Sample records for z-pinch dynamics modeling

  1. Dynamical analysis of surface-insulated planar wire array Z-pinches

    NASA Astrophysics Data System (ADS)

    Li, Yang; Sheng, Liang; Hei, Dongwei; Li, Xingwen; Zhang, Jinhai; Li, Mo; Qiu, Aici

    2018-05-01

    The ablation and implosion dynamics of planar wire array Z-pinches with and without surface insulation are compared and discussed in this paper. This paper first presents a phenomenological model named the ablation and cascade snowplow implosion (ACSI) model, which accounts for the ablation and implosion phases of a planar wire array Z-pinch in a single simulation. The comparison between experimental data and simulation results shows that the ACSI model could give a fairly good description about the dynamical characteristics of planar wire array Z-pinches. Surface insulation introduces notable differences in the ablation phase of planar wire array Z-pinches. The ablation phase is divided into two stages: insulation layer ablation and tungsten wire ablation. The two-stage ablation process of insulated wires is simulated in the ACSI model by updating the formulas describing the ablation process.

  2. Analytic model for the dynamic Z-pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R., E-mail: roberto.piriz@uclm.es; Sun, Y. B.; Tahir, N. A.

    2015-06-15

    A model is presented for describing the cylindrical implosion of a shock wave driven by an accelerated piston. It is based in the identification of the acceleration of the shocked mass with the acceleration of the piston. The model yields the separate paths of the piston and the shock. In addition, by considering that the shocked region evolves isentropically, the approximate profiles of all the magnitudes in the shocked region are obtained. The application to the dynamic Z-pinch is presented and the results are compared with the well known snowplow and slug models which are also derived as limiting casesmore » of the present model. The snowplow model is seen to yield a trajectory in between those of the shock and the piston. Instead, the neglect of the inertial effects in the slug model is seen to produce a too fast implosion, and the pressure uniformity is shown to lead to an unphysical instantaneous piston stopping when the shock arrives to the axis.« less

  3. Dynamics of conical wire array Z-pinch implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ampleford, D. J.; Lebedev, S. V.; Bland, S. N.

    2007-10-15

    A modification of the wire array Z pinch, the conical wire array, has applications to the understanding of wire array implosions and potentially to pulse shaping relevant to inertial confinement fusion. Results are presented from imploding conical wire array experiments performed on university scale 1 MA generators--the MAGPIE generator (1 MA, 240 ns) at Imperial College London [I. H. Mitchell et al., Rev. Sci Instrum. 67, 1533 (1996)] and the Nevada Terawatt Facility's Zebra generator (1 MA, 100 ns) at the University of Nevada, Reno [B. Bauer et al., in Dense Z-Pinches, edited by N. Pereira, J. Davis, and P.more » Pulsifer (AIP, New York, 1997), Vol. 409, p. 153]. This paper will discuss the implosion dynamics of conical wire arrays. Data indicate that mass ablation from the wires in this complex system can be reproduced with a rocket model with fixed ablation velocity. Modulations in the ablated plasma are present, the wavelength of which is invariant to a threefold variation in magnetic field strength. The axial variation in the array leads to a zippered precursor column formation. An initial implosion of a magnetic bubble near the cathode is followed by the implosion zippering upwards. Spectroscopic data demonstrating a variation of plasma parameters (e.g., electron temperature) along the Z-pinch axis is discussed, and experimental data are compared to magnetohydrodynamic simulations.« less

  4. Effect of Initial Conditions on Gas-Puff Z-Pinch Dynamics.

    NASA Astrophysics Data System (ADS)

    Peterson, Gus Gordon

    This dissertation concerns the effects initial conditions have on the dynamics of an imploded, annular gas-puff z-pinch. The influence of axial magnetic fields, nozzle size and composition, different gases, pre-ionization, and electrode design on pinch quality and x-ray yield is investigated. The experiment uses a 5-kJ capacitor bank to deliver 0.35 MA to the pinch load in 1.4 mu rm s. This research establishes parameters important to increasing the x-ray yield of dense z-pinches. The initial stage of the implosion is diagnosed with a framing camera that photographs visible light emitted from z-pinch gas breakdown. Data from subsequent stages of the pinch is recorded with a B-dot probe, filtered x-ray diodes, an x-ray filtered pinhole camera, and a nitrogen laser interferometer. Applied axial magnetic fields of ~100 gauss increase average x-ray yield by more than 20%. A substantial increase of K-shell x -ray yield of more than 200% was obtained by increasing the energy delivered to the plasma by enlarging the nozzle diameter from 4 to 5 cm. The use of a Teflon outer-mantle for the nozzle resulted in less uniform gas breakdown as compared to graphite and copper outer-mantles, but x-ray yield and final state uniformity were not reduced. Lower Z gases showed poorer breakdown uniformity. Pre-ionization improved the uniformity of helium and neon breakdown but did not appear to affect subsequent dynamics. X-ray yield was significantly higher using a knife-edge annular anode, as opposed to a flat stainless steel honeycomb anode. Annular anodes with diameters more than a few millimeters different than the nozzle diameter produced low quality pinches with substantially lower x-ray yield.

  5. Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility

    NASA Astrophysics Data System (ADS)

    Huang, Xian Bin; Ren, Xiao Dong; Dan, Jia Kun; Wang, Kun Lun; Xu, Qiang; Zhou, Shao Tong; Zhang, Si Qun; Cai, Hong Chun; Li, Jing; Wei, Bing; Ji, Ce; Feng, Shu Ping; Wang, Meng; Xie, Wei Ping; Deng, Jian Jun

    2017-09-01

    The preliminary experimental results of Z-pinch dynamic hohlraums conducted on the Primary Test Stand (PTS) facility are presented herein. Six different types of dynamic hohlraums were used in order to study the influence of load parameters on radiation characteristics and implosion dynamics, including dynamic hohlraums driven by single and nested arrays with different array parameters and different foams. The PTS facility can deliver a current of 6-8 MA in the peak current and 60-70 ns in the 10%-90% rising time to dynamic hohlraum loads. A set of diagnostics monitor the implosion dynamics of plasmas, the evolution of shock waves in the foam and the axial/radial X-ray radiation, giving the key parameters characterizing the features of dynamic hohlraums, such as the trajectory and related velocity of shock waves, radiation temperature, and so on. The experimental results presented here put our future study on Z-pinch dynamic hohlraums on the PTS facility on a firm basis.

  6. Z-Pinch Plasma Neutron Sources

    DTIC Science & Technology

    2006-03-24

    deuterium into 9 to 14 keV (around 10 keV), which is well in the fusion energy range we are interested in. To make plasma radiation sources work, we...showing the 1-D dynamics of the pinch plasma implosion, temperature, fusion energy production and deposition for the conditions of shot Z1422. The minimum...histories of ion and electron temperatures, fusion energy production and energy deposition in ID RMHD run modeling deuterium shot Z1422. In our simulations

  7. Z-Pinch Pulsed Plasma Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Adams, Robert B.; Fabisinski, Leo; Fincher, Sharon; Maples, C. Dauphne; Miernik, Janie; Percy, Tom; Statham, Geoff; Turner, Matt; Cassibry, Jason; hide

    2010-01-01

    Fusion-based propulsion can enable fast interplanetary transportation. Magneto-inertial fusion (MIF) is an approach which has been shown to potentially lead to a low cost, small reactor for fusion break even. The Z-Pinch/dense plasma focus method is an MIF concept in which a column of gas is compressed to thermonuclear conditions by an axial current (I approximates 100 MA). Recent advancements in experiments and the theoretical understanding of this concept suggest favorable scaling of fusion power output yield as I(sup 4). This document presents a conceptual design of a Z-Pinch fusion propulsion system and a vehicle for human exploration. The purpose of this study is to apply Z-Pinch fusion principles to the design of a propulsion system for an interplanetary spacecraft. This study took four steps in service of that objective; these steps are identified below. 1. Z-Pinch Modeling and Analysis: There is a wealth of literature characterizing Z-Pinch physics and existing Z-Pinch physics models. In order to be useful in engineering analysis, simplified Z-Pinch fusion thermodynamic models are required to give propulsion engineers the quantity of plasma, plasma temperature, rate of expansion, etc. The study team developed these models in this study. 2. Propulsion Modeling and Analysis: While the Z-Pinch models characterize the fusion process itself, propulsion models calculate the parameters that characterize the propulsion system (thrust, specific impulse, etc.) The study team developed a Z-Pinch propulsion model and used it to determine the best values for pulse rate, amount of propellant per pulse, and mixture ratio of the D-T and liner materials as well as the resulting thrust and specific impulse of the system. 3. Mission Analysis: Several potential missions were studied. Trajectory analysis using data from the propulsion model was used to determine the duration of the propulsion burns, the amount of propellant expended to complete each mission considered. 4

  8. Dynamics of current sheath in a hollow electrode Z-pinch discharge using slug model

    NASA Astrophysics Data System (ADS)

    Abd Al-Halim, Mohamed A.; Afify, M. S.

    2017-03-01

    The hollow electrode Z-pinch (HEZP) experiment is a new construction for the electromagnetic propulsion application in which the plasma is formed by the discharge between a plate and ring electrodes through which the plasma is propelled. The experimental results for 8 kV charging voltage shows that the peak discharge current is about 109 kA, which is in good agreement with the value obtained from the simulation in the slug model that simulates the sheath dynamics in the HEZP. The fitting of the discharge current from the slug model indicates that the total system inductance is 238 nH which is relatively a high static inductance accompanied with a deeper pinch depth indicating that the fitted anomalous resistance would be about 95 mΩ. The current and mass factors vary with the changing the gas pressure and the charging voltage. The current factor is between 0.4 and 0.5 on average which is relatively low value. The mass factor decreases by increasing the gas pressure indicating that the sheath is heavy to be driven by the magnetic pressure, which is also indicated from the decreases of the drive factor, hence the radial sheath velocity decreases. The plasma inductance and temperature increase with the increase of the drive factor while the minimum pinch radius decreases.

  9. About plasma points' generation in Z-pinch

    NASA Astrophysics Data System (ADS)

    Afonin, V. I.; Potapov, A. V.; Lazarchuk, V. P.; Murugov, V. M.; Senik, A. V.

    1997-05-01

    The streak tube study results (at visible and x-ray ranges) of dynamics of fast Z-pinch formed at explosion of metal wire in diode of high current generator are presented. Amplitude of current in the load reached ˜180 kA at increase time ˜50 ns. The results' analysis points to capability of controlling hot plasma points generation process in Z-pinch.

  10. Implosion dynamics of condensed Z-pinch at the Angara-5-1 facility

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. V.; Grabovski, E. V.; Gritsuk, A. N.; Volobuev, I. V.; Kazakov, E. D.; Kalinin, Yu. G.; Korolev, V. D.; Laukhin, Ya. I.; Medovshchikov, S. F.; Mitrofanov, K. N.; Oleinik, G. M.; Pimenov, V. G.; Smirnova, E. A.; Ustroev, G. I.; Frolov, I. N.

    2017-08-01

    The implosion dynamics of a condensed Z-pinch at load currents of up to 3.5 MA and a current rise time of 100 ns was studied experimentally at the Angara-5-1 facility. To increase the energy density, 1- to 3-mm-diameter cylinders made of a deuterated polyethylene-agar-agar mixture or microporous deuterated polyethylene with a mass density of 0.03-0.5 g/cm3 were installed in the central region of the loads. The plasma spatiotemporal characteristics were studied using the diagnostic complex of the Angara-5-1 facility, including electron-optical streak and frame imaging, time-integrated X-ray imaging, soft X-ray (SXR) measurements, and vacuum UV spectroscopy. Most information on the plasma dynamics was obtained using a ten-frame X-ray camera ( E > 100 eV) with an exposure of 4 ns. SXR pulses were recorded using photoemissive vacuum X-ray detectors. The energy characteristics of neutron emission were measured using the time-offlight method with the help of scintillation detectors arranged along and across the pinch axis. The neutron yield was measured by activation detectors. The experimental results indicate that the plasma dynamics depends weakly on the load density. As a rule, two stages of plasma implosion were observed. The formation of hot plasma spots in the initial stage of plasma expansion from the pinch axis was accompanied by short pulses of SXR and neutron emission. The neutron yield reached (0.4-3) × 1010 neutrons/shot and was almost independent of the load density due to specific features of Z-pinch dynamics.

  11. Z-Pinch Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Miernik, Janie

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Shorter trips are better for humans in the harmful radiation environment of deep space. Nuclear propulsion and power plants can enable high Ispand payload mass fractions because they require less fuel mass. Fusion energy research has characterized the Z-Pinch dense plasma focus method. (1) Lightning is form of pinched plasma electrical discharge phenomena. (2) Wire array Z-Pinch experiments are commonly studied and nuclear power plant configurations have been proposed. (3) Used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, nuclear weapon x-rays are simulated through Z-Pinch phenomena.

  12. Numerical simulation of fiber and wire array Z-pinches with Trac-II

    NASA Astrophysics Data System (ADS)

    Reisman, David Barton

    Trac-II is a two dimensional axisymmetric resistive MHD code. It simulates all three spatial components (r, z, φ) of the magnetic field and fluid velocity vectors, and the plasma is treated as a single fluid with two temperatures (Te,Ti). In addition, it can optionally include a self-consistent external circuit. Recent modifications to the code include the addition of the 3-T radiation model, a 4-phase (solid- liquid-vapor-plasma) equation of state model (QEOS), a 4- phase electrical/thermal conductivity model, and an implicit solution of poloidal (Bz,Br) magnetic field diffusion. These changes permit a detailed study of fiber and wire array Z-pinches. Specifically, Trac-II is used to study the wire array Z-pinch at the PBFA-Z pulse power generator at Sandia National Laboratory. First, in 1-D we examine the behavior of a single wire in the Z-pinch. Then, using these results as initial radial conditions in 2-D, we investigate the dynamics of wire array configurations in the r-z and r-θ plane. In the r- z plane we examine the growth of the m = 0 or ``sausage'' instability in single wires within the array. In the r-θ plane we examine the merging behavior between neighboring wires. Special emphasis is placed on trying to explain how instability growth affects the performance of the Z-pinch. Lastly, we introduce Trac-III, a 3-D MHD code, and illustrate the m = 1 or ``kink'' instability. We also discuss how Trac-III can be modified to simulate the wire array Z-pinch.

  13. Recombination-pumped XUV lasing in capillary discharges and dynamic z-pinches

    NASA Astrophysics Data System (ADS)

    Pöckl, M.; Hebenstreit, M.; Fertner, R.; Neger, T.; Aumayr, F.

    1996-08-01

    A fully time-dependent collisional - radiative model is employed to calculate relevant population densities in a recombining carbon/hydrogen z-pinch plasma. In particular, the dependence of the small signal gain G on the maximum electron temperature and cooling rate, as well as the influence of Lyman-0022-3727/29/8/005/img8 reabsorption, are studied. Although in conditions typical for dynamic z-pinches the maximum electron temperature and cooling rates would, in principle, be sufficiently high, gain on the Balmer-0022-3727/29/8/005/img8 transition is strongly reduced by Lyman-0022-3727/29/8/005/img8 reabsorption. In order to investigate vacuum spark capillary discharges, the system of rate equations is coupled with balance equations of the plasma energy and the total number of heavy particles. The resulting set of equations is solved self-consistently. Results are presented that show the systematic dependence of the small signal gain on electrical input power, wall material, and capillary geometry. High gain coefficients 0022-3727/29/8/005/img11 could be achieved by modelling high-voltage discharges with short ringing periods through capillaries containing boron or carbon. While the maximum achievable gain coefficient for lithium is rather poor 0022-3727/29/8/005/img12 the duration of population inversion would be long enough (a few tens of nanoseconds) to make multi-pass operation possible.

  14. Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Ning, E-mail: ding-ning@iapcm.ac.cn; Zhang, Yang, E-mail: ding-ning@iapcm.ac.cn; Xiao, Delong, E-mail: ding-ning@iapcm.ac.cn

    2014-12-15

    Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosionmore » phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the “Qiangguang I” facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of

  15. Study of the internal structure, instabilities, and magnetic fields in the dense Z-pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Vladimir V.

    Z-pinches are sources of hot dense plasma which generates powerful x-ray bursts and can been applied to various areas of high-energy-density physics (HEDP). The 26-MA Z machine is at the forefront of many of these applications, but important aspects of HEDP have been studied on generators at the 1 MA current level. Recent development of laser diagnostics and upgrade of the Leopard laser at Nevada Terawatt Facility (NTF) give new opportunities for the dense Z-pinch study. The goal of this project is the investigation of the internal structure of the stagnated Z pinch including sub-mm and micron-scale instabilities, plasma dynamics,more » magnetic fields, and hot spots formation and initiation. New plasma diagnostics will be developed for this project. A 3D structure and instabilities of the pinch will be compared with 3D MHD and spectroscopic modeling and theoretical analysis. The structure and dynamics of stagnated Z pinches has been studied with x-ray self-radiation diagnostics which derive a temperature map of the pinch with a spatial resolution of 70-150 µm. The regular laser diagnostics at 532 nm does not penetrate in the dense pinch due to strong absorption and refraction in trailing plasma. Recent experiments at NTF showed that shadowgraphy at the UV wavelength of 266 nm unfolds a fine structure of the stagnated Z-pinch with unprecedented detail. We propose to develop laser UV diagnostics for Z pinches with a spatial resolution <5 μm to study the small-scale plasma structures, implement two-frame shadowgraphy/interferometry, and develop methods for investigation of strong magnetic fields. New diagnostics will help to understand better basic physical processes in Z pinches. A 3D internal structure of the pinch and characteristic instabilities will be studied in wire arrays with different configurations and compared with 3D MHD simulations and analytical models. Mechanisms of “enhanced heating” of Z-pinch plasma will be studied. Fast dynamics of

  16. Energy balance in a Z pinch with suppressed Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Baksht, R. B.; Oreshkin, V. I.; Rousskikh, A. G.; Zhigalin, A. S.

    2018-03-01

    At present Z-pinch has evolved into a powerful plasma source of soft x-ray. This paper considers the energy balance in a radiating metallic gas-puff Z pinch. In this type of Z pinch, a power-law density distribution is realized, promoting suppression of Rayleigh-Taylor (RT) instabilities that occur in the pinch plasma during compression. The energy coupled into the pinch plasma, is determined as the difference between the total energy delivered to the load from the generator and the magnetic energy of the load inductance. A calibrated voltage divider and a Rogowski coil were used to determine the coupled energy and the load inductance. Time-gated optical imaging of the pinch plasma showed its stable compression up to the stagnation phase. The pinch implosion was simulated using a 1D two-temperature radiative magnetohydrodynamic code. Comparison of the experimental and simulation results has shown that the simulation adequately describes the pinch dynamics for conditions in which RT instability is suppressed. It has been found that the proportion of the Ohmic heating in the energy balance of a Z pinch with suppressed RT instability is determined by Spitzer resistance and makes no more than ten percent.

  17. Overview of the Fusion Z-Pinch Experiment FuZE

    NASA Astrophysics Data System (ADS)

    Weber, T. R.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; UW/LLNL Team

    2016-10-01

    Previously, the ZaP device, at the University of Washington, demonstrated sheared flow stabilized (SFS) Z-pinch plasmas. Instabilities that have historically plagued Z-pinch plasma confinement were mitigated using sheared flows generated from a coaxial plasma gun of the Marshall type. Based on these results, a new SFS Z-pinch experiment, the Fusion Z-pinch Experiment (FuZE), has been constructed. FuZE is designed to investigate the scaling of SFS Z-pinch plasmas towards fusion conditions. The experiment will be supported by high fidelity physics modeling using kinetic and fluid simulations. Initial plans are in place for a pulsed fusion reactor following the results of FuZE. Notably, the design relies on proven commercial technologies, including a modest discharge current (1.5 MA) and voltage (40 kV), and liquid metal electrodes. Supported by DoE FES, NNSA, and ARPA-E ALPHA.

  18. Dynamic characteristics of azimuthally correlated structures of axial instability of wire-array Z pinches

    NASA Astrophysics Data System (ADS)

    Dan, Jia Kun; Huang, Xian Bin; Ren, Xiao Dong; Chen, Guang Hua; Xu, Qiang; Wang, Kun Lun; Ouyang, Kai; Wei, Bing

    2017-04-01

    Particular attention was placed on observations of dynamic properties of the azimuthally correlated structures of axial instability of wire-array Z pinches, which were conducted at 10-MA (for short circuit load) pulsed power generator-the Primary Test Stand facility. Not well fabricated loads, which were expected to preset bubble or spike in plasma, were used to degrade the implosion symmetry in order to magnify the phenomenon of instability. The side-view sequence of evolution of correlation given by laser shadowgraphy clearly demonstrates the dynamic processes of azimuthal correlation of the bubble and spike. A possible mechanism presented here suggests that it is the substantial current redistribution especially in regions surrounding the bubble/spike resulting from change of inductance due to the presence of the bubble/spike that plays an essential part in establishment of azimuthal correlation of wire array and liner Z pinches.

  19. Neutron generation from Z-pinches

    NASA Astrophysics Data System (ADS)

    Vikhrev, V. V.; Korolev, V. D.

    2007-05-01

    Recent advances in both experimental and theoretical studies on neutron generation in various Z-pinch facilities are reviewed. The main methods for enhancing neutron emission from the Z-pinch plasma are described, and the problems of igniting a thermonuclear burn wave in this plasma are discussed.

  20. Review of effects of dielectric coatings on electrical exploding wires and Z pinches

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Li, Xingwen; Li, Mo; Li, Yang; Qiu, Aici

    2017-10-01

    As the most powerful x-ray source in the laboratories, the wire array Z pinches have been of great relevance to inertial confinement fusions, laboratory astrophysics, and other high-energy density applications. In order to produce x-ray with greater power and higher efficiency, the dynamics of wire array has been investigated extensively, and various methods have been proposed to improve the implosion quality of the wire array. This review focuses on the experimental and theoretical investigations regarding the effects of the dielectric coatings on electrical exploding wires and Z pinches. Since the early 2000, the electrical wire explosion related to the first stage of the wire array Z pinches has been studied extensively, and the results indicated that the dielectric coatings can significantly increase the joule energy deposition into a wire in the initial stage, and even the corona free explosion of tungsten wires can be achieved. Recently, there is an increasing interest in the dynamics of insulated wire array Z pinches. By applying dielectric coatings, the ablation process is suppressed, the x-ray start time is delayed, and the possibility of multi-peak radiation is decreased. This review is organized by the evolution dynamics of wire array Z pinches, and a broad introduction to relevant scientific concepts and various other applications are presented. According to the current research status, the challenges, opportunities and further developments of Z pinch loads using dielectric coatings are proposed to further promote the researches and their applications.

  1. Z-Pinch Fusion for Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SPIELMAN,RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  2. Analytic model to estimate thermonuclear neutron yield in z-pinches using the magnetic Noh problem

    NASA Astrophysics Data System (ADS)

    Allen, Robert C.

    The objective was to build a model which could be used to estimate neutron yield in pulsed z-pinch experiments, benchmark future z-pinch simulation tools and to assist scaling for breakeven systems. To accomplish this, a recent solution to the magnetic Noh problem was utilized which incorporates a self-similar solution with cylindrical symmetry and azimuthal magnetic field (Velikovich, 2012). The self-similar solution provides the conditions needed to calculate the time dependent implosion dynamics from which batch burn is assumed and used to calculate neutron yield. The solution to the model is presented. The ion densities and time scales fix the initial mass and implosion velocity, providing estimates of the experimental results given specific initial conditions. Agreement is shown with experimental data (Coverdale, 2007). A parameter sweep was done to find the neutron yield, implosion velocity and gain for a range of densities and time scales for DD reactions and a curve fit was done to predict the scaling as a function of preshock conditions.

  3. Radiation characteristics and implosion dynamics of tungsten wire array Z-pinches on the YANG accelerator

    NASA Astrophysics Data System (ADS)

    Huang, Xian-Bin; Yang, Li-Bing; Li, Jing; Zhou, Shao-Tong; Ren, Xiao-Dong; Zhang, Si-Qun; Dan, Jia-Kun; Cai, Hong-Chun; Duan, Shu-Chao; Chen, Guang-Hua; Zhang, Zheng-Wei; Ouyang, Kai; Li, Jun; Zhang, Zhao-Hui; Zhou, Rong-Guo; Wang, Gui-Lin

    2012-05-01

    We investigated the radiation characteristics and implosion dynamics of low-wire-number cylindrical tungsten wire array Z-pinches on the YANG accelerator with a peak current 0.8-1.1 MA and a rising time ~ 90 ns. The arrays are made up of (8-32) × 5 μm wires 6/10 mm in diameter and 15 mm in height. The highest X-ray power obtained in the experiments was about 0.37 TW with the total radiation energy ~ 13 kJ and the energy conversion efficiency ~ 9% (24 × 5 μm wires, 6 mm in diameter). Most of the X-ray emissions from tungsten Z-pinch plasmas were distributed in the spectral band of 100-600 eV, peaked at 250 and 375 eV. The dominant wavelengths of the wire ablation and the magneto-Rayleigh—Taylor instability were found and analyzed through measuring the time-gated self-emission and laser interferometric images. Through analyzing the implosion trajectories obtained by an optical streak camera, the run-in velocities of the Z-pinch plasmas at the end of the implosion phase were determined to be about (1.3-2.1) × 107 cm/s.

  4. Overview of the FuZE Fusion Z-Pinch Experiment

    NASA Astrophysics Data System (ADS)

    Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Golingo, R. P.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.; McLean, H. S.; Higginson, D. P.; Schmidt, A.; Tummel, K. K.

    2017-10-01

    Successful results of the sheared flow stabilized (SFS) Z-pinch from ZaP and ZaP-HD have motivated the new FuZE project to scale the plasma performance to fusion conditions. The SFS Z-pinch is immune to the instabilities that plague the conventional Z-pinch yet maintains the same favorable radial scaling. The plasma density and temperature increase rapidly with decreasing plasma radius, which naturally leads to a compact configuration at fusion conditions. The SFS Z-pinch is being investigated as a novel approach to a compact fusion device in a collaborative ARPA-E ALPHA project with the University of Washington and Lawrence Livermore National Laboratory. The project includes an experimental effort coupled with high-fidelity physics modeling using kinetic and fluid simulations. Along with scaling law analysis, computational and experimental results from the FuZE device are presented. This work is supported by an award from US ARPA-E.

  5. Finite-Larmor-radius effects on z-pinch stability

    NASA Astrophysics Data System (ADS)

    Scheffel, Jan; Faghihi, Mostafa

    1989-06-01

    The effect of finite Larmor radius (FLR) on the stability of m = 1 small-axial-wavelength kinks in a z-pinch with purely poloidal magnetic field is investigated. We use the incompressible FLR MHD model; a collisionless fluid model that consistently includes the relevant FLR terms due to ion gyroviscosity, Hall effect and electron diamagnetism. With FLR terms absent, the Kadomtsev criterion of ideal MHD, 2r dp/dr + m2B2/μ0 ≥ 0 predicts instability for internal modes unless the current density is singular at the centre of the pinch. The same result is obtained in the present model, with FLR terms absent. When the FLR terms are included, a normal-mode analysis of the linearized equations yields the following results. Marginally unstable (ideal) modes are stabilized by gyroviscosity. The Hall term has a damping (but not absolutely stabilizing) effect - in agreement with earlier work. On specifying a constant current and particle density equilibrium, the effect of electron diamagnetism vanishes. For a z-pinch with parameters relevant to the EXTRAP experiment, the m = 1 modes are then fully stabilized over the crosssection for wavelengths λ/a ≤ 1, where a denotes the pinch radius. As a general z-pinch result a critical line-density limit Nmax = 5 × 1018 m-1 is found, above which gyroviscous stabilization near the plasma boundary becomes insufficient. This limit corresponds to about five Larmor radii along the pinch radius. The result holds for wavelengths close to, or smaller than, the pinch radius and for realistic equilibrium profiles. This limit is far below the required limit for a reactor with contained alpha particles, which is in excess of 1020 m-1.

  6. Performance of a Liner-on-Target Injector for Staged Z-Pinch Experiments

    NASA Astrophysics Data System (ADS)

    Conti, F.; Valenzuela, J. C.; Narkis, J.; Krasheninnikov, I.; Beg, F.; Wessel, F. J.; Ruskov, E.; Rahman, H. U.; McGee, E.

    2016-10-01

    We present the design and characterization of a compact liner-on-target injector, used in the Staged Z-pinch experiments conducted on the UNR-NTF Zebra Facility. Previous experiments and analysis indicate that high-Z gas liners produce a uniform and efficient implosion on a low-Z target plasma. The liner gas shell is produced by an annular solenoid valve and a converging-diverging nozzle designed to achieve a collimated, supersonic, Mach-5 flow. The on-axis target is produced by a coaxial plasma gun, where a high voltage pulse is applied to ionize neutral gas and accelerate the plasma by the J-> × B-> force. Measurements of the liner and target dynamics, resolved by interferometry in space and time, fast imaging, and collection of the emitted light, are presented. The results are compared to the predictions from Computational Fluid Dynamics and MHD simulations that model the injector. Optimization of the design parameters, for upcoming Staged Z-pinch experiments, will be discussed. Advanced Research Projects Agency - Energy, DE-AR0000569.

  7. Fusion in a staged Z-pinch

    NASA Astrophysics Data System (ADS)

    Wessel, F. J.; Rahman, H. U.; Ney, P.; Valenzuela, J.; Beg, F.; McKee, E.; Darling, T.

    2016-03-01

    This paper is dedicated to Norman Rostoker, our (FJW and HUR) mentor and long-term collaborator, who will always be remembered for the incredible inspiration that he has provided us. Norman's illustrious career dealt with a broad range of fundamental-physics problems and we were fortunate to have worked with him on many important topics: intense-charged-particle beams, field-reversed configurations, and Z-pinches. Rostoker 's group at the University of CA, Irvine was well known for having implemented many refinements to the Z-pinch, that make it more stable, scalable, and efficient, including the development of: the gas-puff Z-pinch [1], which provides for the use of an expanded range of pinch-load materials; the gas-mixture Z-pinch [2], which enhances the pinch stability and increases its radiation efficiency; e-beam pre-ionization [3], which enhances the uniformity of the initial-breakdown process in a gas pinch; magnetic-flux-compression [4, 5], which allows for the amplification of an axial-magnetic field Bz; the Zpinch [6], which predicts fusion in a pinch-on-fiber configuration; the Staged Z-pinch (SZP) [7], which allows for the amplification of the pinch self-magnetic field, Bθ , in addition to a Bz, and leads to a stable implosion and high-gain fusion [8, 9, 10]. This paper describes the physical basis for a magneto-inertial compression in a liner-on-target SZP [11]. Initially a high-atomic-number liner implodes under the action of the J →×B → , Lorentz Force. As the implosion becomes super Alfvénic, magnetosonic waves form, transporting current and magnetic field through the liner toward the interface of the low-atomic-number target. The target implosion remains subsonic with its surface bounded by a stable-shock front. Shock waves that pass into the target provide a source of target plasma pre-heat. At peak compression the assembly is compressed by liner inertia, with flux compression producing an intense-magnetic field near the target

  8. Designs and Plans for MAIZE: a 1 MA LTD-Driven Z-Pinch

    NASA Astrophysics Data System (ADS)

    Gilgenbach, R. M.; Gomez, M. R.; Zier, J.; Tang, W.; French, D. M.; Hoff, B. W.; Jordan, N.; Cruz, E.; Lau, Y. Y.; Fowler-Guzzardo, T.; Meisel, J.; Mazarakis, M. G.; Cuneo, M. E.; Johnston, M. D.; Mehlhorn, T. A.; Kim, A. A.; Sinebryukhov, V. A.

    2007-11-01

    We present designs and experimental plans of the first 1 MA z-pinch in the USA to be driven by a Linear Transformer Driver (LTD). The Michigan Accelerator for Inductive Z-pinch Experiments, (MAIZE), is based on the LTD developed at the Institute for High Current Electronics, utilizing 80 capacitors and 40 spark gap switches to deliver a 1 MA, 100 kV pulse with <100 ns risetime. Designs will be presented of a low-inductance MITL terminated in a wire-array z-pinch. Initial, planned experiments will evaluate the LTD driving time-changing inductance of imploding 4-16 wire-array z-pinches. Wire ablation dynamics, axial-correlations and instability development will be explored. *This work was supported by U. S. DoE through Sandia National Laboratories award number 240985 to the University of Michigan. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  9. On the Heating of Ions in Noncylindrical Z-Pinches

    NASA Astrophysics Data System (ADS)

    Svirsky, E. B.

    2018-01-01

    The method proposed here for analyzing processes in a hot plasma of noncylindrical Z-pinches is based on separation of the group of high-energy ions into a special fraction. Such ions constitute an insignificant fraction ( 10%) of the total volume of the Z-pinch plasma, but these ions contribute the most to the formation of conditions in which the pinch becomes a source of nuclear fusion products and X-ray radiation. The method allows a quite correct approach to obtaining quantitative estimates of the plasma parameters, the nuclear fusion energy yield, and the features of neutron fluxes in experiments with Z-pinches.

  10. Measurement of Radiation Symmetry in Z-Pinch Driven Hohlraums

    NASA Astrophysics Data System (ADS)

    Hanson, David L.

    2001-10-01

    The z-pinch driven hohlraum (ZPDH) is a promising approach to high yield inertial confinement fusion currently being characterized in experiments on the Sandia Z accelerator [1]. In this concept [2], x rays are produced by an axial z-pinch in a primary hohlraum at each end of a secondary hohlraum. A fusion capsule in the secondary is imploded by a symmetric x-ray flux distribution, effectively smoothed by wall reemission during transport to the capsule position. Capsule radiation symmetry, a critical issue in the design of such a system, is influenced by hohlraum geometry, wall motion and time-dependent albedo, as well as power balance and pinch timing between the two z-pinch x-ray sources. In initial symmetry studies on Z, we used solid low density burnthrough spheres to diagnose highly asymmetric, single-sided-drive hohlraum geometries. We then applied this technique to the more symmetric double z-pinch geometry [3]. As a result of design improvements, radiation flux symmetry in Z double-pinch wire array experiments now exceeds the measurement sensitivity of this self-backlit foam ball symmetry diagnostic (15% max-min flux asymmetry). To diagnose radiation symmetry at the 2 - 5% level attainable with our present ZPDH designs, we are using high-energy x rays produced by the recently-completed Z-Beamlet laser backlighter for point-projection imaging of thin-wall implosion and symmetry capsules. We will present the results of polar flux symmetry measuremets on Z for several ZPDH capsule geometries together with radiosity and radiation-hydrodynamics simulations for comparison. [1] M. E. Cuneo et al., Phys. Plasmas 8,2257(2001); [2] J. H. Hammer et al., Phys. Plasmas 6,2129(1999); [3] D. L. Hanson et al., Bull. Am. Phys. Soc. 45,360(2000).

  11. 2D Kinetic Particle in Cell Simulations of a Shear-Flow Stabilized Z-Pinch

    NASA Astrophysics Data System (ADS)

    Tummel, Kurt; Higginson, Drew; Schmidt, Andrea; Link, Anthony; McLean, Harry; Shumlak, Uri; Nelson, Brian; Golingo, Raymond; Claveau, Elliot; Lawrence Livermore National Lab Team; University of Washington Team

    2016-10-01

    The Z-pinch is a relatively simple and attractive potential fusion reactor design, but attempts to develop such a reactor have consistently struggled to overcome Z-pinch instabilities. The ``sausage'' and ``kink'' modes are among the most robust and prevalent Z-pinch instabilities, but theory and simulations suggest that axial flow-shear, dvz / dr ≠ 0 , can suppress these modes. Experiments have confirmed that Z-pinch plasmas with embedded axial flow-shear display a significantly enhanced resilience to the sausage and kink modes at a demonstration current of 50kAmps. A new experiment is under way to test the concept at higher current, and efforts to model these plasmas are being expanded. The performance and stability of these devices will depend on features like the plasma viscosity, anomalous resistivity, and finite Larmor radius effects, which are most accurately characterized in kinetic models. To predict these features, kinetic simulations using the particle in cell code LSP are now in development, and initial benchmarking and 2D stability analyses of the sausage mode are presented here. These results represent the first kinetic modeling of the flow-shear stabilized Z-pinch. This work is funded by the USDOE/ARPAe Alpha Program. Prepared by LLNL under Contract DE-AC52-07NA27344.

  12. Current redistribution and generation of kinetic energy in the stagnated Z pinch.

    PubMed

    Ivanov, V V; Anderson, A A; Papp, D; Astanovitskiy, A L; Talbot, B R; Chittenden, J P; Niasse, N

    2013-07-01

    The structure of magnetic fields was investigated in stagnated wire-array Z pinches using a Faraday rotation diagnostic at the wavelength of 266 nm. The distribution of current in the pinch and trailing material was reconstructed. A significant part of current can switch from the main pinch to the trailing plasma preheated by x-ray radiation of the pinch. Secondary implosions of trailing plasma generate kinetic energy and provide enhanced heating and radiation of plasma at stagnation. Hot spots in wire-array Z pinches also provide enhanced radiation of the Z pinch. A collapse of a single hot spot radiates 1%-3% of x-ray energy of the Z pinch with a total contribution of hot spots of 10%-30%.

  13. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SANFORD,THOMAS W. L.

    2000-05-23

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here.

  14. ZaP-HD: High Energy Density Z-Pinch Plasmas using Sheared Flow Stabilization

    NASA Astrophysics Data System (ADS)

    Golingo, R. P.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Hughes, M. C.; Kim, B.; Ross, M. P.; Weed, J. R.

    2015-11-01

    The ZaP-HD flow Z-pinch project investigates scaling the flow Z-pinch to High Energy Density Plasma, HEDP, conditions by using sheared flow stabilization. ZaP used a single power supply to produce 100 cm long Z-pinches that were quiescent for many radial Alfven times and axial flow-through times. The flow Z-pinch concept provides an approach to achieve HED plasmas, which are dimensionally large and persist for extended durations. The ZaP-HD device replaces the single power supply from ZaP with two separate power supplies to independently control the plasma flow and current in the Z-pinch. Equilibrium is determined by diagnostic measurements of the density with interferometry and digital holography, the plasma flow and temperature with passive spectroscopy, the magnetic field with surface magnetic probes, and plasma emission with optical imaging. The diagnostics fully characterize the plasma from its initiation in the coaxial accelerator, through the pinch, and exhaust from the assembly region. The plasma evolution is modeled with high resolution codes: Mach2, WARPX, and NIMROD. Experimental results and scaling analyses are presented. This work is supported by grants from the U.S. Department of Energy and the U.S. National Nuclear Security Administration.

  15. A Multiple Z-Pinch Configuration for the Generation of High-Density, Magnetized Plasmas

    NASA Astrophysics Data System (ADS)

    Tarditi, Alfonso G.

    2015-11-01

    The z-pinch is arguably the most straightforward and economical approach for the generation and confinement of hot plasmas, with a long history of theoretical investigations and experimental developments. While most of the past studies were focused on countering the natural tendency of z-pinches to develop instabilities, this study attempts to take advantage of those unstable regimes to form a quasi-stable plasma, with higher density and temperature, possibly of interest for a fusion reactor concept. For this purpose, a configuration with four z-pinch discharges, with axis parallel to each other and symmetrically positioned, is considered. Electrodes for the generation of the discharges and magnetic coils are arranged to favor the formation of concave discharge patterns. The mutual attraction from the co-streaming discharge currents enhances this pattern, leading to bent plasma streams, all nearing towards the axis. This configuration is intended to excite and sustain a ``kink'' unstable mode for each z-pinch, eventually producing either plasmoid structures, detached from each discharge, or sustained kink patterns: both these cases appear to lead to plasmas merging in the central region. The feasibility of this approach in creating a higher density, hotter, meta-stable plasma regime is investigated computationally, addressing both the kink excitation phase and the dynamics of the converging plasma columns.

  16. α Heating in a Stagnated Z-pinch

    NASA Astrophysics Data System (ADS)

    Appelbe, Brian; Chittenden, Jeremy

    2009-01-01

    A computational investigation of a scheme for magneto-inertial confinement fusion in a Z-pinch is carried out. In the scheme implosion of a deuterium-tritium fuel mass is preceded by formation of a hotspot containing warm, dense plasma on axis. The presence of the hotspot increases energy yield. Compression of the hotspot by the main fuel mass initiates thermonuclear burn. There is significant heating of the plasma by thermonuclear α particles which are confined by the strong magnetic field of the Z-pinch.

  17. A reassessment study of multi-material-shell gas puff z-pinches as a pulsed neutron source on the sandia ZR

    NASA Astrophysics Data System (ADS)

    Chong, Y. K.; Velikovich, A. L.; Thornhil, J. W.; Giuliani, J. L.; Knapp, P.; Jennings, C.

    2013-10-01

    Over the last few years, numerous 1D and 2D MHD simulation studies of deuterium (D) based double-shell gas-puff Z-pinch implosions driven by the Sandia ZR accelerator have been carried out to assess the Z-pinch as a pulsed thermal fusion neutron source. In these studies, an ad-hoc time-dependent shunt impedance model was used within the external driving circuit model in order to account for the unresolved current loss in the MITL and the load. In this study, we incorporate an improved ZR circuit model recently formulated based on the recent Sandia argon gas-puff experiment circuit data into the multi-material version of the Mach +DDTCRE RMHD code. We reinvestigate the effects of multidimensional structure and nonuniform gradients as well as the outer- and inner-shell material interaction on the implosion physics and dynamics of both D-on-D and argon-on-D Z-pinch loads using the model. Then, we characterize the neutron production performance of the Z-pinch loads as a function of total mass, mass ratio and/or radius toward their optimization as a pulsed thernonuclear neutron source. Work supported by DOE/NNSA. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's NNSA under contract DE-AC04-94AL85000.

  18. Optimization of Capsule Symmetry in Z-Pinch Driven Hohlraums

    NASA Astrophysics Data System (ADS)

    Vesey, R. A.; Cuneo, M.; Hanson, D.; Porter, J.; Mehlhorn, T.; Ruggles, L.; Simpson, W.; Vargas, M.; Hammer, J.; Landen, O.

    1999-11-01

    The uniformity of the radiation flux incident on the capsule is a critical issue for indirect drive fusion using the z-pinch driven hohlraum high-yield concept(J.H. Hammer et al., Phys. Plas. 6), 2129 (1999).. Experiments on the Z accelerator at Sandia have demonstrated the ability to diagnose the uniformity of the flux striking a foam ball (surrogate capsule)(P.A. Amendt et al., Phys. Plas. 4), 1862 (1997); S.G. Glendinning et al. Rev. Sci. Instrum. 70, 536 (1999).. These single-sided drive experiments have been modeled using radiosity and radiation-hydrodynamics codes, yielding agreement with the measured ablation rate vs. angle on the foam ball. Flux uniformity at the 1-2% level needed for high-convergence capsule implosions requires a 2-sided drive (top and bottom z-pinch) configuration. Constrained optimization methods have identified hohlraum geometries with improved symmetry.

  19. A short-pulse mode for the SPHINX LTD Z-pinch driver

    NASA Astrophysics Data System (ADS)

    D'Almeida, Thierry; Lassalle, Francis; Zucchini, Frederic; Loyen, Arnaud; Morell, Alain; Chuvatin, Alexander

    2015-11-01

    The SPHINX machine is a 6MA, 1 μs, LTD Z-pinch driver at CEA Gramat (France) and primarily used for studying radiation effects. Different power amplification concepts were examined in order to reduce the current rise time without modifying the generator discharge scheme, including the Dynamic Load Current Multiplier (DLCM) proposed by Chuvatin. A DLCM device, capable of shaping the current pulse without reducing the rise time, was developed at CEA. This device proved valuable for isentropic compression experiments in cylindrical geometry. Recently, we achieved a short pulse operation mode by inserting a vacuum closing switch between the DLCM and the load. The current rise time was reduced to ~300 ns. We explored the use of a reduced-height wire array for the Dynamic Flux Extruder in order to improve the wire array compression rate and increase the efficiency of the current transfer to the load. These developments are presented. Potential benefits of these developments for future Z pinch experiments are discussed.

  20. The inverse skin effect in the Z-pinch and plasma focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usenko, P. L., E-mail: otd4@expd.vniief.ru; Gaganov, V. V.

    The inverse skin effect and its influence on the dynamics of high-current Z-pinch and plasma focus discharges in deuterium are analyzed. It is shown that the second compression responsible for the major fraction of the neutron yield can be interpreted as a result of the inverse skin effect resulting in the axial concentration of the longitudinal current density and the appearance of a reversed current in the outer layers of plasma pinches. Possible conditions leading to the enhancement of the inverse skin effect and accessible for experimental verification by modern diagnostics are formulated.

  1. A non-LTE kinetic model for quick analysis of K-shell spectra from Z-pinch plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J., E-mail: s.duan@163.com; Huang, X. B., E-mail: s.duan@163.com; Cai, H. C., E-mail: s.duan@163.com

    Analyzing and modeling K-shell spectra emitted by low-to moderate-atomic number plasma is a useful and effective way to retrieve temperature density of z-pinch plasmas. In this paper, a non-LTE population kinetic model for quick analysis of K-shell spectra was proposed. The model contains ionization stages from bare nucleus to neutral atoms and includes all the important atomic processes. In the present form of the model, the plasma is assumed to be both optically thin and homogeneous with constant temperature and density, and only steady-state situation is considered. According to the detailed calculations for aluminum plasmas, contours of ratios of certainmore » K-shell lines in electron temperature and density plane as well as typical synthesized spectra were presented and discussed. The usefulness of the model is demonstrated by analyzing the spectrum from a neon gas-puff Z-pinch experiment performed on a 1 MA pulsed-power accelerator.« less

  2. High energy density Z-pinch plasmas using flow stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. Amore » sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results

  3. Polytropic scaling of a flow Z-pinch

    NASA Astrophysics Data System (ADS)

    Hughes, M. C.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Kim, B.; Ross, M. P.; Weed, J. R.

    2015-11-01

    The ZaP Flow Z-Pinch project investigates the use of velocity shear to mitigate MHD instabilities. The ZaP-HD experiment produces 50 cm long pinches of varying radii. The power to the experiment is split between the plasma formation and acceleration process and the pinch assembly and compression process. Once the pinch is formed, low magnetic fluctuations indicate a quiescent, long-lived pinch. The split power supply allows more control of the pinch current than previous machine iterations, with a designed range from 50 to 150 kA. Radial force balance leads to the Bennett relation which indicates that as the pinch compresses due to increasing currents, the plasma pressure and/or linear density must change. Through ion spectroscopy and digital holographic interferometry coupled with magnetic measurements of the pinch current, the components of the Bennett relation can be fully measured. A scaling relation is then assumed to follow a polytrope as the pinch pressure, initially approximately 250 kPa, increases from an initially formed state to much higher values, approaching 100 MPa. A preliminary analysis of pinch scaling is shown corroborating with other diagnostics on the machine along with extrapolations to required currents for an HEDLP machine. This work is supported by grants from the U.S. Department of Energy and the U.S. National Nuclear Security Administration.

  4. Linear Transformer Drivers for Z-pinch Based Propulsion

    NASA Technical Reports Server (NTRS)

    Adams, Robert; Seidler, William; Giddens, Patrick; Fabisinski, Leo; Cassibry, Jason

    2017-01-01

    The MSFC/UAH team has been developing of a novel power management and distribution system called a Linear Transformer Driver (LTD). LTD's hold the promise of dramatically reducing the required mass to drive a z-pinch by replacing the capacitor banks which constitute half the mass of the entire system. The MSFC?UAH tea, is developing this technology in hope of integrating it with the Pulsed Fission Fusion (PuFF) propulsion concept. High-Voltage pulsed power systems used for Z-Pinch experimentation have in the past largely been based on Marx Generators. Marx generators deliver the voltage and current required for the Z-Pinch, but suffer from two significant drawbacks when applied to a flight system: they are very massive, consisting of high-voltage capacitor banks insulated in oil-filled tanks and they do not lend themselves to rapid pulsing. The overall goal of Phase 2 is to demonstrate the construction of a higher voltage stack from a number of cavities each of the design proven in Phase 1 and to characterize and understand the techniques for designing the stack. The overall goal of Phase 3 is to demonstrate the feasibility of constructing a higher energy cavity from a number of smaller LTD stacks, to characterize and understand the way in which the constituent stacks combine, and to extend this demonstration LTD to serve as the basis for a 64 kJ pulse generator for Z-Pinch experiments.

  5. Measurement and analysis of x-ray absorption in Al and MgF2 plasmas heated by Z-pinch radiation.

    PubMed

    Rochau, Gregory A; Bailey, J E; Macfarlane, J J

    2005-12-01

    High-power Z pinches on Sandia National Laboratories' Z facility can be used in a variety of experiments to radiatively heat samples placed some distance away from the Z-pinch plasma. In such experiments, the heating radiation spectrum is influenced by both the Z-pinch emission and the re-emission of radiation from the high-Z surfaces that make up the Z-pinch diode. To test the understanding of the amplitude and spectral distribution of the heating radiation, thin foils containing both Al and MgF2 were heated by a 100-130 TW Z pinch. The heating of these samples was studied through the ionization distribution in each material as measured by x-ray absorption spectra. The resulting plasma conditions are inferred from a least-squares comparison between the measured spectra and calculations of the Al and Mg 1s-->2p absorption over a large range of temperatures and densities. These plasma conditions are then compared to radiation-hydrodynamics simulations of the sample dynamics and are found to agree within 1sigma to the best-fit conditions. This agreement indicates that both the driving radiation spectrum and the heating of the Al and MgF2 samples is understood within the accuracy of the spectroscopic method.

  6. The microscopic Z-pinch process of current-carrying rarefied deuterium plasma shell

    NASA Astrophysics Data System (ADS)

    Ning, Cheng; Feng, Zhixing; Xue, Chuang; Li, Baiwen

    2015-02-01

    For insight into the microscopic mechanism of Z-pinch dynamic processes, a code of two-dimensional particle-in-cell (PIC) simulation has been developed in cylindrical coordinates. In principle, the Z-pinch of current-carrying rarefied deuterium plasma shell has been simulated by means of this code. Many results related to the microscopic processes of the Z-pinch are obtained. They include the spatio-temporal distributions of electromagnetic field, current density, forces experienced by the ions and electrons, positions and energy distributions of particles, and trailing mass and current. In radial direction, the electric and magnetic forces exerted on the electrons are comparable in magnitude, while the forces exerted on the ions are mainly the electric forces. So in the Z-pinch process, the electrons are first accelerated in Z direction and get higher velocities; then, they are driven inwards to the axis at the same time by the radial magnetic forces (i.e., Lorentz forces) of them. That causes the separations between the electrons and ions because the ion mass is much larger than the electron's, and in turn a strong electrostatic field is produced. The produced electrostatic field attracts the ions to move towards the electrons. When the electrons are driven along the radial direction to arrive at the axis, they shortly move inversely due to the static repellency among them and their tiny mass, while the ions continue to move inertially inwards, and later get into stagnation, and finally scatter outwards. Near the stagnation, the energies of the deuterium ions mostly range from 0.3 to 6 keV, while the electron energies are mostly from 5 to 35 keV. The radial components, which can contribute to the pinched plasma temperature, of the most probable energies of electron and ion at the stagnation are comparable to the Bennett equilibrium temperature (about 1 keV), and also to the highest temperatures of electron and ion obtained in one dimensional radiation

  7. Producing High-Performance, Stable, Sheared-Flow Z-Pinches in the FuZE project

    NASA Astrophysics Data System (ADS)

    Golingo, R. P.; Shumlak, U.,; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; University of Washington (UW) Collaboration; Lawrence Livermore National Laboratory (LLNL) Collaboration

    2017-10-01

    The Fusion Z-Pinch Experiment (FuZE) has made significant strides towards generating high-performance, stable Z-pinch plasmas with goals of ne = 1018 cm-3 and T =1 keV. The Z-pinch plasmas are stabilized with a sheared axial flow that is driven by a coaxial accelerator. The new FuZE device has been constructed and reproduces the major scientific achievements the ZaP project at the University of Washington; ne = 1016 cm-3,T = 100 eV, r<1 cm, and tstable >20 μs. These parameters are measured with an array of magnetic field probes, spectroscopy, and fast framing cameras. The plasma parameters are achieved using a small fraction of the maximum energy storage and gas injection capability of the FuZE device. Higher density, ne = 5×1017 cm-3, and temperature, T = 500 eV, Z-pinch plasmas are formed by increasing the pinch current. At the higher voltages and currents, the ionization rates in the accelerator increase. By modifying the neutral gas profile in the accelerator, the plasma flow from the accelerator is maintained, driving the flow shear. Formation and sustainment of the sheared-flow Z-pinch plasma will be discussed. Experimental data demonstrating high performance plasmas in a stable Z-pinches will be shown. This work is supported by an award from US ARPA-E.

  8. Particle drift model for Z-pinch-driven magneto-Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Dan, Jia Kun; Xu, Qiang; Wang, Kun Lun; Ren, Xiao Dong; Huang, Xian Bin

    2016-09-01

    A theoretical model of Z-pinch driven magneto-Rayleigh-Taylor instability is proposed based on the particle drift point of view, which can explain the helical instability structure observed in premagnetized imploding liner experiments. It is demonstrated that all possible drift motions, including polarization drift, gradient drift, and curvature drift, which can lead to charge separations, each will attribute to an effective gravity acceleration. Theoretical predictions given by this model are dramatically different from those given by previous theories which have been readily recovered in the theory presented here as a limiting case. The theory shows qualitative agreement with available experimental data of the pitch angle and provides certain predictions to be verified.

  9. Measurement and analysis of x-ray absorption in Al and MgF2 plasmas heated by Z-pinch radiation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacFarlane, Joseph John; Rochau, Gregory Alan; Bailey, James E.

    2005-06-01

    High-power Z pinches on Sandia National Laboratories Z facility can be used in a variety of experiments to radiatively heat samples placed some distance away from the Z-pinch plasma. In such experiments, the heating radiation spectrum is influenced by both the Z-pinch emission and the re-emission of radiation from the high-Z surfaces that make up the Z-pinch diode. To test the understanding of the amplitude and spectral distribution of the heating radiation, thin foils containing both Al and MgF{sub 2} were heated by a 100-130 TW Z pinch. The heating of these samples was studied through the ionization distribution inmore » each material as measured by x-ray absorption spectra. The resulting plasma conditions are inferred from a least-squares comparison between the measured spectra and calculations of the Al and Mg 1s {yields} 2p absorption over a large range of temperatures and densities. These plasma conditions are then compared to radiation-hydrodynamics simulations of the sample dynamics and are found to agree within 1{sigma} to the best-fit conditions. This agreement indicates that both the driving radiation spectrum and the heating of the Al and MgF{sub 2} samples is understood within the accuracy of the spectroscopic method.« less

  10. Z-Pinch fusion-based nuclear propulsion

    NASA Astrophysics Data System (ADS)

    Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.; Percy, T.

    2013-02-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human space flight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly [1]. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield [2]. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10-6 s). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) [3] propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle. The analysis of the Z-Pinch MIF propulsion system concludes that a 40-fold increase of Isp over chemical propulsion is predicted. An Isp of 19,436 s and thrust of 3812 N s/pulse, along with nearly doubling the predicted payload mass fraction, warrants further development of enabling technologies.

  11. Diagnostics for Z-pinch implosion experiments on PTS

    NASA Astrophysics Data System (ADS)

    Ren, X. D.; Huang, X. B.; Zhou, S. T.; Zhang, S. Q.; Dan, J. K.; Li, J.; Cai, H. C.; Wang, K. L.; Ouyang, K.; Xu, Q.; Duan, S. C.; Chen, G. H.; Wang, M.; Feng, S. P.; Yang, L. B.; Xie, W. P.; Deng, J. J.

    2014-12-01

    The preliminary experiments of wire array implosion were performed on PTS, a 10 MA z-pinch driver with a 70 ns rise time. A set of diagnostics have been developed and fielded on PTS to study pinch physics and implosion dynamics of wire array. Radiated power measurement for soft x-rays was performed by multichannel filtered x-ray diode array, and flat spectral responses x-ray diode detector. Total x-ray yield was measured by a calibrated, unfiltered nickel bolometer which was also used to obtain pinch power. Multiple time-gated pinhole cameras were used to produce spatial-resolved images of x-ray self-emission from plasmas. Two time-integrated pinhole cameras were used respectively with 20-μm Be filter and with multilayer mirrors to record images produced by >1-keV and 277±5 eV self-emission. An optical streak camera was used to produce radial implosion trajectories, and an x-ray streak camera paired with a horizontal slit was used to record a continuous time-history of emission with one-dimensional spatial resolution. A frequency-doubled Nd:YAG laser (532 nm) was used to produce four frame laser shadowgraph images with 6 ns time interval. We will briefly describe each of these diagnostics and present some typical results from them.

  12. AN ACCELERATION MECHANISM FOR NEUTRON PRODUCTION IN Z-PINCH DISCHARGES,

    DTIC Science & Technology

    A model has been developed for the acceleration of deuterons in the tightly compressed column of a z-pinch discharge, in particular that of a plasma ... focus discharge. It was assumed that an annular current distribution undergoes a rapidly contracting transition to an axially peaked distribution, and

  13. Polar Radiation-Flux Symmetry Measurements in Z-Pinch-Driven Hohlraums with Symmetric Double-Pinch Drive

    NASA Astrophysics Data System (ADS)

    Hanson, D. L.; Vesey, R. A.; Cuneo Porter, M. E., Jr.; Chandler, G. A.; Ruggles, L. E.; Simpson, W. W.; Seamen, H.; Primm, P.; Torres, J.; McGurn, J.; Gilliland, T. L.; Reynolds, P.; Hebron, D. E.; Dropinski, S. C.; Schroen-Carey, D. G.; Hammer, J. H.; Landen, O.; Koch, J.

    2000-10-01

    We are currently exploring symmetry requirements of the z-pinch-driven hohlraum concept [1] for high-yield inertial confinement fusion. In experiments on the Z accelerator, the burnthrough of a low-density self-backlit foam ball has been used to diagnose the large time-dependent flux asymmetry of several single-sided-drive hohlraum geometries [2]. We are currently applying this technique to study polar radiation flux symmetry in a symmetric double z-pinch geometry. Wire arrays on opposite ends of the hohlraum, connected in series to a single current drive of 18 MA, implode and stagnate on axis, efficiently radiating about 100 TW of x rays which heat the secondary to 75 eV. Comparisons with 3-D radiosity and 2-D rad-hydro models of hohlraum symmetry performance will be presented. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. 1 J. H. Hammer et al., Phys. Plasmas 6, 2129 (1999). 2 D. L. Hanson et al., Bull. Am. Phys. Soc. 44, 40 (1999).

  14. Resolving microstructures in Z pinches with intensity interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apruzese, J. P.; Kroupp, E.; Maron, Y.

    2014-03-15

    Nearly 60 years ago, Hanbury Brown and Twiss [R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046 (1956)] succeeded in measuring the 30 nrad angular diameter of Sirius using a new type of interferometry that exploited the interference of photons independently emitted from different regions of the stellar disk. Its basis was the measurement of intensity correlations as a function of detector spacing, with no beam splitting or preservation of phase information needed. Applied to Z pinches, X pinches, or laser-produced plasmas, this method could potentially provide spatial resolution under one micron. A quantitative analysis based on the workmore » of Purcell [E. M. Purcell, Nature 178, 1449 (1956)] reveals that obtaining adequate statistics from x-ray interferometry of a Z-pinch microstructure would require using the highest-current generators available. However, using visible light interferometry would reduce the needed photon count and could enable its use on sub-MA machines.« less

  15. Enhanced energy coupling and x-ray emission in Z-pinch plasma implosions

    NASA Astrophysics Data System (ADS)

    Whitney, K. G.; Thornhill, J. W.; Apruzese, J. P.; Davis, J.; Deeney, C.; Coverdale, C. A.

    2004-08-01

    Recent experiments conducted on the Saturn pulsed-power generator at Sandia National Laboratories [R. B. Spielman et al., in Proceedings of the Second International Conference on Dense Z Pinches, Laguna Beach, CA, 1989, edited by N. R. Pereira, J. Davis, and N. Rostoker (American Institute of Physics, New York, 1989), p. 3] have produced large amounts of x-ray output, which cannot be accounted for in conventional magnetohydrodynamic (MHD) calculations. In these experiments, the Saturn current had a rise time of ~180 ns in contrast to a rise time of ~60 ns in Saturn's earlier mode of operation. In both aluminum and tungsten wire-array Z-pinch implosions, 2-4 times more x-ray output was generated than could be supplied according to one-dimensional (1D) magnetohydrodynamic calculations by the combined action of the j×B acceleration forces and ohmic heating (as described by a classical Braginskii resistivity). In this paper, we reexamine the problem of coupling transmission line circuits to plasma fluid equations and derive expressions for the Z-pinch load circuit resistance and inductance that relate these quantities in a 1D analysis to the surface resistivity of the fluid, and to the magnetic field energy that is stored in the vacuum diode, respectively. Enhanced energy coupling in this analysis, therefore, comes from enhancements to the surface resistivity, and we show that plasma resistivities approximately three orders of magnitude larger than classical are needed in order to achieve energy inputs that are comparable to the Saturn experiment x-ray outputs. Large enhancements of the plasma resistivity increase the rate of magnetic field and current diffusion, significantly modify the qualitative features of the MHD, and raise important questions as to how the plasma fluid dynamics converts enhanced energy inputs into enhanced x-ray outputs. One-dimensional MHD calculations in which resistivity values are adjusted phenomenologically are used to illustrate how

  16. History of HERMES III diode to z-pinch breakthrough and beyond :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanford, Thomas Williamlou.

    HERMES III and Z are two flagship accelerators of Sandias pulsed-power program developed to generate intense -ray fields for the study of nuclear radiation effects, and to explore high energy-density physics (including the production of intense x-ray fields for Inertia Confinement Fusion [ICF]), respectively. A diode at the exit of HERMES III converts its 20-MeV electron beam into -rays. In contrast, at the center of Z, a z-pinch is used to convert its 20-MA current into an intense burst of x-rays. Here the history of how the HERMES III diode emerged from theoretical considerations to actual hardware is discussed. Next,more » the reverse process of how the experimental discovery of wire-array stabilization in a z-pinch, led to a better theory of wirearray implosions and its application to one of the ICF concepts on Z--the DH (Dynamic Hohlraum) is reviewed. Lastly, the report concludes with how the unexpected axial radiation asymmetry measured in the DH is understood. The first discussion illustrates the evolution of physics from theory-to-observationto- refinement. The second two illustrate the reverse process of observationto- theory-to refinement. The histories are discussed through the vehicle of my research at Sandia, illustrating the unique environment Sandia provides for personal growth and development into a scientific leader.« less

  17. Increasing Plasma Parameters using Sheared Flow Stabilization of a Z-Pinch

    NASA Astrophysics Data System (ADS)

    Shumlak, Uri

    2016-10-01

    Recent experiments on the ZaP Flow Z-Pinch at the University of Washington have been successful in compressing the plasma column to smaller radii, producing the predicted increases in plasma density (1018 cm-3), temperature (200 eV), and magnetic fields (4 T), while maintaining plasma stability for many Alfven times (over 40 μs) using sheared plasma flows. These results indicate the suitability of the device as a discovery science platform for astrophysical and high energy density plasma research, and keeps open a possible path to achieving burning plasma conditions in a compact fusion device. Long-lived Z-pinch plasmas have been produced with dimensions of 1 cm radius and 100 cm long that are stabilized by sheared axial flows for over 1000 Alfven radial transit times. The observed plasma stability is coincident with the presence of a sheared flow as measured by time-resolved multi-chord ion Doppler spectroscopy applied to impurity ion radiation. These measurements yield insights into the evolution of the velocity profile and show that the stabilizing behavior of flow shear agrees with theoretical calculations and 2-D MHD computational simulations. The flow shear value, extent, and duration are shown to be consistent with theoretical models of the plasma viscosity, which places a design constraint on the maximum axial length of a sheared flow stabilized Z-pinch. Measurements of the magnetic field topology indicate simultaneous azimuthal symmetry and axial uniformity along the entire 100 cm length of the Z-pinch plasma. Separate control of plasma acceleration and compression have increased the accessible plasma parameters and have generated stable plasmas with radii below 0.5 cm, as measured with a high resolution digital holographic interferometer. This work was supported by Grants from U.S. DOE, NNSA, and ARPA-E.

  18. Staged Z-pinch Experiments on Cobra and Zebra

    NASA Astrophysics Data System (ADS)

    Wessel, Frank J.; Anderson, A.; Banasek, J. T.; Byvank, T.; Conti, F.; Darling, T. W.; Dutra, E.; Glebov, V.; Greenly, J.; Hammer, D. A.; Potter, W. M.; Rocco, S. V.; Ross, M. P.; Ruskov, E.; Valenzuela, J.; Beg, F.; Covington, A.; Narkis, J.; Rahman, H. U.

    2017-10-01

    A Staged Z-pinch (SZP), configured as a pre-magnetized, high-Z (Ar, or Kr) annular liner imploding onto a low-Z (H, or D) target, was tested on the Cornell University, Cobra Facility and the University of Nevada, Reno, Zebra Facility; each characterized similarly by a nominal 1-MA current and 100-ns risetime while possessing different diagnostic packages. XUV-fast imaging reveals that the SZP implosion dynamics is similar on both machines and that it is more stable with an axial (Bz) magnetic field, a target, or both, than without. On Zebra, where neutron production is possible, reproducible thermonuclear (DD) yields were recorded at levels in excess of 109/shot. Flux compression in the SZP is also expected to produce magnetic field intensities of the order of kilo-Tesla. Thus, the DD reaction produced tritions should also yield secondary DT neutrons. Indeed, secondaries are measured above the noise threshold at levels approaching 106/shot. Funded by the Advanced Research Projects Agency - Energy, under Grant Number DE-AR0000569.

  19. Experimental study of surface insulated-standard hybrid tungsten planar wire array Z-pinches at "QiangGuang-I" facility

    NASA Astrophysics Data System (ADS)

    Sheng, Liang; Peng, Bodong; Li, Yang; Yuan, Yuan; Li, Mo; Zhang, Mei; Zhao, Chen; Zhao, Jizhen; Wang, Liangping

    2016-01-01

    The experimental results of the insulated-standard hybrid wire array Z pinches carried out on "QiangGuang-I" facility at Northwest Institute of Nuclear Technology were presented and discussed. The surface insulating can impose a significant influence on the dynamics and radiation characteristics of the hybrid wire array Z pinches, especially on the early stage (t/timp < 0.6). The expansion of insulated wires at the ablation stage is suppressed, while the streams stripped from the insulated wires move faster than that from the standard wires. The foot radiation of X-ray is enhanced by increment of the number of insulated wires, 19.6 GW, 33.6 GW, and 68.6 GW for shots 14037S, 14028H, and 14039I, respectively. The surface insulation also introduces nonhomogeneity along the single wire—the streams move much faster near the electrodes. The colliding boundary of the hybrid wire array Z pinches is bias to the insulated side approximately 0.6 mm.

  20. Efficient Neutron Production from a Novel Configuration of Deuterium Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    Klir, D.; Kubes, P.; Rezac, K.; Cikhardt, J.; Kravarik, J.; Sila, O.; Shishlov, A. V.; Kovalchuk, B. M.; Ratakhin, N. A.; Kokshenev, V. A.; Labetsky, A. Yu.; Cherdizov, R. K.; Fursov, F. I.; Kurmaev, N. E.; Dudkin, G. N.; Nechaev, B. A.; Padalko, V. N.; Orcikova, H.; Turek, K.

    2014-03-01

    A novel configuration of a deuterium z pinch has been used to generate fusion neutrons. Injecting an outer hollow cylindrical plasma shell around an inner deuterium gas puff, neutron yields from DD reactions reached Yn=(2.9±0.3)×1012 at 700 ns implosion time and 2.7 MA current. Such a neutron yield means a tenfold increase in comparison with previous deuterium gas puff experiments at the same current generator. The increase of beam-target yields was obtained by a larger amount of current assembled on the z-pinch axis, and subsequently by higher induced voltage and higher energies of deuterons. A stack of CR-39 track detectors on the z-pinch axis showed hydrogen ions up to 38 MeV. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial time-of-flight detectors, respectively. The number of DD neutrons per one joule of stored plasma energy approached 5×107. This implies that deuterium gas puff z pinches belong to the most efficient plasma-based sources of DD neutrons.

  1. Theoretical z -pinch scaling relations for thermonuclear-fusion experiments.

    PubMed

    Stygar, W A; Cuneo, M E; Vesey, R A; Ives, H C; Mazarakis, M G; Chandler, G A; Fehl, D L; Leeper, R J; Matzen, M K; McDaniel, D H; McGurn, J S; McKenney, J L; Muron, D J; Olson, C L; Porter, J L; Ramirez, J J; Seamen, J F; Speas, C S; Spielman, R B; Struve, K W; Torres, J A; Waisman, E M; Wagoner, T C; Gilliland, T L

    2005-08-01

    We have developed wire-array z -pinch scaling relations for plasma-physics and inertial-confinement-fusion (ICF) experiments. The relations can be applied to the design of z -pinch accelerators for high-fusion-yield (approximately 0.4 GJ/shot) and inertial-fusion-energy (approximately 3 GJ/shot) research. We find that (delta(a)/delta(RT)) proportional (m/l)1/4 (Rgamma)(-1/2), where delta(a) is the imploding-sheath thickness of a wire-ablation-dominated pinch, delta(RT) is the sheath thickness of a Rayleigh-Taylor-dominated pinch, m is the total wire-array mass, l is the axial length of the array, R is the initial array radius, and gamma is a dimensionless functional of the shape of the current pulse that drives the pinch implosion. When the product Rgamma is held constant the sheath thickness is, at sufficiently large values of m/l, determined primarily by wire ablation. For an ablation-dominated pinch, we estimate that the peak radiated x-ray power P(r) proportional (I/tau(i))(3/2)Rlphigamma, where I is the peak pinch current, tau(i) is the pinch implosion time, and phi is a dimensionless functional of the current-pulse shape. This scaling relation is consistent with experiment when 13 MA < or = I < or = 20 MA, 93 ns < or = tau(i) < or = 169 ns, 10 mm < or = R < or = 20 mm, 10 mm < or = l < or = 20 mm, and 2.0 mg/cm < or = m/l < or = 7.3 mg/cm. Assuming an ablation-dominated pinch and that Rlphigamma is held constant, we find that the x-ray-power efficiency eta(x) congruent to P(r)/P(a) of a coupled pinch-accelerator system is proportional to (tau(i)P(r)(7/9 ))(-1), where P(a) is the peak accelerator power. The pinch current and accelerator power required to achieve a given value of P(r) are proportional to tau(i), and the requisite accelerator energy E(a) is proportional to tau2(i). These results suggest that the performance of an ablation-dominated pinch, and the efficiency of a coupled pinch-accelerator system, can be improved substantially by decreasing the

  2. Analysis of staged Z-pinch implosion trajectories from experiments on Zebra

    NASA Astrophysics Data System (ADS)

    Ross, Mike P.; Conti, F.; Darling, T. W.; Ruskov, E.; Valenzuela, J.; Wessel, F. J.; Beg, F.; Narkis, J.; Rahman, H. U.

    2017-10-01

    The Staged Z-pinch plasma confinement concept relies on compressing an annular liner of high-Z plasma onto a target plasma column of deuterium fuel. The interface between the liner and target is stable against the Magneto-Rayleigh-Taylor Instability, which leads to effective fuel compression and makes the concept interesting as a potential fusion reactor. The liner initiates as a neutral gas puff, while the target plasma is a partially ionized (Zeff < 10 percent column ejected from a coaxial plasma gun. The Zebra pulsed power generator (1 MA peak current, 100 ns rise time) provides the discharge that ionizes the liner and drives the Z-pinch implosion. Diverse diagnostics observe the 100-300 km/s implosions including silicon diodes, photo-conducting detectors (PCDs), laser shadowgraphy, an XUV framing camera, and a visible streak camera. The imaging diagnostics track instabilities smaller than 0.1 mm, and Z-pinch diameters below 2.5 mm are seen at peak compression. This poster correlates the data from these diagnostics to elucidate implosion behavior dependencies on liner gas, liner pressure, target pressure, and applied, axial-magnetic field. Funded by the Advanced Research Projects Agency - Energy, DE-AR0000569.

  3. Z-Pinch Magneto-Inertial Fusion Propulsion Engine Design Concept

    NASA Technical Reports Server (NTRS)

    Miernik, Janie H.; Statham, Geoffrey; Adams, Robert B.; Polsgrove, Tara; Fincher, Sharon; Fabisinski, Leo; Maples, C. Dauphne; Percy, Thomas K.; Cortez, Ross J.; Cassibry, Jason

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human spaceflight missions. Magneto-Inertial Fusion (MIF) is an approach which has been shown to potentially lead to a low cost, small fusion reactor/engine assembly (1). The Z-Pinch dense plasma focus method is an MIF concept in which a column of gas is compressed to thermonuclear conditions by an estimated axial current of approximately 100 MA. Recent advancements in experiments and the theoretical understanding of this concept suggest favorable scaling of fusion power output yield as I(sup 4) (2). The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this is repeated over short timescales (10(exp -6) sec). This plasma formation is widely used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, as well as in fusion energy research. There is a wealth of literature characterizing Z-Pinch physics and existing models (3-5). In order to be useful in engineering analysis, a simplified Z-Pinch fusion thermodynamic model was developed to determine the quantity of plasma, plasma temperature, rate of expansion, energy production, etc. to calculate the parameters that characterize a propulsion system. The amount of nuclear fuel per pulse, mixture ratio of the D-T and nozzle liner propellant, and assumptions about the efficiency of the engine, enabled the sizing of the propulsion system and resulted in an estimate of the thrust and Isp of a Z-Pinch fusion propulsion system for the concept vehicle. MIF requires a magnetic nozzle to contain and direct the nuclear pulses, as well as a robust structure and radiation shielding. The structure

  4. Wire array Z-pinch insights for enhanced x-ray production

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Mock, R. C.; Spielman, R. B.; Haines, M. G.; Chittenden, J. P.; Whitney, K. G.; Apruzese, J. P.; Peterson, D. L.; Greenly, J. B.; Sinars, D. B.; Reisman, D. B.; Mosher, D.

    1999-05-01

    Comparisons of measured total radiated x-ray power from annular wire-array z-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci. 26, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh-Taylor instability in the r-z plane, develop. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the two-dimensional Eulerian-radiation- magnetohydrodynamics code (E-RMHC) [Phys. Plasmas 3, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh-Taylor instability in the r-z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels.

  5. Electron beam generation in the turbulent plasma of Z-pinch discharges

    NASA Astrophysics Data System (ADS)

    Vikhrev, Victor V.; Baronova, Elena O.

    1997-05-01

    Numerical modeling of the process of electron beam generation in z-pinch discharges are presented. The proposed model represents the electron beam generation under turbulent plasma conditions. Strong current distribution inhomogeneity in the plasma column has been accounted for the adequate generation process investigation. Electron beam is generated near the maximum of compression due to run away mechanism and it is not related with the current break effect.

  6. Capsule symmetry sensitivity and hohlraum symmetry calculations for the z-pinch driven hohlraum high-yield concept

    NASA Astrophysics Data System (ADS)

    Vesey, Roger; Cuneo, M. E.; Hanson Porter, D. L., Jr.; Mehlhorn, T. A.; Ruggles, L. E.; Simpson, W. W.; Hammer, J. H.; Landen, O.

    2000-10-01

    Capsule radiation symmetry is a crucial issue in the design of the z-pinch driven hohlraum approach to high-yield inertial confinement fusion [1]. Capsule symmetry may be influenced by power imbalance of the two z-pinch x-ray sources, and by hohlraum effects (geometry, time-dependent albedo, wall motion). We have conducted two-dimensional radiation-hydrodynamics calculations to estimate the symmetry sensitivity of the 220 eV beryllium ablator capsule that nominally yields 400 MJ in this concept. These estimates then determine the symmetry requirements to be met by the hohlraum design (for even Legendre modes) and by the top-bottom pinch imbalance and mistiming (for odd Legendre modes). We have used a combination of 2- and 3-D radiosity ("viewfactor"), and 2-D radiation-hydrodynamics calculations to identify hohlraum geometries that meet these symmetry requirements for high-yield, and are testing these models against ongoing Z foam ball symmetry experiments. 1. J. H. Hammer et al., Phys. Plas. 6, 2129 (1999).

  7. A conservative MHD scheme on unstructured Lagrangian grids for Z-pinch hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Wu, Fuyuan; Ramis, Rafael; Li, Zhenghong

    2018-03-01

    A new algorithm to model resistive magnetohydrodynamics (MHD) in Z-pinches has been developed. Two-dimensional axisymmetric geometry with azimuthal magnetic field Bθ is considered. Discretization is carried out using unstructured meshes made up of arbitrarily connected polygons. The algorithm is fully conservative for mass, momentum, and energy. Matter energy and magnetic energy are managed separately. The diffusion of magnetic field is solved using a derivative of the Symmetric-Semi-Implicit scheme, Livne et al. (1985) [23], where unconditional stability is obtained without needing to solve large sparse systems of equations. This MHD package has been integrated into the radiation-hydrodynamics code MULTI-2D, Ramis et al. (2009) [20], that includes hydrodynamics, laser energy deposition, heat conduction, and radiation transport. This setup allows to simulate Z-pinch configurations relevant for Inertial Confinement Fusion.

  8. Pulse Power Compression by Cutting a Dense Z-Pinch with a Laser Beam

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    1999-07-01

    A thin cut made through a z-pinch by an intense laser beam can become a magnetically insulated diode crossed by an intense ion beam. For larger cuts, the gap is crossed by an intense relativistic electron beam, stopped by magnetic bremsstrahlung resulting in a pointlike intense x-ray source. In either case, the impedance of the pinch discharge is increased, with the power delivered rising in the same pro-portion. A magnetically insulated cut is advantageous for three reasons: First, with the ion current com-parable to the Alfvèn ion current, the pinch instabilities are reduced. Second, with the energy deposit-ed into fast ions, a non-Maxwellian velocity distribution is established increasing<σ ν> value for nuclear fusion reactions taking place in the pinch discharge. Third, in a high density z-pinch plasma, the intense ion beam can launch a thermonuclear detonation wave propagating along the pinch discharge channel. For larger cuts the soft x-rays produced by magnetic bremsstrahlung can be used to drive a thermonuclear hohlraum target. Finally, the proposed pulse power compression scheme permits to use a cheap low power d.c. source charging a magnetic storage coil delivering the magnetically stored energy to the pinch discharge load by an exploding wire opening switch.

  9. Experimental study of surface insulated-standard hybrid tungsten planar wire array Z-pinches at “QiangGuang-I” facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Liang; Peng, Bodong; Yuan, Yuan

    The experimental results of the insulated-standard hybrid wire array Z pinches carried out on “QiangGuang-I” facility at Northwest Institute of Nuclear Technology were presented and discussed. The surface insulating can impose a significant influence on the dynamics and radiation characteristics of the hybrid wire array Z pinches, especially on the early stage (t/t{sub imp} < 0.6). The expansion of insulated wires at the ablation stage is suppressed, while the streams stripped from the insulated wires move faster than that from the standard wires. The foot radiation of X-ray is enhanced by increment of the number of insulated wires, 19.6 GW, 33.6 GW, and 68.6 GWmore » for shots 14037S, 14028H, and 14039I, respectively. The surface insulation also introduces nonhomogeneity along the single wire—the streams move much faster near the electrodes. The colliding boundary of the hybrid wire array Z pinches is bias to the insulated side approximately 0.6 mm.« less

  10. Fusion Propulsion Z-Pinch Engine Concept

    NASA Technical Reports Server (NTRS)

    Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.; hide

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human spaceflight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly1. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield 2. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10(exp -6 sec). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Decade Module 2 (DM2), approx.500 KJ pulsed-power is coming to the RSA Aerophysics Lab managed by UAHuntsville in January, 2012. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) 3 propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle.

  11. Coronal plasma development in wire-array z-pinches made of twisted-pairs

    NASA Astrophysics Data System (ADS)

    Hoyt, C. L.; Greenly, J. B.; Gourdain, P. A.; Knapp, P. F.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Kusse, B. R.

    2009-11-01

    We have investigated coronal and core plasma development in wire array z-pinches in which single fine wires are replaced by twisted-pairs (``cable'') on the 1 MA, 100 ns rise time COBRA pulsed power generator. X-ray radiography, employed to investigate dense wire core expansion, showed periodic axial nonuniformity and evidence for shock waves developing where the individual wire plasmas collide. Laser shadowgraphy images indicated that the axial instability properties of the coronal plasma are substantially modified from ordinary wire arrays. Cable mass per unit length, material and the twist wavelength were varied in order to study their effects upon the instability wavelength. Implosion uniformity and bright-spot formation, as well as magnetic topology evolution, have also been investigated using self-emission imaging, x-ray diagnostics and small B-dot probes, respectively. Results from the cable-array z-pinches will be compared with results from ordinary wire-array z-pinches. This research was supported by the SSAA program of the National Nuclear Security Administration under DOE Cooperative agreement DE-FC03-02NA00057.

  12. The Physics of the Dense Z-Pinch in Theory and in Experiment With Application to Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Haines, M. G.

    1982-01-01

    A new generation of Z-pinches employing high voltage, high current pulsed lines as power sources produce dense hot plasmas with enhanced stability properties. Three methods of Z-pinch formation are currently in use: (1) cylindrical collapse and compression of a pre-ionised gas; (2) laser initiation and Joule heating of a gas embedded pinch, and (3) hollow gas puff and subsequent collapse to the axis. The first method shows no dynamic bounce and no instability over about ten radial Alfvén transit times. The laser initiated Z-pinch shows benign helical structures, whilst the gas puff experiments are known for their high X-ray energy conversion associated with m = 0 instabilities. The first two experimental conditions are relevant for fusion. A calculation of energy balance for satisfying Lawson conditions with axial and radial energy losses and radiation loss shows that a current I of ~ 106 A and a line density N of 6 × 1018m-1 are required. This leads to two coincidences of physical quantities that are very favourable for controlled fusion. The first is that at this line density and under pressure balance the ratio of the ion Larmor radius to pinch radius is of order 1 so that a marked stabilisation of the configuration is expected. The second coincidence is that the current is only just below the Pease-Braginskii limit; this will permit the possibility of radiative collapse to attain the high density (~ 4 × 1027 m-3) and small radius (~ 20 μm) required for a compact (0.1 m long) discharge. The confining self-magnetic field is 104 T, the confinement time ~ 100 ns, and a matrix of pulsed discharges is envisaged in a moderator and breeding medium which does not have the wall-loading limitations of tokamaks.

  13. Investigation of trailing mass in Z-pinch implosions and comparison to experiment

    NASA Astrophysics Data System (ADS)

    Yu, Edmund

    2007-11-01

    Wire-array Z pinches represent efficient, high-power x-ray sources with application to inertial confinement fusion, high energy density plasmas, and laboratory astrophysics. The first stage of a wire-array Z pinch is described by a mass ablation phase, during which stationary wires cook off material, which is then accelerated radially inwards by the JxB force. The mass injection rate varies axially and azimuthally, so that once the ablation phase concludes, the subsequent implosion is highly 3D in nature. In particular, a network of trailing mass and current is left behind the imploding plasma sheath, which can significantly affect pinch performance. In this work we focus on the implosion phase, electing to model the mass ablation via a mass injection scheme. Such a scheme has a number of injection parameters, but this freedom also allows us to gain understanding into the nature of the trailing mass network. For instance, a new result illustrates the role of azimuthal correlation. For an implosion which is 100% azimuthally correlated (corresponding to an azimuthally symmetric 2D r-z problem), current is forced to flow on the imploding plasma sheath, resulting in strong Rayleigh-Taylor (RT) growth. If, however, the implosion is not azimuthally symmetric, the additional azimuthal degree of freedom opens up new conducting paths of lower magnetic energy through the trailing mass network, effectively reducing RT growth. Consequently the 3D implosion experiences lower RT growth than the 2D r-z equivalent, and actually results in a more shell-like implosion. A second major goal of this work is to constrain the injection parameters by comparison to a well-diagnosed experimental data set, in which array mass was varied. In collaboration with R. Lemke, M. Desjarlais, M. Cuneo, C. Jennings, D. Sinars, E. Waisman

  14. Effect of driver impedance on dense plasma focus Z-pinch neutron yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sears, Jason, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov; Link, Anthony, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov; Schmidt, Andrea, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov

    2014-12-15

    The Z-pinch phase of a dense plasma focus (DPF) heats the plasma by rapid compression and accelerates ions across its intense electric fields, producing neutrons through both thermonuclear and beam-target fusion. Driver characteristics have empirically been shown to affect performance, as measured by neutron yield per unit of stored energy. We are exploring the effect of driver characteristics on DPF performance using particle-in-cell (PIC) simulations of a kJ scale DPF. In this work, our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase, capturing kinetic instabilities, anomalous resistivity, and beam formation duringmore » the pinch. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. It is known that the driver impedance plays an important role in the neutron yield: first, it sets the peak current achieved at pinch time; and second, it affects how much current continues to flow through the pinch when the pinch inductance and resistance suddenly increase. Here we show from fully kinetic simulations how total neutron yield depends on the impedance of the driver and the distributed parameters of the transmission circuit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for neutron source applications.« less

  15. Implosion dynamics of a megampere wire-array Z-pinch with an inner low-density foam shell at the Angara-5-1 facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, V. V.; Bolkhovitinov, E. A.; Volkov, G. S., E-mail: volkov@triniti.ru

    The implosion dynamics of a pinch with a highly inhomogeneous initial axial distribution of the load mass was studied experimentally. A cascade array consisting of a double nested tungsten wire array and a coaxial inner cylindrical shell located symmetrically with respect to the high-voltage electrodes was used as a load of the Angara-5-1 high-current generator. The cylindrical foam shell was half as long as the cathode− anode gap, and its diameter was equal to the diameter of the inner wire array. It is shown experimentally that two stages are typical of the implosion dynamics of such a load: the formationmore » of two separate pinches formed as a result of implosion of the wire array near the cathode and anode and the subsequent implosion of the central part of the load containing the cylindrical foam shell. The conditions are determined at which the implosion of the central part of the pinch with the foam cylinder is preceded by intense irradiation of the foam with the soft X-ray (SXR) emission generated by the near-electrode pinches and converting it into the plasma state. Using such a load, which models the main elements of the scheme of a dynamic hohlraum for inertial confinement fusion, it is possible to increase the efficiency of interaction between the outer accelerated plasma sheath and the inner foam shell by preionizing the foam with the SXR emission of the near-electrode pinches.« less

  16. Scaling the Shear-flow Stabilized Z-pinch to Reactor Conditions

    NASA Astrophysics Data System (ADS)

    McLean, H. S.; Schmidt, A.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Cleveau, E.

    2015-11-01

    We present a conceptual design along with scaling calculations for a pulsed fusion reactor based on the shear-flow-stabilized Z-pinch device. Experiments performed on the ZaP device, at the University of Washington, have demonstrated stable operation for durations of 20 usec at ~100kA discharge current for pinches that are ~1 cm in diameter and 100 cm long. The inverse of the pinch diameter and plasma energy density scale strongly with pinch current and calculations show that maintaining stabilization durations of ~7 usec for increased discharge current (~15x) in a shortened pinch (10 cm) results in a pinch diameter of ~200 um and plasma conditions that approach those needed to support significant fusion burn and energy gain (Ti ~ 30keV, density ~ 3e26/m3, ntau ~1.4e20 sec/m3). Compelling features of the concept include operation at modest discharge current (1.5 MA) and voltage (40kV) along with direct adoption of liquid metals for at least one electrode--technological capabilities that have been proven in existing, commercial, pulse power devices such as large ignitrons. LLNL-ABS-674920. This work performed under the auspices of the U.S. Department of Energy ARPAe ALPHA Program by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Magnetoelectric confinement and stabilization of Z pinch in a soft-x-ray Ar(+8) laser.

    PubMed

    Szasz, J; Kiss, M; Santa, I; Szatmari, S; Kukhlevsky, S V

    2013-05-03

    Magnetoelectric confinement and stabilization of the plasma column in a soft-x-ray Ar(+8) laser, which is excited by a capillary Z pinch, via the combined magnetic and electric fields of the gliding surface discharge is experimentally demonstrated. Unlike soft-x-ray lasers excited by the conventional capillary Z pinches, the magnetoelectric confinement and stabilization of plasma do provide the laser operation without using any external preionization circuit.

  18. A Reactor Development Scenario for the FUZE Shear-flow Stabilized Z-pinch

    NASA Astrophysics Data System (ADS)

    McLean, H. S.; Higginson, D. P.; Schmidt, A.; Tummel, K. K.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Golingo, R. P.; Weber, T. R.

    2016-10-01

    We present a conceptual design, scaling calculations, and a development path for a pulsed fusion reactor based on the shear-flow-stabilized Z-pinch device. Experiments performed on the ZaP device have demonstrated stable operation for 40 us at 150 kA total discharge current (with 100 kA in the pinch) for pinches that are 1cm in diameter and 100 cm long. Scaling calculations show that achieving stabilization for a pulse of 100 usec, for discharge current 1.5 MA, in a shortened pinch 50 cm, results in a pinch diameter of 200 um and a reactor plant Q 5 for reasonable assumptions of the various system efficiencies. We propose several key intermediate performance levels in order to justify further development. These include achieving operation at pinch currents of 300 kA, where Te and Ti are calculated to exceed 1 keV, 700 kA where fusion power exceeds pinch input power, and 1 MA where fusion energy per pulse exceeds input energy per pulse. This work funded by USDOE ARPAe ALPHA Program and performed under the auspices of Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-697801.

  19. One- and two-dimensional modeling of argon K-shell emission from gas-puff Z-pinch plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornhill, J. W.; Chong, Y. K.; Apruzese, J. P.

    2007-06-15

    In this paper, a theoretical model is described and demonstrated that serves as a useful tool for understanding K-shell radiating Z-pinch plasma behavior. Such understanding requires a self-consistent solution to the complete nonlocal thermodynamic equilibrium kinetics and radiation transport in order to realistically model opacity effects and the high-temperature state of the plasma. For this purpose, we have incorporated into the MACH2 two-dimensional magnetohydrodynamic (MHD) code [R. E. Peterkin et al., J. Comput. Phys. 140, 148 (1998)] an equation of state, called the tabular collisional radiative equilibrium (TCRE) model [J. W. Thornhill et al., Phys. Plasmas 8, 3480 (2001)], thatmore » provides reasonable approximations to the plasma's opacity state. MACH2 with TCRE is applied toward analyzing the multidimensional implosion behavior that occurred in Decade Quad (DQ) [D. Price et al., Proceedings of the 12th IEEE Pulsed Power Conference, Monterey, CA, edited by C. Stallings and H. Kirbie (IEEE, New York, 1999), p. 489] argon gas puff experiments that employed a 12 cm diameter nozzle with and without a central gas jet on axis. Typical peak drive currents and implosion times in these experiments were {approx}6 MA and {approx}230 ns. By using Planar Laser Induced Fluorescence measured initial density profiles as input to the calculations, the effect these profiles have on the ability of the pinch to efficiently produce K-shell emission can be analyzed with this combined radiation-MHD model. The calculated results are in agreement with the experimental result that the DQ central-jet configuration is superior to the no-central-jet experiment in terms of producing more K-shell emission. These theoretical results support the contention that the improved operation of the central-jet nozzle is due to the better suppression of instabilities and the higher-density K-shell radiating conditions that the central-jet configuration promotes. When we applied the model

  20. Hotspot ignition using a Z-pinch precursor plasma in a magneto-inertial ICF scheme

    NASA Astrophysics Data System (ADS)

    Chittenden, J. P.; Vincent, P.; Jennings, C. A.; Ciardi, A.

    2006-01-01

    Precursor plasma flow is a common feature of wire array Z-pinches. The precursor flow represents a fraction of the mass of the array which arrives on the axis early in time and remains confined at high density by the inertia of further material bombarding the axis. Later on, the main implosion of the Z-pinch then compresses this precursor to substantially higher density. We show that if the same system can be generated with a Deuterium-Tritium plasma then the precursor provides an ideal target for a cylindrical magneto-inertial ICF scheme. The implosion of the DT Z-pinch produces a dense, low temperature shell which compressively heats the precursor target to high temperatures and tamps its expansion. The azimuthal magnetic field in the hotspot is sufficient to reduce the Larmor radius for the alpha particles to much less than the hotspot size, which dramatically reduces the pR required for ignition. A computational analysis of this approach is presented, including a study of the thermonuclear burn wave propagation. The robustness of the scheme with respect to instabilities, confinement time and drive parameters is examined. The results indicate that a high energy gain can be achieved using Z-pinches with 50-100 MA currents and a few hundred nanosecond rise-times. This work was partially supported by the U.S. Department of Energy through cooperative agreement DE-FC03-02NA00057.

  1. A Reactor Development Scenario for the FuZE Sheared-Flow Stabilized Z-pinch

    NASA Astrophysics Data System (ADS)

    McLean, Harry S.; Higginson, D. P.; Schmidt, A.; Tummel, K. K.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Golingo, R. P.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.

    2017-10-01

    We present a conceptual design, scaling calculations, and development path for a pulsed fusion reactor based on a flow-stabilized Z-pinch. Experiments performed on the ZaP and ZaP-HD devices have largely demonstrated the basic physics of sheared-flow stabilization at pinch currents up to 100 kA. Initial experiments on the FuZE device, a high-power upgrade of ZaP, have achieved 20 usec of stability at pinch current 100-200 kA and pinch diameter few mm for a pinch length of 50 cm. Scaling calculations based on a quasi-steady-state power balance show that extending stable duration to 100 usec at a pinch current of 1.5 MA and pinch length of 50 cm, results in a reactor plant Q 5. Future performance milestones are proposed for pinch currents of: 300 kA, where Te and Ti are calculated to exceed 1-2 keV; 700 kA, where DT fusion power would be expected to exceed pinch input power; and 1 MA, where fusion energy per pulse exceeds input energy per pulse. This work funded by USDOE ARPA-E and performed under the auspices of Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-734770.

  2. 3D MHD Simulations of Radial Wire Array Z-pinches

    NASA Astrophysics Data System (ADS)

    Niasse, N.; Chittenden, J. P.; Bland, S. N.; Suzuki-Vidal, F. A.; Hall, G. N.; Lebedev, S. V.; Calamy, H.; Zucchini, F.; Lassalle, F.; Bedoch, J. P.

    2009-01-01

    Recent experiments carried out on the MAGPIE (1 MA, 250 ns), OEDIPE (730 kA, 1.5 μs) and SPHINX (4 MA, 700 ns)[1] facilities have shown the relatively high level of scalability of the Radial Wire Array Z-pinches. These configurations where the wires stretch radially outwards from a central cathode offer numerous advantages over standard cylindrical arrays. In particular, imploding in a very stable and compact way, they seem suitable for coupling to small scale hohlraums. Making use of the 3D resistive magneto-hydrodynamic code GORGON[2] developed at Imperial College, the dynamic of the radial wire arrays is investigated. Influence of the cathode hotspots and wires angle on the x-ray emissions is also discussed. Comparison with experiments is offered to validate the numerical studies.

  3. Simulations of Ar gas-puff Z-pinch radiation sources with double shells and central jets on the Z generator

    DOE PAGES

    Tangri, V.; Harvey-Thompson, Adam James; Giuliani, J. L.; ...

    2016-10-19

    Radiation-magnetohydrodynamic simulations using the non-LTE Mach2-TCRE code in (r,z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1.

  4. X-pinch dynamics: Neck formation and implosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oreshkin, V. I.; National Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634050; Chaikovsky, S. A.

    2014-10-15

    We propose a model that describes the neck formation and implosion in an X-pinch. The process is simulated to go in two stages. The first stage is neck formation. This stage begins with an electrical explosion of the wires forming the X-pinch, and at the end of the stage, a micropinch (neck) is formed in the region where the wires are crossed. The second stage is neck implosion. The implosion is accompanied by outflow of matter from the neck region, resulting in the formation of a “hot spot”. Analytical estimates obtained in the study under consideration indicate that these stagesmore » are approximately equal in duration. Having analyzed the neck implosion dynamics, we have verified a scaling which makes it possible to explain the observed dependences of the time of occurrence of an x-ray pulse on the X-pinch current and mass.« less

  5. Fully kinetic simulations of dense plasma focus Z-pinch devices.

    PubMed

    Schmidt, A; Tang, V; Welch, D

    2012-11-16

    Dense plasma focus Z-pinch devices are sources of copious high energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood. We now have, for the first time, demonstrated a capability to model these plasmas fully kinetically, allowing us to simulate the pinch process at the particle scale. We present here the results of the initial kinetic simulations, which reproduce experimental neutron yields (~10(7)) and high-energy (MeV) beams for the first time. We compare our fluid, hybrid (kinetic ions and fluid electrons), and fully kinetic simulations. Fluid simulations predict no neutrons and do not allow for nonthermal ions, while hybrid simulations underpredict neutron yield by ~100x and exhibit an ion tail that does not exceed 200 keV. Only fully kinetic simulations predict MeV-energy ions and experimental neutron yields. A frequency analysis in a fully kinetic simulation shows plasma fluctuations near the lower hybrid frequency, possibly implicating lower hybrid drift instability as a contributor to anomalous resistivity in the plasma.

  6. Preliminary experimental results of tungsten wire-array Z-pinches on primary test stand

    NASA Astrophysics Data System (ADS)

    Huang, Xian-Bin; Zhou, Shao-Tong; Dan, Jia-Kun; Ren, Xiao-Dong; Wang, Kun-Lun; Zhang, Si-Qun; Li, Jing; Xu, Qiang; Cai, Hong-Chun; Duan, Shu-Chao; Ouyang, Kai; Chen, Guang-Hua; Ji, Ce; Wei, Bing; Feng, Shu-Ping; Wang, Meng; Xie, Wei-Ping; Deng, Jian-Jun; Zhou, Xiu-Wen; Yang, Yi

    2015-07-01

    The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a 20 TW pulsed power driver, which can deliver a ˜10 MA, 70 ns rise-time (10%-90%) current to a short-circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. Preliminary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 13 mm to 30 mm, consisting of 132-300 tungsten wires with 5-10 μm in diameter. Multiple diagnostics were fielded to characterize the x-ray radiation from wire-array Z pinches. The x-ray peak power (˜50 TW) and total radiated energy (˜500 kJ) were obtained from a single 20-mm-diam array with 80-ns stagnation time. The highest x-ray peak power up to 80 TW with 2.4 ns FWHM was achieved by using a nested array with 20-mm outer diameter, and the total x-ray energy from the nested array is comparable to that of single array. Implosion velocity estimated from the time-resolved image measurement exceeds 30 cm/μs. The detailed experimental results and other findings are presented and discussed.

  7. High brightness electrodeless Z-Pinch EUV source for mask inspection tools

    NASA Astrophysics Data System (ADS)

    Horne, Stephen F.; Partlow, Matthew J.; Gustafson, Deborah S.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.

    2012-03-01

    Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinchTM light source since 1995. The source is currently being used for metrology, mask inspection, and resist development. Energetiq's higher brightness source has been selected as the source for pre-production actinic mask inspection tools. This improved source enables the mask inspection tool suppliers to build prototype tools with capabilities of defect detection and review down to 16nm design rules. In this presentation we will present new source technology being developed at Energetiq to address the critical source brightness issue. The new technology will be shown to be capable of delivering brightness levels sufficient to meet the HVM requirements of AIMS and ABI and potentially API tools. The basis of the source technology is to use the stable pinch of the electrodeless light source and have a brightness of up to 100W/mm(carat)2-sr. We will explain the source design concepts, discuss the expected performance and present the modeling results for the new design.

  8. Digital holographic interferometry employing Fresnel transform reconstruction for the study of flow shear stabilized Z-pinch plasmas.

    PubMed

    Ross, M P; Shumlak, U

    2016-10-01

    The ZaP-HD flow Z-pinch project provides a platform to explore how shear flow stabilized Z-pinches could scale to high-energy-density plasma (plasma with pressures exceeding 1 Mbar) and fusion reactor conditions. The Z-pinch is a linear plasma confinement geometry in which the plasma carries axial electric current and is confined by its self-induced magnetic field. ZaP-HD generates shear stabilized, axisymmetric Z-pinches with stable lifetimes approaching 60 μs. The goal of the project is to increase the plasma density and temperature compared to the previous ZaP project by compressing the plasma to smaller radii (≈1 mm). Radial and axial plasma electron density structure is measured using digital holographic interferometry (DHI), which provides the necessary fine spatial resolution. ZaP-HD's DHI system uses a 2 ns Nd:YAG laser pulse with a second harmonic generator (λ = 532 nm) to produce holograms recorded by a Nikon D3200 digital camera. The holograms are numerically reconstructed with the Fresnel transform reconstruction method to obtain the phase shift caused by the interaction of the laser beam with the plasma. This provides a two-dimensional map of line-integrated electron density, which can be Abel inverted to determine the local number density. The DHI resolves line-integrated densities down to 3 × 10 20 m -2 with spatial resolution near 10 μm. This paper presents the first application of Fresnel transform reconstruction as an analysis technique for a plasma diagnostic, and it analyzes the method's accuracy through study of synthetic data. It then presents an Abel inversion procedure that utilizes data on both sides of a Z-pinch local number density profile to maximize profile symmetry. Error estimation and Abel inversion are applied to the measured data.

  9. Primary experimental results of wire-array Z-pinches on PTS

    NASA Astrophysics Data System (ADS)

    Huang, X. B.; Zhou, S. T.; Ren, X. D.; Dan, J. K.; Wang, K. L.; Zhang, S. Q.; Li, J.; Xu, Q.; Cai, H. C.; Duan, S. C.; Ouyang, K.; Chen, G. H.; Ji, C.; Wang, M.; Feng, S. P.; Yang, L. B.; Xie, W. P.; Deng, J. J.

    2014-12-01

    The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a multiterawatt pulsed power driver, which can deliver a ˜10 MA, 70 ns rise-time (10%-90%) current to a short circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. In this paper, primary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 14.4-26.4 mm, and consisting of 132˜276 tungsten wires with 5˜10 μm in diameter. Multiple diagnostics were fielded to determine the characteristics of x-ray radiations and to obtain self-emitting images of imploding plasmas. X-ray power up to 80 TW with ˜3 ns FWMH is achieved by using nested wire arrays. The total x-ray energy exceeds 500 kJ and the peak radiation temperature is about 150 eV. Typical velocity of imploding plasmas goes around 3˜5×107 cm/s and the radial convergence ratio is between 10 and 20.

  10. Multicolor, time-gated, soft x-ray pinhole imaging of wire array and gas puff Z pinches on the Z and Saturn pulsed power generators.

    PubMed

    Jones, B; Coverdale, C A; Nielsen, D S; Jones, M C; Deeney, C; Serrano, J D; Nielsen-Weber, L B; Meyer, C J; Apruzese, J P; Clark, R W; Coleman, P L

    2008-10-01

    A multicolor, time-gated, soft x-ray pinhole imaging instrument is fielded as part of the core diagnostic set on the 25 MA Z machine [M. E. Savage et al., in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, New York, 2007), p. 979] for studying intense wire array and gas puff Z-pinch soft x-ray sources. Pinhole images are reflected from a planar multilayer mirror, passing 277 eV photons with <10 eV bandwidth. An adjacent pinhole camera uses filtration alone to view 1-10 keV photons simultaneously. Overlaying these data provides composite images that contain both spectral as well as spatial information, allowing for the study of radiation production in dense Z-pinch plasmas. Cu wire arrays at 20 MA on Z show the implosion of a colder cloud of material onto a hot dense core where K-shell photons are excited. A 528 eV imaging configuration has been developed on the 8 MA Saturn generator [R. B. Spielman et al., and A. I. P. Conf, Proc. 195, 3 (1989)] for imaging a bright Li-like Ar L-shell line. Ar gas puff Z pinches show an intense K-shell emission from a zippering stagnation front with L-shell emission dominating as the plasma cools.

  11. Effect of Pressure Anisotropy on the m = 1 Small Wavelength Modes in Z-Pinches

    NASA Astrophysics Data System (ADS)

    Faghihi, M.

    1987-05-01

    A generalization of Freidberg's perpendicular MHD model is used to investigate the effect of pressure anisotropy on the small wavelength internal kink (m = 1) mode instability in a Z-Pinch. A normal mode analysis of perturbed motion of an incompressible, collisionless and cylindrical plasma is performed. The stability criterion is (rΣB2)' <= 0, where Σ = 1 - (P|| - P⊥)/B2. It cannot be fulfilled without violation of the fire hose stability condition Σ >= 0.

  12. Conversion of electromagnetic energy in Z-pinch process of single planar wire arrays at 1.5 MA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liangping, Wang; Mo, Li; Juanjuan, Han

    The electromagnetic energy conversion in the Z-pinch process of single planar wire arrays was studied on Qiangguang generator (1.5 MA, 100 ns). Electrical diagnostics were established to monitor the voltage of the cathode-anode gap and the load current for calculating the electromagnetic energy. Lumped-element circuit model of wire arrays was employed to analyze the electromagnetic energy conversion. Inductance as well as resistance of a wire array during the Z-pinch process was also investigated. Experimental data indicate that the electromagnetic energy is mainly converted to magnetic energy and kinetic energy and ohmic heating energy can be neglected before the final stagnation. Themore » kinetic energy can be responsible for the x-ray radiation before the peak power. After the stagnation, the electromagnetic energy coupled by the load continues increasing and the resistance of the load achieves its maximum of 0.6–1.0 Ω in about 10–20 ns.« less

  13. Impedance Dynamics in the Self-Magnetic Pinch (SMP) Diode on the RITS-6 Accelerator

    NASA Astrophysics Data System (ADS)

    Renk, Timothy; Johnston, Mark; Leckbee, Joshua; Webb, Timothy; Mazarakis, Michael; Kiefer, Mark; Bennett, Nichelle

    2014-10-01

    The RITS-6 inductive voltage adder (IVA) accelerator (3.5-8.5 MeV) at Sandia National Laboratories produces high-power (TW) focused electron beams (<3 mm diameter) for flash x-ray radiography applications. The Self-Magnetic Pinch (SMP) diode utilizes a hollowed metal cathode to produce a pinched focus onto a high Z metal converter. The electron flow from the IVA driver into the load region complicates understanding of diode evolution. There is growing evidence that reducing cathode size below some ``optimum'' value in order to achieve desired spot size reduction results in pinch instabilities leading to either reduced dose-rate, early radiation power termination, or both. We are studying evolving pinch dynamics with current and x-ray monitors, optical diagnostics, and spectroscopy, as well as with LSP [1] code simulations. We are also planning changes to anode-cathode materials as well as changes to the diode aspect ratio in an attempt to mitigate the above trends and improve pinch stability while achieving simultaneous spot size reduction. Experiments are ongoing, and latest results will be reported [1]. LSP is a software product of ATK Mission Research, Albuquerque, NM. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Adminis-tration under Contract DE-AC04-94AL85000.

  14. Spatially resolved single crystal x-ray spectropolarimetry of wire array z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Wallace, M. S.; Haque, S.; Neill, P.; Pereira, N. R.; Presura, R.

    2018-01-01

    A recently developed single-crystal x-ray spectropolarimeter has been used to record paired sets of polarization-dependent and axially resolved x-ray spectra emitted by wire array z-pinches. In this measurement, two internal planes inside a suitable crystal diffract the x-rays into two perpendicular directions that are normal to each other, thereby separating incident x-rays into their linearly polarized components. This paper gives considerations for fielding the instrument on extended sources. Results from extended sources are difficult to interpret because generally the incident x-rays are not separated properly by the crystal. This difficulty is mitigated by using a series of collimating slits to select incident x-rays that propagate in a plane of symmetry between the polarization-splitting planes. The resulting instrument and some of the spatially resolved polarized x-ray spectra recorded for a 1-MA aluminum wire array z-pinch at the Nevada Terawatt Facility at the University of Nevada, Reno will be presented.

  15. Spatially resolved single crystal x-ray spectropolarimetry of wire array z-pinch plasmas.

    PubMed

    Wallace, M S; Haque, S; Neill, P; Pereira, N R; Presura, R

    2018-01-01

    A recently developed single-crystal x-ray spectropolarimeter has been used to record paired sets of polarization-dependent and axially resolved x-ray spectra emitted by wire array z-pinches. In this measurement, two internal planes inside a suitable crystal diffract the x-rays into two perpendicular directions that are normal to each other, thereby separating incident x-rays into their linearly polarized components. This paper gives considerations for fielding the instrument on extended sources. Results from extended sources are difficult to interpret because generally the incident x-rays are not separated properly by the crystal. This difficulty is mitigated by using a series of collimating slits to select incident x-rays that propagate in a plane of symmetry between the polarization-splitting planes. The resulting instrument and some of the spatially resolved polarized x-ray spectra recorded for a 1-MA aluminum wire array z-pinch at the Nevada Terawatt Facility at the University of Nevada, Reno will be presented.

  16. The quest for a z-pinch based fusion energy source—a historical perspective

    NASA Astrophysics Data System (ADS)

    Sethian, John

    1997-05-01

    Ever since 1958, when Oscar Anderson observed copious neutrons emanating from a "magnetically self-constricted column of deuterium plasma," scientists have attempted to develop the simple linear pinch into a fusion power source. After all, simple calculations show that if one can pass a current of slightly less than 2 million amperes through a stable D-T plasma, then one could achieve not just thermonuclear break-even, but thermonuclear gain. Moreover, several reactor studies have shown that a simple linear pinch could be the basis for a very attractive fusion system. The problem is, of course, that the seemingly simple act of passing 2 MA through a stable pinch has proven to be quite difficult to accomplish. The pinch tends to disrupt due to instabilities, either by the m=0 (sausage) or m=1 (kink) modes. Curtailing the growth of these instabilities has been the primary thrust of z-pinch fusion research, and over the years a wide variety of formation techniques have been tried. The early pinches were driven by relatively slow capacitive discharges and were formed by imploding a plasma column. The advent of fast pulsed power technology brought on a whole new repertoire of formation techniques, including: fast implosions, laser or field-enhanced breakdown in a uniform volume of gas, a discharge inside a small capillary, a frozen deuterium fiber isolated by vacuum, and staged concepts in which one pinch implodes upon another. And although none of these have yet to be successful, some have come tantalizingly close. This paper will review the history of this four-decade long quest for fusion power.

  17. Radial and Azimuthal Velocity Profiles in Gas-Puff Z-Pinches

    NASA Astrophysics Data System (ADS)

    Rocco, Sophia; Engelbrecht, Joseph; Banasek, Jacob; de Grouchy, Philip; Qi, Niansheng; Hammer, David

    2016-10-01

    The dynamics of neon, argon, and krypton (either singly or in combination) gas puff z-pinch plasmas are studied on Cornell's 1MA, 100-200ns rise-time COBRA pulsed power generator. The triple-nozzle gas puff valve, consisting of two annular gas puffs and a central jet, allows radial tailoring of the gas puff mass-density profile and the use of 1, 2 or 3 different gases at different pressures. Interferometry supplies information on sheath thickness and electron density, variously filtered PCDs and silicon diodes measure hard and soft x-ray production, and multi frame visible and extreme UV imaging systems allow tracking of the morphology of the plasma. A 527nm, 10J Thomson scattering diagnostic system is used to determine radial and azimuthal velocities. Implosion velocities of 170km/s (Kr) and 300km/s (Ne/Ar) are observed. We are investigating the correlations between instability growth, plasma density profile, velocity partitioning as a function of radius, and radiation production. Research supported by the NNSA Stewardship Sciences Academic Programs under DOE Cooperative Agreement No. DE-NA0001836.

  18. Variation of high-power aluminum-wire array Z-pinch dynamics with wire number, load mass, and array radius

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Mock, R. C.; Marder, B. M.; Nash, T. J.; Spielman, R. B.; Peterson, D. L.; Roderick, N. F.; Hammer, J. H.; De Groot, J. S.; Mosher, D.; Whitney, K. G.; Apruzese, J. P.

    1997-05-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, (as measured by the radial convergence, the radiated energy, pulse width, and power), increases with wire number. Radiation magnetohydrodynamic (RMHC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below ˜1.4 mm. In this "plasma-shell regime," many of the global radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. In this regime, measured changes in the radiation pulse width with variations in load mass and array radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple radiation-scaling models.

  19. Development And Characterization Of A Liner-On-Target Injector For Staged Z-Pinch Experiments

    NASA Astrophysics Data System (ADS)

    Valenzuela, J. C.; Conti, F.; Krasheninnikov, I.; Narkis, J.; Beg, F.; Wessel, F. J.; Rahman, H. U.

    2016-10-01

    We present the design and optimization of a liner-on-target injector for Staged Z-pinch experiments. The injector is composed of an annular high atomic number (e.g. Ar, Kr) gas-puff and an on-axis plasma gun that delivers the ionized deuterium target. The liner nozzle injector has been carefully studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated 1 cm radius gas profile that satisfies the theoretical requirement for best performance on the 1 MA Zebra current driver. The CFD simulations produce density profiles as a function of the nozzle shape and gas. These profiles are initialized in the MHD MACH2 code to find the optimal liner density for a stable, uniform implosion. We use a simple Snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector. We have performed line-integrated density measurements using a CW He-Ne laser to characterize the liner gas and the plasma gun density as a function of time. The measurements are compared with models and calculations and benchmarked accordingly. Advanced Research Projects Agency - Energy, DE-AR0000569.

  20. Parameter scaling toward high-energy density in a quasi-steady flow Z-pinch

    NASA Astrophysics Data System (ADS)

    Hughes, M. C.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Kim, B.; Ross, M. P.

    2016-10-01

    Sheared axial flows are utilized by the ZaP Flow Z-Pinch Experiment to stabilize MHD instabilities. The pinches formed are 50 cm long with radii ranging from 0.3 to 1.0 cm. The plasma is generated in a coaxial acceleration region, similar to a Marshall gun, which provides a steady supply of plasma for approximately 100 us. The power to the plasma is partially decoupled between the acceleration and pinch assembly regions through the use of separate power supplies. Adiabatic scaling of the Bennett relation gives targets for future devices to reach high-energy density conditions or fusion reactors. The applicability of an adiabatic assumption is explored and work is done experimentally to clarify the plasma compression process, which may be more generally polytropic. The device is capable of a much larger parameter space than previous machine iterations, allowing flexibility in the initial conditions of the compression process to preserve stability. This work is supported by DoE FES and NNSA.

  1. Compression mechanisms in the plasma focus pinch

    NASA Astrophysics Data System (ADS)

    Lee, S.; Saw, S. H.; Ali, Jalil

    2017-03-01

    The compression of the plasma focus pinch is a dynamic process, governed by the electrodynamics of pinch elongation and opposed by the negative rate of change of current dI/dt associated with the current dip. The compressibility of the plasma is influenced by the thermodynamics primarily the specific heat ratio; with greater compressibility as the specific heat ratio γ reduces with increasing degree of freedom f of the plasma ensemble due to ionization energy for the higher Z (atomic number) gases. The most drastic compression occurs when the emitted radiation of a high-Z plasma dominates the dynamics leading in extreme cases to radiative collapse which is terminated only when the compressed density is sufficiently high for the inevitable self-absorption of radiation to occur. We discuss the central pinch equation which contains the basic electrodynamic terms with built-in thermodynamic factors and a dQ/dt term; with Q made up of a Joule heat component and absorption-corrected radiative terms. Deuterium is considered as a thermodynamic reference (fully ionized perfect gas with f = 3) as well as a zero-radiation reference (bremsstrahlung only; with radiation power negligible compared with electrodynamic power). Higher Z gases are then considered and regimes of thermodynamic enhancement of compression are systematically identified as are regimes of radiation-enhancement. The code which incorporates all these effects is used to compute pinch radius ratios in various gases as a measure of compression. Systematic numerical experiments reveal increasing severity in radiation-enhancement of compressions as atomic number increases. The work progresses towards a scaling law for radiative collapse and a generalized specific heat ratio incorporating radiation.

  2. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    DOE PAGES

    Vogman, G. V.; Shumlak, U.

    2011-10-13

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian functionmore » associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. As a result, these measurements are used to gain a better understanding of Z-pinch equilibria.« less

  3. Deconvolution of Stark broadened spectra for multi-point density measurements in a flow Z-pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogman, G. V.; Shumlak, U.

    2011-10-15

    Stark broadened emission spectra, once separated from other broadening effects, provide a convenient non-perturbing means of making plasma density measurements. A deconvolution technique has been developed to measure plasma densities in the ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are captured at 20 locations using a multi-chord spectroscopic system. Spectra that are time- and chord-integrated are well approximated by a Voigt function. The proposed method simultaneously resolves plasma electron density and ion temperature by deconvolving the spectral Voigt profile into constituent functions: a Gaussian functionmore » associated with instrument effects and Doppler broadening by temperature; and a Lorentzian function associated with Stark broadening by electron density. The method uses analytic Fourier transforms of the constituent functions to fit the Voigt profile in the Fourier domain. The method is discussed and compared to a basic least-squares fit. The Fourier transform fitting routine requires fewer fitting parameters and shows promise in being less susceptible to instrumental noise and to contamination from neighboring spectral lines. The method is evaluated and tested using simulated lines and is applied to experimental data for the 229.69 nm C III line from multiple chords to determine plasma density and temperature across the diameter of the pinch. These measurements are used to gain a better understanding of Z-pinch equilibria.« less

  4. 250 kA compact linear transformer driver for wire array z-pinch loads

    NASA Astrophysics Data System (ADS)

    Bott, S. C.; Haas, D. M.; Madden, R. E.; Ueda, U.; Eshaq, Y.; Collins, G., IV; Gunasekera, K.; Mariscal, D.; Peebles, J.; Beg, F. N.; Mazarakis, M.; Struve, K.; Sharpe, R.

    2011-05-01

    We present the application of a short rise (˜150ns) 250 kA linear transformer driver (LTD) to wire array z-pinch loads for the first time. The generator is a modification of a previous driver in which a new conical power feed provides a low inductance coupling to wire loads. Performance of the new design using both short circuit and plasma loads is presented and discussed. The final design delivers ˜200kA to a wire array load which is in good agreement with SCREAMER calculations using a simplified representative circuit. Example results demonstrate successful experiments using cylindrical, conical, and inverse wire arrays as well as previously published work on x-pinch loads.

  5. Grazing incidence extreme ultraviolet spectrometer fielded with time resolution in a hostile z-pinch environment.

    PubMed

    Williamson, K M; Kantsyrev, V L; Safronova, A S; Wilcox, P G; Cline, W; Batie, S; LeGalloudec, B; Nalajala, V; Astanovitsky, A

    2011-09-01

    This recently developed diagnostic was designed to allow for time-gated spectroscopic study of the EUV radiation (4 nm < λ < 15 nm) present during harsh wire array z-pinch implosions. The spectrometer utilizes a 25 μm slit, an array of 3 spherical blazed gratings at grazing incidence, and a microchannel plate (MCP) detector placed in an off-Rowland position. Each grating is positioned such that its diffracted radiation is cast over two of the six total independently timed frames of the MCP. The off-Rowland configuration allows for a much greater spectral density on the imaging plate but only focuses at one wavelength per grating. The focal wavelengths are chosen for their diagnostic significance. Testing was conducted at the Zebra pulsed-power generator (1 MA, 100 ns risetime) at the University of Nevada, Reno on a series of wire array z-pinch loads. Within this harsh z-pinch environment, radiation yields routinely exceed 20 kJ in the EUV and soft x-ray. There are also strong mechanical shocks, high velocity debris, sudden vacuum changes during operation, energic ion beams, and hard x-ray radiation in excess of 50 keV. The spectra obtained from the precursor plasma of an Al double planar wire array contained lines of Al IX and AlX ions indicating a temperature near 60 eV during precursor formation. Detailed results will be presented showing the fielding specifications and the techniques used to extract important plasma parameters using this spectrometer. © 2011 American Institute of Physics

  6. Investigating plasma viscosity with fast framing photography in the ZaP-HD Flow Z-Pinch experiment

    NASA Astrophysics Data System (ADS)

    Weed, Jonathan Robert

    The ZaP-HD Flow Z-Pinch experiment investigates the stabilizing effect of sheared axial flows while scaling toward a high-energy-density laboratory plasma (HEDLP > 100 GPa). Stabilizing flows may persist until viscous forces dissipate a sheared flow profile. Plasma viscosity is investigated by measuring scale lengths in turbulence intentionally introduced in the plasma flow. A boron nitride turbulence-tripping probe excites small scale length turbulence in the plasma, and fast framing optical cameras are used to study time-evolved turbulent structures and viscous dissipation. A Hadland Imacon 790 fast framing camera is modified for digital image capture, but features insufficient resolution to study turbulent structures. A Shimadzu HPV-X camera captures the evolution of turbulent structures with great spatial and temporal resolution, but is unable to resolve the anticipated Kolmogorov scale in ZaP-HD as predicted by a simplified pinch model.

  7. The application of high-speed photography in z-pinch high-temperature plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Wang, Kui-lu; Qiu, Meng-tong; Hei, Dong-wei

    2007-01-01

    This invited paper is presented to discuss the application of high speed photography in z-pinch high temperature plasma diagnostics in recent years in Northwest Institute of Nuclear Technology in concentrative mode. The developments and applications of soft x-ray framing camera, soft x-ray curved crystal spectrometer, optical framing camera, ultraviolet four-frame framing camera and ultraviolet-visible spectrometer are introduced.

  8. Long implosion time (240 ns) Z-pinch experiments with a large diameter (12 cm) double-shell nozzle

    NASA Astrophysics Data System (ADS)

    Levine, J. S.; Banister, J. W.; Failor, B. H.; Qi, N.; Song, Y.; Sze, H. M.; Fisher, A.

    2004-05-01

    Recently, an 8 cm diameter double-shell nozzle has produced argon Z pinches with high K-shell yields with implosion time of 210 ns. To produce even longer implosion time Z pinches for facilities such as Decade Quad [D. Price, et al., "Electrical and Mechanical Design of the Decade Quad in PRS Mode," in Proceedings of the 12th IEEE Pulsed Power Conference, Monterey, CA, edited by C. Stallings and H. Kirbie (IEEE, New York, 1999), p. 489] (9 MA short circuit current at 300 ns), a larger nozzle (12 cm outer diameter) was designed and fabricated. During initial testing on Double-EAGLE [P. Sincerny et al., Proceedings of the 5th IEEE Pulsed Power Conference, Arlington, VA, edited by M. F. Rose and P. J. Turchi (IEEE, New York, 1985), p. 151], 9 kJ of argon K-shell radiation in a 6 ns full width at half maximum pulse was produced with a 240 ns implosion. The initial gas distributions produced by various nozzle configurations have been measured and their impact on the final radiative characteristics of the pinch are presented. The addition of a central jet to increase the initial gas density near the axis is observed to enhance the pinch quality, increasing K-shell yield by 17% and power by 40% in the best configuration tested.

  9. Measurements of high energy photons in Z-pinch experiments on primary test stand

    NASA Astrophysics Data System (ADS)

    Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-08-01

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 1010 cm-2 (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.

  10. Measurements of high energy photons in Z-pinch experiments on primary test stand.

    PubMed

    Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-08-01

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 10(10) cm(-2) (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.

  11. Wire Array Z-pinches on Sphinx Machine: Experimental Results and Relevant Points of Microsecond Implosion Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calamy, H.; Hamann, F.; Lassalle, F.

    Centre d'Etudes de Gramat (France) has developed an efficient long implosion time (800 ns) Aluminum plasma radiation source (PRS). Based on the LTD technology, the SPHINX facility is developed as a 1-3MJ, 1{mu}s rise time, 4-10 MA current driver. In this paper, it was used in 1MJ, 4MA configuration to drive Aluminum nested wire arrays Z-pinches with K-shell yield up to 20 kJ and a FWHM of the x-ray pulse of about 50 ns. We present latest SPHINX experiments and some of the main physic issues of the microsecond regime. Experimental setup and results are described with the aim ofmore » giving trends that have been obtained. The main features of microsecond implosion of wire arrays can be analyzed thanks to same methods and theories as used for faster Z-pinches. The effect of load polarity was examined. The stability of the implosion , one of the critical point of microsecond wire arrays due to the load dimensions imposed by the time scale, is tackled. A simple scaling from 100 ns Z-pinch results to 800 ns ones gives good results and the use of nested arrays improves dramatically the implosion quality and the Kshell yield of the load. However, additional effects such as the impact of the return current can geometry on the implosion have to be taken into account on our loads. Axial inhomogeneity of the implosion the origin of which is not yet well understood occurs in some shots and impacts the radiation output. The shape of the radiative pulse is discussed and compared with the homogeneity of the implosion. Numerical 2D R-Z and R-{theta} simulations are used to highlight some experimental results and understand the plasma conditions during these microsecond wire arrays implosions.« less

  12. Wire Array Z-pinches on Sphinx Machine: Experimental Results and Relevant Points of Microsecond Implosion Physics

    NASA Astrophysics Data System (ADS)

    Calamy, H.; Hamann, F.; Lassalle, F.; Bayol, F.; Mangeant, C.; Morell, A.; Huet, D.; Bedoch, J. P.; Chittenden, J. P.; Lebedev, S. V.; Jennings, C. A.; Bland, S. N.

    2006-01-01

    Centre d'Etudes de Gramat (France) has developed an efficient long implosion time (800 ns) Aluminum plasma radiation source (PRS). Based on the LTD technology, the SPHINX facility is developed as a 1-3MJ, 1μs rise time, 4-10 MA current driver. In this paper, it was used in 1MJ, 4MA configuration to drive Aluminum nested wire arrays Z-pinches with K-shell yield up to 20 kJ and a FWHM of the x-ray pulse of about 50 ns. We present latest SPHINX experiments and some of the main physic issues of the microsecond regime. Experimental setup and results are described with the aim of giving trends that have been obtained. The main features of microsecond implosion of wire arrays can be analyzed thanks to same methods and theories as used for faster Z-pinches. The effect of load polarity was examined. The stability of the implosion , one of the critical point of microsecond wire arrays due to the load dimensions imposed by the time scale, is tackled. A simple scaling from 100 ns Z-pinch results to 800 ns ones gives good results and the use of nested arrays improves dramatically the implosion quality and the Kshell yield of the load. However, additional effects such as the impact of the return current can geometry on the implosion have to be taken into account on our loads. Axial inhomogeneity of the implosion the origin of which is not yet well understood occurs in some shots and impacts the radiation output. The shape of the radiative pulse is discussed and compared with the homogeneity of the implosion. Numerical 2D R-Z and R-θ simulations are used to highlight some experimental results and understand the plasma conditions during these microsecond wire arrays implosions.

  13. Measurements of high-current electron beams from X pinches and wire array Z pinches.

    PubMed

    Shelkovenko, T A; Pikuz, S A; Blesener, I C; McBride, R D; Bell, K S; Hammer, D A; Agafonov, A V; Romanova, V M; Mingaleev, A R

    2008-10-01

    Some issues concerning high-current electron beam transport from the X pinch cross point to the diagnostic system and measurements of the beam current by Faraday cups are discussed. Results of computer simulation of electron beam propagation from the pinch to the Faraday cup give limits for the measured current for beams having different energy spreads. The beam is partially neutralized as it propagates from the X pinch to a diagnostic system, but within a Faraday cup diagnostic, space charge effects can be very important. Experimental results show evidence of such effects.

  14. Oblique shock structures formed during the ablation phase of aluminium wire array z-pinches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Lebedev, S. V.; Niasse, N.

    A series of experiments has been conducted in order to investigate the azimuthal structures formed by the interactions of cylindrically converging plasma flows during the ablation phase of aluminium wire array Z pinch implosions. These experiments were carried out using the 1.4 MA, 240 ns MAGPIE generator at Imperial College London. The main diagnostic used in this study was a two-colour, end-on, Mach-Zehnder imaging interferometer, sensitive to the axially integrated electron density of the plasma. The data collected in these experiments reveal the strongly collisional dynamics of the aluminium ablation streams. The structure of the flows is dominated by amore » dense network of oblique shock fronts, formed by supersonic collisions between adjacent ablation streams. An estimate for the range of the flow Mach number (M = 6.2-9.2) has been made based on an analysis of the observed shock geometry. Combining this measurement with previously published Thomson Scattering measurements of the plasma flow velocity by Harvey-Thompson et al.[Physics of Plasmas 19, 056303 (2012)] allowed us to place limits on the range of the ZT{sub e} of the plasma. The detailed and quantitative nature of the dataset lends itself well as a source for model validation and code verification exercises, as the exact shock geometry is sensitive to many of the plasma parameters. Comparison of electron density data produced through numerical modelling with the Gorgon 3D MHD code demonstrates that the code is able to reproduce the collisional dynamics observed in aluminium arrays reasonably well.« less

  15. Conceptual Design of a Z-Pinch Fusion Propulsion System

    NASA Technical Reports Server (NTRS)

    Adams, Robert; Polsgrove, Tara; Fincher, Sharon; Fabinski, Leo; Maples, Charlotte; Miernik, Janie; Stratham, Geoffrey; Cassibry, Jason; Cortez, Ross; Turner, Matthew; hide

    2010-01-01

    This slide presentation reviews a project that aims to develop a conceptual design for a Z-pinch thruster, that could be applied to develop advanced thruster designs which promise high thrust/high specific impulse propulsion. Overviews shows the concept of the design, which use annular nozzles with deuterium-tritium (D-T) fuel and a Lithium mixture as a cathode, Charts show the engine performance as a function of linear mass, nozzle performance (i.e., plasma segment trajectories), and mission analysis for possible Mars and Jupiter missions using this concept for propulsion. Slides show views of the concepts for the vehicle configuration, thrust coil configuration, the power management system, the structural analysis of the magnetic nozzle, the thermal management system, and the avionics suite,

  16. Using a Z-pinch precursor plasma to produce a cylindrical, hotspot ignition, ICF

    NASA Astrophysics Data System (ADS)

    Chittenden, Jeremy

    2005-10-01

    We show that if the same precursor plasma that exists in metal wire arrays can be generated with a Deuterium-Tritium plasma then this precursor provides an ideal target for a cylindrical magneto-inertial ICF scheme. The precursor is generated from a fraction of the mass of the array which arrives on the axis early in time and remains confined at high density by the inertia of further material bombarding the axis. Later on, the main implosion of the DT Z-pinch produces a dense, low temperature shell which compressively heats the precursor target to high temperatures and tamps its expansion. The azimuthal magnetic field in the hotspot is sufficient to reduce the Larmor radius for the alpha particles to much less than the hotspot size, which dramatically reduces the ρR required for ignition. A computational analysis of this approach is presented, including a study of the thermonuclear burn wave propagation. The robustness of the scheme with respect to instabilities, confinement time and drive parameters is examined. The results indicate that a high energy gain can be achieved using Z-pinches with 50-100 MA currents and a few hundred nanosecond rise-times. This work was partially supported by the U.S. Department of Energy through cooperative agreement DE-FC03-02NA00057.

  17. The study of hard x-ray emission and electron beam generation in wire array Z-pinch and X-pinch plasmas at university-scale generators

    NASA Astrophysics Data System (ADS)

    Shrestha, Ishor Kumar

    The studies of hard x-ray (HXR) emission and electron beam generation in Z-pinch plasmas are very important for Inertial Confinement Fusion (ICF) research and HXR emission application for sources of K-shell and L-shell radiation. Energetic electron beams from Z-pinch plasmas are potentially a problem in the development of ICF. The electron beams and the accompanying HXR emission can preheat the fuel of a thermonuclear target, thereby preventing the fuel compression from reaching densities required for the ignition of a fusion reaction. The photons above 3-4 keV radiated from a Z pinch can provide detailed information about the high energy density plasmas produced at stagnation. Hence, the investigation of characteristics of hard x-rays and electron beams produced during implosions of wire array loads on university scale-generators may provide important data for future ICF, sources of K-shell and L-shell radiations and basic plasma research. This dissertation presents the results of experimental studies of HXR and electron beam generation in wire-array and X-pinch on the 1.7 MA, 100-ns current rise time Zebra generator at University of Nevada, Reno and 1-MA 100-ns current rise-time Cornell Beam Research Accelerator (COBRA) at Cornell University. The experimental study of characteristics of HXR produced by multi-planar wire arrays, compact cylindrical wire array (CCWA) and nested cylindrical wire array (NCWA) made from Al, Cu, Mo, Ag, W and Au were analyzed. The dependence of the HXR yield and power on geometry of the load, the wire material, and load mass was observed. The presence of aluminum wires in the load with the main material such as stainless steel, Cu, Mo, Ag, W or Au in combined wire array decreases HXR yield. The comparison of emission characteristics of HXR and generation of electron beams in CCWA and NCWA on both the high impedance Zebra generator and low impedance COBRA generator were investigated. Some of the "cold" K- shell spectral lines (0.7-2.3

  18. Acceleration of Hydrogen Ions up to 30 MeV and Generation of 3 × 1012 Neutrons in Megaampere Deuterium Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    Klir, D.; Cikhardt, J.; Kravarik, J.; Kubes, P.; Rezac, K.; Sila, O.; Shishlov, A.; Cherdizov, R.; Fursov, F.; Kokshenev, V.; Kovalchuk, B.; Kurmaev, N.; Labetsky, A.; Ratakhin, N.; Orcikova, H.; Turek, K.

    2013-10-01

    Fusion neutrons were produced with a deuterium gas-puff z-pinch on the GIT-12 generator at the Institute of High Current Electronics in Tomsk. The peak neutron yield from DD reactions reached Yn = (2 . 9 +/- 0 . 3) ×1012 at 100 μg/cm linear mass density of deuterium, 700 ns implosion time and 2.7 MA current. Such a neutron yield means that the scaling law of deuterium z-pinches Yn ~I4 was extended to 3 MA currents. The further increase of neutron yields up to (3 . 7 +/- 0 . 4) ×1012 was achieved by placing a deuterated polyethylene catcher onto the axis. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial nToF detectors, respectively. A stack of CR-39 track detectors showed up to 40 MeV deuterons (or 30 MeV protons) on the z-pinch axis. Since the energy input into plasmas was 70 kJ, the number of DD neutrons per one joule of stored plasma energy exceeded the value of 5 ×107 . This value implies that deuterium gas-puff z-pinches belong to the most efficient plasma-based sources of DD neutrons. This work was partially supported by the GACR grant No. P205/12/0454 and by the RFBR research project No. 13-08-00479-a.

  19. Dynamics of a Z-pinch x-ray source for heating inertial-confinement-fusion relevant hohlraums to 120-160 eV

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Olson, R. E.; Mock, R. C.; Chandler, G. A.; Leeper, R. J.; Nash, T. J.; Ruggles, L. E.; Simpson, W. W.; Struve, K. W.; Peterson, D. L.; Bowers, R. L.; Matuska, W.

    2000-11-01

    A Z-pinch radiation source has been developed that generates 60±20 kJ of x rays with a peak power of 13±4 TW through a 4-mm-diam axial aperture on the Z facility. The source has heated National Ignition Facility-scale (6-mm-diam by 7-mm-high) hohlraums to 122±6 eV and reduced-scale (4-mm-diam by 4-mm-high) hohlraums to 155±8 eV—providing environments suitable for indirect-drive inertial confinement fusion studies. Eulerian-RMHC (radiation-magnetohydrodynamics code) simulations that take into account the development of the Rayleigh-Taylor instability in the r-z plane provide integrated calculations of the implosion, x-ray generation, and hohlraum heating, as well as estimates of wall motion and plasma fill within the hohlraums. Lagrangian-RMHC simulations suggest that the addition of a 6 mg/cm3 CH2 fill in the reduced-scale hohlraum decreases hohlraum inner-wall velocity by ˜40% with only a 3%-5% decrease in peak temperature, in agreement with measurements.

  20. Z pinches as intense x-ray sources for high-energy density physics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzen, M.K.

    1997-05-01

    Fast Z-pinch implosions can efficiently convert the stored electrical energy in a pulsed-power accelerator into x rays. These x rays are produced when an imploding cylindrical plasma, driven by the magnetic field pressure associated with very large axial currents, stagnates upon the cylindrical axis of symmetry. On the Saturn pulsed-power accelerator [R. B. Spielman {ital et al.}, in {ital Proceedings of the 2nd International Conference on Dense Z Pinches}, Laguna Beach, CA, 1989, edited by N. R. Pereira, J. Davis, and N. Rostoker (American Institute of Physics, New York, 1989), p. 3] at Sandia National Laboratories, for example, currents ofmore » 6{endash}8 MA with a rise time of less than 50 ns are driven through cylindrically symmetric loads, producing implosion velocities as high as 10{sup 8}cm/s and x-ray energies exceeding 400 kJ. Hydromagnetic Rayleigh{endash}Taylor instabilities and cylindrical load symmetry are critical, limiting factors in determining the assembled plasma densities and temperatures, and thus in the x-ray energies and pulse widths that can be produced on these accelerators. In recent experiments on the Saturn accelerator, these implosion nonuniformities have been minimized by using wire arrays with as many as 192 wires. Increasing the wire number produced significant improvements in the pinched plasma quality, reproducibility, and x-ray output power. X-ray pulse widths of less than 5 ns and peak powers of 75{plus_minus}10TW have been achieved with arrays of 120 tungsten wires. Similar loads have recently been fielded on the Particle Beam Fusion Accelerator (PBFA II), producing x-ray energies in excess of 1.8 MJ at powers in excess of 160 TW. These intense x-ray sources offer the potential for performing many new basic physics and fusion-relevant experiments. {copyright} {ital 1997 American Institute of Physics.}« less

  1. Investigating radial wire array Z pinches as a compact x-ray source on the Saturn generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ampleford, David J.; Bland, S. N.; Jennings, Christopher A.

    2015-08-27

    Radial wire array z pinches, where wires are positioned radially outward from a central cathode to a concentric anode, can act as a compact bright x-ray source that could potentially be used to drive a hohlraum. Experiments were performed on the 7-MA Saturn generator using radial wire arrays. These experiments studied a number of potential risks in scaling radial wire arrays up from the 1-MA level, where they have been shown to be a promising compact X-ray source. Data indicates that at 7 MA, radial wire arrays can radiate ~9 TW with 10-ns full-width at half-maximum from a compact pinch.

  2. Drop formation, pinch-off dynamics and liquid transfer of simple and complex fluids

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Sharma, Vivek

    Liquid transfer and drop formation processes underlying jetting, spraying, coating, and printing - inkjet, screen, roller-coating, gravure, nanoimprint hot embossing, 3D - often involve formation of unstable columnar necks. Capillary-driven thinning of such necks and their pinchoff dynamics are determined by a complex interplay of inertial, viscous and capillary stresses for simple, Newtonian fluids. Micro-structural changes in response to extensional flow field that arises within the thinning neck give rise to additional viscoelastic stresses in complex, non- Newtonian fluids. Using FLOW-3D, we simulate flows realized in prototypical geometries (dripping and liquid bridge stretched between two parallel plates) used for studying pinch-off dynamics and influence of microstructure and viscoelasticity. In contrast with often-used 1D or 2D models, FLOW-3D allows a robust evaluation of the magnitude of the underlying stresses and extensional flow field (both uniformity and magnitude). We find that the simulated radius evolution profiles match the pinch-off dynamics that are experimentally-observed and theoretically-predicted for model Newtonian fluids and complex fluids.

  3. Design of Z-Pinch and Dense Plasma Focus Powered Vehicles

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Fincher, Sharon; Adams, Robert B.; Cassibry, Jason; Cortez, Ross; Turner, Matthew; Maples, C. Daphne; Miermik, Janie N.; Statham, Geoffrey N.; Fabisinski, Leo; hide

    2011-01-01

    Z-pinch and Dense Plasma Focus (DPF) are two promising techniques for bringing fusion power to the field of in-space propulsion. A design team comprising of engineers and scientists from UAHuntsville, NASA's George C. Marshall Space Flight Center and the University of Wisconsin developed concept vehicles for a crewed round trip mission to Mars and an interstellar precursor mission. Outlined in this paper are vehicle concepts, complete with conceptual analysis of the mission profile, operations, structural and thermal analysis and power/avionics design. Additionally engineering design of the thruster itself is included. The design efforts adds greatly to the fidelity of estimates for power density (alpha) and overall performance for these thruster concepts

  4. Observation of emission process in hydrogen-like nitrogen Z-pinch discharge with time integrated soft X-ray spectrum pinhole image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Y.; Kumai, H.; Nakanishi, Y.

    2013-02-15

    The emission spectra of hydrogen-like nitrogen Balmer at the wavelength of 13.4 nm in capillary Z-pinch discharge plasma are experimentally examined. Ionization to fully strip nitrogen at the pinch maximum, and subsequent rapid expansion cooling are required to establish the population inversion between the principal quantum number of n = 2 and n = 3. The ionization and recombination processes with estimated plasma parameters are evaluated by utilizing a time integrated spectrum pinhole image containing radial spatial information. A cylindrical capillary plasma is pinched by a triangular pulsed current with peak amplitude of 50 kA and pulse width of 50more » ns.« less

  5. A kind of fast shutter for Z pinch diagnosis device.

    PubMed

    Wang, Liangping; Zhang, Xinjun; Sun, Tieping; Mao, Wentin

    2016-09-01

    A kind of fast shutter for protecting the diagnosis devices in Z pinch experiments is introduced in this paper. The shutter is composed of a pulling rod, a magnetic core, and a solenoid. Different from the traditional coils which were used at the voltage of 220 V, the solenoid we used must endure the high voltage of 5-10 kV and the deformation which maybe caused by the 5-10 T intense magnetic field. A creative configuration for the solenoid is developed including the winding guide, insulating sleeve, and stainless-steel sleeve. The experimental results show that the configuration of the solenoid is effective. The velocity of the valve is nearly 19 m/s and the time jitter of the shutdown is within 75 μs.

  6. A kind of fast shutter for Z pinch diagnosis device

    NASA Astrophysics Data System (ADS)

    Wang, Liangping; Zhang, Xinjun; Sun, Tieping; Mao, Wentin

    2016-09-01

    A kind of fast shutter for protecting the diagnosis devices in Z pinch experiments is introduced in this paper. The shutter is composed of a pulling rod, a magnetic core, and a solenoid. Different from the traditional coils which were used at the voltage of 220 V, the solenoid we used must endure the high voltage of 5-10 kV and the deformation which maybe caused by the 5-10 T intense magnetic field. A creative configuration for the solenoid is developed including the winding guide, insulating sleeve, and stainless-steel sleeve. The experimental results show that the configuration of the solenoid is effective. The velocity of the valve is nearly 19 m/s and the time jitter of the shutdown is within 75 μs.

  7. Electron temperature diagnostics of aluminium plasma in a z-pinch experiment at the “QiangGuang-1" facility

    NASA Astrophysics Data System (ADS)

    Li, Mo; Wu, Jian; Wang, Liang-Ping; Wu, Gang; Han, Juan-Juan; Guo, Ning; Qiu, Meng-Tong

    2012-12-01

    Two curved crystal spectrometers are set up on the “QiangGuang-1" generator to measure the z-pinch plasma spectra emitted from planar aluminum wire array loads. Kodak Biomax-MS film and an IRD AXUVHS5# array are employed to record time-integrated and time-resolved free-bound radiation, respectively. The photon energy recorded by each detector is ascertained by using the L-shell lines of molybdenum plasma. Based on the exponential relation between the continuum power and photon energies, the aluminum plasma electron temperatures are measured. For the time-integrated diagnosis, several “bright spots" indicate electron temperatures between (450 eV ~ 520 eV) ± 35%. And for the time-resolved ones, the result shows that the electron temperature reaches about 800 eV ± 30% at peak power. The system satisfies the demand of z-pinch plasma electron temperature diagnosis on a ~ 1 MA facility.

  8. Evaluation of Turner relaxed state as a model of long-lived ion-trapping structures in plasma focus and Z-pinches

    NASA Astrophysics Data System (ADS)

    Auluck, S. K. H.

    2011-03-01

    Relatively long-lived spheroidal structures coincident with the neutron emission phase have been observed in frozen deuterium fiber Z-pinch and some plasma focus devices. Existence of energetic ion-trapping mechanism in plasma focus has also been inferred from experimental data. It has been conjectured that these are related phenomena. This paper applies Turner's theory [L. Turner, IEEE Trans. Plasma Sci. 14, 849 (1986)] of relaxation of a Hall magnetofluid to construct a model of these structures and ion-trapping mechanism. Turner's solution modified for a finite-length plasma is used to obtain expressions for the magnetic field, velocity, and equilibrium pressure fields and is shown to represent an entity which is simultaneously a fluid vortex, a force-free magnetic field, a confined finite-pressure plasma, a charged object, and a trapped energetic ion beam. Characteristic features expected from diagnostic experiments are evaluated and shown to resemble experimental observations.

  9. Pinch current limitation effect in plasma focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.; Saw, S. H.; INTI International University College, 71800 Nilai

    The Lee model couples the electrical circuit with plasma focus dynamics, thermodynamics, and radiation. It is used to design and simulate experiments. A beam-target mechanism is incorporated, resulting in realistic neutron yield scaling with pinch current and increasing its versatility for investigating all Mather-type machines. Recent runs indicate a previously unsuspected 'pinch current limitation' effect. The pinch current does not increase beyond a certain value however low the static inductance is reduced to. The results indicate that decreasing the present static inductance of the PF1000 machine will neither increase the pinch current nor the neutron yield, contrary to expectations.

  10. Neutron spectra from beam-target reactions in dense Z-pinches

    NASA Astrophysics Data System (ADS)

    Appelbe, B.; Chittenden, J.

    2015-10-01

    The energy spectrum of neutrons emitted by a range of deuterium and deuterium-tritium Z-pinch devices is investigated computationally using a hybrid kinetic-MHD model. 3D MHD simulations are used to model the implosion, stagnation, and break-up of dense plasma focus devices at currents of 70 kA, 500 kA, and 2 MA and also a 15 MA gas puff. Instabilities in the MHD simulations generate large electric and magnetic fields, which accelerate ions during the stagnation and break-up phases. A kinetic model is used to calculate the trajectories of these ions and the neutron spectra produced due to the interaction of these ions with the background plasma. It is found that these beam-target neutron spectra are sensitive to the electric and magnetic fields at stagnation resulting in significant differences in the spectra emitted by each device. Most notably, magnetization of the accelerated ions causes the beam-target spectra to be isotropic for the gas puff simulations. It is also shown that beam-target spectra can have a peak intensity located at a lower energy than the peak intensity of a thermonuclear spectrum. A number of other differences in the shapes of beam-target and thermonuclear spectra are also observed for each device. Finally, significant differences between the shapes of beam-target DD and DT neutron spectra, due to differences in the reaction cross-sections, are illustrated.

  11. Small-amplitude magnetic Rayleigh-Taylor instability growth in cylindrical liners and Z-pinches imploded in an axial magnetic field

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Clark, R. W.; Mikitchuk, D.; Kroupp, E.; Maron, Y.; Fisher, A.; Schmit, P. F.

    2014-10-01

    Recent progress in developing the MagLIF approach to pulsed-power driven inertial confinement fusion has stimulated the interest in observation and mitigation of the magnetic Rayleigh-Taylor instability (MRTI) of liners and Z-pinches imploded in an axial magnetic field. Theoretical analysis of these issues is particularly important because direct numerical simulation of the MRTI development is challenging due to intrinsically 3D helical structure of the fastest-growing modes. We review the analytical small-amplitude theory of the MRTI perturbation development and the weakly nonlinear theory of MRTI mode interaction, emphasizing basic physics, opportunity for 3D code verification against exact analytical solutions, and stabilization criteria. The theory is compared to the experimental results obtained at Weizmann Institute with gas-puff Z pinches and on the Z facility at Sandia with solid liners imploded in an axial magnetic field. Work supported by the US DOE/NNSA, and by the US-Israel Binational Science Foundation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  12. Charger 1: A New Facility for Z-Pinch Research

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Cassibry, Jason; Cortez, Ross; Doughty, Glen; Adams, Robert; DeCicco, Anthony

    2017-01-01

    Charger 1 is a multipurpose pulsed power laboratory located on Redstone Arsenal, with a focus on fusion propulsion relevant experiments involving testing z-pinch diodes, pulsed magnetic nozzle and other related physics experiments. UAH and its team of pulsed power researchers are investigating ways to increase and optimize fusion production from Charger 1. Currently the team has reached high-power testing. Due to the unique safety issues related to high power operations the UAH/MSFC team has slowed repair efforts to develop safety and operations protocols. The facility is expected to be operational by the time DZP 2017 convenes. Charger 1 began life as the Decade Module 2, an experimental prototype built to prove the Decade Quad pinch configuration. The system was donated to UAH by the Defense Threat Reduction Agency (DRTA) in 2012. For the past 5 years a UAH/MSFC/Boeing team has worked to refurbish, assemble and test the system. With completion of high power testing in summer 2017 Charger 1 will become operational for experimentation. Charger 1 utilizes a Marx Bank of 72 100-kV capacitors that are charged in parallel and discharged in series. The Marx output is compressed to a pulse width of approximately 200 ns via a pulse forming network of 32 coaxial stainless steel tubes using water as a dielectric. After pulse compression a set of SF6 switches are triggered, allowing the wave front to propagate through the output line to the load. Charger 1 is capable of storing 572-kJ of energy and time compressing discharge to less than 250 ns discharge time producing a discharge of about 1 TW of discharge with 1 MV and 1 MA peak voltage and current, respectively. This capability will be used to study energy yield scaling and physics from solid density target as applied to advanced propulsion research.

  13. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin, E-mail: caephxb2003@aliyun.com

    2015-11-15

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter tomore » yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.« less

  14. Experimental study of z-pinch driven radiative shocks in low density gases

    NASA Astrophysics Data System (ADS)

    Skidmore, Jonathan; Lebedev, S. V.; Suzuki-Vidal, F.; Swadling, G.; Bland, S. N.; Burdiak, G.; Chittenden, J. P.; de Grouchy, P.; Hall, G. N.; Pickworth, L.; Suttle, L.; Bennett, M.; Ciardi, A.

    2012-10-01

    Results of experiments performed on MAGPIE pulsed power facility (1.4MA, 250ns) will be presented. Shocks with velocities of 50-70km/s are driven in Ar, Xe and He gases at density ˜10-5g/cc using radial foil z-pinch configuration [1]. Measurements of the structure of the shocks obtained with laser probing will be presented and observations of the development of instabilities will be discussed. It was found that the structure of the shocks and the development of instabilities strongly depend on the rate of radiative cooling, increasing for gases with higher atomic numbers.[4pt] [1] F. Suzuki-Vidal et al., PoP 19, 022708 (2012)

  15. Capillary Thinning and Pinch-off Dynamics and Printability of Polyelectrolyte Solutions

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek; Jimenez, Leidy N.; Dinic, Jelena; Parsi, Nikila

    Biological macromolecules like proteins, DNA and polysaccharides, and many industrial polymers, are classified together as polyelectrolytes for in solution, the repeat units in their backbone are decorated with disassociated, charge-bearing ionic groups, surrounded by counter-ions. In diverse applications like inkjet printing, sprayable cosmetics and insecticides, paints and coatings that involve formation of fluid columns or sheets that undergo progressive thinning and pinch-off into drops, the dominant flow within the necking filament is extensional in nature. The extensional rheology response of the charged macromolecular solutions is not as well understood as that of their uncharged counterparts. Here focus on the characterization of capillary thinning and pinch-off dynamics, extensional rheology and printability of two model systems: sodium (polystyrene sulfonate) and poly(acrylic acid) by using dripping-onto-substrate (DoS) rheometry technique. Both the measured extensional relaxation times and the extensional viscosity values show salt- and polymer concentration-dependent behavior that is not expected or anticipated from the typical shear rheology response.

  16. Influence of pinches on magnetic reconnection in turbulent space plasmas

    NASA Astrophysics Data System (ADS)

    Olshevsky, Vyacheslav; Lapenta, Giovanni; Markidis, Stefano; Divin, Andrey

    A generally accepted scenario of magnetic reconnection in space plasmas is the breakage of magnetic field lines in X-points. In laboratory, reconnection is widely studied in pinches, current channels embedded into twisted magnetic fields. No model of magnetic reconnection in space plasmas considers both null-points and pinches as peers. We have performed a particle-in-cell simulation of magnetic reconnection in a three-dimensional configuration where null-points are present nitially, and Z-pinches are formed during the simulation. The X-points are relatively stable, and no substantial energy dissipation is associated with them. On contrary, turbulent magnetic reconnection in the pinches causes the magnetic energy to decay at a rate of approximately 1.5 percent per ion gyro period. Current channels and twisted magnetic fields are ubiquitous in turbulent space plasmas, so pinches can be responsible for the observed high magnetic reconnection rates.

  17. Scaling of X pinches from 1 MA to 6 MA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bland, Simon Nicholas; McBride, Ryan D.; Wenger, David Franklin

    This final report for Project 117863 summarizes progress made toward understanding how X-pinch load designs scale to high currents. The X-pinch load geometry was conceived in 1982 as a method to study the formation and properties of bright x-ray spots in z-pinch plasmas. X-pinch plasmas driven by 0.2 MA currents were found to have source sizes of 1 micron, temperatures >1 keV, lifetimes of 10-100 ps, and densities >0.1 times solid density. These conditions are believed to result from the direct magnetic compression of matter. Physical models that capture the behavior of 0.2 MA X pinches predict more extreme parametersmore » at currents >1 MA. This project developed load designs for up to 6 MA on the SATURN facility and attempted to measure the resulting plasma parameters. Source sizes of 5-8 microns were observed in some cases along with evidence for high temperatures (several keV) and short time durations (<500 ps).« less

  18. EQ-10 electrodeless Z-pinch EUV source for metrology applications

    NASA Astrophysics Data System (ADS)

    Gustafson, Deborah; Horne, Stephen F.; Partlow, Matthew J.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.

    2011-11-01

    With EUV Lithography systems shipping, the requirements for highly reliable EUV sources for mask inspection and resist outgassing are becoming better defined, and more urgent. The sources needed for metrology applications are very different than that needed for lithography; brightness (not power) is the key requirement. Suppliers for HVM EUV sources have all resources working on high power and have not entered the smaller market for metrology. Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinchTM light source since 19951. The source is currently being used for metrology, mask inspection, and resist development2-4. These applications require especially stable performance in both output power and plasma size and position. Over the last 6 years Energetiq has made many source modifications which have included better thermal management to increase the brightness and power of the source. We now have introduced a new source that will meet requirements of some of the mask metrology first generation tools; this source will be reviewed.

  19. A Compact Soft X-Ray Microscope using an Electrode-less Z-Pinch Source.

    PubMed

    Horne, S F; Silterra, J; Holber, W

    2009-01-01

    Soft X-rays (< 1Kev) are of medical interest both for imaging and microdosimetry applications. X-ray sources at this low energy present a technological challenge. Synchrotrons, while very powerful and flexible, are enormously expensive national research facilities. Conventional X-ray sources based on electron bombardment can be compact and inexpensive, but low x-ray production efficiencies at low electron energies restrict this approach to very low power applications. Laser-based sources tend to be expensive and unreliable. Energetiq Technology, Inc. (Woburn, MA, USA) markets a 92 eV, 10W(2pi sr) electrode-less Z-pinch source developed for advanced semiconductor lithography. A modified version of this commercial product has produced 400 mW at 430 eV (2pi sr), appropriate for water window soft X-ray microscopy. The US NIH has funded Energetiq to design and construct a demonstration microscope using this source, coupled to a condenser optic, as the illumination system. The design of the condenser optic matches the unique characteristics of the source to the illumination requirements of the microscope, which is otherwise a conventional design. A separate program is underway to develop a microbeam system, in conjunction with the RARAF facility at Columbia University, NY, USA. The objective is to develop a focused, sub-micron beam capable of delivering > 1 Gy/second to the nucleus of a living cell. While most facilities of this type are coupled to a large and expensive particle accelerator, the Z-pinch X-ray source enables a compact, stand-alone design suitable to a small laboratory. The major technical issues in this system involve development of suitable focusing X-ray optics. Current status of these programs will be reported.

  20. A Compact Soft X-Ray Microscope using an Electrode-less Z-Pinch Source

    PubMed Central

    Silterra, J; Holber, W

    2009-01-01

    Soft X-rays (< 1Kev) are of medical interest both for imaging and microdosimetry applications. X-ray sources at this low energy present a technological challenge. Synchrotrons, while very powerful and flexible, are enormously expensive national research facilities. Conventional X-ray sources based on electron bombardment can be compact and inexpensive, but low x-ray production efficiencies at low electron energies restrict this approach to very low power applications. Laser-based sources tend to be expensive and unreliable. Energetiq Technology, Inc. (Woburn, MA, USA) markets a 92 eV, 10W(2pi sr) electrode-less Z-pinch source developed for advanced semiconductor lithography. A modified version of this commercial product has produced 400 mW at 430 eV (2pi sr), appropriate for water window soft X-ray microscopy. The US NIH has funded Energetiq to design and construct a demonstration microscope using this source, coupled to a condenser optic, as the illumination system. The design of the condenser optic matches the unique characteristics of the source to the illumination requirements of the microscope, which is otherwise a conventional design. A separate program is underway to develop a microbeam system, in conjunction with the RARAF facility at Columbia University, NY, USA. The objective is to develop a focused, sub-micron beam capable of delivering > 1 Gy/second to the nucleus of a living cell. While most facilities of this type are coupled to a large and expensive particle accelerator, the Z-pinch X-ray source enables a compact, stand-alone design suitable to a small laboratory. The major technical issues in this system involve development of suitable focusing X-ray optics. Current status of these programs will be reported. PMID:20198115

  1. Staged Z-pinch Experiments at the 1MA Zebra pulsed-power generator: Neutron measurements

    NASA Astrophysics Data System (ADS)

    Ruskov, Emil; Darling, T.; Glebov, V.; Wessel, F. J.; Anderson, A.; Beg, F.; Conti, F.; Covington, A.; Dutra, E.; Narkis, J.; Rahman, H.; Ross, M.; Valenzuela, J.

    2017-10-01

    We report on neutron measurements from the latest Staged Z-pinch experiments at the 1MA Zebra pulsed-power generator. In these experiments a hollow shell of argon or krypton gas liner, injected between the 1 cm anode-cathode gap, compresses a deuterium plasma target of varying density. Axial magnetic field Bz <= 2 kGs, applied throughout the pinch region, stabilizes the Rayleigh-Taylor instability. The standard silver activation diagnostics and 4 plastic scintillator neutron Time of Flight (nTOF) detectors are augmented with a large area ( 1400 cm2) liquid scintillator detector to which fast gatedPhotek photomultipliers are attached. Sample data from these neutron diagnostics systems is presented. Consistently high neutron yields YDD >109 are measured, with highest yield of 2.6 ×109 . A pair of horizontally and vertically placed plastic scintillator nTOFs suggest isotropic i.e. thermonuclear origin of the neutrons produced. nTOF data from the liquid scintillator detector was cross-calibrated with the silver activation detector, and can be used for accurate calculation of the neutron yield. Funded by the Advanced Research Projects Agency - Energy, under Grant Number DE-AR0000569.

  2. Pinch-off dynamics, extensional viscosity and relaxation time of dilute and ultradilute aqueous polymer solutions

    NASA Astrophysics Data System (ADS)

    Biagioli, Madeleine; Dinic, Jelena; Jimenez, Leidy Nallely; Sharma, Vivek

    Free surface flows and drop formation processes present in printing, jetting, spraying, and coating involve the development of columnar necks that undergo spontaneous surface-tension driven instability, thinning, and pinch-off. Stream-wise velocity gradients that arise within the thinning neck create and extensional flow field, which induces micro-structural changes within complex fluids that contribute elastic stresses, changing the thinning and pinch-off dynamics. In this contribution, we use dripping-onto-substrate (DoS) extensional rheometry technique for visualization and analysis of the pinch-off dynamics of dilute and ultra-dilute aqueous polyethylene oxide (PEO) solutions. Using a range of molecular weights, we study the effect of both elasticity and finite extensibility. Both effective relaxation time and the transient extensional viscosity are found to be strongly concentration-dependent even for highly dilute solutions.

  3. Effect of the axial magnetic field on a metallic gas-puff pinch implosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousskikh, A. G.; Zhigalin, A. S.; Frolova, V.

    2016-06-15

    The effect of an axial magnetic field B{sub z} on an imploding metallic gas-puff Z-pinch was studied using 2D time-gated visible self-emission imaging. Experiments were performed on the IMRI-5 generator (450 kA, 450 ns). The ambient field B{sub z} was varied from 0.15 to 1.35 T. It was found that the initial density profile of a metallic gas-puff Z-pinch can be approximated by a power law. Time-gated images showed that the magneto-Rayleigh–Taylor instabilities were suppressed during the run-in phase both without axial magnetic field and with axial magnetic field. Helical instability structures were detected during the stagnation phase for B{sub z} < 1.1 T. For B{submore » z} = 1.35 T, the pinch plasma boundary was observed to be stable in both run-in and stagnation phases. When a magnetic field of 0.3 T was applied to the pinch, the soft x-ray energy was about twice that generated without axial magnetic field, mostly due to longer dwell time at stagnation.« less

  4. PINCHED PLASMA REACTOR

    DOEpatents

    Phillips, J.A.; Suydam, R.; Tuck, J.L.

    1961-07-01

    BS>A plasma confining and heating reactor is described which has the form of a torus with a B/sub 2/ producing winding on the outside of the torus and a helical winding of insulated overlapping tunns on the inside of the torus. The inner helical winding performs the double function of shielding the plasma from the vitreous container and generating a second B/sub z/ field in the opposite direction to the first B/sub z/ field after the pinch is established.

  5. Development and demonstration of a water-window soft x-ray microscope using a Z-pinching capillary discharge source

    NASA Astrophysics Data System (ADS)

    Nawaz, M. F.; Jancarek, Alexandr; Nevrkla, Michal; Duda, Martin Jakub; Pina, Ladislav

    2017-05-01

    The development and demonstration of a soft X-ray (SXR) microscope, based on a Z-pinching capillary discharge source has been realized. The Z-pinching plasma acts as a source of SXR radiation. A ceramic capacitor bank is pulsed charged up to 80 kV, and discharged through a pre- ionized nitrogen filled ceramic capillary. The discharge current has an amplitude of 25 kA. Working within the water-window spectral region (λ = 2.88 nm), corresponding to the 1s2-1s2p quantum transition of helium-like nitrogen (N5+), the microscope has a potential in exploiting the natural contrast existing between the K-absorption edges of carbon and oxygen as the main constituents of biological materials, and hence imaging them with high spatial resolution. The SXR microscope uses the grazing incidence ellipsoidal condenser mirror for the illumination, and the Fresnel zone plate optics for the imaging of samples onto a BI-CCD camera. The half- pitch spatial resolution of 100 nm [1] was achieved, as demonstrated by the knife-edge test. In order to enhance the photon-flux at the sample plane, a new scheme for focusing the radiation, from multiple capillary sources has been investigated. Details about the source, and the construction of the microscope are presented and discussed.

  6. MAIZE: a 1 MA LTD-Driven Z-Pinch at The University of Michigan

    NASA Astrophysics Data System (ADS)

    Gilgenbach, R. M.; Gomez, M. R.; Zier, J. C.; Tang, W. W.; French, D. M.; Lau, Y. Y.; Mazarakis, M. G.; Cuneo, M. E.; Johnston, M. D.; Oliver, B. V.; Mehlhorn, T. A.; Kim, A. A.; Sinebryukhov, V. A.

    2009-01-01

    Researchers at The University of Michigan have constructed and tested a 1-MA Linear Transformer Driver (LTD), the first of its type to reach the USA. The Michigan Accelerator for Inductive Z-pinch Experiments, (MAIZE), is based on the LTD developed at the Institute of High Current Electronics in collaboration with Sandia National Labs and UM. This LTD utilizes 80 capacitors and 40 spark gap switches, arranged in 40 "bricks," to deliver a 1 MA, 100 kV pulse with 100 ns risetime into a matched resistive load. Preliminary resistive-load test results are presented for the LTD facility. Planned experimental research programs at UM include: a) Studies of Magneto-Raleigh-Taylor instability of planar foils, and b) Vacuum convolute studies including cathode and anode plasma.

  7. Compression of an Applied Bz field by a z-pinch onto a Tamped DT Fiber for Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Nash, Tom

    2009-11-01

    Simulations of a z-pinch compressing an applied 100 kG Bz field onto an on-axis DT fiber tamped with beryllium show the field reaching over 100 MG in the tamp, sufficient to confine DT alpha particles and to form a thermal barrier. The barrier allows the DT plasma to burn at a rho*r value as low as 0.045 g/cm^2, and at temperatures over 50 keV for a 63 MA drive current. Driving currents between 21 and 63 MA are considered with cryogenic DT fiber diameters between 600 μm and 1.6 mm. Pinch implosion times are 120 ns with a peak implosion velocity of 35 cm/μs. 1D simulations are of a foil pinch, but for improved stability we propose a nested wire-array. Simulated fusion yields with this system scale as the sixth power of the current, with burn fractions scaling as the fourth power of the current. At 63 MA the simulated yield is 521 MJ from 4.2 mg/cm of DT with a 37% burn fraction at a rho*r of only 0.18 g/cm^2.

  8. Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Mock, R. C.; Spielman, R. B.; Peterson, D. L.; Mosher, D.; Roderick, N. F.

    1998-10-01

    A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. 77, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh-Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of ˜40 TW and energy of ˜325 kJ show little change outside of a ±15% shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak K-shell (lines plus continuum) power of ˜8 TW and energy of ˜70 kJ show little change with radius. The minimal change in K-shell yield is in agreement with simple K-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh-Taylor instability observed in small-wire-number imploding loads.

  9. Use of vacuum arc plasma guns for a metal puff Z-pinch system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousskikh, A. G.; Zhigalin, A. S.; Oreshkin, V. I.

    The performance of a metal puff Z-pinch system has been studied experimentally. In this type of system, the initial cylindrical shell 4 cm in diameter was produced by ten plasma guns. Each gun initiates a vacuum arc operating between magnesium electrodes. The net current of the guns was 80 kA. The arc-produced plasma shell was compressed by using a 450-kA, 450-ns driver, and as a result, a plasma column 0.3 cm in diameter was formed. The electron temperature of the plasma reached 400 eV at an average ion concentration of 1.85 {center_dot} 10{sup 18} cm{sup -3}. The power of themore » Mg K-line radiation emitted by the plasma for 15-30 ns was 300 MW/cm.« less

  10. Ride-along data LOS 130, 170 & LO330 shots z3139, 3140 and 3141

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loisel, Guillaume Pascal

    Each instrument records the x-ray emission from the Z-pinch dynamic hohlraum (ZPDH); LOS 130 TIXTLs instruments record the absorption of the pinch backlighter through an expanding NaF/Mg foil; LOS 170 MLM instruments record monochromatic images at 276 and 528 eV energies near and before ZPDH stagnation time; LOS 330 TREX 6A & B: recoded time resolved absorption spectra from a radiatively heated Ne gas.

  11. Hard X-ray and Particle Beams Research on 1.7 MA Z-pinch and Laser Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Shrestha, Ishor; Kantsyrev, Victor; Safronova, Alla; Esaulov, Andrey; Nishio, Mineyuki; Shlyaptseva, Veronica; Keim, Steven; Weller, Michael; Stafford, Austin; Petkov, Emil; Schultz, Kimberly; Cooper, Matthew; PPDL Team

    2013-10-01

    Studies of hard x-ray (HXR) emission, electron and ion beam generation in z-pinch and laser plasmas are important for Inertial Confinement Fusion (ICF) and development of HXR sources from K-shell and L-shell radiation. The characteristics of HXR and particle beams produced by implosions of planar wire arrays, nested and single cylindrical wire arrays, and X-pinches were analyzed on 100 ns UNR Zebra generator with current up to 1.7 MA. In addition, the comparison of characteristics of HXR and electron beams on Zebra and 350 fs UNR Leopard laser experiments with foils has been performed. The diagnostics include Faraday cups, HXR diodes, different x-ray spectrometers and imaging systems, and ion mass spectrometer using the technique of Thomson parabola. Future work on HXRs and particle beams in HED plasmas is discussed. This work was supported by the DOE/NNSA Cooperative agreement DE-NA0001984 and in part by DE-FC52-06NA27616. This work was also supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-13-1-0033, to University of Nevada, Reno.

  12. Neutron Activation Diagnostics in Deuterium Gas-Puff Experiments on the 3 MA GIT-12 Z-Pinch

    NASA Astrophysics Data System (ADS)

    Cikhardt, J.; Klir, D.; Rezac, K.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A. V.; Cherdizov, R. K.; Fursov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu; Ratakhin, N. A.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.; Turek, K.

    2016-10-01

    The experiments with a deuterium z-pinch on the GIT-12 generator at IHCE in Tomsk were performed in the frame of the Czech-Russian agreement. A set of neutron diagnostics included scintillation time-of-flight detectors, bubble detectors, and several kinds of threshold nuclear activation detectors in the order to obtain information about the yield, anisotropy, and spectrum of the neutrons produced by a deuterium gas-puff. The average neutron yield in these experiments was of the order of 1012 neutrons per a single shot. The energy spectrum of the produced neutrons was evaluated using neutron time-of-flight detectors and a set of neutron activation detectors. Because the deuterons in the pinch achieve multi-MeV energies, non-DD neutrons are produced by nuclear reactions of deuterons with a stainless steel vacuum chamber and aluminum components of diagnostics inside the chamber. An estimated number of the non-DD was of the order of 1011. GACR (Grant No. 16-07036S), CME (Grant Nos. LD14089, LG13029, and LH13283), MESRF (Grant No. RFMEFI59114X0001), IAEA (Grant No. RC17088), CTU (Grant No. SGS 16/223/OHK3/3T/13).

  13. Preconditioned wire array Z-pinches driven by a double pulse current generator

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Lu, Yihan; Sun, Fengju; Li, Xingwen; Jiang, Xiaofeng; Wang, Zhiguo; Zhang, Daoyuan; Qiu, Aici; Lebedev, Sergey

    2018-07-01

    Suppression of the core-corona structure and wire ablation in wire array Z-pinches is investigated using a novel double pulse current generator ‘Qin-1’ facility. The ‘Qin-1’ facility allows coupling a ∼10 kA 20 ns prepulse generator with a ∼0.8 MA 160 ns main current generator. The tailored prepulse current preheats wires to a gaseous state and the time interval between the prepulse and the main current pulse allows formation of a more uniform mass distribution for the implosion. The implosion of a gasified two aluminum-wire array showed no ablation phase and allowed all array mass to participate in the implosion. The initial perturbations formed from the inhomogeneous ablation were suppressed, however, the magneto Rayleigh–Taylor (MRT) instability during the implosion was still significant and further researches on the generation and development of the MRT instabilities of this gasified wire array are needed.

  14. Efficient generation of fast neutrons by magnetized deuterons in an optimized deuterium gas-puff z-pinch

    NASA Astrophysics Data System (ADS)

    Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cherdizov, R. K.; Cikhardt, J.; Cikhardtova, B.; Dudkin, G. N.; Fursov, F. I.; Garapatsky, A. A.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Orcikova, H.; Padalko, V. N.; Ratakhin, N. A.; Sila, O.; Turek, K.; Varlachev, V. A.

    2015-04-01

    Z-pinch experiments with deuterium gas puffs have been carried out on the GIT-12 generator at 3 MA currents. Recently, a novel configuration of a deuterium gas-puff z-pinch was used to accelerate deuterons and to generate fast neutrons. In order to form a homogeneous, uniformly conducting layer at a large initial radius, an inner deuterium gas puff was surrounded by an outer hollow cylindrical plasma shell. The plasma shell consisting of hydrogen and carbon ions was formed at the diameter of 350 mm by 48 plasma guns. A linear mass of the plasma shell was about 5 µg cm-1 whereas a total linear mass of deuterium gas in single or double shell gas puffs was about 100 µg cm-1. The implosion lasted 700 ns and seemed to be stable up to a 5 mm radius. During stagnation, m = 0 instabilities became more pronounced. When a disruption of necks occurred, the plasma impedance reached 0.4 Ω and high energy (>2 MeV) bremsstrahlung radiation together with high energy deuterons were produced. Maximum neutron energies of 33 MeV were observed by axial time-of-flight detectors. The observed neutron spectra could be explained by a suprathermal distribution of deuterons with a high energy tail f≤ft({{E}\\text{d}}\\right)\\propto E\\text{d}-(1.8+/- 0.2) . Neutron yields reached 3.6 × 1012 at a 2.7 MA current. A high neutron production efficiency of 6 × 107 neutrons per one joule of plasma energy resulted from the generation of high energy deuterons and from their magnetization inside plasmas.

  15. Cinematic Characterization of Convected Coherent Structures Within an Continuous Flow Z-Pinch

    NASA Astrophysics Data System (ADS)

    Underwood, Thomas; Rodriguez, Jesse; Loebner, Keith; Cappelli, Mark

    2017-10-01

    In this study, two separate diagnostics are applied to a plasma jet produced from a coaxial accelerator with characteristic velocities exceeding 105 m/s and timescales of 10 μs. In the first of these, an ultra-high frame rate CMOS camera coupled to a Z-type laser Schlieren apparatus is used to obtain flow-field refractometry data for the continuous flow Z-pinch formed within the plasma deflagration jet. The 10 MHz frame rate for 256 consecutive frames provides high temporal resolution, enabling turbulent fluctuations and plasma instabilities to be visualized over the course of a single pulse. The unique advantage of this diagnostic is its ability to simultaneously resolve both structural and temporal evolution of instabilities and density gradients within the flow. To allow for a more meaningful statistical analysis of the resulting wave motion, a multiple B-dot probe array was constructed and calibrated to operate over a broadband frequency range up to 100 MHz. The resulting probe measurements are incorporated into a wavelet analysis to uncover the dispersion relation of recorded wave motion and furthermore uncover instability growth rates. Finally these results are compared with theoretical growth rate estimates to identify underlying physics. This work is supported by the U.S. Department of Energy Stewardship Science Academic Program in addition to the National Defense Science Engineering Graduate Fellowship.

  16. Investigation of magnetic flux transport and shock formation in a staged Z-pinch

    NASA Astrophysics Data System (ADS)

    Narkis, J.; Rahman, H. U.; Wessel, F. J.; Beg, F. N.

    2017-10-01

    Target preheating is an integral component of magnetized inertial fusion in reducing convergence ratio. In the staged Z-pinch concept, it is achieved via one or more shocks. Previous work [Narkis et al., Phys. Plasmas 23, 122706 (2016)] found that shock formation in the target occurred earlier in higher-Z liners due to faster flux transport to the target/liner interface. However, a corresponding increase in magnitude of magnetic pressure was not observed, and target implosion velocity (and therefore shock strength) remained unchanged. To investigate other means of increasing the magnitude of transported flux, a Korteweg-de Vries-Burgers equation from the 1-D single-fluid, resistive magnetohydrodynamic equations is obtained. Solutions to the nondispersive (i.e., Burgers) equation depend on nondimensional coefficients, whose dependence on liner density, temperature, etc., suggests an increase in target implosion velocity, and therefore shock strength, can be obtained by tailoring the mass of a single-liner gas puff to a double-liner configuration. In the selected test cases of 1-D simulated implosions of krypton on deuterium, the peak Mach number increased from ˜ 5 to ˜ 8 . While a notable increase was seen, Mach numbers exceeding 10 (implosion velocities exceeding ˜25 cm/μs) are necessary for adequate shock preheating.

  17. Pin-Ching Maness | NREL

    Science.gov Websites

    Pin-Ching Maness Photo of Pin-Ching Maness Pin-Ching Maness Group Research Manager III-Molecular University, 1974 Professional Experience Principal Group Manager, Photobiology Group, National Renewable in Rubrivivax gelatinosus," PLOS ONE (2014) Illustration of a model of carbon monoxide and

  18. Studies of the Plasma Triggering Mechanism of Inverse Pinch Switch

    DTIC Science & Technology

    1993-11-10

    plasma - focus driven plasma-puff was also discussed in comparison with the hypocycloidal pinch plasma-puff triggering. The main discharge of inverse pinch switch with plasma - focus driven plasma-puff trigger is found to be more azimuthally uniform than that with hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr. A comparative study of the INPIStron and a spark gap also reveals that the INPIStron with a low impedance Z = 9 ohms can transfer a high voltage pulse with a superior pulse-shape fidelity over that with

  19. Simulations of Ar gas-puff Z-pinch radiation sources with double shells and central jets on the Z generator

    NASA Astrophysics Data System (ADS)

    Tangri, V.; Harvey-Thompson, A. J.; Giuliani, J. L.; Thornhill, J. W.; Velikovich, A. L.; Apruzese, J. P.; Ouart, N. D.; Dasgupta, A.; Jones, B.; Jennings, C. A.

    2016-10-01

    Radiation-magnetohydrodynamic simulations using the non-local thermodynamic equilibrium Mach2-Tabular Collisional-Radiative Equilibrium code in (r, z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1. In each pair, one of the shots had a central jet. The experimental trends in the Ar K-shell yield and power are reproduced in the calculations. However, the K-shell yield and power are significantly lower than the other three shots for the case of a double-shell puff of 1:1 mass ratio and no central jet configuration. Further simulations of a hypothetical experiment with the same relative density profile of this configuration, but higher total mass, show that the coupled energy from the generator and the K-shell yield can be increased to levels achieved in the other three configurations, but not the K-shell power. Based on various measures of effective plasma radius, the compression in the 1:1 mass ratio and no central jet case is found to be less because the plasma inside the magnetic piston is hotter and of lower density. Because of the reduced density, and the reduced radiation cooling (which is proportional to the square of the density), the core plasma is hotter. Consequently, for the 1:1 outer-to-inner shell mass ratio, the load mass controls the yield and the center jet controls the power.

  20. On the dynamics of a generalized predator-prey system with Z-type control.

    PubMed

    Lacitignola, Deborah; Diele, Fasma; Marangi, Carmela; Provenzale, Antonello

    2016-10-01

    We apply the Z-control approach to a generalized predator-prey system and consider the specific case of indirect control of the prey population. We derive the associated Z-controlled model and investigate its properties from the point of view of the dynamical systems theory. The key role of the design parameter λ for the successful application of the method is stressed and related to specific dynamical properties of the Z-controlled model. Critical values of the design parameter are also found, delimiting the λ-range for the effectiveness of the Z-method. Analytical results are then numerically validated by the means of two ecological models: the classical Lotka-Volterra model and a model related to a case study of the wolf-wild boar dynamics in the Alta Murgia National Park. Investigations on these models also highlight how the Z-control method acts in respect to different dynamical regimes of the uncontrolled model. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Scaling in two-fluid pinch-off

    NASA Astrophysics Data System (ADS)

    Pommer, Chris; Suryo, Ronald; Subramani, Hariprasad; Harris, Michael; Basaran, Osman

    2009-11-01

    Two-fluid pinch-off is encountered when drops or bubbles of one fluid are ejected from a nozzle into another fluid or when a compound jet breaks. While the breakup of a drop in a passive environment and that of a passive bubble in a liquid are well understood, the physics of pinch-off when both the inner and outer fluids are dynamically active is inadequately understood. In this talk, the breakup of a compound jet whose core and shell are both incompressible Newtonian fluids is analyzed computationally by a method of lines ALE algorithm which uses finite elements with elliptic mesh generation for spatial discretization and adaptive finite differences for time integration. Pinch-off dynamics are investigated well beyond the limit of experiments set by the wavelength of visible light and that of various algorithms used in the literature. Simulations show that the minimum neck radius r initially scales with time τ before breakup as &αcirc; where α varies over a certain range. However, depending on the values of the governing dimensionless groups, this initial scaling regime may be transitory and, closer to pinch-off, the dynamics may transition to a final asymptotic regime for which r ˜&βcirc;, where β!=α.

  2. Plasma diagnostics for x-ray driven foils at Z

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R F; Bailey, J E; Cuneo, M E

    We report the development of techniques to diagnose plasmas produced by X-ray photoionization of thin foils placed near the Z-pinch on the Sandia Z Machine. The development of 100+ TW X-ray sources enables access to novel plasma regimes, such as the photoionization equilibrium. To diagnose these plasmas one must simultaneously characterize both the foil and the driving pinch. The desired photoionized plasma equilibrium is only reached transiently for a 2-ns window, placing stringent requirements on diagnostic synchronization. We have adapted existing Sandia diagnostics and fielded an additional gated 3-crystal Johann spectrometer with dual lines of sight to meet these requirements.more » We present sample data from experiments in which 1 cm, 180 eV tungsten pinches photoionized foils composed of 200{angstrom} Fe and 300{angstrom} NaF co-mixed and sandwiched between 1000{angstrom} layers of Lexan (CHO), and discuss the application of this work to benchmarking astrophysical models.« less

  3. Plasma diagnostics for x-ray driven foils at Z

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R. F.; Bailey, J. E.; Cuneo, M. E.

    We report the development of techniques to diagnose plasmas produced by x-ray photoionization of thin foils placed near the Z-pinch on the Sandia Z Machine. The development of 100+ TW x-ray sources enables access to novel plasma regimes, such as the photoionization equilibrium. To diagnose these plasmas one must simultaneously characterize both the foil and the driving pinch. The desired photoionized plasma equilibrium is only reached transiently for a 2-ns window, placing stringent requirements on diagnostic synchronization. We have adapted existing Sandia diagnostics and fielded an additional gated three-crystal Johann spectrometer with dual lines of sight to meet these requirements.more » We present sample data from experiments using 1-cm, 180-eV tungsten pinches to photoionize foils made of 200 Aa Fe and 300 Aa NaF co-mixed and sandwiched between 1000 Aa layers of Lexan (C16H14O3), and discuss the application of this work to benchmarking astrophysical models.« less

  4. Temperature Evolution of a 1 MA Triple-Nozzle Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    de Grouchy, Philip; Banasek, Jacob; Engelbrecht, Joey; Qi, Niansheng; Atoyan, Levon; Byvank, Tom; Cahill, Adam; Moore, Hannah; Potter, William; Ransohoff, Lauren; Hammer, David; Kusse, Bruce; Laboratory of Plasma Studies Team

    2015-11-01

    Mitigation of the Rayleigh-Taylor instability (RTI) plays a critical role in optimizing x-ray output at high-energy ~ 13 keV using the triple-nozzle Krypton gas-puff at Sandia National Laboratory. RTI mitigation by gas-puff density profiling using a triple-nozzle gas-puff valve has recently been recently demonstrated on the COBRA 1MA z-pinch at Cornell University. In support of this work we investigate the role of shell cooling in the growth of RTI during gas-puff implosions. Temperature measurements within the imploding plasma shell are recorded using a 527 nm, 10 GW Thomson scattering diagnostic for Neon, Argon and Krypton puffs. The mass-density profile is held constant at 22 microgram per centimeter for all three puffs and the temperature evolution of the imploding material is recorded. In the case of Argon puffs we find that the shell ion and electron effective temperatures remain in equilibrium at around 1keV for the majority of the implosion phase. In contrast scattered spectra from Krypton are dominated by of order 10 keV effective ion temperatures. Supported by the NNSA Stewardship Sciences Academic Programs.

  5. Construction and Initial Tests of MAIZE: 1 MA LTD-Driven Z-Pinch *

    NASA Astrophysics Data System (ADS)

    Gilgenbach, R. M.; Gomez, M. R.; Zier, J. C.; Tang, W.; French, D. M.; Lau, Y. Y.; Mazarakis, M. G.; Cuneo, M. E.; Johnston, M. D.; Oliver, B. V.; Mehlhorn, T. A.; Kim, A. A.; Sinebryukhov, V. A.

    2008-11-01

    We report construction and initial testing of a 1-MA Linear Transformer Driver (LTD), The Michigan Accelerator for Inductive Z-pinch Experiments, (MAIZE). This machine, the first of its type to reach the USA, is based on the joint HCEI, Sandia Laboratories, and UM development effort. The compact LTD uses 80 capacitors and 40 spark gap switches, in 40 ``bricks'', to deliver 1 MA, 100 kV pulses with 70 ns risetime into a matched resistive load. Test results will be presented for a single brick and the full LTD. Design and construction will be presented of a low-inductance MITL. Experimental research programs under design and construction at UM include: a) Studies of Magneto-Raleigh-Taylor Instability of planar foils, and b) Vacuum convolute studies including cathode and anode plasma. Theory and simulation results will be presented for these planned experiments. Initial experimental designs and moderate-current feasibility experiments will be discussed. *Research supported by U. S. DoE through Sandia National Laboratories award document numbers 240985, 768225, 790791 and 805234 to the UM. MRG supported by NNSA Fellowship and JCZ supported by NPSC Fellowship / Sandia National Labs.

  6. The impact of plasma dynamics on the self-magnetic-pinch diode impedance

    DOE PAGES

    Bennett, Nichelle; Crain, M. Dale; Droemer, Darryl W.; ...

    2015-03-20

    In this study, the self-magnetic-pinch diode is being developed as an intense electron beam source for pulsed-power-driven x-ray radiography. The basic operation of this diode has long been understood in the context of pinched diodes, including the dynamic effect that the diode impedance decreases during the pulse due to electrode plasma formation and expansion. Experiments being conducted at Sandia National Laboratories' RITS-6 accelerator are helping to characterize these plasmas using time-resolved and time-integrated camera systems in the x-ray and visible. These diagnostics are analyzed in conjunction with particle-in-cell simulations of anode plasma formation and evolution. The results confirm the long-standingmore » theory of critical-current operation with the addition of a time-dependent anode-cathode gap length. Finally, the results may suggest that anomalous impedance collapse is driven by increased plasma radial drift, leading to larger-than-average ion v r × B θ acceleration into the gap.« less

  7. Dynamics of deformation and pinch-off of a migrating compound droplet in a tube

    NASA Astrophysics Data System (ADS)

    Borthakur, Manash Pratim; Biswas, Gautam; Bandyopadhyay, Dipankar

    2018-04-01

    A computational fluid dynamic investigation has been carried out to study the dynamics of a moving compound droplet inside a tube. The motions associated with such a droplet is uncovered by solving the axisymmetric Navier-Stokes equations in which the spatiotemporal evolution of a pair of twin-deformable interfaces has been tracked employing the volume-of-fluid approach. The deformations at the interfaces and their subsequent dynamics are found to be stimulated by the subtle interplay between the capillary and viscous forces. The simulations uncover that when a compound drop composed of concentric inner and outer interfaces migrates inside a tube, initially in the unsteady domain of evolution, the inner drop shifts away from the concentric position to reach a morphology of constant eccentricity at the steady state. The coupled motions of the droplets in the unsteady regime causes a continuous deformation of the inner and outer interfaces to obtain a configuration with a (an) prolate (oblate) shaped outer (inner) interface. The magnitudes of capillary number and viscosity ratio are found to have significant influence on the temporal evolution of the interfacial deformations as well as the eccentricity of the droplets. Further, the simulations uncover that, following the asymmetric deformation of the interfaces, the migrating compound droplet can undergo an uncommon breakup stimulated by a rather irregular pinch-off of the outer shell. The breakup is found to initiate with the thinning of the outer shell followed by the pinch-off. Interestingly, the kinetics of the thinning of outer shell is found to follow two distinct power-law regimes—a swiftly thinning stage at the onset followed by a rate limiting stage before pinch-off, which eventually leads to the uncommon breakup of the migrating compound droplets.

  8. Study of the formation, stability, and X-ray emission of the Z-pinch formed during implosion of fiber arrays at the Angara-5-1 facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, V. V.; Volkov, G. S.; Grabovski, E. V.

    Results from experimental studies on the implosion of arrays made of kapron fibers coated with different metals (Al, In, Sn, and Bi) are presented. It is shown that the power, total energy, and spectrum of radiation emitted by the imploding array depend on the number of metallized fibers and the mass of the metal layer deposited on them but are independent of the metal characteristics (density, atomic number, etc.). Analysis of frame X-ray images shows that the Z-pinches formed in the implosion of metallized kapron fiber arrays are more stable than those formed in wire arrays and that MHD perturbationsmore » in them develop at a slower growth rate. Due to the lower rate of plasma production from kapron fibers, the plasma formed at the periphery of the array forms a layer that plays the role of a hohlraum wall partially trapping soft X-ray emission of the Z-pinch formed in the implosion of the material of the deposited metal layer. The closure of the anode aperture doubles the energy of radiation emitted in the radial direction.« less

  9. Fusion neutron detector for time-of-flight measurements in z-pinch and plasma focus experiments.

    PubMed

    Klir, D; Kravarik, J; Kubes, P; Rezac, K; Litseva, E; Tomaszewski, K; Karpinski, L; Paduch, M; Scholz, M

    2011-03-01

    We have developed and tested sensitive neutron detectors for neutron time-of-flight measurements in z-pinch and plasma focus experiments with neutron emission times in tens of nanoseconds and with neutron yields between 10(6) and 10(12) per one shot. The neutron detectors are composed of a BC-408 fast plastic scintillator and Hamamatsu H1949-51 photomultiplier tube (PMT). During the calibration procedure, a PMT delay was determined for various operating voltages. The temporal resolution of the neutron detector was measured for the most commonly used PMT voltage of 1.4 kV. At the PF-1000 plasma focus, a novel method of the acquisition of a pulse height distribution has been used. This pulse height analysis enabled to determine the single neutron sensitivity for various neutron energies and to calibrate the neutron detector for absolute neutron yields at about 2.45 MeV.

  10. The effects of insulating coatings and current prepulse on tungsten planar wire array Z-pinches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, M., E-mail: limo@nint.ac.cn; Li, Y.; State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024

    2015-12-15

    This paper presents experimental results on the effects of insulating coatings and current prepulse on tungsten planar wire array Z-pinches on ∼100 ns main current facility. Optical framing images indicated that without a current prepulse the wire ablation process was asymmetrical and the implosion was zippered. The x-ray peak power was ∼320 GW. By using insulating coatings on the wire surface the asymmetry remained, and the processes of ablation and implosion were delayed by ∼30 ns. The x-ray burst was narrow and decreased to ∼200 GW. When current prepulses were used on both standard and insulated wire arrays, implosion symmetry was improved and themore » x-ray burst was improved (to ∼520 GW peak power). In addition, there was a strong emitting precursor column for insulated loads with the current prepulse.« less

  11. Study of a non-equilibrium plasma pinch with application for microwave generation

    NASA Astrophysics Data System (ADS)

    Al Agry, Ahmad Farouk

    The Non-Equilibrium Plasma Pinch (NEPP), also known as the Dense Plasma Focus (DPF) is well known as a source of energetic ions, relativistic electrons and neutrons as well as electromagnetic radiation extending from the infrared to X-ray. In this dissertation, the operation of a 15 kJ, Mather type, NEPP machine is studied in detail. A large number of experiments are carried out to tune the machine parameters for best performance using helium and hydrogen as filling gases. The NEPP machine is modified to be able to extract the copious number of electrons generated at the pinch. A hollow anode with small hole at the flat end, and a mock magnetron without biasing magnetic field are built. The electrons generated at the pinch are very difficult to capture, therefore a novel device is built to capture and transport the electrons from the pinch to the magnetron. The novel cup-rod-needle device successfully serves the purpose to capture and transport electrons to monitor the pinch current. Further, the device has the potential to field emit charges from its needle end acting as a pulsed electron source for other devices such as the magnetron. Diagnostics tools are designed, modeled, built, calibrated, and implemented in the machine to measure the pinch dynamics. A novel, UNLV patented electromagnetic dot sensors are successfully calibrated, and implemented in the machine. A new calibration technique is developed and test stands designed and built to measure the dot's ability to track the impetus signal over its dynamic range starting and ending in the noise region. The patented EM-dot sensor shows superior performance over traditional electromagnetic sensors, such as Rogowski coils. On the other hand, the cup-rod structure, when grounded on the rod side, serves as a diagnostic tool to monitor the pinch current by sampling the actual current, a quantity that has been always very challenging to measure without perturbing the pinch. To the best of our knowledge, this method

  12. A z-pinch photo-pumped pulsed atomic iodine laser

    NASA Astrophysics Data System (ADS)

    Stone, D. H.; Saunders, D. P.; Clark, M. C.

    1984-03-01

    A pulsed atomic iodine laser (CF3I) was designed and constructed using a coaxial xenon flash lamp as a pump source. The flash lamp was operated at low pressure to obtain pulse compression via xenon self-pinch. Electrical and optical diagnostics were performed for various xenon and CF3I pressures. Calorimeter data and burn patterns were obtained for the laser. Time-resolved spectroscopic data were taken throughout the CF3I pump band.

  13. Staged Z-pinch experiments on the Mega-Ampere current driver COBRA

    NASA Astrophysics Data System (ADS)

    Valenzuela, Julio; Banasek, Jacob; Byvank, Thomas; Conti, Fabio; Greenly, John; Hammer, David; Potter, William; Rocco, Sophia; Ross, Michael; Wessel, Frank; Narkis, Jeff; Rahman, Hafiz; Ruskov, Emil; Beg, Farhat

    2017-10-01

    Experiments were conducted on the Cornell's 1 MA, 100 ns current driver COBRA with the goal of better understanding the Staged Z-pinch physics and validating MHD codes. We used a gas injector composed of an annular (1.2 cm radius) high atomic number (e.g., Ar or Kr) gas-puff and an on-axis plasma gun that delivers the ionized hydrogen target. Liner implosion velocity and stability were studied using laser shadowgraphy and interferometry as well as XUV imaging. From the data, the signature of the MRT instability and zippering effect can be seen, but time integrated X-ray imaging show a stable target plasma. A key component of the experiment was the use of optical Thomson scattering (TS) diagnostics to characterize the liner and target plasmas. By fitting the experimental scattered spectra with synthetic data, electron and ion temperature as well as density can be obtained. Preliminary analysis shows significant scattered line broadening from the plasma on-axis ( 0.5 mm diameter) which can be explained by either a low temperature H plasma with Te =Ti =75eV, or by a hot plasma with Ti =3keV, Te =350eV if an Ar-H mixture is present with an Ar fraction higher than 10%. Funded by the Advanced Research Projects Agency - Energy, DE-AR0000569.

  14. X-ray absorption spectroscopy of aluminum z-pinch plasma with tungsten backlighter planar wire array source.

    PubMed

    Osborne, G C; Kantsyrev, V L; Safronova, A S; Esaulov, A A; Weller, M E; Shrestha, I; Shlyaptseva, V V; Ouart, N D

    2012-10-01

    Absorption features from K-shell aluminum z-pinch plasmas have recently been studied on Zebra, the 1.7 MA pulse power generator at the Nevada Terawatt Facility. In particular, tungsten plasma has been used as a semi-backlighter source in the generation of aluminum K-shell absorption spectra by placing a single Al wire at or near the end of a single planar W array. All spectroscopic experimental results were recorded using a time-integrated, spatially resolved convex potassium hydrogen phthalate (KAP) crystal spectrometer. Other diagnostics used to study these plasmas included x-ray detectors, optical imaging, laser shadowgraphy, and time-gated and time-integrated x-ray pinhole imagers. Through comparisons with previous publications, Al K-shell absorption lines are shown to be from much lower electron temperature (∼10-40 eV) plasmas than emission spectra (∼350-500 eV).

  15. Simulation of K-α Emission from Highly Charged Cu ions for Pinches on ZR

    NASA Astrophysics Data System (ADS)

    Dasgupta, A.; Giuliani, J. L.; Clark, R. W.; Ouart, N. D.; Jones, B.; Ampleford, D. J.

    2012-10-01

    Recent spectral data of Cu shots Z1975 and Z2122 from Sandia's ZR machine are believed to show strong K-α emissions. As these K-α lines provide good diagnostics, a detailed spectral model will be developed to investigate these line emissions for analyzing the data. In a Z pinch plasma, K-α emission can occur due to e-beams, hot electrons at the tail of a Maxwellian and also pumping from hot photons emitted near the axis. K-α emission that originates from collisional processes involving hot electrons in the final phase of the pinching plasmas are associated with radiationless electron capture, inner-shell electron collisional excitation and ionization. K-α lines from various ionization stages of various materials such as Fe, Cr, Ni, and Mn were also observed in the ZR data. Contributions from ions with strong K-α transitions will be included for this study which is a preliminary attempt to investigate Cu K-α lines due to hot electrons and photons. Photo-pumped K-α emission from an outer shell is spatially distinguishable from that produced by e-beam on axis.

  16. [Contrast of Z-Pinch X-Ray Yield Measure Technique].

    PubMed

    Li, Mo; Wang, Liang-ping; Sheng, Liang; Lu, Yi

    2015-03-01

    Resistive bolometer and scintillant detection system are two mainly Z-pinch X-ray yield measure techniques which are based on different diagnostic principles. Contrasting the results from two methods can help with increasing precision of X-ray yield measurement. Experiments with different load material and shape were carried out on the "QiangGuang-I" facility. For Al wire arrays, X-ray yields measured by the two techniques were largely consistent. However, for insulating coating W wire arrays, X-ray yields taken from bolometer changed with load parameters while data from scintillant detection system hardly changed. Simulation and analysis draw conclusions as follows: (1) Scintillant detection system is much more sensitive to X-ray photons with low energy and its spectral response is wider than the resistive bolometer. Thus, results from the former method are always larger than the latter. (2) The responses of the two systems are both flat to Al plasma radiation. Thus, their results are consistent for Al wire array loads. (3) Radiation form planar W wire arrays is mainly composed of sub-keV soft X-ray. X-ray yields measured by the bolometer is supposed to be accurate because of the nickel foil can absorb almost all the soft X-ray. (4) By contrast, using planar W wire arrays, data from scintillant detection system hardly change with load parameters. A possible explanation is that while the distance between wires increases, plasma temperature at stagnation reduces and spectra moves toward the soft X-ray region. Scintillator is much more sensitive to the soft X-ray below 200 eV. Thus, although the total X-ray yield reduces with large diameter load, signal from the scintillant detection system is almost the same. (5) Both Techniques affected by electron beams produced by the loads.

  17. Electron density and plasma dynamics of a spherical theta pinch

    NASA Astrophysics Data System (ADS)

    Teske, C.; Liu, Y.; Blaes, S.; Jacoby, J.

    2012-03-01

    A spherical theta pinch for plasma stripper applications has been developed and investigated regarding the electron density and the plasma confinement during the pinching sequence. The setup consists of a 6 μH induction coil surrounding a 4000 ml spherical discharge vessel and a capacitor bank with interchangeable capacitors leading to an overall capacitance of 34 μF and 50 μF, respectively. A thyristor switch is used for driving the resonant circuit. Pulsed coil currents reached values of up to 26 kA with maximum induction of 500 mT. Typical gas pressures were 0.7 Pa up to 120 Pa with ArH2 (2.8% H2)-gas as a discharge medium. Stark broadening measurements of the Hβ emission line were carried out in order to evaluate the electron density of the discharge. In accordance with the density measurements, the transfer efficiency was estimated and a scaling law between electron density and discharge energy was established for the current setup. The densities reached values of up to 8 × 1022 m-3 for an energy of 1.6 kJ transferred into the plasma. Further, the pinching of the discharge plasma was documented and the different stages of the pinching process were analyzed. The experimental evidence suggests that concerning the recent setup of the spherical theta pinch, a linear scaling law between the transferred energy and the achievable plasma density can be applied for various applications like plasma strippers and pulsed ion sources.

  18. Diagnostics of deuterium gas-puff z-pinch experiments on the GIT-12 generator

    NASA Astrophysics Data System (ADS)

    Cikhardt, J.; Klir, D.; Rezac, K.; Kubes, P.; Kravarik, J.; Batobolotova, B.; Sila, O.; Turek, K.; Shishlov, A.; Labetsky, A.; Kokshenev, V.; Chedizov, R.; Ratakhin, N.; Varlachev, V.; Garapatsky, A.; Dudkin, G.; Padalko, V.; GIT-12 Team

    2014-10-01

    Z-pinch experiments with a deuterium gas-puff and an outer plasma shell generated by plasma guns were carried out on the GIT-12 generator at the IHCE in Tomsk. Using this novel configuration of the load, the neutron yields from the DD reaction were significantly increased from 2×1011 up to 3×1012 neutrons per shot at the current level of about 3 MA. In addition to recent experiments, the threshold activation detectors were used in order to get the information about the energy spectrum of the generated neutrons. The copper, indium, and lead samples were irradiated by the pulse of the neutrons generated during the experimental shot. The decay radiation of the products from the reactions 63Cu(n,2n)62Cu, 115In(n, γ) 116 mIn and 206Pb (n,3n)204mPb was observed using gamma spectrometer. According to the used neutron ToF scintillation detectors, the energy of neutrons reaches up to 20 MeV. The work was supported by the MSMT of the Czech Republic research Programs No. ME090871, No. LG13029, by the GACR Grant No. P205/12/0454, Grant CRA IAEA No. 17088 and RFBR research Project No. 13-08-00479-a.

  19. Controlling Rayleigh-Taylor Instabilities in Magnetically Driven Solid Metal Shells by Means of a Dynamic Screw Pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmit, P. F.; Velikovich, A. L.; McBride, R. D.

    Magnetically driven implosions of solid metal shells are an effective vehicle to compress materials to extreme pressures and densities. Rayleigh-Taylor instabilities (RTI) are ubiquitous, yet typically undesired features in all such experiments where solid materials are rapidly accelerated to high velocities. In cylindrical shells (“liners”), the magnetic field driving the implosion can exacerbate the RTI. Here, we suggest an approach to implode solid metal liners enabling a remarkable reduction in the growth of magnetized RTI (MRTI) by employing a magnetic drive with a tilted, dynamic polarization, forming a dynamic screw pinch. Our calculations, based on a self-consistent analytic framework, demonstratemore » that the cumulative growth of the most deleterious MRTI modes may be reduced by as much as 1 to 2 orders of magnitude. One key application of this technique is to generate increasingly stable, higher-performance implosions of solid metal liners to achieve fusion [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. Finally, we weigh the potentially dramatic benefits of the solid liner dynamic screw pinch against the experimental tradeoffs required to achieve the desired drive field history and identify promising designs for future experimental and computational studies.« less

  20. Controlling Rayleigh-Taylor Instabilities in Magnetically Driven Solid Metal Shells by Means of a Dynamic Screw Pinch

    DOE PAGES

    Schmit, P. F.; Velikovich, A. L.; McBride, R. D.; ...

    2016-11-11

    Magnetically driven implosions of solid metal shells are an effective vehicle to compress materials to extreme pressures and densities. Rayleigh-Taylor instabilities (RTI) are ubiquitous, yet typically undesired features in all such experiments where solid materials are rapidly accelerated to high velocities. In cylindrical shells (“liners”), the magnetic field driving the implosion can exacerbate the RTI. Here, we suggest an approach to implode solid metal liners enabling a remarkable reduction in the growth of magnetized RTI (MRTI) by employing a magnetic drive with a tilted, dynamic polarization, forming a dynamic screw pinch. Our calculations, based on a self-consistent analytic framework, demonstratemore » that the cumulative growth of the most deleterious MRTI modes may be reduced by as much as 1 to 2 orders of magnitude. One key application of this technique is to generate increasingly stable, higher-performance implosions of solid metal liners to achieve fusion [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. Finally, we weigh the potentially dramatic benefits of the solid liner dynamic screw pinch against the experimental tradeoffs required to achieve the desired drive field history and identify promising designs for future experimental and computational studies.« less

  1. X-ray power and yield measurements at the refurbished Z machine

    DOE PAGES

    Jones, M. C.; Ampleford, D. J.; Cuneo, M. E.; ...

    2014-08-04

    Advancements have been made in the diagnostic techniques to measure accurately the total radiated x-ray yield and power from z-pinch loads at the Z Machine with high accuracy. The Z-accelerator is capable of outputting 2MJ and 330 TW of x-ray yield and power, and accurately measuring these quantities is imperative. We will describe work over the past several years which include the development of new diagnostics, improvements to existing diagnostics, and implementation of automated data analysis routines. A set of experiments were conducted on the Z machine where the load and machine configuration were held constant. During this shot series,more » it was observed that total z-pinch x-ray emission power determined from the two common techniques for inferring the x-ray power, Kimfol filtered x-ray diode diagnostic and the Total Power and Energy diagnostic gave 450 TW and 327 TW respectively. Our analysis shows the latter to be the more accurate interpretation. More broadly, the comparison demonstrates the necessity to consider spectral response and field of view when inferring xray powers from z-pinch sources.« less

  2. Shot-by-shot Spectrum Model for Rod-pinch, Pulsed Radiography Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, William Monford

    A simplified model of bremsstrahlung production is developed for determining the x-ray spectrum output of a rod-pinch radiography machine, on a shot-by-shot basis, using the measured voltage, V(t), and current, I(t). The motivation for this model is the need for an agile means of providing shot-by-shot spectrum prediction, from a laptop or desktop computer, for quantitative radiographic analysis. Simplifying assumptions are discussed, and the model is applied to the Cygnus rod-pinch machine. Output is compared to wedge transmission data for a series of radiographs from shots with identical target objects. Resulting model enables variation of parameters in real time, thusmore » allowing for rapid optimization of the model across many shots. “Goodness of fit” is compared with output from LSP Particle-In-Cell code, as well as the Monte Carlo Neutron Propagation with Xrays (“MCNPX”) model codes, and is shown to provide an excellent predictive representation of the spectral output of the Cygnus machine. In conclusion, improvements to the model, specifically for application to other geometries, are discussed.« less

  3. Shot-by-shot Spectrum Model for Rod-pinch, Pulsed Radiography Machines

    DOE PAGES

    Wood, William Monford

    2018-02-07

    A simplified model of bremsstrahlung production is developed for determining the x-ray spectrum output of a rod-pinch radiography machine, on a shot-by-shot basis, using the measured voltage, V(t), and current, I(t). The motivation for this model is the need for an agile means of providing shot-by-shot spectrum prediction, from a laptop or desktop computer, for quantitative radiographic analysis. Simplifying assumptions are discussed, and the model is applied to the Cygnus rod-pinch machine. Output is compared to wedge transmission data for a series of radiographs from shots with identical target objects. Resulting model enables variation of parameters in real time, thusmore » allowing for rapid optimization of the model across many shots. “Goodness of fit” is compared with output from LSP Particle-In-Cell code, as well as the Monte Carlo Neutron Propagation with Xrays (“MCNPX”) model codes, and is shown to provide an excellent predictive representation of the spectral output of the Cygnus machine. In conclusion, improvements to the model, specifically for application to other geometries, are discussed.« less

  4. Shot-by-shot spectrum model for rod-pinch, pulsed radiography machines

    NASA Astrophysics Data System (ADS)

    Wood, Wm M.

    2018-02-01

    A simplified model of bremsstrahlung production is developed for determining the x-ray spectrum output of a rod-pinch radiography machine, on a shot-by-shot basis, using the measured voltage, V(t), and current, I(t). The motivation for this model is the need for an agile means of providing shot-by-shot spectrum prediction, from a laptop or desktop computer, for quantitative radiographic analysis. Simplifying assumptions are discussed, and the model is applied to the Cygnus rod-pinch machine. Output is compared to wedge transmission data for a series of radiographs from shots with identical target objects. Resulting model enables variation of parameters in real time, thus allowing for rapid optimization of the model across many shots. "Goodness of fit" is compared with output from LSP Particle-In-Cell code, as well as the Monte Carlo Neutron Propagation with Xrays ("MCNPX") model codes, and is shown to provide an excellent predictive representation of the spectral output of the Cygnus machine. Improvements to the model, specifically for application to other geometries, are discussed.

  5. X-ray Spectropolarimetry of Z-pinch Plasmas with a Single-Crystal Technique

    NASA Astrophysics Data System (ADS)

    Wallace, Matt; Haque, Showera; Neill, Paul; Pereira, Nino; Presura, Radu

    2017-10-01

    When directed beams of energetic electrons exist in a plasma the resulting x-rays emitted by the plasma can be partially polarized. This makes plasma x-ray polarization spectroscopy, spectropolarimetry, useful for revealing information about the anisotropy of the electron velocity distribution. X-ray spectropolarimetry has indeed been used for this in both space and laboratory plasmas. X-ray polarization measurements are typically performed employing two crystals, both at a 45° Bragg angle. A single-crystal spectropolarimeter can replace two crystal schemes by utilizing two matching sets of internal planes for polarization-splitting. The polarization-splitting planes diffract the incident x-rays into two directions that are perpendicular to each other and the incident beam as well, so the two sets of diffracted x-rays are linearly polarized perpendicularly to each other. An X-cut quartz crystal with surface along the [11-20] planes and a paired set of [10-10] planes in polarization-splitting orientation is now being used on aluminum z-pinches at the University of Nevada, Reno. Past x-ray polarization measurements have been reserved for point-like sources. Recently a slotted collimating aperture has been used to maintain the required geometry for polarization-splitting enabling the spectropolarimetry of extended sources. The design of a single-crystal x-ray spectropolarimeter and experimental results will be presented. Work was supported by U.S. DOE, NNSA Grant DE-NA0001834 and cooperative agreement DE-FC52-06NA27616.

  6. Neutron production in deuterium gas-puff z-pinch with outer plasma shell at current of 3 MA

    NASA Astrophysics Data System (ADS)

    Cikhardt, J.; Klir, D.; Rezac, K.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A. V.; Cherdizov, R. K.; Frusov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu.; Ratakhin, N. A.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.; Turek, K.; Krasa, J.

    2015-11-01

    Z-pinch experiments at the current of about 3 MA were carried out on the GIT-12 generator. The outer plasma shell of deuterium gas-puff was generated by the system of 48 plasma guns. This configuration exhibits a high efficiency of the production of DD fusion neutrons with the yield of above 1012 neutrons produced in a single shot with the duration of about 20 ns. The maximum energy of the neutrons produced in this pulse exceeded 30 MeV. The neutron radiation was measured using scintillation TOF detectors, CR-39 nuclear track detectors, bubble detectors BD-PND and BDS-10000 and by several types of nuclear activation detectors. These diagnostic tools were used to measure the anisotropy of neutron fluence and neutron energy spectra. It allows us to estimate the total number of DD neutrons, the contribution of other nuclear reactions, the amount of scattered neutrons, and other parameters of neutron production. This work was supported by the MSMT grants LH13283, LD14089.

  7. Pinch-off Scaling Law of Soap Bubbles

    NASA Astrophysics Data System (ADS)

    Davidson, John; Ryu, Sangjin

    2014-11-01

    Three common interfacial phenomena that occur daily are liquid drops in gas, gas bubbles in liquid and thin-film bubbles. One aspect that has been studied for these phenomena is the formation or pinch-off of the drop/bubble from the liquid/gas threads. In contrast to the formation of liquid drops in gas and gas bubbles in liquid, thin-film bubble pinch-off has not been well documented. Having thin-film interfaces may alter the pinch-off process due to the limiting factor of the film thickness. We observed the pinch-off of one common thin-film bubble, soap bubbles, in order to characterize its pinch-off behavior. We achieved this by constructing an experimental model replicating the process of a human producing soap bubbles. Using high-speed videography and image processing, we determined that the minimal neck radius scaled with the time left till pinch-off, and that the scaling law exponent was 2/3, similar to that of liquid drops in gas.

  8. Model for the loop voltage of reversed field pinches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarboe, T.R.; Alper, B.

    1987-04-01

    A simple model is presented that uses the concept of helicity balance to predict the toroidal loop voltage of reversed field pinches (RFP's). Data from the RFP's at Culham (Plasma Phys. Controlled Fusion 27, 1307 (1985)) are used to calibrate and verify the model. The model indicates that most of the helicity dissipation occurs in edge regions that are outside the limiters or in regions where field lines contact the walls. The value of this new interpretation to future RFP and spheromak experiments is discussed.

  9. New compact hohlraum configuration research at the 1.7 MA Z-pinch generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kantsyrev, V. L., E-mail: victor@unr.edu; Shrestha, I. K.; Esaulov, A. A.

    A new compact Z-pinch x-ray hohlraum design with parallel-driven x-ray sources was experimentally demonstrated in a full configuration with a central target and tailored shine shields (to provide a symmetric temperature distribution on the target) at the 1.7 MA Zebra generator. This presentation reports on the joint success of two independent lines of research. One of these was the development of new sources – planar wire arrays (PWAs). PWAs turned out to be a prolific radiator. Another success was the drastic improvement in energy efficiency of pulsed-power systems, such as the Load Current Multiplier (LCM). The Zebra/LCM generator almost doubledmore » the plasma load current to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum design for ICF, as jointly proposed by SNL and UNR. Good agreement between simulated and measured radiation temperature of the central target is shown. Experimental comparison of PWAs with planar foil liners (PFL) - another viable alternative to wire array loads at multi-MA generators show promising data. Results of research at the University of Nevada Reno allowed for the study of hohlraum coupling physics at University-scale generators. The advantages of new hohlraum design applications for multi-MA facilities with W or Au double PWAs or PFL x-ray sources are discussed.« less

  10. Numerical simulations of Z-Pinch experiments to create supersonic differentially-rotating plasma flows

    NASA Astrophysics Data System (ADS)

    Bochi, Matteo; Ummels, Sebastiaan; Chittenden, Jeremy; Lebedev, Sergey

    2011-10-01

    Recently, it was proposed that a small number of plasma jets produced by lasers could be used to generate a plasma configuration relevant to some features of astrophysical accretion disc physics. We propose complementary experimental configurations which employ converging flows generated in a cylindrical wire array Z-pinch modified to produce a rotating plasma. In this paper we present 3D MHD simulations using the code GORGON which show how this approach can be implemented at the MAGPIE facility at Imperial College, London. We will present the general scenario and the results of a parametric study relating the parameters of the array with the features of the resulting plasma. In particular, we will show how a rotating plasma cylinder or ring, with typical rotation velocity 30 Km/s and Mach number 8 is formed, and how, after about 1-2 revolutions, the material of the plasma ring is ejected in a pair of thermally driven, conical outflows propagating along the rotation axis. We will discuss to what aspects of the physics of accretion discs, the results of such experiments could be relevant. We will also consider the effects of different magnetic configurations, which further expand the possibility to relate the experiments with the astrophysical discs. Experimental implementation of some of these setups is currently in progress on MAGPIE.

  11. X-ray Power Increase from Symmetrized Wire-Array z-Pinch Implosions on Saturn.*

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Allshouse, G. O.; Marder, B. M.; Nash, T. J.; Mock, R. C.; Douglas, M. R.; Spielman, R. B.; Seaman, J. F.; McGurn, J. S.; Jobe, D.; Gilliland, T. L.; Vargas, M.; Struve, K. W.; Stygar, W. A.; Hammer, J. H.; Degroot, J. S.; Eddleman, J. L.; Peterson, D. L.; Whitney, K. G.; Thornhill, J. W.; Pulsifer, P. E.; Apruzese, J. P.; Mosher, D.; Maron, Y.

    1996-11-01

    A systematic experimental study of annular aluminum wire z-pinches on the Saturn accelerator at Sandia National Laboratories shows that, for the first time, many of the measured spatial characteristics and x-ray powers can be correlated to 1D and 2D, radiation-magneto-hydrodynamic code (RMHC) simulations when large numbers of wires are used. Calculations show that the implosion begins to transition from that of individual wire plasmas to that of a continuous plasma shell when the circumferential gap between wires in the array is reduced below 1.4 +1.3/-0.7 mm. This calculated gap coincides with the measured transition of 1.4±0.4 mm between the observed regimes of slow and rapid improvement in power output with decreasing gap. In the plasma-shell regime, x-ray power has been more than tripled over that generated in the wire-plasma regime. In the full paper, measured characteristics in the plasma-shell regime are compared with 2D, 1- and 20-mm axial length simulations of the implosion using a multi-photon-group Lagrangian RMHC^1 and a three-temperature Eulerian RMHC,^2 respectively. ^1J.H. Hammer, et al., Phys. Plasmas 3, 2063 (1996). ^2D.L. Peterson, et al., Phys. Plasmas 3, 368 (1996). Work supported by U.S. DOE Contract No. DE-AC04-94AL85000.

  12. Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion

    NASA Astrophysics Data System (ADS)

    Calamy, H.; Lassalle, F.; Loyen, A.; Zucchini, F.; Chittenden, J. P.; Hamann, F.; Maury, P.; Georges, A.; Bedoch, J. P.; Morell, A.

    2008-01-01

    The Sphinx machine [F. Lassalle et al., "Status on the SPHINX machine based on the 1microsecond LTD technology"] based on microsecond linear transformer driver (LTD) technology is used to implode an aluminium wire array with an outer diameter up to 140mm and maximum current from 3.5to5MA. 700to800ns implosion Z-pinch experiments are performed on this driver essentially with aluminium. Best results obtained before the improvement described in this paper were 1-3TW radial total power, 100-300kJ total yield, and 20-30kJ energy above 1keV. An auxiliary generator was added to the Sphinx machine in order to allow a multi microsecond current to be injected through the wire array load before the start of the main current. Amplitude and duration of this current prepulse are adjustable, with maxima ˜10kA and 50μs. This prepulse dramatically changes the ablation phase leading to an improvement of the axial homogeneity of both the implosion and the final radiating column. Total power was multiplied by a factor of 6, total yield by a factor of 2.5 with a reproducible behavior. This paper presents experimental results, magnetohydrodynamic simulations, and analysis of the effect of such a long current prepulse.

  13. Dynamical Models of Elliptical Galaxies in z = 0.5 Clusters. I. Data-Model Comparison and Evolution of Galaxy Rotation

    NASA Astrophysics Data System (ADS)

    van der Marel, Roeland P.; van Dokkum, Pieter G.

    2007-10-01

    We present spatially resolved stellar rotation velocity and velocity dispersion profiles from Keck/LRIS absorption-line spectra for 25 galaxies, mostly visually classified ellipticals, in three clusters at z~0.5. We interpret the kinematical data and HST photometry using oblate axisymmetric two-integral f(E,Lz) dynamical models based on the Jeans equations. This yields good fits, provided that the seeing and observational characteristics are carefully modeled. The fits yield for each galaxy the dynamical mass-to-light ratio (M/L) and a measure of the galaxy rotation rate. Paper II addresses the implied M/L evolution. Here we study the rotation-rate evolution by comparison to a sample of local elliptical galaxies of similar present-day luminosity. The brightest galaxies in the sample all rotate too slowly to account for their flattening, as is also observed at z=0. But the average rotation rate is higher at z~0.5 than locally. This may be due to a higher fraction of misclassified S0 galaxies (although this effect is insufficient to explain the observed strong evolution of the cluster S0 fraction with redshift). Alternatively, dry mergers between early-type galaxies may have decreased the average rotation rate over time. It is unclear whether such mergers are numerous enough in clusters to explain the observed trend quantitatively. Disk-disk mergers may affect the comparison through the so-called ``progenitor bias,'' but this cannot explain the direction of the observed rotation-rate evolution. Additional samples are needed to constrain possible environmental dependencies and cosmic variance in galaxy rotation rates. Either way, studies of the internal stellar dynamics of distant galaxies provide a valuable new approach for exploring galaxy evolution.

  14. Dynamical Models of Elliptical Galaxies in z=0.5 Clusters. II. Mass-to-Light Ratio Evolution without Fundamental Plane Assumptions

    NASA Astrophysics Data System (ADS)

    van der Marel, Roeland P.; van Dokkum, Pieter G.

    2007-10-01

    We study the mass-to-light ratio (M/L) evolution of early-type galaxies using dynamical modeling of resolved internal kinematics. This makes fewer assumptions than fundamental plane (FP) studies and provides a powerful new approach for studying galaxy evolution. We focus on the sample of 25 galaxies in clusters at z~0.5 modeled in Paper I. For comparison, we compile and homogenize M/L literature data for 60 nearby galaxies that were modeled in comparable detail. The nearby sample obeys log(M/L)B=Z+Slog(σeff/200 km s-1), where Z=0.896+/-0.010, S=0.992+/-0.054, and σeff is the effective velocity dispersion. The z~0.5 sample follows a similar relation, but with lower zero point. The implied M/L evolution is Δlog(M/L)/Δz=-0.457+/-0.046(random)+/-0.078(systematic), consistent with passive evolution following high-redshift formation. This agrees with the FP results for this sample by van Dokkum & van der Marel, and confirms that FP evolution tracks M/L evolution, which is an important verification of the assumptions that underlie FP studies. However, while we find more FP evolution for galaxies of low σeff (or low mass), the dynamical M/L evolution shows little correlation with σeff. We argue that this difference can be plausibly attributed to a combination of two effects: (1) evolution in structural galaxy properties other than M/L, and (2) the neglect of rotational support in studies of FP evolution. The results leave the question open as to whether the low-mass galaxies in the sample have younger populations than the high-mass galaxies. This highlights the general importance in the study of population ages for complementing dynamical measurements with broadband colors or spectroscopic population diagnostics.

  15. Investigation of a staged plasma-focus apparatus. [pinch construction and current sheet dynamics investigation

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Harries, W. L.

    1978-01-01

    A new staged plasma-focus geometry combining two Mather-type plasma-focus guns was constructed, and the current-sheet dynamics were investigated. The production of simultaneous pairs of plasma foci was achieved. The intensities of X-ray and fusion-neutron emission were measured and found to agree with the scaling law for a plasma focus. Advantages of this new geometry include the possibility of using plasma-focus type pinches in multiple arrays at power levels beyond the validity regime of the current scaling law for a single gun.

  16. STABILIZED PINCH MACHINE

    DOEpatents

    Anderson, O.A.

    1962-04-24

    A device for heating and confining a high temperature gas or plasma utilizing the linear pinch effect is described. The pinch discharge produced is the form of an elongated cylinder. The electrical discharge current is returned in parallel along an axial and a concentric conductor whereby the magnetic field of the conductors compresses and stabilizes the pinch discharge against lateral instability. (AEC)

  17. Characterisation of the current switch mechanism in two-stage wire array Z-pinches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdiak, G. C.; Lebedev, S. V.; Harvey-Thompson, A. J.

    2015-11-15

    In this paper, we describe the operation of a two-stage wire array z-pinch driven by the 1.4 MA, 240 ns rise-time Magpie pulsed-power device at Imperial College London. In this setup, an inverse wire array acts as a fast current switch, delivering a current pre-pulse into a cylindrical load wire array, before rapidly switching the majority of the generator current into the load after a 100–150 ns dwell time. A detailed analysis of the evolution of the load array during the pre-pulse is presented. Measurements of the load resistivity and energy deposition suggest significant bulk heating of the array mass occurs. Themore » ∼5 kA pre-pulse delivers ∼0.8 J of energy to the load, leaving it in a mixed, predominantly liquid-vapour state. The main current switch occurs as the inverse array begins to explode and plasma expands into the load region. Electrical and imaging diagnostics indicate that the main current switch may evolve in part as a plasma flow switch, driven by the expansion of a magnetic cavity and plasma bubble along the length of the load array. Analysis of implosion trajectories suggests that approximately 1 MA switches into the load in 100 ns, corresponding to a doubling of the generator dI/dt. Potential scaling of the device to higher current machines is discussed.« less

  18. Effect of Inductive Coil Geometry and Current Sheet Trajectory of a Conical Theta Pinch Pulsed Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Bonds, Kevin W.; Emsellem, Gregory D.

    2011-01-01

    Results are presented demonstrating the e ect of inductive coil geometry and current sheet trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc- tive plasma accelerators. The electromagnetic coupling between the inductive coil of the accelerator and a plasma current sheet is simulated, substituting a conical copper frustum for the plasma. The variation of system inductance as a function of plasma position is obtained by displacing the simulated current sheet from the coil while measuring the total inductance of the coil. Four coils of differing geometries were employed, and the total inductance of each coil was measured as a function of the axial displacement of two sep- arate copper frusta both having the same cone angle and length as the coil but with one compressed to a smaller size relative to the coil. The measured relationship between total coil inductance and current sheet position closes a dynamical circuit model that is used to calculate the resulting current sheet velocity for various coil and current sheet con gura- tions. The results of this model, which neglects the pinching contribution to thrust, radial propellant con nement, and plume divergence, indicate that in a conical theta pinch ge- ometry current sheet pinching is detrimental to thruster performance, reducing the kinetic energy of the exhausting propellant by up to 50% (at the upper bound for the parameter range of the study). The decrease in exhaust velocity was larger for coils and simulated current sheets of smaller half cone angles. An upper bound for the pinching contribution to thrust is estimated for typical operating parameters. Measurements of coil inductance for three di erent current sheet pinching conditions are used to estimate the magnetic pressure as a function of current sheet radial compression. The gas-dynamic contribution to axial acceleration is also estimated and shown to not compensate for the decrease in axial electromagnetic acceleration

  19. Optimization of K-shell emission in aluminum z-pinch implosions: Theory versus experiment

    NASA Astrophysics Data System (ADS)

    Whitney, K. G.; Thornhill, J. W.; Giuliani, J. L.; Davis, J.; Miles, L. A.; Nolting, E. E.; Kenyon, V. L.; Speicer, W. A.; Draper, J. A.; Parsons, C. R.; Dang, P.; Spielman, R. B.; Nash, T. J.; McGurn, J. S.; Ruggles, L. E.; Deeney, C.; Prasad, R. R.; Warren, L.

    1994-09-01

    Two sets of z-pinch experiments were recently completed at the Saturn and Phoenix facilities of Sandia National Laboratories and the Naval Surface Warfare Center, respectively, using aluminum wire arrays of different wire and array diameters. Measurements of the total x-ray yield from the K shell of aluminum were made. In this paper, a comparison of these measurements is made to both theoretical predictions and to a similar set of earlier measurements that were made at the Double Eagle facility of Physics International Company. These three sets of yield measurements have points of agreement with predicted yields and with each other, but they also show points of mutual disagreement, whose significance is discussed. The data are analyzed using a slightly revised version of a previously published K-shell yield scaling law, and they support the existence of a reasonably well defined region in (load mass)-(implosion velocity) space in which plasma kinetic energy is efficiently converted into K-shell x rays. Furthermore, a correlation is observed between the inferred conversion efficiencies and the times in which the implosions occur relative to the times when each generator's short-circuit current reaches its peak value. Finally, unlike the Double Eagle experiments, the largest measured yields in the new experiments were observed to occur at the upper velocity boundary of the efficient emission region. Moreover, the observed yields are in fairly good quantitative agreement with an earlier scaling law prediction of the maximum K-shell x-ray yield from aluminum as a function of load mass assuming kinetic energy conversion alone.

  20. The influence of the self-consistent mode structure on the Coriolis pinch effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeters, A. G.; Camenen, Y.; Casson, F. J.

    This paper discusses the effect of the mode structure on the Coriolis pinch effect [A. G. Peeters, C. Angioni, and D. Strintzi, Phys. Rev. Lett. 98, 265003 (2007)]. It is shown that the Coriolis drift effect can be compensated for by a finite parallel wave vector, resulting in a reduced momentum pinch velocity. Gyrokinetic simulations in full toroidal geometry reveal that parallel dynamics effectively removes the Coriolis pinch for the case of adiabatic electrons, while the compensation due to the parallel dynamics is incomplete for the case of kinetic electrons, resulting in a finite pinch velocity. The finite flux inmore » the case of kinetic electrons is interpreted to be related to the electron trapping, which prevents a strong asymmetry in the electrostatic potential with respect to the low field side position. The physics picture developed here leads to the discovery and explanation of two unexpected effects: First the pinch velocity scales with the trapped particle fraction (root of the inverse aspect ratio), and second there is no strong collisionality dependence. The latter is related to the role of the trapped electrons, which retain some symmetry in the eigenmode, but play no role in the perturbed parallel velocity.« less

  1. Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches

    DOE PAGES

    Seyler, C. E.; Martin, M. R.

    2011-01-14

    In this study, it is shown that the two-fluid model under a generalized Ohm’s law formulation and the resistive magnetohydrodynamics (MHD) can both be described as relaxation systems. In the relaxation model, the under-resolved stiff source terms constrain the dynamics of a set of hyperbolic equations to give the correct asymptotic solution. When applied to the collisional two-fluid model, the relaxation of fast time scales associated with displacement current and finite electron mass allows for a natural transition from a system where Ohm’s law determines the current density to a system where Ohm’s law determines the electric field. This resultmore » is used to derive novel algorithms, which allow for multiscale simulation of low and high frequency extended-MHD physics. This relaxation formulation offers an efficient way to implicitly advance the Hall term and naturally simulate a plasma-vacuum interface without invoking phenomenological models. The relaxation model is implemented as an extended-MHD code, which is used to analyze pulsed power loads such as wire arrays and ablating foils. Two-dimensional simulations of pulsed power loads are compared for extended-MHD and MHD. For these simulations, it is also shown that the relaxation model properly recovers the resistive-MHD limit.« less

  2. Characterisation of Plasma Filled Rod Pinch electron beam diode operation

    NASA Astrophysics Data System (ADS)

    MacDonald, James; Bland, Simon; Chittenden, Jeremy

    2016-10-01

    The plasma filled rod pinch diode (aka PFRP) offers a small radiographic spot size and a high brightness source. It operates in a very similar to plasma opening switches and dense plasma focus devices - with a plasma prefill, supplied via a number of simple coaxial plasma guns, being snowploughed along a thin rod cathode, before detaching at the end. The aim of this study is to model the PFRP and understand the factors that affect its performance, potentially improving future output. Given the dependence on the PFRP on the prefill, we are making detailed measurements of the density (1015-1018 cm-3), velocity, ionisation and temperature of the plasma emitted from a plasma gun/set of plasma guns. This will then be used to provide initial conditions to the Gorgon 3D MHD code, and the dynamics of the entire rod pinch process studied.

  3. Non-Laminar Flow Model for the Impedance of a Rod-Pinch Diode

    NASA Astrophysics Data System (ADS)

    Ottinger, Paul F.; Schumer, Joseph W.; Strasburg, Sean D.; Swanekamp, Stephen B.; Oliver, Bryan V.

    2002-12-01

    A previous laminar flow model for the rod-pinch diode is extended to include a transverse pressure term to study the effects of non-laminar flow. The non-laminar nature of the flow has a significant impact on the diode impedance. Results show that the introduction of the transverse pressure decreases the diode impedance predicted by the model bringing it into better agreement with experimental data.

  4. A non-LTE analysis of high energy density Kr plasmas on Z and NIF

    DOE PAGES

    Dasgupta, A.; Clark, R. W.; Ouart, N.; ...

    2016-10-20

    We report that multi-keV X-ray radiation sources have a wide range of applications, from biomedical studies and research on thermonuclear fusion to materials science and astrophysics. The refurbished Z pulsed power machine at the Sandia National Laboratories produces intense multi-keV X-rays from argon Z-pinches, but for a krypton Z-pinch, the yield decreases much faster with atomic number Z A than similar sources on the National Ignition Facility (NIF) laser at the Lawrence Livermore National Laboratory. To investigate whether fundamental energy deposition differences between pulsed power and lasers could account for the yield differences, we consider the Kr plasma on themore » two machines. The analysis assumes the plasma not in local thermodynamic equilibrium, with a detailed coupling between the hydrodynamics, the radiation field, and the ionization physics. While for the plasma parameters of interest the details of krypton’s M-shell are not crucial, both the L-shell and the K-shell must be modeled in reasonable detail, including the state-specific dielectronic recombination processes that significantly affect Kr’s ionization balance and the resulting X-ray spectrum. We present a detailed description of the atomic model, provide synthetic K- and L-shell spectra, and compare these with the available experimental data from the Z-machine and from NIF to show that the K-shell yield behavior versus Z A is indeed related to the energy input characteristics. In conclusion, this work aims at understanding the probable causes that might explain the differences in the X-ray conversion efficiencies of several radiation sources on Z and« less

  5. A non-LTE analysis of high energy density Kr plasmas on Z and NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, A.; Clark, R. W.; Ouart, N.

    We report that multi-keV X-ray radiation sources have a wide range of applications, from biomedical studies and research on thermonuclear fusion to materials science and astrophysics. The refurbished Z pulsed power machine at the Sandia National Laboratories produces intense multi-keV X-rays from argon Z-pinches, but for a krypton Z-pinch, the yield decreases much faster with atomic number Z A than similar sources on the National Ignition Facility (NIF) laser at the Lawrence Livermore National Laboratory. To investigate whether fundamental energy deposition differences between pulsed power and lasers could account for the yield differences, we consider the Kr plasma on themore » two machines. The analysis assumes the plasma not in local thermodynamic equilibrium, with a detailed coupling between the hydrodynamics, the radiation field, and the ionization physics. While for the plasma parameters of interest the details of krypton’s M-shell are not crucial, both the L-shell and the K-shell must be modeled in reasonable detail, including the state-specific dielectronic recombination processes that significantly affect Kr’s ionization balance and the resulting X-ray spectrum. We present a detailed description of the atomic model, provide synthetic K- and L-shell spectra, and compare these with the available experimental data from the Z-machine and from NIF to show that the K-shell yield behavior versus Z A is indeed related to the energy input characteristics. In conclusion, this work aims at understanding the probable causes that might explain the differences in the X-ray conversion efficiencies of several radiation sources on Z and« less

  6. Lessons from bacterial homolog of tubulin, FtsZ for microtubule dynamics.

    PubMed

    Battaje, Rachana Rao; Panda, Dulal

    2017-09-01

    FtsZ, a homolog of tubulin, is found in almost all bacteria and archaea where it has a primary role in cytokinesis. Evidence for structural homology between FtsZ and tubulin came from their crystal structures and identification of the GTP box. Tubulin and FtsZ constitute a distinct family of GTPases and show striking similarities in many of their polymerization properties. The differences between them, more so, the complexities of microtubule dynamic behavior in comparison to that of FtsZ, indicate that the evolution to tubulin is attributable to the incorporation of the complex functionalities in higher organisms. FtsZ and microtubules function as polymers in cell division but their roles differ in the division process. The structural and partial functional homology has made the study of their dynamic properties more interesting. In this review, we focus on the application of the information derived from studies on FtsZ dynamics to study microtubule dynamics and vice versa. The structural and functional aspects that led to the establishment of the homology between the two proteins are explained to emphasize the network of FtsZ and microtubule studies and how they are connected. © 2017 Society for Endocrinology.

  7. Dynamic Strength of Titin's Z-Disk End

    PubMed Central

    Kollár, Veronika; Szatmári, Dávid; Grama, László; Kellermayer, Miklós S. Z.

    2010-01-01

    Titin is a giant filamentous protein traversing the half sarcomere of striated muscle with putative functions as diverse as providing structural template, generating elastic response, and sensing and relaying mechanical information. The Z-disk region of titin, which corresponds to the N-terminal end of the molecule, has been thought to be a hot spot for mechanosensing while also serving as anchorage for its sarcomeric attachment. Understanding the mechanics of titin's Z-disk region, particularly under the effect of binding proteins, is of great interest. Here we briefly review recent findings on the structure, molecular associations, and mechanics of titin's Z-disk region. In addition, we report experimental results on the dynamic strength of titin's Z1Z2 domains measured by nanomechanical manipulation of the chemical dimer of a recombinant protein fragment. PMID:20414364

  8. Dynamic strength of titin's Z-disk end.

    PubMed

    Kollár, Veronika; Szatmári, Dávid; Grama, László; Kellermayer, Miklós S Z

    2010-01-01

    Titin is a giant filamentous protein traversing the half sarcomere of striated muscle with putative functions as diverse as providing structural template, generating elastic response, and sensing and relaying mechanical information. The Z-disk region of titin, which corresponds to the N-terminal end of the molecule, has been thought to be a hot spot for mechanosensing while also serving as anchorage for its sarcomeric attachment. Understanding the mechanics of titin's Z-disk region, particularly under the effect of binding proteins, is of great interest. Here we briefly review recent findings on the structure, molecular associations, and mechanics of titin's Z-disk region. In addition, we report experimental results on the dynamic strength of titin's Z1Z2 domains measured by nanomechanical manipulation of the chemical dimer of a recombinant protein fragment.

  9. A non-LTE analysis of high energy density Kr plasmas on Z and NIF

    NASA Astrophysics Data System (ADS)

    Dasgupta, A.; Clark, R. W.; Ouart, N.; Giuliani, J.; Velikovich, A.; Ampleford, D. J.; Hansen, S. B.; Jennings, C.; Harvey-Thompson, A. J.; Jones, B.; Flanagan, T. M.; Bell, K. S.; Apruzese, J. P.; Fournier, K. B.; Scott, H. A.; May, M. J.; Barrios, M. A.; Colvin, J. D.; Kemp, G. E.

    2016-10-01

    Multi-keV X-ray radiation sources have a wide range of applications, from biomedical studies and research on thermonuclear fusion to materials science and astrophysics. The refurbished Z pulsed power machine at the Sandia National Laboratories produces intense multi-keV X-rays from argon Z-pinches, but for a krypton Z-pinch, the yield decreases much faster with atomic number ZA than similar sources on the National Ignition Facility (NIF) laser at the Lawrence Livermore National Laboratory. To investigate whether fundamental energy deposition differences between pulsed power and lasers could account for the yield differences, we consider the Kr plasma on the two machines. The analysis assumes the plasma not in local thermodynamic equilibrium, with a detailed coupling between the hydrodynamics, the radiation field, and the ionization physics. While for the plasma parameters of interest the details of krypton's M-shell are not crucial, both the L-shell and the K-shell must be modeled in reasonable detail, including the state-specific dielectronic recombination processes that significantly affect Kr's ionization balance and the resulting X-ray spectrum. We present a detailed description of the atomic model, provide synthetic K- and L-shell spectra, and compare these with the available experimental data from the Z-machine and from NIF to show that the K-shell yield behavior versus ZA is indeed related to the energy input characteristics. This work aims at understanding the probable causes that might explain the differences in the X-ray conversion efficiencies of several radiation sources on Z and NIF.

  10. Plasma expansion dynamics physics: An understanding on ion energy reduction process

    NASA Astrophysics Data System (ADS)

    Ruzic, David; Srivastava, Shailendra; Thompson, Keith; Spencer, Joshua; Sporre, John

    2007-11-01

    This paper studies the expanding plasma dynamics of ions produced from a 5J Z-pinch xenon light source used for EUV lithography. Ion energy reduction is essential for the successful implementation of this technology. To aid this investigation, ion energy from a z-pinch DPP plasma source is measured using an ion energy analyzer and effect of introducing a small percentage of low Z material on the ion energy and flux is investigated. Presence of low mass such as H2 or N2, shows a considerable reduction in total flux and in average energy. For example, Xe^+ ion flux at 5 keV are recorded as 425 ± 42 ions/cm^2.eV.pulse at 157 cm and reduced to 125 ± 12 ions/cm^2.eV.pulse when using the low mass into the system at same energy. It is also noticed that such a combination leads to decrease in sputtering without changing the EUV output. Study of the possible mechanism supporting the experimental results is numerically calculated. This computational work indicates that the observed high energies of ions are probably resulting from coulomb explosion initiated by pinch instability. It is postulated that the electrons leave first setting up an electrostatic potential which accelerates the ions. The addition of small mass actually screens the potential and decorates the ions.

  11. A numerical study of neutral-plasma interaction in magnetically confined plasmas

    NASA Astrophysics Data System (ADS)

    Taheri, S.; Shumlak, U.; King, J. R.

    2017-10-01

    Interactions between plasma and neutral species can have a large effect on the dynamic behavior of magnetically confined plasma devices, such as the edge region of tokamaks and the plasma formation of Z-pinches. The presence of neutrals can affect the stability of the pinch and change the dynamics of the pinch collapse, and they can lead to deposition of high energy particles on the first wall. However, plasma-neutral interactions can also have beneficial effects such as quenching the disruptions in tokamaks. In this research a reacting plasma-neutral model, which combines a magnetohydrodynamic (MHD) plasma model with a gas dynamic neutral fluid model, is used to study the interaction between plasma and neutral gas. Incorporating this model into NIMROD allows the study of electron-impact ionization, radiative recombination, and resonant charge-exchange in plasma-neutral systems. An accelerated plasma moving through a neutral gas background is modeled in both a parallel plate and a coaxial electrode configuration to explore the effect of neutral gas in pinch-like devices. This work is supported by a Grant from US DOE.

  12. CUSP-PINCH DEVICE

    DOEpatents

    Baker, W.R.; Watteau, J.P.H.

    1962-06-01

    An ion-electron plasma heating device of the pinch tube class is designed with novel means for counteracting the instabilities of an ordinary linear pinch discharge. A plasma-forming discharge is created between two spacedapart coaxial electiodes through a gas such as deuterium. A pair of spaced coaxial magnetic field coils encircle the discharge and carry opposing currents so that a magnetic field having a cuspate configuration is created around the plasma, the field being formed after the plasma has been established but before significant instability arises. Thus, containment time is increased and intensified heating is obtained. In addition to the pinch compression heating additional heating is obtained by high-frequency magnetic field modulation. (AEC)

  13. Evolution of sausage and helical modes in magnetized thin-foil cylindrical liners driven by a Z-pinch

    NASA Astrophysics Data System (ADS)

    Yager-Elorriaga, D. A.; Lau, Y. Y.; Zhang, P.; Campbell, P. C.; Steiner, A. M.; Jordan, N. M.; McBride, R. D.; Gilgenbach, R. M.

    2018-05-01

    In this paper, we present experimental results on axially magnetized (Bz = 0.5 - 2.0 T), thin-foil (400 nm-thick) cylindrical liner-plasmas driven with ˜600 kA by the Michigan Accelerator for Inductive Z-Pinch Experiments, which is a linear transformer driver at the University of Michigan. We show that: (1) the applied axial magnetic field, irrespective of its direction (e.g., parallel or anti-parallel to the flow of current), reduces the instability amplitude for pure magnetohydrodynamic (MHD) modes [defined as modes devoid of the acceleration-driven magneto-Rayleigh-Taylor (MRT) instability]; (2) axially magnetized, imploding liners (where MHD modes couple to MRT) generate m = 1 or m = 2 helical modes that persist from the implosion to the subsequent explosion stage; (3) the merging of instability structures is a mechanism that enables the appearance of an exponential instability growth rate for a longer than expected time-period; and (4) an inverse cascade in both the axial and azimuthal wavenumbers, k and m, may be responsible for the final m = 2 helical structure observed in our experiments. These experiments are particularly relevant to the magnetized liner inertial fusion program pursued at Sandia National Laboratories, where helical instabilities have been observed.

  14. Experimental research of neutron yield and spectrum from deuterium gas-puff z-pinch on the GIT-12 generator at current above 2 MA

    NASA Astrophysics Data System (ADS)

    Cherdizov, R. K.; Fursov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu; Ratakhin, N. A.; Shishlov, A. V.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.

    2017-05-01

    The Z-pinch experiments with deuterium gas-puff surrounded by an outer plasma shell were carried out on the GIT-12 generator (Tomsk, Russia) at currents of 2 MA. The plasma shell consisting of hydrogen and carbon ions was formed by 48 plasma guns. The deuterium gas-puff was created by a fast electromagnetic valve. This configuration provides an efficient mode of the neutron production in DD reaction, and the neutron yield reaches a value above 1012 neutrons per shot. Neutron diagnostics included scintillation TOF detectors for determination of the neutron energy spectrum, bubble detectors BD-PND, a silver activation detector, and several activation samples for determination of the neutron yield analysed by a Sodium Iodide (NaI) and a high-purity Germanium (HPGe) detectors. Using this neutron diagnostic complex, we measured the total neutron yield and amount of high-energy neutrons.

  15. Turbulent equipartition pinch of toroidal momentum in spherical torus

    NASA Astrophysics Data System (ADS)

    Hahm, T. S.; Lee, J.; Wang, W. X.; Diamond, P. H.; Choi, G. J.; Na, D. H.; Na, Y. S.; Chung, K. J.; Hwang, Y. S.

    2014-12-01

    We present a new analytic expression for turbulent equipartition (TEP) pinch of toroidal angular momentum originating from magnetic field inhomogeneity of spherical torus (ST) plasmas. Starting from a conservative modern nonlinear gyrokinetic equation (Hahm et al 1988 Phys. Fluids 31 2670), we derive an expression for pinch to momentum diffusivity ratio without using a usual tokamak approximation of B ∝ 1/R which has been previously employed for TEP momentum pinch derivation in tokamaks (Hahm et al 2007 Phys. Plasmas 14 072302). Our new formula is evaluated for model equilibria of National Spherical Torus eXperiment (NSTX) (Ono et al 2001 Nucl. Fusion 41 1435) and Versatile Experiment Spherical Torus (VEST) (Chung et al 2013 Plasma Sci. Technol. 15 244) plasmas. Our result predicts stronger inward pinch for both cases, as compared to the prediction based on the tokamak formula.

  16. An investigation of transient pressures and plasma properties in a pinched plasma column. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Stover, E. K.; York, T. M.

    1971-01-01

    The transient pinched plasma column generated in a linear Z-pinch was studied experimentally and analytically. The plasma column was investigated experimentally with several plasma diagnostics; they were: a rapid response pressure transducer, a magnetic field probe, a voltage probe, and discharge luminosity. Axial pressure profiles on the discharge chamber axis were used to identify three characteristic regions of plasma column behavior: (1) strong axial pressure asymmetry noted early in plasma column lifetime, (2) followed by plasma heating in which there is a rapid rise in static pressure, and (3) a slight decrease static pressure before plasma column breakup. Plasma column lifetime was approximately 5 microseconds. The axial pressure asymmetry was attributed to nonsimultaneous pinching of the imploding current sheet along the discharge chamber axis. The rapid heating could be attributed in part to viscous effects introduced by radial gradients in the axial streaming velocity.

  17. Digital Quantum Simulation of Z2 Lattice Gauge Theories with Dynamical Fermionic Matter

    NASA Astrophysics Data System (ADS)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2 +1 ) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z2 model in (2 +1 ) dimensions.

  18. Digital Quantum Simulation of Z_{2} Lattice Gauge Theories with Dynamical Fermionic Matter.

    PubMed

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J Ignacio

    2017-02-17

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2+1) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z_{2} model in (2+1) dimensions.

  19. Atomic kinetics of a neon photoionized plasma experiment at Z

    NASA Astrophysics Data System (ADS)

    Mayes, D. C.; Mancini, R. C.; Schoenfeld, R. P.; Bailey, J. E.; Loisel, G. P.; Rochau, G. A.; ZAPP Collaboration

    2017-10-01

    We discuss an experimental effort to study the atomic kinetics in neon photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at various distances from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 120 Torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma from about 5 to 80 erg*cm/s. Thus, the experiment allows for the study of trends in ionization distribution as a function of the ionization parameter. An x-ray crystal spectrometer capable of collecting both time-integrated and time-gated data is used to collect absorption spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal-densities and charge state distributions, which can be compared with results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.

  20. Solving a discrete model of the lac operon using Z3

    NASA Astrophysics Data System (ADS)

    Gutierrez, Natalia A.

    2014-05-01

    A discrete model for the Lcac Operon is solved using the SMT-solver Z3. Traditionally the Lac Operon is formulated in a continuous math model. This model is a system of ordinary differential equations. Here, it was considerated as a discrete model, based on a Boolean red. The biological problem of Lac Operon is enunciated as a problem of Boolean satisfiability, and it is solved using an STM-solver named Z3. Z3 is a powerful solver that allows understanding the basic dynamic of the Lac Operon in an easier and more efficient way. The multi-stability of the Lac Operon can be easily computed with Z3. The code that solves the Boolean red can be written in Python language or SMT-Lib language. Both languages were used in local version of the program as online version of Z3. For future investigations it is proposed to solve the Boolean red of Lac Operon using others SMT-solvers as cvc4, alt-ergo, mathsat and yices.

  1. Characterization of laser-cut copper foil X-pinches

    NASA Astrophysics Data System (ADS)

    Collins, G. W.; Valenzuela, J. C.; Hansen, S. B.; Wei, M. S.; Reed, C. T.; Forsman, A. C.; Beg, F. N.

    2016-10-01

    Quantitative data analyses of laser-cut Cu foil X-pinch experiments on the 150 ns quarter-period, ˜250 kA GenASIS driver are presented. Three different foil designs are tested to determine the effects of initial structure on pinch outcome. Foil X-pinch data are also presented alongside the results from wire X-pinches with comparable mass. The X-ray flux and temporal profile of the emission from foil X-pinches differed significantly from that of wire X-pinches, with all emission from the foil X-pinches confined to a ˜3 ns period as opposed to the delayed, long-lasting electron beam emission common in wire X-pinches. Spectroscopic data show K-shell as well as significant L-shell emission from both foil and wire X-pinches. Fits to synthetic spectra using the SCRAM code suggest that pinching foil X's produced a ˜1 keV, ne ≥ 1023 cm-3 plasma. The spectral data combined with the improved reliability of the source timing, flux, and location indicate that foil X-pinches generate a reproducible, K-shell point-projection radiography source that can be easily modified and tailored to suit backlighting needs across a variety of applications.

  2. A plasma model for reversed field pinch circuit design

    NASA Astrophysics Data System (ADS)

    Johnston, J. W.

    1981-03-01

    A plasma model has been developed for use in the design of circuits for reversed field pinch experiments. The magnetic field is assumed to evolve through a given series of relaxed states with the plasma resistivity specified as a function of time. At any instant the magnetic field configuration is determined by the field energy and the toroidal flux. If the Bessel function model is chosen as the relaxed state then the magnetic helicity can be used as an alternative to the magnetic energy without altering the results. Simulations of discharges on ZETA and ETA BETA II are presented. By suitable choices of the relaxed field configuration and plasma resistivity it is possible to obtain close agreement with the experimental waveforms. Application to the proposed RFX device is discussed.

  3. Hydrodynamic mode associated with the pinch flow in RFP simulations

    NASA Astrophysics Data System (ADS)

    Delzanno, Gian Luca; Chacon, Luis; Finn, John

    2007-11-01

    We present a systematic study of single helicity (SH) states and quasi-single helicity (QSH) states in RFPs. We begin with cylindrical paramagnetic pinch equilibria with uniform resistivity, characterized by a single dimensionless parameter proportional to the toroidal electric field, or the RFP toroidal current parameter θ. For sufficiently high θ, there are several unstable m=1 ideal MHD instabilities, typically one of which is nonresonant, with 1/n just above q(r=0). We evolve these modes nonlinearly to saturation for low Hartmann number H. We show the existence of a new class of unstable modes [1], besides the electromagnetic kink modes typically responsible for the reversal of the axial magnetic field at the edge in RFPs. This new instability is hydrodynamic in nature and is due to the inward equilibrium pinch flow and suitable boundary conditions. In these circumstances, the total angular momentum of the system must grow in response to the flux of particles coming from the boundary. The hydrodynamic mode dominates the nonlinear phase of the velocity field but has little effect on the dynamics of the magnetic field. [1] G.L. Delzanno, L. Chac'on, J.M. Finn, Hydrodynamic mode associated with the pinch flow in Reversed Field Pinch simulations, submitted (2007).

  4. Using 1D theory to understand 3D stagnation of a wire-array Z pinch in the absence of radiation

    NASA Astrophysics Data System (ADS)

    Yu, Edmund

    2015-11-01

    Many high-energy-density systems implode towards the axis of symmetry, where it collides on itself, forming a hot plasma. However, experiments show these imploding plasmas develop three-dimensional (3D) structures. As a result, the plasma cannot completely dissipate its kinetic energy at stagnation, instead retaining significant 3D flow. A useful tool for understanding the effects of this residual flow is 3D simulation, but the amount and complexity of information can be daunting. To address this problem, we explore the connection between 3D simulation and one-dimensional (1D) theory. Such a connection, if it exists, is mutually beneficial: 1D theory can provide a clear picture of the underlying dynamics of 3D stagnation. On the other hand, deviations between theory and simulation suggest how 1D theory must be modified to account for 3D effects. In this work, we focus on a 3D, magnetohydrodynamic simulation of a compact wire-array Z pinch. To provide a simpler background against which to test our ideas, we artificially turn off radiation during the stagnation phase. Examination of the initial accumulation of mass on axis reveals oblique collision between jets, shock accretion, and vortex formation. Despite evidence for shock-dominated stagnation, a 1D shockless stagnation solution is more appropriate for describing the global dynamics, in that it reproduces the increase of on-axis density with time. However, the 1D solution must be modified to account for 3D effects: the flows suggest enhanced thermal transport as well as centrifugal force. Upon reaching peak compression, the stagnation transitions to a second phase, in which the high-pressure core on axis expands outward into the remaining imploding plasma. During this phase, a 1D shock solution describes the growth of the shock accretion region, as well as the decrease of on-axis density with time. However, the effect of 3D flows is still present: the on-axis temperature does not cool during expansion, which

  5. An investigation of transient pressure and plasma properties in a pinched plasma column. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Stover, E. K.; York, T. M.

    1971-01-01

    The transient pinched plasma column generated in a linear Z-pinch was studied experimentally and analytically. The plasma column was investigated experimentally with the following plasma diagnostics: a special rapid response pressure transducer, a magnetic field probe, a voltage probe and discharge luminosity. Axial pressure profiles on the discharge chamber axis were used to identify three characteristic regions of plasma column behavior; they were in temporal sequence: strong axial pressure asymmetry noted early in plasma column lifetime followed by plasma heating in which there is a rapid rise in static pressure and a slight decrease static pressure before plasma column breakup. Plasma column lifetime was approximately 5 microseconds. The axial pressure asymmetry was attributed to nonsimultaneous pinching of the imploding current sheet along the discharge chamber axis. The rapid heating is attributed in part to viscous effects introduced by radial gradients in the axial streaming velocity. Turbulent heating arising from discharge current excitation of the ion acoustic wave instability is also considered a possible heating mechanism.

  6. Collective effects of torsion in FtsZ filaments

    NASA Astrophysics Data System (ADS)

    González de Prado Salas, Pablo; Tarazona, Pedro

    2016-04-01

    Recent evidence points to the presence of torsion in FtsZ bonds. In addition, experiments with FtsZ mutants on surfaces resulted in new aggregates that cannot be explained by older models for FtsZ dynamics. We use an interaction model for FtsZ derived from molecular dynamics simulations and expand a fine-grained lattice model used to describe FtsZ aggregates on a surface. This new model includes different anchoring angles for the monomers and allows bond twist, two ingredients that oppose each other resulting in a more dynamic and interesting system. We study the role and importance of these conflicting elements and how the aggregates are characterized by the different interaction parameters.

  7. Effects of smartphone overuse on hand function, pinch strength, and the median nerve.

    PubMed

    İnal, Esra Erkol; Demİrcİ, kadİr; Çetİntürk, Azİze; Akgönül, Mehmet; Savaş, Serpİl

    2015-08-01

    In this study we investigated the flexor pollicis longus (FPL) tendon and median nerve in smartphone users by ultrasonography to assess the effects of smartphone addiction on the clinical and functional status of the hands. One hundred two students were divided into 3 groups: non-users, and high or low smartphone users. Smartphone Addiction Scale (SAS) scores and grip and pinch strengths were recorded. Pain in thumb movement and rest and hand function were evaluated on the visual analog scale (VAS) and the Duruöz Hand Index (DHI), respectively. The cross-sectional areas (CSAs) of the median nerve and the FPL tendon were calculated bilaterally using ultrasonography. Significantly higher median nerve CSAs were observed in the dominant hands of the high smartphone users than in the non-dominant hands (P<0.001). SAS scores correlated with VAS pain for movement and rest, DHI scores, and pinch strength (P<0.05; r=0.345, 0.272, 0.245, and 0.281, respectively). Smartphone overuse enlarges the median nerve, causes pain in the thumb, and decreases pinch strength and hand functions. © 2015 Wiley Periodicals, Inc.

  8. Dark Matter and the elusive Z' in a dynamical Inverse Seesaw scenario

    DOE PAGES

    De Romeri, Valentina; Fernandez-Martinez, Enrique; Gehrlein, Julia; ...

    2017-10-24

    The Inverse Seesaw naturally explains the smallness of neutrino masses via an approximate $B-L$ symmetry broken only by a correspondingly small parameter. In this work the possible dynamical generation of the Inverse Seesaw neutrino mass mechanism from the spontaneous breaking of a gauged $U(1)$ $B-L$ symmetry is investigated. Interestingly, the Inverse Seesaw pattern requires a chiral content such that anomaly cancellation predicts the existence of extra fermions belonging to a dark sector with large, non-trivial, charges under the $U(1)$ $B-L$. We investigate the phenomenology associated to these new states and find that one of them is a viable dark mattermore » candidate with mass around the TeV scale, whose interaction with the Standard Model is mediated by the $Z'$ boson associated to the gauged $U(1)$ $B-L$ symmetry. Given the large charges required for anomaly cancellation in the dark sector, the $B-L$ $Z'$ interacts preferentially with this dark sector rather than with the Standard Model. This suppresses the rate at direct detection searches and thus alleviates the constraints on $Z'$-mediated dark matter relic abundance. Furthermore, the collider phenomenology of this elusive $Z'$ is also discussed.« less

  9. Dark Matter and the elusive Z' in a dynamical Inverse Seesaw scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Romeri, Valentina; Fernandez-Martinez, Enrique; Gehrlein, Julia

    The Inverse Seesaw naturally explains the smallness of neutrino masses via an approximate $B-L$ symmetry broken only by a correspondingly small parameter. In this work the possible dynamical generation of the Inverse Seesaw neutrino mass mechanism from the spontaneous breaking of a gauged $U(1)$ $B-L$ symmetry is investigated. Interestingly, the Inverse Seesaw pattern requires a chiral content such that anomaly cancellation predicts the existence of extra fermions belonging to a dark sector with large, non-trivial, charges under the $U(1)$ $B-L$. We investigate the phenomenology associated to these new states and find that one of them is a viable dark mattermore » candidate with mass around the TeV scale, whose interaction with the Standard Model is mediated by the $Z'$ boson associated to the gauged $U(1)$ $B-L$ symmetry. Given the large charges required for anomaly cancellation in the dark sector, the $B-L$ $Z'$ interacts preferentially with this dark sector rather than with the Standard Model. This suppresses the rate at direct detection searches and thus alleviates the constraints on $Z'$-mediated dark matter relic abundance. Furthermore, the collider phenomenology of this elusive $Z'$ is also discussed.« less

  10. Determination of plasma pinch time and effective current radius of double planar wire array implosions from current measurements on a 1-MA linear transformer driver

    NASA Astrophysics Data System (ADS)

    Steiner, Adam M.; Yager-Elorriaga, David A.; Patel, Sonal G.; Jordan, Nicholas M.; Gilgenbach, Ronald M.; Safronova, Alla S.; Kantsyrev, Victor L.; Shlyaptseva, Veronica V.; Shrestha, Ishor; Schmidt-Petersen, Maximillian T.

    2016-10-01

    Implosions of planar wire arrays were performed on the Michigan Accelerator for Inductive Z-pinch Experiments, a linear transformer driver (LTD) at the University of Michigan. These experiments were characterized by lower than expected peak currents and significantly longer risetimes compared to studies performed on higher impedance machines. A circuit analysis showed that the load inductance has a significant impact on the current output due to the comparatively low impedance of the driver; the long risetimes were also attributed to high variability in LTD switch closing times. A circuit model accounting for these effects was employed to measure changes in load inductance as a function of time to determine plasma pinch timing and calculate a minimum effective current-carrying radius. These calculations showed good agreement with available shadowgraphy and x-ray diode measurements.

  11. Analysis of Particle Transport in DIII-D H-mode Plasma with a Generalized Pinch-Diffusion Model

    NASA Astrophysics Data System (ADS)

    Owen, L. W.; Stacey, W. M.; Groebner, R. J.; Callen, J. D.; Bonnin, X.

    2009-11-01

    Interpretative analyses of particle transport in the pedestal region of H-mode plasmas typically yield diffusion coefficients that are very small (<0.1 m^2/s) in the steep gradient region when a purely diffusive particle flux is fitted to the experimental density gradients. Previous evaluation of the particle and momentum balance equations using the experimental data indicated that the pedestal profiles are consistent with transport described by a pinch-diffusion particle flux relation [1]. This type of model is used to calculate the diffusion coefficient and pinch velocity in the core for an inter-ELM H-mode plasma in the DIII-D discharge 98889. Full-plasma SOPLS simulations using neutral beam particle and energy sources from ONETWO calculations and the model transport coefficients show good agreement with the measured density pedestal profile. 6pt [1] W.M. Stacey and R.J. Groebner, Phys. Plasmas 12, 042504 (2005).

  12. Simulation of the radiation from the hot spot of an X-pinch

    NASA Astrophysics Data System (ADS)

    Oreshkin, V. I.; Artyomov, A. P.; Chaikovsky, S. A.; Oreshkin, E. V.; Rousskikh, A. G.

    2017-01-01

    The results of X-pinch experiments performed using a small-sized pulse generator are analyzed. The generator, capable of producing a 200-kA, 180-ns current, was loaded with an X-pinch made of four 35-μm-diameter aluminum wires. The analysis consists of a one-dimensional radiation magnetohydrodynamic simulation of the formation of a hot spot in an X-pinch, taking into account the outflow of material from the neck region. The radiation loss and the ion species composition of the pinch plasma are calculated based on a stationary collisional-radiative model, including balance equations for the populations of individual levels. With this model, good agreement between simulation predictions and experimental data has been achieved: the experimental and the calculated radiation power and pulse duration differ by no more than twofold. It has been shown that the x-ray pulse is formed in the radiative collapse region, near its boundary.

  13. Scaling in two-fluid pinch-off

    NASA Astrophysics Data System (ADS)

    Pommer, Chris; Harris, Michael; Basaran, Osman

    2010-11-01

    The physics of two-fluid pinch-off, which arises whenever drops, bubbles, or jets of one fluid are ejected from a nozzle into another fluid, is scientifically important and technologically relevant. While the breakup of a drop in a passive environment is well understood, the physics of pinch-off when both the inner and outer fluids are dynamically active remains inadequately understood. Here, the breakup of a compound jet whose core and shell are incompressible Newtonian fluids is analyzed computationally when the interior is a "bubble" and the exterior is a liquid. The numerical method employed is an implicit method of lines ALE algorithm which uses finite elements with elliptic mesh generation and adaptive finite differences for time integration. Thus, the new approach neither starts with a priori idealizations, as has been the case with previous computations, nor is limited to length scales above that set by the wavelength of visible light as in any experimental study. In particular, three distinct responses are identified as the ratio m of the outer fluid's viscosity to the inner fluid's viscosity is varied. For small m, simulations show that the minimum neck radius r initially scales with time τ before breakup as r ˜0.58° (in accord with previous experiments and inviscid fluid models) but that r ˜τ once r becomes sufficiently small. For intermediate and large values of m, r ˜&αcirc;, where the exponent α may not equal one, once again as r becomes sufficiently small.

  14. The integrin effector PINCH regulates JNK activity and epithelial migration in concert with Ras suppressor 1

    PubMed Central

    Kadrmas, Julie L.; Smith, Mark A.; Clark, Kathleen A.; Pronovost, Stephen M.; Muster, Nemone; Yates, John R.; Beckerle, Mary C.

    2004-01-01

    Cell adhesion and migration are dynamic processes requiring the coordinated action of multiple signaling pathways, but the mechanisms underlying signal integration have remained elusive. Drosophila embryonic dorsal closure (DC) requires both integrin function and c-Jun amino-terminal kinase (JNK) signaling for opposed epithelial sheets to migrate, meet, and suture. Here, we show that PINCH, a protein required for integrin-dependent cell adhesion and actin–membrane anchorage, is present at the leading edge of these migrating epithelia and is required for DC. By analysis of native protein complexes, we identify RSU-1, a regulator of Ras signaling in mammalian cells, as a novel PINCH binding partner that contributes to PINCH stability. Mutation of the gene encoding RSU-1 results in wing blistering in Drosophila, demonstrating its role in integrin-dependent cell adhesion. Genetic interaction analyses reveal that both PINCH and RSU-1 antagonize JNK signaling during DC. Our results suggest that PINCH and RSU-1 contribute to the integration of JNK and integrin functions during Drosophila development. PMID:15596544

  15. Atomic kinetics of a neon photoionized plasma experiment at Z

    NASA Astrophysics Data System (ADS)

    Mayes, Daniel C.; Mancini, Roberto; Bailey, James E.; Loisel, Guillaume; Rochau, Gregory; ZAPP Collaboration

    2018-06-01

    We discuss an experimental effort to study the atomic kinetics in astrophysically relevant photoionized plasmas via K-shell line absorption spectroscopy. The experiment employs the intense x-ray flux emitted at the collapse of a Z-pinch to heat and backlight a photoionized plasma contained within a cm-scale gas cell placed at a variable distance from the Z-pinch and filled with neon gas pressures in the range from 3.5 to 30 Torr. The experimental platform affords an order of magnitude range in the ionization parameter characterizing the photoionized plasma at the peak of the x-ray drive from about 5 to 80 erg*cm/s. Thus, the experiment allows for the study of trends in ionization distribution as a function of the ionization parameter. An x-ray crystal spectrometer capable of time-integrated and/or time-gated configurations is used to collect absorption spectra. The spectra show line absorption by several ionization stages of neon, including Be-, Li-, He-, and H-like ions. Analysis of these spectra yields ion areal densities and charge state distributions, which can be compared with simulation results from atomic kinetics codes. In addition, the electron temperature is extracted from level population ratios of nearby energy levels in Li- and Be-like ions, which can be used to test heating models of photoionized plasmas.

  16. Spectroscopic Study of Neon Z-Pinch Plasma for Sodium-Neon Photopumping Experiments

    DTIC Science & Technology

    1992-01-06

    enhancement of the 11-A radiation from the n=4 level of neon when the sodium pump was present. For the 25-GV pump power, theoretical calculations predict...when the neon plasma is photopumped. Extensive theoretical analysis has been devoted to establishing the appropriate conditions for these plasmas. 5 ,44...producing thermonuclear neutrons. 63-65 Extensive theoretical modeling of the stability of these plasmas has guided this work.66 An imploding-liner Z

  17. A novel feedback algorithm for simulating controlled dynamics and confinement in the advanced reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlin, J.-E.; Scheffel, J.

    2005-06-15

    In the advanced reversed-field pinch (RFP), the current density profile is externally controlled to diminish tearing instabilities. Thus the scaling of energy confinement time with plasma current and density is improved substantially as compared to the conventional RFP. This may be numerically simulated by introducing an ad hoc electric field, adjusted to generate a tearing mode stable parallel current density profile. In the present work a current profile control algorithm, based on feedback of the fluctuating electric field in Ohm's law, is introduced into the resistive magnetohydrodynamic code DEBSP [D. D. Schnack and D. C. Baxter, J. Comput. Phys. 55,more » 485 (1984); D. D. Schnack, D. C. Barnes, Z. Mikic, D. S. Marneal, E. J. Caramana, and R. A. Nebel, Comput. Phys. Commun. 43, 17 (1986)]. The resulting radial magnetic field is decreased considerably, causing an increase in energy confinement time and poloidal {beta}. It is found that the parallel current density profile spontaneously becomes hollow, and that a formation, being related to persisting resistive g modes, appears close to the reversal surface.« less

  18. Pulsed Flow Pinch

    NASA Astrophysics Data System (ADS)

    Hartman, Charles

    2005-10-01

    Formation of a Pulsed Flow Pinch is discussed, based on 2-D, MHD numerical calculations. The PFP utilizes the observed stable, Btheta magnetic ``bubble'' which propagates from breach to muzzle during the run-down phase of the coaxial Marshall gun. We consider two ways of launching a PFP onto a fiber or cylindrical gas cloud: 1) by propagating the bubble to small radius along an exponentially-decreasing-radius center conductor and, 2) by a radial launch to form reflex PFP's propagating in opposite directions along a fiber. We show that the bubble velocity increases to high values as the radius is decreased making the rise time of Btheta at an axial point very short. A bubble, launched into uniform gas is found to undergo unstable pinching of the front. Results will be presented of calculations of a PFP driven, neutron-producing, snow-plow pinch. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  19. Controlled injection using a channel pinch in a plasma-channel-guided laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Liu, Jiaqi; Zhang, Zhijun; Liu, Jiansheng; Li, Wentao; Wang, Wentao; Yu, Changhai; Qi, Rong; Qin, Zhiyong; Fang, Ming; Wu, Ying; Feng, Ke; Ke, Lintong; Wang, Cheng; Li, Ruxin

    2018-06-01

    Plasma-channel-guided laser plasma accelerators make it possible to drive high-brilliance compact radiation sources and have high-energy physics applications. Achieving tunable internal injection of the electron beam (e beam) inside the plasma channel, which realizes a tunable radiation source, is a challenging method to extend such applications. In this paper, we propose the use of a channel pinch, which is designed as an initial reduction followed by an expansion of the channel radius along the plasma channel, to achieve internal controlled off-axis e beam injection in a channel-guided laser plasma accelerator. The off-axis injection is triggered by bubble deformation in the expansion region. The dynamics of the plasma wake is explored, and the trapping threshold is found to be reduced radially in the channel pinch. Simulation results show that the channel pinch not only triggers injection process localized at the pinch but also modulates the parameters of the e beam by adjusting its density profile, which can additionally accommodate a tunable radiation source via betatron oscillation.

  20. On the Evolution From Micrometer-Scale Inhomogeneity to Global Overheated Structure During the Intense Joule Heating of a z-Pinch Rod

    DOE PAGES

    Awe, T. J.; Yu, E. P.; Yates, K. C.; ...

    2017-02-21

    Ultrafast optical microscopy of metal z-pinch rods pulsed with megaampere current is contributing new data and critical insight into what provides the fundamental seed for the magneto-Rayleigh-Taylor (MRT) instability. A two-frame near infrared/visible intensified-charge-coupled device gated imager with 2-ns temporal resolution and 3-μm spatial resolution captured emissions from the nonuniformly Joule heated surfaces of ultrasmooth aluminum (Al) rods. Nonuniform surface emissions are consistently first observed from discrete, 10-μm scale, subelectronvolt spots. Aluminum 6061 alloy, with micrometer-scale nonmetallic resistive inclusions, forms several times more spots than 99.999% pure Al 5N; 5-10 ns later, azimuthally stretched elliptical spots and distinct strata (40-100more » μm wide by 10 μm tall) are observed on Al 6061, but not on Al 5N. In such overheat strata, aligned parallel to the magnetic field, we find that they are highly effective seeds for MRT instability growth. Our data give credence to the hypothesis that early nonuniform Joule heating, such as the electrothermal instability, may provide the dominant seed for MRT.« less

  1. Investigation on the pinch point position in heat exchangers

    NASA Astrophysics Data System (ADS)

    Pan, Lisheng; Shi, Weixiu

    2016-06-01

    The pinch point is important for analyzing heat transfer in thermodynamic cycles. With the aim to reveal the importance of determining the accurate pinch point, the research on the pinch point position is carried out by theoretical method. The results show that the pinch point position depends on the parameters of the heat transfer fluids and the major fluid properties. In most cases, the pinch point locates at the bubble point for the evaporator and the dew point for the condenser. However, the pinch point shifts to the supercooled liquid state in the near critical conditions for the evaporator. Similarly, it shifts to the superheated vapor state with the condensing temperature approaching the critical temperature for the condenser. It even can shift to the working fluid entrance of the evaporator or the supercritical heater when the heat source fluid temperature is very high compared with the absorbing heat temperature. A wrong position for the pinch point may generate serious mistake. In brief, the pinch point should be founded by the iterative method in all conditions rather than taking for granted.

  2. Self-pinched lithium beam transport experiments on SABRE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, D.L.; Olson, C.L.; Poukey, J.W.

    Self-pinched transport of ion beams has many advantages for ion-driven ICF applications involving high yield and energy production. The authors are currently preparing for a self-pinched lithium beam transport experiment on the SABRE accelerator. There are three transport elements that must eventually be demonstrated: (1) efficient lithium beam generation and ballistic transport to a focus at the self-pinched transport channel entrance; (2) self-pinched transport in the channel, requiring optimized injection conditions and gas breakdown; and (3) self-pinched transport of the equilibrated beam from the channel into free space, with associated aiming and stability considerations. In the present experiment, a hollowmore » annular lithium beam from an applied-B extraction ion diode will be focused to small radius (r {le} 2 cm) in a 60 cm long ballistic focus section containing argon gas at a pressure of a few Torr. The self-pinched transport channel will contain a low pressure background gas of 10--40 mTorr argon to allow sufficient net current to confine the beam for long distance transport. IPROP simulations are in progress to optimize the design of the ballistic and self-pinched transport sections. Progress on preparation of this lithium self-pinched transport experiment, including a discussion of transport system design, important gas breakdown issues, and diagnostics, will be presented.« less

  3. Linking natural microstructures with numerical modeling of pinch-and-swell structures

    NASA Astrophysics Data System (ADS)

    Peters, Max; Berger, Alfons; Herwegh, Marco; Regenauer-Lieb, Klaus

    2016-04-01

    For a variety of geological problems, the change from homogeneous to localized deformation and the establishment of steady-state conditions are equally important. Here, we show that pinch-and-swell structures are ideal candidates for the study of the switch in deformation style and mechanism during ductile creep. We present an interdisciplinary approach to the onset of pinch-and-swell structures and to the flow conditions during pre- to post-localization stages in ductile rocks. For this reason, naturally boudinaged calcite veins, embedded in a calc-mylonite, and their microfabrics were investigated quantitatively. Remnants of slightly deformed calcite hosts build up the swells, showing twinning and minor dislocation glide as crystal plastic deformation mechanisms which are accompanied by subgrain rotation recrystallization (SGR). Towards the pinches, we find a gradient of severe grain size reduction through progressive SGR, developing a characteristic dislocation creep crystallographic preferred orientation (CPO). Along this gradient, the finest recrystallized calcite grains appear randomly oriented, expressed by a "smearing-out" of the CPO and missing systematics of misorientation angles in the most extended areas. We interpret this microstructure as a switch from dislocation dominated creep to grain boundary sliding processes. Further, we show that the onset of boudinage is independent on both the original orientation and grain size of calcite hosts. We implemented these microstructural observations into a layered elasto-visco-plastic finite element framework, tracing variations in grain size (Peters et al., 2015). We base the microstructural evolution on thermo-mechanical-chemical principles and end-member flow laws (Herwegh et al., 2014). The simulated pinch-and-swell structures indicate that low strain rates in the swells favor dislocation creep, whereas accelerated rates provoke continuous grain size reduction allowing strain accommodation by diffusion creep

  4. Structural insights of Staphylococcus aureus FtsZ inhibitors through molecular docking, 3D-QSAR and molecular dynamics simulations.

    PubMed

    Ballu, Srilata; Itteboina, Ramesh; Sivan, Sree Kanth; Manga, Vijjulatha

    2018-02-01

    Filamentous temperature-sensitive protein Z (FtsZ) is a protein encoded by the FtsZ gene that assembles into a Z-ring at the future site of the septum of bacterial cell division. Structurally, FtsZ is a homolog of eukaryotic tubulin but has low sequence similarity; this makes it possible to obtain FtsZ inhibitors without affecting the eukaryotic cell division. Computational studies were performed on a series of substituted 3-arylalkoxybenzamide derivatives reported as inhibitors of FtsZ activity in Staphylococcus aureus. Quantitative structure-activity relationship models (QSAR) models generated showed good statistical reliability, which is evident from r 2 ncv and r 2 loo values. The predictive ability of these models was determined and an acceptable predictive correlation (r 2 Pred ) values were obtained. Finally, we performed molecular dynamics simulations in order to examine the stability of protein-ligand interactions. This facilitated us to compare free binding energies of cocrystal ligand and newly designed molecule B1. The good concordance between the docking results and comparative molecular field analysis (CoMFA)/comparative molecular similarity indices analysis (CoMSIA) contour maps afforded obliging clues for the rational modification of molecules to design more potent FtsZ inhibitors.

  5. A Test of Maxwell's Z Model Using Inverse Modeling

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Schultz, P. H.; Heineck, T.

    2003-01-01

    In modeling impact craters a small region of energy and momentum deposition, commonly called a "point source", is often assumed. This assumption implies that an impact is the same as an explosion at some depth below the surface. Maxwell's Z Model, an empirical point-source model derived from explosion cratering, has previously been compared with numerical impact craters with vertical incidence angles, leading to two main inferences. First, the flowfield center of the Z Model must be placed below the target surface in order to replicate numerical impact craters. Second, for vertical impacts, the flow-field center cannot be stationary if the value of Z is held constant; rather, the flow-field center migrates downward as the crater grows. The work presented here evaluates the utility of the Z Model for reproducing both vertical and oblique experimental impact data obtained at the NASA Ames Vertical Gun Range (AVGR). Specifically, ejection angle data obtained through Three-Dimensional Particle Image Velocimetry (3D PIV) are used to constrain the parameters of Maxwell's Z Model, including the value of Z and the depth and position of the flow-field center via inverse modeling.

  6. MDWiZ: a platform for the automated translation of molecular dynamics simulations.

    PubMed

    Rusu, Victor H; Horta, Vitor A C; Horta, Bruno A C; Lins, Roberto D; Baron, Riccardo

    2014-03-01

    A variety of popular molecular dynamics (MD) simulation packages were independently developed in the last decades to reach diverse scientific goals. However, such non-coordinated development of software, force fields, and analysis tools for molecular simulations gave rise to an array of software formats and arbitrary conventions for routine preparation and analysis of simulation input and output data. Different formats and/or parameter definitions are used at each stage of the modeling process despite largely contain redundant information between alternative software tools. Such Babel of languages that cannot be easily and univocally translated one into another poses one of the major technical obstacles to the preparation, translation, and comparison of molecular simulation data that users face on a daily basis. Here, we present the MDWiZ platform, a freely accessed online portal designed to aid the fast and reliable preparation and conversion of file formats that allows researchers to reproduce or generate data from MD simulations using different setups, including force fields and models with different underlying potential forms. The general structure of MDWiZ is presented, the features of version 1.0 are detailed, and an extensive validation based on GROMACS to LAMMPS conversion is presented. We believe that MDWiZ will be largely useful to the molecular dynamics community. Such fast format and force field exchange for a given system allows tailoring the chosen system to a given computer platform and/or taking advantage of a specific capabilities offered by different software engines. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Photoionized Plasma and Opacity Experiments on the Z Machine

    NASA Astrophysics Data System (ADS)

    Bailey, James

    2008-04-01

    Laboratory experiments at Z use high energy density to create plasma conditions similar to extreme astrophysical environments, including stellar interiors and accretion powered objects. The importance of radiation unifies these topics, even though the plasmas involved are very different. Understanding stellar interiors requires knowledge of radiation transport in dense, hot, collision-dominated plasma. A Z x-ray source was used to measure iron plasma transmission at 156 eV electron temperature, 2x higher than in prior work. The data provide the first experimental tests of absorption features critical for stellar interior opacity models and may provide insight into whether the present discrepancy between solar models and helioseismology originates in opacity model deficiencies or in some other aspect of the solar model. In contrast, accretion physics requires interpretation of x-ray spectra from lower density photoionization-dominated plasma. Exploiting astrophysical spectra requires a spectral model that connects the observations with a model that describes the overall picture of the astrophysical object. However, photoionized plasma spectral models are largely untested. Z-pinch radiation was used to create photoionized iron and neon plasmas with photoionization parameter 5-25 erg cm /s. Comparisons with the data improve x-ray photoionization models and promote more accurate interpretation of spectra acquired with astrophysical observatories. The prospects for new experiments at the higher radiation powers provided by the recently upgraded Z facility will be described.* In collaboration with scientists from CEA, LANL, LLNL, Oxford, Prism, Queens University, Swarthmore College, U. Nevada Reno, and Sandia ++Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  8. In-Situ Anode Heating and Its Effects on Atomic Constituents in the A-K Gap in Self-Magnetic Pinch (SMP) Experiments

    NASA Astrophysics Data System (ADS)

    Simpson, Sean; Renk, Timothy; Johnston, Mark; Mazarakis, Mike; Patel, Sonal

    2015-11-01

    The RITS-6 inductive voltage adder (IVA) accelerator (3.5-8.5 MeV) at Sandia National Laboratories produces high-power (TW) focused electron beams (<3mm diameter) for flash x-ray radiography applications. The Self-Magnetic Pinch (SMP) diode utilizes a hollowed metal cathode to produce a pinched focus onto a high-Z metal anode converter. There is not a clear understanding as to the effects various contaminants such as C, CO, H, H2O, HmCn, O2, and N2, on the anode surface or in the bulk may have on impedance dynamics, beam stability, beam spot size, and reproducibility. Heating pure Ta anodes with and without a thin Al coating have been investigated using temperatures ranging from 400 °C to 1000 °C. Initial experiments indicate a significant reduction in H and C as seen in high-speed spectral analysis of plasmas at the converter and a reduction in the back-streaming proton current. Experiments are ongoing, and latest results will be reported. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Modeling FtsZ ring formation in the bacterial cell-anisotropic aggregation via mutual interactions of polymer rods.

    PubMed

    Fischer-Friedrich, Elisabeth; Gov, Nir

    2011-04-01

    The cytoskeletal protein FtsZ polymerizes to a ring structure (Z ring) at the inner cytoplasmic membrane that marks the future division site and scaffolds the division machinery in many bacterial species. FtsZ is known to polymerize in the presence of GTP into single-stranded protofilaments. In vivo, FtsZ polymers become associated with the cytoplasmic membrane via interaction with the membrane-binding proteins FtsA and ZipA. The FtsZ ring structure is highly dynamic and undergoes constantly polymerization and depolymerization processes and exchange with the cytoplasmic pool. In this theoretical study, we consider a scenario of Z ring self-organization via self-enhanced attachment of FtsZ polymers due to end-to-end interactions and lateral interactions of FtsZ polymers on the membrane. With the assumption of exclusively circumferential polymer orientations, we derive coarse-grained equations for the dynamics of the pool of cytoplasmic and membrane-bound FtsZ. To capture stochastic effects expected in the system due to low particle numbers, we simulate our computational model using a Gillespie-type algorithm. We obtain ring- and arc-shaped aggregations of FtsZ polymers on the membrane as a function of monomer numbers in the cell. In particular, our model predicts the number of FtsZ rings forming in the cell as a function of cell geometry and FtsZ concentration. We also calculate the time of FtsZ ring localization to the midplane in the presence of Min oscillations. Finally, we demonstrate that the assumptions and results of our model are confirmed by 3D reconstructions of fluorescently-labeled FtsZ structures in E. coli that we obtained.

  10. ZapE Is a Novel Cell Division Protein Interacting with FtsZ and Modulating the Z-Ring Dynamics

    PubMed Central

    Marteyn, Benoit S.; Karimova, Gouzel; Fenton, Andrew K.; Gazi, Anastasia D.; West, Nicholas; Touqui, Lhousseine; Prevost, Marie-Christine; Betton, Jean-Michel; Poyraz, Oemer; Ladant, Daniel; Gerdes, Kenn; Sansonetti, Philippe J.; Tang, Christoph M.

    2014-01-01

    ABSTRACT Bacterial cell division requires the formation of a mature divisome complex positioned at the midcell. The localization of the divisome complex is determined by the correct positioning, assembly, and constriction of the FtsZ ring (Z-ring). Z-ring constriction control remains poorly understood and (to some extent) controversial, probably due to the fact that this phenomenon is transient and controlled by numerous factors. Here, we characterize ZapE, a novel ATPase found in Gram-negative bacteria, which is required for growth under conditions of low oxygen, while loss of zapE results in temperature-dependent elongation of cell shape. We found that ZapE is recruited to the Z-ring during late stages of the cell division process and correlates with constriction of the Z-ring. Overexpression or inactivation of zapE leads to elongation of Escherichia coli and affects the dynamics of the Z-ring during division. In vitro, ZapE destabilizes FtsZ polymers in an ATP-dependent manner. PMID:24595368

  11. Pinch aperture proprioception: reliability and feasibility study

    PubMed Central

    Yahya, Abdalghani; von Behren, Timothy; Levine, Shira; dos Santos, Marcio

    2018-01-01

    [Purpose] To establish the reliability and feasibility of a novel pinch aperture device to measure proprioceptive joint position sense. [Subjects and Methods] Reliability of the pinch aperture device was assessed in 21 healthy subjects. Following familiarization with a 15° target position of the index finger and thumb, subjects performed 5 trials in which they attempted to actively reproduce the target position without visual feedback. This procedure was repeated at a testing session on a separate date, and the between-session intraclass correlation coefficient (ICC) was calculated. In addition, extensor tendon vibration was applied to 19 healthy subjects, and paired t-tests were conducted to compare performance under vibration and no-vibration conditions. Pinch aperture proprioception was also assessed in two individuals with known diabetic neuropathy. [Results] The pinch aperture device demonstrated excellent reliability in healthy subjects (ICC 0.88, 95% confidence interval 0.70–0.95). Tendon vibration disrupted pinch aperture proprioception, causing subjects to undershoot the target position (18.1 ± 2.6° vs. 14.8° ± 0.76, p<0.001). This tendency to undershoot the target position was also noted in individuals with diabetic neuropathy. [Conclusion] This study describes a reliable, feasible, and functional means of measuring finger proprioception. Further research should investigate the assessment and implications of pinch aperture proprioception in neurological and orthopedic populations. PMID:29765192

  12. FtsZ rings and helices: physical mechanisms for the dynamic alignment of biopolymers in rod-shaped bacteria.

    PubMed

    Fischer-Friedrich, Elisabeth; Friedrich, Benjamin M; Gov, Nir S

    2012-02-01

    In many bacterial species, the protein FtsZ forms a cytoskeletal ring that marks the future division site and scaffolds the division machinery. In rod-shaped bacteria, most frequently membrane-attached FtsZ rings or ring fragments are reported and occasionally helices. By contrast, axial FtsZ clusters have never been reported. In this paper, we investigate theoretically how dynamic FtsZ aggregates align in rod-shaped bacteria. We study systematically different physical mechanisms that affect the alignment of FtsZ polymers using a computational model that relies on autocatalytic aggregation of FtsZ filaments at the membrane. Our study identifies a general tool kit of physical and geometrical mechanisms by which rod-shaped cells align biopolymer aggregates. Our analysis compares the relative impact of each mechanism on the circumferential alignment of FtsZ as observed in rod-shaped bacteria. We determine spontaneous curvature of FtsZ polymers and axial confinement of FtsZ on the membrane as the strongest factors. Including Min oscillations in our model, we find that these stabilize axial and helical clusters on short time scales, but promote the formation of an FtsZ ring at the cell middle at longer times. This effect could provide an explanation to the long standing puzzle of transiently observed oscillating FtsZ helices in Escherichia coli cells prior to cell division.

  13. Characterization of neutron emission from mega-ampere deuterium gas puff Z-pinch at microsecond implosion times

    NASA Astrophysics Data System (ADS)

    Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cikhardt, J.; Fursov, F. I.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Ratakhin, N. A.; Sila, O.; Stodulka, J.

    2013-08-01

    Experiments with deuterium (D2) triple shell gas puffs were carried out on the GIT-12 generator at a 3 MA current level and microsecond implosion times. The outer, middle and inner nozzle diameters were 160 mm, 80 mm and 30 mm, respectively. The influence of the mass of deuterium shells on neutron emission times, neutron yields and neutron energy spectra was studied. The injected linear mass of deuterium varied between 50 and 255 µg cm-1. Gas puffs imploded onto the axis before the peak of generator current at 700-1100 ns. Most of the neutrons were emitted during the second neutron pulse after the development of instabilities. Despite higher currents, heavier gas puffs produced lower neutron yields. Optimal mass and a short time delay between the valve opening and the generator triggering were more important than the better coincidence of stagnation with peak current. The peak neutron yield from D(d, n)3He reactions reached 3 × 1011 at 2.8 MA current, 90 µg cm-1 injected linear mass and 37 mm anode-cathode gap. In the case of lower mass shots, a large number of 10 MeV neutrons were produced either by secondary DT reactions or by DD reactions of deuterons with energies above 7 MeV. The average neutron yield ratio Y>10 MeV/Y2.5 MeV reached (6 ± 3) × 10-4. Such a result can be explained by a power law distribution for deuterons as \\rmd N_d/\\rmd E_d\\propto E_d^{-3} . The optimization of a D2 gas puff Z-pinch and similarities to a plasma focus and its drive parameter are described.

  14. Hadro-quarkonia dynamics and Z{sub b} states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danilkin, I. V.; Orlovsky, V. D., E-mail: orlovskii@itep.ru; Simonov, Yu. A.

    2013-09-15

    Dynamics of hadro-quarkonium system is formulated, based on the channel coupling of a light hadron (h) and heavy quarkonium (QQ-bar) to heavy-light mesons (Qq-bar, Q-barq). Equations for hadro-quarkonium amplitudes and resonance positions are written explicitly, and numerically calculated for the special case of {pi} Greek-Upsilon-With-Hook-Symbol (nS) (n = 1, 2, 3). It is also shown that the recently observed by Belle two peaks Z{sub b}(10610) and Z{sub b}(10650) are in agreement with the proposed theory. It is demonstrated that theory predicts peaks at the BB*, B*B* thresholds in all available {pi} Greek-Upsilon-With-Hook-Symbol (nS) channels.

  15. Impact of grain size evolution on necking and pinch-and-swell formation in calcite layers

    NASA Astrophysics Data System (ADS)

    Schmalholz, Stefan Markus; Duretz, Thibault

    2017-04-01

    The formation of necking zones and the associated formation of pinch-and-swell structure is one form of strain localization in extending, competent layers. Natural pinch-and-swell structure in centimetre-thick calcite layers typically shows a reduction of grain size from swell towards pinch. However, the impact of grain size evolution on necking and pinch-and-swell formation is incompletely understood. We perform zero-dimensional (0D) and 2D thermo-mechanical numerical simulations to quantify the impact of grain size evolution on necking for extension rates between 10-12s^-1and10^-14 s-1 and temperatures around 350°C. For a combination of diffusion and dislocation creep we calculate grain size evolution according to the paleowattmeter (grain size is proportional to mechanical work rate) or the paleopiezometer (grain size is proportional to stress). Numerical results fit two observations: (i) grain size reduction from swells towards pinches, and (ii) dislocation creep dominated deformation in swells and significant contribution of diffusion creep in pinches. Modelled grain size in pinches (10 to 60 μm) and swells (70 to 800 μm) is close to observed grain size in pinches (15 to 27 μm) and in swells (250 to 1500 μm). Grain size evolution has only a minor impact on necking suggesting that grain size evolution is a consequence, and not the cause of necking. Viscous shear heating and grain size evolution had a negligible thermal impact in the simulations.

  16. Advanced Kr Atomic Structure and Ionization Kinetics for Pinches on ZR

    NASA Astrophysics Data System (ADS)

    Dasgupta, Arati; Clark, Robert; Giuliani, John; Ouart, Nick; Davis, Jack; Jones, Brent; Ampleford, Dave; Hansen, Stephanie

    2011-10-01

    High fluence photon sources above 10 keV are a challenge for HED plasmas. This motivates Kr atomic modeling as its K-shell radiation starts at 13 keV. We have developed atomic structure and collisional-radiatve data for the full K-and L-shell and much of the M-shell using the the state-of-the-art Flexible Atomic Code. All relevant atomic collisional and radiative processes that affect ionization balance and are necessary to accurately model the pinch dynamics and the spectroscopic details of the emitted radiation are included in constructing the model. This non-LTE CRE model will be used to generate synthetic spectra for fixed densities and temperatures relevant for Kr gas-puff simulations in ZR. Work supported by DOE/NNSA. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Pinched-flow hydrodynamic stretching of single-cells.

    PubMed

    Dudani, Jaideep S; Gossett, Daniel R; Tse, Henry T K; Di Carlo, Dino

    2013-09-21

    Reorganization of cytoskeletal networks, condensation and decondensation of chromatin, and other whole cell structural changes often accompany changes in cell state and can reflect underlying disease processes. As such, the observable mechanical properties, or mechanophenotype, which is closely linked to intracellular architecture, can be a useful label-free biomarker of disease. In order to make use of this biomarker, a tool to measure cell mechanical properties should accurately characterize clinical specimens that consist of heterogeneous cell populations or contain small diseased subpopulations. Because of the heterogeneity and potential for rare populations in clinical samples, single-cell, high-throughput assays are ideally suited. Hydrodynamic stretching has recently emerged as a powerful method for carrying out mechanical phenotyping. Importantly, this method operates independently of molecular probes, reducing cost and sample preparation time, and yields information-rich signatures of cell populations through significant image analysis automation, promoting more widespread adoption. In this work, we present an alternative mode of hydrodynamic stretching where inertially-focused cells are squeezed in flow by perpendicular high-speed pinch flows that are extracted from the single inputted cell suspension. The pinched-flow stretching method reveals expected differences in cell deformability in two model systems. Furthermore, hydraulic circuit design is used to tune stretching forces and carry out multiple stretching modes (pinched-flow and extensional) in the same microfluidic channel with a single fluid input. The ability to create a self-sheathing flow from a single input solution should have general utility for other cytometry systems and the pinched-flow design enables an order of magnitude higher throughput (65,000 cells s(-1)) compared to our previously reported deformability cytometry method, which will be especially useful for identification of rare

  18. General process improvements through pinch technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linnhoff, B.; Polley, G.T.; Sahdev, V.

    1988-06-01

    Over the last ten years pinch technology has emerged as somewhat of a ''maverick'' development in the process design and energy conservation scene. Running contrary to general trends by taking the computer out of the loop and putting the engineer back in control, it has been questioned by some and welcomed by others. Regardless of persuasion, however, critics and advocates alike have largely failed to notice that pinch technology is more than an energy conservation tool. This is probably because soon after the advent of pinch technology in the 1970s, the process design scene became dominated by the oil crisis.more » Energy savings became the primary task of process designers and, therefore, the primary focus of the technology. Application during this period typically demonstrated energy cost savings in the range of 20 to 50 percent and payback periods of one year or less. Only recently have the other benefits of the technology reemerged. While it is true that pinch technology is essentially a heat-flow-based technique it is also true that it can be used to address a very diverse range of objectives.« less

  19. Formation of a pinched electron beam and an intense x-ray source in radial foil rod-pinch diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorokin, S. A.

    2016-04-15

    Low-impedance rod-pinch diode experiments were performed on the MIG generator at Institute of High Current Electronics using an aluminum foil placed between concentric electrodes of a rod-pinch diode. The J × B force accelerates the foil plasma in the axial and radial directions. After the foil plasma is pushed beyond the tip of the rod, a vacuum gap and a pinched electron beam form. The anode and cathode plasmas expansion and the following plasmas sweeping up by the J × B force can result in repetitive gap formations and closures, which are evident in the several successive intense x-ray pulses. A 0.7-mm-size point-like x-raymore » source was realized using a 1-mm-diameter tungsten rod, tapered to a point over the last 10 mm. The results of experiments show that the foil-shorted rod-pinch diode configuration has the potential to form low-impedance diodes, to shorten x-ray pulse duration and to realize submillimeter spot-size x-ray sources.« less

  20. Current halo structures in high-current plasma experiments: θ-pinch

    NASA Astrophysics Data System (ADS)

    Matveev, Yu. V.

    2007-03-01

    Experimental data elucidating mechanisms for halo formation in θ-pinch discharges are presented and discussed. The experiments were performed with different gases (H2, D2, He, and Ar) in a theta-pinch device with a porcelain vacuum chamber and an excitation coil 15 cm in diameter and 30 cm in length. The stored energy, the current in the excitation coil, and the current half-period were W = 10 kJ, I = 400 kA, and T/2 = 14 μs, respectively. It is found that the plasma rings (halos) surrounding the pinch core arise as a result of coaxial pinch stratification due to both the excitation of closed currents (inductons) inside the pinch and the radial convergence of the plasma current sheaths produced after the explosion of T-layers formed near the wall in the initial stage of the discharge. It is concluded that halo structures observed in pinches, tokamaks, and other high-current devices used in controlled fusion research have the same nature.

  1. Contribution of flexor pollicis longus to pinch strength: an in vivo study.

    PubMed

    Goetz, Thomas J; Costa, Joseph A; Slobogean, Gerard; Patel, Satyam; Mulpuri, Kishore; Travlos, Andrew

    2012-11-01

    To estimate the contribution of the flexor pollicis longus (FPL) to key pinch strength. Secondary outcomes include tip pinch, 3-point chuck pinch, and grip strength. Eleven healthy volunteers consented to participate in the study. We recorded baseline measures for key, 3-point chuck, and tip pinch and for grip strength. In order to control for instability of the interphalangeal (IP) joint after FPL paralysis, pinch measurements were repeated after immobilizing the thumb IP joint. Measures were repeated after subjects underwent electromyography-guided lidocaine blockade of the FPL muscle. Nerve conduction studies and clinical examinations were used to confirm FPL blockade and to rule out median nerve blockade. Paired t-tests were used to compare pre- and postblock means for both unsplinted and splinted measures. The difference in means was used to estimate the contribution of FPL to pinch strength. All 3 types of pinch strength showed a significant decrease between pre- and postblock measurements. The relative contribution of FPL for each pinch type was 56%, 44%, and 43% for key, chuck, and tip pinch, respectively. Mean grip strength did not decrease significantly. Splinting of the IP joint had no significant effect on pinch measurements. FPL paralysis resulted in a statistically significant decrease in pinch strength. IP joint immobilization to simulate IP joint fusion did not affect results. Reconstruction after acute or chronic loss of FPL function should be considered when restoration of pinch strength is important. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  2. Constraining the dark energy models with H (z ) data: An approach independent of H0

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, Fotios K.; Basilakos, Spyros

    2018-03-01

    We study the performance of the latest H (z ) data in constraining the cosmological parameters of different cosmological models, including that of Chevalier-Polarski-Linder w0w1 parametrization. First, we introduce a statistical procedure in which the chi-square estimator is not affected by the value of the Hubble constant. As a result, we find that the H (z ) data do not rule out the possibility of either nonflat models or dynamical dark energy cosmological models. However, we verify that the time varying equation-of-state parameter w (z ) is not constrained by the current expansion data. Combining the H (z ) and the Type Ia supernova data, we find that the H (z )/SNIa overall statistical analysis provides a substantial improvement of the cosmological constraints with respect to those of the H (z ) analysis. Moreover, the w0-w1 parameter space provided by the H (z )/SNIa joint analysis is in very good agreement with that of Planck 2015, which confirms that the present analysis with the H (z ) and supernova type Ia (SNIa) probes correctly reveals the expansion of the Universe as found by the team of Planck. Finally, we generate sets of Monte Carlo realizations in order to quantify the ability of the H (z ) data to provide strong constraints on the dark energy model parameters. The Monte Carlo approach shows significant improvement of the constraints, when increasing the sample to 100 H (z ) measurements. Such a goal can be achieved in the future, especially in the light of the next generation of surveys.

  3. Multi-scale characterization of an upcurrent turbiditic pinch-out

    NASA Astrophysics Data System (ADS)

    Daghdevirenian, L. J. P.; Migeon, S.; Rubino, J. L., Sr.; Raisson, F.

    2017-12-01

    understand its process of formation, a complete photogrammetry acquisition was performed at the scale of the whole area This new dataset together with sedimentological logs and outcrop analysis allowed to model the multiple scale pinch out of a turbidite system against its adjacent continental slope, from the beds and the outcrops to regional scale given by the photogrammetry

  4. Toroidal momentum pinch velocity due to the coriolis drift effect on small scale instabilities in a toroidal plasma.

    PubMed

    Peeters, A G; Angioni, C; Strintzi, D

    2007-06-29

    In this Letter, the influence of the "Coriolis drift" on small scale instabilities in toroidal plasmas is shown to generate a toroidal momentum pinch velocity. Such a pinch results because the Coriolis drift generates a coupling between the density and temperature perturbations on the one hand and the perturbed parallel flow velocity on the other. A simple fluid model is used to highlight the physics mechanism and gyro-kinetic calculations are performed to accurately assess the magnitude of the pinch. The derived pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torque on the plasma and is predicted to generate a peaking of the toroidal velocity profile similar to the peaking of the density profile. Finally, the pinch also affects the interpretation of current experiments.

  5. Spectroscopic and Kinetic Characterization of Peroxidase-Like π-Cation Radical Pinch-Porphyrin-Iron(III) Reaction Intermediate Models of Peroxidase Enzymes.

    PubMed

    Hernández Anzaldo, Samuel; Arroyo Abad, Uriel; León García, Armando; Ramírez Rosales, Daniel; Zamorano Ulloa, Rafael; Reyes Ortega, Yasmi

    2016-06-27

    The spectroscopic and kinetic characterization of two intermediates from the H₂O₂ oxidation of three dimethyl ester [(proto), (meso), (deuteroporphyrinato) (picdien)]Fe(III) complexes ([FePPPic], [FeMPPic] and [FeDPPic], respectively) pinch-porphyrin peroxidase enzyme models, with s = 5/2 and 3/2 Fe(III) quantum mixed spin (qms) ground states is described herein. The kinetic study by UV/Vis at λmax = 465 nm showed two different types of kinetics during the oxidation process in the guaiacol test for peroxidases (1-3 + guaiacol + H₂O₂ → oxidation guaiacol products). The first intermediate was observed during the first 24 s of the reaction. When the reaction conditions were changed to higher concentration of pinch-porphyrins and hydrogen peroxide only one type of kinetics was observed. Next, the reaction was performed only between pinch-porphyrins-Fe(III) and H₂O₂, resulting in only two types of kinetics that were developed during the first 0-4 s. After this time a self-oxidation process was observed. Our hypotheses state that the formation of the π-cation radicals, reaction intermediates of the pinch-porphyrin-Fe(III) family with the ligand picdien [N,N'-bis-pyridin-2-ylmethyl-propane-1,3-diamine], occurred with unique kinetics that are different from the overall process and was involved in the oxidation pathway. UV-Vis, ¹H-NMR and ESR spectra confirmed the formation of such intermediates. The results in this paper highlight the link between different spectroscopic techniques that positively depict the kinetic traits of artificial compounds with enzyme-like activity.

  6. Higgs decays to Z Z and Z γ in the standard model effective field theory: An NLO analysis

    NASA Astrophysics Data System (ADS)

    Dawson, S.; Giardino, P. P.

    2018-05-01

    We calculate the complete one-loop electroweak corrections to the inclusive H →Z Z and H →Z γ decays in the dimension-6 extension of the Standard Model Effective Field Theory (SMEFT). The corrections to H →Z Z are computed for on-shell Z bosons and are a precursor to the physical H →Z f f ¯ calculation. We present compact numerical formulas for our results and demonstrate that the logarithmic contributions that result from the renormalization group evolution of the SMEFT coefficients are larger than the finite next-to-leading-order contributions to the decay widths. As a byproduct of our calculation, we obtain the first complete result for the finite corrections to Gμ in the SMEFT.

  7. Theta-Pinch Thruster for Piloted Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    LaPointe, Mike R.; Reddy, Dhanireddy (Technical Monitor)

    2000-01-01

    A new high-power propulsion concept that combines a rapidly pulsed theta-pinch discharge with upstream particle reflection by a magnetic mirror was evaluated under a Phase 1 grant awarded through the NASA Institute for Advanced Concepts. Analytic and numerical models were developed to predict the performance of a theta-pinch thruster operated over a wide range of initial gas pressures and discharge periods. The models indicate that a 1 m radius, 10 m long thruster operated with hydrogen propellant could provide impulse-bits ranging from 1 N-s to 330 N-s with specific impulse values of 7,500 s to 2,500 s, respectively. A pulsed magnetic field strength of 2 T is required to compress and heat the preionized hydrogen over a 10(exp -3) second discharge period, with about 60% of the heated plasma exiting the chamber each period to produce thrust. The unoptimized thruster efficiency is low, peaking at approximately 16% for an initial hydrogen chamber pressure of 100 Torr. The specific impulse and impulse-bit at this operating condition are 3,500 s and 90 N-s, respectively, and the required discharge energy is approximately 9x10(exp 6) J. For a pulse repetition rate of 10 Hz, the engine would produce an average thrust of 900 N at 3,500 s specific impulse. Combined with the electrodeless nature of the device, these performance parameters indicate that theta-pinch thrusters could provide unique, long-life propulsion systems for piloted deep space mission applications.

  8. Optimization of a rod pinch diode radiography source at 2.3 MV

    NASA Astrophysics Data System (ADS)

    Menge, P. R.; Johnson, D. L.; Maenchen, J. E.; Rovang, D. C.; Oliver, B. V.; Rose, D. V.; Welch, D. R.

    2003-08-01

    Rod pinch diodes have shown considerable capability as high-brightness flash x-ray sources for penetrating dynamic radiography. The rod pinch diode uses a small diameter (0.4-2 mm) anode rod extended through a cathode aperture. When properly configured, the electron beam born off of the aperture edge can self-insulate and pinch onto the tip of the rod creating an intense, small x-ray source. Sandia's SABRE accelerator (2.3 MV, 40 Ω, 70 ns) has been utilized to optimize the source experimentally by maximizing the figure of merit (dose/spot diameter2) and minimizing the diode impedance droop. Many diode parameters have been examined including rod diameter, rod length, rod material, cathode aperture diameter, cathode thickness, power flow gap, vacuum quality, and severity of rod-cathode misalignment. The configuration producing the greatest figure of merit uses a 0.5 mm diameter gold rod, a 6 mm rod extension beyond the cathode aperture (diameter=8 mm), and a 10 cm power flow gap to produce up to 3.5 rad (filtered dose) at 1 m from a 0.85 mm x-ray on-axis spot (1.02 mm at 3° off axis). The resultant survey of parameter space has elucidated several physics issues that are discussed.

  9. Modulation of thermal conductivity in kinked silicon nanowires: phonon interchanging and pinching effects.

    PubMed

    Jiang, Jin-Wu; Yang, Nuo; Wang, Bing-Shen; Rabczuk, Timon

    2013-04-10

    We perform molecular dynamics simulations to investigate the reduction of the thermal conductivity by kinks in silicon nanowires. The reduction percentage can be as high as 70% at room temperature. The temperature dependence of the reduction is also calculated. By calculating phonon polarization vectors, two mechanisms are found to be responsible for the reduced thermal conductivity: (1) the interchanging effect between the longitudinal and transverse phonon modes and (2) the pinching effect, that is, a new type of localization, for the twisting and transverse phonon modes in the kinked silicon nanowires. Our work demonstrates that the phonon interchanging and pinching effects, induced by kinking, are brand-new and effective ways in modulating heat transfer in nanowires, which enables the kinked silicon nanowires to be a promising candidate for thermoelectric materials.

  10. Toroidal Momentum Pinch Velocity due to the Coriolis Drift Effect on Small Scale Instabilities in a Toroidal Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeters, A. G.; Angioni, C.; Strintzi, D.

    In this Letter, the influence of the ''Coriolis drift'' on small scale instabilities in toroidal plasmas is shown to generate a toroidal momentum pinch velocity. Such a pinch results because the Coriolis drift generates a coupling between the density and temperature perturbations on the one hand and the perturbed parallel flow velocity on the other. A simple fluid model is used to highlight the physics mechanism and gyro-kinetic calculations are performed to accurately assess the magnitude of the pinch. The derived pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torquemore » on the plasma and is predicted to generate a peaking of the toroidal velocity profile similar to the peaking of the density profile. Finally, the pinch also affects the interpretation of current experiment000.« less

  11. X-Pinch And Its Applications In X-ray Radiograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou Xiaobing; Wang Xinxin; Liu Rui

    2009-07-07

    An X-pinch device and the related diagnostics of x-ray emission from X-pinch were briefly described. The time-resolved x-ray measurements with photoconducting diodes show that the x-ray pulse usually consists of two subnanosecond peaks with a time interval of about 0.5 ns. Being consistent with these two peaks of the x-ray pulse, two point x-ray sources of size ranging from 100 mum to 5 mum and depending on cut-off x-ray photon energy were usually observed on the pinhole pictures. The x-pinch was used as x-ray source for backlighting of the electrical explosion of single wire and the evolution of X-pinch, andmore » for phase-contrast imaging of soft biological objects such as a small shrimp and a mosquito.« less

  12. α-Actinin/titin interaction: A dynamic and mechanically stable cluster of bonds in the muscle Z-disk

    PubMed Central

    Grison, Marco; Merkel, Ulrich; Kostan, Julius; Djinović-Carugo, Kristina; Rief, Matthias

    2017-01-01

    Stable anchoring of titin within the muscle Z-disk is essential for preserving muscle integrity during passive stretching. One of the main candidates for anchoring titin in the Z-disk is the actin cross-linker α-actinin. The calmodulin-like domain of α-actinin binds to the Z-repeats of titin. However, the mechanical and kinetic properties of this important interaction are still unknown. Here, we use a dual-beam optical tweezers assay to study the mechanics of this interaction at the single-molecule level. A single interaction of α-actinin and titin turns out to be surprisingly weak if force is applied. Depending on the direction of force application, the unbinding forces can more than triple. Our results suggest a model where multiple α-actinin/Z-repeat interactions cooperate to ensure long-term stable titin anchoring while allowing the individual components to exchange dynamically. PMID:28096424

  13. α-Actinin/titin interaction: A dynamic and mechanically stable cluster of bonds in the muscle Z-disk.

    PubMed

    Grison, Marco; Merkel, Ulrich; Kostan, Julius; Djinović-Carugo, Kristina; Rief, Matthias

    2017-01-31

    Stable anchoring of titin within the muscle Z-disk is essential for preserving muscle integrity during passive stretching. One of the main candidates for anchoring titin in the Z-disk is the actin cross-linker α-actinin. The calmodulin-like domain of α-actinin binds to the Z-repeats of titin. However, the mechanical and kinetic properties of this important interaction are still unknown. Here, we use a dual-beam optical tweezers assay to study the mechanics of this interaction at the single-molecule level. A single interaction of α-actinin and titin turns out to be surprisingly weak if force is applied. Depending on the direction of force application, the unbinding forces can more than triple. Our results suggest a model where multiple α-actinin/Z-repeat interactions cooperate to ensure long-term stable titin anchoring while allowing the individual components to exchange dynamically.

  14. Development and simulation study of a new inverse-pinch high Coulomb transfer switch

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.

    1989-01-01

    The inverse-pinch plasma switch was studied using a computer simulation code. The code was based on a 2-D, 2-temperature magnetohydrodynamic (MHD) model. The application of this code was limited to the disk-type inverse-pinch plasma switch. The results of the computer analysis appear to be in agreement with the experimental results when the same parameters are used. An inverse-pinch plasma switch for closing has been designed and tested for high-power switching requirements. An azimuthally uniform initiation of breakdown is a key factor in achieving an inverse-pinch current path in the switch. Thus, various types of triggers, such as trigger pins, wire-brush, ring trigger, and hypocycloidal-pinch (HCP) devices have been tested for uniform breakdown. Recently, triggering was achieved by injection of a plasma-ring (plasma puff) that is produced separately with hypocycloidal-pinch electrodes placed under the cathode of the main gap. The current paths at switch closing, initiated by the injection of a plasma-ring from the HCP trigger are azimuthally uniform, and the local current density is significantly reduced, so that damage to the electrodes and the insulator surfaces is minimized. The test results indicate that electron bombardment on the electrodes and the insulator surfaces is minimized. The test results indicate that electron bombardment on the electrodes is four orders of magnitude less than that of a spark-gap switch for the same switching power. Indeed, a few thousand shots with peak current exceeding a mega-ampere and with hold-off voltage up to 20 kV have been conducted without showing measurable damage to the electrodes and insulators.

  15. Bayesian model calibration of ramp compression experiments on Z

    NASA Astrophysics Data System (ADS)

    Brown, Justin; Hund, Lauren

    2017-06-01

    Bayesian model calibration (BMC) is a statistical framework to estimate inputs for a computational model in the presence of multiple uncertainties, making it well suited to dynamic experiments which must be coupled with numerical simulations to interpret the results. Often, dynamic experiments are diagnosed using velocimetry and this output can be modeled using a hydrocode. Several calibration issues unique to this type of scenario including the functional nature of the output, uncertainty of nuisance parameters within the simulation, and model discrepancy identifiability are addressed, and a novel BMC process is proposed. As a proof of concept, we examine experiments conducted on Sandia National Laboratories' Z-machine which ramp compressed tantalum to peak stresses of 250 GPa. The proposed BMC framework is used to calibrate the cold curve of Ta (with uncertainty), and we conclude that the procedure results in simple, fast, and valid inferences. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Effect of transcranial magnetic stimulation on force of finger pinch

    NASA Astrophysics Data System (ADS)

    Odagaki, Masato; Fukuda, Hiroshi; Hiwaki, Osamu

    2009-04-01

    Transcranial magnetic stimulation (TMS) is used to explore many aspects of brain function, and to treat neurological disorders. Cortical motor neuronal activation by TMS over the primary motor cortex (M1) produces efferent signals that pass through the corticospinal tracts. Motor-evoked potentials (MEPs) are observed in muscles innervated by the stimulated motor cortex. TMS can cause a silent period (SP) following MEP in voluntary electromyography (EMG). The present study examined the effects of TMS eliciting MEP and SP on the force of pinching using two fingers. Subjects pinched a wooden block with the thumb and index finger. TMS was applied to M1 during the pinch task. EMG of first dorsal interosseous muscles and pinch forces were measured. Force output increased after the TMS, and then oscillated. The results indicated that the motor control system to keep isotonic forces of the muscles participated in the finger pinch was disrupted by the TMS.

  17. Beam heated linear theta-pinch device for producing hot plasmas

    DOEpatents

    Bohachevsky, Ihor O.

    1981-01-01

    A device for producing hot plasmas comprising a single turn theta-pinch coil, a fast discharge capacitor bank connected to the coil, a fuel element disposed along the center axis of the coil, a predetermined gas disposed within the theta-pinch coil, and a high power photon, electron or ion beam generator concentrically aligned to the theta-pinch coil. Discharge of the capacitor bank generates a cylindrical plasma sheath within the theta-pinch coil which heats the outer layer of the fuel element to form a fuel element plasma layer. The beam deposits energy in either the cylindrical plasma sheath or the fuel element plasma layer to assist the implosion of the fuel element to produce a hot plasma.

  18. Status On Multi-microsecond Prepulse Technique On Sphinx Machine Going From Nested To Single Wire Array For 800 ns Implosion Time Z-pinch

    NASA Astrophysics Data System (ADS)

    Maury, P.; Calamy, H.; Grunenwald, J.; Lassalle, F.; Zucchini, F.; Loyen, A.; Georges, A.; Morell, A.; Bedoch, J. P.

    2009-01-01

    The Sphinx machine[1] is a 6 MA, 1 μS driver based on the LTD technology, used for Z-pinch experiments. Important improvements of Sphinx radiation output were recently obtained using a multi-microsecond current prepulse[2]. Total power per unit of length is multiplied by a factor of 6 and FWHM divided by a factor of 2.5. Early breakdown of the wires during the prepulse phase dramatically changes the ablation phase leading to an improvement of axial homogeneity of both the implosion and the final radiating column. As a consequence, the cathode bubble observed on classical shots is definitively removed. The implosion is then centered and zippering effect is reduced, leading to simultaneous x-ray emission of the whole length. A great reproducibility is obtained. Nested arrays were used before to mitigate the Rayleigh-Taylor instabilities during the implosion phase. Further experiments with pre-pulse technique are described here were inner array was removed. The goal of these experiments was to see if long prepulse could give stable enough implosion with single array and at the same time increase the η parameter by reducing the mass of the load. Experimental results of single wire array loads of typical dimension 5 cm in height with implosion time between 700 and 900 ns and diameter varying between 80 and 140 mm are given. Parameters of the loads were varying in term of radius and number of wires. Comparisons with nested wire array loads are done and trends are proposed. Characteristics of both the implosion and the final radiating column are shown. 2D MHD numerical simulations of single wire array become easier as there is no interaction between outer and inner array anymore. A systematic study was done using injection mass model to benchmark simulation with experiments.

  19. First-order finite-Larmor-radius fluid modeling of tearing and relaxation in a plasma pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J. R.; Tech-X Corporation, 5621 Arapahoe Ave., Suite A Boulder, Colorado 80303; Sovinec, C. R.

    Drift and Hall effects on magnetic tearing, island evolution, and relaxation in pinch configurations are investigated using a non-reduced first-order finite-Larmor-radius (FLR) fluid model with the nonideal magnetohydrodynamics (MHD) with rotation, open discussion (NIMROD) code [C.R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)]. An unexpected result with a uniform pressure profile is a drift effect that reduces the growth rate when the ion sound gyroradius ({rho}{sub s}) is smaller than the tearing-layer width. This drift is present only with warm-ion FLR modeling, and analytics show that it arises from {nabla}B and poloidal curvature represented in themore » Braginskii gyroviscous stress. Nonlinear single-helicity computations with experimentally relevant {rho}{sub s} values show that the warm-ion gyroviscous effects reduce saturated-island widths. Computations with multiple nonlinearly interacting tearing fluctuations find that m = 1 core-resonant-fluctuation amplitudes are reduced by a factor of two relative to single-fluid modeling by the warm-ion effects. These reduced core-resonant-fluctuation amplitudes compare favorably to edge coil measurements in the Madison Symmetric Torus (MST) reversed-field pinch [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)]. The computations demonstrate that fluctuations induce both MHD- and Hall-dynamo emfs during relaxation events. The presence of a Hall-dynamo emf implies a fluctuation-induced Maxwell stress, and the simulation results show net transport of parallel momentum. The computed magnitude of force densities from the Maxwell and competing Reynolds stresses, and changes in the parallel flow profile, are qualitatively and semi-quantitatively similar to measurements during relaxation in MST.« less

  20. Chaos and simple determinism in reversed field pinch plasmas: Nonlinear analysis of numerical simulation and experimental data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, Christopher A.

    In this dissertation the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas is investigated. To properly assess this possibility, data from both numerical simulations and experiment are analyzed. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos in the data. These tools include phase portraits and Poincare sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulatemore » the plasma dynamics. These are the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low dimensional chaos and simple determinism. Experimental date were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or low simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.« less

  1. Depletion zones and crystallography on pinched spheres

    NASA Astrophysics Data System (ADS)

    Chen, Jingyuan; Xing, Xiangjun; Yao, Zhenwei

    2018-03-01

    Understanding the interplay between ordered structures and substrate curvature is an interesting problem with versatile applications, including functionalization of charged supramolecular surfaces and modern microfluidic technologies. In this work, we investigate the two-dimensional packing structures of charged particles confined on a pinched sphere. By continuously pinching the sphere, we observe cleavage of elongated scars into pleats, proliferation of disclinations, and subsequently, emergence of a depletion zone at the negatively curved waist that is completely void of particles. We systematically study the geometrics and energetics of the depletion zone, and reveal its physical origin as a finite size effect, due to the interplay between Coulomb repulsion and concave geometry of the pinched sphere. These results further our understanding of crystallography on curved surfaces, and have implications in design and manipulation of charged, deformable interfaces in various applications.

  2. A Langevin model for fluctuating contact angle behaviour parametrised using molecular dynamics.

    PubMed

    Smith, E R; Müller, E A; Craster, R V; Matar, O K

    2016-12-06

    Molecular dynamics simulations are employed to develop a theoretical model to predict the fluid-solid contact angle as a function of wall-sliding speed incorporating thermal fluctuations. A liquid bridge between counter-sliding walls is studied, with liquid-vapour interface-tracking, to explore the impact of wall-sliding speed on contact angle. The behaviour of the macroscopic contact angle varies linearly over a range of capillary numbers beyond which the liquid bridge pinches off, a behaviour supported by experimental results. Nonetheless, the liquid bridge provides an ideal test case to study molecular scale thermal fluctuations, which are shown to be well described by Gaussian distributions. A Langevin model for contact angle is parametrised to incorporate the mean, fluctuation and auto-correlations over a range of sliding speeds and temperatures. The resulting equations can be used as a proxy for the fully-detailed molecular dynamics simulation allowing them to be integrated within a continuum-scale solver.

  3. Failure analysis of pinch-torsion tests as a thermal runaway risk evaluation method of Li-ion cells

    NASA Astrophysics Data System (ADS)

    Xia, Yuzhi; Li, Tianlei; Ren, Fei; Gao, Yanfei; Wang, Hsin

    2014-11-01

    Recently a pinch-torsion test is developed for safety testing of Li-ion batteries. It has been demonstrated that this test can generate small internal short-circuit spots in the separator in a controllable and repeatable manner. In the current research, the failure mechanism is examined by numerical simulations and comparisons to experimental observations. Finite element models are developed to evaluate the deformation of the separators under both pure pinch and pinch-torsion loading conditions. It is discovered that the addition of the torsion component significantly increased the maximum first principal strain, which is believed to induce the internal short circuit. In addition, the applied load in the pinch-torsion test is significantly less than in the pure pinch test, thus dramatically improving the applicability of this method to ultra-thick batteries which otherwise require heavy load in excess of machine capability. It is further found that the separator failure is achieved in the early stage of torsion (within a few degree of rotation). Effect of coefficient of friction on the maximum first principal strain is also examined.

  4. Method for plasma formation for extreme ultraviolet lithography-theta pinch

    DOEpatents

    Hassanein, Ahmed [Naperville, IL; Konkashbaev, Isak [Bolingbrook, IL; Rice, Bryan [Hillsboro, OR

    2007-02-20

    A device and method for generating extremely short-wave ultraviolet electromagnetic wave, utilizing a theta pinch plasma generator to produce electromagnetic radiation in the range of 10 to 20 nm. The device comprises an axially aligned open-ended pinch chamber defining a plasma zone adapted to contain a plasma generating gas within the plasma zone; a means for generating a magnetic field radially outward of the open-ended pinch chamber to produce a discharge plasma from the plasma generating gas, thereby producing a electromagnetic wave in the extreme ultraviolet range; a collecting means in optical communication with the pinch chamber to collect the electromagnetic radiation; and focusing means in optical communication with the collecting means to concentrate the electromagnetic radiation.

  5. The dynamics of z ~ 1 clusters of galaxies from the GCLASS survey

    NASA Astrophysics Data System (ADS)

    Biviano, A.; van der Burg, R. F. J.; Muzzin, A.; Sartoris, B.; Wilson, G.; Yee, H. K. C.

    2016-10-01

    Context. The dynamics of clusters of galaxies and its evolution provide information on their formation and growth, on the nature of dark matter and on the evolution of the baryonic components. Poor observational constraints exist so far on the dynamics of clusters at redshift z > 0.8. Aims: We aim to constrain the internal dynamics of clusters of galaxies at redshift z ~ 1, namely their mass profile M(r), velocity anisotropy profile β(r), and pseudo-phase-space density profiles Q(r) and Qr(r), obtained from the ratio between the mass density profile and the third power of the (total and, respectively, radial) velocity dispersion profiles of cluster galaxies. Methods: We used the spectroscopic and photometric data-set of 10 clusters at 0.87 < z < 1.34 from the Gemini Cluster Astrophysics Spectroscopic Survey (GCLASS). We determined the individual cluster masses from their velocity dispersions, then stack the clusters in projected phase-space. We investigated the internal dynamics of this stack cluster, using the spatial and velocity distribution of its member galaxies. We determined the stack cluster M(r) using the MAMPOSSt method, and its β(r) by direct inversion of the Jeans equation. The procedures used to determine the two aforementioned profiles also allowed us to determine Q(r) and Qr(r). Results: Several M(r) models are statistically acceptable for the stack cluster (Burkert, Einasto, Hernquist, NFW). The stack cluster total mass concentration, c ≡ r200/r-2 = 4.0-0.6+1.0, is in agreement with theoretical expectations. The total mass distribution is less concentrated than both the cluster stellar-mass and the cluster galaxies distributions. The stack cluster β(r) indicates that galaxy orbits are isotropic near the cluster center and become increasingly radially elongated with increasing cluster-centric distance. Passive and star-forming galaxies have similar β(r). The observed β(r) is similar to that of dark matter particles in simulated cosmological

  6. Schlieren Cinematography of Current Driven Plasma Jet Dynamics

    NASA Astrophysics Data System (ADS)

    Loebner, Keith; Underwood, Thomas; Cappelli, Mark

    2016-10-01

    Schlieren cinematography of a pulsed plasma deflagration jet is presented and analyzed. An ultra-high frame rate CMOS camera coupled to a Z-type laser Schlieren apparatus is used to obtain flow-field refractometry data for the continuous flow Z-pinch formed within the plasma deflagration jet. The 10 MHz frame rate for 256 consecutive frames provides high temporal resolution, enabling turbulent fluctuations and plasma instabilities to be visualized over the course of a single pulse (20 μs). The Schlieren signal is radiometrically calibrated to obtain a two dimensional mapping of the refraction angle of the axisymmetric pinch plasma, and this mapping is then Abel inverted to derive the plasma density distribution as a function radius, axial coordinate, and time. Analyses of previously unknown discharge characteristics and comparisons with prior work are discussed.

  7. Effects of neutrino mass hierarchies on dynamical dark energy models

    NASA Astrophysics Data System (ADS)

    Yang, Weiqiang; Nunes, Rafael C.; Pan, Supriya; Mota, David F.

    2017-05-01

    We investigate how three different possibilities of neutrino mass hierarchies, namely normal, inverted, and degenerate, can affect the observational constraints on three well-known dynamical dark energy models, namely the Chevallier-Polarski-Linder, logarithmic, and the Jassal-Bagla-Padmanabhan parametrizations. In order to impose the observational constraints on the models, we performed a robust analysis using Planck 2015 temperature and polarization data, supernovae type Ia from the joint light curve analysis, baryon acoustic oscillation distance measurements, redshift space distortion characterized by f (z )σ8(z ) data, weak gravitational lensing data from the Canada-France-Hawaii Telescope Lensing Survey, and cosmic chronometer data plus the local value of the Hubble parameter. We find that different neutrino mass hierarchies return similar fits on almost all model parameters and mildly change the dynamical dark energy properties.

  8. Ion energy balance in enhanced-confinement reversed-field pinch plasmas

    NASA Astrophysics Data System (ADS)

    Xing, Z. A.; Nornberg, M. D.; Boguski, J.; Craig, D.; den Hartog, D. J.; McCollam, K.

    2017-10-01

    Testing the applicability of collisional ion transport theory using tearing suppressed RFP plasma in MST achieved through Pulsed Poloidal Current Drive (PPCD), we find that the ion temperature dynamics in the core to be well-predicted by classical and collisional terms. Prior work demonstrated that impurity ion particle transport in PPCD plasmas is classical. Neoclassical effects on ions in the RFP are small and the stochastic transport is greatly suppressed during PPCD. Recent neutral modelling with DEGAS2 suggests higher core neutral temperatures than expected due to the preferential penetration of higher temperature neutrals generated by charge exchange. Further, investigations through equilibrium reconstruction point to the existence of an inward pinch flow associated with ExB drift. The heat balance model pulls together a wide range of diagnostic data to forward model Ti evolution in PPCD, which is then compared to charge exchange spectroscopy measurements of Ti. Ion power balance is mostly driven by classical effects including compressional heating, electron collisional heating, and charge exchange transport. This understanding provides a good baseline for investigations of anomalous heating in plasmas with tearing mode activity. This work is supported by US DOE.

  9. Pinch technique and the Batalin-Vilkovisky formalism

    NASA Astrophysics Data System (ADS)

    Binosi, Daniele; Papavassiliou, Joannis

    2002-07-01

    In this paper we take the first step towards a nondiagrammatic formulation of the pinch technique. In particular we proceed into a systematic identification of the parts of the one-loop and two-loop Feynman diagrams that are exchanged during the pinching process in terms of unphysical ghost Green's functions; the latter appear in the standard Slavnov-Taylor identity satisfied by the tree-level and one-loop three-gluon vertex. This identification allows for the consistent generalization of the intrinsic pinch technique to two loops, through the collective treatment of entire sets of diagrams, instead of the laborious algebraic manipulation of individual graphs, and sets up the stage for the generalization of the method to all orders. We show that the task of comparing the effective Green's functions obtained by the pinch technique with those computed in the background field method Feynman gauge is significantly facilitated when employing the powerful quantization framework of Batalin and Vilkovisky. This formalism allows for the derivation of a set of useful nonlinear identities, which express the background field method Green's functions in terms of the conventional (quantum) ones and auxiliary Green's functions involving the background source and the gluonic antifield; these latter Green's functions are subsequently related by means of a Schwinger-Dyson type of equation to the ghost Green's functions appearing in the aforementioned Slavnov-Taylor identity.

  10. Wilsonian dark matter in string derived Z' model

    NASA Astrophysics Data System (ADS)

    Delle Rose, L.; Faraggi, A. E.; Marzo, C.; Rizos, J.

    2017-09-01

    The dark matter issue is among the most perplexing in contemporary physics. The problem is more enigmatic due to the wide range of possible solutions, ranging from the ultralight to the supermassive. String theory gives rise to plausible dark matter candidates due to the breaking of the non-Abelian grand unified theory (GUT) symmetries by Wilson lines. The physical spectrum then contains states that do not satisfy the quantization conditions of the unbroken GUT symmetry. Given that the Standard Model states are identified with broken GUT representations, and provided that any ensuing symmetry breakings are induced by components of GUT states, a remnant discrete symmetry remains that forbids the decay of the Wilsonian states. A class of such states are obtained in a heterotic-string-derived Z' model. The model exploits the spinor-vector duality symmetry, observed in the fermionic ZZ2 heterotic-string orbifolds, to generate a Z'∈E6 symmetry that may remain unbroken down to low energies. The E6 symmetry is broken at the string level with discrete Wilson lines. The Wilsonian dark matter candidates in the string-derived model are S O (10 ), and hence Standard Model, singlets and possess non-E6 U(1)Z' charges. Depending on the U(1)Z' breaking scale and the reheating temperature they give rise to different scenarios for the relic abundance, and are in accordance with the cosmological constraints.

  11. Interaction of infectious spleen and kidney necrosis virus ORF119L with PINCH leads to dominant-negative inhibition of integrin-linked kinase and cardiovascular defects in zebrafish.

    PubMed

    Yuan, Ji-Min; He, Bai-Liang; Yang, Lu-Yun; Guo, Chang-Jun; Weng, Shao-Ping; Li, Shengwen Calvin; He, Jian-Guo

    2015-01-01

    Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the Megalocytivirus genus, Iridoviridae family, causing a severe systemic disease with high mortality in mandarin fish (Siniperca chuatsi) in China and Southeast Asia. At present, the pathogenesis of ISKNV infection is still not fully understood. Based on a genome-wide bioinformatics analysis of ISKNV-encoded proteins, we found that ISKNV open reading frame 119L (ORF119L) is predicted to encode a three-ankyrin-repeat (3ANK)-domain-containing protein, which shows high similarity to the dominant negative form of integrin-linked kinase (ILK); i.e., viral ORF119L lacks the ILK kinase domain. Thus, we speculated that viral ORF119L might affect the host ILK complex. Here, we demonstrated that viral ORF119L directly interacts with particularly interesting Cys-His-rich protein (PINCH) and affects the host ILK-PINCH interaction in vitro in fathead minnow (FHM) cells. In vivo ORF119L overexpression in zebrafish (Danio rerio) embryos resulted in myocardial dysfunctions with disintegration of the sarcomeric Z disk. Importantly, ORF119L overexpression in zebrafish highly resembles the phenotype of endogenous ILK inhibition, either by overexpressing a dominant negative form of ILK or by injecting an ILK antisense morpholino oligonucleotide. Intriguingly, ISKNV-infected mandarin fish develop disorganized sarcomeric Z disks in cardiomyocytes. Furthermore, phosphorylation of AKT, a downstream effector of ILK, was remarkably decreased in ORF119L-overexpressing zebrafish embryos. With these results, we show that ISKNV ORF119L acts as a domain-negative inhibitor of the host ILK, providing a novel mechanism for the megalocytivirus pathogenesis. Our work is the first to show the role of a dominant negative inhibitor of the host ILK from ISKNV (an iridovirus). Mechanistically, the viral ORF119L directly binds to the host PINCH, attenuates the host PINCH-ILK interaction, and thus impairs ILK signaling. Intriguingly

  12. Age-Related and Sex-Related Differences in Hand and Pinch Grip Strength in Adults

    ERIC Educational Resources Information Center

    Puh, Urska

    2010-01-01

    The purpose of the study was to quantify age-related changes in hand grip strength and three types of pinch grip strength (key pinch, tip pinch, and palmar pinch) among male and female participants. The study included 199 healthy participants (100 females, 99 males) aged 20-79 years, who were divided into four age groups. The Baseline Hydraulic…

  13. Transition between B-DNA and Z-DNA: free energy landscape for the B-Z junction propagation.

    PubMed

    Lee, Juyong; Kim, Yang-Gyun; Kim, Kyeong Kyu; Seok, Chaok

    2010-08-05

    Canonical, right-handed B-DNA can be transformed into noncanonical, left-handed Z-DNA in vitro at high salt concentrations or in vivo under physiological conditions. The molecular mechanism of this drastic conformational transition is still unknown despite numerous studies. Inspired by the crystal structure of a B-Z junction and the previous zipper model, we show here, with the aid of molecular dynamics simulations, that a stepwise propagation of a B-Z junction is a highly probable pathway for the B-Z transition. In this paper, the movement of a B-Z junction by a two-base-pair step in a double-strand nonamer, [d(GpCpGpCpGpCpGpCpG)](2), is considered. Targeted molecular dynamics simulations and umbrella sampling for this transition resulted in a transition pathway with a free energy barrier of 13 kcal/mol. This barrier is much more favorable than those obtained from previous atomistic simulations that lead to concerted transitions of the whole strands. The free energy difference between B-DNA and Z-DNA evaluated from our simulation is 0.9 kcal/mol per dinucleotide unit, which is consistent with previous experiments. The current computation thus strongly supports the proposal that the B-Z transition involves a relatively fast extension of B-DNA or Z-DNA by sequential propagation of B-Z junctions once nucleation of junctions is established.

  14. Hybrid X-pinch Experiments on a MA Linear Transformer Driver

    NASA Astrophysics Data System (ADS)

    Patel, S. G.; Yager-Elorriaga, D. A.; Steiner, A. M.; Gilgenbach, R. M.; Jordan, N. M.; Chalenski, D. A.; Lau, Y. Y.

    2013-10-01

    X-pinch experiments have been conducted on the Linear Transformer Driver (LTD) at the University of Michigan. The x-pinch consists of a single wire separated by conical electrodes between two current return plates. The LTD was charged to +/-70 kV resulting in approximately 0.5 MA passing through a 35 μm Al wire. Multiple, short x-ray bursts were detected over the 400 ns current pulse. Ultimately the x-pinch will be located in parallel with a planar foil in order to backlight the Magneto-Rayleigh-Taylor instability. A smaller 100 kA driver is also in development and may be used to independently energize the x-pinch. The x-pinch chamber has been constructed and the results of these experiments will be presented. This work was supported by DoE award number DE-SC0002590, NSF grant number PHY 0903340, and US DoE through Sandia National Labs award numbers 240985 and 76822 to the U of Michigan. S.G Patel and A.M Steiner are supported by NPSC funded by Sandia National Labs. D.A. Yager-Elorriaga is supported by an NSF fellowship under grant number DGE 1256260.

  15. Comparative study of INPIStron and spark gap

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Lee, Ja H.

    1993-01-01

    An inverse pinch plasma switch, INPIStron, was studied in comparison to a conventional spark gap. The INPIStron is under development for high power switching applications. The INPIStron has an inverse pinch dynamics, opposed to Z-pinch dynamics in the spark gap. The electrical, plasma dynamics and radiative properties of the closing plasmas have been studied. Recently the high-voltage pulse transfer capabilities or both the INPIStron and the spark gap were also compared. The INPIStron with a low impedance Z = 9 ohms transfers 87 percent of an input pulse with a halfwidth of 2 mu s. For the same input pulse the spark gap of Z = 100 ohms transfers 68 percent. Fast framing and streak photography, taken with an TRW image converter camera, was used to observe the discharge uniformity and closing plasma speed in both switches. In order to assess the effects of closing plasmas on erosion of electrode material, emission spectra of two switches were studied with a spectrometer-optical multi channel analyzer (OMA) system. The typical emission spectra of the closing plasmas in the INPIStron and the spark gap showed that there were comparatively weak carbon line emission in 658.7 nm and copper (electrode material) line emissions in the INPIStron, indicating low erosion of materials in the INPIStron.

  16. Failure analysis of pinch-torsion tests as a thermal runaway risk evaluation method of Li-Ion Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Yuzhi; Li, Dr. Tianlei; Ren, Prof. Fei

    2014-01-01

    Recently a pinch-torsion test is developed for safety testing of Li-ion batteries (Ren et al., J. Power Source, 2013). It has been demonstrated that this test can generate small internal short-circuit spots in the separator in a controllable and repeatable manner. In the current research, the failure mechanism is examined by numerical simulations and comparisons to experimental observations. Finite element models are developed to evaluate the deformation of the separators under both pure pinch and pinch-torsion loading conditions. It is discovered that the addition of the torsion component significantly increased the maximum principal strain, which is believed to induce themore » internal short circuit. In addition, the applied load in the pinch-torsion test is significantly less than in the pure pinch test, thus dramatically improving the applicability of this method to ultra-thick batteries which otherwise require heavy load in excess of machine capability. It is further found that the separator failure is achieved in the early stage of torsion (within a few degree of rotation). Effect of coefficient of friction on the maximum principal strain is also examined.« less

  17. Relaxation models for single helical reversed field pinch plasmas

    NASA Astrophysics Data System (ADS)

    Paccagnella, Roberto

    2016-09-01

    In this paper, a relaxation theory for plasmas where a single dominant mode is present [Bhattacharjee et al., Phys. Rev. Lett. 45, 347 (1980)], is revisited. The solutions of a related eigenvalue problem are numerically calculated and discussed. Although these solutions can reproduce well, the magnetic fields measured in experiments, there is no way within the theory to determine the dominant mode, whose pitch is a free parameter in the model. To find the preferred helical perturbation, a procedure is proposed that minimizes the "distance" of the relaxed state from a state which is constructed as a two region generalization of the Taylor's relaxation model [Taylor, Phys. Rev. Lett. 33, 1139 (1974); Rev. Mod. Phys. 58, 751 (1986)] and that allows current discontinuities. It is found that this comparison is able to predict the observed scaling with the aspect ratio and reversal parameter for the dominant mode in the Single Helical states. The aspect ratio scaling alone is discussed in a previous paper [Paccagnella, Nucl. Fusion 56, 046010 (2016)] in terms of the efficient response of a toroidal shell to specific modes (leaving a sign undetermined), showing that the ideal wall boundary condition, a key ingredient in relaxation theories, is particularly well matched for them. Therefore, the present paper altogether [Paccagnella, Nucl. Fusion 56, 046010 (2016)] can give a new and satisfactory explanation of some robust and reproducible experimental facts observed in the Single Helical Reversed Field Pinch plasmas and never explained before.

  18. Quasi-linear gyrokinetic predictions of the Coriolis momentum pinch in NSTX

    DOE Data Explorer

    Guttenfelder, W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kaye, S. M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ren, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Solomon, W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bell, R. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Candy, J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); LeBlanc, B. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Yuh, H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-04-01

    This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio NSTX H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostatic ballooning modes are also unstable, which are effective at transporting energy, particles and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes in a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. As the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.

  19. Bubble pinch-off and scaling during liquid drop impact on liquid pool

    NASA Astrophysics Data System (ADS)

    Ray, Bahni; Biswas, Gautam; Sharma, Ashutosh

    2012-08-01

    Simulations are performed to show entrapment of air bubble accompanied by high speed upward and downward water jets when a water drop impacts a pool of water surface. A new bubble entrapment zone characterised by small bubble pinch-off and long thick jet is found. Depending on the bubble and jet behaviour, the bubble entrapment zone is subdivided into three sub-regimes. The entrapped bubble size and jet height depends on the crater shape and its maximum depth. During the bubble formation, bubble neck develops an almost singular shape as it pinches off. The final pinch-off shape and the power law governing the pinching, rneck ∝ A(t0 - t)αvaries with the Weber number. Weber dependence of the function describing the radius of the bubble during the pinch-off only affects the coefficient A and not the power exponent α.

  20. Anomalous pinch of turbulent plasmas driven by the magnetic-drift-induced Lorentz force through the Stokes-Einstein relation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shaojie, E-mail: wangsj@ustc.edu.cn

    It is found that the Lorentz force generated by the magnetic drift drives a generic plasma pinch flux of particle, energy and momentum through the Stokes-Einstein relation. The proposed theoretical model applies for both electrons and ions, trapped particles, and passing particles. An anomalous parallel current pinch due to the electrostatic turbulence with long parallel wave-length is predicted.

  1. Acute and repeated activation of male sexual behavior by tail pinch: opioid and dopaminergic mechanisms.

    PubMed

    Leyton, M; Stewart, J

    1996-07-01

    We studied the effect of tail pinch on male sexual behavior and its neurochemical basis. Male rats were gonadectomized and maintained on low doses of testosterone propionate (20.0 micrograms/day). Tail pinch significantly increased the percentage of males that mounted, intromitted, and ejaculated within a 30-min test, and these increases were attenuated by both pimozide (1.0 mg/kg, i.p.) and by naloxone (0.5, 1.0, and 2.0 mg/kg, s.c.). Moreover, tail pinch in the presence of an estrous female led to significantly increased female-directed behavior 48 h later during a test without tail pinch. Repeated tail pinch tests led to progressively more sexual activity, and the development of this behavioral sensitization was prevented by naloxone. These findings suggest that tail pinch increases the salience of the incentive characteristics of the female. Furthermore, during subsequent tests, with or without tail pinch, the increased salience of the female remains, as measured by the continued increases in sexual activity. These acute and sensitized behavioral increases might result from tail pinch-induced activation of the midbrain dopamine system via an opioid mechanism; either preventing tail pinch-induced dopamine activation (by an opioid antagonist) or blocking the effects of dopamine activation (by a dopamine antagonist) attenuated the long-term facilitation of sexual behavior seen after pairing the female with tail pinch.

  2. A Bactericidal Guanidinomethyl Biaryl That Alters the Dynamics of Bacterial FtsZ Polymerization

    PubMed Central

    Kaul, Malvika; Parhi, Ajit K.; Zhang, Yongzheng; LaVoie, Edmond J.; Tuske, Steve; Arnold, Eddy; Kerrigan, John E.; Pilch, Daniel S.

    2014-01-01

    The prevalence of multidrug resistance among clinically significant bacterial pathogens underscores a critical need for the development of new classes of antibiotics with novel mechanisms of action. Here we describe the synthesis and evaluation of a guanidinomethyl biaryl compound {1-((4′-(tert-butyl)-[1,1′-biphenyl]-3-yl)methyl)guanidine} that targets the bacterial cell division protein FtsZ. In vitro studies with various bacterial FtsZ proteins reveal that the compound alters the dynamics of FtsZ self-polymerization via a stimulatory mechanism, while minimally impacting the polymerization of tubulin, the closest mammalian homologue of FtsZ. The FtsZ binding site of the compound is identified through a combination of computational and mutational approaches. The compound exhibits a broad spectrum of bactericidal activity, including activity against the multidrug-resistant pathogens methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE), while also exhibiting a minimal potential to induce resistance. Taken together, our results highlight the compound as a promising new FtsZ-targeting bactericidal agent. PMID:23050700

  3. Dynamical Characterization of Galaxies at z ˜ 4-6 via Tilted Ring Fitting to ALMA [C II] Observations

    NASA Astrophysics Data System (ADS)

    Jones, G. C.; Carilli, C. L.; Shao, Y.; Wang, R.; Capak, P. L.; Pavesi, R.; Riechers, D. A.; Karim, A.; Neeleman, M.; Walter, F.

    2017-12-01

    Until recently, determining the rotational properties of galaxies in the early universe (z> 4, universe age < 1.5 Gyr) was impractical, with the exception of a few strongly lensed systems. Combining the high resolution and sensitivity of ALMA at (sub-)millimeter wavelengths with the typically high strength of the [C II] 158 μm emission line from galaxies and long-developed dynamical modeling tools raises the possibility of characterizing the gas dynamics in both extreme starburst galaxies and normal star-forming disk galaxies at z˜ 4{--}7. Using a procedure centered around GIPSY’s ROTCUR task, we have fit tilted ring models to some of the best available ALMA [C II] data of a small set of galaxies: the MS galaxies HZ9 and HZ10, the damped Lyα absorber host galaxy ALMA J0817+1351, the submm galaxies AzTEC/C159 and COSMOS J1000+0234, and the quasar host galaxy ULAS J1319+0950. This procedure directly derives rotation curves and dynamical masses as functions of radius for each object. In one case, we present evidence for a dark matter halo of { O }({10}11) {M}⊙ . We present an analysis of the possible velocity dispersions of two sources based on matching simulated observations to the integrated [C II] line profiles. Finally, we test the effects of observation resolution and sensitivity on our results. While the conclusions remain limited at the resolution and signal-to-noise ratios of these observations, the results demonstrate the viability of the modeling tools at high redshift, and the exciting potential for detailed dynamical analysis of the earliest galaxies, as ALMA achieves full observational capabilities.

  4. Radiation characteristics of Al wire arrays on Z*

    NASA Astrophysics Data System (ADS)

    Coverdale, C. A.; Ampleford, D. J.; Jones, B.; Cuneo, M. E.; Hansen, S.; Jennings, C. A.; Moore, N.; Jones, S. C.; Deeney, C.

    2011-10-01

    Analysis of mixed material nested wire array experiments at Z have shown that the inner wire array dominates the hottest regions of the stagnated z pinch. In those experiments, substantial free-bound continuum radiation was observed when Al was fielded on the inner wire array. Experiments with Al (5% Mg) on both wire arrays have also been fielded, with variations in the free-bound continuum observed. These variations appear to be tied to the initial mass and diameter of the wire array. The results presented here will investigate the trends in the measured emission (Al and Mg K-shell and free-bound continuum) and will compare the measured output to more recent Al wire array experimental results on the refurbished Z accelerator. *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. +current address: NNSA/DOE Headquarters, Washington D.C.

  5. Axial plasma jet characterization on a microsecond x-pinch

    NASA Astrophysics Data System (ADS)

    Jaar, G. S.; Appartaim, R. K.

    2018-06-01

    The jets produced on a microsecond x-pinch (quarter period T1/4 ˜ 1 μs, dI/dt ˜ 0.35 kA/ns) have been studied through light-field schlieren imaging and optical framing photographs across 4 different materials: Al, Ti, Mo, and W. The axial velocity of the jets was measured and exhibited no dependence on atomic number (Z) of the wire material. There may be a dependence on another factor(s), namely, the current rise rate. The average axial jet velocity across all four materials was measured to be 2.9 ± 0.5 × 106 cm/s. The average jet diameter and the average radial jet expansion rate displayed inverse relationships with Z, which may be attributed to radiative cooling and inertia. Asymmetry between the anode and cathode jet behavior was observed and is thought to be caused by electron beam activity. The mean divergence angle of the jet was found to vary with wire material and correlated inversely with the thermal conductivity of the cold wire. Optical images indicated a two-layer structure in Al jets which may be caused by standing shocks and resemble phenomena observed in astrophysical jet formation and collimation. Kinks in the jets have also been observed which may be caused by m = 1 MHD instability modes or by the interaction of the jet with the electrode plasma.

  6. Recent developments in linear theta-pinch research: experiment and theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKenna, K.F.; Bartsch, R.R.; Commisso, R.J.

    1978-01-01

    High energy plasmas offusion interest can be generated in linear theta pinches. However, end losses present a fundamental limitation on the plasma containment time. This paper discusses recent progress in end-loss and end-stoppering experiments and in the theoretical understanding of linear theta-pinch physics.

  7. Understanding nucleotide-regulated FtsZ filament dynamics and the monomer assembly switch with large-scale atomistic simulations.

    PubMed

    Ramírez-Aportela, Erney; López-Blanco, José Ramón; Andreu, José Manuel; Chacón, Pablo

    2014-11-04

    Bacterial cytoskeletal protein FtsZ assembles in a head-to-tail manner, forming dynamic filaments that are essential for cell division. Here, we study their dynamics using unbiased atomistic molecular simulations from representative filament crystal structures. In agreement with experimental data, we find different filament curvatures that are supported by a nucleotide-regulated hinge motion between consecutive FtsZ monomers. Whereas GTP-FtsZ filaments bend and twist in a preferred orientation, thereby burying the nucleotide, the differently curved GDP-FtsZ filaments exhibit a heterogeneous distribution of open and closed interfaces between monomers. We identify a coordinated Mg(2+) ion as the key structural element in closing the nucleotide site and stabilizing GTP filaments, whereas the loss of the contacts with loop T7 from the next monomer in GDP filaments leads to open interfaces that are more prone to depolymerization. We monitored the FtsZ monomer assembly switch, which involves opening/closing of the cleft between the C-terminal domain and the H7 helix, and observed the relaxation of isolated and filament minus-end monomers into the closed-cleft inactive conformation. This result validates the proposed switch between the low-affinity monomeric closed-cleft conformation and the active open-cleft FtsZ conformation within filaments. Finally, we observed how the antibiotic PC190723 suppresses the disassembly switch and allosterically induces closure of the intermonomer interfaces, thus stabilizing the filament. Our studies provide detailed structural and dynamic insights into modulation of both the intrinsic curvature of the FtsZ filaments and the molecular switch coupled to the high-affinity end-wise association of FtsZ monomers.

  8. Starting buoyant plumes and vortex ring pinch-off

    NASA Astrophysics Data System (ADS)

    Pottebaum, Tait; Gharib, Mory

    2003-11-01

    The vortex ring formation process of a starting buoyant plume was studied experimentally. Buoyant plumes were produced using a heating element at the base of a water tank. The velocity and temperature fields in the flow were measured using digital particle image thermometry and velocimetry (DPITV), allowing the density and vorticity fields to be determined. The vortex ring initially grew, with additional circulation being supplied by the trailing plume. At later times, the vortex ring became disconnected from the trailing plume. This is analogous to the pinch-off of a vortex ring produced by a piston-cylinder apparatus reported by Gharib et al (1998 JFM 360: 121-140). The existence of a pinch-off process for starting buoyant plumes has many implications for environmental flows. Of particular interest is the effect of vortex ring pinch-off on the dispersal of particulates and contaminants in intermittent or sudden convection events.

  9. A dynamic subgrid scale model for Large Eddy Simulations based on the Mori-Zwanzig formalism

    NASA Astrophysics Data System (ADS)

    Parish, Eric J.; Duraisamy, Karthik

    2017-11-01

    The development of reduced models for complex multiscale problems remains one of the principal challenges in computational physics. The optimal prediction framework of Chorin et al. [1], which is a reformulation of the Mori-Zwanzig (M-Z) formalism of non-equilibrium statistical mechanics, provides a framework for the development of mathematically-derived reduced models of dynamical systems. Several promising models have emerged from the optimal prediction community and have found application in molecular dynamics and turbulent flows. In this work, a new M-Z-based closure model that addresses some of the deficiencies of existing methods is developed. The model is constructed by exploiting similarities between two levels of coarse-graining via the Germano identity of fluid mechanics and by assuming that memory effects have a finite temporal support. The appeal of the proposed model, which will be referred to as the 'dynamic-MZ-τ' model, is that it is parameter-free and has a structural form imposed by the mathematics of the coarse-graining process (rather than the phenomenological assumptions made by the modeler, such as in classical subgrid scale models). To promote the applicability of M-Z models in general, two procedures are presented to compute the resulting model form, helping to bypass the tedious error-prone algebra that has proven to be a hindrance to the construction of M-Z-based models for complex dynamical systems. While the new formulation is applicable to the solution of general partial differential equations, demonstrations are presented in the context of Large Eddy Simulation closures for the Burgers equation, decaying homogeneous turbulence, and turbulent channel flow. The performance of the model and validity of the underlying assumptions are investigated in detail.

  10. "Marginal pinching" in soap films

    NASA Astrophysics Data System (ADS)

    Aradian, A.; Raphaël, E.; de Gennes, P.-G.

    2001-09-01

    We discuss the behaviour of a thin soap film facing a frame element: the pressure in the Plateau border around the frame is lower than the film pressure, and the film thins out over a certain distance λ(t), due to the formation of a well-localized pinched region of thickness h(t) and extension w(t). We construct a hydrodynamic theory for this thinning process, assuming a constant surface tension: Marangoni effects are probably important only at late stages, where instabilities set in. We find λ(t) ~ t1/4, and for the pinch dimensions, h(t) ~ t-1/2 and w(t) ~ t-1/4. These results may play a useful role for the discussion of later instabilities leading to a global film thinning and drainage, as first discussed by K. Mysels under the name "marginal regeneration".

  11. A TEST OF COSMOLOGICAL MODELS USING HIGH-z MEASUREMENTS OF H(z)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melia, Fulvio; McClintock, Thomas M., E-mail: fmelia@email.arizona.edu, E-mail: tmcclintock89@gmail.com

    2015-10-15

    The recently constructed Hubble diagram using a combined sample of SNLS and SDSS-II SNe Ia, and an application of the Alcock–Paczyński (AP) test using model-independent Baryon Acoustic Oscillation (BAO) data, have suggested that the principal constraint underlying the cosmic expansion is the total equation-of-state of the cosmic fluid, rather than that of its dark energy. These studies have focused on the critical redshift range (0 ≲ z ≲ 2) within which the transition from decelerated to accelerated expansion is thought to have occurred, and they suggest that the cosmic fluid has zero active mass, consistent with a constant expansion rate.more » The evident impact of this conclusion on cosmological theory calls for an independent confirmation. In this paper, we carry out this crucial one-on-one comparison between the R{sub h} = ct universe (a Friedmann–Robertson–Walker cosmology with zero active mass) and wCDM/ΛCDM, using the latest high-z measurements of H(z). Whereas the SNe Ia yield the integrated luminosity distance, while the AP diagnostic tests the geometry of the universe, the Hubble parameter directly samples the expansion rate itself. We find that the model-independent cosmic chronometer data prefer R{sub h} = ct over wCDM/ΛCDM with a Bayes Information Criterion likelihood of ∼95% versus only ∼5%, in strong support of the earlier SNe Ia and AP results. This contrasts with a recent analysis of H(z) data based solely on BAO measurements which, however, strongly depend on the assumed cosmology. We discuss why the latter approach is inappropriate for model comparisons, and emphasize again the need for truly model-independent observations to be used in cosmological tests.« less

  12. Functional sensibility assessment. Part I: develop a reliable apparatus to assess momentary pinch force control.

    PubMed

    Chiu, Haw-Yen; Hsu, Hsiu-Yun; Kuo, Li-Chieh; Chang, Jer-Hao; Su, Fong-Chin

    2009-08-01

    A precise magnitude and timing control of pinch performance is based on accurate feed-forward and feedback control mechanisms. Ratio of peak pinch force and maximum load force during a functional performance is a sensitive parameter to reflect the ability to scale pinch force output according to actual loads. A pinch apparatus was constructed to detect momentary pinch force modulation of 20 subjects with normal hand sensation. The results indicated high intra-class correlation coefficient and small coefficient of variation of the detected force ratio among three repeated tests, which represented that the stability test of the measured response confirmed the feasibility of this apparatus. The force ratio for a 480 g object with a steel surface ranged between 1.77 and 1.98. Normal subjects were able to scale and contribute pinch force precisely to a pinch-holding-up test. This study may provide clinicians a reliable apparatus and method to analyze the recovery of functional sensibility in patients with nerve injuries. Copyright 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. The KMOS Deep Survey (KDS) - I. Dynamical measurements of typical star-forming galaxies at z ≃ 3.5

    NASA Astrophysics Data System (ADS)

    Turner, O. J.; Cirasuolo, M.; Harrison, C. M.; McLure, R. J.; Dunlop, J. S.; Swinbank, A. M.; Johnson, H. L.; Sobral, D.; Matthee, J.; Sharples, R. M.

    2017-10-01

    We present dynamical measurements from the KMOS (K-band multi-object spectrograph) Deep Survey (KDS), which comprises 77 typical star-forming galaxies at z ≃ 3.5 in the mass range 9.0 < log (M⋆/M⊙) < 10.5. These measurements constrain the internal dynamics, the intrinsic velocity dispersions (σint) and rotation velocities (VC) of galaxies in the high-redshift Universe. The mean velocity dispersion of the galaxies in our sample is σ _int = 70.8^{+3.3}_{-3.1} km s^{-1}, revealing that the increasing average σint with increasing redshift, reported for z ≲ 2, continues out to z ≃ 3.5. Only 36 ± 8 per cent of our galaxies are rotation-dominated (VC/σint > 1), with the sample average VC/σint value much smaller than at lower redshift. After carefully selecting comparable star-forming samples at multiple epochs, we find that the rotation-dominated fraction evolves with redshift with a z-0.2 dependence. The rotation-dominated KDS galaxies show no clear offset from the local rotation velocity-stellar mass (I.e. VC-M⋆) relation, although a smaller fraction of the galaxies are on the relation due to the increase in the dispersion-dominated fraction. These observations are consistent with a simple equilibrium model picture, in which random motions are boosted in high-redshift galaxies by a combination of the increasing gas fractions, accretion efficiency, specific star formation rate and stellar feedback and which may provide significant pressure support against gravity on the galactic disc scale.

  14. Experimental study of current loss and plasma formation in the Z machine post-hole convolute

    NASA Astrophysics Data System (ADS)

    Gomez, M. R.; Gilgenbach, R. M.; Cuneo, M. E.; Jennings, C. A.; McBride, R. D.; Waisman, E. M.; Hutsel, B. T.; Stygar, W. A.; Rose, D. V.; Maron, Y.

    2017-01-01

    The Z pulsed-power generator at Sandia National Laboratories drives high energy density physics experiments with load currents of up to 26 MA. Z utilizes a double post-hole convolute to combine the current from four parallel magnetically insulated transmission lines into a single transmission line just upstream of the load. Current loss is observed in most experiments and is traditionally attributed to inefficient convolute performance. The apparent loss current varies substantially for z-pinch loads with different inductance histories; however, a similar convolute impedance history is observed for all load types. This paper details direct spectroscopic measurements of plasma density, temperature, and apparent and actual plasma closure velocities within the convolute. Spectral measurements indicate a correlation between impedance collapse and plasma formation in the convolute. Absorption features in the spectra show the convolute plasma consists primarily of hydrogen, which likely forms from desorbed electrode contaminant species such as H2O , H2 , and hydrocarbons. Plasma densities increase from 1 ×1016 cm-3 (level of detectability) just before peak current to over 1 ×1017 cm-3 at stagnation (tens of ns later). The density seems to be highest near the cathode surface, with an apparent cathode to anode plasma velocity in the range of 35 - 50 cm /μ s . Similar plasma conditions and convolute impedance histories are observed in experiments with high and low losses, suggesting that losses are driven largely by load dynamics, which determine the voltage on the convolute.

  15. Strength training improves the tri-digit finger-pinch force control of older adults.

    PubMed

    Keogh, Justin W; Morrison, Steve; Barrett, Rod

    2007-08-01

    To investigate the effect of unilateral upper-limb strength training on the finger-pinch force control of older men. Pretest and post-test 6-week intervention study. Exercise science research laboratory. Eleven neurologically fit older men (age range, 70-80y). The strength training group (n=7) trained twice a week for 6 weeks, performing dumbbell bicep curls, wrist flexions, and wrists extensions, while the control group subjects (n=4) maintained their normal activities. Changes in force variability, targeting error, peak power frequency, proportional power, sample entropy, digit force sharing, and coupling relations were assessed during a series of finger-pinch tasks. These tasks involved maintaining a constant or sinusoidal force output at 20% and 40% of each subject's maximum voluntary contraction. All participants performed the finger-pinch tasks with both the preferred and nonpreferred limbs. Analysis of covariance for between-group change scores indicated that the strength training group (trained limb) experienced significantly greater reductions in finger-pinch force variability and targeting error, as well as significantly greater increases in finger-pinch force, sample entropy, bicep curl, and wrist flexion strength than did the control group. A nonspecific upper-limb strength-training program may improve the finger-pinch force control of older men.

  16. Double salt décollements: Effect of pinch-out overlapping in experimental thrust wedges

    NASA Astrophysics Data System (ADS)

    Santolaria, P.; Vendeville, B.; Graveleau, F.; Casas, A.; Soto, R.

    2013-12-01

    The presence of one or more evaporitic horizons acting as detachment levels in fold-and-thrust belts is common. Numerous works have dealt with the analysis of the role played by basal detachments on the deformation style of fold-and-thrust belts, but less attention has been paid to the interaction between two décollements and strain transfer between them. In this study, 10 sand-silicone analogue experiments with two detachment levels and different stratigraphic pinch-out configurations were carried out: the basal décollement was located hinterlandwards, and the upper one was located forelandwards, with or without geographic underlap or overlap. These geometrical arrangements simulate evaporites deposited in foreland basins progressively involved in shortening. To analyze their influence on the geometry and kinematics of thrust wedges, we tested successively the following parameters: i) the amount of vertical overlapping between the two décollement pinch-outs, ii) the total amount of shortening, and iii) the geometry of the intermediate décollement (pinch-out line parallel or oblique with respect to the pinch-out line of the basal décollement). All experiments were quantitatively monitored by carrying DEM (Digital Elevation Models) and PIV (Particle Image Velocimetry) measurements. All models had a similar style: (i) an inner domain, characterized by a thicker sand cover, with three forward verging thrusts rooted in the basal décollement, (ii) an outer domain with thinner sand cover, whose deformation pattern was characterized by 2 to 6 structures detaching on the upper décollement and (iii) a 'step zone' located between the inner and outer domains having varying geometry and kinematics. In longer-lived models, structures were reworked and salt migration deformed the early emplaced folds and thrusts. Our experimental results point out that the amount of vertical overlapping between the two décollement pinch outs is a first order parameter that conditions not

  17. Coherent structure diffusivity in the edge region of Reversed Field Pinch experiments

    NASA Astrophysics Data System (ADS)

    Spolaore, M.; Antoni, V.; Spada, E.; Bergsåker, H.; Cavazzana, R.; Drake, J. R.; Martines, E.; Regnoli, G.; Serianni, G.; Vianello, N.

    2005-01-01

    Coherent structures emerging from the background turbulence have been detected by electrostatic measurements in the edge region of two Reversed Field Pinch experiments, RFX (Padua) and Extrap-T2R (Stockholm). Measurements have been performed by arrays of Langmuir probes which allowed simultaneous measurements of temperature, potential and density to be carried out. These structures have been interpreted as a dynamic balance of dipolar and monopolar vortices, whose relative population are found to depend on the local mean E × B flow shear. The contribution to the anomalous transport of these structures has been investigated and it has been found that the corresponding diffusion coeffcient accounts up to 50% of the total diffusivity. The experimental findings indicate that the diffusion coeffcient associated to the coherent structures depends on the relative population of the two types of vortices and is minimum when the two populations are equal. An interpretative model is proposed to explain this feature.

  18. Normative Measurements of Grip and Pinch Strengths of 21st Century Korean Population

    PubMed Central

    Shim, Jin Hee; Kim, Jin Soo; Lee, Dong Chul; Ki, Sae Hwi; Yang, Jae Won; Jeon, Man Kyung; Lee, Sang Myung

    2013-01-01

    Background Measuring grip and pinch strength is an important part of hand injury evaluation. Currently, there are no standardized values of normal grip and pinch strength among the Korean population, and lack of such data prevents objective evaluation of post-surgical recovery in strength. This study was designed to establish the normal values of grip and pinch strength among the healthy Korean population and to identify any dependent variables affecting grip and pinch strength. Methods A cross-sectional study was carried out. The inclusion criterion was being a healthy Korean person without a previous history of hand trauma. The grip strength was measured using a Jamar dynamometer. Pulp and key pinch strength were measured with a hydraulic pinch gauge. Intra-individual and inter-individual variations in these variables were analyzed in a standardized statistical manner. Results There were a total of 336 healthy participants between 13 and 77 years of age. As would be expected in any given population, the mean grip and pinch strength was greater in the right hand than the left. Male participants (137) showed mean strengths greater than female participants (199) when adjusted for age. Among the male participants, anthropometric variables correlated positively with grip strength, but no such correlations were identifiable in female participants in a statistically significant way. Conclusions Objective measurements of hand strength are an important component of hand injury evaluation, and population-specific normative data are essential for clinical and research purposes. This study reports updated normative hand strengths of the South Korean population in the 21st century. PMID:23362480

  19. Investigating the effect of adding an on-axis jet to Ar gas puff Z pinches on Z.

    DOE PAGES

    Harvey-Thompson, Adam James; Jennings, Christopher Ashley; Jones, Brent M.; ...

    2016-10-20

    Double-shell Ar gas puff implosions driven by 16.5±0.5 MA on the Z generator at Sandia National Laboratories are very effective emitters of Ar K-shell radiation (photon energy >3 keV), producing yields of 330 ± 9% kJ (B. Jones et al., Phys. Plasmas, 22, 020706, 2015). In addition, previous simulations and experiments have reported dramatic increases in K-shell yields when adding an on-axis jet to double shell gas puffs for some configurations.

  20. Self-pinched transport for ion-driven inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, D.R.; Olson, C.L.

    Efficient transport of intense ion beams is necessary for ion-driven inertial confinement fusion (ICF). The self-pinched transport scheme involves the focusing of an ion beam to a radius of about 1 cm or less. At this radius, using the beam`s self-magnetic field for confinement, the ion beam propagates through the reactor chamber to an ICF target. A promising regime for self-pinched transport involves the injection of a high current beam into an initially neutral gas at about 200 mTorr less. A simple equilibrium theory of a beam with a temporally pinching radial envelope predicts that large confining magnetic fields aremore » possible with net currents of more than 50% of the beam current. The magnitude of these fields is strongly dependent on the rate of ionization of the given ion species. The authors have simulated ion-beam propagation, using the hybrid code IPROP, which self-consistently calculates the gas breakdown and electromagnetic fields. In agreement, with the theory, a propagation window of 20-200 mTorr of argon is calculated for a 50 kA, 5 MeV proton beam similar to the parameters of the SABRE accelerator at Sandia National Laboratories. The authors present simulations of the focusing and propagation of the SABRE beam, with the purpose of designing a self-pinch experiment.« less

  1. GPU-enabled molecular dynamics simulations of ankyrin kinase complex

    NASA Astrophysics Data System (ADS)

    Gautam, Vertika; Chong, Wei Lim; Wisitponchai, Tanchanok; Nimmanpipug, Piyarat; Zain, Sharifuddin M.; Rahman, Noorsaadah Abd.; Tayapiwatana, Chatchai; Lee, Vannajan Sanghiran

    2014-10-01

    The ankyrin repeat (AR) protein can be used as a versatile scaffold for protein-protein interactions. It has been found that the heterotrimeric complex between integrin-linked kinase (ILK), PINCH, and parvin is an essential signaling platform, serving as a convergence point for integrin and growth-factor signaling and regulating cell adhesion, spreading, and migration. Using ILK-AR with high affinity for the PINCH1 as our model system, we explored a structure-based computational protocol to probe and characterize binding affinity hot spots at protein-protein interfaces. In this study, the long time scale dynamics simulations with GPU accelerated molecular dynamics (MD) simulations in AMBER12 have been performed to locate the hot spots of protein-protein interaction by the analysis of the Molecular Mechanics-Poisson-Boltzmann Surface Area/Generalized Born Solvent Area (MM-PBSA/GBSA) of the MD trajectories. Our calculations suggest good binding affinity of the complex and also the residues critical in the binding.

  2. Microscopic calculations of dynamics and N/Z equilibration in peripheral collisions below the Fermi energy.

    NASA Astrophysics Data System (ADS)

    Souliotis, G. A.; Shetty, D. V.; Galanopoulos, S.; Yennello, S. J.

    2008-04-01

    A systematic study of heavy residues formed in peripheral collisions below the Fermi energy has been undertaken at Texas A&M aiming at obtaining information on the mechanism of nucleon exchange and the course towards N/Z equilibration [1,2]. We expect to get insight on the dynamics and the nuclear equation of state by comparing our heavy residue data to detailed calculations using microscopic models of quantum molecular dynamics (QMD) type. We are performing calculations using two codes: the CoMD code of M. Papa, A. Bonasera [3] and the CHIMERA-QMD code of J. Lukasik [4]. Both codes implement an effective interaction with a nuclear-matter compressibility of K=200 (soft EOS) with several forms of the density dependence of the nucleon-nucleon symmetry potential. CoMD imposes a constraint in the phase space occupation for each nucleon restoring the Pauli principle at each time step of the collision. CHIMERA-QMD uses a Pauli potential term to mimic the Pauli principle. Results of the calculations and comparisons with our residue data will be presented. [1] G.A. Souliotis et al., Phys. Rev. Lett. 91, 022701 (2003). [2] G.A. Souliotis et al., Phys. Lett. B 588, 35 (2004). [3] M. Papa et al., Phys. Rev. C 64, 024612 (2001). [4] J. Lukasik, Z. Majka, Acta Phys. Pol. B 24, 1959 (1993).

  3. Toggle mechanism for pinching metal tubes

    NASA Technical Reports Server (NTRS)

    Stengard, E. O. (Inventor)

    1979-01-01

    A toggle mechanism pinches a metal tube and maintains the tube in a pinched condition, without fracturing. The toggle mechanism includes a plunger translatable along a longitudinal axis, as well as a pair of links pivoted about a common axis extending through an end of the plunger. One of the links also pivots about a fixed axis. A free end of the other link carries a push link which the other link translates at right angles to the plunger longitudinal axis. First and second sides of the tube bear against a first stop block and are engaged by the push link when a compression spring, attached to the plunger, is suddenly released to irreversibly drive the plunger along its longitudinal axis so the pivot point of the two links is driven to an over travel position.

  4. Staged Z-pinch for the production of high-flux neutrons and net energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wessel, Frank J.; Rahman, Hafiz Ur; Rostoker, Norman

    A fusible target is embedded in a high Z liner, ohmically heated and then shock wave heated by implosion of an enveloping high Z liner. The target is adiabatically heated by compression, fusibly ignited and charged-particle heated as it is being ignited. A shock front forms as the liner implodes which shock front detaches from the more slowly moving liner, collides with the outer surface of the target, accelerates inward, rapidly heating the target, adiabatically compressing the target and liner and amplifying the current to converge the liner mass toward a central axis thereby compressing the target to a fusionmore » condition when it begins to ignite and produce charged particles. The charged particles are trapped in a large magnetic field surrounding the target. The energy of the charged particles is deposited into the target to further heat the target to produce an energy gain.« less

  5. Statistical analyses of Higgs- and Z -portal dark matter models

    NASA Astrophysics Data System (ADS)

    Ellis, John; Fowlie, Andrew; Marzola, Luca; Raidal, Martti

    2018-06-01

    We perform frequentist and Bayesian statistical analyses of Higgs- and Z -portal models of dark matter particles with spin 0, 1 /2 , and 1. Our analyses incorporate data from direct detection and indirect detection experiments, as well as LHC searches for monojet and monophoton events, and we also analyze the potential impacts of future direct detection experiments. We find acceptable regions of the parameter spaces for Higgs-portal models with real scalar, neutral vector, Majorana, or Dirac fermion dark matter particles, and Z -portal models with Majorana or Dirac fermion dark matter particles. In many of these cases, there are interesting prospects for discovering dark matter particles in Higgs or Z decays, as well as dark matter particles weighing ≳100 GeV . Negative results from planned direct detection experiments would still allow acceptable regions for Higgs- and Z -portal models with Majorana or Dirac fermion dark matter particles.

  6. Microturbulence studies of pulsed poloidal current drive discharges in the reversed field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmody, D., E-mail: dcarmody@wisc.edu; Pueschel, M. J.; Anderson, J. K.

    2015-01-15

    Experimental discharges with pulsed poloidal current drive (PPCD) in the Madison Symmetric Torus reversed field pinch are investigated using a semi-analytic equilibrium model in the gyrokinetic turbulence code GENE. PPCD cases, with plasma currents of 500 kA and 200 kA, exhibit a density-gradient-driven trapped electron mode (TEM) and an ion temperature gradient mode, respectively. Relative to expectations of tokamak core plasmas, the critical gradients for the onset of these instabilities are found to be greater by roughly a factor of the aspect ratio. A significant upshift in the nonlinear TEM transport threshold, previously found for tokamaks, is confirmed in nonlinear reversed fieldmore » pinch simulations and is roughly three times the threshold for linear instability. The simulated heat fluxes can be brought in agreement with measured diffusivities by introducing a small, resonant magnetic perturbation, thus modeling the residual fluctuations from tearing modes. These fluctuations significantly enhance transport.« less

  7. Conformity of modified O-ring test and maximal pinch strength for cross tape application direction.

    PubMed

    Lee, Jung-Hoon; Choi, Hyun-Su

    2018-06-01

    Although cross tape has recently been used by clinicians for various musculoskeletal conditions, scientific studies on the direction of cross tape application are lacking. The present study aimed to investigate whether the direction of cross tape application affected the outcomes of the modified O-ring test and maximal pinch strength using a pinch gauge and the conformity between these 2 tests when cross tape was applied to the forearm muscles of individuals with no upper extremity pain and no restriction of joint range of motion.This study used a single-blinding crossover design. The subjects comprised 39 adults (16 men and 23 women). Cross tape was applied to the dominant hand so that the 4 rows were at an angle of 45° to the right or left of the direction of the flexor digitorum superficialis muscle fibers, and then the subjects underwent a modified O-ring test and a test of maximal pinch strength using a pinch gauge. Both tests were performed in both directions, and the order of the directions and tests was randomized. SPSS 18.0 was used for statistical analysis. Cohen's kappa coefficient was used to analyze the conformity of the results from the 2 tests. The statistical significance level was P < .05. A positive response in the modified O-ring test and maximal pinch strength were both affected by cross tape direction. The modified O-ring test and maximal pinch strength using pinch gauge results were in agreement (P < .00), and the kappa coefficient was significant at 1.00. The direction of cross tape application that produced a positive response in the modified O-ring test also produced greater maximal pinch strength. Thus, we propose that when applying cross tape to muscles, the direction of the 4 lines of the cross tape should be 45° relative to the direction of the muscle fibers, toward the side that produces a positive response in the modified O-ring test or produces the greatest maximal pinch strength using a pinch gauge.

  8. Comparison of grip and pinch strength in young women with and without hyperkyphosis: A cross-sectional study.

    PubMed

    Yoosefinejad, Amin Kordi; Ghaffarinejad, Farahnaz; Hemati, Mahbubeh; Jamshidi, Narges

    2018-05-21

    Hyperkyphosis is a common postural defect with high prevalence in the 20 to 50 year old population. It appears to compromise proximal scapular stability. Grip and pinch strength are used to evaluate general upper extremity function. The aim of this study was to compare pinch and grip strength between young women with and without hyperkyphosis. Thirty young women (18-40 years old) with hyperkyphosis and 30 healthy women matched for age and body mass index participated in the study. Hyperkyphosis was confirmed by measuring the kyphosis angle with a flexible ruler. Grip strength was measured with the Waisa method and a dynamometer. Pinch strength was assessed with a pinch meter. Grip (P= 0.03) and pinch strength (P= 0.04) were significantly lower in women with hyperkyphosis compared to the control group. Kyphosis angle correlated weakly with grip (r= 0.26) and pinch strength (r= 0.23). Hyperkyphotic posture has led to decreased grip and pinch strength compared to people without hyperkyphosis.

  9. The design and implementation of a windowing interface pinch force measurement system

    NASA Astrophysics Data System (ADS)

    Ho, Tze-Yee; Chen, Yuanu-Joan; Chung, Chin-Teng; Hsiao, Ming-Heng

    2010-02-01

    This paper presents a novel windowing interface pinch force measurement system that is basically based on an USB (Universal Series Bus) microcontroller which mainly processes the sensing data from the force sensing resistance sensors mounted on five digits. It possesses several friendly functions, such as the value and curve trace of the applied force by a hand injured patient displayed in real time on a monitoring screen, consequently, not only the physician can easily evaluate the effect of hand injury rehabilitation, but also the patients get more progressive during the hand physical therapy by interacting with the screen of pinch force measurement. In order to facilitate the pinch force measurement system and make it friendly, the detail hardware design and software programming flowchart are described in this paper. Through a series of carefully and detailed experimental tests, first of all, the relationship between the applying force and the FSR sensors are measured and verified. Later, the different type of pinch force measurements are verified by the oscilloscope and compared with the corresponding values and waveform traces in the window interface display panel to obtain the consistency. Finally, a windowing interface pinch force measurement system based on the USB microcontroller is implemented and demonstrated. The experimental results show the verification and feasibility of the designed system.

  10. Dynamics of Topological Excitations in a Model Quantum Spin Ice

    NASA Astrophysics Data System (ADS)

    Huang, Chun-Jiong; Deng, Youjin; Wan, Yuan; Meng, Zi Yang

    2018-04-01

    We study the quantum spin dynamics of a frustrated X X Z model on a pyrochlore lattice by using large-scale quantum Monte Carlo simulation and stochastic analytic continuation. In the low-temperature quantum spin ice regime, we observe signatures of coherent photon and spinon excitations in the dynamic spin structure factor. As the temperature rises to the classical spin ice regime, the photon disappears from the dynamic spin structure factor, whereas the dynamics of the spinon remain coherent in a broad temperature window. Our results provide experimentally relevant, quantitative information for the ongoing pursuit of quantum spin ice materials.

  11. Pinch-force-magnification mechanism of low degree of freedom EMG prosthetic hand for children.

    PubMed

    Ye, Hesong; Sakoda, Shintaro; Jiang, Yinlai; Morishita, Soichiro; Yokoi, Hiroshi

    2015-01-01

    EMG prosthetic hands are being extensively studied for the disabled who need them not only for cosmesis but also for the functions to help them with basic daily activities. However, most EMG prosthetic hands are developed for adults. Since the early use of prosthetic hands is important for the children to accept and adapt to them, we are developing low degrees of freedom (DoF) prosthetic hand that is suitable for children. Due to the limited size of a child's hand, the servo motor which drives the MP joint are small-sized and low-power. Hence, a pinch-force-magnification mechanism is required to improve the pinch force of the EMG prosthetic hand. In this paper we designed a wire-driven mechanism which can magnify pinch force by increasing the length of the MP joint's moment arm. Pinch force measurement experiment validated that the pinch force of the prosthetic hand with the mechanism is more than twice of that of the hand with direct drive.

  12. A predictive model of iron oxide nanoparticles flocculation tuning Z-potential in aqueous environment for biological application

    NASA Astrophysics Data System (ADS)

    Baldassarre, Francesca; Cacciola, Matteo; Ciccarella, Giuseppe

    2015-09-01

    Iron oxide nanoparticles are the most used magnetic nanoparticles in biomedical and biotechnological field because of their nontoxicity respect to the other metals. The investigation of iron oxide nanoparticles behaviour in aqueous environment is important for the biological applications in terms of polydispersity, mobility, cellular uptake and response to the external magnetic field. Iron oxide nanoparticles tend to agglomerate in aqueous solutions; thus, the stabilisation and aggregation could be modified tuning the colloids physical proprieties. Surfactants or polymers are often used to avoid agglomeration and increase nanoparticles stability. We have modelled and synthesised iron oxide nanoparticles through a co-precipitation method, in order to study the influence of surfactants and coatings on the aggregation state. Thus, we compared experimental results to simulation model data. The change of Z-potential and the clusters size were determined by Dynamic Light Scattering. We developed a suitable numerical model to predict the flocculation. The effects of Volume Mean Diameter and fractal dimension were explored in the model. We obtained the trend of these parameters tuning the Z-potential. These curves matched with the experimental results and confirmed the goodness of the model. Subsequently, we exploited the model to study the influence of nanoparticles aggregation and stability by Z-potential and external magnetic field. The highest Z-potential is reached up with a small external magnetic influence, a small aggregation and then a high suspension stability. Thus, we obtained a predictive model of Iron oxide nanoparticles flocculation that will be exploited for the nanoparticles engineering and experimental setup of bioassays.

  13. Dynamics of interacting quintessence models: Observational constraints

    NASA Astrophysics Data System (ADS)

    Olivares, Germán; Atrio-Barandela, Fernando; Pavón, Diego

    2008-03-01

    Interacting quintessence models have been proposed to explain or, at least, alleviate the coincidence problem of late cosmic acceleration. In this paper we are concerned with two aspects of these kind of models: (i) the dynamical evolution of the model of Chimento et al. [L. P. Chimento, A. S. Jakubi, D. Pavón, and W. Zimdahl, Phys. Rev. D 67, 083513 (2003).PRVDAQ0556-282110.1103/PhysRevD.67.083513], i.e., whether its cosmological evolution gives rise to a right sequence of radiation, dark matter, and dark energy dominated eras, and (ii) whether the dark matter dark energy ratio asymptotically evolves towards a nonzero constant. After showing that the model correctly reproduces these eras, we correlate three data sets that constrain the interaction at three redshift epochs: z≤104, z=103, and z=1. We discuss the model selection and argue that even if the model under consideration fulfills both requirements, it is heavily constrained by observation. The prospects that the coincidence problem can be explained by the coupling of dark matter to dark energy are not clearly favored by the data.

  14. Interplay of spherical closed shells and N /Z asymmetry in quasifission dynamics

    NASA Astrophysics Data System (ADS)

    Mohanto, G.; Hinde, D. J.; Banerjee, K.; Dasgupta, M.; Jeung, D. Y.; Simenel, C.; Simpson, E. C.; Wakhle, A.; Williams, E.; Carter, I. P.; Cook, K. J.; Luong, D. H.; Palshetkar, C. S.; Rafferty, D. C.

    2018-05-01

    Background: Quasifission (QF) has gained tremendous importance in heavy-ion nuclear physics research because of its strong influence on superheavy-element synthesis. Collisions involving closed-shell nuclei in the entrance channel are found to affect the QF reaction mechanism. Hence, it is important to improve the understanding of their effect on QF. Apart from that, some recent studies show that the difference in N /Z of reaction partners influences the reaction dynamics. Since heavier doubly magic nuclei have different N /Z than lighter doubly magic nuclei, it is important to understand the effect of N /Z mismatch as well as the effect of shell closures. Purpose: To investigate the effect of entrance-channel shell closures and N /Z asymmetry on QF. The reactions were chosen to decouple these effects from the contributions of other entrance-channel parameters. Method: Fission fragment mass-angle distributions were measured using the CUBE fission spectrometer, consisting of two large area position-sensitive multi-wire proportional counters (MWPCs), for five reactions, namely, 50Cr+208Pb , 52Cr+Pb,208206 , 54Cr+Pb,208204 . Result: Two components were observed in the measured fragment mass angle distribution, a fast mass-asymmetric quasifission and a slow mass-symmetric component having a less significant mass-angle correlation. The ratio of these components was found to depend on spherical closed shells in the entrance channel nuclei and the magnitude of the N /Z mismatch between the two reaction partners, as well as the beam energy. Conclusions: Entrance-channel spherical closed shells can enhance compound nucleus formation provided the N /Z asymmetry is small. Increase in the N /Z asymmetry is expected to destroy the effect of entrance-channel spherical closed shells, through nucleon transfer reactions.

  15. Modeling of Resistive Wall Modes in Tokamak and Reversed Field Pinch Configurations of KTX

    NASA Astrophysics Data System (ADS)

    Han, Rui; Zhu, Ping; Bai, Wei; Lan, Tao; Liu, Wandong

    2016-10-01

    Resistive wall mode is believed to be one of the leading causes for macroscopic degradation of plasma confinement in tokamaks and reversed field pinches (RFP). In this study, we evaluate the linear RWM instability of Keda Torus eXperiment (KTX) in both tokamak and RFP configurations. For the tokamak configuration, the extended MHD code NIMROD is employed for calculating the dependence of the RWM growth rate on the position and conductivity of the vacuum wall for a model tokamak equilibrium of KTX in the large aspect-ratio approximation. For the RFP configuration, the standard formulation of dispersion relation for RWM based on the MHD energy principle has been evaluated for a cylindrical α- Θ model of KTX plasma equilibrium, in an effort to investigate the effects of thin wall on the RWM in KTX. Full MHD calculations of RWM in the RFP configuration of KTX using the NIMROD code are also being developed. Supported by National Magnetic Confinement Fusion Science Program of China Grant Nos. 2014GB124002, 2015GB101004, 2011GB106000, and 2011GB106003.

  16. Drell-Yan production of multi Z '-bosons at the LHC within Non-Universal ED and 4D Composite Higgs Models

    NASA Astrophysics Data System (ADS)

    Accomando, Elena; Barducci, Daniele; De Curtis, Stefania; Fiaschi, Juri; Moretti, Stefano; Shepherd-Themistocleous, C. H.

    2016-07-01

    The Drell-Yan di-lepton production at hadron colliders is by far the preferred channel to search for new heavy spin-1 particles. Traditionally, such searches have exploited the Narrow Width Approximation (NWA) for the signal, thereby neglecting the effect of the interference between the additional Z '-bosons and the Standard Model Z and γ. Recently, it has been established that both finite width and interference effects can be dealt with in experimental searches while still retaining the model independent approach ensured by the NWA. This assessment has been made for the case of popular single Z '-boson models currently probed at the CERN Large Hadron Collider (LHC). In this paper, we test the scope of the CERN machine in relation to the above issues for some benchmark multi Z '-boson models. In particular, we consider Non-Universal Extra Dimensional (NUED) scenarios and the 4-Dimensional Composite Higgs Model (4DCHM), both predicting a multi- Z ' peaking structure. We conclude that in a variety of cases, specifically those in which the leptonic decays modes of one or more of the heavy neutral gauge bosons are suppressed and/or significant interference effects exist between these or with the background, especially present when their decay widths are significant, traditional search approaches based on the assumption of rather narrow and isolated objects might require suitable modifications to extract the underlying dynamics.

  17. Magnetic pinch compression of silica glass

    NASA Technical Reports Server (NTRS)

    Bless, S. J.

    1974-01-01

    SiO2 glass has been irreversibly densified by pressures up to 250 kbar produced in a magnetic pinch apparatus. The threshold for significant densification was about 60 kbar. The recovered densities agree better with published shock wave results than with static results.

  18. Self-Pinched Transport Theory for the SABRE Ion Diode

    NASA Astrophysics Data System (ADS)

    Welch, Dale R.; Olson, Craig L.; Hanson, David L.

    1997-05-01

    In anticipation of a 90 kA 4 MV SABRE ion diode experiment, we have been examining self-pinch transport of ions for application to ion-driven inertial confinement fusion. The Li^+3 beam will exit the diode with a 30-40 mradian divergence and a shallow focusing angle of 75 mradians. The beam is annular with an 4.6-cm inner radius and a 6.8-cm outer radius. Self-pinch theory and simulation predict that large residual currents are possible in 2-20 mtorr argon gas. The simulations suggest that ≈ 50 kA of Li particle current is necessary to contain the beam's transverse momentum. Some non-ideal effects include large beam divergence, large focusing angle and beam annularity. To address these problems, we have been studying the benefits of beam conditioning in the focus region between the diode and the self pinch region after the beam has reached a small radius. We have found some benefit from including a passive conical structure and a low-pressure gas. A significant lens effect can be attained using only the beam fields in vacuum or a low pressure gas. In this configuration, a large focusing force, that keeps the ions off an inner cone and outer wall as the beam converges, has been calculated using the numerical simulation code uc(iprop.) Results from integrated simulation of the condition cell and self-pinch region look encouraging.

  19. What can asymmetry tell us? Investigation of asymmetric versus symmetric pinch and swell structures in nature and simulation

    NASA Astrophysics Data System (ADS)

    Gardner, Robyn; Piazolo, Sandra; Daczko, Nathan

    2015-04-01

    Pinch and swell structures occur from microscopic to landscape scales where a more competent layer in a weaker matrix is deformed by pure shear, often in rifting environments. The Anita Shear Zone (ASZ) in Fiordland, New Zealand has an example of landscape scale (1 km width) asymmetric pinch and swell structures developed in ultramafic rocks. Field work suggests that the asymmetry is a result of variations in the surrounding 'matrix' flow properties as the ultramafic band is surrounded to the east by an orthogneiss (Milford Orthogneiss) and to the west by a paragneiss (Thurso Paragneiss). In addition, there is a narrow and a much wider shear zone between the ultramafics and the orthogneiss and paragneiss, respectively. Detailed EBSD analysis of samples from a traverse across the pinch and swell structure indicate the ultramafics in the shear zone on the orthogneiss side have larger grain size than the ultramafics in the shear zone on the paragneiss side. Ultramafic samples from the highly strained paragneiss and orthogneiss shear zones show dislocation creep behaviour, and, on the paragneiss side, also significant deformation by grain boundary sliding. To test if asymmetry of pinch and swell structures can be used to derive the rheological properties of not only the pinch and swell lithologies, but also of the matrix, numerical simulations were performed. Numerical modelling of pure shear (extension) was undertaken with (I) initially three layers and then (II) five layers by adding soft high strain zones on both sides of the rheological hard layer. The matrix was given first symmetric, then asymmetric viscosity. Matrix viscosity was found to impact the formation of pinch and swell structures with the weaker layer causing increased tortuosity of the competent layer edge due to increased local differential stress. Results highlight that local, rheologically soft layers and the relative viscosity of matrix both impact significantly the shape and symmetry of developing

  20. Dynamical critical exponent of the Jaynes-Cummings-Hubbard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohenadler, M.; Aichhorn, M.; Schmidt, S.

    2011-10-15

    An array of high-Q electromagnetic resonators coupled to qubits gives rise to the Jaynes-Cummings-Hubbard model describing a superfluid to Mott-insulator transition of lattice polaritons. From mean-field and strong-coupling expansions, the critical properties of the model are expected to be identical to the scalar Bose-Hubbard model. A recent Monte Carlo study of the superfluid density on the square lattice suggested that this does not hold for the fixed-density transition through the Mott lobe tip. Instead, mean-field behavior with a dynamical critical exponent z=2 was found. We perform large-scale quantum Monte Carlo simulations to investigate the critical behavior of the superfluid densitymore » and the compressibility. We find z=1 at the tip of the insulating lobe. Hence the transition falls in the three-dimensional XY universality class, analogous to the Bose-Hubbard model.« less

  1. Comparative study of millennials' (age 20-34 years) grip and lateral pinch with the norms.

    PubMed

    Fain, Elizabeth; Weatherford, Cara

    Cross-sectional research design. Clinical practice continues to use normative data for grip and pinch measurements that were established in 1985. There is no updated norms despite different hand usage patterns in today's society. Measuring and comparing grip and pinch strengths with normative data is a valid method to determine hand function. This research was implemented to compare the grip and pinch measurements obtained from healthy millennials to the established norms and to describe hand usage patterns for millennials. Grip and lateral pinch measurements were obtained from a sample of 237 healthy millennials (ages 20-34 years). Strength scores were statistically lower that older normative data in all millennial grip strengths, with the exception of the women in the age group of 30-34 years. Specifically, this statistically significant trend was observed in all male grip strengths, as well as in women in the age group of 20-24 years (bilateral grip) and 25-29 years (right grip). However, the lateral pinch data reflected was similar to the older norms with variances of 0.5-1 kg. Current data reflect statistically significant differences from the norms for all male grip measurements, as well as for women in the age group of 20-24 years (bilateral grip) and 25-29 years (right grip). No statistical significance was observed in the independent-sample t tests for the lateral pinch in men of all age groups. Statistical significance was noted for lateral pinch for female age groups for the left hand (20-24 years) and for bilateral lateral pinches (30-34 years). IV. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  2. Functional sensibility assessment. Part II: Effects of sensory improvement on precise pinch force modulation after transverse carpal tunnel release.

    PubMed

    Hsu, Hsiu-Yun; Kuo, Li-Chieh; Chiu, Haw-Yen; Jou, I-Ming; Su, Fong-Chin

    2009-11-01

    Patients with median nerve compression at the carpal tunnel often have poor sensory afferents. Without adequate sensory modulation control, these patients frequently exhibit clumsy performance and excessive force output in the affected hand. We analyzed precision grip function after the sensory recovery of patients with carpal tunnel syndrome (CTS) who underwent carpal tunnel release (CTR). Thirteen CTS patients were evaluated using a custom-designed pinch device and conventional sensory tools before and after CTR to measure sensibility, maximum pinch strength, and anticipated pinch force adjustments to movement-induced load fluctuations in a pinch-holding-up activity. Based on these tests, five force-related parameters and sensory measurements were used to determine improvements in pinch performance after sensory recovery. The force ratio between the exerted pinch force and maximum load force of the lifting object was used to determine pinch force coordination and to prove that CTR enabled precision motor output. The magnitude of peak pinch force indicated an economic force output during manipulations following CTR. The peak pinch force, force ratio, and percentage of maximum pinch force also demonstrated a moderate correlation with the Semmes-Weinstein test. Analysis of these tests revealed that improved sensory function helped restore patients' performance in precise pinch force control evaluations. These results suggest that sensory information plays an important role in adjusting balanced force output in dexterous manipulation. (c) 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Nonlinear axisymmetric and three-dimensional vorticity dynamics in a swirling jet model

    NASA Technical Reports Server (NTRS)

    Martin, J. E.; Meiburg, E.

    1996-01-01

    The mechanisms of vorticity concentration, reorientation, and stretching are investigated in a simplified swirling jet model, consisting of a line vortex along the jet axis surrounded by a jet shear layer with both azimuthal and streamwise vorticity. Inviscid three-dimensional vortex dynamics simulations demonstrate the nonlinear interaction and competition between a centrifugal instability and Kelvin-Helmholtz instabilities feeding on both components of the base flow vorticity. Under axisymmetric flow conditions, it is found that the swirl leads to the emergence of counterrotating vortex rings, whose circulation, in the absence of viscosity, can grow without bounds. Scaling laws are provided for the growth of these rings, which trigger a pinch-off mechanism resulting in a strong decrease of the local jet diameter. In the presence of an azimuthal disturbance, the nonlinear evolution of the flow depends strongly on the initial ratio of the azimuthal and axisymmetric perturbation amplitudes. The long term dynamics of the jet can be dominated by counterrotating vortex rings connected by braid vortices, by like-signed rings and streamwise braid vortices, or by wavy streamwise vortices alone.

  4. Estimations of Mo X-pinch plasma parameters on QiangGuang-1 facility by L-shell spectral analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jian; Qiu, Aici; State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024

    2013-08-15

    Plasma parameters of molybdenum (Mo) X-pinches on the 1-MA QiangGuang-1 facility were estimated by L-shell spectral analysis. X-ray radiation from X-pinches had a pulsed width of 1 ns, and its spectra in 2–3 keV were measured with a time-integrated X-ray spectrometer. Relative intensities of spectral features were derived by correcting for the spectral sensitivity of the spectrometer. With an open source, atomic code FAC (flexible atomic code), ion structures, and various atomic radiative-collisional rates for O-, F-, Ne-, Na-, Mg-, and Al-like ionization stages were calculated, and synthetic spectra were constructed at given plasma parameters. By fitting the measured spectramore » with the modeled, Mo X-pinch plasmas on the QiangGuang-1 facility had an electron density of about 10{sup 21} cm{sup −3} and the electron temperature of about 1.2 keV.« less

  5. Current scaling of radiated power for 40-mm diameter single wire arrays on Z

    NASA Astrophysics Data System (ADS)

    Nash, T. J.; Cuneo, M. E.; Spielman, R. B.; Chandler, G. A.; Leeper, R. J.; Seaman, J. F.; McGurn, J.; Lazier, S.; Torres, J.; Jobe, D.; Gilliland, T.; Nielsen, D.; Hawn, R.; Bailey, J. E.; Lake, P.; Carlson, A. L.; Seamen, H.; Moore, T.; Smelser, R.; Pyle, J.; Wagoner, T. C.; LePell, P. D.; Deeney, C.; Douglas, M. R.; McDaniel, D.; Struve, K.; Mazarakis, M.; Stygar, W. A.

    2004-11-01

    In order to estimate the radiated power that can be expected from the next-generation Z-pinch driver such as ZR at 28 MA, current-scaling experiments have been conducted on the 20 MA driver Z. We report on the current scaling of single 40 mm diameter tungsten 240 wire arrays with a fixed 110 ns implosion time. The wire diameter is decreased in proportion to the load current. Reducing the charge voltage on the Marx banks reduces the load current. On one shot, firing only three of the four levels of the Z machine further reduced the load current. The radiated energy scaled as the current squared as expected but the radiated power scaled as the current to the 3.52±0.42 power due to increased x-ray pulse width at lower current. As the current is reduced, the rise time of the x-ray pulse increases and at the lowest current value of 10.4 MA, a shoulder appears on the leading edge of the x-ray pulse. In order to determine the nature of the plasma producing the leading edge of the x-ray pulse at low currents further shots were taken with an on-axis aperture to view on-axis precursor plasma. This aperture appeared to perturb the pinch in a favorable manner such that with the aperture in place there was no leading edge to the x-ray pulses at lower currents and the radiated power scaled as the current squared ±0.75. For a full-current shot we will present x-ray images that show precursor plasma emitting on-axis 77 ns before the main x-ray burst.

  6. Sensitizing effect of Z,Z-bilirubin IXα and its photoproducts on enzymes in model solutions

    NASA Astrophysics Data System (ADS)

    Plavskii, V. Yu.; Mostovnikov, V. A.; Tret'yakova, A. I.; Mostovnikova, G. R.

    2008-05-01

    In model systems, we have studied side effects which may be induced by light during phototherapy of hyperbilirubinemia (jaundice) in newborn infants, with the aim of reducing the Z,Z-bilirubin IXα (Z,Z-BR IXα) level. We have shown that the sensitizing effect of Z,Z-BR IXα, localized at strong binding sites of the human serum albumin (HSA) macromolecule, is primarily directed at the amino acid residues of the carrier protein and does not involve the molecules of the enzyme (lactate dehydrogenase (LDH)) present in the buffer solution. The detected photodynamic damage to LDH is due to sensitization by bilirubin photoisomers, characterized by lower HSA association constants and located (in contrast to native Z,Z-BR IXα) on the surface of the HSA protein globule. Based on study of the spectral characteristics of the photoproducts of Z,Z-BR IXα and comparison of their accumulation kinetics in solution and the enzyme photo-inactivation kinetics, we concluded that the determining role in sensitized damage to LDH is played by lumirubin. The photosensitization effect depends on the wavelength of the radiation used for photoconversion of bilirubin. When (at the beginning of exposure) we make sure that identical numbers of photons are absorbed by the pigment in the different spectral ranges, the side effect is minimal for radiation corresponding to the long-wavelength edge of the bilirubin absorption band. We have shown that for a bilirubin/HSA concentration ratio >2 (when some of the pigment molecules are sorbed on the surface of the protein globule), the bilirubin can act as a photosensitizing agent for the enzyme present in solution. We discuss methods for reducing unfavorable side effects of light on the body of newborn infants during phototherapy of hyperbilirubinemia.

  7. INPIStron switched pulsed power for dense plasma pinches

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Lee, Ja H.

    1993-01-01

    The inverse plasma switch INPIStron was employed for 10kJ/40kV capacitor bank discharge system to produce focused dense plasmas in hypocycloidal-pinch (HCP) devices. A single unit and an array of multiple HCP's were coupled as the load of the pulsed power circuit. The geometry and switching plasma dynamics were found advantageous and convenient for commutating the large current pulse from the low impedance transmission line to the low impedance plasma load. The pulse power system with a single unit HCP, the system A, was used for production of high temperature plasma focus and its diagnostics. The radially running down plasma dynamics, revealed in image converter photographs, could be simulated by a simple snow-plow model with a correction for plasma resistivity. The system B with an array of 8-HCP units which forms a long coaxial discharge chamber was used for pumping a Ti-sapphire laser. The intense UV emission from the plasma was frequency shifted with dye-solution jacket to match the absorption band of the Ti crystal laser near 500 nm. An untuned laser pulse energy of 0.6 J/pulse was obtained for 6.4 kJ/40 kV discharge, or near 103 times of the explosion limit of conventional flash lamps. For both systems the advantages of the INPIStron were well demonstrated: a single unit is sufficient for a large current (greater than 50 kA) without increasing the system impedance, highly reliable and long life operation and implied scalability for the high power ranges above I(sub peak) = 1 MA and V(sub hold) = 100 kV.

  8. Advanced spectroscopic analysis of 0.8-1.0-MA Mo x pinches and the influence of plasma electron beams on L-shell spectra of Mo ions.

    PubMed

    Shlyaptseva, A S; Hansen, S B; Kantsyrev, V L; Fedin, D A; Ouart, N; Fournier, K B; Safronova, U I

    2003-02-01

    This paper presents a detailed investigation of the temporal, spatial, and spectroscopic properties of L-shell radiation from 0.8 to 1.0 MA Mo x pinches. Time-resolved measurements of x-ray radiation and both time-gated and time-integrated spectra and pinhole images are presented and analyzed. High-current x pinches are found to have complex spatial and temporal structures. A collisional-radiative kinetic model has been developed and used to interpret L-shell Mo spectra. The model includes the ground state of every ionization stage of Mo and detailed structure for the O-, F-, Ne-, Na-, and Mg-like ionization stages. Hot electron beams generated by current-carrying electrons in the x pinch are modeled by a non-Maxwellian electron distribution function and have significant influence on L-shell spectra. The results of 20 Mo x-pinch shots with wire diameters from 24 to 62 microm have been modeled. Overall, the modeled spectra fit the experimental spectra well and indicate for time-integrated spectra electron densities between 2 x 10(21) and 2 x 10(22) cm(-3), electron temperatures between 700 and 850 eV, and hot electron fractions between 3% and 7%. Time-gated spectra exhibit wide variations in temperature and density of plasma hot spots during the same discharge.

  9. Quasi-linear gyrokinetic predictions of the Coriolis momentum pinch in National Spherical Torus Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guttenfelder, W.; Kaye, S. M.; Ren, Y.

    This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio National Spherical Torus Experiment (NSTX) H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostaticballooning modes are also unstable, which are effective at transporting energy, particles, and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes inmore » a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at a finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. Lastly, as the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.« less

  10. Quasi-linear gyrokinetic predictions of the Coriolis momentum pinch in National Spherical Torus Experiment

    DOE PAGES

    Guttenfelder, W.; Kaye, S. M.; Ren, Y.; ...

    2016-05-11

    This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio National Spherical Torus Experiment (NSTX) H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostaticballooning modes are also unstable, which are effective at transporting energy, particles, and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes inmore » a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at a finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. Lastly, as the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.« less

  11. The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states.

    PubMed

    Toneff, M J; Sreekumar, A; Tinnirello, A; Hollander, P Den; Habib, S; Li, S; Ellis, M J; Xin, L; Mani, S A; Rosen, J M

    2016-06-17

    The epithelial to mesenchymal transition (EMT) has been implicated in metastasis and therapy resistance of carcinomas and can endow cancer cells with cancer stem cell (CSC) properties. The ability to detect cancer cells that are undergoing or have completed EMT has typically relied on the expression of cell surface antigens that correlate with an EMT/CSC phenotype. Alternatively these cells may be permanently marked through Cre-mediated recombination or through immunostaining of fixed cells. The EMT process is dynamic, and these existing methods cannot reveal such changes within live cells. The development of fluorescent sensors that mirror the dynamic EMT state by following the expression of bona fide EMT regulators in live cells would provide a valuable new tool for characterizing EMT. In addition, these sensors will allow direct observation of cellular plasticity with respect to the epithelial/mesenchymal state to enable more effective studies of EMT in cancer and development. We generated a lentiviral-based, dual fluorescent reporter system, designated as the Z-cad dual sensor, comprising destabilized green fluorescent protein containing the ZEB1 3' UTR and red fluorescent protein driven by the E-cadherin (CDH1) promoter. Using this sensor, we robustly detected EMT and mesenchymal to epithelial transition (MET) in breast cancer cells by flow cytometry and fluorescence microscopy. Importantly, we observed dynamic changes in cellular populations undergoing MET. Additionally, we used the Z-cad sensor to identify and isolate minor subpopulations of cells displaying mesenchymal properties within a population comprising predominately epithelial-like cells. The Z-cad dual sensor identified cells with CSC-like properties more effectively than either the ZEB1 3' UTR or E-cadherin sensor alone. The Z-cad dual sensor effectively reports the activities of two factors critical in determining the epithelial/mesenchymal state of carcinoma cells. The ability of this stably

  12. Design and experimental research on a self-magnetic pinch diode under MV

    NASA Astrophysics Data System (ADS)

    Pengfei, ZHANG; Yang, HU; Jiang, SUN; Yan, SONG; Jianfeng, SUN; Zhiming, YAO; Peitian, CONG; Mengtong, QIU; Aici, QIU

    2018-01-01

    A self-magnetic pinch diode (SMPD) integrating an anode foil-reinforced electron beam pinch focus and a small high-dose x-ray spot output was designed and optimized. An x-ray focal spot measuring system was developed in accordance with the principle of pinhole imaging. The designed SMPD and the corresponding measuring system were tested under ∼MV, with 1.75 × 2 mm2 oval x-ray spots (AWE defined) and forward directed dose 1.6 rad at 1 m. Results confirmed that the anode foil can significantly strengthen the electron beam pinch focus, and the focal spot measuring system can collect clear focal spot images. This finding indicated that the principle and method are feasible.

  13. Parametric study of rod-pinch diode using particle-in-cell simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, R.; Biswas, D., E-mail: raghav@barc.gov.in; Chandra, R.

    2014-07-01

    We perform Particle-In-Cell (PIC) simulation of KALI-30 GW pulsed power generator based rod-pinch diode. It is shown that ions emitted from the anode-plasma play a crucial role in diode dynamics. It is found that ions not only help in compensating the space charge due to electron beam, but also lead to enhancement of the local electric field at the side walls of the cathode leading to additional electron emission from the side wall. Electrons emanating from one side wall of the cathode tend to converge at the anode tip. This can be used to design an improved Flash X-ray source.more » (author)« less

  14. H2A.Z Acidic Patch Couples Chromatin Dynamics to Regulation of Gene Expression Programs during ESC Differentiation

    PubMed Central

    Subramanian, Vidya; Mazumder, Aprotim; Surface, Lauren E.; Butty, Vincent L.; Fields, Paul A.; Alwan, Allison; Torrey, Lillian; Thai, Kevin K.; Levine, Stuart S.; Bathe, Mark; Boyer, Laurie A.

    2013-01-01

    The histone H2A variant H2A.Z is essential for embryonic development and for proper control of developmental gene expression programs in embryonic stem cells (ESCs). Divergent regions of amino acid sequence of H2A.Z likely determine its functional specialization compared to core histone H2A. For example, H2A.Z contains three divergent residues in the essential C-terminal acidic patch that reside on the surface of the histone octamer as an uninterrupted acidic patch domain; however, we know little about how these residues contribute to chromatin structure and function. Here, we show that the divergent amino acids Gly92, Asp97, and Ser98 in the H2A.Z C-terminal acidic patch (H2A.ZAP3) are critical for lineage commitment during ESC differentiation. H2A.Z is enriched at most H3K4me3 promoters in ESCs including poised, bivalent promoters that harbor both activating and repressive marks, H3K4me3 and H3K27me3 respectively. We found that while H2A.ZAP3 interacted with its deposition complex and displayed a highly similar distribution pattern compared to wild-type H2A.Z, its enrichment levels were reduced at target promoters. Further analysis revealed that H2A.ZAP3 was less tightly associated with chromatin, suggesting that the mutant is more dynamic. Notably, bivalent genes in H2A.ZAP3 ESCs displayed significant changes in expression compared to active genes. Moreover, bivalent genes in H2A.ZAP3 ESCs gained H3.3, a variant associated with higher nucleosome turnover, compared to wild-type H2A.Z. We next performed single cell imaging to measure H2A.Z dynamics. We found that H2A.ZAP3 displayed higher mobility in chromatin compared to wild-type H2A.Z by fluorescent recovery after photobleaching (FRAP). Moreover, ESCs treated with the transcriptional inhibitor flavopiridol resulted in a decrease in the H2A.ZAP3 mobile fraction and an increase in its occupancy at target genes indicating that the mutant can be properly incorporated into chromatin. Collectively, our work suggests

  15. Family nonuniversal Z' models with protected flavor-changing interactions

    NASA Astrophysics Data System (ADS)

    Celis, Alejandro; Fuentes-Martín, Javier; Jung, Martin; Serôdio, Hugo

    2015-07-01

    We define a new class of Z' models with neutral flavor-changing interactions at tree level in the down-quark sector. They are related in an exact way to elements of the quark mixing matrix due to an underlying flavored U(1)' gauge symmetry, rendering these models particularly predictive. The same symmetry implies lepton-flavor nonuniversal couplings, fully determined by the gauge structure of the model. Our models allow us to address presently observed deviations from the standard model and specific correlations among the new physics contributions to the Wilson coefficients C9,10' ℓ can be tested in b →s ℓ+ℓ- transitions. We furthermore predict lepton-universality violations in Z' decays, testable at the LHC.

  16. Confirmation of Small Dynamical and Stellar Masses for Extreme Emission Line Galaxies at z Approx. 2

    NASA Technical Reports Server (NTRS)

    Maseda, Michael V.; van Der Wel, Arjen; da Cunha, Elisabete; Rix, Hans-Walter; Pacifici, Camilla; Momcheva, Ivelina; Brammer, Gabriel B.; Franx, Marijn; van Dokkum, Pieter; Bell, Eric F.; hide

    2013-01-01

    Spectroscopic observations from the Large Binocular Telescope and the Very Large Telescope reveal kinematically narrow lines (approx. 50 km/s) for a sample of 14 extreme emission line galaxies at redshifts 1.4 < z < 2.3. These measurements imply that the total dynamical masses of these systems are low (< or approx. 3 × 10(exp 9) M). Their large [O III] (lambda)5007 equivalent widths (500-1100 Angstroms) and faint blue continuum emission imply young ages of 10-100 Myr and stellar masses of 10(exp 8)-10(exp 9)M, confirming the presence of a violent starburst. The dynamical masses represent the first such determinations for low-mass galaxies at z > 1. The stellar mass formed in this vigorous starburst phase represents a large fraction of the total (dynamical) mass, without a significantly massive underlying population of older stars. The occurrence of such intense events in shallow potentials strongly suggests that supernova-driven winds must be of critical importance in the subsequent evolution of these systems.

  17. Experiments and modelling of active quasi-single helicity regime generation in a reversed field pinch

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Brunsell, P. R.; Drake, J. R.

    2009-07-01

    The interaction of a static resonant magnetic perturbation (RMP) with a tearing mode (TM) is becoming a relevant topic in fusion plasma physics. RMPs can be generated by active coils and then used to affect the properties of TMs and of the corresponding magnetic islands. This paper shows how the feedback system of the EXTRAP T2R reversed field pinch (RFP) can produce a RMP that affects a rotating TM and stimulate the transition to the so-called quasi-single helicity (QSH) regime, a RFP plasma state characterized by a magnetic island surrounded by low magnetic chaos. The application of the RMP can increase the QSH probability up to 10% and enlarge the size of the corresponding island. Part of the experimental results are supported by a theoretical study that models the effect of the active coils on the magnetic island.

  18. Animal Models of Congenital Cardiomyopathies Associated With Mutations in Z-Line Proteins.

    PubMed

    Bang, Marie-Louise

    2017-01-01

    The cardiac Z-line at the boundary between sarcomeres is a multiprotein complex connecting the contractile apparatus with the cytoskeleton and the extracellular matrix. The Z-line is important for efficient force generation and transmission as well as the maintenance of structural stability and integrity. Furthermore, it is a nodal point for intracellular signaling, in particular mechanosensing and mechanotransduction. Mutations in various genes encoding Z-line proteins have been associated with different cardiomyopathies, including dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, restrictive cardiomyopathy, and left ventricular noncompaction, and mutations even within the same gene can cause widely different pathologies. Animal models have contributed to a great advancement in the understanding of the physiological function of Z-line proteins and the pathways leading from mutations in Z-line proteins to cardiomyopathy, although genotype-phenotype prediction remains a great challenge. This review presents an overview of the currently available animal models for Z-line and Z-line associated proteins involved in human cardiomyopathies with special emphasis on knock-in and transgenic mouse models recapitulating the clinical phenotypes of human cardiomyopathy patients carrying mutations in Z-line proteins. Pros and cons of mouse models will be discussed and a future outlook will be given. J. Cell. Physiol. 232: 38-52, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Quantification of hand function by power grip and pinch strength force measurements in ulnar nerve lesion simulated by ulnar nerve block.

    PubMed

    Wachter, Nikolaus Johannes; Mentzel, Martin; Krischak, Gert D; Gülke, Joachim

    2017-06-24

    In the assessment of hand and upper limb function, grip strength is of the major importance. The measurement by dynamometers has been established. In this study, the effect of a simulated ulnar nerve lesion on different grip force measurements was evaluated. In 25 healthy volunteers, grip force measurement was done by the JAMAR dynamometer (Fabrication Enterprises Inc, Irvington, NY) for power grip and by a pinch strength dynamometer for tip pinch strength, tripod grip, and key pinch strength. A within-subject research design was used in this prospective study. Each subject served as the control by preinjection measurements of grip and pinch strength. Subsequent measurements after ulnar nerve block were used to examine within-subject change. In power grip, there was a significant reduction of maximum grip force of 26.9% with ulnar nerve block compared with grip force without block (P < .0001). Larger reductions in pinch strength were observed with block: 57.5% in tip pinch strength (P < .0001), 61.0% in tripod grip (P < .0001), and 58.3% in key pinch strength (P < .0001). The effect of the distal ulnar nerve block on grip and pinch force could be confirmed. However, the assessment of other dimensions of hand strength as tip pinch, tripod pinch and key pinch had more relevance in demonstrating hand strength changes resulting from an distal ulnar nerve lesion. The measurement of tip pinch, tripod grip and key pinch can improve the follow-up in hand rehabilitation. II. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  20. Leptophobic Z' in models with multiple Higgs doublet fields

    NASA Astrophysics Data System (ADS)

    Chiang, Cheng-Wei; Nomura, Takaaki; Yagyu, Kei

    2015-05-01

    We study the collider phenomenology of the leptophobic Z' boson from an extra U(1)' gauge symmetry in models with N -Higgs doublet fields. We assume that the Z' boson at tree level has (i) no Z- Z' mixing, (ii) no interaction with the charged leptons, and (iii) no flavour-changing neutral current. Under such a setup, it is shown that in the N = 1 case, all the U(1)' charges of left-handed quark doublets and right-handed up- and down- type quarks are required to be the same, while in the N ≥ 3 case one can take different charges for the three types of quarks. The N = 2 case is not well-defined under the above three requirements. We study the processes ( V = γ , Z and W ±) with the leptonic decays of Z and W ± at the LHC. The most promising discovery channel or the most stringent constraint on the U(1)' gauge coupling constant comes from the Z'γ process below the threshold and from the process above the threshold. Assuming the collision energy of 8 TeV and integrated luminosity of 19.6 fb-1, we find that the constraint from the Z'γ search in the lower mass regime can be stronger than that from the UA2 experiment. In the N ≥ 3 case, we consider four benchmark points for the Z' couplings with quarks. If such a Z' is discovered, a careful comparison between the Z'γ and Z' W signals is crucial to reveal the nature of Z' couplings with quarks. We also present the discovery reach of the Z' boson at the 14-TeV LHC in both N = 1 and N ≥ 3 cases.

  1. A model for predicting aortic dynamic response to -G sub z impact acceleration.

    NASA Technical Reports Server (NTRS)

    Advani, S. H.; Tarnay, T. J.; Byars, E. F.; Love, J. S.

    1972-01-01

    A steady state dynamic response model for the radial motion of the aorta is developed from in vivo pressure-displacement and nerve stimulation experiments on canines. The model represented by a modified Van der Pol wave motion oscillator closely predicts steady state and perturbed response results. The applicability of the steady state canine aortic model to tailward acting impact forces is studied by means of the perturbed phase plane of the oscillator. The backflow through the aortic arch resulting from a specified acceleration-time profile is computed and an analysis for predicting the forced motion aortic response is presented.

  2. Gauge B-L model with residual Z 3 symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ernest; Pollard, Nicholas; Srivastava, Rahul

    We study a gauge B–L extension of the standard model of quarks and leptons with unconventional charges for the singlet right-handed neutrinos, and extra singlet scalars, such that a residual Z 3 symmetry remains after the spontaneous breaking of B–L. The phenomenological consequences of this scenario, including the possibility of long-lived self-interacting dark matter and Z' collider signatures is discussed. Lepton number L is a familiar concept. It is usually defined as a global U (1) symmetry, under which the leptons of the standard model (SM), i.e. e,μ,τ together with their neutrinos ν e,ν μ,ν τ have L=1, and allmore » other SM particles have L=0. In the case of nonzero Majorana neutrino masses, this continuous symmetry is broken to a discrete Z 2 symmetry, i.e. (-1) L or lepton parity. In this paper, we consider a gauge B–L extension of the SM, such that a residual Z 3 symmetry remains after the spontaneous breaking of B–L. This is then a realization of the unusual notion of Z 3 lepton symmetry. It has specific phenomenological consequences, including the possibility of a long-lived particle as a dark-matter candidate.« less

  3. Gauge B-L model with residual Z 3 symmetry

    DOE PAGES

    Ma, Ernest; Pollard, Nicholas; Srivastava, Rahul; ...

    2016-09-07

    We study a gauge B–L extension of the standard model of quarks and leptons with unconventional charges for the singlet right-handed neutrinos, and extra singlet scalars, such that a residual Z 3 symmetry remains after the spontaneous breaking of B–L. The phenomenological consequences of this scenario, including the possibility of long-lived self-interacting dark matter and Z' collider signatures is discussed. Lepton number L is a familiar concept. It is usually defined as a global U (1) symmetry, under which the leptons of the standard model (SM), i.e. e,μ,τ together with their neutrinos ν e,ν μ,ν τ have L=1, and allmore » other SM particles have L=0. In the case of nonzero Majorana neutrino masses, this continuous symmetry is broken to a discrete Z 2 symmetry, i.e. (-1) L or lepton parity. In this paper, we consider a gauge B–L extension of the SM, such that a residual Z 3 symmetry remains after the spontaneous breaking of B–L. This is then a realization of the unusual notion of Z 3 lepton symmetry. It has specific phenomenological consequences, including the possibility of a long-lived particle as a dark-matter candidate.« less

  4. Modeling study of deposition locations in the 291-Z plenum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahoney, L.A.; Glissmeyer, J.A.

    The TEMPEST (Trent and Eyler 1991) and PART5 computer codes were used to predict the probable locations of particle deposition in the suction-side plenum of the 291-Z building in the 200 Area of the Hanford Site, the exhaust fan building for the 234-5Z, 236-Z, and 232-Z buildings in the 200 Area of the Hanford Site. The Tempest code provided velocity fields for the airflow through the plenum. These velocity fields were then used with TEMPEST to provide modeling of near-floor particle concentrations without particle sticking (100% resuspension). The same velocity fields were also used with PART5 to provide modeling ofmore » particle deposition with sticking (0% resuspension). Some of the parameters whose importance was tested were particle size, point of injection and exhaust fan configuration.« less

  5. Z/sub n/ Baxter model: Critical behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tracy, C.A.

    1986-07-01

    The Z/sub n/ Baxter Model is an exactly solvable lattice model in the special case of the Belavin parametrization. We calculate the critical behavior of Prob/sub n/ (q = w/sup k/) using techniques developed in number theory in the study of the congruence properties of p(m), the number of unrestricted partitions of an integer m.

  6. Existence of a return direction for plasma escaping from a pinched column in a plasma focus discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubes, P.; Cikhardt, J.; Klir, D.

    2015-05-15

    The use of multi-frame interferometry used on the PF-1000 device with the deuterium filling showed the existence of a return motion of the top of several lobules of the pinched column formed at the pinched plasma column. This phenomenon was observed in the presence of an over-optimal mass in front of the anode, which depressed the intensity of the implosion and the smooth surface of the pinched plasma column. The observed evolution was explored through the use of closed poloidal currents transmitted outside the pinched plasma. This interpretation complements the scenario of the closed currents flowing within the structures insidemore » the pinched column, which has been published recently on the basis of observations from interferometry, neutron, and magnetic probe diagnostics on this device.« less

  7. The WiggleZ Dark Energy Survey: testing the cosmological model with baryon acoustic oscillations at z= 0.6

    NASA Astrophysics Data System (ADS)

    Blake, Chris; Davis, Tamara; Poole, Gregory B.; Parkinson, David; Brough, Sarah; Colless, Matthew; Contreras, Carlos; Couch, Warrick; Croom, Scott; Drinkwater, Michael J.; Forster, Karl; Gilbank, David; Gladders, Mike; Glazebrook, Karl; Jelliffe, Ben; Jurek, Russell J.; Li, I.-Hui; Madore, Barry; Martin, D. Christopher; Pimbblet, Kevin; Pracy, Michael; Sharp, Rob; Wisnioski, Emily; Woods, David; Wyder, Ted K.; Yee, H. K. C.

    2011-08-01

    We measure the imprint of baryon acoustic oscillations (BAOs) in the galaxy clustering pattern at the highest redshift achieved to date, z= 0.6, using the distribution of N= 132 509 emission-line galaxies in the WiggleZ Dark Energy Survey. We quantify BAOs using three statistics: the galaxy correlation function, power spectrum and the band-filtered estimator introduced by Xu et al. The results are mutually consistent, corresponding to a 4.0 per cent measurement of the cosmic distance-redshift relation at z= 0.6 [in terms of the acoustic parameter 'A(z)' introduced by Eisenstein et al., we find A(z= 0.6) = 0.452 ± 0.018]. Both BAOs and power spectrum shape information contribute towards these constraints. The statistical significance of the detection of the acoustic peak in the correlation function, relative to a wiggle-free model, is 3.2σ. The ratios of our distance measurements to those obtained using BAOs in the distribution of luminous red galaxies at redshifts z= 0.2 and 0.35 are consistent with a flat Λ cold dark matter model that also provides a good fit to the pattern of observed fluctuations in the cosmic microwave background radiation. The addition of the current WiggleZ data results in a ≈30 per cent improvement in the measurement accuracy of a constant equation of state, w, using BAO data alone. Based solely on geometric BAO distance ratios, accelerating expansion (w < -1/3) is required with a probability of 99.8 per cent, providing a consistency check of conclusions based on supernovae observations. Further improvements in cosmological constraints will result when the WiggleZ survey data set is complete.

  8. Z3 topological order in the face-centered-cubic quantum plaquette model

    NASA Astrophysics Data System (ADS)

    Devakul, Trithep

    2018-04-01

    We examine the topological order in the resonating singlet valence plaquette (RSVP) phase of the hard-core quantum plaquette model (QPM) on the face centered cubic (FCC) lattice. To do this, we construct a Rohksar-Kivelson type Hamiltonian of local plaquette resonances. This model is shown to exhibit a Z3 topological order, which we show by identifying a Z3 topological constant (which leads to a 33-fold topological ground state degeneracy on the 3-torus) and topological pointlike charge and looplike magnetic excitations which obey Z3 statistics. We also consider an exactly solvable generalization of this model, which makes the geometrical origin of the Z3 order explicitly clear. For other models and lattices, such generalizations produce a wide variety of topological phases, some of which are novel fracton phases.

  9. All possible electroweak models from Z orbifold

    NASA Astrophysics Data System (ADS)

    Sato, Hikaru; Kataoka, H.; Munakata, H.; Tanaka, S.

    1992-02-01

    Considering all possible combinations of two Wilson lines, it is shown that only three independent electroweak models with three generations are obtained from Z orbifold compactification. We obtain this result by analyzing particle spectra of both untwisted and twisted sectors explicitly.

  10. All possible electroweak models from Z orbifold

    NASA Astrophysics Data System (ADS)

    Sato, H.; Kataoka, H.; Munakata, H.; Tanaka, S.

    Considering all possible combinations of two Wilson lines it is shown that only three independent electroweak models with three generations are obtained from Z orbifold compactification. We obtain this result by analyzing particle spectra of both untwisted and twisted sectors explicitly.

  11. Mode- and plasma rotation in a resistive shell reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Malmberg, J.-A.; Brzozowski, J.; Brunsell, P. R.; Cecconello, M.; Drake, J. R.

    2004-02-01

    Mode rotation studies in a resistive shell reversed-field pinch, EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Control. Fusion 43, 1 (2001)] are presented. The phase relations and nonlinear coupling of the resonant modes are characterized and compared with that expected from modeling based on the hypothesis that mode dynamics can be described by a quasi stationary force balance including electromagnetic and viscous forces. Both m=0 and m=1 resonant modes are studied. The m=1 modes have rotation velocities corresponding to the plasma flow velocity (20-60 km/s) in the core region. The rotation velocity decreases towards the end of the discharge, although the plasma flow velocity does not decrease. A rotating phase locked m=1 structure is observed with a velocity of about 60 km/s. The m=0 modes accelerate throughout the discharges and reach velocities as high as 150-250 km/s. The observed m=0 phase locking is consistent with theory for certain conditions, but there are several conditions when the dynamics are not described. This is not unexpected because the assumption of quasi stationarity for the mode spectra is not fulfilled for many conditions. Localized m=0 perturbations are formed in correlation with highly transient discrete dynamo events. These perturbations form at the location of the m=1 phase locked structure, but rotate with a different velocity as they spread out in the toroidal direction.

  12. The Pinch Pot Technique and Raku.

    ERIC Educational Resources Information Center

    Demery, Marie

    Since the 16th century, the small Japanese raku tea bowl has reflected the merged cultural influences of art, religion, and other countries on the art of Japanese pottery. Artistically, the bowl is a combination of ceramics (pinching) and sculpture (carving). The dictates of the Zen Buddhist tea masters determine its sculptural process and steps,…

  13. Constraints on running vacuum model with H(z) and f σ8

    NASA Astrophysics Data System (ADS)

    Geng, Chao-Qiang; Lee, Chung-Chi; Yin, Lu

    2017-08-01

    We examine the running vacuum model with Λ (H) = 3 ν H2 + Λ0, where ν is the model parameter and Λ0 is the cosmological constant. From the data of the cosmic microwave background radiation, weak lensing and baryon acoustic oscillation along with the time dependent Hubble parameter H(z) and weighted linear growth f (z)σ8(z) measurements, we find that ν=(1.37+0.72-0.95)× 10-4 with the best fitted χ2 value slightly smaller than that in the ΛCDM model.

  14. Z/sub n/ Baxter model: symmetries and the Belavin parametrization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richey, M.P.; Tracy, C.A.

    1986-02-01

    The Z/sub n/ Baxter model is an exactly solvable lattice model in the special case of the Belavin parametrization. For this parametrization the authors calculate the partition function in an antiferromagnetic region and the order parameter in a ferromagnetic region. They find that the order parameter is expressible in terms of a modular function of level n which for n=2 is the Onsager-Yang-Baxter result. In addition they determine the symmetry group of the finite lattice partition function for the general Z/sub n/ Baxter model.

  15. A spin-liquid with pinch-line singularities on the pyrochlore lattice.

    PubMed

    Benton, Owen; Jaubert, L D C; Yan, Han; Shannon, Nic

    2016-05-26

    The mathematics of gauge theories lies behind many of the most profound advances in physics in the past 200 years, from Maxwell's theory of electromagnetism to Einstein's theory of general relativity. More recently it has become clear that gauge theories also emerge in condensed matter, a prime example being the spin-ice materials which host an emergent electromagnetic gauge field. In spin-ice, the underlying gauge structure is revealed by the presence of pinch-point singularities in neutron-scattering measurements. Here we report the discovery of a spin-liquid where the low-temperature physics is naturally described by the fluctuations of a tensor field with a continuous gauge freedom. This gauge structure underpins an unusual form of spin correlations, giving rise to pinch-line singularities: line-like analogues of the pinch points observed in spin-ice. Remarkably, these features may already have been observed in the pyrochlore material Tb2Ti2O7.

  16. A spin-liquid with pinch-line singularities on the pyrochlore lattice

    PubMed Central

    Benton, Owen; Jaubert, L.D.C.; Yan, Han; Shannon, Nic

    2016-01-01

    The mathematics of gauge theories lies behind many of the most profound advances in physics in the past 200 years, from Maxwell's theory of electromagnetism to Einstein's theory of general relativity. More recently it has become clear that gauge theories also emerge in condensed matter, a prime example being the spin-ice materials which host an emergent electromagnetic gauge field. In spin-ice, the underlying gauge structure is revealed by the presence of pinch-point singularities in neutron-scattering measurements. Here we report the discovery of a spin-liquid where the low-temperature physics is naturally described by the fluctuations of a tensor field with a continuous gauge freedom. This gauge structure underpins an unusual form of spin correlations, giving rise to pinch-line singularities: line-like analogues of the pinch points observed in spin-ice. Remarkably, these features may already have been observed in the pyrochlore material Tb2Ti2O7. PMID:27225400

  17. Studies on the response of resistive-wall modes to applied magnetic perturbations in the EXTRAP T2R reversed field pinch

    NASA Astrophysics Data System (ADS)

    Gregoratto, D.; Drake, J. R.; Yadikin, D.; Liu, Y. Q.; Paccagnella, R.; Brunsell, P. R.; Bolzonella, T.; Marchiori, G.; Cecconello, M.

    2005-09-01

    Arrays of magnetic coils and sensors in the EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Controlled Fusion 43 1457 (2001)] reversed-field pinch have been used to investigate the plasma response to an applied resonant magnetic perturbation in the range of the resistive-wall modes (RWMs). Measured RWM growth rates agree with predictions of a cylindrical ideal-plasma model. The linear growth of low-n marginally stable RWMs is related to the so-called resonant-field amplification due to a dominant ∣n∣=2 machine error field of about 2 G. The dynamics of the m =1 RWMs interacting with the applied field produced by the coils can be accurately described by a two-pole system. Estimated poles and residues are given with sufficient accuracy by the cylindrical model with a thin continuous wall.

  18. Exact results for quench dynamics and defect production in a two-dimensional model.

    PubMed

    Sengupta, K; Sen, Diptiman; Mondal, Shreyoshi

    2008-02-22

    We show that for a d-dimensional model in which a quench with a rate tau(-1) takes the system across a (d-m)-dimensional critical surface, the defect density scales as n approximately 1/tau(mnu/(znu+1)), where nu and z are the correlation length and dynamical critical exponents characterizing the critical surface. We explicitly demonstrate that the Kitaev model provides an example of such a scaling with d = 2 and m = nu = z = 1. We also provide the first example of an exact calculation of some multispin correlation functions for a two-dimensional model that can be used to determine the correlation between the defects. We suggest possible experiments to test our theory.

  19. Relationship between grip, pinch strengths and anthropometric variables, types of pitch throwing among Japanese high school baseball pitchers.

    PubMed

    Tajika, Tsuyoshi; Kobayashi, Tsutomu; Yamamoto, Atsushi; Shitara, Hitoshi; Ichinose, Tsuyoshi; Shimoyama, Daisuke; Okura, Chisa; Kanazawa, Saeko; Nagai, Ayako; Takagishi, Kenji

    2015-03-01

    Grip and pinch strength are crucially important attributes and standard parameters related to the functional integrity of the hand. It seems significant to investigate normative data for grip and pinch strength of baseball players to evaluate their performance and condition. Nevertheless, few reports have explained the association between grip and pinch strength and anthropometric variables and types of pitch throwing for baseball pitchers. The aim of this study was to measure and evaluate clinical normative data for grip and tip, key, palmar pinch strength and to assess the relationship between these data and anthropometric variables and types of pitch throwing among Japanese high-school baseball pitchers. One hundred-thirty three healthy high school baseball pitchers were examined and had completed a self-administered questionnaire including items related to age, hand dominance, throwing ratio of type of pitch. A digital dynamometer was used to measure grip strength and a pinch gauge to measure tip, key and palmer pinch in both dominant and nondominant side. Body composition was measured by the multi frequency segmental body composition analyzer. Grip strength and tip and palmer pinch strength in dominant side were statistically greater than them in nondominant side (P < 0.05). There were significant associations between grip strength and height (r = 0.33, P < 0.001), body mass (r = 0.50, P < 0.001), BMI (r = 0.37, P < 0.001), muscle mass of upper extremity (r = 0.56, P < 0.001), fat free mass (r = 0.57, P < 0.001), fat mass (r = 0.22, P < 0.05) in dominant side. A stepwise multiple regression analysis revealed that fat free mass and tip, palmer, key pinch strength were predictors of grip strength in dominant side. No statistical significant correlations were found between the throwing ratio of types of pitches thrown and grip strength and tip, key, palmar pinch strength. Our result provides normative values and evidences for grip and pinch strengths in high

  20. Cosmic Star Formation: A Simple Model of the SFRD(z)

    NASA Astrophysics Data System (ADS)

    Chiosi, Cesare; Sciarratta, Mauro; D’Onofrio, Mauro; Chiosi, Emanuela; Brotto, Francesca; De Michele, Rosaria; Politino, Valeria

    2017-12-01

    We investigate the evolution of the cosmic star formation rate density (SFRD) from redshift z = 20 to z = 0 and compare it with the observational one by Madau and Dickinson derived from recent compilations of ultraviolet (UV) and infrared (IR) data. The theoretical SFRD(z) and its evolution are obtained using a simple model that folds together the star formation histories of prototype galaxies that are designed to represent real objects of different morphological type along the Hubble sequence and the hierarchical growing of structures under the action of gravity from small perturbations to large-scale objects in Λ-CDM cosmogony, i.e., the number density of dark matter halos N(M,z). Although the overall model is very simple and easy to set up, it provides results that mimic results obtained from highly complex large-scale N-body simulations well. The simplicity of our approach allows us to test different assumptions for the star formation law in galaxies, the effects of energy feedback from stars to interstellar gas, the efficiency of galactic winds, and also the effect of N(M,z). The result of our analysis is that in the framework of the hierarchical assembly of galaxies, the so-called time-delayed star formation under plain assumptions mainly for the energy feedback and galactic winds can reproduce the observational SFRD(z).

  1. Reduction of the unnecessary dose from the over-range area with a spiral dynamic z-collimator: comparison of beam pitch and detector coverage with 128-detector row CT.

    PubMed

    Shirasaka, Takashi; Funama, Yoshinori; Hayashi, Mutsukazu; Awamoto, Shinichi; Kondo, Masatoshi; Nakamura, Yasuhiko; Hatakenaka, Masamitsu; Honda, Hiroshi

    2012-01-01

    Our purpose in this study was to assess the radiation dose reduction and the actual exposed scan length of over-range areas using a spiral dynamic z-collimator at different beam pitches and detector coverage. Using glass rod dosimeters, we measured the unilateral over-range scan dose between the beginning of the planned scan range and the beginning of the actual exposed scan range. Scanning was performed at detector coverage of 80.0 and 40.0 mm, with and without the spiral dynamic z-collimator. The dose-saving ratio was calculated as the ratio of the unnecessary over-range dose, with and without the spiral dynamic z-collimator. In 80.0 mm detector coverage without the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 108, 120, and 126 mm, corresponding to a beam pitch of 0.60, 0.80, and 0.99, respectively. With the spiral dynamic z-collimator, the actual exposed scan length for the over-range area was 48, 66, and 84 mm with a beam pitch of 0.60, 0.80, and 0.99, respectively. The dose-saving ratios with and without the spiral dynamic z-collimator for a beam pitch of 0.60, 0.80, and 0.99 were 35.07, 24.76, and 13.51%, respectively. With 40.0 mm detector coverage, the dose-saving ratios with and without the spiral dynamic z-collimator had the highest value of 27.23% with a low beam pitch of 0.60. The spiral dynamic z-collimator is important for a reduction in the unnecessary over-range dose and makes it possible to reduce the unnecessary dose by means of a lower beam pitch.

  2. An analytic solution for the minimal bathtub toy model: challenges in the star formation history of high-z galaxies

    NASA Astrophysics Data System (ADS)

    Dekel, Avishai; Mandelker, Nir

    2014-11-01

    We study the minimal `bathtub' toy model as a tool for capturing key processes of galaxy evolution and identifying robust successes and challenges in reproducing high-z observations. The source and sink terms of the continuity equations for gas and stars are expressed in simple terms from first principles. The assumed dependence of star formation rate (SFR) on gas mass self-regulates the system into a unique asymptotic behaviour, which is approximated by an analytic quasi-steady-state (QSS) solution. We address the validity of the QSS at different epochs independent of earlier conditions. At high z, where the accretion is gaseous, the specific SFR (sSFR) is predicted to be sSFR ≃ [(1 + z)/3]5/2 Gyr-1, slightly above the cosmological specific accretion rate, as observed at z = 3-8. The gas fraction is expected to decline slowly, and the observations constrain the SFR efficiency per dynamical time to ɛ ≃ 0.02. The stellar-to-virial mass ratio fsv is predicted to be constant in time, and the observed value requires an outflow mass-loading factor η ≃ 1-3, depending on the penetration efficiency of gas into the galaxy. However, at z ˜ 2, where stars are also accreted through mergers, there is a conflict between model and observations. The model that maximizes the sSFR, with the outflows fully recycled, underestimates the sSFR by a factor of ˜3 and overestimates fsv. With strong outflows, the model can match the observed fsv but then it underestimates the sSFR by an order of magnitude. We discuss potential remedies including a bias due to the exclusion of quenched galaxies.

  3. Dynamics and breakup of a contracting liquid filament

    NASA Astrophysics Data System (ADS)

    Notz, Patrick K.; Basaran, Osman A.

    2004-08-01

    Contraction of a filament of an incompressible Newtonian liquid in a passive ambient fluid is studied computationally to provide insights into the dynamics of satellite drops created during drop formation. This free boundary problem, which is composed of the Navier Stokes system and the associated initial and boundary conditions that govern the evolution in time of the filament shape and the velocity and pressure fields within it, is solved by the method of lines incorporating the finite element method for spatial discretization. The finite element algorithm developed here utilizes an adaptive elliptic mesh generation technique that is capable of tracking the dynamics of the filament up to the incipience of pinch-off without the use of remeshing. The correctness of the algorithm is verified by demonstrating that its predictions accord with (a) previously published results of Basaran (1992) on the analysis of finite-amplitude oscillations of viscous drops, (b) simulations of the dynamics of contracting filaments carried out with the well-benchmarked algorithm of Wilkes et al. (1999), and (c) scaling laws governing interface rupture and transitions that can occur from one scaling law to another as pinch-off is approached. In dimensionless form, just two parameters govern the problem: the dimensionless half-length L_o and the Ohnesorge number Oh which measures the relative importance of viscous force to capillary force. Regions of the parameter space are identified where filaments (a) contract to a sphere without breaking into multiple droplets, (b) break via the so-called endpinching mechanism where daughter drops pinch-off from the ends of the main filament, and (c) break after undergoing a series of complex oscillations. Predictions made with the new algorithm are also compared to those made with a model based on the slender-jet approximation. A region of the parameter space is found where the slender-jet approximation fares poorly, and its cause is elucidated by

  4. The Structure and Dynamics of Luminous and Dark Matter in the Early-Type Lens Galaxy of 0047-281 at z = 0.485

    NASA Astrophysics Data System (ADS)

    Koopmans, Léon V. E.; Treu, Tommaso

    2003-02-01

    We have measured the kinematic profile of the early-type (E/S0) lens galaxy in the system 0047-281 (z=0.485) with the Echelle Spectrograph and Imager (ESI) on the W. M. Keck II Telescope, as part of the Lenses Structure and Dynamics (LSD) Survey. The central velocity dispersion is σ=229+/-15 km s-1, and the dispersion profile is nearly flat to beyond one effective radius (Re). No significant streaming motion is found. Surface photometry of the lens galaxy is measured from Hubble Space Telescope images. From the offset from the local fundamental plane (FP), we measure an evolution of the effective mass-to-light ratio (M/L) of Δlog(M/LB)=-0.37+/-0.06 between z=0 and 0.485, consistent with the observed evolution of field E/S0 galaxies. (We assume h65=1, Ωm=0.3, and ΩΛ=0.7 throughout.) Gravitational lens models provide a mass of ME=(4.06+/-0.20)×1011h- 165 Msolar inside the Einstein radius of RE=(8.70+/-0.07)h-165 kpc. This allows us to break the degeneracy between velocity anisotropy and density profile typical of dynamical models for E/S0 galaxies. We find that constant-M/L models, even with strongly tangential anisotropy of the stellar velocity ellipsoid, are excluded at more than 99.9% CL. The total mass distribution inside RE can be described by a single power-law density profile, ρt~r-γ', with an effective slope γ'=1.90+0.05-0.23 (68% CL; +/-0.1 systematic error). Two-component models yield an upper limit (68% CL) of γ<=1.55(1.12) on the power-law slope of the dark matter density profile and a projected dark matter mass fraction of 0.41(0.54)+0.15-0.05(+0.09- 0.06) (68% CL) inside RE, for Osipkov-Merritt models with anisotropy radius ri=∞(Re). The stellar M*/L values derived from the FP agree well with the maximum allowed value from the isotropic dynamical models (i.e., the ``maximum-bulge solution''). The fact that both lens systems 0047-281 (z=0.485) and MG 2016+112 (z=1.004) are well described inside their Einstein radii by a constant-M*/L stellar

  5. SINFONI-HiZELS: the dynamics, merger rates and metallicity gradients of 'typical' star-forming galaxies at z = 0.8-2.2

    NASA Astrophysics Data System (ADS)

    Molina, J.; Ibar, Edo; Swinbank, A. M.; Sobral, D.; Best, P. N.; Smail, I.; Escala, A.; Cirasuolo, M.

    2017-04-01

    We present adaptive optics (AO) assisted SINFONI integral field unit (IFU) spectroscopy of 11 Hα emitting galaxies selected from the High-Z Emission Line Survey (HiZELS). We obtain spatially resolved dynamics on ˜kpc-scales of star-forming galaxies [stellar mass M⋆ = 109.5 - 10.5 M⊙ and star formation rate (SFR) = 2-30 M⊙ yr-1] near the peak of the cosmic star formation rate history. Combining these observations with our previous SINFONI-HiZELS campaign, we construct a sample of 20 homogeneously selected galaxies with IFU AO-aided observations - the 'SHiZELS' survey, with roughly equal number of galaxies per redshift slice, at z = 0.8, 1.47 and 2.23. We measure the dynamics and identify the major kinematic axis by modelling their velocity fields to extract rotational curves and infer their inclination-corrected rotational velocities. We explore the stellar mass Tully-Fisher relationship, finding that galaxies with higher velocity dispersions tend to deviate from this relation. Using kinemetry analyses, we find that galaxy interactions might be the dominant mechanism controlling the star formation activity at z = 2.23 but they become gradually less important down to z = 0.8. Metallicity gradients derived from the [N II]/Hα emission line ratio show a median negative gradient for the SHiZELS survey of Δlog(O/H)/ΔR = -0.026 ± 0.008 dex kpc-1. We find that metal-rich galaxies tend to show negative gradients, whereas metal-poor galaxies tend to exhibit positive metallicity gradients. This result suggests that the accretion of pristine gas in the periphery of galaxies plays an important role in replenishing the gas in 'typical' star-forming galaxies.

  6. Resistive wall instabilities and tearing mode dynamics in the EXTRAP T2R thin shell reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Malmberg, J.-A.; Brunsell, P. R.

    2002-01-01

    Observations of resistive wall instabilities and tearing mode dynamics in the EXTRAP T2R thin shell (τw=6 ms) reversed field pinch are described. A nonresonant mode (m=1,n=-10) with the same handedness as the internal field grows nearly exponentially with an average growth time of about 2.6 ms (less than 1/2 of the shell time) consistent with linear stability theory. The externally nonresonant unstable modes (m=1,n>0), predicted by linear stability theory, are observed to have only low amplitudes (in the normal low-Θ operation mode of the device). The radial field of the dominant internally resonant tearing modes (m=1,n=-15 to n=-12) remain low due to spontaneous fast mode rotation, corresponding to angular phase velocities up to 280 krad/s. Phase aligned mode structures are observed to rotate toroidally with an average angular velocity of 40 krad/s, in the opposite direction of the plasma current. Toward the end of the discharge, the radial field of the internally resonant modes grows as the modes slow down and become wall-locked, in agreement with nonlinear computations. Fast rotation of the internally resonant modes has been observed only recently and is attributed to a change of the front-end system (vacuum vessel, shell, and TF coil) of the device.

  7. Anomalous transport theory for the reversed field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terry, P.W.; Hegna, C.C; Sovinec, C.R.

    1996-09-01

    Physically motivated transport models with predictive capabilities and significance beyond the reversed field pinch (RFP) are presented. It is shown that the ambipolar constrained electron heat loss observed in MST can be quantitatively modeled by taking account of the clumping in parallel streaming electrons and the resultant self-consistent interaction with collective modes; that the discrete dynamo process is a relaxation oscillation whose dependence on the tearing instability and profile relaxation physics leads to amplitude and period scaling predictions consistent with experiment; that the Lundquist number scaling in relaxed plasmas driven by magnetic turbulence has a weak S{sup {minus}1/4} scaling; andmore » that radial E{times}B shear flow can lead to large reductions in the edge particle flux with little change in the heat flux, as observed in the RFP and tokamak. 24 refs.« less

  8. The hybrid RANS/LES of partially premixed supersonic combustion using G/Z flamelet model

    NASA Astrophysics Data System (ADS)

    Wu, Jinshui; Wang, Zhenguo; Bai, Xuesong; Sun, Mingbo; Wang, Hongbo

    2016-10-01

    In order to describe partially premixed supersonic combustion numerically, G/Z flamelet model is developed and compared with finite rate model in hybrid RANS/LES simulation to study the strut-injection supersonic combustion flow field designed by the German Aerospace Center. A new temperature calculation method based on time-splitting method of total energy is introduced in G/Z flamelet model. Simulation results show that temperature predictions in partially premixed zone by G/Z flamelet model are more consistent with experiment than finite rate model. It is worth mentioning that low temperature reaction zone behind the strut is well reproduced. Other quantities such as average velocity and average velocity fluctuation obtained by developed G/Z flamelet model are also in good agreement with experiment. Besides, simulation results by G/Z flamelet also reveal the mechanism of partially premixed supersonic combustion by the analyses of the interaction between turbulent burning velocity and flow field.

  9. The Evolution of the Tully-Fisher Relation between z ˜ 2.3 and z ˜ 0.9 with KMOS3D

    NASA Astrophysics Data System (ADS)

    Übler, H.; Förster Schreiber, N. M.; Genzel, R.; Wisnioski, E.; Wuyts, S.; Lang, P.; Naab, T.; Burkert, A.; van Dokkum, P. G.; Tacconi, L. J.; Wilman, D. J.; Fossati, M.; Mendel, J. T.; Beifiori, A.; Belli, S.; Bender, R.; Brammer, G. B.; Chan, J.; Davies, R.; Fabricius, M.; Galametz, A.; Lutz, D.; Momcheva, I. G.; Nelson, E. J.; Saglia, R. P.; Seitz, S.; Tadaki, K.

    2017-06-01

    We investigate the stellar mass and baryonic mass Tully-Fisher relations (TFRs) of massive star-forming disk galaxies at redshift z˜ 2.3 and z˜ 0.9 as part of the {{KMOS}}3{{D}} integral field spectroscopy survey. Our spatially resolved data allow reliable modeling of individual galaxies, including the effect of pressure support on the inferred gravitational potential. At fixed circular velocity, we find higher baryonic masses and similar stellar masses at z˜ 2.3 as compared to z˜ 0.9. Together with the decreasing gas-to-stellar mass ratios with decreasing redshift, this implies that the contribution of dark matter to the dynamical mass on the galaxy scale increases toward lower redshift. A comparison to local relations reveals a negative evolution of the stellar and baryonic TFR zero points from z = 0 to z˜ 0.9, no evolution of the stellar TFR zero point from z˜ 0.9 to z˜ 2.3, and a positive evolution of the baryonic TFR zero point from z˜ 0.9 to z˜ 2.3. We discuss a toy model of disk galaxy evolution to explain the observed nonmonotonic TFR evolution, taking into account the empirically motivated redshift dependencies of galactic gas fractions and the relative amount of baryons to dark matter on galaxy and halo scales. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere under ESO programs 092.A-0091, 093.A-0079, 094.A-0217, 095.A-0047, and 096.A-0025.

  10. WHAT ARE THE Omh {sup 2} ( z {sub 1}, z {sub 2}) AND Om ( z {sub 1}, z {sub 2}) DIAGNOSTICS TELLING US IN LIGHT OF H ( z ) DATA?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xiaogang; Ding, Xuheng; Biesiada, Marek

    2016-07-01

    The two-point diagnostics Om ( z {sub i} , z {sub j} ) and Omh {sup 2}( z {sub i} , z {sub j} ) have been introduced as an interesting tool for testing the validity of the Λ cold dark matter (ΛCDM) model. Recently, Sahni et al. combined two independent measurements of H ( z ) from baryon acoustic oscillation (BAO) data with the value of the Hubble constant H {sub 0}, and used the second of these diagnostics to test the ΛCDM (a constant equation-of-state parameter for dark energy) model. Their result indicated a considerable tension between observationsmore » and predictions of the ΛCDM model. Since reliable data concerning the expansion rates of the universe at different redshifts H ( z ) are crucial for the successful application of this method, we investigate both two-point diagnostics on the most comprehensive set of N = 36 measurements of H ( z ) from BAOs and the differential ages (DAs) of passively evolving galaxies. We discuss the uncertainties of the two-point diagnostics and find that they are strongly non-Gaussian and follow the patterns deeply rooted in their very construction. Therefore we propose that non-parametric median statistics is the most appropriate way of treating this problem. Our results support the claims that ΛCDM is in tension with H ( z ) data according to the two-point diagnostics developed by Shafieloo, Sahni, and Starobinsky. However, other alternatives to the ΛCDM model, such as the wCDM or Chevalier–Polarski–Linder models, perform even worse. We also note that there are serious systematic differences between the BAO and DA methods that ought to be better understood before H ( z ) measurements can compete with other probes methods.« less

  11. Renormalized dynamics of the Dean-Kawasaki model

    NASA Astrophysics Data System (ADS)

    Bidhoodi, Neeta; Das, Shankar P.

    2015-07-01

    We study the model of a supercooled liquid for which the equation of motion for the coarse-grained density ρ (x ,t ) is the nonlinear diffusion equation originally proposed by Dean and Kawasaki, respectively, for Brownian and Newtonian dynamics of fluid particles. Using a Martin-Siggia-Rose (MSR) field theory we study the renormalization of the dynamics in a self-consistent form in terms of the so-called self-energy matrix Σ . The appropriate model for the renormalized dynamics involves an extended set of field variables {ρ ,θ } , linked through a nonlinear constraint. The latter incorporates, in a nonperturbative manner, the effects of an infinite number of density nonlinearities in the dynamics. We show that the contributing element of Σ which renormalizes the bare diffusion constant D0 to DR is same as that proposed by Kawasaki and Miyazima [Z. Phys. B Condens. Matter 103, 423 (1997), 10.1007/s002570050396]. DR sharply decreases with increasing density. We consider the likelihood of a ergodic-nonergodic (ENE) transition in the model beyond a critical point. The transition is characterized by the long-time limit of the density correlation freezing at a nonzero value. From our analysis we identify an element of Σ which arises from the above-mentioned nonlinear constraint and is key to the viability of the ENE transition. If this self-energy would be zero, then the model supports a sharp ENE transition with DR=0 as predicted by Kawasaki and Miyazima. With the full model having nonzero value for this self-energy, the density autocorrelation function decays to zero in the long-time limit. Hence the ENE transition is not supported in the model.

  12. Pinch-off syndrome: transection of implantable central venous access device.

    PubMed

    Sugimoto, Takuya; Nagata, Hiroshi; Hayashi, Ken; Kano, Nobuyasu

    2012-11-30

    As the population of people with cancer increases so does the number of patients who take chemotherapy. Majority of them are administered parentally continuously. Implantable central venous catheter device is a good choice for those patients; however, severe complication would occur concerning the devices. Pinch-off syndrome is one of the most severe complications. The authors report a severe case of pinch-off syndrome. The patient with the implantable central venous device could not take chemotherapy because the device occluded. Further examination revealed the transection of the catheter. The transected fragment of the catheter in the heart was successfully removed by using a loop snare placed through the right femoral vein.

  13. Heavy ion beam probe operation in time varying equilibria of improved confinement reversed field pinch discharges.

    PubMed

    Demers, D R; Chen, X; Schoch, P M; Fimognari, P J

    2010-10-01

    Operation of a heavy ion beam probe (HIBP) on a reversed field pinch is unique from other toroidal applications because the magnetic field is more temporal and largely produced by plasma current. Improved confinement, produced through the transient application of a poloidal electric field which leads to a reduction of dynamo activity, exhibits gradual changes in equilibrium plasma quantities. A consequence of this is sweeping of the HIBP trajectories by the dynamic magnetic field, resulting in motion of the sample volume. In addition, the plasma potential evolves with the magnetic equilibrium. Measurement of the potential as a function of time is thus a combination of temporal changes of the equilibrium and motion of the sample volume. A frequent additional complication is a nonideal balance of ion current on the detectors resulting from changes in the beam trajectory (magnetic field) and energy (plasma potential). This necessitates use of data selection criteria. Nevertheless, the HIBP on the Madison Symmetric Torus has acquired measurements as a function of time throughout improved confinement. A technique developed to infer the potential in the improved confinement reversed field pinch from HIBP data in light of the time varying plasma equilibrium will be discussed.

  14. Characteristics of plasma-puff trigger for a inverse-pinch plasma switch

    NASA Technical Reports Server (NTRS)

    Choi, Eun H.; Venable, Demetrius D.; Han, Kwang S.; Lee, Ja H.

    1993-01-01

    The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for the azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressure of Ar, He and N2. The optimal fill-gas pressure range for the azimuthally uniform plasma-puff was about 120 mTorr less than or equal to P(sub op) less than or equal to 450 Torr for He and N2. For Argon 120 mTorr is less than or equal to P(sub op) is less than or equal to 5 Torr. The inverse-pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. The azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff will be discussed in comparison with the current hypocycloidal-pinch plasma-puff triggering.

  15. Parallel Operation of Multiple Closely Spaced Small Aspect Ratio Rod Pinches

    DOE PAGES

    Harper-Slaboszewicz, Victor J.; Leckbee, Joshua; Bennett, Nichelle; ...

    2014-12-10

    A series of simulations and experiments to resolve questions about the operation of arrays of closely spaced small aspect ratio rod pinches has been performed. Design and post-shot analysis of the experimental results are supported by 3D particle-in-cell simulations. Both simulations and experiments support these conclusions. Penetration of current to the interior of the array appears to be efficient, as the current on the center rods is essentially equal to the current on the outer rods. Current loss in the feed due to the formation of magnetic nulls was avoided in these experiments by design of the feed surface ofmore » the cathode and control of the gap to keep the electric fields on the cathode below the emission threshold. Some asymmetry in the electron flow to the rod was observed, but the flow appeared to symmetrize as it reached the end of the rod. Interaction between the rod pinches can be controlled to allow the stable and consistent operation of arrays of rod pinches.« less

  16. Exactly solved models on planar graphs with vertices in {Z}^3

    NASA Astrophysics Data System (ADS)

    Kels, Andrew P.

    2017-12-01

    It is shown how exactly solved edge interaction models on the square lattice, may be extended onto more general planar graphs, with edges connecting a subset of next nearest neighbour vertices of {Z}3 . This is done by using local deformations of the square lattice, that arise through the use of the star-triangle relation. Similar to Baxter’s Z-invariance property, these local deformations leave the partition function invariant up to some simple factors coming from the star-triangle relation. The deformations used here extend the usual formulation of Z-invariance, by requiring the introduction of oriented rapidity lines which form directed closed paths in the rapidity graph of the model. The quasi-classical limit is also considered, in which case the deformations imply a classical Z-invariance property, as well as a related local closure relation, for the action functional of a system of classical discrete Laplace equations.

  17. Self-Organisation and Intermittent Coherent Oscillations in the EXTRAP T2 Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Cecconello, M.; Malmberg, J.-A.; Sallander, E.; Drake, J. R.

    Many reversed-field pinch (RFP) experiments exhibit a coherent oscillatory behaviour that is characteristic of discrete dynamo events and is associated with intermittent current profile self-organisation phenomena. However, in the vast majority of the discharges in the resistive shell RFP experiment EXTRAP T2, the dynamo activity does not show global, coherent oscillatory behaviour. The internally resonant tearing modes are phase-aligned and wall-locked resulting in a large localised magnetic perturbation. Equilibrium and plasma parameters have a level of high frequency fluctuations but the average values are quasi-steady. For some discharges, however, the equilibrium parameters exhibit the oscillatory behaviour characteristic of the discrete dynamo events. For these discharges, the trend observed in the tearing mode spectra, associated with the onset of the discrete relaxation event behaviour, is a relative higher amplitude of m = 0 mode activity and relative lower amplitude of the m = 1 mode activity compared with their average values. Global plasma parameters and model profile calculations for sample discharges representing the two types of relaxation dynamics are presented.

  18. A Pressure-Based Analysis of Vortex Ring Pinch-Off

    NASA Astrophysics Data System (ADS)

    Schlueter, Kristy; Braun, Noah; Dabiri, John

    2014-11-01

    This study investigated the development of vortex rings over a range of maximum stroke ratios, and analyzed vorticity and pressure data for clues to the physical mechanisms underlying vortex pinch-off. An impulsive piston velocity profile and Reynolds number of 3000 were used for all cases. The formation number was consistently found to be 3.6 +/-0.3. A recently developed algorithm was used to generate pressure fields by integrating the pressure gradient along several paths through the velocity field and taking the median to get explicit values for pressure. The formation time at the occurrence of a local maximum in the pressure between the vortex ring and the lip of the nozzle, known as the trailing pressure maximum, was found to occur concurrently with the formation number for each case, within the error associated with the temporal resolution of the data. This suggests that the trailing pressure maximum is an indicator of vortex ring pinch-off. This is consistent with the results of Lawson and Dawson (2014), who found that the appearance of the trailing pressure maximum was coincident with the formation number. This pressure based approach to determining vortex ring pinch-off will be applied to a biological flow to examine the efficiency of such a flow. This research was partially supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  19. Stability of a diffuse linear pinch with axial boundaries

    NASA Technical Reports Server (NTRS)

    Einaudi, G.; Van Hoven, G.

    1981-01-01

    A formulation of the stability behavior of a finite-length pinch is presented. A general initial perturbation is expressed as a uniformly convergent sum over a complete discrete k set. A variational calculation is then performed, based on the energy principle, in which the end-boundary conditions appear as constraints. The requisite Lagrange multipliers mutually couple the elemental periodic excitations. The resulting extended form of delta-W still admits a proper second-variation treatment so that the minimization and stability considerations of Newcomb remain applicable. Comparison theorems are discussed as is the relevance of this end-effect model to the stability of solar coronal loops.

  20. Pharmacophore generation, atom-based 3D-QSAR, molecular docking and molecular dynamics simulation studies on benzamide analogues as FtsZ inhibitors.

    PubMed

    Tripathy, Swayansiddha; Azam, Mohammed Afzal; Jupudi, Srikanth; Sahu, Susanta Kumar

    2017-10-11

    FtsZ is an appealing target for the design of antimicrobial agent that can be used to defeat the multidrug-resistant bacterial pathogens. Pharmacophore modelling, molecular docking and molecular dynamics (MD) simulation studies were performed on a series of three-substituted benzamide derivatives. In the present study a five-featured pharmacophore model with one hydrogen bond acceptors, one hydrogen bond donors, one hydrophobic and two aromatic rings was developed using 97 molecules having MIC values ranging from .07 to 957 μM. A statistically significant 3D-QSAR model was obtained using this pharmacophore hypothesis with a good correlation coefficient (R 2  = .8319), cross validated coefficient (Q 2  = .6213) and a high Fisher ratio (F = 103.9) with three component PLS factor. A good correlation between experimental and predicted activity of the training (R 2  = .83) and test set (R 2  = .67) molecules were displayed by ADHRR.1682 model. The generated model was further validated by enrichment studies using the decoy test and MAE-based criteria to measure the efficiency of the model. The docking studies of all selected inhibitors in the active site of FtsZ protein showed crucial hydrogen bond interactions with Val 207, Asn 263, Leu 209, Gly 205 and Asn-299 residues. The binding free energies of these inhibitors were calculated by the molecular mechanics/generalized born surface area VSGB 2.0 method. Finally, a 15 ns MD simulation was done to confirm the stability of the 4DXD-ligand complex. On a wider scope, the prospect of present work provides insight in designing molecules with better selective FtsZ inhibitory potential.

  1. Dense Plasma Focus Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; Li, Shengtai; Jungman, Gerard

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  2. Deep insights into the mode of ATP-binding mechanism in Zebrafish cyclin-dependent protein kinase-like 1 (zCDKL1): A molecular dynamics approach.

    PubMed

    Rout, Ajaya Kumar; Dehury, Budheswar; Maharana, Jitendra; Nayak, Chirasmita; Baisvar, Vishwamitra Singh; Behera, Bijay Kumar; Das, Basanta Kumar

    2018-05-01

    In eukaryotes, the serine/threonine kinases (STKs) belonging to cyclin-dependent protein kinases (CDKs) play significant role in control of cell division and curb transcription in response to several extra and intra-cellular signals indispensable for enzymatic activity. The zebrafish cyclin-dependent protein kinase-like 1 protein (zCDKL1) shares a high degree of sequence and structural similarity with mammalian orthologs and express in brain, ovary, testis, and low levels in other tissues. Regardless of its importance in the developmental process, the structure, function and mode of ATP recognition have not been investigated yet due to lack of experimental data. Henceforth, to gain atomistic insights in to the structural dynamics and mode of ATP binding, a series of computational techniques involving theoretical modeling, docking, molecular dynamics (MD) simulations and MM/PBSA binding free energies were employed. The modeled bi-lobed zCDKL1 shares a high degree of secondary structure topology with human orthologs where ATP prefers to lie in the central cavity of the bi-lobed catalytic domain enclosed by strong hydrogen bonding, electrostatic and hydrophobic contacts. Long range MD simulation portrayed that catalytic domain of zCDKL1 to be highly rigid in nature as compared to the complex (zCDKL1-ATP) form. Comparative analysis with its orthologs revealed that conserved amino acids i.e., Ile10, Gly11, Glu12, Val18, Arg31, Phe80, Glu 130, Cys143 and Asp144 were crucial for ATP binding mechanism, which needs further investigation for legitimacy. MM/PBSA method revealed that van der Waals, electrostatic and polar solvation energy mostly contributes towards negative free energy. The implications of ATP binding mechanism inferred through these structural bioinformatics approaches will help in understanding the catalytic mechanisms of important STKs in eukaryotic system. Copyright © 2018. Published by Elsevier Inc.

  3. Light Z' in heterotic string standardlike models

    NASA Astrophysics Data System (ADS)

    Athanasopoulos, P.; Faraggi, A. E.; Mehta, V. M.

    2014-05-01

    The discovery of the Higgs boson at the LHC supports the hypothesis that the Standard Model provides an effective parametrization of all subatomic experimental data up to the Planck scale. String theory, which provides a viable perturbative approach to quantum gravity, requires for its consistency the existence of additional gauge symmetries beyond the Standard Model. The construction of heterotic string models with a viable light Z' is, however, highly constrained. We outline the construction of standardlike heterotic string models that allow for an additional Abelian gauge symmetry that may remain unbroken down to low scales. We present a string inspired model, consistent with the string constraints.

  4. Resistive wall modes in the EXTRAP T2R reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Malmberg, J.-A.; Yadikin, D.; Cecconello, M.

    2003-10-01

    Resistive wall modes (RWM) in the reversed field pinch are studied and a detailed comparison of experimental growth rates and linear magnetohydrodynamic (MHD) theory is made. RWM growth rates are experimentally measured in the thin shell device EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Controlled Fusion 43, 1 (2001)]. Linear MHD calculations of RWM growth rates are based on experimental equilibria. Experimental and linear MHD RWM growth rate dependency on the equilibrium profiles is investigated experimentally by varying the pinch parameter Θ=Bθ(a)/ in the range Θ=1.5-1.8. Quantitative agreement between experimental and linear MHD growth rates is seen. The dominating RWMs are the internal on-axis modes (having the same helicity as the central equilibrium field). At high Θ, external nonresonant modes are also observed. For internal modes experimental growth rates decrease with Θ while for external modes, growth rates increase with Θ. The effect of RWMs on the reversed-field pinch plasma performance is discussed.

  5. Particle-In-Cell Modeling For MJ Dense Plasma Focus with Varied Anode Shape

    NASA Astrophysics Data System (ADS)

    Link, A.; Halvorson, C.; Schmidt, A.; Hagen, E. C.; Rose, D.; Welch, D.

    2014-10-01

    Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 1012 neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations to the 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. The simulations were performed using a new hybrid fluid-to-kinetic model transitioning from a fluid description to a fully kinetic PIC description during the run-in phase. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Results will be present on the predicted effects of different anode configurations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (11-ERD-063) and the Computing Grand Challenge program at LLNL. This work supported by Office of Defense Nuclear Nonproliferation Research and Development within U.S. Department of Energy's National Nuclear Security Administration.

  6. Analysis of pinching in deterministic particle separation

    NASA Astrophysics Data System (ADS)

    Risbud, Sumedh; Luo, Mingxiang; Frechette, Joelle; Drazer, German

    2011-11-01

    We investigate the problem of spherical particles vertically settling parallel to Y-axis (under gravity), through a pinching gap created by an obstacle (spherical or cylindrical, center at the origin) and a wall (normal to X axis), to uncover the physics governing microfluidic separation techniques such as deterministic lateral displacement and pinched flow fractionation: (1) theoretically, by linearly superimposing the resistances offered by the wall and the obstacle separately, (2) computationally, using the lattice Boltzmann method for particulate systems and (3) experimentally, by conducting macroscopic experiments. Both, theory and simulations, show that for a given initial separation between the particle centre and the Y-axis, presence of a wall pushes the particles closer to the obstacle, than its absence. Experimentally, this is expected to result in an early onset of the short-range repulsive forces caused by solid-solid contact. We indeed observe such an early onset, which we quantify by measuring the asymmetry in the trajectories of the spherical particles around the obstacle. This work is partially supported by the National Science Foundation Grant Nos. CBET- 0731032, CMMI-0748094, and CBET-0954840.

  7. High Energy Electron Detectors on Sphinx

    NASA Astrophysics Data System (ADS)

    Thompson, J. R.; Porte, A.; Zucchini, F.; Calamy, H.; Auriel, G.; Coleman, P. L.; Bayol, F.; Lalle, B.; Krishnan, M.; Wilson, K.

    2008-11-01

    Z-pinch plasma radiation sources are used to dose test objects with K-shell (˜1-4keV) x-rays. The implosion physics can produce high energy electrons (> 50keV), which could distort interpretation of the soft x-ray effects. We describe the design and implementation of a diagnostic suite to characterize the electron environment of Al wire and Ar gas puff z-pinches on Sphinx. The design used ITS calculations to model detector response to both soft x-rays and electrons and help set upper bounds to the spurious electron flux. Strategies to discriminate between the known soft x-ray emission and the suspected electron flux will be discussed. H.Calamy et al, ``Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion,'' Phys Plasmas 15, 012701 (2008) J.A.Halbleib et al, ``ITS: the integrated TIGER series of electron/photon transport codes-Version 3.0,'' IEEE Trans on Nuclear Sci, 39, 1025 (1992)

  8. Pinching Solutions of Slender Cylindrical Jets

    DTIC Science & Technology

    1993-06-01

    NASA Langley Research Center, Hampton, VA 23681.2This research was supported in part by Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDE...concentrate on inviscid irrotational flows of liquid jets. A review article has been written by Bogy [2]. Of relevance is also the work of Chandrasekhar...equations become elliptic and allow the possibility of admissible pinching solutions described in this article . It is interesting to find that for jets

  9. Computing with volatile memristors: an application of non-pinched hysteresis

    NASA Astrophysics Data System (ADS)

    Pershin, Y. V.; Shevchenko, S. N.

    2017-02-01

    The possibility of in-memory computing with volatile memristive devices, namely, memristors requiring a power source to sustain their memory, is demonstrated theoretically. We have adopted a hysteretic graphene-based field emission structure as a prototype of a volatile memristor, which is characterized by a non-pinched hysteresis loop. A memristive model of the structure is developed and used to simulate a polymorphic circuit implementing stateful logic gates, such as the material implication. Specific regions of parameter space realizing useful logic functions are identified. Our results are applicable to other realizations of volatile memory devices, such as certain NEMS switches.

  10. Dynamics of the plasma current sheath in plasma focus discharges in different gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinogradov, V. P.; Krauz, V. I., E-mail: krauz-vi@nrcki.ru; Mokeev, A. N.

    2016-12-15

    The shape of the plasma current sheath (PCS) in the final stage of its radial compression, the dynamics of pinching, and the subsequent pinch decay in plasma focus (PF) discharges in different gases are studied using an improved multichannel system of electron-optical plasma photography and a newly elaborated synchronization system. The PCS structure in discharges in heavy gases (Ne, Ar) is found to differ significantly from that in discharges in hydrogen and deuterium. The influence of a heavy gas (Xe) additive to hydrogen and deuterium on the structure and compression dynamics of the PCS is investigated.

  11. Constraints on running vacuum model with H ( z ) and f σ{sub 8}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Chao-Qiang; Lee, Chung-Chi; Yin, Lu, E-mail: geng@phys.nthu.edu.tw, E-mail: lee.chungchi16@gmail.com, E-mail: yinlumail@foxmail.com

    We examine the running vacuum model with Λ ( H ) = 3 ν H {sup 2} + Λ{sub 0}, where ν is the model parameter and Λ{sub 0} is the cosmological constant. From the data of the cosmic microwave background radiation, weak lensing and baryon acoustic oscillation along with the time dependent Hubble parameter H ( z ) and weighted linear growth f ( z )σ{sub 8}( z ) measurements, we find that ν=(1.37{sup +0.72}{sub −0.95})× 10{sup −4} with the best fitted χ{sup 2} value slightly smaller than that in the ΛCDM model.

  12. Moderately reverberant learning ultrasonic pinch panel.

    PubMed

    Nikolovski, Jean-Pierre

    2013-10-01

    Tactile sensing is widely used in human-computer interfaces. However, mechanical integration of touch technologies is often perceived as difficult by engineers because it often limits the freedom of style or form factor requested by designers. Recent work in active ultrasonic touch technologies has made it possible to transform thin glass plates, metallic sheets, or plastic shells into interactive surfaces. The method is based on a learning process of touch-induced, amplitude-disturbed diffraction patterns. This paper proposes, first, an evolution in the design with multiple dipole transducers that improves touch sensitivity or maximum panel size by a factor of ten, and improves robustness and usability in moderately reverberant panels, and second, defines a set of acoustic variables in the signal processing for the evaluation of sensitivity and radiating features. For proof of concept purposes, the design and process are applied to 3.2- and 6-mm-thick glass plates with variable damping conditions. Transducers are bonded to only one short side of the rectangular substrates. Measurements show that the highly sensitive free lateral sides are perfectly adapted for pinch-touch and pinch-slide interactions. The advantage of relative versus absolute touch disturbance measurement is discussed, together with tolerance to abutting contaminants.

  13. Explaining formation of Astronomical Jets using Dynamic Universe Model

    NASA Astrophysics Data System (ADS)

    Naga Parameswara Gupta, Satyavarapu

    2016-07-01

    Astronomical jets are observed from the centres of many Galaxies including our own Milkyway. The formation of such jet is explained using SITA simulations of Dynamic Universe Model. For this purpose the path traced by a test neutron is calculated and depicted using a set up of one densemass of the mass equivalent to mass of Galaxy center, 90 stars with similar masses of stars near Galaxy center, mass equivalents of 23 Globular Cluster groups, 16 Milkyway parts, Andromeda and Triangulum Galaxies at appropriate distances. Five different kinds of theoretical simulations gave positive results The path travelled by this test neutron was found to be an astronomical jet emerging from Galaxy center. This is another result from Dynamic Universe Model. It solves new problems like a. Variable Mass Rocket Trajectory Problem b. Explaining Very long baseline interferometry (VLBI) observations c. Astronomical jets observed from Milkyway Center d. Prediction of Blue shifted Galaxies e. Explaining Pioneer Anomaly f. Prediction of New Horizons satellite trajectory etc. Dynamic Universe Model never reduces to General relativity on any condition. It uses a different type of mathematics based on Newtonian physics. This mathematics used here is simple and straightforward. As there are no differential equations present in Dynamic Universe Model, the set of equations give single solution in x y z Cartesian coordinates for every point mass for every time step

  14. Empty tracks optimization based on Z-Map model

    NASA Astrophysics Data System (ADS)

    Liu, Le; Yan, Guangrong; Wang, Zaijun; Zang, Genao

    2017-12-01

    For parts with many features, there are more empty tracks during machining. If these tracks are not optimized, the machining efficiency will be seriously affected. In this paper, the characteristics of the empty tracks are studied in detail. Combining with the existing optimization algorithm, a new tracks optimization method based on Z-Map model is proposed. In this method, the tool tracks are divided into the unit processing section, and then the Z-Map model simulation technique is used to analyze the order constraint between the unit segments. The empty stroke optimization problem is transformed into the TSP with sequential constraints, and then through the genetic algorithm solves the established TSP problem. This kind of optimization method can not only optimize the simple structural parts, but also optimize the complex structural parts, so as to effectively plan the empty tracks and greatly improve the processing efficiency.

  15. Particle pinch with fully noninductive lower hybrid current drive in Tore Supra.

    PubMed

    Hoang, G T; Bourdelle, C; Pégourié, B; Schunke, B; Artaud, J F; Bucalossi, J; Clairet, F; Fenzi-Bonizec, C; Garbet, X; Gil, C; Guirlet, R; Imbeaux, F; Lasalle, J; Loarer, T; Lowry, C; Travère, J M; Tsitrone, E

    2003-04-18

    Recently, plasmas exceeding 4 min have been obtained with lower hybrid current drive (LHCD) in Tore Supra. These LHCD plasmas extend for over 80 times the resistive current diffusion time with zero loop voltage. Under such unique conditions the neoclassical particle pinch driven by the toroidal electric field vanishes. Nevertheless, the density profile remains peaked for more than 4 min. For the first time, the existence of an inward particle pinch in steady-state plasma without toroidal electric field, much larger than the value predicted by the collisional neoclassical theory, is experimentally demonstrated.

  16. Thermal transport dynamics in the quasi-single helicity state

    NASA Astrophysics Data System (ADS)

    McKinney, I. J.; Terry, P. W.

    2017-06-01

    A dynamical model describing oscillations between multiple and single helicity configurations in the quasi-single helicity (QSH) state of the reversed field pinch [P. W. Terry and G. G. Whelan, Plasma Phys. Controlled Fusion 56, 094003 (2014)] is extended to include electron temperature profile dynamics. It is shown that QSH dynamics is linked to the electron temperature profile because the suppression of mode coupling between tearing modes proposed to underlie QSH also suppresses magnetic-fluctuation-induced thermal transport. Above the threshold of dominant-mode shear that marks the transition to QSH, the model produces temperature-gradient steepening in the strong shear region. Oscillations of the dominant and secondary mode amplitudes give rise to oscillations of the temperature gradient. The phasing and amplitude of temperature gradient oscillations relative to those of the dominant mode are in agreement with experiment. This provides further evidence that the model, while heuristic, captures key physical aspects of the QSH state.

  17. Mass profile and dynamical status of the z ~ 0.8 galaxy cluster LCDCS 0504

    NASA Astrophysics Data System (ADS)

    Guennou, L.; Biviano, A.; Adami, C.; Limousin, M.; Lima Neto, G. B.; Mamon, G. A.; Ulmer, M. P.; Gavazzi, R.; Cypriano, E. S.; Durret, F.; Clowe, D.; LeBrun, V.; Allam, S.; Basa, S.; Benoist, C.; Cappi, A.; Halliday, C.; Ilbert, O.; Johnston, D.; Jullo, E.; Just, D.; Kubo, J. M.; Márquez, I.; Marshall, P.; Martinet, N.; Maurogordato, S.; Mazure, A.; Murphy, K. J.; Plana, H.; Rostagni, F.; Russeil, D.; Schirmer, M.; Schrabback, T.; Slezak, E.; Tucker, D.; Zaritsky, D.; Ziegler, B.

    2014-06-01

    Context. Constraints on the mass distribution in high-redshift clusters of galaxies are currently not very strong. Aims: We aim to constrain the mass profile, M(r), and dynamical status of the z ~ 0.8 LCDCS 0504 cluster of galaxies that is characterized by prominent giant gravitational arcs near its center. Methods: Our analysis is based on deep X-ray, optical, and infrared imaging as well as optical spectroscopy, collected with various instruments, which we complemented with archival data. We modeled the mass distribution of the cluster with three different mass density profiles, whose parameters were constrained by the strong lensing features of the inner cluster region, by the X-ray emission from the intracluster medium, and by the kinematics of 71 cluster members. Results: We obtain consistent M(r) determinations from three methods based on kinematics (dispersion-kurtosis, caustics, and MAMPOSSt), out to the cluster virial radius, ≃1.3 Mpc and beyond. The mass profile inferred by the strong lensing analysis in the central cluster region is slightly higher than, but still consistent with, the kinematics estimate. On the other hand, the X-ray based M(r) is significantly lower than the kinematics and strong lensing estimates. Theoretical predictions from ΛCDM cosmology for the concentration-mass relation agree with our observational results, when taking into account the uncertainties in the observational and theoretical estimates. There appears to be a central deficit in the intracluster gas mass fraction compared with nearby clusters. Conclusions: Despite the relaxed appearance of this cluster, the determinations of its mass profile by different probes show substantial discrepancies, the origin of which remains to be determined. The extension of a dynamical analysis similar to that of other clusters of the DAFT/FADA survey with multiwavelength data of sufficient quality will allow shedding light on the possible systematics that affect the determination of mass

  18. The Experimental Study of Characterized Noble Gas Puffs Irradiated by Ultra-Short Laser Pulses Compared with X-Pinches as an X-Ray Source

    NASA Astrophysics Data System (ADS)

    Schultz, Kimberly Ann

    The goal of this dissertation is to study the basic physics and X-ray emission (1-10 keV) of two X-ray sources: X-pinch plasmas and a clustered gas-puff irradiated by an ultrashort laser pulse. X-pinches and other typical X-ray sources using solid targets create hot debris that can damage sensitive equipment. Therefore, to perform sensitive backlighting or X-ray effects testing, debris-free sources of radiation must be investigated. In this work, the author presents a broad study of clustered noble gas puffs including characterization measurements and laser heating experiments using several gas nozzles and multiple gases. Ultimately, the goal is to compare the laser-irradiated gas-puff and X-pinch plasmas as X-ray sources. Characterization of the gas puffs is performed at the Radiation Physics Laboratory at the University of Nevada, Reno (UNR) Physics Department using optical interferometry and Rayleigh scattering to determine density and cluster radius. By changing the gas-puff variables control of both the density and cluster size of the gas jets is obtained. Two laser systems provide the high intensities desired for the laser-irradiated gas puff experiments: the UNR Leopard Laser (1-2x1019 W/cm2) and the Lawrence Livermore National Laboratory's Titan Laser (7x1019 W/cm2). X-ray emission is studied as a function of laser pulse parameters, gas target type, gas puff density, and the gas-delay timing between puff initiation and laser interaction with the puff. The tested gases are Ar, Kr, Xe, and four mixtures of the noble gases. Time-resolved X-ray measurements are captured with Silicon diodes and photoconducting diamond detectors. Electron beam detectors include Faraday cups and a high-energy (> 1 MeV) electron spectrometer. Modeling of spectra from X-ray crystal spectrometers provides plasma density and temperature measurement and a molecular dynamics (MD) code describes cluster interactions with the laser pulse. The conversion of laser energy into X rays is also

  19. Improvements in the EQ-10 electrodeless Z-pinch EUV source for metrology applications

    NASA Astrophysics Data System (ADS)

    Horne, Stephen F.; Gustafson, Deborah; Partlow, Matthew J.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.

    2011-04-01

    Now that EUV lithography systems are beginning to ship into the fabs for next generation chips it is more critical that the EUV infrastructure developments are keeping pace. Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinch™ light source since 2005. The source is currently being used for metrology, mask inspection, and resist development. These applications require especially stable performance in both power and source size. Over the last 5 years Energetiq has made many source modifications which have included better thermal management as well as high pulse rate operation6. Recently we have further increased the system power handling and electrical pulse reproducibility. The impact of these modifications on source performance will be reported.

  20. Experimental investigation of the effect of insulator sleeve length on the time to pinch and multipinch formation in the plasma focus facility

    NASA Astrophysics Data System (ADS)

    Momenei, M.; Khodabakhshei, Z.; Panahi, N.; Mohammadi, M. A.

    2017-03-01

    The length of insulator sleeve is varied to investigate its effect on the pinch formation in the plasma focus facility. In this paper, the effect of insulator length on the time to pinch at various pressures and working voltages in the 1.15 kJ Mather type plasma focus is investigated. The results show that with 4.5 cm insulator length the time to pinch at all pressures is minimum. Other results also confirm that with increasing of pressure the time to pinch is increased. Moreover, with increasing working voltage the time to pinch is decreased. Pictures, captured using a digital single lens reflex (DSLR) Canon EOS 7D system, show that multipinch phenomenon is formed.

  1. The Critical Z-Invariant Ising Model via Dimers: Locality Property

    NASA Astrophysics Data System (ADS)

    Boutillier, Cédric; de Tilière, Béatrice

    2011-01-01

    We study a large class of critical two-dimensional Ising models, namely critical Z-invariant Ising models. Fisher (J Math Phys 7:1776-1781, 1966) introduced a correspondence between the Ising model and the dimer model on a decorated graph, thus setting dimer techniques as a powerful tool for understanding the Ising model. In this paper, we give a full description of the dimer model corresponding to the critical Z-invariant Ising model, consisting of explicit expressions which only depend on the local geometry of the underlying isoradial graph. Our main result is an explicit local formula for the inverse Kasteleyn matrix, in the spirit of Kenyon (Invent Math 150(2):409-439, 2002), as a contour integral of the discrete exponential function of Mercat (Discrete period matrices and related topics, 2002) and Kenyon (Invent Math 150(2):409-439, 2002) multiplied by a local function. Using results of Boutillier and de Tilière (Prob Theor Rel Fields 147(3-4):379-413, 2010) and techniques of de Tilière (Prob Th Rel Fields 137(3-4):487-518, 2007) and Kenyon (Invent Math 150(2):409-439, 2002), this yields an explicit local formula for a natural Gibbs measure, and a local formula for the free energy. As a corollary, we recover Baxter's formula for the free energy of the critical Z-invariant Ising model (Baxter, in Exactly solved models in statistical mechanics, Academic Press, London, 1982), and thus a new proof of it. The latter is equal, up to a constant, to the logarithm of the normalized determinant of the Laplacian obtained in Kenyon (Invent Math 150(2):409-439, 2002).

  2. Influence of GTP/GDP and magnesium ion on the solvated structure of the protein FtsZ: a molecular dynamics study.

    PubMed

    Jamous, Carla; Basdevant, Nathalie; Ha-Duong, Tap

    2014-01-01

    We present here a structural analysis of ten extensive all-atom molecular dynamics simulations of the monomeric protein FtsZ in various binding states. Since the polymerization and GTPase activities of FtsZ depend on the nature of a bound nucleotide as well as on the presence of a magnesium ion, we studied the structural differences between the average conformations of the following five systems: FtsZ-Apo, FtsZ-GTP, FtsZ-GDP, FtsZ-GTP-Mg, and FtsZ-GDP-Mg. The in silico solvated average structure of FtsZ-Apo significantly differs from the crystallographic structure 1W59 of FtsZ which was crystallized in a dimeric form without nucleotide and magnesium. The simulated Apo form of the protein also clearly differs from the FtsZ structures when it is bound to its ligand, the most important discrepancies being located in the loops surrounding the nucleotide binding pocket. The three average structures of FtsZ-GTP, FtsZ-GDP, and FtsZ-GTP-Mg are overall similar, except for the loop T7 located at the opposite side of the binding pocket and whose conformation in FtsZ-GDP notably differs from the one in FtsZ-GTP and FtsZ-GTP-Mg. The presence of a magnesium ion in the binding pocket has no impact on the FtsZ conformation when it is bound to GTP. In contrast, when the protein is bound to GDP, the divalent cation causes a translation of the nucleotide outwards the pocket, inducing a significant conformational change of the loop H6-H7 and the top of helix H7.

  3. Evaluation of Particle Pinch and Diffusion Coefficients in the Edge Pedestal of DIII-D H-mode Discharges

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.; Groebner, R. J.

    2009-11-01

    Momentum balance requires that the radial particle flux satisfy a pinch-diffusion relationship. The pinch can be evaluated in terms of measurable quantities (rotation velocities, Er, etc.) by the use of momentum and particle balance [1,2], the radial particle flux can be determined by momentum balance, and then the diffusion coefficient can be evaluated from the pinch diffusion relation using the measured density gradient. Applications to several DIII-D H-mode plasmas are presented. 6pt [1] W.M. Stacey, Contr. Plasma Phys. 48, 94 (2008). [2] W.M. Stacey and R.J. Groebner, Phys. Plasmas 15, 012503 (2008).

  4. Probing the dark sector through mono-Z boson leptonic decays

    NASA Astrophysics Data System (ADS)

    Yang, Daneng; Li, Qiang

    2018-02-01

    Collider search for dark matter production has been performed over the years based on high p T standard model signatures balanced by large missing transverse energy. The mono-Z boson production with leptonic decay has a clean signature with the advantage that the decaying electrons and muons can be precisely measured. This signature not only enables reconstruction of the Z boson rest frame, but also makes possible recovery of the underlying production dynamics through the decaying lepton angular distribution. In this work, we exploit full information carried by the leptonic Z boson decays to set limits on coupling strength parameters of the dark sector. We study simplified dark sector models with scalar, vector, and tensor mediators and observe among them different signatures in the distribution of angular coefficients. Specifically, we show that angular coefficients can be used to distinguish different scenarios of the spin-0 and spin-1 models, including the ones with parity-odd and charge conjugation parity-odd operators. To maximize the statistical power, we perform a matrix element method study with a dynamic construction of event likelihood function. We parametrize the test statistic such that sensitivity from the matrix element is quantified through a term measuring the shape difference. Our results show that the shape differences provide significant improvements in the limits, especially for the scalar mediator models. We also present an example application of a matrix-element-kinematic-discriminator, an easier approach that is applicable for experimental data.

  5. Parametric effects on pinch-off modes in liquid/liquid jet systems

    NASA Astrophysics Data System (ADS)

    Milosevic, Ilija N.

    Many industries rely on liquid/liquid extraction systems, where jet pinch off occurs on a regular basis. Inherent short time and length scales make analytical and numerical simulation of the process very challenging. A main objective of this work was to document the details of various pinch-off modes at different length scales using Laser Induced Fluorescence and Particle Image Velocimetry. A water glycerine mixture was injected into ambient either silicone oil or 1-octanol. The resultant viscosity ratios, inner to outer fluid, were 1.6 and 2.8, respectively. Ohnesorge numbers were 0.013 for ambient silicone oil and 0.08 for ambient 1-octanol. Reynolds and Strouhal numbers ranged from 30 to 100 and 0.5 to 3.5, respectively. Decreasing the Strouhal number increased the number of drops formed per forcing. Increasing the Reynolds number suppressed satellite formation, and in some cases the number of drops decreased from two to one per cycle. Increasing the Ohnesorge number to 0.08 suppressed the pinch off yielding a longer jet with three-dimensional threads. At Ohnesorge number 0.013, increasing the forcing amplitude shortened the jet, and eventually led to a dripping mode. High-resolution measurements of pinch-off angles were compared to results from similarity theory. Two modes were investigated: drops breaking from the jet (jet/drop) and, one drop splitting into two (splitting drop). The jet/drop mode angle measurements agreed with similarity predictions. The splitting drop mode converged towards smaller angles. Scaling analysis showed that a Stokesian similarity regime applied for a neck radius of 6 microns or less. The smallest radius observed in experiments was 15 microns. Therefore, it is not known whether splitting drop mode might still converge to same behavior.

  6. Dynamic phase transitions and dynamic phase diagrams of the Blume-Emery-Griffiths model in an oscillating field: the effective-field theory based on the Glauber-type stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-06-01

    Using the effective-field theory based on the Glauber-type stochastic dynamics (DEFT), we investigate dynamic phase transitions and dynamic phase diagrams of the Blume-Emery-Griffiths model under an oscillating magnetic field. We presented the dynamic phase diagrams in (T/J, h0/J), (D/J, T/J) and (K/J, T/J) planes, where T, h0, D, K and z are the temperature, magnetic field amplitude, crystal-field interaction, biquadratic interaction and the coordination number. The dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and special critical points, as well as re-entrant behavior depending on interaction parameters. We also compare and discuss the results with the results of the same system within the mean-field theory based on the Glauber-type stochastic dynamics and find that some of the dynamic first-order phase lines and special dynamic critical points disappeared in the DEFT calculation.

  7. Study and optimization of negative polarity rod pinch diode as flash radiography source at 4.5 MV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etchessahar, Bertrand; Bicrel, Beatrice; Cassany, Bruno

    2012-09-15

    The negative polarity rod pinch diode (NPRPD) is a potential millimeter spot size radiography source for high voltage generators (4 to 8 MV) [Cooperstein et al., 'Considerations of rod-pinch diode operation in negative polarity for radiography,' in Proceedings of the 14th IEEE Pulsed Power Conference, 2003, pp. 975-978]. The NPRPD consists of a small diameter (few mm) cylindrical anode extending from the front end of the vacuum cell through a thin annular cathode, held by a central conductor. The polarity has been inverted when compared to the original rod pinch diode [Cooperstein et al., 'Theoretical modeling and experimental characterization ofmore » a rod-pinch diode,' Phys. Plasmas 8(10), 4618-4636 (2001)] in order to take advantage from the maximal x-ray emission toward the anode holder at such a voltage [Swanekamp et al., 'Evaluation of self-magnetically pinched diodes up to 10 MV as high resolution flash X-ray sources,' IEEE Trans. Plasma Sci. 32(5), 2004-2016 (2004). We have studied this diode at 4.5 MV, driven by the ASTERIX generator [Raboisson et al., 'ASTERIX, a high intensity X-ray generator,' in Proceedings of the 7th IEEE Pulsed Power Conference, 1989, pp. 567-570.]. This generator, made up of a capacitor bank and a Blumlein line, was initially designed to test the behavior of electronic devices under irradiation. In our experiments, the vacuum diode has been modified in order to set up flash a radiographic diode [Etchessahar et al., 'Negative polarity rod pinch diode experiments on the ASTERIX generator,' in Conference Records-Abstracts, 37th IEEE International Conference on Plasma Science, 2010]. The experiments and numerical simulations presented here allowed the observation and analysis of various physical phenomena associated with the diode operation. Also, the influence of several experimental parameters, such as cathode and anode diameters, materials and surface states, was examined. In order to achieve the most comprehensive

  8. Variation in work tasks in relation to pinch grip strength among middle-aged female dentists.

    PubMed

    Ding, Hebo; Leino-Arjas, Päivi; Murtomaa, Heikki; Takala, Esa-Pekka; Solovieva, Svetlana

    2013-11-01

    We aimed to investigate the relationship of task variation during dental work history with pinch grip strength among dentists. We measured pinch grip strength among 295 female Finnish dentists aged 45-63 years. Variation in dental work tasks during work history was empirically defined by cluster analysis. Three clusters of task variation emerged: low (most work time in restoration treatment/endodontics), moderate (about 50% in the former and 50% in prosthodontics/periodontics/surgery), and high (variable tasks including administrative duties). Hand radiographs were examined for the presence of OA in the wrist and each joint of the 1-3rd fingers. Information on hand-loading leisure-time activities, and joint pain was obtained by questionnaire. Glove size was used as a proxy for hand size. BMI (kg/m2) was based on measured weight and self-reported height. Dentists with low variation of work task history had an increased risk of low pinch grip strength in the right hand (OR 2.3, 95% CI 1.2-4.3), but not in the left (1.13, 0.62-2.08), compared to dentists with high task variation, independent of age, hand size, hand-loading leisure-time activities, BMI and symptomatic hand OA. The dentists with the most hand-loading tasks were at an increased risk of low pinch grip strength, independent of e.g. symptomatic hand OA. It is advisable among dentists to perform as diverse work tasks as possible to reduce the risk of decreased pinch grip strength. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  9. Extended MHD Modeling of Tearing-Driven Magnetic Relaxation

    NASA Astrophysics Data System (ADS)

    Sauppe, Joshua

    2016-10-01

    Driven plasma pinch configurations are characterized by the gradual accumulation and episodic release of free energy in discrete relaxation events. The hallmark of this relaxation in a reversed-field pinch (RFP) plasma is flattening of the parallel current density profile effected by a fluctuation-induced dynamo emf in Ohm's law. Nonlinear two-fluid modeling of macroscopic RFP dynamics has shown appreciable coupling of magnetic relaxation and the evolution of plasma flow. Accurate modeling of RFP dynamics requires the Hall effect in Ohm's law as well as first order ion finite Larmor radius (FLR) effects, represented by the Braginskii ion gyroviscous stress tensor. New results find that the Hall dynamo effect from < J × B > / ne can counter the MHD effect from - < V × B > in some of the relaxation events. The MHD effect dominates these events and relaxes the current profile toward the Taylor state, but the opposition of the two dynamos generates plasma flow in the direction of equilibrium current density, consistent with experimental measurements. Detailed experimental measurements of the MHD and Hall emf terms are compared to these extended MHD predictions. Tracking the evolution of magnetic energy, helicity, and hybrid helicity during relaxation identifies the most important contributions in single-fluid and two-fluid models. Magnetic helicity is well conserved relative to the magnetic energy during relaxation. The hybrid helicity is dominated by magnetic helicity in realistic low-beta pinch conditions and is also well conserved. Differences of less than 1 % between magnetic helicity and hybrid helicity are observed with two-fluid modeling and result from cross helicity evolution through ion FLR effects, which have not been included in contemporary relaxation theories. The kinetic energy driven by relaxation in the computations is dominated by velocity components perpendicular to the magnetic field, an effect that had not been predicted. Work performed at

  10. If it’s pinched it’s a memristor

    NASA Astrophysics Data System (ADS)

    Chua, Leon

    2014-10-01

    This paper presents an in-depth review of the memristor from a rigorous circuit-theoretic perspective, independent of the material the device is made of. From an experimental perspective, a memristor is best defined as any two-terminal device that exhibits a pinched hysteresis loop in the voltage-current plane when driven by any periodic voltage or current signal that elicits a periodic response of the same frequency. This definition greatly broadens the scope of memristive devices to encompass even non-semiconductor devices, both organic and inorganic, from many unrelated disciplines, including biology, botany, brain science, etc. For pedagogical reasons, the broad terrain of memristors is partitioned into three classes of increasing generality, dubbed Ideal Memristors, Generic Memristors, and Extended Memristors. Each class is distinguished from the others via unique fingerprints and signatures. This paper clarifies many confusing issues, such as non-volatility, dc V-I curves, high-frequency v-i curves, local activity, as well as nonlinear dynamical and bifurcation phenomena that are the hallmarks of memristive devices. Above all, this paper addresses several fundamental issues and questions that many memristor researchers do not comprehend but are afraid to ask.

  11. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougherty, Gerard W.; Section on Structural Cell Biology, National Institute on Deafness and Communication Disorders; Chopp, Treasa

    2005-05-15

    Rsu-1 is a highly conserved leucine rich repeat (LRR) protein that is expressed ubiquitously in mammalian cells. Rsu-1 was identified based on its ability to inhibit transformation by Ras, and previous studies demonstrated that ectopic expression of Rsu-1 inhibited anchorage-independent growth of Ras-transformed cells and human tumor cell lines. Using GAL4-based yeast two-hybrid screening, the LIM domain protein, PINCH1, was identified as the binding partner of Rsu-1. PINCH1 is an adaptor protein that localizes to focal adhesions and it has been implicated in the regulation of adhesion functions. Subdomain mapping in yeast revealed that Rsu-1 binds to the LIM 5more » domain of PINCH1, a region not previously identified as a specific binding domain for any other protein. Additional testing demonstrated that PINCH2, which is highly homologous to PINCH1, except in the LIM 5 domain, does not interact with Rsu-1. Glutathione transferase fusion protein binding studies determined that the LRR region of Rsu-1 interacts with PINCH1. Transient expression studies using epitope-tagged Rsu-1 and PINCH1 revealed that Rsu-1 co-immunoprecipitated with PINCH1 and colocalized with vinculin at sites of focal adhesions in mammalian cells. In addition, endogenous P33 Rsu-1 from 293T cells co-immunoprecipitated with transiently expressed myc-tagged PINCH1. Furthermore, RNAi-induced reduction in Rsu-1 RNA and protein inhibited cell attachment, and while previous studies demonstrated that ectopic expression of Rsu-1 inhibited Jun kinase activation, the depletion of Rsu-1 resulted in activation of Jun and p38 stress kinases. These studies demonstrate that Rsu-1 interacts with PINCH1 in mammalian cells and functions, in part, by altering cell adhesion.« less

  12. Effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in reversed field pinch plasmas

    NASA Astrophysics Data System (ADS)

    Guo, S. C.; Chu, M. S.

    2002-11-01

    The effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in the reversed field pinch (RFP) plasmas are studied. Most RFP machines are equipped with one or more metal shells outside of the vacuum vessel. These shells have finite resistivities. The eddy currents induced in each of the shells contribute to the braking electromagnetic (EM) torque which slows down the plasma rotation. In this work we study the electromagnetic torque acting on the plasma (tearing) modes produced by a system of resistive shells. These shells may consist of several nested thin shells or several thin shells enclosed within a thick shell. The dynamics of the plasma mode is investigated by balancing the EM torque from the resistive shells with the plasma viscous torque. Both the steady state theory and the time-dependent theory are developed. The steady state theory is shown to provide an accurate account of the resultant EM torque if (dω/dt)ω-2≪1 and the time scale of interest is much longer than the response (L/R) time of the shell. Otherwise, the transient theory should be adopted. As applications, the steady state theory is used to evaluate the changes of the EM torque response from the resistive shells in two variants of two RFP machines: (1) modification from Reversed Field Experiment (RFX) [Gnesotto et al., Fusion Eng. Des. 25, 335 (1995)] to the modified RFX: both of them are equipped with one thin shell plus one thick shell; (2) modification from Extrap T2 to Extrap T2R [Brunsell et al., Plasma Phys. Controlled Fusion 43, 1457 (2001)]: both of them are equipped with two thin shells. The transient theory has been applied numerically to study the time evolution of the EM torque during the unlocking of a locked tearing mode in the modified RFX.

  13. Color evolution from z = 0 to z = 1

    NASA Technical Reports Server (NTRS)

    Rakos, Karl D.; Schombert, James M.

    1995-01-01

    Rest frame Stroemgren photometry (3500 A, 4100 A, 4750 A, and 5500 A) is presented for 509 galaxies in 17 rich clusters between z = 0 and z = 1 as a test of color evolution. Our observations confirm a strong, rest frame, Butcher-Oemler effect where the fraction of blue galaxies increases from 20% at z = 0.4 to 80% at z = 0.9. We also find that a majority of these blue cluster galaxies are composed of normal disk or post-starburst systems based on color criteria. When comparing our colors to the morphological results from Hubble Space Telescope HST imaging, we propose that the blue cluster galaxies are a population of late-type, low surface brightness objects which fade and are then destroyed by the cluster tidal field. After isolating the red objects from Butcher-Oemler objects, we have compared the mean color of these old, non-star-forming objects with spectral energy distribution models in the literature as a test for passive galaxy evolution in ellipticals. We find good agreement with single-burst models which predict a mean epoch of galaxy formation at z = 5. Tracing the red envelope for ellipticals places the earliest epoch of galaxy formation at z = 10.

  14. Dynamics of flexible molecules in thinning fluid filaments

    NASA Astrophysics Data System (ADS)

    Arratia, Paulo E.; Juarez, Gabriel

    2011-11-01

    Newtonian liquids that contain small amounts (~ppm) of flexible polymers can exhibit viscoelastic behavior in extensional flows. In this talk, we report the results of experiments on the thinning and breakup of polymeric fluids in a simple microfluidic device. We aim to understand the stretching dynamics of flexible polymers by direct visualization of fluorescent DNA molecules, a model polymer. A Boger fluid, composed of 100 ppm polyacrylamide and 85% w/w glycerol, is seeded with stained lambdaâDNA molecules (<10% v/v) imaged by high speed epifluorescence microscopy. We observe that the strong flow in the thinning fluid threads provide sufficient forces to stretch the DNA molecules away from their equilibrium coiled state. The distribution of stretch lengths, however, is very heterogeneous due to molecular individualism and initial conditions. Once the molecules are stretched to their full length and aligned with the flow, they translate along the fluid thread as rigid rods until the point of pinch off. After pinch off, both the fluid and molecules return to a relaxed state.

  15. Methodology Development of a Gas-Liquid Dynamic Flow Regime Transition Model

    NASA Astrophysics Data System (ADS)

    Doup, Benjamin Casey

    Current reactor safety analysis codes, such as RELAP5, TRACE, and CATHARE, use flow regime maps or flow regime transition criteria that were developed for static fully-developed two-phase flows to choose interfacial transfer models that are necessary to solve the two-fluid model. The flow regime is therefore difficult to identify near the flow regime transitions, in developing two-phase flows, and in transient two-phase flows. Interfacial area transport equations were developed to more accurately predict the dynamic nature of two-phase flows. However, other model coefficients are still flow regime dependent. Therefore, an accurate prediction of the flow regime is still important. In the current work, the methodology for the development of a dynamic flow regime transition model that uses the void fraction and interfacial area concentration obtained by solving three-field the two-fluid model and two-group interfacial area transport equation is investigated. To develop this model, detailed local experimental data are obtained, the two-group interfacial area transport equations are revised, and a dynamic flow regime transition model is evaluated using a computational fluid dynamics model. Local experimental data is acquired for 63 different flow conditions in bubbly, cap-bubbly, slug, and churn-turbulent flow regimes. The measured parameters are the group-1 and group-2 bubble number frequency, void fraction, interfacial area concentration, and interfacial bubble velocities. The measurements are benchmarked by comparing the prediction of the superficial gas velocities, determined using the local measurements with those determined from volumetric flow rate measurements and the agreement is generally within +/-20%. The repeatability four-sensor probe construction process is within +/-10%. The repeatability of the measurement process is within +/-7%. The symmetry of the test section is examined and the average agreement is within +/-5.3% at z/D = 10 and +/-3.4% at z/D = 32

  16. Two-fluid and finite Larmor radius effects on helicity evolution in a plasma pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauppe, J. P., E-mail: jpsauppe@gmail.com; Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706; Sovinec, C. R., E-mail: csovinec@wisc.edu

    2016-03-15

    The evolution of magnetic energy, helicity, and hybrid helicity during nonlinear relaxation of a driven-damped plasma pinch is compared in visco-resistive magnetohydrodynamics and two-fluid models with and without the ion gyroviscous stress tensor. Magnetic energy and helicity are supplied via a boundary electric field which initially balances the resistive dissipation, and the plasma undergoes multiple relaxation events during the nonlinear evolution. The magnetic helicity is well conserved relative to the magnetic energy over each event, which is short compared with the global resistive diffusion time. The magnetic energy decreases by roughly 1.5% of its initial value over a relaxation event,more » while the magnetic helicity changes by at most 0.2% of the initial value. The hybrid helicity is dominated by magnetic helicity in low-β pinch conditions and is also well conserved. Differences of less than 1% between magnetic helicity and hybrid helicity are observed with two-fluid modeling and result from cross helicity evolution. The cross helicity is found to change appreciably due to the first-order finite Larmor radius effects which have not been included in contemporary relaxation theories. The plasma current evolves towards the flat parallel current state predicted by Taylor relaxation theory but does not achieve it. Plasma flow develops significant structure for two-fluid models, and the flow perpendicular to the magnetic field is much more substantial than the flow along it.« less

  17. On dark matter interactions with the Standard Model through an anomalous Z'

    NASA Astrophysics Data System (ADS)

    Ismail, Ahmed; Katz, Andrey; Racco, Davide

    2017-10-01

    We study electroweak scale Dark Matter (DM) whose interactions with baryonic matter are mediated by a heavy anomalous Z'. We emphasize that when the DM is a Majorana particle, its low-velocity annihilations are dominated by loop suppressed annihilations into the gauge bosons, rather than by p-wave or chirally suppressed annihilations into the SM fermions. Because the Z ' is anomalous, these kinds of DM models can be realized only as effective field theories (EFTs) with a well-defined cutoff, where heavy spectator fermions restore gauge invariance at high energies. We formulate these EFTs, estimate their cutoff and properly take into account the effect of the Chern-Simons terms one obtains after the spectator fermions are integrated out. We find that, while for light DM collider and direct detection experiments usually provide the strongest bounds, the bounds at higher masses are heavily dominated by indirect detection experiments, due to strong annihilation into W + W -, ZZ, Zγ and possibly into gg and γγ. We emphasize that these annihilation channels are generically significant because of the structure of the EFT, and therefore these models are prone to strong indirect detection constraints. Even though we focus on selected Z' models for illustrative purposes, our setup is completely generic and can be used for analyzing the predictions of any anomalous Z'-mediated DM model with arbitrary charges.

  18. Effect of pinching-evoked pain on jaw-stretch reflexes and exteroceptive suppression periods in healthy subjects.

    PubMed

    Biasiotta, A; Peddireddy, A; Wang, K; Romaniello, A; Frati, A; Svensson, P; Arendt-Nielsen, L

    2007-10-01

    To investigate the influence of conditioning cutaneous nociceptive inputs by a new "pinch" model on the jaw-stretch reflex and the exteroceptive suppression periods (ES1 and ES2) in jaw muscles. The jaw-stretch reflex was evoked with the use of a custom-made muscle stretcher and electrical stimuli were used to evoke an early and late exteroceptive suppression period (ES1 and ES2) in the jaw-closing muscles. Electromyographic (EMG) activity was recorded bilaterally from the masseter and temporalis muscles. These brainstem reflexes were recorded in 19 healthy men (28.8+/-1.1 years) during three different conditions: one painful clip applied to the earlobe; one painful clip applied to the nostril, and four painful clips applied simultaneously to the earlobe, nostril, eyebrow, and lower lip. Pain intensity induced by the application of the clips was scored continuously by the subjects on a 100mm visual analogue scale (VAS). The highest VAS pain scores were evoked by placement of four clips (79+/-0.5mm). There was no significant modulation of the jaw-stretch reflex (ANOVAs: P=0.929), the ES1 (P=0.298) or ES2 (P=0.082) in any of the three painful conditions. Intense and tonic cutaneous pain could be elicited by this new "pinch" pain model; however, there was no significant modulation on either excitatory or inhibitory brainstem reflex responses. The novel observation that high-intensity pinch stimuli applied to the craniofacial region fail to modulate two different brainstem reflexes is in contrast to other experimental pain studies documented facilitation of the jaw-stretch reflexes or inhibition of exteroceptive suppression periods. The clinical implication of the present findings is that only some craniofacial pain conditions could be expected to show perturbation of the brainstem reflex responses.

  19. The Pitt Innovation Challenge (PInCh): Driving Innovation in Translational Research Through an Incentive-Based, Problem-Focused Competition.

    PubMed

    Fitzpatrick, Nicole Edgar; Maier, John; Yasko, Laurel; Mathias, David; Qua, Kacy; Wagner, Erika; Miller, Elizabeth; Reis, Steven E

    2017-05-01

    Translational research aims to move scientific discoveries across the biomedical spectrum from the laboratory to humans, and to ultimately transform clinical practice and public health policies. Despite efforts to accelerate translational research through national initiatives, several major hurdles remain. The authors created the Pitt Innovation Challenge (PInCh) as an incentive-based, problem-focused approach to solving identified clinical or public health problems at the University of Pittsburgh Clinical and Translational Science Institute in spring 2014. With input from a broad range of stakeholders, PInCh leadership arrived at the challenge question: How do we empower individuals to take control of their own health outcomes? The authors developed the PInCh's three-round proposal submission and review process as well as an online contest management tool to support the process. Ninety-two teams submitted video proposals in round one. Proposals included mobile applications (29; 32%), other information technology (19; 21%), and community program (22; 24%) solutions. Ten teams advanced to the final round, where three were awarded $100,000 to implement their solution over 12 months. In a 6-month follow-up survey, 6/11 (55%) team leaders stated the PInCh helped to facilitate connections outside their normal sphere of collaborators. Additional educational training sessions related to problem-focused research will be developed. The PInCh will be expanded to engage investment and industry communities to facilitate the translation of solutions to clinical practice via commercialization pathways. External organizations and other universities will be engaged to use the PInCh as a mechanism to fuel innovation in their spaces.

  20. Mass density slope of elliptical galaxies from strong lensing and resolved stellar kinematics

    NASA Astrophysics Data System (ADS)

    Lyskova, N.; Churazov, E.; Naab, T.

    2018-04-01

    We discuss constraints on the mass density distribution (parametrized as ρ ∝ r-γ) in early-type galaxies provided by strong lensing and stellar kinematics data. The constraints come from mass measurements at two `pinch' radii. One `pinch' radius r1 = 2.2REinst is defined such that the Einstein (i.e. aperture) mass can be converted into the spherical mass almost independently of the mass-model. Another `pinch' radius r2 = Ropt is chosen so that the dynamical mass, derived from the line-of-sight velocity dispersion, is least sensitive to the anisotropy of stellar orbits. We verified the performance of this approach on a sample of simulated elliptical galaxies and on a sample of 15 SLACS lens galaxies at 0.01 ≤ z ≤ 0.35, which have already been analysed in Barnabè et al. by the self-consistent joint lensing and kinematic code. For massive simulated galaxies, the density slope γ is recovered with an accuracy of ˜13 per cent, unless r1 and r2 happen to be close to each other. For SLACS galaxies, we found good overall agreement with the results of Barnabè et al. with a sample-averaged slope γ = 2.1 ± 0.05. Although the two-pinch-radii approach has larger statistical uncertainties, it is much simpler and uses only few arithmetic operations with directly observable quantities.

  1. Bilateral deficits in fine motor control and pinch grip force are not associated with electrodiagnostic findings in women with carpal tunnel syndrome.

    PubMed

    de la Llave-Rincón, Ana Isabel; Fernández-de-Las-Peñas, César; Pérez-de-Heredia-Torres, Marta; Martínez-Perez, Almudena; Valenza, Marie Carmen; Pareja, Juan A

    2011-06-01

    : The aim of this study was to analyze the differences in deficits in fine motor control and pinch grip force between patients with minimal, moderate/mild, or severe carpal tunnel syndrome (CTS) and healthy age- and hand dominance-matched controls. : A case-control study was conducted. The subtests of the Purdue Pegboard Test (one-hand and bilateral pin placements and assemblies) and pinch grip force between the thumb and the remaining four fingers of the hand were bilaterally evaluated in 66 women with minimal (n = 16), moderate (n = 16), or severe (n = 34) CTS and in 20 age- and hand-matched healthy women. The differences among the groups were analyzed using different mixed models of analysis of variance. : A two-way mixed analysis of variance revealed significant differences between groups, not depending on the presence of unilateral or bilateral symptoms (side), for the one-hand pin placement subtest: patients showed bilateral lower scores compared with controls (P < 0.001), without differences among those with minimal, moderate, or severe CTS (P = 0.946). The patients also exhibited lower scores in bilateral pin placement (P < 0.001) and assembly (P < 0.001) subtests, without differences among them. The three-way analysis of variance revealed significant differences among groups (P < 0.001) and fingers (P < 0.001), not depending on the presence of unilateral/bilateral symptoms (P = 0.684), for pinch grip force: patients showed bilateral lower pinch grip force in all fingers compared with healthy controls, without differences among those with minimal, moderate, or severe CTS. : The current study revealed similar bilateral deficits in fine motor control and pinch grip force in patients with minimal, moderate, or severe CTS, supporting that fine motor control deficits are a common feature of CTS not associated with electrodiagnostic findings.

  2. Fluid dynamics: The subtle art of blowing bubbles

    NASA Astrophysics Data System (ADS)

    Witelski, Thomas P.

    2009-05-01

    Careful study of the moments leading up to pinch-off of air bubbles in water reveals rich and intricate dynamics controlling their evolution, and could spark re-examination of assumptions about the nature of the formation of singularities in many physical systems.

  3. Search for t Z' associated production induced by t c Z' couplings at the LHC

    NASA Astrophysics Data System (ADS)

    Hou, Wei-Shu; Kohda, Masaya; Modak, Tanmoy

    2017-07-01

    The P5' and RK anomalies, recently observed by the LHCb Collaboration in B →K(*) transitions, may indicate the existence of a new Z' boson, which may arise from gauged Lμ-Lτ symmetry. Flavor-changing neutral current Z' couplings, such as t c Z', can be induced by the presence of extra vector-like quarks. In this paper we study the LHC signatures of the induced right-handed t c Z' coupling that is inspired by, but not directly linked to, the B →K(*) anomalies. The specific processes studied are c g →t Z' and its conjugate process, each followed by Z'→μ+μ-. By constructing an effective theory for the t c Z' coupling, we first explore in a model-independent way the discovery potential of such a Z' at the 14 TeV LHC with 300 and 3000 fb-1 integrated luminosities. We then reinterpret the model-independent results within the gauged Lμ-Lτ model. In connection with t c Z', the model also implies the existence of a flavor-conserving c c Z' coupling, which can drive the c c ¯→Z'→μ+μ- process. Our study shows that existing LHC results for dimuon resonance searches already constrain the c c Z' coupling, and that the Z' can be discovered in either or both of the c g →t Z' and c c ¯→Z' processes. We further discuss the sensitivity to the left-handed t c Z' coupling and find that the coupling values favored by the B →K(*) anomalies lie slightly below the LHC discovery reach even with 3000 fb-1 .

  4. Decreased short-interval intracortical inhibition correlates with better pinch strength in patients with stroke and good motor recovery.

    PubMed

    Ferreiro de Andrade, Karina Nocelo; Conforto, Adriana Bastos

    2018-02-06

    Deeper short-interval intracortical inhibition (SICI), a marker of GABA A activity, correlates with better motor performance in patients with moderate to severe hand impairments in the chronic phase after stroke. We evaluated the correlation between SICI in the affected hemisphere and pinch force of the paretic hand in well-recovered patients. We also investigated the correlation between SICI and pinch force in controls. Twenty-two subjects were included in the study. SICI was measured with a paired-pulse paradigm. The correlation between lateral pinch strength and SICI was assessed with Spearman's rho. There was a significant correlation (rho = 0.69, p = 0.014) between SICI and pinch strength in patients, but not in controls. SICI was significantly deeper in patients with greater hand weakness. These preliminary findings suggest that decreased GABA A activity in M1 AH correlates with better hand motor performance in well-recovered subjects with stroke in the chronic phase. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Turbulent inward pinch of plasma confined by a levitated dipole magnet

    NASA Astrophysics Data System (ADS)

    Boxer, A. C.; Bergmann, R.; Ellsworth, J. L.; Garnier, D. T.; Kesner, J.; Mauel, M. E.; Woskov, P.

    2010-03-01

    The rearrangement of plasma as a result of turbulence is among the most important processes that occur in planetary magnetospheres and in experiments used for fusion energy research. Remarkably, fluctuations that occur in active magnetospheres drive particles inward and create centrally peaked profiles. Until now, the strong peaking seen in space has been undetectable in the laboratory because the loss of particles along the magnetic field is faster than the net driven flow across the magnetic field. Here, we report the first laboratory measurements in which a strong superconducting magnet is levitated and used to confine high-temperature plasma in a configuration that resembles planetary magnetospheres. Levitation eliminates field-aligned particle loss, and the central plasma density increases markedly. The build-up of density characterizes a sustained turbulent pinch and is equal to the rate predicted from measured electric-field fluctuations. Our observations show that dynamic principles describing magnetospheric plasma are relevant to plasma confined by a levitated dipole.

  6. An analytical approach to top predator interference on the dynamics of a food chain model

    NASA Astrophysics Data System (ADS)

    Senthamarai, R.; Vijayalakshmi, T.

    2018-04-01

    In this paper, a nonlinear mathematical model is proposed and analyzed to study of top predator interference on the dynamics of a food chain model. The mathematical model is formulated using the system of non-linear ordinary differential equations. In this model, there are three state dimensionless variables, viz, size of prey population x, size of intermediate predator y and size of top predator population z. The analytical results are compared with the numerical simulation using MATLAB software and satisfactory results are noticed.

  7. A minimal model of epithelial tissue dynamics and its application to the corneal epithelium

    NASA Astrophysics Data System (ADS)

    Henkes, Silke; Matoz-Fernandez, Daniel; Kostanjevec, Kaja; Coburn, Luke; Sknepnek, Rastko; Collinson, J. Martin; Martens, Kirsten

    Epithelial cell sheets are characterized by a complex interplay of active drivers, including cell motility, cell division and extrusion. Here we construct a particle-based minimal model tissue with only division/death dynamics and show that it always corresponds to a liquid state with a single dynamic time scale set by the division rate, and that no glassy phase is possible. Building on this, we construct an in-silico model of the mammalian corneal epithelium as such a tissue confined to a hemisphere bordered by the limbal stem cell zone. With added cell motility dynamics we are able to explain the steady-state spiral migration on the cornea, including the central vortex defect, and quantitatively compare it to eyes obtained from mice that are X-inactivation mosaic for LacZ.

  8. Decays A →Z γ γ and ϕ →Z γ γ (ϕ =h , H ) in two-Higgs doublet models

    NASA Astrophysics Data System (ADS)

    Sánchez-Vélez, R.; Tavares-Velasco, G.

    2018-05-01

    The one-loop contributions to the decays of the C P -odd and C P -even scalar bosons A →Z γ γ and ϕ →Z γ γ (ϕ =h , H ) are calculated within the framework of C P -conserving two-Higgs doublet models (THDMs), where they are induced by box and reducible Feynman diagrams. The behavior of the corresponding branching ratios are then analyzed within the type-II THDM in a region of the parameter space around the alignment limit and still consistent with experimental data. It is found that the A →Z γ γ branching ratio is only relevant when mA>mH+mZ , but it is negligible otherwise. For mA>600 GeV and tβ≃O (1 ), BR (A →Z γ γ ) can reach values of the order of 10-5-10-4, but it decreases by about 1 order of magnitude as tβ increases up to 10. A similar behavior is followed by the H →Z γ γ decay, which only has a non-negligible branching ratio when mH>mA+mZ and can reach the level of 10-4-10-3 for mH>600 GeV and tβ≃O (1 ). We also estimated the branching ratios of these rare decays in the type-I THDM, where they can be about 1 order of magnitude larger than in type-II THDM. As far as the h →Z γ γ decay is concerned, since the properties of this scalar boson must be nearly identical to those of the SM Higgs boson, the h →Z γ γ branching ratio does not deviate significantly from the SM prediction, where it is negligibly small, of the order of 10-9. This result is in agreement with previous calculations.

  9. Magneto-Rayleigh-Taylor instability driven by a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Duan, Shuchao; Xie, Weiping; Cao, Jintao; Li, Ding

    2018-04-01

    In this paper, we analyze theoretically the magneto-Rayleigh-Taylor instability driven by a rotating magnetic field. Slab configurations of finite thickness are treated both with and without using the Wenzel-Kramers-Brillouin approximation. Regardless of the slab thickness, the directional rotation of the driving magnetic field contributes to suppressing these instabilities. The two factors of the finite thickness and directional rotation of the magnetic field cooperate to enhance suppression, with the finite thickness playing a role only when the orientation of the magnetic field is time varying. The suppression becomes stronger as the driving magnetic field rotates faster, and all modes are suppressed, in contrast to the case of a non-rotating magnetic field, for which the vertical mode cannot be suppressed. This implies that the dynamically alternate configuration of a Theta-pinch and a Z-pinch may be applicable to the concept of Theta-Z liner inertial fusion.

  10. Towards the determination of deformation rates - pinch-and-swell structures as a natural and simulated paleo-strain rate gage

    NASA Astrophysics Data System (ADS)

    Peters, Max; Poulet, Thomas; Karrech, Ali; Regenauer-Lieb, Klaus; Herwegh, Marco

    2014-05-01

    Layered rocks deformed under viscous deformation conditions frequently show boudinage, a phenomenon that results from differences in effective viscosity between the involved layers. In the case of continuous necking of a mechanically stiffer layer embedded in a weaker matrix, symmetric boudins are interpreted as the result of dominant visco-plastic deformation (Goscombe et al., 2004). However, information on the physical conditions, material properties and deformation processes are yet unknown. Natural samples deformed under low-grade (T<350°C) metamorphic conditions were studied in detail in the Dent de Morcles and Doldenhorn nappes of the Helvetic Alps in order to accurately simulate their deformation styles by numerical models. In these samples, monomineralic calcite (Cc) veins were repeatedly boudinaged on cm- to µm-scale. Remnants of incompletely recrystallized original vein Cc grains in the swells indicate a sequence of deformation twinning, followed by progressive dynamic recrystallization along former twin planes up to complete recrystallization in the pinches (Schmalholz and Maeder, 2012). This sequence suggests dislocation creep to be active as important deformation mechanism. In contrast to the pinch-and-swell structures, the grain size of the Cc in the surrounding matrix is much finer-grained due to pinning by secondary particles, forcing the matrix to deform under viscous granular creep, i.e. by diffusion accommodated grain boundary sliding. The deformation processes observed in the natural samples were incorporated into a numerical model in order to evaluate the rheology of both layer and matrix, using an extension to a user material subroutine (Karrech et al., 2011a) for the finite element solver ABAQUS. We implemented thermo-mechanical coupling allowing elastic, viscous and plastic deformation of Cc (Herwegh et al., in press). We simulate a pure-shear box using finite elements, each representing a grain size distribution, which undergo layer

  11. [Reliability and validity of the analysis of hand grip and pinch force in isometric and isokinetic conditions].

    PubMed

    Benaglia, P G; Franchignoni, F; Ferriero, G; Zebellin, G; Sartorio, F

    1999-01-01

    Strength measurement of the hand grip is at the core of most protocols of functional assessment of the upper limb and in rehabilitation plays a major role in the analysis of treatment efficacy and patients' occupational ability. The aims of this study were to: a) verify the repeatability of strength measurements made during performance of the hand grip and three types of pinch, carried out under isometric and isokinetic conditions; b) compare maximal isometric strength with the corresponding isokinetic value for each of the manoeuvres studied; c) investigate the correlations between the strength expressed in the different manoeuvres, under both isometric and isokinetic conditions. We studied 14 voluntary subjects over three sessions conducted at 48-hr intervals, employing a computerized isokinetic dynamometer Lido WorkSet equipped with device N(o) 21 for the study of pinch (lateral pinch, pulp pinch, chuck pinch) and device N(o) 52 for the grip study. Isometric contractions resulted stronger than isokinetic ones, and the hand grip was found to be the manoeuvre able to produce most strength. The repeatability of each strength measurement test over the three days was high (Intraclass Correlation Coefficients: 0.89-0.93). Correlations between the isometric and isokinetic performance for each of the manoeuvres examined were always high (Pearson's r coefficients: 0.89-0.95) as were those between the different manoeuvres, whether performed in isometric or isokinetic modality (r: 0.60-0.94).

  12. On modeling and measuring the temperature of the z ∼ 5 intergalactic medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lidz, Adam; Malloy, Matthew, E-mail: alidz@sas.upenn.edu

    2014-06-20

    The temperature of the low-density intergalactic medium (IGM) at high redshift is sensitive to the timing and nature of hydrogen and He II reionization, and can be measured from Lyman-alpha (Lyα) forest absorption spectra. Since the memory of intergalactic gas to heating during reionization gradually fades, measurements as close as possible to reionization are desirable. In addition, measuring the IGM temperature at sufficiently high redshifts should help to isolate the effects of hydrogen reionization since He II reionization starts later, at lower redshift. Motivated by this, we model the IGM temperature at z ≳ 5 using semi-numeric models of patchymore » reionization. We construct mock Lyα forest spectra from these models and consider their observable implications. We find that the small-scale structure in the Lyα forest is sensitive to the temperature of the IGM even at redshifts where the average absorption in the forest is as high as 90%. We forecast the accuracy at which the z ≳ 5 IGM temperature can be measured using existing samples of high resolution quasar spectra, and find that interesting constraints are possible. For example, an early reionization model in which reionization ends at z ∼ 10 should be distinguishable—at high statistical significance—from a lower redshift model where reionization completes at z ∼ 6. We discuss improvements to our modeling that may be required to robustly interpret future measurements.« less

  13. Sheared E×B flow and plasma turbulence viscosity in a Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Regnoli, G.; Zuin, M.; Cavazzana, R.; Bergsåker, H.; Cecconello, M.; Drake, J. R.

    2004-11-01

    The relationship between electromagnetic turbulence and sheared plasma flow in Reversed Field Pinch configuration is addressed. The momentum balance equation for a compressible plasma is considered and the terms involved are measured in the outer region of Extrap-T2R RFP device. It results that electrostatic fluctuations determine the plasma flow through the electrostatic component of Reynolds Stress tensor. This term involves spatial and temporal scales comparable to those of MHD activity. The derived experimental perpendicular viscosity is consistent with anomalous diffusion, the latter being discussed in terms of electrostatic turbulence background and coherent structures emerging from fluctuations. The results indicate a dynamical interplay between turbulence, anomalous transport and mean E×B profiles. The momentum balance has been studied also in non-stationary condition during the application of Pulsed Poloidal Current Drive, which is known to reduce the amplitude of MHD modes.

  14. The study of pinch regimes based on radiation-enhanced compression and anomalous resistivity phenomena and their effects on hard x-ray emission in a Mather type dense plasma focus device (SABALAN2)

    NASA Astrophysics Data System (ADS)

    Piriaei, D.; Mahabadi, T. D.; Javadi, S.; Ghoranneviss, M.; Saw, S. H.; Lee, S.

    2015-12-01

    In this study, by using argon and nitrogen as the filling gases in a Mather type dense plasma focus device at different values of pressure and charging voltage, two different kinds of pinch regimes were observed for each of the gases. The physics of the pinch regimes could be explained by using the two versions of the Lee's computational model which predicted each of the scenarios and clarified their differences between the two gases according to the radiation-enhanced compression and, additionally, predicted the pinch regimes through the anomalous resistivity effect during the pinch time. This was accomplished through the fitting process (simulation) on the current signal. Moreover, the characteristic amplitude and time scales of the anomalous resistances were obtained. The correlations between the features of the plasma current dip and the emitted hard x-ray pulses were observed. The starting time, intensity, duration, and the multiple or single feature of the emitted hard x-ray strongly correlated to the same respective features of the current dip.

  15. Dynamical Formation of Low-mass Merging Black Hole Binaries like GW151226

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Sourav; Rodriguez, Carl L.; Kalogera, Vicky

    2017-02-20

    Using numerical models for star clusters spanning a wide range in ages and metallicities (Z) we study the masses of binary black holes (BBHs) produced dynamically and merging in the local universe ( z ≲ 0.2). After taking into account cosmological constraints on star formation rate and metallicity evolution, which realistically relate merger delay times obtained from models with merger redshifts, we show here for the first time that while old, metal-poor globular clusters can naturally produce merging BBHs with heavier components, as observed in GW150914, lower-mass BBHs like GW151226 are easily formed dynamically in younger, higher-metallicity clusters. More specifically,more » we show that the mass of GW151226 is well within 1 σ of the mass distribution obtained from our models for clusters with Z/Z{sub ⊙} ≳ 0.5. Indeed, dynamical formation of a system like GW151226 likely requires a cluster that is younger and has a higher metallicity than typical Galactic globular clusters. The LVT151012 system, if real, could have been created in any cluster with Z/Z{sub ⊙} ≲ 0.25. On the other hand, GW150914 is more massive (beyond 1 σ ) than typical BBHs from even the lowest-metallicity (Z/Z{sub ⊙} = 0.005) clusters we consider, but is within 2 σ of the intrinsic mass distribution from our cluster models with Z/Z{sub ⊙} ≲ 0.05; of course, detection biases also push the observed distributions toward higher masses.« less

  16. Next generation of Z* modelling tool for high intensity EUV and soft x-ray plasma sources simulations

    NASA Astrophysics Data System (ADS)

    Zakharov, S. V.; Zakharov, V. S.; Choi, P.; Krukovskiy, A. Y.; Novikov, V. G.; Solomyannaya, A. D.; Berezin, A. V.; Vorontsov, A. S.; Markov, M. B.; Parot'kin, S. V.

    2011-04-01

    In the specifications for EUV sources, high EUV power at IF for lithography HVM and very high brightness for actinic mask and in-situ inspections are required. In practice, the non-equilibrium plasma dynamics and self-absorption of radiation limit the in-band radiance of the plasma and the usable radiation power of a conventional single unit EUV source. A new generation of the computational code Z* is currently developed under international collaboration in the frames of FP7 IAPP project FIRE for modelling of multi-physics phenomena in radiation plasma sources, particularly for EUVL. The radiation plasma dynamics, the spectral effects of self-absorption in LPP and DPP and resulting Conversion Efficiencies are considered. The generation of fast electrons, ions and neutrals is discussed. Conditions for the enhanced radiance of highly ionized plasma in the presence of fast electrons are evaluated. The modelling results are guiding a new generation of EUV sources being developed at Nano-UV, based on spatial/temporal multiplexing of individual high brightness units, to deliver the requisite brightness and power for both lithography HVM and actinic metrology applications.

  17. Examining the evidence for dynamical dark energy.

    PubMed

    Zhao, Gong-Bo; Crittenden, Robert G; Pogosian, Levon; Zhang, Xinmin

    2012-10-26

    We apply a new nonparametric Bayesian method for reconstructing the evolution history of the equation of state w of dark energy, based on applying a correlated prior for w(z), to a collection of cosmological data. We combine the latest supernova (SNLS 3 year or Union 2.1), cosmic microwave background, redshift space distortion, and the baryonic acoustic oscillation measurements (including BOSS, WiggleZ, and 6dF) and find that the cosmological constant appears consistent with current data, but that a dynamical dark energy model which evolves from w<-1 at z~0.25 to w>-1 at higher redshift is mildly favored. Estimates of the Bayesian evidence show little preference between the cosmological constant model and the dynamical model for a range of correlated prior choices. Looking towards future data, we find that the best fit models for current data could be well distinguished from the ΛCDM model by observations such as Planck and Euclid-like surveys.

  18. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.

    PubMed

    Bhagat, Ali Asgar S; Hou, Han Wei; Li, Leon D; Lim, Chwee Teck; Han, Jongyoon

    2011-06-07

    Blood is a highly complex bio-fluid with cellular components making up >40% of the total volume, thus making its analysis challenging and time-consuming. In this work, we introduce a high-throughput size-based separation method for processing diluted blood using inertial microfluidics. The technique takes advantage of the preferential cell focusing in high aspect-ratio microchannels coupled with pinched flow dynamics for isolating low abundance cells from blood. As an application of the developed technique, we demonstrate the isolation of cancer cells (circulating tumor cells (CTCs)) spiked in blood by exploiting the difference in size between CTCs and hematologic cells. The microchannel dimensions and processing parameters were optimized to enable high throughput and high resolution separation, comparable to existing CTC isolation technologies. Results from experiments conducted with MCF-7 cells spiked into whole blood indicate >80% cell recovery with an impressive 3.25 × 10(5) fold enrichment over red blood cells (RBCs) and 1.2 × 10(4) fold enrichment over peripheral blood leukocytes (PBL). In spite of a 20× sample dilution, the fast operating flow rate allows the processing of ∼10(8) cells min(-1) through a single microfluidic device. The device design can be easily customized for isolating other rare cells from blood including peripheral blood leukocytes and fetal nucleated red blood cells by simply varying the 'pinching' width. The advantage of simple label-free separation, combined with the ability to retrieve viable cells post enrichment and minimal sample pre-processing presents numerous applications for use in clinical diagnosis and conducting fundamental studies.

  19. Equivalent Dynamic Models.

    PubMed

    Molenaar, Peter C M

    2017-01-01

    Equivalences of two classes of dynamic models for weakly stationary multivariate time series are discussed: dynamic factor models and autoregressive models. It is shown that exploratory dynamic factor models can be rotated, yielding an infinite set of equivalent solutions for any observed series. It also is shown that dynamic factor models with lagged factor loadings are not equivalent to the currently popular state-space models, and that restriction of attention to the latter type of models may yield invalid results. The known equivalent vector autoregressive model types, standard and structural, are given a new interpretation in which they are conceived of as the extremes of an innovating type of hybrid vector autoregressive models. It is shown that consideration of hybrid models solves many problems, in particular with Granger causality testing.

  20. Z H η vertex in the simplest little Higgs model

    NASA Astrophysics Data System (ADS)

    He, Shi-Ping; Mao, Ying-nan; Zhang, Chen; Zhu, Shou-hua

    2018-04-01

    The issue of deriving Z H η vertex in the simplest little Higgs (SLH) model is revisited. Special attention is paid to the treatment of noncanonically-normalized scalar kinetic matrix and vector-scalar two-point transitions. We elucidate a general procedure to diagonalize a general vector-scalar system in gauge theories and apply it to the case of SLH. The resultant Z H η vertex is found to be different from those which have already existed in the literature for a long time. We also present an understanding of this issue from an effective field theory viewpoint.

  1. Simple deterministic models and applications. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Yang, Hyun Mo

    2015-12-01

    Currently, discrete modellings are largely accepted due to the access to computers with huge storage capacity and high performance processors and easy implementation of algorithms, allowing to develop and simulate increasingly sophisticated models. Wang et al. [7] present a review of dynamics in complex networks, focusing on the interaction between disease dynamics and human behavioral and social dynamics. By doing an extensive review regarding to the human behavior responding to disease dynamics, the authors briefly describe the complex dynamics found in the literature: well-mixed populations networks, where spatial structure can be neglected, and other networks considering heterogeneity on spatially distributed populations. As controlling mechanisms are implemented, such as social distancing due 'social contagion', quarantine, non-pharmaceutical interventions and vaccination, adaptive behavior can occur in human population, which can be easily taken into account in the dynamics formulated by networked populations.

  2. Modeling of Unit-Cells With Z-Pins Using FLASH: Pre-Processing and Post Processing

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2005-01-01

    Although the toughening properties of stitches, z-pins and similar structures have been studied extensively, investigations on the effect of z-pins on the in-plane properties of laminates are limited. A brief summary on the effect of z-pins on the in-plane tensile and compressive properties of composite laminates is presented together with a concise introduction into the finite element code FLASH. The remainder of the report illustrates the modeling aspect of unit cells with z-pins in FLASH and focuses on input and output data as well as post-processing of results.

  3. IB-LBM study on cell sorting by pinched flow fractionation.

    PubMed

    Ma, Jingtao; Xu, Yuanqing; Tian, Fangbao; Tang, Xiaoying

    2014-01-01

    Separation of two categories of cells in pinched flow fractionation(PFF) device is simulated by employing IB-LBM. The separation performances at low Reynolds number (about 1) under different pinched segment widths, flow ratios, cell features, and distances between neighboring cells are studied and the results are compared with those predicted by the empirical formula. The simulation indicates that the diluent flow rate should approximate to or more than the flow rate of particle solution in order to get a relatively ideal separation performance. The discrepancy of outflow position between numerical simulation and the empirical prediction enlarges, when the cells become more flexible. Too short distance between two neighboring cells could lead to cell banding which would result in incomplete separation, and the relative position of two neighboring cells influences the banding of cells. The present study will probably provide some new applications of PFF, and make some suggestions on the design of PFF devices.

  4. Z'→ggg decay in left-right symmetric models with three and four fermion families

    NASA Astrophysics Data System (ADS)

    Montaño, J.; Napsuciale, M.; Vaquera-Araujo, C. A.

    2011-12-01

    We study the Z'→q¯q,ggg decays in the context of a manifest left-right symmetric gauge theory with three and four generations. The Z' couplings to quarks are fixed essentially by the parameters of the standard model and we obtain Γ(Z'→qq¯)≈14GeV for MZ'≈1TeV. For the Z'→ggg decay and three families we obtain a branching ratio BR(Z'→ggg)=(Γ(Z'→ggg))/(Γ(Z'→qq¯))=1.2-2.8×10-5 for mZ'=700-1500GeV. The fourth generation produces an enhancement in the branching ratio for Z' masses close to the b¯'b' threshold and a dip for Z' masses close to the t¯'t' threshold. Using the values of the fourth-generation quark masses allowed by electroweak precision data, we obtain a branching ratio BR(Z'→ggg)=(1-6)×10-5 for mZ'=(700-1500)GeV.

  5. Particle-in-cell modeling for MJ scale dense plasma focus with varied anode shape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, A., E-mail: link6@llnl.gov; Halvorson, C., E-mail: link6@llnl.gov; Schmidt, A.

    2014-12-15

    Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 10{sup 12} neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off throughmore » the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 μs run-down of the 50+ cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Validation assessments are being performed using a variety of different anode shapes, comparing against experimental measurements of neutron yield, neutron anisotropy and ion beam production.« less

  6. The Effect of Driver Rise-Time on Pinch Current and its Impact on Plasma Focus Performance and Neutron Yield

    NASA Astrophysics Data System (ADS)

    Sears, Jason; Schmidt, Andrea; Link, Anthony; Welch, Dale

    2016-10-01

    Experiments have suggested that dense plasma focus (DPF) neutron yield increases with faster drivers [Decker NIMP 1986]. Using the particle-in-cell code LSP [Schmidt PRL 2012], we reproduce this trend in a kJ DPF [Ellsworth 2014], and demonstrate how driver rise time is coupled to neutron output. We implement a 2-D model of the plasma focus including self-consistent circuit-driven boundary conditions. Driver capacitance and voltage are varied to modify the current rise time, and anode length is adjusted so that run-in coincides with the peak current. We observe during run down that magnetohydrodynamic (MHD) instabilities of the sheath shed blobs of plasma that remain in the inter-electrode gap during run in. This trailing plasma later acts as a low-inductance restrike path that shunts current from the pinch during maximum compression. While the MHD growth rate increases slightly with driver speed, the shorter anode of the fast driver allows fewer e-foldings and hence reduces the trailing mass between electrodes. As a result, the fast driver postpones parasitic restrikes and maintains peak current through the pinch during maximum compression. The fast driver pinch therefore achieves best simultaneity between its ion beam and peak target density, which maximizes neutron production. Prepared by LLNL under Contract DE-AC52-07NA27344.

  7. Comparison of X-ray Radiation Process in Single and Nested Wire Array Implosions

    NASA Astrophysics Data System (ADS)

    Li, Z. H.; Xu, Z. P.; Yang, J. L.; Xu, R. K.; Guo, C.; Grabovsky, E. V.; Oleynic, G. M.; Smirnov, V. P.

    2006-01-01

    In order to understanding the difference between tungsten single-wire-array and tungsten nested-wire-array Z-pinches, we have measured the x-ray power, the temporal-spatial distributions of x-ray radiation from each of the two loads. The measurements were performed with 0.1mm spatial and 1 ns temporal resolutions at 2.5- and 3.5-MA currents. The experimental conditions, including wire material, number of wires, wire-array length, electrode design, and implosion time, remained unchanged from shot to shot. Analysis of the radiation power profiles suggests that the nested-wire-array radiate slightly less x-ray energy in relatively shorter time interval than the single wire-array, leading to a much greater x-ray power in nested-wire-array implosion. The temporal-spatial distributions of x-ray power show that in both cases, plasmas formed by wire-array ablation radiate not simultaneously along load axis. For nested-wire-array Z-pinch, plasmas near the anode begin to radiate in 2ns later than that near the cathode. As a contrast, the temporal divergence of radiation among different plasma zones of single-wire-array Z-pinch along Z-axis is more than 6ns. Measurements of the x-ray emissions from small segments of pinch (2mm length along axis) indicate that local radiation power profiles almost do not vary for the two loads. Photographs taken by X-ray framing camera give a same description about the radiation process of pinch. One may expect that, as a result of this study, if the single-wire-array can be redesigned so ingeniously that the x-rays are emitted at the same time all over the pinch zone, the radiation power of single wire array Z-pinch may be much greater than what have been achieved.

  8. Simulation study of a new inverse-pinch high Coulomb transfer switch

    NASA Technical Reports Server (NTRS)

    Choi, S. H.

    1984-01-01

    A simulation study of a simplified model of a high coulomb transfer switch is performed. The switch operates in an inverse pinch geometry formed by an all metal chamber, which greatly reduces hot spot formations on the electrode surfaces. Advantages of the switch over the conventional switches are longer useful life, higher current capability and lower inductance, which improves the characteristics required for a high repetition rate switch. The simulation determines the design parameters by analytical computations and comparison with the experimentally measured risetime, current handling capability, electrode damage, and hold-off voltages. The parameters of initial switch design can be determined for the anticipated switch performance. Results are in agreement with the experiment results. Although the model is simplified, the switch characteristics such as risetime, current handling capability, electrode damages, and hold-off voltages are accurately determined.

  9. Resistivity profile effects in numerical magnetohydrodynamic simulations of the reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Sätherblom, H.-E.; Mazur, S.; Nordlund, P.

    1996-12-01

    The influence of the resistivity profile on reversed-field pinch (RFP) dynamics is investigated numerically using a three-dimensional resistive magnetohydrodynamic code. This investigation is motivated by experimental observations on the EXTRAP-T1 RFP (Nordlund P et al 1994 Int. Conf. Plasma Physics and Controlled Nuclear Fusion Research IAEA-CN-60/A6/C-P-6). Two cases with profiles mainly differing in the edge region, i.e. in the region outside the reversal surface, are simulated. It is found that increasing the resistivity in this region results in a factor of two increase in magnetic fluctuation energy and an equal amount in the fluctuation-induced electric field. In spite of this, the parallel current decreases in the edge region, resulting in a factor two reduction of the field reversal ratio. The dynamics become more irregular and the characteristic timescale is reduced. The final state is characterized by a higher loop voltage, slightly lower values of the total (fluctuating plus mean part) magnetic energy and the magnetic helicity, but almost unchanged Taylor relaxation ratio. The results indicate that the edge region can be important for RFP confinement since cooling of the plasma in this region can lead to an increased fluctuation level and degraded performance.

  10. The quantum pinch effect in semiconducting quantum wires: A bird’s-eye view

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir S.

    2016-01-01

    Those who measure success with culmination do not seem to be aware that life is a journey not a destination. This spirit is best reflected in the unceasing failures in efforts for solving the problem of controlled thermonuclear fusion for even the simplest pinches for over decades; and the nature keeps us challenging with examples. However, these efforts have permitted researchers the obtention of a dense plasma with a lifetime that, albeit short, is sufficient to study the physics of the pinch effect, to create methods of plasma diagnostics, and to develop a modern theory of plasma processes. Most importantly, they have impregnated the solid state plasmas, particularly the electron-hole plasmas in semiconductors, which do not suffer from the issues related with the confinement and which have demonstrated their potential not only for the fundamental physics but also for the device physics. Here, we report on a two-component, cylindrical, quasi-one-dimensional quantum plasma subjected to a radial confining harmonic potential and an applied magnetic field in the symmetric gauge. It is demonstrated that such a system, as can be realized in semiconducting quantum wires, offers an excellent medium for observing the quantum pinch effect at low temperatures. An exact analytical solution of the problem allows us to make significant observations: Surprisingly, in contrast to the classical pinch effect, the particle density as well as the current density display a determinable maximum before attaining a minimum at the surface of the quantum wire. The effect will persist as long as the equilibrium pair density is sustained. Therefore, the technological promise that emerges is the route to the precise electronic devices that will control the particle beams at the nanoscale.

  11. Policy and science in children's health and environment: recommendations from the PINCHE project.

    PubMed

    van den Hazel, Peter; Zuurbier, Moniek; Bistrup, Marie Louise; Busby, Chris; Fucic, Aleksandra; Koppe, Janna G; Lundqvist, Christofer; Ronchetti, Roberto; ten Tusscher, Gavin

    2006-10-01

    Policy recommendations result from the discussions and analysis of the present situation in environment and health. Such analysis was performed in PINCHE. This led to recommendations based on the scientific literature. In the field of children's environmental health the policy process will follow more or less fixed rules, but this process is still at an early level of development. The link between science and policy still faces many challenges. Scientific assessment of environmental risk must recognize and tackle the problems of data sets, variability of human and environmental systems, the range, spatial and temporal diffusion of potential health effects and many biases and confounding factors. The PINCHE network recommends a general improvement of the supporting scientific fields in environment and health. Assessments from epidemiology or toxicology should play a key role in influencing science-policy decisions in programmes that are intended to inform the public policy process. Scientific committees at a local level could play a role. The relation between health and environment needs to be better incorporated in training and education. There is a need for harmonization of data production and use. The priorities in PINCHE focus on the most important issues. A classification of low, medium or high priority for action was used to describe a range of different environmental stressors. PINCHE provided recommendations to reduce exposure for children. Exposure reduction is not always linked to improved health in the short term, but it will reduce the body burden of accumulating chemicals in children. A strategic choice is reduction of exposure of children to compounds by changing production techniques or by increasing the distance of child specific settings to sources. The contribution of all players in the production, distribution and use of scientific knowledge in the field of children's environmental health is necessary.

  12. Toward (finally!) ruling out Z and Higgs mediated dark matter models

    DOE PAGES

    Escudero, Miguel; Fermi National Accelerator Lab.; Berlin, Asher; ...

    2016-12-15

    In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model Z or the Standard Model Higgs boson. Considering fermionic, scalar, and vector dark matter candidates within a model-independent context, we find that the overwhelming majority of these dark matter candidates are already ruled out by existing experiments. In the case of Zmore » mediated dark matter, the only scenarios that are not currently excluded are those in which the dark matter is a fermion with an axial coupling and with a mass either within a few GeV of the Z resonance (m DM ≃ m Z/2) or greater than 200 GeV, or with a vector coupling and with m DM > 6 TeV . Several Higgs mediated scenarios are currently viable if the mass of the dark matter is near the Higgs pole (m DM ≃ m H/2). Otherwise, the only scenarios that are not excluded are those in which the dark matter is a scalar (vector) heavier than 400 GeV (1160 GeV) with a Higgs portal coupling, or a fermion with a pseudoscalar (CP violating) coupling to the Standard Model Higgs boson. Furthermore, with the exception of dark matter with a purely pseudoscalar coupling to the Higgs, it is anticipated that planned direct detection experiments will probe nearly the entire range of models considered in this study.« less

  13. Toward (finally!) ruling out Z and Higgs mediated dark matter models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escudero, Miguel; Fermi National Accelerator Lab.; Berlin, Asher

    In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model Z or the Standard Model Higgs boson. Considering fermionic, scalar, and vector dark matter candidates within a model-independent context, we find that the overwhelming majority of these dark matter candidates are already ruled out by existing experiments. In the case of Zmore » mediated dark matter, the only scenarios that are not currently excluded are those in which the dark matter is a fermion with an axial coupling and with a mass either within a few GeV of the Z resonance (m DM ≃ m Z/2) or greater than 200 GeV, or with a vector coupling and with m DM > 6 TeV . Several Higgs mediated scenarios are currently viable if the mass of the dark matter is near the Higgs pole (m DM ≃ m H/2). Otherwise, the only scenarios that are not excluded are those in which the dark matter is a scalar (vector) heavier than 400 GeV (1160 GeV) with a Higgs portal coupling, or a fermion with a pseudoscalar (CP violating) coupling to the Standard Model Higgs boson. Furthermore, with the exception of dark matter with a purely pseudoscalar coupling to the Higgs, it is anticipated that planned direct detection experiments will probe nearly the entire range of models considered in this study.« less

  14. Bottom-quark fusion processes at the LHC for probing Z' models and B -meson decay anomalies

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohammad; Dalchenko, Mykhailo; Dutta, Bhaskar; Eusebi, Ricardo; Huang, Peisi; Kamon, Teruki; Rathjens, Denis; Thompson, Adrian

    2018-04-01

    We investigate models of a heavy neutral gauge boson Z' coupling mostly to third generation quarks and second generation leptons. In this scenario, bottom quarks arising from gluon splitting can fuse into Z' allowing the LHC to probe it. In the generic framework presented, anomalies in B -meson decays reported by the LHCb experiment imply a flavor-violating b s coupling of the featured Z' constraining the lowest possible production cross section. A novel approach searching for a Z'(→μ μ ) in association with at least one bottom-tagged jet can probe regions of model parameter space existing analyses are not sensitive to.

  15. Modeling of the L-shell copper X-pinch plasma produced by the compact generator of Ecole polytechnique using pattern recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larour, Jean; Aranchuk, Leonid E.; Danisman, Yusuf

    2016-03-15

    Principal component analysis is applied and compared with the line ratios of special Ne-like transitions for investigating the electron beam effects on the L-shell Cu synthetic spectra. The database for the principal component extraction is created over a non Local Thermodynamic Equilibrium (non-LTE) collisional radiative L-shell Copper model. The extracted principal components are used as a database for Artificial Neural Network in order to estimate the plasma electron temperature, density, and beam fractions from a representative time-integrated spatially resolved L-shell Cu X-pinch plasma spectrum. The spectrum is produced by the explosion of 25-μm Cu wires on a compact LC (40more » kV, 200 kA, and 200 ns) generator. The modeled plasma electron temperatures are about T{sub e} ∼ 150 eV and N{sub e} = 5 × 10{sup 19} cm{sup −3} in the presence of the fraction of the beams with f ∼ 0.05 and a centered energy of ∼10 keV.« less

  16. Crossed-swords, capsule-pinch technique for capsulotomy in pediatric and/or loose lens cataract extraction.

    PubMed

    Snyder, Michael E; Lindsell, Luke B

    2010-02-01

    Puncturing the anterior capsule in a patient with a very soft lens, an elastic capsule, and/or deficient zonular countertraction can be challenging even with a sharp needle or blade. The crossed-swords, capsule-pinch technique capitalizes on opposing forces from 2 needles directed toward each other with a "pinch" of the capsule between their tips. This affords a controlled and facile puncture of the capsule without creating stress on the zonules or anteroposterior displacement of the lens. Copyright 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  17. MinD directly interacting with FtsZ at the H10 helix suggests a model for robust activation of MinC to destabilize FtsZ polymers.

    PubMed

    Taviti, Ashoka Chary; Beuria, Tushar Kant

    2017-09-07

    Cell division in bacteria is a highly controlled and regulated process. FtsZ, a bacterial cytoskeletal protein, forms a ring-like structure known as the Z-ring and recruits more than a dozen other cell division proteins. The Min system oscillates between the poles and inhibits the Z-ring formation at the poles by perturbing FtsZ assembly. This leads to an increase in the FtsZ concentration at the mid-cell and helps in Z-ring positioning. MinC, the effector protein, interferes with Z-ring formation through two different mechanisms mediated by its two domains with the help of MinD. However, the mechanism by which MinD triggers MinC activity is not yet known. We showed that MinD directly interacts with FtsZ with an affinity stronger than the reported MinC-FtsZ interaction. We determined the MinD-binding site of FtsZ using computational, mutational and biochemical analyses. Our study showed that MinD binds to the H10 helix of FtsZ. Single-point mutations at the charged residues in the H10 helix resulted in a decrease in the FtsZ affinity towards MinD. Based on our findings, we propose a novel model for MinCD-FtsZ interaction, where MinD through its direct interaction with FtsZ would trigger MinC activity to inhibit FtsZ functions. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. (3Z,6Z,9Z,12Z,15Z)-Pentacosapentaene and (Z) -11-Hexadecenyl Acetate: sex attractant blend for Dioryctria amatella (Lepidoptera: Pyralidae).

    Treesearch

    Daniel Miller; Jocelyn Millar; Alex Mangini; Christopher Crowe; Gary Grant

    2010-01-01

    In 2006-2008, we tested (3Z,6Z,9Z,12Z,15Z)-pentacosapentaene (pentaene) with the pheromone components (Z)-11-hexadecenyl acetate (Z11-16:Ac) and (Z)-9-tetradecenyl acetate (Z9-14:Ac), as sex attractants for four sympatric species of coneworms, Dioryctria Zeller (Lepidoptera: Pyralidae) in slash (Pinus elliottii Engelm.) and...

  19. Discriminating different Z{sup '}'s via asymmetries at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Zhongqiu; Xiao Bo; Wang Youkai

    2011-05-01

    In practice the asymmetry, which is defined based on the angular distribution of the final states in scattering or decay processes, can be utilized to scrutinize underlying dynamics in and/or beyond the standard model (BSM). As one of the possible BSM physics which might be discovered early at the LHC, extra neutral gauge bosons Z{sup '}'s are theoretically well motivated. Once Z{sup '}'s are discovered at the LHC, it is crucial to discriminate different Z{sup '}'s in various BSM. In principle such a task can be accomplished by measuring the angular distribution of the final states which are produced viamore » Z{sup '}-mediated processes. In the real data analysis, asymmetry is always adopted. In the literature several asymmetries have been proposed at the LHC. Based on these works, we stepped further on to study how to optimize the asymmetries in the left-right model and the sequential standard model, as the examples of BSM. In this paper, we examined four kinds of asymmetries, namely, rapidity-dependent forward-backward asymmetry, oneside forward-backward asymmetry, central charge asymmetry, and edge charge asymmetry (see text for details), with l{sup +}l{sup -} (l=e, {mu}), bb, and tt as the final states. In the calculations with bb and tt final states, the QCD-induced higher-order contributions to the asymmetric cross section were also included. For each kind of final state, we estimated the four kinds of asymmetries and especially the optimal cut usually associated with the definition of the asymmetry. Our numerical results indicated that the capacity to discriminate Z{sup '} models can be improved by imposing the optimal cuts.« less

  20. Load Designs For MJ Dense Plasma Foci

    NASA Astrophysics Data System (ADS)

    Link, A.; Povlius, A.; Anaya, R.; Anderson, M. G.; Angus, J. R.; Cooper, C. M.; Falabella, S.; Goerz, D.; Higginson, D.; Holod, I.; McMahon, M.; Mitrani, J.; Koh, E. S.; Pearson, A.; Podpaly, Y. A.; Prasad, R.; van Lue, D.; Watson, J.; Schmidt, A. E.

    2017-10-01

    Dense plasma focus (DPF) Z-pinches are compact pulse power driven devices with coaxial electrodes. The discharge of DPF consists of three distinct phases: first generation of a plasma sheath, plasma rail gun phase where the sheath is accelerated down the electrodes and finally an implosion phase where the plasma stagnates into a z-pinch geometry. During the z-pinch phase, DPFs can produce MeV ion beams, x-rays and neutrons. Megaampere class DPFs with deuterium fills have demonstrated neutron yields in the 1012 neutrons/shot range with pulse durations of 10-100 ns. Kinetic simulations using the code Chicago are being used to evaluate various load configurations from initial sheath formation to the final z-pinch phase for DPFs with up to 5 MA and 1 MJ coupled to the load. Results will be presented from the preliminary design simulations. LLNL-ABS-734785 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and with support from the Computing Grand Challenge program at LLNL.

  1. Evaluation of a gamma camera system for the RITS-6 accelerator using the self-magnetic pinch diode

    NASA Astrophysics Data System (ADS)

    Webb, Timothy J.; Kiefer, Mark L.; Gignac, Raymond; Baker, Stuart A.

    2015-08-01

    The self-magnetic pinch (SMP) diode is an intense radiographic source fielded on the Radiographic Integrated Test Stand (RITS-6) accelerator at Sandia National Laboratories in Albuquerque, NM. The accelerator is an inductive voltage adder (IVA) that can operate from 2-10 MV with currents up to 160 kA (at 7 MV). The SMP diode consists of an annular cathode separated from a flat anode, holding the bremsstrahlung conversion target, by a vacuum gap. Until recently the primary imaging diagnostic utilized image plates (storage phosphors) which has generally low DQE at these photon energies along with other problems. The benefits of using image plates include a high-dynamic range, good spatial resolution, and ease of use. A scintillator-based X-ray imaging system or "gamma camera" has been fielded in front of RITS and the SMP diode which has been able to provide vastly superior images in terms of signal-to-noise with similar resolution and acceptable dynamic range.

  2. Crabs grab strongly depending on mechanical advantages of pinching and disarticulation of chela.

    PubMed

    Fujiwara, Shin-Ichi; Kawai, Hiroki

    2016-10-01

    A small morphological variation of an organ may cause a major change of its function in animal evolution. The function of decapod chela varies considerably among taxa, between sex, and even within an individual, but also retains a simple mechanism of motion. Therefore, the decapod chela is a suitable structure to study the evolutionary process of functional diversifications, although the relationship of form and function is inadequately understood, yet. We estimated the mechanical advantages of pinching and passive disarticulation resistance, and chela size relative to the carapace in 317 chelae of 168 decapod specimens, and compared these indices with the functions of each chela. Our study revealed that mechanical advantages of pinching efficiency and passive disarticulation resistance were greatest in shell-crushing chelae, followed by gripping and pinching chelae, whereas the chela size relative to the carapace was not related to differences among these functions. We also found that the chelae are designed to retain the ratio between depth and width of the proximal dactylus. In the evolutionary process of decapods, the diversifications of chela functions were accompanied by the diversifications of the mechanical advantages, and played an essential role in their ecological diversification. J. Morphol. 277:1259-1272, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Role of the Z band in the mechanical properties of the heart.

    PubMed

    Goldstein, M A; Schroeter, J P; Michael, L H

    1991-05-01

    In striated muscle the mechanism of contraction involves the cooperative movement of contractile and elastic components. This review emphasizes a structural approach that describes the cellular and extracellular components with known anatomical, biochemical, and physical properties that make them candidates for these contractile and elastic components. Classical models of contractile and elastic elements and their underlying assumptions are presented. Mechanical properties of cardiac and skeletal muscle are compared and contrasted and then related to ultrastructure. Information from these approaches leads to the conclusion that the Z band is essential for muscle contraction. Our review of Z band structure shows the Z band at the interface where extracellular components meet the cell surface. The Z band is also the interface from cell surface to myofibril, from extra-myofibrillar to myofibril, and finally from sarcomere to sarcomere. Our studies of Z band in defined physiologic states show that this lattice is an integral part of the contractile elements and can function as an elastic component. The Z band is a complex dynamic lattice uniquely suited to play several roles in muscle contraction.

  4. A study of the methods for the production and confinement of high energy plasmas. [injection of dense plasma into long magnetic field

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.; Wang, P.

    1972-01-01

    The injection of dense plasmas into a B sub z long magnetic field from both ends of the field coil was investigated. Deflagration plasma guns and continuous flow Z-pinch are discussed along with the possibility of a continuous flow Z-pinch fusion reactor. The injection experiments are described with emphasis on the synchronization of the two plasma deflagration guns, the collision of the two plasma beams, and the determination of plasma density.

  5. The functional link between tail-pinch-induced food intake and emotionality and its possible role in stress coping in rats.

    PubMed

    Aso-Someya, Nami; Narikiyo, Kimiya; Masuda, Akira; Aou, Shuji

    2018-02-08

    Tail pinch facilitates eating in rats. We investigated an unidentified link between tail-pinch-induced eating behavior and individual emotionality in male Sprague-Dawley rats. Anxiety-like behavior was assessed on the elevated plus maze (EPM) and in the open field test (OFT). Tail-pinch-induced eating was observed as follows: After a 30-min habituation period, the tail pinch was applied for 5 min, followed by a 30-min recovery period. During the habituation and recovery periods, rats were allowed to access food ad libitum. During the recovery period, 14 of 24 rats ate more food than during the habituation period. Thus, we named them "high responders" and the others as "low responders". The food intake was significantly greater, while the times spent in the open arms in the EPM and in the center area in the OFT were significantly shorter in high responders than in low responders. This result suggests that the rats consuming more food after mild stress have higher anxiety.

  6. Interbrachial Pinch by Trapezius Transfer in Amyoplasia Congenita: A Case Report

    PubMed Central

    Thione, Alessandro; Cavadas, Pedro C.; Rubi, Carlo G.

    2017-01-01

    Summary: Amyoplasia congenita, or “classic distal arthrogryposis,” is the most common disorder among the congenital, non-progressive, multiple joint contractural conditions named arthrogryposis. The cause remains unknown, and it occurs sporadically. Abnormal neurological examination indicates that movement in utero was diminished as a result of an abnormality of the central or peripheral nervous system, the motor end plate, or muscle. The absence of central neural pathology indicates the origin in akinetic fetal condition. Three weeks are enough to cause muscle weakness and joint fibrosis. Joint contractures in amyoplasia are often rigid and refractory to nonoperative treatment such as passive stretching. Surgery is focused on each patient's need respecting adaptive maneuvers to accomplish daily tasks. We present a case in which pectoral major muscle had no strength for pinching; a trapezius muscle transfer was planned to obtain an interbrachial pinch useful for grasping. PMID:28607845

  7. Locked modes in two reversed-field pinch devices of different size and shell system

    NASA Astrophysics Data System (ADS)

    Malmberg, J.-A.; Brunsell, P. R.; Yagi, Y.; Koguchi, H.

    2000-10-01

    The behavior of locked modes in two reversed-field pinch devices, the Toroidal Pinch Experiment (TPE-RX) [Y. Yagi et al., Plasma Phys. Control. Fusion 41, 2552 (1999)] and Extrap T2 [J. R. Drake et al., in Plasma Physics and Controlled Nuclear Fusion Research 1996, Montreal (International Atomic Energy Agency, Vienna, 1996), Vol. 2, p. 193] is analyzed and compared. The main characteristics of the locked mode are qualitatively similar. The toroidal distribution of the mode locking shows that field errors play a role in both devices. The probability of phase locking is found to increase with increasing magnetic fluctuation levels in both machines. Furthermore, the probability of phase locking increases with plasma current in TPE-RX despite the fact that the magnetic fluctuation levels decrease. A comparison with computations using a theoretical model estimating the critical mode amplitude for locking [R. Fitzpatrick et al., Phys. Plasmas 6, 3878 (1999)] shows a good correlation with experimental results in TPE-RX. In Extrap T2, the magnetic fluctuations scale weakly with both plasma current and electron densities. This is also reflected in the weak scaling of the magnetic fluctuation levels with the Lundquist number (˜S-0.06). In TPE-RX, the corresponding scaling is ˜S-0.18.

  8. The Z3 model of Saturns magnetic field and the Pioneer 11 vector helium magnetometer observations

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.

    1984-01-01

    Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1%) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model.

  9. The study of pinch regimes based on radiation-enhanced compression and anomalous resistivity phenomena and their effects on hard x-ray emission in a Mather type dense plasma focus device (SABALAN2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriaei, D.; Javadi, S.; Ghoranneviss, M.

    In this study, by using argon and nitrogen as the filling gases in a Mather type dense plasma focus device at different values of pressure and charging voltage, two different kinds of pinch regimes were observed for each of the gases. The physics of the pinch regimes could be explained by using the two versions of the Lee's computational model which predicted each of the scenarios and clarified their differences between the two gases according to the radiation-enhanced compression and, additionally, predicted the pinch regimes through the anomalous resistivity effect during the pinch time. This was accomplished through the fittingmore » process (simulation) on the current signal. Moreover, the characteristic amplitude and time scales of the anomalous resistances were obtained. The correlations between the features of the plasma current dip and the emitted hard x-ray pulses were observed. The starting time, intensity, duration, and the multiple or single feature of the emitted hard x-ray strongly correlated to the same respective features of the current dip.« less

  10. Nonbibliographic Applications of Z39.50.

    ERIC Educational Resources Information Center

    Kunze, John A.

    1992-01-01

    Describes the use of the Z39.50 information retrieval protocol as the basis for Infocal, a read-only, client/server-based campus information system. Technical considerations in adapting the protocol to nonbibliographic data, including semantic modules, dynamic attribute sets, and dynamic record syntax, are described in detail. (Contains 11…

  11. Photon-Z mixing the Weinberg-Salam model: Effective charges and the a = -3 gauge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baulieu, L.; Coquereaux, R.

    1982-04-15

    We study some properties of the Weinberg-Salam model connected with the photon-Z mixing. We solve the linear Dyson-Schwinger equations between full and 1PI boson propagators. The task is made easier, by the two-point function Ward identities that we derive to all orders and in any gauge. Some aspects of the renormalization of the model are also discussed. We display the exact mass-dependent one-loop two-point functions involving the photon and Z field in any linear xi-gauge. The special gauge a = xi/sup -1/ = -3 is shown to play a peculiar role. In this gauge, the Z field is multiplicatively renormalizablemore » (at the one-loop level), and one can construct both electric and weak effective charges of the theory from the photon and Z propagators, with a very simple expression similar to that of the QED Petermann, Stueckelberg, Gell-Mann and Low charge.« less

  12. Experimental investigations of ablation stream interaction dynamics in tungsten wire arrays: Interpenetration, magnetic field advection, and ion deflection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Lebedev, S. V.; Hall, G. N.

    2016-05-01

    Experiments have been carried out to investigate the collisional dynamics of ablation streams produced by cylindrical wire array z-pinches. A combination of laser interferometric imaging, Thomson scattering, and Faraday rotation imaging has been used to make a range of measurements of the temporal evolution of various plasma and flow parameters. Our paper presents a summary of previously published data, drawing together a range of different measurements in order to give an overview of the key results. The paper focuses mainly on the results of experiments with tungsten wire arrays. Early interferometric imaging measurements are reviewed, then more recent Thomson scatteringmore » measurements are discussed; these measurements provided the first direct evidence of ablation stream interpenetration in a wire array experiment. Combining the data from these experiments gives a view of the temporal evolution of the tungsten stream collisional dynamics. In the final part of the paper, we present new experimental measurements made using an imaging Faraday rotation diagnostic. Our experiments investigated the structure of magnetic fields near the array axis directly; the presence of a magnetic field has previously been inferred based on Thomson scattering measurements of ion deflection near the array axis. Although the Thomson and Faraday measurements are not in full quantitative agreement, the Faraday data do qualitatively supports the conjecture that the observed deflections are induced by a static toroidal magnetic field, which has been advected to the array axis by the ablation streams. It is likely that detailed modeling will be needed in order to fully understand the dynamics observed in the experiment.« less

  13. Experimental investigations of ablation stream interaction dynamics in tungsten wire arrays: Interpenetration, magnetic field advection, and ion deflection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Lebedev, S. V.; Hall, G. N.

    2016-05-15

    Experiments have been carried out to investigate the collisional dynamics of ablation streams produced by cylindrical wire array z-pinches. A combination of laser interferometric imaging, Thomson scattering, and Faraday rotation imaging has been used to make a range of measurements of the temporal evolution of various plasma and flow parameters. This paper presents a summary of previously published data, drawing together a range of different measurements in order to give an overview of the key results. The paper focuses mainly on the results of experiments with tungsten wire arrays. Early interferometric imaging measurements are reviewed, then more recent Thomson scatteringmore » measurements are discussed; these measurements provided the first direct evidence of ablation stream interpenetration in a wire array experiment. Combining the data from these experiments gives a view of the temporal evolution of the tungsten stream collisional dynamics. In the final part of the paper, we present new experimental measurements made using an imaging Faraday rotation diagnostic. These experiments investigated the structure of magnetic fields near the array axis directly; the presence of a magnetic field has previously been inferred based on Thomson scattering measurements of ion deflection near the array axis. Although the Thomson and Faraday measurements are not in full quantitative agreement, the Faraday data do qualitatively supports the conjecture that the observed deflections are induced by a static toroidal magnetic field, which has been advected to the array axis by the ablation streams. It is likely that detailed modeling will be needed in order to fully understand the dynamics observed in the experiment.« less

  14. Improved confinement region without large magnetohydrodynamic activity in TPE-RX reversed-field pinch plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yambe, Kiyoyuki; Hirano, Yoichi; Sakakita, Hajime

    2014-11-15

    We found that spontaneous improved confinement was brought about depending on the operating region in the Toroidal Pinch Experiment-Reversed eXperiment (TPE-RX) reversed-field pinch plasma [Y. Yagi et al., Fusion Eng. Des. 45, 421 (1999)]. Gradual decay of the toroidal magnetic field at plasma surface B{sub tw} reversal makes it possible to realize a prolonged discharge, and the poloidal beta value and energy confinement time increase in the latter half of the discharge, where reversal and pinch parameters become shallow and low, respectively. In the latter half of the discharge, the plasma current and volume-averaged toroidal magnetic field 〈B{sub t}〉 increasemore » again, the electron density slowly decays, the electron temperature and soft X-ray radiation intensity increase, and the magnetic fluctuations are markedly reduced. In this period of improved confinement, the value of (〈B{sub t}〉-B{sub tw})/B{sub pw}, where B{sub pw} is the poloidal magnetic field at the plasma surface, stays almost constant, which indicates that the dynamo action occurs without large magnetohydrodynamic activities.« less

  15. Equilibrium dynamics of the sub-Ohmic spin-boson model under bias

    NASA Astrophysics Data System (ADS)

    Zheng, Da-Chuan; Tong, Ning-Hua

    2017-06-01

    Using the bosonic numerical renormalization group method, we studied the equilibrium dynamical correlation function C(ω) of the spin operator σ z for the biased sub-Ohmic spin-boson model. The small-ω behavior C(ω )\\propto {ω }s is found to be universal and independent of the bias ɛ and the coupling strength α (except at the quantum critical point α ={α }{{c}} and ɛ = 0). Our NRG data also show C(ω )\\propto {χ }2{ω }s for a wide range of parameters, including the biased strong coupling regime (\\varepsilon \

  16. Effects of exogenous galanin on neuropathic pain state and change of galanin and its receptors in DRG and SDH after sciatic nerve-pinch injury in rat.

    PubMed

    Xu, Xiaofeng; Yang, Xiangdong; Zhang, Ping; Chen, Xiuying; Liu, Huaxiang; Li, Zhenzhong

    2012-01-01

    A large number of neuroanatomical, neurophysiologic, and neurochemical mechanisms are thought to contribute to the development and maintenance of neuropathic pain. However, mechanisms responsible for neuropathic pain have not been completely delineated. It has been demonstrated that neuropeptide galanin (Gal) is upregulated after injury in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH) where it plays a predominantly antinociceptive role. In the present study, sciatic nerve-pinch injury rat model was used to determine the effects of exogenous Gal on the expression of the Gal and its receptors (GalR1, GalR2) in DRG and SDH, the alterations of pain behavior, nerve conduction velocity (NCV) and morphology of sciatic nerve. The results showed that exogenous Gal had antinociceptive effects in this nerve-pinch injury induced neuropathic pain animal model. It is very interesting that Gal, GalR1 and GalR2 change their expression greatly in DRG and SDH after nerve injury and intrathecal injection of exougenous Gal. Morphological investigation displays a serious damage after nerve-pinch injury and an amendatory regeneration after exogenous Gal treatment. These findings imply that Gal, via activation of GalR1 and/or GalR2, may have neuroprotective effects in reducing neuropathic pain behaviors and improving nerve regeneration after nerve injury.

  17. A Highly Conserved Leucine in Mammarenavirus Matrix Z Protein Is Required for Z Interaction with the Virus L Polymerase and Z Stability in Cells Harboring an Active Viral Ribonucleoprotein.

    PubMed

    Iwasaki, Masaharu; de la Torre, Juan C

    2018-06-01

    Mammarenaviruses cause chronic infections in their natural rodent hosts. Infected rodents shed infectious virus into excreta. Humans are infected through mucosal exposure to aerosols or direct contact of abraded skin with fomites, resulting in a wide range of manifestations from asymptomatic or mild febrile illness to severe life-threatening hemorrhagic fever. The mammarenavirus matrix Z protein has been shown to be a main driving force of virus budding and to act as a negative regulator of viral RNA synthesis. To gain a better understanding of how the Z protein exerts its several different functions, we investigated the interaction between Z and viral polymerase L protein using the prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV). We found that in the presence of an active viral ribonucleoprotein (vRNP), the Z protein translocated from nonionic detergent-resistant, membrane-rich structures to a subcellular compartment with a different membrane composition susceptible to disruption by nonionic detergents. Alanine (A) substitution of a highly conserved leucine (L) at position 72 in LCMV Z protein abrogated Z-L interaction. The L72A mutation did not affect the stability or budding activity of Z when expressed alone, but in the presence of an active vRNP, mutation L72A promoted rapid degradation of Z via a proteasome- and lysosome-independent pathway. Accordingly, L72A mutation in the Z protein resulted in nonviable LCMV. Our findings have uncovered novel aspects of the dynamics of the Z protein for which a highly conserved L residue was strictly required. IMPORTANCE Several mammarenaviruses, chiefly Lassa virus (LASV), cause hemorrhagic fever disease in humans and pose important public health concerns in their regions of endemicity. Moreover, mounting evidence indicates that the worldwide-distributed, prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), is a neglected human pathogen of clinical significance. The mammarenavirus

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stygar, W.A.; Spielman, R.B.; Allshouse, G.O.

    The 36-module Z accelerator was designed to drive z-pinch loads for weapon-physics and inertial-confinement-fusion experiments, and to serve as a testing facility for pulsed-power research required to develop higher-current drivers. The authors have designed and tested a 10-nH 1.5-m-radius vacuum section for the Z accelerator. The vacuum section consists of four vacuum flares, four conical 1.3-m-radius magnetically-insulated transmission lines, a 7.6-cm-radius 12-post double-post-hole convolute which connects the four outer MITLs in parallel, and a 5-cm-long inner MITL which connects the output of the convolute to a z-pinch load. IVORY and ELECTRO calculations were performed to minimize the inductance of themore » vacuum flares with the constraint that there be no significant electron emission from the insulator-stack grading rings. Iterative TLCODE calculations were performed to minimize the inductance of the outer MITLs with the constraint that the MITL electron-flow-current fraction be {le} 7% at peak current. The TLCODE simulations assume a 2.5 cm/{micro}s MITL-cathode-plasma expansion velocity. The design limits the electron dose to the outer-MITL anodes to 50 J/g to prevent the formation of an anode plasma. The TLCODE results were confirmed by SCREAMER, TRIFL, TWOQUICK, IVORY, and LASNEX simulations. For the TLCODE, SCREAMER, and TRIFL calculations, the authors assume that after magnetic insulation is established, the electron-flow current launched in the outer MITLs is lost at the convolute. This assumption has been validated by 3-D QUICKSILVER simulations for load impedances {le} 0.36 ohms. LASNEX calculations suggest that ohmic resistance of the pinch and conduction-current-induced energy loss to the MITL electrodes can be neglected in Z power-flow modeling that is accurate to first order. To date, the Z vacuum section has been tested on 100 shots. They have demonstrated they can deliver a 100-ns rise-time 20-MA current pulse to the baseline z-pinch load.« less

  19. Toward (finally!) ruling out Z and Higgs mediated dark matter models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escudero, Miguel; Berlin, Asher; Hooper, Dan

    2016-12-01

    In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model Z or the Standard Model Higgs boson. Considering fermionic, scalar, and vector dark matter candidates within a model-independent context, we find that the overwhelming majority of these dark matter candidates are already ruled out by existing experiments. In the case of Zmore » mediated dark matter, the only scenarios that are not currently excluded are those in which the dark matter is a fermion with an axial coupling and with a mass either within a few GeV of the Z resonance ( m {sub DM} ≅ m {sub Z} /2) or greater than 200 GeV, or with a vector coupling and with m {sub DM} > 6 TeV . Several Higgs mediated scenarios are currently viable if the mass of the dark matter is near the Higgs pole ( m {sub DM} ≅ m {sub H} /2). Otherwise, the only scenarios that are not excluded are those in which the dark matter is a scalar (vector) heavier than 400 GeV (1160 GeV) with a Higgs portal coupling, or a fermion with a pseudoscalar (CP violating) coupling to the Standard Model Higgs boson. With the exception of dark matter with a purely pseudoscalar coupling to the Higgs, it is anticipated that planned direct detection experiments will probe nearly the entire range of models considered in this study.« less

  20. Predictions of the residue cross-sections for the elements Z = 113 and Z = 114

    NASA Astrophysics Data System (ADS)

    Bouriquet, B.; Abe, Y.; Kosenko, G.

    2004-10-01

    A good reproduction of experimental excitation functions is obtained for the 1 n reactions producing the elements with Z = 108, 110, 111 and 112 by the combined usage of the two-step model for fusion and the statistical decay code KEWPIE. Furthermore, the model provides reliable predictions of productions of the elements with Z = 113 and Z = 114 which will be a useful guide for plannings of experiments.