Sample records for z2xz2 standard model

  1. Stabilization and tracking control of X-Z inverted pendulum with sliding-mode control.

    PubMed

    Wang, Jia-Jun

    2012-11-01

    X-Z inverted pendulum is a new kind of inverted pendulum which can move with the combination of the vertical and horizontal forces. Through a new transformation, the X-Z inverted pendulum is decomposed into three simple models. Based on the simple models, sliding-mode control is applied to stabilization and tracking control of the inverted pendulum. The performance of the sliding mode control is compared with that of the PID control. Simulation results show that the design scheme of sliding-mode control is effective for the stabilization and tracking control of the X-Z inverted pendulum. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Multistage ordering and critical singularities in C o1 -xZ nxA l2O4(0 ≤x ≤1 ) : Dilution and pressure effects in a magnetically frustrated system

    NASA Astrophysics Data System (ADS)

    Naka, Takashi; Sato, Koichi; Matsushita, Yoshitaka; Terada, Noriki; Ishii, Satoshi; Nakane, Takayuki; Taguchi, Minori; Nakayama, Minako; Hashishin, Takeshi; Ohara, Satoshi; Takami, Seiichi; Matsushita, Akiyuki

    2015-06-01

    We report comprehensive studies of the crystallographic, magnetic, and thermal properties of a spinel-type magnetically frustrated compound, CoA l2O4 , and a magnetically diluted system, C o1- xZ nxA l2O4 . These studies revealed the effects of dilution and disorder when the tetrahedral magnetic Co ion was replaced by the nonmagnetic Zn ion. Low-temperature anomalies were observed in magnetic susceptibility at x <0.6 . A multicritical point was apparent at T =3.4 K and x =0.12 , where the antiferromagnetic, spin-glass-like, and paramagnetic phases met. At that point, the quenched ferromagnetic component induced by a magnetic field during cooling was sharply enhanced and was observable below x =0.6 . At x ˜0.6 , magnetic susceptibility and specific heat were described by temperature power laws, χ ˜C /T ˜T-δ , in accord with the site percolation threshold of the diamond lattice. This behavior is reminiscent of a quantum critical singularity. We propose an x -temperature phase diagram in the range 0 ≤x ≤1 for C o1- xZ nxA l2O4 . The transition temperature of CoA l2O4 determined from magnetic susceptibility measured under hydrostatic pressure increased with increasing pressure.

  3. Continuum in the X-Z---Y weak bonds: Z= main group elements.

    PubMed

    Joy, Jyothish; Jose, Anex; Jemmis, Eluvathingal D

    2016-01-15

    The Continuum in the variation of the X-Z bond length change from blue-shifting to red-shifting through zero- shifting in the X-Z---Y complex is inevitable. This has been analyzed by ab-initio molecular orbital calculations using Z= Hydrogen, Halogens, Chalcogens, and Pnicogens as prototypical examples. Our analysis revealed that, the competition between negative hyperconjugation within the donor (X-Z) molecule and Charge Transfer (CT) from the acceptor (Y) molecule is the primary reason for the X-Z bond length change. Here, we report that, the proper tuning of X- and Y-group for a particular Z- can change the blue-shifting nature of X-Z bond to zero-shifting and further to red-shifting. This observation led to the proposal of a continuum in the variation of the X-Z bond length during the formation of X-Z---Y complex. The varying number of orbitals and electrons available around the Z-atom differentiates various classes of weak interactions and leads to interactions dramatically different from the H-Bond. Our explanations based on the model of anti-bonding orbitals can be transferred from one class of weak interactions to another. We further take the idea of continuum to the nature of chemical bonding in general. © 2015 Wiley Periodicals, Inc.

  4. Z2×Z2 generalizations of 𝒩 =2 super Schrödinger algebras and their representations

    NASA Astrophysics Data System (ADS)

    Aizawa, N.; Segar, J.

    2017-11-01

    We generalize the real and chiral N =2 super Schrödinger algebras to Z2×Z2-graded Lie superalgebras. This is done by D-module presentation, and as a consequence, the D-module presentations of Z2×Z2-graded superalgebras are identical to the ones of super Schrödinger algebras. We then generalize the calculus over the Grassmann number to Z2×Z2 setting. Using it and the standard technique of Lie theory, we obtain a vector field realization of Z2×Z2-graded superalgebras. A vector field realization of the Z2×Z2 generalization of N =1 super Schrödinger algebra is also presented.

  5. VizieR Online Data Catalog: XZ Catalog of Zodiacal Stars (XZ80Q) (Herald, 2003)

    NASA Astrophysics Data System (ADS)

    Herald, D.

    2003-11-01

    The XZ catalog was created at the U.S. Naval Observatory in 1977 by Richard Schmidt and Tom Van Flandern, primarily for the purpose of generating predictions of lunar occultations, and for analyzing timings of these events. It was designed to include all stars within 6d 40' of the ecliptic (the "Zodiac"), which is as far as the Moon's limb can ever get as seen from anywhere on the Earth's surface, leaving some margin for stellar proper motions and change in the obliquity of the ecliptic over the course of three centuries. The original version contained 32,221 entries; since that time, many changes have been made in succeeding versions, including better positions and proper motions, and the elimination and addition of stars. Details about the history of XZ catalog can be found in the "doc.txt" file. The XZ80Q revision has been developed from XZ80P, which was created by Mitsuru Soma. It is now complete over the Zodiac for stars down to visual magnitude 12.0. The "xz80q.dat" file contains the list of stars making the catalog; additional files provide details about double and variable stars included in the XZ80Q. The catalog includes also lists of the various existing names of the stars. (11 data files).

  6. Fair and Square Computation of Inverse "Z"-Transforms of Rational Functions

    ERIC Educational Resources Information Center

    Moreira, M. V.; Basilio, J. C.

    2012-01-01

    All methods presented in textbooks for computing inverse "Z"-transforms of rational functions have some limitation: 1) the direct division method does not, in general, provide enough information to derive an analytical expression for the time-domain sequence "x"("k") whose "Z"-transform is "X"("z"); 2) computation using the inversion integral…

  7. Z-2 Prototype Space Suit Development

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Rhodes, Richard; Graziosi, David; Jones, Bobby; Lee, Ryan; Haque, Bazle Z.; Gillespie, John W., Jr.

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Space Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion the Z-2 will be tested in the 11 foot human-rated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' that the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model.

  8. Z-2 Prototype Space Suit Development

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Rhodes, Richard; Graziosi, David; Jones, Bobby; Lee, Ryan; Haque, Bazle Z.; Gillespie, John W., Jr.

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion it will be tested in the 11' humanrated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model. The paper also provides a discussion of significant Z-2 configuration features, and how these components evolved from proposal concepts to final designs.

  9. Z-2 Prototype Space Suit Development

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Rhodes, Richard; Graziosi, David

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion it will be tested in the 11' human-rated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model. The paper also provides a discussion of significant Z-2 configuration features, and how these components evolved from proposal concepts to final designs.

  10. WHAT ARE THE Omh {sup 2} ( z {sub 1}, z {sub 2}) AND Om ( z {sub 1}, z {sub 2}) DIAGNOSTICS TELLING US IN LIGHT OF H ( z ) DATA?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xiaogang; Ding, Xuheng; Biesiada, Marek

    2016-07-01

    The two-point diagnostics Om ( z {sub i} , z {sub j} ) and Omh {sup 2}( z {sub i} , z {sub j} ) have been introduced as an interesting tool for testing the validity of the Λ cold dark matter (ΛCDM) model. Recently, Sahni et al. combined two independent measurements of H ( z ) from baryon acoustic oscillation (BAO) data with the value of the Hubble constant H {sub 0}, and used the second of these diagnostics to test the ΛCDM (a constant equation-of-state parameter for dark energy) model. Their result indicated a considerable tension between observationsmore » and predictions of the ΛCDM model. Since reliable data concerning the expansion rates of the universe at different redshifts H ( z ) are crucial for the successful application of this method, we investigate both two-point diagnostics on the most comprehensive set of N = 36 measurements of H ( z ) from BAOs and the differential ages (DAs) of passively evolving galaxies. We discuss the uncertainties of the two-point diagnostics and find that they are strongly non-Gaussian and follow the patterns deeply rooted in their very construction. Therefore we propose that non-parametric median statistics is the most appropriate way of treating this problem. Our results support the claims that ΛCDM is in tension with H ( z ) data according to the two-point diagnostics developed by Shafieloo, Sahni, and Starobinsky. However, other alternatives to the ΛCDM model, such as the wCDM or Chevalier–Polarski–Linder models, perform even worse. We also note that there are serious systematic differences between the BAO and DA methods that ought to be better understood before H ( z ) measurements can compete with other probes methods.« less

  11. Two new Blazhko stars: XZ UMi and VX Scl

    NASA Astrophysics Data System (ADS)

    Skarka, M.; Dolinsky, J.; Jurysek, J.; Honkova, K.; Masek, M.; Liska, J.; Zejda, M.

    2016-02-01

    A brief report about a discovery of modulation in two RRab Lyrae stars XZ UMi and VX Scl is presented. The suspicion of modulation comes from our observations, but the modulation periods (41.1d for XZ UMi and 67.3d for VX Scl) were estimated based on the analysis of NSVS (XZ UMi) and SuperWASP data (VX Scl). Both stars show indications of period change. The peaks close to the basic pulsation frequency of VX Scl could be the signs of possible double modulation.

  12. Measurements of the Z Z production cross sections in the 2l 2ν channel in proton-proton collisions at √{s} = 7 and 8 TeV and combined constraints on triple gauge couplings

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Júnior, W. L. Aldá; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Martins, T. Dos Reis; Mora Herrera, C.; Pol, M. E.; Rebello Teles, P.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Bernet, C.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Heister, A.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, J. F.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behr, J.; Behrens, U.; Bell, A. J.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garcia, J. Garay; Geiser, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, l.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Lobelle Pardo, P.; Mozer, M. U.; Müller, T.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Primavera, F.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Passaseo, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, T. A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, T. J.; Ryn, M. S.; Kim, J. Y.; Moon, D. H.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Md Ali, M. A. B.; Wan Abdullah, W. A. T.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Bargassa, P.; Da Cruz E Silva, C. Beir ao; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, l.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Ramos, J. P. Fernández; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Yzquierdo, A. Pérez-Calero; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Wollny, H.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Chanon, N.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Mohr, N.; Musella, P.; Nägeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Taroni, S.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Isildak, B.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Vardarlı, F. I.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Scarborough, T.; Wu, Z.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Laird, E.; Landsberg, G.; Narain, M.; Sagir, S.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; De La Barca Sanchez, M. Calderon; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Negrete, M. Olmedo; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Krohn, M.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Zakaria, M.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, l. D.; Silkworth, C.; Turner, P.; Varelas, N.; Bilki, B.; Clarida, W.; Dilsiz, K.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Xiao, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P.; Majumder, D.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bierwagen, K.; Busza, W.; Cali, I. A.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Nourbakhsh, S.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Ratnikov, F.; Snow, G. R.; Zvada, M.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R. J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Musienko, Y.; Pearson, T.; Planer, M.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Malik, S.; Mendez, H.; Ramirez Vargas, J. E.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; De Mattia, M.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Korjenevski, S.; Petrillo, G.; Verzetti, M.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Suarez, I.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Vuosalo, C.; Woods, N.; CMS Collaboration

    2015-10-01

    Measurements of the Z Z production cross sections in proton-proton collisions at center-of-mass energies of 7 and 8 TeV are presented. Candidate events for the leptonic decay mode ZZ→ 2l 2ν where l denotes an electron or a muon, are reconstructed and selected from data corresponding to an integrated luminosity of 5.1 (19.6) {fb}^{-1} at 7 (8) TeV collected with the CMS experiment. The measured cross sections, σ ({p}{p}→ ZZ) = 5.1_{-1.4}^{+1.5} {(stat)} _{-1.1}^{+1.4} {(syst)} ± 0.1 {(lumi)} { pb} at 7 TeV, and 7.2_{-0.8}^{+0.8} {(stat)} _{-1.5}^{+1.9} {(syst)} ± 0.2 {(lumi)} { pb} at 8 TeV, are in good agreement with the standard model predictions with next-to-leading-order accuracy. The selected data are analyzed to search for anomalous triple gauge couplings involving the Z Z final state. In the absence of any deviation from the standard model predictions, limits are set on the relevant parameters. These limits are then combined with the previously published CMS results for Z Z in 4l final states, yielding the most stringent constraints on the anomalous couplings.

  13. Higgs decays to Z Z and Z γ in the standard model effective field theory: An NLO analysis

    NASA Astrophysics Data System (ADS)

    Dawson, S.; Giardino, P. P.

    2018-05-01

    We calculate the complete one-loop electroweak corrections to the inclusive H →Z Z and H →Z γ decays in the dimension-6 extension of the Standard Model Effective Field Theory (SMEFT). The corrections to H →Z Z are computed for on-shell Z bosons and are a precursor to the physical H →Z f f ¯ calculation. We present compact numerical formulas for our results and demonstrate that the logarithmic contributions that result from the renormalization group evolution of the SMEFT coefficients are larger than the finite next-to-leading-order contributions to the decay widths. As a byproduct of our calculation, we obtain the first complete result for the finite corrections to Gμ in the SMEFT.

  14. Neutral kaon mixing beyond the Standard Model with n f = 2 + 1 chiral fermions. Part 2: non perturbative renormalisation of the ΔF = 2 four-quark operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, Peter A.; Garron, Nicolas; Hudspith, Renwick J.

    We compute the renormalisation factors (Z-matrices) of the ΔF = 2 four-quark operators needed for Beyond the Standard Model (BSM) kaon mixing. We work with nf = 2+1 flavours of Domain-Wall fermions whose chiral-flavour properties are essential to maintain a continuum-like mixing pattern. We introduce new RI-SMOM renormalisation schemes, which we argue are better behaved compared to the commonly-used corresponding RI-MOM one. We find that, once converted to MS¯, the Z-factors computed through these RI-SMOM schemes are in good agreement but differ significantly from the ones computed through the RI-MOM scheme. The RI-SMOM Z-factors presented here have been used tomore » compute the BSM neutral kaon mixing matrix elements in the companion paper. In conclusion, we argue that the renormalisation procedure is responsible for the discrepancies observed by different collaborations, we will investigate and elucidate the origin of these differences throughout this work.« less

  15. Neutral kaon mixing beyond the Standard Model with n f = 2 + 1 chiral fermions. Part 2: non perturbative renormalisation of the ΔF = 2 four-quark operators

    DOE PAGES

    Boyle, Peter A.; Garron, Nicolas; Hudspith, Renwick J.; ...

    2017-10-10

    We compute the renormalisation factors (Z-matrices) of the ΔF = 2 four-quark operators needed for Beyond the Standard Model (BSM) kaon mixing. We work with nf = 2+1 flavours of Domain-Wall fermions whose chiral-flavour properties are essential to maintain a continuum-like mixing pattern. We introduce new RI-SMOM renormalisation schemes, which we argue are better behaved compared to the commonly-used corresponding RI-MOM one. We find that, once converted to MS¯, the Z-factors computed through these RI-SMOM schemes are in good agreement but differ significantly from the ones computed through the RI-MOM scheme. The RI-SMOM Z-factors presented here have been used tomore » compute the BSM neutral kaon mixing matrix elements in the companion paper. In conclusion, we argue that the renormalisation procedure is responsible for the discrepancies observed by different collaborations, we will investigate and elucidate the origin of these differences throughout this work.« less

  16. Neutral kaon mixing beyond the Standard Model with n f = 2 + 1 chiral fermions. Part 2: non perturbative renormalisation of the Δ F = 2 four-quark operators

    NASA Astrophysics Data System (ADS)

    Boyle, Peter A.; Garron, Nicolas; Hudspith, Renwick J.; Lehner, Christoph; Lytle, Andrew T.

    2017-10-01

    We compute the renormalisation factors ( Z-matrices) of the Δ F = 2 four-quark operators needed for Beyond the Standard Model (BSM) kaon mixing. We work with n f = 2+1 flavours of Domain-Wall fermions whose chiral-flavour properties are essential to maintain a continuum-like mixing pattern. We introduce new RI-SMOM renormalisation schemes, which we argue are better behaved compared to the commonly-used corresponding RI-MOM one. We find that, once converted to \\overline{MS} , the Z-factors computed through these RI-SMOM schemes are in good agreement but differ significantly from the ones computed through the RI-MOM scheme. The RI-SMOM Z-factors presented here have been used to compute the BSM neutral kaon mixing matrix elements in the companion paper [1]. We argue that the renormalisation procedure is responsible for the discrepancies observed by different collaborations, we will investigate and elucidate the origin of these differences throughout this work.

  17. Characterization of mussel H2A.Z.2: a new H2A.Z variant preferentially expressed in germinal tissues from Mytilus.

    PubMed

    Rivera-Casas, Ciro; González-Romero, Rodrigo; Vizoso-Vazquez, Ángel; Cheema, Manjinder S; Cerdán, M Esperanza; Méndez, Josefina; Ausió, Juan; Eirin-Lopez, Jose M

    2016-10-01

    Histones are the fundamental constituents of the eukaryotic chromatin, facilitating the physical organization of DNA in chromosomes and participating in the regulation of its metabolism. The H2A family displays the largest number of variants among core histones, including the renowned H2A.X, macroH2A, H2A.B (Bbd), and H2A.Z. This latter variant is especially interesting because of its regulatory role and its differentiation into 2 functionally divergent variants (H2A.Z.1 and H2A.Z.2), further specializing the structure and function of vertebrate chromatin. In the present work we describe, for the first time, the presence of a second H2A.Z variant (H2A.Z.2) in the genome of a non-vertebrate animal, the mussel Mytilus. The molecular and evolutionary characterization of mussel H2A.Z.1 and H2A.Z.2 histones is consistent with their functional specialization, supported on sequence divergence at promoter and coding regions as well as on varying gene expression patterns. More precisely, the expression of H2A.Z.2 transcripts in gonadal tissue and its potential upregulation in response to genotoxic stress might be mirroring the specialization of this variant in DNA repair. Overall, the findings presented in this work complement recent reports describing the widespread presence of other histone variants across eukaryotes, supporting an ancestral origin and conserved role for histone variants in chromatin.

  18. Kinematic Downsizing at z ˜ 2

    NASA Astrophysics Data System (ADS)

    Simons, Raymond C.; Kassin, Susan A.; Trump, Jonathan R.; Weiner, Benjamin J.; Heckman, Timothy M.; Barro, Guillermo; Koo, David C.; Guo, Yicheng; Pacifici, Camilla; Koekemoer, Anton; Stephens, Andrew W.

    2016-10-01

    We present results from a survey of the internal kinematics of 49 star-forming galaxies at z˜ 2 in the CANDELS fields with the Keck/MOSFIRE spectrograph, Survey in the near-Infrared of Galaxies with Multiple position Angles (SIGMA). Kinematics (rotation velocity V rot and gas velocity dispersion {σ }g) are measured from nebular emission lines which trace the hot ionized gas surrounding star-forming regions. We find that by z˜ 2, massive star-forming galaxies ({log} {M}* /{M}⊙ ≳ 10.2) have assembled primitive disks: their kinematics are dominated by rotation, they are consistent with a marginally stable disk model, and they form a Tully-Fisher relation. These massive galaxies have values of {V}{rot}/{σ }g that are factors of 2-5 lower than local well-ordered galaxies at similar masses. Such results are consistent with findings by other studies. We find that low-mass galaxies ({log} {M}* /{M}⊙ ≲ 10.2) at this epoch are still in the early stages of disk assembly: their kinematics are often dominated by gas velocity dispersion and they fall from the Tully-Fisher relation to significantly low values of V rot. This “kinematic downsizing” implies that the process(es) responsible for disrupting disks at z˜ 2 have a stronger effect and/or are more active in low-mass systems. In conclusion, we find that the period of rapid stellar mass growth at z˜ 2 is coincident with the nascent assembly of low-mass disks and the assembly and settling of high-mass disks.

  19. Source Header List. Volume 2. L through Z

    DTIC Science & Technology

    1998-07-01

    U 2-- 2- o-h 2-2 W- 1- 2- V) 2- aJ w- 2 w 22 2 - 3 - 2- 1-U.M0 .1- .1-0 IU LL. 1-W ILLJW tun wWA 1-WN 2 W U lox W -W 1W O WE CoO 0o oU- 0Co0100I C...0.4z a.U-W Z<. a-C a. a. ZAw a. a-I- a 1- UC I4 M M0 14 04 _ 4 " ( M Z 0 "( X 4 " ~ 14 < "U " 4 - 0.U_ Z1-0 1- 1- LU LU Wz z WE W z LUz Z W" ZU -J 2...34j1.4 >In >’-’ m130 >w.-Ia aW w44 40 40 <W~ <W ~ 0 41~ <W <Z <ZW 4z Z444 zaw a UI z K za Z- n I- 20 9a3 ZI aI- OIw OIm2 >- Z 2 2 Z 2 2 2 Z 2 2 Z 2 2

  20. CCD Photometric Observations and Light Curve Synthesis of the Near-Contact Binary XZ Canis Minoris

    NASA Astrophysics Data System (ADS)

    Kim, Chun-Hwey; Park, Jang-Ho; Lee, Jae Woo; Jeong, Jang-Hae

    2009-06-01

    Through the photometric observations of the near-contact binary, XZ CMi, new BV light curves were secured and seven times of minimum light were determined. An intensive period study with all published timings, including ours, confirms that the period of XZ CMi has varied in a cyclic period variation superposed on a secular period decrease over last 70 years. Assuming the cyclic change of period to occur by a light-time effect due to a third-body, the light-time orbit with a semi-amplitude of 0.0056d, a period of 29y and an eccentricity of 0.71 was calculated. The observed secular period decrease of -5.26× 10^{-11} d/P was interpreted as a result of simultaneous occurrence of both a period decrease of -8.20 × 10^{-11} d/P by angular momentum loss (AML) due to a magnetic braking stellar wind and a period increase of 2.94 × 10^{-11} d/P by a mass transfer from the less massive secondary to the primary components in the system. In this line the decreasi! ng rate of period due to AML is about 3 times larger than the increasing one by a mass transfer in their absolute values. The latter implies a mass transfer of dot M_{s}= 3.21 × 10^{-8} M_⊙ y^{-1} from the less massive secondary to the primary. The BV light curves with the latest Wilson-Devinney binary code were analyzed for two separate models of 8200K and 7000K as the photospheric temperature of the primary component. Both models confirm that XZ CMi is truly a near-contact binary with a less massive secondary completely filling Roche lobe and a primary inside the inner Roche lobe and there is a third-light corresponding to about 15-17% of the total system light. However, the third-light source can not be the same as the third-body suggested from the period study. At the present, however, we can not determine which one between two models is better fitted to the observations because of a negligible difference of sum (O-C)^2 between them. The diversity of mass ratios, with which previous investigators were in

  1. Parity oscillations and photon correlation functions in the Z2-U (1 ) Dicke model at a finite number of atoms or qubits

    NASA Astrophysics Data System (ADS)

    Yi-Xiang, Yu; Ye, Jinwu; Zhang, CunLin

    2016-08-01

    Four standard quantum optics models, that is, the Rabi, Dicke, Jaynes-Cummings, and Tavis-Cummings models, were proposed by physicists many decades ago. Despite their relative simple forms and many previous theoretical works, their physics at a finite N , especially inside the superradiant regime, remain unknown. In this work, by using the strong-coupling expansion and exact diagonalization (ED), we study the Z2-U(1 ) Dicke model with independent rotating-wave coupling g and counterrotating-wave coupling g' at a finite N . This model includes the four standard quantum optics models as its various special limits. We show that in the superradiant phase, the system's energy levels are grouped into doublets with even and odd parity. Any anisotropy β =g'/g ≠1 leads to the oscillation of parities in both the ground and excited doublets as the atom-photon coupling strength increases. The oscillations will be pushed to the infinite coupling strength in the isotropic Z2 limit β =1 . We find nearly perfect agreement between the strong-coupling expansion and the ED in the superradiant regime when β is not too small. We also compute the photon correlation functions, squeezing spectrum, and number correlation functions that can be measured by various standard optical techniques.

  2. Physical Properties and Evolution of the Eclipsing Binary System XZ Canis Minoris

    NASA Astrophysics Data System (ADS)

    Poochaum, R.; Komonjinda, S.; Soonthornthum, B.; Rattanasoon, S.

    2010-07-01

    This research aims to study the eclipse binary system so that its physical properties and evolution can be determined and used as an example to teach high school astronomy. The study of an eclipsing binary system XZ Canis Minoris (XZ CMi) was done at Sirindhorn Observatory, Chiang Mai University using a 0.5-meter reflecting telescope with CCD photometric system (2184×1417 pixel) in B V and R bands of UVB System. The data obtained were used to construct the light curve for each wavelength band and to compute the times of its light minima. New elements were derived using observations with linear to all available minima. As a result, linear ephemeris is HDJmin I = .578 808 948+/-0.000 000 121+2450 515.321 26+/-0.001 07 E, and the new orbital period of XZ CMi is 0.578 808 948+/-0.000 000 121 day. The values obtained were used with the previously published times of minima to get O-C curve of XZ CMi. The result revealed that the orbital period of XZ CMi is continuously decreased at a rate of 0.007 31+/-0.000 57 sec/year. This result indicates that the binary stars are moving closer continuously. From the O-C residuals, there is significant change to indicate the existence of the third body or magnetic activity cycle on the star. However, further analysis of the physical properties of XZ CMi is required.

  3. Crystal and electronic structures, luminescence properties of Eu 2+-doped Si 6-zAl zO zN 8-z and M ySi 6-zAl z-yO z+yN 8-z-y ( M=2Li, Mg, Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Li, Y. Q.; Hirosaki, N.; Xie, R. J.; Takeda, T.; Mitomo, M.

    2008-12-01

    The crystal structure, electronic structure, and photoluminescence properties of Eu xSi 6-zAl z-xO z+xN 8-z-x ( x=0-0.1, 0< z<1) and Eu xM ySi 6-zAl z-x-yO z+x+yN 8-z-x-y ( M=2Li, Mg, Ca, Sr, Ba) have been studied. Single-phase Eu xSi 6-zAl z-xO z+xN 8-z-x can be obtained in very narrow ranges of x⩽0.06 ( z=0.15) and z<0.5 ( x=0.3), indicating that limited Eu 2+ ions can be incorporated into nitrogen-rich Si 6-zAl zO zN 8-z. The Eu 2+ ion is found to occupy the 2 b site in a hexagonal unit cell ( P6 3/ m) and directly connected by six adjacent nitrogen/oxygen atoms ranging 2.4850-2.5089 Å. The calculated host band gaps by the relativistic DV-X α method are about 5.55 and 5.45 eV (without Eu 2+ 4 f5 d levels) for x=0 and 0.013 in Eu xSi 6-zAl z-xO z+xN 8-z-x ( z=0.15), in which the top of the 5 d orbitals overlap with the Si-3 s3 p and N-2 p orbitals within the bottom of the conduction band of the host. Eu xSi 6-zAl z-xO z+xN 8-z-x shows a strong green emission with a broad Eu 2+ band centered at about 530 nm under UV to near-UV excitation range. The excitation and emission spectra are hardly modified by Eu concentration and dual-doping ions of Li and other alkaline-earth ions with Eu. Higher Eu concentrations can significantly quench the luminescence of Eu 2+ and decrease the thermal quenching temperature. In addition, the emission spectrum can only be slightly tuned to the longer wavelengths (˜529-545 nm) by increasing z within the solid solution range of z<0.5. Furthermore, the luminescence intensity of Eu xSi 6-zAl z-xO z+xN 8-z-x can be improved by increasing z and the dual-doping of Li and Ba.

  4. Site-specific strong ground motion prediction using 2.5-D modelling

    NASA Astrophysics Data System (ADS)

    Narayan, J. P.

    2001-08-01

    An algorithm was developed using the 2.5-D elastodynamic wave equation, based on the displacement-stress relation. One of the most significant advantages of the 2.5-D simulation is that the 3-D radiation pattern can be generated using double-couple point shear-dislocation sources in the 2-D numerical grid. A parsimonious staggered grid scheme was adopted instead of the standard staggered grid scheme, since this is the only scheme suitable for computing the dislocation. This new 2.5-D numerical modelling avoids the extensive computational cost of 3-D modelling. The significance of this exercise is that it makes it possible to simulate the strong ground motion (SGM), taking into account the energy released, 3-D radiation pattern, path effects and local site conditions at any location around the epicentre. The slowness vector (py) was used in the supersonic region for each layer, so that all the components of the inertia coefficient are positive. The double-couple point shear-dislocation source was implemented in the numerical grid using the moment tensor components as the body-force couples. The moment per unit volume was used in both the 3-D and 2.5-D modelling. A good agreement in the 3-D and 2.5-D responses for different grid sizes was obtained when the moment per unit volume was further reduced by a factor equal to the finite-difference grid size in the case of the 2.5-D modelling. The components of the radiation pattern were computed in the xz-plane using 3-D and 2.5-D algorithms for various focal mechanisms, and the results were in good agreement. A comparative study of the amplitude behaviour of the 3-D and 2.5-D wavefronts in a layered medium reveals the spatial and temporal damped nature of the 2.5-D elastodynamic wave equation. 3-D and 2.5-D simulated responses at a site using a different strike direction reveal that strong ground motion (SGM) can be predicted just by rotating the strike of the fault counter-clockwise by the same amount as the azimuth of

  5. Global constraints on Z2 fluxes in two different anisotropic limits of a hypernonagon Kitaev model

    NASA Astrophysics Data System (ADS)

    Kato, Yasuyuki; Kamiya, Yoshitomo; Nasu, Joji; Motome, Yukitoshi

    2018-05-01

    The Kitaev model is an exactly-soluble quantum spin model, whose ground state provides a canonical example of a quantum spin liquid. Spin excitations from the ground state are fractionalized into emergent matter fermions and Z2 fluxes. The Z2 flux excitation is pointlike in two dimensions, while it comprises a closed loop in three dimensions because of the local constraint for each closed volume. In addition, the fluxes obey global constraints involving (semi)macroscopic number of fluxes. We here investigate such global constraints in the Kitaev model on a three-dimensional lattice composed of nine-site elementary loops, dubbed the hypernonagon lattice, whose ground state is a chiral spin liquid. We consider two different anisotropic limits of the hypernonagon Kitaev model where the low-energy effective models are described solely by the Z2 fluxes. We show that there are two kinds of global constraints in the model defined on a three-dimensional torus, namely, surface and volume constraints: the surface constraint is imposed on the even-odd parity of the total number of fluxes threading a two-dimensional slice of the system, while the volume constraint is for the even-odd parity of the number of the fluxes through specific plaquettes whose total number is proportional to the system volume. In the two anisotropic limits, therefore, the elementary excitation of Z2 fluxes occurs in a pair of closed loops so as to satisfy both two global constraints as well as the local constraints.

  6. Wilsonian dark matter in string derived Z' model

    NASA Astrophysics Data System (ADS)

    Delle Rose, L.; Faraggi, A. E.; Marzo, C.; Rizos, J.

    2017-09-01

    The dark matter issue is among the most perplexing in contemporary physics. The problem is more enigmatic due to the wide range of possible solutions, ranging from the ultralight to the supermassive. String theory gives rise to plausible dark matter candidates due to the breaking of the non-Abelian grand unified theory (GUT) symmetries by Wilson lines. The physical spectrum then contains states that do not satisfy the quantization conditions of the unbroken GUT symmetry. Given that the Standard Model states are identified with broken GUT representations, and provided that any ensuing symmetry breakings are induced by components of GUT states, a remnant discrete symmetry remains that forbids the decay of the Wilsonian states. A class of such states are obtained in a heterotic-string-derived Z' model. The model exploits the spinor-vector duality symmetry, observed in the fermionic Z2×Z2 heterotic-string orbifolds, to generate a Z'∈E6 symmetry that may remain unbroken down to low energies. The E6 symmetry is broken at the string level with discrete Wilson lines. The Wilsonian dark matter candidates in the string-derived model are S O (10 ), and hence Standard Model, singlets and possess non-E6 U(1)Z' charges. Depending on the U(1)Z' breaking scale and the reheating temperature they give rise to different scenarios for the relic abundance, and are in accordance with the cosmological constraints.

  7. A physical model for z ~ 2 dust-obscured galaxies

    NASA Astrophysics Data System (ADS)

    Narayanan, Desika; Dey, Arjun; Hayward, Christopher C.; Cox, Thomas J.; Bussmann, R. Shane; Brodwin, Mark; Jonsson, Patrik; Hopkins, Philip F.; Groves, Brent; Younger, Joshua D.; Hernquist, Lars

    2010-09-01

    We present a physical model for the origin of z ~ 2 dust-obscured galaxies (DOGs), a class of high-redshift ultraluminous infrared galaxies (ULIRGs) selected at 24μm which are particularly optically faint (F24μm/FR > 1000). By combining N-body/smoothed particle hydrodynamic simulations of high-redshift galaxy evolution with 3D polychromatic dust radiative transfer models, we find that luminous DOGs (with F24 >~ 0.3mJy at z ~ 2) are well modelled as extreme gas-rich mergers in massive (~5 × 1012-1013Msolar) haloes, with elevated star formation rates (SFR; ~500-1000Msolaryr-1) and/or significant active galactic nuclei (AGN) growth , whereas less luminous DOGs are more diverse in nature. At final coalescence, merger-driven DOGs transition from being starburst dominated to AGN dominated, evolving from a `bump' to a power-law (PL) shaped mid-IR (Infrared Array Camera, IRAC) spectral energy distribution (SED). After the DOG phase, the galaxy settles back to exhibiting a `bump' SED with bluer colours and lower SFRs. While canonically PL galaxies are associated with being AGN dominated, we find that the PL mid-IR SED can owe both to direct AGN contribution and to a heavily dust obscured stellar bump at times that the galaxy is starburst dominated. Thus, PL galaxies can be either starburst or AGN dominated. Less luminous DOGs can be well-represented either by mergers or by massive (Mbaryon ~ 5 × 1011Msolar) secularly evolving gas-rich disc galaxies (with SFR >~ 50Msolaryr-1). By utilizing similar models as those employed in the submillimetre galaxy (SMG) formation study of Narayanan et al., we investigate the connection between DOGs and SMGs. We find that the most heavily star-forming merger-driven DOGs can be selected as submillimetre galaxies, while both merger-driven and secularly evolving DOGs typically satisfy the BzK selection criteria. The model SEDs from the simulated galaxies match observed data reasonably well, though Mrk 231 and Arp 220 templates provide

  8. Reorganization of Damaged Chromatin by the Exchange of Histone Variant H2A.Z-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishibuchi, Ikuno; Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima; Department of Radiation Oncology, Hiroshima Prefectural Hospital, Hiroshima

    2014-07-15

    Purpose: The reorganization of damaged chromatin plays an important role in the regulation of the DNA damage response. A recent study revealed the presence of 2 vertebrate H2A.Z isoforms, H2A.Z-1 and H2A.Z-2. However, the roles of the vertebrate H2A.Z isoforms are still unclear. Thus, in this study we examined the roles of the vertebrate H2A.Z isoforms in chromatin reorganization after the induction of DNA double-strand breaks (DSBs). Methods and Materials: To examine the dynamics of H2A.Z isoforms at damaged sites, we constructed GM0637 cells stably expressing each of the green fluorescent protein (GFP)-labeled H2A.Z isoforms, and performed fluorescence recovery after photobleaching (FRAP)more » analysis and inverted FRAP analysis in combination with microirradiation. Immunofluorescence staining using an anti-RAD51 antibody was performed to study the kinetics of RAD51 foci formation after 2-Gy irradiation of wild-type (WT), H2A.Z-1- and H2A.Z-2-deficient DT40 cells. Colony-forming assays were also performed to compare the survival rates of WT, H2A.Z-1-, and H2A.Z-2-deficient DT40 cells with control, and H2A.Z-1- and H2A.Z-2-depleted U2OS cells after irradiation. Results: FRAP analysis revealed that H2A.Z-2 was incorporated into damaged chromatin just after the induction of DSBs, whereas H2A.Z-1 remained essentially unchanged. Inverted FRAP analysis showed that H2A.Z-2 was released from damaged chromatin. These findings indicated that H2A.Z-2 was exchanged at DSB sites immediately after the induction of DSBs. RAD51 focus formation after ionizing irradiation was disturbed in H2A.Z-2-deficient DT40 cells but not in H2A.Z-1-deficient cells. The survival rate of H2A.Z-2-deficient cells after irradiation was lower than those of WT and H2A.Z-1- DT40 cells. Similar to DT40 cells, H2A.Z-2-depleted U2OS cells were also radiation-sensitive compared to control and H2A.Z-1-depleted cells. Conclusions: We found that vertebrate H2A.Z-2 is involved in the regulation of

  9. FIRST RESULTS FROM Z -FOURGE : DISCOVERY OF A CANDIDATE CLUSTER AT z = 2.2 IN COSMOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spitler, Lee R.; Glazebrook, Karl; Poole, Gregory B.

    2012-04-01

    We report the first results from the Z -FOURGE survey: the discovery of a candidate galaxy cluster at z = 2.2 consisting of two compact overdensities with red galaxies detected at {approx}> 20{sigma} above the mean surface density. The discovery was made possible by a new deep (K{sub s} {approx}< 24.8 AB 5{sigma}) Magellan/FOURSTAR near-IR imaging survey with five custom medium-bandwidth filters. The filters pinpoint the location of the Balmer/4000 A break in evolved stellar populations at 1.5 < z < 3.5, yielding significantly more accurate photometric redshifts than possible with broadband imaging alone. The overdensities are within 1' ofmore » each other in the COSMOS field and appear to be embedded in a larger structure that contains at least one additional overdensity ({approx}10{sigma}). Considering the global properties of the overdensities, the z = 2.2 system appears to be the most distant example of a galaxy cluster with a population of red galaxies. A comparison to a large {Lambda}CDM simulation suggests that the system may consist of merging subclusters, with properties in between those of z > 2 protoclusters with more diffuse distributions of blue galaxies and the lower-redshift galaxy clusters with prominent red sequences. The structure is completely absent in public optical catalogs in COSMOS and only weakly visible in a shallower near-IR survey. The discovery showcases the potential of deep near-IR surveys with medium-band filters to advance the understanding of environment and galaxy evolution at z > 1.5.« less

  10. Studies on novel BiyXz-TiO2/SrTiO3 composites: Surface properties and visible light-driven photoactivity

    NASA Astrophysics Data System (ADS)

    Marchelek, Martyna; Grabowska, Ewelina; Klimczuk, Tomasz; Lisowski, Wojciech; Giamello, Elio; Zaleska-Medynska, Adriana

    2018-03-01

    A series of novel BiyXz-TiO2/SrTiO3 composites were prepared by multistep synthesis route. The as-prepared photocatalysts were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (DRS), Fourier transform infrared (FT-IR), Raman spectra and BET analysis. The photocatalytic activity test was performed in aqueous solution of phenol under the irradiation of visible light range (λ ≥ 420 nm). Obtained results revealed that the BiOI_TiO2/SrTiO3 sample exhibit the highest photocatalytic activity under visible irradiation (0.6 μmol/dm3/min). Thus, it was demonstrated that modification of the TiO2/SrTiO3 microspheres by flowers-like structure made of bismuth oxyiodide resulted in enhancement of photocatalytic activity under visible light. The role of active species during the decomposition process of organic compound was investigated using different types of active species scavengers as well as electron paramagnetic resonance analysis (EPR). The study showed that in the BiOI_TiO2/SrTiO3/Vis system the holes (h+) plays relevant role in phenol decomposition. Furthermore, the stability and recyclable properties of obtained BiOI_TiO2/SrTiO3 sample were confirmed during three consecutive processes.

  11. Precision Requirements for Space-based XCO2 Data

    NASA Technical Reports Server (NTRS)

    Miller, C. E.; Crisp, D.; DeCola, P. C.; Olsen, S. C.; Randerson, J. T.; Rayner, P.; Jacob, D.J.; Jones, D.; Suntharalingam, P.

    2005-01-01

    Precision requirements have been determined for the column-averaged CO2 dry air mole fraction (X(sub CO2)) data products to be delivered by the Orbiting Carbon Observatory (OCO). These requirements result from an assessment of the amplitude and spatial gradients in X(sub CO2), the relationship between X(sub CO2) precision and surface CO2 flux uncertainties calculated from inversions of the X(sub CO2) data, and the effects of X,,Z biases on CO2 flux inversions. Observing system simulation experiments and synthesis inversion modeling demonstrate that the OCO mission design and sampling strategy provide the means to achieve the X(sub CO2) precision requirements. The impact of X(sub CO2) biases on CO2 flux uncertainties depend on their spatial and temporal extent since CO2 sources and sinks are inferred from regional-scale X(sub CO2) gradients. Simulated OCO sampling of the TRACE-P CO2 fields shows the ability of X(sub CO2) data to constrain CO2 flux inversions over Asia and distinguish regional fluxes from India and China.

  12. Histone variant H2A.Z.2 mediates proliferation and drug sensitivity of malignant melanoma

    PubMed Central

    Vardabasso, Chiara; Gaspar-Maia, Alexandre; Hasson, Dan; Pünzeler, Sebastian; Valle-Garcia, David; Straub, Tobias; Keilhauer, Eva C.; Strub, Thomas; Dong, Joanna; Panda, Taniya; Chung, Chi-Yeh; Yao, Jonathan L.; Singh, Rajendra; Segura, Miguel F.; Fontanals-Cirera, Barbara; Verma, Amit; Mann, Matthias; Hernando, Eva; Hake, Sandra B.; Bernstein, Emily

    2015-01-01

    SUMMARY Histone variants are emerging as key regulatory molecules in cancer. Here we report a novel role for the H2A.Z isoform H2A.Z.2 as a driver of malignant melanoma. H2A.Z.2 is highly expressed in metastatic melanoma, correlates with decreased patient survival, and is required for cellular proliferation. Our integrated genomic analyses reveal that H2A.Z.2 controls the transcriptional output of E2F target genes in melanoma cells. These genes are highly expressed and display a distinct signature of H2A.Z occupancy. We identify BRD2 as an H2A.Z interacting protein, whose levels are also elevated in melanoma. We further demonstrate that H2A.Z.2 regulated genes are bound by BRD2 and E2F1 in a H2A.Z.2-dependent manner. Importantly, H2A.Z.2 deficiency sensitizes melanoma cells to chemotherapy and targeted therapies. Collectively, our findings implicate H2A.Z.2 as a mediator of cell proliferation and drug sensitivity in malignant melanoma, holding translational potential for novel therapeutic strategies. PMID:26051178

  13. Evaluating and improving the redshifts of z > 2.2 quasars

    NASA Astrophysics Data System (ADS)

    Mason, Michelle; Brotherton, Michael S.; Myers, Adam

    2017-08-01

    Quasar redshifts require the best possible precision and accuracy for a number of applications, such as setting the velocity scale for outflows as well as measuring small-scale quasar-quasar clustering. The most reliable redshift standard in luminous quasars is arguably the narrow [O III] λλ4959, 5007 emission line doublet in the rest-frame optical. We use previously published [O III] redshifts obtained using near-infrared spectra in a sample of 45 high-redshift (z > 2.2) quasars to evaluate redshift measurement techniques based on rest-frame ultraviolet spectra. At redshifts above z = 2.2, the Mg II λ2798 emission line is not available in observed-frame optical spectra and the most prominent unblended and unabsorbed spectral feature available is usually C IV λ1549. Peak and centroid measurements of the C IV profile are often blueshifted relative to the rest-frame of the quasar, which can significantly bias redshift determinations. We show that redshift determinations for these high-redshift quasars are significantly correlated with the emission-line properties of C IV (I.e. the equivalent width, or EW, and the full width at half-maximum, or FWHM) as well as the luminosity, which we take from the Sloan Digital Sky Survey Data Release 7. We demonstrate that empirical corrections based on multiple regression analyses yield significant improvements in both the precision and accuracy of the redshifts of the most distant quasars and are required to establish consistency with redshifts determined in more local quasars.

  14. Bipartite charge fluctuations in one-dimensional Z2 superconductors and insulators

    NASA Astrophysics Data System (ADS)

    Herviou, Loïc; Mora, Christophe; Le Hur, Karyn

    2017-09-01

    Bipartite charge fluctuations (BCFs) have been introduced to provide an experimental indication of many-body entanglement. They have proved themselves to be a very efficient and useful tool to characterize quantum phase transitions in a variety of quantum models conserving the total number of particles (or magnetization for spin systems) and can be measured experimentally. We study the BCFs in generic one-dimensional Z2 (topological) models including the Kitaev superconducting wire model, the Ising chain, or various topological insulators such as the Su-Schrieffer-Heeger model. The considered charge (either the fermionic number or the relative density) is no longer conserved, leading to macroscopic fluctuations of the number of particles. We demonstrate that at phase transitions characterized by a linear dispersion, the BCFs probe the change in a winding number that allows one to pinpoint the transition and corresponds to the topological invariant for standard models. Additionally, we prove that a subdominant logarithmic contribution is still present at the exact critical point. Its quantized coefficient is universal and characterizes the critical model. Results are extended to the Rashba topological nanowires and to the X Y Z model.

  15. Bandwidth and Electron Correlation-Tuned Superconductivity in Rb 0.8 Fe 2 ( Se 1 - z S z ) 2

    DOE PAGES

    Yi, M.; Wang, Meng; Kemper, A. F.; ...

    2015-12-15

    Here, we present a systematic angle-resolved photoemission spectroscopy study of the substitution dependence of the electronic structure of Rb 0.8Fe 2(Se 1-zS z) 2 (z = 0, 0.5, 1), where superconductivity is continuously suppressed into a metallic phase. Going from the nonsuperconducting Rb 0.8Fe 2S 2 to superconducting Rb 0.8Fe 2Se 2, we observe little change of the Fermi surface topology, but a reduction of the overall bandwidth by a factor of 2. Hence, for these heavily electron-doped iron chalcogenides, we have identified electron correlation as explicitly manifested in the quasiparticle bandwidth to be the important tuning parameter for superconductivity,more » and that moderate correlation is essential to achieving high T C.« less

  16. Spectral flow as a map between N = (2 , 0)-models

    NASA Astrophysics Data System (ADS)

    Athanasopoulos, P.; Faraggi, A. E.; Gepner, D.

    2014-07-01

    The space of (2 , 0) models is of particular interest among all heterotic-string models because it includes the models with the minimal SO (10) unification structure, which is well motivated by the Standard Model of particle physics data. The fermionic Z2 ×Z2 heterotic-string models revealed the existence of a new symmetry in the space of string configurations under the exchange of spinors and vectors of the SO (10) GUT group, dubbed spinor-vector duality. In this paper we generalize this idea to arbitrary internal rational conformal field theories (RCFTs). We explain how the spectral flow operator normally acting within a general (2 , 2) theory can be used as a map between (2 , 0) models. We describe the details, give an example and propose more simple currents that can be used in a similar way.

  17. The H2A.Z/H2B dimer is unstable compared to the dimer containing the major H2A isoform.

    PubMed

    Placek, Brandon J; Harrison, L Nicole; Villers, Brooke M; Gloss, Lisa M

    2005-02-01

    The nucleosome, the basic fundamental repeating unit of chromatin, contains two H2A/H2B dimers and an H3/H4 tetramer. Modulation of the structure and dynamics of the nucleosome is an important regulation mechanism of DNA-based chemistries in the eukaryotic cell, such as transcription and replication. One means of altering the properties of the nucleosome is by incorporation of histone variants. To provide insights into how histone variants may impact the thermodynamics of the nucleosome, the stability of the heterodimer between the H2A.Z variant and H2B was determined by urea-induced denaturation, monitored by far-UV circular dichroism, intrinsic Tyr fluorescence intensity, and anisotropy. In the absence of stabilizing agents, the H2A.Z/H2B dimer is only partially folded. The stabilizing cosolute, trimethylamine-N-oxide (TMAO) was used to promote folding of the unstable heterodimer. The equilibrium stability of the H2A.Z/H2B dimer is compared to that of the H2A/H2B dimer. The equilibrium folding of both histone dimers is highly reversible and best described by a two-state model, with no detectable equilibrium intermediates populated. The free energies of unfolding, in the absence of denaturant, of H2A.Z/H2B and H2A/H2B are 7.3 kcal mol(-1) and 15.5 kcal mol(-1), respectively, in 1 M TMAO. The H2A.Z/H2B dimer is the least stable histone fold characterized to date, while H2A/H2B appears to be the most stable. It is speculated that this difference in stability may contribute to the different biophysical properties of nucleosomes containing the major H2A and the H2A.Z variant.

  18. Phase diagram of the isotropic spin-(3)/(2) model on the z=3 Bethe lattice

    NASA Astrophysics Data System (ADS)

    Depenbrock, Stefan; Pollmann, Frank

    2013-07-01

    We study an SU(2) symmetric spin-3/2 model on the z=3 Bethe lattice using the infinite time evolving block decimation (iTEBD) method. This model is shown to exhibit a rich phase diagram. We compute several order parameters which allow us to identify a ferromagnetic, a ferrimagnetic, an antiferromagnetic, as well as a dimerized phase. We calculate the entanglement spectra from which we conclude the existence of a symmetry protected topological phase that is characterized by S=1/2 edge spins. Details of the iTEBD algorithm used for the simulations are included.

  19. Analysis of angular observables of Λ_b \\to Λ (\\to pπ)μ+μ- decay in the standard and Z^' models

    NASA Astrophysics Data System (ADS)

    Nasrullah, Aqsa; Jamil Aslam, M.; Shafaq, Saba

    2018-04-01

    In 2015, the LHCb collaboration measured the differential branching ratio d{B}/dq^2, the lepton- and hadron-side forward-backward asymmetries, denoted by A^ℓ_FB and A^{Λ}_FB, respectively, in the range 15 < q^2(=s) < 20 GeV^2 with 3 fb^{-1} of data. Motivated by these measurements, we perform an analysis of q^2-dependent Λ_b \\to Λ (\\to p π ) μ^+μ^- angular observables at large- and low- recoil in the standard model (SM) and in a family non-universal Z^' model. The exclusive Λb\\to Λ transition is governed by the form factors, and in the present study we use the recently performed high-precision lattice QCD calculations that have well-controlled uncertainties, especially in the 15 < s < 20 GeV^2 bin. Using the full four-folded angular distribution of Λ_b \\to Λ (\\to p π ) μ^+μ^- decay, first of all we focus on calculations of the experimentally measured d{B}/ds, A^ℓ_FB, and A^{Λ}_FB in the SM and compare their numerical values with the measurements in appropriate bins of s. In case of a possible discrepancy between the SM prediction and the measurements, we try to see if these can be accommodated though the extra neutral Z^' boson. We find that in the dimuon momentum range 15 < s < 20 GeV^2 the value of d{B}/ds and central value of A^ℓ_FB in the Z^' model is compatible with the measured values. In addition, the fraction of longitudinal polarization of the dimuon FL was measured to be 0.61^{+0.11}_{-0.14}± 0.03 in 15 < s < 20 GeV^2 at the LHCb. We find that in this bin the value found in the Z^' model is close to the observed values. After comparing the results of these observables, we have proposed other observables such as {α}i and α^{(')}i with i =θ_{ℓ}, θ_{Λ}, φ,L, U and coefficients of different foldings P_{1, \\ldots, 9} in different bins of s in the SM and Z^' model. We illustrate that the experimental observations of the s-dependent angular observables calculated here in several bins of s can help to test the predictions of the

  20. Copper Hugoniot measurements to 2.8 TPa on Z.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furnish, Michael D.; Haill, Thomas A

    We conducted three Hugoniot and release experiments on copper on the Z machine at Hugoniot stress levels of 0.34 and 2.6 TPa, using two-layer copper/aluminum impactors travelling at 8 and 27 km/s and Z-quartz windows. Velocity histories were recorded for 4 samples of different thicknesses and 5 locations on the flyer plate (3 and 4 for the first two experiments). On-sample measurements provided Hugoniot points (via transit time) and partial release states (via Z-quartz wavespeed). Fabrication of the impactor required thick plating and several diamond-machining steps. The lower-pressure test was planned as a 2.5 TPa test, but a failure onmore » the Z machine degraded its performance; however, these results corroborated earlier Cu data in the same stress region. The second test suffered from significant flyer plate bowing, but the third did not. The Hugoniot data are compared with the APtshuler/Nellis nuclear-driven data, other data from Z and elsewhere, and representative Sesame models.« less

  1. The Complete Z-diagram of LMC X-2

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Smale, A. P.; Homan, J.; Kuulkers, E.

    2003-01-01

    We present results from four Rossi X-ray Timing Explorer (RXTE) observations of the bright low mass X-ray binary LMC X-2. During these observations, which span a year and include over 160 hrs of data, the source exhibits clear evolution through three branches on its hardness-intensity and color-color diagrams, consistent with the flaring, normal, and horizontal branches (FB, NB, HB) of a Z-source, and remarkably similar to Z-tracks derived for GX 17+2, Sco X-1 and GX 349+2. LMC X-2 was observed in the FB, NB, and HB for roughly 30%, 40%, and 30% respectively of the total time covered. The source traces out the full extent of the Z in approximately 1 day, and the Z-track shows evidence for secular shifts on a timescale in excess of a few days. Although the count rate of LMC X-2 is low compared with the other known 2-sources due to its greater distance, the power density spectra selected by branch show very-low-frequency noise characteristics at least consistent with those from other Z-sources. We thus confirm the identification of LMC X-2 as a Z-source, the first identified outside our Galaxy.

  2. Artifacts and 2}> power corrections: Reexamining Z{sub {psi}}(p{sup 2}) and Z{sub V} in the momentum-subtraction scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boucaud, Ph.; Leroy, J. P.; Le Yaouanc, A.

    2006-08-01

    The next-to-leading-order (NLO) term in the operator product expansion (OPE) of the quark propagator vector part Z{sub {psi}} and the vertex function g{sub 1} of the vector current in the Landau gauge should be dominated by the same 2}> condensate as in the gluon propagator. On the other hand, the perturbative part has been calculated to a very high precision thanks to Chetyrkin and collaborators. We test this on the lattice, with both clover and overlap fermion actions at {beta}=6.0, 6.4, 6.6, 6.8. Elucidation of discretization artifacts appears to be absolutely crucial. First hypercubic artifacts are eliminated by amore » powerful method, which gives results notably different from the standard democratic method. Then, the presence of unexpected, very large, nonperturbative, O(4) symmetric discretization artifacts, increasing towards small momenta, is demonstrated by considering Z{sub V}{sup MOM}, which should be constant in the absence of such artifacts. They impede in general the analysis of OPE. However, in two special cases with overlap action--(1) for Z{sub {psi}}; (2) for g{sub 1}, but only at large p{sup 2}--we are able to identify the 2}> condensate; it agrees with the one resulting from gluonic Green functions. We conclude that the OPE analysis of quark and gluon Green function has reached a quite consistent status, and that the power corrections have been correctly identified. A practical consequence of the whole analysis is that the renormalization constant Z{sub {psi}} (=Z{sub 2}{sup -1} of the momentum-subtraction (MOM) scheme) may differ sizably from the one given by democratic selection methods. More generally, the values of the renormalization constants may be seriously affected by the differences in the treatment of the various types of artifacts, and by the subtraction of power corrections.« less

  3. Host composition dependent tunable multicolor emission in the single-phase Ba2(Ln(1-z)Tb(z))(BO3)2Cl:Eu phosphors.

    PubMed

    Xia, Zhiguo; Zhuang, Jiaqing; Meijerink, Andries; Jing, Xiping

    2013-05-14

    A new strategy based on the host composition design has been adopted to obtain efficient color-tunable emission from Ba2Ln(0.97-z)Tb(z)(BO3)2Cl:0.03Eu (Ln = Y, Gd and Lu, z = 0-0.97) phosphors. This study reveals that the single-phase Ba2Ln(1-z)Tb(z)(BO3)2Cl compounds can be applied to use allowed Eu(2+) absorption transitions to sensitize Eu(3+) emission via the energy transfer Eu(2+) → (Tb(3+))n → Eu(3+). The powder X-ray diffraction (XRD) and Rietveld refinement analysis shows single-phase Ba2Ln(1-z)Tb(z)(BO3)2Cl. As-prepared Ba2Ln(0.97-z)Tb(z)(BO3)2Cl:0.03Eu phosphors show intense green, yellow, orange and red emission under 377 nm near ultraviolet (n-UV) excitation due to a variation in the relative intensities of the Eu(2+), Tb(3+) and Eu(3+) emission depending on the Tb content (z) in the host composition, allowing color tuning. The variation in emission color is explained by energy transfer and has been investigated by photoluminescence and lifetime measurements and is further characterized by the Commission Internationale de l'éclairage (CIE) chromaticity indexes. The quantum efficiencies of the phosphors are high, up to 74%, and show good thermal stabilities up to 150 °C. This investigation demonstrates the possibility to sensitize Eu(3+) line emission by Eu(2+)via energy migration over Tb(3+) resulting in efficient color tunable phosphors which are promising for use in solid-state white light-emitting diodes (w-LEDs).

  4. Phase Diagram of K x Fe 2 - y Se 2 - z S z and the Suppression of its Superconducting State by an Fe 2 - Se / S Tetrahedron Distortion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Hechang; Abeykoon, Milinda; Bozin, Emil S.

    2011-09-01

    We report structurally tuned superconductivity in a K x Fe 2 - y Se 2 - z S z ( 0 ≤ z2 ) phase diagram. Superconducting T c is suppressed as S is incorporated into the lattice, eventually vanishing at 80% of S. The magnetic and conductivity properties can be related to stoichiometry on a poorly occupied Fe1 site and the local environment of a nearly fully occupied Fe2 site. The decreasing T c coincides with the increasing Fe1 occupancy and the overall increase in Fe stoichiometry from z = 0 to z = 2 . Ourmore » results indicate that the irregularity of the Fe 2 - Se / S tetrahedron is an important controlling parameter that can be used to tune the ground state in the new superconductor family.« less

  5. Search for a new heavy resonance decaying into a Z boson and a Z or W boson in 2$$\\ell$$2q final states at $$\\sqrt{s}=$$ 13 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    A search has been performed for new, heavy resonances decaying to ZZ or ZW in 2more » $$\\ell$$2q final states, with two charged leptons ($$\\ell=$$ e,$$\\mu$$) produced by the decay of a Z boson, and two quarks produced by the decay of a W or Z boson. The analysis is sensitive to resonances with masses in the range from 400 to 4500 GeV. Two categories are defined based on the merged or resolved reconstruction of the hadronically decaying vector boson, optimized for high- and low-mass resonances, respectively. The search is based on data collected during 2016 by the CMS experiment at the LHC in proton-proton collisions with a center-of-mass energy of $$\\sqrt{s}=$$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$$^{-1}$$. No excess is observed in the data above the standard model background expectation. Upper limits on the production cross section of heavy, narrow spin-1 and spin-2 resonances are derived as a function of the resonance mass, and exclusion limits on the production of W$'$ bosons and bulk graviton particles are calculated in the framework of the heavy vector triplet model and warped extra dimensions, respectively.« less

  6. Z-2 Threaded Insert Design and Testing Abstract

    NASA Technical Reports Server (NTRS)

    Rhodes, RIchard; Graziosi, Dave; Jones, Bobby; Ferl, Jinny; Scarborough, Steve; Sweeney, Mitch

    2016-01-01

    The Z-2 Prototype Planetary Extravehicular Space Suit Assembly is a continuation of NASA's Z series of spacesuits. The Z-2 is another step in the NASA's technology development roadmap leading to human exploration of the Martian surface. To meet a more challenging set of requirements than previous suit systems standard design features, such as threaded inserts, have been re-analyzed and improved. NASA's Z-2 prototype space suit contains several components fabricated from an advanced hybrid composite laminate consisting of IM10 carbon fiber and fiber glass. One requirement NASA levied on the suit composites was the ability to have removable, replaceable helicoil inserts to which other suit components would be fastened. An approach utilizing bonded in inserts with helicoils inside of them was implemented. The design of the interface flanges of the composites allowed some of the inserts to be a "T" style insert that was installed through the entire thickness of the laminate. The flange portion of the insert provides a mechanical lock as a redundancy to the adhesive aiding in the pullout load that the insert can withstand. In some locations it was not possible to utilize at "T" style insert and a blind insert was used instead. These inserts rely completely on the bond strength of the adhesive to resist pullout. It was determined during the design of the suit that the inserts did not need to withstand loads induced from pressure cycling but instead tension induced from torqueing the screws to bolt on hardware which creates a much higher stress on them. Bolt tension is determined by dividing the torque on the screw by a k value multiplied by the thread diameter of the bolt. The k value is a factor that accounts for friction in the system. A common value used for k for a non-lubricated screw is 0.2. The k value can go down by as much as 0.1 if the screw is lubricated which means for the same torque, a much larger tension could be placed on the bolt and insert. This paper

  7. A family 5 β-mannanase from the thermophilic fungus Thielavia arenaria XZ7 with typical thermophilic enzyme features.

    PubMed

    Lu, Haiqiang; Zhang, Huitu; Shi, Pengjun; Luo, Huiying; Wang, Yaru; Yang, Peilong; Yao, Bin

    2013-09-01

    A novel β-mannanase gene, man5XZ7, was cloned from thermophilic fungus Thielavia arenaria XZ7, and successfully expressed in Pichia pastoris. The gene (1,110 bp) encodes a 369-amino acid polypeptide with a molecular mass of approximately 40.8 kDa. The deduced sequence of Man5XZ7 consists of a putative 17-residue signal peptide and a catalytic module belonging to glycoside hydrolase (GH) family 5, and displays 76 % identity with the experimentally verified GH 5 endo-β-1,4-mannanase from Podospora anserina. Recombinant Man5XZ7 was optimally active at 75 °C and pH 5.0 and exhibited high activity at a wide temperature range (>50.0 % activity at 50-85 °C). Moreover, it had good adaptability to acidic to basic pH (>74.1 % activity at pH 4.0-7.0 and 25.6 % even at pH 9.0) and good stability from pH 3.0 to 10.0. These enzymatic properties showed that Man5XZ7 was a new thermophilic and alkali-tolerant β-mannanase. Further amino acid composition analysis indicated that Man5XZ7 has several characteristic features of thermophilic enzymes.

  8. Z-2 Architecture Description and Requirements Verification Results

    NASA Technical Reports Server (NTRS)

    Graziosi, Dave; Jones, Bobby; Ferl, Jinny; Scarborough, Steve; Hewes, Linda; Ross, Amy; Rhodes, Richard

    2016-01-01

    The Z-2 Prototype Planetary Extravehicular Space Suit Assembly is a continuation of NASA's Z series of spacesuits. The Z-2 is another step in NASA's technology development roadmap leading to human exploration of the Martian surface. The suit was designed for maximum mobility at 8.3 psid, reduced mass, and to have high fidelity life support interfaces. As Z-2 will be man-tested at full vacuum in NASA JSC's Chamber B, it was manufactured as Class II, making it the most flight-like planetary walking suit produced to date. The Z-2 suit architecture is an evolution of previous EVA suits, namely the ISS EMU, Mark III, Rear Entry I-Suit and Z-1 spacesuits. The suit is a hybrid hard and soft multi-bearing, rear entry spacesuit. The hard upper torso (HUT) is an all-composite structure and includes a 2-bearing rolling convolute shoulder with Vernier sizing mechanism, removable suit port interface plate (SIP), elliptical hemispherical helmet and self-don/doff shoulder harness. The hatch is a hybrid aluminum and composite construction with Apollo style gas connectors, custom water pass-thru, removable hatch cage and interfaces to primary and auxiliary life support feed water bags. The suit includes Z-1 style lower arms with cam brackets for Vernier sizing and government furnished equipment (GFE) Phase VI gloves. The lower torso includes a telescopic waist sizing system, waist bearing, rolling convolute waist joint, hard brief, 2 bearing soft hip thigh, Z-1 style legs with ISS EMU style cam brackets for sizing, and conformal walking boots with ankle bearings. The Z-2 Requirements Verification Plan includes the verification of more than 200 individual requirements. The verification methods include test, analysis, inspection, demonstration or a combination of methods. Examples of unmanned requirements include suit leakage, proof pressure testing, operational life, mass, isometric man-loads, sizing adjustment ranges, internal and external interfaces such as in-suit drink bag

  9. Strong CP and SUZ2

    NASA Astrophysics Data System (ADS)

    Albaid, Abdelhamid; Dine, Michael; Draper, Patrick

    2015-12-01

    Solutions to the strong CP problem typically introduce new scales associated with the spontaneous breaking of symmetries. Absent any anthropic argument for small overline{θ} , these scales require stabilization against ultraviolet corrections. Supersymmetry offers a tempting stabilization mechanism, since it can solve the "big" electroweak hierarchy problem at the same time. One family of solutions to strong CP, including generalized parity models, heavy axion models, and heavy η' models, introduces {Z}_2 copies of (part of) the Standard Model and an associated scale of {Z}_2 -breaking. We review why, without additional structure such as supersymmetry, the {Z}_2 -breaking scale is unacceptably tuned. We then study "SUZ2" models, supersymmetric theories with {Z}_2 copies of the MSSM. We find that the addition of SUSY typically destroys the {Z}_2 protection of overline{θ}=0 , even at tree level, once SUSY and {Z}_2 are broken. In theories like supersymmetric completions of the twin Higgs, where {Z}_2 addresses the little hierarchy problem but not strong CP, two axions can be used to relax overline{θ}.

  10. The effect of PO 4 doping on the luminescent properties of Sr 3-3zEu 2zV 2-xP xO 8

    NASA Astrophysics Data System (ADS)

    Cao, S.; Ma, Y. Q.; Yang, K.; Zhu, W. L.; Yin, W. J.; Zheng, G. H.; Wu, M. Z.; Sun, Z. Q.

    2010-07-01

    The luminescent properties of Sr 3V 2-xP xO 8 (0 ⩽ x ⩽ 2), Eu 3+ doped Sr 2.7Eu 0.2V 2-yP yO 8 (0 ⩽ y ⩽ 2) and Sr 3-3zEu 2zV 0.8P 1.2O 8 (0 < z ⩽ 0.3) have been investigated. For the Sr 3V 2-xP xO 8 (0 ⩽ x ⩽ 2) samples, the VO43- activation and emission intensity reaches the strongest as x = 1.6. For the Sr 2.7Eu 0.2V 2-yP yO 8 (0 ⩽ y ⩽ 2) samples, an appropriate amount of phosphorus doping enhances the Eu 3+ emission with the strongest emission occurring at y = 1.2. For the Sr 3-3zEu 2zV 0.8P 1.2O 8 (0 < z ⩽ 0.3) sample with the phosphorus content fixed at 1.2, it exhibits the most intense emission as Eu 3+ concentration reaches at z = 0.2. Our results indicate that the introduction of the PO43- plays an important role in the photoluminescence properties of the studied samples and the relevant mechanism has been discussed.

  11. Topological Z2 resonating-valence-bond spin liquid on the square lattice

    NASA Astrophysics Data System (ADS)

    Chen, Ji-Yao; Poilblanc, Didier

    2018-04-01

    A one-parameter family of long-range resonating-valence-bond (RVB) state on the square lattice was previously proposed to describe a critical spin liquid (SL) phase of the spin-1/2 frustrated Heisenberg model. We provide evidence that this RVB state in fact also realizes a topological (long-range entangled) Z2 SL, limited by two transitions to critical SL phases. The topological phase is naturally connected to the Z2 gauge symmetry of the local tensor. This Rapid Communication shows that, on one hand, spin-1/2 topological SL with C4 v point-group symmetry and S U (2 ) spin rotation symmetry exists on the square lattice and, on the other hand, criticality and nonbipartiteness are compatible. We also point out that strong similarities between our phase diagram and the ones of classical interacting dimer models suggest both can be described by similar Kosterlitz-Thouless transitions. This scenario is further supported by the analysis of the one-dimensional boundary state. Forms of parent Hamiltonians hosting the Z2 SL are suggested.

  12. A Convective Vorticity Vector Associated With Tropical Convection: A 2D Cloud-Resolving Modeling Study

    NASA Technical Reports Server (NTRS)

    Gao, Shou-Ting; Ping, Fan; Li, Xiao-Fan; Tao, Wei-Kuo

    2004-01-01

    Although dry/moist potential vorticity is a useful physical quantity for meteorological analysis, it cannot be applied to the analysis of 2D simulations. A convective vorticity vector (CVV) is introduced in this study to analyze 2D cloud-resolving simulation data associated with 2D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the TOGA COARE, and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2D x-z frame. Analysis of zonally-averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally-averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.

  13. Search for minimal supersymmetric standard model Higgs Bosons H / A and for a $$Z^{\\prime}$$ boson in the $$\\tau\\tau $$ final state produced in pp collisions at $$\\sqrt{s}$$= 13 TeV with the ATLAS detector

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2016-10-27

    A search for neutral Higgs bosons of the minimal supersymmetric standard model (MSSM) and for a heavneutral Z ' boson is performed using a data sample corresponding to an integrated luminosity of 3.2 fb - 1 from proton–proton collisions at √s=13 TeV recorded by the ATLAS detector at the LHC. The heavy resonance is assumed to decay to a τ + τ - pair with at least one τ lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2–1.2 TeV for the MSSM neutral Higgs bosons and 0.5–2.5 TeV for the heavy neutral Z ' boson. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in MSSM and Z ' benchmark scenarios. The most stringent constraints on the MSSM m A –tan β space exclude at 95 % confidence level (CL) tan β > 7.6 for m A = 200 GeV in the mmore » $$mod+\\atop{h}$$ MSSM scenario. For the Sequential Standard Model, a Z$$'\\atop{SSM}$$ mass up to 1.90 TeV is excluded at 95 % CL and masses up to 1.82–2.17 TeV are excluded for a Z'$$\\atop{SFM}$$ of the strong flavour model.« less

  14. The Evolution of the Tully-Fisher Relation between z ˜ 2.3 and z ˜ 0.9 with KMOS3D

    NASA Astrophysics Data System (ADS)

    Übler, H.; Förster Schreiber, N. M.; Genzel, R.; Wisnioski, E.; Wuyts, S.; Lang, P.; Naab, T.; Burkert, A.; van Dokkum, P. G.; Tacconi, L. J.; Wilman, D. J.; Fossati, M.; Mendel, J. T.; Beifiori, A.; Belli, S.; Bender, R.; Brammer, G. B.; Chan, J.; Davies, R.; Fabricius, M.; Galametz, A.; Lutz, D.; Momcheva, I. G.; Nelson, E. J.; Saglia, R. P.; Seitz, S.; Tadaki, K.

    2017-06-01

    We investigate the stellar mass and baryonic mass Tully-Fisher relations (TFRs) of massive star-forming disk galaxies at redshift z˜ 2.3 and z˜ 0.9 as part of the {{KMOS}}3{{D}} integral field spectroscopy survey. Our spatially resolved data allow reliable modeling of individual galaxies, including the effect of pressure support on the inferred gravitational potential. At fixed circular velocity, we find higher baryonic masses and similar stellar masses at z˜ 2.3 as compared to z˜ 0.9. Together with the decreasing gas-to-stellar mass ratios with decreasing redshift, this implies that the contribution of dark matter to the dynamical mass on the galaxy scale increases toward lower redshift. A comparison to local relations reveals a negative evolution of the stellar and baryonic TFR zero points from z = 0 to z˜ 0.9, no evolution of the stellar TFR zero point from z˜ 0.9 to z˜ 2.3, and a positive evolution of the baryonic TFR zero point from z˜ 0.9 to z˜ 2.3. We discuss a toy model of disk galaxy evolution to explain the observed nonmonotonic TFR evolution, taking into account the empirically motivated redshift dependencies of galactic gas fractions and the relative amount of baryons to dark matter on galaxy and halo scales. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere under ESO programs 092.A-0091, 093.A-0079, 094.A-0217, 095.A-0047, and 096.A-0025.

  15. Symmetry-protected gapless Z2 spin liquids

    NASA Astrophysics Data System (ADS)

    Lu, Yuan-Ming

    2018-03-01

    Despite rapid progress in understanding gapped topological states, much less is known about gapless topological phases of matter, especially in strongly correlated electrons. In this work, we discuss a large class of robust gapless quantum spin liquids in frustrated magnets made of half-integer spins, which are described by gapless fermionic spinons coupled to dynamical Z2 gauge fields. Requiring U(1 ) spin conservation, time-reversal, and certain space-group symmetries, we show that certain spinon symmetry fractionalization class necessarily leads to a gapless spectrum. These gapless excitations are stable against any perturbations, as long as the required symmetries are preserved. Applying these gapless criteria to spin-1/2 systems on square, triangular, and kagome lattices, we show that all gapped symmetric Z2 spin liquids in Abrikosov-fermion representation can also be realized in Schwinger-boson representation. This leads to 64 gapped Z2 spin liquids on square lattice, and 8 gapped states on both kagome and triangular lattices.

  16. z~2: An Epoch of Disk Assembly

    NASA Astrophysics Data System (ADS)

    Simons, Raymond C.; Kassin, Susan A.; Weiner, Benjamin; Heckman, Timothy M.; Trump, Jonathan; SIGMA, DEEP2

    2018-01-01

    At z = 0, the majority of massive star-forming galaxies contain thin, rotationally supported gas disks. It was once accepted that galaxies form thin disks early: collisional gas with high velocity dispersion should dissipate energy, conserve angular momentum, and develop strong rotational support in only a few galaxy crossing times (~few hundred Myr). However, this picture is complicated at high redshift, where the processes governing galaxy assembly tend to be violent and inhospitable to disk formation. We present results from our SIGMA survey of star-forming galaxy kinematics at z = 2. These results challenge the simple picture described above: galaxies at z = 2 are unlike local well-ordered disks. Their kinematics tend to be much more disordered, as quantified by their low ratios of rotational velocity to gas velocity dispersion (Vrot/σg): less than 35% of galaxies have Vrot/σg > 3. For comparison, nearly 100% of local star-forming galaxies meet this same threshold. We combine our high redshift sample with a similar low redshift sample from the DEEP2 survey. This combined sample covers a continuous redshift baseline over 0.1 < z < 2.5, spanning 10 Gyrs of cosmic time. Over this period, galaxies exhibit remarkably smooth kinematic evolution on average. All galaxies tend towards rotational support with time, and it is reached earlier in higher mass systems. This is due to both a significant decline in gas velocity dispersion and a mild rise in ordered rotational motions. These results indicate that z = 2 is a period of disk assembly, during which the strong rotational support present in today’s massive disk galaxies is only just beginning to emerge.

  17. Ultrahigh-resolution crystal structures of Z-DNA in complex with Mn(2+) and Zn(2+) ions.

    PubMed

    Drozdzal, Pawel; Gilski, Miroslaw; Kierzek, Ryszard; Lomozik, Lechoslaw; Jaskolski, Mariusz

    2013-06-01

    X-ray crystal structures of the spermine(4+) form of the Z-DNA duplex with the self-complementary d(CG)3 sequence in complexes with Mn(2+) and Zn(2+) cations have been determined at the ultrahigh resolutions of 0.75 and 0.85 Å, respectively. Stereochemical restraints were only used for the sperminium cation (in both structures) and for nucleotides with dual conformation in the Zn(2+) complex. The Mn(2+) and Zn(2+) cations at the major site, designated M(2+)(1), bind at the N7 position of G6 by direct coordination. The coordination geometry of this site was octahedral, with complete hydration shells. An additional Zn(2+)(2) cation was bis-coordinated in a tetrahedral fashion by the N7 atoms of G10 and G12 from a symmetry-related molecule. The coordination distances of Zn(2+)(1) and Zn(2+)(2) to the O6 atom of the guanine residues were 3.613 (6) and 3.258 (5) Å, respectively. Moreover, a chloride ion was also identified in the coordination sphere of Zn(2+)(2). Alternate conformations were observed in the Z-DNA-Zn(2+) structure not only at internucleotide linkages but also at the terminal C3'-OH group of G12. The conformation of the sperminium chain in the Z-DNA-Mn(2+) complex is similar to the spermine(4+) conformation in analogous Z-DNA-Mg(2+) structures. In the Z-DNA-Zn(2+) complex the sperminium cation is disordered and partially invisible in electron-density maps. In the Z-DNA-Zn(2+) complex the sperminium cation only interacts with the phosphate groups of the Z-DNA molecules, while in the Z-DNA-Mn(2+) structure it forms hydrogen bonds to both the phosphate groups and DNA bases.

  18. Independent verification survey report for exposure units Z2-24, Z2-31, Z2-32, AND Z2-36 in zone 2 of the East Tennessee technology park Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, David A.

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management selected Oak Ridge Associated Universities (ORAU), through the Oak Ridge Institute for Science and Education (ORISE) contract, to perform independent verification (IV) at Zone 2 of the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. ORAU has concluded IV surveys, per the project-specific plan (PSP) (ORAU 2013a) covering exposure units (EUs) Z2-24, -31, -32, and -36. The objective of this effort was to verify the target EUs comply with requirements in the Zone 2 Record of Decision (ROD) (DOE 2005), as implemented by using the dynamic verificationmore » strategy presented in the dynamic work plan (DWP) (BJC 2007); and confirm commitments in the DWP were adequately implemented, as verified via IV surveys and soil sampling.« less

  19. Experimental validation of Swy-2 clay standard's PHREEQC model

    NASA Astrophysics Data System (ADS)

    Szabó, Zsuzsanna; Hegyfalvi, Csaba; Freiler, Ágnes; Udvardi, Beatrix; Kónya, Péter; Székely, Edit; Falus, György

    2017-04-01

    One of the challenges of the present century is to limit the greenhouse gas emissions for the mitigation of climate change which is possible for example by a transitional technology, CCS (Carbon Capture and Storage) and, among others, by the increase of nuclear proportion in the energy mix. Clay minerals are considered to be responsible for the low permeability and sealing capacity of caprocks sealing off stored CO2 and they are also the main constituents of bentonite in high level radioactive waste disposal facilities. The understanding of clay behaviour in these deep geological environments is possible through laboratory batch experiments of well-known standards and coupled geochemical models. Such experimentally validated models are scarce even though they allow deriving more precise long-term predictions of mineral reactions and rock and bentonite degradation underground and, therefore, ensuring the safety of the above technologies and increase their public acceptance. This ongoing work aims to create a kinetic geochemical model of Na-montmorillonite standard Swy-2 in the widely used PHREEQC code, supported by solution and mineral composition results from batch experiments. Several four days experiments have been carried out in 1:35 rock:water ratio at atmospheric conditions, and with inert and CO2 supercritical phase at 100 bar and 80 ⁰C relevant for the potential Hungarian CO2 reservoir complex. Solution samples have been taken during and after experiments and their compositions were measured by ICP-OES. The treated solid phase has been analysed by XRD and ATR-FTIR and compared to in-parallel measured references (dried Swy-2). Kinetic geochemical modelling of the experimental conditions has been performed by PHREEQC version 3 using equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). The visualization of experimental and numerous modelling results has been automatized by R. Experiments and models show very fast

  20. (2E,6Z,9Z)-2,6,9-Pentadecatrienal as a Male-Produced Aggregation-Sex Pheromone of the Cerambycid Beetle Elaphidion mucronatum.

    PubMed

    Millar, Jocelyn G; Mitchell, Robert F; Meier, Linnea R; Johnson, Todd D; Mongold-Diers, Judith A; Hanks, Lawrence M

    2017-12-01

    An increasing body of evidence suggests that the volatile pheromones of cerambycid beetles are much more diverse in structure than previously hypothesized. Here, we describe the identification, synthesis, and field testing of (2E,6Z,9Z)-2,6,9-pentadecatrienal as a male-produced aggregation-sex pheromone of the cerambycid Elaphidion mucronatum (Say) (subfamily Cerambycinae, tribe Elaphidiini). This novel structure is unlike any previously described cerambycid pheromone, and in field bioassays attracted only this species. Males produced about 9 μg of pheromone per 24 h period, and, in field trials, lures loaded with 10, 25, and 100 mg of synthetic pheromone attracted beetles of both sexes, whereas lures loaded with 1 mg of pheromone or less were not significantly attractive. Other typical cerambycine pheromones such as 3-hydroxy-2-hexanone, syn-2,3-hexanediol, and anti-2,3-hexanediol were not attractive to E. mucronatum, and when combined with (2E,6Z,9Z)-2,6,9-pentadecatrienal, the former two compounds appeared to inhibit attraction. Unexpectedly, adults of the cerambycine Xylotrechus colonus (F.) were attracted in significant numbers to a blend of 3-hydroxyhexan-2-one and (2E,6Z,9Z)-2,6,9-pentadecatrienal, even though there is no evidence that this species produces the latter compound. From timed pheromone trap catches, adults of E. mucronatum were determined to be active from dusk until shortly after midnight.

  1. ORIGIN AND KINEMATICS OF THE ERUPTIVE FLOW FROM XZ TAU REVEALED BY ALMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapata, Luis A.; Galván-Madrid, Roberto; Carrasco-González, Carlos

    2015-09-20

    We present high angular resolution (∼0.″94) {sup 12}CO(1-0) Atacama Large Millimeter/submillimeter Array (ALMA) observations obtained during the 2014 long baseline campaign from the eruptive bipolar flow from the multiple XZ Tau stellar system discovered by the Hubble Space Telescope (HST). These observations reveal, for the first time, the kinematics of the molecular flow. The kinematics of the different ejections close to XZ Tau reveal a rotating and expanding structure with a southeast–northwest velocity gradient. The youngest eruptive bubbles unveiled in the optical HST images are inside of this molecular expanding structure. Additionally, we report a very compact and collimated bipolarmore » outflow emanating from XZ Tau A, which indicates that the eruptive outflow is indeed originating from this object. The mass (3 × 10{sup −7} M{sub ⊙}) and energetics (E{sub kin} = 3 × 10{sup 37} erg) for the collimated outflow are comparable to those found in molecular outflows associated with young brown dwarfs.« less

  2. Anomalous Z2 antiferromagnetic topological phase in pressurized SmB6

    NASA Astrophysics Data System (ADS)

    Chang, Kai-Wei; Chen, Peng-Jen

    2018-05-01

    Antiferromagnetic materials, whose time-reversal symmetry is broken, can be classified into the Z2 topology if they respect some specific symmetry. Since the theoretical proposal, however, no materials have been found to host such Z2 antiferromagnetic topological (Z2-AFT ) phase to date. Here we demonstrate that the topological Kondo insulator SmB6 can be a Z2-AFT system when pressurized to undergo an antiferromagnetic phase transition. In addition to proposing the possible candidate for a Z2-AFT material, in this work we also illustrate the anomalous topological surface states of the Z2-AFT phase which have not been discussed before. Originating from the interplay between the topological properties and the antiferromagnetic surface magnetization, the topological surface states of the Z2-AFT phase behave differently as compared with those of a topological insulator. Besides, the Z2-AFT insulators are also found promising in the generation of tunable spin currents, which is an important application in spintronics.

  3. ZFIRE: using Hα equivalent widths to investigate the in situ initial mass function at z ˜ 2

    NASA Astrophysics Data System (ADS)

    Nanayakkara, Themiya; Glazebrook, Karl; Kacprzak, Glenn G.; Yuan, Tiantian; Fisher, David; Tran, Kim-Vy; Kewley, Lisa J.; Spitler, Lee; Alcorn, Leo; Cowley, Michael; Labbe, Ivo; Straatman, Caroline; Tomczak, Adam

    2017-07-01

    We use the ZFIRE (http://zfire.swinburne.edu.au) survey to investigate the high-mass slope of the initial mass function (IMF) for a mass-complete (log_{10({M}_*/M_{⊙})˜ 9.3}) sample of 102 star-forming galaxies at z ˜ 2 using their Hα equivalent widths (Hα EWs) and rest-frame optical colours. We compare dust-corrected Hα EW distributions with predictions of star formation histories (SFHs) from pegase.2 and starburst synthetic stellar population models. We find an excess of high Hα EW galaxies that are up to 0.3-0.5 dex above the model-predicted Salpeter IMF locus and the Hα EW distribution is much broader (10-500 Å) than can easily be explained by a simple monotonic SFH with a standard Salpeter-slope IMF. Though this discrepancy is somewhat alleviated when it is assumed that there is no relative attenuation difference between stars and nebular lines, the result is robust against observational biases, and no single IMF (I.e. non-Salpeter slope) can reproduce the data. We show using both spectral stacking and Monte Carlo simulations that starbursts cannot explain the EW distribution. We investigate other physical mechanisms including models with variations in stellar rotation, binary star evolution, metallicity and the IMF upper-mass cut-off. IMF variations and/or highly rotating extreme metal-poor stars (Z ˜ 0.1 Z⊙) with binary interactions are the most plausible explanations for our data. If the IMF varies, then the highest Hα EWs would require very shallow slopes (Γ > -1.0) with no one slope able to reproduce the data. Thus, the IMF would have to vary stochastically. We conclude that the stellar populations at z2 show distinct differences from local populations and there is no simple physical model to explain the large variation in Hα EWs at z ˜ 2.

  4. VARIATIONS OF THE 10 mum SILICATE FEATURES IN THE ACTIVELY ACCRETING T TAURI STARS: DG Tau AND XZ Tau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bary, Jeffrey S.; Leisenring, Jarron M.; Skrutskie, Michael F., E-mail: jbary@colgate.ed, E-mail: jml2u@virginia.ed, E-mail: mfs4n@virginia.ed

    2009-11-20

    Using the Infrared Spectrograph aboard the Spitzer Space Telescope, we observed multiple epochs of 11 actively accreting T Tauri stars in the nearby Taurus-Auriga star-forming region. In total, 88 low-resolution mid-infrared spectra were collected over 1.5 years in Cycles 2 and 3. The results of this multi-epoch survey show that the 10 mum silicate complex in the spectra of two sources-DG Tau and XZ Tau-undergoes significant variations with the silicate feature growing both weaker and stronger over month- and year-long timescales. Shorter timescale variations on day- to week-long timescales were not detected within the measured flux errors. The time resolutionmore » coverage of this data set is inadequate for determining if the variations are periodic. Pure emission compositional models of the silicate complex in each epoch of the DG Tau and XZ Tau spectra provide poor fits to the observed silicate features. These results agree with those of previous groups that attempted to fit only single-epoch observations of these sources. Simple two-temperature, two-slab models with similar compositions successfully reproduce the observed variations in the silicate features. These models hint at a self-absorption origin of the diminution of the silicate complex instead of a compositional change in the population of emitting dust grains. We discuss several scenarios for producing such variability including disk shadowing, vertical mixing, variations in disk heating, and disk wind events associated with accretion outbursts.« less

  5. Top-quark loop corrections in Z+jet and Z + 2 jet production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, John M.; Keith Ellis, R.

    2017-01-01

    The sophistication of current predictions formore » $Z+$jet production at hadron colliders necessitates a re-evaluation of any approximations inherent in the theoretical calculations. In this paper we address one such issue, the inclusion of mass effects in top-quark loops. We ameliorate an existing calculation of $Z+1$~jet and $Z+2$~jet production by presenting exact analytic formulae for amplitudes containing top-quark loops that enter at next-to-leading order in QCD. Although approximations based on an expansion in powers of $$1/m_t^2$$ can lead to poor high-energy behavior, an exact treatment of top-quark loops demonstrates that their effect is small and has limited phenomenological interest.« less

  6. Gauge B-L model with residual Z 3 symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ernest; Pollard, Nicholas; Srivastava, Rahul

    We study a gauge B–L extension of the standard model of quarks and leptons with unconventional charges for the singlet right-handed neutrinos, and extra singlet scalars, such that a residual Z 3 symmetry remains after the spontaneous breaking of B–L. The phenomenological consequences of this scenario, including the possibility of long-lived self-interacting dark matter and Z' collider signatures is discussed. Lepton number L is a familiar concept. It is usually defined as a global U (1) symmetry, under which the leptons of the standard model (SM), i.e. e,μ,τ together with their neutrinos ν e,ν μ,ν τ have L=1, and allmore » other SM particles have L=0. In the case of nonzero Majorana neutrino masses, this continuous symmetry is broken to a discrete Z 2 symmetry, i.e. (-1) L or lepton parity. In this paper, we consider a gauge B–L extension of the SM, such that a residual Z 3 symmetry remains after the spontaneous breaking of B–L. This is then a realization of the unusual notion of Z 3 lepton symmetry. It has specific phenomenological consequences, including the possibility of a long-lived particle as a dark-matter candidate.« less

  7. Gauge B-L model with residual Z 3 symmetry

    DOE PAGES

    Ma, Ernest; Pollard, Nicholas; Srivastava, Rahul; ...

    2016-09-07

    We study a gauge B–L extension of the standard model of quarks and leptons with unconventional charges for the singlet right-handed neutrinos, and extra singlet scalars, such that a residual Z 3 symmetry remains after the spontaneous breaking of B–L. The phenomenological consequences of this scenario, including the possibility of long-lived self-interacting dark matter and Z' collider signatures is discussed. Lepton number L is a familiar concept. It is usually defined as a global U (1) symmetry, under which the leptons of the standard model (SM), i.e. e,μ,τ together with their neutrinos ν e,ν μ,ν τ have L=1, and allmore » other SM particles have L=0. In the case of nonzero Majorana neutrino masses, this continuous symmetry is broken to a discrete Z 2 symmetry, i.e. (-1) L or lepton parity. In this paper, we consider a gauge B–L extension of the SM, such that a residual Z 3 symmetry remains after the spontaneous breaking of B–L. This is then a realization of the unusual notion of Z 3 lepton symmetry. It has specific phenomenological consequences, including the possibility of a long-lived particle as a dark-matter candidate.« less

  8. Histone H2A.Z is essential for estrogen receptor signaling

    PubMed Central

    Gévry, Nicolas; Hardy, Sara; Jacques, Pierre-Étienne; Laflamme, Liette; Svotelis, Amy; Robert, François; Gaudreau, Luc

    2009-01-01

    Incorporation of H2A.Z into the chromatin of inactive promoters has been shown to poise genes for their expression. Here we provide strong evidence that H2A.Z is incorporated into the promoter regions of estrogen receptor (ERα) target genes only upon gene induction, and that, in a cyclic pattern. Moreover, members of the human H2A.Z-depositing complex, p400, also follow the same gene recruitment kinetics as H2A.Z. Importantly, cellular depletion of H2A.Z or p400 leads to a severe defect in estrogen signaling, including loss of estrogen-specific cell proliferation. We find that incorporation of H2A.Z within TFF1 promoter chromatin allows nucleosomes to adopt preferential positions along the DNA translational axis. Finally, we provide evidence that H2A.Z is essential to allow estrogen-responsive enhancer function. Taken together, our results provide strong mechanistic insight into how H2A.Z regulates ERα-mediated gene expression and provide a novel link between H2A.Z–p400 and ERα-dependent gene regulation and enhancer function. PMID:19515975

  9. Signals of a 2 TeV $W'$ boson and a heavier $Z'$ boson

    DOE PAGES

    Dobrescu, Bogdan A.; Fox, Patrick J.

    2016-05-09

    We construct an SU(2) L x SU(2) R x U(1) B-L model with a Higgs sector that consists of a bidoublet and a doublet, and with a right-handed neutrino sector that includes one Dirac fermion and one Majorana fermion. This model explains the CMS and ATLAS excess events in the e +e -jj, jj, Wh 0 and WZ channels in terms of a W' boson of mass near 1.9 TeV and of coupling g R in the 0.4-0.5 range (with the lower half preferred by the limits on tb-bar resonances). We found that the production cross section of this W'more » boson at the 13 TeV LHC is in the 720-1100 fb range, allowing sensitivity in more than 17 final states. Furthermore, we determine that the Z' boson has a mass in the 2.9-4.5 TeV range and several decay channels that can be probed in Run 2 of the LHC, including cascade decays via heavy Higgs bosons. Interpreting the CMS e +e -event at 2.9 TeV as coming from the Z', the mass ratio of the Z' and W' bosons requires g R ≈0.48, which implies a pp →Z' → ℓ +ℓ -cross section of 2 fb at √s = 13 TeV.« less

  10. A New Numerical Method for Z2 Topological Insulators with Strong Disorder

    NASA Astrophysics Data System (ADS)

    Akagi, Yutaka; Katsura, Hosho; Koma, Tohru

    2017-12-01

    We propose a new method to numerically compute the Z2 indices for disordered topological insulators in Kitaev's periodic table. All of the Z2 indices are derived from the index formulae which are expressed in terms of a pair of projections introduced by Avron, Seiler, and Simon. For a given pair of projections, the corresponding index is determined by the spectrum of the difference between the two projections. This difference exhibits remarkable and useful properties, as it is compact and has a supersymmetric structure in the spectrum. These properties enable highly efficient numerical calculation of the indices of disordered topological insulators. The method, which we propose, is demonstrated for the Bernevig-Hughes-Zhang and Wilson-Dirac models whose topological phases are characterized by a Z2 index in two and three dimensions, respectively.

  11. Declining Rotation Curves at z = 2 in ΛCDM Galaxy Formation Simulations

    NASA Astrophysics Data System (ADS)

    Teklu, Adelheid F.; Remus, Rhea-Silvia; Dolag, Klaus; Arth, Alexander; Burkert, Andreas; Obreja, Aura; Schulze, Felix

    2018-02-01

    Selecting disk galaxies from the cosmological, hydrodynamical simulation Magneticum Pathfinder, we show that almost half of our poster child disk galaxies at z = 2 show significantly declining rotation curves and low dark matter fractions, very similar to recently reported observations. These galaxies do not show any anomalous behavior, they reside in standard dark matter halos, and they typically grow significantly in mass until z = 0, where they span all morphological classes, including disk galaxies matching present-day rotation curves and observed dark matter fractions. Our findings demonstrate that declining rotation curves and low dark matter fractions in rotation-dominated galaxies at z = 2 appear naturally within the ΛCDM paradigm and reflect the complex baryonic physics, which plays a role at the peak epoch of star formation. In addition, we find some dispersion-dominated galaxies at z = 2 that host a significant gas disk and exhibit similar shaped rotation curves as the disk galaxy population, rendering it difficult to differentiate between these two populations with currently available observation techniques.

  12. Nonlinear Diophantine equation 11 x +13 y = z 2

    NASA Astrophysics Data System (ADS)

    Sugandha, A.; Tripena, A.; Prabowo, A.; Sukono, F.

    2018-03-01

    This research aims to obtaining the solutions (if any) from the Non Linear Diophantine equation of 11 x + 13 y = z 2. There are 3 possibilities to obtain the solutions (if any) from the Non Linear Diophantine equation, namely single, multiple, and no solution. This research is conducted in two stages: (1) by utilizing simulation to obtain the solutions (if any) from the Non Linear Diophantine equation of 11 x + 13 y = z 2 and (2) by utilizing congruency theory with its characteristics proven that the Non Linear Diophantine equation has no solution for non negative whole numbers (integers) of x, y, z.

  13. Z-2 Suit Support Stand and MKIII Suit Center of Gravity Test

    NASA Technical Reports Server (NTRS)

    Nguyen, Tuan Q.

    2014-01-01

    NASA's next generation spacesuits are the Z-Series suits, made for a range of possible exploration missions in the near future. The prototype Z-1 suit has been developed and assembled to incorporate new technologies that has never been utilized before in the Apollo suits and the Extravehicular Mobility Unit (EMU). NASA engineers tested the Z-1 suit extensively in order to developed design requirements for the new Z-2 suit. At the end of 2014, NASA will be receiving the new Z-2 suit to perform more testing and to further develop the new technologies of the suit. In order to do so, a suit support stand will be designed and fabricated to support the Z-2 suit during maintenance, sizing, and structural leakage testing. The Z-2 Suit Support Stand (Z2SSS) will be utilized for these purposes in the early testing stages of the Z-2 suit.

  14. VizieR Online Data Catalog: Opacities from the Opacity Project (Seaton+, 1995)

    NASA Astrophysics Data System (ADS)

    Seaton, M. J.; Yan, Y.; Mihalas, D.; Pradhan, A. K.

    1997-08-01

    'nnn'. The user can get s92.version2, select the values of 'nnn' required, then get the required files s92.'nnn'. The user can see the file in ftp, displayed on the screen, by typing "get s92.version2 -". The files s92.'nnn' can be used with opfit.for to obtain opacities for any requires value of temperature and mass density. Files for other metal-mixtures will be added in due course. Send requests to mjs@star.ucl.ac.uk. 2.2 Files for interpolation in X and Z ********************************** The data files have names s92xz.'mmm', where 'mmm'=001 to 096. They differ from the standard OP files (such as s92.'nnn' --- section 2.1 above) in that they contain information giving derivatives of opacities with respect to X and Z. Each file s92xz.'mmm' occupies 148241 bytes. The interpolations to any required values of X and Z are made using ixz.for. Timings: on DEC 7000 ALPHA, 2.16 sec for each new-mixture file. For interpolations to some specified values of X and Z, one requires just 4 files s92xz.'mmm'. Most users will not require the complete set of files s92xz.'mmm'. The file s92xz.index includes a table (starting on line 3) giving values, for each 'mmm' file, of x,y,z (abundances by number-factions) and X,Y,Z (abundances by mass-fractions). Users are advised to get the file s92.index, and select values of 'mmm' for files required, then get those files. The files produced by ixz.for are in standard OP format and can be used with opfit.for to obtain opacities for any required values of temperature and mass density. 3 RECOMMENDED PROCEDURE FOR USE OF OPACITY FILES ********************************************** (1) Get the file s92.version2. (2) If the values of X and Z you require are available in the files s92.'nnn' then get those files. (3) If not, get the file s92xz.index. (4) Select from s92xz.index the values of 'mmm' which cover the range of X and Z in which your are interested. Get those files and use ixz.for to generate files for your exact required values of X and

  15. Toward (finally!) ruling out Z and Higgs mediated dark matter models

    DOE PAGES

    Escudero, Miguel; Fermi National Accelerator Lab.; Berlin, Asher; ...

    2016-12-15

    In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model Z or the Standard Model Higgs boson. Considering fermionic, scalar, and vector dark matter candidates within a model-independent context, we find that the overwhelming majority of these dark matter candidates are already ruled out by existing experiments. In the case of Zmore » mediated dark matter, the only scenarios that are not currently excluded are those in which the dark matter is a fermion with an axial coupling and with a mass either within a few GeV of the Z resonance (m DM ≃ m Z/2) or greater than 200 GeV, or with a vector coupling and with m DM > 6 TeV . Several Higgs mediated scenarios are currently viable if the mass of the dark matter is near the Higgs pole (m DM ≃ m H/2). Otherwise, the only scenarios that are not excluded are those in which the dark matter is a scalar (vector) heavier than 400 GeV (1160 GeV) with a Higgs portal coupling, or a fermion with a pseudoscalar (CP violating) coupling to the Standard Model Higgs boson. Furthermore, with the exception of dark matter with a purely pseudoscalar coupling to the Higgs, it is anticipated that planned direct detection experiments will probe nearly the entire range of models considered in this study.« less

  16. Toward (finally!) ruling out Z and Higgs mediated dark matter models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escudero, Miguel; Fermi National Accelerator Lab.; Berlin, Asher

    In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model Z or the Standard Model Higgs boson. Considering fermionic, scalar, and vector dark matter candidates within a model-independent context, we find that the overwhelming majority of these dark matter candidates are already ruled out by existing experiments. In the case of Zmore » mediated dark matter, the only scenarios that are not currently excluded are those in which the dark matter is a fermion with an axial coupling and with a mass either within a few GeV of the Z resonance (m DM ≃ m Z/2) or greater than 200 GeV, or with a vector coupling and with m DM > 6 TeV . Several Higgs mediated scenarios are currently viable if the mass of the dark matter is near the Higgs pole (m DM ≃ m H/2). Otherwise, the only scenarios that are not excluded are those in which the dark matter is a scalar (vector) heavier than 400 GeV (1160 GeV) with a Higgs portal coupling, or a fermion with a pseudoscalar (CP violating) coupling to the Standard Model Higgs boson. Furthermore, with the exception of dark matter with a purely pseudoscalar coupling to the Higgs, it is anticipated that planned direct detection experiments will probe nearly the entire range of models considered in this study.« less

  17. Metal Deficiency in Two Massive Dead Galaxies at z ∼ 2

    NASA Astrophysics Data System (ADS)

    Morishita, T.; Abramson, L. E.; Treu, T.; Wang, X.; Brammer, G. B.; Kelly, P.; Stiavelli, M.; Jones, T.; Schmidt, K. B.; Trenti, M.; Vulcani, B.

    2018-03-01

    Local massive early-type galaxies are believed to have completed most of their star formation ∼10 Gyr ago and evolved without having substantial star formation since that time. If so, their progenitors should have roughly solar stellar metallicities (Z *), comparable to their values today. We report the discovery of two lensed massive ({log}{M}* /{M}ȯ ∼ 11), z2.2 dead galaxies that appear markedly metal deficient given this scenario. Using 17-band HST+K s +Spitzer photometry and deep Hubble Space Telescope (HST) grism spectra from the Grism Lens Amplified Survey from Space (GLASS) and supernova (SN) Refsdal follow-up campaigns covering features near λ rest ∼ 4000 Å, we find these systems to be dominated by A-type stars with {log}{Z}* /{Z}ȯ =-0.40+/- 0.02 and ‑0.49 ± 0.03 (30%–40% solar) under standard assumptions. The second system’s lower metallicity is robust to isochrone changes, though this choice can drive the first system’s from {log}{Z}* /{Z}ȯ =-0.6 to 0.1. If these two galaxies are representative of larger samples, this finding suggests that evolutionary paths other than dry minor merging are required for these massive galaxies. Future analyses with direct metallicity measurements—e.g., by the James Webb Space Telescope—will provide critical insight into the nature of such phenomena.

  18. Magnetic force microscopy study of domain walls in Co{sub 2}Z ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Lang; Verweij, Henk, E-mail: verweij.1@osu.edu

    2014-03-01

    Graphical abstract: - Highlights: • Hexaferrite Co{sub 2}Z is synthesized through the modified Pechini method. • Magnetic domains are observed in anisotropic Co{sub 2}Z single grain using MFM. • Observed single grain domain thickness is in good agreement with Dotsh model. - Abstract: Hexaferrite Co{sub 2}Z was synthesized through the modified Pechini method. Partially oriented samples were obtained after consolidation with uniaxial pressing and calcination/sintering at 1300 °C/1330 °C. The sample composition and morphology was identified with X-ray diffractometry (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectrometry (EDS). MFM studies of the single grains revealed a domain structuremore » with 0.7 μm wide. The Co{sub 2}Z static magnetization was measured with a vibrating sample magnetometer (VSM), and was used to calculate a single grain domain with a thickness of 4.8 μm. This result is in good agreement with SEM observations of the single grain thickness.« less

  19. Characterization of Ionosphere Waveguide Propagation by Monitoring HAARP HF Transmissions in Antarctica

    DTIC Science & Technology

    2015-04-17

    hhh hhhh hh (7а)  .)cos(cos)sincoscos( cos)coscossin( cos 1sin 0 2)(22 0 2)( 00 )( 00 )()( 00 )( 00)(22 0 2 0 )( 2,1         s x i...z i xz si z i xxs xz s hhhh hhh hh   7b) Here the top sign stands for )(1 s , while the lower sign stands for )(2 s . It is also taken into

  20. TES L2 Lite Standard Products

    Atmospheric Science Data Center

    2015-07-21

    L2 Lite Standard Products The TES Lite products are intended to simplify TES data usage including data /model and data/data comparisons. This product can be used for science analysis ... PGE corrected a date range issue in the originally delivered standard output.  An updated set of  TES L2 Lite standard products was ...

  1. A comprehensive model on field-effect pnpn devices (Z2-FET)

    NASA Astrophysics Data System (ADS)

    Taur, Yuan; Lacord, Joris; Parihar, Mukta Singh; Wan, Jing; Martinie, Sebastien; Lee, Kyunghwa; Bawedin, Maryline; Barbe, Jean-Charles; Cristoloveanu, Sorin

    2017-08-01

    A comprehensive model for field-effect pnpn devices (Z2-FET) is presented. It is based on three current continuity equations coupled to two MOS equations. The model reproduces the characteristic S-shaped I-V curve when the device is driven by a current source. The negative resistance region at intermediate currents occurs as the center junction undergoes a steep transition from reverse to forward bias. Also playing a vital role are the mix and match of the minority carrier diffusion current and the generation recombination current. Physical insights to the key mechanisms at work are gained by regional approximations of the model, from which analytical expressions for the maximum and minimum voltages at the switching points are derived. From 1981 to 2001, he was with the Silicon Technology Department of IBM Thomas J. Watson Research Center, Yorktown Heights, New York, where he was Manager of Exploratory Devices and Processes. Areas in which he has worked and published include latchup-free 1-um CMOS, self-aligned TiSi2, 0.5-um CMOS and BiCMOS, shallow trench isolation, 0.25-um CMOS with n+/p + poly gates, SOI, low-temperature CMOS, and 0.1-um CMOS. Since October 2001, he has been a professor in the Department of Electrical and Computer Engineering, University of California, San Diego. Dr. Yuan Taur was elected a Fellow of the IEEE in 1998. He has served as Editor-in-Chief of the IEEE Electron Device Letters from 1999 to 2011. He authored or co-authored over 200 technical papers and holds 14 U.S. patents. He co-authored a book, ;Fundamentals of Modern VLSI Devices,; published by Cambridge University Press in 1998. The 2nd edition was published in 2009. Dr. Yuan Taur received IEEE Electron Devices Society's J. J. Ebers Award in 2012 ;for contributions to the advancement of several generations of CMOS process technologies.;

  2. DISCOVERING THE MISSING 2.2 < z < 3 QUASARS BY COMBINING OPTICAL VARIABILITY AND OPTICAL/NEAR-INFRARED COLORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Xuebing; Wang Ran; Bian Fuyan

    2011-09-15

    The identification of quasars in the redshift range 2.2 < z < 3 is known to be very inefficient because the optical colors of such quasars are indistinguishable from those of stars. Recent studies have proposed using optical variability or near-infrared (near-IR) colors to improve the identification of the missing quasars in this redshift range. Here we present a case study combining both methods. We select a sample of 70 quasar candidates from variables in Sloan Digital Sky Survey (SDSS) Stripe 82, which are non-ultraviolet excess sources and have UKIDSS near-IR public data. They are clearly separated into two partsmore » on the Y - K/g - z color-color diagram, and 59 of them meet or lie close to a newly proposed Y - K/g - z selection criterion for z < 4 quasars. Of these 59 sources, 44 were previously identified as quasars in SDSS DR7, and 35 of them are quasars at 2.2 < z < 3. We present spectroscopic observations of 14 of 15 remaining quasar candidates using the Bok 2.3 m telescope and the MMT 6.5 m telescope, and successfully identify all of them as new quasars at z = 2.36-2.88. We also apply this method to a sample of 643 variable quasar candidates with SDSS-UKIDSS nine-band photometric data selected from 1875 new quasar candidates in SDSS Stripe 82 given by Butler and Bloom based on the time-series selections, and find that 188 of them are probably new quasars with photometric redshifts at 2.2 < z < 3. Our results indicate that the combination of optical variability and optical/near-IR colors is probably the most efficient way to find 2.2 < z < 3 quasars and is very helpful for constructing a complete quasar sample. We discuss its implications for ongoing and upcoming large optical and near-IR sky surveys.« less

  3. Analysis of Z 0 couplings to charged leptons

    NASA Astrophysics Data System (ADS)

    Akrawy, M. Z.; Alexander, G.; Allison, J.; Allport, P. P.; Anderson, K. J.; Armitage, J. C.; Arnison, G. T. J.; Ashton, P.; Azuelos, G.; Baines, J. T. M.; Ball, A. H.; Banks, J.; Barker, G. J.; Barlow, R. J.; Batley, J. R.; Becker, J.; Behnke, T.; Bell, K. W.; Bella, G.; Bethke, S.; Biebel, O.; Binder, U.; Bloodworth, I. J.; Bock, P.; Breuker, H.; Brown, R. M.; Brun, R.; Buijs, A.; Burckhart, H. J.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrin, J. T. M.; Clarke, P. E. L.; Cohen, I.; Collins, W. J.; Conboy, J. E.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Debu, P.; Deninno, M. M.; Dieckmann, A.; Dittmar, M.; Dixit, M. S.; Duchovni, E.; Duerdoth, I. P.; Duerdoth, I. P.; Dumas, D.; El Mamouni, H.; Elcombe, P. A.; Estabrooks, P. G.; Etzion, E.; Fabbri, F.; Farthouat, P.; Fischer, H. M.; Fong, D. G.; French, M. T.; Fukunaga, C.; Gaidot, A.; Ganel, O.; Gary, J. W.; Gascon, J.; Geddes, N. I.; Gee, C. N. P.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Giacomelli, G.; Gibson, V.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Granite, D.; Gross, E.; Grunhaus, J.; Hagedorn, H.; Hagemann, J.; Hansroul, M.; Hargrove, C. K.; Hart, J.; Hattersley, P. M.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Hemingway, R. J.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Ho, C.; Hobbs, J. D.; Hobson, P. R.; Hochman, D.; Holl, B.; Homer, R. J.; Hou, S. R.; Howarth, C. P.; Humbert, R.; Hughes-Jones, R. E.; Igo-Kemenes, P.; Ihssen, H.; Imrie, D. C.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jobes, M.; Jones, R. W. L.; Jovanovic, P.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Kellogg, R. G.; Kennedy, B. W.; Kleinwort, C.; Klem, D. E.; Knop, G.; Kobayashi, T.; Kokott, T. P.; Köpke, L.; Kowalewski, R.; Kreutzmann, H.; von Krogh, J.; Kroll, J.; Kuwano, M.; Kyberd, P.; Lafferty, G. D.; Lamarche, F.; Larson, W. J.; Layter, J. G.; Le Du, P.; Leblanc, P.; Lee, A. M.; Lehto, M. H.; Lellouch, D.; Lennert, P.; Lessard, L.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Lorah, J. M.; Lorazo, B.; Losty, M. J.; Ludwig, J.; Lupu, N.; Ma, J.; Macbeth, A. A.; Mannelli, M.; Marcellini, S.; Maringer, G.; Martin, A. J.; Martin, J. P.; Mashimo, T.; Mättig, P.; Maur, U.; McMahon, T. J.; McNutt, J. R.; McPherson, A. C.; Meijers, F.; Menszner, D.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Miller, D. J.; Milstene, C.; Minowa, M.; Mohr, W.; Montanari, A.; Mori, T.; Moss, M. W.; Murphy, P. G.; Murray, W. J.; Nellen, B.; Nguyen, H. H.; Nozaki, M.; O'Dowd, A. J. P.; O'Neale, S. W.; O'Neill, B. P.; Oakham, F. G.; Odorici, F.; Ogg, M.; Oh, H.; OregliaP, M. J.; Orito, S.; Pansart, J. P.; Patrick, G. N.; Pawley, S. J.; Pfister, P.; Pilcher, J. E.; Pinfold, J. L.; Plane, D. E.; Poli, B.; Pouladdej, A.; Pritchard, T. W.; Quast, G.; Raab, J.; Redmond, M. W.; Rees, D. L.; Regimbald, M.; Riles, K.; Roach, C. M.; Robins, S. A.; Rollnik, A.; Roney, J. M.; Rossberg, S.; Rossi, A. M.; Routenburg, P.; Runge, K.; Runolfsson, O.; Sanghera, S.; Sansum, R. A.; Sasaki, M.; Saunders, B. J.; Schaile, A. D.; Schaile, O.; Schappert, W.; Scharff-Hansen, P.; von der Schmitt, H.; Schreiber, S.; Schwarz, J.; Shapira, A.; Shen, B. C.; Sherwood, P.; Simon, A.; Singh, P.; Siroli, G. P.; Skuja, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Spreadbury, E. J.; Springer, R. W.; Sproston, M.; Stephens, K.; Stier, H. E.; Ströhmer, R.; Strom, D.; Takeda, H.; Takeshita, T.; Tsukamoto, T.; Turner, M. F.; Tysarczyk-Niemeyer, G.; Van den plas, D.; VanDalen, G. J.; Vasseur, G.; Virtue, C. J.; Wagner, A.; Wahl, C.; Ward, C. P.; Ward, D. R.; Waterhouse, J.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, M.; Weisz, S.; Wells, P. S.; Wermes, N.; Weymann, M.; Wilson, G. W.; Wilson, J. A.; Wingerter, I.; Winterer, V.-H.; Wood, N. C.; Wotton, S.; Wuensch, B.; Wyatt, T. R.; Yaari, R.; Yang, Y.; Yekutieli, G.; Yoshida, T.; Zeuner, W.; Zorn, G. T.; OPAL Collaboration

    1990-09-01

    The couplings of the Z 0 to charged leptons are studied using measurements of the lepton pair cross sections and forward-backward asymmetries at centre of mass energies near to the mass of the Z 0. The data are consistent with lepton universality. Using a parametrisation of the lepton pair differential cross section which assumes that the Z 0 has only vector and axial couplings to leptons, the charged leptonic partial decay width of the Z 0 is determined to be Г ol+ol- = 83.1±1.9 MeV and the square of the product of the effective axial vector and vector coupling constants of the Z 0 to charged leptons to be ǎ2olvˇ2ol = 0.0039± 0.0083 , in agreement with the standard model. A parametrisation in the form of the improved Born approximation gives effective leptonic axial vector and vector coupling constants ǎ2ol = 0.998±0.024 and vˇ2ol = 0.0044±0.0083 . In the framework of the standard model, the values of the parameters ϱ z and sin 2overlineθw are found to be 0.998±0.024 and 0.233 +0.045-0.012 respectively. Using the relationship in the minimal standard model between ϱ z and sin 2overlineθw, the results sin 2overlineθSMw = 0.233 +0.007-0.006 is obtained. Our previously published measurement of the ratio of the hadronic to the leptonic partial width of the Z 0 is update: Rz = 21.72 +0.71-0.65.

  4. PHOTOMETRIC, SPECTROSCOPIC, AND ORBITAL PERIOD STUDY OF THREE EARLY-TYPE SEMI-DETACHED SYSTEMS: XZ AQL, UX HER, AND AT PEG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zola, S.; Baştürk, Ö.; Şenavcı, H. V.

    2016-08-01

    In this paper, we present a combined photometric, spectroscopic, and orbital period study of three early-type eclipsing binary systems: XZ Aql, UX Her, and AT Peg. As a result, we have derived the absolute parameters of their components and, on that basis, we discuss their evolutionary states. Furthermore, we compare their parameters with those of other binary systems and with theoretical models. An analysis of all available up-to-date times of minima indicated that all three systems studied here show cyclic orbital changes; their origin is discussed in detail. Finally, we performed a frequency analysis for possible pulsational behavior, and asmore » a result we suggest that XZ Aql hosts a δ Scuti component.« less

  5. Negative hyperconjugation and red-, blue- or zero-shift in X-Z∙∙∙Y complexes.

    PubMed

    Joy, Jyothish; Jemmis, Eluvathingal D; Vidya, Kaipanchery

    2015-01-01

    A generalized explanation is provided for the existence of the red- and blue-shifting nature of X-Z bonds (Z=H, halogens, chalcogens, pnicogens, etc.) in X-Z∙∙∙Y complexes based on computational studies on a selected set of weakly bonded complexes and analysis of existing literature data. The additional electrons and orbitals available on Z in comparison to H make for dramatic differences between the H-bond and the rest of the Z-bonds. The nature of the X-group and its influence on the X-Z bond length in the parent X-Z molecule largely controls the change in the X-Z bond length on X-Z∙∙∙Y bond formation; the Y-group usually influences only the magnitude of the effects controlled by X. The major factors which control the X-Z bond length change are: (a) negative hyperconjugative donation of electron density from X-group to X-Z σ* antibonding molecular orbital (ABMO) in the parent X-Z, (b) induced negative hyperconjugation from the lone pair of electrons on Z to the antibonding orbitals of the X-group, and (c) charge transfer (CT) from the Y-group to the X-Z σ* orbital. The exchange repulsion from the Y-group that shifts partial electron density at the X-Z σ* ABMO back to X leads to blue-shifting and the CT from the Y-group to the σ* ABMO of X-Z leads to red-shifting. The balance between these two opposing forces decides red-, zero- or blue-shifting. A continuum of behaviour of X-Z bond length variation is inevitable in X-Z∙∙∙Y complexes.

  6. A Hierarchical Z-Scheme α-Fe2 O3 /g-C3 N4 Hybrid for Enhanced Photocatalytic CO2 Reduction.

    PubMed

    Jiang, Zhifeng; Wan, Weiming; Li, Huaming; Yuan, Shouqi; Zhao, Huijun; Wong, Po Keung

    2018-03-01

    The challenge in the artificial photosynthesis of fossil resources from CO 2 by utilizing solar energy is to achieve stable photocatalysts with effective CO 2 adsorption capacity and high charge-separation efficiency. A hierarchical direct Z-scheme system consisting of urchin-like hematite and carbon nitride provides an enhanced photocatalytic activity of reduction of CO 2 to CO, yielding a CO evolution rate of 27.2 µmol g -1 h -1 without cocatalyst and sacrifice reagent, which is >2.2 times higher than that produced by g-C 3 N 4 alone (10.3 µmol g -1 h -1 ). The enhanced photocatalytic activity of the Z-scheme hybrid material can be ascribed to its unique characteristics to accelerate the reduction process, including: (i) 3D hierarchical structure of urchin-like hematite and preferable basic sites which promotes the CO 2 adsorption, and (ii) the unique Z-scheme feature efficiently promotes the separation of the electron-hole pairs and enhances the reducibility of electrons in the conduction band of the g-C 3 N 4 . The origin of such an obvious advantage of the hierarchical Z-scheme is not only explained based on the experimental data but also investigated by modeling CO 2 adsorption and CO adsorption on the three different atomic-scale surfaces via density functional theory calculation. The study creates new opportunities for hierarchical hematite and other metal-oxide-based Z-scheme system for solar fuel generation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Toward (finally!) ruling out Z and Higgs mediated dark matter models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escudero, Miguel; Berlin, Asher; Hooper, Dan

    2016-12-01

    In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model Z or the Standard Model Higgs boson. Considering fermionic, scalar, and vector dark matter candidates within a model-independent context, we find that the overwhelming majority of these dark matter candidates are already ruled out by existing experiments. In the case of Zmore » mediated dark matter, the only scenarios that are not currently excluded are those in which the dark matter is a fermion with an axial coupling and with a mass either within a few GeV of the Z resonance ( m {sub DM} ≅ m {sub Z} /2) or greater than 200 GeV, or with a vector coupling and with m {sub DM} > 6 TeV . Several Higgs mediated scenarios are currently viable if the mass of the dark matter is near the Higgs pole ( m {sub DM} ≅ m {sub H} /2). Otherwise, the only scenarios that are not excluded are those in which the dark matter is a scalar (vector) heavier than 400 GeV (1160 GeV) with a Higgs portal coupling, or a fermion with a pseudoscalar (CP violating) coupling to the Standard Model Higgs boson. With the exception of dark matter with a purely pseudoscalar coupling to the Higgs, it is anticipated that planned direct detection experiments will probe nearly the entire range of models considered in this study.« less

  8. NMR characterization of sulphur substitution effects in the K xFe 2-ySe 2-zS z high-T c superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torchetti, D. A.; Imai, T.; Lei, H. C.

    2012-04-17

    We present a⁷⁷ Se NMR study of the effect of S substitution in the high-T c superconductor K xFe 2-ySe 2-zS z in a temperature range up to 250 K. We examine two S concentrations, with z=0.8 (Tc~ 26 K) and z=1.6 (nonsuperconducting). The samples containing sulphur exhibit broader NMR line shapes than the K xFe₂Se₂ sample due to local disorder in the Se environment. Our Knight shift ⁷⁷K data indicate that in all samples, uniform spin susceptibility decreases with temperature, and that the magnitude of the Knight shift itself decreases with increased S concentration. In addition, S substitution progressivelymore » suppresses low-frequency spin fluctuations. None of the samples exhibit an enhancement of low-frequency antiferromagnetic spin fluctuations near T c in 1/T₁T, as seen in FeSe.« less

  9. Detection of z~2 Type IIn Supernovae

    NASA Astrophysics Data System (ADS)

    Cooke, Jeff; Sullivan, Mark; Barton, Elizabeth J.

    2009-05-01

    Type IIn supernovae (SNe IIn) result from the deaths of massive stars. The broad magnitude distribution of SNe IIn make these some of the most luminous SN events ever recorded. In addition, they are the most luminous SN type in the rest-frame UV which make them ideal targets for wide-field optical high redshift searches. We briefly describe our method to detect z~2 SNe IIn events that involves monitoring color-selected galaxies in deep stacked images and our program that applies this method to the CFHTLS survey. Initial results have detected four compelling photometric candidates from their subtracted images and light curves. SNe IIn spectra exhibit extremely bright narrow emission lines as a result of the interaction between the SN ejecta and the circumstellar material released in pre-explosion outbursts. These emission lines remain bright for years after outburst and are above the thresholds of current 8 m-class telescope sensitivities to z~3. The deep spectroscopy required to confirm z~2 host galaxies has the potential to detect the SN emission lines and measure their energies. Finally, planned deep, wide-field surveys have the capability to detect and confirm SNe IIn to z~6. The emission lines of such high-redshift events are expected to be above the sensitivity of future 30 m-class telescopes and the James Webb Space Telescope.

  10. Protected Pseudohelical Edge States in Z2-Trivial Proximitized Graphene

    NASA Astrophysics Data System (ADS)

    Frank, Tobias; Högl, Petra; Gmitra, Martin; Kochan, Denis; Fabian, Jaroslav

    2018-04-01

    We investigate topological properties of models that describe graphene on realistic substrates which induce proximity spin-orbit coupling in graphene. A Z2 phase diagram is calculated for the parameter space of (generally different) intrinsic spin-orbit coupling on the two graphene sublattices, in the presence of Rashba coupling. The most fascinating case is that of staggered intrinsic spin-orbit coupling which, despite being topologically trivial, Z2=0 , does exhibit edge states protected by time-reversal symmetry for zigzag ribbons as wide as micrometers. We call these states pseudohelical as their helicity is locked to the sublattice. The spin character and robustness of the pseudohelical modes is best exhibited on a finite flake, which shows that the edge states have zero g factor, carry a pure spin current in the cross section of the flake, and exhibit spin-flip reflectionless tunneling at the armchair edges.

  11. Identification and Characterization of (3Z):(2E)-Hexenal Isomerases from Cucumber

    PubMed Central

    Spyropoulou, Eleni A.; Dekker, Henk L.; Steemers, Luuk; van Maarseveen, Jan H.; de Koster, Chris G.; Haring, Michel A.; Schuurink, Robert C.; Allmann, Silke

    2017-01-01

    E-2-hexenal is a volatile compound that is commonly emitted by wounded or stressed plants. It belongs to the group of so-called green leaf volatiles (GLVs), which play an important role in transferring information to plants and insects. While most biosynthetic enzymes upstream of E-2-hexenal have been studied extensively, much less is known about the enzyme responsible for the conversion from Z-3- to E-2-hexenal. In this study we have identified two (3Z):(2E)-hexenal isomerases (HIs) from cucumber fruits by classical biochemical fractionation techniques and we were able to confirm their activity by heterologous expression. Recombinant protein of the HIs did not only convert the leaf aldehyde Z-3-hexenal to E-2-hexenal, but also (Z,Z)-3,6-nonadienal to (E,Z)-2,6-nonadienal, these last two representing major flavor volatiles of cucumber fruits. Transient expression of the cucumber HIs in Nicotiana benthamiana leaves drastically changed the GLV bouquet of damaged plants from a Z-3- to an E-2-enriched GLV profile. Furthermore, transcriptional analysis revealed that the two HIs showed distinct expression patterns. While HI-1 was specifically expressed in the flesh of cucumber fruits HI-2 was expressed in leaves as well. Interestingly, wounding of cucumber leaves caused only a slight increase in HI-2 transcript levels. These results demonstrate that cucumber HIs are responsible for the rearrangement of Z-3-aldehydes in both leaves and fruits. Future research will reveal the physiological importance of an increased conversion to E-2-aldehydes for plants and insects. PMID:28824678

  12. Identification and Characterization of (3Z):(2E)-Hexenal Isomerases from Cucumber.

    PubMed

    Spyropoulou, Eleni A; Dekker, Henk L; Steemers, Luuk; van Maarseveen, Jan H; de Koster, Chris G; Haring, Michel A; Schuurink, Robert C; Allmann, Silke

    2017-01-01

    E -2-hexenal is a volatile compound that is commonly emitted by wounded or stressed plants. It belongs to the group of so-called green leaf volatiles (GLVs), which play an important role in transferring information to plants and insects. While most biosynthetic enzymes upstream of E -2-hexenal have been studied extensively, much less is known about the enzyme responsible for the conversion from Z -3- to E -2-hexenal. In this study we have identified two (3 Z ):(2 E )-hexenal isomerases (HIs) from cucumber fruits by classical biochemical fractionation techniques and we were able to confirm their activity by heterologous expression. Recombinant protein of the HIs did not only convert the leaf aldehyde Z -3-hexenal to E -2-hexenal, but also ( Z,Z )-3,6-nonadienal to ( E,Z )-2,6-nonadienal, these last two representing major flavor volatiles of cucumber fruits. Transient expression of the cucumber HIs in Nicotiana benthamiana leaves drastically changed the GLV bouquet of damaged plants from a Z -3- to an E -2-enriched GLV profile. Furthermore, transcriptional analysis revealed that the two HIs showed distinct expression patterns. While HI-1 was specifically expressed in the flesh of cucumber fruits HI-2 was expressed in leaves as well. Interestingly, wounding of cucumber leaves caused only a slight increase in HI-2 transcript levels. These results demonstrate that cucumber HIs are responsible for the rearrangement of Z -3-aldehydes in both leaves and fruits. Future research will reveal the physiological importance of an increased conversion to E -2-aldehydes for plants and insects.

  13. Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity

    NASA Astrophysics Data System (ADS)

    Meng, Aiyun; Zhu, Bicheng; Zhong, Bo; Zhang, Liuyang; Cheng, Bei

    2017-11-01

    Photocatalytic H2 evolution, which utilizes solar energy via water splitting, is a promising route to deal with concerns about energy and environment. Herein, a direct Z-scheme TiO2/CdS binary hierarchical photocatalyst was fabricated via a successive ionic layer adsorption and reaction (SILAR) technique, and photocatalytic H2 production was measured afterwards. The as-prepared TiO2/CdS hybrid photocatalyst exhibited noticeably promoted photocatalytic H2-production activity of 51.4 μmol h-1. The enhancement of photocatalytic activity was ascribed to the hierarchical structure, as well as the efficient charge separation and migration from TiO2 nanosheets to CdS nanoparticles (NPs) at their tight contact interfaces. Moreover, the direct Z-scheme photocatalytic reaction mechanism was demonstrated to elucidate the improved photocatalytic performance of TiO2/CdS composite photocatalyst. The photoluminescence (PL) analysis of hydroxyl radicals were conducted to provide clues for the direct Z-scheme mechanism. This work provides a facile route for the construction of redox mediator-free Z-scheme photocatalytic system for photocatalytic water splitting.

  14. Damxungmacin A and B, Two New Amicoumacins with Rare Heterocyclic Cores Isolated from Bacillus subtilis XZ-7.

    PubMed

    Tang, Hui-Ling; Sun, Cheng-Hang; Hu, Xin-Xin; You, Xue-Fu; Wang, Min; Liu, Shao-Wei

    2016-11-23

    Two new amicoumacins, named Damxungmacin A ( 1 ) and B ( 2 ), were isolated from the culture broth of a soil-derived bacterium Bacillus subtilis XZ-7. Their chemical structures were elucidated by spectroscopic studies (UV, IR, NMR and HR-ESI-MS). Compound 1 possessed a 1,4-diazabicyclo[2.2.1]heptane-2-one ring system in its structure, which was reported for the first time, while 2 had a 1-acetylmorpholine-3-one moiety, which was naturally rare. Compound 1 exhibited moderate to weak cytotoxic activities against three human tumor cell lines (A549, HCT116 and HepG2) with IC 50 values of 13.33, 14.34 and 13.64 μM, respectively. Meanwhile, compound 1 showed weak antibacterial activities against some strains of Staphylococcus epidermidis , while compound 2 at 16 μg/mL did not show antibacterial activity.

  15. Z-portal dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcadi, Giorgio; Institute for Theoretical Physics, Georg-August University Göttingen, Friedrich-Hund-Platz 1, Göttingen, D-37077; Mambrini, Yann

    2015-03-11

    We propose to generalize the extensions of the Standard Model where the Z boson serves as a mediator between the Standard Model sector and the dark sector χ. We show that, like in the Higgs portal case, the combined constraints from the recent direct searches restrict severely the nature of the coupling of the dark matter to the Z boson and set a limit m{sub χ}≳200 GeV (except in a very narrow region around the Z-pole region). Using complementarity between spin dependent, spin independent and FERMI limits, we predict the nature of this coupling, more specifically the axial/vectorial ratio thatmore » respects a thermal dark matter coupled through a Z-portal while not being excluded by the current observations. We also show that the next generation of experiments of the type LZ or XENON1T will test Z-portal scenario for dark matter mass up to 2 TeV. The condition of a thermal dark matter naturally predicts the spin-dependent scattering cross section on the neutron to be σ{sub χn}{sup SD}≃10{sup −40} cm{sup 2}, which then becomes a clear prediction of the model and a signature testable in the near future experiments.« less

  16. Search for a vectorlike quark with charge 2/3 in t+Z events from pp collisions at √s=7 TeV.

    PubMed

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rahbaran, B; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Teischinger, F; Trauner, C; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Bansal, S; Benucci, L; De Wolf, E A; Janssen, X; Luyckx, S; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Blekman, F; Blyweert, S; D'Hondt, J; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, M; Olbrechts, A; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Hreus, T; Marage, P E; Raval, A; Thomas, L; Vander Marcken, G; Vander Velde, C; Vanlaer, P; Adler, V; Cimmino, A; Costantini, S; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; McCartin, J; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; Ceard, L; Cortina Gil, E; De Favereau De Jeneret, J; Delaere, C; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Nuttens, C; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; Brito, L; De Jesus Damiao, D; Pol, M E; Souza, M H G; Aldá Júnior, W L; Carvalho, W; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Matos Figueiredo, D; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Anjos, T S; Bernardes, C A; Dias, F A; Fernandez Perez Tomei, T R; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Darmenov, N; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vutova, M; Dimitrov, A; Hadjiiska, R; Karadzhinova, A; Kozhuharov, V; Litov, L; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Guo, Y; Li, W; Mao, Y; Qian, S J; Teng, H; Zhu, B; Zou, W; Cabrera, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Kovac, M; Brigljevic, V; Duric, S; Kadija, K; Luetic, J; Morovic, S; Attikis, A; Galanti, M; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Ellithi Kamel, A; Khalil, S; Mahmoud, M A; Radi, A; Hektor, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Tiko, A; Azzolini, V; Eerola, P; Fedi, G; Voutilainen, M; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Karjalainen, A; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dahms, T; Dobrzynski, L; Elgammal, S; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Thiebaux, C; Veelken, C; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beauceron, S; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Viret, S; Lomidze, D; Anagnostou, G; Beranek, S; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Zhukov, V; Ata, M; Dietz-Laursonn, E; Erdmann, M; Hebbeker, T; Heidemann, C; Hinzmann, A; Hoepfner, K; Klimkovich, T; Klingebiel, D; Kreuzer, P; Lanske, D; Lingemann, J; Magass, C; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Bontenackels, M; Cherepanov, V; Davids, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Rennefeld, J; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrenhoff, W; Behrens, U; Bergholz, M; Bethani, A; Borras, K; Cakir, A; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Eckstein, D; Flossdorf, A; Flucke, G; Geiser, A; Hauk, J; Jung, H; Kasemann, M; Katsas, P; Kleinwort, C; Kluge, H; Knutsson, A; Krämer, M; Krücker, D; Kuznetsova, E; Lange, W; Lohmann, W; Lutz, B; Mankel, R; Marienfeld, M; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Olzem, J; Petrukhin, A; Pitzl, D; Raspereza, A; Rosin, M; Schmidt, R; Schoerner-Sadenius, T; Sen, N; Spiridonov, A; Stein, M; Tomaszewska, J; Walsh, R; Wissing, C; Autermann, C; Blobel, V; Bobrovskyi, S; Draeger, J; Enderle, H; Gebbert, U; Görner, M; Hermanns, T; Kaschube, K; Kaussen, G; Kirschenmann, H; Klanner, R; Lange, J; Mura, B; Naumann-Emme, S; Nowak, F; Pietsch, N; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schröder, M; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Barth, C; Bauer, J; Berger, J; Buege, V; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Gruschke, J; Hackstein, C; Hartmann, F; Heinrich, M; Held, H; Hoffmann, K H; Honc, S; Katkov, I; Komaragiri, J R; Kuhr, T; Martschei, D; Mueller, S; Müller, Th; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Röcker, S; Saout, C; Scheurer, A; Schieferdecker, P; Schilling, F-P; Schmanau, M; Schott, G; Simonis, H J; Stober, F M; Troendle, D; Wagner-Kuhr, J; Weiler, T; Zeise, M; Ziebarth, E B; Daskalakis, G; Geralis, T; Kesisoglou, S; Kyriakis, A; Loukas, D; Manolakos, I; Markou, A; Markou, C; Mavrommatis, C; Ntomari, E; Petrakou, E; Gouskos, L; Mertzimekis, T J; Panagiotou, A; Saoulidou, N; Stiliaris, E; Evangelou, I; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Aranyi, A; Bencze, G; Boldizsar, L; Hajdu, C; Hidas, P; Horvath, D; Kapusi, A; Krajczar, K; Sikler, F; Veres, G I; Vesztergombi, G; Beni, N; Molnar, J; Palinkas, J; Szillasi, Z; Veszpremi, V; Karancsi, J; Raics, P; Trocsanyi, Z L; Ujvari, B; Beri, S B; Bhatnagar, V; Dhingra, N; Gupta, R; Jindal, M; Kaur, M; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A P; Singh, J; Singh, S P; Ahuja, S; Choudhary, B C; Gupta, P; Kumar, A; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Shivpuri, R K; Banerjee, S; Bhattacharya, S; Dutta, S; Gomber, B; Jain, S; Jain, S; Khurana, R; Sarkar, S; Choudhury, R K; Dutta, D; Kailas, S; Kumar, V; Mehta, P; Mohanty, A K; Pant, L M; Shukla, P; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mathew, T; Mazumdar, K; Mohanty, G B; Parida, B; Saha, A; Sudhakar, K; Wickramage, N; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Etesami, S M; Fahim, A; Hashemi, M; Hesari, H; Jafari, A; Khakzad, M; Mohammadi, A; Mohammadi Najafabadi, M; Paktinat Mehdiabadi, S; Safarzadeh, B; Zeinali, M; Abbrescia, M; Barbone, L; Calabria, C; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Nuzzo, S; Pacifico, N; Pierro, G A; Pompili, A; Pugliese, G; Romano, F; Roselli, G; Selvaggi, G; Silvestris, L; Trentadue, R; Tupputi, S; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Capiluppi, P; Castro, A; Cavallo, F R; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giunta, M; Grandi, C; Marcellini, S; Masetti, G; Meneghelli, M; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Gonzi, S; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Colafranceschi, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Musenich, R; Benaglia, A; De Guio, F; Di Matteo, L; Gennai, S; Ghezzi, A; Malvezzi, S; Martelli, A; Massironi, A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Sala, S; Tabarelli de Fatis, T; Buontempo, S; Carrillo Montoya, C A; Cavallo, N; De Cosa, A; Dogangun, O; Fabozzi, F; Iorio, A O M; Lista, L; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bellan, P; Bisello, D; Branca, A; Carlin, R; Checchia, P; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Gozzelino, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Mazzucato, M; Meneguzzo, A T; Nespolo, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Vanini, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Ratti, S P; Riccardi, C; Torre, P; Vitulo, P; Viviani, C; Biasini, M; Bilei, G M; Caponeri, B; Fanò, L; Lariccia, P; Lucaroni, A; Mantovani, G; Menichelli, M; Nappi, A; Romeo, F; Santocchia, A; Taroni, S; Valdata, M; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; D'Agnolo, R T; Dell'Orso, R; Fiori, F; Foà, L; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Palmonari, F; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Grassi, M; Longo, E; Meridiani, P; Nourbakhsh, S; Organtini, G; Pandolfi, F; Paramatti, R; Rahatlou, S; Sigamani, M; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Botta, C; Cartiglia, N; Castello, R; Costa, M; Demaria, N; Graziano, A; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, M M; Pastrone, N; Pelliccioni, M; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Sola, V; Solano, A; Staiano, A; Vilela Pereira, A; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Marone, M; Montanino, D; Penzo, A; Heo, S G; Nam, S K; Chang, S; Chung, J; Kim, D H; Kim, G N; Kim, J E; Kong, D J; Park, H; Ro, S R; Son, D C; Son, T; Kim, J Y; Kim, Zero J; Song, S; Jo, H Y; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, J H; Kim, T J; Lee, K S; Moon, D H; Park, S K; Seo, E; Sim, K S; Choi, M; Kang, S; Kim, H; Park, C; Park, I C; Park, S; Ryu, G; Cho, Y; Choi, Y; Choi, Y K; Goh, J; Kim, M S; Lee, B; Lee, J; Lee, S; Seo, H; Yu, I; Bilinskas, M J; Grigelionis, I; Janulis, M; Martisiute, D; Petrov, P; Polujanskas, M; Sabonis, T; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Lopez-Fernandez, R; Magaña Villalba, R; Martínez-Ortega, J; Sánchez-Hernández, A; Villasenor-Cendejas, L M; Carrillo Moreno, S; Vazquez Valencia, F; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Reyes-Santos, M A; Krofcheck, D; Tam, J; Butler, P H; Doesburg, R; Silverwood, H; Ahmad, M; Ahmed, I; Asghar, M I; Hoorani, H R; Khalid, S; Khan, W A; Khurshid, T; Qazi, S; Shah, M A; Shoaib, M; Brona, G; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Frueboes, T; Gokieli, R; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Musella, P; Nayak, A; Pela, J; Ribeiro, P Q; Seixas, J; Varela, J; Afanasiev, S; Belotelov, I; Bunin, P; Gavrilenko, M; Golutvin, I; Kamenev, A; Karjavin, V; Kozlov, G; Lanev, A; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Smirnov, V; Volodko, A; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Toropin, A; Troitsky, S; Epshteyn, V; Erofeeva, M; Gavrilov, V; Kaftanov, V; Kossov, M; Krokhotin, A; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Stolin, V; Vlasov, E; Zhokin, A; Belyaev, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Kodolova, O; Lokhtin, I; Markina, A; Obraztsov, S; Perfilov, M; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Vinogradov, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Grishin, V; Kachanov, V; Konstantinov, D; Korablev, A; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Krpic, D; Milosevic, J; Aguilar-Benitez, M; Alcaraz Maestre, J; Arce, P; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Domínguez Vázquez, D; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Merino, G; Puerta Pelayo, J; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Willmott, C; Albajar, C; Codispoti, G; de Trocóniz, J F; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Lloret Iglesias, L; Vizan Garcia, J M; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Chuang, S H; Duarte Campderros, J; Felcini, M; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Baillon, P; Ball, A H; Barney, D; Bell, A J; Benedetti, D; Bernet, C; Bialas, W; Bloch, P; Bocci, A; Bolognesi, S; Bona, M; Breuker, H; Bunkowski, K; Camporesi, T; Cerminara, G; Christiansen, T; Coarasa Perez, J A; Curé, B; D'Enterria, D; De Roeck, A; Di Guida, S; Dupont-Sagorin, N; Elliott-Peisert, A; Frisch, B; Funk, W; Gaddi, A; Georgiou, G; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Glege, F; Gomez-Reino Garrido, R; Gouzevitch, M; Govoni, P; Gowdy, S; Guida, R; Guiducci, L; Hansen, M; Hartl, C; Harvey, J; Hegeman, J; Hegner, B; Hoffmann, H F; Innocente, V; Janot, P; Kaadze, K; Karavakis, E; Lecoq, P; Lenzi, P; Lourenço, C; Mäki, T; Malberti, M; Malgeri, L; Mannelli, M; Masetti, L; Maurisset, A; Mavromanolakis, G; Meijers, F; Mersi, S; Meschi, E; Moser, R; Mozer, M U; Mulders, M; Nesvold, E; Nguyen, M; Orimoto, T; Orsini, L; Palencia Cortezon, E; Perez, E; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Polese, G; Quertenmont, L; Racz, A; Reece, W; Rodrigues Antunes, J; Rolandi, G; Rommerskirchen, T; Rovelli, C; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Segoni, I; Sharma, A; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Spiga, D; Spiropulu, M; Stoye, M; Tsirou, A; Vichoudis, P; Wöhri, H K; Worm, S D; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Bäni, L; Bortignon, P; Caminada, L; Casal, B; Chanon, N; Chen, Z; Cittolin, S; Dissertori, G; Dittmar, M; Eugster, J; Freudenreich, K; Grab, C; Hintz, W; Lecomte, P; Lustermann, W; Marchica, C; Ruiz del Arbol, P Martinez; Milenovic, P; Moortgat, F; Nägeli, C; Nef, P; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Rossini, M; Sala, L; Sanchez, A K; Sawley, M-C; Starodumov, A; Stieger, B; Takahashi, M; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Urscheler, C; Wallny, R; Weber, M; Wehrli, L; Weng, J; Aguilo, E; Amsler, C; Chiochia, V; De Visscher, S; Favaro, C; Ivova Rikova, M; Jaeger, A; Mejias, B Millan; Otiougova, P; Robmann, P; Schmidt, A; Snoek, H; Chang, Y H; Chen, K H; Kuo, C M; Li, S W; Lin, W; Liu, Z K; Lu, Y J; Mekterovic, D; Volpe, R; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Dietz, C; Grundler, U; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Lu, R-S; Shiu, J G; Tzeng, Y M; Wan, X; Wang, M; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Hos, I; Kangal, E E; Topaksu, A Kayis; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sogut, K; Cerci, D Sunar; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilin, B; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Yalvac, M; Yildirim, E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Ozbek, M; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Bostock, F; Brooke, J J; Cheng, T L; Clement, E; Cussans, D; Frazier, R; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Kreczko, L; Metson, S; Newbold, D M; Nirunpong, K; Poll, A; Senkin, S; Smith, V J; Basso, L; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Jackson, J; Kennedy, B W; Olaiya, E; Petyt, D; Radburn-Smith, B C; Shepherd-Themistocleous, C H; Tomalin, I R; Womersley, W J; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Cutajar, M; Davies, G; Della Negra, M; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Guneratne Bryer, A; Hall, G; Hatherell, Z; Hays, J; Iles, G; Jarvis, M; Karapostoli, G; Lyons, L; Magnan, A-M; Marrouche, J; Mathias, B; Nandi, R; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rogerson, S; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sparrow, A; Tapper, A; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardle, N; Wardrope, D; Whyntie, T; Barrett, M; Chadwick, M; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Martin, W; Reid, I D; Teodorescu, L; Hatakeyama, K; Liu, H; Henderson, C; Bose, T; Carrera Jarrin, E; Fantasia, C; Heister, A; St John, J; Lawson, P; Lazic, D; Rohlf, J; Sperka, D; Sulak, L; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Ferapontov, A; Heintz, U; Jabeen, S; Kukartsev, G; Landsberg, G; Luk, M; Narain, M; Nguyen, D; Segala, M; Sinthuprasith, T; Speer, T; Tsang, K V; Breedon, R; Breto, G; De La Barca Sanchez, M Calderon; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Dolen, J; Erbacher, R; Houtz, R; Ko, W; Kopecky, A; Lander, R; Liu, H; Mall, O; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Rutherford, B; Salur, S; Searle, M; Smith, J; Squires, M; Tripathi, M; Vasquez Sierra, R; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Deisher, A; Duris, J; Erhan, S; Farrell, C; Hauser, J; Ignatenko, M; Jarvis, C; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Babb, J; Clare, R; Ellison, J; Gary, J W; Giordano, F; Hanson, G; Jeng, G Y; Kao, S C; Liu, H; Long, O R; Luthra, A; Nguyen, H; Paramesvaran, S; Sturdy, J; Sumowidagdo, S; Wilken, R; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Evans, D; Golf, F; Holzner, A; Kelley, R; Lebourgeois, M; Letts, J; Mangano, B; Padhi, S; Palmer, C; Petrucciani, G; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Wasserbaech, S; Würthwein, F; Yagil, A; Yoo, J; Barge, D; Bellan, R; Campagnari, C; D'Alfonso, M; Danielson, T; Flowers, K; Geffert, P; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lowette, S; McColl, N; Mullin, S D; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; West, C; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Gataullin, M; Ma, Y; Mott, A; Newman, H B; Rogan, C; Shin, K; Timciuc, V; Traczyk, P; Veverka, J; Wilkinson, R; Yang, Y; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Iiyama, Y; Jang, D W; Jun, S Y; Liu, Y F; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Edelmaier, C J; Ford, W T; Gaz, A; Heyburn, B; Lopez, E Luiggi; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Chatterjee, A; Eggert, N; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kaufman, G Nicolas; Patterson, J R; Puigh, D; Ryd, A; Salvati, E; Shi, X; Sun, W; Teo, W D; Thom, J; Thompson, J; Vaughan, J; Weng, Y; Winstrom, L; Wittich, P; Biselli, A; Cirino, G; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Atac, M; Bakken, J A; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bloch, I; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Cihangir, S; Cooper, W; Eartly, D P; Elvira, V D; Esen, S; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Green, D; Gutsche, O; Hanlon, J; Harris, R M; Hirschauer, J; Hooberman, B; Jensen, H; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kousouris, K; Kunori, S; Kwan, S; Leonidopoulos, C; Limon, P; Lincoln, D; Lipton, R; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Mrenna, S; Musienko, Y; Newman-Holmes, C; O'Dell, V; Pivarski, J; Pordes, R; Prokofyev, O; Schwarz, T; Sexton-Kennedy, E; Sharma, S; Spalding, W J; Spiegel, L; Tan, P; Taylor, L; Tkaczyk, S; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wu, W; Yang, F; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Chen, M; Das, S; De Gruttola, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fisher, M; Fu, Y; Furic, I K; Gartner, J; Goldberg, S; Hugon, J; Kim, B; Konigsberg, J; Korytov, A; Kropivnitskaya, A; Kypreos, T; Low, J F; Matchev, K; Mitselmakher, G; Muniz, L; Myeonghun, P; Remington, R; Rinkevicius, A; Schmitt, M; Scurlock, B; Sellers, P; Skhirtladze, N; Snowball, M; Wang, D; Yelton, J; Zakaria, M; Gaultney, V; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Chen, J; Diamond, B; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prosper, H; Sekmen, S; Veeraraghavan, V; Baarmand, M M; Dorney, B; Hohlmann, M; Kalakhety, H; Vodopiyanov, I; Adams, M R; Anghel, I M; Apanasevich, L; Bai, Y; Bazterra, V E; Betts, R R; Callner, J; Cavanaugh, R; Dragoiu, C; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Kunde, G J; Lacroix, F; Malek, M; O'Brien, C; Silkworth, C; Silvestre, C; Smoron, A; Strom, D; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Clarida, W; Duru, F; Lae, C K; McCliment, E; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Eskew, C; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Hu, G; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Whitbeck, A; Baringer, P; Bean, A; Benelli, G; Grachov, O; Kenny Iii, R P; Murray, M; Noonan, D; Sanders, S; Stringer, R; Wood, J S; Zhukova, V; Barfuss, A F; Bolton, T; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Shrestha, S; Svintradze, I; Gronberg, J; Lange, D; Wright, D; Baden, A; Boutemeur, M; Eno, S C; Ferencek, D; Gomez, J A; Hadley, N J; Kellogg, R G; Kirn, M; Lu, Y; Mignerey, A C; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; Dutta, V; Everaerts, P; Gomez Ceballos, G; Goncharov, M; Hahn, K A; Harris, P; Kim, Y; Klute, M; Lee, Y-J; Li, W; Loizides, C; Luckey, P D; Ma, T; Nahn, S; Paus, C; Ralph, D; Roland, C; Roland, G; Rudolph, M; Stephans, G S F; Stöckli, F; Sumorok, K; Sung, K; Velicanu, D; Wenger, E A; Wolf, R; Wyslouch, B; Xie, S; Yang, M; Yilmaz, Y; Yoon, A S; Zanetti, M; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Franzoni, G; Gude, A; Haupt, J; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rekovic, V; Rusack, R; Sasseville, M; Singovsky, A; Tambe, N; Turkewitz, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Summers, D; Bloom, K; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Jindal, P; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Godshalk, A; Iashvili, I; Jain, S; Kharchilava, A; Kumar, A; Smith, K; Wan, Z; Alverson, G; Barberis, E; Baumgartel, D; Boeriu, O; Chasco, M; Reucroft, S; Swain, J; Trocino, D; Wood, D; Zhang, J; Anastassov, A; Kubik, A; Mucia, N; Odell, N; Ofierzynski, R A; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Brinkerhoff, A; Hildreth, M; Jessop, C; Karmgard, D J; Kolb, J; Kolberg, T; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Morse, D M; Pearson, T; Ruchti, R; Slaunwhite, J; Valls, N; Wayne, M; Ziegler, J; Bylsma, B; Durkin, L S; Hill, C; Killewald, P; Kotov, K; Ling, T Y; Rodenburg, M; Vuosalo, C; Williams, G; Adam, N; Berry, E; Elmer, P; Gerbaudo, D; Halyo, V; Hebda, P; Hunt, A; Laird, E; Lopes Pegna, D; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Saka, H; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Acosta, J G; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Zatserklyaniy, A; Alagoz, E; Barnes, V E; Bolla, G; Borrello, L; Bortoletto, D; De Mattia, M; Everett, A; Gutay, L; Hu, Z; Jones, M; Koybasi, O; Kress, M; Laasanen, A T; Leonardo, N; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Shipsey, I; Silvers, D; Svyatkovskiy, A; Vidal Marono, M; Yoo, H D; Zablocki, J; Zheng, Y; Guragain, S; Parashar, N; Adair, A; Boulahouache, C; Ecklund, K M; Geurts, F J M; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Chung, Y S; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Flacher, H; Garcia-Bellido, A; Goldenzweig, P; Gotra, Y; Han, J; Harel, A; Miner, D C; Petrillo, G; Sakumoto, W; Vishnevskiy, D; Zielinski, M; Bhatti, A; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Malik, S; Mesropian, C; Arora, S; Atramentov, O; Barker, A; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Hits, D; Lath, A; Panwalkar, S; Park, M; Patel, R; Richards, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Eusebi, R; Flanagan, W; Gilmore, J; Gurrola, A; Kamon, T; Khotilovich, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Perloff, A; Roe, J; Safonov, A; Sengupta, S; Suarez, I; Tatarinov, A; Toback, D; Akchurin, N; Bardak, C; Damgov, J; Dudero, P R; Jeong, C; Kovitanggoon, K; Lee, S W; Libeiro, T; Mane, P; Roh, Y; Sill, A; Volobouev, I; Wigmans, R; Yazgan, E; Appelt, E; Brownson, E; Engh, D; Florez, C; Gabella, W; Issah, M; Johns, W; Johnston, C; Kurt, P; Maguire, C; Melo, A; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Balazs, M; Boutle, S; Cox, B; Francis, B; Goadhouse, S; Goodell, J; Hirosky, R; Ledovskoy, A; Lin, C; Neu, C; Wood, J; Yohay, R; Gollapinni, S; Harr, R; Karchin, P E; Don, C Kottachchi Kankanamge; Lamichhane, P; Mattson, M; Milstène, C; Sakharov, A; Anderson, M; Bachtis, M; Belknap, D; Bellinger, J N; Carlsmith, D; Cepeda, M; Dasu, S; Efron, J; Friis, E; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Mohapatra, A; Ojalvo, I; Parker, W; Ross, I; Savin, A; Smith, W H; Swanson, J; Weinberg, M

    2011-12-30

    A search for pair-produced heavy vectorlike charge-2/3 quarks, T, in pp collisions at a center-of-mass energy of 7 TeV, is performed with the CMS detector at the LHC. Events consistent with the flavor-changing-neutral-current decay of a T quark to a top quark and a Z boson are selected by requiring two leptons from the Z-boson decay, as well as an additional isolated charged lepton. In a data sample corresponding to an integrated luminosity of 1.14  fb(-1), the number of observed events is found to be consistent with the standard model background prediction. Assuming a branching fraction of 100% for the decay T→tZ, a T quark with a mass less than 475  GeV/c(2) is excluded at the 95% confidence level.

  17. Low Gas Fractions Connect Compact Star-forming Galaxies to Their z ~ 2 Quiescent Descendants

    NASA Astrophysics Data System (ADS)

    Spilker, Justin S.; Bezanson, Rachel; Marrone, Daniel P.; Weiner, Benjamin J.; Whitaker, Katherine E.; Williams, Christina C.

    2016-11-01

    Early quiescent galaxies at z˜ 2 are known to be remarkably compact compared to their nearby counterparts. Possible progenitors of these systems include galaxies that are structurally similar, but are still rapidly forming stars. Here, we present Karl G. Jansky Very Large Array (VLA) observations of the CO(1-0) line toward three such compact, star-forming galaxies (SFGs) at z˜ 2.3, significantly detecting one. The VLA observations indicate baryonic gas fractions ≳ 5 times lower and gas depletion timescales ≳ 10 times shorter than normal, extended massive SFGs at these redshifts. At their current star formation rates, all three objects will deplete their gas reservoirs within 100 Myr. These objects are among the most gas-poor objects observed at z\\gt 2, and are outliers from standard gas scaling relations, a result that remains true regardless of assumptions about the CO-H2 conversion factor. Our observations are consistent with the idea that compact, SFGs are in a rapid state of transition to quiescence in tandem with the buildup of the z˜ 2 quenched population. In the detected compact galaxy, we see no evidence of rotation or that the CO-emitting gas is spatially extended relative to the stellar light. This casts doubt on recent suggestions that the gas in these compact galaxies is rotating and significantly extended compared to the stars. Instead, we suggest that, at least for this object, the gas is centrally concentrated, and only traces a small fraction of the total galaxy dynamical mass.

  18. A DWARF TRANSITIONAL PROTOPLANETARY DISK AROUND XZ TAU B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osorio, Mayra; Macías, Enrique; Anglada, Guillem

    We report the discovery of a dwarf protoplanetary disk around the star XZ Tau B that shows all the features of a classical transitional disk but on a much smaller scale. The disk has been imaged with the Atacama Large Millimeter/submillimeter Array (ALMA), revealing that its dust emission has a quite small radius of ∼3.4 au and presents a central cavity of ∼1.3 au in radius that we attribute to clearing by a compact system of orbiting (proto)planets. Given the very small radii involved, evolution is expected to be much faster in this disk (observable changes in a few months)more » than in classical disks (observable changes requiring decades) and easy to monitor with observations in the near future. From our modeling we estimate that the mass of the disk is large enough to form a compact planetary system.« less

  19. The histone variant H2A.Z promotes efficient cotranscriptional splicing in S. cerevisiae

    PubMed Central

    Neves, Lauren T.; Douglass, Stephen; Spreafico, Roberto; Venkataramanan, Srivats; Kress, Tracy L.; Johnson, Tracy L.

    2017-01-01

    In eukaryotes, a dynamic ribonucleic protein machine known as the spliceosome catalyzes the removal of introns from premessenger RNA (pre-mRNA). Recent studies show the processes of RNA synthesis and RNA processing to be spatio–temporally coordinated, indicating that RNA splicing takes place in the context of chromatin. H2A.Z is a highly conserved histone variant of the canonical histone H2A. In Saccharomyces cerevisiae, H2A.Z is deposited into chromatin by the SWR-C complex, is found near the 5′ ends of protein-coding genes, and has been implicated in transcription regulation. Here we show that splicing of intron-containing genes in cells lacking H2A.Z is impaired, particularly under suboptimal splicing conditions. Cells lacking H2A.Z are especially dependent on a functional U2 snRNP (small nuclear RNA [snRNA] plus associated proteins), as H2A.Z shows extensive genetic interactions with U2 snRNP-associated proteins, and RNA sequencing (RNA-seq) reveals that introns with nonconsensus branch points are particularly sensitive to H2A.Z loss. Consistently, H2A.Z promotes efficient spliceosomal rearrangements involving the U2 snRNP, as H2A.Z loss results in persistent U2 snRNP association and decreased recruitment of downstream snRNPs to nascent RNA. H2A.Z impairs transcription elongation, suggesting that spliceosome rearrangements are tied to H2A.Z's role in elongation. Depletion of disassembly factor Prp43 suppresses H2A.Z-mediated splice defects, indicating that, in the absence of H2A.Z, stalled spliceosomes are disassembled, and unspliced RNAs are released. Together, these data demonstrate that H2A.Z is required for efficient pre-mRNA splicing and indicate a role for H2A.Z in coordinating the kinetics of transcription elongation and splicing. PMID:28446598

  20. Large exchange anisotropy in quasi-one-dimensional spin-1/2 fluoride antiferromagnets with a d (z2)1 ground state

    NASA Astrophysics Data System (ADS)

    Kurzydłowski, D.; Grochala, W.

    2017-10-01

    Hybrid density functional calculations are performed for a variety of systems containing d9 ions (C u2 + and A g2 + ) and exhibiting quasi-one-dimensional magnetic properties. In particular, we study fluorides containing these ions in a rarely encountered compressed octahedral coordination that forces the unpaired electron into the local d (z2) orbital. We predict that such systems should exhibit exchange anisotropies surpassing that of S r2Cu O3 , one of the best realizations of a one-dimensional system known to date. In particular, we predict that the interchain coupling in the A g2 + -containing [AgF ] [B F4 ] system should be nearly four orders of magnitude smaller than the intrachain interaction. Our results indicate that quasi-one-dimensional spin-1/2 systems containing chains with spin sites in the d (z2)1 local ground state could constitute a versatile model for testing modern theories of quantum many-body physics in the solid state.

  1. Half-metallic ferromagnetism in {Ti}2 {IrZ} (Z = B, Al, Ga, and In) Heusler alloys: A density functional study

    NASA Astrophysics Data System (ADS)

    Sadeghi, K. H.; Ahmadian, F.

    2018-02-01

    The first-principle density functional theory (DFT) calculations were employed to investigate the electronic structures, magnetic properties and half-metallicity of {Ti}2 {IrZ} (Z = B, Al, Ga, and In) Heusler alloys with {AlCu}2 {Mn}- and {CuHg}2 {Ti}-type structures within local density approximation and generalised gradient approximation for the exchange correlation potential. It was found that {CuHg}2 {Ti}-type structure in ferromagnetic state was energetically more favourable than {AlCu}2 {Mn}-type structure in all compounds except {Ti}2 {IrB} which was stable in {AlCu}2 {Mn}-type structure in non-magnetic state. {Ti}2 {IrZ} (Z = B, Al, Ga, and In) alloys in {CuHg}2 {Ti}-type structure were half-metallic ferromagnets at their equilibrium lattice constants. Half-metallic band gaps were respectively equal to 0.87, 0.79, 0.75, and 0.73 eV for {Ti}2 {IrB}, {Ti}2 {IrAl}, {Ti}2 {IrGa}, and {Ti}2 {IrIn}. The origin of half-metallicity was discussed for {Ti}2 {IrGa} using the energy band structure. The total magnetic moments of {Ti}2 {IrZ} (Z = B, Al, Ga, and In) compounds in {CuHg}2 {Ti}-type structure were obtained as 2μ B per formula unit, which were in agreement with Slater-Pauling rule (M_{tot} =Z_{tot}-18). All the four compounds were half-metals in a wide range of lattice constants indicating that they may be suitable and promising materials for future spintronic applications.

  2. Z'→ggg decay in left-right symmetric models with three and four fermion families

    NASA Astrophysics Data System (ADS)

    Montaño, J.; Napsuciale, M.; Vaquera-Araujo, C. A.

    2011-12-01

    We study the Z'→q¯q,ggg decays in the context of a manifest left-right symmetric gauge theory with three and four generations. The Z' couplings to quarks are fixed essentially by the parameters of the standard model and we obtain Γ(Z'→qq¯)≈14GeV for MZ'≈1TeV. For the Z'→ggg decay and three families we obtain a branching ratio BR(Z'→ggg)=(Γ(Z'→ggg))/(Γ(Z'→qq¯))=1.2-2.8×10-5 for mZ'=700-1500GeV. The fourth generation produces an enhancement in the branching ratio for Z' masses close to the b¯'b' threshold and a dip for Z' masses close to the t¯'t' threshold. Using the values of the fourth-generation quark masses allowed by electroweak precision data, we obtain a branching ratio BR(Z'→ggg)=(1-6)×10-5 for mZ'=(700-1500)GeV.

  3. Digital Quantum Simulation of Z2 Lattice Gauge Theories with Dynamical Fermionic Matter

    NASA Astrophysics Data System (ADS)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2 +1 ) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z2 model in (2 +1 ) dimensions.

  4. Digital Quantum Simulation of Z_{2} Lattice Gauge Theories with Dynamical Fermionic Matter.

    PubMed

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J Ignacio

    2017-02-17

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2+1) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z_{2} model in (2+1) dimensions.

  5. Measurements of CP-conserving trilinear gauge boson couplings WWV (V≡ γ,Z) in e+e- collisions at LEP2

    NASA Astrophysics Data System (ADS)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kostioukhine, V.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Libby, J.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Tegenfeldt, F.; Terranova, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Lysebetten, A.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.; DELPHI Collaboration

    2010-03-01

    The data taken by Delphi at centre-of-mass energies between 189 and 209 GeV are used to place limits on the CP-conserving trilinear gauge boson couplings Δ gZ1, λ γ and Δ κ γ associated to W + W - and single W production at Lep2. Using data from the jj ℓ ν, jjjj, jjX and ℓ X final states, where j, ℓ and X represent a jet, a lepton and missing four-momentum, respectively, the following limits are set on the couplings when one parameter is allowed to vary and the others are set to their Standard Model values of zero: begin{array}{l}Δ g^Z_1=-0.025^{+0.033}_{-0.030}, noalign{}λ_γ =0.002^{+0.035}_{-0.035}qquadand noalign{}Δkappa_γ =0.024^{+0.077}_{-0.081}. Results are also presented when two or three parameters are allowed to vary. All observations are consistent with the predictions of the Standard Model and supersede the previous results on these gauge coupling parameters published by Delphi.

  6. Linkage Determination of Linear Oligosaccharides by MSn (n > 2) Collision-Induced Dissociation of Z1 Ions in the Negative Ion Mode

    NASA Astrophysics Data System (ADS)

    Konda, Chiharu; Bendiak, Brad; Xia, Yu

    2014-02-01

    Obtaining unambiguous linkage information between sugars in oligosaccharides is an important step in their detailed structural analysis. An approach is described that provides greater confidence in linkage determination for linear oligosaccharides based on multiple-stage tandem mass spectrometry (MSn, n >2) and collision-induced dissociation (CID) of Z1 ions in the negative ion mode. Under low energy CID conditions, disaccharides 18O-labeled on the reducing carbonyl group gave rise to Z1 product ions (m/z 163) derived from the reducing sugar, which could be mass-discriminated from other possible structural isomers having m/z 161. MS3 CID of these m/z 163 ions showed distinct fragmentation fingerprints corresponding to the linkage types and largely unaffected by sugar unit identities or their anomeric configurations. This unique property allowed standard CID spectra of Z1 ions to be generated from a small set of disaccharide samples that were representative of many other possible isomeric structures. With the use of MSn CID (n = 3 - 5), model linear oligosaccharides were dissociated into overlapping disaccharide structures, which were subsequently fragmented to form their corresponding Z1 ions. CID data of these Z1 ions were collected and compared with the standard database of Z1 ion CID using spectra similarity scores for linkage determination. As the proof-of-principle tests demonstrated, we achieved correct determination of individual linkage types along with their locations within two trisaccharides and a pentasaccharide.

  7. Using Reliability to Meet Z540.3's 2 percent Rule

    NASA Technical Reports Server (NTRS)

    Mimbs, Scott M.

    2011-01-01

    NASA's Kennedy Space Center (KSC) undertook implementation of ANSI/NCSL Z540.3-2006 in October 2008. Early in the implementation, KSC identified that the largest cost driver of Z540.3 implementation is measurement uncertainty analyses for legacy calibration processes. NASA, like other organizations, has a significant inventory of measuring and test equipment (MTE) that have documented calibration procedures without documented measurement uncertainties. This paper provides background information to support the rationale for using high in-tolerance reliability as evidence of compliance to the 2% probability of false acceptance (PFA) quality metric of ANSI/NCSL Z540.3-2006 allowing use of qualifying legacy processes. NASA is adopting this as policy and is recommending NCSL International consider this as a method of compliance to Z540.3. Topics covered include compliance issues, using end-of-period reliability (EOPR) to estimate test point uncertainty, reliability data influences within the PFA model, the validity of EOPR data, and an appendix covering "observed" versus "true" EOPR.

  8. Face Centered Cubic SnSe as a Z2 Trivial Dirac Nodal Line Material

    NASA Astrophysics Data System (ADS)

    Tateishi, Ikuma; Matsuura, Hiroyasu

    2018-07-01

    The presence of a Dirac nodal line in a time-reversal and inversion symmetric system is dictated by the Z2 index when spin-orbit interaction is absent. In a first principles calculation, we show that a Dirac nodal line can emerge in Z2 trivial material by calculating the band structure of SnSe in a face centered cubic lattice as an example. We qualitatively show that it becomes a topological crystalline insulator when spin-orbit interaction is taken into account. We clarify the origin of the Dirac nodal line by obtaining irreducible representations corresponding to bands and explain the triviality of the Z2 index. We construct an effective model representing the Dirac nodal line using the k · p method, and discuss the Berry phase and a surface state expected from the Dirac nodal line.

  9. Resolving z ~2 galaxy using adaptive coadded source plane reconstruction

    NASA Astrophysics Data System (ADS)

    Sharma, Soniya; Richard, Johan; Kewley, Lisa; Yuan, Tiantian

    2018-06-01

    Natural magnification provided by gravitational lensing coupled with Integral field spectrographic observations (IFS) and adaptive optics (AO) imaging techniques have become the frontier of spatially resolved studies of high redshift galaxies (z>1). Mass models of gravitational lenses hold the key for understanding the spatially resolved source–plane (unlensed) physical properties of the background lensed galaxies. Lensing mass models very sensitively control the accuracy and precision of source-plane reconstructions of the observed lensed arcs. Effective source-plane resolution defined by image-plane (observed) point spread function (PSF) makes it challenging to recover the unlensed (source-plane) surface brightness distribution.We conduct a detailed study to recover the source-plane physical properties of z=2 lensed galaxy using spatially resolved observations from two different multiple images of the lensed target. To deal with PSF’s from two data sets on different multiple images of the galaxy, we employ a forward (Source to Image) approach to merge these independent observations. Using our novel technique, we are able to present a detailed analysis of the source-plane dynamics at scales much better than previously attainable through traditional image inversion methods. Moreover, our technique is adapted to magnification, thus allowing us to achieve higher resolution in highly magnified regions of the source. We find that this lensed system is highly evident of a minor merger. In my talk, I present this case study of z=2 lensed galaxy and also discuss the applications of our algorithm to study plethora of lensed systems, which will be available through future telescopes like JWST and GMT.

  10. Witnessing The Onset Of Environmental Quenching At Z 1-2

    NASA Astrophysics Data System (ADS)

    Fossati, Matteo

    2017-06-01

    During the last decade observations of galaxies across cosmic times coupled with cosmological simulations have provided an increasingly clear description of galaxy evolution. In particular we have a fairly detailed phenomenological picture of how galaxies transition from star forming to passive (or quenched) as a function of their internal properties (e.g. stellar mass) and the external environment (e.g. local density). By exploiting the highly complete coverage of grism and spectroscopic redshifts from the 3D-HST survey, we derive the local environment for a deep and complete sample of galaxies in the five 3D-HST deep fields at 0.5 < z < 2.5. A robust definition of environment also requires accurate calibrations obtained using the most up to date semi-analytic model derived from the Millennium simulation. By combining observational data and models we have devised a robust statistical framework within which we link observables to physical quantities (e.g. halo mass and central/satellite status). In this talk I will present our latest results on the environmental quenching of satellites up to z 2.5 in the range of haloes commonly included in our sample Mhalo < 10^14. We find evidences that the quenching timescales for satellites are almost independent on halo mass but have a significant stellar mass dependence. In contrast to local observations we found that for low mass galaxies at z>1 this timescale approaches the Hubble time. I will discuss the physical motivation of these results in terms of quenching mechanisms and gas content of the satellites at the epoch of infall.

  11. H2, C I, Metallicity, and Dust Depletion in the Z = 2.34 Damped Lyα Absorption System toward QSO 1232+0815

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Bechtold, Jill; Kulkarni, Varsha P.

    2001-01-01

    We report the detection of strong molecular hydrogen (H2) absorption lines in the z=2.34 damped Lyα absorber (DLA) toward QSO 1232+0815. This is the second detection in our survey for high-redshift molecules. The new ultraviolet spectrum of the QSO 1232+0815 at 0.9 Å resolution, taken with the Multiple Mirror Telescope Blue Channel Spectrograph, shows the υ=0-0 up to 10-0 Lyman bands and also the Werner υ=0-0 band of H2 associated with the z=2.34 DLA. We have estimated the total H2 column density in this system. It ranges from ~3×1019 cm-2 to ~3×1017 cm-2 depending on the Doppler parameters, b=6 or 10 km s-1. Based on the best fit with b=6 km s-1, the estimated kinetic temperature is TK~80 K. The measurements of the abundance of zinc and iron in the same DLA show that the metallicity measured by the relatively undepleted element zinc is [Zn/H]=-0.86, while the relative abundance ratio [Fe/Zn] is -1.04, indicating dust depletion. Combining our work with previous results on H2 and relative heavy-element depletion, we find that there is a correlation between them, which suggests that the formation of H2 on dust grains is perhaps the dominant formation process in high-redshift DLAs. Detections of strong absorption from the ground and excited states of neutral carbon (C I) in the z=2.34 DLA are also presented. The excitation temperature between the two fine-structure levels of C I is 15.7+/-3.5 K, an upper limit for the cosmic microwave background radiation temperature at z=2.34. This value is consistent with the prediction by the standard big bang cosmology. Observations here were obtained with the Multiple Mirror Telescope, a joint facility of the University of Arizona and the Smithsonian Institution.

  12. Evolution of the dusty infrared luminosity function from z = 0 to z = 2.3 using observations from Spitzer

    NASA Astrophysics Data System (ADS)

    Magnelli, B.; Elbaz, D.; Chary, R. R.; Dickinson, M.; Le Borgne, D.; Frayer, D. T.; Willmer, C. N. A.

    2011-04-01

    Aims: We derive the evolution of the infrared luminosity function (LF) over the last 4/5ths of cosmic time using deep 24 and 70 μm imaging of the GOODS North and South fields. Methods: We use an extraction technique based on prior source positions at shorter wavelengths to build the 24 and 70 μm source catalogs. The majority (93%) of the sources have a spectroscopic (39%) or a photometric redshift (54%) and, in our redshift range of interest (i.e., 1.3 < z < 2.3) s20% of the sources have a spectroscopic redshift. To extend our study to lower 70 μm luminosities we perform a stacking analysis and we characterize the observed L24/(1 + z) vs. L70/(1 + z) correlation. Using spectral energy distribution (SED) templates which best fit this correlation, we derive the infrared luminosity of individual sources from their 24 and 70 μm luminosities. We then compute the infrared LF at zs1.55 ± 0.25 and zs2.05 ± 0.25. Results: We observe the break in the infrared LF up to zs2.3. The redshift evolution of the infrared LF from z = 1.3 to z = 2.3 is consistent with a luminosity evolution proportional to (1 + z)1.0 ± 0.9 combined with a density evolution proportional to (1 + z)-1.1 ± 1.5. At zs2, luminous infrared galaxies (LIRGs: 1011L⊙ < LIR < 1012 L⊙) are still the main contributors to the total comoving infrared luminosity density of the Universe. At zs2, LIRGs and ultra-luminous infrared galaxies (ULIRGs: 1012L⊙ < LIR) account for s49% and s17% respectively of the total comoving infrared luminosity density of the Universe. Combined with previous results using the same strategy for galaxies at z < 1.3 and assuming a constant conversion between the infrared luminosity and star-formation rate (SFR) of a galaxy, we study the evolution of the SFR density of the Universe from z = 0 to z = 2.3. We find that the SFR density of the Universe strongly increased with redshift from z = 0 to z = 1.3, but is nearly constant at higher redshift out to z = 2.3. As part of the

  13. Low Gas Fractions Connect Compact Star-Forming Galaxies to their z~2 Quiescent Descendants

    NASA Astrophysics Data System (ADS)

    Spilker, Justin; Bezanson, Rachel; Marrone, Daniel P.; Weiner, Benjamin J.; Whitaker, Katherine E.; Williams, Christina C.

    2017-01-01

    Early quiescent galaxies at z ~ 2 are known to be remarkably compact compared to their nearby counterparts. Possible progenitors of these systems include galaxies that are structurally similar, but are still rapidly forming stars. I will present Karl G. Jansky Very Large Array (VLA) observations of the CO(1-0) line towards three such compact, star-forming galaxies at z ~ 2.3, significantly detecting one. The VLA observations indicate baryonic gas fractions 5 times lower and gas depletion times 10 times shorter than normal, extended massive star-forming galaxies at these redshifts. At their current star formation rates, all three objects will deplete their gas reservoirs within 100Myr. These objects are among the most gas-poor objects observed at z > 2 and are outliers from standard gas scaling relations, a result which remains true regardless of assumptions about the CO-H2 conversion factor. Our observations are consistent with the idea that compact, star-forming galaxies are in a rapid state of transition to quiescence in tandem with the build-up of the z ~ 2 quenched population. In the detected compact galaxy, we see no evidence of rotation or that the CO-emitting gas is spatially extended relative to the stellar light. This casts doubt on recent suggestions that the gas in these compact galaxies is rotating and significantly extended compared to the stars. Instead, we suggest that, at least for this object, the gas is centrally concentrated, and only traces a small fraction of the total galaxy dynamical mass. I will conclude by discussing my ongoing efforts to characterize the gas and star forming properties of this unusual population of galaxies.

  14. Spectroscopic identification of type 2 quasars at z < 1 in SDSS-III/BOSS

    NASA Astrophysics Data System (ADS)

    Yuan, Sihan; Strauss, Michael A.; Zakamska, Nadia L.

    2016-10-01

    The physics and demographics of type 2 quasars remain poorly understood, and new samples of such objects selected in a variety of ways can give insight into their physical properties, evolution, and relationship to their host galaxies. We present a sample of 2758 type 2 quasars at z ≲ 1 from the Sloan Digital Sky Survey-III (SDSS-III)/Baryon Oscillation Spectroscopic Survey (BOSS) spectroscopic data base, selected on the basis of their emission-line properties. We probe the luminous end of the population by requiring the rest-frame equivalent width of [O III] to be >100 Å. We distinguish our objects from star-forming galaxies and type 1 quasars using line widths, standard emission line ratio diagnostic diagrams at z < 0.52 and detection of [Ne V]λ3426 Å at z > 0.52. The majority of our objects have [O III] luminosities in the range 1.2 × 1042-3.8 × 1043 erg s-1 and redshifts between 0.4 and 0.65. Our sample includes over 400 type 2 quasars with incorrectly measured redshifts in the BOSS data base; such objects often show kinematic substructure or outflows in the [O III] line. The majority of the sample has counterparts in the Wide-field Infrared Survey Explorer survey, with median infrared luminosity νLν[12 μm] = 4.2 × 1044 erg s- 1. Only 34 per cent of the newly identified type 2 quasars would be selected by infrared colour cuts designed to identify obscured active nuclei, highlighting the difficulty of identifying complete samples of type 2 quasars. We make public the multi-Gaussian decompositions of all [O III] profiles for the new sample and for 568 type 2 quasars from SDSS I/II, together with non-parametric measures of the [O III] line profile shapes. We also identify over 600 candidate double-peaked [O III] profiles.

  15. The Evolution of Ly-alpha Emitting Galaxies Between z = 2.1 and z = 3.l

    NASA Technical Reports Server (NTRS)

    Ciardullo, Robin; Gronwall,Caryl; Wolf, Christopher; McCathran, Emily; Bond, Nicholas A.; Gawiser, Eric; Guaita, Lucia; Feldmeier, John J.; Treister, Ezequiel; Padilla, Nelson; hide

    2011-01-01

    We describe the results of a new, wide-field survey for z= 3.1 Ly-alpha emission-line galaxies (LAEs) in the Extended Chandra Deep Field South (ECDF-S). By using a nearly top-hat 5010 Angstrom filter and complementary broadband photometry from the MUSYC survey, we identify a complete sample of 141 objects with monochromatic fluxes brighter than 2.4E-17 ergs/cm^2/s and observers-frame equivalent widths greater than 80 Angstroms (i.e., 20 Angstroms in the rest-frame of Ly-alpha). The bright-end of this dataset is dominated by x-ray sources and foreground objects with GALEX detections, but when these interlopers are removed, we are still left with a sample of 130 LAE candidates, 39 of which have spectroscopic confirmations. This sample overlaps the set of objects found in an earlier ECDF-S survey, but due to our filter's redder bandpass, it also includes 68 previously uncataloged sources. We confirm earlier measurements of the z=3.1 LAE emission-line luminosity function, and show that an apparent anti-correlation between equivalent width and continuum brightness is likely due to the effect of correlated errors in our heteroskedastic dataset. Finally, we compare the properties of z=3.1 LAEs to LAEs found at z=2.1. We show that in the approximately 1 Gyr after z approximately 3, the LAE luminosity function evolved significantly, with L * fading by approximately 0.4 mag, the number density of sources with L greater than 1.5E42 ergs/s declining by approximately 50%, and the equivalent width scalelength contracting from 70^{+7}_{-5} Angstroms to 50^{+9}_{-6} Angstroms. When combined with literature results, our observations demonstrate that over the redshift range z approximately 0 to z approximately 4, LAEs contain less than approximately 10% of the star-formation rate density of the universe.

  16. Z-portal dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcadi, Giorgio; Mambrini, Yann; Richard, Francois, E-mail: giorgio.arcadi@th.u-psud.fr, E-mail: yann.mambrini@th.u-psud.fr, E-mail: richard@lal.in2p3.fr

    2015-03-01

    We propose to generalize the extensions of the Standard Model where the Z boson serves as a mediator between the Standard Model sector and the dark sector χ. We show that, like in the Higgs portal case, the combined constraints from the recent direct searches restrict severely the nature of the coupling of the dark matter to the Z boson and set a limit m{sub χ} ∼> 200 GeV (except in a very narrow region around the Z-pole region). Using complementarity between spin dependent, spin independent and FERMI limits, we predict the nature of this coupling, more specifically the axial/vectorial ratio thatmore » respects a thermal dark matter coupled through a Z-portal while not being excluded by the current observations. We also show that the next generation of experiments of the type LZ or XENON1T will test Z-portal scenario for dark matter mass up to 2 TeV . The condition of a thermal dark matter naturally predicts the spin-dependent scattering cross section on the neutron to be σ{sup SD}{sub χn} ≅ 10{sup −40} cm{sup 2}, which then becomes a clear prediction of the model and a signature testable in the near future experiments.« less

  17. RCS2 J232727.6-020437: An efficient cosmic telescope at Z = 0.6986

    DOE PAGES

    Hoag, A.; Bradac, M.; Huang, K. H.; ...

    2015-10-27

    Here, we present a detailed gravitational lens model of the galaxy cluster RCS2 J232727.6-020437. Due to cosmological dimming of cluster members and ICL, its high redshift (z=0.6986) makes it ideal for studying background galaxies. Using new ACS and WFC3/IR HST data, we identify 16 multiple images. From MOSFIRE follow up, we identify a strong emission line in the spectrum of one multiple image, likely confirming the redshift of that system to z=2.083. With a highly magnified (μ ≳ 2) source plane area of ~ 0.7 arcmin 2 at z = 7, RCS2 J232727.6-020437 has a lensing efficiency comparable to themore » Hubble Frontier Fields clusters. We discover four highly magnified z ~ 7 candidate Lyman-break galaxies behind the cluster, one of which may be multiply-imaged. Correcting for magnification, we find that all four galaxies are fainter than 0.5L *. One candidate is detected at >10σ in both Spitzer/IRAC [3.6] and [4.5] channels. A spectroscopic follow-up with MOSFIRE does not result in the detection of the Lyman-alpha emission line from any of the four candidates. From the MOSFIRE spectra we place median upper limits on the Lyman-alpha flux of 5 – 14 × 10 –19 ergs –1cm –2 (5σ).« less

  18. Structure of exotic light nuclei: Z = 2, 3, 4

    NASA Astrophysics Data System (ADS)

    Fortune, H. T.

    2018-03-01

    I examine the history and current state of knowledge of the structure of so-called "exotic" light nuclei with Z=2-4, from 7He to 16Be . I review the available experimental information and the models that have been applied to these nuclei. I pay particular attention to the interplay among energies, widths (or strengths), and microscopic structure. Throughout the presentation, I focus on a unified description of these nuclei. I point out contradictions within the data, and I suggest experiments that are still needed.

  19. Measuring Alignments between Galaxies and the Cosmic Web at z ˜ 2-3 Using IGM Tomography

    NASA Astrophysics Data System (ADS)

    Krolewski, Alex; Lee, Khee-Gan; Lukić, Zarija; White, Martin

    2017-03-01

    Many galaxy formation models predict alignments between galaxy spin and the cosmic web (I.e., directions of filaments and sheets), leading to an intrinsic alignment between galaxies that creates a systematic error in weak-lensing measurements. These effects are often predicted to be stronger at high redshifts (z ≳ 1) that are inaccessible to massive galaxy surveys on foreseeable instrumentation, but IGM tomography of the Lyα forest from closely spaced quasars and galaxies is starting to measure the z ˜ 2-3 cosmic web with requisite fidelity. Using mock surveys from hydrodynamical simulations, we examine the utility of this technique, in conjunction with coeval galaxy samples, to measure alignment between galaxies and the cosmic web at z ˜ 2.5. We show that IGM tomography surveys with ≲5 h -1 Mpc sightline spacing can accurately recover the eigenvectors of the tidal tensor, which we use to define the directions of the cosmic web. For galaxy spins and shapes, we use a model parameterized by the alignment strength, {{Δ }}< \\cos θ > , with respect to the tidal tensor eigenvectors from the underlying density field, and also consider observational effects such as errors in the galaxy position angle, inclination, and redshift. Measurements using the upcoming ˜1 deg2 CLAMATO tomographic survey and 600 coeval zCOSMOS-Deep galaxies should place 3σ limits on extreme alignment models with {{Δ }}< \\cos θ > ˜ 0.1, but much larger surveys encompassing >10,000 galaxies, such as Subaru PFS, will be required to constrain models with {{Δ }}< \\cos θ > ˜ 0.03. These measurements will constrain models of galaxy-cosmic web alignment and test tidal torque theory at z ˜ 2, improving our understanding of the physics of intrinsic alignments.

  20. Measuring Alignments between Galaxies and the Cosmic Web at z ~ 2–3 Using IGM Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krolewski, Alex; Lee, Khee-Gan; Luki?, Zarija

    Many galaxy formation models predict alignments between galaxy spin and the cosmic web (i.e., directions of filaments and sheets), leading to an intrinsic alignment between galaxies that creates a systematic error in weak-lensing measurements. These effects are often predicted to be stronger at high redshifts (z ≳ 1) that are inaccessible to massive galaxy surveys on foreseeable instrumentation, but IGM tomography of the Lyα forest from closely spaced quasars and galaxies is starting to measure the z ~ 2-3 cosmic web with requisite fidelity. Using mock surveys from hydrodynamical simulations, we examine the utility of this technique, in conjunction withmore » coeval galaxy samples, to measure alignment between galaxies and the cosmic web at z ~ 2.5. We show that IGM tomography surveys with ≲ 5 h -1 Mpc sightline spacing can accurately recover the eigenvectors of the tidal tensor, which we use to define the directions of the cosmic web. For galaxy spins and shapes, we use a model parameterized by the alignment strength, Δ (cos θ), with respect to the tidal tensor eigenvectors from the underlying density field, and also consider observational effects such as errors in the galaxy position angle, inclination, and redshift. Measurements using the upcoming ~ 1 deg 2 CLAMATO tomographic survey and 600 coeval zCOSMOS-Deep galaxies should place 3σ limits on extreme alignment models with Δ (cos θ) ~ 0.1, but much larger surveys encompassing > 10,000 galaxies, such as Subaru PFS, will be required to constrain models with Δ (cos θ) ~ 0.3. These measurements will constrain models of galaxy-cosmic web alignment and test tidal torque theory at z ~ 2, improving our understanding of the physics of intrinsic alignments.« less

  1. Measuring Alignments between Galaxies and the Cosmic Web at z ~ 2–3 Using IGM Tomography

    DOE PAGES

    Krolewski, Alex; Lee, Khee-Gan; Luki?, Zarija; ...

    2017-02-28

    Many galaxy formation models predict alignments between galaxy spin and the cosmic web (i.e., directions of filaments and sheets), leading to an intrinsic alignment between galaxies that creates a systematic error in weak-lensing measurements. These effects are often predicted to be stronger at high redshifts (z ≳ 1) that are inaccessible to massive galaxy surveys on foreseeable instrumentation, but IGM tomography of the Lyα forest from closely spaced quasars and galaxies is starting to measure the z ~ 2-3 cosmic web with requisite fidelity. Using mock surveys from hydrodynamical simulations, we examine the utility of this technique, in conjunction withmore » coeval galaxy samples, to measure alignment between galaxies and the cosmic web at z ~ 2.5. We show that IGM tomography surveys with ≲ 5 h -1 Mpc sightline spacing can accurately recover the eigenvectors of the tidal tensor, which we use to define the directions of the cosmic web. For galaxy spins and shapes, we use a model parameterized by the alignment strength, Δ (cos θ), with respect to the tidal tensor eigenvectors from the underlying density field, and also consider observational effects such as errors in the galaxy position angle, inclination, and redshift. Measurements using the upcoming ~ 1 deg 2 CLAMATO tomographic survey and 600 coeval zCOSMOS-Deep galaxies should place 3σ limits on extreme alignment models with Δ (cos θ) ~ 0.1, but much larger surveys encompassing > 10,000 galaxies, such as Subaru PFS, will be required to constrain models with Δ (cos θ) ~ 0.3. These measurements will constrain models of galaxy-cosmic web alignment and test tidal torque theory at z ~ 2, improving our understanding of the physics of intrinsic alignments.« less

  2. The Relation between [O III]/Hβ and Specific Star Formation Rate in Galaxies at z ˜ 2

    NASA Astrophysics Data System (ADS)

    Dickey, Claire Mackay; van Dokkum, Pieter G.; Oesch, Pascal A.; Whitaker, Katherine E.; Momcheva, Ivelina G.; Nelson, Erica J.; Leja, Joel; Brammer, Gabriel B.; Franx, Marijn; Skelton, Rosalind E.

    2016-09-01

    Recent surveys have identified a seemingly ubiquitous population of galaxies with elevated [O III]/Hβ emission line ratios at z > 1, although the nature of this phenomenon continues to be debated. The [O III]/Hβ line ratio is of interest because it is a main component of the standard diagnostic tools used to differentiate between active galactic nuclei and star-forming galaxies as well as the gas-phase metallicity indicators O 23 and R 23. Here, we investigate the primary driver of increased [O III]/Hβ ratios by median-stacking rest-frame optical spectra for a sample of star-forming galaxies in the 3D-HST survey in the redshift range z ˜ 1.4-2.2. Using N = 4220 star-forming galaxies, we stack the data in bins of mass and specific star formation rates (sSFRs), respectively. After accounting for stellar Balmer absorption, we measure [O III]λ5007 Å/Hβ down to M ˜ 109.2 M ⊙ and sSFR ˜ 10-9.6 yr-1, greater than an order of magnitude lower than previous work at similar redshifts. We find an offset of 0.59 ± 0.05 dex between the median ratios at z ˜ 2 and z ˜ 0 at fixed stellar mass, in agreement with existing studies. However, with respect to sSFR, the z ˜ 2 stacks all lie within 1σ of the median SDSS ratios, with an average offset of only -0.06 ± 0.05. We find that the excitation properties of galaxies are tightly correlated with their sSFR at both z ˜ 2 and z ˜ 0, with a relation that appears to be roughly constant over the last 10 Gyr of cosmic time.

  3. Electroweak precision data and the Lee-Wick standard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underwood, Thomas E. J.; Zwicky, Roman

    2009-02-01

    We investigate the electroweak precision constraints on the recently proposed Lee-Wick standard model at tree level. We analyze low-energy, Z-pole (LEP1/SLC) and LEP2 data separately. We derive the exact tree-level low-energy and Z-pole effective Lagrangians from both the auxiliary field and higher derivative formulation of the theory. For the LEP2 data we use the fact that the Lee-Wick standard model belongs to the class of models that assumes a so-called 'universal' form which can be described by seven oblique parameters at leading order in m{sub W}{sup 2}/M{sub 1,2}{sup 2}. At tree level we find that Y=-m{sub W}{sup 2}/M{sub 1}{sup 2}more » and W=-m{sub W}{sup 2}/M{sub 2}{sup 2}, where the negative sign is due to the presence of the negative norm states. All other oblique parameters (S,X) and (T,U,V) are found to be zero. In the addendum we show how our results differ from previous investigations, where contact terms, which are found to be of leading order, have been neglected. The LEP1/SLC constraints are slightly stronger than LEP2 and much stronger than the low-energy ones. The LEP1/SLC results exclude gauge boson masses of M{sub 1}{approx_equal}M{sub 2}{approx}3 TeV at the 99% confidence level. Somewhat lower masses are possible when one of the masses assumes a large value. Loop corrections to the electroweak observables are suppressed by the standard {approx}1/(4{pi}){sup 2} factor and are therefore not expected to change the constraints on M1 and M{sub 2}. This assertion is most transparent from the higher derivative formulation of the theory.« less

  4. Phase Diagram of KxFe2-ySe2-zSz and the Suppression of its Superconducting State by an Fe2-Se=S Tetrahedron Distortion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei H.; Abeykoon, M.; Bozin, E.S.

    2011-09-19

    We report structurally tuned superconductivity in a K{sub x}Fe{sub 2-y}Se{sub 2-z}S{sub z} (0 {le} z {le} 2) phase diagram. Superconducting T{sub c} is suppressed as S is incorporated into the lattice, eventually vanishing at 80% of S. The magnetic and conductivity properties can be related to stoichiometry on a poorly occupied Fe1 site and the local environment of a nearly fully occupied Fe2 site. The decreasing T{sub c} coincides with the increasing Fe1 occupancy and the overall increase in Fe stoichiometry from z = 0 to z = 2. Our results indicate that the irregularity of the Fe2-Se/S tetrahedron ismore » an important controlling parameter that can be used to tune the ground state in the new superconductor family.« less

  5. Phase Diagram of KxFe2-ySe2-zSz and the Suppression of its Superconducting State by an Fe2-Se/S Tetrahedron Distortion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H Lei; M Abeykoon; E Bozin

    2011-12-31

    We report structurally tuned superconductivity in a K{sub x}Fe{sub 2-y}Se{sub 2-z}S{sub z} (0 {le} z {le} 2) phase diagram. Superconducting T{sub c} is suppressed as S is incorporated into the lattice, eventually vanishing at 80% of S. The magnetic and conductivity properties can be related to stoichiometry on a poorly occupied Fe1 site and the local environment of a nearly fully occupied Fe2 site. The decreasing T{sub c} coincides with the increasing Fe1 occupancy and the overall increase in Fe stoichiometry from z = 0 to z = 2. Our results indicate that the irregularity of the Fe2-Se/S tetrahedron ismore » an important controlling parameter that can be used to tune the ground state in the new superconductor family.« less

  6. Evidence of Nematicity in K 0.8Fe 1.7Se 2

    DOE PAGES

    Duan, Chunruo; Yang, Junjie; Ye, Feng; ...

    2015-12-11

    We proposed that the superconducting state of K 0.8Fe 1.7Se 2 is phase separated from a non-superconducting magnetic state. These results from a recent neutron diffraction study on a single crystal of K 0.8Fe 1.7Se 2 provide evidence for a continuous transition between the I 4/m m m high temperature phase in which the Fe vacancies are randomly distributed and the I4/m vacancy ordered phase in the temperature range between T (C) and T (S). Upon cooling, the I 4/m phase becomes more populated, increasing the √5 X√5 X 1 superlattice structure, resulting in an enhancement of the (101) superlatticemore » peak. Moreover, the same temperature dependence is observed for the magnetic peak as well. Moreover, due to the Fe site splitting with the transition, its z-coordinate fluctuates, and so must the d xz and d y z orbitals. Finally, the orbital fluctuations couple to the magnetic ordering as seen here and may lead to a realization of nematic order in this system.« less

  7. Deformed shell model calculations of half lives for β+/EC decay and 2ν β+β+/β+EC/ECEC decay in medium-heavy N~Z nuclei

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Shukla, A.; Sahu, R.; Kota, V. K. B.

    2008-08-01

    The β+/EC half-lives of medium heavy N~Z nuclei with mass number A~64-80 are calculated within the deformed shell model (DSM) based on Hartree-Fock states by employing a modified Kuo interaction in (2p3/2,1f5/2,2p1/2,1g9/2) space. The DSM model has been quite successful in predicting many spectroscopic properties of N~Z medium heavy nuclei with A~64-80. The calculated β+/EC half-lives, for prolate and oblate shapes, compare well with the predictions of the calculations with Skyrme force by Sarriguren Going further, following recent searches, half-lives for 2ν β+β+/β+EC/ECEC decay for the nucleus Kr78 are calculated using DSM and the results compare well with QRPA predictions.

  8. Constitutive turnover of histone H2A.Z at yeast promoters requires the preinitiation complex

    PubMed Central

    Tramantano, Michael; Sun, Lu; Au, Christy; Labuz, Daniel; Liu, Zhimin; Chou, Mindy; Shen, Chen; Luk, Ed

    2016-01-01

    The assembly of the preinitiation complex (PIC) occurs upstream of the +1 nucleosome which, in yeast, obstructs the transcription start site and is frequently assembled with the histone variant H2A.Z. To understand the contribution of the transcription machinery in the disassembly of the +1 H2A.Z nucleosome, conditional mutants were used to block PIC assembly. A quantitative ChIP-seq approach, which allows detection of global occupancy change, was employed to measure H2A.Z occupancy. Blocking PIC assembly resulted in promoter-specific H2A.Z accumulation, indicating that the PIC is required to evict H2A.Z. By contrast, H2A.Z eviction was unaffected upon depletion of INO80, a remodeler previously reported to displace nucleosomal H2A.Z. Robust PIC-dependent H2A.Z eviction was observed at active and infrequently transcribed genes, indicating that constitutive H2A.Z turnover is a general phenomenon. Finally, sites with strong H2A.Z turnover precisely mark transcript starts, providing a new metric for identifying cryptic and alternative sites of initiation. DOI: http://dx.doi.org/10.7554/eLife.14243.001 PMID:27438412

  9. The MOSDEF Survey: A Stellar Mass–SFR–Metallicity Relation Exists at z ∼ 2.3

    NASA Astrophysics Data System (ADS)

    Sanders, Ryan L.; Shapley, Alice E.; Kriek, Mariska; Freeman, William R.; Reddy, Naveen A.; Siana, Brian; Coil, Alison L.; Mobasher, Bahram; Davé, Romeel; Shivaei, Irene; Azadi, Mojegan; Price, Sedona H.; Leung, Gene; Fetherholf, Tara; de Groot, Laura; Zick, Tom; Fornasini, Francesca M.; Barro, Guillermo

    2018-05-01

    We investigate the nature of the relation among stellar mass, star formation rate, and gas-phase metallicity (the {M}* –SFR–Z relation) at high redshifts using a sample of 260 star-forming galaxies at z2.3 from the MOSDEF survey. We present an analysis of the high-redshift {M}* –SFR–Z relation based on several emission-line ratios for the first time. We show that a {M}* –SFR–Z relation clearly exists at z2.3. The strength of this relation is similar to predictions from cosmological hydrodynamical simulations. By performing a direct comparison of stacks of z ∼ 0 and z2.3 galaxies, we find that z2.3 galaxies have ∼0.1 dex lower metallicity at fixed {M}* and SFR. In the context of chemical evolution models, this evolution of the {M}* –SFR–Z relation suggests an increase with redshift of the mass-loading factor at fixed {M}* , as well as a decrease in the metallicity of infalling gas that is likely due to a lower importance of gas recycling relative to accretion from the intergalactic medium at high redshifts. Performing this analysis simultaneously with multiple metallicity-sensitive line ratios allows us to rule out the evolution in physical conditions (e.g., N/O ratio, ionization parameter, and hardness of the ionizing spectrum) at fixed metallicity as the source of the observed trends with redshift and with SFR at fixed {M}* at z2.3. While this study highlights the promise of performing high-order tests of chemical evolution models at high redshifts, detailed quantitative comparisons ultimately await a full understanding of the evolution of metallicity calibrations with redshift. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  10. Global regulation of H2A.Z localization by the INO80 chromatin remodeling enzyme is essential for genome integrity

    PubMed Central

    Papamichos-Chronakis, Manolis; Watanabe, Shinya; Rando, Oliver J.; Peterson, Craig L.

    2010-01-01

    Summary INO80 is an evolutionarily conserved, ATP-dependent chromatin remodeling enzyme that plays roles in transcription, DNA repair, and replication. Here, we show that yeast INO80 facilitates these diverse processes at least in part by controlling genome-wide distribution of the histone variant H2A.Z. In the absence of INO80, H2A.Z nucleosomes are mis-localized, and H2A.Z levels at promoters show reduced responsiveness to transcriptional changes, suggesting that INO80 controls H2A.Z dynamics. Additionally, we demonstrate that INO80 has a novel histone exchange activity in which the enzyme can replace nucleosomal H2A.Z/H2B with free H2A/H2B dimers. Genetic interactions between ino80 and htz1 support a model in which INO80 catalyzes the removal of unacetylated H2A.Z from chromatin as a novel mechanism to promote genome stability. PMID:21241891

  11. Facile total synthesis and antimicrobial activity of the marine fatty acids (Z)-2-methoxy-5-hexadecenoic acid and (Z)-2-methoxy-6-hexadecenoic acid.

    PubMed

    Carballeira, N M; Emiliano, A; Hernández-Alonso, N; González, F A

    1998-12-01

    The total synthesis of the naturally occurring (Z)-2-methoxy-5-hexadecenoic acid and (Z)-2-methoxy-6-hexadecenoic acid was accomplished using as a key step Mukaiyama's trimethylsilyl cyanide addition to 4- and 5-pentadecenal, respectively. These syntheses further confirm the structures of the natural marine fatty acids and corroborate their cis double-bond stereochemistry. The title compounds were antimicrobial against the Gram-positive bacteria Staphylococcus aureus (MIC 0.35 micromol/mL) and Streptococcus faecalis (MIC 0.35 micromol/mL).

  12. COS Observations of Molecular H2 at z = 0.248

    NASA Astrophysics Data System (ADS)

    Kruse, Ethan; Tumlinson, J.; Thom, C.; Sembach, K.

    2011-01-01

    We present HST/COS observations of a QSO sightline through the halo of two merging galaxies at z = 0.25 at impact parameter 90 kpc. This sightline presents the first example of strong H2 absorption features in our large COS survey of galaxy halo gas at low redshift (COS-Halos, Tumlinson et al.). COS spectra reveal a sub-DLA at z = 0.2478 which splits into two components separated by 70 km/s. One component appears to contain more high-ionization states and less neutral H I while the other favors neutral atoms and contains a strong H2 signature (J = 0-3) along with the majority of the H I. Aside from H2 we detect O I, N I and N II, Si II and Si III, and C II. We find a total H2 column density of N(H2) = 16.89 and an H2 fraction of f_{H2} = 0.0034. Fitting the unblended H2 lines from 0-0 to 15-0 to a curve of growth we find a best fit with b = 11.8 km s-1. Due to the full saturation of all Lyman lines, we are unable to separate the H I column density into the two components and therefore cannot get a direct metallicity for either cloud. However through Cloudy modelling we are able to estimate a H I column density and ionization correction in each component and therefore obtain an approximate metallicity through O I absorption. This system shows similar features to a portion of the Magellanic Stream studied by Sembach et al. 2006. Both sightlines have comparable H I and H2 columns, H2 excitation temperatures, and similar metallicities, suggesting this sightline could be a distant counterpart to the Magellanic Stream, perhaps stripped from an unseen companion galaxy to the two merger partners.

  13. What are the Progenitors of Compace, Massive, Quiescent Galaxies at z (equals) 2.3? The Population of Massive Galaxies at z (greater than) 3 From NMBS AND CANDELS

    NASA Technical Reports Server (NTRS)

    Stefanon, Mauro; Marchesini, Danilo; Rudnick, Gregory H.; Brammer, Gabriel B.; Tease, Katherine Whitaker

    2013-01-01

    Using public data from the NEWFIRM Medium-Band Survey (NMBS) and the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS), we investigate the population of massive galaxies at z > 3. The main aim of this work is to identify the potential progenitors of z 2 compact, massive, quiescent galaxies (CMQGs), furthering our understanding of the onset and evolution of massive galaxies. Our work is enabled by high-resolution images from CANDELS data and accurate photometric redshifts, stellar masses, and star formation rates (SFRs) from 37-band NMBS photometry. The total number of massive galaxies at z > 3 is consistent with the number of massive, quiescent galaxies (MQGs) at z 2, implying that the SFRs for all of these galaxies must be much lower by z 2. We discover four CMQGs at z > 3, pushing back the time for which such galaxies have been observed. However, the volume density for these galaxies is significantly less than that of galaxies at z < 2 with similar masses, SFRs, and sizes, implying that additional CMQGs must be created in the intervening 1 Gyr between z = 3 and z = 2. We find five star-forming galaxies at z 3 that are compact (Re < 1.4 kpc) and have stellar mass M* > 1010.6M; these galaxies are likely to become members of the massive, quiescent, compact galaxy population at z 2. We evolve the stellar masses and SFRs of each individual z > 3 galaxy adopting five different star formation histories (SFHs) and studying the resulting population of massive galaxies at z = 2.3. We find that declining or truncated SFHs are necessary to match the observed number density of MQGs at z 2, whereas a constant delayed-exponential SFH would result in a number density significantly smaller than observed. All of our assumed SFHs imply number densities of CMQGs at z 2 that are consistent with the observed number density. Better agreement with the observed number density of CMQGs at z 2 is obtained if merging is included in the analysis and better still if

  14. Identification of Luminous Infrared Galaxies at 1 <~ z <~ 2.51,2,3,4,

    NASA Astrophysics Data System (ADS)

    Le Floc'h, E.; Pérez-González, P. G.; Rieke, G. H.; Papovich, C.; Huang, J.-S.; Barmby, P.; Dole, H.; Egami, E.; Alonso-Herrero, A.; Wilson, G.; Miyazaki, S.; Rigby, J. R.; Bei, L.; Blaylock, M.; Engelbracht, C. W.; Fazio, G. G.; Frayer, D. T.; Gordon, K. D.; Hines, D. C.; Misselt, K. A.; Morrison, J. E.; Muzerolle, J.; Rieke, M. J.; Rigopoulou, D.; Su, K. Y. L.; Willner, S. P.; Young, E. T.

    2004-09-01

    We present preliminary results on 24 μm detections of luminous infrared galaxies at z>~1 with the Multiband Imaging Photometer for Spitzer (MIPS). Observations were performed in the Lockman Hole and the Extended Groth Strip (EGS) and were supplemented by data obtained with the Infrared Array Camera (IRAC) between 3 and 9 μm. The positional accuracy of <~2" for most MIPS/IRAC detections provides unambiguous identifications of their optical counterparts. Using spectroscopic redshifts from the Deep Extragalactic Evolutionary Probe survey, we identify 24 μm sources at z>~1 in the EGS, while the combination of the MIPS/IRAC observations with BVRIJHK ancillary data in the Lockman Hole also shows very clear cases of galaxies with photometric redshifts at 1<~z<~2.5. The observed 24 μm fluxes indicate infrared luminosities greater than 1011 Lsolar, while the data at shorter wavelengths reveal rather red and probably massive (M>~M*) galaxy counterparts. It is the first time that this population of luminous objects is detected up to z~2.5 in the infrared. Our work demonstrates the ability of the MIPS instrument to probe the dusty universe at very high redshift and illustrates how the forthcoming Spitzer deep surveys will offer a unique opportunity to illuminate a dark side of cosmic history not explored by previous infrared experiments. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, operated jointly by Max-Planck-Institut für Astronomie and Instituto de Astrofísica de Andalucia (CSIC). Based on observations made with the Isaac Newton Telescope, operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  15. 40 CFR 1036.620 - Alternate CO2 standards based on model year 2011 compression-ignition engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Alternate CO2 standards based on model... the following criteria: (1) It must have been certified to all applicable emission standards in model... set and model year in which you certify engines to the standards of this section. You may not bank any...

  16. 40 CFR 1036.620 - Alternate CO2 standards based on model year 2011 compression-ignition engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Alternate CO2 standards based on model... the following criteria: (1) It must have been certified to all applicable emission standards in model... set and model year in which you certify engines to the standards of this section. You may not bank any...

  17. 40 CFR 1036.620 - Alternate CO2 standards based on model year 2011 compression-ignition engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Alternate CO2 standards based on model... the following criteria: (1) It must have been certified to all applicable emission standards in model... set and model year in which you certify engines to the standards of this section. You may not bank any...

  18. Ages of Massive Galaxies at 0.5 > z > 2.0 from 3D-HST Rest-frame Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fumagalli, Mattia; Franx, Marijn; van Dokkum, Pieter; Whitaker, Katherine E.; Skelton, Rosalind E.; Brammer, Gabriel; Nelson, Erica; Maseda, Michael; Momcheva, Ivelina; Kriek, Mariska; Labbé, Ivo; Lundgren, Britt; Rix, Hans-Walter

    2016-05-01

    We present low-resolution near-infrared stacked spectra from the 3D-HST survey up to z = 2.0 and fit them with commonly used stellar population synthesis models: BC03, FSPS10 (Flexible Stellar Population Synthesis), and FSPS-C3K. The accuracy of the grism redshifts allows the unambiguous detection of many emission and absorption features and thus a first systematic exploration of the rest-frame optical spectra of galaxies up to z = 2. We select massive galaxies ({log}({M}*/{M}⊙ )\\gt 10.8), we divide them into quiescent and star-forming via a rest-frame color-color technique, and we median-stack the samples in three redshift bins between z = 0.5 and z = 2.0. We find that stellar population models fit the observations well at wavelengths below the 6500 Å rest frame, but show systematic residuals at redder wavelengths. The FSPS-C3K model generally provides the best fits (evaluated with χ 2 red statistics) for quiescent galaxies, while BC03 performs the best for star-forming galaxies. The stellar ages of quiescent galaxies implied by the models, assuming solar metallicity, vary from 4 Gyr at z ˜ 0.75 to 1.5 Gyr at z ˜ 1.75, with an uncertainty of a factor of two caused by the unknown metallicity. On average, the stellar ages are half the age of the universe at these redshifts. We show that the inferred evolution of ages of quiescent galaxies is in agreement with fundamental plane measurements, assuming an 8 Gyr age for local galaxies. For star-forming galaxies, the inferred ages depend strongly on the stellar population model and the shape of the assumed star-formation history.

  19. RCS2 J232727.6-020437: An Efficient Cosmic Telescope at z=0.6986

    NASA Astrophysics Data System (ADS)

    Hoag, A.; Bradač, M.; Huang, K. H.; Ryan, R. E., Jr.; Sharon, K.; Schrabback, T.; Schmidt, K. B.; Cain, B.; Gonzalez, A. H.; Hildebrandt, H.; Hinz, J.; Lemaux, B. C.; von der Linden, A.; Lubin, L. M.; Treu, T.; Zaritsky, D.

    2015-11-01

    We present a detailed gravitational lens model of the galaxy cluster RCS2 J232727.6-020437. Due to cosmological dimming of cluster members and intra-cluster light, its high redshift (z = 0.6986) makes it ideal for studying high-redshift background galaxies. Using new Advanced Camera for Surveys and WFC3/IR Hubble Space Telescope data, we identify 16 new multiple images belonging to 6 distinct source galaxies. From Multi-object Spectrometer for Infrared Exploration (MOSFIRE) follow-up, we identify a strong emission line in the spectrum of one multiple image, measuring the redshift of that system to z = 2.083. With a highly magnified (μ ≳ 3) source plane area of ∼0.9 arcmin2 at z = 7, RCS2 J232727.6-020437 has a lensing efficiency comparable to the Hubble Frontier Fields clusters. We discover four highly magnified z ∼ 7 candidate Lyman-break galaxies behind the cluster. Correcting for magnification, we find that all four galaxies are fainter than 0.5{L}\\star . One candidate is detected at >10σ in both Spitzer/IRAC [3.6] and [4.5] channels. A spectroscopic follow-up with MOSFIRE does not result in the detection of the Lyα emission line from any of the four candidates. From the MOSFIRE spectra, we place median upper limits on the Lyα flux of (3-11)× {10}-19 {erg} {{{s}}}-1 {{cm}}-2 (5σ).

  20. Diastereoselective synthesis of ethyl ( Z)-3-(8-methylimidazo-[1,2- a]pyrid-2-yl)-2-phenylthioacrylate. X-ray crystal structure and conformational analysis

    NASA Astrophysics Data System (ADS)

    Gautier, A.; Roche, D.; Métin, J.; Carpy, A.; Madesclaire, M.

    1995-09-01

    The title compound 2, a gem vinyl sulfide ester, has been obtained diastereoselectively (de > 98%) by action of the ethyl thiophenoxyacetate carbanion on the imidazo[1,2- a]pyridinecarbaldehyde 1 in a basic medium, at low temperature. The X-ray crystal structure of 2 (C 19H 19N 2O 2S: Mr = 338.43, triclinic, P 1¯, a = 8.193(3) Å, b = 10.090(2) Å, c = 10.981(4) Å, α = 88.12(2)°, β = 78.66(4)°, γ = 78.53(2)°, V = 872.3(6) Å3, Z = 2, Dcalc = 1.29 g cm -3, λ( Mo Kα) = 0.71069 Å, μ = 0.189 mm -1, F(000) = 356, T = 293 K, R = 0.043 for 3610 observed reflections) has been determined and confirmed the Z configuration. The molecule is almost planar except for the phenyl ring situated in an approximate perpendicular plane. Despite the presence of the conjugate double bonds of the vinyl ester group (acrylate), coplanar with the imidazopyridine heterocycle, there is no evidence of π-electron delocalization over the whole structure. The crystal cohesion is ensured by a dense network of van der Waals contacts. A conformational analysis of the Z and E isomers by means of a Monte Carlo search and a stochastic dynamics simulation in CHCl 3 has shown that according to the method the Z isomer is more stable than the E isomer by about 7 to 10 kJ mol -1.

  1. Oxidation of a [Cu2S] complex by N2O and CO2: insights into a role of tetranuclearity in the CuZ site of nitrous oxide reductase.

    PubMed

    Bagherzadeh, Sharareh; Mankad, Neal P

    2018-01-25

    Oxidation of a [Cu 2 (μ-S)] complex by N 2 O or CO 2 generated a [Cu 2 (μ-SO 4 )] product. In the presence of a sulfur trap, a [Cu 2 (μ-O)] species also formed from N 2 O. A [Cu 2 (μ-CS 3 )] species derived from CS 2 modeled initial reaction intermediates. These observations indicate that one role of tetranuclearity in the Cu Z catalytic site of nitrous oxide reductase is to protect the crucial S 2- ligand from oxidation.

  2. Simple Z2 lattice gauge theories at finite fermion density

    NASA Astrophysics Data System (ADS)

    Prosko, Christian; Lee, Shu-Ping; Maciejko, Joseph

    2017-11-01

    Lattice gauge theories are a powerful language to theoretically describe a variety of strongly correlated systems, including frustrated magnets, high-Tc superconductors, and topological phases. However, in many cases gauge fields couple to gapless matter degrees of freedom, and such theories become notoriously difficult to analyze quantitatively. In this paper we study several examples of Z2 lattice gauge theories with gapless fermions at finite density, in one and two spatial dimensions, that are either exactly soluble or whose solution reduces to that of a known problem. We consider complex fermions (spinless and spinful) as well as Majorana fermions and study both theories where Gauss' law is strictly imposed and those where all background charge sectors are kept in the physical Hilbert space. We use a combination of duality mappings and the Z2 slave-spin representation to map our gauge theories to models of gauge-invariant fermions that are either free, or with on-site interactions of the Hubbard or Falicov-Kimball type that are amenable to further analysis. In 1D, the phase diagrams of these theories include free-fermion metals, insulators, and superconductors, Luttinger liquids, and correlated insulators. In 2D, we find a variety of gapped and gapless phases, the latter including uniform and spatially modulated flux phases featuring emergent Dirac fermions, some violating Luttinger's theorem.

  3. Method for producing synthetic fuels from solid waste

    DOEpatents

    Antal, Jr., Michael J.

    1976-11-23

    Organic solid wastes represented by the general chemical formula C.sub.X H.sub.Y O.sub.Z are reacted with steam at elevated temperatures to produce H.sub.2 and CO.sub.2. The overall process is represented by the reaction C.sub.X H.sub.Y O.sub.Z + 2(X-Z/2)H.sub.2 O.fwdarw..sup..delta.XCO.sub.2 + [(Y/2) + 2(X-Z/2)] H.sub.2 . (1) reaction (1) is endothermic and requires heat. This heat is supplied by a tower top solar furnace; alternatively, some of the solid wastes can be burned to supply heat for the reaction. The hydrogen produced by reaction (1) can be used as a fuel or a chemical feedstock. Alternatively, methanol can be produced by the commercial process CO.sub.2 + 3H.sub.2 .fwdarw. CH.sub.3 OH + H.sub.2 O . (2) since reaction (1) is endothermic, the system represents a method for storing heat energy from an external source in a chemical fuel produced from solid wastes.

  4. On dark matter interactions with the Standard Model through an anomalous Z'

    NASA Astrophysics Data System (ADS)

    Ismail, Ahmed; Katz, Andrey; Racco, Davide

    2017-10-01

    We study electroweak scale Dark Matter (DM) whose interactions with baryonic matter are mediated by a heavy anomalous Z'. We emphasize that when the DM is a Majorana particle, its low-velocity annihilations are dominated by loop suppressed annihilations into the gauge bosons, rather than by p-wave or chirally suppressed annihilations into the SM fermions. Because the Z ' is anomalous, these kinds of DM models can be realized only as effective field theories (EFTs) with a well-defined cutoff, where heavy spectator fermions restore gauge invariance at high energies. We formulate these EFTs, estimate their cutoff and properly take into account the effect of the Chern-Simons terms one obtains after the spectator fermions are integrated out. We find that, while for light DM collider and direct detection experiments usually provide the strongest bounds, the bounds at higher masses are heavily dominated by indirect detection experiments, due to strong annihilation into W + W -, ZZ, Zγ and possibly into gg and γγ. We emphasize that these annihilation channels are generically significant because of the structure of the EFT, and therefore these models are prone to strong indirect detection constraints. Even though we focus on selected Z' models for illustrative purposes, our setup is completely generic and can be used for analyzing the predictions of any anomalous Z'-mediated DM model with arbitrary charges.

  5. 2D Kinetic Particle in Cell Simulations of a Shear-Flow Stabilized Z-Pinch

    NASA Astrophysics Data System (ADS)

    Tummel, Kurt; Higginson, Drew; Schmidt, Andrea; Link, Anthony; McLean, Harry; Shumlak, Uri; Nelson, Brian; Golingo, Raymond; Claveau, Elliot; Lawrence Livermore National Lab Team; University of Washington Team

    2016-10-01

    The Z-pinch is a relatively simple and attractive potential fusion reactor design, but attempts to develop such a reactor have consistently struggled to overcome Z-pinch instabilities. The ``sausage'' and ``kink'' modes are among the most robust and prevalent Z-pinch instabilities, but theory and simulations suggest that axial flow-shear, dvz / dr ≠ 0 , can suppress these modes. Experiments have confirmed that Z-pinch plasmas with embedded axial flow-shear display a significantly enhanced resilience to the sausage and kink modes at a demonstration current of 50kAmps. A new experiment is under way to test the concept at higher current, and efforts to model these plasmas are being expanded. The performance and stability of these devices will depend on features like the plasma viscosity, anomalous resistivity, and finite Larmor radius effects, which are most accurately characterized in kinetic models. To predict these features, kinetic simulations using the particle in cell code LSP are now in development, and initial benchmarking and 2D stability analyses of the sausage mode are presented here. These results represent the first kinetic modeling of the flow-shear stabilized Z-pinch. This work is funded by the USDOE/ARPAe Alpha Program. Prepared by LLNL under Contract DE-AC52-07NA27344.

  6. Baryon acoustic oscillations from the complete SDSS-III Lyα-quasar cross-correlation function at z = 2.4

    DOE PAGES

    du Mas des Bourboux, Helion; Le Goff, Jean-Marc; Blomqvist, Michael; ...

    2017-08-08

    We present a measurement of baryon acoustic oscillations (BAO) in the cross-correlation of quasars with the Lyα-forest flux-transmission at a mean redshift z = 2.40. The measurement uses the complete SDSS-III data sample: 168,889 forests and 234,367 quasars from the SDSS Data Release DR12. In addition to the statistical improvement on our previous study using DR11, we have implemented numerous improvements at the analysis level allowing a more accurate measurement of this cross-correlation. We also developed the first simulations of the cross-correlation allowing us to test different aspects of our data analysis and to search for potential systematic errors inmore » the determination of the BAO peak position. We measure the two ratios D H(z = 2.40)=r d = 9.01 ± 0.36 and D M(z = 2.40)=r d = 35.7 ±1.7, where the errors include marginalization over the non-linear velocity of quasars and the metal - quasar cross-correlation contribution, among other effects. These results are within 1.8σ of the prediction of the flat-ΛCDM model describing the observed CMB anisotropies.We combine this study with the Lyα-forest auto-correlation function (Bautista et al. 2017), yielding D H(z = 2.40)=r d = 8.94 ± 0.22 and D M(z = 2.40)=r d = 36.6 ± 1.2, within 2.3σ of the same flat-ΛCDM model.« less

  7. Baryon acoustic oscillations from the complete SDSS-III Lyα-quasar cross-correlation function at z = 2.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    du Mas des Bourboux, Helion; Le Goff, Jean-Marc; Blomqvist, Michael

    We present a measurement of baryon acoustic oscillations (BAO) in the cross-correlation of quasars with the Lyα-forest flux-transmission at a mean redshift z = 2.40. The measurement uses the complete SDSS-III data sample: 168,889 forests and 234,367 quasars from the SDSS Data Release DR12. In addition to the statistical improvement on our previous study using DR11, we have implemented numerous improvements at the analysis level allowing a more accurate measurement of this cross-correlation. We also developed the first simulations of the cross-correlation allowing us to test different aspects of our data analysis and to search for potential systematic errors inmore » the determination of the BAO peak position. We measure the two ratios D H(z = 2.40)=r d = 9.01 ± 0.36 and D M(z = 2.40)=r d = 35.7 ±1.7, where the errors include marginalization over the non-linear velocity of quasars and the metal - quasar cross-correlation contribution, among other effects. These results are within 1.8σ of the prediction of the flat-ΛCDM model describing the observed CMB anisotropies.We combine this study with the Lyα-forest auto-correlation function (Bautista et al. 2017), yielding D H(z = 2.40)=r d = 8.94 ± 0.22 and D M(z = 2.40)=r d = 36.6 ± 1.2, within 2.3σ of the same flat-ΛCDM model.« less

  8. Arizona Academic Standards, Grade 2

    ERIC Educational Resources Information Center

    Arizona Department of Education, 2009

    2009-01-01

    This publication contains Arizona public schools' academic standards for grade 2. The contents of this document include the following: (1) The Arts Standard 2006--Grade 2; (2) Comprehensive Health Education/Physical Activity Standards 1997--Foundations (Grades 1-3); (3) Foreign and Native Language Standards 1997--Foundations (Grades 1-3); (4)…

  9. Clustering of moderate luminosity X-ray-selected type 1 and type 2 AGNs at z ∼ 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allevato, V.; Finoguenov, A.; Civano, F.

    2014-11-20

    We investigate, for the first time at z ∼ 3, the clustering properties of 189 Type 1 and 157 Type 2 X-ray active galactic nuclei (AGNs) of moderate luminosity ((L {sub bol}) = 10{sup 45.3} erg s{sup –1}), with photometric or spectroscopic redshifts in the range 2.2 < z < 6.8. These samples are based on Chandra and XMM-Newton data in COSMOS. We find that Type 1 and Type 2 COSMOS AGNs at z ∼ 3 inhabit DMHs with typical mass of log M{sub h} = 12.84{sub −0.11}{sup +0.10} and 11.73{sub −0.45}{sup +0.39} h {sup –1} M {sub ☉}, respectively.more » This result requires a drop in the halo masses of Type 1 and 2 COSMOS AGNs at z ∼ 3 compared to z2 XMM-COSMOS AGNs with similar luminosities. Additionally, we infer that unobscured COSMOS AGNs at z ∼ 3 reside in 10 times more massive halos compared to obscured COSMOS AGNs, at the 2.6σ level. This result extends to z ∼ 3 the results found in COSMOS at z2, and rules out the picture in which obscuration is purely an orientation effect. A model which assumes that the AGNs activity is triggered by major mergers is quite successful in predicting both the low halo mass of COSMOS AGNs and the typical mass of luminous SDSS quasars at z ∼ 3, with the latter inhabiting more massive halos respect to moderate luminosity AGNs. Alternatively we can argue, at least for Type 1 COSMOS AGNs, that they are possibly representative of an early phase of fast (i.e., Eddington limited) BH growth induced by cosmic cold flows or disk instabilities. Given the moderate luminosity, these new fast growing BHs have masses of ∼10{sup 7-8} M {sub ☉} at z ∼ 3 which might evolve into ∼10{sup 8.5-9} M {sub ☉} mass BHs at z = 0. Following our clustering measurements, we argue that this fast BH growth at z ∼ 3 in AGNs with moderate luminosity occurs in DMHs with typical mass of ∼ 6× 10{sup 12} h {sup –1} M {sub ☉}.« less

  10. The Rest-Frame Optical Luminosity Functions of Galaxies at 2<=z<=3.5

    NASA Astrophysics Data System (ADS)

    Marchesini, D.; van Dokkum, P.; Quadri, R.; Rudnick, G.; Franx, M.; Lira, P.; Wuyts, S.; Gawiser, E.; Christlein, D.; Toft, S.

    2007-02-01

    We present the rest-frame optical (B, V, and R band) luminosity functions (LFs) of galaxies at 2<=z<=3.5, measured from a K-selected sample constructed from the deep NIR MUSYC, the ultradeep FIRES, and the GOODS-CDFS. This sample is unique for its combination of area and range of luminosities. The faint-end slopes of the LFs at z>2 are consistent with those at z~0. The characteristic magnitudes are significantly brighter than the local values (e.g., ~1.2 mag in the R band), while the measured values for Φ* are typically ~5 times smaller. The B-band luminosity density at z~2.3 is similar to the local value, and in the R band it is ~2 times smaller than the local value. We present the LF of distant red galaxies (DRGs), which we compare to that of non-DRGs. While DRGs and non-DRGs are characterized by similar LFs at the bright end, the faint-end slope of the non-DRG LF is much steeper than that of DRGs. The contribution of DRGs to the global densities down to the faintest probed luminosities is 14%-25% in number and 22%-33% in luminosity. From the derived rest-frame U-V colors and stellar population synthesis models, we estimate the mass-to-light ratios (M/L) of the different subsamples. The M/L ratios of DRGs are ~5 times higher (in the R and V bands) than those of non-DRGs. The global stellar mass density at 2<=z<=3.5 appears to be dominated by DRGs, whose contribution is of order ~60%-80% of the global value. Qualitatively similar results are obtained when the population is split by rest-frame U-V color instead of observed J-K color. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555. Also based on observations collected at the European Southern Observatories on Paranal, Chile as part of the ESO program 164.O-0612.

  11. Linear and Non-linear Polarizabilities for P2(X1Σg+)

    NASA Astrophysics Data System (ADS)

    Maroulis, George

    1997-07-01

    Electric polarizabilities and hyperpolarizabilities were calculated from accurate self-consistent field wavefunctions for P2. The following values are reported, using the experimental bond length of 1.8934 Å: dipole polarizability αzz = 69.83 and αxx = 41.20 e2 a02 Eh-1 , second dipole hyperpolarizability γzzzz = 17 040, γxxxx= 11 581 and γxxzz = 4724 e4a04Eh-3, quadrupole polarizability, Czz "zz = 276.14, Cxz,xz = 232.64 and Cxx,xx = 151.25 e2 a04Eh-1 , dipole-octopole polarizability, Ez,zzz, = 331.00 and Ex,xxx = -154.66 e2 a04Eh-1 and for the dipole-dipole-quadrupole hyperpolarizability, Bzz,zz = - 2441, Bxz,xz = - 1442, Bxx,zz = 866 and Bxx,xx = - 1411 e3a04Eh-2.

  12. Understanding the links between composition, polyhedral distortion, and luminescence properties in green-emitting β-Si 6–zAl zO zN 8–z:Eu 2+ phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzan, Clayton; Laurita, Geneva; Gaultois, Michael W.

    Inorganic phosphor materials play a crucial role in the creation of white light from blue and near-UV solid-state light-emitting diodes. Understanding the intricacies of the phosphor structure is key for setting the stage for improved, more efficient functionality. Average structure and coordination environment analysis of the robust and efficient green-emitting phosphor, β-SiAlON:Eu 2+ (β-Si 6–zAl zO zN 8–zEu 0.009), is combined here with a range of property measurements to elucidate the role of Al content ( z) in luminescence properties, including the red shift of emission and the thermal quenching of luminescence as a function of increasing Al content z.more » Average structure techniques reveal changes in polyhedral distortion with increasing z for the 9-coordinate Eu site in β-SiAlON:Eu 2+. X-ray absorption near edge structure (XANES) is used to confirm that the majority of the activator Eu is in the Eu 2+ state, exhibiting the symmetry-allowed and efficient 4f 75d 0 → 4f 65d 1 transitions. As a result, room temperature and temperature-dependent luminescence indicate a curious increase in thermal stability with increasing z over a small range due to an increasing barrier for thermal ionization, which is correlated to an increase in the quantum yield of the phosphor.« less

  13. Understanding the links between composition, polyhedral distortion, and luminescence properties in green-emitting β-Si 6–zAl zO zN 8–z:Eu 2+ phosphors

    DOE PAGES

    Cozzan, Clayton; Laurita, Geneva; Gaultois, Michael W.; ...

    2017-09-21

    Inorganic phosphor materials play a crucial role in the creation of white light from blue and near-UV solid-state light-emitting diodes. Understanding the intricacies of the phosphor structure is key for setting the stage for improved, more efficient functionality. Average structure and coordination environment analysis of the robust and efficient green-emitting phosphor, β-SiAlON:Eu 2+ (β-Si 6–zAl zO zN 8–zEu 0.009), is combined here with a range of property measurements to elucidate the role of Al content ( z) in luminescence properties, including the red shift of emission and the thermal quenching of luminescence as a function of increasing Al content z.more » Average structure techniques reveal changes in polyhedral distortion with increasing z for the 9-coordinate Eu site in β-SiAlON:Eu 2+. X-ray absorption near edge structure (XANES) is used to confirm that the majority of the activator Eu is in the Eu 2+ state, exhibiting the symmetry-allowed and efficient 4f 75d 0 → 4f 65d 1 transitions. As a result, room temperature and temperature-dependent luminescence indicate a curious increase in thermal stability with increasing z over a small range due to an increasing barrier for thermal ionization, which is correlated to an increase in the quantum yield of the phosphor.« less

  14. Search for a Vectorlike Quark with Charge 2/3 in t+Z Events from pp Collisions at √s=7 TeV

    DOE PAGES

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; ...

    2011-12-29

    A search for pair-produced heavy vectorlike charge-2/3 quarks, T, in pp collisions at a center-of-mass energy of 7 TeV, is performed with the CMS detector at the LHC. Events consistent with the flavor-changing-neutral-current decay of a T quark to a top quark and a Z boson are selected by requiring two leptons from the Z-boson decay, as well as an additional isolated charged lepton. In a data sample corresponding to an integrated luminosity of 1.14 fb⁻¹, the number of observed events is found to be consistent with the standard model background prediction. Assuming a branching fraction of 100% for themore » decay T→tZ, a T quark with a mass less than 475 GeV/c² is excluded at the 95% confidence level.« less

  15. Rest-Frame Optical Spectra of Three Strongly Lensed Galaxies at z ~ 2

    NASA Astrophysics Data System (ADS)

    Hainline, Kevin N.; Shapley, Alice E.; Kornei, Katherine A.; Pettini, Max; Buckley-Geer, Elizabeth; Allam, Sahar S.; Tucker, Douglas L.

    2009-08-01

    We present Keck II NIRSPEC rest-frame optical spectra for three recently discovered lensed galaxies: the Cosmic Horseshoe (z = 2.38), the Clone (z = 2.00), and SDSS J090122.37+181432.3 (z = 2.26). The boost in signal-to-noise ratio (S/N) from gravitational lensing provides an unusually detailed view of the physical conditions in these objects. A full complement of high S/N rest-frame optical emission lines is measured, spanning from rest frame 3600 to 6800 Å, including robust detections of fainter lines such as Hγ, [S II]λ6717,6732, and in one instance [Ne III]λ3869. SDSS J090122.37+181432.3 shows evidence for active galactic nucleus activity, and therefore we focus our analysis on star-forming regions in the Cosmic Horseshoe and the Clone. For these two objects, we estimate a wide range of physical properties. Current lensing models for the Cosmic Horseshoe and the Clone allow us to correct the measured Hα luminosity and calculated star formation rate. Metallicities have been estimated with a variety of indicators, which span a range of values of 12+ log(O/H) = 8.3-8.8, between ~0.4 and ~1.5 of the solar oxygen abundance. Dynamical masses were computed from the Hα velocity dispersions and measured half-light radii of the reconstructed sources. A comparison of the Balmer lines enabled measurement of dust reddening coefficients. Variations in the line ratios between the different lensed images are also observed, indicating that the spectra are probing different regions of the lensed galaxies. In all respects, the lensed objects appear fairly typical of ultraviolet-selected star-forming galaxies at z ~ 2. The Clone occupies a position on the emission-line diagnostic diagram of [O III]/Hβ versus [N II]/Hα that is offset from the locations of z ~ 0 galaxies. Our new NIRSPEC measurements may provide quantitative insights into why high-redshift objects display such properties. From the [S II] line ratio, high electron densities (~1000 cm-3) are inferred compared

  16. New z>2 clusters unveiled by Planck, Herschel & Spitzer - prospects for JWST & Euclid

    NASA Astrophysics Data System (ADS)

    Dole, Herve A.

    2015-08-01

    Searching for z>2 clusters/protoclusters is an active field in cosmology, and quite successfull using wide near-infrared surveys (e.g. Spitzer). We present a new approach by selecting highly star forming high-z cluster candidates over the whole sky using Planck, taking benefit of the redshifted far-infrared peak into the Planck submillimetre channels and a clean component separation (among which Galactic cirrus & CMB). Out of more than 1000 Planck high-z candidates, about 230 were confirmed by a Herschel/SPIRE follow-up as significant overdensities of red sources, confirming their high-z spectral energy distribution and high star formation rates (typically 700 Msun/yr per SPIRE source, and >5000 Msun/yr for each structure). These overdensities could be protoclusters in their intense star formation phase. Few targets have spectroscopic redshift (in the NIR and mm) confirmations, all in the range 1.7-2.3, while photometric analysis indicates z>2 for all the Planck counterparts.The key points here are the wavelength plus the angular and resolution coverage from Planck, Herschel and Spitzer. 40 fields were followed-up by Spitzer down to 1uJy 5sigma, and show unambiguous presence of galaxy overdensities compatible with z~2 based on color analysis on 4 band photometry (J, K, 3.6 and 4.5um). These targetted Spitzer observations can serve as pilot project for the more extended data coming in the next decade with JWST and Euclid.This new window on the high-z (z>2) protocluster may yield powerful constraints on structure formation (e.g., SFR vs environnement at high-z, z>2 mass assembly in clusters, bias). Furthermore, these objects will allow to better quantify the prediction for clusters to be detected by WFIRST and Euclid. Finally, these clusters will help us extending the current search for high-z clusters, in nice complementarity with current selections in the near-infrared (dominated by stellar mass) and the millimeter (dominated by hot gas and SZ effect), using the

  17. Quantification of m(Lg) for Small Explosions

    DTIC Science & Technology

    1993-03-12

    1() 4wpo2 (rah ~rah (1 ZHF= - 1 a 2 F. a 2Fe (4) RHF= r -1 L--- - ko2 Fp] (4n) THF = 1 11[f-`- F# IP - kIN2 F,0] (4o) 4jrpw2 r cr d-r PP= 1 F a(4p...vaz - (y - 1) cosh voz a12 = - (y -1) sinh v,,z / vI,, + y v# sinh vflz/k 2 a13 = - (cosh vz- cosh vpz)/ p a= ((k2 sinh vz / v. - v# sinh vz))/p a21...p AX3 = - [(2y - 1)X 1 - CPCQ) + -rXZ/k 2 + (Y 1)k2Wy]/p A𔃾 = (CPZ- k2CQW) / Ip V5 = -[2(1- CPCQ)k2 +WYk’+XZ]/p 2 A -’l = p[ _ (r - 1)2CQW+ Y2CpZ/k 2

  18. Search for massive resonances decaying into W W , W Z , Z Z , q W , and q Z with dijet final states at √{s }=13 TeV

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rabady, D.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Stoykova, S.; Sultanov, G.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Assran, Y.; Elgammal, S.; Mahrous, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Roland, B.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schäfer, D.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Csanad, M.; Filipovic, N.; Pasztor, G.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Lujan, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Sgaravatto, M.; Torassa, E.; Zanetti, M.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chadeeva, M.; Markin, O.; Parygin, P.; Philippov, D.; Polikarpov, S.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Dobson, M.; Dorney, B.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Karacheban, O.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bachmair, F.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Grynyov, B.; Levchuk, L.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Squires, M.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Sturdy, J.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2018-04-01

    Results are presented from a search in the dijet final state for new massive narrow resonances decaying to pairs of W and Z bosons or to a W /Z boson and a quark. Results are based on data recorded in proton-proton collisions at √{s }=13 TeV with the CMS detector at the CERN LHC. The data correspond to an integrated luminosity of 35.9 fb-1 . The mass range investigated extends upwards from 1.2 TeV. No excess is observed above the estimated standard model background and limits are set at 95% confidence level on cross sections, which are interpreted in terms of various models that predict gravitons, heavy spin-1 bosons, and excited quarks. In a heavy vector triplet model, W' and Z' resonances, with masses below 3.2 and 2.7 TeV, respectively, and spin-1 resonances with degenerate masses below 3.8 TeV are excluded at 95% confidence level. In the case of a singlet W' resonance masses between 3.3 and 3.6 TeV can be excluded additionally. Similarly, excited quark resonances, q*, decaying to q W and q Z with masses less than 5.0 and 4.7 TeV, respectively, are excluded. In a narrow-width bulk graviton model, upper limits are set on cross sections ranging from 0.6 fb for high resonance masses above 3.6 TeV, to 36.0 fb for low resonance masses of 1.3 TeV.

  19. The progenitors of the first red sequence galaxies at z ~ 2

    NASA Astrophysics Data System (ADS)

    Barro, G.; Faber, S.; Perez-Gonzalez, P.; Koo, D.; Williams, C.; Kocevski, D.; Trump, J.; Mozena, M.

    2013-07-01

    Nearby galaxies come in two flavors: red quiescent galaxies (QGs) with old stellar populations, and blue young star-forming galaxies (SFGs). This color bimodality seems to be already in place at z = 2 - 3, presenting also strong correlations with size and morphology. Surprisingly, massive QGs at higher redshifts are ~5 times smaller than local, equal mass analogs. In contrast, most of the massive SFGs at these redshifts are still relatively large disks. The strong bimodality in both SFR and sizes indicates that some SFGs must experience strong structural transformations accompanied by a rapid truncation of the star-formation to match the observed properties of QGs. Using high-resolution HST/WFC3 F160W imaging from the CANDELS survey in GOODS-S and UDS, along with multi-wavelength ancillary data, we analyze stellar masses, SFRs and sizes of a sample of massive (M* > 1010 M ⊙) galaxies at z = 1.4 - 3.0 to identify a population of compact SFGs with similar structural properties as compact QGs at z~2. We also find that the number density of QGs increases rapidly since z = 3. Among these, the number of compact QGs builds up first, and only at z < 1.8 we do start finding a sizable number of extended QGs. This suggests that the bulk of these galaxies are assembled at late times by both continuous migration (quenching) of non-compact SFGs and size growth of cQGs. As a result of this growth, the population of cQGs disappears by z~1. Simultaneously, we identify a population of compact SFGs (cSFGs) whose number density decreases steadily with time since z = 3.0, being almost completely absent at z < 1.4. The number of cSFGs makes up less than 20% of all massive SFGs, but they present similar number densities as cQGs down to z~2, suggesting an evolutionary link between the two populations.

  20. Z2Pack: Numerical implementation of hybrid Wannier centers for identifying topological materials

    NASA Astrophysics Data System (ADS)

    Gresch, Dominik; Autès, Gabriel; Yazyev, Oleg V.; Troyer, Matthias; Vanderbilt, David; Bernevig, B. Andrei; Soluyanov, Alexey A.

    2017-02-01

    The intense theoretical and experimental interest in topological insulators and semimetals has established band structure topology as a fundamental material property. Consequently, identifying band topologies has become an important, but often challenging, problem, with no exhaustive solution at the present time. In this work we compile a series of techniques, some previously known, that allow for a solution to this problem for a large set of the possible band topologies. The method is based on tracking hybrid Wannier charge centers computed for relevant Bloch states, and it works at all levels of materials modeling: continuous k .p models, tight-binding models, and ab initio calculations. We apply the method to compute and identify Chern, Z2, and crystalline topological insulators, as well as topological semimetal phases, using real material examples. Moreover, we provide a numerical implementation of this technique (the Z2Pack software package) that is ideally suited for high-throughput screening of materials databases for compounds with nontrivial topologies. We expect that our work will allow researchers to (a) identify topological materials optimal for experimental probes, (b) classify existing compounds, and (c) reveal materials that host novel, not yet described, topological states.

  1. Hard X-ray Emission along the Z Track in GX 17 + 2

    NASA Astrophysics Data System (ADS)

    Ding, G. Q.; Huang, C. P.

    2015-09-01

    Using the data from the Proportional Counter Array (PCA) and the High-Energy X-ray Timing Experiment (HEXTE) on board Rossi X-Ray Timing Explorer for Z source GX 17 + 2, we investigate the evolution of its PCA spectra and HEXTE spectra along a `Z' track on its hardness-intensity diagram. A hard X-ray tail is detected in the HEXTE spectra. The detected hard X-ray tails are discontinuously scattered throughout the Z track. The found hard X-ray tail hardens from the horizontal branch, through the normal branch, to the flaring branch in principle and it contributes ˜(20-50)% of the total flux in 20-200 keV. Our joint fitting results of the PCA + HEXTE spectra in 3-200 keV show that the portion of Comptonization in the Bulk-Motion Comptonization (BMC) model accounts for the hard X-ray tail, which indicates that the BMC process could be responsible for the detected hard tail. The temperature of the seed photons for BMC is ˜2.7 keV, implying that these seed photons might be emitted from the surface of the neutron star (NS) or the boundary layer between the NS and the disk and, therefore, this process could take place around the NS or in the boundary layer.

  2. Right-handed neutrino dark matter in the classically conformal U(1 ) ' extended standard model

    NASA Astrophysics Data System (ADS)

    Oda, Satsuki; Okada, Nobuchika; Takahashi, Dai-suke

    2017-11-01

    We consider the dark matter (DM) scenario in the context of the classically conformal U(1 ) ' extended standard model (SM), with three right-handed neutrinos (RHNs) and the U(1 ) ' Higgs field. The model is free from all of the U(1 ) ' gauge and gravitational anomalies in the presence of the three RHNs. We introduce a Z2 parity in the model, under which an odd parity is assigned to one RHN, while all of the other particles are assigned to be Z2 even, and hence the Z2-odd RHN serves as a DM candidate. In this model, the U(1 ) ' gauge symmetry is radiatively broken through the Coleman-Weinberg mechanism, by which the electroweak symmetry breaking is triggered. There are three free parameters in our model—the U(1 ) ' charge of the SM Higgs doublet (xH ), the new U(1 ) ' gauge coupling (gX ), and the U(1 ) ' gauge boson (Z') mass (mZ')—which are severely constrained in order to solve the electroweak vacuum instability problem, and satisfy the LHC Run-2 bounds from the search for the Z' boson resonance. In addition to these constraints, we investigate the RHN DM physics. Because of the nature of classical conformality, we find that a RHN DM pair mainly annihilates into the SM particles through Z' boson exchange. This is the so-called Z'-portal DM scenario. Combining the electroweak vacuum stability condition, the LHC Run-2 bounds, and the cosmological constraint from the observed DM relic density, we find that all constraints work together to narrow the allowed parameter regions and, in particular, exclude mZ'≲3.5 TeV . For the obtained allowed regions, we calculate the spin-independent cross section of the RHN DM with nucleons. We find that the resultant cross section is well below the current experimental upper bounds.

  3. Protonation state of the Cu4S2 CuZ site in nitrous oxide reductase: redox dependence and insight into reactivity

    PubMed Central

    Johnston, Esther M.; Dell’Acqua, Simone; Pauleta, Sofia R.; Moura, Isabel; Solomon, Edward I.

    2015-01-01

    Spectroscopic and computational methods have been used to determine the protonation state of the edge sulfur ligand in the Cu4S2 CuZ form of the active site of nitrous oxide reductase (N2OR) in its 3CuICuII (1-hole) and 2CuI2CuII (2-hole) redox states. The EPR, absorption, and MCD spectra of 1-hole CuZ indicate that the unpaired spin in this site is evenly delocalized over CuI, CuII, and CuIV. 1-hole CuZ is shown to have a μ2-thiolate edge ligand from the observation of S-H bending modes in the resonance Raman spectrum at 450 and 492 cm−1 that have significant deuterium isotope shifts (−137 cm−1) and are not perturbed up to pH 10. 2-hole CuZ is characterized with absorption and resonance Raman spectroscopies as having two Cu-S stretching vibrations that profile differently. DFT models of the 1-hole and 2-hole CuZ sites are correlated to these spectroscopic features to determine that 2-hole CuZ has a μ2-sulfide edge ligand at neutral pH. The slow two electron (+1 proton) reduction of N2O by 1-hole CuZ is discussed and the possibility of a reaction between 2-hole CuZ and O2 is considered. PMID:26417423

  4. Probing the galaxy-halo connection in UltraVISTA to z ˜ 2

    NASA Astrophysics Data System (ADS)

    McCracken, H. J.; Wolk, M.; Colombi, S.; Kilbinger, M.; Ilbert, O.; Peirani, S.; Coupon, J.; Dunlop, J.; Milvang-Jensen, B.; Caputi, K.; Aussel, H.; Béthermin, M.; Le Fèvre, O.

    2015-05-01

    We use percent-level precision photometric redshifts in the UltraVISTA-DR1 near-infrared survey to investigate the changing relationship between galaxy stellar mass and the dark matter haloes hosting them to z ˜ 2. We achieve this by measuring the clustering properties and abundances of a series of volume-limited galaxy samples selected by stellar mass and star formation activity. We interpret these results in the framework of a phenomenological halo model and numerical simulations. Our measurements span a uniquely large range in stellar mass and redshift and reach below the characteristic stellar mass to z ˜ 2. Our results are: (1) at fixed redshift and scale, clustering amplitude depends monotonically on sample stellar mass threshold; (2) at fixed angular scale, the projected clustering amplitude decreases with redshift but the comoving correlation length remains constant; (3) characteristic halo masses and galaxy bias increase with increasing median stellar mass of the sample; (4) the slope of these relationships is modified in lower mass haloes; (5) concerning the passive galaxy population, characteristic halo masses are consistent with a simply less-abundant version of the full galaxy sample, but at lower redshifts the fraction of satellite galaxies in the passive population is very different from the full galaxy sample; (6) finally, we find that the ratio between the characteristic halo mass and median stellar mass at each redshift bin reaches a peak at log (Mh/M⊙) ˜ 12.2 and the position of this peak remains constant out to z ˜ 2. The behaviour of the full and passively evolving galaxy samples can be understood qualitatively by considering the slow evolution of the characteristic stellar mass in the redshift range probed by our survey.

  5. Beyond the Standard Model IV

    NASA Astrophysics Data System (ADS)

    Gunion, John F.; Han, Tao; Ohnemus, James

    1995-08-01

    Supersymmetry * A Fourth Family in the MSSM? * Multi-channel Search for Supergravity at the Large Hadron Collider * Precise Predictions for Masses and Couplings in the Minimal Supersymmetric Standard Model * Radiative b Decays and the Detection of Supersymmetric Dark Matter * Bounds on ΔB = 1 Couplings in the Supersymmetric Standard Model * Testing Supersymmetry at the Next Linear Collider * SUSY Phenomenology II * Is There a Light Gluino Window? * Soft Supersymmetry Breaking and Finiteness * Consequences of Low Energy Dynamical Supersymmetry Breaking * String Model Theory and Phenomenology * Z2 × Z2 Orbifold Compactification - the Origin of Realistic Free Fermionic Models * Effective Supergravity from 4-D Fermionic Strings * String Models Featuring Direct Product Unification * Hadronic and Non-Perturbative Physics * Salient Features of High-Energy Multiparticle Distributions: 1-d Ising Model Captures Them All * Pion Fusion in the Equivalent Pion Approximation * Deterministic Theory of Atomic Structure * Disoriented Chiral Condensate * Higgs Physics * The LHC Phenomenology of the CP-Odd Scalar in Two-Doublet Models * Detection of Minimal Supersymmetric Model Higgs Bosons in γγ Collisions: Influence of SUSY Decay Modes * Electroweak Corrections to the Charged Higgs Production Cross-Section * A Comparison of Higgs Mass Bounds in the SM and the MSSM * Searching for Higgs Bosons on LHC Using b-Tagging * Top Quark and Flavor Physics * Flavor Mixing, CP Violation and a Heavy Top * New Fermion Families and Precision Electroweak Data * Dipole Operator Phenomenology and Quark Mass Generation: An Update * Possible Higgs Boson Effects on the Running of Third and Fourth Generation Quark Masses and Mixings * How the Top Family Differs * Fermion Masses in Extended Technicolour * New Developments in Perturbative QCD * Efficient Analytic Computation of Higher-Order QCD Amplitudes * Use of Recursion Relations to Compute One-Loop Helicity Amplitudes * Gluon Radiation Patterns in Hard

  6. The Chloroplast Division Protein ARC6 Acts to Inhibit Disassembly of GDP-bound FtsZ2.

    PubMed

    Sung, Min Woo; Shaik, Rahamthulla; TerBush, Allan D; Osteryoung, Katherine W; Vitha, Stanislav; Holzenburg, Andreas

    2018-05-16

    Chloroplasts host photosynthesis and fulfill other metabolic functions that are essential to plant life. They have to divide by binary fission to maintain their numbers throughout cycles of cell division. Chloroplast division is achieved by a complex ring-shaped division machinery located on both the inner (stromal) and the outer (cytosolic) side of the chloroplast envelope. The inner division ring (termed the Z ring) is formed by the assembly of tubulin-like FtsZ1 and FtsZ2 proteins. ARC6 is a key chloroplast division protein that interacts with the Z ring. ARC6 spans the inner envelope membrane, is known to stabilize or maintain the Z ring, and anchors the Z ring to the inner membrane through interaction with FtsZ2. The underlying mechanism of Z-ring stabilization is not well understood. Here, biochemical and structural characterization of ARC6 was conducted using light scattering, sedimentation, and light and transmission electron microscopy. The recombinant protein was purified as a dimer. The results indicated that a truncated form of ARC6 (tARC6), representing the stromal portion of ARC6, affects FtsZ2 assembly without forming higher-order structures, and exerts its effect via FtsZ2 dynamics. tARC6 prevented GDP-induced FtsZ2 disassembly and caused a significant net increase in FtsZ2 assembly when GDP was present. Single particle analysis and 3D reconstruction were performed to elucidate the structural basis of ARC6 activity. Together, the data reveal that a dimeric form of tARC6 binds to FtsZ2 filaments and does not increase FtsZ polymerization rates but rather inhibits GDP-associated FtsZ2 disassembly. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Herschel Extreme Lensing Line Observations: Dynamics of Two Strongly Lensed Star-Forming Galaxies near Redshift z=2*

    NASA Technical Reports Server (NTRS)

    Rhoads, James E.; Rigby, Jane Rebecca; Malhotra, Sangeeta; Allam, Sahar; Carilli, Chris; Combes, Francoise; Finkelstein, Keely; Finkelstein, Steven; Frye, Brenda; Gerin, Maryvonne; hide

    2014-01-01

    We report on two regularly rotating galaxies at redshift z approx. = 2, using high-resolution spectra of the bright [C microns] 158 micrometers emission line from the HIFI instrument on the Herschel Space Observatory. Both SDSS090122.37+181432.3 ("S0901") and SDSSJ120602.09+514229.5 ("the Clone") are strongly lensed and show the double-horned line profile that is typical of rotating gas disks. Using a parametric disk model to fit the emission line profiles, we find that S0901 has a rotation speed of v sin(i) approx. = 120 +/- 7 kms(sup -1) and a gas velocity dispersion of (standard deviation)g < 23 km s(sup -1) (1(standard deviation)). The best-fitting model for the Clone is a rotationally supported disk having v sin(i) approx. = 79 +/- 11 km s(sup -1) and (standard deviation)g 4 kms(sup -1) (1(standard deviation)). However, the Clone is also consistent with a family of dispersion-dominated models having (standard deviation)g = 92 +/- 20 km s(sup -1). Our results showcase the potential of the [C microns] line as a kinematic probe of high-redshift galaxy dynamics: [C microns] is bright, accessible to heterodyne receivers with exquisite velocity resolution, and traces dense star-forming interstellar gas. Future [C microns] line observations with ALMA would offer the further advantage of spatial resolution, allowing a clearer separation between rotation and velocity dispersion.

  8. Fluctuations, Electron Transport, and Flow Shear in 2D Axial, Azimuthal (z-θ) Hybrid Hall Thruster Simulations.

    NASA Astrophysics Data System (ADS)

    Fernandez, Eduardo; Gascon, Nicolas; Knoll, Aaron; Scharfe, Michelle; Cappelli, Mark

    2007-11-01

    Motivated by the inability of radial-axial (r-z) simulations to properly treat cross-field electron transport in Hall thrusters, a novel 2D zmodel has been implemented. In common with many r-z descriptions, the simulation is hybrid in nature and assumes quasi-neutrality. Unlike r-z models, electron transport is not enhanced with an ad-hoc mobility coefficient; instead it is given by collisional or ``classical'' terms as well as ``anomalous'' contributions associated with azimuthal electric field fluctuations. Results indicate that anomalous transport dominates classical transport for most of the channel and near field, except in a strong electron flow shear region near the channel exit. The correlation between flow shear, fluctuation behavior, and electron transport will be examined, along with experimental data from the Stanford Hall Thruster. Our findings make a strong link to the turbulent transport suppression mechanism by flow shear seen in fusion devices. The scheme for combining the r-z and z-θ descriptions into an upcoming 3D hybrid model will be presented.

  9. Fluctuations of the intergalactic ionization field at redshift z ~ 2

    NASA Astrophysics Data System (ADS)

    Agafonova, I. I.; Levshakov, S. A.; Reimers, D.; Hagen, H.-J.; Tytler, D.

    2013-04-01

    Aims: To probe the spectral energy distribution (SED) of the ionizing background radiation at z2 and to specify the sources contributing to the intergalactic radiation field. Methods: The spectrum of a bright quasar HS 1103+6416 (zem = 2.19) contains five successive metal-line absorption systems at zabs = 1.1923, 1.7193, 1.8873, 1.8916, and 1.9410. The systems are optically thin and reveal multiple lines of different metal ions with the ionization potentials lying in the extreme ultraviolet (EUV) range (~1 Ryd to ~0.2 keV). For each system, the EUV SED of the underlying ionization field is reconstructed by means of a special technique developed for solving the inverse problem in spectroscopy. For the zabs = 1.8916 system, the analysis also involves the He I resonance lines of the Lyman series and the He iλ504 Å continuum, which are seen for the first time in any cosmic object except the Sun. Results: From one system to another, the SED of the ionizing continuum changes significantly, indicating that the intergalactic ionization field at z2 fluctuates at the scale of at least Δz ~ 0.004. This is consistent with Δz ≲ 0.01 estimated from He II and H I Lyman-α forest measurements between the redshifts 2 and 3. A radiation intensity break by approximately an order of magnitude at E = 4 Ryd in SEDs restored for the zabs = 1.1923, 1.8873, 1.8916, and 1.9410 systems points to quasars as the main sources of the ionizing radiation. The SED variability is mostly caused by a small number of objects contributing at any given redshift to the ionizing background; at scales Δz ≳ 0.05, the influence of local radiation sources becomes significant. A remarkable SED restored for the zabs = 1.7193 system, with a sharp break shifted to E ~ 3.5 Ryd and a subsequent intensity decrease by ~1.5 dex, indicates a source with comparable inputs of both hard (active galactic nuclei, AGN) and soft (stellar) radiation components. Such a continuum can be emitted by (ultra

  10. Search for the Standard Model Higgs boson in the decay channel H → Z Z ( * ) → 4 ℓ with the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2011-10-17

    A search for the Standard Model Higgs boson in the decay channel H→ZZ(*)→ℓ+ℓ-ℓ'+ℓ'-, where ℓ=e,μ, is presented. Proton–proton collision data at s=7TeV recorded with the ATLAS detector and corresponding to an average integrated luminosity of 2.1fb -1 are compared to the Standard Model expectations. Upper limits on the production cross section of a Standard Model Higgs boson with a mass between 110 and 600GeV are derived. The observed (expected) 95% confidence level upper limit on the production cross section for a Higgs boson with a mass of 194 GeV, the region with the best expected sensitivity for this search, ismore » 0.99 (1.01) times the Standard Model prediction. The Standard Model Higgs boson is excluded at 95% confidence level in the mass ranges 191–197, 199–200 and 214–224 GeV« less

  11. Existence and construction of Galilean invariant z2 theories

    NASA Astrophysics Data System (ADS)

    Grinstein, Benjamín; Pal, Sridip

    2018-06-01

    We prove a no-go theorem for the construction of a Galilean boost invariant and z2 anisotropic scale invariant field theory with a finite dimensional basis of fields. Two point correlators in such theories, we show, grow unboundedly with spatial separation. Correlators of theories with an infinite dimensional basis of fields, for example, labeled by a continuous parameter, do not necessarily exhibit this bad behavior. Hence, such theories behave effectively as if in one extra dimension. Embedding the symmetry algebra into the conformal algebra of one higher dimension also reveals the existence of an internal continuous parameter. Consideration of isometries shows that the nonrelativistic holographic picture assumes a canonical form, where the bulk gravitational theory lives in a space-time with one extra dimension. This can be contrasted with the original proposal by Balasubramanian and McGreevy, and by Son, where the metric of a (d +2 )-dimensional space-time is proposed to be dual of a d -dimensional field theory. We provide explicit examples of theories living at fixed point with anisotropic scaling exponent z =2/ℓ ℓ+1 , ℓ∈Z .

  12. Massive Galaxies at z=2-3: A Large Population of Disky Star-Forming Systems?

    NASA Astrophysics Data System (ADS)

    Weinzirl, Tim; Jogee, S.; GOODS-NICMOS Collaboration

    2011-01-01

    The assembly modes via which galaxies develop their present-day mass and structure remain hotly debated. We explore this issue using one of the largest samples of massive galaxies (166 with stellar mass Mstar ≥ 5 × 1010 M⊙) at z=1-3 with NICMOS F160W observations from the GOODS NICMOS Survey (GNS), along with complementary ACS, Spitzer, and Chandra data. Our findings are: (1) The majority of the massive galaxies at z=2-3 have a disky structure (as characterized by the index of single-component Sersic profiles). Most are also compact with half-light radii less than 2 kpc. These massive galaxies at z=2-3 appear to be radically different in structure from their more massive descendants at z 0. Through artificial redshfiting experiments based on redshifted simulated NICMOS data of such massive z 0 elliptical, S0, and spiral galaxies, we show that most of this difference in structure is not due to cosmological or instrumental effects. This implies that significant structural evolution is needed to convert the massive z=2-3 systems into their z 0 elliptical and S0 descendants, and places important constraints on the associated evolutionary mechanisms (e.g., major mergers and cold accretion). (2) Using IR luminosities inferred from Spitzer detections, we find that over z=1-3, the mean star formation rate (SFR) rises substantially, even if AGN candidates are excluded. SFRs of several hundred solar masses per year or higher are common. The results imply a much higher average cold gas fraction than exists in z 0 galaxies. (3) We identify AGN candidates using a variety of techniques (X-ray properties, IR power-law, and IR-to-optical excess) and classify about one-third of the massive galaxies at z=1-3 as AGN hosts. The AGN fraction rises with redshift and is 40% at z=2-3. A significant fraction of the AGN candidates have disky structures although they host massive black holes.

  13. A magnetic topological semimetal Sr 1-yMn 1-zSb2 (y, z < 0.10)

    DOE PAGES

    Liu, J. Y.; Hu, J.; Zhang, Qiang; ...

    2017-07-24

    Weyl (WSMs) evolve from Dirac semimetals in the presence of broken time-reversal symmetry (TRS) or space-inversion symmetry. The WSM phases in TaAs-class materials and photonic crystals are due to the loss of space-inversion symmetry. For TRS-breaking WSMs, despite numerous theoretical and experimental efforts, few examples have been reported. Here in this paper, we report a new type of magnetic semimetal Sr 1-yMn 1-zSb 2 (y, z < 0.1) with nearly massless relativistic fermion behaviour (m* = 0.04 - 0.05m 0, where m 0 is the free-electron mass). This material exhibits a ferromagnetic order for 304 K < T < 565more » K, but a canted antiferromagnetic order with a ferromagnetic component for T < 304 K. The combination of relativistic fermion behaviour and ferromagnetism in Sr 1-yMn 1-zSb2 offers a rare opportunity to investigate the interplay between relativistic fermions and spontaneous TRS breaking.« less

  14. A magnetic topological semimetal Sr 1-yMn 1-zSb2 (y, z < 0.10)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J. Y.; Hu, J.; Zhang, Qiang

    Weyl (WSMs) evolve from Dirac semimetals in the presence of broken time-reversal symmetry (TRS) or space-inversion symmetry. The WSM phases in TaAs-class materials and photonic crystals are due to the loss of space-inversion symmetry. For TRS-breaking WSMs, despite numerous theoretical and experimental efforts, few examples have been reported. Here in this paper, we report a new type of magnetic semimetal Sr 1-yMn 1-zSb 2 (y, z < 0.1) with nearly massless relativistic fermion behaviour (m* = 0.04 - 0.05m 0, where m 0 is the free-electron mass). This material exhibits a ferromagnetic order for 304 K < T < 565more » K, but a canted antiferromagnetic order with a ferromagnetic component for T < 304 K. The combination of relativistic fermion behaviour and ferromagnetism in Sr 1-yMn 1-zSb2 offers a rare opportunity to investigate the interplay between relativistic fermions and spontaneous TRS breaking.« less

  15. Differential deposition of H2A.Z in rice seedling tissue during the day-night cycle.

    PubMed

    Zhang, Kang; Xu, Wenying; Wang, Chunchao; Yi, Xin; Su, Zhen

    2017-03-04

    Chromatin structure has an important role in modulating gene expression. The incorporation of histone variants into the nucleosome leads to important changes in the chromatin structure. The histone variant H2A.Z is highly conserved between different species of fungi, animals, and plants. However, dynamic changes to H2A.Z in rice have not been reported during the day-night cycle. In this study, we generated genome wide maps of H2A.Z for day and night time in harvested seedling tissues by combining chromatin immunoprecipitation and high-throughput sequencing. The analysis results for the H2A.Z data sets detected 7099 genes with higher depositions of H2A.Z in seedling tissues harvested at night compared with seedling tissues harvested during the day, whereas 4597 genes had higher H2A.Z depositions in seedlings harvested during the day. The gene expression profiles data suggested that H2A.Z probably negatively regulated gene expression during the day-night cycle and was involved in many important biologic processes. In general, our results indicated that H2A.Z may play an important role in plant responses to the diurnal oscillation process.

  16. Discovery of a Lensed Ultrabright Submillimeter Galaxy at z = 2.0439

    NASA Astrophysics Data System (ADS)

    Díaz-Sánchez, A.; Iglesias-Groth, S.; Rebolo, R.; Dannerbauer, H.

    2017-07-01

    We report an ultrabright lensed submillimeter galaxy (SMG) at z = 2.0439, WISE J132934.18+224327.3, identified as a result of a full-sky cross-correlation of the AllWISE and Planck compact source catalogs aimed to search for bright analogs of the SMG SMM J2135, the Cosmic Eyelash. Inspection of archival SCUBA-2 observations of the candidates revealed a source with fluxes ({S}850μ {{m}}=130 mJy) consistent with the Planck measurements. The centroid of the SCUBA-2 source coincides within 1 arcsec with the position of the AllWISE mid-IR source, and, remarkably, with an arc-shaped lensed galaxy in HST images at visible wavelengths. Low-resolution rest-frame UV-optical spectroscopy of this lensed galaxy obtained with 10.4 m GTC reveals the typical absorption lines of a starburst galaxy. Gemini-N near-IR spectroscopy provided a clear detection of {{{H}}}α emission. The lensed source appears to be gravitationally magnified by a massive foreground galaxy cluster lens at z = 0.44 modeling with Lenstool indicates a lensing amplification factor of 11 ± 2. We determine an intrinsic rest-frame 8-1000 μm luminosity, {L}{IR}, of (1.3+/- 0.1)× {10}13 {L}⊙ , and a likely star formation rate (SFR) of ˜ 500{--}2000 {M}⊙ {{yr}}-1. The SED shows a remarkable similarity with the Cosmic Eyelash from optical-mid/IR to submillimeter/radio, albeit at higher fluxes.

  17. Search for massive resonances decaying into W W , W Z , Z Z , q W , and q Z with dijet final states at s = 13 TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2018-04-10

    Results are presented from a search in the dijet final state for new massive narrow resonances decaying to pairs of W and Z bosons or to a W/Z boson and a quark. Results are based on data recorded in proton-proton collisions at √s = 13 TeV with the CMS detector at the CERN LHC. The data correspond to an integrated luminosity of 35.9 fb -1. The mass range investigated extends upwards from 1.2 TeV. No excess is observed above the estimated standard model background and limits are set at 95% confidence level on cross sections, which are interpreted in termsmore » of various models that predict gravitons, heavy spin-1 bosons, and excited quarks. In a heavy vector triplet model, W' and Z' resonances, with masses below 3.2 and 2.7 TeV, respectively, and spin-1 resonances with degenerate masses below 3.8 TeV are excluded at 95% confidence level. In the case of a singlet W' resonance masses between 3.3 and 3.6 TeV can be excluded additionally. Similarly, excited quark resonances, q*, decaying to qW and qZ with masses less than 5.0 and 4.7 TeV, respectively, are excluded. In a narrow-width bulk graviton model, upper limits are set on cross sections ranging from 0.6 fb for high resonance masses above 3.6 TeV, to 36.0 fb for low resonance masses of 1.3 TeV.« less

  18. Search for massive resonances decaying into W W , W Z , Z Z , q W , and q Z with dijet final states at s = 13 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    Results are presented from a search in the dijet final state for new massive narrow resonances decaying to pairs of W and Z bosons or to a W/Z boson and a quark. Results are based on data recorded in proton-proton collisions at √s = 13 TeV with the CMS detector at the CERN LHC. The data correspond to an integrated luminosity of 35.9 fb -1. The mass range investigated extends upwards from 1.2 TeV. No excess is observed above the estimated standard model background and limits are set at 95% confidence level on cross sections, which are interpreted in termsmore » of various models that predict gravitons, heavy spin-1 bosons, and excited quarks. In a heavy vector triplet model, W' and Z' resonances, with masses below 3.2 and 2.7 TeV, respectively, and spin-1 resonances with degenerate masses below 3.8 TeV are excluded at 95% confidence level. In the case of a singlet W' resonance masses between 3.3 and 3.6 TeV can be excluded additionally. Similarly, excited quark resonances, q*, decaying to qW and qZ with masses less than 5.0 and 4.7 TeV, respectively, are excluded. In a narrow-width bulk graviton model, upper limits are set on cross sections ranging from 0.6 fb for high resonance masses above 3.6 TeV, to 36.0 fb for low resonance masses of 1.3 TeV.« less

  19. Stellar Populations of Highly Magnified Lensed Galaxies: Young Starbursts at Z approximately 2

    NASA Technical Reports Server (NTRS)

    Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Gilbank, David G.; Sharon, Keren; Gralla, Megan B.; Bayliss, Matthew B.

    2012-01-01

    We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions (SEDs) and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z = 1.70, MS1512-cB58 at z = 2.73, SGAS J152745.1+065219 at z = 2.76, and SGAS J122651.3+215220 at z = 2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 mag allow a detailed study of the stellar populations and physical conditions. We compare star formation rates (SFRs) as measured from the SED fit, the Ha and [O II] ?3727 emission lines, and the UV+IR bolometric luminosity where 24 micron photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z 2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses (3-7) ? 10(exp 9)Solar M young ages approx 100 Myr, little dust content E(B - V) = 0.10-0.25, and SFRs around 20-100 solar M/ yr. Compared to typical values for the galaxy population at z approx. 2, this suggests we are looking at newly formed, starbursting systems that have only recently started the buildup of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z approx 2.

  20. Connection between Stellar Mass Distributions within Galaxies and Quenching Since z = 2

    NASA Astrophysics Data System (ADS)

    Mosleh, Moein; Tacchella, Sandro; Renzini, Alvio; Carollo, C. Marcella; Molaeinezhad, Alireza; Onodera, Masato; Khosroshahi, Habib G.; Lilly, Simon

    2017-03-01

    We study the history from z˜ 2 to z˜ 0 of the stellar mass assembly of quiescent and star-forming galaxies in a spatially resolved fashion. For this purpose, we use multi-wavelength imaging data from the Hubble Space Telescope (HST) over the GOODS fields and the Sloan Digital Sky Survey (SDSS) for the local population. We present the radial stellar mass surface density profiles of galaxies with {M}* > {10}10 {M}⊙ , corrected for mass-to-light ratio ({M}* /L) variations, and derive the half-mass-radius (R m ), central stellar mass surface density within 1 kpc ({{{Σ }}}1) and surface density at R m ({{{Σ }}}m) for star-forming and quiescent galaxies and study their evolution with redshift. At fixed stellar mass, the half-mass sizes of quiescent galaxies increase from z˜ 2 to z˜ 0 by a factor of ˜ 3-5, whereas the half-mass sizes of star-forming galaxies increase only slightly, by a factor of ˜2. The central densities {{{Σ }}}1 of quiescent galaxies decline slightly (by a factor of ≲ 1.7) from z˜ 2 to z˜ 0, while for star-forming galaxies {{{Σ }}}1 increases with time, at fixed mass. We show that the central density {{{Σ }}}1 has a tighter correlation with specific star-formation rate (sSFR) than {{{Σ }}}m and for all masses and redshifts galaxies with higher central density are more prone to be quenched. Reaching a high central density ({{{Σ }}}1≳ {10}10 {M}⊙ {{kpc}}2) seems to be a prerequisite for the cessation of star formation, though a causal link between high {{{Σ }}}1 and quenching is difficult to prove and their correlation can have a different origin.

  1. LBT/LUCIFER Observations of the z ~ 2 Lensed Galaxy J0900+2234

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Fan, Xiaohui; Bechtold, Jill; McGreer, Ian D.; Just, Dennis W.; Sand, David J.; Green, Richard F.; Thompson, David; Peng, Chien Y.; Seifert, Walter; Ageorges, Nancy; Juette, Marcus; Knierim, Volker; Buschkamp, Peter

    2010-12-01

    We present rest-frame optical images and spectra of the gravitationally lensed, star-forming galaxy J0900+2234 (z = 2.03). The observations were performed with the newly commissioned LUCIFER1 near-infrared (NIR) instrument mounted on the Large Binocular Telescope. We fitted lens models to the rest-frame optical images and found that the galaxy has an intrinsic effective radius of 7.4 ± 0.8 kpc with a lens magnification factor of about 5 for the A and B components. We also discovered a new arc belonging to another lensed high-z source galaxy, which makes this lens system a potential double Einstein ring system. Using the high signal-to-noise ratio rest-frame spectra covered by the H + K band, we detected Hβ, [O III], Hα, [N II], and [S II] emission lines. Detailed physical properties of this high-z galaxy were derived. The extinction toward the ionized H II regions (Eg (B - V)) was computed from the flux ratio of Hα and Hβ and appears to be much higher than that toward the stellar continuum (Es (B - V)), derived from the optical and NIR broadband photometry fitting. The metallicity was estimated using N2 and O3N2 indices. It is in the range of 1/5-1/3 solar abundance, which is much lower than for typical z ~ 2 star-forming galaxies. From the flux ratio of [S II]λ6717 and [S II]λ6732, we found that the electron number density of the H II regions in the high-z galaxy was sime1000 cm-3, consistent with other z ~ 2 galaxies but much higher than that in local H II regions. The star formation rate was estimated via the Hα luminosity, after correction for the lens magnification, to be about 365 ± 69 M sun yr-1. Combining the FWHM of Hα emission lines and the half-light radius, we found that the dynamical mass of the lensed galaxy is (5.8 ± 0.9) × 1010 M sun. The gas mass is (5.1 ± 1.1) × 1010 M sun from the Hα flux surface density using global Kennicutt-Schmidt law, indicating a very high gas fraction of 0.79 ± 0.19 in J0900+2234. Based on data acquired

  2. The Sherwood simulation suite: overview and data comparisons with the Lyman α forest at redshifts 2z ≤ 5

    NASA Astrophysics Data System (ADS)

    Bolton, James S.; Puchwein, Ewald; Sijacki, Debora; Haehnelt, Martin G.; Kim, Tae-Sun; Meiksin, Avery; Regan, John A.; Viel, Matteo

    2017-01-01

    We introduce a new set of large-scale, high-resolution hydrodynamical simulations of the intergalactic medium: the Sherwood simulation suite. These are performed in volumes of 103-1603h-3 comoving Mpc3, span almost four orders of magnitude in mass resolution with up to 17.2 billion particles, and employ a variety of physics variations including warm dark matter and galactic outflows. We undertake a detailed comparison of the simulations to high-resolution, high signal-to-noise observations of the Ly α forest over the redshift range 2z ≤ 5. The simulations are in very good agreement with the observational data, lending further support to the paradigm that the Ly α forest is a natural consequence of the web-like distribution of matter arising in Λcold dark matter cosmological models. Only a small number of minor discrepancies remain with respect to the observational data. Saturated Ly α absorption lines with column densities N_{H I}>10^{14.5} cm^{-2} at 2 < z < 2.5 are underpredicted in the models. An uncertain correction for continuum placement bias is required to match the distribution and power spectrum of the transmitted flux, particularly at z > 4. Finally, the temperature of intergalactic gas in the simulations may be slightly too low at z = 2.7 and a flatter temperature-density relation is required at z = 2.4, consistent with the expected effects of non-equilibrium ionization during He II reionization.

  3. Search for the standard model higgs Boson in the ZH-->nunubb channel in 5.2 fb{-1} of pp collisions at sqrt[s]=1.96 TeV.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Aoki, M; Arnoud, Y; Arov, M; Askew, A; Asman, B; Atramentov, O; Avila, C; Backusmayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Barfuss, A-F; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calfayan, P; Calpas, B; Calvet, S; Camacho-Pérez, E; Cammin, J; Carrasco-Lizarraga, M A; Carrera, E; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cutts, D; Cwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; Devaughan, K; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Gadfort, T; Galea, C F; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Golovanov, G; Gómez, B; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Haefner, P; Hagopian, S; Haley, J; Hall, I; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jamin, D; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kirby, M H; Kirsch, M; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, W M; Leflat, A; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Mättig, P; Magaña-Villalba, R; Mal, P K; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Mendoza, L; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Mommsen, R K; Mondal, N K; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; Obrant, G; Ochando, C; Onoprienko, D; Orduna, J; Osman, N; Osta, J; Otec, R; Otero Y Garzón, G J; Owen, M; Padilla, M; Padley, P; Pangilinan, M; Parashar, N; Parihar, V; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pol, M-E; Polozov, P; Popov, A V; Prewitt, M; Price, D; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Tiller, B; Titov, M; Tokmenin, V V; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vint, P; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zeitnitz, C; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zutshi, V; Zverev, E G

    2010-02-19

    A search is performed for the standard model Higgs boson in 5.2 fb{-1} of pp collisions at sqrt[s]=1.96 TeV, collected with the D0 detector at the Fermilab Tevatron Collider. The final state considered is a pair of b jets and large missing transverse energy, as expected from pp-->ZH-->nunubb production. The search is also sensitive to the WH-->lnubb channel when the charged lepton is not identified. For a Higgs boson mass of 115 GeV, a limit is set at the 95% C.L. on the cross section multiplied by branching fraction for [pp-->(Z/W)H](H-->bb) that is a factor of 3.7 larger than the standard model value, consistent with the factor of 4.6 expected.

  4. Fiscal Year 2008 Phased Construction Completion Report for EU Z2-33 in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtel Jacobs

    The Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2161&D2) (Zone 2 ROD) acknowledged that most of the 800 acres in Zone 2 were contaminated, but that sufficient data to confirm the levels of contamination were lacking. The Zone 2 ROD further specified that a sampling strategy for filling the data gaps would be developed. The Remedial Design Report/Remedial Action Work Plan for Zone 2 Soils, Slabs, and Subsurface Structures, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2224&D3) (Zone 2 RDR/RAWP) defined the sampling strategy as themore » Dynamic Verification Strategy (DVS), generally following the approach used for characterization of the Zone 1 exposure units (EUs). The Zone 2 ROD divided the Zone 2 area into seven geographic areas and 44 EUs. To facilitate the data quality objectives (DQOs) of the DVS process, the Zone 2 RDR/RAWP regrouped the 44 EUs into 12 DQO scoping EU groups. These groups facilitated the DQO process by placing similar facilities and their support facilities together and allowing identification of data gaps. The EU groups were no longer pertinent after DQO planning was completed and characterization was conducted as areas became accessible. As the opportunity to complete characterization became available, the planned DVS program and remedial actions (RAs) were completed for EU Z2-33. Remedial action was also performed at two additional areas in adjacent EU Z2-42 because of their close proximity and similar nature to a small surface soil RA in EU Z2-33. Remedial actions for building slabs performed in EU Z2-33 during fiscal year (FY) 2007 were reported in the Fiscal Year 2007 Phased Construction Completion Report for the Zone 2 Soils, Slabs, and Subsurface Structures at East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2723&D1). Recommended RAs for EU Z2-42 were described in the Fiscal Year 2006 Phased

  5. [Anaerobic reduction of humus/Fe (III) and electron transport mechanism of Fontibacter sp. SgZ-2].

    PubMed

    Ma, Chen; Yang, Gui-qin; Lu, Qin; Zhou, Shun-gui

    2014-09-01

    Humus and Fe(III) respiration are important extracellular respiration metabolism. Electron transport pathway is the key issue of extracellular respiration. To understand the electron transport properties and the environmental behavior of a novel Fe(III)- reducing bacterium, Fontibacter sp. SgZ-2, capacities of anaerobic humus/Fe(III) reduction and electron transport mechanisms with four electron acceptors were investigated in this study. The results of anaerobic batch experiments indicated that strain SgZ-2 had the ability to reduce humus analog [ 9,10-anthraquinone-2,6-disulfonic acid (AQDS) and 9,10-anthraquinone-2-sulfonic acid (AQS)], humic acids (HA), soluble Fe(III) (Fe-EDTA and Fe-citrate) and Fe(III) oxides [hydrous ferric oxide (HFO)]. Fermentative sugars (glucose and sucrose) were the most effective electron donors in the humus/Fe(III) reduction by strain SgZ-2. Additionally, differences of electron carrier participating in the process of electron transport with different electron acceptors (i. e. , oxygen, AQS, Fe-EDTA and HFO) were investigated using respiratory inhibitors. The results suggested that similar respiratory chain components were involved in the reducing process of oxygen and Fe-EDTA, including dehydrogenase, quinones and cytochromes b-c. In comparison, only dehydrogenase was found to participate in the reduction of AQS and HFO. In conclusion, different electron transport pathways may be employed by strain SgZ-2 between insoluble and soluble electron acceptors or among soluble electron acceptors. Preliminary models of electron transport pathway with four electron acceptors were proposed for strain SgZ-2, and the study of electron transport mechanism was explored to the genus Fontibacter. All the results from this study are expected to help understand the electron transport properties and the environmental behavior of the genus Fontibacter.

  6. Dark matter, muon g -2 , electric dipole moments, and Z →ℓi+ℓj- in a one-loop induced neutrino model

    NASA Astrophysics Data System (ADS)

    Chiang, Cheng-Wei; Okada, Hiroshi; Senaha, Eibun

    2017-07-01

    We study a simple one-loop induced neutrino mass model that contains both bosonic and fermionic dark matter candidates and has the capacity to explain the muon anomalous magnetic moment anomaly. We perform a comprehensive analysis by taking into account the relevant constraints of charged lepton flavor violation, electric dipole moments, and neutrino oscillation data. We examine the constraints from lepton flavor-changing Z boson decays at the one-loop level, particularly when the involved couplings contribute to the muon g -2 . It is found that BR (Z →μ τ )≃(10-7- 10-6) while BR (τ →μ γ )≲10-11 in the fermionic dark matter scenario. The former can be probed by the precision measurement of the Z boson at future lepton colliders.

  7. On the UV compactness and morphologies of typical Lyman α emitters from z ˜ 2 to z ˜ 6

    NASA Astrophysics Data System (ADS)

    Paulino-Afonso, Ana; Sobral, David; Ribeiro, Bruno; Matthee, Jorryt; Santos, Sérgio; Calhau, João; Forshaw, Alex; Johnson, Andrea; Merrick, Joanna; Pérez, Sara; Sheldon, Oliver

    2018-06-01

    We investigate the rest-frame UV morphologies of a large sample of Lyman α emitters (LAEs) from z ˜ 2 to z ˜ 6, selected in a uniform way with 16 different narrow and medium bands over the full COSMOS field. We use 3045 LAEs with Hubble Space Telescope coverage in a stacking analysis and find that they have MUV ˜ -20, below M_UV^\\ast at these redshifts. We also focus our analysis on a subsample of 780 individual galaxies with iAB < 25 for which GALFIT converges for 429 of them. The individual median size (re ˜ 1 kpc), ellipticities [slightly elongated with (b/a) ˜ 0.45], Sérsic index (disc-like with n ≲ 2), and light concentration (comparable to that of disc or irregular galaxies, with C ˜ 2.7) of LAEs show mild evolution from z ˜ 2 to z ˜ 6. LAEs with the highest rest-frame equivalent widths (EWs) are the smallest/most compact (re ˜ 0.8 kpc, compared to re ˜ 1.5 kpc for the lower EW LAEs). When stacking our samples in bins of fixed Lyα luminosity and Lyα EW, we find evidence for redshift evolution in n and C, but not in galaxy sizes. The evolution seems to be stronger for LAEs with 25 < EW < 100 Å. When compared to other star-forming galaxies (SFGs), LAEs are found to be smaller at all redshifts. The difference between the two populations changes with redshift, from a factor of ˜1 at z ≳ 5 to SFGs being a factor of ˜2-4 larger than LAEs for z2. This means that at the highest redshifts, where typical sizes approach those of LAEs, the fraction of galaxies showing Lyα in emission (and with a high Lyα escape fraction) should be much higher, consistent with observations.

  8. CLASH: DISCOVERY OF A BRIGHT z {approx_equal} 6.2 DWARF GALAXY QUADRUPLY LENSED BY MACS J0329.6-0211

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitrin, A.; Moustakas, J.; Bradley, L.

    2012-03-15

    We report the discovery of a z{sub phot} = 6.18{sup +0.05}{sub -0.07} (95% confidence level) dwarf galaxy, lensed into four images by the galaxy cluster MACS J0329.6-0211 (z{sub l} = 0.45). The galaxy is observed as a high-redshift dropout in HST/ACS/WFC3 CLASH and Spitzer/IRAC imaging. Its redshift is securely determined due to a clear detection of the Lyman break in the 18-band photometry, making this galaxy one of the highest-redshift multiply lensed objects known to date with an observed magnitude of F125W =24.00 {+-} 0.04 AB mag for its most magnified image. We also present the first strong-lensing analysis ofmore » this cluster uncovering 15 additional multiply imaged candidates of five lower-redshift sources spanning the range z{sub s} {approx_equal} 2-4. The mass model independently supports the high photometric redshift and reveals magnifications of 11.6{sup +8.9}{sub -4.1}, 17.6{sup +6.2}{sub -3.9}, 3.9{sup +3.0}{sub -1.7}, and 3.7{sup +1.3}{sub -0.2}, respectively, for the four images of the high-redshift galaxy. By delensing the most magnified image we construct an image of the source with a physical resolution of {approx}200 pc when the universe was {approx}0.9 Gyr old, where the z {approx_equal} 6.2 galaxy occupies a source-plane area of approximately 2.2 kpc{sup 2}. Modeling the observed spectral energy distribution using population synthesis models, we find a demagnified stellar mass of {approx}10{sup 9} M{sub Sun }, subsolar metallicity (Z/Z{sub Sun} {approx} 0.5), low dust content (A{sub V} {approx} 0.1 mag), a demagnified star formation rate (SFR) of {approx}3.2 M{sub Sun} yr{sup -1}, and a specific SFR of {approx}3.4 Gyr{sup -1}, all consistent with the properties of local dwarf galaxies.« less

  9. The properties and evolution of a K-band selected sample of massive galaxies at z ~ 0.4-2 in the Palomar/DEEP2 survey

    NASA Astrophysics Data System (ADS)

    Conselice, C. J.; Bundy, K.; Trujillo, I.; Coil, A.; Eisenhardt, P.; Ellis, R. S.; Georgakakis, A.; Huang, J.; Lotz, J.; Nandra, K.; Newman, J.; Papovich, C.; Weiner, B.; Willmer, C.

    2007-11-01

    undergo on average 0.9+0.7-0.5 major mergers at 0.4 < z < 1.4. (v) We find that a high (5 per cent) fraction of all M* > 1011Msolar galaxies are X-ray emitters. Roughly half of these are morphologically distorted ellipticals or peculiars. Finally, we compare our mass growth with semi-analytical models from the Millennium Simulation, finding relative good agreement at z < 2 for the M* < 1011.5Msolar systems, but that the number and mass densities of M* > 1011.5Msolar galaxies are underpredicted by a factor of >100.

  10. Matrix quantum mechanics on S1 /Z2

    NASA Astrophysics Data System (ADS)

    Betzios, P.; Gürsoy, U.; Papadoulaki, O.

    2018-03-01

    We study Matrix Quantum Mechanics on the Euclidean time orbifold S1 /Z2. Upon Wick rotation to Lorentzian time and taking the double-scaling limit this theory provides a toy model for a big-bang/big crunch universe in two dimensional non-critical string theory where the orbifold fixed points become cosmological singularities. We derive the MQM partition function both in the canonical and grand canonical ensemble in two different formulations and demonstrate agreement between them. We pinpoint the contribution of twisted states in both of these formulations either in terms of bi-local operators acting at the end-points of time or branch-cuts on the complex plane. We calculate, in the matrix model, the contribution of the twisted states to the torus level partition function explicitly and show that it precisely matches the world-sheet result, providing a non-trivial test of the proposed duality. Finally we discuss some interesting features of the partition function and the possibility of realising it as a τ-function of an integrable hierarchy.

  11. [Z2 appliance: the pre-adjusted appliance based on Chinese normal occlusion].

    PubMed

    Zeng, Xiang-long; Gao, Xue-mei

    2008-12-01

    Z2 appliance is the pre-adjusted appliance designed for Chinese orthodontic patients. The prescription of the appliance is based on Chinese normal occlusion, which is much different from the West in the first and the second orders as well as the third one. The appliance routinely includes 20 brackets and 8 molar buccal tubers with 3 standard arch forms. Clinically, continued light force is used in whole treatment. The side-effects such as forward tipping of incisors, bite deepening and loss of molar anchorage are reduced further due to fewer tips built into the anterior brackets as well as lower friction elastometric modules used during aligning and leveling. In condition of arch are leveled completely, 0.48 mm x 0.64 mm stainless steel archwire with 1.47 N retraction force is the best combination for sliding mechanics, which is proved by 3D nonlinear finite element study. Self drilling micro-screw is used for maximum anchorage. In finishing stage 0.53 mm x 0.64 mm NT arch wire is added in order to get full torque expressing. The research of Chinese pre-adjusted appliance has been lasted for more than 10 years in the department and clinical studies on Z2 appliance show that with minimal wire bending, treatment is more efficient and result is high quality and more consistent for Chinese orthodontic patients.

  12. Stability of half-metallic behavior with lattice variation for Fe2MnZ (Z = Si, Ge, Sn) Heusler alloy

    NASA Astrophysics Data System (ADS)

    Jain, Vivek Kumar; Lakshmi, N.; Jain, Rakesh

    2018-05-01

    The electronic structure and magnetic properties with variation of lattice constant for Fe2MnZ (Z = Si, Ge, Sn) Heusler alloys have been studied. Optimized lattice constant are found to be 5.59, 5.69, 6.00 Å for Z= Si, Ge and Sn respectively. Total magnetic moments of the alloys are ˜3 µB as predicted by the Slater Pauling rule and is maintained over a wide range of lattice variation for all three alloys. Half metallic ferromagnetic nature with 100% spin polarization is observed for Fe2MnSi for a lattice range from 5.40-5.70 Å. Fe2MnGe and Fe2MnSn show ferromagnetic and metallic natures with more than 90% spin polarization over a wide range of lattice constant. Due to the stability of half metallic character of these alloys with respect to variation in the lattice parameters, they are promising robust materials suitable for spintronics device applications.

  13. Constraints on the Z-Z Prime mixing angle from data measured for the process e{sup +}e{sup -} {yields} W{sup +}W{sup -} at the LEP2 collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Vas. V., E-mail: quarks@gsu.by; Pankov, A. A., E-mail: pankov@ictp.it

    2012-01-15

    An analysis of effects induced by new neutral gauge Z Prime bosons was performed on the basis of data from the OPAL, DELPHI, ALEPH, and L3 experiments devoted to measuring differential cross sections for the process of the annihilation production of pairs of charged gauge W{sup {+-}} bosons at the LEP2 collider. By using these experimental data, constraints on the Z Prime -boson mass and on the angle of Z-Z Prime mixing were obtained for a number of extended gauge models.

  14. Constraints on running vacuum model with H(z) and f σ8

    NASA Astrophysics Data System (ADS)

    Geng, Chao-Qiang; Lee, Chung-Chi; Yin, Lu

    2017-08-01

    We examine the running vacuum model with Λ (H) = 3 ν H2 + Λ0, where ν is the model parameter and Λ0 is the cosmological constant. From the data of the cosmic microwave background radiation, weak lensing and baryon acoustic oscillation along with the time dependent Hubble parameter H(z) and weighted linear growth f (z)σ8(z) measurements, we find that ν=(1.37+0.72-0.95)× 10-4 with the best fitted χ2 value slightly smaller than that in the ΛCDM model.

  15. New z>2 clusters unveiled by Planck, Herschel & Spitzer - prospects for JWST, Euclid, WFIRST

    NASA Astrophysics Data System (ADS)

    Dole, Herve A.

    2015-08-01

    Searching for z>2 clusters/protoclusters is an active field in cosmology, and quite successfull using wide near-infrared surveys (e.g. Spitzer). We present a new approach by selecting highly star forming high-z cluster candidates over the whole sky using Planck, taking benefit of the redshifted far-infrared peak into the Planck submillimetre channels and a clean component separation (among which Galactic cirrus & CMB). Out of more than 1000 Planck high-z candidates, about 230 were confirmed by a Herschel/SPIRE follow-up as significant overdensities of red sources, confirming their high-z spectral energy distribution and high star formation rates (typically 700 Msun/yr per SPIRE source, and >5000 Msun/yr for each structure). These overdensities could be protoclusters in their intense star formation phase. Few targets have spectroscopic redshift (in the NIR and mm) confirmations, all in the range 1.7-2.3, while photometric analysis indicates z>2 for all the Planck counterparts.The key points here are the wavelength plus the angular and resolution coverage from Planck, Herschel and Spitzer. 40 fields were followed-up by Spitzer down to 1uJy 5sigma, and show unambiguous presence of galaxy overdensities compatible with z~2 based on color analysis on 4 band photometry (J, K, 3.6 and 4.5um). These targetted Spitzer observations can serve as pilot project for the more extended data coming in the next decade with JWST and Euclid.This new window on the high-z (z>2) protocluster may yield powerful constraints on structure formation (e.g., SFR vs environnement at high-z, z>2 mass assembly in clusters, bias). Furthermore, these objects will allow to better quantify the prediction for clusters to be detected by WFIRST and Euclid. Finally, these clusters will help us extending the current search for high-z clusters, in nice complementarity with current selections in the near-infrared (dominated by stellar mass) and the millimeter (dominated by hot gas and SZ effect), using the

  16. Biophysics of Artificially Expanded Genetic Information Systems. Thermodynamics of DNA Duplexes Containing Matches and Mismatches Involving 2-Amino-3-nitropyridin-6-one (Z) and Imidazo[1,2-a]-1,3,5-triazin-4(8H)one (P).

    PubMed

    Wang, Xiaoyu; Hoshika, Shuichi; Peterson, Raymond J; Kim, Myong-Jung; Benner, Steven A; Kahn, Jason D

    2017-05-19

    Synthetic nucleobases presenting non-Watson-Crick arrangements of hydrogen bond donor and acceptor groups can form additional nucleotide pairs that stabilize duplex DNA independent of the standard A:T and G:C pairs. The pair between 2-amino-3-nitropyridin-6-one 2'-deoxyriboside (presenting a {donor-donor-acceptor} hydrogen bonding pattern on the Watson-Crick face of the small component, trivially designated Z) and imidazo[1,2-a]-1,3,5-triazin-4(8H)one 2'-deoxyriboside (presenting an {acceptor-acceptor-donor} hydrogen bonding pattern on the large component, trivially designated P) is one of these extra pairs for which a substantial amount of molecular biology has been developed. Here, we report the results of UV absorbance melting measurements and determine the energetics of binding of DNA strands containing Z and P to give short duplexes containing Z:P pairs as well as various mismatches comprising Z and P. All measurements were done at 1 M NaCl in buffer (10 mM Na cacodylate, 0.5 mM EDTA, pH 7.0). Thermodynamic parameters (ΔH°, ΔS°, and ΔG° 37 ) for oligonucleotide hybridization were extracted. Consistent with the Watson-Crick model that considers both geometric and hydrogen bonding complementarity, the Z:P pair was found to contribute more to duplex stability than any mismatches involving either nonstandard nucleotide. Further, the Z:P pair is more stable than a C:G pair. The Z:G pair was found to be the most stable mismatch, forming either a deprotonated mismatched pair or a wobble base pair analogous to the stable T:G mismatch. The C:P pair is less stable, perhaps analogous to the wobble pair observed for C:O 6 -methyl-G, in which the pyrimidine is displaced into the minor groove. The Z:A and T:P mismatches are much less stable. Parameters for predicting the thermodynamics of oligonucleotides containing Z and P bases are provided. This represents the first case where this has been done for a synthetic genetic system.

  17. Form Factor Measurements at BESIII for an Improved Standard Model Prediction of the Muon g-2

    NASA Astrophysics Data System (ADS)

    Destefanis, Marco

    The anomalous part of the magnetic moment of the muon, (g-2)μ, allows for one of the most precise tests of the Standard Model of particle physics. We report on recent results by the BESIII Collaboration of exclusive hadronic cross section channels, such as the 2π, 3π, and 4π final states. These measurements are of utmost importance for an improved calculation of the hadronic vacuum polarization contribution of (g-2)μ, which currenty is limiting the overall Standard Model prediction of this quantity. BESIII has furthermore also intiatated a programme of spacelike transition form factor measurements, which can be used for a determination of the hadronic light-by-light contribution of (g-2)μ in a data-driven approach. These results are of relevance in view of the new and direct measurements of (g-2)μ as foreseen at Fermilab/USA and J-PARC/Japan.

  18. Light Z' in heterotic string standardlike models

    NASA Astrophysics Data System (ADS)

    Athanasopoulos, P.; Faraggi, A. E.; Mehta, V. M.

    2014-05-01

    The discovery of the Higgs boson at the LHC supports the hypothesis that the Standard Model provides an effective parametrization of all subatomic experimental data up to the Planck scale. String theory, which provides a viable perturbative approach to quantum gravity, requires for its consistency the existence of additional gauge symmetries beyond the Standard Model. The construction of heterotic string models with a viable light Z' is, however, highly constrained. We outline the construction of standardlike heterotic string models that allow for an additional Abelian gauge symmetry that may remain unbroken down to low scales. We present a string inspired model, consistent with the string constraints.

  19. 40 CFR 721.10160 - Poly(oxy-1,2-ethanediyl), .alpha.-[(13Z)-1-oxo-13-docosen-1-yl]-.omega.-[[(13Z)-1-oxo-13-docosen...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....-[(13Z)-1-oxo-13-docosen-1-yl]-.omega.-[[(13Z)-1-oxo-13-docosen-1-yl]oxy]-. 721.10160 Section 721.10160... Poly(oxy-1,2-ethanediyl), .alpha.-[(13Z)-1-oxo-13-docosen-1-yl]-.omega.-[[(13Z)-1-oxo-13-docosen-1-yl... substance identified as poly(oxy-1,2-ethanediyl), .alpha.-[(13Z)-1-oxo-13-docosen-1-yl]-.omega.-[[(13Z)-1...

  20. 40 CFR 721.10160 - Poly(oxy-1,2-ethanediyl), .alpha.-[(13Z)-1-oxo-13-docosen-1-yl]-.omega.-[[(13Z)-1-oxo-13-docosen...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....-[(13Z)-1-oxo-13-docosen-1-yl]-.omega.-[[(13Z)-1-oxo-13-docosen-1-yl]oxy]-. 721.10160 Section 721.10160... Poly(oxy-1,2-ethanediyl), .alpha.-[(13Z)-1-oxo-13-docosen-1-yl]-.omega.-[[(13Z)-1-oxo-13-docosen-1-yl... substance identified as poly(oxy-1,2-ethanediyl), .alpha.-[(13Z)-1-oxo-13-docosen-1-yl]-.omega.-[[(13Z)-1...

  1. 40 CFR 721.10160 - Poly(oxy-1,2-ethanediyl), .alpha.-[(13Z)-1-oxo-13-docosen-1-yl]-.omega.-[[(13Z)-1-oxo-13-docosen...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....-[(13Z)-1-oxo-13-docosen-1-yl]-.omega.-[[(13Z)-1-oxo-13-docosen-1-yl]oxy]-. 721.10160 Section 721.10160... Poly(oxy-1,2-ethanediyl), .alpha.-[(13Z)-1-oxo-13-docosen-1-yl]-.omega.-[[(13Z)-1-oxo-13-docosen-1-yl... substance identified as poly(oxy-1,2-ethanediyl), .alpha.-[(13Z)-1-oxo-13-docosen-1-yl]-.omega.-[[(13Z)-1...

  2. 40 CFR 721.10160 - Poly(oxy-1,2-ethanediyl), .alpha.-[(13Z)-1-oxo-13-docosen-1-yl]-.omega.-[[(13Z)-1-oxo-13-docosen...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....-[(13Z)-1-oxo-13-docosen-1-yl]-.omega.-[[(13Z)-1-oxo-13-docosen-1-yl]oxy]-. 721.10160 Section 721.10160... Poly(oxy-1,2-ethanediyl), .alpha.-[(13Z)-1-oxo-13-docosen-1-yl]-.omega.-[[(13Z)-1-oxo-13-docosen-1-yl... substance identified as poly(oxy-1,2-ethanediyl), .alpha.-[(13Z)-1-oxo-13-docosen-1-yl]-.omega.-[[(13Z)-1...

  3. 40 CFR 721.10160 - Poly(oxy-1,2-ethanediyl), .alpha.-[(13Z)-1-oxo-13-docosen-1-yl]-.omega.-[[(13Z)-1-oxo-13-docosen...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....-[(13Z)-1-oxo-13-docosen-1-yl]-.omega.-[[(13Z)-1-oxo-13-docosen-1-yl]oxy]-. 721.10160 Section 721.10160... Poly(oxy-1,2-ethanediyl), .alpha.-[(13Z)-1-oxo-13-docosen-1-yl]-.omega.-[[(13Z)-1-oxo-13-docosen-1-yl... substance identified as poly(oxy-1,2-ethanediyl), .alpha.-[(13Z)-1-oxo-13-docosen-1-yl]-.omega.-[[(13Z)-1...

  4. NMR Characterization of Sulphur Substitution Effects in the KxFe2−ySe2zSz High-Tc Superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovic C.; Torchetti, D.A.; Imai, T.

    2012-04-17

    We present a {sup 77}Se NMR study of the effect of S substitution in the high-T{sub c} superconductor K{sub x}Fe{sub 2-y}Se{sub 2-z}S{sub z} in a temperature range up to 250 K. We examine two S concentrations, with z = 0.8 (T{sub c} {approx} 26 K) and z = 1.6 (nonsuperconducting). The samples containing sulphur exhibit broader NMR line shapes than the K{sub x}Fe{sub 2}Se{sub 2} sample due to local disorder in the Se environment. Our Knight shift {sup 77}K data indicate that in all samples, uniform spin susceptibility decreases with temperature, and that the magnitude of the Knight shift itselfmore » decreases with increased S concentration. In addition, S substitution progressively suppresses low-frequency spin fluctuations. None of the samples exhibit an enhancement of low-frequency antiferromagnetic spin fluctuations near T{sub c} in 1/T{sub 1}T, as seen in FeSe.« less

  5. Limited predictive value of achieving beneficial plasma (Z)-endoxifen threshold level by CYP2D6 genotyping in tamoxifen-treated Polish women with breast cancer.

    PubMed

    Hennig, Ewa E; Piatkowska, Magdalena; Karczmarski, Jakub; Goryca, Krzysztof; Brewczynska, Elzbieta; Jazwiec, Radoslaw; Kluska, Anna; Omiotek, Robert; Paziewska, Agnieszka; Dadlez, Michal; Ostrowski, Jerzy

    2015-08-01

    Tamoxifen, the most frequently used drug for treating estrogen receptor-positive breast cancer, must be converted into active metabolites to exert its therapeutic efficacy, mainly through CYP2D6 enzymes. The objective of this study was to investigate the impact of CYP2D6 polymorphisms on (Z)-endoxifen-directed tamoxifen metabolism and to assess the usefulness of CYP2D6 genotyping for identifying patients who are likely to have insufficient (Z)-endoxifen concentrations to benefit from standard therapy. Blood samples from 279 Polish women with breast cancer receiving tamoxifen 20 mg daily were analyzed for CYP2D6 genotype and drug metabolite concentration. Steady-state plasma levels of tamoxifen and its 14 metabolites were measured by using the ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. In nearly 60 % of patients, including over 30 % of patients with fully functional CYP2D6, (Z)-endoxifen concentration was below the predefined threshold of therapeutic efficacy. The most frequently observed CYP2D6 genotype was EM/PM (34.8 %), among which 83.5 % of patients had a combination of wild-type and *4 alleles. Plasma concentration of five metabolites was significantly correlated with CYP2D6 genotype. For the first time, we identified an association between decreased (E/Z)-4-OH-N-desmethyl-tamoxifen-β-D-glucuronide levels (r (2) = 0.23; p < 10(-16)) and increased CYP2D6 functional impairment. The strongest correlation was observed for (Z)-endoxifen, whose concentration was significantly lower in groups of patients carrying at least one CYP2D6 null allele, compared with EM/EM patients. The CYP2D6 genotype accounted for plasma level variability of (Z)-endoxifen by 27 % (p < 10(-16)) and for the variability of metabolic ratio indicating (Z)-endoxifen-directed metabolism of tamoxifen by 51 % (p < 10(-43)). The majority of breast cancer patients in Poland may not achieve a therapeutic level of (Z)-endoxifen upon receiving a standard dose

  6. Magnetic properties of Zn1-zMnzGa2Se4 alloy system in the temperature range from 2 to 300 K

    NASA Astrophysics Data System (ADS)

    Morocoima, M.; Quintero, M.; Quintero, E.; Bocaranda, P.; Ruiz, J.; Moreno, E.

    2006-10-01

    Measurements of low field static magnetic susceptibility and of magnetization with pulsed magnetic fields up to 32T have been made as a function of temperature on polycrystalline samples of the Zn1-zMnzGa2Se4 alloy system, which has a defect tetragonal chalcopyrite structure in the whole composition range. The resulting data have been used to give information on the magnetic spin-flop and magnetic saturation transitions, and details of the magnetic B-T phase diagrams were determined for the phases. The zero-field Néel temperatures TN and triple points, for the Zn1-zMnzGa2Se4 alloy system, have been found to be 8.1K and (7.8K, 2.2T) for z =1, 5.8K and (5.6K, 1.7T) for z =0.85, 4.5K and (4.35K, 1.0T) for z =0.075, and 3.9K and (3.85K, 0.5T) for z =0.7. The susceptibility χ(T ) curves for B =3 and 5T show magnetothermal effects below 4.5K.

  7. 40 CFR Table 2 to Subpart IIIi of... - Emission Standards for 2008 Model Year and Later Emergency Stationary CI ICE

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission Standards for 2008 Model Year..., Subpt. IIII, Table 2 Table 2 to Subpart IIII of Part 60—Emission Standards for 2008 Model Year and Later... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY...

  8. 40 CFR Table 2 to Subpart IIIi of... - Emission Standards for 2008 Model Year and Later Emergency Stationary CI ICE

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Emission Standards for 2008 Model Year..., Subpt. IIII, Table 2 Table 2 to Subpart IIII of Part 60—Emission Standards for 2008 Model Year and Later... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY...

  9. 40 CFR Table 2 to Subpart IIIi of... - Emission Standards for 2008 Model Year and Later Emergency Stationary CI ICE

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Emission Standards for 2008 Model Year..., Subpt. IIII, Table 2 Table 2 to Subpart IIII of Part 60—Emission Standards for 2008 Model Year and Later... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY...

  10. 40 CFR Table 2 to Subpart IIIi of... - Emission Standards for 2008 Model Year and Later Emergency Stationary CI ICE

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Emission Standards for 2008 Model Year..., Subpt. IIII, Table 2 Table 2 to Subpart IIII of Part 60—Emission Standards for 2008 Model Year and Later... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY...

  11. 40 CFR Table 2 to Subpart IIIi of... - Emission Standards for 2008 Model Year and Later Emergency Stationary CI ICE

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Emission Standards for 2008 Model Year..., Subpt. IIII, Table 2 Table 2 to Subpart IIII of Part 60—Emission Standards for 2008 Model Year and Later... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY...

  12. The Carla Survey: Insights From The Densest Carla Structures At 1.4 < Z < 2.8.

    NASA Astrophysics Data System (ADS)

    Noirot, Gaël; Stern, Daniel; Wylezalek, Dominika; Cooke, Elizabeth A.; Mei, Simona; De Breuck, Carlos; Vernet, Joël; Brodwin, Mark; Eisenhardt, Peter; Galametz, Audrey; Gonzalez, Anthony H.; Hatch, Nina A.; Jarvis, Matt; Rettura, Alessandro; Seymour, Nick; Stanford, S. A.

    2017-06-01

    Radio-loud AGN (RLAGN) tend to reside in the most massive dark matter halos, and have a long history of being used to efficiently identify rich high-z structures (i.e., clusters and protoclusters). Our team contributed to this effort with a targeted 400hr Spitzer program surveying 420 RLAGN (radio-loud quasars and high-z radio galaxies) at z=1.3-3.2 across the full sky: Clusters Around RLAGN (CARLA; Wylezalek+2013,2014). The CARLA Survey identified 200 cluster candidates at z=1.3-3.2 as 2-8σ overdensities of red color-selected Spitzer/IRAC galaxies around the targeted powerful RLAGN. We present results from our follow-up 40-orbit HST program on the 20 densest CARLA cluster candidates at z=1.4-2.8 (Noirot+2016,2017). We spectroscopically confirm 16/20 distant structures associated with the RLAGN, up to z=2.8. For the first time at these redshifts, we statistically investigate the star-formation content of a large sample of galaxies in dense structures. We show that >10^(10) M⊙ cluster galaxies form significantly fewer stars than their field star-forming counterparts at all redshifts within 1.4 ≤ z2. This survey represents a unique and large homogenous sample of spectroscopically confirmed clusters at high redshifts, ideal to investigate quenching mechanisms in dense environments.

  13. The Spectral and Environment Properties of z ∼ 2.0–2.5 Quasar Pairs

    NASA Astrophysics Data System (ADS)

    Lusso, Elisabeta; Fumagalli, Michele; Rafelski, Marc; Neeleman, Marcel; Prochaska, Jason X.; Hennawi, Joseph F.; O’Meara, John M.; Theuns, Tom

    2018-06-01

    We present the first results from our survey of intervening and proximate Lyman limit systems (LLSs) at z2.0–2.5 using the Wide Field Camera 3 on board the Hubble Space Telescope. The quasars in our sample are projected pairs with proper transverse separations R ⊥ ≤ 150 kpc and line-of-sight velocity separations ≲11,000 km s‑1. We construct a stacked ultraviolet (rest-frame wavelengths 700–2000 Å) spectrum of pairs corrected for the intervening Lyman forest and Lyman continuum absorption. The observed spectral composite presents a moderate flux excess for the most prominent broad emission lines, a ∼30% decrease in flux at λ = 800–900 Å compared to a stack of brighter quasars not in pairs at similar redshifts, and lower values of the mean free path of the H I ionizing radiation for pairs ({λ }mfp}912 = 140.7 ± 20.2 {h}70-1 Mpc) compared to single quasars ({λ }mfp}912 = 213.8 ± 28 {h}70-1 Mpc) at the average redshift z2.44. From the modeling of LLS absorption in these pairs, we find a higher (∼20%) incidence of proximate LLSs with log {N}{{H}{{I}}} ≥ 17.2 at δv < 5000 km s‑1 compared to single quasars (∼6%). These two rates are different at the 5σ level. Moreover, we find that optically thick absorbers are equally shared between foreground and background quasars. Based on these pieces of evidence, we conclude that there is a moderate excess of gas-absorbing Lyman continuum photons in our closely projected quasar pairs compared to single quasars. We argue that this gas arises mostly within large-scale structures or partially neutral regions inside the dark matter halos where these close pairs reside.

  14. SINFONI-HiZELS: the dynamics, merger rates and metallicity gradients of 'typical' star-forming galaxies at z = 0.8-2.2

    NASA Astrophysics Data System (ADS)

    Molina, J.; Ibar, Edo; Swinbank, A. M.; Sobral, D.; Best, P. N.; Smail, I.; Escala, A.; Cirasuolo, M.

    2017-04-01

    We present adaptive optics (AO) assisted SINFONI integral field unit (IFU) spectroscopy of 11 Hα emitting galaxies selected from the High-Z Emission Line Survey (HiZELS). We obtain spatially resolved dynamics on ˜kpc-scales of star-forming galaxies [stellar mass M⋆ = 109.5 - 10.5 M⊙ and star formation rate (SFR) = 2-30 M⊙ yr-1] near the peak of the cosmic star formation rate history. Combining these observations with our previous SINFONI-HiZELS campaign, we construct a sample of 20 homogeneously selected galaxies with IFU AO-aided observations - the 'SHiZELS' survey, with roughly equal number of galaxies per redshift slice, at z = 0.8, 1.47 and 2.23. We measure the dynamics and identify the major kinematic axis by modelling their velocity fields to extract rotational curves and infer their inclination-corrected rotational velocities. We explore the stellar mass Tully-Fisher relationship, finding that galaxies with higher velocity dispersions tend to deviate from this relation. Using kinemetry analyses, we find that galaxy interactions might be the dominant mechanism controlling the star formation activity at z = 2.23 but they become gradually less important down to z = 0.8. Metallicity gradients derived from the [N II]/Hα emission line ratio show a median negative gradient for the SHiZELS survey of Δlog(O/H)/ΔR = -0.026 ± 0.008 dex kpc-1. We find that metal-rich galaxies tend to show negative gradients, whereas metal-poor galaxies tend to exhibit positive metallicity gradients. This result suggests that the accretion of pristine gas in the periphery of galaxies plays an important role in replenishing the gas in 'typical' star-forming galaxies.

  15. Evolution in the Continuum Morphological Properties of Ly alpha-Emitting Galaxies from Z=3.1 to Z=2.1

    NASA Technical Reports Server (NTRS)

    Bond, Nicholas A.; Gawiser, Eric; Guaita, Lucia; Padilla, Nelson; Gronwall, Chile Caryl; Ciardullo, Robin; Lai, Kamson

    2011-01-01

    We present a rest-frame ultraviolet morphological analysis of 108 z = 2.1 Lyman Alpha Emitters (LAEs) in the Extended Chandra Deep Field South (ECDF-S) and compare it to a similar sample of 171 LAEs at z = 3.1 . Using Hubble Space Telescope (HST) images taken as part of the Galaxy Evolution From Morphology and SEDs survey, Great Observatories Origins Deep Survey, and Hubble Ultradeep Field surveys, we measure the size and photometric component distributions, where photo- metric components are defined as distinct clumps of UV-continuum emission. At both redshifts, the majority of LAEs have observed half-light radii < 2 kpc, but the median half-light radius rises from 0.97 kpc at z = 3.1 to 1.41 kpc at z = 2.1. A similar evolution is seen in the sizes of individual rest-UV components, but there is no evidence for evolution in the number of mUlti-component systems. In the z = 2.1 LAE sample, we see clear correlations between the LAE size and other physical properties derived from its SED. LAEs are found to be larger for galaxies with larger stellar mass, larger star formation rate, and larger dust obscuration, but there is no evidence for a trend between equivalent width and half-light radius at either redshift. The presence of these correlations suggests that a wide range of objects are being selected by LAE surveys at that redshift, including a significant fraction of objects for which a massive and moderately extended population of old stars underlies the young starburst giving rise to the Lya emission.

  16. On the SLq(2) extension of the standard model and the concept of charge

    NASA Astrophysics Data System (ADS)

    Finkelstein, Robert J.

    2017-01-01

    Our SLq(2) extension of the standard model is constructed by replacing the elementary field operators, Ψ(x), of the standard model by Ψ̂mm‧j(x)D mm‧j where Dmm‧j is an element of the (2j + 1)-dimensional representation of the SLq(2) algebra, which is also the knot algebra. The allowed quantum states (j,m,m‧) are restricted by the topological conditions (j,m,m‧) = 1 2(N,w,r + o) postulated between the states of the quantum knot (j,m,m‧) and the corresponding classical knot (N,w,r + o) where the (N,w,r) are (the number of crossings, the writhe, the rotation) of the 2d projection of the corresponding oriented classical knot. Here, o is an odd number that is required by the difference in parity between w and r. There is also the empirical restriction on the allowed states (j,m,m‧) = 3(t,-t 3,-t0)L that holds at the j = 3 2 level, connecting quantum trefoils 3 2,m,m‧ with leptons and quarks 1 2,-t3,-t0L. The so-constructed knotted leptons and quarks turn out to be composed of three j = 1 2 particles which unexpectedly agree with the preon models of Harrari and Shupe. The j = 0 particles, being electroweak neutral, are dark and plausibly greatly outnumber the quarks and leptons. The SLq(2) or (j,m,m‧) measure of charge has a direct physical interpretation since 2j is the total number of preonic charges while 2m and 2m‧ are the numbers of writhe and rotation sources of preonic charge. The total SLq(2) charge of a particle, measured by writhe and rotation and composed of preons, sums the signs of the counterclockwise turns (+1) and clockwise turns (-1) that any energy-momentum current makes in going once around the knot. In this way, the handedness of the knot reduces charge to a geometric concept similar to the way that curvature of space-time encodes mass and energy. According to this model, the leptons and quarks are j = 3 2 particles, the preons are j = 1 2 particles, and the j = 0 particles are candidates for dark matter. It is possible to

  17. The Fundamental Plane of Ultra-Massive Galaxies at z 2

    NASA Astrophysics Data System (ADS)

    Conselice, Christopher

    2016-10-01

    The fundamental plane (FP), relating the effective radius, velocity dispersion, and surface brightness is a unique tool for studying the structural, stellar, and dark matter evolution of early-type galaxies, and can reveal how these galaxies have formed and evolved. Thus far, studies have been mostly limited to z<1.3, beyond which the absorption lines used to derive velocity dispersions are redshifted out of the optical. With the advent of sensitive NIR spectrographs on 8m telescopes, it is now possible for the first time to study the FP directly at the epoch (z 2), where lower redshift studies predict it to have formed. Through a large investment of time with the 8m - VLT NIR spectrograph X-SHOOTER, we have derived velocity dispersions for a unique sample of 11 quiescent galaxies at z=2, tripling the number of galaxies with such measurements. We propose to obtain WFC3/IR imaging of these galaxies, which when combined with our ground-based spectroscopy, will allow us to measure accurately the fundamental plane at z 2 for the first time through accurate sizes derived from surface brightness profile fits to the data. This measurement of the FP will further reveal the time-scales and methods of formation for the most massive early type galaxies. The HST observations will also allow us to measure the structures of these galaxies, to search for any extended envelopes or asymmetries, and to examine the properties of their satellite galaxies. Three of our systems also show hints of having close companions through our spectroscopy and WFC3/IR imaging is required to investigate this further.

  18. A γ-ray burst at a redshift of z~8.2

    NASA Astrophysics Data System (ADS)

    Tanvir, N. R.; Fox, D. B.; Levan, A. J.; Berger, E.; Wiersema, K.; Fynbo, J. P. U.; Cucchiara, A.; Krühler, T.; Gehrels, N.; Bloom, J. S.; Greiner, J.; Evans, P. A.; Rol, E.; Olivares, F.; Hjorth, J.; Jakobsson, P.; Farihi, J.; Willingale, R.; Starling, R. L. C.; Cenko, S. B.; Perley, D.; Maund, J. R.; Duke, J.; Wijers, R. A. M. J.; Adamson, A. J.; Allan, A.; Bremer, M. N.; Burrows, D. N.; Castro-Tirado, A. J.; Cavanagh, B.; de Ugarte Postigo, A.; Dopita, M. A.; Fatkhullin, T. A.; Fruchter, A. S.; Foley, R. J.; Gorosabel, J.; Kennea, J.; Kerr, T.; Klose, S.; Krimm, H. A.; Komarova, V. N.; Kulkarni, S. R.; Moskvitin, A. S.; Mundell, C. G.; Naylor, T.; Page, K.; Penprase, B. E.; Perri, M.; Podsiadlowski, P.; Roth, K.; Rutledge, R. E.; Sakamoto, T.; Schady, P.; Schmidt, B. P.; Soderberg, A. M.; Sollerman, J.; Stephens, A. W.; Stratta, G.; Ukwatta, T. N.; Watson, D.; Westra, E.; Wold, T.; Wolf, C.

    2009-10-01

    Long-duration γ-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z>20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-α emitting galaxy. Here we report that GRB090423 lies at a redshift of z~8.2, implying that massive stars were being produced and dying as GRBs ~630Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.

  19. The influence of CYP2B6, CYP2C9 and CYP2D6 genotypes on the formation of the potent antioestrogen Z-4-hydroxy-tamoxifen in human liver.

    PubMed

    Coller, Janet K; Krebsfaenger, Niels; Klein, Kathrin; Endrizzi, Karin; Wolbold, Renzo; Lang, Thomas; Nüssler, Andreas; Neuhaus, Peter; Zanger, Ulrich M; Eichelbaum, Michel; Mürdter, Thomas E

    2002-08-01

    To investigate in a large panel of 50 human liver samples the contribution of CYP2C9, CYP2D6, and CYP3A4 to the overall formation of the potent antioestrogen Z-4-hydroxy-tamoxifen, and how various genotypes affect its formation from tamoxifen. The formation of Z-4-hydroxy-tamoxifen from 10 microm tamoxifen was studied in human liver microsomes (n=50), characterized for CYP2B6, CYP2C9, CYP2D6 and CYP3A4 expression, and CYP2B6, CYP2C9 and CYP2D6 genotype. The effect of chemical and monoclonal antibody inhibitors, and the formation in supersomes expressing recombinant CYP isoforms was also investigated. Z-4-hydroxy-tamoxifen was quantified using LC-MS analysis. Z-4-hydroxy-tamoxifen was formed by supersomes expressing CYP2B6, CYP2C9, CYP2C19 and CYP2D6, but not CYP3A4. In agreement with these data, the mean formation of Z-4-hydroxy-tamoxifen was inhibited 49% by sulphaphenazole (P=0.001), 38% by quinidine (P<0.05) and 13% by monoclonal antibody against CYP2B6 (MAB-2B6, P<0.05). Furthermore, Z-4-hydroxy-tamoxifen formation significantly correlated with both CYP2C9 expression (r(s)=0.256, P<0.05) and CYP2D6 expression (r(s)=0.309, P<0.05). Genotypes of CYP2D6, CYP2B6 and CYP2C9 had an effect on metabolite formation in such a way that samples with two nonfunctional CYP2D6, or two variant CYP2C9 or CYP2B6 alleles, showed lower enzyme activity compared with those with two functional or wild-type alleles, (5.0 vs 9.9 pmol mg(-1) protein min(-1), P=0.046, 5.1 vs 9.9 pmol mg(-1) protein min(-1), P=0.053, and 6.8 vs 9.4 pmol mg(-1) protein min(-1), P=0.054, respectively). CYP2D6 and CYP2C9 contribute on average 45 and 46%, respectively, to the overall formation of Z-4-hydroxy-tamoxifen. CYP2B6, CYP2C9 and CYP2D6 genotypes all affected Z-4-hydroxy-tamoxifen formation and can predict individual ability to catalyse this reaction.

  20. Characterization of polar organosulfates in secondary organic aerosol from the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal

    EPA Pesticide Factsheets

    We show in the present study that the unsaturated aldehydes, 2-E-pentenal, 2-E-hexenal and 3-Z-hexenal, are biogenic volatile organic compound (BVOC) precursors for polar organosulfates with molecular weighs (MWs) 230 and 214, which are also present in ambient fine aerosol from a forested site, i.e., K-puszta, Hungary. These results complement those obtained in a previous study showing that the green leaf aldehyde 3-Z-hexenal serves as a precursor for MW 226 organosulfates. Thus, in addition to isoprene, the green leaf volatiles 2-E-hexenal and 3-Z-hexenal, emitted due to plant stress (mechanical wounding or insect attack), and 2-E-pentenal, a photolysis product of 3-Z-hexenal, should be taken into account for secondary organic aerosol and organosulfate formation. Polar organosulfates are of climatic relevance because of their hydrophilic properties and cloud effects. Extensive use was made of organic mass spectrometry (MS) and detailed interpretation of MS data (i.e., ion trap MS and accurate mass measurements) to elucidate the chemical structures of the MW 230, 214 and 170 organosulfates formed from 2-E-pentenal and indirectly from 2-E-hexenal and 3-Z-hexenal. In addition, quantum chemical calculations were performed to explain the different mass spectral behavior of 2,3-dihydroxypentanoic acid sulfate derivatives, where only the isomer with the sulfate group at C-3 results in the loss of SO3. The MW 214 organosulfates formed from 2-E-pentenal are explained by

  1. Standards and Methodologies for Characterizing Radiobiological Impact of High-Z Nanoparticles

    PubMed Central

    Subiel, Anna; Ashmore, Reece; Schettino, Giuseppe

    2016-01-01

    Research on the application of high-Z nanoparticles (NPs) in cancer treatment and diagnosis has recently been the subject of growing interest, with much promise being shown with regards to a potential transition into clinical practice. In spite of numerous publications related to the development and application of nanoparticles for use with ionizing radiation, the literature is lacking coherent and systematic experimental approaches to fully evaluate the radiobiological effectiveness of NPs, validate mechanistic models and allow direct comparison of the studies undertaken by various research groups. The lack of standards and established methodology is commonly recognised as a major obstacle for the transition of innovative research ideas into clinical practice. This review provides a comprehensive overview of radiobiological techniques and quantification methods used in in vitro studies on high-Z nanoparticles and aims to provide recommendations for future standardization for NP-mediated radiation research. PMID:27446499

  2. Stellar Populations of Highly Magnified Lensed Galaxies Young Starburst at Z to Approximately 2

    NASA Technical Reports Server (NTRS)

    Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Gilbank, David G.; Sharon, Keren; Gralla, Megan B.; Bayliss, Matthew B.

    2011-01-01

    We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z = 170, MS1512-cB58 at z = 2.73, SGAS J152745.1+065219 at z = 2.76 and SGAS J12265L3+215220 at z = 2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 magnitudes allow a detailed study of the stellar populations and physical conditions. We compare star formation rates as measured from the SED fit, the Ha and [O II] .(lambda)3727 emission lines, and the UV+IR bolometric luminosity where 24micron photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z approx. 2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses 3 - 7 x 10(exp 9) Stellar mass, young ages approx. 100 Myr, little dust content E(B - V)=0.10-0.25, and star formation rates around 20- 100 Stellar mass/y. Compared to typical values for the galaxy population at z approx. 2, this suggests we are looking at newly formed, starbursting systems that have only recently started the build-up of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z approx. 2. Subject headings: galaxies: high-redshift, strong gravitational lensing, infrared: galaxies

  3. Interstellar medium conditions in z 0.2 Lyman-break analogs

    NASA Astrophysics Data System (ADS)

    Contursi, A.; Baker, A. J.; Berta, S.; Magnelli, B.; Lutz, D.; Fischer, J.; Verma, A.; Nielbock, M.; Grácia Carpio, J.; Veilleux, S.; Sturm, E.; Davies, R.; Genzel, R.; Hailey-Dunsheath, S.; Herrera-Camus, R.; Janssen, A.; Poglitsch, A.; Sternberg, A.; Tacconi, L. J.

    2017-10-01

    We present an analysis of far-infrared (FIR) [CII] and [OI] fine structure line and continuum observations obtained with Herschel/PACS, and 12CO(1-0) observations obtained with the IRAM Plateau de Bure Interferometer, of Lyman-break analogs (LBAs) at z 0.2. The principal aim of this work is to determine the typical interstellar medium (ISM) properties of z 1-2 main sequence (MS) galaxies, with stellar masses between 109.5 and 1011M⊙, which are currently not easily detectable in all these lines even with ALMA and NOEMA. We perform PDR modeling and apply different infared diagnostics to derive the main physical parameters of the far-infrared (FIR)-emitting gas and dust and we compare the derived ISM properties to those of galaxies on and above the MS at different redshifts. We find that the ISM properties of LBAs are quite extreme (low gas temperature and high density and thermal pressure) with respect to those found in local normal spirals and more active local galaxies. LBAs have no [CII] deficit despite having the high specific star formation rates (sSFRs) typical of starbursts. Although LBAs lie above the local MS, we show that their ISM properties are more similar to those of high-redshift MS galaxies than of local galaxies above the main sequence. This data set represents an important reference for planning future ALMA [CII] observations of relatively low-mass MS galaxies at the epoch of the peak of the cosmic star formation.

  4. Measurement of baryon acoustic oscillation correlations at z=2.3 with SDSS DR12 Lya-Forests [Measurements of BAO correlations at z = 2.3 with SDSS DR12 Lyα-Forests

    DOE PAGES

    Bautista, Julian E.; Busca, Nicolas G.; Guy, Julien; ...

    2017-03-23

    Here, we use flux-transmission correlations in Lyα forests to measure the imprint of baryon acoustic oscillations (BAO). The study uses spectra of 157,783 quasars in the redshift range 2.1 ≤ z ≤ 3.5 from the Sloan Digital Sky Survey (SDSS) Data Release 12 (DR12). Besides the statistical improvements on our previous studies using SDSS DR9 and DR11, we have implemented numerous improvements in the analysis procedure, allowing us to construct a physical model of the correlation function and to investigate potential systematic errors in the determination of the BAO peak position. The Hubble distance, D H = c/H(z), relative tomore » the sound horizon is D H(z = 2.33)/r d = 9.07 ± 0.31. The best-determined combination of comoving angular-diameter distance, D M, and the Hubble distance is found to be D 0.7 HD 0.3 M/r d = 13.94 ± 0.35. This value is 1.028 ± 0.026 times the prediction of the flat- ΛCDM model consistent with the cosmic microwave background (CMB) anisotropy spectrum. The errors include marginalization over the effects of unidentified high-density absorption systems and fluctuations in ultraviolet ionizing radiation. Independently of the CMB measurements, the combination of our results and other BAO observations determine the open-ΛCDM density parameters to be Ω M = 0.296 ± 0.029, Ω Λ = 0.699 ± 0.100 and Ω k = –0.002 ± 0.119.« less

  5. Quantitative analysis of anisotropic magnetoresistance in Co2MnZ and Co2FeZ epitaxial thin films: A facile way to investigate spin-polarization in half-metallic Heusler compounds

    NASA Astrophysics Data System (ADS)

    Sakuraba, Y.; Kokado, S.; Hirayama, Y.; Furubayashi, T.; Sukegawa, H.; Li, S.; Takahashi, Y. K.; Hono, K.

    2014-04-01

    Anisotropic magnetoresistance (AMR) effect has been systematically investigated in various Heusler compounds Co2MnZ and Co2FeZ (Z = Al, Si, Ge, and Ga) epitaxial films and quantitatively summarized against the total valence electron number NV. It was found that the sign of AMR ratio is negative when NV is between 28.2 and 30.3, and turns positive when NV becomes below 28.2 and above 30.3, indicating that the Fermi level (EF) overlaps with the valence or conduction band edges of half-metallic gap at NV ˜ 28.2 or 30.3, respectively. We also find out that the magnitude of negative AMR ratio gradually increases with shifting of EF away from the gap edges, and there is a clear positive correlation between the magnitude of negative AMR ratio and magnetoresistive output of the giant magnetoresistive devices using the Heusler compounds. This indicates that AMR can be used as a facile way to optimize a composition of half-metallic Heusler compounds having a high spin-polarization at room temperature.

  6. Dark revelations of the [SU(3)]3 and [SU(3)]4 gauge extensions of the standard model

    NASA Astrophysics Data System (ADS)

    Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza

    2018-02-01

    Two theoretically well-motivated gauge extensions of the standard model are SU(3)C × SU(3)L × SU(3)R and SU(3)q × SU(3)L × SU(3)l × SU(3)R, where SU(3)q is the same as SU(3)C and SU(3)l is its color leptonic counterpart. Each has three variations, according to how SU(3)R is broken. It is shown here for the first time that a built-in dark U(1)D gauge symmetry exists in all six versions. However, the corresponding symmetry breaking pattern does not reduce properly to that of the standard model, unless an additional Z2‧ symmetry is defined, so that U(1)D ×Z2‧ is broken to Z2 dark parity. The available dark matter candidates in each case include fermions, scalars, as well as vector gauge bosons. This work points to the possible unity of matter with dark matter, the origin of which may not be ad hoc.

  7. Exploring the supersymmetric U(1 ) B -L×U(1 ) R model with dark matter, muon g - 2 , and Z' mass limits

    NASA Astrophysics Data System (ADS)

    Frank, Mariana; Özdal, Özer

    2018-01-01

    We study the low scale predictions of the supersymmetric standard model extended by U (1 )B -L×U (1 )R symmetry, obtained from S O (10 ) breaking via a left-right supersymmetric model, imposing universal boundary conditions. Two singlet Higgs fields are responsible for the radiative U (1 )B -L×U (1 )R symmetry breaking, and a singlet fermion S is introduced to generate neutrino masses through an inverse seesaw mechanism. The lightest neutralino or sneutrino emerge as dark matter candidates, with different low scale implications. We find that the composition of the neutralino lightest supersymmetric particle (LSP) changes considerably depending on the neutralino LSP mass, from roughly half U (1 )R bino, half minimal supersymmetric model (MSSM) bino, to a singlet higgsino, or completely dominated by the MSSM higgsino. The sneutrino LSP is statistically much less likely, and when it occurs it is a 50-50 mixture of right-handed sneutrino and the scalar S ˜. Most of the solutions consistent with the relic density constraint survive the XENON 1T exclusion curve for both LSP cases. We compare the two scenarios and investigate parameter space points and find consistency with the muon anomalous magnetic moment only at the edge of a 2 σ deviation from the measured value. However, we find that the sneutrino LSP solutions could be ruled out completely by the strict reinforcement of the recent Z' mass bounds. We finally discuss collider prospects for testing the model.

  8. Conformal anomaly of some 2-d Z (n) models

    NASA Astrophysics Data System (ADS)

    William, Peter

    1991-01-01

    We describe a numerical calculation of the conformal anomaly in the case of some two-dimensional statistical models undergoing a second-order phase transition, utilizing a recently developed method to compute the partition function exactly. This computation is carried out on a massively parallel CM2 machine, using the finite size scaling behaviour of the free energy.

  9. The mass-metallicity and fundamental metallicity relations at z > 2 using very large telescope and Subaru near-infrared spectroscopy of zCOSMOS galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, C.; Ziegler, B. L.; Lilly, S. J.

    2014-09-01

    In the local universe, there is good evidence that, at a given stellar mass M, the gas-phase metallicity Z is anti-correlated with the star formation rate (SFR) of the galaxies. It has also been claimed that the resulting Z(M, SFR) relation is invariant with redshift—the so-called 'fundamental metallicity relation' (FMR). Given a number of difficulties in determining metallicities, especially at higher redshifts, the form of the Z(M, SFR) relation and whether it is really independent of redshift is still very controversial. To explore this issue at z > 2, we used VLT-SINFONI and Subaru-MOIRCS near-infrared spectroscopy of 20 zCOSMOS-deep galaxiesmore » at 2.1 < z < 2.5 to measure the strengths of up to five emission lines: [O II] λ3727, Hβ, [O III] λ5007, Hα, and [N II] λ6584. This near-infrared spectroscopy enables us to derive O/H metallicities, and also SFRs from extinction corrected Hα measurements. We find that the mass-metallicity relation (MZR) of these star-forming galaxies at z2.3 is lower than the local Sloan Digital Sky Survey (SDSS) MZR by a factor of three to five, a larger change than found by Erb et al. using [N II]/Hα-based metallicities from stacked spectra. We discuss how the different selections of the samples and metallicity calibrations used may be responsible for this discrepancy. The galaxies show direct evidence that the SFR is still a second parameter in the MZR at these redshifts. However, determining whether the Z(M, SFR) relation is invariant with epoch depends on the choice of extrapolation used from local samples, because z > 2 galaxies of a given mass have much higher SFRs than the local SDSS galaxies. We find that the zCOSMOS galaxies are consistent with a non-evolving FMR if we use the physically motivated formulation of the Z(M, SFR) relation from Lilly et al., but not if we use the empirical formulation of Mannucci et al.« less

  10. Identifying Two-Dimensional Z 2 Antiferromagnetic Topological Insulators

    NASA Astrophysics Data System (ADS)

    Bègue, F.; Pujol, P.; Ramazashvili, R.

    2018-01-01

    We revisit the question of whether a two-dimensional topological insulator may arise in a commensurate Néel antiferromagnet, where staggered magnetization breaks the symmetry with respect to both elementary translation and time reversal, but retains their product as a symmetry. In contrast to the so-called Z 2 topological insulators, an exhaustive characterization of antiferromagnetic topological phases with the help of topological invariants has been missing. We analyze a simple model of an antiferromagnetic topological insulator and chart its phase diagram, using a recently proposed criterion for centrosymmetric systems [13]. We then adapt two methods, originally designed for paramagnetic systems, and make antiferromagnetic topological phases manifest. The proposed methods apply far beyond the particular examples treated in this work, and admit straightforward generalization. We illustrate this by two examples of non-centrosymmetric systems, where no simple criteria have been known to identify topological phases. We also present, for some cases, an explicit construction of edge states in an antiferromagnetic topological insulator.

  11. ROSAT all-sky survey on the Einstein EMSS sample

    NASA Technical Reports Server (NTRS)

    Maccacaro, Tomasso

    1992-01-01

    The cosmological evolution and the luminosity function (XLF) of X ray selected Active Galactic Nuclei (AGN's) are discussed. The sample used is extracted from the Einstein Observatory Extended Medium Sensitivity Surveys (EMSS) and consists of more than 420 objects. Preliminary results from the ROSAT All-Sky Survey data confirm the correctness of the optical identification of the EMSS sources, thus giving confidence to the results obtained from the analysis of the AGN's sample. The XLF observed at different redshifts (up to z approx. 2) gives direct evidence of cosmological evolution. Data have been analyzed within the framework of luminosity evolution models and the two most common evolutionary forms, L sub x(Z) = L sub x(0) x e(sup Cr) and L sub x(Z) = L sub x(0) x (1 + z)(exp C), have been considered. Luminosity dependent evolution is required if the evolution function has the exponential form, whereas the simpler pure luminosity evolution model is still acceptable if the evolution function has the power law form. Using the whole sample of objects the number-counts and the de-evolved (z = 0) XLF have been derived. A comparison of the EMSS data with preliminary ROSAT results presented at this meeting indicates an overall agreement.

  12. Self-duality and phase structure of the 4D random-plaquette Z2 gauge model

    NASA Astrophysics Data System (ADS)

    Arakawa, Gaku; Ichinose, Ikuo; Matsui, Tetsuo; Takeda, Koujin

    2005-03-01

    In the present paper, we shall study the 4-dimensional Z lattice gauge model with a random gauge coupling; the random-plaquette gauge model (RPGM). The random gauge coupling at each plaquette takes the value J with the probability 1-p and - J with p. This model exhibits a confinement-Higgs phase transition. We numerically obtain a phase boundary curve in the (p-T)-plane where T is the "temperature" measured in unit of J/k. This model plays an important role in estimating the accuracy threshold of a quantum memory of a toric code. In this paper, we are mainly interested in its "self-duality" aspect, and the relationship with the random-bond Ising model (RBIM) in 2-dimensions. The "self-duality" argument can be applied both for RPGM and RBIM, giving the same duality equations, hence predicting the same phase boundary. The phase boundary curve obtained by our numerical simulation almost coincides with this predicted phase boundary at the high-temperature region. The phase transition is of first order for relatively small values of p<0.08, but becomes of second order for larger p. The value of p at the intersection of the phase boundary curve and the Nishimori line is regarded as the accuracy threshold of errors in a toric quantum memory. It is estimated as p=0.110±0.002, which is very close to the value conjectured by Takeda and Nishimori through the "self-duality" argument.

  13. Ionised outflows in z ~ 2.4 quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Carniani, S.; Marconi, A.; Maiolino, R.; Balmaverde, B.; Brusa, M.; Cano-Díaz, M.; Cicone, C.; Comastri, A.; Cresci, G.; Fiore, F.; Feruglio, C.; La Franca, F.; Mainieri, V.; Mannucci, F.; Nagao, T.; Netzer, H.; Piconcelli, E.; Risaliti, G.; Schneider, R.; Shemmer, O.

    2015-08-01

    Aims: Outflows driven by active galactic nuclei (AGN) are invoked by galaxy evolutionary models to quench star formation and to explain the origin of the relations observed locally between super-massive black holes and their host galaxies. We here aim to detect extended ionised outflows in luminous quasars, where we expect the highest activity both in star formation and in black-hole accretion. Currently, there are only a few studies based on spatially resolved observations of outflows at high redshift, z > 2. Methods: We analysed a sample of six luminous (L > 1047 erg/s) quasars at z ~ 2.4, observed in H-band using the near-IR integral field spectrometer SINFONI at the VLT. We performed a kinematic analysis of the [Oiii] emission line at λ = 5007 Å. Results: We detect fast, spatially extended outflows in five out of six targets. [Oiii]λ5007 has a complex gas kinematic, with blue-shifted velocities of a few hundreds of km s-1 and line widths up to 1500 km s-1. Using the spectroastrometric method, we infer a size of the ionised outflows of up to ~2 kpc. The properties of the ionised outflows, mass outflow rate, momentum rate, and kinetic power, are correlated with the AGN luminosity. The increase in outflow rate with increasing AGN luminosity is consistent with the idea that a luminous AGN pushes away the surrounding gas through fast outflows that are driven by radiation pressure, which depends on the emitted luminosity. Conclusions: We derive mass outflow rates of about 6-700 M⊙ yr-1 for our sample, which are lower than those observed in molecular outflows. The physical properties of ionised outflows show dependences on AGN luminosity that are similar to those of molecular outflows, but indicate that the mass of ionised gas is lower than that of molecular outflows. Alternatively, this discrepancy between ionised and molecular outflows could be explained with different acceleration mechanisms. Based on Observations collected at the European Organisation for

  14. Ground based THz Spectroscopy of Obscured Starbursts in the Early Universe enabled by the 2nd generation Redshift (z) & Early Universe Spectrometer (ZEUS-2)

    NASA Astrophysics Data System (ADS)

    Vishwas, Amit; Stacey, Gordon; Nikola, Thomas; Ferkinhoff, Carl; Parshley, Stephen; Schoenwald, Justin; Lamarche, Cody James; Higdon, James; Higdon, Sarah; Brisbin, Drew; Güesten, Rolf; Weiss, Axel; Menten, Karl; Irwin, Kent; Cho, Hsiao-Mei; Niemack, Michael; Hilton, Gene; Hubmayr, Johannes; Amiri, Mandana; Halpern, Mark; Wiebe, Donald; Hasselfield, Matthew; Ade, Peter; Tucker, Carole

    2018-01-01

    Galaxies were surprisingly dusty in the early Universe, with more than half of the light emitted from stars being absorbed by dust within the system and re-radiated into far infrared (FIR, ~50-150μm) wavelengths. Dusty star forming galaxies (DSFGs) dominate the co-moving star formation rate density of the Universe that peaks around redshift, z~2, making it compelling to study them in rest frame FIR bands. From galaxies at z > 1, the FIR line emission from abundant ions like [O III], [C II] and [N II], are redshifted into the short sub-mm telluric windows. My thesis work is based on building and deploying the 2nd Generation Redshift (z) and Early Universe Spectrometer (ZEUS-2), a long-slit, echelle grating spectrometer optimized to study broad (Δv = 300km/s) spectral lines from galaxies in the 200-650µm telluric windows using TES bolometers. These far-IR lines being extinction free and major coolants of the gas heated by (young) massive stars, are powerful probes of the physical conditions of the gas and the stellar radiation field. I present results from our survey of the [O III] 88µm line in galaxies at redshift, z ~ 2.8 to 4.6, with ZEUS-2 at the Atacama Pathfinder Experiment (APEX) Telescope. To interpret our observations along with ancillary data from optical to radio facilities, we apply photoionization models for HII regions and Photo Dissociation Region (PDR) models and confirm that the galaxies host substantial ongoing obscured star formation. The presence of doubly ionized oxygen suggests hard radiation fields and hence, elevated ionization parameters that can only be accounted for by a large population of massive stars formed during the ongoing starburst, that contribute a large fraction of the infrared luminosity. This study highlights the use of FIR line emission to trace the assembly of current day massive galaxies, conditions of star formation and details of their stellar populations. The construction and operation of ZEUS-2 were funded by NSF ATI

  15. NMR characterization of sulphur substitution effects in the K xFe 2-ySe 2-xS z high-T c superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torchetti, D. A.; Imai, T.; Lei, H. C.

    2012-04-17

    We present a 77Se NMR study of the effect of S substitution in the high-T c superconductor K xFe 2-ySe 2-zS z in a temperature range up to 250 K. We examine two S concentrations, with z=0.8 (T c~ 26 K) and z=1.6 (nonsuperconducting). The samples containing sulphur exhibit broader NMR line shapes than the K xFe 2Se 2 sample due to local disorder in the Se environment. Our Knight shift 77K data indicate that in all samples, uniform spin susceptibility decreases with temperature, and that the magnitude of the Knight shift itself decreases with increased S concentration. In addition,more » S substitution progressively suppresses low-frequency spin fluctuations. None of the samples exhibit an enhancement of low-frequency antiferromagnetic spin fluctuations near T c in 1/T 1T, as seen in FeSe.« less

  16. The Evolution of Interstellar Medium Mass Probed by Dust Emission: ALMA Observations at z = 0.3-2

    NASA Astrophysics Data System (ADS)

    Scoville, N.; Aussel, H.; Sheth, K.; Scott, K. S.; Sanders, D.; Ivison, R.; Pope, A.; Capak, P.; Vanden Bout, P.; Manohar, S.; Kartaltepe, J.; Robertson, B.; Lilly, S.

    2014-03-01

    The use of submillimeter dust continuum emission to probe the mass of interstellar dust and gas in galaxies is empirically calibrated using samples of local star-forming galaxies, Planck observations of the Milky Way, and high-redshift submillimeter galaxies. All of these objects suggest a similar calibration, strongly supporting the view that the Rayleigh-Jeans tail of the dust emission can be used as an accurate and very fast probe of the interstellar medium (ISM) in galaxies. We present ALMA Cycle 0 observations of the Band 7 (350 GHz) dust emission in 107 galaxies from z = 0.2 to 2.5. Three samples of galaxies with a total of 101 galaxies were stellar-mass-selected from COSMOS to have M * ~= 1011 M ⊙: 37 at z ~ 0.4, 33 at z ~ 0.9, and 31 at z = 2. A fourth sample with six infrared-luminous galaxies at z = 2 was observed for comparison with the purely mass-selected samples. From the fluxes detected in the stacked images for each sample, we find that the ISM content has decreased by a factor ~6 from 1 to 2 × 1010 M ⊙ at both z = 2 and 0.9 down to ~2 × 109 M ⊙ at z = 0.4. The infrared-luminous sample at z = 2 shows a further ~4 times increase in M ISM compared with the equivalent non-infrared-bright sample at the same redshift. The gas mass fractions are ~2% ± 0.5%, 12% ± 3%, 14% ± 2%, and 53% ± 3% for the four subsamples (z = 0.4, 0.9, and 2 and infrared-bright galaxies).

  17. Chemical Potential Evaluation of Thermoelectric and Mechanical Properties of Zr2CoZ (Z = Si, Ge) Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Yousuf, Saleem; Gupta, Dinesh C.

    2018-04-01

    The electronic, mechanical and thermoelectric properties of Zr2CoZ (Z = Si, Ge) Heusler alloys are investigated by the full-potential linearized augmented plane wave method. Using the Voigt-Reuss approximation, we calculated the various elastic constants, the shear and Young's moduli, and Poisson's ratio which predict the ductile nature of the alloys. Thermoelectric coefficients viz., Seebeck, electrical conductivity and figure of merit show Zr2CoZ alloys as n-type thermoelectric materials showing a linearly increasing Seebeck coefficient with temperature mainly because of the existence of almost flat conduction bands along L to D directions of a high symmetry Brillouin zone. The efficiency of conversion was measured as the figure of merit by taking into effect the lattice thermal part that achieves an upper-limit of 0.14 at 1200 K which may favour their use for waste heat recovery at higher temperatures.

  18. 9 CFR 2.2 - Acknowledgement of regulations and standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Acknowledgement of regulations and standards. 2.2 Section 2.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Licensing § 2.2 Acknowledgement of regulations and...

  19. 9 CFR 2.2 - Acknowledgement of regulations and standards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Acknowledgement of regulations and standards. 2.2 Section 2.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Licensing § 2.2 Acknowledgement of regulations and...

  20. 9 CFR 2.2 - Acknowledgement of regulations and standards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Acknowledgement of regulations and standards. 2.2 Section 2.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Licensing § 2.2 Acknowledgement of regulations and...

  1. 9 CFR 2.2 - Acknowledgement of regulations and standards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Acknowledgement of regulations and standards. 2.2 Section 2.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Licensing § 2.2 Acknowledgement of regulations and...

  2. 9 CFR 2.2 - Acknowledgement of regulations and standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Acknowledgement of regulations and standards. 2.2 Section 2.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Licensing § 2.2 Acknowledgement of regulations and...

  3. Density functional theory study of interactions between carbon monoxide and iron tetraaza macrocyclic complexes, FeTXTAA (X = -Cl, -OH, -OCH3, -NH2, and -NO2).

    PubMed

    de Matos Mourão Neto, Isaias; Silva, Adilson Luís Pereira; Tanaka, Auro Atsushi; de Jesus Gomes Varela, Jaldyr

    2017-02-01

    This work describes a DFT level theoretical quantum study using the B3LYP functional with the Lanl2TZ(f)/6-31G* basis set to calculate parameters including the bond distances and angles, electronic configurations, interaction energies, and vibrational frequencies of FeTClTAA (iron-tetrachloro-tetraaza[14]annulene), FeTOHTAA (iron-tetrahydroxy-tetraaza[14]annulene), FeTOCH 3 TAA (iron- tetramethoxy-tetraaza[14]annulene), FeTNH 2 TAA (iron-tetraamino-tetraaza[14]annulene), and FeTNO 2 TAA (iron-tetranitro-tetraaza[14]annulene) complexes, as well as their different spin multiplicities. The calculations showed that the complexes were most stable in the triplet spin state (S = 1), while, after interaction with carbon monoxide, the singlet state was most stable. The reactivity of the complexes was evaluated using HOMO-LUMO gap calculations. Parameter correlations were performed in order to identify the best complex for back bonding (3d xz Fe → 2p x C and 3d yz Fe → 2p z C) with carbon monoxide, and the degree of back bonding increased in the order: FeTNO 2 TAA < FeTClTAA < FeTOHTAA < FeTOCH 3 TAA < FeTNH 2 TAA.

  4. 3D-HST emission line galaxies at z2: discrepancies in the optical/UV star formation rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeimann, Gregory R.; Ciardullo, Robin; Gebhardt, Henry

    2014-08-01

    We use Hubble Space Telescope near-IR grism spectroscopy to examine the Hβ line strengths of 260 star-forming galaxies in the redshift range 1.90 < z < 2.35. We show that at these epochs, the Hβ star formation rate (SFR) is a factor of ∼1.8 higher than what would be expected from the systems' rest-frame UV flux density, suggesting a shift in the standard conversion between these quantities and SFR. We demonstrate that at least part of this shift can be attributed to metallicity, as Hβ is more enhanced in systems with lower oxygen abundance. This offset must be considered whenmore » measuring the SFR history of the universe. We also show that the relation between stellar and nebular extinction in our z2 sample is consistent with that observed in the local universe.« less

  5. [CII] At 1 < z < 2: Observing Star Formation in the Early Universe with Zeus (1 and 2)

    NASA Technical Reports Server (NTRS)

    Ferkinhoff, Carl; Hailey-Dunsheath, S.; Nikola, T.; Oberst, T.; Parshley, S.; Stacey, G.; Benford, D.; staguhn, J.

    2010-01-01

    We report the detection of the [CII] 158 micron fine structure line from six submillimeter galaxies with redshifts between 1.12 and 1.73. This more than doubles the total number of [CII] 158 micron detections reported from high redshift sources. These observations were made with the Redshift(z) and Early Universe Spectrometer(ZEUS) at the Caltech Submillimeter Observatory on Mauna Kea, Hawaii between December 2006 and March 2009. ZEUS is a background limited submm echelle grating spectrometer (Hailey-Dunsheath 2009). Currently we are constructing ZEUS-2. This new instrument will utilize the same grating but will feature a two dimensional transition-edge sensed bolometer array with SQUID multiplexing readout system enabling simultaneous background limited observations in the 200, 340,450 and 650 micron telluric windows. ZEUS-2 will allow for long slit imaging spectroscopy in nearby galaxies and a [CII] survey from z 0.25 to 2.5.

  6. Proto-Clusters with Evolved Populations around Radio Galaxies at 2<z<3

    NASA Astrophysics Data System (ADS)

    Kodama, T.; Tanaka, M.; Tanaka, I.; Kajisawa, M.

    2007-12-01

    We present an on-going near-infrared survey of proto-clusters around high-z radio-loud galaxies at 2z ≲ 3 with a new wide-field instrument MOIRCS on Subaru. Most of these field are known to show a large number of Lyα and/or Hα emitters at the same redshifts of the radio galaxies. We see a clear excess of near-infrared selected galaxies (JHK_s-selected galaxies as well as DRG) in these fields, and they are indeed proto-clusters with not only young emitters but also evolved populations. Spatial distribution of such NIR selected galaxies is filamentary and track similar structures traced by the emitters. There is an hint that the bright-end of the red sequence first appeared between z=3 and 2.

  7. Ultra-compact structure in intermediate-luminosity radio quasars: building a sample of standard cosmological rulers and improving the dark energy constraints up to z 3

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Zheng, Xiaogang; Biesiada, Marek; Qi, Jingzhao; Chen, Yun; Zhu, Zong-Hong

    2017-09-01

    Context. Ultra-compact structure in radio sources (especially in quasars that can be observed up to very high redshifts), with milliarcsecond angular sizes measured by very-long-baseline interferometry (VLBI), is becoming an important astrophysical tool for probing both cosmology and the physical properties of AGN. Aims: We present a newly compiled data set of 120 milliarcsec. compact radio sources representing intermediate-luminosity quasars covering the redshift range 0.46 < z < 2.76 and check the possibility of using these sources as independent cosmological probes. These quasars observed at 2.29 GHz show negligible dependence on redshifts and intrinsic luminosity, and thus represent a fixed comoving-length of standard ruler. Methods: For a cosmological ruler with intrinsic length lm, the angular size-redshift relation can be written as θ(z) = lm/DA(z, where θ(z) is the angular size at redshift z, and DA(z) is the corresponding angular diameter distance. We use a compilation of angular size and redshift data for ultra-compact radio sources from a well-known VLBI survey, and implement a new cosmology-independent technique to calibrate the linear size of this standard ruler, which is also used to test different cosmological models with and without the flat universe assumption. Results: We determine the linear size of this standard ruler as lm = 11.03 ± 0.25 pc, which is the typical radius at which AGN jets become opaque at the observed frequency ν 2 GHz. Our measurement of this linear size is also consistent with the previous and recent radio observations at other different frequencies. In the framework of flat ΛCDM model, we find a high value of the matter density parameter, Ωm = 0.322+0.244-0.141, and a low value of the Hubble constant, H0 = 67.6+7.8-7.4 km s-1 Mpc-1, which is in excellent agreement with the cosmic microwave background (CMB) anisotropy measurements by Planck. We obtain Ωm = 0.309+0.215-0.151, w = -0.970+0.500-1.730 at 68.3% CL for the

  8. What powers Hyperluminous infrared galaxies at z˜1-2?

    NASA Astrophysics Data System (ADS)

    Symeonidis, M.; Page, M. J.

    2018-06-01

    We investigate what powers hyperluminous infrared galaxies (HyLIRGs; LIR, 8-1000μm > 1013 L⊙) at z˜1-2, by examining the behaviour of the infrared AGN luminosity function in relation to the infrared galaxy luminosity function. The former corresponds to emission from AGN-heated dust only, whereas the latter includes emission from dust heated by stars and AGN. Our results show that the two luminosity functions are substantially different below 1013 L⊙ but converge in the HyLIRG regime. We find that the fraction of AGN dominated sources increases with total infrared luminosity and at L_IR>10^{13.5} L_{⊙} AGN can account for the entire infrared emission. We conclude that the bright end of the 1 < z < 2 infrared galaxy luminosity function is shaped by AGN rather than star-forming galaxies.

  9. Fixed point and anomaly mediation in partial {\\boldsymbol{N}}=2 supersymmetric standard models

    NASA Astrophysics Data System (ADS)

    Yin, Wen

    2018-01-01

    Motivated by the simple toroidal compactification of extra-dimensional SUSY theories, we investigate a partial N = 2 supersymmetric (SUSY) extension of the standard model which has an N = 2 SUSY sector and an N = 1 SUSY sector. We point out that below the scale of the partial breaking of N = 2 to N = 1, the ratio of Yukawa to gauge couplings embedded in the original N = 2 gauge interaction in the N = 2 sector becomes greater due to a fixed point. Since at the partial breaking scale the sfermion masses in the N = 2 sector are suppressed due to the N = 2 non-renormalization theorem, the anomaly mediation effect becomes important. If dominant, the anomaly-induced masses for the sfermions in the N = 2 sector are almost UV-insensitive due to the fixed point. Interestingly, these masses are always positive, i.e. there is no tachyonic slepton problem. From an example model, we show interesting phenomena differing from ordinary MSSM. In particular, the dark matter particle can be a sbino, i.e. the scalar component of the N = 2 vector multiplet of {{U}}{(1)}Y. To obtain the correct dark matter abundance, the mass of the sbino, as well as the MSSM sparticles in the N = 2 sector which have a typical mass pattern of anomaly mediation, is required to be small. Therefore, this scenario can be tested and confirmed in the LHC and may be further confirmed by the measurement of the N = 2 Yukawa couplings in future colliders. This model can explain dark matter, the muon g-2 anomaly, and gauge coupling unification, and relaxes some ordinary problems within the MSSM. It is also compatible with thermal leptogenesis.

  10. Hohlraum-driven mid-Z (SiO2) double-shell implosions on the omega laser facility and their scaling to NIF.

    PubMed

    Robey, H F; Amendt, P A; Milovich, J L; Park, H-S; Hamza, A V; Bono, M J

    2009-10-02

    High-convergence, hohlraum-driven implosions of double-shell capsules using mid-Z (SiO2) inner shells have been performed on the OMEGA laser facility [T. R. Boehly, Opt. Commun. 133, 495 (1997)]. These experiments provide an essential extension of the results of previous low-Z (CH) double-shell implosions [P. A. Amendt, Phys. Rev. Lett. 94, 065004 (2005)] to materials of higher density and atomic number. Analytic modeling, supported by highly resolved 2D numerical simulations, is used to account for the yield degradation due to interfacial atomic mixing. This extended experimental database from OMEGA enables a validation of the mix model, and provides a means for quantitatively assessing the prospects for high-Z double-shell implosions on the National Ignition Facility [Paisner, Laser Focus World 30, 75 (1994)].

  11. Relationship Between Soil Type and N2O Reductase Genotype (nosZ) of Indigenous Soybean Bradyrhizobia: nosZ-minus Populations are Dominant in Andosols

    PubMed Central

    Shiina, Yoko; Itakura, Manabu; Choi, Hyunseok; Saeki, Yuichi; Hayatsu, Masahito; Minamisawa, Kiwamu

    2014-01-01

    Bradyrhizobium japonicum strains that have the nosZ gene, which encodes N2O reductase, are able to mitigate N2O emissions from soils (15). To examine the distribution of nosZ genotypes among Japanese indigenous soybean bradyrhizobia, we isolated bradyrhizobia from the root nodules of soybean plants inoculated with 32 different soils and analyzed their nosZ and nodC genotypes. The 1556 resultant isolates were classified into the nosZ+/nodC+ genotype (855 isolates) and nosZ−/nodC+ genotype (701 isolates). The 11 soil samples in which nosZ− isolates significantly dominated (P < 0.05; the χ2 test) were all Andosols (a volcanic ash soil prevalent in agricultural fields in Japan), whereas the 17 soil samples in which nosZ+ isolates significantly dominated were mainly alluvial soils (non-volcanic ash soils). This result was supported by a principal component analysis of environmental factors: the dominance of the nosZ− genotype was positively correlated with total N, total C, and the phosphate absorption coefficient in the soils, which are soil properties typical of Andosols. Internal transcribed spacer sequencing of representative isolates showed that the nosZ+ and nosZ− isolates of B. japonicum fell mainly into the USDA110 (BJ1) and USDA6 (BJ2) groups, respectively. These results demonstrated that the group lacking nosZ was dominant in Andosols, which can be a target soil type for an N2O mitigation strategy in soybean fields. We herein discussed how the nosZ genotypes of soybean bradyrhizobia depended on soil types in terms of N2O respiration selection and genomic determinants for soil adaptation. PMID:25476067

  12. Protoclusters with evolved populations around radio galaxies at z ~ 2.5

    NASA Astrophysics Data System (ADS)

    Kajisawa, Masaru; Kodama, Tadayuki; Tanaka, Ichi; Yamada, Toru; Bower, Richard

    2006-09-01

    We report the discovery of protocluster candidates around high-redshift radio galaxies at z ~ 2.5 on the basis of clear statistical excess of colour-selected galaxies around them seen in the deep near-infrared imaging data obtained with CISCO on the Subaru Telescope. We have observed six targets, all at similar redshifts at z ~ 2.5, and our data reach J = 23.5, H = 22.6 and K = 21.8 (5σ) and cover a 1.6 × 1.6 arcmin2 field centred on each radio galaxy. We apply colour cuts in JHK bands in order to exclusively search for galaxies located at high redshifts, z > 2. Over the magnitude range of 19.5 < K < 21.5, we see a significant excess of red galaxies with J - K > 2.3 by a factor of 2 around the combined radio galaxies fields compared to those found in the general field of the Great Observatories Origins Deep Survey-South (GOODS-S). The excess of galaxies around the radio galaxies fields becomes more than a factor of 3 around 19.5 < K < 20.5 when the two-colour cuts are applied with JHK bands. Such overdensity of the colour-selected galaxies suggests that those fields tend to host high-density regions at high redshifts, although there seems to be the variety of the density of the colour-selected galaxies in each field. In particular, two radio galaxies fields out of the six observed fields show very strong density excess and these are likely to be protoclusters associated with the radio galaxies which would evolve into rich clusters of galaxies dominated by old passively evolving galaxies.

  13. Constraints on running vacuum model with H ( z ) and f σ{sub 8}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Chao-Qiang; Lee, Chung-Chi; Yin, Lu, E-mail: geng@phys.nthu.edu.tw, E-mail: lee.chungchi16@gmail.com, E-mail: yinlumail@foxmail.com

    We examine the running vacuum model with Λ ( H ) = 3 ν H {sup 2} + Λ{sub 0}, where ν is the model parameter and Λ{sub 0} is the cosmological constant. From the data of the cosmic microwave background radiation, weak lensing and baryon acoustic oscillation along with the time dependent Hubble parameter H ( z ) and weighted linear growth f ( z )σ{sub 8}( z ) measurements, we find that ν=(1.37{sup +0.72}{sub −0.95})× 10{sup −4} with the best fitted χ{sup 2} value slightly smaller than that in the ΛCDM model.

  14. A Multi-Wavelength Census of Dust and Star Formation in Galaxies at z ~ 2

    NASA Astrophysics Data System (ADS)

    Shivaei, Irene; Reddy, Naveen; MOSDEF Collaboration

    2017-01-01

    Redshift of z ~ 2 is an important era in the history of the universe, as it contains the peak of star formation rate density and quasar activity. We study the galaxy properties during this era from two different, yet complementary, aspects: by studying formation of stars and mass assembly, and exploring the properties of galactic dust. We use a wealth of multi-wavelength data, from UV to far-IR, to obtain a complete census of obscured and unobscured star formation in galaxies. Our data consists of rest-frame optical spectra from the MOSDEF survey, rest-frame UV and optical photometric data from the 3D-HST survey, and mid- and far-IR data obtained by the Spitzer and Herschel telescopes. In the MOSDEF survey, we acquired rest-frame optical spectra of ~ 1500 galaxies with the MOSFIRE spectrograph on the Keck I telescope. MOSDEF is currently the largest survey of the rest-frame optical properties of galaxies at 1.37 ≤ z ≤ 3.80. Using the multi-wavelength data sets, we show that Hα SFRs, corrected for dust attenuation using the Hβ line, accurately trace SFRs up to ~ 300 M⊙ yr-1, when compared with panchromatic (UV-to-far-IR) SED models. Using Hα SFRs for a large sample of ~ 200 galaxies at z ~ 2, we explore the SFR-M* relation and show that the slope of this relation is shallower than previously measured. We conclude that the scatter in the SFR-M* relation is dominated by uncertainties in dust correction and cannot be used to measure the star formation stochasticity. Furthermore, we investigate the robustness of Spitzer/MIPS 24 micron flux as an SFR indicator and its variation with ISM physical parameters. We find that 24 micron flux, which at z ~ 2 traces the emission from the PAH grains, significantly depends on metallicity, such that there is a PAH deficiency in metal-poor galaxies. We demonstrate that commonly-used conversions of 24 micron flux to IR luminosity underestimate the IR luminosity of low-mass galaxies by more than a factor of 2. Our results

  15. Metallicities of z ~2 Galaxies From the 3D-HST Survey

    NASA Astrophysics Data System (ADS)

    Hernandez, Betsy; Momcheva, Ivelina; 3D-HST team

    2018-01-01

    The metal content of the gas in galaxies as a function of cosmic time is a measure of the exchange of gas between the galaxy and its environment. Understanding its evolution is central to understanding the physical processes that govern the efficiency and timing of star formation in galaxies. Our sample consists of 127 galaxies from the 3D-HST survey with individually detected spectral lines at z~2. We perform a comparison of line ratios that serve as proxies for the ionization parameter and oxygen abundance (O32 and R23 respectively) between the 3D-HST sample and SDSS galaxies at z~0. We examine the mass-metallicity relation of the 3D-HST sample, deriving the metallicity using O32 and R23, based on the Kobulnicky & Kewley models. Results from the O32 versus R23 comparison in the 3D-HST sample yield a similar distribution to recent high redshift samples. The mass-metallicity (MZ) relation shows the majority of 3D-HST metallicity values fall within previous MZ relation results.

  16. Family nonuniversal Z' models with protected flavor-changing interactions

    NASA Astrophysics Data System (ADS)

    Celis, Alejandro; Fuentes-Martín, Javier; Jung, Martin; Serôdio, Hugo

    2015-07-01

    We define a new class of Z' models with neutral flavor-changing interactions at tree level in the down-quark sector. They are related in an exact way to elements of the quark mixing matrix due to an underlying flavored U(1)' gauge symmetry, rendering these models particularly predictive. The same symmetry implies lepton-flavor nonuniversal couplings, fully determined by the gauge structure of the model. Our models allow us to address presently observed deviations from the standard model and specific correlations among the new physics contributions to the Wilson coefficients C9,10' ℓ can be tested in b →s ℓ+ℓ- transitions. We furthermore predict lepton-universality violations in Z' decays, testable at the LHC.

  17. N = 2 → 0 super no-scale models and moduli quantum stability

    NASA Astrophysics Data System (ADS)

    Kounnas, Costas; Partouche, Hervé

    2017-06-01

    We consider a class of heterotic N = 2 → 0 super no-scale Z2-orbifold models. An appropriate stringy Scherk-Schwarz supersymmetry breaking induces tree level masses to all massless bosons of the twisted hypermultiplets and therefore stabilizes all twisted moduli. At high supersymmetry breaking scale, the tachyons that occur in the N = 4 → 0 parent theories are projected out, and no Hagedorn-like instability takes place in the N = 2 → 0 models (for small enough marginal deformations). At low supersymmetry breaking scale, the stability of the untwisted moduli is studied at the quantum level by taking into account both untwisted and twisted contributions to the 1-loop effective potential. The latter depends on the specific branch of the gauge theory along which the background can be deformed. We derive its expression in terms of all classical marginal deformations in the pure Coulomb phase, and in some mixed Coulomb/Higgs phases. In this class of models, the super no-scale condition requires having at the massless level equal numbers of untwisted bosonic and twisted fermionic degrees of freedom. Finally, we show that N = 1 → 0 super no-scale models are obtained by implementing a second Z2 orbifold twist on N = 2 → 0 super no-scale Z2-orbifold models.

  18. An X-ray crystallographic and density functional theory study of (3Z)-4-(5-ethylsulfonyl-2-hydroxyanilino)pent-3-en-2-one and (3Z)-4-(5-tert-butyl-2-hydroxyanilino)pent-3-en-2-one.

    PubMed

    Akerman, Kate J; Munro, Orde Q

    2013-03-01

    The Schiff base enaminones (3Z)-4-(5-ethylsulfonyl-2-hydroxyanilino)pent-3-en-2-one, C13H17NO4S, (I), and (3Z)-4-(5-tert-butyl-2-hydroxyanilino)pent-3-en-2-one, C15H21NO2, (II), were studied by X-ray crystallography and density functional theory (DFT). Although the keto tautomer of these compounds is dominant, the O=C-C=C-N bond lengths are consistent with some electron delocalization and partial enol character. Both (I) and (II) are nonplanar, with the amino-phenol group canted relative to the rest of the molecule; the twist about the N(enamine)-C(aryl) bond leads to dihedral angles of 40.5 (2) and -116.7 (1)° for (I) and (II), respectively. Compound (I) has a bifurcated intramolecular hydrogen bond between the N-H group and the flanking carbonyl and hydroxy O atoms, as well as an intermolecular hydrogen bond, leading to an infinite one-dimensional hydrogen-bonded chain. Compound (II) has one intramolecular hydrogen bond and one intermolecular C=O...H-O hydrogen bond, and consequently also forms a one-dimensional hydrogen-bonded chain. The DFT-calculated structures [in vacuo, B3LYP/6-311G(d,p) level] for the keto tautomers compare favourably with the X-ray crystal structures of (I) and (II), confirming the dominance of the keto tautomer. The simulations indicate that the keto tautomers are 20.55 and 18.86 kJ mol(-1) lower in energy than the enol tautomers for (I) and (II), respectively.

  19. High-resolution TNG spectra of T Tauri stars. Near-IR GIANO observations of the young variables XZ Tauri and DR Tauri

    NASA Astrophysics Data System (ADS)

    Antoniucci, S.; Nisini, B.; Biazzo, K.; Giannini, T.; Lorenzetti, D.; Sanna, N.; Harutyunyan, A.; Origlia, L.; Oliva, E.

    2017-10-01

    Aims: We aim to characterise the star-disk interaction region in T Tauri stars that show photometric and spectroscopic variability. Methods: We used the GIANO instrument at the Telescopio Nazionale Galileo to obtain near-infrared high-resolution spectra (R 50 000) of XZ Tau and DR Tau, which are two actively accreting T Tauri stars classified as EXors. Equivalent widths and profiles of the observed features are used to derive information on the properties of the inner disk, the accretion columns, and the winds. Results: Both sources display composite H I line profiles, where contributions from both accreting gas and high-velocity winds can be recognised. These lines are progressively more symmetric and narrower with increasing upper energy which may be interpreted in terms of two components with different decrements or imputed to self-absorption effects. XZ Tau is observed in a relatively high state of activity with respect to literature observations. The variation of the He I 1.08 μm line blue-shifted absorption, in particular, suggests that the inner wind has undergone a dramatic change in its velocity structure, connected with a recent accretion event. DR Tau has a more stable wind as its He I 1.08 μm absorption does not show variations with time in spite of strong variability of the emission component. The IR veiling in the two sources can be interpreted as due to blackbody emission at temperatures of 1600 K and 2300 K for XZ Tau and DR Tau, respectively, with emitting areas 30 times larger than the central star. While for XZ Tau these conditions are consistent with emission from the inner rim of the dusty disk, the fairly high temperature inferred for DR Tau might suggest that its veiling originates from a thick gaseous disk located within the dust sublimation radius. Strong and broad metallic lines, mainly from C I and Fe I, are detected in XZ Tau, similar to those observed in other EXor sources during burst phases. At variance, DR Tau shows weaker and

  20. NuSTAR Reveals Extreme Absorption in z < 0.5 Type 2 Quasars

    NASA Astrophysics Data System (ADS)

    Lansbury, G. B.; Gandhi, P.; Alexander, D. M.; Assef, R. J.; Aird, J.; Annuar, A.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Civano, F.; Comastri, A.; Craig, W. W.; Del Moro, A.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Koss, M.; LaMassa, S. M.; Luo, B.; Puccetti, S.; Stern, D.; Treister, E.; Vignali, C.; Zappacosta, L.; Zhang, W. W.

    2015-08-01

    The intrinsic column density (NH) distribution of quasars is poorly known. At the high obscuration end of the quasar population and for redshifts z < 1, the X-ray spectra can only be reliably characterized using broad-band measurements that extend to energies above 10 keV. Using the hard X-ray observatory NuSTAR, along with archival Chandra and XMM-Newton data, we study the broad-band X-ray spectra of nine optically selected (from the SDSS), candidate Compton-thick (NH > 1.5 × 1024 cm-2) type 2 quasars (CTQSO2s); five new NuSTAR observations are reported herein, and four have been previously published. The candidate CTQSO2s lie at z < 0.5, have observed [O iii] luminosities in the range 8.4\\lt {log}({L}[{{O} {{III}}]}/{L}⊙ )\\lt 9.6, and show evidence for extreme, Compton-thick absorption when indirect absorption diagnostics are considered. Among the nine candidate CTQSO2s, five are detected by NuSTAR in the high-energy (8-24 keV) band: two are weakly detected at the ≈3σ confidence level and three are strongly detected with sufficient counts for spectral modeling (≳90 net source counts at 8-24 keV). For these NuSTAR-detected sources direct (i.e., X-ray spectral) constraints on the intrinsic active galactic nucleus properties are feasible, and we measure column densities ≈2.5-1600 times higher and intrinsic (unabsorbed) X-ray luminosities ≈10-70 times higher than pre-NuSTAR constraints from Chandra and XMM-Newton. Assuming the NuSTAR-detected type 2 quasars are representative of other Compton-thick candidates, we make a correction to the NH distribution for optically selected type 2 quasars as measured by Chandra and XMM-Newton for 39 objects. With this approach, we predict a Compton-thick fraction of {f}{CT}={36}-12+14 %, although higher fractions (up to 76%) are possible if indirect absorption diagnostics are assumed to be reliable.

  1. BV Observations of the Eclipsing Binary XZ Andromedae at the EKU Observatory (Abstract)

    NASA Astrophysics Data System (ADS)

    Ciocca, M.

    2018-06-01

    (Abstract only) XZ Andromedae is an Algol-type eclipsing binary. It has been the subject of many observing campaigns, all aiming at determining the mechanisms responsible for its period variation. Results have been inconsistent and the period changes did not seem to have a common explanation between authors. The latest of these observations (Y.-G. Yang, New Astronomy, 25, 2013, 109) concluded that a third companion may be present and that mass transfer from the secondary to the primary companion may be occurring. We performed measurements in the Bessel band passes B and V, measured several times of minimum and developed a model, using binary maker 3, that matches well the observations and includes mass transfer by adding a hot spot on the primary (the cool, more evolved companion) and a "cold" spot on the secondary (hotter, but smaller companion). The data were collected at the EKU observatory with a Celestron C14 telescope and a SBIG STL-6303 camera.

  2. The structures of non-CG-repeat Z-DNAs co-crystallized with the Z-DNA-binding domain, hZ alpha(ADAR1).

    PubMed

    Ha, Sung Chul; Choi, Jongkeun; Hwang, Hye-Yeon; Rich, Alexander; Kim, Yang-Gyun; Kim, Kyeong Kyu

    2009-02-01

    The Z-DNA conformation preferentially occurs at alternating purine-pyrimidine repeats, and is specifically recognized by Z alpha domains identified in several Z-DNA-binding proteins. The binding of Z alpha to foreign or chromosomal DNA in various sequence contexts is known to influence various biological functions, including the DNA-mediated innate immune response and transcriptional modulation of gene expression. For these reasons, understanding its binding mode and the conformational diversity of Z alpha bound Z-DNAs is of considerable importance. However, structural studies of Z alpha bound Z-DNA have been mostly limited to standard CG-repeat DNAs. Here, we have solved the crystal structures of three representative non-CG repeat DNAs, d(CACGTG)(2), d(CGTACG)(2) and d(CGGCCG)(2) complexed to hZ alpha(ADAR1) and compared those structures with that of hZ alpha(ADAR1)/d(CGCGCG)(2) and the Z alpha-free Z-DNAs. hZ alpha(ADAR1) bound to each of the three Z-DNAs showed a well conserved binding mode with very limited structural deviation irrespective of the DNA sequence, although varying numbers of residues were in contact with Z-DNA. Z-DNAs display less structural alterations in the Z alpha-bound state than in their free form, thereby suggesting that conformational diversities of Z-DNAs are restrained by the binding pocket of Z alpha. These data suggest that Z-DNAs are recognized by Z alpha through common conformational features regardless of the sequence and structural alterations.

  3. The Constant Average Relationship Between Dust-obscured Star Formation and Stellar Mass from z=0 to z=2.5

    NASA Astrophysics Data System (ADS)

    Whitaker, Katherine E.; Pope, Alexandra; Cybulski, Ryan; Casey, Caitlin M.; Popping, Gergo; Yun, Min; 3D-HST Collaboration

    2018-01-01

    The total star formation budget of galaxies consists of the sum of the unobscured star formation, as observed in the rest-frame ultraviolet (UV), together with the obscured component that is absorbed and re-radiated by dust grains in the infrared. We explore how the fraction of obscured star formation depends (SFR) and stellar mass for mass-complete samples of galaxies at 0 < z < 2.5. We combine GALEX and WISE photometry for SDSS-selected galaxies with the 3D-HST treasury program and Spitzer/MIPS 24μm photometry in the well-studied 5 extragalactic CANDELS fields. We find a strong dependence of the fraction of obscured star formation (f_obscured=SFR_IR/SFR_UV+IR) on stellar mass, with remarkably little evolution in this fraction with redshift out to z=2.5. 50% of star formation is obscured for galaxies with log(M/M⊙)=9.4 although unobscured star formation dominates the budget at lower masses, there exists a tail of low mass extremely obscured star-forming galaxies at z > 1. For log(M/M⊙)>10.5, >90% of star formation is obscured at all redshifts. We also show that at fixed total SFR, f_obscured is lower at higher redshift. At fixed mass, high-redshift galaxies are observed to have more compact sizes and much higher star formation rates, gas fractions and hence surface densities (implying higher dust obscuration), yet we observe no redshift evolution in f_obscured with stellar mass. This poses a challenge to theoretical models to reproduce, where the observed compact sizes at high redshift seem in tension with lower dust obscuration.

  4. The Constant Average Relationship between Dust-obscured Star Formation and Stellar Mass from z = 0 to z = 2.5

    NASA Astrophysics Data System (ADS)

    Whitaker, Katherine E.; Pope, Alexandra; Cybulski, Ryan; Casey, Caitlin M.; Popping, Gergö; Yun, Min S.

    2017-12-01

    The total star formation budget of galaxies consists of the sum of the unobscured star formation, as observed in the rest-frame ultraviolet (UV), together with the obscured component that is absorbed and re-radiated by dust grains in the infrared. We explore how the fraction of obscured star formation depends on stellar mass for mass-complete samples of galaxies at 0< z< 2.5. We combine GALEX and WISE photometry for SDSS-selected galaxies with the 3D-HST treasury program and Spitzer/MIPS 24 μm photometry in the well-studied five extragalactic Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) fields. We find a strong dependence of the fraction of obscured star formation (f obscured = SFRIR/SFRUV+IR) on stellar mass, with remarkably little evolution in this fraction with redshift out to z = 2.5. 50% of star formation is obscured for galaxies with log(M/M ⊙) = 9.4 although unobscured star formation dominates the budget at lower masses, there exists a tail of low-mass, extremely obscured star-forming galaxies at z> 1. For log(M/M ⊙) > 10.5, >90% of star formation is obscured at all redshifts. We also show that at fixed total SFR, {f}{obscured} is lower at higher redshift. At fixed mass, high-redshift galaxies are observed to have more compact sizes and much higher star formation rates, gas fractions, and hence surface densities (implying higher dust obscuration), yet we observe no redshift evolution in {f}{obscured} with stellar mass. This poses a challenge to theoretical models, where the observed compact sizes at high redshift seem in tension with lower dust obscuration.

  5. High Resolution Studies Of Lensed z2 Galaxies: Kinematics And Metal Gradients

    NASA Astrophysics Data System (ADS)

    Leethochawalit, Nicha

    2016-09-01

    We use the OSIRIS integral field unit (IFU) spectograph to secure spatially-resolved strong emission lines of 15 gravitationally-lensed star-forming galaxies at redshift z2. With the aid of gravitational lensing and Keck laser-assisted adaptive optics, the spatial resolution of these sub-luminous galaxies is at a few hundred parsecs. First, we demonstrate that high spatial resolution is crucial in diagnosing the kinematic properties and dynamical maturity of z2 galaxies. We observe a significantly lower fraction of rotationally-supported systems than what has been claimed in lower spatial resolution surveys. Second, we find a much larger fraction of z2 galaxies with weak metallicity gradients, contrary to the simple picture suggested by earlier studies that well-ordered rotation develops concurrently with established steep metal gradients in all but merging systems. Comparing our observations with the predictions of hydronamical simulations, strong feedback is likely to play a key role in flattening metal gradients in early star-forming galaxies.

  6. Statistical analyses of Higgs- and Z -portal dark matter models

    NASA Astrophysics Data System (ADS)

    Ellis, John; Fowlie, Andrew; Marzola, Luca; Raidal, Martti

    2018-06-01

    We perform frequentist and Bayesian statistical analyses of Higgs- and Z -portal models of dark matter particles with spin 0, 1 /2 , and 1. Our analyses incorporate data from direct detection and indirect detection experiments, as well as LHC searches for monojet and monophoton events, and we also analyze the potential impacts of future direct detection experiments. We find acceptable regions of the parameter spaces for Higgs-portal models with real scalar, neutral vector, Majorana, or Dirac fermion dark matter particles, and Z -portal models with Majorana or Dirac fermion dark matter particles. In many of these cases, there are interesting prospects for discovering dark matter particles in Higgs or Z decays, as well as dark matter particles weighing ≳100 GeV . Negative results from planned direct detection experiments would still allow acceptable regions for Higgs- and Z -portal models with Majorana or Dirac fermion dark matter particles.

  7. 1,2-Dichlorohexafluoro-cyclobutane (1,2-c-C4F6Cl2, R-316c) a potent ozone depleting substance and greenhouse gas: atmospheric loss processes, lifetimes, and ozone depletion and global warming potentials for the (E) and (Z) stereoisomers.

    PubMed

    Papadimitriou, Vassileios C; McGillen, Max R; Smith, Shona C; Jubb, Aaron M; Portmann, Robert W; Hall, Bradley D; Fleming, Eric L; Jackman, Charles H; Burkholder, James B

    2013-10-31

    The atmospheric processing of (E)- and (Z)-1,2-dichlorohexafluoro-cyclobutane (1,2-c-C4F6Cl2, R-316c) was examined in this work as the ozone depleting (ODP) and global warming (GWP) potentials of this proposed replacement compound are presently unknown. The predominant atmospheric loss processes and infrared absorption spectra of the R-316c isomers were measured to provide a basis to evaluate their atmospheric lifetimes and, thus, ODPs and GWPs. UV absorption spectra were measured between 184.95 to 230 nm at temperatures between 214 and 296 K and a parametrization for use in atmospheric modeling is presented. The Cl atom quantum yield in the 193 nm photolysis of R-316c was measured to be 1.90 ± 0.27. Hexafluorocyclobutene (c-C4F6) was determined to be a photolysis co-product with molar yields of 0.7 and 1.0 (±10%) for (E)- and (Z)-R-316c, respectively. The 296 K total rate coefficient for the O((1)D) + R-316c reaction, i.e., O((1)D) loss, was measured to be (1.56 ± 0.11) × 10(-10) cm(3) molecule(-1) s(-1) and the reactive rate coefficient, i.e., R-316c loss, was measured to be (1.36 ± 0.20) × 10(-10) cm(3) molecule(-1) s(-1) corresponding to a ~88% reactive yield. Rate coefficient upper-limits for the OH and O3 reaction with R-316c were determined to be <2.3 × 10(-17) and <2.0 × 10(-22) cm(3) molecule(-1) s(-1), respectively, at 296 K. The quoted uncertainty limits are 2σ and include estimated systematic errors. Local and global annually averaged lifetimes for the (E)- and (Z)-R-316c isomers were calculated using a 2-D atmospheric model to be 74.6 ± 3 and 114.1 ± 10 years, respectively, where the estimated uncertainties are due solely to the uncertainty in the UV absorption spectra. Stratospheric photolysis is the predominant atmospheric loss process for both isomers with the O((1)D) reaction making a minor, ~2% for the (E) isomer and 7% for the (Z) isomer, contribution to the total atmospheric loss. Ozone depletion potentials for (E)- and (Z)-R-316c

  8. 1,2-Dichlorohexafluoro-Cyclobutane (1,2-c-C4F6Cl2, R-316c) a Potent Ozone Depleting Substance and Greenhouse Gas: Atmospheric Loss Processes, Lifetimes, and Ozone Depletion and Global Warming Potentials for the (E) and (Z) stereoisomers

    NASA Technical Reports Server (NTRS)

    Papadimitriou, Vassileios C.; McGillen, Max R.; Smith, Shona C.; Jubb, Aaron M.; Portmann, Robert W.; Hall, Bradley D.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2013-01-01

    The atmospheric processing of (E)- and (Z)-1,2-dichlorohexafluorocyclobutane (1,2-c-C4F6Cl2, R-316c) was examined in this work as the ozone depleting (ODP) and global warming (GWP) potentials of this proposed replacement compound are presently unknown. The predominant atmospheric loss processes and infrared absorption spectra of the R-316c isomers were measured to provide a basis to evaluate their atmospheric lifetimes and, thus, ODPs and GWPs. UV absorption spectra were measured between 184.95 to 230 nm at temperatures between 214 and 296 K and a parametrization for use in atmospheric modeling is presented. The Cl atom quantum yield in the 193 nm photolysis of R- 316c was measured to be 1.90 +/- 0.27. Hexafluorocyclobutene (c-C4F6) was determined to be a photolysis co-product with molar yields of 0.7 and 1.0 (+/-10%) for (E)- and (Z)-R-316c, respectively. The 296 K total rate coefficient for the O(1D) + R-316c reaction, i.e., O(1D) loss, was measured to be (1.56 +/- 0.11) × 10(exp -10)cu cm/ molecule/s and the reactive rate coefficient, i.e., R-316c loss, was measured to be (1.36 +/- 0.20) × 10(exp -10)cu cm/molecule/s corresponding to a approx. 88% reactive yield. Rate coefficient upper-limits for the OH and O3 reaction with R-316c were determined to be <2.3 × 10(exp -17) and <2.0 × 10(exp -22)cu cm/molecule/s, respectively, at 296 K. The quoted uncertainty limits are 2(sigma) and include estimated systematic errors. Local and global annually averaged lifetimes for the (E)- and (Z)-R-316c isomers were calculated using a 2-D atmospheric model to be 74.6 +/- 3 and 114.1 +/-10 years, respectively, where the estimated uncertainties are due solely to the uncertainty in the UV absorption spectra. Stratospheric photolysis is the predominant atmospheric loss process for both isomers with the O(1D) reaction making a minor, approx. 2% for the (E) isomer and 7% for the (Z) isomer, contribution to the total atmospheric loss. Ozone depletion potentials for (E)- and (Z

  9. Cold-mode Accretion: Driving the Fundamental Mass-Metallicity Relation at z ~ 2

    NASA Astrophysics Data System (ADS)

    Kacprzak, Glenn G.; van de Voort, Freeke; Glazebrook, Karl; Tran, Kim-Vy H.; Yuan, Tiantian; Nanayakkara, Themiya; Allen, Rebecca J.; Alcorn, Leo; Cowley, Michael; Labbé, Ivo; Spitler, Lee; Straatman, Caroline; Tomczak, Adam

    2016-07-01

    We investigate the star formation rate (SFR) dependence on the stellar mass and gas-phase metallicity relation at z = 2 with MOSFIRE/Keck as part of the ZFIRE survey. We have identified 117 galaxies (1.98 ≤ z2.56), with 8.9 ≤ log(M/M ⊙) ≤ 11.0, for which we can measure gas-phase metallicities. For the first time, we show a discernible difference between the mass-metallicity relation, using individual galaxies, when dividing the sample by low (<10 M ⊙ yr-1) and high (>10 M ⊙ yr-1) SFRs. At fixed mass, low star-forming galaxies tend to have higher metallicity than high star-forming galaxies. Using a few basic assumptions, we further show that the gas masses and metallicities required to produce the fundamental mass-metallicity relation and its intrinsic scatter are consistent with cold-mode accretion predictions obtained from the OWLS hydrodynamical simulations. Our results from both simulations and observations are suggestive that cold-mode accretion is responsible for the fundamental mass-metallicity relation at z = 2 and it demonstrates the direct relationship between cosmological accretion and the fundamental properties of galaxies.

  10. Recognition Memory zROC Slopes for Items with Correct versus Incorrect Source Decisions Discriminate the Dual Process and Unequal Variance Signal Detection Models

    ERIC Educational Resources Information Center

    Starns, Jeffrey J.; Rotello, Caren M.; Hautus, Michael J.

    2014-01-01

    We tested the dual process and unequal variance signal detection models by jointly modeling recognition and source confidence ratings. The 2 approaches make unique predictions for the slope of the recognition memory zROC function for items with correct versus incorrect source decisions. The standard bivariate Gaussian version of the unequal…

  11. The Critical Z-Invariant Ising Model via Dimers: Locality Property

    NASA Astrophysics Data System (ADS)

    Boutillier, Cédric; de Tilière, Béatrice

    2011-01-01

    We study a large class of critical two-dimensional Ising models, namely critical Z-invariant Ising models. Fisher (J Math Phys 7:1776-1781, 1966) introduced a correspondence between the Ising model and the dimer model on a decorated graph, thus setting dimer techniques as a powerful tool for understanding the Ising model. In this paper, we give a full description of the dimer model corresponding to the critical Z-invariant Ising model, consisting of explicit expressions which only depend on the local geometry of the underlying isoradial graph. Our main result is an explicit local formula for the inverse Kasteleyn matrix, in the spirit of Kenyon (Invent Math 150(2):409-439, 2002), as a contour integral of the discrete exponential function of Mercat (Discrete period matrices and related topics, 2002) and Kenyon (Invent Math 150(2):409-439, 2002) multiplied by a local function. Using results of Boutillier and de Tilière (Prob Theor Rel Fields 147(3-4):379-413, 2010) and techniques of de Tilière (Prob Th Rel Fields 137(3-4):487-518, 2007) and Kenyon (Invent Math 150(2):409-439, 2002), this yields an explicit local formula for a natural Gibbs measure, and a local formula for the free energy. As a corollary, we recover Baxter's formula for the free energy of the critical Z-invariant Ising model (Baxter, in Exactly solved models in statistical mechanics, Academic Press, London, 1982), and thus a new proof of it. The latter is equal, up to a constant, to the logarithm of the normalized determinant of the Laplacian obtained in Kenyon (Invent Math 150(2):409-439, 2002).

  12. A gamma-ray burst at a redshift of z approximately 8.2.

    PubMed

    Tanvir, N R; Fox, D B; Levan, A J; Berger, E; Wiersema, K; Fynbo, J P U; Cucchiara, A; Krühler, T; Gehrels, N; Bloom, J S; Greiner, J; Evans, P A; Rol, E; Olivares, F; Hjorth, J; Jakobsson, P; Farihi, J; Willingale, R; Starling, R L C; Cenko, S B; Perley, D; Maund, J R; Duke, J; Wijers, R A M J; Adamson, A J; Allan, A; Bremer, M N; Burrows, D N; Castro-Tirado, A J; Cavanagh, B; de Ugarte Postigo, A; Dopita, M A; Fatkhullin, T A; Fruchter, A S; Foley, R J; Gorosabel, J; Kennea, J; Kerr, T; Klose, S; Krimm, H A; Komarova, V N; Kulkarni, S R; Moskvitin, A S; Mundell, C G; Naylor, T; Page, K; Penprase, B E; Perri, M; Podsiadlowski, P; Roth, K; Rutledge, R E; Sakamoto, T; Schady, P; Schmidt, B P; Soderberg, A M; Sollerman, J; Stephens, A W; Stratta, G; Ukwatta, T N; Watson, D; Westra, E; Wold, T; Wolf, C

    2009-10-29

    Long-duration gamma-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z > 20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-alpha emitting galaxy. Here we report that GRB 090423 lies at a redshift of z approximately 8.2, implying that massive stars were being produced and dying as GRBs approximately 630 Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.

  13. Characterization of the stability and folding of H2A.Z chromatin particles: implications for transcriptional activation.

    PubMed

    Abbott, D W; Ivanova, V S; Wang, X; Bonner, W M; Ausió, J

    2001-11-09

    H2A.Z and H2A.1 nucleosome core particles and oligonucleosome arrays were obtained using recombinant versions of these histones and a native histone H2B/H3/H4 complement reconstituted onto appropriate DNA templates. Analysis of the reconstituted nucleosome core particles using native polyacrylamide gel electrophoresis and DNase I footprinting showed that H2A.Z nucleosome core particles were almost structurally indistinguishable from its H2A.1 or native chicken erythrocyte counterparts. While this result is in good agreement with the recently published crystallographic structure of the H2A.Z nucleosome core particle (Suto, R. K., Clarkson, M J., Tremethick, D. J., and Luger, K. (2000) Nat. Struct. Biol. 7, 1121-1124), the ionic strength dependence of the sedimentation coefficient of these particles exhibits a substantial destabilization, which is most likely the result of the histone H2A.Z-H2B dimer binding less tightly to the nucleosome. Analytical ultracentrifuge analysis of the H2A.Z 208-12, a DNA template consisting of 12 tandem repeats of a 208-base pair sequence derived from the sea urchin Lytechinus variegatus 5 S rRNA gene, reconstituted oligonucleosome complexes in the absence of histone H1 shows that their NaCl-dependent folding ability is significantly reduced. These results support the notion that the histone H2A.Z variant may play a chromatin-destabilizing role, which may be important for transcriptional activation.

  14. H2A.Z Acidic Patch Couples Chromatin Dynamics to Regulation of Gene Expression Programs during ESC Differentiation

    PubMed Central

    Subramanian, Vidya; Mazumder, Aprotim; Surface, Lauren E.; Butty, Vincent L.; Fields, Paul A.; Alwan, Allison; Torrey, Lillian; Thai, Kevin K.; Levine, Stuart S.; Bathe, Mark; Boyer, Laurie A.

    2013-01-01

    The histone H2A variant H2A.Z is essential for embryonic development and for proper control of developmental gene expression programs in embryonic stem cells (ESCs). Divergent regions of amino acid sequence of H2A.Z likely determine its functional specialization compared to core histone H2A. For example, H2A.Z contains three divergent residues in the essential C-terminal acidic patch that reside on the surface of the histone octamer as an uninterrupted acidic patch domain; however, we know little about how these residues contribute to chromatin structure and function. Here, we show that the divergent amino acids Gly92, Asp97, and Ser98 in the H2A.Z C-terminal acidic patch (H2A.ZAP3) are critical for lineage commitment during ESC differentiation. H2A.Z is enriched at most H3K4me3 promoters in ESCs including poised, bivalent promoters that harbor both activating and repressive marks, H3K4me3 and H3K27me3 respectively. We found that while H2A.ZAP3 interacted with its deposition complex and displayed a highly similar distribution pattern compared to wild-type H2A.Z, its enrichment levels were reduced at target promoters. Further analysis revealed that H2A.ZAP3 was less tightly associated with chromatin, suggesting that the mutant is more dynamic. Notably, bivalent genes in H2A.ZAP3 ESCs displayed significant changes in expression compared to active genes. Moreover, bivalent genes in H2A.ZAP3 ESCs gained H3.3, a variant associated with higher nucleosome turnover, compared to wild-type H2A.Z. We next performed single cell imaging to measure H2A.Z dynamics. We found that H2A.ZAP3 displayed higher mobility in chromatin compared to wild-type H2A.Z by fluorescent recovery after photobleaching (FRAP). Moreover, ESCs treated with the transcriptional inhibitor flavopiridol resulted in a decrease in the H2A.ZAP3 mobile fraction and an increase in its occupancy at target genes indicating that the mutant can be properly incorporated into chromatin. Collectively, our work suggests

  15. Planck, Herschel & Spitzer unveil overdense z>2 regions

    NASA Astrophysics Data System (ADS)

    Dole, Herve; Chary, Ranga-Ram; Chary, Ranga; Frye, Brenda; Martinache, Clement; Guery, David; Le Floc'h, Emeric; Altieri, Bruno; Flores-Cacho, Ines; Giard, Martin; Hurier, Guillaume; Lagache, Guilaine; Montier, Ludovic; Nesvadba, Nicole; Omont, Alain; Pointecouteau, Etienne; Pierini, Daniele; Puget, Jean-Loup; Scott, Douglas; Soucail, Genevieve

    2014-12-01

    At which cosmic epoch did massive galaxy clusters assemble their baryons? How does star formation occur in the most massive, most rapidly collapsing dark-matter-dense environments in the early Universe? To answer these questions, we take the completely novel approach to select the most extreme z>~2 star-forming overdensities seen over the entire sky. This selection nicely complements the other existing selections for high redshift clusters (i.e., by stellar mass, or by total mass like Sunyaev-Zeldovish (SZ) or X-ray selection). We make use of the Planck all-sky submillimetre survey to systematically identify the rarest, most luminous high-redshift sub-mm sources on the sky, either strongly gravitationally lensed galaxies, or the joint FIR/sub-mm emission from multiple intense starbursts. We observed 228 Planck sources with Herschel/SPIRE and discovered that most of them are overdensities of red galaxies with extremely high star formation rates (typically 7.e3 Msun/yr for a structure). Only Spitzer data can allow a better understanding of these promising Planck+Herschel selected sources, as is shown on a first set of IRAC data on 40 targets in GO9: (i) the good angular resolution and sensitivity of IRAC allows a proper determination of the clustered nature of each Herschel/SPIRE source; (ii) IRAC photometry (often associated with J, K) allows a good estimate of the colors and approximate photometric redshift. Note spectroscopic redshifts are available for two cluster candidates, at z=1.7 and z=2.3, confirming their high redshift nature. The successful GO9 observation of 40 fields showed that about half to be >7sigma overdensities of red IRAC sources. These observations were targeting the whole range of Herschel overdensities and significances. We need to go deeper into the Spitzer sample and acquire complete coverage of the most extreme Herschel overdensities (54 new fields). Such a unique sample has legacy value, and this is the last opportunity prior to JWST

  16. Gtl2lacZ, an insertional mutation on mouse chromosome 12 with parental origin-dependent phenotype.

    PubMed

    Schuster-Gossler, K; Simon-Chazottes, D; Guenet, J L; Zachgo, J; Gossler, A

    1996-01-01

    We have produced a transgenic mouse line, Gtl2lacZ (Gene trap locus 2), that carries an insertional mutation with a dominant modified pattern of inheritance:heterozygous Gtl2lacZ mice that inherited the transgene from the father show a proportionate dwarfism phenotype, whereas the penetrance and expressivity of the phenotype is strongly reduced in Gtl2lacZ mice that inherited the transgene from the mother. On a mixed genetic background this pattern of inheritance was reversible upon transmission of the transgene through the germ line of the opposite sex. On a predominantly 129/Sv genetic background, however, transgene passage through the female germ line modified the transgene effect, such that the penetrance of the mutation was drastically reduced and the phenotype was no longer obvious after subsequent male germ line transmission. Expression of the transgene, however, was neither affected by genetic background nor by parental legacy. Gtl2lacZ maps to mouse Chromosome 12 in a region that displays imprinting effects associated with maternal and paternal disomy. Our results suggest that the transgene insertion in Gtl2lacZ mice affects an endogenous gene(s) required for fetal and postnatal growth and that this gene(s) is predominantly paternally expressed.

  17. ZFIRE: THE KINEMATICS OF STAR-FORMING GALAXIES AS A FUNCTION OF ENVIRONMENT AT z2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcorn, Leo Y.; Tran, Kim-Vy H.; Quadri, Ryan

    2016-07-01

    We perform a kinematic analysis of galaxies at z2 in the COSMOS legacy field using near-infrared (NIR) spectroscopy from Keck/MOSFIRE as part of the ZFIRE survey. Our sample consists of 75 Ks-band selected star-forming galaxies from the ZFOURGE survey with stellar masses ranging from log( M {sub ⋆}/ M {sub ⊙}) = 9.0–11.0, 28 of which are members of a known overdensity at z = 2.095. We measure H α emission-line integrated velocity dispersions ( σ {sub int}) from 50 to 230 km s{sup −1}, consistent with other emission-line studies of z2 field galaxies. From thesemore » data we estimate virial, stellar, and gas masses and derive correlations between these properties for cluster and field galaxies at z2. We find evidence that baryons dominate within the central effective radius. However, we find no statistically significant differences between the cluster and the field, and conclude that the kinematics of star-forming galaxies at z2 are not significantly different between the cluster and field environments.« less

  18. Production of glutaminase(E.C. 3.2.1.5) from Zygosaccharomyces rouxii in solid-state fermentation and modeling the growth of Z. rouxii therein.

    PubMed

    Iyer, Padma; Singhal, Rekha S

    2010-04-01

    Glutaminase production in Zygosacchromyces rouxii by solid-state fermentation (SSF) is detailed. Substrates screening showed best results with oatmeal (OM) and wheatbran (WB). Further, a 1:1 combination of OM: WB gave 0.614units/gds with artificial sea water (ASW) as moistening agent. Evaluation of additional carbon, nitrogen, aminoacids and minerals supplementation was done. A central composite design was employed to investigate effects of four variables, viz. moisture content, glucose, corn steep liquor and glutamine on production. A 4-fold increase in enzyme production was obtained. Studies were undertaken to analyze the time course model the microbial growth and nutrient utilization during SSF. Logistic equation (R2=0.8973), describing the growth model of Z.rouxii was obtained, with maximum values of micronm and Xm at 0.326h-1 and 7.35% of dry matter weight loss, respectively. A good-fit model to describe utilization of total carbohydrate (R2=0.9906) nitrogen concentration (R2=0.9869) with time was obtained. The model was used successfully to predict enzyme production (R2=0.7950).

  19. Conceptual Design of Simulation Models in an Early Development Phase of Lunar Spacecraft Simulator Using SMP2 Standard

    NASA Astrophysics Data System (ADS)

    Lee, Hoon Hee; Koo, Cheol Hea; Moon, Sung Tae; Han, Sang Hyuck; Ju, Gwang Hyeok

    2013-08-01

    The conceptual study for Korean lunar orbiter/lander prototype has been performed in Korea Aerospace Research Institute (KARI). Across diverse space programs around European countries, a variety of simulation application has been developed using SMP2 (Simulation Modelling Platform) standard related to portability and reuse of simulation models by various model users. KARI has not only first-hand experience of a development of SMP compatible simulation environment but also an ongoing study to apply the SMP2 development process of simulation model to a simulator development project for lunar missions. KARI has tried to extend the coverage of the development domain based on SMP2 standard across the whole simulation model life-cycle from software design to its validation through a lunar exploration project. Figure. 1 shows a snapshot from a visualization tool for the simulation of lunar lander motion. In reality, a demonstrator prototype on the right-hand side of image was made and tested in 2012. In an early phase of simulator development prior to a kick-off start in the near future, targeted hardware to be modelled has been investigated and indentified at the end of 2012. The architectural breakdown of the lunar simulator at system level was performed and the architecture with a hierarchical tree of models from the system to parts at lower level has been established. Finally, SMP Documents such as Catalogue, Assembly, Schedule and so on were converted using a XML(eXtensible Mark-up Language) converter. To obtain benefits of the suggested approaches and design mechanisms in SMP2 standard as far as possible, the object-oriented and component-based design concepts were strictly chosen throughout a whole model development process.

  20. Null tests of the standard model using the linear model formalism

    NASA Astrophysics Data System (ADS)

    Marra, Valerio; Sapone, Domenico

    2018-04-01

    We test both the Friedmann-Lemaître-Robertson-Walker geometry and Λ CDM cosmology in a model-independent way by reconstructing the Hubble function H (z ), the comoving distance D (z ), and the growth of structure f σ8(z ) using the most recent data available. We use the linear model formalism in order to optimally reconstruct the above cosmological functions, together with their derivatives and integrals. We then evaluate four of the null tests available in the literature that probe both background and perturbation assumptions. For all the four tests, we find agreement, within the errors, with the standard cosmological model.

  1. Characterization of polar organosulfates in secondary organic aerosol from the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal

    NASA Astrophysics Data System (ADS)

    Safi Shalamzari, Mohammad; Vermeylen, Reinhilde; Blockhuys, Frank; Kleindienst, Tadeusz E.; Lewandowski, Michael; Szmigielski, Rafal; Rudzinski, Krzysztof J.; Spólnik, Grzegorz; Danikiewicz, Witold; Maenhaut, Willy; Claeys, Magda

    2016-06-01

    We show in the present study that the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal are biogenic volatile organic compound (BVOC) precursors for polar organosulfates with molecular weights (MWs) 230 and 214, which are also present in ambient fine aerosol from a forested site, i.e., K-puszta, Hungary. These results complement those obtained in a previous study showing that the green leaf aldehyde 3-Z-hexenal serves as a precursor for MW 226 organosulfates. Thus, in addition to isoprene, the green leaf volatiles (GLVs) 2-E-hexenal and 3-Z-hexenal, emitted due to plant stress (mechanical wounding or insect attack), and 2-E-pentenal, a photolysis product of 3-Z-hexenal, should be taken into account for secondary organic aerosol and organosulfate formation. Polar organosulfates are of climatic relevance because of their hydrophilic properties and cloud effects. Extensive use was made of organic mass spectrometry (MS) and detailed interpretation of MS data (i.e., ion trap MS and accurate mass measurements) to elucidate the chemical structures of the MW 230, 214 and 170 organosulfates formed from 2-E-pentenal and indirectly from 2-E-hexenal and 3-Z-hexenal. In addition, quantum chemical calculations were performed to explain the different mass spectral behavior of 2,3-dihydroxypentanoic acid sulfate derivatives, where only the isomer with the sulfate group at C-3 results in the loss of SO3. The MW 214 organosulfates formed from 2-E-pentenal are explained by epoxidation of the double bond in the gas phase and sulfation of the epoxy group with sulfuric acid in the particle phase through the same pathway as that proposed for 3-sulfooxy-2-hydroxy-2-methylpropanoic acid from the isoprene-related α,β-unsaturated aldehyde methacrolein in previous work (Lin et al., 2013). The MW 230 organosulfates formed from 2-E-pentenal are tentatively explained by a novel pathway, which bears features of the latter pathway but introduces an additional hydroxyl group at the

  2. HUBBLE SPACE TELESCOPE EMISSION-LINE GALAXIES AT z2: THE MYSTERY OF NEON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeimann, Gregory R.; Ciardullo, Robin; Gebhardt, Henry

    2015-01-01

    We use near-infrared grism spectroscopy from the Hubble Space Telescope to examine the strength of [Ne III] λ3869 relative to Hβ, [O II] λ3727, and [O III] λ5007 in 236 low-mass (7.5 ≲ log (M {sub *}/M {sub ☉}) ≲ 10.5) star-forming galaxies in the redshift range 1.90 < z < 2.35. By stacking the data by stellar mass, we show that the [Ne III]/[O II] ratios of the z2 universe are marginally higher than those seen in a comparable set of local Sloan Digital Sky Survey galaxies, and that [Ne III]/[O III] is enhanced by ∼0.2 dex.more » We consider the possible explanations for this ∼4σ result, including higher oxygen depletion out of the gas phase, denser H II regions, higher production of {sup 22}Ne via Wolf-Rayet stars, and the existence of a larger population of X-ray obscured active galactic nuclei at z2 compared to z ∼ 0. None of these simple scenarios, alone, are favored to explain the observed line ratios. We conclude by suggesting several avenues of future observations to further explore the mystery of enhanced [Ne III] emission.« less

  3. Ultraviolet emission lines in young low-mass galaxies at z2: physical properties and implications for studies at z > 7

    NASA Astrophysics Data System (ADS)

    Stark, Daniel P.; Richard, Johan; Siana, Brian; Charlot, Stéphane; Freeman, William R.; Gutkin, Julia; Wofford, Aida; Robertson, Brant; Amanullah, Rahman; Watson, Darach; Milvang-Jensen, Bo

    2014-12-01

    We present deep spectroscopy of 17 very low mass (M⋆ ≃ 2.0 × 106-1.4 × 109 M⊙) and low luminosity (MUV ≃ -13.7 to -19.9) gravitationally lensed galaxies in the redshift range z ≃ 1.5-3.0. Deep rest-frame ultraviolet spectra reveal large equivalent width emission from numerous emission lines (N IV], O III], C IV, Si III], C III]) which are rarely seen in individual spectra of more massive star-forming galaxies. C III] is detected in 16 of 17 low-mass star-forming systems with rest-frame equivalent widths as large as 13.5 Å. Nebular C IV emission is present in the most extreme C III] emitters, requiring an ionizing source capable of producing a substantial component of photons with energies in excess of 47.9 eV. Photoionization models support a picture whereby the large equivalent widths are driven by the increased electron temperature and enhanced ionizing output arising from metal-poor gas and stars (0.04-0.13 Z⊙), young stellar populations (6-50 Myr), and large ionization parameters (log U = -2.16 to -1.84). The young ages implied by the emission lines and continuum spectral energy distributions (SEDs) indicate that the extreme line emitters in our sample are in the midst of a significant upturn in their star formation activity. The low stellar masses, blue UV colours, and large specific star formation rates of our sample are similar to those of typical z ≳ 6 galaxies. Given the strong attenuation of Lyα in z ≳ 6 galaxies, we suggest that C III] is likely to provide our best probe of early star-forming galaxies with ground-based spectrographs and one off the most efficient means of confirming z ≳ 10 galaxies with the James Webb Space Telescope.

  4. Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints

    PubMed Central

    Hinton, Samuel R.; Kazin, Eyal; Davis, Tamara M.; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Glazebrook, Karl; Jurek, Russell J.; Parkinson, David; Pimbblet, Kevin A.; Poole, Gregory B.; Pracy, Michael; Woods, David

    2016-01-01

    We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ωc h2, H(z), and DA(z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey. PMID:28066154

  5. Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints.

    PubMed

    Hinton, Samuel R; Kazin, Eyal; Davis, Tamara M; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J; Drinkwater, Michael J; Glazebrook, Karl; Jurek, Russell J; Parkinson, David; Pimbblet, Kevin A; Poole, Gregory B; Pracy, Michael; Woods, David

    2017-02-01

    We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ω c   h 2 , H ( z ), and D A ( z ) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey.

  6. Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints

    NASA Astrophysics Data System (ADS)

    Hinton, Samuel R.; Kazin, Eyal; Davis, Tamara M.; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Glazebrook, Karl; Jurek, Russell J.; Parkinson, David; Pimbblet, Kevin A.; Poole, Gregory B.; Pracy, Michael; Woods, David

    2017-02-01

    We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ωc h2, H(z), and DA(z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey.

  7. Leptophobic Z' in models with multiple Higgs doublet fields

    NASA Astrophysics Data System (ADS)

    Chiang, Cheng-Wei; Nomura, Takaaki; Yagyu, Kei

    2015-05-01

    We study the collider phenomenology of the leptophobic Z' boson from an extra U(1)' gauge symmetry in models with N -Higgs doublet fields. We assume that the Z' boson at tree level has (i) no Z- Z' mixing, (ii) no interaction with the charged leptons, and (iii) no flavour-changing neutral current. Under such a setup, it is shown that in the N = 1 case, all the U(1)' charges of left-handed quark doublets and right-handed up- and down- type quarks are required to be the same, while in the N ≥ 3 case one can take different charges for the three types of quarks. The N = 2 case is not well-defined under the above three requirements. We study the processes ( V = γ , Z and W ±) with the leptonic decays of Z and W ± at the LHC. The most promising discovery channel or the most stringent constraint on the U(1)' gauge coupling constant comes from the Z'γ process below the threshold and from the process above the threshold. Assuming the collision energy of 8 TeV and integrated luminosity of 19.6 fb-1, we find that the constraint from the Z'γ search in the lower mass regime can be stronger than that from the UA2 experiment. In the N ≥ 3 case, we consider four benchmark points for the Z' couplings with quarks. If such a Z' is discovered, a careful comparison between the Z'γ and Z' W signals is crucial to reveal the nature of Z' couplings with quarks. We also present the discovery reach of the Z' boson at the 14-TeV LHC in both N = 1 and N ≥ 3 cases.

  8. Deconvolution by Homomorphic and Wiener Filtering

    DTIC Science & Technology

    1988-09-01

    XR?(e-j) =XR(e. 7w), XJ(e-jw) -Xei) and 4 ej) -Re’) ,ej)X~i) d+ ar g [X(e l a)[ ( Assumnption: both X(z) and X(z) are analytic in a region included the...consistent if 3k(wi+,) E IJ" g (X(ej"’+’)/wiJ - Arg[X(ej’")] + 2irk(wi+t ) < THLDI < r. The idea of the algorithm is to adapt the step size Aw imtil the phase...given by arg X(ejw) = S(eJw) dw, or, according to [141 ’ G " g [X(e-’÷.’)/T ,= argX(ejw) + LAW d argX(e(’+ )+ dargX(ei’) 1T2 where d-S(e’) = argX(e3d

  9. The Curious Molecular Gas Conditions in a z=2.6 Radio-loud Quasar

    NASA Astrophysics Data System (ADS)

    Sharon, Chelsea; Riechers, Dominik A.; Kuk Leung, Tsz; Weiss, Axel; Walter, Fabian; Carilli, Chris; Kraiburg Knudsen, Kirsten; Hodge, Jacqueline

    2018-01-01

    Theoretical work suggests that AGN play an important role in quenching star formation in massive galaxies. In addition to molecular outflows observed in the local universe, emission from very high-J CO rotational transitions has been one of the key pieces of evidence for AGN directly affecting the molecular gas reservoirs that fuel star formation. However, very few observations of Jupper>9 transitions exist for galaxies in the early universe. Here we will present the peculiar molecular gas conditions in MG 0414+0534 (MG 0414 hereafter), one of the few high-z galaxies with very high-J CO detections. MG 0414 is a strongly lensed IR-bright radio-loud quasar with broad Hα emission at z=2.6390. We recently confirmed the CO(3–2) detection from Barvainis et al. (1998), but were unable to detect the CO(1–0) line. The 3σ lower limit on the 3–2/1–0 line ratio (in units of brightness temperature) is r3,1>5.72, which is significantly higher than the r3,1≤1 typical for thermalized optically thick emission in other z˜2–3 AGN host galaxies. In addition, the CO(11–10) line was detected to high significance using the Atacama Large Millimeter/submillimeter Array, and the CO(11–10) line FWHM is nearly double that of the CO(3–2) line. We will discuss possible explanations for the peculiar line ratios in MG 0414 (such as optically thin emission, molecular outflows, and differential lensing) and what the origin of these ratios imply for molecular gas observations of other high-z AGN host galaxies.

  10. The WiggleZ Dark Energy Survey: testing the cosmological model with baryon acoustic oscillations at z= 0.6

    NASA Astrophysics Data System (ADS)

    Blake, Chris; Davis, Tamara; Poole, Gregory B.; Parkinson, David; Brough, Sarah; Colless, Matthew; Contreras, Carlos; Couch, Warrick; Croom, Scott; Drinkwater, Michael J.; Forster, Karl; Gilbank, David; Gladders, Mike; Glazebrook, Karl; Jelliffe, Ben; Jurek, Russell J.; Li, I.-Hui; Madore, Barry; Martin, D. Christopher; Pimbblet, Kevin; Pracy, Michael; Sharp, Rob; Wisnioski, Emily; Woods, David; Wyder, Ted K.; Yee, H. K. C.

    2011-08-01

    We measure the imprint of baryon acoustic oscillations (BAOs) in the galaxy clustering pattern at the highest redshift achieved to date, z= 0.6, using the distribution of N= 132 509 emission-line galaxies in the WiggleZ Dark Energy Survey. We quantify BAOs using three statistics: the galaxy correlation function, power spectrum and the band-filtered estimator introduced by Xu et al. The results are mutually consistent, corresponding to a 4.0 per cent measurement of the cosmic distance-redshift relation at z= 0.6 [in terms of the acoustic parameter 'A(z)' introduced by Eisenstein et al., we find A(z= 0.6) = 0.452 ± 0.018]. Both BAOs and power spectrum shape information contribute towards these constraints. The statistical significance of the detection of the acoustic peak in the correlation function, relative to a wiggle-free model, is 3.2σ. The ratios of our distance measurements to those obtained using BAOs in the distribution of luminous red galaxies at redshifts z= 0.2 and 0.35 are consistent with a flat Λ cold dark matter model that also provides a good fit to the pattern of observed fluctuations in the cosmic microwave background radiation. The addition of the current WiggleZ data results in a ≈30 per cent improvement in the measurement accuracy of a constant equation of state, w, using BAO data alone. Based solely on geometric BAO distance ratios, accelerating expansion (w < -1/3) is required with a probability of 99.8 per cent, providing a consistency check of conclusions based on supernovae observations. Further improvements in cosmological constraints will result when the WiggleZ survey data set is complete.

  11. Targeted sections in either XY or XZ plane with dual-axes confocal endomicroscope (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Gaoming; Li, Haijun; Duan, Xiyu; Zhou, Quan; Zhou, Juan; Oldham, Kenn R.; Wang, Thomas D.

    2017-02-01

    We demonstrate a dual axes confocal architecture, which can be used to collect horizontal(XY-plane) or vertical cross-sectional(XZ-plane) images for tissue. This scanner head is 5.5mm in outer diameter(OD), and integrates a 3D MEMS scanner with a compact chip size of 3.2×2.9mm2. To realize the miniaturization, there are some obstacles of the small size of 3D MEMS scanner, MEMS wire bundle, the air pressure effect for MEMS motion, the processing of parabolic mirror, and optical alignment to come over. In our probe, separation mechanical structure for optical alignment was adopted and a step shape MEMS holder was designed to deal with the difficult of MEMS wire bundle. Peptides have been demonstrated tremendous potential for in vivo use to detect colonic dysplasia. This class of in vivo molecular probe can be labeled with near-infrared (NIR) dyes for visualizing the full depth of the epithelium in small animals. To confirm our probe performance, we take use of USAF 1951 resolution target to test its lateral and axial resolution. It has lateral and axial resolution of 2.49um and 4.98um, respectively. When we collect the fluorescence imaging of colon, it shows that the field of view are 1000um×1000um (horizontal) and 1000um×430um (vertical). The horizontal and vertical cross-sectional images of fresh mouse colonic mucosa demonstrate imaging performance with this miniature instrument.

  12. 40 CFR 180.1283 - (Z)-7,8-epoxy-2-methyloctadecane (Disparlure); exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false (Z)-7,8-epoxy-2-methyloctadecane... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1283 (Z)-7,8-epoxy-2-methyloctadecane... is established for residues of (Z)-7,8-epoxy-2-methyloctadecane on all food and feed crops that occur...

  13. 40 CFR 180.1283 - (Z)-7,8-epoxy-2-methyloctadecane (Disparlure); exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false (Z)-7,8-epoxy-2-methyloctadecane... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1283 (Z)-7,8-epoxy-2-methyloctadecane... is established for residues of (Z)-7,8-epoxy-2-methyloctadecane on all food and feed crops that occur...

  14. 40 CFR 180.1283 - (Z)-7,8-epoxy-2-methyloctadecane (Disparlure); exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false (Z)-7,8-epoxy-2-methyloctadecane... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1283 (Z)-7,8-epoxy-2-methyloctadecane... is established for residues of (Z)-7,8-epoxy-2-methyloctadecane on all food and feed crops that occur...

  15. 40 CFR 180.1283 - (Z)-7,8-epoxy-2-methyloctadecane (Disparlure); exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false (Z)-7,8-epoxy-2-methyloctadecane... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1283 (Z)-7,8-epoxy-2-methyloctadecane... is established for residues of (Z)-7,8-epoxy-2-methyloctadecane on all food and feed crops that occur...

  16. 40 CFR 180.1283 - (Z)-7,8-epoxy-2-methyloctadecane (Disparlure); exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false (Z)-7,8-epoxy-2-methyloctadecane... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1283 (Z)-7,8-epoxy-2-methyloctadecane... is established for residues of (Z)-7,8-epoxy-2-methyloctadecane on all food and feed crops that occur...

  17. Preparation of human Melanocortin-4 receptor agonist libraries: linear peptides X-Y-DPhe7-Arg8-Trp(or 2-Nal)9-Z-NH2.

    PubMed

    Cheung, Adrian Wai-Hing; Qi, Lida; Gore, Vijay; Chu, Xin-Jie; Bartkovitz, David; Kurylko, Grazyna; Swistok, Joseph; Danho, Waleed; Chen, Li; Yagaloff, Keith

    2005-12-15

    Two libraries of hMC4R agonists, X-Y-DPhe(7)-Arg(8)-2-Nal(9)-Z-NH(2) and X-Y-DPhe(7)-Arg(8)-Trp(9)-Z-NH(2), totaling 185 peptides were prepared using Irori radiofrequency tagging technology and Argonaut Quest 210 Synthesizer, where X stands for N-caps, Y for His(6) surrogates and Z for Gly(10) surrogates. As a result of this study, His-modified pentapeptides with Trp were found to be more hMC4R potent than the corresponding 2-Nal analogs, novel N-caps and Gly surrogates were identified and 19 new peptides which are potent hMC4R agonists (EC(50) 1-15nM) and selective against hMC1R were discovered.

  18. Z/sub n/ Baxter model: symmetries and the Belavin parametrization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richey, M.P.; Tracy, C.A.

    1986-02-01

    The Z/sub n/ Baxter model is an exactly solvable lattice model in the special case of the Belavin parametrization. For this parametrization the authors calculate the partition function in an antiferromagnetic region and the order parameter in a ferromagnetic region. They find that the order parameter is expressible in terms of a modular function of level n which for n=2 is the Onsager-Yang-Baxter result. In addition they determine the symmetry group of the finite lattice partition function for the general Z/sub n/ Baxter model.

  19. Hint of the Standard Model Higgs boson in its decay to H going to ZZ(*) going to 4l

    NASA Astrophysics Data System (ADS)

    Rios R., Ryan

    The Standard Model (SM) Higgs boson may be searched for at the Large Hadron Collider (LHC) in various decay channels, the choice of which is determined by the signal rates and the signal-to-background ratios in various mass regions. This dissertation presents the search for the SM Higgs boson in the mass range from 110 to 600 GeV/c2 in the golden channel - H → ZZ(*) → ℓ +ℓ-ℓ'+ℓ'- , where ℓ, ℓ‧ = e, mu. It is one of the most promising experimental searches and is characterized by high signal-to-background ratios in the low-mass Higgs region where mH < 2mZ. In this low-mass region, one of the Z bosons decays on-shell ensuring high efficiency (i.e., H → ZZ*). In the high-Higgs-mass region ( mH < 2mZ), the channel performs well, with both Z bosons decaying on-shell; this allows the search range to be extended to 600 GeV/c2 (i.e., H → ZZ). 4.8-4.9 fb-1 of data at s = 7 TeV collected by the ATLAS detector from the 2011 pp collision run is used in the search that is presented. While a direct discovery of a Standard Model Higgs boson has not been made with the present analysis, exclusion limits are set on possible Higgs masses, and evidence points strongly to a low-mass Higgs near 125 GeV/c2.

  20. Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane.

    PubMed

    Nguyen, Anh Duc; Hwang, In Yeub; Lee, Ok Kyung; Kim, Donghyuk; Kalyuzhnaya, Marina G; Mariyana, Rina; Hadiyati, Susila; Kim, Min Sik; Lee, Eun Yeol

    2018-04-16

    Methane is considered a next-generation feedstock, and methanotrophic cell-based biorefinery is attractive for production of a variety of high-value compounds from methane. In this work, we have metabolically engineered Methylomicrobium alcaliphilum 20Z for 2,3-butanediol (2,3-BDO) production from methane. The engineered strain 20Z/pBudK.p, harboring the 2,3-BDO synthesis gene cluster (budABC) from Klebsiella pneumoniae, accumulated 2,3-BDO in methane-fed shake flask cultures with a titer of 35.66 mg/L. Expression of the most efficient gene cluster was optimized using selection of promoters, translation initiation rates (TIR), and the combination of 2,3-BDO synthesis genes from different sources. A higher 2,3-BDO titer of 57.7 mg/L was measured in the 20Z/pNBM-Re strain with budA of K. pneumoniae and budB of Bacillus subtilis under the control of the Tac promoter. The genome-scale metabolic network reconstruction of M. alcaliphilum 20Z enabled in silico gene knockout predictions using an evolutionary programming method to couple growth and 2,3-BDO production. The ldh, ack, and mdh genes in M. alcaliphilum 20Z were identified as potential knockout targets. Pursuing these targets, a triple-mutant strain ∆ldh ∆ack ∆mdh was constructed, resulting in a further increase of the 2,3-BDO titer to 68.8 mg/L. The productivity of this optimized strain was then tested in a fed-batch stirred tank bioreactor, where final product concentrations of up to 86.2 mg/L with a yield of 0.0318 g-(2,3-BDO) /g-CH 4 were obtained under O 2 -limited conditions. This study first demonstrates the strategy of in silico simulation-guided metabolic engineering and represents a proof-of-concept for the production of value-added compounds using systematic approaches from engineered methanotrophs. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. 78 FR 35559 - Updating OSHA Standards Based on National Consensus Standards; Signage

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ...; Signage AGENCY: Occupational Safety and Health Administration (OSHA), Department of Labor. ACTION: Direct... signage standards by adding references to the latest versions of the American National Standards Institute... earlier ANSI standards, ANSI Z53.1-1967, Z35.1-1968 and Z35.2-1968, in its signage standards, thereby...

  2. Development of the 2nd generation z(Redshift) and early universe spectrometer & the study of far-IR fine structure emission in high-z galaxies

    NASA Astrophysics Data System (ADS)

    Ferkinhoff, Carl

    The 2nd generation z (Redshift) and Early Universe Spectrometer (ZEUS-2), is a long-slit echelle-grating spectrometer (R~1000) for observations at submillimeter wavelengths from 200 to 850 microm. Its design is optimized for the detection of redshifted far-infrared spectral lines from galaxies in the early universe. Combining exquisite sensitivity, broad wavelength coverage, and large (˜2.5%) instantaneous bandwidth, ZEUS-2 is uniquely suited for studying galaxies between z˜0.2 and 5---spanning the peaks in both the star formation rate and number of AGN in the universe. ZEUS-2 saw first light at the Caltech Submillimeter Observatory (CSO) in the Spring of 2012 and was commissioned on the Atacama Pathfinder Experiment (APEX) in November 2012. Here we detail the design and performance of ZEUS-2, first however we discuss important science results that are examples of the science enabled by ZEUS-2. Using the first generation z (Redshift) and Early Universe Spectrometer (ZEUS-1) we made the first high-z detections of the [NII] 122 microm and [OIII] 88 microm lines. We detect these lines from starburst galaxies between z ˜2.5 and 4 demonstrating the utility of these lines for characterizing the properties of early galaxies. Specifically we are able to determine the most massive star still on the main sequence, the number of those stars and a lower limit on the mass of ionized gas in the source. Next we present ZEUS-2's first science result. Using ZEUS-2 on APEX we have detected the [CII] 158 microm line from the z = 1.78 galaxy H-ATLAS J091043.1-000322 with a line flux of (6.44 +/- 0.42) ˜ 10-18 W m-2. Combined with its far-infrared luminosity and a new Herschel-PACS detection of the [OI] 63 microm line we are able to conclude that H-ATLAS J091043.1-000322 is a high redshift analogue of a local ultra-luminous infrared galaxy, i.e. it is likely the site of a compact starburst due to a major merger. This detection, combined with the ZEUS-1 observations of the [NII

  3. Multi-wavelength characterisation of z ~ 2 clustered, dusty star-forming galaxies discovered by Planck

    NASA Astrophysics Data System (ADS)

    Flores-Cacho, I.; Pierini, D.; Soucail, G.; Montier, L.; Dole, H.; Pointecouteau, E.; Pelló, R.; Le Floc'h, E.; Nesvadba, N.; Lagache, G.; Guery, D.; Cañameras, R.

    2016-01-01

    We report the discovery of PHz G95.5-61.6, a complex structure detected in emission in the Planck all-sky survey that corresponds to two over-densities of high-redshift (I.e. z> 1) galaxies. This is the first source from the Planck catalogue of high-z candidates (proto-clusters and lensed systems) that has been completely characterised with follow-up observations from the optical to the sub-millimetre (sub-mm) domain. Herschel/SPIRE observations at 250, 350, and 500 μm reveal the existence of five sources producing a 500 μm emission excess that spatially corresponds to the candidate proto-clusters discovered by Planck. Further observations at the Canada-France-Hawaii Telescope in the optical bands (g and I) with MegaCam, and in the near infrared (NIR) (J, H and Ks), with WIRCam, plus mid-infrared observations with IRAC/Spitzer (at 3.6 and 4.5 μm), confirm that the sub-mm red excess is associated with an over-density of colour-selected galaxies (I - Ks ~ 2.3 and J - K ~ 0.8 AB-mag). Follow-up spectroscopy of 13 galaxies with VLT/X-Shooter establishes the existence of two high-z structures: one at z ≃ 1.7 (three confirmed member galaxies), the other at z2.0 (six confirmed members). The spectroscopic members of each substructure occupy a circular region of comoving radius that is smaller than 1 Mpc, which supports the existence of a physical bond among them. This double structure is also seen in the photometric redshift analysis of a sample of 127 galaxies located inside a circular region of 1'-radius. This contains the five Herschel/SPIRE sources, where we found a double-peaked excess of galaxies at z ≃ 1.7 and z2.0 with respect to the surrounding region. These results suggest that PHz G95.5-61.6 corresponds to two accreting nodes, not physically linked to one another, embedded in the large scale structure of the Universe at z ~ 2 and along the same line-of-sight. In conclusion, the data, methods and results illustrated in this pilot project confirm

  4. The comoving mass density of Mg II from z ˜ 2 to 5.5

    NASA Astrophysics Data System (ADS)

    Codoreanu, Alex; Ryan-Weber, Emma V.; Crighton, Neil H. M.; Becker, George; Pettini, Max; Madau, Piero; Venemans, Bram

    2017-11-01

    We present the results of a survey for intervening Mg II absorbers in the redshift range z2-6 in the foreground of four high-redshift quasar spectra, 5.79 ≤ zem ≤ 6.133, obtained with the European Southern Observatory Very Large Telescope X-Shooter. We visually identify 52 Mg II absorption systems and perform a systematic completeness and false positive analysis. We find 24 absorbers at ≥ 5σ significance in the equivalent width range 0.117 ≤ W2796 ≤ 3.655 Å with the highest redshift absorber at z = 4.89031 ± 4 × 10-5. For weak (W2796 < 0.3 Å) systems, we measure an incidence rate dN/dz = 1.35 ± 0.58 at 〈z〉 = 2.34 and find that it almost doubles to dN/dz = 2.58 ± 0.67 by 〈z〉 = 4.81. The number of weak absorbers exceeds the number expected from an exponential fit to stronger systems (W2796 > 0.3 Å). We find that there must be significant evolution in the absorption halo properties of Mg II absorbers with W2796 > 0.1 Å by 〈z〉 = 4.77 and/or that they are associated with galaxies with luminosities beyond the limits of the current luminosity function at z ∼ 5. We find that the incidence rate of strong Mg II absorbers (W2796 > 1.0 Å) can be explained if they are associated with galaxies with L ≥ 0.29L* and/or their covering fraction increases. If they continue to only be associated with galaxies with L ≥ 0.50L* then their physical cross-section (σphys) increases from 0.015 Mpc2 at z = 2.3-0.041 Mpc2 at 〈z〉 = 4.77. We measure Ω _{Mg II} = 2.1^{+6.3}_{-0.6}× 10^{-8}, 1.9^{+2.9}_{-0.2} × 10^{-8} and 3.9^{+7.1}_{-2.4}× 10^{-7} at 〈z〉 = 2.48, 3.41 and 4.77, respectively. At 〈z〉 = 4.77, Ω _{Mg II} exceeds the value expected from Ω _{H I}} estimated from the global metallicity of damped Ly α systems (DLAs) at z ≃ 4.85 by a factor of ∼44 suggesting that either Mg II absorbers trace both ionized and neutral gas and/or are more metal rich than the average DLA at this redshift.

  5. Identification of (Z)-2,3-Diphenylacrylonitrile as Anti-Cancer Molecule in Persian Gulf Sea Cucumber Holothuria parva

    PubMed Central

    Amidi, Salimeh; Hashemi, Zahra; Motallebi, Abbasali; Nazemi, Melika; Farrokhpayam, Hoda; Seydi, Enayatollah

    2017-01-01

    Hepatocellular carcinoma (HCC), also named cancerous hepatoma, is the most common type of malignant neoplasia of the liver. In this research, we screened the Persian Gulf sea cucumber Holothuria parva (H. parva) methanolic sub-fractions for the possible existence of selective toxicity on liver mitochondria isolated from an animal model of HCC. Next, we purified the most active fraction. Thus the structure of the active molecule was identified. HCC was induced by diethylnitrosamine (DEN) and 2-acetylaminofluorene (2-AAF) protocol. Rat liver mitochondria for evaluation of the selective cytotoxic effects of sub-fractions of H. parva were isolated and then mitochondrial parameters were determined. Our results showed that C1 sub-fraction of methanolic extract of H. parva considerably increased reactive oxygen species (ROS) generation, collapse of mitochondrial membrane potential (MMP), swelling in mitochondria and cytochrome c release only on HCC liver mitochondria. Furthermore, the methanolic extract of H. parva was investigated furthermore and the active fraction was extracted. In this fraction, (Z)-2,3-diphenylacrylonitrile molecule, which is also known as α-cyanostilbene, was identified by mass analysis. This molecule increased ROS generation, collapse of MMP, swelling in mitochondria and finally cytochrome c release only on HCC liver mitochondria. The derivatives of (Z)-2,3-diphenylacrylonitrile in other natural products were also reported as an anti-cancer agent. These results suggest the eligibility of the (Z)-2,3-diphenylacrylonitrile as a complementary therapeutic agent for patients with HCC. PMID:29035293

  6. Shuttle user analysis (study 2.2). Volume 4: Standardized subsystem modules analysis

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The capability to analyze payloads constructed of standardized modules was provided for the planning of future mission models. An inventory of standardized module designs previously obtained was used as a starting point. Some of the conclusions and recommendations are: (1) the two growth factor synthesis methods provide logical configurations for satellite type selection; (2) the recommended method is the one that determines the growth factor as a function of the baseline subsystem weight, since it provides a larger growth factor for small subsystem weights and results in a greater overkill due to standardization; (3) the method that is not recommended is the one that depends upon a subsystem similarity selection, since care must be used in the subsystem similarity selection; (4) it is recommended that the application of standardized subsystem factors be limited to satellites with baseline dry weights between about 700 and 6,500 lbs; and (5) the standardized satellite design approach applies to satellites maintainable in orbit or retrieved for ground maintenance.

  7. Antitumor activity of (2E,5Z)-5-(2-hydroxybenzylidene)-2-((4-phenoxyphenyl)imino) thiazolidin-4-one, a novel microtubule-depolymerizing agent, in U87MG human glioblastoma cells and corresponding mouse xenograft model.

    PubMed

    Zhang, Qiu; Liu, Xiaojun; Li, Xiue; Li, Changlong; Zhou, Hongyu; Yan, Bing

    2013-01-01

    Glioblastoma is the most lethal brain cancer. In spite of intensive therapy, the prognosis of patients with glioblastoma is very poor. To discover novel therapeutic agents, we screened a combinatorial compound library containing 372 thiazolidinone compounds using U87MG human glioblastoma cells. (2E,5Z)-5-(2-hydroxybenzylidene)-2-((4-phenoxyphenyl)imino) thiazolidin-4-one (HBPT) was identified as the most potent anti-glioblastoma compound. HBPT inhibits U87MG human glioblastoma cell proliferation with an IC50 of 20 μM, which is almost 5-fold more potent than temozolomide (a widely used drug for treating malignant glioma in the clinic). Mechanistic investigation demonstrated that HBPT is a novel microtubule-depolymerizing agent, which arrests cancer cells at the G2/M phase of the cell cycle and induces cell apoptosis. In the mouse U87MG xenograft model, HBPT elicits a robust tumor inhibitory effect. More importantly, no obvious toxicity was observed for HBPT therapy in animal experiments. These findings indicate that HBPT has the potential to be developed as a novel agent for the treatment of glioblastoma. [Supplementary Tables: available only at http://dx.doi.org/10.1254/jphs.13064FP].

  8. ZFIRE: 3D Modeling of Rotation, Dispersion, and Angular Momentum of Star-forming Galaxies at z2

    NASA Astrophysics Data System (ADS)

    Alcorn, Leo Y.; Tran, Kim-Vy; Glazebrook, Karl; Straatman, Caroline M.; Cowley, Michael; Forrest, Ben; Kacprzak, Glenn G.; Kewley, Lisa J.; Labbé, Ivo; Nanayakkara, Themiya; Spitler, Lee R.; Tomczak, Adam; Yuan, Tiantian

    2018-05-01

    We perform a kinematic and morphological analysis of 44 star-forming galaxies at z2 in the COSMOS legacy field using near-infrared spectroscopy from Keck/MOSFIRE and F160W imaging from CANDELS/3D-HST as part of the ZFIRE survey. Our sample consists of cluster and field galaxies from 2.0 < z < 2.5 with K-band multi-object slit spectroscopic measurements of their Hα emission lines. Hα rotational velocities and gas velocity dispersions are measured using the Heidelberg Emission Line Algorithm (HELA), which compares directly to simulated 3D data cubes. Using a suite of simulated emission lines, we determine that HELA reliably recovers input S 0.5 and angular momentum at small offsets, but V 2.2/σ g values are offset and highly scattered. We examine the role of regular and irregular morphology in the stellar mass kinematic scaling relations, deriving the kinematic measurement S 0.5, and finding {log}({S}0.5)=(0.38+/- 0.07){log}(M/{M}ȯ -10)+(2.04+/- 0.03) with no significant offset between morphological populations and similar levels of scatter (∼0.16 dex). Additionally, we identify a correlation between M ⋆ and V 2.2/σ g for the total sample, showing an increasing level of rotation dominance with increasing M ⋆, and a high level of scatter for both regular and irregular galaxies. We estimate the specific angular momenta (j disk) of these galaxies and find a slope of 0.36 ± 0.12, shallower than predicted without mass-dependent disk growth, but this result is possibly due to measurement uncertainty at M ⋆ < 9.5 However, through a Kolmogorov–Smirnov test we find irregular galaxies to have marginally higher j disk values than regular galaxies, and high scatter at low masses in both populations.

  9. A TEST OF COSMOLOGICAL MODELS USING HIGH-z MEASUREMENTS OF H(z)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melia, Fulvio; McClintock, Thomas M., E-mail: fmelia@email.arizona.edu, E-mail: tmcclintock89@gmail.com

    2015-10-15

    The recently constructed Hubble diagram using a combined sample of SNLS and SDSS-II SNe Ia, and an application of the Alcock–Paczyński (AP) test using model-independent Baryon Acoustic Oscillation (BAO) data, have suggested that the principal constraint underlying the cosmic expansion is the total equation-of-state of the cosmic fluid, rather than that of its dark energy. These studies have focused on the critical redshift range (0 ≲ z2) within which the transition from decelerated to accelerated expansion is thought to have occurred, and they suggest that the cosmic fluid has zero active mass, consistent with a constant expansion rate.more » The evident impact of this conclusion on cosmological theory calls for an independent confirmation. In this paper, we carry out this crucial one-on-one comparison between the R{sub h} = ct universe (a Friedmann–Robertson–Walker cosmology with zero active mass) and wCDM/ΛCDM, using the latest high-z measurements of H(z). Whereas the SNe Ia yield the integrated luminosity distance, while the AP diagnostic tests the geometry of the universe, the Hubble parameter directly samples the expansion rate itself. We find that the model-independent cosmic chronometer data prefer R{sub h} = ct over wCDM/ΛCDM with a Bayes Information Criterion likelihood of ∼95% versus only ∼5%, in strong support of the earlier SNe Ia and AP results. This contrasts with a recent analysis of H(z) data based solely on BAO measurements which, however, strongly depend on the assumed cosmology. We discuss why the latter approach is inappropriate for model comparisons, and emphasize again the need for truly model-independent observations to be used in cosmological tests.« less

  10. Improved model quality assessment using ProQ2.

    PubMed

    Ray, Arjun; Lindahl, Erik; Wallner, Björn

    2012-09-10

    Employing methods to assess the quality of modeled protein structures is now standard practice in bioinformatics. In a broad sense, the techniques can be divided into methods relying on consensus prediction on the one hand, and single-model methods on the other. Consensus methods frequently perform very well when there is a clear consensus, but this is not always the case. In particular, they frequently fail in selecting the best possible model in the hard cases (lacking consensus) or in the easy cases where models are very similar. In contrast, single-model methods do not suffer from these drawbacks and could potentially be applied on any protein of interest to assess quality or as a scoring function for sampling-based refinement. Here, we present a new single-model method, ProQ2, based on ideas from its predecessor, ProQ. ProQ2 is a model quality assessment algorithm that uses support vector machines to predict local as well as global quality of protein models. Improved performance is obtained by combining previously used features with updated structural and predicted features. The most important contribution can be attributed to the use of profile weighting of the residue specific features and the use features averaged over the whole model even though the prediction is still local. ProQ2 is significantly better than its predecessors at detecting high quality models, improving the sum of Z-scores for the selected first-ranked models by 20% and 32% compared to the second-best single-model method in CASP8 and CASP9, respectively. The absolute quality assessment of the models at both local and global level is also improved. The Pearson's correlation between the correct and local predicted score is improved from 0.59 to 0.70 on CASP8 and from 0.62 to 0.68 on CASP9; for global score to the correct GDT_TS from 0.75 to 0.80 and from 0.77 to 0.80 again compared to the second-best single methods in CASP8 and CASP9, respectively. ProQ2 is available at http://proq2

  11. Atomic-Ordering-Induced Quantum Phase Transition between Topological Crystalline Insulator and Z 2 Topological Insulator

    NASA Astrophysics Data System (ADS)

    Deng, Hui-Xiong; Song, Zhi-Gang; Li, Shu-Shen; Wei, Su-Huai; Luo, Jun-Wei

    2018-05-01

    Topological phase transition in a single material usually refers to transitions between a trivial band insulator and a topological Dirac phase, but the transition may also occur between different classes of topological Dirac phases. However, it is a fundamental challenge to realize quantum transition between Z2 nontrivial topological insulator (TI) and topological crystalline insulator (TCI) in one material because Z2 TI and TCI are hardly both co-exist in a single material due to their contradictory requirement on the number of band inversions. The Z2 TIs must have an odd number of band inversions over all the time-reversal invariant momenta, whereas, the newly discovered TCIs, as a distinct class of the topological Dirac materials protected by the underlying crystalline symmetry, owns an even number of band inversions. Here, take PbSnTe2 alloy as an example, we show that at proper alloy composition the atomic-ordering is an effective way to tune the symmetry of the alloy so that we can electrically switch between TCI phase and Z2 TI phase when the alloy is ordered from a random phase into a stable CuPt phase. Our results suggest that atomic-ordering provides a new platform to switch between different topological phases.

  12. VDES J2325-5229 a z = 2.7 gravitationally lensed quasar discovered using morphology-independent supervised machine learning

    DOE PAGES

    Ostrovski, Fernanda; McMahon, Richard G.; Connolly, Andrew J.; ...

    2016-11-17

    In this paper, we present the discovery and preliminary characterization of a gravitationally lensed quasar with a source redshift z s = 2.74 and image separation of 2.9 arcsec lensed by a foreground z l = 0.40 elliptical galaxy. Since optical observations of gravitationally lensed quasars show the lens system as a superposition of multiple point sources and a foreground lensing galaxy, we have developed a morphology-independent multi-wavelength approach to the photometric selection of lensed quasar candidates based on Gaussian Mixture Models (GMM) supervised machine learning. Using this technique and gi multicolour photometric observations from the Dark Energy Survey (DES),more » near-IR JK photometry from the VISTA Hemisphere Survey (VHS) and WISE mid-IR photometry, we have identified a candidate system with two catalogue components with i AB = 18.61 and i AB = 20.44 comprising an elliptical galaxy and two blue point sources. Spectroscopic follow-up with NTT and the use of an archival AAT spectrum show that the point sources can be identified as a lensed quasar with an emission line redshift of z = 2.739 ± 0.003 and a foreground early-type galaxy with z = 0.400 ± 0.002. We model the system as a single isothermal ellipsoid and find the Einstein radius θ E ~ 1.47 arcsec, enclosed mass M enc ~ 4 × 10 11 M ⊙ and a time delay of ~52 d. Finally, the relatively wide separation, month scale time delay duration and high redshift make this an ideal system for constraining the expansion rate beyond a redshift of 1.« less

  13. VDES J2325-5229 a z = 2.7 gravitationally lensed quasar discovered using morphology-independent supervised machine learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrovski, Fernanda; McMahon, Richard G.; Connolly, Andrew J.

    In this paper, we present the discovery and preliminary characterization of a gravitationally lensed quasar with a source redshift z s = 2.74 and image separation of 2.9 arcsec lensed by a foreground z l = 0.40 elliptical galaxy. Since optical observations of gravitationally lensed quasars show the lens system as a superposition of multiple point sources and a foreground lensing galaxy, we have developed a morphology-independent multi-wavelength approach to the photometric selection of lensed quasar candidates based on Gaussian Mixture Models (GMM) supervised machine learning. Using this technique and gi multicolour photometric observations from the Dark Energy Survey (DES),more » near-IR JK photometry from the VISTA Hemisphere Survey (VHS) and WISE mid-IR photometry, we have identified a candidate system with two catalogue components with i AB = 18.61 and i AB = 20.44 comprising an elliptical galaxy and two blue point sources. Spectroscopic follow-up with NTT and the use of an archival AAT spectrum show that the point sources can be identified as a lensed quasar with an emission line redshift of z = 2.739 ± 0.003 and a foreground early-type galaxy with z = 0.400 ± 0.002. We model the system as a single isothermal ellipsoid and find the Einstein radius θ E ~ 1.47 arcsec, enclosed mass M enc ~ 4 × 10 11 M ⊙ and a time delay of ~52 d. Finally, the relatively wide separation, month scale time delay duration and high redshift make this an ideal system for constraining the expansion rate beyond a redshift of 1.« less

  14. Variant Histone H2A.Z Is Globally Localized to the Promoters of Inactive Yeast Genes and Regulates Nucleosome Positioning

    PubMed Central

    Gévry, Nicolas; Adam, Maryse; Blanchette, Mathieu

    2005-01-01

    H2A.Z is an evolutionary conserved histone variant involved in transcriptional regulation, antisilencing, silencing, and genome stability. The mechanism(s) by which H2A.Z regulates these various biological functions remains poorly defined, in part due to the lack of knowledge regarding its physical location along chromosomes and the bearing it has in regulating chromatin structure. Here we mapped H2A.Z across the yeast genome at an approximately 300-bp resolution, using chromatin immunoprecipitation combined with tiling microarrays. We have identified 4,862 small regions—typically one or two nucleosomes wide—decorated with H2A.Z. Those “Z loci” are predominantly found within specific nucleosomes in the promoter of inactive genes all across the genome. Furthermore, we have shown that H2A.Z can regulate nucleosome positioning at the GAL1 promoter. Within HZAD domains, the regions where H2A.Z shows an antisilencing function, H2A.Z is localized in a wider pattern, suggesting that the variant histone regulates a silencing and transcriptional activation via different mechanisms. Our data suggest that the incorporation of H2A.Z into specific promoter-bound nucleosomes configures chromatin structure to poise genes for transcriptional activation. The relevance of these findings to higher eukaryotes is discussed. PMID:16248679

  15. Ab initio study of Fe{sub 2}MnZ (Al, Si, Ge) Heusler alloy using GGA approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Vivek Kumar, E-mail: vivek.jain129@gmail.com; Jain, Vishal, E-mail: vivek.jain129@gmail.com; Lakshmi, N., E-mail: vivek.jain129@gmail.com

    Density functional theory based on FP-LAPW method used to investigate the electronic structure of Fe{sub 2}MnZ, shows that the total spin magnetic moment shows a trend consistent with the Slater–Pauling curve. The Fe and Mn magnetic moment depend on choice of Z element although the magnetic moment of Z element is negative and less than 0.1 μ{sub B}. Spin polarization calculations evidence 100% spin polarization for Fe{sub 2}MnSi. Fe{sub 2}MnAl and Fe{sub 2}MnGe show metallic behavior with 93%, 98% spin polarization.

  16. In vitro and in vivo binding of (E)- and (Z)-N-(iodoallyl)spiperone to dopamine D sub 2 and serotonin 5-HT sub 2 neuroreceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lever, J.R.; Scheffel, U.A.; Stathis, M.

    1990-01-01

    Apparent affinities (K{sub i}) of (E)- and (Z)-N-(iodoallyl)spiperone ((E)- and (Z)- NIASP) for dopamine D{sub 2} and serotonin 5-HT{sub 2} receptors were determined in competition binding assays. (Z)-NIASP (K{sub i} 0.35 nM, D{sub 2}; K{sub i} 1.75 nM, 5-HT{sub 2}) proved slightly more potent and selective for D{sub 2} sites in vitro than (E)-NIASP (K{sub i} 0.72 nM, D{sub 2}; K{sub i} 1.14 nM, 5-HT{sub 2}). In vivo, radioiodinated (E)- and (Z)-({sup 125}I)-NIASP showed regional distributions in mouse brain which are consonant with prolonged binding to dopamine D{sub 2} receptors accompanied by a minor serotonergic component of shorter duration. Stereoselective,more » dose-dependent blockade of (E)-({sup 125}I)-NIASP uptake was found for drugs binding to dopamine D{sub 2} sites, while drugs selective for serotonin 5-HT{sub 2}, {alpha}{sub 1}-adrenergic and dopamine D{sub 1} receptors did not inhibit radioligand binding 2 hr postinjection. Specific binding in striatal tissue was essentially irreversible over the time course of the study, and (E)-({sup 125}I)-NIASP gave a striatal to cerebellar tissue radioactivity concentration of 16.9 to 1 at 6 hr postinjection. Thus, (E)-({sup 125}I)-NIASP binds with high selectivity and specificity to dopamine D{sub 2} sites in vivo.« less

  17. Carbon Dioxide and Water Vapor Concentrations, Co-spectra and Fluxes from Latest Standardized Automated CO2/H2O Flux Systems versus Established Analyzer Models

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Kathilankal, J. C.; Begashaw, I.; Franzen, D.; Welles, J.; McDermitt, D. K.

    2017-12-01

    Spatial and temporal flux data coverage have improved significantly in recent years, due to standardization, automation and management of data collection, and better handling of the generated data. With more stations and networks, larger data streams from each station, and smaller operating budgets, modern tools are required to effectively and efficiently handle the entire process.These tools should produce standardized verifiable datasets, and provide a way to cross-share the standardized data with external collaborators to leverage available funding, and promote data analyses and publications. In 2015, new open-path and enclosed flux measurement systems1 were developed, based on established gas analyzer models2,3, with the goal of improving stability in the presence of contamination, refining temperature control and compensation, and providing more accurate gas concentration measurements. In 2017, the new open-path system was further refined to simplify hardware configuration, and to reduce power consumption and cost. Additionally, all new systems incorporate complete automated on-site flux calculations using EddyPro® Software4 run by a weatherized remotely-accessible microcomputer to provide standardized traceable data sets for fluxes and supporting variables. This presentation will describe details and results from the field tests of the new flux systems, in comparison to older models and reference instruments. References:1 Burba G., W. Miller, I. Begashaw, G. Fratini, F. Griessbaum, J. Kathilankal, L. Xu, D. Franz, E. Joseph, E. Larmanou, S. Miller, D. Papale, S. Sabbatini, T. Sachs, R. Sakai, D. McDermitt, 2017. Comparison of CO2 Concentrations, Co-spectra and Flux Measurements between Latest Standardized Automated CO2/H2O Flux Systems and Older Gas Analysers. 10th ICDC Conference, Switzerland: 21-25/08 2 Metzger, S., G. Burba, S. Burns, P. Blanken, J. Li, H. Luo, R. Zulueta, 2016. Optimization of an enclosed gas analyzer sampling system for measuring eddy

  18. Star Formation at z = 2.481 in the Lensed Galaxy SDSS J1110 = 6459. I. Lens Modeling and Source Reconstruction

    NASA Astrophysics Data System (ADS)

    Johnson, Traci L.; Sharon, Keren; Gladders, Michael D.; Rigby, Jane R.; Bayliss, Matthew B.; Wuyts, Eva; Whitaker, Katherine E.; Florian, Michael; Murray, Katherine T.

    2017-07-01

    Using the combined resolving power of the Hubble Space Telescope and gravitational lensing, we resolve star-forming structures in a z˜ 2.5 galaxy on scales much smaller than the usual kiloparsec diffraction limit of HST. SGAS J111020.0+645950.8 is a clumpy, star-forming galaxy lensed by the galaxy cluster SDSS J1110+6459 at z=0.659, with a total magnification ˜ 30× across the entire arc. We use a hybrid parametric/non-parametric strong lensing mass model to compute the deflection and magnification of this giant arc, reconstruct the light distribution of the lensed galaxy in the source plane, and resolve the star formation into two dozen clumps. We develop a forward-modeling technique to model each clump in the source plane. We ray-trace the model to the image plane, convolve with the instrumental point-spread function (PSF), and compare with the GALFIT model of the clumps in the image plane, which decomposes clump structure from more extended emission. This technique has the advantage, over ray-tracing, of accounting for the asymmetric lensing shear of the galaxy in the image plane and the instrument PSF. At this resolution, we can begin to study star formation on a clump-by-clump basis, toward the goal of understanding feedback mechanisms and the buildup of exponential disks at high redshift. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program # 13003.

  19. orbital selective correlation reduce in collapse tetragonal phase of CaFe2(As0.935P0.065)2 and electronic structure reconstruction studied by angel resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Zeng, Lingkun

    We performed an angle-resolved photoemission spectroscopy (ARPES) study of the CaFe2(As0.935P0.065)2 in the collapse tetragonal(CT) phase and uncollapse tetragonal(UCT) phase. We find in the CT phase the electronic correlation dramatically reduces respective to UCT phase. Meanwhile, the reduction of correlation in CT phase show an orbital selective effect: correlation in dxy reduces the most, and then dxz/yz, while the one in dz2-r2 almost keeps the same. In CT phase, almost all bands sink downwards to higher binding energy, leading to the hole like bands around Brillouin zone(BZ) center sink below EF compared with UCT phase. However, the electron pocket around Brillouin Zone(BZ) corner(M) in UCT phase, forms a hole pocket around BZ center(Z point) in CT phase. Moreover, the dxy exhibits larger movement down to higher binding energy, resulting in farther away from dyz/xz and closer to dxy.We propose the electron filling ,namely high spin state in UCT phase to low spin state in CT phase(due to competing between crystal structure field and Hund's coupling), other than the Fermi surface nesting might be responsible for the absent of magnetic ordering.

  20. Searches for new quarks and leptons in Z boson decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Kooten, R.J.

    1990-06-01

    Searches for the decay of Z bosons into pairs of new quarks and leptons in a data sample including 455 hadronic Z decays are presented. The Z bosons were produced in electon-positron annihilations at the SLAC Linear Collider operating in the center-of-mass energy range from 89.2 to 93.0 GeV. The Standard Model provides no prediction for fermion masses and does not exclude new generations of fermions. The existence and masses of these new particles may provide valuable information to help understand the pattern of fermion masses, and physics beyond the Standard Model. Specific searches for top quarks and sequential fourthmore » generation charge--1/3(b{prime}) quarks are made considering a variety of possible standard and non-standard decay modes. In addition, searches for sequential fourth generation massive neutrinos {nu}{sub 4} and their charged lepton partners L{sup {minus}} are pursued. The {nu}{sub 4} may be stable or decay through mixing to the lighter generations. The data sample is examined for new particle topologies of events with high-momentum isolated tracks, high-energy isolated photons, spherical event shapes, and detached vertices. No evidence is observed for the production of new quarks and leptons. 95% confidence lower mass limits of 40.7 GeV/c{sup 2} for the top quark and 42.0 GeV/c{sup 2} for the b{prime}-quark mass are obtained regardless of the branching fractions to the considered decay modes. A significant range of mixing matrix elements of {nu}{sub 4} to other generation neutrinos for a {nu}{sub 4} mass from 1 GeV/c{sup 2} to 43 GeV/c{sup 2} is excluded at 95% confidence level. Measurements of the upper limit of the invisible width of the Z exclude additional values of the {nu}{sub 4} mass and mixing matrix elements, and also permit the exclusion of a region in the L{sup {minus}} mass versus {nu}{sub 4} mass plane.« less

  1. Methyl (2Z)-2-bromo­meth­yl-3-(3-chloro­phen­yl)prop-2-enoate

    PubMed Central

    Swaminathan, K.; Sethusankar, K.; Selvakumar, Raman; Bakthadoss, Manickam

    2013-01-01

    There are two independent mol­ecules (A and B) in the asymmetric unit of the title compound C11H10BrClO2, which represents the Z isomer. The methyl­acrylate moieties are essentially planar, within 0.084 (2) and 0.027 (5) Å in mol­ecules A and B, respectively. The benzene ring makes dihedral angles of 13.17 (7) and 27.89 (9)° with the methyl­acrylate moiety in mol­ecules A and B, respectively. The methyl­bromide moiety is almost orthogonal to the benzene ring, making dihedral angles of 81.46 (16)° in mol­ecule A and 79.61 (16)° in mol­ecule B. The methyl­acrylate moiety exhibits an extended trans conformation in both mol­ecules. In the crystal, pairs of C—H⋯O hydrogen bonds result in the formation of quasi-centrosymmetric R 2 2(14) AB dimers. PMID:23795037

  2. DDT_nnesvadb_4: C+ and H2 spectroscopy of a single star-forming region at z=2.599 recently discovered with Planck/SUCBA2/SPIRE

    NASA Astrophysics Data System (ADS)

    Nesvadba, N.

    2013-02-01

    We request DD time to observe a highly magnified starburst at z=2.599 recently discovered with Planck, which has CO line widths like those of giant molecular clouds in the Milky Way! The velocity gradient and narrowness of the CO lines indicates that we are observing small (a few 10s pc) star forming regions in a distant galaxy due to its extreme magnification and fortuitous alignment with the lensing mass. This is a UNIQUE opportunity to probe a starburst at z=2.5 AT THE SCALE OF SINGLE STAR-FORMING REGIONS. We will measure [CII]158, the main coolant of UV-heated gas and thus, a prime tracer of star formation, and the H2 0-0 S(1) line, the main coolant of shocked gas, a tracer of turbulence dissipation and the warm molecular mass. Only Herschel can observe these important lines. ALMA cannot, and SOFIA cannot. During the formation process of galaxies, strong turbulence is generated with potentially dramatic consequences for the nature of star formation in distant galaxies. For example, if the gas remains turbulent on scales <100 pc, then the global galaxy kinematics (i.e., Toomre stability) no longer stabilizes the gas. What are the consequences for the star formation in such an environment and how does this high level of turbulence during galaxy formation change the nature of galaxies? Through a unique synergy of the Planck all-sky survey, Herschel, and IRAM sub-arcsec DDT interferometry, we have just caught a unique source at z=2.599, G80.3+49.8, with bright FIR continuum akin to dusty high-z starbursts, and surprisingly narrow CO line widths like GMCs in the Milky Way! G80.3+49.8 is truly unique and will become a benchmark for studying the physics regulating intense star formation at high-z. Herschel "last-minute" observations are our only way to quantify the global budgets of UV and shock heating estimated from the main IR cooling lines, both of which are unobservable from the ground, and both critical in linking the details of star formation with the

  3. Large Scale Structures in the GOODS-SOUTH Field up to z~2.5

    NASA Astrophysics Data System (ADS)

    Trevese, D.; Castellano, M.; Salimbeni, S.; Pentericci, L.; Fiore, F.

    2009-05-01

    We apply a density evaluation technique based on photometric redshifts, developed by our group, to estimate galaxy space density on the deep (z450~26) multi-wavelength GOODS-MUSIC catalogue. We find several groups and clusters in the redshift range 0.4-2.5. We present here an outline of the X-ray properties of our cluster sample as computed from the Chandra 2Ms data. A group at z = 0.96 could be associated to an extended X-ray source, while two clusters with masses of few times 1014Msolar have upper limits on their X-ray emission significantly lower than expected from their optical properties.

  4. Keck Deep Fields. II. The Ultraviolet Galaxy Luminosity Function at z ~ 4, 3, and 2

    NASA Astrophysics Data System (ADS)

    Sawicki, Marcin; Thompson, David

    2006-05-01

    We use very deep UnGRI multifield imaging obtained at the Keck telescope to study the evolution of the rest-frame 1700 Å galaxy luminosity function as the universe doubles its age from z~4 to ~2. We use exactly the same filters and color-color selection as those used by the Steidel team but probe significantly fainter limits, well below L*. The depth of our imaging allows us to constrain the faint end of the luminosity function, reaching M1700~-18.5 at z~3 (equivalent to ~1 Msolar yr-1), accounting for both N1/2 uncertainty in the number of galaxies and cosmic variance. We carefully examine many potential sources of systematic bias in our LF measurements before drawing the following conclusions. We find that the luminosity function of Lyman break galaxies evolves with time and that this evolution is differential with luminosity. The result is best constrained between the epochs at z~4 and ~3, where we find that the number density of sub-L* galaxies increases with time by at least a factor of 2.3 (11 σ statistical confidence); while the faint end of the LF evolves, the bright end appears to remain virtually unchanged, indicating that there may be differential, luminosity-dependent evolution (98.5% statistical probability). Potential systematic biases restrict our ability to draw strong conclusions about continued evolution of the luminosity function to lower redshifts, z~2.2 and ~1.7, but, nevertheless, it appears certain that the number density of z~2.2 galaxies at all luminosities we studied, -22>M1700>-18, is at least as high as that of their counterparts at z~3. While it is not yet clear what mechanism underlies the observed evolution, the fact that this evolution is differential with luminosity opens up new avenues of improving our understanding of how galaxies form and evolve at high redshift. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of

  5. Star Formation and Extinction in Redshift z~2 Galaxies: Inferences from Spitzer MIPS Observations

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen A.; Steidel, Charles C.; Fadda, Dario; Yan, Lin; Pettini, Max; Shapley, Alice E.; Erb, Dawn K.; Adelberger, Kurt L.

    2006-06-01

    We use very deep Spitzer MIPS 24 μm observations to examine the bolometric luminosities (Lbol) and UV extinction properties of more than 200 spectroscopically identified, optically selected (UnGR) z~2 galaxies, supplemented with near-IR-selected (``BzK'' and ``DRG'') and submillimeter galaxies at similar redshifts, in the GOODS-N field. Focusing on redshifts 1.5<z<2.6, where 24 μm observations measure the strength of the mid-IR PAH feature, we find that the rest-frame 5-8.5 μm luminosities (L5-8.5μm) are particularly tightly constrained for objects in our sample with precise spectroscopic redshifts. We demonstrate, using stacked X-ray observations and a subset of galaxies with Hα measurements, that L5-8.5μm provides a reliable estimate of LIR for most star-forming galaxies at z~2. We show that the range of LIR in the optical/near-IR-selected samples considered extends from ~=1010 to >1012 Lsolar, with a mean ~=2×1011 Lsolar. Using 24 μm observations as an independent probe of dust extinction, we find that, as in the local universe, the obscuration LIR/L1600 is strongly dependent on Lbol and ranges in value from <1 to ~1000 within the sample considered. However, the obscuration is generally ~10 times smaller at a given Lbol at z~2 than at z~0. We show that the values of LIR and obscuration inferred from the UV spectral slope β generally agree well with the values inferred from L5-8.5μm for Lbol<1012 Lsolar. Using the specific SFRs of galaxies as a proxy for cold gas fraction, we find a wide range in the evolutionary state of galaxies at z~2, from galaxies that have just begun to form stars to those that have already accumulated most of their stellar mass and are about to become, or already are, passively evolving. Based, in part, on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous

  6. Crystal structure of (E)-13-{4-[(Z)-2-cyano-2-(3,4,5-tri-meth-oxy-phen-yl)ethen-yl]phen-yl}parthenolide methanol hemisolvate.

    PubMed

    Penthala, Narsimha Reddy; Bommagani, Shobanbabu; Janganati, Venumadhav; Parkin, Sean; Crooks, Peter A

    2014-10-01

    The title compound, C33H35NO6 [systematic name: (Z)-3-(4-{(E)-[(E)-1a,5-dimethyl-9-oxo-2,3,7,7a-tetra-hydro-oxireno[2',3':9,10]cyclo-deca-[1,2-b]furan-8(1aH,6H,9H,10aH,10bH)-yl-idene]meth-yl}phen-yl)-2-(3,4,5-tri-meth-oxy-phen-yl)acrylo-ni-trile methanol hemisolvate], C33H35NO6·0.5CH3OH, was prepared by the reaction of (Z)-3-(4-iodo-phen-yl)-2-(3,4,5-tri-meth-oxy-phen-yl)acrylo-nitrile with parthenolide [systematic name: (E)-1a,5-dimethyl-8-methyl-ene-2,3,6,7,7a,8,10a,10b-octa-hy-dro-oxireno[2',3':9,10]cyclo-deca-[1,2-b]furan-9(1aH)-one] under Heck reaction conditions. The mol-ecule is built up from fused ten-, five- (lactone) and three-membered (epoxide) rings with a {4-[(Z)-2-cyano-2-(3,4,5-tri-meth-oxy-phen-yl)ethen-yl]phen-yl}methyl-idene group as a substituent. The 4-[(Z)-2-cyano-2-(3,4,5-tri-meth-oxy-phen-yl)ethen-yl]phenyl group on the parthenolide exocyclic double bond is oriented in a trans position to the lactone ring to form the E isomer. The dihedral angle between the benzene ring of the phenyl moiety and the lactone ring mean plane is 21.93 (4)°.

  7. Clustering of galaxies near damped Lyman-alpha systems with (z) = 2.6

    NASA Technical Reports Server (NTRS)

    Wolfe, A. M

    1993-01-01

    The galaxy two-point correlation function, xi, at (z) = 2.6 is determined by comparing the number of Ly-alpha-emitting galaxies in narrowband CCD fields selected for the presence of damped L-alpha absorption to their number in randomly selected control fields. Comparisons between the presented determination of (xi), a density-weighted volume average of xi, and model predictions for (xi) at large redshifts show that models in which the clustering pattern is fixed in proper coordinates are highly unlikely, while better agreement is obtained if the clustering pattern is fixed in comoving coordinates. Therefore, clustering of Ly-alpha-emitting galaxies around damped Ly-alpha systems at large redshifts is strong. It is concluded that the faint blue galaxies are drawn from a parent population different from normal galaxies, the presumed offspring of damped Ly-alpha systems.

  8. Angular Baryon Acoustic Oscillation measure at z=2.225 from the SDSS quasar survey

    NASA Astrophysics Data System (ADS)

    de Carvalho, E.; Bernui, A.; Carvalho, G. C.; Novaes, C. P.; Xavier, H. S.

    2018-04-01

    Following a quasi model-independent approach we measure the transversal BAO mode at high redshift using the two-point angular correlation function (2PACF). The analyses done here are only possible now with the quasar catalogue from the twelfth data release (DR12Q) from the Sloan Digital Sky Survey, because it is spatially dense enough to allow the measurement of the angular BAO signature with moderate statistical significance and acceptable precision. Our analyses with quasars in the redshift interval z in [2.20,2.25] produce the angular BAO scale θBAO = 1.77° ± 0.31° with a statistical significance of 2.12 σ (i.e., 97% confidence level), calculated through a likelihood analysis performed using the theoretical covariance matrix sourced by the analytical power spectra expected in the ΛCDM concordance model. Additionally, we show that the BAO signal is robust—although with less statistical significance—under diverse bin-size choices and under small displacements of the quasars' angular coordinates. Finally, we also performed cosmological parameter analyses comparing the θBAO predictions for wCDM and w(a)CDM models with angular BAO data available in the literature, including the measurement obtained here, jointly with CMB data. The constraints on the parameters ΩM, w0 and wa are in excellent agreement with the ΛCDM concordance model.

  9. Facile Synthesis of Novel Redox-Mediator-free Direct Z-Scheme CaIn2S4 Marigold-Flower-like/TiO2 Photocatalysts with Superior Photocatalytic Efficiency.

    PubMed

    Jo, Wan-Kuen; Sivakumar Natarajan, Thillai

    2015-08-12

    Novel redox-mediator-free direct Z-scheme CaIn2S4 marigold-flower-like/TiO2 (CIS/TNP) photocatalysts with different CaIn2S4 weight percentages were synthesized using a facile wet-impregnation method. Uniform hierarchical marigold-flower-like CaIn2S4 (CIS) microspheres were synthesized using a hydrothermal method. Field-emission scanning electron microscopy and transmission electron microscopy analyses suggested that the formation and aggregation of nanoparticles, followed by the growth of petals or sheets and their subsequent self-assembly, led to the formation of the uniform hierarchical marigold-flower-like CIS structures. The photocatalytic degradation efficiency of the direct Z-scheme CIS/TNP photocatalysts was evaluated through the degradation of the pharmaceutical compounds isoniazid (ISN) and metronidazole (MTZ). The direct Z-scheme CaIn2S4 marigold-flower-like/TiO2 (1%-CIS/TNP) photocatalyst showed enhanced performance in the ISN (71.9%) and MTZ (86.5%) photocatalytic degradations as compared to composites with different CaIn2S4 contents or the individual TiO2 and CaIn2S4. A possible enhancement mechanism based on the Z-scheme formed between the CIS and TNP for the improved photocatalytic efficiency was also proposed. The recombination rate of the photoinduced charge carriers was significantly suppressed for the direct Z-scheme CIS/TNP photocatalyst, which was confirmed by photoluminescence analysis. Radical-trapping studies revealed that photogenerated holes (h+), •OH, and O2•- are the primary active species, and suggested that the enhanced photocatalytic efficiency of the 1%-CIS/TNP follows the Z-scheme mechanism for transferring the charge carriers. It was further confirmed by hydroxyl (•OH) radical determination via fluorescence techniques revealed that higher concentration of •OH radical were formed over 1%-CIS/TNP than over bare CIS and TNP. The separation of the charge carriers was further confirmed using photocurrent and electron spin

  10. New metallicity calibration for Seyfert 2 galaxies based on the N2O2 index

    NASA Astrophysics Data System (ADS)

    Castro, C. S.; Dors, O. L.; Cardaci, M. V.; Hägele, G. F.

    2017-05-01

    We derive a new relation between the metallicity of Seyfert 2 active galactic nuclei (AGNs) and the intensity of the narrow emission-lines ratio N2O2 = log([N II] λ6584/[O II] λ3727). The calibration of this relation was performed by determining the metallicity (Z) of a sample of 58 AGNs through a diagram containing the observational data and the results of a grid of photoionization models obtained with the cloudy code. We find the new Z/Z⊙-N2O2 relation using the obtained metallicity values and the corresponding observational emission-line intensities for each object of the sample. Estimations derived through the use of this new calibration indicate that the narrow-line regions of Seyfert 2 galaxies exhibit a large range of metallicities (0.3 ≲ Z/Z⊙ ≲ 2.0), with a median value Z ≈ Z⊙. Regarding the possible existence of correlations between the luminosity L(Hβ), the electron density and the colour excess E(B - V) with the metallicity in this kind of objects, we do not find correlations between them.

  11. Search for a heavy Standard Model Higgs boson in the channel H → Z Z → ℓ + ℓ - q q ¯ using the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2011-12-01

    Here, a search for a heavy Standard Model Higgs boson decaying via H → ZZ → l +l –qq¯, where l = e,μ, is presented. The search is performed using a data set of pp collisions at √s = 7TeV, corresponding to an integrated luminosity of 1.04 fb –1 collected in 2011 by the ATLAS detector at the CERN LHC collider. No significant excess of events above the estimated background is found. Upper limits at 95% confidence level on the production cross section (relative to that expected from the Standard Model) of a Higgs boson with a mass in themore » range between 200 and 600GeV are derived. Within this mass range, there is at present insufficient sensitivity to exclude a Standard Model Higgs boson. For a Higgs boson with a mass of , where the sensitivity is maximal, the observed and expected cross section upper limits are factors of 1.7 and 2.7, respectively, larger than the Standard Model prediction.« less

  12. Airblast Loading Model for DYNA2D and DYNA3D.

    DTIC Science & Technology

    1997-03-01

    Composite Hull Technology Mine-Blast-Resistant Vehicle Floor Panel." ARL-TR-796, U. S . Army Research Laboratory, Aberdeen Proving Ground, MD, July 1995. 11...x3 ,x4,y l,y2,y3,y4, & zi ,z2,z3,z4, s ,x5,y5,z5,cosa) c Find the incidence angle from xO,yO,zO to the face that c has corners (xl,yl,zl) ... (x4,y4,z4...if (s.le.0.) cosa = -cosa end subroutine conwepblast(x 1 ,x2,x3,x4,y l,y2,y3,y4, & zl ,z2,z3,z4, s ,t,p) c common /conwep-input/wtnt,xO,yO,zO,tO,isurf

  13. Evolution of clustering length, large-scale bias, and host halo mass at 2 < z < 5 in the VIMOS Ultra Deep Survey (VUDS)⋆

    NASA Astrophysics Data System (ADS)

    Durkalec, A.; Le Fèvre, O.; Pollo, A.; de la Torre, S.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pentericci, L.; Tasca, L. A. M.; Thomas, R.; Vanzella, E.; Zamorani, G.; Zucca, E.; Amorín, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Ribeiro, B.; Schaerer, D.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; Cuby, J. G.; Dunlop, J.; Fotopoulou, S.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Pforr, J.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2015-11-01

    We investigate the evolution of galaxy clustering for galaxies in the redshift range 2.0 <z< 5.0 using the VIMOS Ultra Deep Survey (VUDS). We present the projected (real-space) two-point correlation function wp(rp) measured by using 3022 galaxies with robust spectroscopic redshifts in two independent fields (COSMOS and VVDS-02h) covering in total 0.8deg2. We quantify how the scale dependent clustering amplitude r0 changes with redshift making use of mock samples to evaluate and correct the survey selection function. Using a power-law model ξ(r) = (r/r0)- γ we find that the correlation function for the general population is best fit by a model with a clustering length r0 = 3.95+0.48-0.54 h-1 Mpc and slope γ = 1.8+0.02-0.06 at z ~ 2.5, r0 = 4.35 ± 0.60 h-1 Mpc and γ = 1.6+0.12-0.13 at z ~ 3.5. We use these clustering parameters to derive the large-scale linear galaxy bias bLPL, between galaxies and dark matter. We find bLPL = 2.68 ± 0.22 at redshift z ~ 3 (assuming σ8 = 0.8), significantly higher than found at intermediate and low redshifts for the similarly general galaxy populations. We fit a halo occupation distribution (HOD) model to the data and we obtain that the average halo mass at redshift z ~ 3 is Mh = 1011.75 ± 0.23 h-1M⊙. From this fit we confirm that the large-scale linear galaxy bias is relatively high at bLHOD = 2.82 ± 0.27. Comparing these measurements with similar measurements at lower redshifts we infer that the star-forming population of galaxies at z ~ 3 should evolve into the massive and bright (Mr< -21.5)galaxy population, which typically occupy haloes of mass ⟨ Mh ⟩ = 1013.9 h-1M⊙ at redshift z = 0. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791.Appendices are available in electronic form at http://www.aanda.org

  14. Constraining the H2 column density distribution at z ˜ 3 from composite DLA spectra

    NASA Astrophysics Data System (ADS)

    Balashev, S. A.; Noterdaeme, P.

    2018-07-01

    We present the detection of the average H2 absorption signal in the overall population of neutral gas absorption systems at z˜ 3 using composite absorption spectra built from the Sloan Digital Sky Survey-III damped Lyman α catalogue. We present a new technique to directly measure the H2 column density distribution function f_H_2(N) from the average H2 absorption signal. Assuming a power-law column density distribution, we obtain a slope β = -1.29 ± 0.06(stat) ± 0.10 (sys) and an incidence rate of strong H2 absorptions [with N(H2) ≳ 1018 cm-2] to be 4.0 ± 0.5(stat) ± 1.0 (sys) per cent in H I absorption systems with N(H I) ≥1020 cm-2. Assuming the same inflexion point where f_H_2(N) steepens as at z = 0, we estimate that the cosmological density of H2 in the column density range log N(H_2) (cm^{-2})= 18{-}22 is {˜ } 15 per cent of the total. We find one order of magnitude higher H2 incident rate in a sub-sample of extremely strong damped Lyman α absorption systems (DLAs) [log N(H I) (cm^{-2}) ≥ 21.7], which, together with the derived shape of f_H_2(N), suggests that the typical H I-H2 transition column density in DLAs is log N(H)(cm-2) ≳ 22.3 in agreement with theoretical expectations for the average (low) metallicity of DLAs at high-z.

  15. Constraining the H2 column density distribution at z˜3 from composite DLA spectra

    NASA Astrophysics Data System (ADS)

    Balashev, S. A.; Noterdaeme, P.

    2018-04-01

    We present the detection of the average H2 absorption signal in the overall population of neutral gas absorption systems at z ˜ 3 using composite absorption spectra built from the Sloan Digital Sky Survey-III damped Lyman-α catalogue. We present a new technique to directly measure the H2 column density distribution function f_H_2(N) from the average H2 absorption signal. Assuming a power-law column density distribution, we obtain a slope β = -1.29 ± 0.06(stat) ± 0.10 (sys) and an incidence rate of strong H2 absorptions (with N(H2) ≳ 1018 cm-2) to be 4.0 ± 0.5(stat) ± 1.0 (sys) % in H I absorption systems with N(H I)≥1020 cm-2. Assuming the same inflexion point where f_H_2(N) steepens as at z = 0, we estimate that the cosmological density of H2 in the column density range log N(H_2) (cm^{-2})= 18-22 is ˜15% of the total. We find one order of magnitude higher H2 incident rate in a sub-sample of extremely strong DLAs (log N(H I) (cm^{-2}) ≥ 21.7), which, together with the the derived shape of f_H_2(N), suggests that the typical H I-H2 transition column density in DLAs is log N(H)(cm-2) ≳ 22.3 in agreement with theoretical expectations for the average (low) metallicity of DLAs at high-z.

  16. 40 CFR 180.1323 - Ethyl-2E,4Z-decadienoate (Pear Ester); exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Ethyl-2E,4Z-decadienoate (Pear Ester... RESIDUES IN FOOD Exemptions From Tolerances § 180.1323 Ethyl-2E,4Z-decadienoate (Pear Ester); exemption... for residues of the biochemical pesticide, ethyl-2E,4Z-decadienoate (pear ester), in or on all food...

  17. The VIMOS Ultra Deep Survey: Nature, ISM properties, and ionizing spectra of CIII]λ1909 emitters at z = 2-4

    NASA Astrophysics Data System (ADS)

    Nakajima, K.; Schaerer, D.; Le Fèvre, O.; Amorín, R.; Talia, M.; Lemaux, B. C.; Tasca, L. A. M.; Vanzella, E.; Zamorani, G.; Bardelli, S.; Grazian, A.; Guaita, L.; Hathi, N. P.; Pentericci, L.; Zucca, E.

    2018-05-01

    Context. Ultraviolet (UV) emission-line spectra are used to spectroscopically confirm high-z galaxies and increasingly also to determine their physical properties. Aims: We construct photoionization models to interpret the observed UV spectra of distant galaxies in terms of the dominant radiation field and the physical condition of the interstellar medium (ISM). These models are applied to new spectroscopic observations from the VIMOS Ultra Deep Survey (VUDS). Methods: We construct a large grid of photoionization models, which use several incident radiation fields (stellar populations, active galactic nuclei (AGNs), mix of stars and AGNs, blackbodies, and others), and cover a wide range of metallicities and ionization parameters. From these models we derive new spectral UV line diagnostics using equivalent widths (EWs) of [CIII]λ1909 doublet, CIVλ1549 doublet and the line ratios of [CIII], CIV, and He IIλ1640 recombination lines. We apply these diagnostics to a sample of 450 [CIII]-emitting galaxies at redshifts z = 2-4 previously identified in VUDS. Results: We demonstrate that our photoionization models successfully reproduce observations of nearby and high-redshift sources with known radiation field and/or metallicity. For star-forming galaxies our models predict that [CIII] EW peaks at sub-solar metallicities, whereas CIV EW peaks at even lower metallicity. Using the UV diagnostics, we show that the average star-forming galaxy (EW([CIII]) 2 Å) based on the composite of the 450 UV-selected galaxies' spectra The inferred metallicity and ionization parameter is typically Z = 0.3-0.5 Z⊙ and logU = -2.7 to - 3, in agreement with earlier works at similar redshifts. The models also indicate an average age of 50-200 Myr since the beginning of the current star-formation, and an ionizing photon production rate, ξion, of logξion/erg-1 Hz = 25.3-25.4. Among the sources with EW([CIII]) >= 10 Å, approximately 30% are likely dominated by AGNs. The metallicity derived

  18. 9 CFR 2.100 - Compliance with standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Compliance with standards. 2.100 Section 2.100 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Compliance With Standards and Holding Period § 2.100 Compliance with...

  19. 9 CFR 2.100 - Compliance with standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Compliance with standards. 2.100 Section 2.100 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Compliance With Standards and Holding Period § 2.100 Compliance with...

  20. 9 CFR 2.100 - Compliance with standards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Compliance with standards. 2.100 Section 2.100 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Compliance With Standards and Holding Period § 2.100 Compliance with...

  1. 9 CFR 2.100 - Compliance with standards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Compliance with standards. 2.100 Section 2.100 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Compliance With Standards and Holding Period § 2.100 Compliance with...

  2. Scientific and Engineering Studies; Spectral Estimation.

    DTIC Science & Technology

    1977-01-01

    Approved for public release; distribution unlimited. TD 5419 FORTRAN PROGRAM FOR MULTIVARIATE LINEAR PREDICTIVE SPECTRAL ANALYSIS, EMPLOYING FORWARD...Time Series Analysis Symposium, Tulsa, Oklahoma, 14-15 May 1976. 1/2 REVERSE BLANK TD 541.9 0. Z o 0 zx .3 z a Z 9-. LU. u ~ .v C3. 4c U -4 :0 z -󈧈...0 XZ a Z a.a- :2n 3 TD 5419 4A 0 -. .4 z LL - LL LA. I-. D z q uiL L" LA.. wa Q W w i0 c x -Al 2 0 w x41 Is -4 x . I. x .f < I It I- - -4 U 4 -41-C4

  3. CHARACTERIZING FAINT GALAXIES IN THE REIONIZATION EPOCH: LBT CONFIRMS TWO L < 0.2 L* SOURCES AT z = 6.4 BEHIND THE CLASH/FRONTIER FIELDS CLUSTER MACS0717.5+3745

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanzella, E.; Cusano, F.; Fontana, A.

    2014-03-01

    We report the LBT/MODS1 spectroscopic confirmation of two images of faint Lyα emitters at z = 6.4 behind the Frontier Fields galaxy cluster MACSJ0717.5+3745. A wide range of lens models suggests that the two images are highly magnified, with a strong lower limit of μ > 5. These are the faintest z > 6 candidates spectroscopically confirmed to date. These may also be multiple images of the same z = 6.4 source as supported by their similar intrinsic properties, but the lens models are inconclusive regarding this interpretation. To be cautious, we derive the physical properties of each image individually.more » Thanks to the high magnification, the observed near-infrared (restframe ultraviolet) part of the spectral energy distributions and Lyα lines are well detected with S/N(m {sub 1500}) ≳ 10 and S/N(Lyα) ≅ 10-15. Adopting μ > 5, the absolute magnitudes, M {sub 1500}, and Lyα fluxes are fainter than –18.7 and 2.8 × 10{sup –18} erg s{sup –1} cm{sup –2}, respectively. We find a very steep ultraviolet spectral slope β = –3.0 ± 0.5 (F {sub λ} = λ{sup β}), implying that these are very young, dust-free, and low metallicity objects, made of standard stellar populations or even extremely metal poor stars (age ≲ 30 Myr, E(B – V) = 0 and metallicity 0.0-0.2 Z/Z {sub ☉}). The objects are compact (<1 kpc{sup 2}) and with a stellar mass M {sub *} < 10{sup 8} M {sub ☉}. The very steep β, the presence of the Lyα line, and the intrinsic FWHM (<300 km s{sup –1}) of these newborn objects do not exclude a possible leakage of ionizing radiation. We discuss the possibility that such faint galaxies may resemble those responsible for cosmic reionization.« less

  4. Nonlinear optical investigation of the Tris(2‧,2-bipyridyl)iron(II) tetrafluoroborate using z-scan technique

    NASA Astrophysics Data System (ADS)

    Zidan, M. D.; Al-Ktaifani, M. M.; Allahham, A.

    2017-05-01

    Z-scan measurements were performed with a CW diode laser at 635 nm to investigate the nonlinear optical properties of Tris(2‧,2-bipyridyl)iron(II) tetrafluoroborate in ethanol at two concentrations. Theoretical fit was carried out to evaluate the nonlinear absorption coefficient (β) and the negative nonlinear refractive index (n2) for the studied complex. Furthermore, the ground-state absorption cross sections (σg), the excited-state absorption cross sections (σex) and thermo-optic coefficient were also estimated. The investigations show large NLO response, which is predominantly associated with substantial conjugation between the aromatic ring π-electron system and d-electron set metal center. The obtained results give a strong indication that Tris(2‧,2-bipyridyl)iron(II) tetrafluoroborate have a potential application in optical domain.

  5. 15 CFR 241.2 - Legal standard barrels.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Legal standard barrels. 241.2 Section..., VEGETABLES AND OTHER DRY COMMODITIES, AND FOR CRANBERRIES § 241.2 Legal standard barrels. (a) Any barrel... form or dimensions, is a legal standard barrel for fruits, vegetables, or other dry commodities other...

  6. 15 CFR 241.2 - Legal standard barrels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Legal standard barrels. 241.2 Section..., VEGETABLES AND OTHER DRY COMMODITIES, AND FOR CRANBERRIES § 241.2 Legal standard barrels. (a) Any barrel... form or dimensions, is a legal standard barrel for fruits, vegetables, or other dry commodities other...

  7. The hidden quasar nucleus of a WISE-selected, hyperluminous, dust-obscured galaxy at z ~ 2.3

    NASA Astrophysics Data System (ADS)

    Piconcelli, E.; Vignali, C.; Bianchi, S.; Zappacosta, L.; Fritz, J.; Lanzuisi, G.; Miniutti, G.; Bongiorno, A.; Feruglio, C.; Fiore, F.; Maiolino, R.

    2015-02-01

    We present the first X-ray spectrum of a hot dust-obscured galaxy (DOG), namely W1835+4355 at z ~ 2.3. Hot DOGs represent a very rare population of hyperluminous (≥1047 erg s-1), dust-enshrouded objects at z2 recently discovered in the WISE All Sky Survey. The 40 ks XMM-Newton spectrum reveals a continuum as flat (Γ ~ 0.8) as typically seen in heavily obscured AGN. This, along with the presence of strong Fe Kα emission, clearly suggests a reflection-dominated spectrum due to Compton-thick absorption. In this scenario, the observed luminosity of L2-10~ 2 × 1044 erg s-1 is a fraction (<10%) of the intrinsic one, which is estimated to be ≳ 5 × 1045 erg s-1 by using several proxies. The Herschel data allow us to constrain the SED up to the sub-mm band, providing a reliable estimate of the quasar contribution (~75%) to the IR luminosity as well as the amount of star formation (~2100 M⊙ yr-1). Our results thus provide additional pieces of evidence that associate Hot DOGs with an exceptionally dusty phase during which luminous quasars and massive galaxies co-evolve and a very efficient and powerful AGN-driven feedback mechanism is predicted by models.

  8. Constraining Galactic cosmic-ray parameters with Z2 nuclei

    NASA Astrophysics Data System (ADS)

    Coste, B.; Derome, L.; Maurin, D.; Putze, A.

    2012-03-01

    Context. The secondary-to-primary B/C ratio is widely used for studying Galactic cosmic-ray propagation processes. The 2H/4He and 3He/4He ratios probe a different Z/A regime, which provides a test for the "universality" of propagation. Aims: We revisit the constraints on diffusion-model parameters set by the quartet (1H, 2H, 3He, 4He), using the most recent data as well as updated formulae for the inelastic and production cross-sections. Methods: Our analysis relies on the USINE propagation package and a Markov Chain Monte Carlo technique to estimate the probability density functions of the parameters. Simulated data were also used to validate analysis strategies. Results: The fragmentation of CNO cosmic rays (resp. NeMgSiFe) on the interstellar medium during their propagation contributes to 20% (resp. 20%) of the 2H and 15% (resp. 10%) of the 3He flux at high energy. The C to Fe elements are also responsible for up to 10% of the 4He flux measured at 1 GeV/n. The analysis of 3He/4He (and to a lesser extent 2H/4He) data shows that the transport parameters are consistent with those from the B/C analysis: the diffusion model with δ ~ 0.7 (diffusion slope), Vc ~ 20 km s-1 (galactic wind), Va ~ 40 km s-1 (reacceleration) is favoured, but the combination δ ~ 0.2, Vc ~ 0, and Va ~ 80 km s-1 is a close second. The confidence intervals on the parameters show that the constraints set by the quartet data can compete with those derived from the B/C data. These constraints are tighter when adding the 3He (or 2H) flux measurements, and the tightest when the He flux is added as well. For the latter, the analysis of simulated and real data shows an increased sensitivity to biases. Using the secondary-to-primary ratio along with a loose prior on the source parameters is recommended to obtain the most robust constraints on the transport parameters. Conclusions: Light nuclei should be systematically considered in the analysis of transport parameters. They provide independent

  9. Gas41 links histone acetylation to H2A.Z deposition and maintenance of embryonic stem cell identity.

    PubMed

    Hsu, Chih-Chao; Zhao, Dan; Shi, Jiejun; Peng, Danni; Guan, Haipeng; Li, Yuanyuan; Huang, Yaling; Wen, Hong; Li, Wei; Li, Haitao; Shi, Xiaobing

    2018-01-01

    The histone variant H2A.Z is essential for maintaining embryonic stem cell (ESC) identity in part by keeping developmental genes in a poised bivalent state. However, how H2A.Z is deposited into the bivalent domains remains unknown. In mammals, two chromatin remodeling complexes, Tip60/p400 and SRCAP, exchange the canonical histone H2A for H2A.Z in the chromatin. Here we show that Glioma Amplified Sequence 41 (Gas41), a shared subunit of the two H2A.Z-depositing complexes, functions as a reader of histone lysine acetylation and recruits Tip60/p400 and SRCAP to deposit H2A.Z into specific chromatin regions including bivalent domains. The YEATS domain of Gas41 bound to acetylated histone H3K27 and H3K14 both in vitro and in cells. The crystal structure of the Gas41 YEATS domain in complex with the H3K27ac peptide revealed that, similar to the AF9 and ENL YEATS domains, Gas41 YEATS forms a serine-lined aromatic cage for acetyllysine recognition. Consistently, mutations in the aromatic residues of the Gas41 YEATS domain abrogated the interaction. In mouse ESCs, knockdown of Gas41 led to flattened morphology of ESC colonies, as the result of derepression of differentiation genes. Importantly, the abnormal morphology was rescued by expressing wild-type Gas41, but not the YEATS domain mutated counterpart that does not recognize histone acetylation. Mechanically, we found that Gas41 depletion led to reduction of H2A.Z levels and a concomitant reduction of H3K27me3 levels on bivalent domains. Together, our study reveals an essential role of the Gas41 YEATS domain in linking histone acetylation to H2A.Z deposition and maintenance of ESC identity.

  10. COLD-MODE ACCRETION: DRIVING THE FUNDAMENTAL MASS–METALLICITY RELATION AT z2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kacprzak, Glenn G.; Glazebrook, Karl; Nanayakkara, Themiya

    2016-07-20

    We investigate the star formation rate (SFR) dependence on the stellar mass and gas-phase metallicity relation at z = 2 with MOSFIRE/Keck as part of the ZFIRE survey. We have identified 117 galaxies (1.98 ≤ z2.56), with 8.9 ≤ log( M / M {sub ⊙}) ≤ 11.0, for which we can measure gas-phase metallicities. For the first time, we show a discernible difference between the mass–metallicity relation, using individual galaxies, when dividing the sample by low (<10 M {sub ⊙} yr{sup −1}) and high (>10 M {sub ⊙} yr{sup −1}) SFRs. At fixed mass, low star-forming galaxies tendmore » to have higher metallicity than high star-forming galaxies. Using a few basic assumptions, we further show that the gas masses and metallicities required to produce the fundamental mass–metallicity relation and its intrinsic scatter are consistent with cold-mode accretion predictions obtained from the OWLS hydrodynamical simulations. Our results from both simulations and observations are suggestive that cold-mode accretion is responsible for the fundamental mass–metallicity relation at z = 2 and it demonstrates the direct relationship between cosmological accretion and the fundamental properties of galaxies.« less

  11. 40 CFR 61.242-2 - Standards: Pumps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standards: Pumps. 61.242-2 Section 61... (Fugitive Emission Sources) § 61.242-2 Standards: Pumps. (a)(1) Each pump shall be monitored monthly to... (d), (e), (f) and (g) of this section. (2) Each pump shall be checked by visual inspection each...

  12. 40 CFR 61.242-2 - Standards: Pumps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Standards: Pumps. 61.242-2 Section 61... (Fugitive Emission Sources) § 61.242-2 Standards: Pumps. (a)(1) Each pump shall be monitored monthly to... (d), (e), (f) and (g) of this section. (2) Each pump shall be checked by visual inspection each...

  13. 40 CFR 61.242-2 - Standards: Pumps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Standards: Pumps. 61.242-2 Section 61... (Fugitive Emission Sources) § 61.242-2 Standards: Pumps. (a)(1) Each pump shall be monitored monthly to... (d), (e), (f) and (g) of this section. (2) Each pump shall be checked by visual inspection each...

  14. Keck Deep Fields. III. Luminosity-dependent Evolution of the Ultraviolet Luminosity and Star Formation Rate Densities at z~4, 3, and 2

    NASA Astrophysics Data System (ADS)

    Sawicki, Marcin; Thompson, David

    2006-09-01

    We use our very deep UnGRI catalog of z~4, 3, and 2 UV-selected star-forming galaxies to study the cosmological evolution of the rest-frame 1700 Å luminosity density. The ability to reliably constrain the contribution of faint galaxies is critical here, and our data do so by reaching deep into the galaxy population, to M*LBG+2 at z~4 and deeper still at lower redshifts (M*LBG=-21.0 and L*LBG is the corresponding luminosity). We find that the luminosity density at z>~2 is dominated by the hitherto poorly studied galaxies fainter than L*LBG, and, indeed, the bulk of the UV light at these epochs comes from galaxies in the rather narrow luminosity range L=(0.1-1)L*LBG. Overall, there is a gradual rise in total luminosity density starting at >~4 (we find twice as much UV light at z~3 as at z~4), followed by a shallow peak or plateau within z~3-1, finally followed by the well-known plunge to z~0. Within this total picture, luminosity density in sub-L*LBG galaxies at z>~2 evolves more rapidly than that in more luminous objects; this trend is reversed at lower redshifts, z<~1-a reversal that is reminiscent of galaxy downsizing. We find that within the context of commonly used models there seemingly are not enough faint or bright LBGs to maintain ionization of intergalactic gas even as recently as z~4, and the problem becomes worse at higher redshifts: apparently the universe must be easier to reionize than some recent studies have assumed. Nevertheless, sub-L*LBG galaxies do dominate the total UV luminosity density at z>~2, and this dominance highlights the need for follow-up studies that will teach us more about these very numerous but thus far largely unexplored systems. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.

  15. Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Mora Herrera, C.; Pol, M. E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zou, W.; Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Heister, A.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garay Garcia, J.; Geiser, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Horton, D.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Novgorodova, O.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Aldaya Martin, M.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Lobelle Pardo, P.; Mozer, M. U.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, T. J.; Kim, J. Y.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Ali, M. A. B. Md; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Perfilov, M.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Wollny, H.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Chanon, N.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Lustermann, W.; Mangano, B.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Mohr, N.; Nägeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Millan Mejias, B.; Ngadiuba, J.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Cankocak, K.; Vardarlı, F. I.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; John, J. St.; Sulak, L.; Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Olmedo Negrete, M.; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Klein, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Cheng, T.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Zakaria, M.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Skhirtladze, N.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.; Zvada, M.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Mendez, H.; Ramirez Vargas, J. E.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; De Mattia, M.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Lopes Pegna, D.; Maroussov, V.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Zheng, Y.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Petrillo, G.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Vuosalo, C.; Woods, N.

    2015-04-01

    Dimuon and dielectron mass spectra, obtained from data resulting from proton-proton collisions at 8 TeV and recorded by the CMS experiment, are used to search for both narrow resonances and broad deviations from standard model predictions. The data correspond to an integrated luminosity of 20.6 (19.7) fb-1 for the dimuon (dielectron) channel. No evidence for non-standard-model physics is observed and 95% confidence level limits are set on parameters from a number of new physics models. The narrow resonance analyses exclude a Sequential Standard Model Z{SSM/'} resonance lighter than 2.90 TeV, a superstring-inspired Z{/ψ '} lighter than 2.57 TeV, and Randall-Sundrum Kaluza-Klein gravitons with masses below 2.73, 2.35, and 1.27 TeV for couplings of 0.10, 0.05, and 0.01, respectively. A notable feature is that the limits have been calculated in a model-independent way to enable straightforward reinterpretation in any model predicting a resonance structure. The observed events are also interpreted within the framework of two non-resonant analyses: one based on a large extra dimensions model and one based on a quark and lepton compositeness model with a left-left isoscalar contact interaction. Lower limits are established on MS, the scale characterizing the onset of quantum gravity, which range from 4.9 to 3.3 TeV, where the number of additional spatial dimensions varies from 3 to 7. Similarly, lower limits on Λ, the energy scale parameter for the contact interaction, are found to be 12.0 (15.2) TeV for destructive (constructive) interference in the dimuon channel and 13.5 (18.3) TeV in the dielectron channel. [Figure not available: see fulltext.

  16. Large-scale Star-formation-driven Outflows at 1 < z < 2 in the 3D-HST Survey

    NASA Astrophysics Data System (ADS)

    Lundgren, Britt F.; Brammer, Gabriel; van Dokkum, Pieter; Bezanson, Rachel; Franx, Marijn; Fumagalli, Mattia; Momcheva, Ivelina; Nelson, Erica; Skelton, Rosalind E.; Wake, David; Whitaker, Katherine; da Cunha, Elizabete; Erb, Dawn K.; Fan, Xiaohui; Kriek, Mariska; Labbé, Ivo; Marchesini, Danilo; Patel, Shannon; Rix, Hans Walter; Schmidt, Kasper; van der Wel, Arjen

    2012-11-01

    We present evidence of large-scale outflows from three low-mass (log(M */M ⊙) ~ 9.75) star-forming (SFR > 4 M ⊙ yr-1) galaxies observed at z = 1.24, z = 1.35, and z = 1.75 in the 3D-HST Survey. Each of these galaxies is located within a projected physical distance of 60 kpc around the sight line to the quasar SDSS J123622.93+621526.6, which exhibits well-separated strong (W λ2796 r >~ 0.8 Å) Mg II absorption systems matching precisely to the redshifts of the three galaxies. We derive the star formation surface densities from the Hα emission in the WFC3 G141 grism observations for the galaxies and find that in each case the star formation surface density well exceeds 0.1 M ⊙ yr-1 kpc-2, the typical threshold for starburst galaxies in the local universe. From a small but complete parallel census of the 0.65 < z < 2.6 galaxies with H 140 <~ 24 proximate to the quasar sight line, we detect Mg II absorption associated with galaxies extending to physical distances of 130 kpc. We determine that the Wr > 0.8 Å Mg II covering fraction of star-forming galaxies at 1 < z < 2 may be as large as unity on scales extending to at least 60 kpc, providing early constraints on the typical extent of starburst-driven winds around galaxies at this redshift. Our observations additionally suggest that the azimuthal distribution of Wr > 0.4 Å Mg II absorbing gas around star-forming galaxies may evolve from z ~ 2 to the present, consistent with recent observations of an increasing collimation of star-formation-driven outflows with time from z ~ 3.

  17. 29 CFR 1925.2 - Safety and health standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Safety and health standards. 1925.2 Section 1925.2 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH STANDARDS FOR FEDERAL SERVICE CONTRACTS § 1925.2 Safety and health standards...

  18. 29 CFR 1925.2 - Safety and health standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Safety and health standards. 1925.2 Section 1925.2 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH STANDARDS FOR FEDERAL SERVICE CONTRACTS § 1925.2 Safety and health standards...

  19. 29 CFR 1925.2 - Safety and health standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Safety and health standards. 1925.2 Section 1925.2 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH STANDARDS FOR FEDERAL SERVICE CONTRACTS § 1925.2 Safety and health standards...

  20. 29 CFR 1925.2 - Safety and health standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Safety and health standards. 1925.2 Section 1925.2 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH STANDARDS FOR FEDERAL SERVICE CONTRACTS § 1925.2 Safety and health standards...

  1. 29 CFR 1925.2 - Safety and health standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Safety and health standards. 1925.2 Section 1925.2 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH STANDARDS FOR FEDERAL SERVICE CONTRACTS § 1925.2 Safety and health standards...

  2. Identification and Pathological Characterization of Persistent Asymptomatic Ebola Virus infection in Rhesus Monkeys

    DTIC Science & Technology

    2017-05-12

    and Use of Laboratory Animals, National 508 Research Council, 2011. 509 Author contributions 510 X.Z. conceived and designed the experiments. X.Z...Dye 1 , Sina Bavari 1 , 5 Gustavo Palacios 1 , Jens H. Kuhn 2 , Mei G. Sun 1 6 7 1 United States Army Medical Research Institute of Infectious...Diseases, 1425 Porter 8 Street, Fort Detrick, Frederick, Maryland 21702, USA; 2 Integrated Research Facility at 9 Fort Detrick, National Institute of

  3. A Test of Maxwell's Z Model Using Inverse Modeling

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Schultz, P. H.; Heineck, T.

    2003-01-01

    In modeling impact craters a small region of energy and momentum deposition, commonly called a "point source", is often assumed. This assumption implies that an impact is the same as an explosion at some depth below the surface. Maxwell's Z Model, an empirical point-source model derived from explosion cratering, has previously been compared with numerical impact craters with vertical incidence angles, leading to two main inferences. First, the flowfield center of the Z Model must be placed below the target surface in order to replicate numerical impact craters. Second, for vertical impacts, the flow-field center cannot be stationary if the value of Z is held constant; rather, the flow-field center migrates downward as the crater grows. The work presented here evaluates the utility of the Z Model for reproducing both vertical and oblique experimental impact data obtained at the NASA Ames Vertical Gun Range (AVGR). Specifically, ejection angle data obtained through Three-Dimensional Particle Image Velocimetry (3D PIV) are used to constrain the parameters of Maxwell's Z Model, including the value of Z and the depth and position of the flow-field center via inverse modeling.

  4. Protein-Protein Förster Resonance Energy Transfer Analysis of Nucleosome Core Particles Containing H2A and H2A.Z

    PubMed Central

    Hoch, Duane A.; Stratton, Jessica J.; Gloss, Lisa M.

    2007-01-01

    A protein-protein Förster resonance energy transfer (FRET) system, employing probes at multiple positions, was designed to specifically monitor the dissociation of the H2A-H2B dimer from the nucleosome core particle (NCP). Tryptophan donors and Cys-AEDANS acceptors were chosen because, in comparison to fluorophores used in previous NCP FRET studies, they: 1) are smaller and less hydrophobic which should minimize perturbations of histone and NCP structure; and 2) have an R0 of 20 Å, which is much less than the dimensions of the NCP (~50 Å width and ~100 Å diameter). CD and FL equilibrium protein unfolding titrations indicate that the donor and acceptor moieties have minimal effects on the stability of the H2A-H2B dimer and (H3-H4)2 tetramer. NCPs containing the various FRET pairs were reconstituted with the 601 artificial positioning DNA sequence. Equilibrium NaCl-induced dissociation of the modified NCPs showed that the 601 sequence stabilized the NCP to dimer dissociation as compared to previous studies using weaker positioning sequences. This finding implies a significant role for the H2A-H2B dimers in determining the DNA sequence dependence of NCP stability. The free energy of dissociation determined from reversible and well-defined sigmoidal transitions revealed two distinct phases reflecting the dissociation of each H2A-H2B dimer, confirming cooperativity in dimer dissociation. While cooperativity in the association/dissociation of the H2A-H2B dimers has been suggested previously, these data allow its quantitative description. The protein-protein FRET system was then used to study the effects of the histone variant H2A.Z on NCP stability; previous studies have reported both destabilizing and stabilizing effects. Comparison of the H2A and H2A.Z FRET NCP dissociation transitions suggest a slight increase in stability but a significant increase in cooperativity for dimer dissociation from H2A.Z NCPs. Thus, the utility of this protein-protein FRET system to

  5. Combined Spectroscopic and Electrochemical Detection of a Ni I ---H-N Bonding Interaction with Relevance to Electrocatalytic H 2 Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochem, Amélie; O'Hagan, Molly; Wiedner, Eric S.

    2015-06-03

    The [Ni(P R 2N R' 2) 2] 2+ family of complexes are exceptionally active catalysts for proton reduction to H 2. In this manuscript, we explore the first protonation step of the proposed catalytic cycle by using a catalytically inactive Ni I complex possessing a sterically demanding variation of the ligand. Due to the paramagnetic nature of the Ni I oxidation state, the protonated Ni I intermediate has been characterized through a combination of cyclic voltammetry, electron nuclear double resonance (ENDOR) spectroscopy, and hyperfine sublevel correlation (HYSCORE) spectroscopy. Both the electrochemical and spectroscopic studies indicate that the NiI complex ismore » protonated at a pendant amine that is endo to Ni, which suggests the presence of an intramolecular Ni I---HN bonding interaction. Using density functional theory, the hydrogen bond was found to involve three doubly-occupied, localized molecular orbitals: the 3d xz, 3d z2, and 3d yz orbitals of nickel. These studies provide the first direct experimental evidence for this critical catalytic intermediate, and implications for catalytic H 2 production are discussed.« less

  6. Ferro and antiferro orbital ordering in Fe{sub 0.5}Mn{sub 0.5}V{sub 2}O{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, Dibyendu, E-mail: dibyendu@phy.iitkgp.ernet.in; Taraphder, A.; Maitra, T.

    2016-05-23

    Using density functional theory calculations, we have investigated the orbital ordering in Fe{sub 0.5}Mn{sub 0.5}V{sub 2}O{sub 4} where Fe and V sites are orbitally active. Our first principles study within GGA+U and GGA+U+SO shows ferro-orbital ordering of d{sub x2−y2} orbital at all Fe sites, whereas A-type antiferro-orbital ordering at V sites where one 3d electron occupies d{sub xy} orbital at every V site and another electron occupies either 1/√2 (d{sub xz} + d{sub yz}) or 1/√2 (d{sub xz} - d{sub yz}) orbital alternatively along c axis. Insulating nature and the orbital ordering of this compound are found to be correlationmore » driven while the effect of spin-orbit interaction on orbital ordering is not significant.« less

  7. ISEE-1 and 2 observations of field-aligned currents in the distant midnight magnetosphere

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Kelly, T. J.; Russell, C. T.

    1985-01-01

    Magnetic field measurements obtained in the nightside magnetosphere by the co-orbiting ISEE-1 and 2 spacecraft have been examined for signatures of field-aligned currents (FAC). Such currents are found on the boundary of the plasma sheet both when the plasma sheet is expanding and when it is thinning. Evidence is often found for the existence of waves on the plasma sheet boundary, leading to multiple crossings of the FAC sheet. At times the boundary layer FAC sheet orientation is nearly parallel to the X-Z GSM plane, suggesting 'protrusions' of plasma sheet into the lobes. The boundary layer current polarity is, as expected, into the ionosphere in the midnight to dawn local time sector, and outward near dusk. Current sheet thicknesses and velocities are essentially independent of plasma sheet expansion or thinning, having typical values of 1500 km and 20-40 km/s respectively. Characteristic boundary layer current densities are about 10 nanoamps per square meter.

  8. An efficient, second-generation synthesis of the signature dioxabicyclo[3.2.1]octane core of (+)-sorangicin A and elaboration of the (Z,Z,E)-triene acid system.

    PubMed

    Smith, Amos B; Dong, Shuzhi

    2009-03-05

    An efficient, second-generation synthesis of the signature dioxabicyclo[3.2.1]octane core of (+)-sorangicin A (1), in conjunction with an effective, stereocontrolled protocol to arrive at the requisite (Z,Z,E)-triene acid system has been developed. Highlights of the core construction entail a three-component union, a KHMDS-promoted epoxide ring formation-ring opening cascade, a Takai olefination, and a chemoselective Sharpless dihydroxylation. Assembly of the triene acid system was then achieved via Stille cross-coupling with the ethyl ester of (Z,Z)-5-tributylstannyl-2,4-pentadienoic acid, followed by mild hydrolysis preserving the triene configuration.

  9. Model-independent confirmation of the Z ( 4430 ) - state

    DOE PAGES

    Aaij, R.; Adeva, B.; Adinolfi, M.; ...

    2015-12-29

    Here, the decay B 0→ψ(2S)K +π - is analyzed using 3 fb -1 of pp collision data collected with the LHCb detector. A model-independent description of the ψ(2S)π mass spectrum is obtained, using as input the Kπ mass spectrum and angular distribution derived directly from data, without requiring a theoretical description of resonance shapes or their interference. The hypothesis that the ψ(2S)π mass spectrum can be described in terms of Kπ reflections alone is rejected with more than 8σ significance. This provides confirmation, in a model-independent way, of the need for an additional resonant component in the mass region ofmore » the Z(4430) - exotic state.« less

  10. Lepton flavor violating Z' explanation of the muon anomalous magnetic moment

    DOE PAGES

    Altmannshofer, Wolfgang; Chen, Chien-Yi; Dev, P. S. Bhupal; ...

    2016-09-28

    Here, we discuss a minimal solution to the long-standing (g-2) μ anomaly in a simple extension of the Standard Model with an extra Z' vector boson that has only flavor off-diagonal couplings to the second and third generation of leptons, i.e. μ, τ, ν μ, ν τ, and their antiparticles. A simplified model realization, as well as various collider and low-energy constraints on this model, are discussed. We find that the (g-2) μ -favored region for a Z' lighter than the tau lepton is totally excluded, while a heavier Z' solution is still allowed. Some testable implications of this scenariomore » in future experiments, such as lepton-flavor universality-violating tau decays at Belle 2, and a new four-lepton signature involving same-sign di-muons and di-taus at HL-LHC and FCC-ee, are pointed out. A characteristic resonant absorption feature in the high-energy neutrino spectrum might also be observed by neutrino telescopes like IceCube and KM3NeT.« less

  11. Lepton flavor violating Z' explanation of the muon anomalous magnetic moment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altmannshofer, Wolfgang; Chen, Chien-Yi; Dev, P. S. Bhupal

    Here, we discuss a minimal solution to the long-standing (g-2) μ anomaly in a simple extension of the Standard Model with an extra Z' vector boson that has only flavor off-diagonal couplings to the second and third generation of leptons, i.e. μ, τ, ν μ, ν τ, and their antiparticles. A simplified model realization, as well as various collider and low-energy constraints on this model, are discussed. We find that the (g-2) μ -favored region for a Z' lighter than the tau lepton is totally excluded, while a heavier Z' solution is still allowed. Some testable implications of this scenariomore » in future experiments, such as lepton-flavor universality-violating tau decays at Belle 2, and a new four-lepton signature involving same-sign di-muons and di-taus at HL-LHC and FCC-ee, are pointed out. A characteristic resonant absorption feature in the high-energy neutrino spectrum might also be observed by neutrino telescopes like IceCube and KM3NeT.« less

  12. 40 CFR Table 2 to Subpart Mmmm of... - Model Rule-Emission Limits and Standards for Existing Fluidized Bed Sewage Sludge Incineration Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Model Rule-Emission Limits and Standards for Existing Fluidized Bed Sewage Sludge Incineration Units 2 Table 2 to Subpart MMMM of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...

  13. 40 CFR Table 2 to Subpart Mmmm of... - Model Rule-Emission Limits and Standards for Existing Fluidized Bed Sewage Sludge Incineration Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Model Rule-Emission Limits and Standards for Existing Fluidized Bed Sewage Sludge Incineration Units 2 Table 2 to Subpart MMMM of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF...

  14. Inflation in the mixed Higgs-R2 model

    NASA Astrophysics Data System (ADS)

    He, Minxi; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2018-05-01

    We analyze a two-field inflationary model consisting of the Ricci scalar squared (R2) term and the standard Higgs field non-minimally coupled to gravity in addition to the Einstein R term. Detailed analysis of the power spectrum of this model with mass hierarchy is presented, and we find that one can describe this model as an effective single-field model in the slow-roll regime with a modified sound speed. The scalar spectral index predicted by this model coincides with those given by the R2 inflation and the Higgs inflation implying that there is a close relation between this model and the R2 inflation already in the original (Jordan) frame. For a typical value of the self-coupling of the standard Higgs field at the high energy scale of inflation, the role of the Higgs field in parameter space involved is to modify the scalaron mass, so that the original mass parameter in the R2 inflation can deviate from its standard value when non-minimal coupling between the Ricci scalar and the Higgs field is large enough.

  15. 78 FR 35585 - Updating OSHA Standards Based on National Consensus Standards; Signage

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ...; Signage AGENCY: Occupational Safety and Health Administration (OSHA), Department of Labor. ACTION: Notice... Administration (``OSHA'' or ``the Agency'') proposes to update its general industry and construction signage... standards, ANSI Z53.1-1967, Z35.1-1968, and Z35.2-1968, in its signage standards, thereby providing...

  16. 48 CFR 52.230-2 - Cost Accounting Standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Cost Accounting Standards....230-2 Cost Accounting Standards. As prescribed in 30.201-4(a), insert the following clause: Cost Accounting Standards (OCT 2010) (a) Unless the contract is exempt under 48 CFR 9903.201-1 and 9903.201-2, the...

  17. GOLDRUSH. III. A systematic search for protoclusters at z ˜ 4 based on the >100 deg2 area

    NASA Astrophysics Data System (ADS)

    Toshikawa, Jun; Uchiyama, Hisakazu; Kashikawa, Nobunari; Ouchi, Masami; Overzier, Roderik; Ono, Yoshiaki; Harikane, Yuichi; Ishikawa, Shogo; Kodama, Tadayuki; Matsuda, Yuichi; Lin, Yen-Ting; Onoue, Masafusa; Tanaka, Masayuki; Nagao, Tohru; Akiyama, Masayuki; Komiyama, Yutaka; Goto, Tomotsugu; Lee, Chien-Hsiu

    2018-01-01

    We conduct a systematic search for galaxy protoclusters at z ˜ 3.8 based on the latest internal data release (S16A) of the Hyper Suprime-Cam Subaru strategic program (HSC-SSP). In the Wide layer of the HSC-SSP, we investigate the large-scale projected sky distribution of g-dropout galaxies over an area of 121 deg2, and identify 216 large-scale overdense regions (>4 σ overdensity significance) that are likely protocluster candidates. Of these, 37 are located within 8΄ (3.4 physical Mpc) of other protocluster candidates of higher overdensity, and are expected to merge into a single massive structure by z = 0. Therefore, we find 179 unique protocluster candidates in our survey. A cosmological simulation that includes projection effects predicts that more than 76% of these candidates will evolve into galaxy clusters with halo masses of at least 1014 M⊙ by z = 0. The unprecedented size of our protocluster candidate catalog allows us to perform, for the first time, an angular clustering analysis of the systematic sample of protocluster candidates. We find a correlation length of 35.0 h-1 Mpc. The relation between correlation length and number density of z ˜ 3.8 protocluster candidates is consistent with the prediction of the ΛCDM model, and the correlation length is similar to that of rich clusters in the local universe. This result suggests that our protocluster candidates are tracing similar spatial structures to those expected from the progenitors of rich clusters, and enhances the confidence that our method for identifying protoclusters at high redshifts is robust. In years to come, our protocluster search will be extended to the entire HSC-SSP Wide sky coverage of ˜ 1400 deg2 to probe cluster formation over a wide redshift range of z ˜ 2-6.

  18. A Massive Molecular Gas Reservoir in the Z = 2.221 Type-2 Quasar Host Galaxy SMM J0939+8315 Lensed by the Radio Galaxy 3C220.3

    NASA Astrophysics Data System (ADS)

    Leung, T. K. Daisy; Riechers, Dominik A.

    2016-02-01

    We report the detection of CO(J = 3 \\to 2) line emission in the strongly lensed submillimeter galaxy (SMG) SMM J0939+8315 at z = 2.221, using the Combined Array for Research in Millimeter-wave Astronomy. SMM J0939+8315 hosts a type-2 quasar, and is gravitationally lensed by the radio galaxy 3C220.3 and its companion galaxy at z = 0.685. The 104 GHz continuum emission underlying the CO line is detected toward 3C220.3 with an integrated flux density of Scont = 7.4 ± 1.4 mJy. Using the CO(J = 3 \\to 2) line intensity of ICO(3-2) = (12.6 ± 2.0) Jy km s-1, we derive a lensing- and excitation-corrected CO line luminosity of {L}{{CO(1-0)}}\\prime = (3.4 ± 0.7) × 1010 (10.1/μL) K km s-1 pc2 for the SMG, where μL is the lensing magnification factor inferred from our lens modeling. This translates to a molecular gas mass of Mgas = (2.7 ± 0.6) × 1010 (10.1/μL) M⊙. Fitting spectral energy distribution models to the (sub)-millimeter data of this SMG yields a dust temperature of T = 63.1{}-1.3+1.1 K, a dust mass of Mdust = (5.2 ± 2.1) × 108 (10.1/μL) M⊙, and a total infrared luminosity of LIR = (9.1 ± 1.2) ×1012 (10.1/μL) L⊙. We find that the properties of the interstellar medium of SMM J0939+8315 overlap with both SMGs and type-2 quasars. Hence, SMM J0939+8315 may be transitioning from a starbursting phase to an unobscured quasar phase as described by the “evolutionary link” model, according to which this system may represent an intermediate stage in the evolution of present-day galaxies at an earlier epoch.

  19. An Analysis of the Advice Codes and Priorities Placed on 2Z Cognizance Requisitions.

    DTIC Science & Technology

    1984-12-01

    for 2Z coo mater i I cin have on fleet support and the mission ca -,abilit , f Ieet- n ts.As the inventory manager for 2Z cogI Matel ia, AV FI.EX s... i st ment in su ticient spares tor p r Ln 1-al Itoms is n , inLed by the NAVCOM PT b dget p oii. T is 74 i.y r ,cstr acts the number p s-Ires th,- i In...Authors: Robert R . Bird LindayJ. Bird Approved by: ali i -. A / Alan W McMasters, T-hesis Advisor Paul M. Carrick, Second Reader Willis R . Greer, Jr

  20. Hadronic Leading Order Contribution to the Muon g-2

    NASA Astrophysics Data System (ADS)

    Nomura, Daisuke

    2018-05-01

    We calculate the Standard Model (SM) prediction for the muon anomalous magnetic moment. By using the latest experimental data for e+e- → hadrons as input to dispersive integrals, we obtain the values of the leading order (LO) and the next-to-leading-order (NLO) hadronic vacuum polarisation contributions as ahad, LO VPμ = (693:27 ± 2:46) × 10-10 and ahad, NLO VP μ = (_9.82 ± 0:04) × 1010-10, respectively. When combined with other contributions to the SM prediction, we obtain aμ(SM) = (11659182:05 ± 3.56) × 10-10; which is deviated from the experimental value by Δaμ(exp) _ aμ(SM) = (27.05 ± 7.26) × 10-10. This means that there is a 3.7 σ discrepancy between the experimental value and the SM prediction. We also discuss another closely related quantity, the running QED coupling at the Z-pole, α(M2 Z). By using the same e+e- → hadrons data as input, our result for the 5-flavour quark contribution to the running QED coupling at the Z pole is Δ(5)had(M2 Z) = (276.11 ± 1.11) × 10-4, from which we obtain Δ(M2 Z) = 128.946 ± 0.015.

  1. Potential reductions in ambient NO2 concentrations from meeting diesel vehicle emissions standards

    NASA Astrophysics Data System (ADS)

    von Schneidemesser, Erika; Kuik, Friderike; Mar, Kathleen A.; Butler, Tim

    2017-11-01

    Exceedances of the concentration limit value for ambient nitrogen dioxide (NO2) at roadside sites are an issue in many cities throughout Europe. This is linked to the emissions of light duty diesel vehicles which have on-road emissions that are far greater than the regulatory standards. These exceedances have substantial implications for human health and economic loss. This study explores the possible gains in ambient air quality if light duty diesel vehicles were able to meet the regulatory standards (including both emissions standards from Europe and the United States). We use two independent methods: a measurement-based and a model-based method. The city of Berlin is used as a case study. The measurement-based method used data from 16 monitoring stations throughout the city of Berlin to estimate annual average reductions in roadside NO2 of 9.0 to 23 µg m-3 and in urban background NO2 concentrations of 1.2 to 2.7 µg m-3. These ranges account for differences in fleet composition assumptions, and the stringency of the regulatory standard. The model simulations showed reductions in urban background NO2 of 2.0 µg m-3, and at the scale of the greater Berlin area of 1.6 to 2.0 µg m-3 depending on the setup of the simulation and resolution of the model. Similar results were found for other European cities. The similarities in results using the measurement- and model-based methods support our ability to draw robust conclusions that are not dependent on the assumptions behind either methodology. The results show the significant potential for NO2 reductions if regulatory standards for light duty diesel vehicles were to be met under real-world operating conditions. Such reductions could help improve air quality by reducing NO2 exceedances in urban areas, but also have broader implications for improvements in human health and other benefits.

  2. Crystal structures of (Z)-5-[2-(benzo[b]thio-phen-2-yl)-1-(3,5-di-meth-oxy-phen-yl)ethen-yl]-1H-tetra-zole and (Z)-5-[2-(benzo[b]thio-phen-3-yl)-1-(3,4,5-tri-meth-oxy-phen-yl)ethen-yl]-1H-tetra-zole.

    PubMed

    Penthala, Narsimha Reddy; Yadlapalli, Jaishankar K B; Parkin, Sean; Crooks, Peter A

    2016-05-01

    (Z)-5-[2-(Benzo[b]thio-phen-2-yl)-1-(3,5-di-meth-oxy-phen-yl)ethen-yl]-1H-tetrazole methanol monosolvate, C19H16N4O2S·CH3OH, (I), was prepared by the reaction of (Z)-3-(benzo[b]thio-phen-2-yl)-2-(3,5-di-meth-oxy-phen-yl)acrylo-nitrile with tri-butyl-tin azide via a [3 + 2]cyclo-addition azide condensation reaction. The structurally related compound (Z)-5-[2-(benzo[b]thio-phen-3-yl)-1-(3,4,5-tri-meth-oxy-phen-yl)ethen-yl]-1H-tetra-zole, C20H18N4O3S, (II), was prepared by the reaction of (Z)-3-(benzo[b]thio-phen-3-yl)-2-(3,4,5-tri-meth-oxy-phen-yl)acrylo-nitrile with tri-butyl-tin azide. Crystals of (I) have two mol-ecules in the asymmetric unit (Z' = 2), whereas crystals of (II) have Z' = 1. The benzo-thio-phene rings in (I) and (II) are almost planar, with r.m.s deviations from the mean plane of 0.0084 and 0.0037 Å in (I) and 0.0084 Å in (II). The tetra-zole rings of (I) and (II) make dihedral angles with the mean planes of the benzo-thio-phene rings of 88.81 (13) and 88.92 (13)° in (I), and 60.94 (6)° in (II). The di-meth-oxy-phenyl and tri-meth-oxy-phenyl rings make dihedral angles with the benzo-thio-phene rings of 23.91 (8) and 24.99 (8)° in (I) and 84.47 (3)° in (II). In both structures, mol-ecules are linked into hydrogen-bonded chains. In (I), these chains involve both tetra-zole and methanol, and are parallel to the b axis. In (II), mol-ecules are linked into chains parallel to the a axis by N-H⋯N hydrogen bonds between adjacent tetra-zole rings.

  3. THE STAR FORMATION HISTORIES OF z {approx} 2 DUST-OBSCURED GALAXIES AND SUBMILLIMETER-SELECTED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.

    The Spitzer Space Telescope has identified a population of ultraluminous infrared galaxies (ULIRGs) at z {approx} 2 that may play an important role in the evolution of massive galaxies. We measure the stellar masses (M{sub *}) of two populations of Spitzer-selected ULIRGs that have extremely red R - [24] colors (dust-obscured galaxies, or DOGs) and compare our results with submillimeter-selected galaxies (SMGs). One set of 39 DOGs has a local maximum in their mid-infrared (mid-IR) spectral energy distribution (SED) at rest frame 1.6 {mu}m associated with stellar emission ({sup b}ump DOGs{sup )}, while the other set of 51 DOGs havemore » power-law mid-IR SEDs that are typical of obscured active galactic nuclei ({sup p}ower-law DOGs{sup )}. We measure M{sub *} by applying Charlot and Bruzual stellar population synthesis models to broadband photometry in the rest-frame ultraviolet, optical, and near-infrared of each of these populations. Assuming a simple stellar population and a Chabrier initial mass function, we find that power-law DOGs and bump DOGs are on average a factor of 2 and 1.5 more massive than SMGs, respectively (median and inter-quartile M{sub *} values for SMGs, bump DOGs, and power-law DOGs are log(M{sub *}/M{sub Sun }) = 10.42{sup +0.42}{sub -0.36}, 10.62{sup +0.36}{sub -0.32}, and 10.71{sup +0.40}{sub -0.34}, respectively). More realistic star formation histories drawn from two competing theories for the nature of ULIRGs at z {approx} 2 (major merger versus smooth accretion) can increase these mass estimates by up to 0.5 dex. A comparison of our stellar masses with the instantaneous star formation rate (SFR) in these z {approx} 2 ULIRGs provides a preliminary indication supporting high SFRs for a given M{sub *}, a situation that arises more naturally in major mergers than in smooth accretion-powered systems.« less

  4. 12 CFR 365.2 - Real estate lending standards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 5 2012-01-01 2012-01-01 false Real estate lending standards. 365.2 Section... POLICY REAL ESTATE LENDING STANDARDS Real Estate Lending Standards § 365.2 Real estate lending standards... estate, or that are made for the purpose of financing permanent improvements to real estate. (b)(1) Real...

  5. 12 CFR 365.2 - Real estate lending standards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Real estate lending standards. 365.2 Section... POLICY REAL ESTATE LENDING STANDARDS Real Estate Lending Standards § 365.2 Real estate lending standards... estate, or that are made for the purpose of financing permanent improvements to real estate. (b)(1) Real...

  6. 12 CFR 365.2 - Real estate lending standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 4 2011-01-01 2011-01-01 false Real estate lending standards. 365.2 Section... POLICY REAL ESTATE LENDING STANDARDS Real Estate Lending Standards § 365.2 Real estate lending standards... estate, or that are made for the purpose of financing permanent improvements to real estate. (b)(1) Real...

  7. 12 CFR 365.2 - Real estate lending standards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 5 2013-01-01 2013-01-01 false Real estate lending standards. 365.2 Section... POLICY REAL ESTATE LENDING STANDARDS Real Estate Lending Standards § 365.2 Real estate lending standards... estate, or that are made for the purpose of financing permanent improvements to real estate. (b)(1) Real...

  8. Measurement of sin 2 θ eff lept using e + e - pairs from γ * / Z bosons produced in p p ¯ collisions at a center-of-momentum energy of 1.96 TeV

    DOE PAGES

    Aaltonen, T.; Amerio, S.; Amidei, D.; ...

    2016-06-28

    Here, at the Fermilab Tevatron proton-antiproton (pmore » $$\\bar{p}$$) collider, Drell-Yan lepton pairs are produced in the process p$$\\bar{p}$$→e +e -+X through an intermediate γ*/Z boson. The forward-backward asymmetry in the polar-angle distribution of the e - as a function of the e +e --pair mass is used to obtain sin 2θ$$lept\\atop{eff}$$, the effective leptonic determination of the electroweak-mixing parameter sin2θW. The measurement sample, recorded by the Collider Detector at Fermilab (CDF), corresponds to 9.4 fb -1 of integrated luminosity from p$$\\bar{p}$$ collisions at a center-of-momentum energy of 1.96 TeV, and is the full CDF Run II data set. The value of sin 2θ$$lept\\atop{eff}$$ is found to be 0.23248±0.00053. The combination with the previous CDF measurement based on μ +μ - pairs yields sin 2θ$$lept\\atop{eff}$$=0.23221±0.00046. This result, when interpreted within the specified context of the standard model assuming sin 2θW=1-M$$2\\atop{W}$$/M$$2\\atop{Z}$$ and that the W- and Z-boson masses are on-shell, yields sin 2θW=0.22400±0.00045, or equivalently a W-boson mass of 80.328±0.024 GeV/c 2.« less

  9. HST images of very compact blue galaxies at z approximately 0.2

    NASA Technical Reports Server (NTRS)

    Koo, David C.; Bershady, Matthew A.; Wirth, Gregory D.; Stanford, S. Adam; Majewski, Steven R.

    1994-01-01

    We present the results of Hubble Space Telescope (HST) Wide-Field Camera (WFC) imaging of seven very compact, very blue galaxies with B less than or equal to 21 and redshifts z approximately 0.1 to 0.35. Based on deconvolved images, we estimate typical half-light diameters of approximately 0.65 sec, corresponding to approximately 1.4 h(exp -1) kpc at redshifts z approximately 0.2. The average rest frame surface brightness within this diameter is mu(sub v) approximately 20.5 mag arcsec(exp -2), approximately 1 mag brighter than that of typical late-type blue galaxies. Ground-based spectra show strong, narrow emission lines indicating high ionization; their very blue colors suggest recent bursts of star-formation; their typical luminosities are approximately 4 times fainter than that of field galaxies. These characteristics suggest H II galaxies as likely local counterparts of our sample, though our most luminous targets appear to be unusually compact for their luminosities.

  10. Charged bottomoniumlike states Z{sub b}(10610) and Z{sub b}(10650) and the {Upsilon}(5S){yields}{Upsilon}(2S){pi}{sup +}{pi}{sup -} decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Dianyong; Nuclear Theory Group, Institute of Modern Physics of CAS, Lanzhou 730000; Liu Xiang

    2011-10-01

    Inspired by the newly observed two charged bottomoniumlike states, we consider the possible contribution from the intermediate Z{sub b}(10610) and Z{sub b}(10650) states to the {Upsilon}(5S){yields}{Upsilon}(2S){pi}{sup +}{pi}{sup -} decay process, which naturally explains Belle's previous observation of the anomalous {Upsilon}(2S){pi}{sup +}{pi}{sup -} production near the peak of {Upsilon}(5S) at {radical}(s)=10.87 GeV [K. F. Chen et al. (Belle Collaboration), Phys. Rev. Lett. 100, 112001 (2008)]. The resulting d{Gamma}({Upsilon}(5S){yields}{Upsilon}(2S){pi}{sup +}{pi}{sup -})/dm{sub {pi}}{sup +}{sub {pi}}{sup -} and d{Gamma}({Upsilon}(5S){yields}{Upsilon}(2S){pi}{sup +}{pi}{sup -})/dcos{theta} distributions agree with Belle's measurement after inclusion of these Z{sub b} states. This formalism also reproduces the Belle observation of the double-peak structuremore » and its reflection in the {Upsilon}(2S){pi}{sup +} invariant mass spectrum of the {Upsilon}(5S){yields}{Upsilon}(2S){pi}{sup +}{pi}{sup -} decay.« less

  11. Characterization of polar organosulfates in secondary organic aerosol from the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal

    EPA Science Inventory

    We show in the present study that the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal are biogenic volatile organic compound (BVOC) precursors for polar organosulfates with molecular weights (MWs) 230 and 214, which are also present in ambient fine aerosol from a...

  12. Sensitizing effect of Z,Z-bilirubin IXα and its photoproducts on enzymes in model solutions

    NASA Astrophysics Data System (ADS)

    Plavskii, V. Yu.; Mostovnikov, V. A.; Tret'yakova, A. I.; Mostovnikova, G. R.

    2008-05-01

    In model systems, we have studied side effects which may be induced by light during phototherapy of hyperbilirubinemia (jaundice) in newborn infants, with the aim of reducing the Z,Z-bilirubin IXα (Z,Z-BR IXα) level. We have shown that the sensitizing effect of Z,Z-BR IXα, localized at strong binding sites of the human serum albumin (HSA) macromolecule, is primarily directed at the amino acid residues of the carrier protein and does not involve the molecules of the enzyme (lactate dehydrogenase (LDH)) present in the buffer solution. The detected photodynamic damage to LDH is due to sensitization by bilirubin photoisomers, characterized by lower HSA association constants and located (in contrast to native Z,Z-BR IXα) on the surface of the HSA protein globule. Based on study of the spectral characteristics of the photoproducts of Z,Z-BR IXα and comparison of their accumulation kinetics in solution and the enzyme photo-inactivation kinetics, we concluded that the determining role in sensitized damage to LDH is played by lumirubin. The photosensitization effect depends on the wavelength of the radiation used for photoconversion of bilirubin. When (at the beginning of exposure) we make sure that identical numbers of photons are absorbed by the pigment in the different spectral ranges, the side effect is minimal for radiation corresponding to the long-wavelength edge of the bilirubin absorption band. We have shown that for a bilirubin/HSA concentration ratio >2 (when some of the pigment molecules are sorbed on the surface of the protein globule), the bilirubin can act as a photosensitizing agent for the enzyme present in solution. We discuss methods for reducing unfavorable side effects of light on the body of newborn infants during phototherapy of hyperbilirubinemia.

  13. The version 3 OMI NO2 standard product

    NASA Astrophysics Data System (ADS)

    Krotkov, Nickolay A.; Lamsal, Lok N.; Celarier, Edward A.; Swartz, William H.; Marchenko, Sergey V.; Bucsela, Eric J.; Chan, Ka Lok; Wenig, Mark; Zara, Marina

    2017-09-01

    We describe the new version 3.0 NASA Ozone Monitoring Instrument (OMI) standard nitrogen dioxide (NO2) products (SPv3). The products and documentation are publicly available from the NASA Goddard Earth Sciences Data and Information Services Center (2_V003/summary/" target="_blank">https://disc.gsfc.nasa.gov/datasets/OMNO2_V003/summary/). The major improvements include (1) a new spectral fitting algorithm for NO2 slant column density (SCD) retrieval and (2) higher-resolution (1° latitude and 1.25° longitude) a priori NO2 and temperature profiles from the Global Modeling Initiative (GMI) chemistry-transport model with yearly varying emissions to calculate air mass factors (AMFs) required to convert SCDs into vertical column densities (VCDs). The new SCDs are systematically lower (by ˜ 10-40 %) than previous, version 2, estimates. Most of this reduction in SCDs is propagated into stratospheric VCDs. Tropospheric NO2 VCDs are also reduced over polluted areas, especially over western Europe, the eastern US, and eastern China. Initial evaluation over unpolluted areas shows that the new SPv3 products agree better with independent satellite- and ground-based Fourier transform infrared (FTIR) measurements. However, further evaluation of tropospheric VCDs is needed over polluted areas, where the increased spatial resolution and more refined AMF estimates may lead to better characterization of pollution hot spots.

  14. Search for the associated production of the standard-model Higgs Boson in the all-hadronic channel.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Copic, K; Cordelli, M; Cortiana, G; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, S W; Leone, S; Lewis, J D; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2009-11-27

    We report on a search for the standard-model Higgs boson in pp collisions at square root(s) = 1.96 TeV using an integrated luminosity of 2.0 fb(-1). We look for production of the Higgs boson decaying to a pair of bottom quarks in association with a vector boson V (W or Z) decaying to quarks, resulting in a four-jet final state. Two of the jets are required to have secondary vertices consistent with B-hadron decays. We set the first 95% confidence level upper limit on the VH production cross section with V(--> qq/qq')H(--> bb) decay for Higgs boson masses of 100-150 GeV/c2 using data from run II at the Fermilab Tevatron. For m(H) = 120 GeV/c2, we exclude cross sections larger than 38 times the standard-model prediction.

  15. A comprehensive study of large-scale structures in the GOODS-SOUTH field up to z ˜ 2.5

    NASA Astrophysics Data System (ADS)

    Salimbeni, S.; Castellano, M.; Pentericci, L.; Trevese, D.; Fiore, F.; Grazian, A.; Fontana, A.; Giallongo, E.; Boutsia, K.; Cristiani, S.; de Santis, C.; Gallozzi, S.; Menci, N.; Nonino, M.; Paris, D.; Santini, P.; Vanzella, E.

    2009-07-01

    Aims: The aim of the present paper is to identify and study the properties and galactic content of groups and clusters in the GOODS-South field up to z˜ 2.5, and to analyse the physical properties of galaxies as a continuous function of environmental density up to high redshift. Methods: We used the deep (z850˜ 26), multi-wavelength GOODS-MUSIC catalogue, which has a 15% of spectroscopic redshifts and accurate photometric redshifts for the remaining fraction. On these data, we applied a (2+1)D algorithm, previously developed by our group, that provides an adaptive estimate of the 3D density field. We supported our analysis with simulations to evaluate the purity and the completeness of the cluster catalogue produced by our algorithm. Results: We find several high-density peaks embedded in larger structures in the redshift range 0.4-2.5. From the analysis of their physical properties (mass profile, M200, σ_v, L_X, U-B vs. B diagram), we find that most of them are groups of galaxies, while two are poor clusters with masses a few times 1014~M_⊙. For these two clusters we find from the Chandra 2Ms data an X-ray emission significantly lower than expected from their optical properties, suggesting that the two clusters are either not virialised or are gas poor. We find that the slope of the colour magnitude relation, for these groups and clusters, is constant at least up to z ˜ 1. We also analyse the dependence on environment of galaxy colours, luminosities, stellar masses, ages, and star formations. We find that galaxies in high-density regions are, on average, more luminous and massive than field galaxies up to z ˜ 2. The fraction of red galaxies increases with luminosity and with density up to z˜ 1.2. At higher z this dependence on density disappears. The variation of galaxy properties as a function of redshift and density suggests that a significant change occurs at z ˜ 1.5-2.

  16. EDDINGTON RATIO DISTRIBUTION OF X-RAY-SELECTED BROAD-LINE AGNs AT 1.0 < z < 2.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Hyewon; Hasinger, Günther; Steinhardt, Charles

    2015-12-20

    We investigate the Eddington ratio distribution of X-ray-selected broad-line active galactic nuclei (AGNs) in the redshift range 1.0 < z < 2.2, where the number density of AGNs peaks. Combining the optical and Subaru/Fiber Multi Object Spectrograph near-infrared spectroscopy, we estimate black hole masses for broad-line AGNs in the Chandra Deep Field South (CDF-S), Extended Chandra Deep Field South (E-CDF-S), and the XMM-Newton Lockman Hole (XMM-LH) surveys. AGNs with similar black hole masses show a broad range of AGN bolometric luminosities, which are calculated from X-ray luminosities, indicating that the accretion rate of black holes is widely distributed. We find a substantial fraction ofmore » massive black holes accreting significantly below the Eddington limit at z2, in contrast to what is generally found for luminous AGNs at high redshift. Our analysis of observational selection biases indicates that the “AGN cosmic downsizing” phenomenon can be simply explained by the strong evolution of the comoving number density at the bright end of the AGN luminosity function, together with the corresponding selection effects. However, one might need to consider a correlation between the AGN luminosity and the accretion rate of black holes, in which luminous AGNs have higher Eddington ratios than low-luminosity AGNs, in order to understand the relatively small fraction of low-luminosity AGNs with high accretion rates in this epoch. Therefore, the observed downsizing trend could be interpreted as massive black holes with low accretion rates, which are relatively fainter than less-massive black holes with efficient accretion.« less

  17. Combined search for the standard model Higgs boson decaying to a bb pair using the full CDF data set.

    PubMed

    Aaltonen, T; Álvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M E; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calamba, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chung, W H; Chung, Y S; Ciocci, M A; Clark, A; Clarke, C; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; Dell'Orso, M; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, S; Ershaidat, N; Eusebi, R; Farrington, S; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeans, D T; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Klimenko, S; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Mastrandrea, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Sorin, V; Song, H; Squillacioti, P; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Tipton, P; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhou, C; Zucchelli, S

    2012-09-14

    We combine the results of searches for the standard model (SM) Higgs boson based on the full CDF Run II data set obtained from sqrt[s]=1.96  TeV pp collisions at the Fermilab Tevatron corresponding to an integrated luminosity of 9.45  fb(-1). The searches are conducted for Higgs bosons that are produced in association with a W or Z boson, have masses in the range 90-150  GeV/c(2), and decay into bb pairs. An excess of data is present that is inconsistent with the background prediction at the level of 2.5 standard deviations (the most significant local excess is 2.7 standard deviations).

  18. Simultaneous detection and analysis of optical and ultraviolet broad emission lines in quasars at z 2.2

    NASA Astrophysics Data System (ADS)

    Bisogni, S.; di Serego Alighieri, S.; Goldoni, P.; Ho, L. C.; Marconi, A.; Ponti, G.; Risaliti, G.

    2017-06-01

    We studied the spectra of six z 2.2 quasars obtained with the X-shooter spectrograph at the Very Large Telescope. The redshift of these sources and the X-shooter's spectral coverage allow us to cover the rest of the spectral range 1200-7000 Å for the simultaneous detection of optical and ultraviolet lines emitted by the broad-line region. Simultaneous measurements, avoiding issues related to quasars variability, help us understand the connection between the different broad-line region line profiles generally used as virial estimators of black hole masses in quasars. The goal of this work is to compare the different emission lines for each object to check on the reliability of Hα, Mg II and C iv with respect to Hβ. Hα and Mg II linewidths correlate well with Hβ, while C iv shows a poorer correlation, due to the presence of strong blueshifts and asymmetries in the profile. We compared our sample with the only other two whose spectra were taken with the same instrument and for all examined lines our results are in agreement with the ones obtained with X-shooter at z 1.5-1.7. We finally evaluate C III] as a possible substitute of C iv in the same spectral range and find that its behaviour is more coherent with those of the other lines: we believe that, when a high quality spectrum such as the ones we present is available and a proper modelization with the Fe II and Fe III emissions is performed, it is more appropriate to use this line than that of C iv if not corrected for the contamination by non-virialized components. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programme 086.B-0320(A).The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A1

  19. 38 CFR 0.735-2 - Government-wide standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Government-wide standards. 0.735-2 Section 0.735-2 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS... Government-wide standards. For government-wide standards of ethical conduct and related responsibilities for...

  20. 38 CFR 0.735-2 - Government-wide standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Government-wide standards. 0.735-2 Section 0.735-2 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS... Government-wide standards. For government-wide standards of ethical conduct and related responsibilities for...

  1. 40 CFR 205.157-2 - Compliance with standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Compliance with standards. 205.157-2 Section 205.157-2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.157-2 Compliance with standards...

  2. 7 CFR 36.2 - Initiating action on grade standards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Initiating action on grade standards. 36.2 Section 36... VOLUNTARY OFFICIAL GRADE STANDARDS § 36.2 Initiating action on grade standards. The Agency will develop, revise, suspend, or terminate grade standards if it determines that such action is in the public interest...

  3. 7 CFR 36.2 - Initiating action on grade standards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Initiating action on grade standards. 36.2 Section 36... VOLUNTARY OFFICIAL GRADE STANDARDS § 36.2 Initiating action on grade standards. The Agency will develop, revise, suspend, or terminate grade standards if it determines that such action is in the public interest...

  4. 7 CFR 36.2 - Initiating action on grade standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Initiating action on grade standards. 36.2 Section 36... VOLUNTARY OFFICIAL GRADE STANDARDS § 36.2 Initiating action on grade standards. The Agency will develop, revise, suspend, or terminate grade standards if it determines that such action is in the public interest...

  5. 7 CFR 36.2 - Initiating action on grade standards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Initiating action on grade standards. 36.2 Section 36... VOLUNTARY OFFICIAL GRADE STANDARDS § 36.2 Initiating action on grade standards. The Agency will develop, revise, suspend, or terminate grade standards if it determines that such action is in the public interest...

  6. Photoinduced intramolecular charge transfer and photophysical characteristics of (2Z)-3-[4-(dimethylamino) phenyl]-2-(2-methylphenyl) prop-2-ene-nitrile (DPM) in different media

    NASA Astrophysics Data System (ADS)

    Asiri, Abdullah M.; El-Daly, Samy A.; Alamry, Khalid A.; Arshad, Muhammad Nadeem; Pannipara, Mehboobali

    2015-10-01

    A new fluorophore, (2Z)-3-[4-(dimethylamino) phenyl]-2-(2-methylphenyl) prop-2-ene-nitrile (DPM), was synthesized by knoevenagel condensation of 4-(dimethylamino) benzaldehyde and 2-methylbenzyl cyanide in ethanol using NaOH as base. The electronic absorption and emission characteristic of DPM was studied in different solvents. The X-ray crystallographic structure of DPM was also investigated. A crystalline solid of DPM gives a strong green emission at about 533 nm; these phenomena are important for the application of DPM dye in organic photo emitting diode. DPM exhibits a red shift in its emission spectrum as solvent polarity increases, indicating a large change in the dipole moment of dye molecule upon excitation due to intramolecular charge transfer in excited DPM*. The fluorescence quantum yield depends strongly on the properties of the solvents, which was attributed to positive and negative solvatokinetic effects. The DPM dye displays solubilization in cationic (CTAB) micelle and could be used as a probe to determine the critical micelle concentration (CMC) of CTAB.

  7. Evolution of the fraction of clumpy galaxies at 0.2 < z < 1.0 in the cosmos field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, K. L.; Kajisawa, M.; Taniguchi, Y.

    2014-05-01

    Using the Hubble Space Telescope/Advanced Camera for Surveys data in the COSMOS field, we systematically searched clumpy galaxies at 0.2 < z < 1.0 and investigated the fraction of clumpy galaxies and its evolution as a function of stellar mass, star formation rate (SFR), and specific SFR (SSFR). The fraction of clumpy galaxies in star-forming galaxies with M {sub star} > 10{sup 9.5} M {sub ☉} decreases with time from ∼0.35 at 0.8 < z < 1.0 to ∼0.05 at 0.2 < z < 0.4, irrespective of the stellar mass, although the fraction tends to be slightly lower for massivemore » galaxies with M {sub star} > 10{sup 10.5} M {sub ☉} at each redshift. On the other hand, the fraction of clumpy galaxies increases with increasing both SFR and SSFR in all the redshift ranges we investigated. In particular, we found that the SSFR dependences of the fractions are similar among galaxies with different stellar masses, and the fraction at a given SSFR does not depend on the stellar mass in each redshift bin. The evolution of the fraction of clumpy galaxies from z ∼ 0.9 to z ∼ 0.3 seems to be explained by such SSFR dependence of the fraction and the evolution of SSFRs of star-forming galaxies. The fraction at a given SSFR also appears to decrease with time, but this can be due to the effect of the morphological k correction. We suggest that these results are understood by the gravitational fragmentation model for the formation of giant clumps in disk galaxies, where the gas mass fraction is a crucial parameter.« less

  8. Fluorescence properties of 2-aminopurine-cytidine-7-deazaguanine (5'-ApCdzG-3') trimer in B- and Z-DNA.

    PubMed

    Kimura, Takumi; Kawai, Kiyohiko; Majima, Tetsuro

    2004-02-07

    The electron transfer quenching of 2-aminopurine by guanine and 7-deazaguanine was investigated in B- and Z-DNA, and an increase in the fluorescence intensity of 2-aminopurine upon B- to Z-DNA transition was demonstrated.

  9. Z' portal to Chern-Simons Dark Matter

    NASA Astrophysics Data System (ADS)

    Arcadi, Giorgio; Ghosh, Pradipta; Mambrini, Yann; Pierre, Mathias; Queiroz, Farinaldo S.

    2017-11-01

    We study the phenomenological credibility of a vectorial dark matter, coupled to a Z' portal through Chern-Simons interaction. We scrutinize two possibilities of connecting a Z' with the Standard Model: (1) through kinetic mixing and (2) from a second Chern-Simons interaction. Both scenarios are characterized by suppressed nuclear recoil scatterings, rendering direct detection searches not promising. Indirect detection experiments, on the other hand, furnish complementary limits for TeV scale masses, specially with the CTA. Searches for mono-jet and dileptons signals at the LHC are important to partially probe the kinetic mixing setup. Finally we propose an UV completion of the Chern-Simons Dark Matter framework.

  10. Obacunone Represses Salmonella Pathogenicity Islands 1 and 2 in an envZ-Dependent Fashion

    PubMed Central

    Vikram, Amit; Jayaprakasha, Guddadarangavvanahally K.; Jesudhasan, Palmy R.

    2012-01-01

    Obacunone belongs to a class of unique triterpenoids called limonoids, present in Citrus species. Previous studies from our laboratory suggested that obacunone possesses antivirulence activity and demonstrates inhibition of cell-cell signaling in Vibrio harveyi and Escherichia coli O157:H7. The present work sought to determine the effect of obacunone on the food-borne pathogen Salmonella enterica serovar Typhimurium LT2 by using a cDNA microarray. Transcriptomic studies indicated that obacunone represses Salmonella pathogenicity island 1 (SPI1), the maltose transporter, and the hydrogenase operon. Furthermore, phenotypic data for the Caco-2 infection assay and maltose utilization were in agreement with microarray data suggesting repression of SPI1 and maltose transport. Further studies demonstrated that repression of SPI1 was plausibly mediated through hilA. Additionally, obacunone seems to repress SPI2 under SPI2-inducing conditions as well as in Caco-2 infection models. Furthermore, obacunone seems to repress hilA in an EnvZ-dependent fashion. Altogether, the results of the study seems to suggest that obacunone exerts an antivirulence effect on S. Typhimurium and may serve as a lead compound for development of antivirulence strategies for S. Typhimurium. PMID:22843534

  11. Obacunone represses Salmonella pathogenicity islands 1 and 2 in an envZ-dependent fashion.

    PubMed

    Vikram, Amit; Jayaprakasha, Guddadarangavvanahally K; Jesudhasan, Palmy R; Pillai, Suresh D; Patil, Bhimanagouda S

    2012-10-01

    Obacunone belongs to a class of unique triterpenoids called limonoids, present in Citrus species. Previous studies from our laboratory suggested that obacunone possesses antivirulence activity and demonstrates inhibition of cell-cell signaling in Vibrio harveyi and Escherichia coli O157:H7. The present work sought to determine the effect of obacunone on the food-borne pathogen Salmonella enterica serovar Typhimurium LT2 by using a cDNA microarray. Transcriptomic studies indicated that obacunone represses Salmonella pathogenicity island 1 (SPI1), the maltose transporter, and the hydrogenase operon. Furthermore, phenotypic data for the Caco-2 infection assay and maltose utilization were in agreement with microarray data suggesting repression of SPI1 and maltose transport. Further studies demonstrated that repression of SPI1 was plausibly mediated through hilA. Additionally, obacunone seems to repress SPI2 under SPI2-inducing conditions as well as in Caco-2 infection models. Furthermore, obacunone seems to repress hilA in an EnvZ-dependent fashion. Altogether, the results of the study seems to suggest that obacunone exerts an antivirulence effect on S. Typhimurium and may serve as a lead compound for development of antivirulence strategies for S. Typhimurium.

  12. Mathematical Modelling of Waveguiding Techniques and Electron Transport. Volume 2.

    DTIC Science & Technology

    1984-01-01

    0 2 4! :1. 2 40 4 Z K04 ! -. t4. ’A. ’..44>. ZAw 4 o I .P. w AU W. 2OMD.->EK’ 0 2 c’* ’ w a rig;- G! -󈧈.z su t2 09 .4’ P’ 2 ULM.. 24- -1!044 n04 wt...a 44Nz w Z2V 00 .4- U 0 i- Owlt U. -Ia 040033 ’. Urna44e + -- -a -. -q a nu CuS In - ) 0U~ I N0 0 2 4 tUN + tot +. ++.a W ~ a 3 1 04 A a ,.a c’-a3>-0

  13. The Mu2e crystal calorimeter

    NASA Astrophysics Data System (ADS)

    Happacher, F.

    2017-09-01

    The Mu2e Experiment at Fermilab will search for coherent, neutrino-less conversion of negative muons into electrons in the field of an Aluminum nucleus, μ- + Al → e- +Al. Data collection start is planned for the end of 2021. The dynamics of such charged lepton flavour violating (CLFV) process is well modelled by a two-body decay, resulting in a mono-energetic electron with an energy slightly below the muon rest mass. If no events are observed in three years of running, Mu2e will set an upper limit on the ratio between the conversion and the capture rates Rμ e = μ- + A(Z,N) → e- +A(Z,N)/μ- + A(Z,N) → νμ - +A(Z-1,N) of <= 6 × 10-17 (@ 90% C.L.). This will improve the current limit of four order of magnitudes with respect to the previous best experiment. Mu2e complements and extends the current search for μ → e γ decay at MEG as well as the direct searches for new physics at the LHC . The observation of such CLFV process could be clear evidence for New Physics beyond the Standard Model. Given its sensitivity, Mu2e will be able to probe New Physics at a scale inaccessible to direct searches at either present or planned high energy colliders. To search for the muon conversion process, a very intense pulsed beam of negative muons (~ 1010 μ/ sec) is stopped on an Aluminum target inside a very long solenoid where the detector is also located. The Mu2e detector is composed of a straw tube tracker and a CsI crystals electromagnetic calorimeter. An external veto for cosmic rays surrounds the detector solenoid. In 2016, Mu2e has passed the final approval stage from DOE and has started its construction phase. An overview of the physics motivations for Mu2e, the current status of the experiment and the required performances and design details of the calorimeter are presented.

  14. The Mu2e crystal calorimeter

    NASA Astrophysics Data System (ADS)

    Atanov, N.; Budagov, J.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Danè, E.; Davidov, Y.; Di Falco, S.; Diociaiuti, E.; Donati, S.; Donghia, R.; Echenard, B.; Giovannella, S.; Glagolev, V.; Grancagnolo, F.; Happacher, F.; Hitlin, D.; Martini, M.; Miscetti, S.; Miyashita, T.; Morescalchi, L.; Murat, P.; Pedreschi, E.; Pezzullo, G.; Porter, F.; Saputi, A.; Sarra, I.; Spinella, F.; Tassielli, G.; Mu2e Collaboration

    2017-09-01

    The Mu2e Experiment at Fermilab will search for coherent, neutrino-less conversion of negative muons into electrons in the field of an Aluminum nucleus, μ- + Al → e- +Al. Data collection start is planned for the end of 2021. The dynamics of such charged lepton flavour violating (CLFV) process is well modelled by a two-body decay, resulting in a mono-energetic electron with an energy slightly below the muon rest mass. If no events are observed in three years of running, Mu2e will set an upper limit on the ratio between the conversion and the capture rates Rμe = μ- + A(Z,N) → e- + A(Z,N)/μ- + A(Z,N) → νμ- + A(Z-1,N) of <= 6 × 10-17 (@ 90% C.L.). This will improve the current limit of four order of magnitudes with respect to the previous best experiment. Mu2e complements and extends the current search for μ → e γ decay at MEG as well as the direct searches for new physics at the LHC . The observation of such CLFV process could be clear evidence for New Physics beyond the Standard Model. Given its sensitivity, Mu2e will be able to probe New Physics at a scale inaccessible to direct searches at either present or planned high energy colliders. To search for the muon conversion process, a very intense pulsed beam of negative muons (~ 1010 μ/sec) is stopped on an Aluminum target inside a very long solenoid where the detector is also located. The Mu2e detector is composed of a straw tube tracker and a CsI crystals electromagnetic calorimeter. An external veto for cosmic rays surrounds the detector solenoid. In 2016, Mu2e has passed the final approval stage from DOE and has started its construction phase. An overview of the physics motivations for Mu2e, the current status of the experiment and the required performances and design details of the calorimeter are presented.

  15. 12 CFR 365.2 - Real estate lending standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Real estate lending standards. 365.2 Section... POLICY REAL ESTATE LENDING STANDARDS § 365.2 Real estate lending standards. (a) Each insured state... purpose of financing permanent improvements to real estate. (b)(1) Real estate lending policies adopted...

  16. Characterization of microencapsulated pear ester, (2E,4Z)-ethyl-2,4-decadienoate: a kairomonal spray-adjuvant against neonate codling moth larvae

    USDA-ARS?s Scientific Manuscript database

    The codling moth (CM), Cydia pomonella, is the key pest of apples, pears and walnuts worldwide, causing internal feeding damage by larvae and introduction of molds and spoilage micro-organisms. Hatched CM larvae are highly responsive to a pear-derived kairomone, ethyl (2E,4Z)-2,4-decadienoate, the ...

  17. THE CANDIDATE CLUSTER AND PROTOCLUSTER CATALOG (CCPC). II. SPECTROSCOPICALLY IDENTIFIED STRUCTURES SPANNING 2 <  z  < 6.6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franck, J. R.; McGaugh, S. S.

    2016-12-10

    The Candidate Cluster and Protocluster Catalog (CCPC) is a list of objects at redshifts z  > 2 composed of galaxies with spectroscopically confirmed redshifts that are coincident on the sky and in redshift. These protoclusters are identified by searching for groups in volumes corresponding to the expected size of the most massive protoclusters at these redshifts. In CCPC1 we identified 43 candidate protoclusters among 14,000 galaxies between 2.74 <  z  < 3.71. Here we expand our search to more than 40,000 galaxies with spectroscopic redshifts z  > 2.00, resulting in an additional 173 candidate structures. The most significant of these are 36 protoclusters withmore » overdensities δ {sub gal} > 7. We also identify three large proto-supercluster candidates containing multiple protoclusters at z  = 2.3, 3.5 and z  = 6.56. Eight candidates with N  ≥ 10 galaxies are found at redshifts z  > 4.0. The last system in the catalog is the most distant spectroscopic protocluster candidate known to date at z  = 6.56.« less

  18. Observation of Z decays to four leptons with the CMS detector at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.

    The first observation of the Z boson decaying to four leptons in proton-proton collisions is presented. The analyzed data set corresponds to an integrated luminosity of 5.02 inverse femtobarns at sqrt(s) = 7 TeV collected by the CMS detector at the Large Hadron Collider. A pronounced resonance peak, with a statistical significance of 9.7 sigma, is observed in the distribution of the invariant mass of four leptons (electrons and/or muons) with mass and width consistent with expectations for Z boson decays. The branching fraction and cross section reported here are defined by phase space restrictions on the leptons, namely, 80more » < m[4l] < 100 GeV, where m[4l] is the invariant mass of the four leptons, and m[ll] > 4 GeV for all pairs of leptons, where m[ll] is the two-lepton invariant mass. The measured branching fraction is B(Z to 4l) = (4.2 /+0.9/-0.8 (stat.) +/- 0.2 (syst.)) 10E-6 and agrees with the standard model prediction of 4.45 10E-6. The measured cross section times branching fraction is sigma(pp to Z) B(Z to 4 l) = 112 +23/-20 (stat.) +7/-5 (syst.) +3/-2 (lumi.) fb, also consistent with the standard model prediction of 120 fb. The four-lepton mass peak arising from Z to 4 l decays provides a calibration channel for the Higgs boson search in the H to ZZ to 4 l decay mode.« less

  19. A Novel C2H2 Transcription Factor that Regulates gliA Expression Interdependently with GliZ in Aspergillus fumigatus

    PubMed Central

    Schoberle, Taylor J.; Nguyen-Coleman, C. Kim; Herold, Jennifer; Yang, Ally; Weirauch, Matt; Hughes, Timothy R.; McMurray, John S.; May, Gregory S.

    2014-01-01

    Secondary metabolites are produced by numerous organisms and can either be beneficial, benign, or harmful to humans. Genes involved in the synthesis and transport of these secondary metabolites are frequently found in gene clusters, which are often coordinately regulated, being almost exclusively dependent on transcription factors that are located within the clusters themselves. Gliotoxin, which is produced by a variety of Aspergillus species, Trichoderma species, and Penicillium species, exhibits immunosuppressive properties and has therefore been the subject of research for many laboratories. There have been a few proteins shown to regulate the gliotoxin cluster, most notably GliZ, a Zn2Cys6 binuclear finger transcription factor that lies within the cluster, and LaeA, a putative methyltransferase that globally regulates secondary metabolism clusters within numerous fungal species. Using a high-copy inducer screen in A. fumigatus, our lab has identified a novel C2H2 transcription factor, which plays an important role in regulating the gliotoxin biosynthetic cluster. This transcription factor, named GipA, induces gliotoxin production when present in extra copies. Furthermore, loss of gipA reduces gliotoxin production significantly. Through protein binding microarray and mutagenesis, we have identified a DNA binding site recognized by GipA that is in extremely close proximity to a potential GliZ DNA binding site in the 5′ untranslated region of gliA, which encodes an efflux pump within the gliotoxin cluster. Not surprisingly, GliZ and GipA appear to work in an interdependent fashion to positively control gliA expression. PMID:24784729

  20. Large-Scale Star Formation-Driven Outflows at 1<z<2 in the 3D-HST Survey

    NASA Astrophysics Data System (ADS)

    Lundgren, Britt; Brammer, G.; Van Dokkum, P. G.; Bezanson, R.; Franx, M.; Fumagalli, M.; Momcheva, I. G.; Nelson, E.; Skelton, R.; Wake, D.; Whitaker, K. E.; da Cunha, E.; Erb, D.; Fan, X.; Kriek, M.; Labbe, I.; Marchesini, D.; Patel, S.; Rix, H.; Schmidt, K.; van der Wel, A.

    2013-01-01

    We present evidence of large-scale outflows from three low-mass star-forming galaxies observed at z=1.24, z=1.35 and z=1.75 in the 3D-HST Survey. Each of these galaxies is located within a projected physical distance of 60 kpc around the sight line to the quasar SDSS J123622.93+621526.6, which exhibits well-separated strong (W>0.8A) MgII absorption systems matching precisely to the redshifts of the three galaxies. We derive the star formation surface densities from the H-alpha emission in the WFC3 G141 grism observations for the galaxies and find that in each case the star formation surface density well-exceeds 0.1 solar mass / yr / kpc^2, the typical threshold for starburst galaxies in the local Universe. From a small but complete parallel census of the 0.65<z<2.6 galaxies with H < 24 proximate to the quasar sight line, we detect MgII absorption associated with galaxies extending to physical distances of 130 kpc. We determine that the W>0.8A MgII covering fraction of star-forming galaxies at 1<z<2 may be as large as unity on scales extending to at least 60 kpc, providing early constraints on the typical extent of starburst-driven winds around galaxies at this redshift. Our observations additionally suggest that the azimuthal distribution of W>0.4A MgII absorbing gas around star-forming galaxies may evolve from 2 to the present, consistent with recent observations of an increasing collimation of star formation-driven outflows with time from 3.

  1. Somatostatin receptor 2 knockout/lacZ knockin mice show impaired motor coordination and reveal sites of somatostatin action within the striatum.

    PubMed

    Allen, Jeremy P; Hathway, Gareth J; Clarke, Neil J; Jowett, Mike I; Topps, Stephanie; Kendrick, Keith M; Humphrey, Patrick P A; Wilkinson, Lawrence S; Emson, Piers C

    2003-05-01

    The peptide somatostatin can modulate the functional output of the basal ganglia. The exact sites and mechanisms of this action, however, are poorly understood, and the physiological context in which somatostatin acts is unknown. Somatostatin acts as a neuromodulator via a family of five 7-transmembrane G protein-coupled receptors, SSTR1-5, one of which, SSTR2, is known to be functional in the striatum. We have investigated the role of SSTR2 in basal ganglia function using mice in which Sstr2 has been inactivated and replaced by the lacZ reporter gene. Analysis of Sstr2lacZ expression in the brain by beta-galactosidase histochemistry demonstrated a widespread pattern of expression. By comparison to previously published in situ hybridization and immunohistochemical data, Sstr2lacZ expression was shown to accurately recapitulate that of Sstr2 and thus provided a highly sensitive model to investigate cell-type-specific expression of Sstr2. In the striatum, Sstr2 expression was identified in medium spiny projection neurons restricted to the matrix compartment and in cholinergic interneurons. Sstr2 expression was not detected in any other nuclei of the basal ganglia except for a sparse number of nondopaminergic neurons in the substantia nigra. Microdialysis in the striatum showed Sstr2-null mice were selectively refractory to somatostatin-induced dopamine and glutamate release. In behavioural tests, Sstr2-null mice showed normal levels of locomotor activity and normal coordination in undemanding tasks. However, in beam-walking, a test of fine motor control, Sstr2-null mice were severely impaired. Together these data implicate an important neuromodulatory role for SSTR2 in the striatum.

  2. Measurement of the ratio of inclusive cross sections $$\\sigma (p\\bar{p} \\rightarrow Z+2~b~\\text{jets}) / \\sigma (p\\bar{p} \\rightarrow Z+ \\text{2 jets})$$ in $$p\\bar{p}$$ collisions at $$\\sqrt s=1.96$$ TeV

    DOE PAGES

    Abazov, V. M.

    2015-03-17

    In this study, we measure the ratio of cross sections, σ(pp¯ → Z + 2 b jets)/σ(pp¯ → Z + 2 jets), for associated production of a Z boson with at least two jets with transverse momentum p jet T > 20 GeV and pseudorapidity |η jet| < 2.5. This measurement uses data corresponding to an integrated luminosity of 9.7 fb –1 collected by the D0 experiment in Run II of Fermilab’s Tevatron pp¯ Collider at a center-of-mass energy of 1.96 TeV. The measured integrated ratio of 0.0236 ± 0.0032(stat) ± 0.0035(syst) is in agreement with predictions from next-to-leading-order perturbativemore » QCD and the Monte Carlo event generators PYTHIA and ALPGEN.« less

  3. The galaxy UV luminosity function at z2-4; new results on faint-end slope and the evolution of luminosity density

    NASA Astrophysics Data System (ADS)

    Parsa, Shaghayegh; Dunlop, James S.; McLure, Ross J.; Mortlock, Alice

    2016-03-01

    We present a new, robust measurement of the evolving rest-frame ultraviolet (UV) galaxy luminosity function (LF) over the key redshift range from z2 to z ≃ 4. Our results are based on the high dynamic range provided by combining the Hubble Ultra Deep Field (HUDF), CANDELS/GOODS-South, and UltraVISTA/COSMOS surveys. We utilize the unparalleled multifrequency photometry available in this survey `wedding cake' to compile complete galaxy samples at z2, 3, 4 via photometric redshifts (calibrated against the latest spectroscopy) rather than colour-colour selection, and to determine accurate rest-frame UV absolute magnitudes (M1500) from spectral energy distribution (SED) fitting. Our new determinations of the UV LF extend from M1500 ≃ -22 (AB mag) down to M1500 = -14.5, -15.5 and -16 at z2, 3 and 4, respectively (thus, reaching ≃ 3-4 mag fainter than previous blank-field studies at z2,3). At z2, 3, we find a much shallower faint-end slope (α = -1.32 ± 0.03) than reported in some previous studies (α ≃ -1.7), and demonstrate that this new measurement is robust. By z ≃ 4, the faint-end slope has steepened slightly, to α = -1.43 ± 0.04, and we show that these measurements are consistent with the overall evolutionary trend from z = 0 to 8. Finally, we find that while characteristic number density (φ*) drops from z2 to z ≃ 4, characteristic luminosity (M*) brightens by ≃ 1 mag. This, combined with the new flatter faint-end slopes, has the consequence that UV luminosity density (and hence unobscured star formation density) peaks at z2.5-3, when the Universe was ≃ 2.5 Gyr old.

  4. Galaxies in x-ray selected clusters and groups in Dark Energy Survey Data I: Stellar mass growth of bright central galaxies since Z similar to 1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.; Miller, C.; McKay, T.

    2016-01-10

    Using the science verification data of the Dark Energy Survey for a new sample of 106 X-ray selected clusters and groups, we study the stellar mass growth of bright central galaxies (BCGs) since redshift z similar to 1.2. Compared with the expectation in a semi-analytical model applied to the Millennium Simulation, the observed BCGs become under-massive/under-luminous with decreasing redshift. We incorporate the uncertainties associated with cluster mass, redshift, and BCG stellar mass measurements into an analysis of a redshift-dependent BCG-cluster mass relation, m(*) proportional to (M-200/1.5 x 10(14)M(circle dot))(0.24 +/- 0.08)(1+z)(-0.19 +/- 0.34), and compare the observed relation to themore » model prediction. We estimate the average growth rate since z = 1.0 for BCGs hosted by clusters of M-200,M-z = 10(13.8)M(circle dot); at z = 1.0: m(*, BCG) appears to have grown by 0.13 +/- 0.11 dex, in tension at the similar to 2.5 sigma significance level with the 0.40 dex growth rate expected from the semi-analytic model. We show that the build-up of extended intracluster light after z = 1.0 may alleviate this tension in BCG growth rates.« less

  5. 46 CFR 160.060-2 - Type and model.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS..., Adult and Child § 160.060-2 Type and model. Each buoyant vest specified in this subpart is a: (a) Standard: (1) Model AY, adult (for persons weighing over 90 pounds); or (2) Model CYM, child, medium (for...

  6. A numerical study of the supercritical CO2 plate heat exchanger subject to U-type, Z-type, and multi-pass arrangements

    NASA Astrophysics Data System (ADS)

    Zhu, Chen-Xi; Wang, Chi-Chuan

    2018-01-01

    This study proposes a numerical model for plate heat exchanger that is capable of handling supercritical CO2 fluid. The plate heat exchangers under investigation include Z-type (1-pass), U-type (1-pass), and 1-2 pass configurations. The plate spacing is 2.9 mm with a plate thickness of 0.8 mm, and the size of the plate is 600 mm wide and 218 mm in height with 60 degrees chevron angle. The proposed model takes into account the influence of gigantic change of CO2 properties. The simulation is first compared with some existing data for water-to-water plate heat exchangers with good agreements. The flow distribution, pressure drop, and heat transfer performance subject to the supercritical CO2 in plate heat exchangers are then investigated. It is found that the flow velocity increases consecutively from the entrance plate toward the last plate for the Z-type arrangement, and this is applicable for either water side or CO2 side. However, the flow distribution of the U-type arrangement in the water side shows opposite trend. Conversely, the flow distribution for U-type arrangement of CO2 depends on the specific flow ratio (C*). A lower C* like 0.1 may reverse the distribution, i.e. the flow velocity increases moderately alongside the plate channel like Z-type while a large C* of 1 would resemble the typical distribution in water channel. The flow distribution of CO2 side at the first and last plate shows a pronounced drop/surge phenomenon while the channels in water side does not reveal this kind of behavior. The performance of 2-pass plate heat exchanger, in terms of heat transfer rate, is better than that of 1-pass design only when C* is comparatively small (C* < 0.5). Multi-pass design is more effective when the dominant thermal resistance falls in the CO2 side.

  7. Collaborative study for the establishment of the 2(nd) International Standard for Bleomycin Complex A2/B2.

    PubMed

    Jorajuria, S; Raphalen, C; Dujardin, V; Daas, A

    2015-01-01

    Organization (WHO) International Standard (IS) for bleomycin complex A2/B2. Eight laboratories from different countries participated. Potencies of the candidate material were estimated by microbiological assays with sensitive micro-organisms. To ensure continuity between consecutive batches, the 1(st) IS for bleomycin complex A2/B2 was used as a reference. Based on the results of the study, the 2(nd) IS for bleomycin complex A2/B2 was adopted at the meeting of the WHO Expert Committee for Biological Standardization (ECBS) in 2014 with an assigned potency of 12 500 International Units (IU) per vial. The 2(nd) IS for bleomycin complex A2/B2 is available from the European Directorate for the Quality of Medicines & HealthCare (EDQM).

  8. Note on gauge and gravitational anomalies of discrete Z N symmetries

    NASA Astrophysics Data System (ADS)

    Byakti, Pritibhajan; Ghosh, Diptimoy; Sharma, Tarun

    2018-01-01

    In this note, we discuss the consistency conditions which a discrete Z N symmetry should satisfy in order that it is not violated by gauge and gravitational instantons. As examples, we enlist all the Z N ℛ-symmetries as well as non-ℛ Z N symmetries (N=2,3,4) in the minimally supersymmetric standard model (MSSM) that are free from gauge and gravitational anomalies. We show that there exists non-anomalous discrete symmetries that forbid Baryon number violation up to dimension 6 level (in superspace). We also observe that there exists no non-anomalous Z 3 ℛ-symmetry in the MSSM. Furthermore, we point out that in a theory with one Majorana spin 3/2 gravitino, a large class of Z 4 ℛ-symmetries are violated in the presence of Eguchi-Hanson (EH) gravitational instanton. This is also in general true for higher Z N ℛ-symmetries. We also notice that in 4 dimensional N=1 supergravity, the global U(1) ℛ-symmetry is always violated by the EH instanton irrespective of the matter content of the theory.

  9. Slow quenches in two-dimensional time-reversal symmetric Z2 topological insulators

    NASA Astrophysics Data System (ADS)

    Ulčakar, Lara; Mravlje, Jernej; Ramšak, Anton; Rejec, Tomaž

    2018-05-01

    We study the topological properties and transport in the Bernevig-Hughes-Zhang model undergoing a slow quench between different topological regimes. Due to the closing of the band gap during the quench, the system ends up in an excited state. We prove that for quenches that preserve the time-reversal symmetry, the Z2 invariant remains equal to the one evaluated in the initial state. On the other hand, the bulk spin Hall conductivity does change, and its time average approaches that of the ground state of the final Hamiltonian. The deviations from the ground-state spin Hall conductivity as a function of the quench time follow the Kibble-Zurek scaling. We also consider the breaking of the time-reversal symmetry, which restores the correspondence between the bulk invariant and the transport properties after the quench.

  10. Quasar Probing Galaxies: New Constraints on Cold Gas Accretion at Z=0.2

    NASA Astrophysics Data System (ADS)

    Ho, Stephanie H.

    2017-07-01

    Galactic disks grow by accreting cooling gas from the circumgalactic medium, and yet direct observations of inflowing gas remain sparse. We observed quasars behind star-forming galaxies and measured the kinematics of circumgalactic absorption. Near the galaxy plane, the Mg II Doppler shifts share the same sign as the galactic rotation, which implies the gas co-rotates with the galaxy disk. However, a rotating disk model fails to explain the observed broad velocity range. Gas spiraling inward near the disk plane offers a plausible explanation for the lower velocity gas. We will discuss the sizes of these circumgalactic disks, the properties of their host galaxies, and predictions for the spiral arms. Our results provide direct evidence for cold gas accretion at redshift z=0.2.

  11. Search for the Standard Model Higgs Boson Decaying to Bottom Quarks in Proton-Proton Collisions at 8 TeV

    NASA Astrophysics Data System (ADS)

    Silkworth, Inga

    A search for the standard model Higgs boson (H) decaying to bottom quarks and produced in association with a Z boson is presented. The search uses 8 TeV center-of-mass energy proton-proton collision data recorded by the Compact Muon Solenoid experiment at the Large Hadron Collider corresponding to integrated luminosity of 19.0 inverse femtobarns. The Z boson is reconstructed using two oppositely charged leptons -- either electrons or muons. Two techniques for reconstructing the Higgs candidate are discussed: the standard method using two jets reconstructed with the anti-kt algorithm and a second technique using jet substructure that was developed for highly boosted massive particles. Upper limits, at the 95% confidence level, on the production cross section times the branching ratio, with respect to the standard model expectations, are derived for a Higgs boson in a mass range 110-135 GeV. The results from the ZH channel are combined with five other channels, and an excess of events is observed consistent with the standard model Higgs boson with a local significance of 2.1 standard deviations at 125 GeV.

  12. Synthesis and evaluation of (Z)-2,3-diphenylacrylonitrile analogs as anti-cancer and anti-microbial agents.

    PubMed

    Alam, Mohammad Sayed; Nam, Young-Joo; Lee, Dong-Ung

    2013-11-01

    In the present study, a series of (Z)-2,3-diphenylacrylonitrile analogs were synthesized and then evaluated in terms of their cytotoxic activities against four human cancer cell lines, e.g. lung cancer (A549), ovarian cancer (SK-OV-3), skin cancer (SK-MEL-2), and colon cancer (HCT15), as well as anti-microbial activities against three microbes, e.g. Staphylococcus aureus, Salmonella typhi, and Aspergillus niger. The title compounds were synthesized by Knoevenagel condensation reaction of benzyl cyanide or p-nitrobenzyl cyanide with substituted benzaldehydes in good yields. Most of the compounds exhibited significant suppressive activities against the growth of all cancer cell lines. Compound 3c was most active in inhibiting the growth of A549, SK-OV-3, SK-MEL-2, and HCT15 cells lines with IC50 values of 0.57, 0.14, 0.65, and 0.34 mg/mL, respectively, followed by compounds 3f, 3i, and 3h. Compound 3c exhibited 2.4 times greater cytotoxic activity against HCT15 cells, whereas it showed similar potency against SK-OV-3 cells to that of the standard anti-cancer agent doxorubicin. Structure-activity relationship study revealed that electron-donating groups at the para-position of phenyl ring B were more favorable for improved cytotoxic activity, whereas the presence of electron-withdrawing groups was unfavorable compare to unsubstituted acrylonitrile. An optimal electron density on phenyl ring A of (Z)-2,3-diphenylacrylonitrile analogs was crucial for their cytotoxic activities against human cancer cell lines used in the present study. Qualitative structure-cytotoxic activity relationships were studied using physicochemical parameters; a good correlation between calculated polar surface area (PSA), a lipophobic parameter, and cytotoxic activity was found. Moreover, all compounds showed significant anti-bacterial activities against S. typhi, whereas compound 3k showed potent inhibition against both S. aureus and S. typhi bacterial strains. Copyright © 2013 Elsevier

  13. An Overdensity of Massive, Dusty Starbursts Associated with the High-Redshift Radio Galaxy MRC1138-262 at z = 2.16

    NASA Astrophysics Data System (ADS)

    Altieri, Bruno; Dannerbauer, Helmut

    We present Herschel and APEX LABOCA 870 μm imaging of the field of the high-redshift radio galaxy MRC1138 at z = 2.16. We detect 16 submillimeter galaxies in this ˜140 arcmin2 large bolometer map, with flux densities in the range 3-11 mJy. The pure number counts indicate an overdensity of SMGs by a factor of five compared to blank field surveys. Based on an exquisite multi-wavelength database including VLA 1.4 GHz radio and infrared observations, we verifiy whether these sources are members of the proto-cluster structure at z = 2.2 or not. Based on Herschel PACS+ SPIRE and Spitzer MIPS photometry, we derived reliable far-infrared photometric redshifts for all of our sources. VLT-ISAAC near-infrared spectroscopic observations confirmed redshifts of z2.2 for four of these SMGs. We conclude that in total at least seven sources are part of this proto-cluster at z = 2.16. We measure a star formation rate density S FRD ˜ 1500 M⊙ yr-1 Mpc-3, four magntiudes higher compared to the global SFRD at this redshift. Striklingly, these seven sources are concentrated within a region of 2 Mpc (the typical size of clusters in the local universe) and are not distributed in the filaments as predicted by theories and traced by the Hα emitters at z2.2. This concentration of massive, dusty starbursts is not centered on the radio galaxy which is submm bright. A significant fraction, six out of 11 SMGs with z2.2 Hα imaging coverage are associated with Hα emitters, demonstrating the potential of tracing SMG counterparts with this source population. Our results demonstrate that indeed submm observations enable us to reveal clusters of massive, dusty starbursts and will pave the road for systematic and detailed investigations with this technique in the future.

  14. Measurement of sin2θefflept using e+e- pairs from γ*/Z bosons produced in p p ¯ collisions at a center-of-momentum energy of 1.96 TeV

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration

    2016-06-01

    At the Fermilab Tevatron proton-antiproton (p p ¯) collider, Drell-Yan lepton pairs are produced in the process p p ¯→e+e-+X through an intermediate γ*/Z boson. The forward-backward asymmetry in the polar-angle distribution of the e- as a function of the e+e--pair mass is used to obtain sin2θefflept, the effective leptonic determination of the electroweak-mixing parameter sin2θW. The measurement sample, recorded by the Collider Detector at Fermilab (CDF), corresponds to 9.4 fb-1 of integrated luminosity from p p ¯ collisions at a center-of-momentum energy of 1.96 TeV, and is the full CDF Run II data set. The value of sin2θefflept is found to be 0.23248 ±0.00053 . The combination with the previous CDF measurement based on μ+μ- pairs yields sin2θefflept=0.23221±0.00046 . This result, when interpreted within the specified context of the standard model assuming sin2θW=1 - MW2/MZ2 and that the W - and Z -boson masses are on-shell, yields sin2θW=0.22400 ±0.00045 , or equivalently a W -boson mass of 80.328 ±0.024 GeV /c2 .

  15. Search for CP violation in the decay Z → b overlinebg

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Dhamotharan, S.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Giehl, I.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Choi, Y.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Büscher, V.; Cowan, G.; Grupen, C.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    About three million hadronic decays of the Z collected by ALEPH in the years 1991 to 1994 are used to search for anomalous CP violation beyond the Standard Model in the decay Z → b overlinebg . The study is performed by analyzing angular correlations between the two quarks and the gluon in three-jet events and by measuring the differential two-jet rate. No signal of CP violation is found. For the combinations of anomalous CP violating couplings, ĥb = ĥAbg Vb - ĥVbg Ab and b∗ = ĥVb2+ ĥAb2, limits of | ĥb | < 0.59 and h b∗ < 3.02 are given at 95% CL.

  16. The regulation of the Z- and G-box containing promoters by light signaling components, SPA1 and MYC2, in Arabidopsis.

    PubMed

    Gangappa, Sreeramaiah N; Maurya, Jay P; Yadav, Vandana; Chattopadhyay, Sudip

    2013-01-01

    Although many transcription factors and regulatory proteins have been identified and functionally characterized in light signaling pathways, photoperception to transcription remains largely fragmented. The Z-box is one of the LREs (Light responsive elements) that plays important role in the regulation of transcription during light-controlled Arabidopsis seedling development. The involvement of photoreceptors in the modulation of the activity of the Z-box containing promoters has been demonstrated. However, the role of downstream signaling components such as SPA1 and MYC2/ZBF1, which are functionally interrelated, remains unknown. In this study, we have investigated the regulation of the Z-box containing synthetic and native promoters by SPA1 and MYC2 by using stable transgenic lines. Our studies suggest that SPA1 negatively regulates the expression of CAB1 native promoter. MYC2 negatively regulates the activity of Z- and/or G-box containing synthetic as well as native promoters irrespective of light quality. Moreover, MYC2 negatively regulates the expression of Z/G-NOS101-GUS even in the darkness. Furthermore, analyses of tissue specific expression in adult plants suggest that MYC2 strongly regulates the activity of Z- and G-box containing promoters specifically in leaves and stems. In roots, whereas MYC2 positively regulates the activity of the Z-box containing synthetic promoter, it does not seem to control the activity of the G-box containing promoters. Taken together, these results provide insights into SPA1- and MYC2-mediated transcriptional regulation of the Z- and G-box containing promoters in light signaling pathways.

  17. The distant red galaxy neighbour population of 1<z<2 QSOs and optically obscured sources

    NASA Astrophysics Data System (ADS)

    Bornancini, C.; García Lambas, D.

    We study the Distant Red Galaxy (DRG, J-Ks > 2.3) neighbour population of Quasi Stellar Objects (QSOs) selected from the Sloan Digital Sky Survey (SDSS) in the redshift range 1 < z < 2. We perform a similar analysis for optically obscured AGNs (i.e. with a limiting magnitude I > 24) detected in the mid-infrared (24 microns) with the Spitzer Space Telescope and a mean redshift z~2.2 in the Flamingos Extragalactic Survey (FLAMEX). We present results on the cross-correlation function of DRGs around QSOs and optically faint mid-infrared sources. The corresponding correlation length obtained for the QSO sample targets is r_0=5.4+/-1.6 Mpc. For the optically obscured galaxy sample we find r_0=8.9+/-1.4 Mpc. These results indicate that optically faint obscured sources are located in denser environment of evolved red galaxies compare to QSOs.

  18. Search for ZH → l+ l- bb production in 4.2 fb(-1) of pp collisions at sqrt[s] =1 .96 TeV.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Aoki, M; Arnoud, Y; Arov, M; Askew, A; Asman, B; Atramentov, O; Avila, C; BackusMayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brandt, O; Brock, R; Brooijmans, G; Bross, A; Brown, D; Brown, J; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calpas, B; Calvet, S; Camacho-Pérez, E; Carrasco-Lizarraga, M A; Carrera, E; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chen, G; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Croc, A; Cutts, D; Cwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; DeVaughan, K; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Gadfort, T; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hagopian, S; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jamin, D; Jesik, R; Johns, K; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Joshi, J; Juste, A; Kaadze, K; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kirby, M H; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Kvita, J; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Mondal, N K; Muanza, G S; Mulhearn, M; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Novaes, S F; Nunnemann, T; Obrant, G; Onoprienko, D; Orduna, J; Osman, N; Osta, J; Otero y Garzón, G J; Owen, M; Padilla, M; Pangilinan, M; Parashar, N; Parihar, V; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Petrillo, G; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pol, M-E; Polozov, P; Popov, A V; Prewitt, M; Price, D; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Santos, A S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, K J; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strauss, E; Strauss, M; Strom, D; Stutte, L; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Titov, M; Tokmenin, V V; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vint, P; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, M; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L

    2010-12-17

    We present a search for the standard model Higgs boson produced in association with a Z boson in 4.2 fb(-1) of pp collisions, collected with the D0 detector at the Fermilab Tevatron at sqrt[s] =1 .96 TeV. Selected events contain one reconstructed Z → e+ e- or Z → μ+ μ- candidate and at least two jets, including at least one b-tagged jet. In the absence of an excess over the background expected from other standard model processes, limits on the ZH cross section multiplied by the branching ratios are set. The limit at M(H) = 115  GeV is a factor of 5.9 larger than the standard model prediction.

  19. Magnetocaloric Effect in Ni50Mn36Sb14- x Z x (Z = Al, Ge; x = 0, 2) Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Emelyanova, S. M.; Bebenin, N. G.; Dyakina, V. P.; Chistyakov, V. V.; Dyachkova, T. V.; Tyutyunnik, A. P.; Wang, R. L.; Yang, C. P.; Sauerzopf, F.; Marchenkov, V. V.

    2018-02-01

    The temperature dependences of the electrical resistivity and magnetization of the Ni50Mn36Sb14- x Z x (Z = Al, Ge; x = 0; 2) alloys have been used to determine the characteristic phase transition temperatures. The isothermal entropy change Δ S was determined using Maxwell's equation and the field dependences of magnetization. The partial substitution of Ge for Sb has been shown to result in a slight increase in Δ S and a shift in the Δ S maximum to the low-temperature range. The substitution of Al for Sb leads to a decrease in the effect and shift in the Δ S maximum to the high-temperature range. It has been found that the maximum magnetocaloric effect has been observed for the Ni50Mn36Sb12Ge2 composition and is equal to Δ S = 1.3 J/(kg K) in a field change of 10 kOe.

  20. Z-2 Threaded Insert Design and Testing

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Rhodes, Richard; Jones, Robert J.; Graziosi, David; Ferl, Jinny; Sweeny, Mitch; Scarborough, Stephen

    2016-01-01

    NASA's Z-2 prototype space suit contains several components fabricated from an advanced hybrid composite laminate consisting of IM10 carbon fiber and fiber glass. One requirement was to have removable, replaceable helicoil inserts to which other suit components would be fastened. An approach utilizing bonded in inserts with helicoils inside of them was implemented. During initial assembly, cracking sounds were heard followed by the lifting of one of the blind inserts out of its hole when the screws were torqued. A failure investigation was initiated to understand the mechanism of the failure. Ultimately, it was determined that the pre-tension caused by torqueing the fasteners is a much larger force than induced from the pressure loads of the suit which was not considered in the insert design. Bolt tension is determined by dividing the torque on the screw by a k value multiplied by the thread diameter of the bolt. The k value is a factor that accounts for friction in the system. A common value used for k for a non-lubricated screw is 0.2. The k value can go down by as much as 0.1 if the screw is lubricated which means for the same torque, a much larger tension could be placed on the bolt and insert. This paper summarizes the failure investigation that was performed to identify the root cause of the suit failure and details how the insert design was modified to resist a higher pull out tension.

  1. 49 CFR 71.2 - Annual advancement of standard time.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., requires that the standard time of each State observing Daylight Saving Time shall be advanced 1 hour... 49 Transportation 1 2012-10-01 2012-10-01 false Annual advancement of standard time. 71.2 Section 71.2 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.2...

  2. 49 CFR 71.2 - Annual advancement of standard time.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., requires that the standard time of each State observing Daylight Saving Time shall be advanced 1 hour... 49 Transportation 1 2014-10-01 2014-10-01 false Annual advancement of standard time. 71.2 Section 71.2 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.2...

  3. 49 CFR 71.2 - Annual advancement of standard time.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., requires that the standard time of each State observing Daylight Saving Time shall be advanced 1 hour... 49 Transportation 1 2013-10-01 2013-10-01 false Annual advancement of standard time. 71.2 Section 71.2 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.2...

  4. 49 CFR 71.2 - Annual advancement of standard time.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., requires that the standard time of each State observing Daylight Saving Time shall be advanced 1 hour... 49 Transportation 1 2011-10-01 2011-10-01 false Annual advancement of standard time. 71.2 Section 71.2 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.2...

  5. Co2+Ti4+ substituted Z-type barium ferrite with enhanced imaginary permeability and resonance frequency

    NASA Astrophysics Data System (ADS)

    Li, Z. W.; Guoqing, Lin; Chen, Linfeng; Yuping, Wu; Ong, C. K.

    2006-03-01

    Co2+Ti4+ substitution for Fe3+ in Co2Z (Ba3Co2Fe24O41) has been prepared. The crystal structure and static and high-frequency magnetic properties have been studied for Ba3Co2+xTixFe24-2xO41 and the corresponding ferrite/polymer composites. As compared to the general Co2Z ferrite/polymer composite, the CoTi substituted ferrite/polymer composite with x=1.0 has a high natural resonance frequency (4.5 GHz), due to its large out-of-plane anisotropy fields Hθ. Furthermore, the maximum imaginary permeability μmax'' is increased by about 50%. The increase is attributed to a decreased damping coefficient, based on the curve-fitted results to the complex permeability spectra. The composites are good electromagnetic attenuation materials with low reflectivity and broad bandwidth at microwave frequencies.

  6. The Morphology of Passively Evolving Galaxies at Z-2 from HST/WFC3 in the Hubble Ultra Deep Field

    NASA Technical Reports Server (NTRS)

    Cassata, P.; Giavalisco, M.; Guo, Yicheng; Ferguson, H.; Koekemoer, A.; Renzini, A.; Fontana, A.; Salimbeni, S.; Dickinson, M.; Casertano, S.; hide

    2009-01-01

    We discuss near-IR images of six passive galaxies (SSFR< 10(exp -2)/Gyr) at redshift 1.3 < z < 2.4 with stellar mass M approx 10(exp 11) solar mass, selected from the Great Observatories Origins Deep Survey (GOODS), obtained with WFC3/IR and the Hubble Space Telescope (HST). These WFC3 images provide the deepest and highest angular resolution view of the optical rest-frame morphology of such systems to date. We find that the light profile of these; galaxies is generally regular and well described by a Sersic model with index typical of today's spheroids. We confirm the existence of compact and massive early-type galaxies at z approx. 2: four out of six galaxies have T(sub e) approx. 1 kpc or less. The WFC3 images achieve limiting surface brightness mu approx. 26.5 mag/sq arcsec in the F160W bandpass; yet there is no evidence of a faint halo in the five compact galaxies of our sample, nor is a halo observed in their stacked image. We also find very weak "morphological k-correction" in the galaxies between the rest-frame UV (from the ACS z band), and the rest-frame optical (WFC3 H band): the visual classification, Sersic indices and physical sizes of these galaxies are independent or only mildly dependent on the wavelength, within the errors.

  7. Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at √s = 8 TeV

    DOE PAGES

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...

    2015-04-07

    Dimuon and dielectron mass spectra, obtained from data resulting from proton-proton collisions at 8 TeV and recorded by the CMS experiment, are used to search for both narrow resonances and broad deviations from standard model predictions. The data correspond to an integrated luminosity of 20.6 (19.7) fb –1 for the dimuon (dielectron) channel. No evidence for non-standard-model physics is observed and 95% confidence level limits are set on parameters from a number of new physics models. The narrow resonance analyses exclude a Sequential Standard Model Z SSM ' resonance lighter than 2.90 TeV, a superstring-inspired Z ψ ' lighter thanmore » 2.57 TeV, and Randall-Sundrum Kaluza-Klein gravitons with masses below 2.73, 2.35, and 1.27 TeV for couplings of 0.10, 0.05, and 0.01, respectively. A notable feature is that the limits have been calculated in a model-independent way to enable straightforward reinterpretation in any model predicting a resonance structure. The observed events are also interpreted within the framework of two non-resonant analyses: one based on a large extra dimensions model and one based on a quark and lepton compositeness model with a left-left isoscalar contact interaction. Lower limits are established on MS, the scale characterizing the onset of quantum gravity, which range from 4.9 to 3.3 TeV, where the number of additional spatial dimensions varies from 3 to 7. Thus lower limits on Λ, the energy scale parameter for the contact interaction, are found to be 12.0 (15.2) TeV for destructive (constructive) interference in the dimuon channel and 13.5 (18.3) TeV in the dielectron channel.« less

  8. A refined 'standard' thermal model for asteroids based on observations of 1 Ceres and 2 Pallas

    NASA Technical Reports Server (NTRS)

    Lebofsky, Larry A.; Sykes, Mark V.; Tedesco, Edward F.; Veeder, Glenn J.; Matson, Dennis L.

    1986-01-01

    An analysis of ground-based thermal IR observations of 1 Ceres and 2 Pallas in light of their recently determined occultation diameters and small amplitude light curves has yielded a new value for the IR beaming parameter employed in the standard asteroid thermal emission model which is significantly lower than the previous one. When applied to the reduction of thermal IR observations of other asteroids, this new value is expected to yield model diameters closer to actual values. The present formulation incorporates the IAU magnitude convention for asteroids that employs zero-phase magnitudes, including the opposition effect.

  9. Fermionic extensions of the Standard Model in light of the Higgs couplings

    NASA Astrophysics Data System (ADS)

    Bizot, Nicolas; Frigerio, Michele

    2016-01-01

    As the Higgs boson properties settle, the constraints on the Standard Model extensions tighten. We consider all possible new fermions that can couple to the Higgs, inspecting sets of up to four chiral multiplets. We confront them with direct collider searches, electroweak precision tests, and current knowledge of the Higgs couplings. The focus is on scenarios that may depart from the decoupling limit of very large masses and vanishing mixing, as they offer the best prospects for detection. We identify exotic chiral families that may receive a mass from the Higgs only, still in agreement with the hγγ signal strength. A mixing θ between the Standard Model and non-chiral fermions induces order θ 2 deviations in the Higgs couplings. The mixing can be as large as θ ˜ 0 .5 in case of custodial protection of the Z couplings or accidental cancellation in the oblique parameters. We also notice some intriguing effects for much smaller values of θ, especially in the lepton sector. Our survey includes a number of unconventional pairs of vector-like and Majorana fermions coupled through the Higgs, that may induce order one corrections to the Higgs radiative couplings. We single out the regions of parameters where hγγ and hgg are unaffected, while the hγZ signal strength is significantly modified, turning a few times larger than in the Standard Model in two cases. The second run of the LHC will effectively test most of these scenarios.

  10. Investigation of a Cesium Raman Time/Frequency Standard

    DTIC Science & Technology

    1991-12-01

    0. 1 4 XZ E(r, t) = ’h/(El(r)exp(- iwlt ) + c.c.) 0 + ’/,(E 2(r)exp(- iw.2t) + c.c.). (2) - /2 eAll remaining notations are defined in Table 1. By...h P - P33 Rabi frequency for 3-2 transition 92 = 623 E2 )/h [ [r Rotating-wave (a~~012 = P12 exp(- iwlt ) S 0 0i 2Ra 1 1f2sRotating-wav e a,3 2 e p(-i

  11. The C-terminal domain of zDHHC2 contains distinct sorting signals that regulate intracellular localisation in neurons and neuroendocrine cells.

    PubMed

    Salaun, Christine; Ritchie, Louise; Greaves, Jennifer; Bushell, Trevor J; Chamberlain, Luke H

    2017-12-01

    The S-acyltransferase zDHHC2 mediates dynamic S-acylation of PSD95 and AKAP79/150, which impacts synaptic targeting of AMPA receptors. zDHHC2 is responsive to synaptic activity and catalyses the increased S-acylation of PSD95 that occurs following action potential blockade or application of ionotropic glutamate receptor antagonists. These treatments have been proposed to increase plasma membrane delivery of zDHHC2 via an endosomal cycling pathway, enhancing substrate accessibility. To generate an improved understanding of zDHHC2 trafficking and how this might be regulated by neuronal activity, we searched for intramolecular signals that regulate enzyme localisation. Two signals were mapped to the C-terminal tail of zDHHC2: a non-canonical dileucine motif [SxxxLL] and a downstream NP motif. Mutation of these signals enhanced plasma membrane accumulation of zDHHC2 in both neuroendocrine PC12 cells and rat hippocampal neurons, consistent with reduced endocytic retrieval. Furthermore, mutation of these signals also increased accumulation of the enzyme in neurites. Interestingly, several threonine and serine residues are adjacent to these sorting motifs and analysis of phospho-mimetic mutants highlighted a potential role for phosphorylation in regulating the efficacy of these signals. This study offers new molecular insight into the signals that determine zDHHC2 localisation and highlights a potential mechanism to regulate these trafficking signals. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. A review of the Z2-FET 1T-DRAM memory: Operation mechanisms and key parameters

    NASA Astrophysics Data System (ADS)

    Cristoloveanu, S.; Lee, K. H.; Parihar, M. S.; El Dirani, H.; Lacord, J.; Martinie, S.; Le Royer, C.; Barbe, J.-Ch.; Mescot, X.; Fonteneau, P.; Galy, Ph.; Gamiz, F.; Navarro, C.; Cheng, B.; Duan, M.; Adamu-Lema, F.; Asenov, A.; Taur, Y.; Xu, Y.; Kim, Y.-T.; Wan, J.; Bawedin, M.

    2018-05-01

    The band-modulation and sharp-switching mechanisms in Z2-FET device operated as a capacitorless 1T-DRAM memory are reviewed. The main parameters that govern the memory performance are discussed based on detailed experiments and simulations. This 1T-DRAM memory does not suffer from super-coupling effect and can be integrated in sub-10 nm thick SOI films. It offers low leakage current, high current margin, long retention, low operating voltage especially for programming, and high speed. The Z2-FET is suitable for embedded memory applications.

  13. The Interstellar Medium Properties of Heavily Reddened Quasars & Companions at z ˜ 2.5 with ALMA & JVLA

    NASA Astrophysics Data System (ADS)

    Banerji, Manda; Jones, Gareth C.; Wagg, Jeff; Carilli, Chris L.; Bisbas, Thomas G.; Hewett, Paul C.

    2018-06-01

    We study the interstellar medium (ISM) properties of three heavily reddened quasars at z ˜ 2.5 as well as three millimetre-bright companion galaxies near these quasars. New JVLA and ALMA observations constrain the CO(1-0), CO(7-6) and [CI]3P2 - 3P1 line emission as well as the far infrared to radio continuum. The gas excitation and physical properties of the ISM are constrained by comparing our observations to photo-dissociation region (PDR) models. The ISM in our high-redshift quasars is composed of very high-density, high-temperature gas which is already highly enriched in elements like carbon. One of our quasar hosts is shown to be a close-separation (<2″) major merger with different line emission properties in the millimeter-bright galaxy and quasar components. Low angular resolution observations of high-redshift quasars used to assess quasar excitation properties should therefore be interpreted with caution as they could potentially be averaging over multiple components with different ISM conditions. Our quasars and their companion galaxies show a range of CO excitation properties spanning the full extent from starburst-like to quasar-like spectral line energy distributions. We compare gas masses based on CO, CI and dust emission, and find that these can disagree when standard assumptions are made regarding the values of αCO, the gas-to-dust ratio and the atomic carbon abundances. We conclude that the ISM properties of our quasars and their companion galaxies are diverse and likely vary spatially across the full extent of these complex, merging systems.

  14. VizieR Online Data Catalog: CANDELS z~2 galaxy properties (Trump+, 2014)

    NASA Astrophysics Data System (ADS)

    Trump, J. R.; Barro, G.; Juneau, S.; Weiner, B. J.; Luo, B.; Brammer, G. B.; Bell, E. F.; Brandt, W. N.; Dekel, A.; Guo, Y.; Hopkins, P. F.; Koo, D. C.; Kocevski, D. D.; McIntosh, D. H.; Momcheva, I.; Faber, S. M.; Ferguson, H. C.; Grogin, N. A.; Kartaltepe, J.; Koekemoer, A. M.; Lotz, J.; Maseda, M.; Mozena, M.; Nandra, K.; Rosario, D. J.; Zeimann, G. R.

    2017-04-01

    We select a sample of 44 clumpy galaxies from the Great Observatories Origins Deep Survey South (GOODS-S; Giavalisco et al. 2004ApJ...600L..93G) region of CANDELS. For comparison, we also construct mass-matched samples of 41 smooth (non-clumpy) and 35 intermediate galaxies. All galaxies have H<24 (to ensure reliable classification of clumpiness) and have [O III] detected at the 3σ level (for reliable AGN line ratio diagnostics) in the redshift range 1.3<z<2.4. Each morphology category has a median redshift of z=1.85. Redshifts and emission line measurements come from HST/WFC3 grism spectroscopy taken by the 3D-HST survey (Brammer et al. 2012ApJS..200...13B). (1 data file).

  15. The rise and fall of star formation in z ~ 0.2 merging galaxy clusters

    DOE PAGES

    Stroe, Andra; Sobral, David; Dawson, William; ...

    2015-04-20

    CIZA J2242.8+5301 (‘Sausage’) and 1RXS J0603.3+4213 (‘Toothbrush’) are two low-redshift (z ~ 0.2), massive (~2 × 10 15 M ⊙), post-core passage merging clusters, which host-shock waves traced by diffuse radio emission. To study their star formation properties, we uniformly survey the ‘Sausage’ and ‘Toothbrush’ clusters in broad- and narrow-band filters and select a sample of 201 and 463 line emitters, down to a rest-frame equivalent width (13 Å). Here, we robustly separate between Hα and higher redshift emitters using a combination of optical multiband (B, g, V, r, i, z) and spectroscopic data. We build Hα luminosity functions formore » the entire cluster region, near the shock fronts, and away from the shock fronts and find striking differences between the two clusters. In the dynamically younger, 1 Gyr old ‘Sausage’ cluster we find numerous (59) Hα emitters above a star formation rate (SFR) of 0.17 M ⊙ yr -1 surprisingly located in close proximity to the shock fronts, embedded in very hot intracluster medium plasma. The SFR density for the cluster population is at least at the level of typical galaxies at z ~ 2. Down to the same SFR, the possibly dynamically more evolved ‘Toothbrush’ cluster has only nine Hα galaxies. The cluster Hα galaxies fall on the SFR–stellar mass relation z ~ 0.2 for the field. However, the ‘Sausage’ cluster has an Hα emitter density >20 times that of blank fields. If the shock passes through gas-rich cluster galaxies, the compressed gas could collapse into dense clouds and excite star formation for a few 100 Myr. Finally, this process ultimately leads to a rapid consumption of the molecular gas, accelerating the transformation of gas-rich field spirals into cluster S0s or ellipticals.« less

  16. Efficient production of free fatty acids from soybean meal carbohydrates.

    PubMed

    Wang, Dan; Thakker, Chandresh; Liu, Ping; Bennett, George N; San, Ka-Yiu

    2015-11-01

    Conversion of biomass feedstock to chemicals and fuels has attracted increasing attention recently. Soybean meal, containing significant quantities of carbohydrates, is an inexpensive renewable feedstock. Glucose, galactose, and fructose can be obtained by enzymatic hydrolysis of soluble carbohydrates of soybean meal. Free fatty acids (FFAs) are valuable molecules that can be used as precursors for the production of fuels and other value-added chemicals. In this study, free fatty acids were produced by mutant Escherichia coli strains with plasmid pXZ18Z (carrying acyl-ACP thioesterase (TE) and (3R)-hydroxyacyl-ACP dehydratase) using individual sugars, sugar mixtures, and enzymatic hydrolyzed soybean meal extract. For individual sugar fermentations, strain ML211 (MG1655 fadD(-) fabR(-) )/pXZ18Z showed the best performance, which produced 4.22, 3.79, 3.49 g/L free fatty acids on glucose, fructose, and galactose, respectively. While the strain ML211/pXZ18Z performed the best with individual sugars, however, for sugar mixture fermentation, the triple mutant strain XZK211 (MG1655 fadD(-) fabR(-) ptsG(-) )/pXZ18Z with an additional deletion of ptsG encoding the glucose-specific transporter, functioned the best due to relieved catabolite repression. This strain produced approximately 3.18 g/L of fatty acids with a yield of 0.22 g fatty acids/g total sugar. Maximum free fatty acids production of 2.78 g/L with a high yield of 0.21 g/g was achieved using soybean meal extract hydrolysate. The results suggested that soybean meal carbohydrates after enzymatic treatment could serve as an inexpensive feedstock for the efficient production of free fatty acids. © 2015 Wiley Periodicals, Inc.

  17. Impact of semi-annihilation of Z{sub 3} symmetric dark matter with radiative neutrino masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Mayumi; Toma, Takashi, E-mail: mayumi@hep.s.kanazawa-u.ac.jp, E-mail: takashi.toma@durham.ac.uk

    2014-09-01

    We investigate a Z{sub 3} symmetric model with two-loop radiative neutrino masses. Dark matter in the model is either a Dirac fermion or a complex scalar as a result of an unbroken Z{sub 3} symmetry. In addition to standard annihilation processes, semi-annihilation of the dark matter contributes to the relic density. We study the effect of the semi-annihilation in the model and find that those contributions are important to obtain the observed relic density. The experimental signatures in dark matter searches are also discussed, where some of them are expected to be different from the signatures of dark matter inmore » Z{sub 2} symmetric models.« less

  18. Measurement and analysis of x-ray absorption in Al and MgF2 plasmas heated by Z-pinch radiation.

    PubMed

    Rochau, Gregory A; Bailey, J E; Macfarlane, J J

    2005-12-01

    High-power Z pinches on Sandia National Laboratories' Z facility can be used in a variety of experiments to radiatively heat samples placed some distance away from the Z-pinch plasma. In such experiments, the heating radiation spectrum is influenced by both the Z-pinch emission and the re-emission of radiation from the high-Z surfaces that make up the Z-pinch diode. To test the understanding of the amplitude and spectral distribution of the heating radiation, thin foils containing both Al and MgF2 were heated by a 100-130 TW Z pinch. The heating of these samples was studied through the ionization distribution in each material as measured by x-ray absorption spectra. The resulting plasma conditions are inferred from a least-squares comparison between the measured spectra and calculations of the Al and Mg 1s-->2p absorption over a large range of temperatures and densities. These plasma conditions are then compared to radiation-hydrodynamics simulations of the sample dynamics and are found to agree within 1sigma to the best-fit conditions. This agreement indicates that both the driving radiation spectrum and the heating of the Al and MgF2 samples is understood within the accuracy of the spectroscopic method.

  19. Short-ranged interaction effects on Z2 topological phase transitions: The perturbative mean-field method

    NASA Astrophysics Data System (ADS)

    Lai, Hsin-Hua; Hung, Hsiang-Hsuan

    2015-02-01

    Time-reversal symmetric topological insulator (TI) is a novel state of matter that a bulk-insulating state carries dissipationless spin transport along the surfaces, embedded by the Z2 topological invariant. In the noninteracting limit, this exotic state has been intensively studied and explored with realistic systems, such as HgTe/(Hg, Cd)Te quantum wells. On the other hand, electronic correlation plays a significant role in many solid-state systems, which further influences topological properties and triggers topological phase transitions. Yet an interacting TI is still an elusive subject and most related analyses rely on the mean-field approximation and numerical simulations. Among the approaches, the mean-field approximation fails to predict the topological phase transition, in particular at intermediate interaction strength without spontaneously breaking symmetry. In this paper, we develop an analytical approach based on a combined perturbative and self-consistent mean-field treatment of interactions that is capable of capturing topological phase transitions beyond either method when used independently. As an illustration of the method, we study the effects of short-ranged interactions on the Z2 TI phase, also known as the quantum spin Hall (QSH) phase, in three generalized versions of the Kane-Mele (KM) model at half-filling on the honeycomb lattice. The results are in excellent agreement with quantum Monte Carlo (QMC) calculations on the same model and cannot be reproduced by either a perturbative treatment or a self-consistent mean-field treatment of the interactions. Our analytical approach helps to clarify how the symmetries of the one-body terms of the Hamiltonian determine whether interactions tend to stabilize or destabilize a topological phase. Moreover, our method should be applicable to a wide class of models where topological transitions due to interactions are in principle possible, but are not correctly predicted by either perturbative or self

  20. Measurement of Z boson production in Pb-Pb collisions at sqrt[s(NN)]=2.76  TeV with the ATLAS detector.

    PubMed

    Aad, G; Abajyan, T; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdelalim, A A; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Acharya, B S; Adamczyk, L; Adams, D L; Addy, T N; Adelman, J; Adomeit, S; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Agustoni, M; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahsan, M; Aielli, G; Akdogan, T; Åkesson, T P A; Akimoto, G; Akimov, A V; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Allbrooke, B M M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alonso, F; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amor Dos Santos, S P; Amorim, A; Amram, N; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Andrieux, M-L; Anduaga, X S; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aoun, S; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Arfaoui, S; Arguin, J-F; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnault, C; Artamonov, A; Artoni, G; Arutinov, D; Asai, S; Ask, S; Åsman, B; Asquith, L; Assamagan, K; Astbury, A; Atkinson, M; Aubert, B; Auge, E; Augsten, K; Aurousseau, M; Avolio, G; Avramidou, R; Axen, D; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagnaia, P; Bahinipati, S; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baker, S; Balek, P; Banas, E; Banerjee, P; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barbaro Galtieri, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Barrillon, P; Bartoldus, R; Barton, A E; Bartsch, V; Basye, A; Bates, R L; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Beale, S; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, A K; Becker, S; Beckingham, M; Becks, K H; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellomo, M; Belloni, A; Beloborodova, O; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertella, C; Bertin, A; Bertolucci, F; Besana, M I; Besjes, G J; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bittner, B; Black, K M; Blair, R E; Blanchard, J-B; Blanchot, G; Blazek, T; Bloch, I; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V B; Bocchetta, S S; Bocci, A; Boddy, C R; Boehler, M; Boek, J; Boelaert, N; Bogaerts, J A; Bogdanchikov, A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Bolnet, N M; Bomben, M; Bona, M; Boonekamp, M; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borri, M; Borroni, S; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boveia, A; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Bremer, J; Brendlinger, K; Brenner, R; Bressler, S; Britton, D; Brochu, F M; Brock, I; Brock, R; Broggi, F; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brown, G; Brown, H; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Buat, Q; Bucci, F; Buchanan, J; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Bulekov, O; Bundock, A C; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Buttinger, W; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camacho Toro, R; Camarri, P; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Cantrill, R; Capasso, L; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capriotti, D; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carquin, E; Carrillo Montoya, G D; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda Hernandez, A M; Castaneda-Miranda, E; Castillo Gimenez, V; Castro, N F; Cataldi, G; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, K; Chang, P; Chapleau, B; Chapman, J D; Chapman, J W; Chareyre, E; Charlton, D G; Chavda, V; Chavez Barajas, C A; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, X; Chen, Y; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Cheung, S L; Chevalier, L; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choudalakis, G; Chouridou, S; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocca, C; Ciocio, A; Cirilli, M; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, B; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Coggeshall, J; Cogneras, E; Colas, J; Cole, S; Colijn, A P; Collins, N J; Collins-Tooth, C; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Courneyea, L; Cowan, G; Cowden, C; Cox, B E; Cranmer, K; Crescioli, F; Cristinziani, M; Crosetti, G; Crépé-Renaudin, S; Cuciuc, C-M; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M; Curtis, C J; Cuthbert, C; Cwetanski, P; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dallapiccola, C; Dam, M; Dameri, M; Damiani, D S; Danielsson, H O; Dao, V; Darbo, G; Darlea, G L; Dassoulas, J A; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davies, E; Davies, M; Davignon, O; Davison, A R; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Taille, C; De la Torre, H; De Lorenzi, F; de Mora, L; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Degenhardt, J; Del Papa, C; Del Peso, J; Del Prete, T; Delemontex, T; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Deng, J; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Devetak, E; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, J; Dinut, F; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobbs, M; Dobinson, R; Dobos, D; Dobson, E; Dodd, J; Doglioni, C; Doherty, T; Doi, Y; Dolejsi, J; Dolenc, I; Dolezal, Z; Dolgoshein, B A; Dohmae, T; Donadelli, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doxiadis, A D; Doyle, A T; Dressnandt, N; Dris, M; Dubbert, J; Dube, S; Duchovni, E; Duckeck, G; Duda, D; Dudarev, A; Dudziak, F; Dührssen, M; Duerdoth, I P; Duflot, L; Dufour, M-A; Duguid, L; Dunford, M; Duran Yildiz, H; Duxfield, R; Dwuznik, M; Dydak, F; Düren, M; Ebenstein, W L; Ebke, J; Eckweiler, S; Edmonds, K; Edson, W; Edwards, C A; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Engelmann, R; Engl, A; Epp, B; Erdmann, J; Ereditato, A; Eriksson, D; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evangelakou, D; Evans, H; Fabbri, L; Fabre, C; Fakhrutdinov, R M; Falciano, S; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Favareto, A; Fayard, L; Fazio, S; Febbraro, R; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feligioni, L; Fellmann, D; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, G; Fisher, M J; Flechl, M; Fleck, I; Fleckner, J; Fleischmann, P; Fleischmann, S; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Fonseca Martin, T; Formica, A; Forti, A; Fortin, D; Fournier, D; Fowler, A J; Fox, H; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Frank, T; Franklin, M; Franz, S; Fraternali, M; Fratina, S; French, S T; Friedrich, C; Friedrich, F; Froeschl, R; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Gan, K K; Gao, Y S; Gaponenko, A; Garberson, F; Garcia-Sciveres, M; García, C; García Navarro, J E; Gardner, R W; Garelli, N; Garitaonandia, H; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giakoumopoulou, V; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gillberg, D; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Giugni, D; Giunta, M; Giusti, P; Gjelsten, B K; Gladilin, L K; Glasman, C; Glatzer, J; Glazov, A; Glitza, K W; Glonti, G L; Goddard, J R; Godfrey, J; Godlewski, J; Goebel, M; Göpfert, T; Goeringer, C; Gössling, C; Goldfarb, S; Golling, T; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Gosdzik, B; Goshaw, A T; Gosselink, M; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramstad, E; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Grau, N; Gray, H M; Gray, J A; Graziani, E; Grebenyuk, O G; Greenshaw, T; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grigalashvili, N; Grillo, A A; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guest, D; Guicheney, C; Guindon, S; Gul, U; Gunther, J; Guo, B; Guo, J; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hadavand, H K; Hadley, D R; Haefner, P; Hahn, F; Haider, S; Hajduk, Z; Hakobyan, H; Hall, D; Hamacher, K; Hamal, P; Hamer, M; Hamilton, A; Hamilton, S; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansson, P; Hara, K; Hare, G A; Harenberg, T; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayakawa, T; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, R C W; Henke, M; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Henß, T; Hernandez, C M; Hernández Jiménez, Y; Herrberg, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Higón-Rodriguez, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirsch, F; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holder, M; Holmgren, S O; Holy, T; Holzbauer, J L; Hong, T M; Hooft van Huysduynen, L; Horner, S; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S-C; Hu, D; Hubacek, Z; Hubaut, F; Huegging, F; Huettmann, A; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibbotson, M; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikeno, M; Iliadis, D; Ilic, N; Ince, T; Inigo-Golfin, J; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Jantsch, A; Janus, M; Jarlskog, G; Jeanty, L; Jen-La Plante, I; Jennens, D; Jenni, P; Loevschall-Jensen, A E; Jež, P; Jézéquel, S; Jha, M K; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinnouchi, O; Joergensen, M D; Joffe, D; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Joram, C; Jorge, P M; Joshi, K D; Jovicevic, J; Jovin, T; Ju, X; Jung, C A; Jungst, R M; Juranek, V; Jussel, P; Juste Rozas, A; Kabana, S; Kaci, M; Kaczmarska, A; Kadlecik, P; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalinin, S; Kalinovskaya, L V; Kama, S; Kanaya, N; Kaneda, M; Kaneti, S; Kanno, T; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kaplon, J; Kar, D; Karagounis, M; Karakostas, K; Karnevskiy, M; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, M; Kataoka, Y; Katsoufis, E; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kayl, M S; Kazama, S; Kazanin, V A; Kazarinov, M Y; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Kekelidze, G D; Keller, J S; Kenyon, M; Kepka, O; Kerschen, N; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kitamura, T; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E-E; Kluge, T; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Ko, B R; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Köneke, K; König, A C; Koenig, S; Köpke, L; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohn, F; Kohout, Z; Kohriki, T; Koi, T; Kolachev, G M; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Kono, T; Kononov, A I; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Korcyl, K; Kordas, K; Korn, A; Korol, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, S; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kreiss, S; Krejci, F; Kretzschmar, J; Krieger, N; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, T; Kuhn, D; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kummer, C; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwee, R; La Rosa, A; La Rotonda, L; Labarga, L; Labbe, J; Lablak, S; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laisne, E; Lamanna, M; Lambourne, L; Lampen, C L; Lampl, W; Lancon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, C; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larner, A; Lassnig, M; Laurelli, P; Lavorini, V; Lavrijsen, W; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, M; Legendre, M; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Leontsinis, S; Lepold, F; Leroy, C; Lessard, J-R; Lester, C G; Lester, C M; Levêque, J; Levin, D; Levinson, L J; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, S; Li, X; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lichtnecker, M; Lie, K; Liebig, W; Limbach, C; Limosani, A; Limper, M; Lin, S C; Linde, F; Linnemann, J T; Lipeles, E; Lipniacka, A; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, C; Liu, D; Liu, H; Liu, J B; Liu, L; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, R E; Lopes, L; Lopez Mateos, D; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lo Sterzo, F; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Luijckx, G; Lukas, W; Luminari, L; Lund, E; Lund-Jensen, B; Lundberg, B; Lundberg, J; Lundberg, O; Lundquist, J; Lungwitz, M; Lynn, D; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Maček, B; Machado Miguens, J; Mackeprang, R; Madaras, R J; Maddocks, H J; Mader, W F; Maenner, R; Maeno, T; Mättig, P; Mättig, S; Magnoni, L; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V; Malyukov, S; Mameghani, R; Mamuzic, J; Manabe, A; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Mangeard, P S; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marino, C P; Marroquim, F; Marshall, Z; Martens, F K; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, J P; Martin, T A; Martin, V J; Martin dit Latour, B; Martin-Haugh, S; Martinez, M; Martinez Outschoorn, V; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massaro, G; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Matricon, P; Matsunaga, H; Matsushita, T; Mattravers, C; Maurer, J; Maxfield, S J; Mayne, A; Mazini, R; Mazur, M; Mazzaferro, L; Mazzanti, M; Mc Donald, J; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; Mclaughlan, T; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meera-Lebbai, R; Meguro, T; Mehdiyev, R; Mehlhase, S; Mehta, A; Meier, K; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mendoza Navas, L; Meng, Z; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer, J; Meyer, T C; Michal, S; Micu, L; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Miller, D W; Miller, R J; Mills, W J; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Miñano Moya, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitrevski, J; Mitsou, V A; Mitsui, S; Miyagawa, P S; Mjörnmark, J U; Moa, T; Moeller, V; Mönig, K; Möser, N; Mohapatra, S; Mohr, W; Moles-Valls, R; Molfetas, A; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Moorhead, G F; Mora Herrera, C; Moraes, A; Morange, N; Morel, J; Morello, G; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mueller, F; Mueller, J; Mueller, K; Müller, T A; Mueller, T; Muenstermann, D; Munwes, Y; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Nanava, G; Napier, A; Narayan, R; Nash, M; Nattermann, T; Naumann, T; Navarro, G; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neusiedl, A; Neves, R M; Nevski, P; Newcomer, F M; Newman, P R; Nguyen Thi Hong, V; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Niedercorn, F; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsen, H; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Norton, P R; Novakova, J; Nozaki, M; Nozka, L; Nugent, I M; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Brien, B J; O'Neil, D C; O'Shea, V; Oakes, L B; Oakham, F G; Oberlack, H; Ocariz, J; Ochi, A; Oda, S; Odaka, S; Odier, J; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira, M; Oliveira Damazio, D; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Onderwaater, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orlov, I; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Osuna, C; Otero y Garzon, G; Ottersbach, J P; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Ouyang, Q; Ovcharova, A; Owen, M; Owen, S; Ozcan, V E; Ozturk, N; Pacheco Pages, A; Padilla Aranda, C; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Paleari, C P; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Papadelis, A; Papadopoulou, Th D; Paramonov, A; Paredes Hernandez, D; Park, W; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pashapour, S; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N; Pater, J R; Patricelli, S; Pauly, T; Pecsy, M; Pedraza Lopez, S; Pedraza Morales, M I; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penson, A; Penwell, J; Perantoni, M; Perez, K; Perez Cavalcanti, T; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Peshekhonov, V D; Peters, K; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Phan, A; Phillips, P W; Piacquadio, G; Picazio, A; Piccaro, E; Piccinini, M; Piec, S M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pinto, B; Pizio, C; Plamondon, M; Pleier, M-A; Plotnikova, E; Poblaguev, A; Poddar, S; Podlyski, F; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polini, A; Poll, J; Polychronakos, V; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospelov, G E; Pospisil, S; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Prabhu, R; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Pretzl, K; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Prudent, X; Przybycien, M; Przysiezniak, H; Psoroulas, S; Ptacek, E; Pueschel, E; Purdham, J; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Quadt, A; Quarrie, D R; Quayle, W B; Quinonez, F; Raas, M; Radeka, V; Radescu, V; Radloff, P; Rador, T; Ragusa, F; Rahal, G; Rahimi, A M; Rahm, D; Rajagopalan, S; Rammensee, M; Rammes, M; Randle-Conde, A S; Randrianarivony, K; Rauscher, F; Rave, T C; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinherz-Aronis, E; Reinsch, A; Reisinger, I; Rembser, C; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richter, R; Richter-Was, E; Ridel, M; Rijpstra, M; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Roe, A; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romeo, G; Romero Adam, E; Rompotis, N; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, A; Rose, M; Rosenbaum, G A; Rosenberg, E I; Rosendahl, P L; Rosenthal, O; Rosselet, L; Rossetti, V; Rossi, E; Rossi, L P; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Ruckstuhl, N; Rud, V I; Rudolph, C; Rudolph, G; Rühr, F; Ruiz-Martinez, A; Rumyantsev, L; Rurikova, Z; Rusakovich, N A; Rutherfoord, J P; Ruzicka, P; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Samset, B H; Sanchez, A; Sanchez Martinez, V; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santamarina Rios, C; Santoni, C; Santonico, R; Santos, H; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarri, F; Sartisohn, G; Sasaki, O; Sasaki, Y; Sasao, N; Satsounkevitch, I; Sauvage, G; Sauvan, E; Sauvan, J B; Savard, P; Savinov, V; Savu, D O; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scannicchio, D A; Scarcella, M; Schaarschmidt, J; Schacht, P; Schaefer, D; Schäfer, U; Schaelicke, A; Schaepe, S; Schaetzel, S; Schaffer, A C; Schaile, D; Schamberger, R D; Schamov, A G; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, M; Schneider, B; Schnoor, U; Schoeffel, L; Schoening, A; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schroeder, C; Schroer, N; Schultens, M J; Schultes, J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwierz, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciolla, G; Scott, W G; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellden, B; Sellers, G; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Seuster, R; Severini, H; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaw, K; Sherman, D; Sherwood, P; Shimizu, S; Shimojima, M; Shin, T; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sidoti, A; Siegert, F; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinnari, L A; Skottowe, H P; Skovpen, K; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, B C; Smith, D; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snow, S W; Snow, J; Snyder, S; Sobie, R; Sodomka, J; Soffer, A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Solovyev, V; Soni, N; Sopko, V; Sopko, B; Sosebee, M; Soualah, R; Soukharev, A; Spagnolo, S; Spanò, F; Spighi, R; Spigo, G; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Staude, A; Stavina, P; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strang, M; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Stugu, B; Stumer, I; Stupak, J; Sturm, P; Styles, N A; Soh, D A; Su, D; Subramania, Hs; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Suzuki, Y; Svatos, M; Swedish, S; Sykora, I; Sykora, T; Sánchez, J; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A; Tamsett, M C; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tani, K; Tannoury, N; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Tatarkhanov, M; Tayalati, Y; Taylor, C; Taylor, F E; Taylor, G N; Taylor, W; Teinturier, M; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thoma, S; Thomas, J P; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomoto, M; Tompkins, L; Toms, K; Tonoyan, A; Topfel, C; Topilin, N D; Torchiani, I; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Triplett, N; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Tua, A; Tudorache, A; Tudorache, V; Tuggle, J M; Turala, M; Turecek, D; Turk Cakir, I; Turlay, E; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Tzanakos, G; Uchida, K; Ueda, I; Ueno, R; Ugland, M; Uhlenbrock, M; Uhrmacher, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Unno, Y; Urbaniec, D; Urquijo, P; Usai, G; Uslenghi, M; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valenta, J; Valentinetti, S; Valero, A; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Poel, E; van der Ster, D; van Eldik, N; van Gemmeren, P; van Vulpen, I; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vannucci, F; Vari, R; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vazquez Schroeder, T; Vegni, G; Veillet, J J; Veloso, F; Veness, R; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Virchaux, M; Virzi, J; Vitells, O; Viti, M; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vokac, P; Volpi, G; Volpi, M; Volpini, G; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorwerk, V; Vos, M; Voss, R; Voss, T T; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Wagner, W; Wagner, P; Wahlen, H; Wahrmund, S; Wakabayashi, J; Walch, S; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, H; Wang, H; Wang, J; Wang, J; Wang, R; Wang, S M; Wang, T; Warburton, A; Ward, C P; Warsinsky, M; Washbrook, A; Wasicki, C; Watanabe, I; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Weber, M S; Weber, P; Webster, J S; Weidberg, A R; Weigell, P; Weingarten, J; Weiser, C; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Wessels, M; Wetter, J; Weydert, C; Whalen, K; Wheeler-Ellis, S J; White, A; White, M J; White, S; Whitehead, S R; Whiteson, D; Whittington, D; Wicek, F; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Will, J Z; Williams, E; Williams, H H; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winkelmann, S; Winklmeier, F; Wittgen, M; Wollstadt, S J; Wolter, M W; Wolters, H; Wong, W C; Wooden, G; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wraight, K; Wright, M; Wrona, B; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wynne, B M; Xella, S; Xiao, M; Xie, S; Xu, C; Xu, D; Yabsley, B; Yacoob, S; Yamada, M; Yamaguchi, H; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, U K; Yang, Y; Yang, Z; Yanush, S; Yao, L; Yao, Y; Yasu, Y; Ybeles Smit, G V; Ye, J; Ye, S; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J; Youssef, S; Yu, D; Yu, J; Yu, J; Yuan, L; Yurkewicz, A; Zabinski, B; Zaidan, R; Zaitsev, A M; Zajacova, Z; Zanello, L; Zanzi, D; Zaytsev, A; Zeitnitz, C; Zeman, M; Zemla, A; Zendler, C; Zenin, O; Ženiš, T; Zinonos, Z; Zenz, S; Zerwas, D; Zevi della Porta, G; Zhang, D; Zhang, H; Zhang, J; Zhang, X; Zhang, Z; Zhao, L; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhuravlov, V; Zieminska, D; Zimin, N I; Zimmermann, R; Zimmermann, S; Zimmermann, S; Ziolkowski, M; Zitoun, R; Živković, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; zur Nedden, M; Zutshi, V; Zwalinski, L

    2013-01-11

    The ATLAS experiment has observed 1995 Z boson candidates in data corresponding to 0.15  nb(-1) of integrated luminosity obtained in the 2011 LHC Pb+Pb run at sqrt[s(NN)]=2.76  TeV. The Z bosons are reconstructed via dielectron and dimuon decay channels, with a background contamination of less than 3%. Results from the two channels are consistent and are combined. Within the statistical and systematic uncertainties, the per-event Z boson yield is proportional to the number of binary collisions estimated by the Glauber model. The elliptic anisotropy of the azimuthal distribution of the Z boson with respect to the event plane is found to be consistent with zero.

  1. FIMP and muon ( g - 2) in a U(1) Lμ- Lτ model

    NASA Astrophysics Data System (ADS)

    Biswas, Anirban; Choubey, Sandhya; Khan, Sarif

    2017-02-01

    The tightening of the constraints on the standard thermal WIMP scenario has forced physicists to propose alternative dark matter (DM) models. One of the most popular alternate explanations of the origin of DM is the non-thermal production of DM via freeze-in. In this scenario the DM never attains thermal equilibrium with the thermal soup because of its feeble coupling strength (˜10-12) with the other particles in the thermal bath and is generally called the Feebly Interacting Massive Particle (FIMP). In this work, we present a gauged U(1) Lμ- Lτ extension of the Standard Model (SM) which has a scalar FIMP DM candidate and can consistently explain the DM relic density bound. In addition, the spontaneous breaking of the U(1) Lμ- Lτ gauge symmetry gives an extra massive neutral gauge boson Z μτ which can explain the muon ( g - 2) data through its additional one-loop contribution to the process. Lastly, presence of three right-handed neutrinos enable the model to successfully explain the small neutrino masses via the Type-I seesaw mechanism. The presence of the spontaneously broken U(1) Lμ- Lτ gives a particular structure to the light neutrino mass matrix which can explain the peculiar mixing pattern of the light neutrinos.

  2. Nonminimal quartic inflation in classically conformal U(1 ) X extended standard model

    NASA Astrophysics Data System (ADS)

    Oda, Satsuki; Okada, Nobuchika; Raut, Digesh; Takahashi, Dai-suke

    2018-03-01

    We propose quartic inflation with nonminimal gravitational coupling in the context of the classically conformal U(1 ) X extension of the standard model (SM). In this model, the U(1 ) X gauge symmetry is radiatively broken through the Coleman-Weinberg mechanism, by which the U(1 ) X gauge boson (Z' boson) and the right-handed Majorana neutrinos acquire their masses. We consider their masses in the range of O (10 GeV )-O (10 TeV ) , which are accessible to high-energy collider experiments. The radiative U(1 ) X gauge symmetry breaking also generates a negative mass squared for the SM Higgs doublet, and the electroweak symmetry breaking occurs subsequently. We identify the U(1 ) X Higgs field with inflaton and calculate the inflationary predictions. Because of the Coleman-Weinberg mechanism, the inflaton quartic coupling during inflation, which determines the inflationary predictions, is correlated to the U(1 ) X gauge coupling. With this correlation, we investigate complementarities between the inflationary predictions and the current constraint from the Z' boson resonance search at the LHC Run 2 as well as the prospect of the search for the Z' boson and the right-handed neutrinos at the future collider experiments.

  3. The Lesser Role of Starbursts in Star Formation at z = 2

    NASA Astrophysics Data System (ADS)

    Rodighiero, G.; Daddi, E.; Baronchelli, I.; Cimatti, A.; Renzini, A.; Aussel, H.; Popesso, P.; Lutz, D.; Andreani, P.; Berta, S.; Cava, A.; Elbaz, D.; Feltre, A.; Fontana, A.; Förster Schreiber, N. M.; Franceschini, A.; Genzel, R.; Grazian, A.; Gruppioni, C.; Ilbert, O.; Le Floch, E.; Magdis, G.; Magliocchetti, M.; Magnelli, B.; Maiolino, R.; McCracken, H.; Nordon, R.; Poglitsch, A.; Santini, P.; Pozzi, F.; Riguccini, L.; Tacconi, L. J.; Wuyts, S.; Zamorani, G.

    2011-10-01

    Two main modes of star formation are know to control the growth of galaxies: a relatively steady one in disk-like galaxies, defining a tight star formation rate (SFR)-stellar mass sequence, and a starburst mode in outliers to such a sequence which is generally interpreted as driven by merging. Such starburst galaxies are rare but have much higher SFRs, and it is of interest to establish the relative importance of these two modes. PACS/Herschel observations over the whole COSMOS and GOODS-South fields, in conjunction with previous optical/near-IR data, have allowed us to accurately quantify for the first time the relative contribution of the two modes to the global SFR density in the redshift interval 1.5 < z < 2.5, i.e., at the cosmic peak of the star formation activity. The logarithmic distributions of galaxy SFRs at fixed stellar mass are well described by Gaussians, with starburst galaxies representing only a relatively minor deviation that becomes apparent for SFRs more than four times higher than on the main sequence. Such starburst galaxies represent only 2% of mass-selected star-forming galaxies and account for only 10% of the cosmic SFR density at z ~ 2. Only when limited to SFR > 1000 M sun yr-1, off-sequence sources significantly contribute to the SFR density (46% ± 20%). We conclude that merger-driven starbursts play a relatively minor role in the formation of stars in galaxies, whereas they may represent a critical phase toward the quenching of star formation and morphological transformation in galaxies.

  4. Cp Asymmetries in B0DECAYS Beyond the Standard Model

    NASA Astrophysics Data System (ADS)

    Dib, Claudio O.; London, David; Nir, Yosef

    Of the many ingredients of the Standard Model that are relevant to the analysis of CP asymmetries in B0 decays, some are likely to hold even beyond the Standard Model while others are sensitive to new physics. Consequently, certain predictions are maintained while others may show dramatic deviations from the Standard Model. Many classes of models may show clear signatures when the asymmetries are measured: four quark generations, Z-mediated flavor-changing neutral currents, supersymmetry and “real superweak” models. On the other hand, models of left-right symmetry and multi-Higgs sectors with natural flavor conservation are unlikely to modify the Standard Model predictions.

  5. 46 CFR 160.052-2 - Size and model.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with a plan specified in § 160.052-1(b) and is a: (1) Model AP, adult (for persons over 90 pounds); (2) Model CPM, child, medium (for persons weighing from 50 to 90 pounds); or (3) Model CPS, child, small... accordance with the manufacturer's approved plan; (2) Equivalent in performance to the standard buoyant vest...

  6. OIFITS 2: the 2nd version of the data exchange standard for optical interferometry

    NASA Astrophysics Data System (ADS)

    Duvert, Gilles; Young, John; Hummel, Christian A.

    2017-01-01

    This paper describes version 2 of the Optical Interferometry exchange Format (OIFITS), the standard for exchanging calibrated data from optical (visible or infrared) interferometers. This IAU-endorsed standard has been in use for 10 years at most of the past and current optical interferometer projects, including COAST, NPOI, IOTA, CHARA, VLTI, PTI and the Keck interferometer. Software is available for reading, writing and merging OIFITS files. This version 2 provides definitions of additional data tables (for example for polarisation measurements), addressing the needs of future interferometric instruments. Also included are data columns for a more rigorous description of measurement errors and their correlations. In that, this document is a step towards the design of a common data model for optical interferometry. Finally, the main OIFITS header is expanded with several new keywords summarising the content to allow doing data base searches. We request that comments and suggestions related to OIFITS be directed to the OLBIN email list. (See http://www.jmmc.fr/olbin-forum for information on how to subscribe and post to the list.)

  7. Keck Deep Fields. I. Observations, Reductions, and the Selection of Faint Star-forming Galaxies at Redshifts z ~ 4, 3, and 2

    NASA Astrophysics Data System (ADS)

    Sawicki, Marcin; Thompson, David

    2005-12-01

    We introduce a very deep, Rlim~27, multicolor imaging survey of very faint star-forming galaxies at z~4, 3, 2.2, and 1.7. This survey, carried out on the Keck I telescope, uses the very same UnGRI filter system that is employed by the Steidel team to select galaxies at these redshifts and thus allows us to construct identically selected but much fainter samples. However, our survey reaches ~1.5 mag deeper than the work of Steidel and his group, letting us probe substantially below the characteristic luminosity L* and thus study the properties and redshift evolution of the faint component of the high-z galaxy population. The survey covers 169 arcmin2 in three spatially independent patches on the sky and-to R<=27-contains 427 GRI-selected z~4 Lyman break galaxies, 1481 UnGR-selected z~3 Lyman break galaxies, 2417 UnGR-selected z~2.2 star-forming galaxies, and 2043 UnGR-selected z~1.7 star-forming galaxies. In this paper, the first in a series, we introduce the survey, describe our observing and data reduction strategies, and outline the selection of our z~4, 3, 2.2, and 1.7 samples. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  8. VLA and ALMA Imaging of Intense Galaxy-wide Star Formation in z ˜ 2 Galaxies

    NASA Astrophysics Data System (ADS)

    Rujopakarn, W.; Dunlop, J. S.; Rieke, G. H.; Ivison, R. J.; Cibinel, A.; Nyland, K.; Jagannathan, P.; Silverman, J. D.; Alexander, D. M.; Biggs, A. D.; Bhatnagar, S.; Ballantyne, D. R.; Dickinson, M.; Elbaz, D.; Geach, J. E.; Hayward, C. C.; Kirkpatrick, A.; McLure, R. J.; Michałowski, M. J.; Miller, N. A.; Narayanan, D.; Owen, F. N.; Pannella, M.; Papovich, C.; Pope, A.; Rau, U.; Robertson, B. E.; Scott, D.; Swinbank, A. M.; van der Werf, P.; van Kampen, E.; Weiner, B. J.; Windhorst, R. A.

    2016-12-01

    We present ≃0.″4 resolution extinction-independent distributions of star formation and dust in 11 star-forming galaxies (SFGs) at z = 1.3-3.0. These galaxies are selected from sensitive blank-field surveys of the 2‧ × 2‧ Hubble Ultra-Deep Field at λ = 5 cm and 1.3 mm using the Karl G. Jansky Very Large Array and Atacama Large Millimeter/submillimeter Array. They have star formation rates (SFRs), stellar masses, and dust properties representative of massive main-sequence SFGs at z ˜ 2. Morphological classification performed on spatially resolved stellar mass maps indicates a mixture of disk and morphologically disturbed systems; half of the sample harbor X-ray active galactic nuclei (AGNs), thereby representing a diversity of z ˜ 2 SFGs undergoing vigorous mass assembly. We find that their intense star formation most frequently occurs at the location of stellar-mass concentration and extends over an area comparable to their stellar-mass distribution, with a median diameter of 4.2 ± 1.8 kpc. This provides direct evidence of galaxy-wide star formation in distant blank-field-selected main-sequence SFGs. The typical galactic-average SFR surface density is 2.5 M ⊙ yr-1 kpc-2, sufficiently high to drive outflows. In X-ray-selected AGN where radio emission is enhanced over the level associated with star formation, the radio excess pinpoints the AGNs, which are found to be cospatial with star formation. The median extinction-independent size of main-sequence SFGs is two times larger than those of bright submillimeter galaxies, whose SFRs are 3-8 times larger, providing a constraint on the characteristic SFR (˜300 M ⊙ yr-1) above which a significant population of more compact SFGs appears to emerge.

  9. The PEP survey: clustering of infrared-selected galaxies and structure formation at z ˜ 2 in GOODS-South

    NASA Astrophysics Data System (ADS)

    Magliocchetti, M.; Santini, P.; Rodighiero, G.; Grazian, A.; Aussel, H.; Altieri, B.; Andreani, P.; Berta, S.; Cepa, J.; Castañeda, H.; Cimatti, A.; Daddi, E.; Elbaz, D.; Genzel, R.; Gruppioni, C.; Lutz, D.; Magnelli, B.; Maiolino, R.; Popesso, P.; Poglitsch, A.; Pozzi, F.; Sanchez-Portal, M.; Förster Schreiber, N. M.; Sturm, E.; Tacconi, L.; Valtchanov, I.

    2011-09-01

    This paper presents the first direct estimate of the 3D clustering properties of far-infrared sources up to z˜ 3. This has been possible thanks to the PACS Evolutionary Probe (PEP) survey of the GOODS-South field performed with the PACS instrument on board the Herschel satellite. 550 and 502 sources were detected respectively in the 100- and 160-μm channels down to fluxes ? mJy and ? mJy, cuts that ensure >80 per cent completeness of the two catalogues. More than 65 per cent of these sources have an (either photometric or spectroscopic) redshift determination from the MUSIC catalogue; this percentage rises to ˜95 per cent in the inner portion of GOODS-South which is covered by data at other wavelengths. An analysis of the deprojected two-point correlation function w(θ) over the whole redshift range spanned by the data reports for the (comoving) correlation length, r0˜ 6.3 and ˜6.7 Mpc, respectively at 100 and 160 μm, corresponding to dark matter halo masses M≳ 1012.4 M⊙, in an excellent agreement with previous estimates obtained for mid-IR selected sources in the same field. Objects at z˜ 2 instead seem to be more strongly clustered, with r0˜ 19 and ˜17 Mpc in the two considered PACS channels. This dramatic increase of the correlation length between z˜ 1 and ˜2 is connected with the presence, more visible at 100 μm than in the other band, of a wide (at least 4 Mpc across in projection), M≳ 1014 M⊙, filamentary structure which includes more than 50 per cent of the sources detected at z˜ 2. An investigation of the properties of such sources indicates the possibility of a boosted star-forming activity in those which reside within the overdense environment with respect to more isolated galaxies found in the same redshift range. If confirmed by larger data sets, this result can be explained as due to the combined effect of large reservoirs of gas available at high redshifts in deep potential wells such as those associated with large overdensities

  10. Gauge-independent renormalization of the N2HDM

    NASA Astrophysics Data System (ADS)

    Krause, Marcel; López-Val, David; Mühlleitner, Margarete; Santos, Rui

    2017-12-01

    The Next-to-Minimal 2-Higgs-Doublet Model (N2HDM) is an interesting benchmark model for a Higgs sector consisting of two complex doublet and one real singlet fields. Like the Next-to-Minimal Supersymmetric extension (NMSSM) it features light Higgs bosons that could have escaped discovery due to their singlet admixture. Thereby, the model allows for various different Higgs-to-Higgs decay modes. Contrary to the NMSSM, however, the model is not subject to supersymmetric relations restraining its allowed parameter space and its phenomenology. For the correct determination of the allowed parameter space, the correct interpretation of the LHC Higgs data and the possible distinction of beyond-the-Standard Model Higgs sectors higher order corrections to the Higgs boson observables are crucial. This requires not only their computation but also the development of a suitable renormalization scheme. In this paper we have worked out the renormalization of the complete N2HDM and provide a scheme for the gauge-independent renormalization of the mixing angles. We discuss the renormalization of the Z_2 soft breaking parameter m 12 2 and the singlet vacuum expectation value v S . Both enter the Higgs self-couplings relevant for Higgs-to-Higgs decays. We apply our renormalization scheme to different sample processes such as Higgs decays into Z bosons and decays into a lighter Higgs pair. Our results show that the corrections may be sizable and have to be taken into account for reliable predictions.

  11. Explicit blow-up solutions to the Schroedinger maps from R{sup 2} to the hyperbolic 2-space H{sup 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding Qing

    2009-10-15

    In this article, we prove that the equation of the Schroedinger maps from R{sup 2} to the hyperbolic 2-space H{sup 2} is SU(1,1)-gauge equivalent to the following 1+2 dimensional nonlinear Schroedinger-type system of three unknown complex functions p, q, r, and a real function u: iq{sub t}+q{sub zz}-2uq+2(pq){sub z}-2pq{sub z}-4|p|{sup 2}q=0, ir{sub t}-r{sub zz}+2ur+2(pr){sub z}-2pr{sub z}+4|p|{sup 2}r=0, ip{sub t}+(qr){sub z}-u{sub z}=0, p{sub z}+p{sub z}=-|q|{sup 2}+|r|{sup 2}, -r{sub z}+q{sub z}=-2(pr+pq), where z is a complex coordinate of the plane R{sup 2} and z is the complex conjugate of z. Although this nonlinear Schroedinger-type system looks complicated, it admits a class ofmore » explicit blow-up smooth solutions: p=0, q=(e{sup i(bzz/2(a+bt))}/a+bt){alpha}z, r=e{sup -i(bzz/2(a+bt))}/(a+bt){alpha}z, u=2{alpha}{sup 2}zz/(a+bt){sup 2}, where a and b are real numbers with ab<0 and {alpha} satisfies {alpha}{sup 2}=b{sup 2}/16. From these facts, we explicitly construct smooth solutions to the Schroedinger maps from R{sup 2} to the hyperbolic 2-space H{sup 2} by using the gauge transformations such that the absolute values of their gradients blow up in finite time. This reveals some blow-up phenomenon of Schroedinger maps.« less

  12. Dense Cores in Galaxies Out to z = 2.5 in SDSS, UltraVISTA, and the Five 3D-HST/CANDELS Fields

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter G.; Bezanson, Rachel; van der Wel, Arjen; Nelson, Erica June; Momcheva, Ivelina; Skelton, Rosalind E.; Whitaker, Katherine E.; Brammer, Gabriel; Conroy, Charlie; Förster Schreiber, Natascha M.; Fumagalli, Mattia; Kriek, Mariska; Labbé, Ivo; Leja, Joel; Marchesini, Danilo; Muzzin, Adam; Oesch, Pascal; Wuyts, Stijn

    2014-08-01

    The dense interiors of massive galaxies are among the most intriguing environments in the universe. In this paper,we ask when these dense cores were formed and determine how galaxies gradually assembled around them. We select galaxies that have a stellar mass >3 × 1010 M ⊙ inside r = 1 kpc out to z = 2.5, using the 3D-HST survey and data at low redshift. Remarkably, the number density of galaxies with dense cores appears to have decreased from z = 2.5 to the present. This decrease is probably mostly due to stellar mass loss and the resulting adiabatic expansion, with some contribution from merging. We infer that dense cores were mostly formed at z > 2.5, consistent with their largely quiescent stellar populations. While the cores appear to form early, the galaxies in which they reside show strong evolution: their total masses increase by a factor of 2-3 from z = 2.5 to z = 0 and their effective radii increase by a factor of 5-6. As a result, the contribution of dense cores to the total mass of the galaxies in which they reside decreases from ~50% at z = 2.5 to ~15% at z = 0. Because of their early formation, the contribution of dense cores to the total stellar mass budget of the universe is a strong function of redshift. The stars in cores with M 1 kpc > 3 × 1010 M ⊙ make up ~0.1% of the stellar mass density of the universe today but 10%-20% at z ~ 2, depending on their initial mass function. The formation of these cores required the conversion of ~1011 M ⊙ of gas into stars within ~1 kpc, while preventing significant star formation at larger radii.

  13. Performance and rotor loads measurements of the Lynx XZ170 helicopter with rectangular blades

    NASA Technical Reports Server (NTRS)

    Lau, Benton H.; Louie, Alexander W.; Griffiths, Nicholas; Sotiriou, Costantinos P.

    1993-01-01

    This report presents the results of a series of flight tests on the Lynx XZ170 helicopter with rectangular blades. The test objectives were to explore the flight envelope and to measure the performance and structural loads of the Lynx main-rotor system. The tests were conducted as part of the British Experimental Rotor Program (BERP) under a contract with the Ministry of Defense in England. Data were acquired for steady-level flights at five weight coefficients. Some flight conditions were tested at beyond the retreating-blade stall boundary, which was defined by a predetermined limit on the pitchlink vibratory load. In addition to documenting the flight conditions and data, this report describes the aircraft, particularly the rotor system, in detail.

  14. Efficient Visible-Light-Driven Z-Scheme Overall Water Splitting Using a MgTa2O(6-x)N(y)/TaON Heterostructure Photocatalyst for H2 Evolution.

    PubMed

    Chen, Shanshan; Qi, Yu; Hisatomi, Takashi; Ding, Qian; Asai, Tomohiro; Li, Zheng; Ma, Su Su Khine; Zhang, Fuxiang; Domen, Kazunari; Li, Can

    2015-07-13

    An (oxy)nitride-based heterostructure for powdered Z-scheme overall water splitting is presented. Compared with the single MgTa2O(6-x)N(y) or TaON photocatalyst, a MgTa2O(6-x)N(y)/TaON heterostructure fabricated by a simple one-pot nitridation route was demonstrated to effectively suppress the recombination of carriers by efficient spatial charge separation and decreased defect density. By employing Pt-loaded MgTa2O(6-x)N(y)/TaON as a H2-evolving photocatalyst, a Z-scheme overall water splitting system with an apparent quantum efficiency (AQE) of 6.8% at 420 nm was constructed (PtO(x)-WO3 and IO3(-)/I(-) pairs were used as an O2-evolving photocatalyst and a redox mediator, respectively), the activity of which is circa 7 or 360 times of that using Pt-TaON or Pt-MgTa2O(6-x)N)y) as a H2-evolving photocatalyst, respectively. To the best of our knowledge, this is the highest AQE among the powdered Z-scheme overall water splitting systems ever reported. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Linking N2O emission from biochar-amended composting process to the abundance of denitrify (nirK and nosZ) bacteria community.

    PubMed

    Li, Shuqing; Song, Lina; Jin, Yaguo; Liu, Shuwei; Shen, Qirong; Zou, Jianwen

    2016-12-01

    Manure composting has been recognized as an important anthropogenic source of nitrous oxide (N2O) contributing to global warming. However, biochar effect on N2O emissions from manure composting is rarely evaluated, especially by linking it to abundance of denitrifying bacteria community. Results of this study indicated that biochar amendment significantly reduced N2O emissions from manure composting, primarily due to suppression of the nirK gene abundance of denitrifying bacteria. Pearson's correlation analysis showed a significant positive correlation between nirK abundance and N2O fluxes, while a negative correlation between nosZ density and N2O fluxes. Simultaneously, a linear correlation between nirK gene abundance minus nosZ gene abundance with N2O fluxes was also observed. In addition, a statistical model for estimating N2O emissions based on the bacterial denitrifying functional genes was developed and verified to adequately fit the observed emissions. Our results highlighted that biochar amendment would be an alternative strategy for mitigating N2O emissions during manure composting, and the information of related functional bacterial communities could be helpful for understanding the mechanism of N2O emissions.

  16. 40 CFR 1037.105 - Exhaust emission standards for CO2 for vocational vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Emission Standards... CO2 standard (g/ton-mile) for model year 2017 and later GVWR ≤ 19,500 388 373 19,500 < GVWR ≤ 33,000...

  17. 40 CFR 1037.105 - Exhaust emission standards for CO2 for vocational vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Emission Standards... CO2 standard (g/ton-mile) for model year 2017 and later GVWR ≤ 19,500 388 373 19,500 < GVWR ≤ 33,000...

  18. Measurement and analysis of x-ray absorption in Al and MgF2 plasmas heated by Z-pinch radiation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacFarlane, Joseph John; Rochau, Gregory Alan; Bailey, James E.

    2005-06-01

    High-power Z pinches on Sandia National Laboratories Z facility can be used in a variety of experiments to radiatively heat samples placed some distance away from the Z-pinch plasma. In such experiments, the heating radiation spectrum is influenced by both the Z-pinch emission and the re-emission of radiation from the high-Z surfaces that make up the Z-pinch diode. To test the understanding of the amplitude and spectral distribution of the heating radiation, thin foils containing both Al and MgF{sub 2} were heated by a 100-130 TW Z pinch. The heating of these samples was studied through the ionization distribution inmore » each material as measured by x-ray absorption spectra. The resulting plasma conditions are inferred from a least-squares comparison between the measured spectra and calculations of the Al and Mg 1s {yields} 2p absorption over a large range of temperatures and densities. These plasma conditions are then compared to radiation-hydrodynamics simulations of the sample dynamics and are found to agree within 1{sigma} to the best-fit conditions. This agreement indicates that both the driving radiation spectrum and the heating of the Al and MgF{sub 2} samples is understood within the accuracy of the spectroscopic method.« less

  19. CONCURRENT SUPERMASSIVE BLACK HOLE AND GALAXY GROWTH: LINKING ENVIRONMENT AND NUCLEAR ACTIVITY IN z = 2.23 H{alpha} EMITTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmer, B. D.; Hornschemeier, A. E.; Lucy, A. B.

    2013-03-10

    We present results from a Almost-Equal-To 100 ks Chandra observation of the 2QZ Cluster 1004+00 structure at z = 2.23 (hereafter 2QZ Clus). 2QZ Clus was originally identified as an overdensity of four optically-selected QSOs at z = 2.23 within a 15 Multiplication-Sign 15 arcmin{sup 2} region. Narrow-band imaging in the near-IR (within the K band) revealed that the structure contains an additional overdensity of 22 z = 2.23 H{alpha}-emitting galaxies (HAEs), resulting in 23 unique z = 2.23 HAEs/QSOs (22 within the Chandra field of view). Our Chandra observations reveal that three HAEs in addition to the four QSOsmore » harbor powerfully accreting supermassive black holes (SMBHs), with 2-10 keV luminosities of Almost-Equal-To (8-60) Multiplication-Sign 10{sup 43} erg s{sup -1} and X-ray spectral slopes consistent with unobscured active galactic nucleus (AGN). Using a large comparison sample of 210 z = 2.23 HAEs in the Chandra-COSMOS field (C-COSMOS), we find suggestive evidence that the AGN fraction increases with local HAE galaxy density. The 2QZ Clus HAEs reside in a moderately overdense environment (a factor of Almost-Equal-To 2 times over the field), and after excluding optically-selected QSOs, we find that the AGN fraction is a factor of Almost-Equal-To 3.5{sup +3.8}{sub -2.2} times higher than C-COSMOS HAEs in similar environments. Using stacking analyses of the Chandra data and Herschel SPIRE observations at 250 {mu}m, we respectively estimate mean SMBH accretion rates ( M-dot{sub BH}) and star formation rates (SFRs) for the 2QZ Clus and C-COSMOS samples. We find that the mean 2QZ Clus HAE stacked X-ray luminosity is QSO-like (L{sub 2-10{sub keV}} Almost-Equal-To [6-10] Multiplication-Sign 10{sup 43} erg s{sup -1}), and the implied M-dot{sub BH}/SFR Almost-Equal-To (1.6-3.2) Multiplication-Sign 10{sup -3} is broadly consistent with the local M{sub BH}/M{sub *} relation and z Almost-Equal-To 2 X-ray selected AGN. In contrast, the C-COSMOS HAEs are on average

  20. Discovery and Classification of the z=1.86 SLSNe: DES15E2mlf

    NASA Astrophysics Data System (ADS)

    Pan, Y.-C.; Foley, R. J.; Galbany, L.; Gonzalez-Gaitan, S.; Forster, F.; Hamuy, M.; Prieto, J. L.; Yuan, F.; Tucker, B. E.; Lidman, C.; Martini, P.; Gshwend, Julia; Moller, A.; Zhang, B.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Prajs, S.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Casas, R.; Castander, F. J.

    2015-12-01

    We report the spectroscopic classification of DES15E2mlf as a superluminous supernova (SLSN) discovered by the Dark Energy Survey (ATEL #4668). DES15E2mlf was discovered on 7 November 2015 at R.A. = 00:41:33.40, Decl = -43:27:17.2 with r = 24.1 mag. We obtained spectra using GMOS on Gemini-South (520-990nm) on 06 December 2015 which indicated a redshift of z = 1.86 from Mg II 2800 absorption.

  1. 40 CFR 1037.105 - Exhaust emission standards for CO2 for vocational vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Emission Standards... CO2 standard (g/ton-mile) for model year 2017 and later GVWR ≤19,500 388 373 19,500

  2. Effect of Mn and Ti substitution on the reflection loss characteristic of Ba{sub 0.6}Sr{sub 0.4}Fe{sub 11-z}MnTi{sub z}O{sub 19} (z = 0, 1, 2 and 3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunanto, Y. E., E-mail: yohanes.gunanto@uph.edu; Cahyadi, L., E-mail: lina.cahyadi@uph.edu; Adi, W. Ari, E-mail: dwisnuaa@batan.go.id

    2016-04-19

    The synthesis and characterization of composition Ba{sub 0.6}Sr{sub 0.4}Fe{sub 11-z}MnTi{sub z}O{sub 19} (z = 0; 1; 2 and 3) compound by solid state reaction using mechanical milling have been performed. The raw materials were BaCO{sub 3}, SrCO{sub 3}, Fe{sub 2}O{sub 3}, MnCO{sub 3}, and TiO{sub 2}. The mixed powder was compacted and sintered at 1000°C for 5 hours. X-ray diffraction studies indicate expansion of hexagonal unit cell and compression of atomic density with substitution of Mn{sup 2+} and Ti{sup 4+} ions. Effect of substitution upon magnetic properties revealed that total magnetization, remanence, and coercivity changed with substitution due to preferentialmore » site occupancy of substituted Mn{sup 2+} and Ti{sup 4+} ions. Since the coercivity and total magnetization may be controlled by substitution while maintaining resistive properties, this material is useful for microwave absorber.« less

  3. Submillimeter H2O and H2O+emission in lensed ultra- and hyper-luminous infrared galaxies at z 2-4

    NASA Astrophysics Data System (ADS)

    Yang, C.; Omont, A.; Beelen, A.; González-Alfonso, E.; Neri, R.; Gao, Y.; van der Werf, P.; Weiß, A.; Gavazzi, R.; Falstad, N.; Baker, A. J.; Bussmann, R. S.; Cooray, A.; Cox, P.; Dannerbauer, H.; Dye, S.; Guélin, M.; Ivison, R.; Krips, M.; Lehnert, M.; Michałowski, M. J.; Riechers, D. A.; Spaans, M.; Valiante, E.

    2016-11-01

    We report rest-frame submillimeter H2O emission line observations of 11 ultra- or hyper-luminous infrared galaxies (ULIRGs or HyLIRGs) at z 2-4 selected among the brightest lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Using the IRAM NOrthern Extended Millimeter Array (NOEMA), we have detected 14 new H2O emission lines. These include five 321-312ortho-H2O lines (Eup/k = 305 K) and nine J = 2 para-H2O lines, either 202-111(Eup/k = 101 K) or 211-202(Eup/k = 137 K). The apparent luminosities of the H2O emission lines are μLH2O 6-21 × 108 L⊙ (3 <μ< 15, where μ is the lens magnification factor), with velocity-integrated line fluxes ranging from 4-15 Jy km s-1. We have also observed CO emission lines using EMIR on the IRAM 30 m telescope in seven sources (most of those have not yet had their CO emission lines observed). The velocity widths for CO and H2O lines are found to be similar, generally within 1σ errors in the same source. With almost comparable integrated flux densities to those of the high-J CO line (ratios range from 0.4 to 1.1), H2O is found to be among the strongest molecular emitters in high-redshift Hy/ULIRGs. We also confirm our previously found correlation between luminosity of H2O (LH2O) and infrared (LIR) that LH2O LIR1.1-1.2, with ournew detections. This correlation could be explained by a dominant role of far-infrared pumping in the H2O excitation. Modelling reveals that the far-infrared radiation fields have warm dust temperature Twarm 45-75 K, H2O column density per unit velocity interval NH2O /ΔV ≳ 0.3 × 1015 cm-2 km-1 s and 100 μm continuum opacity τ100> 1 (optically thick), indicating that H2O is likely to trace highly obscured warm dense gas. However, further observations of J ≥ 4 H2O lines are needed to better constrain the continuum optical depth and other physical conditions of the molecular gas and dust. We have also detected H2O+ emission in three sources. A tight correlation

  4. Near-IR Spectroscopy of Luminous LoBAL Quasars at 1 < z < 2.5

    NASA Astrophysics Data System (ADS)

    Schulze, Andreas; Schramm, Malte; Zuo, Wenwen; Wu, Xue-Bing; Urrutia, Tanya; Kotilainen, Jari; Reynolds, Thomas; Terao, Koki; Nagao, Tohru; Izumiura, Hideyuki

    2017-10-01

    We present near-IR spectroscopy of 22 luminous low-ionization broad absorption line quasars (LoBAL QSOs) at redshift 1.3< z< 2.5, with 12 objects at z ˜ 1.5 and 10 at z ˜ 2.3. The spectra cover the rest-frame Hα and Hβ line regions, allowing us to obtain robust black hole mass estimates based on the broad Hα line. We use these data, augmented by a lower-redshift sample from the Sloan Digital Sky Survey, to test the proposed youth scenario for LoBALs, which suggests that LoBALs constitute an early short-lived evolutionary stage of quasar activity, by probing for any difference in their masses, Eddington ratios, or rest-frame optical spectroscopic properties compared to normal quasars. In addition, we construct the UV to mid-IR spectral energy distributions (SEDs) for the LoBAL sample and a matched non-BAL quasar sample. We do not find any statistically significant difference between LoBAL QSOs and non-BAL QSOs in their black hole mass or Eddington ratio distributions. The mean UV to mid-IR SED of the LoBAL QSOs is consistent with non-BAL QSOs, apart from their stronger reddening. At z> 1 there is no clear difference in their optical emission line properties. We do not see particularly weak [O III] or strong Fe II emission. The LoBAL QSOs do not show a stronger prevalence of ionized gas outflows as traced by the [O III] line, compared to normal QSOs of similar luminosity. We conclude that the optical-MIR properties of LoBAL QSOs are consistent with the general quasar population and do not support them to constitute a special phase of active galactic nucleus evolution.

  5. 40 CFR 721.5293 - Poly(oxy-1,2-ethanediyl), alpha-(9Z)-9-octadecenyl-.omega.-hydroxy-, phosphate, ammonium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Poly(oxy-1,2-ethanediyl), alpha-(9Z)-9... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.5293 Poly(oxy-1,2-ethanediyl), alpha...), alpha-(9Z)-9-octadecenyl-.omega.-hydroxy-, phosphate, ammonium salt (PMN P-99-920; CAS No. 58857-49-1...

  6. 40 CFR 721.5293 - Poly(oxy-1,2-ethanediyl), alpha-(9Z)-9-octadecenyl-.omega.-hydroxy-, phosphate, ammonium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Poly(oxy-1,2-ethanediyl), alpha-(9Z)-9... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.5293 Poly(oxy-1,2-ethanediyl), alpha...), alpha-(9Z)-9-octadecenyl-.omega.-hydroxy-, phosphate, ammonium salt (PMN P-99-920; CAS No. 58857-49-1...

  7. 40 CFR 721.5293 - Poly(oxy-1,2-ethanediyl), alpha-(9Z)-9-octadecenyl-.omega.-hydroxy-, phosphate, ammonium salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Poly(oxy-1,2-ethanediyl), alpha-(9Z)-9... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.5293 Poly(oxy-1,2-ethanediyl), alpha...), alpha-(9Z)-9-octadecenyl-.omega.-hydroxy-, phosphate, ammonium salt (PMN P-99-920; CAS No. 58857-49-1...

  8. 40 CFR 721.5293 - Poly(oxy-1,2-ethanediyl), alpha-(9Z)-9-octadecenyl-.omega.-hydroxy-, phosphate, ammonium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Poly(oxy-1,2-ethanediyl), alpha-(9Z)-9... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.5293 Poly(oxy-1,2-ethanediyl), alpha...), alpha-(9Z)-9-octadecenyl-.omega.-hydroxy-, phosphate, ammonium salt (PMN P-99-920; CAS No. 58857-49-1...

  9. Synthesis and structure of spiro[2-(2-methylphenyl)-4H-1,3-benzoxazine-4,2′-adamantane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osyanin, V. A., E-mail: orgchem@samgtu.ru; Ivleva, E. A.; Rybakov, V. B.

    2015-01-15

    Synthesis and an X-ray diffraction study of spiro[2-(2-methylphenyl)-4H-1,3-benzoxazine-4,2′-adamantane] C{sub 24}H{sub 25}NO are performed: monoclinic crystal system, space group P2{sub 1}/c, a = 13.9424(3) Å, b = 7.56554(17) Å, c = 17.0155(3) Å, β = 99.6457(18)°, Z = 4, V = 1769.45(6) Å{sup 3}. ρ{sub calcd} = 1.244 g/cm{sup 3}, R = 0.0339 [T = 100(2) K]. The oxazine ring of the molecule adopts the boat conformation. The bond lengths and angles are standard for this class of compounds.

  10. Electronic structures of tris(dioxolene)chromium and tris(dithiolene)chromium complexes of the electron-transfer series [Cr(dioxolene)(3)](z) and [Cr(dithiolene)(3)](z) (z = 0, 1-, 2-, 3-). A combined experimental and density functional theoretical study.

    PubMed

    Kapre, Ruta R; Bothe, Eberhard; Weyhermüller, Thomas; George, Serena Debeer; Muresan, Nicoleta; Wieghardt, Karl

    2007-09-17

    From the reaction mixture of 3,6-di-tert-butylcatechol, H2[3,6L(cat)], [CrCl3(thf)3], and NEt3 in CH3CN in the presence of air, the neutral complex [CrIII(3,6L*(sq))3] (S = 0) (1) was isolated. Reduction of 1 with [Co(Cp)2] in CH2Cl2 yielded microcrystals of [Co(Cp)2][CrIII(3,6L*(sq))2(3,6L(cat))] (S = 1/2) (2) where (3,6L*(sq)(1-) is the pi-radical monoanionic o-semiquinonate of the catecholate dianion (3,6Lcat)(2-). Electrochemistry demonstrated that both species are members of the electron-transfer series [Cr(3,6LO,O)]z (z = 0, 1-, 2-, 3-). The corresponding tris(benzo-1,2-dithiolato)chromium complex [N(n-Bu)4][CrIII(3,5L*S,S)2(3,5LS,S)] (S = 1/2) (3) has also been isolated; (3,5LS,S)(2-) represents the closed-shell dianion 3,5-di-tert-butylbenzene-1,2-dithiolate(2-), and (3,5L*S,S)(1-) is its monoanionic pi radical. Complex 3 is a member of the electron-transfer series [Cr(3,5L(S,S))3]z (z = 0, 1-, 2-, 3-). It is shown by Cr K-edge and S K-edge X-ray absorption, UV-vis, and EPR spectroscopies, as well as X-ray crystallography, of 1 and 3 that the oxidation state of the central Cr ion in each member of both electron-transfer series remains the same (+III) and that all redox processes are ligand-based. These experimental results have been corroborated by broken symmetry density functional theoretical calculations by using the B3LYP functional.

  11. The extended epoch of galaxy formation: Age dating of 3600 galaxies with 2 < z < 6.5 in the VIMOS Ultra-Deep Survey

    NASA Astrophysics Data System (ADS)

    Thomas, R.; Le Fèvre, O.; Scodeggio, M.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pforr, J.; Tasca, L. A. M.; Zamorani, G.; Bardelli, S.; Hathi, N. P.; Tresse, L.; Zucca, E.; Koekemoer, A. M.

    2017-06-01

    In this paper we aim at improving constraints on the epoch of galaxy formation by measuring the ages of 3597 galaxies with reliable spectroscopic redshifts 2z ≤ 6.5 in the VIMOS Ultra Deep Survey (VUDS). We derive ages and other physical parameters from the simultaneous fitting with the GOSSIP+ software of observed UV rest-frame spectra and photometric data from the u band up to 4.5 μm using model spectra from composite stellar populations. We perform extensive simulations and conclude that at z2 the joint analysis of spectroscopy and photometry, combined with restricted age possibilities when taking the age of the Universe into account, substantially reduces systematic uncertainties and degeneracies in the age derivation; we find that age measurements from this process are reliable. We find that galaxy ages range from very young with a few tens of million years to substantially evolved with ages up to 1.5 Gyr or more. This large age spread is similar for different age definitions including ages corresponding to the last major star formation event, stellar mass-weighted ages, and ages corresponding to the time since the formation of 25% of the stellar mass. We derive the formation redshift zf from the measured ages and find galaxies that may have started forming stars as early as zf 15. We produce the formation redshift function (FzF), the number of galaxies per unit volume formed at a redshift zf, and compare the FzF in increasing observed redshift bins finding a remarkably constant FzF. The FzF is parametrized with (1 + z)ζ, where ζ ≃ 0.58 ± 0.06, indicating a smooth increase of about 2 dex from the earliest redshifts, z 15, to the lowest redshifts of our sample at z 2. Remarkably, this observed increase in the number of forming galaxies is of the same order as the observed rise in the star formation rate density (SFRD). The ratio of the comoving SFRD with the FzF gives an average SFR per galaxy of 7-17M⊙/yr at z 4-6, in agreement with the

  12. THE COLUMN DENSITY DISTRIBUTION AND CONTINUUM OPACITY OF THE INTERGALACTIC AND CIRCUMGALACTIC MEDIUM AT REDSHIFT (z) = 2.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudie, Gwen C.; Steidel, Charles C.; Shapley, Alice E.

    2013-06-01

    We present new high-precision measurements of the opacity of the intergalactic and circumgalactic medium (IGM; CGM) at (z) = 2.4. Using Voigt profile fits to the full Ly{alpha} and Ly{beta} forests in 15 high-resolution high-S/N spectra of hyperluminous QSOs, we make the first statistically robust measurement of the frequency of absorbers with H I column densities 14{approx}< log (N{sub H{sub I}}/cm{sup -2}){approx}<17.2. We also present the first measurements of the frequency distribution of H I absorbers in the volume surrounding high-z galaxies (the CGM, 300 pkpc), finding that the incidence of absorbers in the CGM is much higher than inmore » the IGM. In agreement with Rudie et al., we find that there are fractionally more high-N{sub H{sub I}} absorbers than low-N{sub H{sub I}} absorbers in the CGM compared to the IGM, leading to a shallower power law fit to the CGM frequency distribution. We use these new measurements to calculate the total opacity of the IGM and CGM to hydrogen-ionizing photons, finding significantly higher opacity than most previous studies, especially from absorbers with log (N{sub H{sub I}}/cm{sup -2}) < 17.2. Reproducing the opacity measured in our data as well as the incidence of absorbers with log (N{sub H{sub I}}/cm{sup -2})>17.2 requires a broken power law parameterization of the frequency distribution with a break near N{sub H{sub I}} Almost-Equal-To 10{sup 15} cm{sup -2}. We compute new estimates of the mean free path ({lambda}{sub mfp}) to hydrogen-ionizing photons at z{sub em} = 2.4, finding {lambda}{sub mfp} = 147 {+-} 15 Mpc when considering only IGM opacity. If instead, we consider photons emanating from a high-z star-forming galaxy and account for the local excess opacity due to the surrounding CGM of the galaxy itself, the mean free path is reduced to {lambda}{sub mfp} = 121 {+-} 15 Mpc. These {lambda}{sub mfp} measurements are smaller than recent estimates and should inform future studies of the metagalactic UV background

  13. Molecular Gas Content of an Extremely Star-forming Herschel Observed Lensed Dusty Galaxy at z=2.685

    NASA Astrophysics Data System (ADS)

    Nayyeri, Hooshang; Cooray, Asantha R.; H-ATLAS

    2017-01-01

    We present the results of combined deep near-infrared, far infrared and millimeter observations of an extremely star forming lensed dusty star-forming galaxy (DSFG) identified from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). The high redshift DSFG is gravitationally lensed by a massive WISE identified cluster at z~1 (spectroscopically confirmed with Keck/DEIMOS and Gemini/GMOS) producing multiply lensed images and arcs observed in the optical. The DSFG is spectroscopically confirmed at z=2.685 from CO(1-0) observations by GBT and separately from CO(3-2) observations by CARMA. We use the combined spectroscopic and imaging observations to construct a detailed lens model of the background DSFG which allowed us to study the sources plane properties of the target. Multi-band data from Keck/NIRC2, HST/WFC3 and Herschel yields star formation rate and stellar mass well above the main sequence. Observations of the dust continuum by the Sub-millimeter Array yields an observed total ISM mass of 6.5E+11 M* which is responsible for the intense observed star formation rates. Comparing the measured SFR with molecular gas measurements from CO(1-0) observations reveals that this system has relatively short gas depletion time scale which is consistent with the starburst phase observed in high redshift sub-millimeter galaxies.

  14. Z n clock models and chains of so(n)2 non-Abelian anyons: symmetries, integrable points and low energy properties

    NASA Astrophysics Data System (ADS)

    Finch, Peter E.; Flohr, Michael; Frahm, Holger

    2018-02-01

    We study two families of quantum models which have been used previously to investigate the effect of topological symmetries in one-dimensional correlated matter. Various striking similarities are observed between certain {Z}n quantum clock models, spin chains generalizing the Ising model, and chains of non-Abelian anyons constructed from the so(n)2 fusion category for odd n, both subject to periodic boundary conditions. In spite of the differences between these two types of quantum chains, e.g. their Hilbert spaces being spanned by tensor products of local spin states or fusion paths of anyons, the symmetries of the lattice models are shown to be closely related. Furthermore, under a suitable mapping between the parameters describing the interaction between spins and anyons the respective Hamiltonians share part of their energy spectrum (although their degeneracies may differ). This spin-anyon correspondence can be extended by fine-tuning of the coupling constants leading to exactly solvable models. We show that the algebraic structures underlying the integrability of the clock models and the anyon chain are the same. For n  =  3,5,7 we perform an extensive finite size study—both numerical and based on the exact solution—of these models to map out their ground state phase diagram and to identify the effective field theories describing their low energy behaviour. We observe that the continuum limit at the integrable points can be described by rational conformal field theories with extended symmetry algebras which can be related to the discrete ones of the lattice models.

  15. 29 CFR 1912.2 - Types of standards advisory committees.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Types of standards advisory committees. 1912.2 Section 1912.2 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADVISORY COMMITTEES ON STANDARDS Organizational Matters § 1912.2 Types of...

  16. 29 CFR 1912.2 - Types of standards advisory committees.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Types of standards advisory committees. 1912.2 Section 1912.2 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADVISORY COMMITTEES ON STANDARDS Organizational Matters § 1912.2 Types of...

  17. The Mu2e crystal calorimeter

    DOE PAGES

    Happacher, Fabio

    2017-09-15

    The Mu2e Experiment at Fermilab will search for coherent, neutrino-less conversion of negative muons into electrons in the field of an Aluminum nucleus, μ - + Al → e - +Al. Data collection start is planned for the end of 2021. The dynamics of such charged lepton flavour violating (CLFV) process is well modelled by a two-body decay, resulting in a mono-energetic electron with an energy slightly below the muon rest mass. If no events are observed in three years of running, Mu2e will set an upper limit on the ratio between the conversion and the capture rates R μe = μ - + A(Z,N) → e - +A(Z,N)/μ - + A(Z,N) → ν μ - +A(Z-1,N) more » of ≤ 6 ×10 -17 (@ 90% C.L.). This will improve the current limit of four order of magnitudes with respect to the previous best experiment. Mu2e complements and extends the current search for μ → e γ decay at MEG as well as the direct searches for new physics at the LHC . The observation of such CLFV process could be clear evidence for New Physics beyond the Standard Model. Given its sensitivity, Mu2e will be able to probe New Physics at a scale inaccessible to direct searches at either present or planned high energy colliders. To search for the muon conversion process, a very intense pulsed beam of negative muons (~ 10 10 μ/ sec) is stopped on an Aluminum target inside a very long solenoid where the detector is also located. The Mu2e detector is composed of a straw tube tracker and a CsI crystals electromagnetic calorimeter. An external veto for cosmic rays surrounds the detector solenoid. In 2016, Mu2e has passed the final approval stage from DOE and has started its construction phase. As a result, an overview of the physics motivations for Mu2e, the current status of the experiment and the required performances and design details of the calorimeter are presented.« less

  18. The Mu2e crystal calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Happacher, Fabio

    The Mu2e Experiment at Fermilab will search for coherent, neutrino-less conversion of negative muons into electrons in the field of an Aluminum nucleus, μ - + Al → e - +Al. Data collection start is planned for the end of 2021. The dynamics of such charged lepton flavour violating (CLFV) process is well modelled by a two-body decay, resulting in a mono-energetic electron with an energy slightly below the muon rest mass. If no events are observed in three years of running, Mu2e will set an upper limit on the ratio between the conversion and the capture rates R μe = μ - + A(Z,N) → e - +A(Z,N)/μ - + A(Z,N) → ν μ - +A(Z-1,N) more » of ≤ 6 ×10 -17 (@ 90% C.L.). This will improve the current limit of four order of magnitudes with respect to the previous best experiment. Mu2e complements and extends the current search for μ → e γ decay at MEG as well as the direct searches for new physics at the LHC . The observation of such CLFV process could be clear evidence for New Physics beyond the Standard Model. Given its sensitivity, Mu2e will be able to probe New Physics at a scale inaccessible to direct searches at either present or planned high energy colliders. To search for the muon conversion process, a very intense pulsed beam of negative muons (~ 10 10 μ/ sec) is stopped on an Aluminum target inside a very long solenoid where the detector is also located. The Mu2e detector is composed of a straw tube tracker and a CsI crystals electromagnetic calorimeter. An external veto for cosmic rays surrounds the detector solenoid. In 2016, Mu2e has passed the final approval stage from DOE and has started its construction phase. As a result, an overview of the physics motivations for Mu2e, the current status of the experiment and the required performances and design details of the calorimeter are presented.« less

  19. 38 CFR 0.735-2 - Government-wide standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Government-wide standards... STANDARDS OF ETHICAL CONDUCT AND RELATED RESPONSIBILITIES General Provisions § 0.735-2 Government-wide standards. For government-wide standards of ethical conduct and related responsibilities for Federal...

  20. The Kinematics of Multiple-peaked Lyα Emission in Star-forming Galaxies at z ~ 2-3

    NASA Astrophysics Data System (ADS)

    Kulas, Kristin R.; Shapley, Alice E.; Kollmeier, Juna A.; Zheng, Zheng; Steidel, Charles C.; Hainline, Kevin N.

    2012-01-01

    We present new results on the Lyα emission-line kinematics of 18 z ~ 2-3 star-forming galaxies with multiple-peaked Lyα profiles. With our large spectroscopic database of UV-selected star-forming galaxies at these redshifts, we have determined that ~30% of such objects with detectable Lyα emission display multiple-peaked emission profiles. These profiles provide additional constraints on the escape of Lyα photons due to the rich velocity structure in the emergent line. Despite recent advances in modeling the escape of Lyα from star-forming galaxies at high redshifts, comparisons between models and data are often missing crucial observational information. Using Keck II NIRSPEC spectra of Hα (z ~ 2) and [O III]λ5007 (z ~ 3), we have measured accurate systemic redshifts, rest-frame optical nebular velocity dispersions, and emission-line fluxes for the objects in the sample. In addition, rest-frame UV luminosities and colors provide estimates of star formation rates and the degree of dust extinction. In concert with the profile sub-structure, these measurements provide critical constraints on the geometry and kinematics of interstellar gas in high-redshift galaxies. Accurate systemic redshifts allow us to translate the multiple-peaked Lyα profiles into velocity space, revealing that the majority (11/18) display double-peaked emission straddling the velocity-field zero point with stronger red-side emission. Interstellar absorption-line kinematics suggest the presence of large-scale outflows for the majority of objects in our sample, with an average measured interstellar absorption velocity offset of langΔv absrang = -230 km s-1. A comparison of the interstellar absorption kinematics for objects with multiple- and single-peaked Lyα profiles indicate that the multiple-peaked objects are characterized by significantly narrower absorption line widths. We compare our data with the predictions of simple models for outflowing and infalling gas distributions around