballoon ablation (147.8±52.6min vs. 226.6±64.3min [P<0.001] and 37.0±17.7min vs. 50.8±22.7min [P=0.005], respectively). Overall, an identical number of gaps was found during redo procedures of cryoballoon and radiofrequency ablations. However, a significantly higher number of gaps were located in the right superior PV for patients first ablated with radiofrequency (0.9±1.0 vs. 0.5±0.9; P=0.009). Gap localization displayed different patterns. Although not significant, redo procedures of cryoballoon ablation were slightly shorter and needed shorter durations of radiofrequency to achieve PV isolation. During redo procedures, gap localization pattern is different for patients first ablated with cryoballoon or radiofrequency ablation, and right superior PV reconnections occur more frequently after radiofrequency ablation. Redo ablation of a previous cryoballoon ablation appears to be easier. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Failure analysis of pinch-torsion tests as a thermal runaway risk evaluation method of Li-Ion Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Yuzhi; Li, Dr. Tianlei; Ren, Prof. Fei

    2014-01-01

    Recently a pinch-torsion test is developed for safety testing of Li-ion batteries (Ren et al., J. Power Source, 2013). It has been demonstrated that this test can generate small internal short-circuit spots in the separator in a controllable and repeatable manner. In the current research, the failure mechanism is examined by numerical simulations and comparisons to experimental observations. Finite element models are developed to evaluate the deformation of the separators under both pure pinch and pinch-torsion loading conditions. It is discovered that the addition of the torsion component significantly increased the maximum principal strain, which is believed to induce themore » internal short circuit. In addition, the applied load in the pinch-torsion test is significantly less than in the pure pinch test, thus dramatically improving the applicability of this method to ultra-thick batteries which otherwise require heavy load in excess of machine capability. It is further found that the separator failure is achieved in the early stage of torsion (within a few degree of rotation). Effect of coefficient of friction on the maximum principal strain is also examined.« less

  4. Voltage and pace-capture mapping of linear ablation lesions overestimates chronic ablation gap size.

    PubMed

    O'Neill, Louisa; Harrison, James; Chubb, Henry; Whitaker, John; Mukherjee, Rahul K; Bloch, Lars Ølgaard; Andersen, Niels Peter; Dam, Høgni; Jensen, Henrik K; Niederer, Steven; Wright, Matthew; O'Neill, Mark; Williams, Steven E

    2018-04-26

    Conducting gaps in lesion sets are a major reason for failure of ablation procedures. Voltage mapping and pace-capture have been proposed for intra-procedural identification of gaps. We aimed to compare gap size measured acutely and chronically post-ablation to macroscopic gap size in a porcine model. Intercaval linear ablation was performed in eight Göttingen minipigs with a deliberate gap of ∼5 mm left in the ablation line. Gap size was measured by interpolating ablation contact force values between ablation tags and thresholding at a low force cut-off of 5 g. Bipolar voltage mapping and pace-capture mapping along the length of the line were performed immediately, and at 2 months, post-ablation. Animals were euthanized and gap sizes were measured macroscopically. Voltage thresholds to define scar were determined by receiver operating characteristic analysis as <0.56 mV (acutely) and <0.62 mV (chronically). Taking the macroscopic gap size as gold standard, error in gap measurements were determined for voltage, pace-capture, and ablation contact force maps. All modalities overestimated chronic gap size, by 1.4 ± 2.0 mm (ablation contact force map), 5.1 ± 3.4 mm (pace-capture), and 9.5 ± 3.8 mm (voltage mapping). Error on ablation contact force map gap measurements were significantly less than for voltage mapping (P = 0.003, Tukey's multiple comparisons test). Chronically, voltage mapping and pace-capture mapping overestimated macroscopic gap size by 11.9 ± 3.7 and 9.8 ± 3.5 mm, respectively. Bipolar voltage and pace-capture mapping overestimate the size of chronic gap formation in linear ablation lesions. The most accurate estimation of chronic gap size was achieved by analysis of catheter-myocardium contact force during ablation.

  5. Ablation for Atrial Fibrillation

    PubMed Central

    2006-01-01

    Executive Summary Objective To review the effectiveness, safety, and costing of ablation methods to manage atrial fibrillation (AF). The ablation methods reviewed were catheter ablation and surgical ablation. Clinical Need Atrial fibrillation is characterized by an irregular, usually rapid, heart rate that limits the ability of the atria to pump blood effectively to the ventricles. Atrial fibrillation can be a primary diagnosis or it may be associated with other diseases, such as high blood pressure, abnormal heart muscle function, chronic lung diseases, and coronary heart disease. The most common symptom of AF is palpitations. Symptoms caused by decreased blood flow include dizziness, fatigue, and shortness of breath. Some patients with AF do not experience any symptoms. According to United States data, the incidence of AF increases with age, with a prevalence of 1 per 200 people aged between 50 and 60 years, and 1 per 10 people aged over 80 years. In 2004, the Institute for Clinical Evaluative Sciences (ICES) estimated that the rate of hospitalization for AF in Canada was 582.7 per 100,000 population. They also reported that of the patients discharged alive, 2.7% were readmitted within 1 year for stroke. One United States prevalence study of AF indicated that the overall prevalence of AF was 0.95%. When the results of this study were extrapolated to the population of Ontario, the prevalence of AF in Ontario is 98,758 for residents aged over 20 years. Currently, the first-line therapy for AF is medical therapy with antiarrhythmic drugs (AADs). There are several AADs available, because there is no one AAD that is effective for all patients. The AADs have critical adverse effects that can aggravate existing arrhythmias. The drug selection process frequently involves trial and error until the patient’s symptoms subside. The Technology Ablation has been frequently described as a “cure” for AF, compared with drug therapy, which controls AF but does not cure it

  6. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    NASA Astrophysics Data System (ADS)

    Ortiz, Rocío; Quintana, Iban; Etxarri, Jon; Lejardi, Ainhoa; Sarasua, Jose-Ramon

    2011-11-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  7. Flexible metal patterning in glass microfluidic structures using femtosecond laser direct-write ablation followed by electroless plating

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Midorikawa, Katsumi; Sugioka, Koji

    2014-03-01

    A simple and flexible technique for integrating metal micropatterns into glass microfluidic structures based on threedimensional femtosecond laser microfabrication is presented. Femtosecond laser direct writing followed by thermal treatment and successive chemical etching allows us to fabricate three-dimensional microfluidic structures such as microchannels and microreservoirs inside photosensitive glass. Then, the femtosecond laser direct-write ablation followed by electroless metal plating enables space-selective deposition of patterned metal films on desired locations of internal walls of the fabricated microfluidic structures. The developed technique is applied to integrate a metal microheater into a glass microchannel to control the temperature of liquid samples in the channel, which can be used as a microreactor for enhancement of chemical reactions.

  8. Experimental investigation of the laser ablation process on wood surfaces

    NASA Astrophysics Data System (ADS)

    Panzner, M.; Wiedemann, G.; Henneberg, K.; Fischer, R.; Wittke, Th.; Dietsch, R.

    1998-05-01

    Processing of wood by conventional mechanical tools like saws or planes leaves behind a layer of squeezed wood only slightly adhering to the solid wood surface. Laser ablation of this layer could improve the durability of coatings and glued joints. For technical applications, thorough knowledge about the laser ablation process is necessary. Results of ablation experiments by excimer lasers, Nd:YAG lasers, and TEA-CO 2 lasers on surfaces of different wood types and cut orientations are shown. The process of ablation was observed by a high-speed camera system and optical spectroscopy. The influence of the experimental parameters are demonstrated by SEM images and measurement of the ablation rate depending on energy density. Thermal effects like melting and also carbonizing of cellulose were found for IR- and also UV-laser wavelengths. Damage of the wood surface after laser ablation was weaker for excimer lasers and CO 2-TEA lasers. This can be explained by the high absorption of wood in the ultraviolet and middle infrared spectral range. As an additional result, this technique provides an easy way for preparing wood surfaces with excellently conserved cellular structure.

  9. Morphologic changes in the vein after different numbers of radiofrequency ablation cycles.

    PubMed

    Shaidakov, Evgeny V; Grigoryan, Arsen G; Korzhevskii, Dmitriy E; Ilyukhin, Evgeny A; Rosukhovski, Dmitriy A; Bulatov, Vasiliy L; Tsarev, Oleg I

    2015-10-01

    It has not yet been clarified whether it is possible to decrease the percentage of recurrences after radiofrequency (RF) ablation by way of increasing the number of RF ablation cycles. The aim of this study was to assess the morphologic changes in excised vein fragments after different durations of RF ablation exposure. In the first part of the study, we performed a morphologic analysis of eight cases of great saphenous vein (GSV) recanalization 6 months after RF ablation. The second part was performed on a suprafascial segment of the GSV with a length of >22 cm and a minimum diameter of 5 mm in 10 patients, who had given their consent to intraoperative excision of suprafascial GSV segments after RF ablation treatment through four 1-cm-long diametrical cuts. Prior ultrasound analysis had shown an average 6.9-mm diameter of the suprafascial segments. The segment was divided into three 7-cm-long subsegments and one control segment. The first, second, and third segments were treated with three, two, and one RF ablation cycles (ClosureFast; Covidien, Mansfield, Mass), respectively; the control segment was not exposed to RF ablation at all. Morphologic study of 160 sections of the vein (five sections of each segment and 10 control specimens) was carried out. The specimens were dyed with hematoxylin and orcein. The ensuing analysis was performed by an experienced expert with the blind study method (the specimens were numbered without any hint as to the quantity of RF ablation cycles performed on them). The intergroup comparison of the depth of venous wall damage was based on comparison of the coefficient of alteration, which is calculated as the relation of damage depth to thickness of the vein. After one RF ablation cycle, the depth of blurring of the structural elements only on some portions reached the middle of the muscle layer of the wall (coefficient of alteration, α = 26%). After two cycles, blurring of the structural elements on some portions extended to the

  10. Ablative shielding for hypervelocity projectiles

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A. (Inventor)

    1993-01-01

    A hypervelocity projectile shield which includes a hollow semi-flexible housing fabricated from a plastic like, or otherwise transparent membrane which is filled with a fluid (gas or liquid) is presented. The housing has a inlet valve, similar to that on a tire or basketball, to introduce an ablating fluid into the housing. The housing is attached by a Velcro mount or double-sided adhesive tape to the outside surface of a structure to be protected. The housings are arrayed in a side-by-side relationship for complete coverage of the surface to be protected. In use, when a hypervelocity projectile penetrates the outer wall of a housing it is broken up and then the projectile is ablated as it travels through the fluid, much like a meteorite 'burns up' as it enters the earth's atmosphere, and the housing is deflated. The deflated housing can be easily spotted for replacement, even from a distance. Replacement is then accomplished by simply pulling a deflated housing off the structure and installing a new housing.

  11. Improvements in the EQ-10 electrodeless Z-pinch EUV source for metrology applications

    NASA Astrophysics Data System (ADS)

    Horne, Stephen F.; Gustafson, Deborah; Partlow, Matthew J.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.

    2011-04-01

    Now that EUV lithography systems are beginning to ship into the fabs for next generation chips it is more critical that the EUV infrastructure developments are keeping pace. Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinch™ light source since 2005. The source is currently being used for metrology, mask inspection, and resist development. These applications require especially stable performance in both power and source size. Over the last 5 years Energetiq has made many source modifications which have included better thermal management as well as high pulse rate operation6. Recently we have further increased the system power handling and electrical pulse reproducibility. The impact of these modifications on source performance will be reported.

  12. Experimental investigation of the effect of insulator sleeve length on the time to pinch and multipinch formation in the plasma focus facility

    NASA Astrophysics Data System (ADS)

    Momenei, M.; Khodabakhshei, Z.; Panahi, N.; Mohammadi, M. A.

    2017-03-01

    The length of insulator sleeve is varied to investigate its effect on the pinch formation in the plasma focus facility. In this paper, the effect of insulator length on the time to pinch at various pressures and working voltages in the 1.15 kJ Mather type plasma focus is investigated. The results show that with 4.5 cm insulator length the time to pinch at all pressures is minimum. Other results also confirm that with increasing of pressure the time to pinch is increased. Moreover, with increasing working voltage the time to pinch is decreased. Pictures, captured using a digital single lens reflex (DSLR) Canon EOS 7D system, show that multipinch phenomenon is formed.

  13. Numerical method of carbon-based material ablation effects on aero-heating for half-sphere

    NASA Astrophysics Data System (ADS)

    Wang, Jiang-Feng; Li, Jia-Wei; Zhao, Fa-Ming; Fan, Xiao-Feng

    2018-05-01

    A numerical method of aerodynamic heating with material thermal ablation effects for hypersonic half-sphere is presented. A surface material ablation model is provided to analyze the ablation effects on aero-thermal properties and structural heat conduction for thermal protection system (TPS) of hypersonic vehicles. To demonstrate its capability, applications for thermal analysis of hypersonic vehicles using carbonaceous ceramic ablators are performed and discussed. The numerical results show the high efficiency and validation of the method developed in thermal characteristics analysis of hypersonic aerodynamic heating.

  14. Atrial fibrillation ablation using a closed irrigation radiofrequency ablation catheter.

    PubMed

    Golden, Keith; Mounsey, John Paul; Chung, Eugene; Roomiani, Pahresah; Morse, Michael Andew; Patel, Ankit; Gehi, Anil

    2012-05-01

    Catheter ablation is an effective therapy for symptomatic, medically refractory atrial fibrillation (AF). Open-irrigated radiofrequency (RF) ablation catheters produce transmural lesions at the cost of increased fluid delivery. In vivo models suggest closed-irrigated RF catheters create equivalent lesions, but clinical outcomes are limited. A cohort of 195 sequential patients with symptomatic AF underwent stepwise AF ablation (AFA) using a closed-irrigation ablation catheter. Recurrence of AF was monitored and outcomes were evaluated using Kaplan-Meier survival analysis and Cox proportional hazards models. Mean age was 59.0 years, 74.9% were male, 56.4% of patients were paroxysmal and mean duration of AF was 5.4 years. Patients had multiple comorbidities including hypertension (76.4%), tobacco abuse (42.1%), diabetes (17.4%), and obesity (mean body mass index 30.8). The median follow-up was 55.8 weeks. Overall event-free survival was 73.6% with one ablation and 77.4% after reablation (reablation rate was 8.7%). Median time to recurrence was 26.9 weeks. AF was more likely to recur in patients being treated with antiarrhythmic therapy at the time of last follow-up (recurrence rate 30.3% with antiarrhythmic drugs, 13.2% without antiarrhythmic drugs; hazard ratio [HR] 2.2, 95% confidence interval [CI] 1.1-4.4, P = 0.024) and in those with a history of AF greater than 2 years duration (HR 2.7, 95% CI 1.1-6.9, P = 0.038). Our study represents the largest cohort of patients receiving AFA with closed-irrigation ablation catheters. We demonstrate comparable outcomes to those previously reported in studies of open-irrigation ablation catheters. Given the theoretical benefits of a closed-irrigation system, a large head-to-head comparison using this catheter is warranted. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  15. Possible role for cryoballoon ablation of right atrial appendage tachycardia when conventional ablation fails.

    PubMed

    Amasyali, Basri; Kilic, Ayhan

    2015-06-01

    Focal atrial tachycardia arising from the right atrial appendage usually responds well to radiofrequency ablation; however, successful ablation in this anatomic region can be challenging. Surgical excision of the right atrial appendage has sometimes been necessary to eliminate the tachycardia and prevent or reverse the resultant cardiomyopathy. We report the case of a 48-year-old man who had right atrial appendage tachycardia resistant to multiple attempts at ablation with use of conventional radiofrequency energy guided by means of a 3-dimensional mapping system. The condition led to cardiomyopathy in 3 months. The arrhythmia was successfully ablated with use of a 28-mm cryoballoon catheter that had originally been developed for catheter ablation of paroxysmal atrial fibrillation. To our knowledge, this is the first report of cryoballoon ablation without isolation of the right atrial appendage. It might also be an alternative to epicardial ablation or surgery when refractory atrial tachycardia originates from the right atrial appendage.

  16. Evaluation of Particle Pinch and Diffusion Coefficients in the Edge Pedestal of DIII-D H-mode Discharges

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.; Groebner, R. J.

    2009-11-01

    Momentum balance requires that the radial particle flux satisfy a pinch-diffusion relationship. The pinch can be evaluated in terms of measurable quantities (rotation velocities, Er, etc.) by the use of momentum and particle balance [1,2], the radial particle flux can be determined by momentum balance, and then the diffusion coefficient can be evaluated from the pinch diffusion relation using the measured density gradient. Applications to several DIII-D H-mode plasmas are presented. 6pt [1] W.M. Stacey, Contr. Plasma Phys. 48, 94 (2008). [2] W.M. Stacey and R.J. Groebner, Phys. Plasmas 15, 012503 (2008).

  17. Parametric effects on pinch-off modes in liquid/liquid jet systems

    NASA Astrophysics Data System (ADS)

    Milosevic, Ilija N.

    Many industries rely on liquid/liquid extraction systems, where jet pinch off occurs on a regular basis. Inherent short time and length scales make analytical and numerical simulation of the process very challenging. A main objective of this work was to document the details of various pinch-off modes at different length scales using Laser Induced Fluorescence and Particle Image Velocimetry. A water glycerine mixture was injected into ambient either silicone oil or 1-octanol. The resultant viscosity ratios, inner to outer fluid, were 1.6 and 2.8, respectively. Ohnesorge numbers were 0.013 for ambient silicone oil and 0.08 for ambient 1-octanol. Reynolds and Strouhal numbers ranged from 30 to 100 and 0.5 to 3.5, respectively. Decreasing the Strouhal number increased the number of drops formed per forcing. Increasing the Reynolds number suppressed satellite formation, and in some cases the number of drops decreased from two to one per cycle. Increasing the Ohnesorge number to 0.08 suppressed the pinch off yielding a longer jet with three-dimensional threads. At Ohnesorge number 0.013, increasing the forcing amplitude shortened the jet, and eventually led to a dripping mode. High-resolution measurements of pinch-off angles were compared to results from similarity theory. Two modes were investigated: drops breaking from the jet (jet/drop) and, one drop splitting into two (splitting drop). The jet/drop mode angle measurements agreed with similarity predictions. The splitting drop mode converged towards smaller angles. Scaling analysis showed that a Stokesian similarity regime applied for a neck radius of 6 microns or less. The smallest radius observed in experiments was 15 microns. Therefore, it is not known whether splitting drop mode might still converge to same behavior.

  18. Impact of radiofrequency ablation geometry on electrical conduction

    NASA Astrophysics Data System (ADS)

    Rivas, Rhiana N.; Lye, Theresa H.; Hendon, Christine P.

    2018-02-01

    The gold standard of current treatment for atrial fibrillation is radiofrequency ablation (RFA). Single RFA procedures have low long-term, single-procedure success rates, which can be attributed to factors including inability to measure and visualize lesion depth in real time and incomplete knowledge of how atrial fibrillation manifests and persists. One way to address this problem is to develop a heart model that accurately fits lesion dimensions and depth using OCT to extract structural information. Twenty-three lesions of varying transmurality in left and right swine atrial tissue have been imaged with a Thorlabs OCT system with 6.5-micron axial resolution and a custom Ultra High Resolution system with 2.5-micron axial resolution. The boundaries of the ablation lesions were identified by the appearance of the birefringence artifact to identify areas of un-ablated tissue, as well as by changes to depth penetration and structural features, including decreased contrast between the endocardium and myocardium and disappearance of collagen fibers within the ablation lesion. Using these features, the lateral positions of the lesion boundaries were identified. An algorithm that fit ellipses to the lesion contours modeled the ablation geometry in depth. Lesion dimensions and shape were confirmed by comparison with trichrome histological processing. Finite-element models were fitted with these parameters and electrophysiological simulations were run with the Continuity 6 package. Next steps include correlating lesion geometry to conduction velocity, and including further tissue complexity such as varying tissue composition and fiber orientation. Additional models of linear lesions with gaps and adjacent lesions created with non-perpendicular contact will be created. This work will provide insight into how lesion geometry, tissue composition, and fiber organization impact electrophysiological propagation.

  19. 3D Multifunctional Ablative Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken

    2015-01-01

    NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.

  20. Photoionized Plasma and Opacity Experiments on the Z Machine

    NASA Astrophysics Data System (ADS)

    Bailey, James

    2008-04-01

    Laboratory experiments at Z use high energy density to create plasma conditions similar to extreme astrophysical environments, including stellar interiors and accretion powered objects. The importance of radiation unifies these topics, even though the plasmas involved are very different. Understanding stellar interiors requires knowledge of radiation transport in dense, hot, collision-dominated plasma. A Z x-ray source was used to measure iron plasma transmission at 156 eV electron temperature, 2x higher than in prior work. The data provide the first experimental tests of absorption features critical for stellar interior opacity models and may provide insight into whether the present discrepancy between solar models and helioseismology originates in opacity model deficiencies or in some other aspect of the solar model. In contrast, accretion physics requires interpretation of x-ray spectra from lower density photoionization-dominated plasma. Exploiting astrophysical spectra requires a spectral model that connects the observations with a model that describes the overall picture of the astrophysical object. However, photoionized plasma spectral models are largely untested. Z-pinch radiation was used to create photoionized iron and neon plasmas with photoionization parameter 5-25 erg cm /s. Comparisons with the data improve x-ray photoionization models and promote more accurate interpretation of spectra acquired with astrophysical observatories. The prospects for new experiments at the higher radiation powers provided by the recently upgraded Z facility will be described.* In collaboration with scientists from CEA, LANL, LLNL, Oxford, Prism, Queens University, Swarthmore College, U. Nevada Reno, and Sandia ++Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  1. Variation in work tasks in relation to pinch grip strength among middle-aged female dentists.

    PubMed

    Ding, Hebo; Leino-Arjas, Päivi; Murtomaa, Heikki; Takala, Esa-Pekka; Solovieva, Svetlana

    2013-11-01

    We aimed to investigate the relationship of task variation during dental work history with pinch grip strength among dentists. We measured pinch grip strength among 295 female Finnish dentists aged 45-63 years. Variation in dental work tasks during work history was empirically defined by cluster analysis. Three clusters of task variation emerged: low (most work time in restoration treatment/endodontics), moderate (about 50% in the former and 50% in prosthodontics/periodontics/surgery), and high (variable tasks including administrative duties). Hand radiographs were examined for the presence of OA in the wrist and each joint of the 1-3rd fingers. Information on hand-loading leisure-time activities, and joint pain was obtained by questionnaire. Glove size was used as a proxy for hand size. BMI (kg/m2) was based on measured weight and self-reported height. Dentists with low variation of work task history had an increased risk of low pinch grip strength in the right hand (OR 2.3, 95% CI 1.2-4.3), but not in the left (1.13, 0.62-2.08), compared to dentists with high task variation, independent of age, hand size, hand-loading leisure-time activities, BMI and symptomatic hand OA. The dentists with the most hand-loading tasks were at an increased risk of low pinch grip strength, independent of e.g. symptomatic hand OA. It is advisable among dentists to perform as diverse work tasks as possible to reduce the risk of decreased pinch grip strength. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  2. Bundle branch block after ablation for Wolff-Parkinson-White syndrome.

    PubMed

    Fuenmayor A, Abdel J; Rodríguez S, Yenny A

    2013-09-20

    Bundle branch block (BBB) is a difficult diagnosis in the Wolff-Parkinson-White syndrome (WPW). We investigated the clinical implications of BBB that appears after performing an accessory pathway (AP) ablation. We studied 199 patients with WPW who were submitted to AP ablation. Thirty (15%) exhibited BBB after the ablation. Twenty-two patients had right BBB and 8 had left BBB. Thirteen patients had right-sided AP and 17 had left-sided AP. They were compared with 82 similar patients without BBB after the AP ablation. Among the patients with BBB, 86.66% showed delays in the middle part of the QRS in the ECG recorded before ablation vs. 18.29% of the patients without BBB (p<0.05) (sensitivity 86%, specificity 81%, positive predictive value 67% and negative predictive value 93%). Forty-four percent of the patients with BBB had BBB morphology during orthodromic tachycardia vs. 10% of the patients without BBB (p<0.05) (sensitivity 44%, specificity 89%, positive predictive value 57% and negative predictive value 82%). No relationship was found between AP location and the site of the BBB. Ejection fraction was normal before (0.61 ± 0.03) and upon completion of follow-up (0.61 ± 0.07). BBB disappeared in 95.3% of the patients. Delays in the middle portion of the QRS may predict BBB after AP ablation. BBB after performing AP ablation is frequent, transient, benign, and not related to either the ablation lesion location or progression to structural heart disease. BBB after AP ablation may be related to cardiac memory. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Naphthalene Planar Laser-Induced Fluorescence Imaging of Orion Multi-Purpose Crew Vehicle Heat Shield Ablation Products

    NASA Astrophysics Data System (ADS)

    Combs, Christopher S.; Clemens, Noel T.; Danehy, Paul M.

    2013-11-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) calls for an ablative heat shield. In order to better design this heat shield and others that will undergo planetary entry, an improved understanding of the ablation process is required. Given that ablation is a multi-physics process involving heat and mass transfer, codes aiming to predict heat shield ablation are in need of experimental data pertaining to the turbulent transport of ablation products for validation. At The University of Texas at Austin, a technique is being developed that uses planar laser-induced fluorescence (PLIF) of a low-temperature sublimating ablator (naphthalene) to visualize the transport of ablation products in a supersonic flow. Since ablation at reentry temperatures can be difficult to recreate in a laboratory setting it is desirable to create a limited physics problem and simulate the ablation process at relatively low temperature conditions using naphthalene. A scaled Orion MPCV model with a solid naphthalene heat shield has been tested in a Mach 5 wind tunnel at various angles of attack in the current work. PLIF images have shown high concentrations of scalar in the capsule wake region, intermittent turbulent structures on the heat shield surface, and interesting details of the capsule shear layer structure. This work was supported by a NASA Office of the Chief Technologist's Space Technology Research Fellowship (NNX11AN55H).

  4. Ablative skin resurfacing.

    PubMed

    Agrawal, Nidhi; Smith, Greg; Heffelfinger, Ryan

    2014-02-01

    Ablative laser resurfacing has evolved as a safe and effective treatment for skin rejuvenation. Although traditional lasers were associated with significant thermal damage and lengthy recovery, advances in laser technology have improved safety profiles and reduced social downtime. CO2 lasers remain the gold standard of treatment, and fractional ablative devices capable of achieving remarkable clinical improvement with fewer side effects and shorter recovery times have made it a more practical option for patients. Although ablative resurfacing has become safer, careful patient selection and choice of suitable laser parameters are essential to minimize complications and optimize outcomes. This article describes the current modalities used in ablative laser skin resurfacing and examines their efficacy, indications, and possible side effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  5. Family System of Advanced Charring Ablators for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Congdon, William M.; Curry, Donald M.

    2005-01-01

    Advanced Ablators Program Objectives: 1) Flight-ready(TRL-6) ablative heat shields for deep-space missions; 2) Diversity of selection from family-system approach; 3) Minimum weight systems with high reliability; 4) Optimized formulations and processing; 5) Fully characterized properties; and 6) Low-cost manufacturing. Definition and integration of candidate lightweight structures. Test and analysis database to support flight-vehicle engineering. Results from production scale-up studies and production-cost analyses.

  6. Image-Guided Ablation of Adrenal Lesions

    PubMed Central

    Yamakado, Koichiro

    2014-01-01

    Although laparoscopic adrenalectomy has remained the standard of care for the treatment for adrenal tumors, percutaneous image-guided ablation therapy, such as chemical ablation, radiofrequency ablation, cryoablation, and microwave ablation, has been shown to be clinically useful in many nonsurgical candidates. Ablation therapy has been used to treat both functioning adenomas and malignant tumors, including primary adrenal carcinoma and metastasis. For patients with functioning adenomas, biochemical and symptomatic improvement is achieved in 96 to 100% after ablation; for patients with malignant adrenal neoplasms, however, the survival benefit from ablation therapy remains unclear, though good initial results have been reported. This article outlines the current role of ablation therapy for adrenal lesions, as well as identifying some of the technical considerations for this procedure. PMID:25049444

  7. OCDR guided laser ablation device

    DOEpatents

    Dasilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A guided laser ablation device. The device includes a mulitmode laser ablation fiber that is surrounded by one or more single mode optical fibers that are used to image in the vicinity of the laser ablation area to prevent tissue damage. The laser ablation device is combined with an optical coherence domain reflectometry (OCDR) unit and with a control unit which initializes the OCDR unit and a high power laser of the ablation device. Data from the OCDR unit is analyzed by the control unit and used to control the high power laser. The OCDR images up to about 3 mm ahead of the ablation surface to enable a user to see sensitive tissue such as a nerve or artery before damaging it by the laser.

  8. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougherty, Gerard W.; Section on Structural Cell Biology, National Institute on Deafness and Communication Disorders; Chopp, Treasa

    2005-05-15

    Rsu-1 is a highly conserved leucine rich repeat (LRR) protein that is expressed ubiquitously in mammalian cells. Rsu-1 was identified based on its ability to inhibit transformation by Ras, and previous studies demonstrated that ectopic expression of Rsu-1 inhibited anchorage-independent growth of Ras-transformed cells and human tumor cell lines. Using GAL4-based yeast two-hybrid screening, the LIM domain protein, PINCH1, was identified as the binding partner of Rsu-1. PINCH1 is an adaptor protein that localizes to focal adhesions and it has been implicated in the regulation of adhesion functions. Subdomain mapping in yeast revealed that Rsu-1 binds to the LIM 5more » domain of PINCH1, a region not previously identified as a specific binding domain for any other protein. Additional testing demonstrated that PINCH2, which is highly homologous to PINCH1, except in the LIM 5 domain, does not interact with Rsu-1. Glutathione transferase fusion protein binding studies determined that the LRR region of Rsu-1 interacts with PINCH1. Transient expression studies using epitope-tagged Rsu-1 and PINCH1 revealed that Rsu-1 co-immunoprecipitated with PINCH1 and colocalized with vinculin at sites of focal adhesions in mammalian cells. In addition, endogenous P33 Rsu-1 from 293T cells co-immunoprecipitated with transiently expressed myc-tagged PINCH1. Furthermore, RNAi-induced reduction in Rsu-1 RNA and protein inhibited cell attachment, and while previous studies demonstrated that ectopic expression of Rsu-1 inhibited Jun kinase activation, the depletion of Rsu-1 resulted in activation of Jun and p38 stress kinases. These studies demonstrate that Rsu-1 interacts with PINCH1 in mammalian cells and functions, in part, by altering cell adhesion.« less

  9. Is AF Ablation Cost Effective?

    PubMed Central

    Martin-Doyle, William; Reynolds, Matthew R.

    2010-01-01

    The use of catheter ablation to treat AF is increasing rapidly, but there is presently an incomplete understanding of its cost-effectiveness. AF ablation procedures involve significant up-front expenditures, but multiple randomized trials have demonstrated that ablation is more effective than antiarrhythmic drugs at maintaining sinus rhythm in a second-line and possibly first-line rhythm control setting. Although truly long-term data are limited, ablation, as compared with antiarrrhythmic drugs, also appears associated with improved symptoms and quality of life and a reduction in downstream hospitalization and other health care resource utilization. Several groups have developed cost effectiveness models comparing AF ablation primarily to antiarrhythmic drugs and the model results suggest that ablation likely falls within the range generally accepted as cost-effective in developed nations. This paper will review available information on the cost-effectiveness of catheter ablation for the treatment of atrial fibrillation, and discuss continued areas of uncertainty where further research is required. PMID:20936083

  10. Effect of Flooding and the nosZ Gene in Bradyrhizobia on Bradyrhizobial Community Structure in the Soil.

    PubMed

    Saeki, Yuichi; Nakamura, Misato; Mason, Maria Luisa T; Yano, Tsubasa; Shiro, Sokichi; Sameshima-Saito, Reiko; Itakura, Manabu; Minamisawa, Kiwamu; Yamamoto, Akihiro

    2017-06-24

    We investigated the effects of the water status (flooded or non-flooded) and presence of the nosZ gene in bradyrhizobia on the bradyrhizobial community structure in a factorial experiment that examined three temperature levels (20°C, 25°C, and 30°C) and two soil types (andosol and gray lowland soil) using microcosm incubations. All microcosms were inoculated with Bradyrhizobium japonicum USDA6 T , B. japonicum USDA123, and B. elkanii USDA76 T , which do not possess the nosZ gene, and then half received B. diazoefficiens USDA110 T wt (wt for the wild-type) and the other half received B. diazoefficiens USDA110ΔnosZ. USDA110 T wt possesses the nosZ gene, which encodes N 2 O reductase; 110ΔnosZ, a mutant variant, does not. Changes in the community structure after 30- and 60-d incubations were investigated by denaturing-gradient gel electrophoresis and an image analysis. USDA6 T and 76 T strains slightly increased in non-flooded soil regardless of which USDA110 T strain was present. In flooded microcosms with the USDA110 T wt strain, USDA110 T wt became dominant, whereas in microcosms with the USDA110ΔnosZ, a similar change in the community structure occurred to that in non-flooded microcosms. These results suggest that possession of the nosZ gene confers a competitive advantage to B. diazoefficiens USDA110 T in flooded soil. We herein demonstrated that the dominance of B. diazoefficiens USDA110 T wt within the soil bradyrhizobial population may be enhanced by periods of flooding or waterlogging systems such as paddy-soybean rotations because it appears to have the ability to thrive in moderately anaerobic soil.

  11. Service tough composite structures using the Z-direction reinforcement process

    NASA Technical Reports Server (NTRS)

    Freitas, Glenn; Magee, Constance; Boyce, Joseph; Bott, Richard

    1992-01-01

    Foster-Miller has developed a new process to provide through thickness reinforcement of composite structures. The process reinforces laminates locally or globally on-tool during standard autoclave processing cycles. Initial test results indicate that the method has the potential to significantly reduce delamination in carbon-epoxy. Laminates reinforced with the z-fiber process have demonstrated significant improvements in mode 1 fracture toughness and compression strength after impact. Unlike alternative methods, in-plane properties are not adversely affected.

  12. Structures of NodZ α1,6-fucosyltransferase in complex with GDP and GDP-fucose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brzezinski, Krzysztof; Polish Academy of Sciences, 61-704 Poznan; Dauter, Zbigniew

    Crystal structures of the bacterial α1,6-fucosyltransferase NodZ in complex with GDP and GDP-fucose are presented. Rhizobial NodZ α1,6-fucosyltransferase (α1,6-FucT) catalyzes the transfer of the fucose (Fuc) moiety from guanosine 5′-diphosphate-β-l-fucose to the reducing end of the chitin oligosaccharide core during Nod-factor (NF) biosynthesis. NF is a key signalling molecule required for successful symbiosis with a legume host for atmospheric nitrogen fixation. To date, only two α1,6-FucT structures have been determined, both without any donor or acceptor molecule that could highlight the structural background of the catalytic mechanism. Here, the first crystal structures of α1,6-FucT in complex with its substrate GDP-Fucmore » and with GDP, which is a byproduct of the enzymatic reaction, are presented. The crystal of the complex with GDP-Fuc was obtained through soaking of native NodZ crystals with the ligand and its structure has been determined at 2.35 Å resolution. The fucose residue is exposed to solvent and is disordered. The enzyme–product complex crystal was obtained by cocrystallization with GDP and an acceptor molecule, penta-N-acetyl-l-glucosamine (penta-NAG). The structure has been determined at 1.98 Å resolution, showing that only the GDP molecule is present in the complex. In both structures the ligands are located in a cleft formed between the two domains of NodZ and extend towards the C-terminal domain, but their conformations differ significantly. The structures revealed that residues in three regions of the C-terminal domain, which are conserved among α1,2-, α1,6- and protein O-fucosyltransferases, are involved in interactions with the sugar-donor molecule. There is also an interaction with the side chain of Tyr45 in the N-terminal domain, which is very unusual for a GT-B-type glycosyltransferase. Only minor conformational changes of the protein backbone are observed upon ligand binding. The only exception is a movement of the

  13. Robotic navigation and ablation.

    PubMed

    Malcolme-Lawes, L; Kanagaratnam, P

    2010-12-01

    Robotic technologies have been developed to allow optimal catheter stability and reproducible catheter movements with the aim of achieving contiguous and transmural lesion delivery. Two systems for remote navigation of catheters within the heart have been developed; the first is based on a magnetic navigation system (MNS) Niobe, Stereotaxis, Saint-Louis, Missouri, USA, the second is based on a steerable sheath system (Sensei, Hansen Medical, Mountain View, CA, USA). Both robotic and magnetic navigation systems have proven to be feasible for performing ablation of both simple and complex arrhythmias, particularly atrial fibrillation. Studies to date have shown similar success rates for AF ablation compared to that of manual ablation, with many groups finding a reduction in fluoroscopy times. However, the early learning curve of cases demonstrated longer procedure times, mainly due to additional setup times. With centres performing increasing numbers of robotic ablations and the introduction of a pressure monitoring system, lower power settings and instinctive driving software, complication rates are reducing, and fluoroscopy times have been lower than manual ablation in many studies. As the demand for catheter ablation for arrhythmias such as atrial fibrillation increases and the number of centres performing these ablations increases, the demand for systems which reduce the hand skill requirement and improve the comfort of the operator will also increase.

  14. The Mass, Color, and Structural Evolution of Today’s Massive Galaxies Since z ˜ 5

    NASA Astrophysics Data System (ADS)

    Hill, Allison R.; Muzzin, Adam; Franx, Marijn; Clauwens, Bart; Schreiber, Corentin; Marchesini, Danilo; Stefanon, Mauro; Labbe, Ivo; Brammer, Gabriel; Caputi, Karina; Fynbo, Johan; Milvang-Jensen, Bo; Skelton, Rosalind E.; van Dokkum, Pieter; Whitaker, Katherine E.

    2017-03-01

    In this paper, we use stacking analysis to trace the mass growth, color evolution, and structural evolution of present-day massive galaxies ({log}({M}* /{M}⊙ )=11.5) out to z = 5. We utilize the exceptional depth and area of the latest UltraVISTA data release, combined with the depth and unparalleled seeing of CANDELS to gather a large, mass-selected sample of galaxies in the NIR (rest-frame optical to UV). Progenitors of present-day massive galaxies are identified via an evolving cumulative number density selection, which accounts for the effects of merging to correct for the systematic biases introduced using a fixed cumulative number density selection, and find progenitors grow in stellar mass by ≈ 1.5 {dex} since z = 5. Using stacking, we analyze the structural parameters of the progenitors and find that most of the stellar mass content in the central regions was in place by z˜ 2, and while galaxies continue to assemble mass at all radii, the outskirts experience the largest fractional increase in stellar mass. However, we find evidence of significant stellar mass build-up at r< 3 {kpc} beyond z> 4 probing an era of significant mass assembly in the interiors of present-day massive galaxies. We also compare mass assembly from progenitors in this study to the EAGLE simulation and find qualitatively similar assembly with z at r< 3 {kpc}. We identify z˜ 1.5 as a distinct epoch in the evolution of massive galaxies where progenitors transitioned from growing in mass and size primarily through in situ star formation in disks to a period of efficient growth in r e consistent with the minor merger scenario.

  15. The structure of (3R)-hydroxyacyl-acyl carrier protein dehydratase (FabZ) from Pseudomonas aeruginosa.

    PubMed

    Kimber, Matthew S; Martin, Fernando; Lu, Yingjie; Houston, Simon; Vedadi, Masoud; Dharamsi, Akil; Fiebig, Klaus M; Schmid, Molly; Rock, Charles O

    2004-12-10

    Type II fatty acid biosynthesis systems are essential for membrane formation in bacteria, making the constituent proteins of this pathway attractive targets for antibacterial drug discovery. The third step in the elongation cycle of the type II fatty acid biosynthesis is catalyzed by beta-hydroxyacyl-(acyl carrier protein) (ACP) dehydratase. There are two isoforms. FabZ, which catalyzes the dehydration of (3R)-hydroxyacyl-ACP to trans-2-acyl-ACP, is a universally expressed component of the bacterial type II system. FabA, the second isoform, as has more limited distribution in nature and, in addition to dehydration, also carries out the isomerization of trans-2- to cis-3-decenoyl-ACP as an essential step in unsaturated fatty acid biosynthesis. We report the structure of FabZ from the important human pathogen Pseudomonas aeruginosa at 2.5 A of resolution. PaFabZ is a hexamer (trimer of dimers) with the His/Glu catalytic dyad located within a deep, narrow tunnel formed at the dimer interface. Site-directed mutagenesis experiments showed that the obvious differences in the active site residues that distinguish the FabA and FabZ subfamilies of dehydratases do not account for the unique ability of FabA to catalyze isomerization. Because the catalytic machinery of the two enzymes is practically indistinguishable, the structural differences observed in the shape of the substrate binding channels of FabA and FabZ lead us to hypothesize that the different shapes of the tunnels control the conformation and positioning of the bound substrate, allowing FabA, but not FabZ, to catalyze the isomerization reaction.

  16. Electron temperature measurements inside the ablating plasma of gas-filled hohlraums at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrios, M. A.; Liedahl, D. A.; Schneider, M. B.

    The first measurement of the electron temperature (T{sub e}) inside a National Ignition Facility hohlraum is obtained using temporally resolved K-shell X-ray spectroscopy of a mid-Z tracer dot. Both isoelectronic- and interstage-line ratios are used to calculate the local T{sub e} via the collisional–radiative atomic physics code SCRAM [Hansen et al., High Energy Density Phys 3, 109 (2007)]. The trajectory of the mid-Z dot as it is ablated from the capsule surface and moves toward the laser entrance hole (LEH) is measured using side-on x-ray imaging, characterizing the plasma flow of the ablating capsule. Data show that the measured dotmore » location is farther away from the LEH in comparison to the radiation-hydrodynamics simulation prediction using HYDRA [Marinak et al., Phys. Plasmas 3, 2070 (1996)]. To account for this discrepancy, the predicted simulation T{sub e} is evaluated at the measured dot trajectory. The peak T{sub e}, measured to be 4.2 keV ± 0.2 keV, is ∼0.5 keV hotter than the simulation prediction.« less

  17. The Pitt Innovation Challenge (PInCh): Driving Innovation in Translational Research Through an Incentive-Based, Problem-Focused Competition.

    PubMed

    Fitzpatrick, Nicole Edgar; Maier, John; Yasko, Laurel; Mathias, David; Qua, Kacy; Wagner, Erika; Miller, Elizabeth; Reis, Steven E

    2017-05-01

    Translational research aims to move scientific discoveries across the biomedical spectrum from the laboratory to humans, and to ultimately transform clinical practice and public health policies. Despite efforts to accelerate translational research through national initiatives, several major hurdles remain. The authors created the Pitt Innovation Challenge (PInCh) as an incentive-based, problem-focused approach to solving identified clinical or public health problems at the University of Pittsburgh Clinical and Translational Science Institute in spring 2014. With input from a broad range of stakeholders, PInCh leadership arrived at the challenge question: How do we empower individuals to take control of their own health outcomes? The authors developed the PInCh's three-round proposal submission and review process as well as an online contest management tool to support the process. Ninety-two teams submitted video proposals in round one. Proposals included mobile applications (29; 32%), other information technology (19; 21%), and community program (22; 24%) solutions. Ten teams advanced to the final round, where three were awarded $100,000 to implement their solution over 12 months. In a 6-month follow-up survey, 6/11 (55%) team leaders stated the PInCh helped to facilitate connections outside their normal sphere of collaborators. Additional educational training sessions related to problem-focused research will be developed. The PInCh will be expanded to engage investment and industry communities to facilitate the translation of solutions to clinical practice via commercialization pathways. External organizations and other universities will be engaged to use the PInCh as a mechanism to fuel innovation in their spaces.

  18. Epicardial Radiofrequency Ablation Failure During Ablation Procedures for Ventricular Arrhythmias: Reasons and Implications for Outcomes.

    PubMed

    Baldinger, Samuel H; Kumar, Saurabh; Barbhaiya, Chirag R; Mahida, Saagar; Epstein, Laurence M; Michaud, Gregory F; John, Roy; Tedrow, Usha B; Stevenson, William G

    2015-12-01

    Radiofrequency ablation (RFA) from the epicardial space for ventricular arrhythmias is limited or impossible in some cases. Reasons for epicardial ablation failure and the effect on outcome have not been systematically analyzed. We assessed reasons for epicardial RFA failure relative to the anatomic target area and the type of heart disease and assessed the effect of failed epicardial RFA on outcome after ablation procedures for ventricular arrhythmias in a large single-center cohort. Epicardial access was attempted during 309 ablation procedures in 277 patients and was achieved in 291 procedures (94%). Unlimited ablation in an identified target region could be performed in 181 cases (59%), limited ablation was possible in 22 cases (7%), and epicardial ablation was deemed not feasible in 88 cases (28%). Reasons for failed or limited ablation were unsuccessful epicardial access (6%), failure to identify an epicardial target (15%), proximity to a coronary artery (13%), proximity to the phrenic nerve (6%), and complications (<1%). Epicardial RFA was impeded in the majority of cases targeting the left ventricular summit region. Acute complications occurred in 9%. The risk for acute ablation failure was 8.3× higher (4.5-15.0; P<0.001) after no or limited epicardial RFA compared with unlimited RFA, and patients with unlimited epicardial RFA had better recurrence-free survival rates (P<0.001). Epicardial RFA for ventricular arrhythmias is often limited even when pericardial access is successful. Variability of success is dependent on the target area, and the presence of factors limiting ablation is associated with worse outcomes. © 2015 American Heart Association, Inc.

  19. Outcomes of repeat catheter ablation using magnetic navigation or conventional ablation.

    PubMed

    Akca, Ferdi; Theuns, Dominic A M J; Abkenari, Lara Dabiri; de Groot, Natasja M S; Jordaens, Luc; Szili-Torok, Tamas

    2013-10-01

    After initial catheter ablation, repeat procedures could be necessary. This study evaluates the efficacy of the magnetic navigation system (MNS) in repeat catheter ablation as compared with manual conventional techniques (MANs). The results of 163 repeat ablation procedures were analysed. Ablations were performed either using MNS (n = 84) or conventional manual ablation (n = 79). Procedures were divided into four groups based on the technique used during the initial and repeat ablation procedure: MAN-MAN (n = 66), MAN-MNS (n = 31), MNS-MNS (n = 53), and MNS-MAN (n = 13). Three subgroups were analysed: supraventricular tachycardias (SVTs, n = 68), atrial fibrillation (AF, n = 67), and ventricular tachycardias (VT, n = 28). Recurrences were assessed during 19 ± 11 months follow-up. Overall, repeat procedures using MNS were successful in 89.0% as compared with 96.2% in the MAN group (P = ns). The overall recurrence rate was significantly lower using MNS (25.0 vs. 41.4%, P = 0.045). Acute success and recurrence rates for the MAN-MAN, MAN-MNS, MNS-MNS, and MNS-MAN groups were comparable. For the SVT subgroup a higher acute success rate was achieved using MAN (87.9 vs. 100.0%, P = 0.049). The use of MNS for SVT is associated with longer procedure times (205 ± 82 vs. 172 ± 69 min, P = 0.040). For AF procedure and fluoroscopy times were longer (257 ± 72 vs. 185 ± 64, P = 0.001; 59.5 ± 19.3 vs. 41.1 ± 18.3 min, P < 0.001). Less fluoroscopy was used for MNS-guided VT procedures (22.8 ± 14.7 vs. 41.2 ± 10.9, P = 0.011). Our data suggest that overall MNS is comparable with MAN in acute success after repeat catheter ablation. However, MNS is related to fewer recurrences as compared with MAN.

  20. X-ray Micro-Tomography of Ablative Heat Shield Materials

    NASA Technical Reports Server (NTRS)

    Panerai, Francesco; Ferguson, Joseph; Borner, Arnaud; Mansour, Nagi N.; Barnard, Harold S.; MacDowell, Alastair A.; Parkinson, Dilworth Y.

    2016-01-01

    X-ray micro-tomography is a non-destructive characterization technique that allows imaging of materials structures with voxel sizes in the micrometer range. This level of resolution makes the technique very attractive for imaging porous ablators used in hypersonic entry systems. Besides providing a high fidelity description of the material architecture, micro-tomography enables computations of bulk material properties and simulations of micro-scale phenomena. This presentation provides an overview of a collaborative effort between NASA Ames Research Center and Lawrence Berkeley National Laboratory, aimed at developing micro-tomography experiments and simulations for porous ablative materials. Measurements are carried using x-rays from the Advanced Light Source at Berkeley Lab on different classes of ablative materials used in NASA entry systems. Challenges, strengths and limitations of the technique for imaging materials such as lightweight carbon-phenolic systems and woven textiles are discussed. Computational tools developed to perform numerical simulations based on micro-tomography are described. These enable computations of material properties such as permeability, thermal and radiative conductivity, tortuosity and other parameters that are used in ablator response models. Finally, we present the design of environmental cells that enable imaging materials under simulated operational conditions, such as high temperature, mechanical loads and oxidizing atmospheres.Keywords: Micro-tomography, Porous media, Ablation

  1. Ablative Thermal Protection System Fundamentals

    NASA Technical Reports Server (NTRS)

    Beck, Robin A. S.

    2013-01-01

    This is the presentation for a short course on the fundamentals of ablative thermal protection systems. It covers the definition of ablation, description of ablative materials, how they work, how to analyze them and how to model them.

  2. TPS Ablator Technologies for Interplanetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.

    2004-01-01

    This slide presentation reviews the status of Thermal Protection System (TPS) Ablator technologies and the preparation for use in interplanetary spacecraft. NASA does not have adequate TPS ablatives and sufficient selection for planned missions. It includes a comparison of shuttle and interplanetary TPS requirements, the status of mainline TPS charring ablator materials, a summary of JSC SBIR accomplishments in developing advanced charring ablators and the benefits of SBIR Ablator/fabrication technology.

  3. Filamentation in the pinched column of the dense plasma focus

    NASA Astrophysics Data System (ADS)

    Kubes, P.; Paduch, M.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Rezac, K.; Zielinska, E.; Sadowski, M. J.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D.

    2017-03-01

    The paper describes the filamentary structure observed in the high-energy ultraviolet radiation for discharges performed at the hydrogen- or deuterium-filling and at the puffing of hydrogen, deuterium or helium, in a mega-ampere dense plasma-focus facility. The lifetime of this structure overcomes 50 ns. These filaments connect the surface of a pinched column with internal plasmoids formed at different combinations of filling and puffing gases and they should transport some current and plasma. During all the investigated deuterium shots, the fusion-produced neutrons were recorded. Therefore, deuterons should be present in the region of their acceleration, independent of the applied puffing of the gas. Simultaneously with the observed filaments, inside the dense plasma column small plasma-balls of mm-dimensions were observed, which had a similar lifetime (longer than the relaxation time) and quasi-stationary positions in the discharge volume. The observed filaments and balls might be a manifestation of the (i) discrete spatial structure of the current flowing through and around the dense plasma column and (ii) transport of the plasma from external layers to the central region. Their formation and visualization were easier due to the application of air admixtures in the puffed gas.

  4. Decreased short-interval intracortical inhibition correlates with better pinch strength in patients with stroke and good motor recovery.

    PubMed

    Ferreiro de Andrade, Karina Nocelo; Conforto, Adriana Bastos

    2018-02-06

    Deeper short-interval intracortical inhibition (SICI), a marker of GABA A activity, correlates with better motor performance in patients with moderate to severe hand impairments in the chronic phase after stroke. We evaluated the correlation between SICI in the affected hemisphere and pinch force of the paretic hand in well-recovered patients. We also investigated the correlation between SICI and pinch force in controls. Twenty-two subjects were included in the study. SICI was measured with a paired-pulse paradigm. The correlation between lateral pinch strength and SICI was assessed with Spearman's rho. There was a significant correlation (rho = 0.69, p = 0.014) between SICI and pinch strength in patients, but not in controls. SICI was significantly deeper in patients with greater hand weakness. These preliminary findings suggest that decreased GABA A activity in M1 AH correlates with better hand motor performance in well-recovered subjects with stroke in the chronic phase. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. [Ablation on the undersurface of a LASIK flap. Instrument and method for continuous eye tracking].

    PubMed

    Taneri, S; Azar, D T

    2007-02-01

    The risk of iatrogenic keratectasia after laser in situ keratomileusis (LASIK) increases with thinner posterior stromal beds. Ablations on the undersurface of a LASIK flap could only be performed without the guidance of an eye tracker, which may lead to decentration. A new method for laser ablation with flying spot lasers on the undersurface of a LASIK flap was developed that enables the use of an active eye tracker by utilizing a novel instrument. The first clinical results are reported. Patients wishing an enhancement procedure were eligible for a modified repeat LASIK procedure if the flaps cut in the initial procedure were thick enough to perform the intended additional ablation on the undersurface leaving at least 90 microm of flap thickness behind. (1) The horizontal axis and the center of the entrance pupil were marked on the epithelial side of the flap using gentian violet dye. (2) The flap was reflected on a newly designed flap holder which had a donut-shaped black marking. (3) The eye tracker was centered on the mark visible in transparency on the flap. (4) Ablation with a flying spot Bausch & Lomb Technolas 217z laser was performed on the undersurface of the flap with a superior hinge taking into account that in astigmatic ablations the cylinder axis had to be mirrored according to the formula: axis on the undersurface=180 degrees -axis on the stromal bed. (5) The flap was repositioned. Detection of the marking on the modified flap holder and continuous tracking instead of the real pupil was possible in all of the 12 eyes treated with this technique. It may be necessary to cover the real pupil during ablation in order not to confuse the eye tracker. Ablation could be performed without decentration or loss of best spectacle-corrected visual acuity. Refractive results in minor corrections were good without nomogram adjustment. Using this novel flap holder with a marking that is tracked instead of the real pupil, centered ablations with a flying spot laser

  6. Atomic scale structure and chemistry of interfaces by Z-contrast imaging and electron energy loss spectroscopy in the stem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGibbon, M.M.; Browning, N.D.; Chisholm, M.F.

    The macroscopic properties of many materials are controlled by the structure and chemistry at grain boundaries. A basic understanding of the structure-property relationship requires a technique which probes both composition and chemical bonding on an atomic scale. High-resolution Z-contrast imaging in the scanning transmission electron microscope (STEM) forms an incoherent image in which changes in atomic structure and composition across an interface can be interpreted directly without the need for preconceived atomic structure models. Since the Z-contrast image is formed by electrons scattered through high angles, parallel detection electron energy loss spectroscopy (PEELS) can be used simultaneously to provide complementarymore » chemical information on an atomic scale. The fine structure in the PEEL spectra can be used to investigate the local electronic structure and the nature of the bonding across the interface. In this paper we use the complimentary techniques of high resolution Z-contrast imaging and PEELS to investigate the atomic structure and chemistry of a 25{degree} symmetric tilt boundary in a bicrystal of the electroceramic SrTiO{sub 3}.« less

  7. Ion acceleration enhanced by target ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, S.; State Key Laboratory of Nuclear Physics and Technology, and Key Lab of HEDPS, CAPT, Peking University, Beijing 100871; Institute of Radiation, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden

    2015-07-15

    Laser proton acceleration can be enhanced by using target ablation, due to the energetic electrons generated in the ablation preplasma. When the ablation pulse matches main pulse, the enhancement gets optimized because the electrons' energy density is highest. A scaling law between the ablation pulse and main pulse is confirmed by the simulation, showing that for given CPA pulse and target, proton energy improvement can be achieved several times by adjusting the target ablation.

  8. Effect of Inductive Coil Geometry and Current Sheet Trajectory of a Conical Theta Pinch Pulsed Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Bonds, Kevin W.; Emsellem, Gregory D.

    2011-01-01

    Results are presented demonstrating the e ect of inductive coil geometry and current sheet trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc- tive plasma accelerators. The electromagnetic coupling between the inductive coil of the accelerator and a plasma current sheet is simulated, substituting a conical copper frustum for the plasma. The variation of system inductance as a function of plasma position is obtained by displacing the simulated current sheet from the coil while measuring the total inductance of the coil. Four coils of differing geometries were employed, and the total inductance of each coil was measured as a function of the axial displacement of two sep- arate copper frusta both having the same cone angle and length as the coil but with one compressed to a smaller size relative to the coil. The measured relationship between total coil inductance and current sheet position closes a dynamical circuit model that is used to calculate the resulting current sheet velocity for various coil and current sheet con gura- tions. The results of this model, which neglects the pinching contribution to thrust, radial propellant con nement, and plume divergence, indicate that in a conical theta pinch ge- ometry current sheet pinching is detrimental to thruster performance, reducing the kinetic energy of the exhausting propellant by up to 50% (at the upper bound for the parameter range of the study). The decrease in exhaust velocity was larger for coils and simulated current sheets of smaller half cone angles. An upper bound for the pinching contribution to thrust is estimated for typical operating parameters. Measurements of coil inductance for three di erent current sheet pinching conditions are used to estimate the magnetic pressure as a function of current sheet radial compression. The gas-dynamic contribution to axial acceleration is also estimated and shown to not compensate for the decrease in axial electromagnetic acceleration

  9. Laboratory Simulations of Micrometeoroid Ablation

    NASA Astrophysics Data System (ADS)

    Thomas, Evan Williamson

    Each day, several tons of meteoric material enters Earth's atmosphere, the majority of which consist of small dust particles (micrometeoroids) that completely ablate at high altitudes. The dust input has been suggested to play a role in a variety of phenomena including: layers of metal atoms and ions, nucleation of noctilucent clouds, effects on stratospheric aerosols and ozone chemistry, and the fertilization of the ocean with bio-available iron. Furthermore, a correct understanding of the dust input to the Earth provides constraints on inner solar system dust models. Various methods are used to measure the dust input to the Earth including satellite detectors, radar, lidar, rocket-borne detectors, ice core and deep-sea sediment analysis. However, the best way to interpret each of these measurements is uncertain, which leads to large uncertainties in the total dust input. To better understand the ablation process, and thereby reduce uncertainties in micrometeoroid ablation measurements, a facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to accelerate iron particles to relevant meteoric velocities (10-70 km/s). The particles are then introduced into a chamber pressurized with a target gas, and they partially or completely ablate over a short distance. An array of diagnostics then measure, with timing and spatial resolution, the charge and light that is generated in the ablation process. In this thesis, we present results from the newly developed ablation facility. The ionization coefficient, an important parameter for interpreting meteor radar measurements, is measured for various target gases. Furthermore, experimental ablation measurements are compared to predictions from commonly used ablation models. In light of these measurements, implications to the broader context of meteor ablation are discussed.

  10. 193 nm ArF laser ablation and patterning of chitosan thin films

    NASA Astrophysics Data System (ADS)

    Aesa, A. A.; Walton, C. D.

    2018-06-01

    This paper reports laser ablation studies on spin-coated biopolymer chitosan films, β-l,4-1inked 2-amino-2-deoxy- d-glucopyranose. Chitosan has been irradiated using an ArF laser emitting at 193 nm. An ablation threshold of F T = 85±8 mJ cm-2 has been determined from etch rate measurements. Laser-ablated chitosan is characterised using white light interferometry, scanning electron microscopy, and thermo-gravimetric analysis. Laser ablation of chitosan is discussed in terms of thermal and photoacoustic mechanisms. Heat transfer is simulated to assist in the understanding of laser-irradiated chitosan using a finite-element method and the software package COMSOL Multi-Physics™. As a demonstrator, a micro-array of square structures in the form of a crossed grating has been fabricated by laser ablation using a mask projection scanning method. The initial investigations show no evidence of thermal damage occurring to the adjacent chitosan when operating at a moderately low laser fluence of 110 mJ cm-2.

  11. Ventricular fibrillation occurring after atrioventricular node ablation despite minimal difference between pre- and post-ablation heart rates.

    PubMed

    Squara, F; Theodore, G; Scarlatti, D; Ferrari, E

    2017-02-01

    We report the case of an 82-year-old man presenting with ventricular fibrillation (VF) occurring acutely after atrioventricular node (AVN) ablation. This patient had severe valvular cardiomyopathy, chronic atrial fibrillation (AF), and underwent prior to the AVN ablation a biventricular implantable cardiac defibrillator positioning. The VF was successfully cardioverted with one external electrical shock. What makes this presentation original is that the pre-ablation spontaneous heart rate in AF was slow (84 bpm), and that VF occurred after ablation despite a minimal heart rate drop of only 14 bpm. VF is the most feared complication of AVN ablation, but it had previously only been described in case of acute heart rate drop after ablation of at least 30 bpm (and more frequently>50 bpm). This case report highlights the fact that VF may occur after AVN ablation regardless of the heart rate drop, rendering temporary fast ventricular pacing mandatory whatever the pre-ablation heart rate. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Structural Health Monitoring for a Z-Type Special Vehicle

    PubMed Central

    Yuan, Chaolin; Ren, Liang; Li, Hongnan

    2017-01-01

    Nowadays there exist various kinds of special vehicles designed for some purposes, which are different from regular vehicles in overall dimension and design. In that case, accidents such as overturning will lead to large economical loss and casualties. There are still no technical specifications to follow to ensure the safe operation and driving of these special vehicles. Owing to the poor efficiency of regular maintenance, it is more feasible and effective to apply real-time monitoring during the operation and driving process. In this paper, the fiber Bragg grating (FBG) sensors are used to monitor the safety of a z-type special vehicle. Based on the structural features and force distribution, a reasonable structural health monitoring (SHM) scheme is presented. Comparing the monitoring results with the finite element simulation results guarantees the accuracy and reliability of the monitoring results. Large amounts of data are collected during the operation and driving progress to evaluate the structural safety condition and provide reference for SHM systems developed for other special vehicles. PMID:28587161

  13. Thermal Ablation of T1c Renal Cell Carcinoma: A Comparative Assessment of Technical Performance, Procedural Outcome, and Safety of Microwave Ablation, Radiofrequency Ablation, and Cryoablation.

    PubMed

    Zhou, Wenhui; Arellano, Ronald S

    2018-04-06

    To evaluate perioperative outcomes of thermal ablation with microwave (MW), radiofrequency (RF), and cryoablation for stage T1c renal cell carcinoma (RCC). A retrospective analysis of 384 patients (mean age, 71 y; range, 22-88 y) was performed between October 2006 and October 2016. Mean radius, exophytic/endophytic, nearness to collecting system or sinus, anterior/posterior, and location relative to polar lines; preoperative aspects and dimensions used for anatomic classification; and centrality index scores were 6.3, 7.9, and 2.7, respectively. Assessment of pre- and postablation serum blood urea nitrogen, creatinine, and estimated glomerular filtration rate was performed to assess functional outcomes. Linear regression analyses were performed to compare sedation medication dosages among the three treatment cohorts. Univariable and multivariable logistic regression analyses were performed to compare rates of residual disease and complications among treatment modalities. A total of 437 clinical stage T1N0M0 biopsy-proven RCCs measuring 1.2-6.9 cm were treated with computed tomography (CT)-guided MW ablation (n = 44; 10%), RF ablation (n = 347; 79%), or cryoablation (n = 46; 11%). There were no significant differences in patient demographic or tumor characteristics among cohorts. Complication rates and immediate renal function changes were similar among the three ablation modalities (P = .46 and P = .08, respectively). MW ablation was associated with significantly decreased ablation time (P < .05), procedural time (P < .05), and dosage of sedative medication (P < .05) compared with RF ablation and cryoablation. CT-guided percutaneous MW ablation is comparable to RF ablation or cryoablation for the treatment of stage T1N0M0 RCC with regard to treatment response and is associated with shorter treatment times and less sedation than RF ablation or cryoablation. In addition, the safety profile of CT-guided MW ablation is noninferior to those of RF ablation or

  14. [Reliability and validity of the analysis of hand grip and pinch force in isometric and isokinetic conditions].

    PubMed

    Benaglia, P G; Franchignoni, F; Ferriero, G; Zebellin, G; Sartorio, F

    1999-01-01

    Strength measurement of the hand grip is at the core of most protocols of functional assessment of the upper limb and in rehabilitation plays a major role in the analysis of treatment efficacy and patients' occupational ability. The aims of this study were to: a) verify the repeatability of strength measurements made during performance of the hand grip and three types of pinch, carried out under isometric and isokinetic conditions; b) compare maximal isometric strength with the corresponding isokinetic value for each of the manoeuvres studied; c) investigate the correlations between the strength expressed in the different manoeuvres, under both isometric and isokinetic conditions. We studied 14 voluntary subjects over three sessions conducted at 48-hr intervals, employing a computerized isokinetic dynamometer Lido WorkSet equipped with device N(o) 21 for the study of pinch (lateral pinch, pulp pinch, chuck pinch) and device N(o) 52 for the grip study. Isometric contractions resulted stronger than isokinetic ones, and the hand grip was found to be the manoeuvre able to produce most strength. The repeatability of each strength measurement test over the three days was high (Intraclass Correlation Coefficients: 0.89-0.93). Correlations between the isometric and isokinetic performance for each of the manoeuvres examined were always high (Pearson's r coefficients: 0.89-0.95) as were those between the different manoeuvres, whether performed in isometric or isokinetic modality (r: 0.60-0.94).

  15. Atorvastatin can ameliorate left atrial stunning induced by radiofrequency ablation for atrial fibrillation.

    PubMed

    Xie, Ruiqin; Yang, Yingtao; Cui, Wei; Yin, Hongning; Zheng, Hongmei; Zhang, Jidong; You, Ling

    2017-09-01

    The objective of this study was to study the functional changes of the left atrium after radiofrequency ablation treatment for atrial fibrillation and the therapeutic effect of atorvastatin. Fifty-eight patients undergoing radiofrequency ablation for atrial fibrillation were randomly divided into non-atorvastatin group and atorvastatin group. Patients in the atorvastatin group were treated with atorvastatin 20 mg p.o. per night in addition to the conventional treatment of atrial fibrillation; patients in the non-atorvastatin group received conventional treatment of atrial fibrillation only. Echocardiography was performed before radiofrequency ablation operation and 1 week, 2 weeks, 3 weeks, and 4 weeks after operation. Two-dimensional ultrasound speckle tracking imaging system was used to measure the structural indexes of the left atrium. Results indicated that there was no significant change for indexes representing the structural status of the left atrium within a month after radiofrequency ablation (P > 0.05); however, there were significant changes for indexes representing the functional status of the left atrium. There were also significant changes in indexes reflecting left atrial strain status: the S and SRs of atorvastatin group were higher than those of non-atorvastatin group (P < 0.05). In summary, atorvastatin could improve left atrial function and shorten the duration of atrial stunning after radiofrequency ablation of atrial fibrillation.

  16. Characterisation of Plasma Filled Rod Pinch electron beam diode operation

    NASA Astrophysics Data System (ADS)

    MacDonald, James; Bland, Simon; Chittenden, Jeremy

    2016-10-01

    The plasma filled rod pinch diode (aka PFRP) offers a small radiographic spot size and a high brightness source. It operates in a very similar to plasma opening switches and dense plasma focus devices - with a plasma prefill, supplied via a number of simple coaxial plasma guns, being snowploughed along a thin rod cathode, before detaching at the end. The aim of this study is to model the PFRP and understand the factors that affect its performance, potentially improving future output. Given the dependence on the PFRP on the prefill, we are making detailed measurements of the density (1015-1018 cm-3), velocity, ionisation and temperature of the plasma emitted from a plasma gun/set of plasma guns. This will then be used to provide initial conditions to the Gorgon 3D MHD code, and the dynamics of the entire rod pinch process studied.

  17. Low temperature ablation models made by pressure/vacuum application

    NASA Technical Reports Server (NTRS)

    Fischer, M. C.; Heier, W. C.

    1970-01-01

    Method developed employs high pressure combined with strong vacuum force to compact ablation models into desired conical shape. Technique eliminates vapor hazard and results in high material density providing excellent structural integrity.

  18. Perioral Rejuvenation With Ablative Erbium Resurfacing.

    PubMed

    Cohen, Joel L

    2015-11-01

    Since the introduction of the scanning full-field erbium laser, misconceptions regarding ablative erbium resurfacing have resulted in its being largely overshadowed by ablative fractional resurfacing. This case report illustrates the appropriateness of full-field erbium ablation for perioral resurfacing. A patient with profoundly severe perioral photodamage etched-in lines underwent full-field ablative perioral resurfacing with an erbium laser (Contour TRL, Sciton Inc., Palo Alto, CA) that allows separate control of ablation and coagulation. The pre-procedure consultations included evaluation of the severity of etched-in lines, and discussion of patient goals, expectations, and appropriate treatment options, as well as a review of patient photos and post-treatment care required. The author generally avoids full-field erbium ablation in patients with Fitzpatrick type IV and above. For each of 2 treatment sessions (separated by approximately 4 months), the patient received (12 cc plain 2% lidodaine) sulcus blocks before undergoing 4 passes with the erbium laser at 150 μ ablation, no coagulation, and then some very focal 30 μ ablation to areas of residual lines still visualized through the pinpoint bleeding. Similarly, full-field ablative resurfacing can be very reliable for significant wrinkles and creping in the lower eyelid skin--where often a single treatment of 80 μ ablation, 50 μ coagulation can lead to a nice improvement. Standardized digital imaging revealed significant improvement in deeply etched rhytides without significant adverse events. For appropriately selected patients requiring perioral (or periorbital) rejuvenation, full-field ablative erbium resurfacing is safe, efficacious and merits consideration.

  19. GP0.4 from bacteriophage T7: in silico characterisation of its structure and interaction with E. coli FtsZ.

    PubMed

    Simpkin, Adam J; Rigden, Daniel J

    2016-07-13

    Proteins produced by bacteriophages can have potent antimicrobial activity. The study of phage-host interactions can therefore inform small molecule drug discovery by revealing and characterising new drug targets. Here we characterise in silico the predicted interaction of gene protein 0.4 (GP0.4) from the Escherichia coli (E. coli) phage T7 with E. coli filamenting temperature-sensitive mutant Z division protein (FtsZ). FtsZ is a tubulin homolog which plays a key role in bacterial cell division and that has been proposed as a drug target. Using ab initio, fragment assembly structure modelling, we predicted the structure of GP0.4 with two programs. A structure similarity-based network was used to identify a U-shaped helix-turn-helix candidate fold as being favoured. ClusPro was used to dock this structure prediction to a homology model of E. coli FtsZ resulting in a favourable predicted interaction mode. Alternative docking methods supported the proposed mode which offered an immediate explanation for the anti-filamenting activity of GP0.4. Importantly, further strong support derived from a previously characterised insertion mutation, known to abolish GP0.4 activity, that is positioned in close proximity to the proposed GP0.4/FtsZ interface. The mode of interaction predicted by bioinformatics techniques strongly suggests a mechanism through which GP0.4 inhibits FtsZ and further establishes the latter's druggable intrafilament interface as a potential drug target.

  20. Optimization of a rod pinch diode radiography source at 2.3 MV

    NASA Astrophysics Data System (ADS)

    Menge, P. R.; Johnson, D. L.; Maenchen, J. E.; Rovang, D. C.; Oliver, B. V.; Rose, D. V.; Welch, D. R.

    2003-08-01

    Rod pinch diodes have shown considerable capability as high-brightness flash x-ray sources for penetrating dynamic radiography. The rod pinch diode uses a small diameter (0.4-2 mm) anode rod extended through a cathode aperture. When properly configured, the electron beam born off of the aperture edge can self-insulate and pinch onto the tip of the rod creating an intense, small x-ray source. Sandia's SABRE accelerator (2.3 MV, 40 Ω, 70 ns) has been utilized to optimize the source experimentally by maximizing the figure of merit (dose/spot diameter2) and minimizing the diode impedance droop. Many diode parameters have been examined including rod diameter, rod length, rod material, cathode aperture diameter, cathode thickness, power flow gap, vacuum quality, and severity of rod-cathode misalignment. The configuration producing the greatest figure of merit uses a 0.5 mm diameter gold rod, a 6 mm rod extension beyond the cathode aperture (diameter=8 mm), and a 10 cm power flow gap to produce up to 3.5 rad (filtered dose) at 1 m from a 0.85 mm x-ray on-axis spot (1.02 mm at 3° off axis). The resultant survey of parameter space has elucidated several physics issues that are discussed.