Science.gov

Sample records for zagros collision zone

  1. Potential field signatures along the Zagros collision zone in Iran

    NASA Astrophysics Data System (ADS)

    Abedi, Maysam; Fournier, Dominique; Devriese, Sarah G. R.; Oldenburg, Douglas W.

    2018-01-01

    The Zagros orogenic belt, known as an active fold-thrust belt, was formed in southwestern Iran due to the convergence of the Arabian and Eurasian plates. In this study, potential field data are inverted in 3D to image the variations of magnetic susceptibility and density contrast along the collision zone, resulting in better tectonic understanding of the studied region. Geophysical data measured by airborne magnetic and ground-based gravity systems are used to construct an integrated model that facilitates the interpretations of various tectonic zones across a 450-km line. This line intersects the main structural units from the SW portion of the Zagros belt. The constructed model reveals a contrast that indicates the transition between the two continental plates coinciding with the western boundaries of the Sanandaj-Sirjan Zone (SSZ) at the Main Zagros Thrust (MZT) fault. The subduction of the Arabian continental crust below the Iranian one is evident because of its lower susceptibility property and alternating sequence of high and low density regions. Higher susceptibility, magnetic remanence and density are the mainstays of the Urumieh-Dokhtar Magmatic Assemblage (UDMA) zone at the NE of the studied route, whereas lower values of these properties correspond to (1) the thin massive Tertiary-Neogene and Quaternary sediments of the central domain (CD) zone, and (2) the thick sedimentary and salt intrusion cover over the Zagros Fold-and-Thrust belt (ZFTB). Higher density of regions in the Arabian crust below the ZFTB implies that fault activities have caused significant vertical displacement of the basement. Finally, a simplified geological model is presented based upon the inversions of the geophysical data, in which the main geological units are divided along the studied route.

  2. Spatial evolution of Zagros collision zone in Kurdistan - NW Iran, constraints for Arabia-Eurasia oblique convergence

    NASA Astrophysics Data System (ADS)

    Sadeghi, S.; Yassaghi, A.

    2015-09-01

    Stratigraphy, detailed structural mapping and crustal scale cross section of the NW Zagros collision zone evolved during convergence of the Arabian and Eurasian plates were conducted to constrain the spatial evolution of the belt oblique convergence since Late Cretaceous. Zagros orogeny in NW Iran consists of the Sanandaj-Sirjan, Gaveh Rud and ophiolite zones as internal, and Bisotoun, Radiolarite and High Zagros zones as external parts. The Main Zagros Thrust is known as major structures of the Zagros suture zone. Two stages of deformation are recognized in the external parts of Zagros. In the early stage, presence of dextrally deformed domains beside the reversely deformed domains in the Radiolarite zone as well as dextral-reverse faults in both Bisotoun and Radiolarite zones demonstrates partitioning of the dextral transpression. In the late stage, southeastward propagation of the Zagros orogeny towards its foreland resulted in synchronous development of orogen-parallel strike-slip and pure thrust faults. It is proposed that the first stage related to the late Cretaceous oblique obduction, and the second stage is resulted from Cenozoic collision. Cenozoic orogen-parallel strike-slip component of Zagros oblique faulting is not confined to the Zagros suture zone (Main Recent) but also occurred in the more external part (Marekhil-Ravansar fault system). Thus, it is proposed that oblique convergence of Arabia-Eurasia plates occurred in Zagros collision zone since the Late Cretaceous.

  3. Spatial evolution of Zagros collision zone in Kurdistan, NW Iran: constraints on Arabia-Eurasia oblique convergence

    NASA Astrophysics Data System (ADS)

    Sadeghi, Shahriar; Yassaghi, Ali

    2016-04-01

    Stratigraphy, detailed structural mapping and a crustal-scale cross section across the NW Zagros collision zone provide constraints on the spatial evolution of oblique convergence of the Arabian and Eurasian plates since the Late Cretaceous. The Zagros collision zone in NW Iran consists of the internal Sanandaj-Sirjan, Gaveh Rud and Ophiolite zones and the external Bisotoun, Radiolarite and High Zagros zones. The Main Zagros Thrust is the major structure of the Zagros suture zone. Two stages of oblique deformation are recognized in the external part of the NW Zagros in Iran. In the early stage, coexisting dextral strike-slip and reverse dominated domains in the Radiolarite zone developed in response to deformation partitioning due to oblique convergence. Dextral-reverse faults in the Bisotoun zone are also compatible with oblique convergence. In the late stage, deformation partitioning occurred during southeastward propagation of the Zagros orogeny towards its foreland resulting in synchronous development of orogen-parallel strike-slip and thrust faults. It is proposed that the first stage was related to Late Cretaceous oblique obduction, while the second stage resulted from Cenozoic collision. The Cenozoic orogen-parallel strike-slip component of Zagros oblique convergence is not confined to the Zagros suture zone (Main Recent Fault) but also occurred in the external part (Marekhil-Ravansar fault system). Thus, it is proposed that oblique convergence of Arabian and Eurasian plates in Zagros collision zone initiated with oblique obduction in the Late Cretaceous followed by oblique collision in the late Tertiary, consistent with global plate reconstructions.

  4. MT data inversion and sensitivity analysis to image electrical structure of Zagros collision zone

    NASA Astrophysics Data System (ADS)

    Layegh Haghighi, T.; Montahaei, M.; Oskooi, B.

    2018-01-01

    Magnetotelluric (MT) data from 46 stations on a 470-km-long profile across the Zagros fold-thrust belt (ZFTB) that marks the Arabia-Eurasia collision zone were inverted to derive 2-D electrical resistivity structure between Busher on the coast of Persian Gulf and Posht-e-Badam, 160 km north east of Yazd. The model includes prominent anomalies in the upper and lower crust, beneath the brittle-ductile transition depth and mostly related to the fluid distribution and sedimentary layers beneath the profile. The conductivities and dimensions of the fault zone conductors (FZCs) and high conductivity zones (HCZs) as the major conductive anomalies in a fault zone conceptual model vary significantly below the different faults accommodated in this region. The enhanced conductivity below the site Z30 correlates well with the main Zagros thrust (MZT), located at the western boundary of Sanandaj-Sirjan zone (SSZ) and known as the transition between the two continents. The depth extent of the huge conductor beneath the south west of the profile, attributed to the thick sedimentary columns of the Arabian crust, cannot be resolved due to the smearing effect of the smoothness constraint employed in the regularized inversion procedure and the sensitivity of MT data to the conductance of the subsurface. We performed different tests to determine the range of 2-D models consistent with the data. Our approach was based on synthetic studies, comprising of hypothesis testing and the use of a priori information throughout the inversion procedure as well as forward modeling. We conclude that the minimum depth extent of the conductive layer beneath the southwest of the profile can be determined as approximately deeper than 15 km and also the screening effect of the conductive overburden is highly intense in this model and prevents the deep structures from being resolved properly.

  5. Crustal thickness variations in the Zagros continental collision zone (Iran) from joint inversion of receiver functions and surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Tatar, M.; Nasrabadi, A.

    2013-10-01

    Variations in crustal thickness in the Zagros determined by joint inversion of P wave receiver functions (RFs) and Rayleigh wave group and phase velocity dispersion. The time domain iterative deconvolution procedure was employed to compute RFs from teleseismic recordings at seven broadband stations of INSN network. Rayleigh wave phase velocity dispersion curves were estimated employing two-station method. Fundamental mode Rayleigh wave group velocities for each station is taken from a regional scale surface wave tomographic imaging. The main variations in crustal thickness that we observe are between stations located in the Zagros fold and thrust belt with those located in the Sanandaj-Sirjan zone (SSZ) and Urumieh-Dokhtar magmatic assemblage (UDMA). Our results indicate that the average crustal thickness beneath the Zagros Mountain Range varies from ˜46 km in Western and Central Zagros beneath SHGR and GHIR up to ˜50 km beneath BNDS located in easternmost of the Zagros. Toward NE, we observe an increase in Moho depth where it reaches ˜58 km beneath SNGE located in the SSZ. Average crustal thickness also varies beneath the UDMA from ˜50 km in western parts below ASAO to ˜58 in central parts below NASN. The observed variation along the SSZ and UDMA may be associated to ongoing slab steepening or break off in the NW Zagros, comparing under thrusting of the Arabian plate beneath Central Zagros. The results show that in Central Iran, the crustal thickness decrease again to ˜47 km below KRBR. There is not a significant crustal thickness difference along the Zagros fold and thrust belt. We found the same crystalline crust of ˜34 km thick beneath the different parts of the Zagros fold and thrust belt. The similarity of crustal structure suggests that the crust of the Zagros fold and thrust belt was uniform before subsidence and deposition of the sediments. Our results confirm that the shortening of the western and eastern parts of the Zagros basement is small and

  6. Structure and evolution of the northern Oman margin: gravity and seismic constraints over the Zagros-Makran-Oman collision zone

    NASA Astrophysics Data System (ADS)

    Ravaut, P.; Bayer, R.; Hassani, R.; Rousset, D.; Yahya'ey, A. Al

    1997-09-01

    The obduction process in Oman during Late Cretaceous time, and continental-to-oceanic subduction along the Zagros-Makran region during the Tertiary are consequences of the Arabian-Eurasian collision, resulting in construction of complex structures composed of the Oman ophiolite belt, the Zagros continental mountain belt and the Makran subduction zone with its associated accretionary wedge. In this paper, we jointly interpret Bouguer anomaly and available petroleum seismic profiles in terms of crustal structures. We show that the gravity anomaly in northern Oman is characterized by a high-amplitude negative-positive couple. The negative anomaly is coincident with Late Cretaceous (Fiqa) and Tertiary (Pabdeh) foreland basins and with the Zagros-Oman mountain belts, whereas the positive anomaly is correlated to the ophiolite massifs. The Bouguer anomaly map indicates the presence of a post-Late Cretaceous sedimentary basin, the Sohar basin, centred north of the Batinah plain. We interpret the negative/positive couple in terms of loading of the elastic Arabian lithosphere. We estimate the different Cretaceous-to-Recent loads, including topography, ophiolite nappes, sedimentary fill and the accretionary prism of the Makran trench. A new method, using Mindlin's elastic plate theory, is proposed to model the 2D deflection of the heterogeneous elastic Arabian plate, taking into account boundary conditions at the ends of the subducted plate. We show that remnant ophiolites are isolated from Tethyan oceanic lithosphere in the Gulf of Oman by a continental basement ridge, a NW prolongation of the Saih-Hatat window. Loading the northward-limited ophiolite blocks explains the deflection of the Fiqa foredeep basin. West of the Musandam Peninsula, the Tertiary Pabdeh foredeep is probably related to the emplacement of a 8-km-thick tectonic prism located on the Musandam Peninsula and in the Strait of Hormuz. Final 2D density models along profiles through the Oman mountain belt and

  7. Reactivation versus reworking of the active continental margin during the Zagros collision: Mahallat-Muteh-Laybid complexes, Sanandaj-Sirjan zone, Iran

    NASA Astrophysics Data System (ADS)

    Aflaki, Mahtab; Shabanian, Esmaeil; Davoodi, Zeinab; Mohajjel, Mohammad

    2017-06-01

    Reactivation of long-lived basement faults has significant influences on further deformation of collision zones. Three major inherited pre-collisional NW-, N- and NE-trending basement discontinuities have played important roles on the structural and tectono-sedimentary evolution of the Iranian micro-continent in the northeastern part of the Gondwana super-continent. Sanandaj-Sirjan zone (SSZ), known as the metamorphic belt of the Zagros orogeny, marks the SW margin of the Central Iran. SSZ is formed as a result of the Arabia-Eurasia collision and its general trend of deformation coincides with the NW structural trend of the collision. The NE-trending Mahallat, Muteh and Laybid complexes in the middle part of the NW-trending SSZ are the exception and have a trend almost normal to the NW-trending Zagros. A combined methodology of remote sensing, geometric and kinematics analyses complemented by field work was used to reconstruct the history of deformation in the Zagros hinterland since the earlier stages of collision to the present-day. Our results reveal the key role of the preexisting discontinuities of the Iranian basement in both the kinematics and structural pattern of the middle part of the SSZ. These basement faults have acted as main boundary conditions changing the collisional fabric perpendicular to its overall trend. Progressive deformation and the related changes during collision have caused drastic changes in the kinematics of the boundary faults. The establishment of dextral transtension in the SSZ has had secondary influences on the pattern of deformation by local clockwise rotation and localized dextral shear in the southern parts of the area of interest. This study highlights the significance of long-lived pre-existing structures in the deformation of collision zones. Such basement faults are capable to change both the pattern and kinematics of deformation of the adjacent areas involved in a continental collision.

  8. Variations in the kinematics of deformation along the Zagros inclined transpression zone, Iran: Implications for defining a curved inclined transpression zone

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil; Partabian, Abdolreza; Faghih, Ali

    2013-03-01

    The combination of inclined collision and plate boundary shape can control the nature of deformation and the sense of shear along a transpression zone. The present study investigated the effects of a boundary zone with curvilinear shape along a transpression zone on the kinematics of deformation. The kinematics of the Zagros transpression zone varies with the orientation of the zone boundary. Detailed structural and microstructural studies showed sinistral sense of shear on the southeastern part of the Zagros inclined transpression zone (Fars Arc), but dextral sense of shear on the northwestern part of the zone. It is inferred that the both senses of shear were developed coevally under a bulk general shear, regional-scale deformation along a curved inclined transpression miming the shape of the Fras Arc of the Zagros and the reentrant of the Bandar Abbas Syntaxis. The Zagros transpression zone formed by inclined continental collision between the Afro-Arabian continent and Iranian microcontinent.

  9. Analysis of the stress field and strain rate in Zagros-Makran transition zone

    NASA Astrophysics Data System (ADS)

    Ghorbani Rostam, Ghasem; Pakzad, Mehrdad; Mirzaei, Noorbakhsh; Sakhaei, Seyed Reza

    2018-01-01

    Transition boundary between Zagros continental collision and Makran oceanic-continental subduction can be specified by two wide limits: (a) Oman Line is the seismicity boundary with a sizeable reduction in seismicity rate from Zagros in the west to Makran in the east; and (b) the Zendan-Minab-Palami (ZMP) fault system is believed to be a prominent tectonic boundary. The purpose of this paper is to analyze the stress field in the Zagros-Makran transition zone by the iterative joint inversion method developed by Vavrycuk (Geophysical Journal International 199:69-77, 2014). The results suggest a rather uniform pattern of the stress field around these two boundaries. We compare the results with the strain rates obtained from the Global Positioning System (GPS) network stations. In most cases, the velocity vectors show a relatively good agreement with the stress field except for the Bandar Abbas (BABS) station which displays a relatively large deviation between the stress field and the strain vector. This deviation probably reflects a specific location of the BABS station being in the transition zone between Zagros continental collision and Makran subduction zones.

  10. Underplating along the northern portion of the Zagros suture zone, Iran

    NASA Astrophysics Data System (ADS)

    Motaghi, K.; Shabanian, E.; Kalvandi, F.

    2017-07-01

    A 2-D absolute shear wave velocity model has been resolved beneath a seismic profile across the northeastern margin of the Arabian Plate-Central Iran by simultaneously inverting data from P receiver functions and fundamental mode Rayleigh wave phase velocity. The data were gathered by a linear seismic array crossing the Zagros fold and thrust belt, Urmia-Dokhtar magmatic arc and Central Iran block assemblage as three major structural components of the Arabia-Eurasia collision. Our model shows a low-velocity tongue protruding from upper to lower crust which, north of the Zagros suture, indicates the signature of an intracontinent low-strength shear zone between the underthrusting and overriding continents. The velocity model confirms the presence of a significant crustal root as well as a thick high-velocity lithosphere in footwall of the suture, continuing northwards beneath the overriding continent for at least 200 km. These features are interpreted as underthrusting of Arabia beneath Central Iran. Time to depth migration of P receiver functions reveals an intracrustal flat interface at ∼17 km depth south of the suture; we interpret it as a significant decoupling within the upper crust. All these crustal scale structural features coherently explain different styles and kinematics of deformation in northern Zagros (Lorestan zone) with respect to its southern part (Fars zone).

  11. Revised version of the Cenozoic Collision along the Zagros Orogen, Insights from Cr-spinel and Sandstone Modal Analyses.

    PubMed

    Gholami Zadeh, Parisa; Adabi, Mohammad Hossein; Hisada, Ken-Ichiro; Hosseini-Barzi, Mahboubeh; Sadeghi, Abbas; Ghassemi, Mohammad Reza

    2017-09-07

    Geoscientists have always considered the Neyriz region, located along the Zagros Suture Zone, an important area of interest because of the outcrops of Neotethys ophiolitic rocks. We carried out a modal analysis of the Cenozoic sandstones and geochemistry of the detrital Cr-spinels at Neyriz region in order to determine their provenance and tectonic evolution in the proximal part of Zagros Basin. Our data shows a clear change in provenance from the Late Cretaceous onwards. As from the Late Cretaceous to Eocene, lithic grains are mostly chert and serpentinite; and higher Cr# values of the detrital Cr-spinel compositions indicate that they originate from the fore-arc peridotites and deposited in an accretionary prism setting during this period. From the Late Oligocene to the Miocene periods, volcaniclastic and carbonate lithic grains show an increasing trend, and in the Miocene, metasedimentary lithic grains appear in the sediments. Ophiolite obduction caused a narrow trough sub-basin to be formed parallel to the general trend of the Zagros Orogeny between the Arabian and Iranian plates in Oligocene. From the Miocene onwards, the axial metamorphic complex belt was uplifted in the upper plate. Therefore, the collision along the Zagros Suture Zone must have occurred in the Late Oligocene.

  12. Mechanical versus kinematical shortening reconstructions of the Zagros High Folded Zone (Kurdistan region of Iraq)

    NASA Astrophysics Data System (ADS)

    Frehner, Marcel; Reif, Daniel; Grasemann, Bernhard

    2012-06-01

    This paper compares kinematical and mechanical techniques for the palinspastic reconstruction of folded cross sections in collision orogens. The studied area and the reconstructed NE-SW trending, 55.5 km long cross section is located in the High Folded Zone of the Zagros fold-and-thrust belt in the Kurdistan region of Iraq. The present-day geometry of the cross section has been constructed from field as well as remote sensing data. In a first step, the structures and the stratigraphy are simplified and summarized in eight units trying to identify the main geometric and mechanical parameters. In a second step, the shortening is kinematically estimated using the dip domain method to 11%-15%. Then the same cross section is used in a numerical finite element model to perform dynamical unfolding simulations taking various rheological parameters into account. The main factor allowing for an efficient dynamic unfolding is the presence of interfacial slip conditions between the mechanically strong units. Other factors, such as Newtonian versus power law viscous rheology or the presence of a basement, affect the numerical simulations much less strongly. If interfacial slip is accounted for, fold amplitudes are reduced efficiently during the dynamical unfolding simulations, while welded layer interfaces lead to unrealistic shortening estimates. It is suggested that interfacial slip and decoupling of the deformation along detachment horizons is an important mechanical parameter that controlled the folding processes in the Zagros High Folded Zone.

  13. Mechanical versus kinematical shortening reconstructions of the Zagros High Folded Zone (Kurdistan Region of Iraq)

    NASA Astrophysics Data System (ADS)

    Frehner, M.; Reif, D.; Grasemann, B.

    2012-04-01

    Our study compares kinematical and mechanical techniques for the palinspastic reconstruction of folded cross-sections in collision orogens. The studied area and the reconstructed NE-SW-trending, 55.5 km long cross-section is located in the High Folded Zone of the Zagros fold-and-thrust belt in the Kurdistan Region of Iraq. The present-day geometry of the cross-section has been constructed from field, as well as remote sensing data. In a first step, the structures and the stratigraphy are simplified and summarized in eight units trying to identify the main geometric and mechanical parameters. In a second step, the shortening is kinematically estimated using the dip-domain method to 11%-15%. Then the same cross-section is used in a numerical finite-element model to perform dynamical unfolding simulations taking various rheological parameters into account. The main factor allowing for an efficient dynamic unfolding is the presence of interfacial slip conditions between the mechanically strong units. Other factors, such as Newtonian vs. power-law viscous rheology or the presence of a basement affect the numerical simulations much less strongly. If interfacial slip is accounted for, fold amplitudes are reduced efficiently during the dynamical unfolding simulations, while welded layer interfaces lead to unrealistic shortening estimates. It is suggested that interfacial slip and decoupling of the deformation along detachment horizons is an important mechanical parameter that controlled the folding processes in the Zagros High Folded Zone.

  14. Microbiostratigraphy of the Upper Paleocene to Middle Eocene Jahrum Formation in the Folded Zagros Zone, SW Iran

    NASA Astrophysics Data System (ADS)

    Izadighalati, S.; Ahmadi, V.

    2017-12-01

    The Jahrum Formation (Upper Paleocene to Middle Eocene) is composed of carbonate and dolomitic carbonate rocks in the Zagros Basin. The Zagros is located at the boundary between the Arabian and Eurasian lithosphere plates and represent the orogenic response to a collision between Eurasia and advancing Arabia during the Cenozoic. The study area is located in the northern part of Kuh-E-Tudej, 175 km southeast of Shiraz in the Folded Zagros Zone. The Jahrum Formation at Kuh-E-Tudej, with a thickness of 190 m, consists of medium to massive bedded limestone. The following foraminiferal index species are identified in the studied section: Fallotella alavensis, Kathina sp., Miscellanea sp., Lockhartia sp., Orbitolites shirazeinsis, Nummulites sp., Opertorbitolites sp., Dictyoconus cf. egyptiensis, Orbitolites cf. complanatus, Dictyoconus sp., Coskinolina sp., Somalina stefaninii, Discocyclina sp., Praerhapydionina sp., Coskinolina cf. liburnica, Nummulites cf. globulus, Nummulites cf. aturicus, and Alveolina sp. The age of the studied sediments ranges from Upper Paleocene to Middle Eocene. The microbiostratigraphic studies revealed four biozones based on the foraminifers identified in the studied section.

  15. Imaging Subsurface Structure of Central Zagros Zone/Iran Using Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Vahidravesh, Shaghayegh; Pakzad, Mehrdad, ,, Dr.; Hatami, Mohammad Reza, ,, Dr.

    2017-04-01

    The Central Zagros zone, of west Iran & east Iraq, is surrounded by many active faults (including Main Zagros Reversed Fault, Main Recent Fault, High Zagros Fault, Zagros Fold, & Thrust Belt). Recent studies show that cross-correlation of a long-term ambient seismic noise data recorded in station-pair, includes important information regarding empirical Green's functions (EGFs) between stations. Hence, ambient seismic noise carries valuable information of the wave propagation path (which can be extracted). The 2D model of surface waves (Rayleigh & Love) velocities for the studied area is obtained by seismic ambient noise tomography (ANT) method. Throughout this research, we use continuous records of all three vertical, radial, and tangential components (obtained by rotation) recorded by IRSC (Iranian Seismological Center) and IIEES (International Institute of Earthquake Engineering) networks for this area of interest. The IRSC & IIEES networks are equipped by SS-1 kinematics and Guralp CMG-3T sensors respectively. Data of 20 stations were used for 12 months from 2014/Nov. to 2015/Nov. The performed data processing is similar to the one, put into words in detail by Bensen et al. (2007) including the processed daily base data. Mean, trend, and instrument response were removed and the data were decimated to 5 sps (sample per second) to reduce the amount of storage space and computational time required. We then applied merge to handle data gaps. One-bit time-domain normalization was also applied to suppress the influence of instrument irregularities and earthquake signals followed by spectral (frequency-domain) normalization between 0.05-0.2 Hz (period 5-20 sec). After cross-correlation (processing step), we perform rms stacking (new approach of stacking) to stack many cross-correlation functions based on the highest energy in a time interval which we accordingly anticipate to receive Rayleigh & Love waves fundamental modes. To evaluate quality of the stacking process

  16. Retrodeforming the Arabia-Eurasia collision zone : Age of collision and magnitude of continental subduction

    NASA Astrophysics Data System (ADS)

    McQuarrie, N.; van Hinsbergen, D. J. J.

    2012-04-01

    When did continents collide, and how is convergence partitioned after collision are first order questions that seem to defy consensus along the Alpine-Himalyan orogen. Estimates on the age of collision for Arabia and Eurasia range from late Cretaceous to Pliocene, based on a wide variety of presumed geologic responses. Both lower Miocene synorgenic strata with growth structures adjacent to the main Zagros fault and upper Oligocene to lower Miocene overlap strata over post-collisional thrusts are derived from Eurasia and require that collision was underway at least by ~25-24 Ma. However, upper plate deformation, exhumation and sedimentation are used to argue for an older, 35 Ma collision age. Africa-North America-Eurasia plate circuit rotations, combined with Red Sea rotations provides precise estimates of the relative positions between the northern Arabian margin and the southern Eurasia margin. Plate circuits indicate, from NW to SE along the collision zone 490-650 km of post-25 Ma Arabia-Eurasia convergence and 810-1070 km since 35 Ma. To assess the consequences of these collision ages for the amount of Arabian continental subduction, we compile all documented shortening within the orogen. The Zagros fold-thrust belt consists of thrusted upper crust that was offscraped from subducted Arabian continental lithosphere. Balanced cross-sections give 105-180 km of Zagros shortening (including estimates from the Zagros proper, 45-90 km, and the Zagros "crush" zone, 60-90 km). Shortening within Eurasia is estimated to be 53-75 km through the Kopet Dagh and Alborz Mountains, plus 38 km across Central Iran. These estimates suggest that the orogen has shortened 200 to 300 km since the early Miocene. Both a 25 and a 35 Ma collision estimate thus requires that a considerable portion of the Arabian plate subducted without recognized accretion of its upper crust. To balance plate circuits and documented shortening requires whole-sale subduction of ~500-800 km of continental

  17. Geochemistry and geodynamics of the Mawat mafic complex in the Zagros Suture zone, northeast Iraq

    NASA Astrophysics Data System (ADS)

    Azizi, Hossein; Hadi, Ayten; Asahara, Yoshihiro; Mohammad, Youssef Osman

    2013-12-01

    The Iraqi Zagros Orogenic Belt includes two separate ophiolite belts, which extend along a northwest-southeast trend near the Iranian border. The outer belt shows ophiolite sequences and originated in the oceanic ridge or supra-subduction zone. The inner belt includes the Mawat complex, which is parallel to the outer belt and is separated by the Biston Avoraman block. The Mawat complex with zoning structures includes sedimentary rocks with mafic interbedded lava and tuff, and thick mafic and ultramafic rocks. This complex does not show a typical ophiolite sequences such as those in Penjween and Bulfat. The Mawat complex shows evidence of dynamic deformation during the Late Cretaceous. Geochemical data suggest that basic rocks have high MgO and are significantly depleted in LREE relative to HREE. In addition they show positive ɛ Nd values (+5 to+8) and low 87Sr/86Sr ratios. The occurrence of some OIB type rocks, high Mg basaltic rocks and some intermediate compositions between these two indicate the evolution of the Mawat complex from primary and depleted source mantle. The absence of a typical ophiolite sequence and the presence of good compatibility of the source magma with magma extracted from the mantle plume suggests that a mantle plume from the D″ layer is more consistent as the source of this complex than the oceanic ridge or supra-subduction zone settings. Based on our proposed model the Mawat basin represents an extensional basin formed during the Late Paleozoic to younger along the Arabian passive margin oriented parallel to the Neo-Tethys oceanic ridge or spreading center. The Mawat extensional basin formed without creation of new oceanic basement. During the extension, huge volumes of mafic lava were intruded into this basin. This basin was squeezed between the Arabian Plate and Biston Avoraman block during the Late Cretaceous.

  18. Seamount subduction at seismogenic depths: structural and metamorphic evidence from the Zagros suture zone

    NASA Astrophysics Data System (ADS)

    Bonnet, G.; Agard, P.; Angiboust, S.; Fournier, M.; Omrani, J.

    2017-12-01

    Large-scale seafloor topographic features, such as seamounts, are for the most part subducted with the downgoing oceanic plate. They are expected to critically impact the seismogenic and mechanic behavior of subduction zones, but their exact role is strongly debated (i.e., as to whether they represent barriers to propagation or asperities promoting nucleation). Rare natural examples of metamorphosed seamounts, which got sliced off the slab along the plate interface and escaped recycling into the mantle, are therefore precious witnesses to document processes operating at depths of 0-30 km. We herein report the existence of a large-scale oceanic topographic structure sandwiched in the Zagros suture zone (Siah Kuh - SK - unit), most probably a former seamount, along with other blueschist units (Angiboust et al., EPSL 2016). The main criteria for identifying this seamount are its: (1) shape: the SK unit is a 1.5-2 km thick, rounded-shaped body with a 15-20 km diameter, (2) lithologies: it is made mainly of a regular succession of massive basaltic flows, commonly as pillow basalts, minor ophiolite-type gabbros and serpentinite, together with subordinate more differenciated volcanic and plutonic rocks. (3) sedimentary cover: basalts are overlain by shallowly deposited reef limestone and deepening-up sediments with the occurrence of cherts and pelagic limestones (which points to possible subsidence). Basalts have been analyzed for trace elements and have usually a N-MORB to OIB signature, which might be explained by its potential origin as a mid-oceanic ridge seamount. HP-LT minerals (lawsonite, aragonite, blue amphiboles) found across the whole structure, particularly in zones of localized compressive deformation, indicate that this seamount was shallowly subducted at 20 km. This deformation, interpreted to be syn-subduction, is assisted by a décollement rooting in serpentinite and/or oceanic metasediments and is associated with rare cataclase in magmatic rocks. We

  19. Provenance of the Walash-Naopurdan back-arc-arc clastic sequences in the Iraqi Zagros Suture Zone

    NASA Astrophysics Data System (ADS)

    Ali, Sarmad A.; Sleabi, Rajaa S.; Talabani, Mohammad J. A.; Jones, Brian G.

    2017-01-01

    Marine clastic rocks occurring in the Walash and Naopurdan Groups in the Hasanbag and Qalander areas, Kurdistan region, Iraqi Zagros Suture Zone, are lithic arenites with high proportions of volcanic rock fragments. Geochemical classification of the Eocene Walash and Oligocene Naopurdan clastic rocks indicates that they were mainly derived from associated sub-alkaline basalt and andesitic basalt in back-arc and island arc tectonic settings. Major and trace element geochemical data reveal that the Naopurdan samples are chemically less mature than the Walash samples and both were subjected to moderate weathering. The seaway in the southern Neotethys Ocean was shallow during both Eocene and Oligocene permitting mixing of sediment from the volcanic arcs with sediment derived from the Arabian continental margin. The Walash and Naopurdan clastic rocks enhance an earlier tectonic model of the Zagros Suture Zone with their deposition occurring during the Eocene Walash calc-alkaline back-arc magmatism and Early Oligocene Naopurdan island arc magmatism in the final stages of intra-oceanic subduction before the Miocene closure and obduction of the Neotethys basin.

  20. Numerical modelling of the role of salt in continental collision: An application to the southeast Zagros fold-and-thrust belt

    NASA Astrophysics Data System (ADS)

    Ghazian, Reza Khabbaz; Buiter, Susanne J. H.

    2014-09-01

    The Zagros fold-and-thrust belt formed in the collision of Arabia with Central Iran. Its sedimentary sequence is characterised by the presence of several weak layers that may control the style of folding and thrusting. We use 2-D thermo-mechanical models to investigate the role of salt in the southeast Zagros fold-and-thrust belt. We constrain the crustal and lithospheric thickness, sedimentary stratification, convergence velocity, and thermal structure of the models from available geological and geophysical data. We find that the thick basal layer of Hormuz salt in models on the scale of the upper-mantle decouples the overlying sediments from the basement and localises deformation in the sediments by trench-verging shear bands. In the collision stage of the models, basement dips with + 1° towards the trench. Including the basal Hormuz salt improves the fit of predicted topography to observed topography. We use the kinematic results and thermal structure of this large-scale model as the initial conditions of a series of upper-crustal-scale models. These models aim to investigate the effects of basal and intervening weak layers, salt strength, basal dip, and lateral salt distribution on deformation style of the simply folded Zagros. Our results show that in addition to the Hormuz salt at the base of the sedimentary cover, at least one intervening weak layer is required to initiate fold-dominated deformation in the southeast Zagros. We find that an upper-crustal-scale model, with a basal and three internal weak layers with viscosities between 5 × 1018 and 1019 Pa s, and a basement that dips + 1° towards the trench, best reproduces present-day topography and the regular folding of the sedimentary layers of the simply folded Zagros.

  1. Discussion on ``Dextral transpression in Late Cretaceous continental collision, Sanandaj Sirjan Zone, western Iran'' [Journal of Structural Geology, 22(8) (2000) 1125 1139

    NASA Astrophysics Data System (ADS)

    Numan, Nazar M. S.

    2001-12-01

    The NW-SE trending Alpine Zagros Thrust Belt passes from southwest Iran into northeastern Iraq. Mohajjel and Fergusson contend in their work in Iran on the Sanandaj-Sirjan Zone (with a consistent Zagros trend) that collision of the Afro-Arabian continent and the Iranian microcontinent took place in the Late Cretaceous. It seems that tectonostratigraphic evidence from the neighbouring Iraqi territories, namely the Zagros Thrust Belt in the northern part, the Foreland Belt and the Quasiplatform of the north and the Platform in the western and southern deserts (Fig. 1), chronicles the subductional history in this part of the world to a fair degree of accuracy. It rather provides for an Eocene age of the continental collision between Arabia and the Iranian microcontinent.

  2. Processes in continental collision zones: Preface

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Fei; Zhang, Lifei; McClelland, William C.; Cuthbert, Simon

    2012-04-01

    Formation and exhumation of high-pressure (HP) to ultrahigh-pressure (UHP) metamorphic rocks in continental subduction zones are the two fundamental geodynamic aspects of collisional orogensis. This volume is based on the Session 08c titled "Geochemical processes in continental collision zones" at Goldschmidt 2010 in Knoxville, USA. It focuses on micro- to macro-scale processes that are temporally and spatially linked to different depths of crustal subduction/exhumation and associated mineralogical changes. They are a key to understanding a wide spectrum of phenomena, involving HP/UHP metamorphism and syn-/post-collisional magmatism. Papers in this volume report progresses in petrological, geochronological and geochemical studies of UHP metamorphic rocks and their derivatives in China, with tectonic settings varying from arc-continent collision to continent-continent collision. Microbeam in-situ analyses of metamorphic and magmatic minerals are successfully utilized to solve various problems in the study of continental deep subduction and UHP metamorphism. In addition to their geochronological applications to dating of HP to UHP metamorphic events during continental collision, microbeam techniques have also served as an efficient means to recognize different generations of mineral growth during continental subduction-zone metamorphism. Furthermore, metamorphic dehydration and partial melting of UHP metamorphic rocks during subduction and exhumation are highlighted with respect to their effects on fluid action and element mobilization. These have provided new insights into chemical geodynamics in continental subduction zones.

  3. Diverse continental subduction scenarios along the Arabia-Eurasia collision zone

    NASA Astrophysics Data System (ADS)

    Kaban, M. K.; Petrunin, A.; El Khrepy, S.; Al-Arifi, N. S.

    2017-12-01

    The Arabia-Eurasia continental collision zone is one of the largest and most active on the Earth. It has been discussed already long ago that the convergence of these plates implies subduction of the lithosphere. However, scenarios of this process are still debatable. Even direction of the present-day continental subduction is not clear. Previously, principal conclusions about structure of the upper mantle in this region were chiefly based on seismic tomography results. However, seismic velocities not always provide a complete image of the deep interiors since they are chiefly affected by temperature variations and less - by composition. Here we construct a 3D model of the mantle down to 700 km, which is based on a joint inversion of seismic tomography, residual (crust free) gravity field and residual topography (Kaban et al., 2016). Several cross-sections across the collision zone demonstrate principal variations of the continental subduction scenarios from northwest to southeast. In the southeastern part we observe subduction of the Eurasian plate under the West Great Caucasus, Pontic mountains and further under the northwestern part of the Arabian plate. However, the situation is changed when we move to the East Great Caucasus and Zagros, where clear double-sided subduction is observed. The Arabian plate is subducting under the Zagros, while the Eurasian plate - under the Caucasus merging in the transition zone. This situation persists further to the southeast, where we observe the subduction of the South Caspian block under Alborz accompanied by the counteracting penetration of the Arabian plate from the south. More to the southeast, the subduction of the Arabian plate is stagnated, while the subduction of the Eurasian plate can be traced down to the bottom of the transition zone under the northeastern flank of the Arabian plate. In the southern rim of the collision zone under Makran, we don't find any evidence for the present day subduction; remnants of the

  4. Revealing the significance and polyphase tectonothermal evolution of a major metamorphic unit in an orogen: the central Sanandaj-Sirjan zone, Zagros Mts., Iran

    NASA Astrophysics Data System (ADS)

    Shakerardakani, Farzaneh; Neubauer, Franz; Genser, Johann; Liu, Xiaoming; Dong, Yunpeng; Monfaredi, Behzad; Benroider, Manfred; Finger, Fritz; Waitzinger, Michael

    2016-04-01

    The Dorud-Azna region in the central Sanandaj-Sirjan metamorphic belt plays a key role in promoting the tectonic evolution of Zagros orogen, within the frame of the Arabia-Eurasia collision zone. From footwall to hangingwall, structural data combined with the U-Pb zircon and extensive 40Ar-39Ar mineral dating survey demonstrate three metamorphosed tectonic units, which include: (1) The Triassic June complex is metamorphosed within greenschist facies conditions, overlain by (2) the amphibolite-grade metamorphic Galeh-Doz orthogneiss, which is intruded by mafic dykes, and (3) the Amphibolite-Metagabbro unit. To the east, these units were intruded by the Jurassic Darijune gabbro. We present U-Pb detrital zircon ages of a garnet-micaschist from the Amphibolite-Metagabbro unit, which yield six distinctive age groups, including a previously unrecognized Late Grenvillian age population at ~0.93 to 0.99 Ga. We speculate that this unique Late Grenvillian group coupled with biogeographic evidence suggests either relationship with the South China craton or to the "Gondwana superfan". The laser ablation ICP-MS U-Pb zircon ages of 608 ± 18 Ma and 588 ± 41 Ma of the granitic Galeh-Doz orthogneiss reveals a Panafrican basement same as known from the Yazd block of Central Iran. Geochemistry and Sr-Nd isotopes of alkaline and subalkaline mafic dykes within the Galeh-Doz orthogneiss show OIB-type to MORB-type and indicate involvement of both depleted and enriched sources for its genesis. The new 40Ar-39Ar amphibole age of ca. 322.2 ± 3.9 Ma from the alkaline mafic dyke implies Carboniferous cooling age after intrusion. The metagabbros (including the Dare-Hedavand metagabbro with a 206Pb/238U age of 314.6 ± 3.7 Ma) and amphibolites with E-MORB geochemical signature of the Amphibolite-Metagabbro unit represent an Upper Paleozoic rift. The geochemical composition of the Triassic greenschist facies metamorphosed June complex, implying formation in a same, but younger tectonic

  5. Petrography, geochemistry, and U-Pb geochronology of pegmatites and aplites associated with the Alvand intrusive complex in the Hamedan region, Sanandaj-Sirjan zone, Zagros orogen (Iran)

    NASA Astrophysics Data System (ADS)

    Sepahi, Ali Asghar; Salami, Sedigheh; Lentz, David; McFarlane, Christopher; Maanijou, Mohammad

    2018-04-01

    The Alvand intrusive complex in the Hamedan area in Iran is in the Sanandaj-Sirjan zone of the Zagros orogen. It consists of a wide range of plutonic rocks, mainly gabbro, diorite, granodiorite, granite, and leucogranites that were intruded by aplitic and pegmatitic dykes. At least three successive magmatic episodes generated an older gabbro-diorite-tonalite assemblage, followed by a voluminous granodiorite-granite association, which was then followed by minor leucocratic granitoids. Aplitic and pegmatitic dykes and bodies have truncated both plutonic rocks of the Alvand intrusive complex and its metamorphic aureole. Chemically they belong to peraluminous LCT (Li-, Cs-, and Ta-bearing) family of pegmatites. Mineralogically, they resemble Muscovite (MS) and Muscovite Rare Element (MSREL) classes of pegmatites. High amounts of some elements, such as Sn (up to 10,000 ppm), Rb (up to 936 ppm), Ba (up to 706 ppm), and LREE (up to 404 ppm) indicate the highly fractionated nature of some of these aplites and pegmatites. U-Pb dating of monazite, zircon, and allanite by LA-ICPMS indicate the following ages: monazite-bearing aplites of Heydareh-e-Poshteshahr and Barfejin areas, southwest of Hamedan, give an age range of 162-172 Ma; zircon in Heydareh-e-Poshteshar gives an average age of 165 Ma and for allanite-bearing pegmatites of Artiman area, north of Tuyserkan, an age of 154.1 ± 3.7 Ma was determined. These overlap with previously reported ages (ca. 167-153 Ma) for the plutonic rocks of the Alvand complex. Therefore, these data reveal that the Jurassic was a period of magmatism in the Hamedan region and adjacent areas in the Sanandaj-Sirjan zone, which was situated at the southern edge of the central Iranian micro-plate (southern Eurasian plate) at this time. Our results also suggest that advective heating in a continental arc setting has caused melting of fertile supracrustal lithologies, such as meta-pelites. These partial melts were then emplaced at much higher

  6. The intra-oceanic Cretaceous (~ 108 Ma) Kata-Rash arc fragment in the Kurdistan segment of Iraqi Zagros suture zone: Implications for Neotethys evolution and closure

    NASA Astrophysics Data System (ADS)

    Ali, Sarmad A.; Ismail, Sabah A.; Nutman, Allen P.; Bennett, Vickie C.; Jones, Brian G.; Buckman, Solomon

    2016-09-01

    The Kata-Rash arc fragment is an allochthonous thrust-bound body situated near Penjween, 100 km northeast of Sulymannia city, Kurdistan Region, within the Iraqi portion of the Zagros suture zone. It forms part of the suprasubduction zone 'Upper Allochthon' terranes (designated as the Gimo-Qandil Group), which is dominated by calc-alkaline andesite and basaltic-andesite, rhyodacite to rhyolite, crosscut by granitic, granodioritic, and dioritic dykes. Previously, rocks of the Kata-Rash arc fragment were interpreted as a part of the Eocene Walash volcanic group. However, SHRIMP zircon U-Pb dates on them of 108.1 ± 2.9 Ma (Harbar volcanic rocks) and 107.7 ± 1.9 Ma (Aulan intrusion) indicate an Albian-Cenomanian age, which is interpreted as the time of igneous crystallisation. The Aulan intrusion zircons have initial εHf values of + 8.6 ± 0.2. On a Nb/Yb-Th/Yb diagram, all Kata-Rash samples fall within the compositional field of arc-related rocks, i.e. above the mid-ocean-ridge basalt (MORB)-ocean island basalt (OIB) mantle array. Primitive-mantle-normalised trace-element patterns for the Kata-Rash samples show enrichment in the large ion lithophile elements and depletion in the high-field-strength elements supporting their subduction-related character. Low Ba/La coupled with low La/Yb and Hf/Hf* < 1 for the Aulan sample with initial εHf of + 8.6 ± 0.2 is interpreted as the magma dominated by contributions from fluid fluxing of the mantle wedge and lesser contributions of low temperature melt from subducted slab sediment, in an oceanic setting. This mechanism can explain the sub-DM initial εHf value, without the need to invoke melting of significantly older (continental) crust in an Andean setting. We interpret the Kata-Rash igneous rocks as a fragment of the Late Cretaceous suprasubduction zone system (named here the Kata-Rash arc) that most likely developed within the Neotethys Ocean rather than at a continental margin. Subsequently during the latest Cretaceous

  7. An improved evaluation of the seismic/geodetic deformation-rate ratio for the Zagros Fold-and-Thrust collisional belt

    NASA Astrophysics Data System (ADS)

    Palano, Mimmo; Imprescia, Paola; Agnon, Amotz; Gresta, Stefano

    2018-04-01

    We present an improved picture of the ongoing crustal deformation field for the Zagros Fold-and-Thrust Belt continental collision zone by using an extensive combination of both novel and published GPS observations. The main results define the significant amount of oblique Arabia-Eurasia convergence currently being absorbed within the Zagros: right-lateral shear along the NW trending Main Recent fault in NW Zagros and accommodated between fold-and-thrust structures and NS right-lateral strike-slip faults on Southern Zagros. In addition, taking into account the 1909-2016 instrumental seismic catalogue, we provide a statistical evaluation of the seismic/geodetic deformation-rate ratio for the area. On Northern Zagros and on the Turkish-Iranian Plateau, a moderate to large fraction (˜49 and >60 per cent, respectively) of the crustal deformation occurs seismically. On the Sanandaj-Sirjan zone, the seismic/geodetic deformation-rate ratio suggests that a small to moderate fraction (<40 per cent) of crustal deformation occurs seismically; locally, the occurrence of large historic earthquakes (M ≥ 6) coupled with the high geodetic deformation, could indicate overdue M ≥ 6 earthquakes. On Southern Zagros, aseismic strain dominates crustal deformation (the ratio ranges in the 15-33 per cent interval). Such aseismic deformation is probably related to the presence of the weak evaporitic Hormuz Formation which allows the occurrence of large aseismic motion on both subhorizontal faults and surfaces of décollement. These results, framed into the seismotectonic framework of the investigated region, confirm that the fold-and-thrust-dominated deformation is driven by buoyancy forces; by contrast, the shear-dominated deformation is primary driven by plate stresses.

  8. Right-lateral shear across Iran and kinematic change in the Arabia-Eurasia collision zone

    NASA Astrophysics Data System (ADS)

    Allen, Mark B.; Kheirkhah, Monireh; Emami, Mohammad H.; Jones, Stuart J.

    2011-02-01

    New offset determinations for right-lateral strike-slip faults in Iran revise the kinematics of the Arabia-Eurasia collision, by indicating along-strike lengthening of the collision zone before a change to the present kinematic regime at ˜5 Ma. A series of right-lateral strike-slip faults is present across the Turkish-Iranian plateau between 48°E and 57°E. Fault strikes vary between NW-SE and NNW-SSE. Several of the faults are seismically active and/or have geomorphic evidence for Holocene slip. None of the faults affects the GPS-derived regional velocity field, indicating active slip rates are ≤2 mm yr-1. We estimate total offsets for these faults from displaced geological and geomorphic markers, based on observations from satellite imagery, digital topography, geology maps and our own fieldwork observations, and combine these results with published estimates for fault displacement. Total right-lateral offset of the Dehu, Anar, Deh Shir, Kashan, Ab-Shirin-Shurab, Kousht Nousrat, Qom, Bid Hand, Indes, Soltanieh and Takab faults is ˜250 km. Other faults (North Zanjan, Saveh, Jorjafk, Rafsanjan, Kuh Banan and Behabad) have unknown or highly uncertain amounts of slip. Collectively, these faults are inferred to have accommodated part of the Arabia-Eurasia convergence. Three roles are possible, which are not mutually exclusive: (1) shortening via anticlockwise, vertical axis rotations; (2) northward movement of Iranian crust with respect to stable Afghanistan to the east; (3) combination with coeval NW-SE thrusts in the Turkish-Iranian plateau, to produce north-south plate convergence (`strain partitioning'). This strike-slip faulting across Iran requires along-strike lengthening of the collision zone. This was possible until the Pliocene (≤ 5 Ma), when the Afghan crust collided with the western margin of the Indian plate, thereby sealing off a free face at the eastern side of the Arabia-Eurasia collision zone. Continuing Arabia-Eurasia plate convergence had to

  9. Growth of the Zagros Fold-Thrust Belt and Foreland Basin, Northern Iraq, Kurdistan

    NASA Astrophysics Data System (ADS)

    Koshnaw, Renas; Horton, Brian; Stockli, Daniel; Barber, Douglas; Ghalib, Hafidh; Dara, Rebwar

    2016-04-01

    The Zagros orogenic belt in the Middle Eastern segment of the Alpine-Himalayan system is among the youngest seismically active continental collision zones on Earth. However, due to diachronous and incremental collision, the precise ages and kinematics of shortening and deposition remain poorly understood. The Kurdistan region of the Zagros fold-thrust belt and foreland basin contains well-preserved Neogene wedge-top and foredeep deposits that include clastic nonmarine fill of the Upper Fars, Lower Bakhtiari, and Upper Bakhtiari Formations. These deposits record significant information about orogenic growth, fold-thrust dynamics, and advance of the deformation front. Thermochronologic and geochronologic data from thrust sheets and stratigraphic archives combined with local earthquake data provide a unique opportunity to address the linkages between surface and subsurface geologic relationships. This research seeks to constrain the timing and geometry of exhumation and deformation by addressing two key questions: (1) Did the northwestern Zagros fold-thrust belt evolve from initial thin-skinned shortening to later thick-skinned deformation or vice-versa? (2) Did the fold-thrust belt advance steadily under critical/supercritical wedge conditions involving in-sequence thrusting or propagate intermittently under subcritical conditions with out-of-sequence deformation? From north to south, apatite (U-Th)/He ages from the Main Zagros Thrust, the Mountain Front Flexure (MFF), and additional frontal thrusts suggest rapid exhumation by ~10 Ma, ~5 Ma, and ~8 Ma respectively. Field observations and seismic sections indicate progressive tilting and development of growth strata within the Lower Bakhtiari Formation adjacent to the frontal thrusts and within the Upper Bakhtiari Formation near the MFF. In the Kurdistan region of Iraq, a regional balanced cross section constrained by new thermochronometric results, proprietary seismic reflection profiles, and earthquake hypocenters

  10. Distributed deformation in the Zagros fold-and-thrust belt: insights from geomorphology

    NASA Astrophysics Data System (ADS)

    Obaid, Ahmed; Allen, Mark

    2017-04-01

    The Zagros fold-and-thrust belt is part of the active Arabia-Eurasia collision zone, and is an excellent region to study the interactions of tectonics and landscape. In this work we present results of a geomorphic analysis covering the entire range, coupled with more detailed analysis of the Kirkuk Embayment, Iraq. This particular region is a low elevation, low relief region of the Zagros, important for the enormous oil and gas reserves held in late Cenozoic anticlinal traps. Constraints from published earthquake focal mechanisms and hydrocarbon industry sub-surface data are combined with original fieldwork observations in northern Iraq, to produce a new regional cross-section and structural interpretation for the Kirkuk Embayment. We find that overall late Cenozoic shortening across the Embayment is on the order of 5%, representing only a few km. This deformation takes place on a series of anticlines, which are interpreted as overlying steep, planar, basement thrusts. These thrusts are further interpreted as reactivated normal faults, on the basis of (rare) published seismic data. The regional earthquake record confirms the basement involvement, although detachments within the sedimentary succession are also important, especially within the Middle Miocene Fat'ha Formation. Overall, the Zagros is sometimes represented as having a few major thrusts each persistent for 100s of km along the strike of the range. However, these faults are very rarely associated with major structural relief and/or surface fault ruptures during earthquakes. We have analysed the hypsometry of the range and find only gradational changes in the hypsometric integral of drainage basins across strike. This contrasts with regions such as the eastern Tibetan Plateau, where published analysis has revealed abrupt changes, correlating with the surface traces of active thrusts. Our interpretation is that the hypsometry of the Zagros reflects distributed deformation on numerous smaller faults, rather

  11. Toward Broadband Source Modeling for the Himalayan Collision Zone

    NASA Astrophysics Data System (ADS)

    Miyake, H.; Koketsu, K.; Kobayashi, H.; Sharma, B.; Mishra, O. P.; Yokoi, T.; Hayashida, T.; Bhattarai, M.; Sapkota, S. N.

    2017-12-01

    The Himalayan collision zone is characterized by the significant tectonic setting. There are earthquakes with low-angle thrust faulting as well as continental outerrise earthquakes. Recently several historical earthquakes have been identified by active fault surveys [e.g., Sapkota et al., 2013]. We here investigate source scaling for the Himalayan collision zone as a fundamental factor to construct source models toward seismic hazard assessment. As for the source scaling for collision zones, Yen and Ma [2011] reported the subduction-zone source scaling in Taiwan, and pointed out the non-self-similar scaling due to the finite crustal thickness. On the other hand, current global analyses of stress drop do not show abnormal values for the continental collision zones [e.g., Allmann and Shearer, 2009]. Based on the compile profiling of finite thickness of the curst and dip angle variations, we discuss whether the bending exists for the Himalayan source scaling and implications on stress drop that will control strong ground motions. Due to quite low-angle dip faulting, recent earthquakes in the Himalayan collision zone showed the upper bound of the current source scaling of rupture area vs. seismic moment (< Mw 8.0), and does not show significant bending of the source scaling. Toward broadband source modeling for ground motion prediction, we perform empirical Green's function simulations for the 2009 Butan and 2015 Gorkha earthquake sequence to quantify both long- and short-period source spectral levels.

  12. Space Radar Image of Sudan Collision Zone

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a radar image of a region in northern Sudan called the Keraf Suture that reveals newly discovered geologic features buried beneath layers of sand. This discovery is being used to guide field studies of the region and has opened up new perspectives on old problems, such as what controls the course of the Nile, a question that has perplexed geologists for centuries. The Nile is the yellowish/green line that runs from the top to the bottom of the image. A small town, Abu Dis, can be seen as the bright, white area on the east (right) bank of the Nile (about a third of the way down from the top) at the mouth of a dry stream valley or 'wadi' that drains into the river. Wadis flowing into the Nile from both east and west stand out as dark, reddish branch-like drainage patterns. The bright pink area on the west (left) side of the Nile is a region where rocks are exposed, but the area east (right) of the Nile is obscured by layers of sand, a few inches to several feet thick. Virtually everything visible on the right side of this radar image is invisible when standing on the ground or when viewing photographs or satellite images such as the United States' Landsat or the French SPOT satellite. A sharp, straight fault cuts diagonally across the image, to the right of the Nile river. The area between the fault and the Nile is part of the collision zone where the ancient continents of East and West Gondwana crashed into each other to form the supercontinent Greater Gondwana more than 600 million years ago. On this image, the Nile approaches but never crosses the fault, indicating that this fault seems to be controlling the course of the Nile in this part of Sudan. The image is centered at 19.5 degrees north latitude, 33.35 degrees east longitude, and shows an area approximately 18 km by 20 km (10 miles by 12 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: Red is L-band, vertically transmitted and vertically

  13. Linkages between orogenic plateau build-up, fold-thrust shortening, and foreland basin evolution in the Zagros (NW Iran)

    NASA Astrophysics Data System (ADS)

    Barber, D. E.; Stockli, D. F.

    2017-12-01

    The Iranian Plateau (IP) is a thickened, low-relief morphotectonic province of diffuse deformation that formed due to Arabia-Eurasia collision and may serve as a younger analogue for the Tibetan Plateau. Despite detailed geophysical characterization of the IP, its deformation history and relationship to the Zagros fold-thrust belt and its foreland basin evolution remains unresolved. Low-temperature thermochronometry and provenance data from a transect across the internal and external Zagros track growth of the IP and delineate multiphase interaction between upper- and lower-plate processes during closure of the Neotethys and Arabia-Eurasia suturing. Inversion of zircon (U-Th)/He and fission-track data from plutonic and metamorphic basement rocks in the Sanandaj-Sirjan Zone (SSZ) of the IP reveals an initial stage of low-rate exhumation from 36-25 Ma, simultaneous with the onset of tectonic subsidence and marine incursion in the Zagros foreland basin. Overlapping apatite fission-track and (U-Th)/He ages indicate sharp acceleration in SSZ exhumation rates between 20-15 Ma, coincident with rejuvenation of foreland basin subsidence and an influx of Eurasian-derived sediments into the Zagros foreland deposited above an Oligocene unconformity. The mid-Miocene marks a transition in focused exhumation from the SSZ to Arabian lower-plate. Apatite (U-Th)/He ages suggest in-sequence fold-thrust propagation from the High Zagros to simply folded belt from 10 Ma to recent, which is reflected in the foreland by a shift in provenance to dominantly recycled Arabian-derived detritus and clastic facies progradation. Integrated thermochronometric and provenance data document a two-phase outward expansion of the Iranian Plateau and Zagros fold-thrust belt, tightly coupled to distinct phases of basin evolution and provenance shifts in the Zagros foreland. We associate multiple deformation and basin episodes with protracted collisional processes, from subduction of attenuated Arabian

  14. Flexural bending of the Zagros foreland basin

    NASA Astrophysics Data System (ADS)

    Pirouz, Mortaza; Avouac, Jean-Philippe; Gualandi, Adriano; Hassanzadeh, Jamshid; Sternai, Pietro

    2017-09-01

    We constrain and model the geometry of the Zagros foreland to assess the equivalent elastic thickness of the northern edge of the Arabian plate and the loads that have originated due to the Arabia-Eurasia collision. The Oligo-Miocene Asmari formation, and its equivalents in Iraq and Syria, is used to estimate the post-collisional subsidence as they separate passive margin sediments from the younger foreland deposits. The depth to these formations is obtained by synthesizing a large database of well logs, seismic profiles and structural sections from the Mesopotamian basin and the Persian Gulf. The foreland depth varies along strike of the Zagros wedge between 1 and 6 km. The foreland is deepest beneath the Dezful embayment, in southwest Iran, and becomes shallower towards both ends. We investigate how the geometry of the foreland relates to the range topography loading based on simple flexural models. Deflection of the Arabian plate is modelled using point load distribution and convolution technique. The results show that the foreland depth is well predicted with a flexural model which assumes loading by the basin sedimentary fill, and thickened crust of the Zagros. The model also predicts a Moho depth consistent with Free-Air anomalies over the foreland and Zagros wedge. The equivalent elastic thickness of the flexed Arabian lithosphere is estimated to be ca. 50 km. We conclude that other sources of loading of the lithosphere, either related to the density variations (e.g. due to a possible lithospheric root) or dynamic origin (e.g. due to sublithospheric mantle flow or lithospheric buckling) have a negligible influence on the foreland geometry, Moho depth and topography of the Zagros. We calculate the shortening across the Zagros assuming conservation of crustal mass during deformation, trapping of all the sediments eroded from the range in the foreland, and an initial crustal thickness of 38 km. This calculation implies a minimum of 126 ± 18 km of crustal

  15. Along-strike structural variation and thermokinematic development of the Cenozoic Bitlis-Zagros fold-thrust belt, Turkey and Iraqi Kurdistan

    NASA Astrophysics Data System (ADS)

    Barber, Douglas E.; Stockli, Daniel F.; Koshnaw, Renas I.; Tamar-Agha, Mazin Y.; Yilmaz, Ismail O.

    2016-04-01

    The Bitlis-Zagros orogen in northern Iraq is a principal element of the Arabia-Eurasia continent collision and is characterized by the lateral intersection of two structural domains: the NW-SE trending Zagros proper system of Iran and the E-W trending Bitlis fold-thrust belt of Turkey and Syria. While these components in northern Iraq share a similar stratigraphic framework, they exhibit along-strike variations in the width and style of tectonic zones, fold morphology and trends, and structural inheritance. However, the distinctions of the Bitlis and Zagros segments remains poorly understood in terms of timing and deformation kinematics as well as first-order controls on fold-thrust development. Structural and stratigraphic study and seismic data combined with low-T thermochronometry provide the basis for reconstructions of the Bitlis-Zagros fold-thrust belt in southeastern Turkey and northern Iraq to elucidate the kinematic and temporal relationship of these two systems. Balanced cross-sections were constructed and incrementally restored to quantify the deformational evolution and use as input for thermokinematic models (FETKIN) to generate thermochronometric ages along the topographic surface of each cross-section line. The forward modeled thermochronometric ages from were then compared to new and previously published apatite and zircon (U-Th)/He and fission-track ages from southeastern Turkey and northern Iraq to test the validity of the timing, rate, and fault-motion geometry associated with each reconstruction. The results of these balanced theromokinematic restorations integrated with constraints from syn-tectonic sedimentation suggest that the Zagros belt between Erbil and Suleimaniyah was affected by an initial phase of Late Cretaceous exhumation related to the Proto-Zagros collision. During the main Zagros phase, deformation advanced rapidly and in-sequence from the Main Zagros Fault to the thin-skinned frontal thrusts (Kirkuk, Shakal, Qamar) from middle

  16. The Post-Eocene Evolution of the Doruneh Fault Region (Central Iran): The Intraplate Response to the Reorganization of the Arabia-Eurasia Collision Zone

    NASA Astrophysics Data System (ADS)

    Tadayon, Meisam; Rossetti, Federico; Zattin, Massimiliano; Nozaem, Reza; Calzolari, Gabriele; Madanipour, Saeed; Salvini, Francesco

    2017-12-01

    The Cenozoic deformation history of Central Iran has been dominantly accommodated by the activation of major intracontinental strike-slip fault zones, developed in the hinterland domain of the Arabia-Eurasia convergent margin. Few quantitative temporal and kinematic constraints are available from these strike-slip deformation zones, hampering a full assessment of the style and timing of intraplate deformation in Iran and the understanding of the possible linkage to the tectonic reorganization of the Zagros collisional zone. This study focuses on the region to the north of the active trace of the sinistral Doruneh Fault. By combing structural and low-temperature apatite fission track (AFT) and (U-Th)/He (AHe) thermochronology investigations, we provide new kinematic and temporal constraints to the deformation history of Central Iran. Our results document a post-Eocene polyphase tectonic evolution dominated by dextral strike-slip tectonics, whose activity is constrained since the early Miocene in response to an early, NW-SE oriented paleo-σ1 direction. A major phase of enhanced cooling/exhumation is constrained at the Miocene/Pliocene boundary, caused by a switch of the maximum paleo-σ1 direction to N-S. When integrated into the regional scenario, these data are framed into a new tectonic reconstruction for the Miocene-Quaternary time lapse, where strike-slip deformation in the intracontinental domain of Central Iran is interpreted as guided by the reorganization of the Zagros collisional zone in the transition from an immature to a mature stage of continental collision.

  17. Link between Neogene and modern sedimentary environments in the Zagros foreland basin

    NASA Astrophysics Data System (ADS)

    Pirouz, Mortaza; Simpson, Guy; Bahroudi, Abbas

    2010-05-01

    The Zagros mountain belt, with a length of 1800 km, is located in the south of Iran and was produced by collision between the Arabian plate and the Iran micro plate some time in the early Tertiary. After collision, the Zagros carbonate-dominated sedimentary basin has been replaced by a largely clastic system. The Neogene Zagros foreland basin comprises four main depositional environments which reflect the progressive southward migration of the deformation front with time. The oldest unit - the Gachsaran formation - is clastic in the northern part of the basin, but is dominated by evaporates in southern part, being deposited in a supratidal Sabkha-type environment. Overlying the Gachsaran is the Mishan formation, which is characterized by the Guri limestone member at the base, overlain by marine green marls. The thickness of the Guri member increases dramatically towards the southeast. The next youngest unit is the Aghajari Formation which consists of well sorted lenticular sandstone bodies in a red silty-mudstone. This formation is interpreted as representing the floodplain of dominantly meandering rivers. Finally, the Bakhtiari formation consists of mainly coarse-grained gravel sheets which are interpreted to represent braided river deposits. Each of these Neogene depositional environments has a modern day equivalent. For example, the braided rivers presently active in the Zagros mountains are modern analogues of the Bakhtiari. In the downstream direction, these braided rivers become meandering systems, which are equivalents of the Aghajari. Eventually, the meandering rivers meet the Persian gulf which is the site of the ‘modern day' Mishan shallow marine marls. Finally, the modern carbonate system on the southern margin of Persian Gulf represents the Guri member paleo-environment, behind which Sabkha-type deposits similar to the Gachsaran are presently being deposited. One important implication of this link between the Neogene foreland basin deposits and the

  18. The Central Eurasia collision zone: insights from a neotectonic study

    NASA Astrophysics Data System (ADS)

    Tunini, Lavinia; Jiménez-Munt, Ivone; Fernandez, Manel; Vergés, Jaume

    2017-04-01

    In this study, we explore the neotectonic deformation in the whole Central Eurasia, including both the India-Eurasia and the Arabia-Eurasia collision zones, by using the thin-sheet approach in which the lithosphere strength is calculated from the lithosphere structure and thermal regime. We investigate the relative contributions of the lithospheric structure, rheology, boundary conditions, and friction coefficient on faults on the predicted velocity and stress fields. The resulting models have been evaluated by comparing the predictions with available data on seismic deformation, stress directions and GPS velocities. A first order approximation of the velocity and stress directions is obtained, reproducing the counter-clockwise rotation of Arabia and Iran, the westward escape of Anatolia, and the eastward extrusion of the northern Tibetan Plateau. To simulate the observed extensional faults within Tibet a weaker lithosphere is required, provided by a change in the rheological parameters or a reduction of the lithosphere thickness in NE-Tibet. The temperature increase generated by the lithospheric thinning below the Tibetan Plateau would also allow reconciling the model with the high heat flow and low mantle seismic velocities observed in the area. Besides the large scale, this study offers a coherent result in regions with little or no data coverage, as in the case of the Arabia-India inter-collision zone, over large areas of Pakistan and entire Afghanistan. The study is supported by MITE (CGL2014-59516-P) and WE-ME (PIE-CSIC-201330E111) projects.

  19. Orogenic plateau magmatism of the Arabia-Eurasia collision zone

    NASA Astrophysics Data System (ADS)

    Allen, M. B.; Neill, I.; Kheirkhah, M.; van Hunen, J.; Davidson, J. P.; Meliksetian, Kh.; Emami, M. H.

    2012-04-01

    Magmatism is a common feature of high plateaux created during continental collision, but the causes remain enigmatic. Here we study Pliocene-Quaternary volcanics from the active Arabia-Eurasia collision zone, to determine the chemistry of these rocks and their relations to faulting and deeper lithospheric structure. The great majority of the centres lie within the overriding Eurasian plate in Iran, eastern Turkey and Armenia , implying that mantle fertilised by pre-collision subduction processes plays a significant role in magma generation. The composition of the Pliocene-Quaternary centres is extremely variable, ranging from OIB-like alkali basalts, to intermediate types resembling mature continental arc lavas, to potassic and even ultrapotassic lavas. These centres are erupted across a mosaic of pre-Cenozoic suture zones and heterogeneous lithospheric blocks. The chemical diversity implies a range of partial melting conditions operating on lithospheric and perhaps sub-lithospheric sources. Published data show a thick (>200 km) lithospheric keel beneath the Arabia-Eurasia suture, thinning to near normal thicknesses (~120 km) across much of central and northern Iran. Thin mantle lithosphere under eastern Turkey (max. ~30 km) may relate to the region's juvenile, accretionary lithosphere. These variable thicknesses are constraints on the cause of the melting in each area, and the degree of variation suggests that no one mechanism applies across the plateau. Various melting models have been suggested. Break-off of the subducted Neo-Tethyan oceanic slab is supported by tomographic data, which may have permitted melting related to adiabatic ascent of hot asthenosphere under areas where the lithosphere is thin. This seems a less plausible mechanism where the lithosphere is at normal or greater than normal thickness. The same problem applies to postulated lower lithosphere delamination. Isolated pull-aparts may account for the location of some centres, but are not

  20. Influence of pre-existing basement faults on the structural evolution of the Zagros Simply Folded belt: 3D numerical modelling

    NASA Astrophysics Data System (ADS)

    Ruh, Jonas B.; Gerya, Taras

    2015-04-01

    The Simply Folded Belt of the Zagros orogen is characterized by elongated fold trains symptomatically defining the geomorphology along this mountain range. The Zagros orogen results from the collision of the Arabian and the Eurasian plates. The Simply Folded Belt is located southwest of the Zagros suture zone. An up to 2 km thick salt horizon below the sedimentary sequence enables mechanical and structural detachment from the underlying Arabian basement. Nevertheless, deformation within the basement influences the structural evolution of the Simply Folded Belt. It has been shown that thrusts in form of reactivated normal faults can trigger out-of-sequence deformation within the sedimentary stratigraphy. Furthermore, deeply rooted strike-slip faults, such as the Kazerun faults between the Fars zone in the southeast and the Dezful embayment and the Izeh zone, are largely dispersing into the overlying stratigraphy, strongly influencing the tectonic evolution and mechanical behaviour. The aim of this study is to reveal the influence of basement thrusts and strike-slip faults on the structural evolution of the Simply Folded Belt depending on the occurrence of intercrustal weak horizons (Hormuz salt) and the rheology and thermal structure of the basement. Therefore, we present high-resolution 3D thermo-mechnical models with pre-existing, inversively reactivated normal faults or strike-slip faults within the basement. Numerical models are based on finite difference, marker-in-cell technique with (power-law) visco-plastic rheology accounting for brittle deformation. Preliminary results show that deep tectonic structures present in the basement may have crucial effects on the morphology and evolution of a fold-and-thrust belt above a major detachment horizon.

  1. Balancing cross-sections combining field work and remote sensing data using LithoTect software in the Zagros fold-and-thrust belt, N Iraq.

    NASA Astrophysics Data System (ADS)

    Reif, Daniel; Grasemann, Bernhard; Lockhart, Duncan

    2010-05-01

    The Zagros fold-and-thrust belt has formed in detached Phanerozoic sedimentary cover rocks above a shortened crystalline Precambrian basement and evolved through the Late Cretaceous to Miocene collision between the Arabian and Eurasian plate, during which the Neotethys oceanic basin was closed. Deformation is partitioned in SW directed folding and thrusting of the sediments and NW-SE to N-S trending dextral strike slip faults. The sub-cylindrical doubly-plunging fold trains with wavelengths of 5 - 10 km host more than half of the world's hydrocarbon reserves in mostly anticlinal traps. Generally the Zagros is divided into three NW-SE striking tectonic units: the Zagros Imbricate Zone, the Zagros Simply Folded Belt and the Zagros Foredeep. This work presents a balanced cross-section through the Simply Folded Belt, NE of the city of Erbil (Kurdistan, Iraq). The regional stratigraphy comprises mainly Cretaceous to Cenozoic folded sediments consisting of massive, carbonate rocks (limestones, dolomites), reacting as competent layers during folding compared to the incompetent behavior of interlayered siltstones, claystones and marls. Although the overall security situation in Kurdistan is much better than in the rest of Iraq, structural field mapping was restricted to asphalt streets, mainly because of the contamination of the area with landmines and unexploded ordnance. In order to extend the structural measurements statistically over the investigated area, we used a newly developed software tool (www.terramath.com) for interactive structural mapping of spatial orientations (i.e. dip direction and dip angles) of the sedimentary beddings from digital elevation models. Structural field data and computed measurements where integrated and projected in NE-SW striking balanced cross-sections perpendicular to the regional trend of the fold axes. We used the software LithoTect (www.geologicsystems.com) for the restoration of the cross-sections. Depending on the interpretation

  2. Lateral and depth variations of coda Q in the Zagros region of Iran

    NASA Astrophysics Data System (ADS)

    Irandoust, Mohsen Ahmadzadeh; Sobouti, Farhad; Rahimi, Habib

    2016-01-01

    We have analyzed more than 2800 local earthquakes recorded by the Iranian National Seismic Network (INSN) and the Iranian Seismological Center (IRSC) to estimate coda wave quality factor, Q c , in the Zagros fold and thrust belt and the Sanandaj-Sirjan metamorphic zone in Iran. We used the single backscattering model to investigate lateral and depth variations of Q c in the study region. In the interior of Zagros, no strong lateral variation in attenuation parameters is observed. In SE Zagros (the Bandar-Abbas region) where transition to the Makran subduction setting begins, the medium shows lower attenuation. The average frequency relations for the SSZ, the Bandar-Abbas region, and the Zagros are Q c = (124 ± 11) f 0.82 ± 0.04, Q c = (109 ± 2) f 0.99 ± 0.01, and Q c = (85 ± 5) f 1.06 ± 0.03, respectively. To investigate the depth variation of Q c , 18 time windows between 5 and 90 s and at two epicentral distance ranges of R < 100 km and 100 < R < 200 km were considered. It was observed that with increasing coda lapse time, Q 0 ( Q c at 1 Hz) and n (frequency dependence factor) show increasing and decreasing trends, respectively. Beneath the SSZ and at depths of about 50 to 80 km, there is a correlation between the reported low velocity medium and the observed sharp change in the trend of Q 0 and n curves. In comparison with results obtained in other regions of the Iranian plateau, the Zagros along with the Alborz Mountains in the north show highest attenuation of coda wave and strongest frequency dependence, an observation that reflects the intense seismicity and active faulting in these mountain ranges. We also observe a stronger depth dependence of attenuation in the Zagros and SSZ compared to central Iran, indicating a thicker lithosphere in the Zagros region than in central Iran.

  3. Looking at the roots of the highest mountains: the lithospheric structure of the Himalaya-Tibet and the Zagros orogens. Results from a geophysical-petrological study

    NASA Astrophysics Data System (ADS)

    Tunini, L.; Jimenez-Munt, I.; Fernandez, M.; Villasenor, A.; Afonso, J. C.; Verges, J.

    2013-12-01

    The Himalaya-Tibet and Zagros orogens are the two most prominent mountain belts built by continental collision. They are part of a huge belt of Cenozoic age which runs from the Pyrenees to Burma. In its central sector, the collision with the southern margin of the Eurasian plate has resulted not only in the building of mountain ranges over the north-eastern edges of the Arabian and Indian plates but also in widespread deformation 1000-3000 km from the suture zones. Zagros and Himalaya-Tibet orogens share many geodynamic processes but at different rates, amount of convergence and stage of development. The study of their present-day structures provides new insights into their quasi coeval collisional event pointing out differences and similarities in the mountain building processes. We present 2D crust and upper mantle cross-sections down to 400 km depth, along four SW-NE trending profiles. Two profiles cross the Zagros Mountains, running from the Mesopotamian Foreland Basin up to the Alborz and Central Iran. Two other profiles run through the Himalaya-Tibetan orogen: the western transect crosses the western Himalaya, Tarim Basin, Tian Shan Mountains and Junggar Basin; the eastern transect runs from the Indian shield to the Beishan Basin, crossing the eastern Himalaya, Tibetan Plateau, Qaidam Basin and Qilian Mountains. We apply the LitMod-2D code which integrates potential fields (gravity and geoid), isostasy (elevation) and thermal (heat flow and temperature distribution) equations, and mantle petrology. The resulting crust and upper mantle structure is constrained by available data on elevation, Bouguer anomaly, geoid height, surface heat flow and seismic data including P- and S-wave tomography models. Our results show distinct deformation patterns between the crust and the lithospheric mantle beneath the Zagros and Himalaya-Tibetan orogens, indicating a strong strain partitioning in both areas. At crustal level, we found a thickening beneath the Zagros and the

  4. Zagros Mountains, Iran, SRTM Shaded Relief Anaglyph

    2004-06-17

    The Zagros Mountains in Iran offer a visually stunning topographic display of geologic structure in layered sedimentary rocks in this anaglyph from NASA Shuttle Radar Topography Mission. 3D glasses are necessary to view this image.

  5. Tectonics versus eustatic control on supersequences of the Zagros Mountains of Iran

    NASA Astrophysics Data System (ADS)

    Heydari, Ezat

    2008-04-01

    epeirogenic movements. Although tectonic events did not produce supersequences of the Zagros Mountains, they influenced regional lithofacies patterns through the formation of intrashelf depressions such as the Hormoz Salt Basin during the Precambrian and the Dezful Embayment and the Lorestan Basin during the Mesozoic. Tectonic events also affected sedimentation during the Tertiary collision of Arabia and the Central Iran microplate through uplift, erosion, and the formation of the Zagros Foreland Basin. The results of this investigation necessitate a re-evaluation of the role and the significance of pre-Tertiary tectonic events commonly used to interpret the geological evolution of the Zagros Mountains.

  6. The Zagros hinterland fold-and-thrust belt in-sequence thrusting, Iran

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil; Ghanbarian, Mohammad Ali

    2014-05-01

    The collision of the Iranian microcontinent with the Afro-Arabian continent resulted in the deformation of the Zagros orogenic belt. The foreland of this belt in the Persian Gulf and Arabian platform has been investigated for its petroleum and gas resource potentials, but the Zagros hinterland is poorly investigated and our knowledge about its deformation is much less than other parts of this orogen. Therefore, this work presents a new geological map, stratigraphic column and two detailed geological cross sections. This study indicates the presence of a hinterland fold-and-thrust belt on northeastern side of the Zagros orogenic core that consists of in-sequence thrusting and basement involvement in this important part of the Zagros hinterland. The in-sequence thrusting resulted in first- and second-order duplex systems, Mode I fault-bend folding, fault-propagation folding and asymmetric detachment folding which indicate close relationships between folding and thrusting. Study of fault-bend folds shows that layer-parallel simple shear has the same role in the southeastern and northwestern parts of the study area (αe = 23.4 ± 9.1°). A major lateral ramp in the basement beneath the Talaee plain with about one kilometer of vertical offset formed parallel to the SW movement direction and perpendicular to the major folding and thrusting.

  7. Evolution of the stress fields in the Zagros Foreland Folded Belt using focal mechanisms and kinematic analyses: the case of the Fars salient, Iran

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil; Zafarmand, Bahareh; Oveisi, Behnam

    2018-03-01

    The NW-SE trending Zagros orogenic belt was initiated during the convergence of the Afro-Arabian continent and the Iranian microcontinent in the Late Cretaceous. Ongoing convergence is confirmed by intense seismicity related to compressional stresses collision-related in the Zagros orogenic belt by reactivation of an early extensional faulting to latter compressional segmented strike-slip and dip-slip faulting. These activities are strongly related either to the deep-seated basement fault activities (deep-seated earthquakes) underlies the sedimentary cover or gently dipping shallow-seated décollement horizon of the rheological weak rocks of the infra-Cambrian Hormuz salt. The compressional stress regimes in the different units play an important role in controlling the stress conditions between the different units within the sedimentary cover and basement. A significant set of nearly N-S trending right-lateral strike-slip faults exists throughout the study area in the Fars area in the Zagros Foreland Folded Belt. Fault-slip and focal mechanism data were analyzed using the stress inversion method to reconstruct the paleo and recent stress conditions. The results suggest that the current direction of maximum principal stress averages N19°E, with N38°E that for the past from Cretaceous to Tertiary (although a few sites on the Kar-e-Bass fault yield a different direction). The results are consistent with the collision of the Afro-Arabian continent and the Iranian microcontinent. The difference between the current and paleo-stress directions indicates an anticlockwise rotation in the maximum principle stress direction over time. This difference resulted from changes in the continental convergence path, but was also influenced by the local structural evolution, including the lateral propagation of folds and the presence of several local décollement horizons that facilitated decoupling of the deformation between the basement and the sedimentary cover. The obliquity of

  8. Insight into collision zone dynamics from topography: numerical modelling results and observations

    NASA Astrophysics Data System (ADS)

    Bottrill, A. D.; van Hunen, J.; Allen, M. B.

    2012-11-01

    Dynamic models of subduction and continental collision are used to predict dynamic topography changes on the overriding plate. The modelling results show a distinct evolution of topography on the overriding plate, during subduction, continental collision and slab break-off. A prominent topographic feature is a temporary (few Myrs) basin on the overriding plate after initial collision. This "collisional mantle dynamic basin" (CMDB) is caused by slab steepening drawing, material away from the base of the overriding plate. Also, during this initial collision phase, surface uplift is predicted on the overriding plate between the suture zone and the CMDB, due to the subduction of buoyant continental material and its isostatic compensation. After slab detachment, redistribution of stresses and underplating of the overriding plate cause the uplift to spread further into the overriding plate. This topographic evolution fits the stratigraphy found on the overriding plate of the Arabia-Eurasia collision zone in Iran and south east Turkey. The sedimentary record from the overriding plate contains Upper Oligocene-Lower Miocene marine carbonates deposited between terrestrial clastic sedimentary rocks, in units such as the Qom Formation and its lateral equivalents. This stratigraphy shows that during the Late Oligocene-Early Miocene the surface of the overriding plate sank below sea level before rising back above sea level, without major compressional deformation recorded in the same area. Our modelled topography changes fit well with this observed uplift and subsidence.

  9. Insight into collision zone dynamics from topography: numerical modelling results and observations

    NASA Astrophysics Data System (ADS)

    Bottrill, A. D.; van Hunen, J.; Allen, M. B.

    2012-07-01

    Dynamic models of subduction and continental collision are used to predict dynamic topography changes on the overriding plate. The modelling results show a distinct evolution of topography on the overriding plate, during subduction, continental collision and slab break-off. A prominent topographic feature is a temporary (few Myrs) deepening in the area of the back arc-basin after initial collision. This collisional mantle dynamic basin (CMDB) is caused by slab steepening drawing material away from the base of the overriding plate. Also during this initial collision phase, surface uplift is predicted on the overriding plate between the suture zone and the CMDB, due to the subduction of buoyant continental material and its isostatic compensation. After slab detachment, redistribution of stresses and underplating of the overriding plate causes the uplift to spread further into the overriding plate. This topographic evolution fits the stratigraphy found on the overriding plate of the Arabia-Eurasia collision zone in Iran and south east Turkey. The sedimentary record from the overriding plate contains Upper Oligocene-Lower Miocene marine carbonates deposited between terrestrial clastic sedimentary rocks, in units such as the Qom Formation and its lateral equivalents. This stratigraphy shows that during the Late Oligocene-Early Miocene the surface of the overriding plate sank below sea level before rising back above sea level, without major compressional deformation recorded in the same area. This uplift and subsidence pattern correlates well with our modelled topography changes.

  10. Uplift of Zagros Mountains slows plate convergence

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-05-01

    Research has indicated that mountain ranges can slow down the convergence between two tectonic plates on timescales as short as a few million years, as the growing mountains provide enough tectonic force to impact plate motions. Focusing on the convergence of the Arabian and Eurasian plates at the Zagros mountain range, which runs across Iran and Iraq, Austermann and Iaffaldano reconstructed the relative motion of the plates using published paleomagnetic data covering the past 13 million years, as well as current geodetic measurements. They show that the convergence of the two plates has decreased by about 30% over the past 5 million years. Looking at the geological record to infer past topography and using a computer model of the mantle-lithosphere system, the authors examined whether the recent uplift across the Zagros Mountains could have caused the observed slowdown. They also considered several other geological events that might have influenced the convergence rate, but the authors were able to rule those out as dominant controls. The authors conclude that the uplift across the Zagros Mountains in the past 5 million years did indeed play a key role in slowing down the convergence between the Eurasian and Arabian plates. (Tectonics, doi:10.1002/tect.20027, 2013)

  11. Shear deformation in the northeastern margin of the Izu collision zone, central Japan, inferred from GPS observations

    NASA Astrophysics Data System (ADS)

    Doke, R.; Harada, M.; Miyaoka, K.; Satomura, M.

    2016-12-01

    The Izu collision zone, which is characterized by the collision between the Izu-Bonin arc (Izu Peninsula) and the Honshu arc (the main island of Japan), is located in the northernmost part of the Philippine Sea (PHS) plate. Particularly in the northeastern margin of the zone, numerous large earthquakes have occurred. To clarify the convergent tectonics of the zone related to the occurrence of these earthquakes, in this study, we performed Global Positioning System (GPS) observations and analysis around the Izu collision zone. Based on the results of mapping the steady state of the GPS velocity and strain rate fields, we verified that there has been wide shear deformation in the northeastern part of the Izu collision zone, which agrees with the maximum shear directions in the left-lateral slip of the active faults in the study area. Based on the relative motion between the western Izu Peninsula and the eastern subducting forearc, the shear zone can be considered as a transition zone affected by both collision and subduction. The Higashi-Izu Monogenic Volcano Group, which is located in the southern part of the shear deformation zone, may have formed as a result of the steady motion of the subducting PHS plate and the collision of the Izu Peninsula with the Honshu arc. The seismic activities in the Tanzawa Mountains, which is located in the northern part of the shear deformation zone, and the eastern part of the Izu Peninsula may be related to the shear deformation zone, because the temporal patterns of the seismic activity in both areas are correlated.

  12. Orogenic plateau growth: Expansion of the Turkish-Iranian Plateau across the Zagros fold-and-thrust belt

    NASA Astrophysics Data System (ADS)

    Allen, M. B.; Saville, C.; Blanc, E. J.-P.; Talebian, M.; Nissen, E.

    2013-03-01

    This paper shows how the Turkish-Iranian Plateau grows laterally by incrementally incorporating adjacent parts of the Zagros fold-and-thrust belt. The limit of significant, seismogenic, thrusting in the Zagros (Mw > 5) occurs close to the regional 1250 m elevation contour. The seismicity cutoff is not a significant bedrock geology boundary. Elevations increase northward, toward regional plateau elevations of 2 km, implying that another process produced the extra elevation. Between the seismogenic limit of thrusting and the suture, this process is a plausibly ductile thickening of the basement, suggesting depth-dependent strain during compression. Similar depth-dependant crustal strain may explain why the Tibetan plateau has regional elevations 1500 m greater than the elevation limit of seismogenic thrusting at its margins. We estimate 68 km shortening across the Zagros Simply Folded Belt in the Fars region, and 120 km total shortening of the Arabian plate. The Dezful Embayment is a low strain zone in the western Zagros. Deformation is more intense to its northeast, in the Bakhtyari Culmination. The orogenic taper (across strike topographic gradient) across the Dezful Embayment is 0.0004, and across the Bakhtyari Culmination, 0.022. Lateral plateau growth is more pronounced farther east (Fars), where a more uniform structure has a taper of 0.010 up to elevations of 1750 m. A >100 km wide region of the Zagros further northeast has a taper of 0.002 and is effectively part of the Turkish-Iranian Plateau. Internal drainage enhances plateau development but is not a pre-requisite. Aspects of the seismicity, structure, and geomorphology of the Zagros do not support critical taper models for fold-and-thrust belts.

  13. The Electrical Resistivity Structure of the Eastern Anatolian Collision Zone, Northeastern Anatolia

    NASA Astrophysics Data System (ADS)

    Cengiz, Özlem; Tuǧrul Başokur, Ahmet; Tolak Çiftçi, Elif

    2016-04-01

    The Northeastern Anatolia is located at the intensely deformed Eastern Anatolian Collision Zone (EACZ), and its tectonic framework is characterized by the collision of the Arabian plate with Eurasian. Although extensive attention is given to understand the crustal and upper mantle processes at this convergent boundary, there is still an ongoing debate over the geodynamic processes of the region. In this study, we were specifically interested in the geoelectric properties and thus geodynamics of the crust beneath the EACZ. Magnetotelluric (MT) measurements were made on two profiles across the north of the EACZ in 1998 as part of a national project undertaken by the Turkish Petroleum Corporation (TPAO). MT data in the frequency range of 300-0.001 Hz were collected from 168 stations located along 78 km north to south and 47 km west to east profiles where direct convergence occurs between Arabian and Eurasian plates. Two and three-dimensional inversion algorithms were used to obtain resistivity models of the study area. According to these models, the upper crust consists of low resistivity sedimentary rocks (<30 Ωm) that are underlain by highly resistive (~500-1000 Ωm) crystalline basement rocks of the Eastern Anatolian Accretionary Complex and Pontides. While the upper and lower crustal resistivity at the northern part of the study area shows a layered structure, significant horizontal and vertical variations for the rest of the EACZ exists on resistivity models. The broad low resistivity zones (<50 Ωm) observed at mid and lower crustal levels throughout the EACZ. These fluid-rich regions along with high temperatures could indicate weak zones representing the locations of active deformation induced by continent-continent collision and correlate with volcanic centers in the region. The variation in the resistivity structure supports the southward subduction model with the resistive continental block and the deep conductive zones presumably corresponding to the

  14. Crustal structure and evolution of the NW Zagros Mountains (Iran): Insights from numerical modeling of the interplay between surface and tectonic processes

    NASA Astrophysics Data System (ADS)

    Saura, Eduard; Garcia-Castellanos, Daniel; Casciello, Emilio; Vergés, Jaume

    2014-05-01

    Protracted Arabia-Eurasia convergence resulted in the closure of the >2000 km wide Neo-Tethys Ocean from early Late Cretaceous to Recent. This process was controlled by the structure of the NE margin of the Arabian plate, the NE-dipping oceanic subduction beneath Eurasia, the obduction of oceanic lithosphere and the collision of small continental and volcanic arc domains of the SW margin of Eurasia. The evolution of the Zagros Amiran and Mesopotamian foreland basins is studied in this work along a ~700 km long transect in NW Zagros constrained by field, seismic and published data. We use the well-defined geometries and ages of the Amiran and Mesopotamian foreland basins to estimate the elastic thickness of the lithosphere and model the evolution of the deformation to quantitatively link the topographic, tectonic and sedimentary evolution of the system. Modelling results show two major stages of emplacement. The obduction (pre-collision) stage involves the thin thrust sheets of the Kermanshah complex together with the Bisotun basement. The collision stage corresponds to the emplacement of the basement duplex and associated crustal thickening, coeval to the out of sequence emplacement of Gaveh Rud and Imbricated Zone in the hinterland. The geodynamic model is consistent with the history of the foreland basins, with the regional isostasy model, and with a simple scenario for the surface process efficiency. The emplacement of Bisotun basement during obduction tectonically loaded and flexed the Arabian plate triggering deposition in the Amiran foreland basin. The basement units emplaced during the last 10 My, flexed the Arabian plate below the Mesopotamian basin. During this stage, material eroded from the Simply Folded belt and the Imbricated zone was not enough to fill the Mesopotamian basin, which, according to our numerical model results, required a maximum additional sediment supply of 80 m/Myr. This additional supply had to be provided by an axial drainage system

  15. 3-D lithospheric structure and regional/residual Bouguer anomalies in the Arabia-Eurasia collision (Iran)

    NASA Astrophysics Data System (ADS)

    Jiménez-Munt, I.; Fernãndez, M.; Saura, E.; Vergés, J.; Garcia-Castellanos, D.

    2012-09-01

    The aim of this work is to propose a first-order estimate of the crustal and lithospheric mantle geometry of the Arabia-Eurasia collision zone and to separate the measured Bouguer anomaly into its regional and local components. The crustal and lithospheric mantle structure is calculated from the geoid height and elevation data combined with thermal analysis. Our results show that Moho depth varies from ˜42 km at the Mesopotamian-Persian Gulf foreland basin to ˜60 km below the High Zagros. The lithosphere is thicker beneath the foreland basin (˜200 km) and thinner underneath the High Zagros and Central Iran (˜140 km). Most of this lithospheric mantle thinning is accommodated under the Zagros mountain belt coinciding with the suture between two different mantle domains on the Sanandaj-Sirjan Zone. The regional gravity field is obtained by calculating the gravimetric response of the 3-D crustal and lithospheric mantle structure obtained by combining elevation and geoid data. The calculated regional Bouguer anomaly differs noticeably from those obtained by filtering or just isostatic methods. The residual gravity anomaly, obtained by subtraction of the regional components to the measured field, is analyzed in terms of the dominating upper crustal structures. Deep basins and areas with salt deposits are characterized by negative values (˜-20 mGal), whereas the positive values are related to igneous and ophiolite complexes and shallow basement depths (˜20 mGal).

  16. Preliminary Thermo-Chronometric and Paleo-Magnetic Results from the Western Margin of The Kırşehir Block: Implications for the Timing of Continental Collisions Occurred Along Neo-Tethyan Suture Zones (Central Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Gülyüz, Erhan; Özkaptan, Murat; Langereis, Cor G.; Kaymakcı, Nuretdin

    2017-04-01

    Closures of Paleo- (largely Paleozoic) and Neo-Tethys (largely Mesozoic) Oceans developed between Europe, Africa and Arabia are the main driving mechanisms behind the post-Triassic tectonics, magmatism and metamorphism occurred in Anatolia. Although various scenarios have been suggested for the timing and characteristics of the subduction systems, it is largely accepted that these blocks are progressively collided and amalgamated along the northern (İzmir-Ankara-Erzincan suture zone; IAESZ) and the southern (Bitlis-Zagros suture zone; BZSZ) branches of Neo-Tethys Ocean. The geographic positions of these suture zones in Anatolia are marked by imbricated stacks of largely metamorphosed remnants of the Paleo- and Neo-Tethys Oceans. In addition to this tectonic frame, the existence of another suture zone within the northern branch of the Neo-Tethys separating the Kırşehir Block, a triangular (200km*200km*200km) continental domain represented by mainly high-pressure (HP) meta-sedimentary rocks, from the Taurides, is proposed and named as Intra-Tauride Suture Zone (ITSZ). Although traces of the Neo-Tethyan closure and continental collisions in the Central Anatolia are recorded (1) in sedimentary basins as fold and thrust belt developments (as northern Taurides fold and thrust belt along IAESZ and central Taurides fold and thrust belt along ITSZ), (2) on metamorphic rocks with Late Cretaceous to Late Paleocene peak metamorphism, and (3) on magmatic rocks with Late Cretaceous - Paleocene arc-related intrusions and post-Paleocene post-collisional magmatism, timing of these continental collisions are discussed in limited studies and furthermore they indicate a large time span (post-Paleocene to Miocene) for the collisions. This study aims to date continental collisions occurred in Central Anatolia qualitatively. In this regard, low-temperature thermo-chronometric and paleo-magnetic studies were conducted on the sedimentary units cropped-out along the western and north

  17. Early Neogene foreland of the Zagros, implications for the initial closure of the Neo-Tethys and kinematics of crustal shortening

    NASA Astrophysics Data System (ADS)

    Pirouz, Mortaza; Avouac, Jean-Philippe; Hassanzadeh, Jamshid; Kirschvink, Joseph L.; Bahroudi, Abbas

    2017-11-01

    We study the transition from passive margin to foreland basin sedimentation now exposed in the High Zagros belt to provide chronological constraints on the initial stage of Arabia-Eurasia collision and closure of the Neo-Tethys. We performed magnetostratigraphy and strontium isotope stratigraphy along two sections near the Zagros suture which expose the oldest preserved foreland deposits: the Shalamzar section in the west and the Dehmoord section in the east. The top of the passive margin Asmari formation has an age of 28-29 Ma in the High Zagros and is overlain by foreland deposits with a major basal unconformity representing 7 Myr of hiatus. The base of the foreland deposits has an age of 21.5 Ma at Dehmoord and ca. 26 Ma at Shalamzar. The sedimentation rate increased from 30 m/Myr in the passive margin to 247 m/Myr in the foreland. Combined with available age constraints across the Zagros, our results show that the unconformity is diachronous and records the southwestward migration of the flexural bulge within the Arabian plate at an average rate of 24 ± 2 mm/yr over the last 27 Ma. The time evolution of sediment accumulation in the Zagros foreland follows the prediction from a flexural model, as the foreland is thrust beneath the orogenic wedge and loaded by the wedge and basin fill. We detect the onset of forebulge formation within the Asmari Formation around 25 Ma. We conclude that closure of the Neo-Tethys formed the Zagros collisional wedge at 27 ± 2 Ma. Hence, the Arabia-Eurasia collision was probably not the main driver of global cooling which started near the Eocene-Oligocene boundary (ca. 33.7 Ma). We estimate 650 km of forebulge migration since the onset of the collision which consists of 350 km of shortening across the orogen, and 300 km of widening of the wedge and increasing flexural rigidity of Arabia. We conclude the average rate of shortening across the Zagros to be ca. 13 mm/yr over the last 27 Myr; a value comparable to the modern rate

  18. Abrupt Upper-Plate Tilting Upon Slab-Transition-Zone Collision

    NASA Astrophysics Data System (ADS)

    Crameri, F.; Lithgow-Bertelloni, C. R.

    2017-12-01

    During its sinking, the remnant of a surface plate crosses and interacts with multiple boundaries in Earth's interior. The most-prominent dynamic interaction arises at the upper-mantle transition zone where the sinking plate is strongly affected by the higher-viscosity lower mantle. Within our numerical model, we unravel, for the first time, that this very collision of the sinking slab with the transition zone induces a sudden, dramatic downward tilt of the upper plate towards the subduction trench. The slab-transition zone collision sets parts of the higher-viscosity lower mantle in motion. Naturally, this then induces an overall larger return flow cell that, at its onset, tilts the upper plate abruptly by around 0.05 degrees and over around 10 Millions of years. Such a significant and abrupt variation in surface topography should be clearly visible in temporal geologic records of large-scale surface elevation and might explain continental-wide tilting as observed in Australia since the Eocene or North America during the Phanerozoic. Unravelling this crucial mantle-lithosphere interaction was possible thanks to state-of-the-art numerical modelling (powered by StagYY; Tackley 2008, PEPI) and post-processing (powered by StagLab; www.fabiocrameri.ch/software). The new model that is introduced here to study the dynamically self-consistent temporal evolution of subduction features accurate subduction-zone topography, robust single-sided plate sinking, stronger plates close to laboratory values, an upper-mantle phase transition and, crucially, simple continents at a free surface. A novel, fully-automated post-processing includes physical model diagnostics like slab geometry, mantle flow pattern, upper-plate tilt angle and trench location.

  19. Lateral variations in the crustal structure of the Indo-Eurasian collision zone

    NASA Astrophysics Data System (ADS)

    Gilligan, Amy; Priestley, Keith

    2018-05-01

    The processes involved in continental collisions remain contested, yet knowledge of these processes is crucial to improving our understanding of how some of the most dramatic features on Earth have formed. As the largest and highest orogenic plateau on Earth today, Tibet is an excellent natural laboratory for investigating collisional processes. To understand the development of the Tibetan Plateau we need to understand the crustal structure beneath both Tibet and the Indian Plate. Building on previous work, we measure new group velocity dispersion curves using data from regional earthquakes (4424 paths) and ambient noise data (5696 paths), and use these to obtain new fundamental mode Rayleigh Wave group velocity maps for periods from 5-70 s for a region including Tibet, Pakistan and India. The dense path coverage at the shortest periods, due to the inclusion of ambient noise measurements, allows features of up to 100 km scale to be resolved in some areas of the collision zone, providing one of the highest resolution models of the crust and uppermost mantle across this region. We invert the Rayleigh wave group velocity maps for shear wave velocity structure to 120 km depth and construct a 3D velocity model for the crust and uppermost mantle of the Indo-Eurasian collision zone. We use this 3D model to map the lateral variations in the crust and in the nature of the crust-mantle transition (Moho) across the Indo-Eurasian collision zone. The Moho occurs at lower shear velocities below north eastern Tibet than it does beneath western and southern Tibet and below India. The east-west difference across Tibet is particularly apparent in the elevated velocities observed west of 84° E at depths exceeding 90 km. This suggests that Indian lithosphere underlies the whole of the Plateau in the west, but possibly not in the east. At depths of 20-40 km our crustal model shows the existence of a pervasive mid-crustal low velocity layer (˜10% decrease in velocity, Vs <3.4 km

  20. Insights from 3D numerical simulations on the dynamics of the India-Asia collision zone

    NASA Astrophysics Data System (ADS)

    Pusok, A. E.; Kaus, B.; Popov, A.

    2013-12-01

    The dynamics of the India-Asia collision zone remains one of the most remarkable topics of the current research interest: the transition from subduction to collision and uplift, followed by the rise of the abnormally thick Tibetan plateau, and the deformation at its Eastern and Western syntaxes, are processes still not fully understood. Models that have addressed this topic include wholescale underthrusting of Indian lithospheric mantle under Tibet, distributed homogeneous shortening or the thin-sheet model, slip-line field model for lateral extrusion or lower crustal flow models for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau. Of these, the thin-sheet model has successfully illustrated some of the basic physics of continental collision and has the advantage of a 3D model being reduced to 2D, but one of its major shortcomings is that it cannot simultaneously represent channel flow and gravitational collapse of the mantle lithosphere, since these mechanisms require the lithosphere to interact with the underlying mantle, or to have a vertically non-homogeneous rheology. As a consequence, 3D models are emerging as powerful tools to understand the dynamics of coupled systems. However, because of yet recent developments and various complexities, the current 3D models simulating the dynamics of continent collision zones have relied on certain explicit assumptions, such as replacing part of the asthenosphere with various types of boundary conditions that mimic the effect of mantle flow, in order to focus on the lithospheric/crustal deformation. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We present qualitative results on lithospheric and upper-mantle scale simulations in which the Indian lithosphere is subducted and

  1. High resolution image of uppermost mantle beneath NE Iran continental collision zone

    NASA Astrophysics Data System (ADS)

    Motaghi, K.; Tatar, M.; Shomali, Z. H.; Kaviani, A.; Priestley, K.

    2012-10-01

    We invert 3775 relative P wave arrival times using the ACH damped least square method of Aki et al. (1977) to study upper mantle structure beneath the NE Iran continental collision zone. The data for this study were recorded by 17 three component broad-band stations operated from August 2006 to February 2008 along a profile from the center of Iranian Plateau, near Yazd, to the northeastern part of Iran on the Turan Platform just north of the Kopeh Dagh Mountains. The results confirm the previously known low velocity upper mantle beneath Central Iran. Our tomographic model reveals a deep high velocity anomaly. The surficial expressions of this anomaly are between the Ashkabad and Doruneh Faults, where the resolution and ray coverage are good. A transition zone in uppermost mantle is recognized under the Binalud foreland that we interpreted as suture zone between Iran and Turan platform. Our results indicate that Atrak Valley which is the boundary between the Binalud and Kopeh Dagh Mountains can be considered as the northeastern suture of the Iranian Plateau where Eurasia and Turan Platform under-thrust beneath the Binalud range and Central Iran.

  2. Seismic structure and stratigraphy of northern edge of Bahaman-Cuban collision zone

    Ball, M.M.; Martin, R.G.; Bock, W.D.; Sylwester, R.E.; Bowles, R.M.; Taylor, D.; Coward, E.L.; Dodd, J.E.; Gilbert, L.

    1985-01-01

    Common-depth-point (CDP) seismic reflection data in the southwestern Bahamas reveal the northern edge of the tectonized zone that resulted from the late Mesozoic-early Cenozoic collision of Cuba and the Bahamas. Two seismic facies are present. A 10-km broad anticline occurs at the south end of Santaren Channel. Platform carbonates in the core of this structure overlie Early Cretaceous and older basinal carbonate deposits and are onlapped by Late Cretaceous and Cenozoic basinal facies. The structure is inferred to be a hanging-wall anticline at the northern limit of the Cuban fold-thrust belt formed in the Late Cretaceous. A deeper water embayment extended northward into the Straits of Florida, around northern Cay Sal Bank, and back into Santaren Channel during the Early Cretaceous.

  3. Preliminary results of characteristic seismic anisotropy beneath Sunda-Banda subduction-collision zone

    SciT

    Wiyono, Samsul H., E-mail: samsul.wiyono@bmkg.go.id; Indonesia’s Agency for Meteorology Climatology and Geophysics, Jakarta 10610; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id

    2015-04-24

    Determining of seismic anisotropy allowed us for understanding the deformation processes that occured in the past and present. In this study, we performed shear wave splitting to characterize seismic anisotropy beneath Sunda-Banda subduction-collision zone. For about 1,610 XKS waveforms from INATEWS-BMKG networks have been analyzed. From its measurements showed that fast polarization direction is consistent with trench-perpendicular orientation but several stations presented different orientation. We also compared between fast polarization direction with absolute plate motion in the no net rotation and hotspot frame. Its result showed that both absolute plate motion frame had strong correlation with fast polarization direction. Strongmore » correlation between the fast polarization direction and the absolute plate motion can be interpreted as the possibility of dominant anisotropy is in the asthenosphere.« less

  4. Right-lateral shear across Iran and kinematic change in the Arabia-Eurasia collision zone

    NASA Astrophysics Data System (ADS)

    Allen, M. B.; Kheirkhah, M.; Emami, M.

    2009-04-01

    New offset determinations for right-lateral strike-slip faults in Iran redefine the kinematics of the Arabia-Eurasia collision. A series of right-lateral strike-slip faults is present across Iran between 48° and 57° E. Fault strikes vary between NW-SE and NNW-SSE. Individual faults west of ~53° E were active in the late Tertiary, but have limited evidence of activity. Faults east of ~53° E are seismically active and/or have geomorphic evidence for Holocene slip. None of the faults affects the GPS-derived regional velocity field, indicating active slip rates are ≤2 mm/yr. We estimate overall slip on these faults from offset geological and geomorphic markers, based on observations from satellite imagery, digital topography, geology maps and our own fieldwork observations, and combine these results with published estimates for fault slip in the east of the study area. Total offset of the Takab, Soltanieh, Indes, Bid Hand, Qom, Kashan, Deh Shir, Anar, Daviran, Kuh Banan and Dehu faults is at least 270 km and possibly higher. Other faults (e.g. Rafsanjan) have unknown amounts of right-lateral slip. Collectively, these faults are inferred to have accommodated part of the Arabia-Eurasia convergence by two mechanisms: (1) anti-clockwise, vertical axis rotations; (2) strain partitioning with coeval NE-SW crustal thickening in the Turkish-Iranian plateau to produce ~350 km of north-south plate convergence. The strike-slip faulting across Iran requires along-strike lengthening of the deformation zone. This was possible until the Pliocene, when the Afghan crust collided with the western margin of the Indian plate, thereby sealing off a free face at the eastern side of the Arabia-Eurasia collision zone. Continuing Arabia-Eurasia plate convergence had to be accommodated in new ways and new areas, leading to the present pattern of faulting from eastern Iran to western Turkey.

  5. Miocene burial and exhumation of the India-Asia collision zone in southern Tibet: response to slab dynamics and erosion

    Carrapa, Barbara; Orme, D.A.; DeCelles, Peter G.; Kapp, Paul; Cosca, Michael A.; Waldrip, R.

    2014-01-01

    The India-Asia collision zone in southern Tibet preserves a record of geodynamic and erosional processes following intercontinental collision. Apatite fission-track and zircon and apatite (U-Th)/He data from the Oligocene–Miocene Kailas Formation, within the India-Asia collision zone, show a synchronous cooling signal at 17 ± 1 Ma, which is younger than the ca. 26–21 Ma depositional age of the Kailas Formation, constrained by U-Pb and 40Ar/39Ar geochronology, and requires heating (burial) after ca. 21 Ma and subsequent rapid exhumation. Data from the Gangdese batholith underlying the Kailas Formation also indicate Miocene exhumation. The thermal history of the Kailas Formation is consistent with rapid subsidence during a short-lived phase of early Miocene extension followed by uplift and exhumation driven by rollback and northward underthrusting of the Indian plate, respectively. Significant removal of material from the India-Asia collision zone was likely facilitated by efficient incision of the paleo–Indus River and paleo–Yarlung River in response to drainage reorganization and/or intensification of the Asian monsoon.

  6. Earthquake hazard assessment in the Zagros Orogenic Belt of Iran using a fuzzy rule-based model

    NASA Astrophysics Data System (ADS)

    Farahi Ghasre Aboonasr, Sedigheh; Zamani, Ahmad; Razavipour, Fatemeh; Boostani, Reza

    2017-08-01

    Producing accurate seismic hazard map and predicting hazardous areas is necessary for risk mitigation strategies. In this paper, a fuzzy logic inference system is utilized to estimate the earthquake potential and seismic zoning of Zagros Orogenic Belt. In addition to the interpretability, fuzzy predictors can capture both nonlinearity and chaotic behavior of data, where the number of data is limited. In this paper, earthquake pattern in the Zagros has been assessed for the intervals of 10 and 50 years using fuzzy rule-based model. The Molchan statistical procedure has been used to show that our forecasting model is reliable. The earthquake hazard maps for this area reveal some remarkable features that cannot be observed on the conventional maps. Regarding our achievements, some areas in the southern (Bandar Abbas), southwestern (Bandar Kangan) and western (Kermanshah) parts of Iran display high earthquake severity even though they are geographically far apart.

  7. Non-cylindrical fold growth in the Zagros fold and thrust belt (Kurdistan, NE-Iraq)

    NASA Astrophysics Data System (ADS)

    Bartl, Nikolaus; Bretis, Bernhard; Grasemann, Bernhard; Lockhart, Duncan

    2010-05-01

    The Zagros mountains extends over 1800 km from Kurdistan in N-Iraq to the Strait of Hormuz in Iran and is one of the world most promising regions for the future hydrocarbon exploration. The Zagros Mountains started to form as a result of the collision between the Eurasian and Arabian Plates, whose convergence began in the Late Cretaceous as part of the Alpine-Himalayan orogenic system. Geodetic and seismological data document that both plates are still converging and that the fold and thrust belt of the Zagros is actively growing. Extensive hydrocarbon exploration mainly focuses on the antiforms of this fold and thrust belt and therefore the growth history of the folds is of great importance. This work investigates by means of structural field work and quantitative geomorphological techniques the progressive fold growth of the Permam, Bana Bawi- and Safeen- Anticlines located in the NE of the city of Erbil in the Kurdistan region of Northern Iraq. This part of the Zagros fold and thrust belt belongs to the so-called Simply Folded Belt, which is dominated by gentle to open folding. Faults or fault related folds have only minor importance. The mechanical anisotropy of the formations consisting of a succession of relatively competent (massive dolomite and limestone) and incompetent (claystone and siltstone) sediments essentially controls the deformation pattern with open to gentle parallel folding of the competent layers and flexural flow folding of the incompetent layers. The characteristic wavelength of the fold trains is around 10 km. Due to faster erosion of the softer rock layers in the folded sequence, the more competent lithologies form sharp ridges with steeply sloping sides along the eroded flanks of the anticlines. Using an ASTER digital elevation model in combination with geological field data we quantified 250 drainage basins along the different limbs of the subcylindrical Permam, Bana Bawi- and Safeen- Anticlines. Geomorphological indices of the drainage

  8. Role of Neogene Exhumation and Sedimentation on Critical-Wedge Kinematics in the Zagros Orogenic Belt, Northeastern Iraq, Kurdistan

    NASA Astrophysics Data System (ADS)

    Koshnaw, R. I.; Horton, B. K.; Stockli, D. F.; Barber, D. E.; Tamar-Agha, M. Y.; Kendall, J. J.

    2014-12-01

    The Zagros orogenic belt and foreland basin formed during the Cenozoic Arabia-Eurasia collision, but the precise histories of shortening and sediment accumulation remain ambiguous, especially at the NW extent of the fold-thrust belt in Iraqi Kurdistan. This region is characterized by well-preserved successions of Cenozoic clastic foreland-basin fill and deformed Paleozoic-Mesozoic hinterland bedrock. The study area provides an excellent opportunity to investigate the linkage between orogenic wedge behavior and surface processes of erosion and deposition. The aim of this research is to test whether the Zagros orogenic wedge advanced steadily under critical to supercritical wedge conditions involving in-sequence thrusting with minimal erosion or propagated intermittently under subcritical condition involving out-of-sequence deformation with intense erosion. These endmember modes of mountain building can be assessed by integrating geo/thermochronologic and basin analyses techniques, including apatite (U-Th)/He thermochronology, detrital zircon U-Pb geochronology, stratigraphic synthesis, and seismic interpretations. Preliminary apatite (U-Th)/He data indicate activation of the Main Zagros Fault (MZF) at ~10 Ma with frontal thrusts initiating at ~8 Ma. However, thermochronometric results from the intervening Mountain Front Flexure (MFF), located between the MZF and the frontal thrusts, suggest rapid exhumation at ~6 Ma. These results suggest that the MFF, represented by the thrust-cored Qaradagh anticline, represents a major episode of out-of-sequence deformation. Detrital zircon U-Pb analyses from the Neogene foreland-basin deposits show continuous sediment derivation from sources to the NNE in Iraq and western Iran, suggesting that out-of-sequence thrusting did not significantly alter sedimentary provenance. Rather, intense hinterland erosion and recycling of older foreland-basin fill dominated sediment delivery to the basin. The irregular distribution of

  9. Late Eocene Inversion and Exhumation of the Sivas Basin (Central Anatolia) Based On Low-Temperature Thermochronometry: Implications for Diachronous Initiation of Arabia-Eurasia Collision

    NASA Astrophysics Data System (ADS)

    Darin, M. H.; Umhoefer, P. J.; Thomson, S. N.; Schleiffarth, W. K.

    2017-12-01

    The timing of initial Arabia-Eurasia collision along the Bitlis-Zagros suture is controversial, with widely varying estimates from middle Eocene to late Miocene ( 45-10 Ma). The Cenozoic Sivas Basin (central Anatolia) preserves a detailed record of the initial stages of Arabia collision directly north of the suture in the Eurasian foreland. New apatite fission track and (U-Th)/He thermochronology data from Late Cretaceous to Paleogene units indicate rapid basin inversion and initiation of the north-vergent Southern Sivas Fold and Thrust Belt (SSFTB) during the late Eocene to early Oligocene ( 40-30 Ma), consistent with the age of a basin-wide unconformity and switch from marine to nonmarine sedimentation. We interpret late Eocene exhumation and the predominantly north-vergent kinematics of the SSFTB to reflect northward propagation of contraction into the Sivas retro-foreland basin due to initial collision of the Arabian passive margin with the Anatolide-Tauride block along the southern Eurasian margin during the late middle Eocene. We test this hypothesis by comparing our new results with regional-scale compilations of both published thermochronology and geochronology data from the entire Arabia-Eurasia collision zone. Low-temperature thermochronology data from eastern Anatolia, the Caucasus, Zagros, and Alborz demonstrate that rapid cooling and intraplate deformation occurred across much of the Eurasian foreland during the middle Eocene to early Oligocene ( 45-30 Ma). Our regional compilation of published geochronology data from central and eastern Anatolia reveals a distinct magmatic lull during the latest Eocene, Oligocene, and earliest Miocene (ca. 38-20 Ma), slightly earlier than a diachronous magmatic lull initiating at 25-5 Ma from northwest to southeast in Iran (Chiu et al., 2013). These results support a tectonic model for diachronous collision in which initial collision of the Arabia promontory occurred in central-eastern Anatolia during the middle

  10. Collision tectonics of the Central Indian Suture zone as inferred from a deep seismic sounding study

    Mall, D.M.; Reddy, P.R.; Mooney, W.D.

    2008-01-01

    The Central Indian Suture (CIS) is a mega-shear zone extending for hundreds of kilometers across central India. Reprocessing of deep seismic reflection data acquired across the CIS was carried out using workstation-based commercial software. The data distinctly indicate different reflectivity characteristics northwest and southeast of the CIS. Reflections northwest of the CIS predominantly dip southward, while the reflection horizons southeast of the CIS dip northward. We interpret these two adjacent seismic fabric domains, dipping towards each other, to represent a suture between two crustal blocks. The CIS itself is not imaged as a sharp boundary, probably due to the disturbed character of the crust in a 20 to 30-km-wide zone. The time sections also show the presence of strong bands of reflectors covering the entire crustal column in the first 65??km of the northwestern portion of the profile. These reflections predominantly dip northward creating a domal structure with the apex around 30??km northwest of the CIS. There are a very few reflections in the upper 2-2.5??s two-way time (TWT), but the reflectivity is good below 2.5??s TWT. The reflection Moho, taken as the depth to the deepest set of reflections, varies in depth from 41 to 46??km and is imaged sporadically across the profile with the largest amplitude occurring in the northwest. We interpret these data as recording the presence of a mid-Proterozoic collision between two micro-continents, with the Satpura Mobile Belt being thrust over the Bastar craton. ?? 2008.

  11. Tomography of the upper mantle beneath the African/Iberian collision zone

    NASA Astrophysics Data System (ADS)

    Mickael, B.; Nolet, G.; Villasenor, A.; Josep, G.; Thomas, C.

    2013-12-01

    During Cenozoic, geodynamics of the western Mediterranean domain has been characterized by a complex history of subduction of Mesozoic oceanic lithosphere. The final stage of these processes is proposed to have led to the development of the Calabria and Gibraltar arcs, whose formation is still under debate. In this study we take advantage of the dense broadband-station networks now available in Alborán Sea region, to develop a high-resolution 3D tomographic P velocity model of the upper mantle beneath the African/Iberian collision zone that will bring new constraints on the past dynamics of this zone. The model is based on 13200 teleseismic arrival times recorded between 2008 and 2012 at 279 stations for which cross-correlation delays are measured with a new technique in different frequency bands centered between 0.03 and 1.0 Hz, and interpreted using multiple frequency tomography. Our model shows, beneath Alborán Sea, a strong (~ 4%) fast vertically dipping anomaly observed to at least 650 km depth. The arched shape of this anomaly and its extent at depth are coherent with a lithospheric slab, thus favoring the hypothesis of a westward consumption of the Ligurian ocean slab by roll-back during Cenozoic. In addition to this fast anomaly in the deep upper-mantle, several high intensity slow anomalies are widely observed in the lithosphere and asthenosphere beneath Morocco and southern Spain. These anomalies are correlated at surface with the position of the orogens (Rif and Atlas) and with Cenozoic volcanic fields. We thus confirm the presence, beneath Morocco, of an anomalous (hot) upper mantle, with piece of evidence for a lateral connection with the Canary volcanic islands, likely indicating a lateral spreading of the Canary plume to the east.

  12. Different stages of collision zones on examples of Gujarat province (India) and Caucasus

    NASA Astrophysics Data System (ADS)

    Zabelina, Irina; Koulakov, Ivan; Ranjan Kayal, Jnana; Pratap Singh, Ajay; Kumar, Santosh; Kukarina, Ekaterina; Amanatashvili, Iason

    2016-04-01

    initiation of a new collision zone. For the tomography inversion of the Kachchh region we selected the data of 4105 earthquakes with arrival times 29660 P and 30278 S waves. Based on the obtained seismic anomalies, we identify the left-lateral displacement to approximately 70 km along a hidden fault. We suggest that this fault can be associated with a series of ridges having the SW-NE direction, which are clearly seen on the bathymetry of the Indian Ocean bottom. Northwards displacement of the Indo-Australian Plate and contraction with Asia causes strong compression deformations in the broad areas of the Indian Plate. The curved geometry of the western boundary of the Indo-Australian plate and orientations of the fracture zones presume both shear and compressional displacements along faults. The presence of both thrust and strike-slip mechanisms of earthquakes in the Kachchh province may support the existence of such combined deformations leading to initiation of a new collision belt.

  13. Tomography of the upper mantle beneath the African/Iberian collision zone

    NASA Astrophysics Data System (ADS)

    Bonnin, Mickael; Nolet, Guust; Thomas, Christine; Villaseñor, Antonio; Gallart, Josep; Levander, Alan

    2013-04-01

    In this study we take advantage of the dense broadband-station networks available in western Mediterranean region (IberArray, PICASSO and MOROCCO-MUENSTER networks) to develop a high-resolution 3D tomographic P velocity model of the upper mantle beneath the African/Iberian collision zone. This model is based on teleseismic arrival times recorded between 2008 and 2012 for which cross-correlation delays are measured with a new technique in different frequency bands centered between 0.03 and 1.0 Hz, and interpreted using multiple frequency tomography. Such a tomography is required to scrutinize the nature and extent of the thermal anomalies inferred beneath Northern Africa, especially in the Atlas ranges region and associated to sparse volcanic activities. Tomography is notably needed to help in determining the hypothetical connection between those hot anomalies and the Canary Island hotspot as proposed by geochemistry studies. It also provides new insights on the geometry of the subducting slab previously inferred from tomography, GPS measurements or shear-wave splitting patterns beneath the Alboran Sea and the Betic ranges and is indispensable for deciphering the complex geodynamic history of the Western Mediterranean region. We shall present the overall statistics of the delays, their geographical distribution, as well as the first inversion results.

  14. Depositional characteristics of the Indus Group in the India-Asia collision zone, northwest India

    NASA Astrophysics Data System (ADS)

    Bhattacharya, G.; Robinson, D.; Orme, D. A.; Najman, Y.; Khanolkar, S.

    2017-12-01

    The Indus Group in northwest India are synorogenic sedimentary rocks deposited within the Indus-Yarlung Suture Zone between 50-6 Ma in an intermontane basin, and record the tectono-depositional history of the Indus basin following the India-Asia plate collision at 60-50 Ma. Controversy surrounds the provenance and timing of deposition of two major Indus Group formations, the Basgo and Temesgam formations. Researchers argue between an Asian or Indian origin and whether these formations are Maastrichtian-Early Eocene or Late Oligocene in age. In the central Ladakh region in northwest India, the Zanskar Gorge bisects the Indus Group. Thus, Zanskar Gorge section is well-studied with measured sections, point counting, illite crystallinity, apatite fission track, Ar-Ar detrital white mica and U-Pb detrital zircon ages. In eastern Ladakh, works on the Indus Group are fewer. The purpose of this study is to document both the Basgo and Temesgam formations in the Indus Group along four sections in eastern Ladakh and, if possible, correlate the results to the Zanskar Gorge section. The four sections are the Domkhar-Skurbuchan, Skinning-Khalsi, Temesgam-Nurla and Likir-Taruche sections. Measured sections, conglomerate clast counts and sandstone point counting analyses assess the facies characteristics and provenance of the Indus Group. The results of these data will be presented. Interpretation of the provenance as it applies to these data will be discussed.

  15. High-pressure/low-temperature metamorphism in the collision zone between the Chilenia and Cuyania microcontinents (western Precordillera, Argentina)

    NASA Astrophysics Data System (ADS)

    Boedo, F. L.; Willner, A. P.; Vujovich, G. I.; Massonne, H.-J.

    2016-12-01

    In central-western Argentina, an Early Paleozoic belt including mafic-ultramafic bodies, marine metasedimentary rocks and high-pressure rocks occur along the western margin of the Precordillera and in the Frontal Cordillera. First pressure-temperature estimates are presented here for low-grade rocks of the southern sector of this belt based on two metasedimentary and one metabasaltic sample from the Peñasco Formation. Peak metamorphic conditions resulted within the range of 345-395 °C and 7.0-9.3 kbar within the high-pressure greenschist facies. The corresponding low metamorphic gradient of 13 °C/km is comparable with subduction related geothermal gradients. Comparison between these results and data from other localities of the same collision zone (Guarguaraz and Colohuincul complexes) confirms a collision between Chilenia and the composite margin of western Gondwana and suggests a stronger crustal thickening in the south of the belt, causing exhumation of more deeply buried sequences. During the Early Paleozoic a long-lived marine sedimentation coupled with the intrusion of MORB-like basalts occurred along a stable margin before the collision event. This contrasts with the almost contemporaneous sedimentation registered during accretion in accretionary prism settings and additionally proves the development of a collision zone along western Precordillera and the eastern Frontal Cordillera as well as the existence of Chilenia as a separate microcontinent.

  16. Crustal structure of the Izu Collision zone, central Japan, revealed by dense seismic array observations

    NASA Astrophysics Data System (ADS)

    Kurashimo, E.; Sato, H.; Abe, S.; Kato, N.; Ishikawa, M.; Obara, K.

    2009-12-01

    In central Japan, the Philippine Sea Plate (PSP) subducts beneath the Tokyo Metropolitan area, the Kanto region. In western Kanto region, the Izu-Bonin arc (IBA) within the PSP has been colliding from the south with the Honshu arc, forming a complex structure called the Izu-Collision zone (ICZ). Several active faults were formed in and around the ICZ. The geometry of the subducting PSP and the overlying crustal structure of the ICZ are important to constrain the process of earthquake occurrence and the crustal evolution process associated with arc-arc collision. Recent seismic experiments reveal the geometry of the subducting PSP beneath the Kanto region (Sato et al., 2005). The Japanese islands, including the ICZ, are covered with dense arrays of permanent seismic stations, which provide good constraints on velocity structures by a tomographic method. Such studies reveal a general picture of the lithospheric structure such as a descending plate configuration (e.g. Matsubara et al., 2008). However, since an average spacing of the permanent station is typically 20 km, a detailed structure in the upper crust, which is imperative for an understanding of the active tectonics, cannot be well constrained by permanent array alone. Two dense seismic array observations were conducted to obtain a structural image beneath the ICZ. One is a 40-km-long line (EW-line) located in the northern part of the ICZ and the other is a 55-km-long line (NS-line) located in the central part of the ICZ. Seventy-five 3-component portable seismographs were deployed on EW-line with 500 to 700 m interval and waveforms were recorded during a four-month period from October, 2008. Forty 3-component portable seismographs were deployed on NS-line with about 1 km spacing and waveforms were recorded during the three month period from January, 2006. In order to obtain a high-resolution velocity model, a well-controlled hypocenter is essential. Due to this, we combined the seismic array data with

  17. Crustal Deformation in the India-Eurasia Collision Zone From 25 Years of GPS Measurements

    NASA Astrophysics Data System (ADS)

    Zheng, Gang; Wang, Hua; Wright, Tim J.; Lou, Yidong; Zhang, Rui; Zhang, Weixing; Shi, Chuang; Huang, Jinfang; Wei, Na

    2017-11-01

    The India-Eurasia collision zone is the largest deforming region on the planet; direct measurements of present-day deformation from Global Positioning System (GPS) have the potential to discriminate between competing models of continental tectonics. But the increasing spatial resolution and accuracy of observations have only led to increasingly complex realizations of competing models. Here we present the most complete, accurate, and up-to-date velocity field for India-Eurasia available, comprising 2576 velocities measured during 1991-2015. The core of our velocity field is from the Crustal Movement Observation Network of China-I/II: 27 continuous stations observed since 1999; 56 campaign stations observed annually during 1998-2007; 1000 campaign stations observed in 1999, 2001, 2004, and 2007; 260 continuous stations operating since late 2010; and 2000 campaign stations observed in 2009, 2011, 2013, and 2015. We process these data and combine the solutions in a consistent reference frame with stations from the Global Strain Rate Model compilation, then invert for continuous velocity and strain rate fields. We update geodetic slip rates for the major faults (some vary along strike), and find that those along the major Tibetan strike-slip faults are in good agreement with recent geological estimates. The velocity field shows several large undeforming areas, strain focused around some major faults, areas of diffuse strain, and dilation of the high plateau. We suggest that a new generation of dynamic models incorporating strength variations and strain-weakening mechanisms is required to explain the key observations. Seismic hazard in much of the region is elevated, not just near the major faults.

  18. Crustal structure and tectonics of the Hidaka Collision Zone, Hokkaido (Japan), revealed by vibroseis seismic reflection and gravity surveys

    NASA Astrophysics Data System (ADS)

    Arita, Kazunori; Ikawa, Takashi; Ito, Tanio; Yamamoto, Akihiko; Saito, Matsuhiko; Nishida, Yasunori; Satoh, Hideyuki; Kimura, Gaku; Watanabe, Teruo; Ikawa, Takeshi; Kuroda, Toru

    1998-05-01

    This study is the first integrated geological and geophysical investigation of the Hidaka Collision Zone in southern Central Hokkaido, Japan, which shows complex collision tectonics with a westward vergence. The Hidaka Collision Zone consists of the Idon'nappu Belt (IB), the Poroshiri Ophiolite Belt (POB) and the Hidaka Metamorphic Belt (HMB) with the Hidaka Belt from west to east. The POB (metamorphosed ophiolites) is overthrust by the HMB (steeply eastward-dipping palaeo-arc crust) along the Hidaka Main Thrust (HMT), and in turn, thrusts over the Idon'nappu Belt (melanges) along the Hidaka Western Thrust (HWT). Seismic reflection and gravity surveys along a 20-km-long traverse across the southern Hidaka Mountains revealed hitherto unknown crustal structures of the collision zone such as listric thrusts, back thrusts, frontal thrust-and-fold structures, and duplex structures. The main findings are as follows. (1) The HMT, which dips steeply at the surface, is a listric fault dipping gently at a depth of ˜7 km beneath the eastern end of the HMB, and cutting across the lithological boundaries and schistosity of the Hidaka metamorphic rocks. (2) A second reflector is detected 1 km below the HMT reflector. The intervening part between these two reflectors is inferred to be the POB, which is only little exposed at the surface. This inference is supported by the high positive Bouguer anomalies along the Hidaka Mountains. (3) The shallow portion of the IB at the front of the collision zone has a number of NNE-dipping reflectors, indicative of imbricated fold-and-thrust structures. (4) Subhorizontal reflectors at a depth of 14 km are recognized intermittently at both sides of the seismic profile. These reflectors may correspond to the velocity boundary (5.9-6.6 km/s) previously obtained from seismic refraction profiling in the northern Hidaka Mountains. (5) These crustal structures as well as the back thrust found in the eastern end of the traverse represent

  19. Insights on the lithospheric structure of the Zagros mountain belt from seismological data analysis

    NASA Astrophysics Data System (ADS)

    Paul, A.; Kaviani, A.; Vergne, J.; Hatzfeld, D.; Mokhtari, M.

    2003-04-01

    As part of a French-Iranian collaboration, we installed a temporary seismological network across the Zagros for 4.5 months in 2000-2001 to investigate the lithospheric structure of the mountain belt. The network included 65 stations located along a 600-km long line (average spacing of ˜10 km) from the coast of the Persian Gulf to the stable block of Central Iran. A migrated depth cross-section computed from radial receiver functions displays clear P-to-S conversions at the Moho beneath most of the profile. The average Moho depth is 45 to 50 km beneath the folded belt. It deepens rather abruptly beneath the suture zone of the MZT (Main Zagros Thrust) and the Sanandaj-Sirjan (SS) metamorphic zone. The maximum crustal thickness of ˜65 km is reached 50 km NE of the surface trace of the MZT. The region of over-thickened crust is shifted to the NE with respect to the areas of highest elevations and the strongest negative Bouguer anomaly. To the NE, the crust of the block of Central Iran is 40-km thick on average. Two patches of Ps converted energy can be seen below the Moho in the northern half of the transect that cannot be attributed to multiple reflections. Teleseismic P residual travel time curves display lateral variations as large as 1.5 s with both long (faster arrivals in the SW than in the NE) and short-scale variations (in the MZT region). They were inverted for variations of P wave velocity with the ACH technique. The crustal layer exhibits rather strong lateral variations of Vp with lower velocities under the MZT and the Urumieh-Dokhtar magmatic assemblage, and faster velocities under the SS zone. In the mantle, a clear difference appears between the faster P wave velocities of the Arabian craton and the relatively lower velocities of the mantle of Central Iran.

  20. Geology of the d'Entrecasteaux-New Hebrides arc collision zone: results from a deep submersible survey

    Collot, J.-Y.; Lallemand, S.; Pelletier, B.; Bissen, J.-P.; Glacon, G.; Fisher, M.A.; Greene, H. Gary; Boulin, J.; Daniel, J.; Monzier, M.

    1992-01-01

    During the SUBPSO1 cruise, seven submersible dives were conducted between water depths of 5350 and 900 m over the collision zone between the New Hebrides island arc and the d'Entrecasteaux Zone (DEZ). The DEZ, a topographic high on the Australian plate, encompasses the North d'Entrecasteaux Ridge (NDR) and the Bougainville guyot, both of which collide with the island-are slope. In this report we use diving observations and samples, as well as dredging results, to analyse the geology of the Bougainville guyot and the outer arc slope in the DEZ-arc collision zone, and to decipher the mechanisms of scamount subduction. These data indicate that the Bougainville guyot is a middle Eocene island arc volcano capped with reef limestones that appear to have been deposited during the Late Oligocene to Early Miocene and in Miocene-Pliocene times. This guyot possibly emerged during the Middle and Late Miocene, and started to sink in the New Hebrides trench after the Pliocene. The rocks of the New Hebrides arc slope, in the collision zone, consist primarily of Pliocene-Recent volcaniclastic rocks derived from the arc, and underlying fractured island-arc volcanic basement, possibly of Late Miocene age. However, highly sheared, Upper Oligocene to Lower Miocene nannofossil ooze and chalk are exposed at the toe of the arc slope against the northern flank of the NDR. Based on a comparison with cores collected at DSDP Site 286, the ooze and chalk can be interpreted as sediments accreted from the downgoing plate. East of the Bougainville guyot an antiform that developed in the arc slope as a consequence of the collision reveals a 500-m-thick wedge of strongly tectonized rocks, possibly accreted from the guyot or an already subducted seamount. The wedge that is overlain by less deformed volcaniclastic island-arc rocks and sediments includes imbricated layers of Late Oligocene to Early Miocene reef and micritic limestones. This wedge, which develops against the leading flank of the guyot

  1. Mediterranean extension and the Africa-Eurasia collision

    NASA Astrophysics Data System (ADS)

    Jolivet, Laurent; Faccenna, Claudio

    2000-12-01

    A number of tectonic events occurred contemporaneously in the Mediterranean region and the Middle East 30-25 Myr ago. These events are contemporaneous to or immediately followed a strong reduction of the northward absolute motion of Africa. Geological observations in the Neogene extensional basins of the Mediterranean region reveal that extension started synchronously from west to east 30-25 Myr ago. In the western Mediterranean it started in the Gulf of Lion, Valencia trough, and Alboran Sea as well as between the Maures massif and Corsica between 33 and 27 Ma ago. It then propagated eastward and southward to form to Liguro-Provençal basin and the Tyrrhenian Sea. In the eastern Mediterranean, extension started in the Aegean Sea before the deposition of marine sediments onto the collapsed Hellenides in the Aquitanian and before the cooling of high-temperature metamorphic core complexes between 20 and 25 Ma. Foundering of the inner zones of the Carpathians and extension in the Panonnian basin also started in the late Oligocene-early Miocene. The body of the Afro-Arabian plate first collided with Eurasia in the eastern Mediterranean region progressively from the Eocene to the Oligocene. Extensional tectonics was first recorded in the Gulf of Aden, Afar triple junction, and Red Sea region also in the Oligocene. A general magmatic surge occurred above all African hot spots, especially the Afar one. We explore the possibility that these drastic changes in the stress regime of the Mediterranean region and Middle East and the contemporaneous volcanic event were triggerred by the Africa/Arabia-Eurasia collision, which slowed down the motion of Africa. The present-day Mediterranean Sea was then locked between two collision zones, and the velocity of retreat of the African slab increased and became larger than the velocity of convergence leading to backarc extension. East of the Caucasus and northern Zagros collision zone the Afro-Arabian plate was still pulled by the slab

  2. Zagros Mountains, Iran, SRTM Shaded Relief Anaglyph

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Zagros Mountains in Iran offer a visually stunning topographic display of geologic structure in layered sedimentary rocks. This scene is nearly 100 kilometers (62 miles) wide but is only a small part of similar terrain that covers much of southern Iran. This area is actively undergoing crustal shortening, as global tectonics moves Arabia toward Asia. Consequently, layers of sedimentary rock are folding much like a carpet will fold if pushed. The convex upward folds create structures called anticlines, which are prominently seen here. The convex downward folds (between the anticlines) create structures called synclines, which are mostly buried and hidden by sediments eroding off the anticlines. Layers having differing erosional resistance create distinctive patterns, often sawtooth triangular facets, that encircle the anticlines. Local relief between the higher mountain ridges and their intervening valleys is about 1,200 meters (about 4,000 feet).

    Salt extrusions and salt 'glaciers' are another set of geologic features readily evident in the topography. Salt deposits, likely created by the evaporation of an ancient inland sea, were buried by the sediments that now make up the layers of the anticlines and synclines. But salt is less dense than most other rocks, so it tends to migrate upward through Earth's crust in vertical columns called 'diapirs'. The compressive folding process has probably facilitated the formation of these diapirs, and the diapirs, in turn, are probably enhancing some anticlines by 'inflating' them with salt. Where the diapirs reach the surface, the salt extrudes, much like lava from a volcano, and the salt flows. Two prominent salt flows are evident in the same valley, leaking from neighboring anticlines, just north of the scene center.

    This anaglyph was created by deriving a shaded relief image from the SRTM data, draping it back over the SRTM elevation model, and then generating two differing perspectives, one for each eye

  3. Zagros Mountains, Iran, SRTM Shaded Relief

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Zagros Mountains in Iran offer a visually stunning topographic display of geologic structure in layered sedimentary rocks. This scene is nearly 100 kilometers (62 miles) wide but is only a small part of similar terrain that covers much of southern Iran. This area is actively undergoing crustal shortening, as global tectonics moves Arabia toward Asia. Consequently, layers of sedimentary rock are folding much like a carpet will fold if pushed. The convex upward folds create structures called anticlines, which are prominently seen here. The convex downward folds (between the anticlines) create structures called synclines, which are mostly buried and hidden by sediments eroding off the anticlines. Layers having differing erosional resistance create distinctive patterns, often sawtooth triangular facets, that encircle the anticlines. Local relief between the higher mountain ridges and their intervening valleys is about 1200 meters (about 4000 feet).

    Salt extrusions and salt 'glaciers' are another set of geologic features readily evident in the topography. Salt deposits, likely created by the evaporation of an ancient inland sea, were buried by the sediments that now make up the layers of the anticlines and synclines. But salt is less dense than most other rocks, so it tends to migrate upward through Earth's crust in vertical columns called 'diapirs'. The compressive folding process has probably facilitated the formation of these diapirs, and the diapirs, in turn, are probably enhancing some anticlines by 'inflating' them with salt. Where the diapirs reach the surface, the salt extrudes, much like lava from a volcano, and the salt flows. Two prominent salt flows are evident in the same valley, leaking from neighboring anticlines, just north of the scene center.

    This shaded relief image was created directly from an SRTM elevation model by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear

  4. A combined magnetometry and gravity study across Zagros orogeny in Iran

    NASA Astrophysics Data System (ADS)

    Abedi, Maysam; Oskooi, Behrooz

    2015-11-01

    In this work, the structural geology and the tectonic conditions of the Zagros orogeny along the route of Qom to Kermanshah cities were investigated using the combined geophysical methods of the airborne magnetometry and the ground-based gravity data. Airborne magnetometry data of Iran with a line space of survey, 7.5 km, were used to model the magnetic susceptibility property along the route. At first, the airborne magnetic data were stably 500-m downward continued to the ground surface in order to enhance minor changes of the Earth's magnetic field over the studied region. Afterward, 3D inverse modeling of the magnetic data was implemented to the downward continued data, and subsequently the section of magnetic susceptibility variation along the desired route was extracted and imaged at depth. The acquired model could appropriately predict the observed magnetic data, showing low misfit values between the observation and the predicted data. The analytic signal filter was applied to the reduced-to-pole (RTP) magnetic data leading to the determination of the active and probable hidden faults in the structural zones of the Zagros, such as Sanandaj-Sirjan, Central Domain (CD) and Urumieh-Dokhtar based upon the generated peaks along the profile of analytic signal filter. In addition, the density variations of the subsurface geological layers were determined by 3D inverting of the ground-based gravity data over the whole study area, and extracting this property along the route. The joint models of magnetic susceptibility and density variation could appropriately localize the traces of faults along with the geologically and tectonically structural boundaries in the region. The locations of faults correspond well to the variation of geophysical parameters on the inverted sections. Probable direction, slope and extension at depth of these faults were also determined on the sections, indicating a high tectonized zone of the Sanandaj-Sirjan Zone (SSZ) parallel to the zone of

  5. Paleomagnetic tests of tectonic reconstructions of the India-Asia collision zone

    NASA Astrophysics Data System (ADS)

    Huang, Wentao; Hinsbergen, Douwe J. J.; Lippert, Peter C.; Guo, Zhaojie; Dupont-Nivet, Guillaume

    2015-04-01

    Several solutions have been proposed to explain the long-standing kinematic observation that postcollisional upper crustal shortening within the Himalaya and Asia is much less than the magnitude of India-Asia convergence. Here we implement these hypotheses in global plate reconstructions and test paleolatitudes predicted by the global apparent polar wander path against independent, and the most robust paleomagnetic data. Our tests demonstrate that (1) reconstructed 600-750 km postcollisional intra-Asian shortening is a minimum value; (2) a 52 Ma collision age is only consistent with paleomagnetic data if intra-Asian shortening was ~900 km; a ~56-58 Ma collision age requires greater intra-Asian shortening; (3) collision ages of 34 or 65 Ma incorrectly predict Late Cretaceous and Paleogene paleolatitudes of the Tibetan Himalaya (TH); and (4) Cretaceous counterclockwise rotation of India cannot explain the paleolatitudinal divergence between the TH and India. All hypotheses, regardless of collision age, require major Cretaceous extension within Greater India.

  6. Stress state and movement potential of the Kar-e-Bas fault zone, Fars, Iran

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil; Zafarmand, Bahareh

    2017-08-01

    The Kar-e-Bas or Mengharak basement-inverted fault is comprised of six segments in the Zagros foreland folded belt of Iran. In the Fars region, this fault zone associated with the Kazerun, Sabz-Pushan and Sarvestan faults serves as a lateral transfer zone that accommodates the change in shortening direction from the western central to the eastern Zagros. This study evaluates the recent tectonic stress regime of the Kar-e-Bas fault zone based on inversion of earthquake focal mechanism data, and quantifies the fault movement potential of this zone based on the relationship between fault geometric characteristics and recent tectonic stress regimes. The trend and plunge of σ 1 and σ 3 are S25°W/04°-N31°E/05° and S65°E/04°-N60°W/10°, respectively, with a stress ratio of Φ = 0.83. These results are consistent with the collision direction of the Afro-Arabian continent and the Iranian microcontinent. The near horizontal plunge of maximum and minimum principle stresses and the value of stress ratio Φ indicate that the state of stress is nearly strike-slip dominated with little relative difference between the value of two principal stresses, σ 1 and σ 2. The obliquity of the maximum compressional stress into the fault trend reveals a typical stress partitioning of thrust and strike-slip motion in the Kar-e-Bas fault zone. Analysis of the movement potential of this fault zone shows that its northern segment has a higher potential of fault activity (0.99). The negligible difference between the fault-plane dips of the segments indicates that their strike is a controlling factor in the changes in movement potential.

  7. Stress states in the Zagros fold-and-thrust belt from passive margin to collisional tectonic setting

    NASA Astrophysics Data System (ADS)

    Navabpour, Payman; Barrier, Eric

    2012-12-01

    The present-day Zagros fold-and-thrust belt of SW-Iran corresponds to the former Arabian passive continental margin of the southern Neo-Tethyan basin since the Permian-Triassic rifting, undergoing later collisional deformation in mid-late Cenozoic times. In this paper an overview of brittle tectonics and palaeostress reconstructions of the Zagros fold-and-thrust belt is presented, based on direct stress tensor inversion of fault slip data. The results indicate that, during the Neo-Tethyan oceanic opening, an extensional tectonic regime affectedthe sedimentary cover in Triassic-Jurassic times with an approximately N-S trend of the σ3 axis, oblique to the margin, which was followed by some local changes to a NE-SW trend during Jurassic-Cretaceous times. The stress state significantly changed to thrust setting, with a NE-SW trend of the σ1 axis, and a compressional tectonic regime prevailed during the continental collision and folding of the sedimentary cover in Oligocene-Miocene times. This compression was then followed by a strike-slip stress state with an approximately N-S trend of the σ1 axis, oblique to the belt, during inversion of the inherited extensional basement structures in Pliocene-Recent times. The brittle tectonic reconstructions, therefore, highlighted major changes of the stress state in conjunction with transitions between thin- and thick-skinned structures during different extensional and compressional stages of continental deformation within the oblique divergent and convergent settings, respectively.

  8. Active arc-continent collision: Earthquakes, gravity anomalies, and fault kinematics in the Huon-Finisterre collision zone, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Abers, Geoffrey A.; McCaffrey, Robert

    1994-04-01

    The Huon-Finisterre island arc terrane is actively colliding with the north edge of the Australian continent. The collision provides a rare opportunity to study continental accretion while it occurs. We examine the geometry and kinematics of the collision by comparing earthquake source parameters to surface fault geometries and plate motions, and we constrain the forces active in the collision by comparing topographic loads to gravity anomalies. Waveform inversion is used to constrain focal mechanisms for 21 shallow earthquakes that occurred between 1966 and 1992 (seismic moment 1017 to 3 × 1020 N m). Twelve earthquakes show thrust faulting at 22-37 km depth. The largest thrust events are on the north side of the Huon Peninsula and are consistent with slip on the Ramu-Markham thrust fault zone, the northeast dipping thrust fault system that bounds the Huon-Finisterre terrane. Thus much of the terrane's crust but little of its mantle is presently being added to the Australian continent. The large thrust earthquakes also reveal a plausible mechanism for the uplift of Pleistocene coral terraces on the north side of the Huon Peninsula. Bouguer gravity anomalies are too negative to allow simple regional compensation of topography and require large additional downward forces to depress the lower plate beneath the Huon Peninsula. With such forces, plate configurations are found that are consistent with observed gravity and basin geometry. Other earthquakes give evidence of deformation above and below the Ramu-Markham thrust system. Four thrust events, 22-27 km depth directly below the Ramu-Markham fault outcrop, are too deep to be part of a planar Ramu-Markham thrust system and may connect to the north dipping Highlands thrust system farther south. Two large strike-slip faulting earthquakes and their aftershocks, in 1970 and 1987, show faulting within the upper plate of the thrust system. The inferred fault planes show slip vectors parallel to those on nearby thrust

  9. Seismic Tomography of the Arabian-Eurasian Collision Zone and Surrounding Areas

    DTIC Science & Technology

    2010-05-20

    zone. The crustal models correlate well with geologic and tectonic features. The upper mantle tomograms show the images of the subducted Neotethys...We first obtain Pn and Sn velocities using local and regional arrival time data. Second, we obtain the 3-D crustal P and S velocity models...teleseismic tomography provides a high-resolution, 3-D P-wave velocity model for the crust, upper mantle, and the transition zone. The crustal models

  10. Constraining the strength of megathrusts from fault geometries and application to the Alpine collision zone

    NASA Astrophysics Data System (ADS)

    Dielforder, Armin

    2017-09-01

    Using Coulomb wedge solutions, we show that the effective strength of megathrusts (μb‧) can be determined from the geometry of out-of-sequence thrusts cutting through an accretionary or orogenic wedge. The method is first tested on central Chilean margin for which it yields a frictional strength of μb‧ = 0.053 (+ 0.043 / - 0.024). The inferred value agrees well with previous strength estimates and with the tectonic response of the central Chilean wedge to 2010 Mw 8.8 Maule earthquake. We then use the approach to constrain the strength of the collision megathrust of the central European Alps ∼30-20 million years ago. We find that the collision megathrust had a strength of μb‧ = 0.065 (+ 0.035 / - 0.026), which is similarly low than the strength of subduction megathrusts. The result is integrated into a static force balance model to examine potential implications of a weak megathrust for the Alpine orogeny. The model results suggest that the Alpine megathrust supported a mean maximum elevation of ∼2,000 m and that growth of the wedge up to this elevation supported a switch from contractional to extensional tectonics in the interior of the Alps around 20 Ma. Finally, using the example of the Himalayas, we show how the strength of megathrusts may be also derived from the geometry of crustal ramps, which provides a valuable alternative if details on out-of-sequence thrusts are missing.

  11. Neogene shortening and exhumation of the Zagros fold-thrust belt and foreland basin in the Kurdistan region of northern Iraq

    NASA Astrophysics Data System (ADS)

    Koshnaw, Renas I.; Horton, Brian K.; Stockli, Daniel F.; Barber, Douglas E.; Tamar-Agha, Mazin Y.; Kendall, Jerome J.

    2017-01-01

    The Zagros fold-thrust belt in the Kurdistan region of Iraq encroached southward toward a rapidly subsiding Neogene foreland basin and was later partitioned by out-of-sequence shortening focused along the Mountain Front Flexure (MFF), as defined by new low-temperature thermochronologic, stratigraphic, and provenance results. Apatite (U-Th)/He ages document rapid deformation advance from the Main Zagros Fault to southern frontal structures (Kirkuk, Shakal, and Qamar thrusts) at 10-8 Ma, followed by potential basement-involved out-of-sequence development of the MFF (Qaradagh anticline) by 5 Ma. Distinct shifts in detrital zircon U-Pb provenance signatures for Neogene foreland basin fill provide evidence for drainage reorganization during fold-thrust belt advance. U-Pb age spectra and petrologic data from the Injana (Upper Fars) Formation indicate derivation from a variety of Eurasian, Pan-African, ophiolitic and Mesozoic-Cenozoic volcanic terranes, whereas the Mukdadiya (Lower Bakhtiari) and Bai-Hasan (Upper Bakhtiari) Formations show nearly exclusive derivation from the Paleogene Walash-Naopurdan volcanic complex near the Iraq-Iran border. Such a sharp cutoff in Eurasian, Pan-African, and ophiolitic sources is likely associated with drainage reorganization and tectonic development of the geomorphic barrier formed by the MFF. As a result of Zagros crustal shortening, thickening and loading, the Neogene foreland basin developed and accommodated an abrupt influx of fluvial clastic sediment that contains growth stratal evidence of synkinematic accumulation. The apparent out-of-sequence pattern of upper crustal shortening in the hinterland to foreland zone of Iraqi Kurdistan suggests that structural inheritance and the effects of synorogenic erosion and accumulation are important factors influencing the irregular and episodic nature of orogenic growth in the Zagros.

  12. New Criteria to Assess Seismic and Rock Burst Hazard in Coal Mines / Nowe Kryteria Dla Oceny Zagrożenia Sejsmicznego I Tąpaniami W Kopalniach Węgla Kamiennego

    NASA Astrophysics Data System (ADS)

    Mutke, Grzegorz; Dubiński, Józef; Lurka, Adam

    2015-09-01

    The paper presents new criteria of seismic and rock burst hazard assessment in Polish hard coal mines where longwall mining system is common practice. The presented criteria are based on the results of continuous recording of seismic events and analysis of selected seismological parameters: spatial location of seismic event in relation to mining workings, seismic energy, seismic energy release per unit coal face advance, b-value of Gutenberg-Richter law, seismic energy index EI, seismic moment M0, weighted value of peak particle velocity PPVW. These parameters are determined in a moving daily time windows or time windows with fixed number of seismic tremors. Time changes of these parameters are then compared with mean value estimated in the analyzed area. This is the basis to indicate the zones of high seismic and rock burst hazard in specific moment in time during mining process. Additionally, the zones of high seismic and rock burst hazard are determined by utilization of passive seismic tomography method. All the calculated seismic parameters in moving time windows are used to quantify seismic and rock burst hazard by four level scales. In practice, assessment of seismic and rock burst hazard is used to make daily decision about using rock burst prevention activities and correction of further exploitation of monitored coal panel. Zagrożenie sejsmiczne i związane z nim genetycznie zagrożenie tąpnięciem w dalszym ciągu należą do najgroźniejszych zagrożeń naturalnych występujących w polskich kopalniach węgla kamiennego. W ostatnich latach w kopalniach Górnośląskiego Zagłębia Węglowego (GZW) rocznie rejestrowano 1000÷1500 wstrząsów o energii sejsmicznej Es ≥ 1·105J (magnituda lokalna ML ≥ 1.7), a najsilniejsze z nich osiągały energię Es = 4 ·109J (ML = 4.1). W latach 1991-2010 odnotowano w GZW 101 tąpnięć, z których około 66% miało miejsce w wyrobiskach chodnikowych, powodując ich uszkodzenia lub całkowite zniszczenie, a w

  13. Gastric marginal zone lymphoma of mucosa-associated lymphoid tissue and signet ring cell carcinoma, synchronous collision tumour of the stomach: a case report.

    PubMed

    George, Smiley Annie; Junaid, T A

    2014-01-01

    To report a rare case of synchronous marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT) signet ring cell carcinoma occurring as a collision tumour in the stomach. A 53-year-old man was diagnosed initially with signet ring cell carcinoma of the stomach. The microscopy of the subsequent total gastrectomy revealed a collision tumour of MALT lymphoma and signet ring cell carcinoma associated with Helicobacter pylori gastritis. This case highlighted the importance of a careful evaluation of the accompanying lymphoid population in the biopsy samples of gastric adenocarcinoma and underlined the need for multiple endoscopic biopsies to detect these rare synchronous tumours. © 2013 S. Karger AG, Basel.

  14. Gastric Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue and Signet Ring Cell Carcinoma, Synchronous Collision Tumour of the Stomach: A Case Report

    PubMed Central

    George, Smiley Annie; Junaid, T.A.

    2014-01-01

    Objective To report a rare case of synchronous marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT) signet ring cell carcinoma occurring as a collision tumour in the stomach. Clinical Presentation and Intervention A 53-year-old man was diagnosed initially with signet ring cell carcinoma of the stomach. The microscopy of the subsequent total gastrectomy revealed a collision tumour of MALT lymphoma and signet ring cell carcinoma associated with Helicobacter pylori gastritis. Conclusion This case highlighted the importance of a careful evaluation of the accompanying lymphoid population in the biopsy samples of gastric adenocarcinoma and underlined the need for multiple endoscopic biopsies to detect these rare synchronous tumours. PMID:24247357

  15. Yakataga fold-and-thrust belt: Structural geometry and tectonic implications of a small continental collision zone

    NASA Astrophysics Data System (ADS)

    Wallace, Wesley K.

    Collision of the Yakutat terrane with southern Alaska created a collisional fold-and-thrust belt along the Pacific-North America plate boundary. This southerner fold-and-thrust belt formed within continental sedimentary rocks but with the seaward vergence and tectonic position typical of an accretionary wedge. Northward exposure of progressively older rocks reflects that the fold-and-thrust belt forms a southward-tapered orogenic wedge that increases northward in structural relief and depth of erosion. Narrow, sharp anticlines separate wider, flat-bottomed synclines. Relatively steep thrust faults commonly cut the forelimbs of anticlines. Fold shortening and fault displacement both generally increase northward, whereas fault dip generally decreases northward. The coal-bearing lower part of the sedimentary section serves as a detachment for both folds and thrust faults. The folded and faulted sedimentary section defines a regional south dip of about 8°. The structural relief combined with the low magnitude of shortening of the sedimentary section suggest that the underlying basement is structurally thickened. I propose a new interpretation in which this thickening was accommodated by a passive-roof duplex with basement horses that are separated from the overlying folded and thrust-faulted sedimentary cover by a roof thrust with a backthrust sense of motion. Basement horses are ˜7 km thick, based on the thickness between the inferred roof thrust and the top of the basement in offshore seismic reflection data. This thickness is consistent with the depth of the zone of seismicity onshore. The inferred zone of detachment and imbrication of basement corresponds with the area of surface exposure of the fold-and-thrust belt within the Yakutat terrane and with the Wrangell subduction zone and arc farther landward. By contrast, to the west, the crust of the Yakutat terrane has been carried down a subduction zone that extends far landward with a gentle dip, corresponding

  16. Blueschist- and Eclogite facies Pseudotachylytes: Products of Earthquakes in Collision- and Subduction zones

    NASA Astrophysics Data System (ADS)

    Andersen, T. B.; Austrheim, H.; John, T.; Medvedev, S.; Mair, K.

    2009-04-01

    Pseudotachylytes are the products of violent geological processes such as metorite impacts and seismic faulting. The fault-rock weakening processes leading to release of earthquakes are commonly related to phenomena such as grain size reduction and gouge formation, pressurization of pore-fluids and in some cases to melting by frictional heating. Explaining the frequently observed intermediate and deep earthquakes by brittle failure is, however, inherently difficult to reconcile because of extremely high normal stresses occuring at depth. In recent years several mechanisms for seismic events on deep faults have been suggested. These include: a) The most commonly accepted mechanism, dehydration embrittlement coupled to prograde metamorphic dehydration of wet rocks, such as serpentinites, at depth. b) Grain-size dependent flow-laws coupled with shear heating instability has been suggested as an alternative to explain repeated seismic faulting in Wadati-Benioff zones. c) Self-localized-thermal-runaway (SLTR) has been forwarded as a mechanism for ultimate failure of visco-elastic materials and as mechanism to explain the co-existence of shear zones and pseudotachylyte fault veins formed at eclogite facies conditions. All these mechanism point to the importance of metamorphism and/or metasomatism in understanding the mechanism(s) of intermediate- and deep earthquakes. Exhumed high to ultra-high pressure [(U)HP] metamorphic rocks are recognized in many orogenic belts. These complexes provide avenues to study a number of important products of geological processes including earthquakes with hypocentres at great depths. (U)HP co-seismic fault rocks are difficult to find in the field; nevertheless, a number of occurrences of co-seismic fault rocks from such complexes have been described after the initial discovery of such rocks in Norway (see: Austrheim and Boundy, Science 1994). In this talk we review some observations and interpretations based on these hitherto rarely

  17. Structural modeling of the Zagros fold-and-thrust belt (Iraq) combining field work and remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Reif, D.; Grasemann, B.; Faber, R.; Lockhart, D.

    2009-04-01

    The Zagros fold-and-thrust belt is known for its spectacular fold trains, which have formed in detached Phanerozoic sedimentary cover rocks above a shortened crystalline Precambrian basement. Orogeny evolved through the Late Cretaceous to Miocene collision between the Arabian and Eurasian plate, during which the Neotethys oceanic basin was closed. Still active deformation shortening in the order of 2-2.5 cm/yr is partitioned in S-SW directed folding and thrusting of the Zagros fold-and-thrust belt and NW-SE to N-S trending dextral strike slip faults. The sub-cylindrical doubly-plunging fold trains with wavelengths of 5 - 10 km host more than half of the world's hydrocarbon reserves in mostly anticlinal traps. In this work we investigate the three dimensional structure of the Zagros fold-and-thrust belt in the Kurdistan region of Iraq. The mapped region is situated NE from the city of Erbil and comprises mainly Cretaceous to Cenozoic folded sediments consisting of mainly limestones, dolomites, sandstones, siltstones, claystones and conglomerates. Although the overall security situation in Kurdistan is much better than in the rest of Iraq, structural field mapping was restricted to sections along the main roads perpendicular to the strike of the fold trains, mainly because of the contamination of the area with landmines and unexploded ordnance, a problem that dates back to the end of World War Two. Landmines were also used by the central government in the 1960s and 1970s in order to subdue Kurdish groups. During the 1980-1988 Iran-Iraq War, the north was mined again. In order to extend the structural measurements statistically over the investigated area resulting in a three-dimensional model of the fold trains, we used the Fault Trace module of the WinGeol software (www.terramath.com). This package allows the interactive mapping and visualization of the spatial orientations (i.e. dip and strike) of geological finite planar structures (e.g. faults, lithological

  18. The effective elastic thickness of the lithosphere in the collision zone between Arabia and Eurasia in Iran

    NASA Astrophysics Data System (ADS)

    Zamani, Ahmad; Samiee, Jafar; Kirby, Jon F.

    2014-11-01

    The effective elastic thickness, Te, has been calculated in the collision zone between Arabia and Eurasia in Iran from the wavelet coherence. The wavelet coherence is calculated from Bouguer anomalies and topography data using the isotropic fan wavelet method, and gives Te values between 14.2 and 62.2 km. The lower value is found in the Central Iranian Blocks and the East Iranian Belt which are bounded by several large strike-slip faults with lithospheric origin. The higher value occurs in the east of the South Caspian Sea Basin. The resulting Te map shows positive and negative correlation with shear wave velocity and surface heat flow, respectively. A comparison between the seismogenic thickness (Ts) and Te in Iran suggests that Te > Ts. Results of the load ratio in Iran indicate that in most of the study area surface loads are much more prevalent than subsurface loads, except in the Central Iranian Blocks and NW of Iran. Intermediate to low Te values in Iran were inherited from multiple rifting and orogenic activities from Late Precambrian (∼650 Ma) to present day which are not only reflected in thin and warm lithosphere but also an increasing seismicity rate.

  19. Project Hi-CLIMB: A Synoptic View of the Himalayan Collision Zone and Southern Tibet

    NASA Astrophysics Data System (ADS)

    Nábělek, J. L.; Vergne, J.; Hetenyi, G.

    2005-12-01

    Project Hi-CLIMB is a broadband seismic experiment whose goal is to produce a high-resolution continuous profile across the Himalaya and southern Tibet. The centerpiece of the project is a closely spaced, linear array of broadband seismographs, extending from the Ganga lowland, across the Himalayas, and onto the central Tibetan plateau. A complementary array of sparsely spaced stations flanks the linear array. Over 270 sites were occupied during the experiment. The principal institutions involved in the field operations were the Oregon State U. and U. of Illinois (USA), Dept. of Mines and Geology (Nepal), Chinese Academy of Geol. Sci. and Peking U. (China) and the Inst. of Earth Sci. (Taiwan). The major funding for this project was provided by the NSF, Continental Dynamics program. We focus on the receiver function images from the main profile. We observe clear Moho and the upper-mantle discontinuities. The Moho, which in southern Nepal is at 45 km depth (relative to sea level), dips at a gentle angle under the Himalaya. Crossing the Himalaya, its depth rapidly increases, reaching the of 70 km near the Yarlung River. We have succeeded in imagining the Main Himalayan Trust (MHT) as it descends northward at a shallow depth from its surface expression, the Main Frontal Thrust in southern Nepal. In Nepal along the profile, MHT is expressed by a pronounced seismic low velocity zone, which we believe indicates a presence of trapped aqueous fluids in the fault zone, thus lowering the strength of the megathrust. The low velocity associated with the MHT disappears for a short distance north but reappears again as the MHT increases its dip under S. Tibet. We believe the characteristics of the low velocity associated with the MHT in S. Tibet indicate a presence of partial melt due to an increase in depth and frictional heating. A low-velocity wedge above the MHT suggests an accumulation of the melt. This could be an ongoing process of generation of the Himalayan granites. The

  20. Role of the Kazerun fault system in active deformation of the Zagros fold-and-thrust belt (Iran)

    NASA Astrophysics Data System (ADS)

    Authemayou, Christine; Bellier, Olivier; Chardon, Dominique; Malekzade, Zaman; Abassi, Mohammad

    2005-04-01

    Field structural and SPOT image analyses document the kinematic framework enhancing transfer of strike-slip partitioned motion from along the backstop to the interior of the Zagros fold-and-thrust belt in a context of plate convergence slight obliquity. Transfer occurs by slip on the north-trending right-lateral Kazerun Fault System (KFS) that connects to the Main Recent Fault, a major northwest-trending dextral fault partitioning oblique convergence at the rear of the belt. The KFS formed by three fault zones ended by bent orogen-parallel thrusts allows slip from along the Main Recent Fault to become distributed by transfer to longitudinal thrusts and folds. To cite this article: C. Authemayou et al., C. R. Geoscience 337 (2005).

  1. Deep seismic reflection evidence for ancient subduction and collision zones within the continental lithosphere of northwestern Europe

    NASA Astrophysics Data System (ADS)

    Balling, N.

    2000-12-01

    Deep seismic profiling experiments in the region of NW Europe (including BABEL in the Gulf of Bothnia and the Baltic Sea, Mobil Search in the Skagerrak and MONA LISA in the North Sea) have demonstrated the existence of seismic reflectors in the mantle lithosphere beneath the Baltic Shield, the Tornquist Zone and the North Sea basins. Different sets of reflectors are observed, notably dipping and sub-horizontal. Dipping, distinct reflectivity, which may be followed from Moho/Moho offsets into the deeper parts of the continental lithosphere, is of special interest because of its tectonic and geodynamic significance. Such reflectivity, observed in several places, dipping 15-35° and covering a depth range of 30-90 km, constrained by surface geological information and radiometric age data, is interpreted to represent fossil, ancient subduction and collison zones. Subduction slabs with remnant oceanic basaltic crust transformed into eclogite is assumed, in particular, to generate deep seismic reflectivity. Deep seismic evidence is presented for subduction, crustal accretion and collision processes with inferred ages from 1.9 to 1.1 Ga from the main structural provinces within the Baltic Shield including Svecofennian, Transscandinavian Igneous Belt, Gothian and Sveconorwegian. Along the southwestern border of Baltica (in the southeastern North Sea) south-dipping crustal and sub-crustal reflectivity is observed down to a depth of about 90 km, close to the lithosphere-asthenosphere boundary. These structures are interpreted to reveal a lithosphere-scale Caledonian (ca. 440 Ma) suture zone resulting from the closure of the Tornquist Sea/Thor Ocean and the amalgamation of Baltica and Eastern Avalonia. These results demonstrate that deep structures within the continental lithosphere, originating from early crust-forming plate tectonic processes, may survive for a very long time and form seismic marker reflectivity of great value in geotectonic interpretation and

  2. Using P-wave Triplications to Constrain the Mantle Transition Zone beneath Central Iranian Plateau and Surrounding Area

    NASA Astrophysics Data System (ADS)

    Chi, H. C.; Tseng, T. L.

    2014-12-01

    The Iranian Plateau is a tectonically complex region resulting from the continental collision between the African and Eurasian plates. The convergence of the two continents created the Zagros Mountains, the high topography southwest of Iran, and active seismicity along the Zagros-Bitlis suture. Tomographic studies in Iran reveal low seismic speeds and high attenuation of Sn wave in the uppermost mantle beneath the Iranian Plateau relative to adjacent regions. The deeper structure, however, remains curiously inconclusive. By contrast, a prominent fast seismic anomaly is found under central Tibet near depth of 600 km in the mantle transition zone (TZ), and it is speculated to be the remnant of lithosphere detached during the continental collision. We conduct a comparative study that utilizes triplicate arrivals of high-resolution P waveforms to investigate the velocity structure of mantle beneath the central Iranian Plateau and surroundings. Due to the abrupt increase in seismic wave speeds and density across the 410- and 660-km discontinuities, seismic waves at epicentral distances of 15-30 degrees would form multiple arrivals and the relative times and amplitudes between them are most sensitive to the variations in seismic speeds near the TZ. We combine several broadband arrays to construct 8 seismic profiles, each about 800 km long, that mainly sample the TZ under central Iranian Plateau, Turan shield and part of South Caspian basin. Move-outs between arrivals are clear in the profiles. Relative timings suggest a slightly smaller 660-km contrast under stable Turan shield. In the next stage, it is necessary to model waveforms after the source effect being removed properly. Our preliminary tests show that the F-K method can efficiently calculate the synthetic seismograms. We will determine the 1D velocity model for each sampled sector by minimizing the overall misfits between observed and predicted waveforms. The lateral variations may be further explored by

  3. Transformation of juvenile Izu-Bonin-Mariana oceanic arc into mature continental crust: An example from the Neogene Izu collision zone granitoid plutons, Central Japan

    NASA Astrophysics Data System (ADS)

    Saito, Satoshi; Tani, Kenichiro

    2017-04-01

    Granitic rocks (sensulato) are major constituents of upper continental crust. Recent reviews reveal that the average composition of Phanerozoic upper continental crust is granodioritic. Although oceanic arcs are regarded as a site producing continental crust material in an oceanic setting, intermediate to felsic igneous rocks occurring in modern oceanic arcs are dominantly tonalitic to trondhjemitic in composition and have lower incompatible element contents than the average upper continental crust. Therefore, juvenile oceanic arcs require additional processes in order to get transformed into mature continental crust enriched in incompatible elements. Neogene granitoid plutons are widely exposed in the Izu Collision Zone in central Japan, where the northern end of the Izu-Bonin-Mariana (IBM) arc (juvenile oceanic arc) has been colliding with the Honshu arc (mature island arc) since Middle Miocene. The plutons in this area are composed of various types of granitoids ranging from tonalite to trondhjemite, granodiorite, monzogranite and granite. Three main granitoid plutons are distributed in this area: Tanzawa plutonic complex, Kofu granitic complex, and Kaikomagatake granitoid pluton. Tanzawa plutonic complex is dominantly composed of tonalite and trondhjemite and characterized by low concentration of incompatible elements and shows geochemical similarity with modern juvenile oceanic arcs. In contrast, Kofu granitic complex and Kaikomagatake granitoid pluton consists mainly of granodiorite, monzogranite and granite and their incompatible element abundances are comparable to the average upper continental crust. Previous petrogenetic studies on these plutons suggested that (1) the Tanzawa plutonic complex formed by lower crustal anatexis of juvenile basaltic rocks occurring in the IBM arc, (2) the Kofu granitic complex formed by anatexis of 'hybrid lower crust' comprising of both basaltic rocks of the IBM arc and metasedimentary rocks of the Honshu arc, and (3) the

  4. The 2012 Strike-slip Earthquake Sequence in Black Sea and its Link to the Caucasus Collision Zone

    NASA Astrophysics Data System (ADS)

    Tseng, T. L.; Hsu, C. H.; Legendre, C. P.; Jian, P. R.; Huang, B. S.; Karakhanian, A.; Chen, C. W.

    2016-12-01

    The Black Sea formed as a back-arc basin in Late Cretaceous to Paleogene with lots of extensional features. However, the Black Sea is now tectonically stable and absent of notable earthquakes except for the coastal region. In this study we invert regional waveforms of a new seismic array to constrain the focal mechanisms and depths of the 2012/12/23 earthquake sequence occurred in northeastern Black Sea basin that can provide unique estimates on the stress field in the region. The results show that the focal mechanisms for the main shock and 5 larger aftershocks are all strike-slip faulting and resembling with each other. The main rupture fall along the vertical dipping, NW-SE trending sinistral fault indicated by the lineation of most aftershocks. The fault strike and aftershock distribution are both consistent with the Shatsky Ridge, which is continental in nature but large normal faults was created by previous subsidence. The occurrence of 2012 earthquakes can be re-activated, as strike-slip, on one of the pre-existing normal fault cutting at depth nearly 20-30 km in the extended crust. Some of the aftershocks, including a larger one occurred 5 days later, are distributed toward NE direction 20 km away from main fault zone. Those events might be triggered by the main shock along a conjugate fault, which is surprisingly at the extension of proposed transform fault perpendicular to the rift axis of eastern Black Sea Basin. The focal mechanisms also indicate that the maximum compression in northeast Black Sea is at E-W direction, completely different from the N-S compression in the Caucasus and East Turkey controlled by Arabia-Eurasia collision. The origin of E-W maximum compression is probably the same as the secondary stress inferred from earthquakes in Racha region of the Greater Caucasus.

  5. Study and comparison of the maximum stress directions and main fault orientations in some active zones in Iran

    NASA Astrophysics Data System (ADS)

    Forouhid, Khatereh; Faraji, Atefeh; Ghorashi, Manouchehr

    2010-05-01

    Study and comparison of the maximum stress directions and main fault orientations in some active zones in Iran Khatereh Forouhid, Manouchehr Ghorashi, Atefeh Faraji Institute of Geophysics, Tehran University, Tehran, Iran kforouhid@yahoo.com Farajiatefeh@yahoo.com The Iranian plateau is the widest active zone in Alpine-Himalayan collision system that is located between two stable platforms, the Arabia in southwest and Eurasia in northeast. The convergence of these two platforms towards each other is the main reason for seismicity and different styles of deformation observed in Iran. In this study, the Iranian plateau is divided into 7 regions based on their seismotectonic characteristics. These regions are; Zagros, Makran, East Iran, Alborz, Kopeh Dagh, Central Iran and Azarbayejan (northwest of Iran). In each region, focal mechanism solutions of early and modern instrumental earthquakes (the only source of information suitable to use for stress distribution study in Iran) with magnitudes more than 5.0 and their relations to active faults are considered. By studying each maximum stress direction based on a group of earthquake focal mechanisms and considering main fault orientations, each region is studied individually. According to these data, some of these regions are divided into smaller parts. These sub-divided parts have some characters that make them different from their neighbors in the same region. In this regard, Zagros is studied in detail based on seismotectonic characteristics and divided into three parts, with N-S maximum stress direction (compressional) in one part and two different kind of NE-SW direction in two other. We use this information to investigate the style and distribution of active faulting in the Zagros and the relationships of this activity with shortening of the Arabia-Eurasia collision. It is worth to mention that as the fault slip will almost occur in the direction of maximum resolved shear stress on the fault plane, probably strain

  6. Tectonic stresses seaward of an aseismic ridge—Trench collision zone. A remote sensing approach on the Loyalty Islands, SW Pacific

    NASA Astrophysics Data System (ADS)

    Bogdanov, Igor; Huaman, David; Thovert, Jean-François; Genthon, Pierre; Adler, Pierre M.

    2011-03-01

    The Loyalty Islands are a series of limestone karstified islands on the Australian Plate that are presently approaching the Vanuatu subduction zone (SW Pacific). They are deformed due to the combined effects of the bulging of the subducting lithosphere and the beginning collision between the Loyalty Ridge and the Vanuatu subduction zone. Therefore, they constitute a series of markers for early phases of ridge arc collision. Lineaments deduced from remote sensing images (aerial photos, SPOT3, SPOT4 and ENVISAT data), termed here as fractures, are analyzed by comparison with planar structures measured during field studies and termed as geological data. Fracture data indicate a stable main N110 direction with a large variance of nearly 15° in rms and two minor directions 45° apart which may constitute shear directions associated to the major one. A scale dependent analysis shows that fractures longer than 2000 m are close to the N110 direction and that their orientation shifts progressively to reach the N125 direction for L < 400 m. Geological data which are generally measured on 1-10 m long structures, reveal a main N135 direction in Lifou, which may be considered as the continuation of the trend of fracture data for decreasing lengths, and are dispersed in Maré. Since the shortest scale structures are being subjected to local disturbances, the longest ones are considered as indicative of the present stress state of the Loyalty Islands. They are modeled as tension cracks resulting from the elastic bulging of the Australian lithosphere before its subduction at the Vanuatu Trench and from a single force corresponding to the beginning collision. It is suggested that the stress field deduced from this model may help constraining general models of ridge arc collision and that the Vanuatu-New Caledonia region could be a valuable natural example to calibrate such models.

  7. Deep Ore-controlling Role Beneath the Collision-related Deposit Zone in South Tibetan Plateau, Preliminary Results Revealed by Magnetotelluric Data

    NASA Astrophysics Data System (ADS)

    Xie, C.; Jin, S.; Wei, W.; Ye, G.; Fang, Y.; Zhang, L.; Dong, H.; Yin, Y.

    2017-12-01

    The Tibetan plateau is the largest and most recent plateau orogenic belt in the world, and the south part is expected as the ongoing India-Eurasia continental collision zone. The collision-related deposit zones which are distributed in south plateau could be roughly divided into three parts: the porphyry deposit in the Gangdese magmatic belt, the chromite deposit along the Yarlung-Zangbo suture (YZS) and the prospective deposit along the gneiss domes in the Tethys Himalayan. The deep ore-controlling role of those deposit zones is still remain controversial. Previous magnetotelluric (MT) data deployed from Himalayan to Gangdese terrane were inverted using a three dimensional (3D) MT inversion algorithm ModEM. The results show that the resistivity cover layers above -10 km are distributed along the whole profiles, whereas small and sporadic conductors could be also imaged. The middle to lower crust beneath -25 km is imaged as large scale but discontinuous conductive zones which have a central resistivity less than 10 ohm·m. We suggest the middle to lower crustal conductors could be interpreted as partial melting. This hypothesis is supported by some previous geological and geochemical studies. The Metallogenesis and partial melting play an important role in promoting each other. For the metallogenesis, the high water content is one of the prominent factors, and could be released on breakdown of amphibole in eclogite and garnet amphibolite during melting. On the other hand, the increasing of the water content would probably advance partial melting. The results indicate that the deep process and magmatism beneath different deposit zones are probably varying. We studied the rheological characteristics from the perspective of subsurface electrical structures. We hope by comparative analysis, the process of `origins - migration -formation' for the system of deep `magma - rheology - deposition' would be better understood.

  8. Post-collisional deposits in the Zagros foreland basin: Implications for diachronous underthrusting

    NASA Astrophysics Data System (ADS)

    Pirouz, Mortaza

    2017-11-01

    Detailed sedimentology of the Neogene foreland basin deposits is investigated and classified into 11 lithofacies associations with respect to their paleo-sedimentary environments. The foreland deposits reveal a single coarsening-upward mega-sequence with continuous passage from back-bulge to forebulge, foredeep, and wedge-top sedimentary environments. The Gachsaran deposits form the base of the foreland strata and consist mainly of three different lithofacies associations including fluvial, marine, and sabkha deposits in the eastern Zagros in Fars, and are typically dominated with evaporites toward the west in the Dezful and Kirkuk embayments. The Mishan Formation has three different shallow-marine lithofacies associations in a vertical succession representing foredeep deposits in the eastern Zagros, which tapers toward the Dezful embayment and disappears in Iraq. The Agha Jari distal wedge-top deposits also contain three different lithofacies associations including delta deposits mostly in the Fars, tidal flat deposits in Dezful and Mesopotamia basin, and continental fluvial deposits across the entire Zagros. The uppermost synorogenic Bakhtiari Formation represents proximal wedge-top deposits and consists mainly of two main lithofacies associations including shallow marine and fluvial deposits, within which the fluvial succession is divided into three sub-lithofacies associations with respect to distance from the mountain front and hydraulic power of the river networks. Synthetizing sedimentary facies association with age constraints of the old foreland deposits near the Zagros suture in the High Zagros area suggests that a considerable part of the Arabian plate has been removed at the northern edge by underthrusting and erosion. Moreover, preservation of the young distal foreland deposits near the suture in the western Zagros implies that the magnitude and rate of removal of the proximal foreland deposits have been inconstant along-strike the belt and decreases

  9. Preliminary investigation of Zagros thrust-fold-belt deformation using SAR interferometry

    NASA Technical Reports Server (NTRS)

    Nilforoushan, Faramarz; Talbot, Christopher J.; Fielding, Eric J.

    2005-01-01

    Most of the Zagros deformation resulting from the convergence of Arabia and Eurasia takes place in the Southeast Zagros. To apply the SAR interferometry geodetic technique, a few ERS 1 & 2 satellite images were used to map this continuing deformation proven by GPS. Interferograms over 7 years show surprisingly high coherence. The unwrapped phases display a high correlation with topography reflecting atmospheric noise in addition to the desired tectonic signal. We estimate two simple linear trends and remove them from interferograms. The preliminary results show local uplift rates with a likely minimum of 1-2 mm/yr. These early crude results will be tested by more data in project No. 3174.

  10. Lithospheric Structure of the Zagros and Alborz Mountain Belts (Iran) from Seismic Imaging

    NASA Astrophysics Data System (ADS)

    Paul, A.; Hatzfeld, D.; Kaviani, A.; Tatar, M.

    2008-12-01

    We present a synthesis of the results of two dense temporary passive seismic experiments installed for a few months across Central Zagros for the first one, and from North-western Zagros to Alborz for the second one. On both transects, the receiver function analysis shows that the crust has an average thickness of ~ 43 km beneath the Zagros fold-and-thrust belt and the Iranian plateau. The crust is thicker in the back side of the Main Zagros Reverse Fault (MZRF), with a larger maximum Moho depth in Central Zagros (69 ± 2 km) than in North-western Zagros (56 ± 2 km). To reconcile Bouguer anomaly data and Moho depth profile of Central Zagros, we proposed that the thickening is related to overthrusting of the Arabian margin by Central Iran on the MZRF considered as a major thrust fault rooted at Moho depth. The better-quality receiver functions of NW Zagros display clear conversions on a low-velocity channel which cross-cuts the whole crust from the surface trace of the MZRF to the Moho on 250-km length. Waveform modeling shows that the crustal LVZ is ~ 10-km thick with a S-wave velocity 8-30 % smaller than the average crustal velocity. We interpret the low-velocity channel as the trace of the thrust fault and the suture between the Arabian and the Iranian lithospheres. We favour the hypothesis of the LVZ being due to sediments of the Arabian margin dragged to depth during the subduction of the Neotethyan Ocean. At upper mantle depth, we find shield-like shear-wave velocities in the Arabian upper-mantle, and lower velocities in the Iranian shallow mantle (50-150 km) which are likely due to higher temperature. The lack of a high-velocity anomaly in the mantle northeast of the MZRF suture suggests that the Neotethian oceanic lithosphere is now detached from the Arabian margin. The crust of the Alborz mountain range is not thickened in relation with its high elevations, but its upper mantle has low P-wave velocities.

  11. Provenance of Mesozoic clastic rocks within the Bangong-Nujiang suture zone, central Tibet: Implications for the age of the initial Lhasa-Qiangtang collision

    NASA Astrophysics Data System (ADS)

    Li, Shun; Guilmette, Carl; Ding, Lin; Xu, Qiang; Fu, Jia-Jun; Yue, Ya-Hui

    2017-10-01

    The Bangong-Nujiang suture zone, separating the Lhasa and Qiangtang blocks of the Tibetan Plateau, is marked by remnants of the Bangong-Nujiang oceanic basin. In the Gaize area of central Tibet, Mesozoic sedimentary strata recording the evolution of the basin and subsequent collision between these two blocks include the Upper Triassic-Lower Jurassic turbidites of the Mugagangri Group, the Upper Jurassic-Lower Cretaceous sandstone-dominated Wuga and Shamuluo formations, and the Upper Cretaceous molasse deposits of the Jingzhushan Formation. The Shamuluo and Jingzhushan formations rest unconformably on the underlying Mugagangri Group and Wuga Formation, respectively. In this contribution, we analyze petrographic components of sandstones and U-Pb-Hf isotopic compositions of detrital zircons from the Wuga and Jingzhushan formations for the first time. Based on the youngest detrital zircon ages, the maximum depositional ages of the Wuga and Jingzhushan formations are suggested to be ∼147-150 Ma and ∼79-91 Ma, respectively. Petrographic and isotopic results indicate that sediments in the Wuga Formation were mainly sourced from the accretionary complex (preserved as the Mugagangri Group) in the north, while sediments in the Jingzhushan Formation have mixed sources from the Lhasa block, the Qiangtang block and the intervening suture zone. Provenance analysis, together with regional data, suggests that the Upper Jurassic-Lower Cretaceous Wuga and Shamuluo formations were deposited in a peripheral foreland basin and a residual-sea basin, respectively, in response to the Lhasa-Qiangtang collision, whereas the Upper Cretaceous Jingzhushan Formation reflects continental molasse deposition during the post-collisional stage. The development of the peripheral foreland basin evidenced by deposition of the Wuga Formation reveals that the age of the initial Lhasa-Qiangtang collision might be the latest Jurassic (∼150 Ma).

  12. Geochemistry, petrology and geodynamic setting of the Urumieh plutonic complex, Sanandaj-Sirjan zone, NW Iran: New implication for Arabian and Central Iranian plate collision

    NASA Astrophysics Data System (ADS)

    Jafari, Amin; Fazlnia, Abdolnaser; Jamei, Susan

    2018-03-01

    The Urumieh plutonic complex, in the northernmost part of Sanandaj-Sirjan zone (SSZ) of Iran, consists of ten basic-acidic units which formed in response to subduction and continental collision of the SSZ with the Arabian plate to the south during Mid-Late Cretaceous times. Geochemically, the plutonic unit is divided into three distinct groups: I-type, S-type and A-type that mainly belong to calc-alkalic series. The I-type intrusions, especially mafic members, are enriched in LREE and LILE and possibly formed from metasomatized mantle wedge during the subduction of the Neo-Tethys oceanic crust beneath the SSZ. The felsic I-type rocks are depleted in Ba, Sr, Nb, Ta, Ti and Eu, but enriched in Rb, Th, K, Ce, U and La. These data suggest that they formed in deep crustal levels via partial melting of crustal sources by injection of hot mantle magmas. The S-type rocks are characterized by low Na2O (<3.02 wt%), high LILE, relatively high values of molar Al2O3/(MgO+FeO) and K2O/Na2O ratios combined with low CaO/(MgO+FeO*) ratios. These features show that the S-type granites originated from partial melting of a metapelitic to metagreywacke source. The A-type alkali feldspar granites formed through the slab break off after the continental collision in northwestern Iran by decompression melting of crustal protolith. The author's new model implies that collision between Arabian margin and north SSZ initiated in the Late Cretaceous and completed until Late Paleocene. In contrast, in the southeast, subduction was active during this period of time, but collision presumably occurred during the Middle to Late Miocene.

  13. Limitations on Inferring 3D Architecture and Dynamics From Surface Velocities in the India-Eurasia Collision Zone

    NASA Astrophysics Data System (ADS)

    Flesch, L.; Bendick, R.; Bischoff, S.

    2018-02-01

    Surface velocities derived from Global Positioning System observations and Quaternary fault slip rates measured throughout an extended region of high topography in South Asia vary smoothly over thousands of kilometers and are broadly symmetrical, with components of both north-south shortening and east-west extension relative to stable Eurasia. The observed velocity field does not contain discontinuities or steep gradients attributable to along-strike differences in collision architecture, despite the well-documented presence of a lithospheric slab beneath the Pamir but not the Tibetan Plateau. We use a modified Akaike information criterion (AICc) to show that surface velocities do not efficiently constrain 3D rheology, geometry, or force balance. Therefore, although other geophysical and geological observations may indicate the presence of mechanical or dynamic heterogeneities within the Indian-Asian collision, the surface Global Positioning System velocities contain little or no usable information about them.

  14. Finite strain calculations of continental deformation. I - Method and general results for convergent zones. II - Comparison with the India-Asia collision zone

    NASA Technical Reports Server (NTRS)

    Houseman, G.; England, P.

    1986-01-01

    The present investigation has the objective to perform numerical experiments on a rheologically simple continuum model for the continental lithosphere. It is attempted to obtain a better understanding of the dynamics of continental deformation. Calculations are presented of crustal thickness distributions, stress, strain, strain rate fields, latitudinal displacements, and finite rotations, taking into account as basis a model for continental collision which treats the litoshphere as a thin viscous layer subject to indenting boundary conditions. The results of this paper support the conclusions of England and McKenzie (1982) regarding the role of gravity in governing the deformation of a thin viscous layer subject to indenting boundary conditions. The results of the experiments are compared with observations of topography, stress and strain rate fields, and palaeomagnetic latitudinal displacements in Asia.

  15. A new insight into Pan-African tectonics in the East-West Gondwana collision zone by U-Pb zircon dating of granites from central Madagascar

    NASA Astrophysics Data System (ADS)

    Nédélec, A.; Paquette, J.-L.

    1998-02-01

    The assembly of Gondwana was the result of a major collision orogen, the East African Orogen, between East and West Gondwana during Neoproterozoic times. Madagascar, which represents a fragment of East Gondwana, is located in a key area of this Pan-African orogen. Granites of unambiguous tectonic setting have been dated using the U-Pb zircon method in order to constrain the timing of orogenic events. The central part of Madagascar is characterized by syntectonic alkaline granitic sheets, referred to as ``stratoid'' granites. These are of both mantle and crustal derivation. Their U-Pb zircon ages are well defined between 627 and 633 Ma for both plutonic suites, regardless of either mainly mantle or crustally origin. It is not surprising that the crustally-derived suite contains inherited zircons in the 2.2-2.4 Ga range attesting to the existence of Lower Proterozoic crust in northern central Madagascar. The generation of huge amounts of granitic magma is regarded as the result of post-collision extension under a high heat flow regime. Therefore, an age between 700 and 650 Ma is inferred for the beginning of Gondwana assembly along the collision zone between central Madagascar and Kenya, i.e., in the central part of the East African Orogen. Following this, brittle fracturing of the stratoid granite series permitted the emplacement of the Ambatomiranty granitic dyke swarm at a minimum age of 560 Ma, in possible connection with a nearby shear belt. The strike-slip tectonic regime at ~570-560 Ma is well known in southern Madagascar and in its Gondwana connections. This stage corresponds to intracontinental reworking and the final suturing of Gondwana.

  16. A new insight into Pan-African tectonics in the East-West Gondwana collision zone by U-Pb zircon dating of granites from central Madagascar

    NASA Astrophysics Data System (ADS)

    Paquette, Jean-Louis; Nédélec, Anne

    1998-02-01

    The assembly of Gondwana was the result of a major collision orogen, the East African Orogen, between East and West Gondwana during Neoproterozoic times. Madagascar, which represents a fragment of East Gondwana, is located in a key area of this Pan-African orogen. Granites of unambiguous tectonic setting have been dated using the U-Pb zircon method in order to constrain the timing of orogenic events. The central part of Madagascar is characterized by syntectonic alkaline granitic sheets, referred to as "stratoid" granites. These are of both mantle and crustal derivation. Their U-Pb zircon ages are well defined between 627 and 633 Ma for both plutonic suites, regardless of either mainly mantle or crustally origin. It is not surprising that the crustally-derived suite contains inherited zircons in the 2.2-2.4 Ga range attesting to the existence of Lower Proterozoic crust in northern central Madagascar. The generation of huge amounts of granitic magma is regarded as the result of post-collision extension under a high heat flow regime. Therefore, an age between 700 and 650 Ma is inferred for the beginning of Gondwana assembly along the collision zone between central Madagascar and Kenya, i.e., in the central part of the East African Orogen. Following this, brittle fracturing of the stratoid granite series permitted the emplacement of the Ambatomiranty granitic dyke swarm at a minimum age of 560 Ma, in possible connection with a nearby shear belt. The strike-slip tectonic regime at ˜570-560 Ma is well known in southern Madagascar and in its Gondwana connections. This stage corresponds to intracontinental reworking and the final suturing of Gondwana.

  17. New Orogenic Model for Taiwan Collision Zone Inferred From Three-dimensional P- and S-wave Velocity Structures and Seismicity

    NASA Astrophysics Data System (ADS)

    Nagai, S.; Hirata, N.; Sato, H.

    2008-12-01

    The island of Taiwan is located in the site of ongoing arc-continent collision zone between the Philippine Sea Plate (PSP) and the Eurasian Plate (EUP). Numerous geophysical and geological studies are done in and around Taiwan to develop various models to explain the tectonic processes in the Taiwan region. However, their details have not been known enough, especially under the Central Range. We suggest a new orogenic model for Taiwan orogeny, named 'Upper Crustal Stacking Model', inferred from our tomographic images using three temporary seismic networks with the Central Weather Bureau Seismic Network. These three temporary networks are the aftershock observation after the 1999 Chi-Chi Taiwan earthquake and two dense array observations across central and southern Taiwan, respectively. Tomographic images by the double-difference tomography [Zhang and Thurber, 2003] show a lateral alternate variation of high- and low-velocity, which are well correlated to surface geology and separated by east-dipping boundaries. These images have reliable high-resolution by dense arrays to be able to discuss this alternate variation. We found three high-velocity zones (> 6.0km/s). The westernmost zone corresponds to the subducting EUP. Other two zones are located beneath the Hsuehshan Range and the Eastern Central Range with trends of eastward dipping, respectively. And, we could image low-velocity zone located beneath Backbone Range between the two high-velocity zones clearly. We interpret that these east-dipping high- and low-velocity zones can be divided into two layered blocks and the subducting EUP, each of which consists of a high-velocity body under low-velocity one. Layered blocks can be interpreted as stacked thrust sheets between the subducting EUP and the Northern Luzon Arc, a part of PSP. These thrust sheets are parts of upper- and mid-crust detached from the subducting EUP. The model of continental subduction followed by buoyancy-driven exhumation can explain the

  18. Elemental geochemistry and strontium-isotope stratigraphy of Cenomanian to Santonian neritic carbonates in the Zagros Basin, Iran

    NASA Astrophysics Data System (ADS)

    Navidtalab, Amin; Rahimpour-Bonab, Hossain; Huck, Stefan; Heimhofer, Ulrich

    2016-12-01

    -ES. Following SIS, the Ilam-Sarvak transition at the top of Nezzazatinella-Dicyclina interval zone coincides with the mT-ES. Carbonates placing above this transition (Ilam Formation) are ascribed to the earliest to latest early Santonian, while carbonates immediately beneath the mT-ES (Sarvak Formation) are dated as late Turonian. SIS thus indicates a long-lasting hiatus of 4.5 Myr associated with the mT-ES. Emergence represented by the CT-ES is here proposed as harbinger of the mT-ES in the Zagros Basin, which most likely resulted from stepwise peripheral bulging due to ophiolite obduction in combination with a small-scale global sea level fall around 94 Ma.

  19. Formation of forearc basins by collision between seamounts and accretionary wedges: an example from the New Hebrides subduction zone

    Collot, J.-Y.; Fisher, M.A.

    1989-01-01

    Seabeam data reveal two deep subcircular reentrants in the lower arc slope of the New Hebrides island arc that may illustrate two stages in the development of a novel type of forearc basin. The Malekula reentrant lies just south of the partly subducted Bougainville seamount. This proximity, as well as the similarity in morphology between the reentrant and an indentation in the lower arc slope off Japan, suggests that the Malekula reentrant formed by the collision of a seamount with the arc. An arcuate fold-thrust belt has formed across the mouth of the reentrant, forming the toe of a new accretionary wedge. The Efate reentrant may show the next stage in basin development. This reentrant lies landward of a lower-slope ridge that may have begun to form as an arcuate fold-thrust belt across the mouth of a reentrant. This belt may have grown by continued accretion at the toe of the wedge, by underplating beneath the reentrant, and by trapping of sediment shed from the island arc. These processes could result in a roughly circular forearc basin. Basins that may have formed by seamount collision lie within the accretionary wedge adjacent to the Aleutian trenches. -Authors

  20. Structural analysis of the Hasan-Robat marbles as traces of folded basement in the Sanandaj-Sirjan Zone, Iran

    NASA Astrophysics Data System (ADS)

    Nadimi, Alireza

    2015-11-01

    Cherty marbles of Hasan-Robat area, northwest of Isfahan, in the Sanandaj-Sirjan Zone of Iran preserves evidences of multiple deformational events. The Sanandaj-Sirjan Zone is the inner crystalline zone of the Zagros Orogen, which has been highly deformed and exhumed during continental collision between the Arabian Plate and Central Iran. The Hasan-Robat area is an example of the exposed Precambrian-Paleozoic basement rocks that stretched along two NW-SE-trending faults and located in the inner part of the HasanRobat positive flower strcuture. The Hasan-Robat marbles record a complex shortening and shearing history. This lead to the development of disharmonic ptygmatic folds with vertical to sub-vertical axes and some interference patterns of folding that may have been created from deformations during the Pan-African Orogeny and later phases. Based on this research, tectonic evolution of the Hasan-Robat area is interpreted as the product of three major geotectonic events that have been started after Precambrian to Quaternary: (1) old deformation phases (2) contractional movements and (3) strike-slip movements. Different sets and distributions of joints, faults and folds are confirmed with effect of several deformational stages of the area and formation of the flower structure.

  1. A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries

    Wu, F.T.; Liang, W.-T.; Lee, J.-C.; Benz, H.; Villasenor, A.

    2009-01-01

    The NW moving Philippine Sea plate (PSP) collides with the Eurasian plate (EUP) in the vicinity of Taiwan, and at the same time, it subducts toward the north along SW Ryukyu. The Ryukyu subduction zone terminates against eastern Taiwan. While the Ryukyu Trench is a linear bathym??trie low about 100 km east of Taiwan, closer to Taiwan, it cannot be clearly identified bathymetrically owing to the deformation related to the collision, making the location of the intersection of the Ryukyu with Taiwan difficult to decipher. We propose a model for this complex of boundaries on the basis of seismicity and 3-D velocity structures. In this model the intersection is placed at the latitude of about 23.7??N, placing the northern part of the Coastal Range on EUP. As PSP gets deeper along the subduction zone it collides with EUP on the Taiwan side only where they are in direct contact. Thus, the Eurasian plate on the Taiwan side is being pushed and compressed by the NW moving Philippine Sea plate, at increasing depth toward the north. Offshore of northeastern Taiwan the wedge-shaped EUP on top of the Ryukyu subducting plate is connected to the EUP on the Ryukyu side and coupled to the NW moving PSP by friction at the plate interface. The two sides of the EUP above the western end of the subduction zone are not subjected to the same forces, and a difference in motions can be expected. The deformation of Taiwan as revealed by continuous GPS measurements, geodetic movement along the east coast of Taiwan, and the formation of the Hoping Basin can be understood in terms of the proposed model. Copyright 2009 by the American Geophysical Union.

  2. Structural, micro-structural and kinematic analyses of channel flow in the Karmostaj salt diapir in the Zagros foreland folded belt, Fars province, Iran

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil; Sarshar, Maryam Asadi; Adineh, Sadegh

    2018-02-01

    One of the main characteristic of the Zagros foreland fold-and-thrust belt and the Zagros foreland folded belt are wide distributions of surface extrusion from the Hormuz salt diapirs. This study examines the structure and kinematic of channel flow in the Karmostaj salt diapir in the southwestern part of the Zagros foreland folded belt. This diapir has reached the surface as a result of the channel flow mechanism and has extruded in the southern limb of the Kuh-Gach anticline which is an asymmetric décollement fold with convergence to the south. Structural and microstructural studies and quantitative finite strain (Rs) and kinematic vorticity number (Wk) analyses were carried out within this salt diapir and its namakier. This was in order to investigate the structural evolution in the salt diapiric system, the characteristics and mechanism of the salt flow and the distribution of flow regimes within the salt diapir and interaction of regional tectonics and salt diaprism. The extruded salt has developed a flow foliation sub-parallel to the remnant bedding recorded by different colors, a variety of internal folds including symmetrical and asymmetrical folds and interference fold patterns, shear zones, and boudins. These structures were used to analyze mechanisms and history of diapiric flow and extrusion. The microstructures, reveal various deformation mechanisms in various parts of salt diapir. The measurements of finite strain show that Rs values in the margin of salt diapir are higher than within its namakier which is consistent with the results of structural studies. Mean kinematic vorticity number (Wm) measured in steady state deformation of diapir and namakier is Wm = 0.45-0.48 ± 0.13. The estimated mean finite deformation (Wm) values indicate that 67.8% pure shear and 32.2% simple shear deformation were involved; the implications of which are discussed. The vorticity of flow indicates that in the early stage of growth, Poiseuille flow was the dominate

  3. Late Miocene Coral faunas of Iran (Zagros, Aghar, Firuz abad, Fars) palaeoecology and palaeobiogeography

    NASA Astrophysics Data System (ADS)

    Dehbozorgi, M.; Yazdi, M.; Torabi, H.

    2009-04-01

    Late Miocene Corals assemblage from Zagros Iran are investigated with respect to their palaeoecology and palaeobiogeography implications. This Corals are compared with fauna from Mediterranean Tethys and the Indopacific. Small foraminifers are used for biogeography and to support paleoecology interpretation. The studied section situated in the Zagros Mishan F.m is last depositions sea. A distinct horizon characterized by Porites- Antiguastrea assemblage associated Milliolid and Rotalia is interpreted a shallow bioclastic shoal. Patch reef with a porites and faviidae assemblage are a common feature of Oligocene and Miocene coral occurrence and indicate water depth of less than 20m. The diversity of corals in this area are low and all corals are hematypic. Miocene Corals from Mishan F.m Comprise 7 genera and occur in the single horizon or patch reef. This Corals and patch reefs are compared with corals and patch reefs in Qom F.m Central Iran. This corals report from this section: Antiguastrea sp., Monastrea sp., Favites sp., Porites sp., Dichocoenia sp., Asterohelia sp., Leptoria sp. Keywords: Miocene- Iran- Mishan-Zagros- Formation- Tethys seaway- Corals- Palaeoecology- palaeobiogeography.

  4. Detrital zircon U-Pb and (U-Th)/He double-dating of Upper Cretaceous-Cenozoic Zagros foreland basin strata in the Kurdistan Region of northern Iraq

    NASA Astrophysics Data System (ADS)

    Barber, D. E.; Stockli, D. F.; Koshnaw, R. I.; Horton, B. K.; Tamar-Agha, M. Y.; Kendall, J. J.

    2014-12-01

    The NW Zagros orogen is the result of the multistage collisional history associated with Late Cretaceous-Cenozoic convergence of the Arabian and Eurasian continents and final closure of Neotethys. Siliciclastic strata preserved within a ~400 km segment of the NW Zagros fold-thrust belt and foreland basin in the Iraqi Kurdistan Region (IKR) provide a widespread record of exhumation and sedimentation. As a means of assessing NW Zagros foreland basin evolution and chronostratigraphy, we present coupled detrital zircon (DZ) U-Pb and (U-Th)/He geo-thermochronometric data of Upper Cretaceous to Pliocene siliciclastic strata from the Duhok, Erbil, and Suleimaniyah provinces of IKR. LA-ICP-MS U-Pb age analyses reveal that the foreland basin fill in IKR in general was dominantly derived from Pan-African/Arabian-Nubian, Peri-Gondwandan, Eurasian, and Cretaceous volcanic arc terrenes. However, the provenance of these strata varies systematically along strike and through time, with an overall increase in complexity upsection. DZ age distribution of Paleocene-Eocene strata is dominated by a ~95 Ma grain age population, likely sourced from the Late Cretaceous Hassanbag-Bitlis volcanic arc complex along the northern margin of Arabia. In contrast, DZ U-Pb age distributions of Neogene strata show a major contribution derived from various Eurasian (e.g., Iranian, Tauride, Pontide; ~45, 150, 300 Ma) and Pan-African (~550, 950 Ma) sources. The introduction of Eurasian DZ ages at the Paleogene-Neogene transition likely records the onset of Arabian-Eurasian collision. Along strike to the southeast, the DZ U-Pb spectra of Neogene strata show a decreased percentage of Pan-African, Peri-Gondwandan, Tauride, and Ordovician ages, coupled with a dramatic increase in 40-50 Ma DZ ages that correspond to Urumieh-Dokhtar magmatic rocks in Iran. Combined with paleocurrent data, this suggests that Neogene sediments were transported longitudinally southeastward through an unbroken foreland basin

  5. GPS and seismological constraints on active tectonics and arc-continent collision in Papua New Guinea: Implications for mechanics of microplate rotations in a plate boundary zone

    NASA Astrophysics Data System (ADS)

    Wallace, Laura M.; Stevens, Colleen; Silver, Eli; McCaffrey, Rob; Loratung, Wesley; Hasiata, Suvenia; Stanaway, Richard; Curley, Robert; Rosa, Robert; Taugaloidi, Jones

    2004-05-01

    The island of New Guinea is located within the deforming zone between the Pacific and Australian plates that converge obliquely at ˜110 mm/yr. New Guinea has been fragmented into a complex array of microplates, some of which rotate rapidly about nearby vertical axes. We present velocities from a network of 38 Global Positioning System (GPS) sites spanning much of the nation of Papua New Guinea (PNG). The GPS-derived velocities are used to explain the kinematics of major tectonic blocks in the region and the nature of strain accumulation on major faults in PNG. We simultaneously invert GPS velocities, earthquake slip vectors on faults, and transform orientations in the Woodlark Basin for the poles of rotation of the tectonic blocks and the degree of elastic strain accumulation on faults in the region. The data are best explained by six distinct tectonic blocks: the Australian, Pacific, South Bismarck, North Bismarck, and Woodlark plates and a previously unrecognized New Guinea Highlands Block. Significant portions of the Ramu-Markham Fault appear to be locked, which has implications for seismic hazard determination in the Markham Valley region. We also propose that rapid clockwise rotation of the South Bismarck plate is controlled by edge forces initiated by the collision between the Finisterre arc and the New Guinea Highlands.

  6. Timing of the end of motion along the South Tibet Detachment shear zone. An important constraint on collision models.

    NASA Astrophysics Data System (ADS)

    Hervé Leloup, Philippe; Mahéo, Gweltaz; Arnaud, Nicolas; Kali, Elise; Boutonnet, Emmanuelle; Liu, Dunyi; Xiaohan, Liu; Haibing, Li

    2010-05-01

    The South Tibet detachment system (STDS) is a major normal fault system that runs parallel to the Himalayan range for more than 1500km, and that is fundamental to the major models proposed the belt tectonic evolution. The STDS is a fossil structure, as it has no clear morphological expression, is crosscut by perpendicular (N-S) active normal faults (Gurla Mandata, Thakhola, Ama Drime, Yadong), and no crustal earthquake indicative of ~N-S extension has ever been documented in the South Tibetan crust. It has long been proposed that the STDS and the MCT slips where coeval during the Miocene, however the timing of the STDS all along its length has rarely been investigated. Near Dinggye (~ 28°10'N, 87°40'E), the South Tibet Detachment, main branch of the STDS, dips ~10±5° to the North and separates Paleozoic Tethyan series from Upper Himalayan Crystalline Series (UHCS). Immediately below the STD, the UHCS is highly deformed in the STD shear zone, stretching lineations trend NNE and the shear senses are top to the NE. In micaschist, P-T path constrained by pseudosection and garnet chemistry, shows successive metamorphic conditions of ~0.6 GPa and ~550°C and 0.5 GPa and 625°C. U/Pb dating of Monazite and zircons in deformed and undeformed leucogranites suggest that ductile deformation lasted until at least ~16 Ma but ended prior to ~15Ma in the STD shear zone ~100 meters below the detachment. Ar/Ar micas ages in the footwall span between ~14.6 and 13.6 Ma, indicating rapid cooling down to ~320°C, and suggesting persistence of normal faulting, at that time. The STDS is cut and offset by the N-S trending Dinggye active normal fault which initiated prior to 11Ma thus providing a minimum bound for the end of STDS motion. These data are interpreted as reflecting 0.3 GPa (11km) to 0.6 GPa (22km) of exhumation along the STDS starting prior to ~16 Ma and ending between 13.6 and 11 Ma. On both side of the Ama Drime, analysis of structural and geochronological constraints

  7. Quantitative dating of Pleistocene terrace deposits of the Kyrenia Range, northern Cyprus: implications for timing, rates of uplift and driving mechanisms in an incipient collision zone

    NASA Astrophysics Data System (ADS)

    Palamakumbura, Romesh; Robertson, Alastair; Kinnaird, Tim; van Calsteren, Peter; Kroon, Dick; Tait, Jenny

    2016-04-01

    The Kyrenia Range is a narrow E-W trending mountain range up to c. 180 km long by up to ca. 20 km wide, which is located <100 km south of the Anatolian orogenic plateau within the easternmost Mediterranean Sea. The Kyrenia Range structural lineament underwent tectonically driven uplift mainly during the Pleistocene in a setting dominated by incipient continental collision. The likely driver of the uplift was the collision of the Eratosthenes Seamount, an inferred promontory of north Africa, with a subduction zone located to the south of Cyprus. To help understand the tectonic processes driving the uplift of the Kyrenia Range several quantitative techniques have been used to date uplift-related terrace deposits exposed on the northern flank of the range. Uranium-series disequilibrium (U-series) dating provides ages of 127, 131 and 242 ka from solitary coral in shallow-marine deposits of the lowest terraces, whereas optically stimulated luminescence (OSL) dating gives ages of 53 and 76 ka from coastal aeolianite deposits. Prior to major tectonic uplift a shallow-marine carbonate-depositing sea existed in the vicinity of the Kyrenia Range. Some of the youngest pre-uplift marine carbonates yielded a reversed magnetic polarity, which constrains them as older than the last palaeomagnetic reversal (0.78 Ma). The combined evidence suggests that marine environments persisted into the Early Pleistocene, prior to major surface uplift of the Kyrenia Range lineament, which appears to have climaxed in the Mid-Pleistocene. The inferred uplift rates of the Kyrenia Range lineament range from >1.2 mm/yr during the Mid-Pleistocene to <0.2 mm/yr during the Late Pleistocene. The uplift rates of the Kyrenia Range appear to be, on average, significantly faster than those inferred for some adjacent regions of the Eastern Mediterranean during the Pleistocene (e.g. Lebanon coast; Anatolian plateau southern margin). The new data also suggest that the Kyrenia Range was uplifted

  8. Magnetic basement and crustal structure in the Arabia-Eurasia collision zone from a combined gravity and magnetic model

    NASA Astrophysics Data System (ADS)

    Mousavi, Naeim; Ebbing, Jörg

    2017-04-01

    In this study, we investigate the magnetic basement and crustal structure in the region of Iran by inverse and forward modeling of aeromagnetic data and gravity data. The main focus is on the definition of the magnetic top basement. The combination of multiple shallow magnetic sources and an assumed shallow Curie isotherm depth beneath the Iranian Plateau creates a complex magnetic architecture over the area. Qualitative analysis, including pseudo gravity, wavelength filtering and upward continuation allowed a first separation of probable deep and shallow features, like the Sanandaj Sirjan zone, Urumieh Dokhtar Magmatic Assemblage, Kopet Dagh structural unit and Central Iran domain. In the second step, we apply inverse modeling to generate an estimate of the top basement geometry. The initial model was established from top basement to (a) constant depth of 25 km and (b) Moho depth. The inversion result was used as starting model for more detailed modelling in 3D to evaluate the effect of susceptibility heterogeneities in the crust. Subsequently, the model was modified with respect to tectonic and geological characterization of the region. Further modification of model in regards more details of susceptibility distribution was led to separating upper crust to different magnetic domains. In addition, we refined the top basement geometry by using terrestrial gravity observation as well. The best fitting model is consistent with the Curie isotherm depth as the base of magnetization. The Curie isotherm was derived from independent geophysical-petrological model.

  9. Oblique collision and accretion of the Netherlands Leeward Antilles island arc: A structural analysis of the Caribbean-South American plate boundary zone

    NASA Astrophysics Data System (ADS)

    Beardsley, Amanda Gail

    2007-12-01

    tectonics control the ongoing steady-state exhumation of the islands at a rate of 0.04 km/my. Most recently, the northeast escape of the Maracaibo block also drives deformation within the diffuse plate boundary zone. Overall, the Caribbean-South American plate boundary geometry has evolved with diachronous deformation, from west to east, accompanied by 135° of clockwise block rotation during collision and accretion of the Leeward Antilles since the Late Cretaceous.

  10. Shear concentration in a collision zone: kinematics of the Chihshang Fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Angelier, J.; Chu, H.-T.; Lee, J.-C.

    1997-06-01

    Repeated measurements of active deformation were carried out at three sites along the active Chihshang Fault, a segment of the Longitudinal Valley Fault zone of eastern Taiwan (the present-day plate boundary between the Philippine Sea Plate and Eurasia). Reliable annual records of displacement along an active fault, were obtained based on detailed surveys of faulted concrete structures. Along the active Chihshang Fault striking N18°E, we determined average motion vectors trending N37°W with an average shortening of 2.2 cm/yr. Thus, the transverse component of motion related to westward thrusting is 1.8 cm/yr, whereas the left-lateral strike-slip component of motion is 1.3 cm/yr. The fault dips 39-45° to the east, so that the vertical displacement is 1.5-3 cm/yr and the actual oblique offset of the fault increases at a rate of 2.7-3.7 cm/yr. This is in good agreement with the results of regional geodetic and tectonic analyses in Taiwan, and consistent with the N54°W trend of convergence between the northernmost Luzon Arc and South China revealed by GPS studies. Our study provides an example of extreme shear concentration in an oblique collision zone. At Chihshang, the whole horizontal shortening of the Longitudinal Valley Fault, 2.2 cm/yr on average, occurs across a single, narrow fault zone, so that the whole reverse slip (about 2.7-3.7 cm/yr depending on fault dip) was entirely recorded by walls 20-200 m long where faults are tightly localized. This active faulting accounts for more than one fourth (27%) of the total shortening between the Luzon Arc and South China recorded through GPS analyses. Further surveys should indicate whether the decreasing shortening velocity across the fault is significant (revealing increasing earthquake risk due to stress accumulation) or not (revealing continuing fault creep and 'weak' behaviour of the Chihshang Fault).

  11. Syn-collisional I-type Esenköy Pluton (Eastern Anatolia-Turkey): An indication for collision between Arabian and Eurasian plates

    NASA Astrophysics Data System (ADS)

    Açlan, Mustafa; Altun, Yusuf

    2018-06-01

    The Esenköy pluton which is situated in the East Anatolian Accretionary Complex (EACC) is represented by I-type, metalumino, calc-alkaline, VAG + syn-COLG, gabbro, diorite, quartz diorite, tonalite and granodiorite type rocks. This paper presents the characteristics of the above granitoids on their major, trace, rare earth elements (REE) and their zircon U-Pb dating. Zircon U-Pb crystallisation ages for gabbro, tonalite and granodiorite are 22.3 ± 0.2 Ma, 21.7 ± 0.2 Ma and 21.8 ± 0.2 Ma respectively. Esenköy granitoids show medium and high-K calc-alkaline character, with six exceptional K-poor sample plot in tholeiitic series field. The Rb/Y-Nb/Y diagram for Esenköy granitoids display subduction zone enrichment trend. The data which obtained from major, trace and REE geochemical characteristics and 206Pb/238U ages indicate that the collision which is take place between Arabian and Eurasian plates along the Bitlis-Zagros suture zone has begun in the Early Miocene (Aquitanian) or before from Early Miocene.

  12. Paleomagnetic evidence for rapid vertical-axis rotations during thrusting in an active collision zone, northeastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Weiler, Peter D.; Coe, Robert S.

    1997-06-01

    A paleomagnetic study of three thrust sheets of the fold and thrust belt north of the Ramu-Markham Fault Zone (RMFZ) indicates very rapid vertical-axis rotations, with differential declination anomalies related to tectonic transport of thrust units. Data from this investigation indicate depositional ages straddling the Brunhes-Matuyama reversal (780 ka) for the Leron Formation in Erap Valley. Net counterclockwise, vertical-axis rotations as great as 90° since 1 Ma have occurred locally in the Erap Valley area. These rotations appear to be kinematically related to shear across a tear fault within the foreland fold and thrust belt of the colliding Finisterre Arc, which in turn is aligned with and may be structurally controlled by a major fault in the lower plate. These data indicate that vertical-axis rotations occurred during thrusting; consequently, the actual rotation rate is likely several times higher than the calculated minimum rate. Such very rapid rotations during thrust sheet emplacement may be more common in fold and thrust belts than is presently recognized. Anisotropy of magnetic susceptibility data yields foliated fabrics with subordinate, well-grouped lineations that differ markedly in azimuth in the three thrust sheets. The susceptibility lineations are rendered parallel by the same bedding-perpendicular rotations used to restore the paleomagnetic remanence to N-S thus independently confirming the rapid rotations. The restored lineations are perpendicular to the direction of tectonic transport, and the minimum susceptibility axes are streaked perpendicular to the lineation. We interpret these anisotropy of magnetic susceptibility data as primary sedimentary fabrics modified by weak strain accompanying foreland thrusting.

  13. Source Parameters for Moderate Earthquakes in the Zagros Mountains with Implications for the Depth Extent of Seismicity

    SciT

    Adams, A; Brazier, R; Nyblade, A

    2009-02-23

    Six earthquakes within the Zagros Mountains with magnitudes between 4.9 and 5.7 have been studied to determine their source parameters. These events were selected for study because they were reported in open catalogs to have lower crustal or upper mantle source depths and because they occurred within an area of the Zagros Mountains where crustal velocity structure has been constrained by previous studies. Moment tensor inversion of regional broadband waveforms have been combined with forward modeling of depth phases on short period teleseismic waveforms to constrain source depths and moment tensors. Our results show that all six events nucleated withinmore » the upper crust (<11 km depth) and have thrust mechanisms. This finding supports other studies that call into question the existence of lower crustal or mantle events beneath the Zagros Mountains.« less

  14. Orogen-Wide InSAR Time Series for Detecting Deformation Sources: The Zagros and Makran of Southern Iran

    NASA Astrophysics Data System (ADS)

    Lohman, R. B.; Barnhart, W. D.

    2011-12-01

    We present interferometric synthetic aperture radar (InSAR) time series maps that span the eastern Zagros (Fars Arc) collisional belt and western Makran accretionary prism of Southern Iran. Given the upcoming availability of large volumes of SAR data from new platforms, such as Sentinel 1 and potentially DESDynI, we explore computationally efficient approaches for extracting deformation time series when the signal of interest is small compared to the level of noise in individual interferograms. We use 12 descending and 2 ascending multi-frame (2-4 frames) Envisat tracks and 2 ascending ALOS tracks spanning 2003-2010 and 2006-2010. We implement a linear inversion, similar to the Small Baseline Subset (SBaS) technique, to derive surface displacements at individual acquisition dates from trees of interferograms with perpendicular baselines less than 350m for Envisat and 1500m for ALOS pairs. This spatially extensive dataset allows us to investigate several attributes of interferometry that vary spatially and temporally over large distances, including changes in phase coherence relative to elevation and relief as well as land use. Through synthetic tests and observed data, we explore various sources of potential error in calculation of time series, including variable coherence of pixels between interferograms in a single track, ambiguities in phase unwrapping, and orbital ramp estimation over scenes with variable correlated noise structure. We present examples of detected signals with both temporally variable characteristics and small magnitudes, including surface/subsurface salt deformation, aseismic deformation across Minab-Zendan-Palami strike-slip zone, and subsidence due to hydrocarbon extraction.

  15. 2-D Density and Directional Analysis of Fault Systems in the Zagros Region (Iran) on a Regional Scale

    NASA Astrophysics Data System (ADS)

    Hashemi, Seyed Naser; Baizidi, Chavare

    2018-04-01

    In this paper, 2-D spatial variation of the frequency and length density and frequency-length relation of large-scale faults in the Zagros region (Iran), as a typical fold-and-thrust belt, were examined. Moreover, the directional analysis of these faults as well as the scale dependence of the orientations was studied. For this purpose, a number of about 8000 faults with L ≥ 1.0 km were extracted from the geological maps covering the region, and then, the data sets were analyzed. The overall pattern of the frequency/length distribution of the total faults of the region acceptably fits with a power-law relation with exponent 1.40, with an obvious change in the gradient in L = 12.0 km. In addition, maps showing the spatial variation of fault densities over the region indicate that the maximum values of the frequency and length density of the faults are attributed to the northeastern part of the region and parallel to the suture zone, respectively, and the fault density increases towards the central parts of the belt. Moreover, the directional analysis of the fault trends gives a dominant preferred orientation trend of 300°-330° and the assessment of the scale dependence of the fault directions demonstrates that larger faults show higher degrees of preferred orientations. As a result, it is concluded that the evolutionary path of the faulting process in this region can be explained by increasing the number of faults rather than the growth in the fault lengths and also it seems that the regional-scale faults in this region are generated by a nearly steady-state tectonic stress regime.

  16. Cenozoic evolution of the Yakutat-North American collision zone and structural accommodation of St. Elias syntaxis exhumation, Alaska/Yukon

    NASA Astrophysics Data System (ADS)

    Falkowski, Sarah; Enkelmann, Eva; Ehlers, Todd

    2016-04-01

    Active convergent margins potentially pose multiple natural hazards to human life and infrastructure. Tectonic strain may be further focused where convergent margins are warped into broad syntaxes. However, the processes responsible for upper plate deformation in these settings are not well understood. The St. Elias syntaxis in southeast Alaska and southwest Yukon is located at the eastern corner of the Yakutat microplate, which indents into the North American Plate and subducts at a flat angle beneath Alaska. High rates of long-term glacial erosion and exhumation (>2 mm/yr) are found on the southern, coastal flanks of the St. Elias orogen, but the deepest and most rapid exhumation is focused at the St. Elias syntaxis. In this location, transform motion transitions into subduction of the wedge-shaped, oceanic plateau of the Yakutat microplate. In order to map the spatio-temporal pattern of exhumation in the Yakutat-North American collision zone, we conducted zircon and apatite fission-track analyses of predominantly detrital, sand-sized material and five bedrock samples from 47 different glacio-fluvial catchments covering an area of ~45,000 km2 around the St. Elias syntaxis. Integration of the new thermochronologic data with prior work and other geologic and geophysical observations yielded information on past terrane accretion events at the North American margin since the late Mesozoic and the evolution of exhumation at the St. Elias syntaxis in the context of the ongoing Yakutat-North American plate collision. Our results indicate a migrating focus of the most rapid exhumation from north to south and from the upper (North American Plate) to the lower (Yakutat microplate) plate in the syntaxis area over the past ~10 Myr. This migration occurred in response to a change in plate motions, increasingly thicker crust of the subducting Yakutat microplate, and changes in surface processes after glaciation began that resulted in modification of the rheology. We propose a

  17. Prograde infiltration of Cl-rich fluid into the granulitic continental crust from a collision zone in East Antarctica (Perlebandet, Sør Rondane Mountains)

    NASA Astrophysics Data System (ADS)

    Kawakami, Tetsuo; Higashino, Fumiko; Skrzypek, Etienne; Satish-Kumar, M.; Grantham, Geoffrey; Tsuchiya, Noriyoshi; Ishikawa, Masahiro; Sakata, Shuhei; Hirata, Takafumi

    2017-03-01

    Utilizing microstructures of Cl-bearing biotite in pelitic and felsic metamorphic rocks, the timing of Cl-rich fluid infiltration is correlated with the pressure-temperature-time (P-T-t) path of upper amphibolite- to granulite-facies metamorphic rocks from Perlebandet, Sør Rondane Mountains (SRM), East Antarctica. Microstructural observation indicates that the stable Al2SiO5 polymorph changed from sillimanite to kyanite + andalusite + sillimanite, and P-T estimates from geothermobarometry point to a counterclockwise P-T path characteristic of the SW terrane of the SRM. In situ laser ablation inductively coupled plasma mass spectrometry for U-Pb dating of zircon inclusions in garnet yielded ca. 580 Ma, likely representing the age of garnet-forming metamorphism at Perlebandet. Inclusion-host relationships among garnet, sillimanite, and Cl-rich biotite (Cl > 0.4 wt%) reveal that formation of Cl-rich biotite took place during prograde metamorphism in the sillimanite stability field. This process probably predated partial melting consuming biotite (Cl = 0.1-0.3 wt%). This was followed by retrograde, moderately Cl-bearing biotite (Cl = 0.1-0.3 wt%) replacing garnet. Similar timings of Cl-rich biotite formation in different samples, and similar f(H2O)/f(HCl) values of coexisting fluid estimated for each stage can be best explained by prograde Cl-rich fluid infiltration. Fluid-present partial melting at the onset of prograde metamorphism probably contributed to elevate the Cl concentration (and possibly salinity) of the fluid, and consumption of the fluid resulted in the progress of dehydration melting. The retrograde fluid was released from crystallizing Cl-bearing partial melts or derived externally. The prograde Cl-rich fluid infiltration in Perlebandet presumably took place at the uppermost part of the footwall of the collision boundary. Localized distribution of Cl-rich biotite and hornblende along large-scale shear zones and detachments in the SRM supports external

  18. Assessment of undiscovered conventional oil and gas resources of the Arabian Peninsula and Zagros Fold Belt, 2012

    Pitman, Janet K.; Schenk, Christopher J.; Brownfield, Michael E.; Charpentier, Ronald R.; Cook, Troy A.; Klett, Timothy R.; Pollastro, Richard M.

    2012-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 86 billion barrels of oil and 336 trillion cubic feet of undiscovered natural gas resources in the Arabian Peninsula and Zagros Fold Belt. The USGS assessed the potential for undiscovered conventional oil and gas accumulations within the Arabian Peninsula and Zagros Fold Belt as part of the USGS World Petroleum Resources Project. Twenty-three assessment units within seven petroleum systems were quantitatively assessed in this study, which represents a reassessment of this area last published in 2000.

  19. Morphotectonic aspects of active folding in Zagros Mountains (Fin, SE of Iran)

    NASA Astrophysics Data System (ADS)

    Roustaei, M.; Abbasi, M.

    2008-05-01

    Active deformation in Iran, structural province of Zagros is a result of the convergence between the Arabian & Eurasian plates. The Zagros Mountains in southern Iran are one of the seismically active region & is introduced as fold-thrust belt trending NW-SE within the Arabian plate. Fin lies in Hormozgan province; the south of Iran. The vastness is surrounded by central Iran in the north, High Zagros in the North West and west, Folded Zagros in the east, Makran in the south east and Persian Gulf in the south. The study area is determined by complex structures, alternation of folding, salt diapers and faulting. The surface geology mainly comprises Neogene; Marls, Conglomerate, Sandstones (Mishan, Aghajari, Bakhtiyari formations), old fans and alluvium as syncline that Shur River cuts its north limb and passes from the middle of core .The older formations( Ghachsaran, Rzak and Guri member) folded into prominent anticlines. The fold axes mostly follow the parallel trends .Folds trending are NW-SE (Tashkend anticline), NE-SW (Khur anticline), E-W (Guniz & Handun anticline) and the trend of axes Baz fold in the main part is E-W. Hormoz salt also outcrops in the cores of many whaleback anticlines. Thus, anticlines may be cored with evaporates, even though no salt is currently exposed at the surface. Reason of selecting this area as an example referred to active seismcity. Release of energy is gradually in every events, this seismic character cusses that there was not earthquake with high magnitude in the area but it can not be a role. Answer to the question concerning relationship between folding of the crust layer and faulting at depth is more difficult. There is 2 terms to describe this relationship; "detachment folds" and" forced folds". In this paper, we try to analysis of different satellite imagery; Aster, spot and digital elevation model with high resolution (10 m) in order to detect geomorphic indicators which can help us to find a relationship between faulting

  20. Geotechnical Risk Classification for Underground Mines / Klasyfikacja Poziomu Zagrożenia Geotechnicznego W Kopalniach Podziemnych

    NASA Astrophysics Data System (ADS)

    Mishra, Ritesh Kumar; Rinne, Mikael

    2015-03-01

    Underground mining activities are prone to major hazards largely owing to geotechnical reasons. Mining combined with the confined working space and uncertain geotechnical data leads to hazards having the potential of catastrophic consequences. These incidents have the potential of causing multiple fatalities and large financial damages. Use of formal risk assessment in the past has demonstrated an important role in the prediction and prevention of accidents in risk prone industries such as petroleum, nuclear and aviation. This paper proposes a classification system for underground mining operations based on their geotechnical risk levels. The classification is done based on the type of mining method employed and the rock mass in which it is carried out. Mining methods have been classified in groups which offer similar geotechnical risk. The rock mass classification has been proposed based on bulk rock mass properties which are collected as part of the routine mine planning. This classification has been subdivided for various stages of mine planning to suit the extent of available data. Alpha-numeric coding has been proposed to identify a mining operation based on the competency of rock and risk of geotechnical failures. This alpha numeric coding has been further extended to identify mining activity under `Geotechnical Hazard Potential (GHP)'. GHP has been proposed to be used as a preliminary tool of risk assessment and risk ranking for a mining activity. The aim of such classification is to be used as a guideline for the justification of a formal geotechnical risk assessment. Górnictwo podziemne pociąga za sobą różnorakie zagrożenia spowodowane przez uwarunkowania geotechniczne. Urabianie złoża w połączeniu z pracą w zamkniętej przestrzeni oraz z niepewnymi danymi geotechnicznymi powodować może zagrożenia, które w konsekwencji prowadzić mogą do wypadków, a te potencjalnie powodować mogą skutki śmiertelne dla osób oraz

  1. The continuation of the Kazerun fault system across the Sanandaj-Sirjan zone (Iran)

    NASA Astrophysics Data System (ADS)

    Safaei, Homayon

    2009-08-01

    The Kazerun (or Kazerun-Qatar) fault system is a north-trending dextral strike-slip fault zone in the Zagros mountain belt of Iran. It probably originated as a structure in the Panafrican basement. This fault system played an important role in the sedimentation and deformation of the Phanerozoic cover sequence and is still seismically active. No previous studies have reported the continuation of this important and ancient fault system northward across the Sanandaj-Sirjan zone. The Isfahan fault system is a north-trending dextral strike-slip fault across the Sanandaj-Sirjan zone that passes west of Isfahan city and is here recognized for the first time. This important fault system is about 220 km long and is seismically active in the basement as well as the sedimentary cover sequence. This fault system terminates to the south near the Main Zagros Thrust and to the north at the southern boundary of the Urumieh-Dokhtar zone. The Isfahan fault system is the boundary between the northern and southern parts of Sanandaj-Sirjan zone, which have fundamentally different stratigraphy, petrology, geomorphology, and geodynamic histories. Similarities in the orientations, kinematics, and geologic histories of the Isfahan and Kazerun faults and the way they affect the magnetic basement suggest that they are related. In fact, the Isfahan fault is a continuation of the Kazerun fault across the Sanandaj-Sirjan zone that has been offset by about 50 km of dextral strike-slip displacement along the Main Zagros Thrust.

  2. Canopy Density Mapping on Ultracam-D Aerial Imagery in Zagros Woodlands, Iran

    NASA Astrophysics Data System (ADS)

    Erfanifard, Y.; Khodaee, Z.

    2013-09-01

    Canopy density maps express different characteristics of forest stands, especially in woodlands. Obtaining such maps by field measurements is so expensive and time-consuming. It seems necessary to find suitable techniques to produce these maps to be used in sustainable management of woodland ecosystems. In this research, a robust procedure was suggested to obtain these maps by very high spatial resolution aerial imagery. It was aimed to produce canopy density maps by UltraCam-D aerial imagery, newly taken in Zagros woodlands by Iran National Geographic Organization (NGO), in this study. A 30 ha plot of Persian oak (Quercus persica) coppice trees was selected in Zagros woodlands, Iran. The very high spatial resolution aerial imagery of the plot purchased from NGO, was classified by kNN technique and the tree crowns were extracted precisely. The canopy density was determined in each cell of different meshes with different sizes overlaid on the study area map. The accuracy of the final maps was investigated by the ground truth obtained by complete field measurements. The results showed that the proposed method of obtaining canopy density maps was efficient enough in the study area. The final canopy density map obtained by a mesh with 30 Ar (3000 m2) cell size had 80% overall accuracy and 0.61 KHAT coefficient of agreement which shows a great agreement with the observed samples. This method can also be tested in other case studies to reveal its capability in canopy density map production in woodlands.

  3. Fracture patterns in the Zagros fold-and-thrust belt, Kurdistan Region of Iraq

    NASA Astrophysics Data System (ADS)

    Reif, Daniel; Decker, Kurt; Grasemann, Bernhard; Peresson, Herwig

    2012-11-01

    Fracture data have been collected in the Kurdistan Region of Iraq, which is a poorly accessible and unexplored area of the Zagros. Pre to early folding NE-SW striking extensional fractures and NW-SE striking contractive elements represent the older set affecting the exposed multilayer of the area. These latter structures are early syn-folding and followed by folding-related mesostructural assemblages, which include elements striking parallel to the axial trend of major folds (longitudinal fractures). Bedding perpendicular joints and veins, and extensional faults belonging to this second fracture set are located in the outer arc of exposed anticlines, whilst longitudinal reverse faults locate in the inner arcs. Consistently, these elements are associated with syn-folding tangential longitudinal strain. The younger two sets are related to E-W extension and NNE-SSW to N-S shortening, frequently displaying reactivation of the older sets. The last shortening event, which is described along the entire Zagros Belt, probably relates with the onset of N-S compression induced by the northward movement of the Arabian plate relative to the Eurasian Plate. In comparison between the inferred palaeostrain directions and the kinematics of recent GPS measurements, we conclude that the N-S compression and the partitioning into NW-SE trending folds and NW to N trending strike-slip faults likely remained unchanged throughout the Neogene tectonic history of the investigated area.

  4. Zircon U-Pb dating, Hf analysis from the Horoman perdiotite -age constraint for lithospheric process, and tectonic juxtaposition of collision root zone-

    NASA Astrophysics Data System (ADS)

    Okamoto, K.; Yi, K.; Wang, K. L.; Chung, S. L.

    2017-12-01

    Hidaka metamorphic belt, Hokkaido, Japan is known as youngest arc-arc collision in the world. It ncludes the youngest granulite and the Horoman peridotite complex in the highest grade zone. Age of these rocks have been determined by various methods (K-Ar, U-Pb, Rb-Sr). However, the age of Horoman peridotite complex has not been determined yet. Only Yoshikawa et al 1993) reported the cooling age of the complex as 23 Ma according to whole rock Rb-Sr isochron. This study has performed U-Pb dating of zircons from the Horoman peridotite, and from the paragneiss surrounding the peridotite complex in order to determine the intrusive age of the Horoman peridotite complex into the lower crustal conditions. Several zircon grains were separated from the peridotite. All zircons are homogeneous exhibiting different age group; 267-278 Ma, 33-40 Ma and 18-20 Ma. Hf isotope analysis indicates that the 267-278 Ma is juvenile age and other two are recycled. As a result of this measurement, rims of the zircons from the gneisses show that 238U-206Pb ages are 20 Ma and detrital cores are ranging from 580-510 Ma, 60-50 Ma, 46-40 Ma and 27 Ma. The rim ages are from the gneiss suffered amphibolite facies and granulite faices, and there is a consistancy with zircon rim ages (19 Ma) from the granulite (Kemp et al 2007, Usuki et al 2006 and so on). That is, granulite faices metamorphism was coeval to regional metamorphism in the lower crust at 20 Ma. The zircon ages from the peridotite was probably related to local hydration related to precipitation of phlogopite at 20 Ma, I type magma infiltration at 40 Ma and lithosphere formation at 270 Ma. It is considered that the Horoman peridotite complex was part of the lithosphere at 270 Ma, and the joined as subarc mantle prior to I type magma activity at 40 Ma, aud suffered local hydration and regional metamorphism at 20 Ma. Ref. Kemp, A.I.S., et al., 2007, Geology, 35, 807-810; Usuki, T. et al, 2006, Island Arc, 14, 503-516.

  5. Sm-Nd dating of multiple garnet growth events in an arc-continent collision zone, northwestern U.S. Cordillera

    NASA Astrophysics Data System (ADS)

    Getty, Stephen R.; Selverstone, Jane; Wernicke, Brian P.; Jacobsen, Stein B.; Aliberti, Elaine; Lux, Daniel R.

    1993-03-01

    Integrated petrologic and Sm-Nd isotopic studies in garnet amphibolites along the Salmon River suture zone, western Idaho, delineate two periods of amphibolite grade metamorphism separated by at least 16 million years. In one amphibolite, P-T studies indicate a single stage of metamorphism with final equilibration at ˜600°C and 8 9 kbar. The Sm-Nd isotopic compositions of plagioclase, apatite, hornblende, and garnet define a precise, 8-point isochron of 128±3 Ma (MSWD=1.2) interpreted as mineral growth at the metamorphic peak. A40Ar/39Ar age for this hornblende indicates cooling through ˜525°C at 119±2 Ma. In a nearby amphibolite, garnets with a two-stage growth history consist of inclusion-rich cores surrounded by discontinuous, inclusion-free overgrowths. Temporal constraints for core and overgrowth development were derived from Sm-Nd garnet — whole rock pairs in which the garnet fractions consist of varying proportions of inclusion-free to inclusion-bearing fragments. Three garnet fractions with apparent “ages” of 144, 141, and 136 Ma are thought to represent mixtures between late Jurassic (pre-144 Ma) inherited radiogenic components preserved within garnet cores and early Cretaceous (˜128 Ma) garnet overgrowths. These observations confirm the resilience of garnet to diffusive exchange of trace elements during polymetamorphism at amphibolite facies conditions. Our geochronologic results show that metamorphism of arc-derived rocks in western Idaho was episodic and significantly older than in arc rocks along the eastern margin of the Wrangellian Superterrane in British Columbia and Alaska. The pre-144 Ma event may be an expression of the late Jurassic amalgamation of marginal oceanic arc-related terranes (e.g., Olds Ferry, Baker, Wallowa) during the initial phases of their collision with North American rocks. Peak metamorphism at ˜128 Ma reflects tectonic burial along the leading edge of the Wallowa arc terrane during its final penetration and

  6. Ductile deformation history in Laibid metamorphic rocks, Sanandaj-Sirjan Zone, Iran

    NASA Astrophysics Data System (ADS)

    Aflaki, Mahtab; Mohajjel, Mohammad

    2010-05-01

    Sanandaj-Sirjan zone, in northeast of Zagros suture zone, is the metamorphic belt of the Zagros orogen which is metamorphosed during Late Mesozoic, as the active margin of the Neotethys subduction system. Since Late Cretaceous, oblique collision between Afro-Arabian continent and Central Iran micro continent resulted in dextral transpression and Poly-phase deformations of this zone. Laibid area, northwest of Esfahan province, is situated in complexly deformed sub zone of the Sanandaj-Sirjan zone in which structurally exposed Permian metamorphosed rocks are separated from the younger Triassic-Jurassic metamorphic rocks by faulted boundaries. Cretaceous unites do not exist in the study area, but in southern most parts un-metamorphosed Early Cretaceous rocks rest on Jurassic metamorphic units over an angular unconformity. Field observations reveal the existence of 3 folding patterns, folded dikes, semi-ductile to ductile shear zones and also sin-tectonic granite intrusion. Hassan-Robat Alkali-porphyritic-granite is exposed in the eastern part of the area with the possible ages between post-Early Cretaceous to pre-Eocene. In this research, the focus is on ductile structures and their deformation history in the Laibid area. Structural analysis of the folds reveals three deformation stages of a progressive deformation in this area. These folding patterns observed in all pre-Cretaceous metamorphosed unites, but not in Cretaceous rocks. The first stage includes tight to isoclinal folds, S0 || S1, with the aspect ratio changes respectively from tall and short. Although their axial plane and fold axis orientations change due to other two folding stages, but they mostly have moderately dipping to the NE axial plane and moderately plunging fold axis to NW or SE. In the eastern part of the area the trend of F1 foliation changes around the Hassan-Robat granite. The second folding stage includes open to close asymmetric folds which have broad aspect ratio. This folding stage

  7. U-Pb dating and emplacement history of granitoid plutons in the northern Sanandaj-Sirjan Zone, Iran

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Shahryar; Corfu, Fernando; Masoudi, Fariborz; Mehrabi, Behzad; Mohajjel, Mohammad

    2011-05-01

    The Sanandaj-Sirjan Zone (SSZ), which runs parallel to the Zagros fold and thrust belt of Iran, underwent a multistage evolution starting with Neotethys initiation, its subsequent subduction below the Iranian continental crust, and eventual closure during convergence of Arabia towards central Iran. Plutonic complexes are well developed in the northern part of the SSZ and we have dated a number of them by ID-TIMS U-Pb on zircon. The new data record the following events: a Mid Jurassic period that formed the Boroujerd Plutonic Complex (169 Ma), the Astaneh Pluton (168 Ma) and the Alvand Pluton (165 Ma); Late Jurassic emplacement of the Gorveh Pluton (157-149 Ma); Mid Cretaceous (109 Ma) formation of a I-type phase in the Hasan Salary Pluton near Saqqez, followed by Early Paleocene (60 Ma) intrusion of A-type granite in the same pluton; and the youngest intrusive event recorded so far in the SSZ with the intrusion of granite in the Gosheh-Tavandasht Complex near Boroujerd at 34.9 Ma. These different events reflect specific stages of subduction-related magmatism prior to the eventual Miocene collision between the two continental blocks.

  8. VLTI-AMBER Velocity-Resolved Aperture-Synthesis Imaging of Eta Carinae with a Spectral Resolution of 12 000: Studies of the Primary Star Wind and Innermost Wind-Wind Collision Zone

    NASA Technical Reports Server (NTRS)

    Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; hide

    2016-01-01

    The mass loss from massive stars is not understood well. Eta Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims. We want to investigate the structure and kinematics of Car's primary star wind and wind-wind collision zone with a high spatial resolution of approx.6 mas (approx.14 au) and high spectral resolution of R = 12 000. Methods. Observations of Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results. We present velocity-resolved aperture-synthesis images reconstructed in more than 100 di erent spectral channels distributed across the Br(gamma) 2.166 micron emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to -376 km/s measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of -277 km/s, the position angle of the symmetry axis of the fan is 126. The fan-shaped structure extends approximately 8.0 mas (approx.18:8 au) to the southeast and 5.8 mas (approx.13:6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three

  9. Effects of dust on forest tree health in Zagros oak forests.

    PubMed

    Moradi, A; Taheri Abkenar, K; Afshar Mohammadian, M; Shabanian, N

    2017-10-10

    Dust is one of the most devastating factors for the environment threatening all animal and plant species. In many regions, the ecological and economic impact of microdust on scarce species is critical. In the western region of Iran, the Zagros forests have been exposed to dust storms for many years. In this study, the effect of dust on oak trees, the most important trees of Zagros forests, is investigated. For this purpose, 3-year-old seedlings of three species of oak trees under natural conditions were exposed to dust during spring and summer months. Seedlings were divided into two groups; one group was assigned as dust treatment and the other as control that the control group washed regularly to remove dust. Anatomical characteristics of leaves and dust deposits on leaves during the study period were examined by scanning electron microscope (SEM). The rate of photosynthesis and gas exchange in control and treated plants was examined by IRGA, LCI. SEM images showed that stomata structure, trichome density, and epicuticular waxes of leaves are different in all three species. This difference in micromorphology of species influences the effects of dust deposited on the leaves. A comparison of leaf species images in control and dust treatment showed that in dust treatment the percentage of stomata blocked by dust in three species (per unit area) of Quercus infectoria, Q. libni, and Q. brantii were 61/6, 48/4, and 38/1%, respectively. The results of leaf gas exchange investigation indicated that stomatal occlusion by dust had a negative impact on the examined parameters of three oak species (P ≤ 0.01). Thus, gas exchange and photosynthetic rates of the treated species were significantly reduced. The results of both parts of the study showed the vulnerability of the three species to dust as Q. infectoria > Q. libni > Q. brantii. Therefore, based on these findings, dust can disrupt the physiological activities of the studied species and the continuation of the

  10. Two-stage fluid flow and element transfers in shear zones during collision burial-exhumation cycle: Insights from the Mont Blanc Crystalline Massif (Western Alps)

    NASA Astrophysics Data System (ADS)

    Rolland, Y.; Rossi, M.

    2016-11-01

    The Mont-Blanc Massif was intensely deformed during the Alpine orogenesis: in a first stage of prograde underthrusting at c. 30 Ma and in a second stage of uplift and exhumation at 22-11 Ma. Mid-crustal shear zones of 1 mm-50 m size, neighbouring episyenites (quartz-dissolved altered granite) and alpine veins, have localised intense fluid flow, which produced substantial changes in mineralogy and whole-rock geochemistry. Four main metamorphic zones are oriented parallel to the strike of the massif: (i) epidote, (ii) chlorite, (iii) actinolite-muscovite ± biotite and (iv) muscovite ± biotite. In addition, phlogopite-bearing shear zones occur in the chlorite zone, and calcite-bearing shear zones are locally found in the muscovite zone. The initial chemical composition of the granitic protolith is relatively constant at massif scale, which allows investigating compositional changes related to shear zone activity, and subsequent volume change and elements mobility. The variations of whole-rock composition and mineral chemistry in shear zones reflect variations in fluid/rock ratios and fluid's chemistry, which have produced specific mineral reactions. Estimated time-integrated fluid fluxes are of the order of 106 m3/m2. The mineral assemblages that crystallised upon these fluid-P-T conditions are responsible for specific major and trace element enrichments. The XFe (Fe/Fe + Mg) pattern of shear zone phyllosilicates and the δ13C pattern of vein calcite both show a bell-type pattern across the massif with high values on the massif rims and low values in the centre of the massif. These low XFe and δ13C values are explained by down temperature up-flow of a Fe-Mg-CO2-rich and silica-depleted fluid during stage 1, while the massif was underthrusting. These produced phlogopite, chlorite and actinolite precipitation and quartz hydrolysis, resulting in strong volume losses. In contrast, during stage 2 (uplift), substantial volume gains occurred on the massif rims due to the

  11. Geochemical Interpretation of Collision Volcanism

    NASA Astrophysics Data System (ADS)

    Pearce, Julian

    2014-05-01

    collision type with extreme LILE and significant HFSE enrichment relative to MORB and with large negative Nb-Ta and Ti anomalies. Post-collision volcanism is usually ascribed to combinations of slab detachment, delamination, and slab roll back (orogenic) and extension (post-orogenic). The magma source is typically conductively-heated, sub-continental mantle lithosphere with composition and depth of melting depending on the nature and evolution of the collision zone in question. Geochemical patterns may be similar to those of syn-collision basalts or of intraplate, continental basalts - or transitional between these. This variability in space and time, though problematic for geochemical fingerprinting, can give clues to the polarity and development of the collision zone, for example by highlighting the distribution of subduction-modified mantle lithosphere and hence of pre-collision subduction zones. One characteristic common to this setting is a high crustal input resulting from the presence of a hot, thick 'crustal chemical filter' which is evident on geochemical projections that highlight AFC-type processes. Using this, and other, geochemical features it is possible to develop methodologies to at least partly see through the complexity of collision terranes.

  12. The 2013 Mw 6.2 Khaki-Shonbe (Iran) Earthquake: Seismic Shortening of the Zagros Sedimentary Cover

    NASA Astrophysics Data System (ADS)

    Elliott, J. R.; Bergman, E.; Copley, A.; Ghods, A.; Nissen, E.; Oveisi, B.; Walters, R. J.

    2014-12-01

    The 2013 Mw 6.2 Khaki-Shonbe earthquake occurred in the Simply Folded Belt of the Zagros Mountains, Iran. This is the largest earthquake in the Zagros since the November 1990 Mw 6.4 Furg (Hormozgan) thrust faulting event, and therefore the largest in the period for which dense InSAR ground displacements are available. It is also the biggest seismic event to have occurred in the Simply Folded Belt since the March 1977 Mw 6.7 Khurgu earthquake. This earthquake therefore potentially provides valuable insights into a range of controversies: (1) the preponderance of earthquake faulting in the crystalline basement versus the sedimentary cover and the potential importance of lithology in controlling and limiting seismic rupture; (2) the nature of surface folding and whether or not there is a one-to-one relationship between buried reverse faults and surface anticlines; and (3) the presence or absence of large pulses of aseismic slip triggered by mainshock rupture. We combine seismological solutions and aftershock relocations with satellite interferometric ground displacements and observations from the field to determine the geometry of faulting and its relationship with the structure, stratigraphy and tectonics of the Central Zagros. The earthquake rupture involved reverse slip on two along-strike southwest dipping fault segments, the rupture initiating at the northern and bottom end of the larger north-west segment. These faults verge away from the foreland and towards the high range interior, contrary to the fault geometries depicted in many structural cross-sections of the Zagros. The slip measured on the reverse segments occurred over two mutually exclusive depth ranges, 10-5 km and 4-2 km, resulting in long (16 km), narrow (7 km) rupture segments. Conversely, aftershocks are found to cluster in the depth range 8-16 km, beneath the main rupture segment. This indicates only significant reverse slip and coseismic shortening in the sedimentary cover, with the slip

  13. Effects of Heterogeniety on Spatial Pattern Analysis of Wild Pistachio Trees in Zagros Woodlands, Iran

    NASA Astrophysics Data System (ADS)

    Erfanifard, Y.; Rezayan, F.

    2014-10-01

    Vegetation heterogeneity biases second-order summary statistics, e.g., Ripley's K-function, applied for spatial pattern analysis in ecology. Second-order investigation based on Ripley's K-function and related statistics (i.e., L- and pair correlation function g) is widely used in ecology to develop hypothesis on underlying processes by characterizing spatial patterns of vegetation. The aim of this study was to demonstrate effects of underlying heterogeneity of wild pistachio (Pistacia atlantica Desf.) trees on the second-order summary statistics of point pattern analysis in a part of Zagros woodlands, Iran. The spatial distribution of 431 wild pistachio trees was accurately mapped in a 40 ha stand in the Wild Pistachio & Almond Research Site, Fars province, Iran. Three commonly used second-order summary statistics (i.e., K-, L-, and g-functions) were applied to analyse their spatial pattern. The two-sample Kolmogorov-Smirnov goodness-of-fit test showed that the observed pattern significantly followed an inhomogeneous Poisson process null model in the study region. The results also showed that heterogeneous pattern of wild pistachio trees biased the homogeneous form of K-, L-, and g-functions, demonstrating a stronger aggregation of the trees at the scales of 0-50 m than actually existed and an aggregation at scales of 150-200 m, while regularly distributed. Consequently, we showed that heterogeneity of point patterns may bias the results of homogeneous second-order summary statistics and we also suggested applying inhomogeneous summary statistics with related null models for spatial pattern analysis of heterogeneous vegetations.

  14. Interface collisions

    NASA Astrophysics Data System (ADS)

    Aarão Reis, F. D. A.; Pierre-Louis, O.

    2018-04-01

    We provide a theoretical framework to analyze the properties of frontal collisions of two growing interfaces considering different short-range interactions between them. Due to their roughness, the collision events spread in time and form rough domain boundaries, which defines collision interfaces in time and space. We show that statistical properties of such interfaces depend on the kinetics of the growing interfaces before collision, but are independent of the details of their interaction and of their fluctuations during the collision. Those properties exhibit dynamic scaling with exponents related to the growth kinetics, but their distributions may be nonuniversal. Our results are supported by simulations of lattice models with irreversible dynamics and local interactions. Relations to first passage processes are discussed and a possible application to grain-boundary formation in two-dimensional materials is suggested.

  15. Early Jurassic extensional inheritance in the Lurestan region of the Zagros fold-and-thrust belt, Iran.

    NASA Astrophysics Data System (ADS)

    Tavani, Stefano; Parente, Mariano; Vitale, Stefano; Puzone, Francesco; Erba, Elisabetta; Bottini, Cinzia; Morsalnejad, Davoud; Mazzoli, Stefano

    2017-04-01

    It has long been recognized that the tectonic architecture of the Zagros mountain belt was strongly controlled by inherited structures previously formed within the Arabian plate. These preexisting features span in age from the pre-Cambrian to the Mesozoic, showing different trends and deformation styles. Yet, these structures are currently not fully understood. This uncertainty is partly related with the paucity of exposures, which rarely allows a direct observation of these important deformation features. The Lurestan Province of Iran provides a remarkable exception, since it is one of the few places of the Zagros mountain belt where exposures of Triassic and Jurassic rocks are widespread. In this area we carried out structural observations on Mesozoic extensional structures developed at the southern margin of the Neo-Tethyan basin. Syn-sedimentary extensional faults are hosted within the Triassic-Cretaceous succession, being particularly abundant in the Jurassic portion of the stratigraphy. Early to Middle Jurassic syn-sedimentary faults are observed in different paleogeographic domains of the area, and their occurrence is coherent with the subsequent transition from shallow-water to deep-sea basin environments, observed in a wide portion of the area. Most of the thrusts exposed in the area may indeed be interpreted as reactivated Jurassic extensional faults, or as reverse faults whose nucleation was controlled by the location of preexisting normal faults, as a result of positive inversion during crustal shortening and mountain building.

  16. Tectono-sedimentary evolution of the Permian-Triassic extension event in the Zagros basin (Iran): results from analogue modelling

    NASA Astrophysics Data System (ADS)

    Madani-kivi, M.; Zulauf, G.

    2015-12-01

    Since the 1970s, the largest oil and gas reservoirs have been discovered in the Permian-Early Triassic formationsin Saudi Arabia. Thus, this time period is important for the discovery of new oil reserves in Iran. The Arabian passivecontinental margin has undergone lithospheric extension during the Permian-Triassic, which led to the formation of theNeo-Tethys. The aim of this paper is to describe the development of the continental rift basin in the Zagros region basedon the tectono-sedimentological evolution. We have studied well-log data to specify the distribution of synrift depositsin the Zagros and have related this information to the modelling. Environmental changes indicated by various sedimentarysequences, from a siliciclastic basin to a carbonate platform setting, are described. The Cambrian Hormuz salt, whichoverlies the metamorphosed Precambrian basement, becomes effective as a basal detachment layer influencing the styleof overburden deformation during the Permian-Triassic extension event. We have investigated the formation of variousstructures linked to the presence or absence of the Hormuz layer by analogue modelling and relating these structures to theLate Palaeozoic sedimentation. Based on results of the analogue modelling, we argue that the basal detachment layer (Hormuzseries) has contributed to the various structural styles of the extensional basin development in the Fars domain and theLorestan domain.

  17. The Oligocene carbonate platform of the Zagros Basin, SW Iran: An assessment of highly-complex geological heritage

    NASA Astrophysics Data System (ADS)

    Habibi, Tahereh; Ruban, Dmitry A.

    2017-05-01

    North Africa and the Middle East possess rich geological heritage, but the latter is yet to be fully identified and described. The Oligocene carbonate platform of the Zagros Basin in southwest Iran, which corresponds to the lower part of the Asmari Formation, has significant potential for geoconservation and geotourism. The types of the geological heritage, their value, and the possible geosites have been assessed. The studied deposits are interesting because of lithology (carbonate rocks), fossils (larger foraminifera, other microfossils, diverse marine invertebrates, fish microremains, and trace fossils), biostratigraphical developments, facies (homoclinal carbonate ramp) and signature of global events (glacioeustatic fluctuations), and outstanding hydrocarbon resources. The five main geological heritage types are sedimentary, palaeontological, stratigraphical, palaeogeographical, and economical, from which the palaeontological, palaeogeographical, and economical types are of global rank. The Khollar and Kavar sections in the Fars Province of Iran are recommended as geosites suitable for research, education, and tourism. The high complexity of the geological heritage linked to the Oligocene carbonate platform of the Zagros Basin implies the phenomenon of geodiversity should be understood with regard to the relationships between types and their values.

  18. Chronometric investigations of the Middle to Upper Paleolithic transition in the Zagros Mountains using AMS radiocarbon dating and Bayesian age modelling.

    PubMed

    Becerra-Valdivia, Lorena; Douka, Katerina; Comeskey, Daniel; Bazgir, Behrouz; Conard, Nicholas J; Marean, Curtis W; Ollé, Andreu; Otte, Marcel; Tumung, Laxmi; Zeidi, Mohsen; Higham, Thomas F G

    2017-08-01

    The Middle to Upper Paleolithic transition is often linked with a bio-cultural shift involving the dispersal of modern humans outside of Africa, the concomitant replacement of Neanderthals across Eurasia, and the emergence of new technological traditions. The Zagros Mountains region assumes importance in discussions concerning this period as its geographic location is central to all pertinent hominin migration areas, pointing to both east and west. As such, establishing a reliable chronology in the Zagros Mountains is crucial to our understanding of these biological and cultural developments. Political circumstance, coupled with the poor preservation of organic material, has meant that a clear chronological definition of the Middle to Upper Paleolithic transition for the Zagros Mountains region has not yet been achieved. To improve this situation, we have obtained new archaeological samples for AMS radiocarbon dating from three sites: Kobeh Cave, Kaldar Cave, and Ghār-e Boof (Iran). In addition, we have statistically modelled previously published radiocarbon determinations for Yafteh Cave (Iran) and Shanidar Cave (Iraqi Kurdistan), to improve their chronological resolution and enable us to compare the results with the new dataset. Bayesian modelling results suggest that the onset of the Upper Paleolithic in the Zagros Mountains dates to 45,000-40,250 cal BP (68.2% probability). Further chronometric data are required to improve the precision of this age range. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Spatial and temporal development of exhumation at the St. Elias syntaxis in the Yakutat-North American subduction-collision zone, SE Alaska

    NASA Astrophysics Data System (ADS)

    Falkowski, Sarah; Enkelmann, Eva; Pfänder, Jörg; Drost, Kerstin; Stübner, Konstanze; Ehlers, Todd

    2015-04-01

    Since the Mesozoic, the western North American margin has been built by the subduction-collision of several terranes. Currently, the 15-30 km thick, wedge-shaped oceanic plateau of the Yakutat microplate collides obliquely with North America at the bend of the southern Alaskan margin forming the Chugach-St. Elias Mountains. Glaciation of this orogen started 6-5 Ma and efficient glacial erosion has been reported over different timescales. Particularly rapid and deep exhumation occurs at the St. Elias syntaxis, where the plate boundary bends and the tectonic regime transitions from transpression to convergence and flat-slab subduction. This region comprises the highest topography and is almost completely covered by the Seward-Malaspina and Hubbard-Valerie glacial systems. Very young detrital zircon fission-track exhumation ages (<5 Ma, closure temperature of 250±40 °C) from glacial outwash sand led to speculations about the underlying geodynamic mechanisms and comparisons to processes occurring at the Himalayan syntaxes. The comparison of bedrock and detrital thermochronology shows that the youngest cooling ages, and hence the highest exhumation rates, only occur in low-elevation, ice-covered valleys in the St. Elias syntaxis area. We now further investigate this area concerning its spatial and temporal development. Zircon fission-track age distributions derived from 46 glacio-fluvial sand samples confine the area of rapid and deep exhumation on the resolution of catchments to an ~4800 km2 area on the North American Plate around the St. Elias syntaxis. To overcome the shortcoming of a decreased resolution of the provenance signal of sand, we present 22 new crystallization ages of cobble-sized detritus from the Seward-Malaspina Glacier. Zircon U-Th/He ages of the cobbles demonstrate that they originate from below the ice and their provenance is analyzed based on their petrographic information and zircon U/Pb data (30.8±0.8 to 277.1±7 Ma, 2σ). Furthermore, we

  20. Collision of EBV-associated gastric carcinoma and primary gastric extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue in the remnant stomach.

    PubMed

    Akiba, Jun; Nakane, Tomoyuki; Arakawa, Fumiko; Ohshima, Koichi; Yano, Hirohisa

    2010-02-01

    Reported herein is a case of EBV-associated gastric carcinoma with primary gastric extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma). A 69-year-old Japanese man was found to have an ulcer lesion in his stomach on endoscopy, and a biopsy indicated malignancy. He underwent gastrectomy. Microscopically the tumor had features typical of lymphoepithelioma-like carcinoma. The neoplastic epithelial cells proliferated in a trabecular fashion. On in situ hybridization for EBV-encoded RNA, positive signals were observed in most neoplastic epithelial cells. Numerous lymphocytes surrounded the neoplastic epithelial cells. In the stroma, numerous lymphocytes with mild atypia were positive for CD20 and CD79a. In addition, monoclonal proliferation of B cells was confirmed on polymerase chain reaction for IgH. These findings supported MALT lymphoma. The coexistence of EBV-associated gastric carcinoma and MALT lymphoma is extremely rare.

  1. Deformation Mechanisms of Darreh Sary Metapelites, Sanandaj‒Sirjan Zone, Iran

    NASA Astrophysics Data System (ADS)

    Hemmati, O.; Tabatabaei Manesh, S. M.; Nadimi, A. R.

    2018-03-01

    The Darreh Sary metapelitic rocks are located in the northeast of Zagros orogenic belt and Sanandaj-Sirjan structural zone. The lithological composition of these rocks includes slate, phyllite, muscovitebiotite schist, garnet schist, staurolite-garnet schist and staurolite schist. The shale is the protolith of these metamorphic rocks, which was originated from the continental island arc tectonic setting and has been subjected to processes of Zagros orogeny. The deformation mechanisms in these rocks include bulging recrystallization (BLG), subgrain rotation recrystallization (SGR) and grain boundary migration recrystallization (GBM), which are considered as the key to estimate the deformation temperature of the rocks. The estimated ranges of deformation temperature and depth in these rocks show the temperatures of 275-375, 375-500, and >500°C and the depths of 10 to 17 km. The observed structures in these rocks such as faults, fractures and folds, often with the NW-SE direction coordinate with the structural trends of Zagros orogenic belt structures. The S-C mylonite fabrics is observed in these rocks with other microstructures such as mica fish, σ fabric and garnet deformation indicate the dextral shear deformation movements of study area. Based on the obtained results of this research, the stages of tectonic evolution of Darreh Sary area were developed.

  2. A problem of collision avoidance

    NASA Technical Reports Server (NTRS)

    Vincent, T. L.; Cliff, E. M.; Grantham, W. J.; Peng, W. Y.

    1972-01-01

    Collision avoidance between two vehicles of constant speed with limited turning radii, moving in a horizontal plane is investigated. Collision avoidance is viewed as a game by assuming that the operator of one vehicle has perfect knowledge of the state of the other, whereas the operator of the second vehicle is unaware of any impending danger. The situation envisioned is that of an encounter between a commercial aircraft and a small light aircraft. This worse case situation is examined to determine the conditions under which the commercial aircraft should execute a collision avoidance maneuver. Three different zones of vulnerability are defined and the boundaries, or barriers, between these zones are determined for a typical aircraft encounter. A discussion of the methods used to obtain the results as well as some of the salient features associated with the resultant barriers is included.

  3. Late Triassic paleomagnetic result from the Baoshan Terrane, West Yunnan of China: Implication for orientation of the East Paleotethys suture zone and timing of the Sibumasu-Indochina collision

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Huang, Baochun; Yan, Yonggang; Zhang, Donghai

    2015-11-01

    In order to better understand the paleogeographic position of the Baoshan Terrane in the northernmost part of the Sibumasu Block during formation of the Pangea supercontinent, a paleomagnetic study has been conducted on Late Triassic basaltic lavas from the southern part of the Baoshan Terrane in the West Yunnan region of Southwest China. Following detailed rock magnetic investigations and progressive thermal demagnetization, stable characteristic remanent magnetizations (ChRMs) were successfully isolated from Late Triassic Niuhetang lava flows. The ChRMs are of dual polarity and pass fold and reversal tests with magnetic carriers dominated by magnetite and subordinate oxidation-induced hematite; we thus interpret them as a primary remanence. This new paleomagnetic result indicates that the Baoshan Terrane was located at low paleolatitudes of ∼15°N in the Northern Hemisphere during Late Triassic times. Together with available paleomagnetic data from the Baoshan Terrane and surrounding areas, a wider paleomagnetic comparison supports the view that the East Paleotethys Ocean separated the Sibumasu and Indochina blocks and closed no later than Late Triassic times. We argue that the currently approximately north-to-south directed Changning-Menglian suture zone is very likely to have been oriented nearly east-to-west at the time of the Sibumasu-Indochina collision.

  4. Tectonic Activity and Processes Preceding the Formation of the Dead Sea Fault Zone

    NASA Astrophysics Data System (ADS)

    Eppelbaum, L. V.; Pilchin, A. N.

    2007-12-01

    Analysis of geological-geophysical data indicates that at the end of the Proterozoic, blocks of the Arabian Shield (AS) were thrust to the north-west onto the crust of the proto-Mediterranean (PM). This was caused by the pushing of oceanic crust from the south-east forming the Najd faults system (NF). This thrusting took place between 630 and 590 Ma, and is confirmed by the offsets between the Yanbu suture of the AS and Allaqi-Sol Hamid suture of the Nubian Shield (NS), the Bi'r Umq suture of AS and Nakasib suture of NS, and parts of the Yanbu and Nabitah sutures of AS. This caused the separation of AS from NS, and AS from the continental crust to north-east of it with its north-western displacement, resulting in opening of the Persian Gulf. This caused the start of deposition of huge amounts of Vendian-Cambrian evaporites in Saudi Arabia, Oman, Persian Gulf, Zagros, central Iran and other regions. The fact of the formation and preservation of the evaporites, and the common similarities in Vendian-Triassic sedimentary cover of Central Iran, Zagros, Taurus, and Arabian Plate (AP) and common Late Proterozoic-Early Paleozioc magmatic activity, show that these regions did not change their position significantly since then. Results of the DESERT project show that the lowermost part of the crust is present east of the Dead Sea Fault Zone (DSFZ), but it is absent west of it. This could be explained by detachment of the bottom part of the crust west of DSFZ during AP thrusting onto the crust of PM. The lithospheric slice discovered by seismic data between Moho and depth of about 55 km in S. Israel could be a remnant of that crust. During the thrusting, the AP overrode the detached slice. The slice was later remelted during formation of the postorogenic magmatic rocks of 590-530 Ma widespread in Jordan. The formation of three dyke swarms in S. Israel (600-540 Ma), widespread dykes in Sinai (590-530 Ma) and AP (590-530 Ma), as well as high-T-low-P metamorphism between 600

  5. Quantification of fold growth of frontal antiforms in the Zagros fold and thrust belt (Kurdistan, NE Iraq)

    NASA Astrophysics Data System (ADS)

    Bretis, Bernhard; Bartl, Nikolaus; Graseman, Bernhard; Lockhart, Duncan

    2010-05-01

    The Zagros fold and thrust belt is a seismically active orogen, where actual kinematic models based on GPS networks suggest a north-south shortening between Arabian and Eurasian in the order of 1.5-2.5 cm/yr. Most of this deformation is partitioned in south-southwest oriented folding and thrusting with northwest-southeast to north-south trending dextral strike slip faults. The Zagros fold and thrust belt is of great economic interest because it has been estimated that this area contains about 15% of the global recoverable hydrocarbons. Whereas the SE parts of the Zagros have been investigated by detailed geological studies, the NW extent being part of the Republic of Iraq have experienced considerably less attention. In this study we combine field work and remote sensing techniques in order to investigate the interaction of erosion and fold growth in the area NE of Erbil (Kurdistan, Iraq). In particular we focus on the interaction of the transient development of drainage patterns along growing antiforms, which directly reflects the kinematics of progressive fold growth. Detailed geomorphological studies of the Bana Bawi-, Permam- and Safeen fold trains show that these anticlines have not developed from subcylindrical embryonic folds but they have merged from different fold segments that joined laterally during fold amplification. This fold segments with length between 5 and 25 km have been detected by mapping ancient and modern river courses that initially cut the nose of growing folds and eventually got defeated leaving behind a wind gap. Fold segments, propagating in different directions force rivers to join resulting in steep gorges, which dissect the merging fold noses. Along rapidly lateral growing folds (e.g. at the SE end of the Bana Bawi Anticline) we observed "curved wind gaps", a new type of abandoned river course, where form of the wind gap mimics a formed nose of a growing antiform. The inherited curved segments of uplifted curved river courses strongly

  6. 3D Reconstruction of geological structures based on remote sensing data: example from Anaran anticline, Lurestan province, Zagros folds and thrust belt, Iran.

    NASA Astrophysics Data System (ADS)

    Snidero, M.; Amilibia, A.; Gratacos, O.; Muñoz, J. A.

    2009-04-01

    This work presents a methodological workflow for the 3D reconstruction of geological surfaces at regional scale, based on remote sensing data and geological maps. This workflow has been tested on the reconstruction of the Anaran anticline, located in the Zagros Fold and Thrust belt mountain front. The used remote sensing data-set is a combination of Aster and Spot images as well as a high resolution digital elevation model. A consistent spatial positioning of the complete data-set in a 3D environment is necessary to obtain satisfactory results during the reconstruction. The Aster images have been processed by the Optimum Index Factor (OIF) technique, in order to facilitate the geological mapping. By pansharpening of the resulting Aster image with the SPOT panchromatic one we obtain the final high-resolution image used during the 3D mapping. Structural data (dip data) has been acquired through the analysis of the 3D mapped geological traces. Structural analysis of the resulting data-set allows us to divide the structure in different cylindrical domains. Related plunge lines orientation has been used to project data along the structure, covering areas with little or no information. Once a satisfactory dataset has been acquired, we reconstruct a selected horizon following the dip-domain concept. By manual editing, the obtained surfaces have been adjusted to the mapped geological limits as well as to the modeled faults. With the implementation of the Discrete Smooth Interpolation (DSI) algorithm, the final surfaces have been reconstructed along the anticline. Up to date the results demonstrate that the proposed methodology is a powerful tool for 3D reconstruction of geological surfaces when working with remote sensing data, in very inaccessible areas (eg. Iran, China, Africa). It is especially useful in semiarid regions where the structure strongly controls the topography. The reconstructed surfaces clearly show the geometry in the different sectors of the structure

  7. Folding pattern in the Fars province, Zagros folded belt: case study on the Karbasi and Khaftar anticlines, interior Fars, Iran

    NASA Astrophysics Data System (ADS)

    Maleki, Z.; Arian, M.; Solgi, A.

    2015-08-01

    The anticlines in Fars region, which are located in Zagros fold-thrust belt, are valuable because they possess several hydrocarbons and this area is easily recognized by the NW-SE trending parallel anticlines that verge to the SW. According to the geological classification, the study area is located in Interior Fars region. Due to increasing complication of structural geometry in Fars region and necessity to explore activities for deeper horizons especially the Paleozoic ones, the analysis of fold style elements, which is known as one of the main parts in structural studies, seems necessary. The Karbasi and Khaftar anticlines are case study anticlines in the interior Fars sub-basin (Fassa area). These anticlines have an asymmetric structure and some faults with large strike separation are observed in these structures. Due to increasing complication of structural geometry in Fars region and necessity to explore activities for deeper horizons especially the Paleozoic ones, the analysis of fold style elements, which is known as one of the main parts in structural studies, seems necessary. Description of fold geometry is important because it allows comparisons within and between folds and also allows us to recognize patterns in the occurrence and distribution of fold systems. The main aim of this paper is to determine fold style elements and folding pattern in the study area. This paper presents a part of the results of a regional study of Fars province in the Zagros Simply folded belt, based on satellite images, geological maps, and well data. In the Interior Fars area, it seems that folding pattern is controlled by structural elements such as the Nezamabad basement fault and Dashtak formation. In fact, as a middle detachment unit, Dashtak formation plays an important role regarding folding geometry and fold in style in the study area.

  8. Landscape maturity, fold growth sequence and structural style in the Kirkuk Embayment of the Zagros, northern Iraq

    NASA Astrophysics Data System (ADS)

    Obaid, Ahmed K.; Allen, Mark B.

    2017-10-01

    The Kirkuk Embayment is located in the southwest of the Zagros fold-and-thrust belt of Iraq. Like fold-and-thrust belts worldwide, the Zagros is conventionally understood to have grown sequentially towards the foreland. Here we use landscape maturity analysis to understand anticline growth in the embayment. Digital Elevation Model (DEM)-based geomorphic indices Hypsometric Integral (HI), Surface Roughness (SR) and their combination Surface Index (SI) have been applied to quantify landscape maturity. The results inform new ideas for the sequence of anticline growth. Maturity indices are highest for the QaraChauq Anticline in the center of the Embayment, then Makhool/Himreen to the south and lastly, the Kirkuk Anticline to the north. The pattern suggests the growth sequence is not classical 'piggy back' thrusting. This result fits the exhumation record, which is loosely constrained by the stratigraphic exposure level. Favored hypotheses for fold growth order are either i) the folds have grown at different times and out of sequence (QaraChauq first, then Makhool/Himreen, and Kirkuk last), or, ii) the growth occurred with different rates of exhumation but at broadly the same time. There are few constraints from available data on syn-tectonic sedimentation patterns. Fold growth across much of the Embayment might have begun within a limited timeframe in the late Miocene-Pliocene, during the deposition of the Mukdadiyah Formation. Another hypothesis is that folds grew in sequence towards the foreland with different rates of exhumation, but we consider this less likely. We also construct a new cross-section for the Embayment, which indicates limited Cenozoic strain: 5% shortening. Analysis of topography and drainage patterns shows two previously-undescribed anticlines with hydrocarbon trap potential, between the Makhool and QaraChauq anticlines.

  9. Zircon U-Pb ages and petrogenesis of a tonalite-trondhjemite-granodiorite (TTG) complex in the northern Sanandaj-Sirjan zone, northwest Iran: Evidence for Late Jurassic arc-continent collision

    NASA Astrophysics Data System (ADS)

    Azizi, Hossein; Zanjefili-Beiranvand, Mina; Asahara, Yoshihiro

    2015-02-01

    The Ghalaylan Igneous Complex is located in the northern part of the Sanandaj-Sirjan zone (SSZ) in northwest Iran. At the surface, the complex is ellipsoidal or ring-shaped. The igneous rocks, which are medium- to fine-grained, were intruded into a Jurassic metamorphic complex and are cut by younger dikes. Zircon U-Pb ages indicate that the crystallization of the main body occurred from 157.9 ± 1.6 to 155.6 ± 5.6 Ma. The igneous complex includes granodiorite, tonalite, and quartz monzonite, as well as subvolcanic to volcanic rocks such as dacite and rhyolite. The rocks have high concentrations of Al2O3 (15-19 wt.%), SiO2 (65-70 wt.%), and Sr (700-1100 ppm), high (La/Yb)N ratios (15-40), and very low concentrations of MgO (< 0.83 wt.%), Ni (< 7 ppm), and Cr (usually < 50 ppm). There is a lack of negative Eu anomalies. These geochemical features show that the rocks are similar to high-silica adakites and Archaean tonalite-trondhjemite-granodiorite (TTG) rocks. The initial ratios of 87Sr/86Sr and 143Nd/144Nd vary from 0.70430 to 0.70476 and from 0.51240 to 0.51261, respectively, values that are similar to those of primitive mantle and the bulk Earth. The chemical compositions of the igneous rocks of the complex, and their isotope ratios, differ from those of neighboring granitic bodies in the northern SSZ. Based on our results, we suggest a new geodynamic model for the development of this complex, as follows. During the generation of the Songhor-Ghorveh island arc in the Neotethys Ocean, an extensional basin, such as a back-arc, developed between the island arc and the Sanandaj-Sirjan zone (SSZ). As a consequence, basaltic magma was injected from the asthenosphere without the development of a mature oceanic crust. During arc-continent collision in the Late Jurassic, hot basaltic rocks were present beneath the SSZ at depths of 30-50 km, and the partial melting of these rocks led to the development of TTG-type magmas, forming the source of the Ghalaylan Igneous

  10. Detrital Zircon U-Pb Analysis of the Liuqu Conglomerate Along the Yarlung-Zangbo Suture Zone, and Implications for the Mode and Timing of Collision Tectonics in Southern Tibet

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Dilek, Y.

    2016-12-01

    The Liuqu Conglomerate (LQC) along the Yarlung-Zangbo suture zone (YZSZ) in Southern Tibet is a terrestrial deposit that provides significant spatial and temporal constraints for the timing and nature of collisional events in the tectonic evolution of the Tibetan-Himalayan orogenic belt. The 10-km-wide (N-S) LQC is exposed discontinuously for more than 1000 km in an E-W direction, and is tectonically overlain to the north by the Cretaceous Neotethyan oceanic lithosphere along a S-vergent thrust fault system and to the south by Triassic-Jurassic metamorphosed sedimentary-volcanic rocks of the Tethyan Himalaya along N-vergent reverse-thrust faults. The major facies of the LQC are the matrix-supported to clast-supported conglomerates. The matrix is poorly to moderate sorted red quartz sandstone, mudstone and sub-rounded pebble to cobble-sized clasts. The clast lithology present in central and southern parts includes dark red sandstone, siltstone and mudstone greyish-green shale, grey phyllite and slate with their provenance in the Triassic Tethyan Himalaya to the south. The clastic material making up its stratigraphy in the northern part of the LQC includes quartz sandstone, radiolarian chert, minor dolerite, gabbro and peridotite derived from the Cretaceous ophiolite. Here we report in-situ detrital zircon U-Pb age analysis of sandstone from the LQC near Liuqu area. 163 concordant U-Pb ages obtained from sample 22-LQ-15, 27-LQ-15 and 35-LQ-15 show the youngest age is 307±13 Ma with discordance of -17.02%, and the oldest zircon grain is 3362 ±51 Ma with discordance of 2.63%. Statistically, the age spectrum of these zircons from the three sandstone samples display a prominent peak centred in 935 Ma, a large peak around 516 Ma, and two small clusters around 2429 Ma and 2772 Ma. The zircon U-Pb results provide evidence of age clusters of the sandstone in LQC are consistent with the detrital U-Pb age signature of the sandstone in Tethyan Himalaya. Thus, the sediments in

  11. 40Ar 39Ar Ages and tectonic setting of ophiolite from the Neyriz area, southeast Zagros Range, Iran

    Lanphere, M.A.; Pamic, J.

    1983-01-01

    An ophiolite, considered to be an allochthonous fragment of Tethyan oceanic crust and mantle, crops out near Neyriz in the Zagros Range, Iran. 40Ar 39Ar ages ranging from 76.8 ?? 23.8 Ma to 105 ?? 23.3 Ma were measured on hornblende from five samples of plagiogranite and diabase from the ophiolite. The most precise ages are 85.9 ?? 3.8 Ma for a diabase and 83.6 ?? 8.4 Ma for a plagiogranite. The weighted mean age of hornblende from the five samples is 87.5 ?? 7.2 Ma which indicates that the igneous part of the Neyriz ophiolite formed during the early part of the Late Cretaceous. Pargasite from amphibolite below peridotite of the Neyriz ophiolite has a 40Ar 39Ar age of 94.9 ?? 7.6 Ma. The pargasite age agrees within analytical uncertainty with the ages measured on diabase and plagiogranite. Comparable ages have been measured on igneous rocks from the Samail ophiolite of Oman and on amphibolite below peridotite of the Samail ophiolite. ?? 1983.

  12. Deformation and kinematic evolution of the subsurface structures: Zagros foreland fold-and-thrust belt, northern Dezful Embayment, Iran

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil; Pash, Raana Razavi; Motamedi, Hossein; Yazdani, Mohammad

    2018-06-01

    The Dezful Embayment is located in the foreland part of the Zagros fold-and-thrust belt. Structural style of folding and thrusting vary in the Dezful Embayment. In this study, balanced cross sections and subsurface data including 2D seismic profiles and wells data decoded structural style of the subsurface structures in the northern Dezful Embayment. Presence of the multiple décollement horizons is the main controlling factor of the structural style in this area. The subsurface anticlines have been formed between two main décollement horizons, which include the Miocene Gachsaran Formation as upper decollement and Permian Dashtak evaporites and Lower Cretaceous Garau shales as the middle décollement horizons. Geometry of the subsurface anticlines differs much vertically and horizontally. Growth strata indicate folding is started in Middle Miocene time in this region. Anticlines formed as open, wide and disharmonic structures. Active processes in the evolution of anticlines are limb rotation and hinge migration, which was resulted in increase of inhomogeneous shortening rate. More shortening rate indicates more structural relief in anticlines. These anticlines are formed as a detachment folds in initiation and then during their evolution converted to fault propagation fold and fault-bend fold. Final geometric shape of these anticlines depends on the geometry of thrusts propagation that formed in the forelimb.

  13. Modeling of wind gap formation and development of sedimentary basins during fold growth: application to the Zagros Fold Belt, Iran.

    NASA Astrophysics Data System (ADS)

    Collignon, Marine; Yamato, Philippe; Castelltort, Sébastien; Kaus, Boris

    2016-04-01

    Mountain building and landscape evolution are controlled by the interactions between river dynamics and tectonic forces. Such interactions have been largely studied but a quantitative evaluation of tectonic/geomorphic feedbacks remains required for understanding sediments routing within orogens and fold-and-thrust belts. Here, we employ numerical simulations to assess the conditions of uplift and river incision necessary to deflect an antecedent drainage network during the growth of one or several folds. We propose that a partitioning of the river network into internal (endorheic) and longitudinal drainage arises as a result of lithological differences within the deforming crustal sedimentary cover. We show with examples from the Zagros Fold Belt (ZFB) that drainage patterns can be linked to the incision ratio R between successive lithological layers, corresponding to the ratio between their relative erodibilities or incision coefficients. Transverse drainage networks develop for uplift rates smaller than 0.8 mm.yr-1 and -10 < R < 10. Intermediate drainage network are obtained for uplift rates up to 2 mm.yr-1 and incision ratios of 20. Parallel drainage networks and formation of sedimentary basins occur for large values of incision ratio (R >20) and uplift rates between 1 and 2 mm.yr-1. These results have implications for predicting the distribution of sediment depocenters in fold-and-thrust belts, which can be of direct economic interest for hydrocarbon exploration.

  14. Association of Sub-continental and Asthenosphere related Volcanism in NW Iran,Implication forMantle thermal perturbation induced by slab break off and collision event

    NASA Astrophysics Data System (ADS)

    Jahangiri, A.

    2017-12-01

    Cenozoic magmatic rocks occur extensively in the north of the Zagros suture zone and constitute a significant component of the continental crust in this segment of the Alpine-Himalayan orogenic belt. They range in age from Eocene to quaternary. Miocene to Plio-Quaternary volcanism with post-collisional related significant is covered vast areas in NW Iran. These volcanic rocks can be divided into three different sub-groups on the basis of their mineralogy, geochemistry and magma sources including: 1. alkaline leucite-bearing mafic rocks, which are characterized with high ratios of K2O/Na2O, high content LILE and low HFS elements like Ti, Nb and Ta. They are display fractionated REE patterns and based on different discrimination diagrams show similarity with subduction related magmas. 2- Olivine basalt to trachy-basaltic samples which shows similarity to within plate basalts with high content of TiO2, Nb, Ta and fractionated REE pattern. However, compared with a global average of OIB, they are display slightly higher LIL elements and lower HFS elements concentrations, features that resemble to the arc magmas and suggest that the source of the magmas may have been contaminated by slab-derived fluids. These rocks have simple mineralogical composition with plagioclase, clinopyroxene and olivine. 3- Dominant dacitic volcanic rocks with adakitic geochemical characteristics such as highly fractionate REE pattern and high Sr/Y ratio. Generation of adakitic magmas can be related to increased temperatures in the subduction zone due to mantle upwelling and slab tearing. Subsequent asthenospheric upwelling could be caused direct melting of sub-continental mantle to produce the alkaline magmas, with high contents of K2O, MgO and volatile rich phase's potassic magmas that led to crystallization of leucite, phlogopite, apatite and olivine in studied samples. Rupture of the continental lithosphere by strike-slip-related transtensional deformation might have caused decompression

  15. Basins in ARC-continental collisions

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  16. Pre-folding fracture development in the Lurestan region of the Zagros Fold and Thrust Belt: constraints from early fracture sets in the Shabazan and Asmari Formations

    NASA Astrophysics Data System (ADS)

    Corradetti, Amerigo; Tavani, Stefano; D'Assisi Tramparulo, Francesco; Prinzi, Ernesto Paolo; Vitale, Stefano; Parente, Mariano; Morsalnejad, Davoud; Mazzoli, Stefano

    2017-04-01

    In the Zagros Fold and Thrust Belt (FTB), the timing of fracture development with respect to folding is debated. Multiple fracture systems occur in the area. These include "typical" fracture systems that are oriented parallel and orthogonal to the NW-SE strike of the belt, as well as sets oriented N-S and E-W. The interpretation of the N-S and E-W sets is controversial. Despite the general consensus about the first-order relationship between these fractures and inherited N-S striking basement faults, their timing and kinematic significance is not yet fully understood. The ambiguous crosscutting/abutting relationships with the NE-SW and NW-SE sets, together with the difficulty of framing them into the classical scenario of fracturing in foreland basin systems, has led to the development of different hypotheses about the timing of N-S and E-W sets. For the generation of these structures, both pre- and syn-thrusting interpretations have been proposed. In this work, we report on the occurrence of bed-perpendicular fracture sets in the upper part of the Shabazan (Eocene) and in the Asmari (Oligo-Miocene) Formations of the Zagros FTB. These fractures have the peculiarity of being filled with karst material. Such filled fractures are preserved in beds showing variable angles of dip, ranging from horizontal to vertical. Their homogeneous distribution in variably dipping beds around folds undoubtedly point to an origin of these fracture sets predating the tilting of the strata in which they are contained. Therefore, fracture development and related infilling occurred at an early stage, in still flat lying strata, following the deposition of the top Shabazan and Asmari Formations. Such a deposition took place within the general framework of ongoing shortening in the Zagros. This process, occurring since the Late Cretaceous, progressively led to folding of the syn-orogenic Shabazan and Asmari Formations subsequently to the development of the studied filled fractures.

  17. Petroleum generation and migration in the Mesopotamian Basin and Zagros fold belt of Iraq: Results from a basin-modeling study

    Pitman, Janet K.; Steinshouer, D.; Lewan, M.D.

    2004-01-01

    A regional 3-D total petroleum-system model was developed to evaluate petroleum generation and migration histories in the Mesopotamian Basin and Zagros fold belt in Iraq. The modeling was undertaken in conjunction with Middle East petroleum assessment studies conducted by the USGS. Regional structure maps, isopach and facies maps, and thermal maturity data were used as input to the model. The oil-generation potential of Jurassic source-rocks, the principal known source of the petroleum in Jurassic, Cretaceous, and Tertiary reservoirs in these regions, was modeled using hydrous pyrolysis (Type II-S) kerogen kinetics. Results showed that oil generation in source rocks commenced in the Late Cretaceous in intrashelf basins, peak expulsion took place in the late Miocene and Pliocene when these depocenters had expanded along the Zagros foredeep trend, and generation ended in the Holocene when deposition in the foredeep ceased. The model indicates that, at present, the majority of Jurassic source rocks in Iraq have reached or exceeded peak oil generation and most rocks have completed oil generation and expulsion. Flow-path simulations demonstrate that virtually all oil and gas fields in the Mesopotamian Basin and Zagros fold belt overlie mature Jurassic source rocks (vertical migration dominated) and are situated on, or close to, modeled migration pathways. Fields closest to modeled pathways associated with source rocks in local intrashelf basins were charged earliest from Late Cretaceous through the middle Miocene, and other fields filled later when compression-related traps were being formed. Model results confirm petroleum migration along major, northwest-trending folds and faults, and oil migration loss at the surface.

  18. The occurrence and origin of celestite in the Abolfares region, Iran: Implications for Sr-mineralization in Zagros fold belt (ZFB)

    NASA Astrophysics Data System (ADS)

    Pourkaseb, Houshang; Zarasvandi, Alireza; Rezaei, Mohsen; Mahdavi, Reyhaneh; Ghanavati, Fatemeh

    2017-10-01

    The major celestite deposits in Zagros Fold belt are associated with coastal marine carbonate and evaporate sediments of Oligo-Miocene Asmari and Lower Miocene Ghachsaran Formations. In the Abolfares region, celestite mineralization is extended in the western limb of Bangestan anticline in the carbonates of Early Miocene (middle part of Asmari Formation), underlying by dolomitic carbonates of Burdigalian. From bottom to top three main types of mineralization can be distinguished in the study area: (1) layer texture resulting from replacement of algal limestone by celestite minerals with some parts showing idiomorphic crystals (geodes) along the walls of the cavities, (2) celestite occurrence as irregular massive shape interconnected small crystals and nodules, and (3) celestite mineralization associated with steeply dipping veins and open space fracture fillings, resulting from late-stage epigenetic processes. Highlightly, the ore-hosting carbonate rocks were deposited in an intertidal - supratidal protected setting with hypersaline conditions, in accordance with other celestite deposits of the Zagros Fold belt. The abundance of diagenetic crystallization rhythmites, carbonate and anhydrite inclusions as confirmed by Laser Raman spectroscopy analysis, high Sr/Ba values (average; 8726.1) and strong negative correlations between SO3 vs CaO (R2 = 0.98), SrO vs CaO (R2 = 0.96) with positive correlations between Ba vs SrO (R2 = 0.54) and SO3 vs SrO (R2 = 0.98) highlight the role of high Sr late-diagenetic brines in replacement of carbonates with celestite minerals. It seems that the inception of compressional folding during or soon after the deposition of the Asmari Formation in the carbonate platform at the margin of NW-trending basin in the foreland of the Zagros orogenic belt lead to the upward refluxing of penetrated high-Sr diagenetic brines and celestite mineralization.

  19. Work Zone Intrusion Report Interface Design

    DOT National Transportation Integrated Search

    2018-02-02

    While necessary for roadways, work zones present a safety risk to crew. Half of road workers deaths between 2005 and 2010 were due to collisions with motorists intruding on the work zone. Therefore, addressing intrusions is an important step for ensu...

  20. Safety Zones

    EPA Pesticide Factsheets

    These are established primarily to reduce the accidental spread of hazardous substances by workers or equipment from contaminated areas to clean areas. They include the exclusion (hot) zone, contamination reduction (warm) zone, and support (cold) zone.

  1. The cretaceous source rocks in the Zagros Foothills of Iran: An example of a large size intracratonic basin

    SciT

    Bordenave, M.L.; Huc, A.Y.

    1993-02-01

    The Zagros orogenic belt of Iran is one of the world most prolific petroleum producing area. However, most of the oil production is originated from a relatively small area, the 60,000 km[sup 2] wide Dezful Embayment which contains approximately 12% of the proven oil global reserves. The distribution of the oil and gas fields results from the area extent of six identified source rock layers, their thermal history and reservoir, cap rock and trap availability. In this paper, the emphasis is three of the layers of Cretaceous sources rocks. The Garau facies was deposited during the Neocomian to Albian intervalmore » over Lurestan, Northeast Khuzestan and extends over the extreme northeast part of Fars, the Kazhdumi source rock which deposited over the Dezful Embayment, and eventually the Senonian Gurpi Formation which has marginal source rock characteristics in limited areas of Khuzestan and Northern Fars. The deposition environment of these source rock layers corresponds to semipermanent depressions, included in an overall shallow water intracratonic basin communicating with the South Tethys Ocean. These depressions became anoxic when climatic oceanographical and geological conditions were adequate, i.e., humid climate, high stand water, influxes of fine grained clastics and the existence of sills separating the depression from the open sea. Distribution maps of these source rock layers resulting from extensive field work and well control are also given. The maturation history of source rocks is reconstructed from a set of isopachs. It was found that the main contributor to the oil reserves is the Kazhdumi source rock which is associated with excellent calcareous reservoirs.« less

  2. Hydrothermal dolomitization of the Bekhme formation (Upper Cretaceous), Zagros Basin, Kurdistan Region of Iraq: Record of oil migration and degradation

    NASA Astrophysics Data System (ADS)

    Mansurbeg, Howri; Morad, Daniel; Othman, Rushdy; Morad, Sadoon; Ceriani, Andrea; Al-Aasm, Ihsan; Kolo, Kamal; Spirov, Pavel; Proust, Jean Noel; Preat, Alain; Koyi, Hemin

    2016-07-01

    The common presence of oil seepages in dolostones is widespread in Cretaceous carbonate successions of the Kurdistan Region of Iraq. This integrated field, petrographic, chemical, stable C, O and Sr isotopes, and fluid inclusion study aims to link dolomitization to the origin and geochemical evolution of fluids and oil migration in the Upper Cretaceous Bekhme carbonates. Flux of hot basinal (hydrothermal) brines, which is suggested to have occurred during the Zagros Orogeny, resulted in dolomitization and cementation of vugs and fractures by coarse-crystalline saddle dolomite, equant calcite and anhydrite. The saddle dolomite and host dolostones have similar stable isotopic composition and formed prior to oil migration from hot (81-115 °C) basinal NaCl-MgCl2-H2O brines with salinities of 18-22 wt.% NaCl eq. The equant calcite cement, which surrounds and hence postdates saddle dolomite, has precipitated during oil migration from cooler (60-110 °C) NaCl-CaCl2-H2O brines (14-18 wt.% NaCl eq). The yellowish fluorescence color of oil inclusions in the equant calcite indicates that the oil had API gravity of 15-25° composition, which is lighter than present-day oil in the reservoirs (API of 10-17°). This difference in oil composition is attributed to oil degradation by the flux of meteoric water, which is evidenced by the low δ13C values (- 8.5‰ to - 3.9‰ VPDB) as well as by nil salinity and low temperature in fluid inclusions of late columnar calcite cement. This study demonstrates that linking fluid flux history and related diagenesis to the tectonic evolution of the basin provides important clues to the timing of oil migration, degradation and reservoir evolution.

  3. Biostratigraphy, paleoenvironment and foraminiferal associations of the Rupelian-Chattian sediments in Zagros Basin, SW Iran

    NASA Astrophysics Data System (ADS)

    Habibi, Tahereh

    2016-11-01

    In this research larger benthic foraminiferal distribution and their paleoenvironmental characteristics are used to introduce biostratigraphic zonation, paleoenvironmental reconstruction and paleoecological interpretation of the Oligocene Asmari Formation in Fars Province. Two stratigraphic successions were examined for these purposes. The first (Khollar Section) is Rupelian in age and the second (Siakh Section) is of Chattian age. Recognized assemblage zones are: 1-Nummulites vascus-Nummulites fichteli and 2- Archaias asmaricus/hensoni-Miogypsinoides complanatus. Four microfacies types are identified according to the occurrence of the main biogenic components. They were arranged along the inner part of a carbonate platform. A shallowing upward trend in microfacies arrangement from Rupelian to Chattian times is considered according to the occurrence of larger benthic foraminifera. Two foraminiferal associations are recognized in the investigated sections. The identified foraminiferal associations represent a salinity value of 40-50 psu and a depth range of lower than 40 m, warm tropical and subtropical waters with temperature of 18-25 °C at Rupelian time. More restricted conditions through Chattian Stage has resulted in a shallower depth and higher salinity of more than 50 psu, with water temperature being higher than 20 °C in the oligotrophic to mesotrophic conditions. Restricted conditions in marine circulation is suggested to have controlled these associations.

  4. Study of Upper Miocene Oysters(Plecypoda) From the Mishan Formation in south west of Firuzabad, Fars, Iran(Zagros mountain)

    NASA Astrophysics Data System (ADS)

    Dehbozorgi, Mehdi; Sabouhi, Mostafa; Nabavi, Hamid

    2010-05-01

    The out crapes of Mishan Formation located in Aghar area(Firuzabad city) south west of Fars and 70km south west of Firuzabad. this Formation mostly consist of limestone, marly limestone and marlstone with 800m thickness. 6key beds distinctive from limestone beds are recognized in this area. this key beds are useful for local and regional correlation in Zagros mountains. the key beds from base to top are: Red algae, Bryozoa, Gastropoda and Plecypoda, Crabs and Oysters. Mishan Formation in this area is between Gachsaran F.M(Under Formation), Conformable and Aghajari F.M(Upper Formation), Conformable. With due attention to rang and distribution of the Macrofossils, 5 local assmblage biozone were recognized, that is confirming time limit from Early- Upper Miocene. this research cheked and controled a biostrom Plecypoda(Oysters) level by thickness 3- 4m. this biostrom located around 550m the base of section. Ofcurse more of this Plecypoda be assinged to order pterriodia and Genus Oyster. Along with Oysters, Pecten and Venus can be see. This biostrom made up a bioclastic shoal shallow deep in the margin of sea Miocene. This Oysters report from Mishan Formation of Firuzabad, Fars, Zagros, Iran: Ostrea virleti var. crassicostat, Ostrea virleti Desh var. persica, Ostrea digitatai Echiwald var. rohlfsi, Ostrea lamellose. Ostrea cf. biowwondeli. Master of science in Geology (Paleontology), University of Isfahan, Iran.

  5. Structural style and hydrocarbon trap of Karbasi anticline, in the Interior Fars region, Zagros, Iran

    NASA Astrophysics Data System (ADS)

    Maleki, Z.; Arian, M.; Solgi, A.

    2014-07-01

    Karbasi anticline between west-northwest parts of Jahrom town is located in northwest 40 km distance of Aghar gas anticline in interior Fars region. This anticline has asymmetric structure and some faults with large strike separation observed in its structure. The operation of Nezamabad sinistral strike slip fault in west part of this anticline caused fault plunge change in this region. Because of complication increasing of structures geometry in Fars region and necessity to exploration activities for deeper horizons especially the Paleozoic ones, the analysis of fold style elements, which is known as one of the main parts in structural studies seems necessary. In this paper because of some reasons such as Karbasi anticline structural complication, importance of drilling and hydrocarbon explorations in Fars region, it is proceed to analysis and evaluation of fold style elements and geometry with emphasis on Nezamabad fault operation in Interior Fars region. According to fold style elements analysis results, it became clear that in east part of anticline the type of fold horizontal moderately inclined and in west part it is upright moderately plunging, so west evaluation of anticline is affected by more deformation. In this research the relationship present faults especially the Nezamabad sinistral strike slip one with folding and its affection on Dehram horizon and Bangestan group were modeled. Based on received results may be the Nezamabad fault is located between G-G' and E-E' structural sections and this fault in this area operated same as fault zone. In different parts of Karbasi anticline, Dashtak formation as a middle detachment unit plays an important role in connection to folding geometry, may be which is affected by Nezamabad main fault.

  6. New approach to the boundary-parallel plastic / viscous diapiric flow patterns in the curvilinear boundary zones: an implication for structural geology studies

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil

    2010-05-01

    New approach to the boundary-parallel plastic / viscous diapiric flow patterns in the curvilinear boundary zones: an implication for structural geology studies Khalil Sarkarinejad and Abdolreza Partabian Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, Iran (Sarkarinejad@geology.susc.ac.ir). In the oceanic diverging away plates, the asthenospheric flow at solidus high-temperature conditions typically produces mineral foliations and lineations in peridotites. Foliation and lineation of mantle are defined by preferred flattening and alignment of olivine, pyroxene and spinel. In the areas with steep foliations trajectories which are associated with the steeply plunging stretching lineation trajectories, reflecting localized vertical flow and has been related to mantle diapir. The mantle flow patterns are well documented through detail structural mapping of the Neyriz ophiolite along the Zagros inclined dextral transpression and Oman ophiolite. Such models of the diverging asthenaspheric mantle flow and formation of mantle diapir are rarely discussed and paid any attention in the mathematical models of transpressional deformation in converging continental crusts. Systematic measurements of the mineral preferred orientations and construction of the foliation and lineation trajectories of the Zagros high-strain zone reveal two diapers with the shape of the inclined NW-SE boundary-parallel semi-ellipses shape and one rotated asymmetric diapir. These diapers made of quartzo-feldspathic gneiss and garnet amphibolite core with phyllite, phyllonite, muscovite schist and deformed conglomerate as a cover sequences. These boundary-parallel and rotated diapirs are formed by the interaction of Afro-Arabian lower to middle continental detachment and hot subdacting Tethyan oceanic crust, due to increasing effective pressure and temperature. The plastic/viscous gneissic diapers were squeezed between in Zagros transpression curvilinear boundary zones in an

  7. Collision dynamics modeling of crash energy management passenger rail equipment : a thesis submitted by Karina M. Jacobsen

    DOT National Transportation Integrated Search

    2008-01-31

    Crash Energy Management (CEM) is a crashworthiness strategy that : incorporates crush zones into the design of passenger railcars. In the event of a : collision, crush zones are engineered to collapse in a controlled manner and : distribute crush to ...

  8. Collision Repair Campaign

    EPA Pesticide Factsheets

    The Collision Repair Campaign targets meaningful risk reduction in the Collision Repair source category to reduce air toxic emissions in their communities. The Campaign also helps shops to work towards early compliance with the Auto Body Rule.

  9. Idaho traffic collisions, 2004

    DOT National Transportation Integrated Search

    2004-01-01

    Idaho Traffic Collisions 2004 provides an annual description of motor vehicle collision characteristics for Idaho. : This document is used by state and local transportation, law enforcement, health, and other agencies charged with : the responsibilit...

  10. Idaho traffic collisions, 2006

    DOT National Transportation Integrated Search

    2006-01-01

    Idaho Traffic Collisions 2006 provides an annual description of motor vehicle collision characteristics for Idaho. : This document is used by state and local transportation, law enforcement, health, and other agencies charged with : the responsibilit...

  11. Idaho traffic collisions, 2002

    DOT National Transportation Integrated Search

    2002-01-01

    Idaho Traffic Collisions 2002 provides an annual description of motor vehicle collision characteristics for : Idaho. This document is used by state and local transportation, law enforcement, health, and other agencies : charged with the responsibilit...

  12. Idaho traffic collisions, 2000

    DOT National Transportation Integrated Search

    2000-01-01

    Idaho Traffic Collisions 2000 provides an annual description of collision characteristics for Idaho. This : document is used by state and local transportation, law enforcement, health, and other agencies charged with : the responsibility of coping wi...

  13. Idaho traffic collisions, 2003

    DOT National Transportation Integrated Search

    2003-01-01

    Idaho Traffic Collisions 2003 provides an annual description of motor vehicle collision characteristics for Idaho. : This document is used by state and local transportation, law enforcement, health, and other agencies charged with : the responsibilit...

  14. Idaho traffic collisions, 2001

    DOT National Transportation Integrated Search

    2001-01-01

    Idaho Traffic Collisions 2001 provides an annual description of collision characteristics for Idaho. This document is used by state and local transportation, law enforcement, health, and other agencies charged with the responsibility of coping with t...

  15. Idaho traffic collisions, 2005

    DOT National Transportation Integrated Search

    2005-01-01

    Idaho Traffic Collisions 2005 provides an annual description of motor vehicle collision characteristics for Idaho. This document is used by state and local transportation, law enforcement, health, and other agencies charged with the responsibility of...

  16. Collision-induced rotation in an arc-continent collision: Constrained by continuous GPS observations in Mindoro, Philippines

    NASA Astrophysics Data System (ADS)

    Rau, R.; Hung, H.; Yang, C.; Tsai, M.; Ching, K.; Bacolcol, T.; Solidum, R.; Chang, W.

    2012-12-01

    The Mindoro Island, situated at the southern end of the Manila trench, is a modern arc-continent collision. Seismic activity in Mindoro concentrates mainly in the northern segment of the island as part of the Manila subduction processes; in contrast, seismicity in the middle and the southern parts of the island is rather diffuse. Although the Mindoro Island has been experiencing intense seismic activities and is a type example of arc-continent collision, the modern mode of deformation of the Mindoro collision remains unclear. We have installed eight dual-frequency continuous GPS stations in the island since May 2010. The questions we want to address by using continuous GPS observations are (1) if there are still compressions within the Mindoro collision? Have they ceased as seen by the diffuse seismicity, or are the thrust faults locked? (2) What is the mode of deformation in the Mindoro collision and what are the roles of thrust and strike-slip faults playing in the collision? (3) How does the Mindoro collision compare with the other collision, such as the Taiwan orogen? Do they share similar characteristics for the subduction-collision transition zone? For the results of the first two years GPS measurements, if we take the Sablayan site near the southern end of the Manila trench as the reference station, a large counterclockwise rotation from south to north, with horizontal velocities of 1.9-31.1 mm/yr from 165 to 277 degrees, are found in the island. The deformation of the Mindoro is similar to the pattern of the transition zone from collision to subduction in northeastern Taiwan. This result suggests that collision-induced rotation is occurring in the Mindoro Island and the Mindoro arc-continent collision is still active.

  17. Zone lines

    Kevin T. Smith

    2001-01-01

    Zone lines are narrow, usually dark markings formed in decaying wood. Zone lines are found most frequently in advanced white rot of hardwoods, although they occasionally are associated both with brown rot and with softwoods.

  18. Calculation of Confidence Intervals for the Maximum Magnitude of Earthquakes in Different Seismotectonic Zones of Iran

    NASA Astrophysics Data System (ADS)

    Salamat, Mona; Zare, Mehdi; Holschneider, Matthias; Zöller, Gert

    2017-03-01

    The problem of estimating the maximum possible earthquake magnitude m_max has attracted growing attention in recent years. Due to sparse data, the role of uncertainties becomes crucial. In this work, we determine the uncertainties related to the maximum magnitude in terms of confidence intervals. Using an earthquake catalog of Iran, m_max is estimated for different predefined levels of confidence in six seismotectonic zones. Assuming the doubly truncated Gutenberg-Richter distribution as a statistical model for earthquake magnitudes, confidence intervals for the maximum possible magnitude of earthquakes are calculated in each zone. While the lower limit of the confidence interval is the magnitude of the maximum observed event,the upper limit is calculated from the catalog and the statistical model. For this aim, we use the original catalog which no declustering methods applied on as well as a declustered version of the catalog. Based on the study by Holschneider et al. (Bull Seismol Soc Am 101(4):1649-1659, 2011), the confidence interval for m_max is frequently unbounded, especially if high levels of confidence are required. In this case, no information is gained from the data. Therefore, we elaborate for which settings finite confidence levels are obtained. In this work, Iran is divided into six seismotectonic zones, namely Alborz, Azerbaijan, Zagros, Makran, Kopet Dagh, Central Iran. Although calculations of the confidence interval in Central Iran and Zagros seismotectonic zones are relatively acceptable for meaningful levels of confidence, results in Kopet Dagh, Alborz, Azerbaijan and Makran are not that much promising. The results indicate that estimating m_max from an earthquake catalog for reasonable levels of confidence alone is almost impossible.

  19. Probability of satellite collision

    NASA Technical Reports Server (NTRS)

    Mccarter, J. W.

    1972-01-01

    A method is presented for computing the probability of a collision between a particular artificial earth satellite and any one of the total population of earth satellites. The collision hazard incurred by the proposed modular Space Station is assessed using the technique presented. The results of a parametric study to determine what type of satellite orbits produce the greatest contribution to the total collision probability are presented. Collision probability for the Space Station is given as a function of Space Station altitude and inclination. Collision probability was also parameterized over miss distance and mission duration.

  20. Geodynamic Evolution of Subduction to Collision to Escape in Central Anatolia From Surface to Mantle - Results From the CD-CAT Project

    NASA Astrophysics Data System (ADS)

    Darin, Michael

    2017-04-01

    Despite significant progress toward understanding the kinematics of modern tectonic escape in Anatolia, considerable uncertainty remains regarding the dynamics of the transition from collision to escape. Because of the relatively small size of the Anatolia microplate, regional-scale studies spanning the plate margins and interior are well-suited to investigate the driving forces and space-time evolution of this unique tectonic transition in collisional orogens. CD-CAT (Continental Dynamics-Central Anatolia Tectonics) is a five-year (2011-2016) project funded by the National Science Foundation (USA) designed to explore the surface-to-mantle dynamics of Anatolia during the Cenozoic subduction-collision-escape transition in central Anatolia. Our approach integrates results from a diversity of methods including: structural, stratigraphic, and geomorphic analyses; magnetostratigraphy; low-temperature thermochronometry; Ar/Ar geochronology; geochemistry; passive seismic experiments (71 stations over two years); magnetotellurics; and numerical modeling. The principal results from this project include: recognition of a margin-wide magmatic lull from 40-20 Ma, followed by a southwestward migration of the initiation of magmatism toward and within the Central Anatolia Volcanic Province (CAVP); an early Miocene switch from contraction/transpression to extension/transtension in the Kırşehir and Niǧde Massifs, while contraction changed to late Miocene strike-slip deformation east of the Central Anatolian fault zone (CAFZ); rain shadow development due to uplift of the central Taurides 11-5 Ma; thin to absent lithospheric mantle beneath central Anatolia; the lack of an Arabia slab shallower than 800 km depth; and a change in the Cyprus slab from horizontal beneath the central Taurides and apparently fragmented beneath the CAVP, to very steeply dipping beneath the eastern Isparta Angle. The CAFZ lies along part of the Inner Tauride Suture (ITS) and represents a fundamental

  1. Structural Analysis of Active North Bozgush Fault Zone (NW Iran)

    NASA Astrophysics Data System (ADS)

    Saber, R.; Isik, V.; Caglayan, A.

    2013-12-01

    NW Iran is one of the seismically active regions between Zagros Thrust Belt at the south and Caucasus at the north. Not only large magnitude historical earthquakes (Ms>7), but also 1987 Bozgush, 1997 Ardebil (Mw 6.1) and 2012 Ahar-Varzagan (Mw 6.4) earthquakes reveal that the region is seismically active. The North Bozgush Fault Zone (NBFZ) in this region has tens of kilometers in length and hundreds of meters in width. The zone has produced some large and destructive earthquakes (1593 M:6.1 and 1883 M:6.2). The NBFZ affects the Cenozoic units and along this zone Eocene units thrusted over Miocene and/or Plio-Quaternary sedimentary units. Together with morphologic features (stream offsets and alluvial fan movements) affecting the young unites reveal that the zone is active. The zone is mainly characterized by strike-slip faults with reverse component and reverse faults. Reverse faults striking N55°-85°E and dip of 40°-50° to the SW while strike-slip faults show right lateral slip with N60°-85°W and N60°-80°E directions. Our structural data analysis in NBFZ indicates that the axis direction of σ2 principal stress is vertical and the stress ratio (R) is 0.12. These results suggest that the tectonic regime along the North Bozgush Fault Zone is transpressive. Obtained other principal stresses (σ1, σ3) results are compatible with stress directions and GPS velocity suggested for NW Iran.

  2. The MIT - Cornell Collision and Why it Happened

    DTIC Science & Technology

    2008-10-01

    George Boulevard Ben and Team UCF’s Knight Rider Section 2.2 2h00m North Nevada and Red Zone CarOLO’s Caroline turns across MIT’s Talos Section 2.3...3h00m White Zone Caroline and Talos collide. Section 2.4 4h00m Carolina Avenue and Texas Avenue Talos swerves to avoid Victor Tango’s Odin Section 2.5...stopped in time to prevent a collision. 2.3 Caroline and Talos at North Nevada and Red Zone N or th N ev ad a Av e C ar ol in a Av e Red Zone

  3. Ball Collision Experiments

    ERIC Educational Resources Information Center

    Cross, R.

    2015-01-01

    Experiments are described on collisions between two billiard balls and between a bat and a ball. The experiments are designed to extend a student's understanding of collision events and could be used either as a classroom demonstration or for a student project.

  4. Elastic and Inelastic Collisions

    ERIC Educational Resources Information Center

    Gluck, Paul

    2010-01-01

    There have been two articles in this journal that described a pair of collision carts used to demonstrate vividly the difference between elastic and inelastic collisions. One cart had a series of washers that were mounted rigidly on a rigid wooden framework, the other had washers mounted on rubber bands stretched across a framework. The rigidly…

  5. 2002 Alaska traffic collisions

    DOT National Transportation Integrated Search

    2004-09-01

    Traffic collisions injured 6370 and killed 89 Alaskans during 2002. There were, on average, : 36.5 crashes per day and 1.5 crashes per hour. One person died on Alaska highways every : 4.1 days. : There were 272 traffic collisions per 100 million ...

  6. Collision safety comparison of conventional and crash energy management passenger rail car designs

    DOT National Transportation Integrated Search

    2003-04-22

    In conjunction with full-scale equipment tests, collision dynamics models of passenger rail cars have been developed to investigate the benefits provided by incorporating energy-absorbing crush zones at the ends of the cars. In a collision, the major...

  7. Are school zones effective? An examination of motor vehicle versus child pedestrian crashes near schools.

    PubMed

    Warsh, J; Rothman, L; Slater, M; Steverango, C; Howard, A

    2009-08-01

    To analyse the relationships between factors related to school location and motor vehicle versus child pedestrian collisions. Data on all police-reported motor vehicle collisions involving pedestrians less than 18 years of age that occurred in Toronto, Canada, between 2000 and 2005 were analysed. Geographic information systems (GIS) software was used to assess the distance of each collision relative to school location. The relationships between distance from school and collision-related factors such as temporal patterns of school travel times and crossing locations were analysed. Study data showed a total of 2717 motor vehicle versus child (<18) pedestrian collisions. The area density of collisions (collisions/area), particularly fatal collisions, was highest in school zones and decreased as distance from schools increased. The highest proportion of collisions (37.3%) occurred among 10-14-year-olds. Within school zones, collisions were more likely to occur among 5-9-year-old children as they travelled to and from school during months when school was in session. Most collisions within school zones occurred at midblock locations versus intersections. Focusing interventions around schools with attention to age, travel times, and crossing location will reduce the burden of injury in children. Future studies that take into account traffic and pedestrian volume surrounding schools would be useful for prevention efforts as well as for promotion of walking. These results will help identify priorities and emphasise the importance of considering spatial and temporal patterns in child pedestrian research.

  8. Controls on size and occurrence of the largest sub-aerial landslide on Earth: Seymareh (Saidmarreh) landslide, Zagros fold-thrust belt, Iran

    NASA Astrophysics Data System (ADS)

    Roberts, N. J.; Evans, S. G.

    2009-12-01

    Gigantic (> 1 Gm3) landslides are high-magnitude, low-frequency extremes of mass movements. They are important factors in topographic evolution and hazard in mountain regions due to their magnitude. However, few examples exist for study because of their infrequency. Consequently, controls on the location and size gigantic landslides remain poorly understood. Re-examination of the Seymareh (Saidmarreh) rock avalanche, Zagros fold-thrust belt, shows it to be the largest sub-aerial landslide on Earth (initial failure volume 38 Gm3), thus representing the upper magnitude limit for terrestrial landslides. Detailed examination of the source area (including orbital remote sensing, geotechnical investigation and structural mapping) provides new insights into controls on the size and mobility of gigantic landslides. The gigantic Early Holocene rockslide initiated on the northeast limb of Kabir Kuh, the largest anticline in the Zagros fold-thrust belt, and involved the simultaneous failure of a rock mass measuring 15 km along strike. The rockslide transformed into a rock avalanche that ran-out 19.0 km, filling two adjacent valleys and overtopping an intervening low mountain ridge. The failure involved 220 m of competent jointed limestone (Asmari Formation) underlain by 580 m of weaker mudrock-dominated units. Geologic structure, geomechanical strength and topography of the source slope strongly controlled failure initiation. Extreme landslide dimensions resulted in part from extensive uniform pre-failure stability, produced by structural and topographic features related to the large scale of the Kabir Kuh anticline. High continuity bedding planes determined the large lateral extent along strike. Bedding normal joints, the breached nature of the anticline and fluvial undercutting at the slope toe accommodated expansive lateral, headscarp and toe release, respectively, necessary for extensive failure. Geomechanically weak units at depth aided the penetration of the failure

  9. Newton's Strange Collisions.

    ERIC Educational Resources Information Center

    Erlichson, Herman

    1995-01-01

    Discusses Newton's apparent oversight of the role of energy considerations in collisions between two spherical bodies related to the third corollary of his "Laws of Motion." Investigates several theories that provide solutions to the mysterious oversight. (LZ)

  10. Mechanics of train collision

    DOT National Transportation Integrated Search

    1976-04-30

    A simple and a more detailed mathematical model for the simulation of train collisions are presented. The study presents considerable insight as to the causes and consequences of train motions on impact. Comparison of model predictions with two full ...

  11. Launch Collision Probability

    NASA Technical Reports Server (NTRS)

    Bollenbacher, Gary; Guptill, James D.

    1999-01-01

    This report analyzes the probability of a launch vehicle colliding with one of the nearly 10,000 tracked objects orbiting the Earth, given that an object on a near-collision course with the launch vehicle has been identified. Knowledge of the probability of collision throughout the launch window can be used to avoid launching at times when the probability of collision is unacceptably high. The analysis in this report assumes that the positions of the orbiting objects and the launch vehicle can be predicted as a function of time and therefore that any tracked object which comes close to the launch vehicle can be identified. The analysis further assumes that the position uncertainty of the launch vehicle and the approaching space object can be described with position covariance matrices. With these and some additional simplifying assumptions, a closed-form solution is developed using two approaches. The solution shows that the probability of collision is a function of position uncertainties, the size of the two potentially colliding objects, and the nominal separation distance at the point of closest approach. ne impact of the simplifying assumptions on the accuracy of the final result is assessed and the application of the results to the Cassini mission, launched in October 1997, is described. Other factors that affect the probability of collision are also discussed. Finally, the report offers alternative approaches that can be used to evaluate the probability of collision.

  12. The Middle Jurassic basinal deposits of the Surmeh Formation in the Central Zagros Mountains, southwest Iran: Facies, sequence stratigraphy, and controls

    Lasemi, Y.; Jalilian, A.H.

    2010-01-01

    The lower part of the Lower to Upper Jurassic Surmeh Formation consists of a succession of shallow marine carbonates (Toarcian-Aalenian) overlain by a deep marine basinal succession (Aalenian-Bajocian) that grades upward to Middle to Upper Jurassic platform carbonates. The termination of shallow marine carbonate deposition of the lower part of the Surmeh Formation and the establishment of deep marine sedimentation indicate a change in the style of sedimentation in the Neotethys passive margin of southwest Iran during the Middle Jurassic. To evaluate the reasons for this change and to assess the basin configuration during the Middle Jurassic, this study focuses on facies analysis and sequence stratigraphy of the basinal deposits (pelagic and calciturbidite facies) of the Surmeh Formation, referred here as 'lower shaley unit' in the Central Zagros region. The upper Aalenian-Bajocian 'lower shaley unit' overlies, with an abrupt contact, the Toarcian-lower Aalenian platform carbonates. It consists of pelagic (calcareous shale and limestone) and calciturbidite facies grading to upper Bajocian-Bathonian platform carbonates. Calciturbidite deposits in the 'lower shaley unit' consist of various graded grainstone to lime mudstone facies containing mixed deep marine fauna and platform-derived material. These facies include quartz-bearing lithoclast/intraclast grainstone to lime mudstone, bioclast/ooid/peloid intraclast grainstone, ooid grainstone to packstone, and lime wackestone to mudstone. The calciturbidite layers are erosive-based and commonly exhibit graded bedding, incomplete Bouma turbidite sequence, flute casts, and load casts. They consist chiefly of platform-derived materials including ooids, intraclasts/lithoclasts, peloids, echinoderms, brachiopods, bivalves, and open-ocean biota, such as planktonic bivalves, crinoids, coccoliths, foraminifers, and sponge spicules. The 'lower shaley unit' constitutes the late transgressive and the main part of the highstand

  13. Mechanical restoration of large-scale folded multilayers using the finite element method: Application to the Zagros Simply Folded Belt, N-Iraq

    NASA Astrophysics Data System (ADS)

    Frehner, Marcel; Reif, Daniel; Grasemann, Bernhard

    2010-05-01

    There are a large number of numerical finite element studies concerned with modeling the evolution of folded geological layers through time. This body of research includes many aspects of folding and many different approaches, such as two- and three-dimensional studies, single-layer folding, detachment folding, development of chevron folds, Newtonian, power-law viscous and more complex rheologies, influence of anisotropy, pure-shear, simple-shear and other boundary conditions and so forth. In recent years, studies of multilayer folding emerged, thanks to more advanced mesh generator software and increased computational power. Common to all of these studies is the fact that they consider a forward directed time evolution, as in nature. Very few studies use the finite element method for reverse-time simulations. In such studies, folded geological layers are taken as initial conditions for the numerical simulation. The folding process is reversed by changing the signs of the boundary conditions that supposedly drove the folding process. In such studies, the geometry of the geological layers before the folding process is searched and the amount of shortening necessary for the final folded geometry can be calculated. In contrast to a kinematic or geometric fold restoration procedure, the described approach takes the mechanical behavior of the geological layers into account, such as rheology and the relative strength of the individual layers. This approach is therefore called mechanical restoration of folds. In this study, the concept of mechanical restoration is applied to a two-dimensional 50km long NE-SW-cross-section through the Zagros Simply Folded Belt in Iraqi Kurdistan, NE from the city of Erbil. The Simply Folded Belt is dominated by gentle to open folding and faults are either absent or record only minor offset. Therefore, this region is ideal for testing the concept of mechanical restoration. The profile used is constructed from structural field measurements

  14. Composite quantum collision models

    NASA Astrophysics Data System (ADS)

    Lorenzo, Salvatore; Ciccarello, Francesco; Palma, G. Massimo

    2017-09-01

    A collision model (CM) is a framework to describe open quantum dynamics. In its memoryless version, it models the reservoir R as consisting of a large collection of elementary ancillas: the dynamics of the open system S results from successive collisions of S with the ancillas of R . Here, we present a general formulation of memoryless composite CMs, where S is partitioned into the very open system under study S coupled to one or more auxiliary systems {Si} . Their composite dynamics occurs through internal S -{Si} collisions interspersed with external ones involving {Si} and the reservoir R . We show that important known instances of quantum non-Markovian dynamics of S —such as the emission of an atom into a reservoir featuring a Lorentzian, or multi-Lorentzian, spectral density or a qubit subject to random telegraph noise—can be mapped on to such memoryless composite CMs.

  15. Microscope collision protection apparatus

    DOEpatents

    DeNure, Charles R.

    2001-10-23

    A microscope collision protection apparatus for a remote control microscope which protects the optical and associated components from damage in the event of an uncontrolled collision with a specimen, regardless of the specimen size or shape. In a preferred embodiment, the apparatus includes a counterbalanced slide for mounting the microscope's optical components. This slide replaces the rigid mounts on conventional upright microscopes with a precision ball bearing slide. As the specimen contacts an optical component, the contacting force will move the slide and the optical components mounted thereon. This movement will protect the optical and associated components from damage as the movement causes a limit switch to be actuated, thereby stopping all motors responsible for the collision.

  16. Developing a smartphone based warning system application to enhance the safety at work zones : final report.

    DOT National Transportation Integrated Search

    2016-05-01

    Collisions in the work zone have always been a contributing factor to compromising safety on urban roadways. The National Highway Traffic Safety Administration (NHTSA) and the State Transportation Authorities have implemented many safety countermeasu...

  17. Geophysical study of the structure and processes of the continental convergence zones: Alpine-Himalayan belt

    NASA Technical Reports Server (NTRS)

    Toksoz, M. N.; Molnar, P.

    1983-01-01

    Studies of the structure of the continental collision zones using seismic and body waves, theoretical modelling of the thermal regime of the convergence processes, and studies of earthquake mechanisms and deformation aspects of the model are covered.

  18. 2009 Kentucky traffic collision facts

    DOT National Transportation Integrated Search

    2009-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2009 is based on collision reports submitted to the Kentucky State Police : Records Branch. As required by Kentucky Revised Statutes 189.635, every law enforcement agency whose officers investigate :...

  19. 2010 Kentucky traffic collision facts

    DOT National Transportation Integrated Search

    2010-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2010 is based on collision reports submitted to the Kentucky State Police Records Branch. As required by Kentucky Revised Statutes 189.635, every law enforcement agency whose officers investigate a v...

  20. 2005 Kentucky traffic collision facts

    DOT National Transportation Integrated Search

    2005-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2005 is based on collision reports submitted to the Kentucky State Police : Records Branch. As required by Kentucky Revised Statutes 189.635, every law enforcement agency whose officers investigate :...

  1. 2004 Kentucky traffic collision facts

    DOT National Transportation Integrated Search

    2004-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2004 is based on collision reports submitted to the Kentucky State Police : Records Branch. As required by Kentucky Revised Statutes 189.635, every law enforcement agency whose officers investigate :...

  2. 2008 Kentucky traffic collision facts

    DOT National Transportation Integrated Search

    2008-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2008 is based on collision reports submitted to the Kentucky State Police : Records Branch. As required by Kentucky Revised Statutes 189.635, every law enforcement agency whose officers investigate :...

  3. Kentucky traffic collision facts 2015.

    DOT National Transportation Integrated Search

    2016-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2015 is based on collision reports submitted to the Kentucky State Police Records Branch. As required by Kentucky Revised Statutes 189.635, every law enforcement agency whose officers investigate a v...

  4. 2002 Kentucky traffic collision facts

    DOT National Transportation Integrated Search

    2002-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2002 is based on collision reports submitted to the Kentucky State Police : Records Branch. As required by Kentucky Revised statutes 189.635, every law enforcement agency whose officers investigate :...

  5. 2003 Kentucky traffic collision facts

    DOT National Transportation Integrated Search

    2003-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2003 is based on collision reports submitted to the Kentucky State Police : Records Branch. As required by Kentucky Revised Statutes 189.635, every law enforcement agency whose officers investigate :...

  6. 2001 Kentucky traffic collision facts

    DOT National Transportation Integrated Search

    2001-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2001 is based on collision reports submitted to the Kentucky State Police : Records Branch. As required by Kentucky Revised Statutes 189.635, every law enforcement agency whose officers investigate :...

  7. About the Collision Repair Campaign

    EPA Pesticide Factsheets

    EPA developed the Collision Repair Campaign to focus on meaningful risk reduction in the Collision Repair source sector to complement ongoing community air toxics work and attain reductions at a faster rate.

  8. 2007 Kentucky traffic collision facts

    DOT National Transportation Integrated Search

    2007-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2007 is based on collision reports submitted to the Kentucky State Police : Records Branch. As required by Kentucky Revised Statutes 189.635, every law enforcement agency whose officers investigate :...

  9. 2006 Kentucky traffic collision facts

    DOT National Transportation Integrated Search

    2006-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2006 is based on collision reports submitted to the Kentucky State Police : Records Branch. As required by Kentucky Revised Statutes 189.635, every law enforcement agency whose officers investigate :...

  10. Kentucky Traffic Collision Facts 2016

    DOT National Transportation Integrated Search

    2016-09-26

    KENTUCKYS TRAFFIC COLLISION FACTS report is based on collision reports submitted to the Kentucky State Police Records Branch. As required by Kentucky Revised Statutes 189.635, every law enforcement agency whose officers investigate a vehicle ac...

  11. 2000 Kentucky traffic collision facts

    DOT National Transportation Integrated Search

    2000-01-01

    KENTUCKYS TRAFFIC COLLISION FACTS report for 2000 is based on collision reports submitted to the Kentucky State Police : Records Branch. As required by Kentucky Revised statutes 189.635, every law enforcement agency whose officers investigate :...

  12. Ice particle collisions

    NASA Astrophysics Data System (ADS)

    Sampara, Naresh; Turnbull, Barbara; Hill, Richard; Swift, Michael

    2017-04-01

    Granular interactions of ice occur in a range of geophysical, astrophysical and industrial applications. For example, Saturn's Rings are composed of icy particles from micrometers to kilometres in size - inertial and yet too small to interact gravitationally. In clouds, ice crystals are smashed to pieces before they re-aggregate to for snow floccules in a process that is very much open to interpretation. In a granular flow of ice particles, the energy spent in collisions can lead to localized surface changes and wetting, which in turn can promote aggregation. To understand the induced wetting and its effects, we present two novel experimental methods which provide snippets of insight into the collisional behaviour of macroscopic ice particles. Experiment 1: Microgravity experiments provide minute details of the contact between the ice particles during the collision. A diamagnetic levitation technique, as alternative to the parabolic flight or falling tower experiments, was used to understand the collisional behaviour of individual macroscopic icy bodies. A refrigerated cylinder, that can control ambient conditions, was inserted into the bore of an 18 Tesla superconducting magnet and cooled to -10°C. Initial binary collisions were created, where one 4 mm ice particle was levitated in the magnet bore whilst another particle was dropped vertically from the top of the bore. The trajectories of both particles were captured by high speed video to provide the three-dimensional particle velocities and track the collision outcome. Introducing complexity, multiple particles were levitated in the bore and an azimuthal turbulent air flow introduced, allowing the particles to collide with other particles within a coherent fluid structure (mimicking Saturn's rings, or an eddy in a cloud). In these experiments, a sequence of collisions occur, each one different to the previous one due to the changes in surface characteristics created by the collisions themselves. Aggregation

  13. Atomic cluster collisions

    NASA Astrophysics Data System (ADS)

    Korol, Andrey V.; Solov'yov, Andrey

    2013-01-01

    Atomic cluster collisions are a field of rapidly emerging research interest by both experimentalists and theorists. The international symposium on atomic cluster collisions (ISSAC) is the premier forum to present cutting-edge research in this field. It was established in 2003 and the most recent conference was held in Berlin, Germany in July of 2011. This Topical Issue presents original research results from some of the participants, who attended this conference. This issues specifically focuses on two research areas, namely Clusters and Fullerenes in External Fields and Nanoscale Insights in Radiation Biodamage.

  14. A bioinspired collision detection algorithm for VLSI implementation

    NASA Astrophysics Data System (ADS)

    Cuadri, J.; Linan, G.; Stafford, R.; Keil, M. S.; Roca, E.

    2005-06-01

    In this paper a bioinspired algorithm for collision detection is proposed, based on previous models of the locust (Locusta migratoria) visual system reported by F.C. Rind and her group, in the University of Newcastle-upon-Tyne. The algorithm is suitable for VLSI implementation in standard CMOS technologies as a system-on-chip for automotive applications. The working principle of the algorithm is to process a video stream that represents the current scenario, and to fire an alarm whenever an object approaches on a collision course. Moreover, it establishes a scale of warning states, from no danger to collision alarm, depending on the activity detected in the current scenario. In the worst case, the minimum time before collision at which the model fires the collision alarm is 40 msec (1 frame before, at 25 frames per second). Since the average time to successfully fire an airbag system is 2 msec, even in the worst case, this algorithm would be very helpful to more efficiently arm the airbag system, or even take some kind of collision avoidance countermeasures. Furthermore, two additional modules have been included: a "Topological Feature Estimator" and an "Attention Focusing Algorithm". The former takes into account the shape of the approaching object to decide whether it is a person, a road line or a car. This helps to take more adequate countermeasures and to filter false alarms. The latter centres the processing power into the most active zones of the input frame, thus saving memory and processing time resources.

  15. Spacecraft Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Bussy-Virat, Charles

    The rapid increase of the number of objects in orbit around the Earth poses a serious threat to operational spacecraft and astronauts. In order to effectively avoid collisions, mission operators need to assess the risk of collision between the satellite and any other object whose orbit is likely to approach its trajectory. Several algorithms predict the probability of collision but have limitations that impair the accuracy of the prediction. An important limitation is that uncertainties in the atmospheric density are usually not taken into account in the propagation of the covariance matrix from current epoch to closest approach time. The Spacecraft Orbital Characterization Kit (SpOCK) was developed to accurately predict the positions and velocities of spacecraft. The central capability of SpOCK is a high accuracy numerical propagator of spacecraft orbits and computations of ancillary parameters. The numerical integration uses a comprehensive modeling of the dynamics of spacecraft in orbit that includes all the perturbing forces that a spacecraft is subject to in orbit. In particular, the atmospheric density is modeled by thermospheric models to allow for an accurate representation of the atmospheric drag. SpOCK predicts the probability of collision between two orbiting objects taking into account the uncertainties in the atmospheric density. Monte Carlo procedures are used to perturb the initial position and velocity of the primary and secondary spacecraft from their covariance matrices. Developed in C, SpOCK supports parallelism to quickly assess the risk of collision so it can be used operationally in real time. The upper atmosphere of the Earth is strongly driven by the solar activity. In particular, abrupt transitions from slow to fast solar wind cause important disturbances of the atmospheric density, hence of the drag acceleration that spacecraft are subject to. The Probability Distribution Function (PDF) model was developed to predict the solar wind speed

  16. Computer-based self-organized tectonic zoning: a tentative pattern recognition for Iran

    NASA Astrophysics Data System (ADS)

    Zamani, Ahmad; Hashemi, Naser

    2004-08-01

    Conventional methods of tectonic zoning are frequently characterized by two deficiencies. The first one is the large uncertainty involved in tectonic zoning based on non-quantitative and subjective analysis. Failure to interpret accurately a large amount of data "by eye" is the second. In order to alleviate each of these deficiencies, the multivariate statistical method of cluster analysis has been utilized to seek and separate zones with similar tectonic pattern and construct automated self-organized multivariate tectonic zoning maps. This analytical method of tectonic regionalization is particularly useful for showing trends in tectonic evolution of a region that could not be discovered by any other means. To illustrate, this method has been applied for producing a general-purpose numerical tectonic zoning map of Iran. While there are some similarities between the self-organized multivariate numerical maps and the conventional maps, the cluster solution maps reveal some remarkable features that cannot be observed on the current tectonic maps. The following specific examples need to be noted: (1) The much disputed extent and rigidity of the Lut Rigid Block, described as the microplate of east Iran, is clearly revealed on the self-organized numerical maps. (2) The cluster solution maps reveal a striking similarity between this microplate and the northern Central Iran—including the Great Kavir region. (3) Contrary to the conventional map, the cluster solution maps make a clear distinction between the East Iranian Ranges and the Makran Mountains. (4) Moreover, an interesting similarity between the Azarbaijan region in the northwest and the Makran Mountains in the southeast and between the Kopet Dagh Ranges in the northeast and the Zagros Folded Belt in the southwest of Iran are revealed in the clustering process. This new approach to tectonic zoning is a starting point and is expected to be improved and refined by collection of new data. The method is also a useful

  17. Magmatic record of India-Asia collision

    PubMed Central

    Zhu, Di-Cheng; Wang, Qing; Zhao, Zhi-Dan; Chung, Sun-Lin; Cawood, Peter A.; Niu, Yaoling; Liu, Sheng-Ao; Wu, Fu-Yuan; Mo, Xuan-Xue

    2015-01-01

    New geochronological and geochemical data on magmatic activity from the India-Asia collision zone enables recognition of a distinct magmatic flare-up event that we ascribe to slab breakoff. This tie-point in the collisional record can be used to back-date to the time of initial impingement of the Indian continent with the Asian margin. Continental arc magmatism in southern Tibet during 80–40 Ma migrated from south to north and then back to south with significant mantle input at 70–43 Ma. A pronounced flare up in magmatic intensity (including ignimbrite and mafic rock) at ca. 52–51 Ma corresponds to a sudden decrease in the India-Asia convergence rate. Geological and geochemical data are consistent with mantle input controlled by slab rollback from ca. 70 Ma and slab breakoff at ca. 53 Ma. We propose that the slowdown of the Indian plate at ca. 51 Ma is largely the consequence of slab breakoff of the subducting Neo-Tethyan oceanic lithosphere, rather than the onset of the India-Asia collision as traditionally interpreted, implying that the initial India-Asia collision commenced earlier, likely at ca. 55 Ma. PMID:26395973

  18. Modeling collisions in circumstellar debris disks

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika

    2015-10-01

    resonances near the chaotic zone. I investigate the effects of the initial eccentricity distribution of the disk particles and find a negligible effect on the gap size at Jovian planet masses, since collisions tend to erase memory of the initial particle eccentricity distributions. I also find that the presence of Trojan analogs is a potentially powerful diagnostic of planets in the mass range ˜1--10MJup. I apply my model to place new upper limits on planets around Fomalhaut, HR 4796 A, HD 202628, HD 181327, and beta Pictoris. Finally, to show how SMACK can be used to analyze a single debris disk in detail, I present a new model of the beta Pictoris disk and planet system that, for the first time, combines simulations of the colliding planetesimals and the dynamics of the dust grains, allowing me to model features and asymmetries in both submillimeter and scattered light images of the disk. I combine a 100,000 superparticle SMACK simulation with N-body integrations of the dust produced by the simulated collisions. I find that secular perturbations of the planet's measured inclination and eccentricity can explain the observed warp and planetesimal ring, while collisions between planetesimals shape the disk by eroding close-in material. The complex 3D structure of the disk due to the perturbations from the planet creates an azimuthally asymmetric spatial distribution of collisions, which could contribute to the observed azimuthal clump of CO gas seen with ALMA. My simulations of the small dust grains produced by collisions demonstrate that the "birth ring" approximation for beta Pictoris fails to account for the ˜54% of dust mass produced outside of the planetesimal ring. I also reproduce the gross morphology of high-resolution scattered light images of the disk, including the two-disk "x"-pattern seen in scattered light, which has not been replicated by previous dust dynamics models.

  19. Intersection collision warning system

    DOT National Transportation Integrated Search

    1999-04-01

    Safety at unsignalized intersections is a major concern. Intersection collisions are one of the most common types of crash, and in the United States, they account for nearly 2 million accidents and 6,700 fatalities every year. However, a fully signal...

  20. Collision avoidance in space

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.; Cour-Palais, B. G.; Taylor, R. E.; Landry, P. M.

    1980-01-01

    Collisions in earth orbital space between operational payloads and various forms of space debris (nonoperational payloads, nonfunctional mission-related objects and fragments resulting from collisions and explosions) are discussed and possible means of avoiding them are considered. From 10,000 to 15,000 objects are estimated to be in earth orbital space, most of which represent spacecraft fragments and debris too small to be detected and tracked by earth-based sensors, and it is considered likely that some of them will be or have already been involved in direct collisions with the ever increasing number of operational satellites and space stations. Means of protecting proposed large space structures and smaller spacecraft from significant damage by larger space objects, particularly in the 400-4000 km altitude range where most debris occurs, include structural redundancy and the double shielding of sensitive components. Other means of collision avoidance are the collection or relocation of satellites, rocket bodies and other objects by the Space Shuttle, the prevention of explosions and the disposal of spent rocket parts by reentry. Finally, a management structure would be required to administer guidelines for the prevention and elimination of space debris.

  1. The COLA Collision Avoidance Method

    NASA Astrophysics Data System (ADS)

    Assmann, K.; Berger, J.; Grothkopp, S.

    2009-03-01

    In the following we present a collision avoidance method named COLA. The method has been designed to predict collisions for Earth orbiting spacecraft on any orbits, including orbit changes, with other space-born objects. The point in time of a collision and the collision probability are determined. To guarantee effective processing the COLA method uses a modular design and is composed of several components which are either developed within this work or deduced from existing algorithms: A filtering module, the close approach determination, the collision detection and the collision probability calculation. A software tool which implements the COLA method has been verified using various test cases built from sample missions. This software has been implemented in the C++ programming language and serves as a universal collision detection tool at LSE Space Engineering & Operations AG.

  2. Reactive Collision Avoidance Algorithm

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel; Acikmese, Behcet; Ploen, Scott; Hadaegh, Fred

    2010-01-01

    The reactive collision avoidance (RCA) algorithm allows a spacecraft to find a fuel-optimal trajectory for avoiding an arbitrary number of colliding spacecraft in real time while accounting for acceleration limits. In addition to spacecraft, the technology can be used for vehicles that can accelerate in any direction, such as helicopters and submersibles. In contrast to existing, passive algorithms that simultaneously design trajectories for a cluster of vehicles working to achieve a common goal, RCA is implemented onboard spacecraft only when an imminent collision is detected, and then plans a collision avoidance maneuver for only that host vehicle, thus preventing a collision in an off-nominal situation for which passive algorithms cannot. An example scenario for such a situation might be when a spacecraft in the cluster is approaching another one, but enters safe mode and begins to drift. Functionally, the RCA detects colliding spacecraft, plans an evasion trajectory by solving the Evasion Trajectory Problem (ETP), and then recovers after the collision is avoided. A direct optimization approach was used to develop the algorithm so it can run in real time. In this innovation, a parameterized class of avoidance trajectories is specified, and then the optimal trajectory is found by searching over the parameters. The class of trajectories is selected as bang-off-bang as motivated by optimal control theory. That is, an avoiding spacecraft first applies full acceleration in a constant direction, then coasts, and finally applies full acceleration to stop. The parameter optimization problem can be solved offline and stored as a look-up table of values. Using a look-up table allows the algorithm to run in real time. Given a colliding spacecraft, the properties of the collision geometry serve as indices of the look-up table that gives the optimal trajectory. For multiple colliding spacecraft, the set of trajectories that avoid all spacecraft is rapidly searched on

  3. Fold-and-thrust belt curvature in the Fars region, eastern Zagros, achieved by variable thrust slip vectors and fault block rotations

    NASA Astrophysics Data System (ADS)

    Edey, Alex; Allen, Mark B.

    2017-04-01

    Many fold-and-thrust belts are curved in plan view, but the origins of this curvature are debated. Understanding which mechanism(s) is appropriate is important to constrain the behaviour of the lithosphere during compressional deformation. Here we analyse the active deformation of the Fars Arc region in the eastern part of the Zagros, Iran, including slip vectors of 92 earthquakes, published GPS and palaeomagnetism data, and the distributions of young and/or active folds. The fold-and-thrust belt in the Fars Arc shows pronounced curvature, convex southwards. Folds trends vary from NW-SE in the west to ENE-WSW in the east. The GPS-derived velocity field shows NNE to SSW convergence, towards the foreland on the Arabian Plate, without dispersion. Earthquake slip vectors are highly variable, spanning a range of azimuths from SW to SSE in an Arabian Plate reference frame. The full variation of azimuths occurs within small (10s of km) sub-regions, but this variation is superimposed on a radial pattern, whereby slip vectors tend to be parallel to the regional topographic gradient. Given the lack of variation in the GPS vectors, we conclude that the Fars Arc is not curved as a result of gravitational spreading over the adjacent foreland, but as a result of deformation being restricted at tectonic boundaries at the eastern and western margins of the Arc. Fault blocks and folds within the Fars Arc, each 20-40 km long, rotate about vertical axes to achieve the overall curvature, predominantly clockwise in the west and counter-clockwise in the east. Active folds of different orientations may intersect and produce dome-and-basin interference patterns, without the need for a series of separate deformation phases of different stress orientations. The Fars Arc clearly contrasts with the Himalayas, where both GPS and earthquake slip vectors display radial patterns towards the foreland, and gravitational spreading is a viable mechanism for producing fold-and-thrust belt curvature.

  4. Operational Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Guit, Bill

    2015-01-01

    This presentation will describe the early days of the EOS Aqua and Aura operational collision avoidance process. It will highlight EOS debris avoidance maneuvers, EOS high interest event statistic and A-Train systematic conjunctions and conclude with future challenges. This is related to earlier e-DAA (tracking number 21692) that an abstract was submitted to a different conference. Eric Moyer, ESMO Deputy Project Manager has reviewed and approved this presentation on May 6, 2015

  5. Conservative Bin-to-Bin Fractional Collisions

    DTIC Science & Technology

    2016-06-28

    BIN FRACTIONAL COLLISIONS Robert Martin ERC INC., SPACECRAFT PROPULSION BRANCH AIR FORCE RESEARCH LABORATORY EDWARDS AIR FORCE BASE, CA USA 30th...IMPORTANCE OF COLLISION PHYSICS Important Collisions in Spacecraft Propulsion : Discharge and Breakdown in FRC Collisional Radiative Cooling/Ionization...UNLIMITED; PA #16326 3 / 18 IMPORTANCE OF COLLISION PHYSICS Important Collisions in Spacecraft Propulsion : Discharge and Breakdown in FRC Collisional

  6. Collision propagation in Papua New Guinea and Solomon Sea

    SciT

    Silver, E.A.; Abbott, L.; Kirchoff-Stein, K.

    The collision of the Finisterre-New Britain terrane with the Australian continent is propagating eastward at a rate of approximately 125 km/m.y., based on plate motions and the collisional geometry, as well as on the geochemistry of the arc volcanics. A sequence of sedimentary facies is developed from east to west in the modern environment (pelagic sediments, turbidites, marine molasse, and fluvial molasse), and this sequence is accreted from north to south at the front of the terrane collision in the Markham valley. Based on the modern distribution, the authors suggest that the age of the initial marine molasse will predatemore » the passage of the collision point, and that of the fluvial molasse will postdate its passage. Intense erosion in the Markham canyon, located along the suture between the collision point and the coast, appears to be responsible for stripping most of the accreted marine molasse and redepositing it in a basin just east of the collision point. Convergence along the suture zone deceases westward. At Lae, very young deformation is seen, but 80 km to the west undeformed terrace deposits cover the deformation front. Uplift appears active within the range, aided by out-of-sequence thrusting, but still farther west the rocks lack signs of young tectonism. In the region just west of Lae, the main locus of slip between the Australian and south Bismarck plates must transfer southward to the front of the Papuan fold-and-thrust belt.« less

  7. Driver responses to differing urban work zone configurations.

    PubMed

    Morgan, J F; Duley, A R; Hancock, P A

    2010-05-01

    This study reports the results of a simulator-based assessment of driver response to two different urban highway work zone configurations. One configuration represented an existing design which was contrasted with a second configuration that presented a reduced taper length prototype work zone design. Twenty-one drivers navigated the two different work zones in two different conditions, one with and one without a lead vehicle; in this case a bus. Measures of driver speed, braking, travel path, and collision frequency were recorded. Drivers navigated significantly closer to the boundary of the work area in the reduced taper length design. This proximity effect was moderated by the significant interaction between lead vehicle and taper length and such interactive effects were also observed for driver speed at the end of the work zone and the number of collisions observed within the work zone itself. These results suggest that reduced taper length poses an increase in risk to both drivers and work zone personnel, primarily when driver anticipation is reduced by foreshortened viewing distances. Increase in such risk is to a degree offset by the reduction of overall exposure to the work zone that a foreshortened taper creates. The benefits and limitations to a simulation-based approach to the assessment and prediction of driver behavior in different work zone configurations are also discussed. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  8. Catching Collisions in the LHC

    SciT

    Fruguiele, Claudia; Hirschauer, Jim

    Now that the Large Hadron Collider has officially turned back on for its second run, within every proton collision could emerge the next new discovery in particle physics. Learn how the detectors on the Compact Muon Solenoid, or CMS, experiment capture and track particles as they are expelled from a collision. Talking us through these collisions are Claudia Fruguiele and Jim Hirschauer of Fermi National Accelerator Laboratory, the largest U.S. institution collaborating on the LHC.

  9. Catching Collisions in the LHC

    Fruguiele, Claudia; Hirschauer, Jim

    2018-01-16

    Now that the Large Hadron Collider has officially turned back on for its second run, within every proton collision could emerge the next new discovery in particle physics. Learn how the detectors on the Compact Muon Solenoid, or CMS, experiment capture and track particles as they are expelled from a collision. Talking us through these collisions are Claudia Fruguiele and Jim Hirschauer of Fermi National Accelerator Laboratory, the largest U.S. institution collaborating on the LHC.

  10. Zone separator for multiple zone vessels

    DOEpatents

    Jones, John B.

    1983-02-01

    A solids-gas contact vessel, having two vertically disposed distinct reaction zones, includes a dynamic seal passing solids from an upper to a lower zone and maintaining a gas seal against the transfer of the separate treating gases from one zone to the other, and including a stream of sealing fluid at the seal.

  11. 2005 annual state highway collision data summary

    DOT National Transportation Integrated Search

    2006-01-01

    This report covers collisions on all State Highways in Washington State for the year 2005. Tables and charts will be used to show frequency and rate of : collisions, multi-year trends, collision types, contributing circumstances and other factors. : ...

  12. Heavy truck casualty collisions, 2001-2005

    DOT National Transportation Integrated Search

    2010-04-01

    This document reviews casualty collisions (fatalities and injuries) involving heavy trucks in Canada : from 2001 to 2005. Collisions involving heavy trucks include all vehicles in these collisions, such as : passenger cars, light trucks and vans, hea...

  13. 2004 annual state highway collision data summary

    DOT National Transportation Integrated Search

    2006-01-01

    This report covers collisions on all State Highways in Washington State for the year 2004. Tables and charts will be used to show frequency and rate of : collisions, multi-year trends, collision types, contributing circumstances and other factors. : ...

  14. Collision group and renormalization of the Boltzmann collision integral.

    PubMed

    Saveliev, V L; Nanbu, K

    2002-05-01

    On the basis of a recently discovered collision group [V. L. Saveliev, in Rarefied Gas Dynamics: 22nd International Symposium, edited by T. J. Bartel and M. Gallis, AIP Conf. Proc. No. 585 (AIP, Melville, NY, 2001), p. 101], the Boltzmann collision integral is exactly rewritten in two parts. The first part describes the scattering of particles with small angles. In this part the infinity due to the infinite cross sections is extracted from the Boltzmann collision integral. Moreover, the Boltzmann collision integral is represented as a divergence of the flow in velocity space. Owing to this, the role of collisions in the kinetic equation can be interpreted in terms of the nonlocal friction force that depends on the distribution function.

  15. Collision group and renormalization of the Boltzmann collision integral

    NASA Astrophysics Data System (ADS)

    Saveliev, V. L.; Nanbu, K.

    2002-05-01

    On the basis of a recently discovered collision group [V. L. Saveliev, in Rarefied Gas Dynamics: 22nd International Symposium, edited by T. J. Bartel and M. Gallis, AIP Conf. Proc. No. 585 (AIP, Melville, NY, 2001), p. 101], the Boltzmann collision integral is exactly rewritten in two parts. The first part describes the scattering of particles with small angles. In this part the infinity due to the infinite cross sections is extracted from the Boltzmann collision integral. Moreover, the Boltzmann collision integral is represented as a divergence of the flow in velocity space. Owing to this, the role of collisions in the kinetic equation can be interpreted in terms of the nonlocal friction force that depends on the distribution function.

  16. Seismotectonic zoning of Azerbaijan territory

    NASA Astrophysics Data System (ADS)

    Kangarli, Talat; Aliyev, Ali; Aliyev, Fuad; Rahimov, Fuad

    2017-04-01

    Studying of the space-time correlation and consequences effect between tectonic events and other geological processes that have created modern earth structure still remains as one of the most important problems in geology. This problem is especially important for the East Caucasus-South Caspian geodynamic zone. Being situated at the eastern part of the Caucasian strait, this zone refers to a center of Alpine-Himalayan active folded belt, and is known as a complex tectonic unit with jointing heterogeneous structural-substantial complexes arising from different branches of the belt (Doburja-Caucasus-Kopetdag from the north and Pyrenean-Alborz from the south with Kura and South Caspian zone). According to GPS and precise leveling data, activity of regional geodynamic processes shows intensive horizontal and vertical movements of the Earth's crust as conditioned by collision of the Arabian and Eurasian continental plates continuing since the end of Miocene. So far studies related to the regional of geology-geophysical data, periodically used for the geological and tectonic modeling of the environment mainly based on the fixing ideology. There still remains a number of uncertainties in solution of issues related to regional geology, tectonics and magmatism, structure and interrelation of different structural zones, space-time interrelations between onshore and offshore complexes, etc. At the same time large dataset produced by surface geological surveys, deep geological mapping of on- and offshore areas with the use of seismic and electrical reconnaissance and geophysical field zoning methods, deep well drilling and remote sensing activities. Conducted new studies produced results including differentiation of formerly unknown nappe complexes of the different ages and scales within the structure of mountain-fold zones, identification of new zones containing ophiolites in their section, outlining of currently active faulting areas, geophysical interpretation of the deep

  17. Root Apex Transition Zone As Oscillatory Zone

    PubMed Central

    Baluška, František; Mancuso, Stefano

    2013-01-01

    Root apex of higher plants shows very high sensitivity to environmental stimuli. The root cap acts as the most prominent plant sensory organ; sensing diverse physical parameters such as gravity, light, humidity, oxygen, and critical inorganic nutrients. However, the motoric responses to these stimuli are accomplished in the elongation region. This spatial discrepancy was solved when we have discovered and characterized the transition zone which is interpolated between the apical meristem and the subapical elongation zone. Cells of this zone are very active in the cytoskeletal rearrangements, endocytosis and endocytic vesicle recycling, as well as in electric activities. Here we discuss the oscillatory nature of the transition zone which, together with several other features of this zone, suggest that it acts as some kind of command center. In accordance with the early proposal of Charles and Francis Darwin, cells of this root zone receive sensory information from the root cap and instruct the motoric responses of cells in the elongation zone. PMID:24106493

  18. Collision in space.

    PubMed

    Ellis, S R

    2000-01-01

    On June 25, 1997, the Russian supply spacecraft Progress 234 collided with the Mir space station, rupturing Mir's pressure hull, throwing it into an uncontrolled attitude drift, and nearly forcing evacuation of the station. Like many high-profile accidents, this collision was the consequence of a chain of events leading to the final piloting errors that were its immediate cause. The discussion in this article does not resolve the relative contributions of the actions and decisions in this chain. Neither does it suggest corrective measures, many of which are straightforward and have already been implemented by the National Aeronautics and Space Administration (NASA) and the Russian Space Agency. Rather, its purpose is to identify the human factors that played a pervasive role in the incident. Workplace stress, fatigue, and sleep deprivation were identified by NASA as contributory factors in the Mir-Progress collision (Culbertson, 1997; NASA, forthcoming), but other contributing factors, such as requiring crew to perform difficult tasks for which their training is not current, could potentially become important factors in future situations.

  19. A Changing Wind Collision

    NASA Astrophysics Data System (ADS)

    Nazé, Yaël; Koenigsberger, Gloria; Pittard, Julian M.; Parkin, Elliot Ross; Rauw, Gregor; Corcoran, Michael F.; Hillier, D. John

    2018-02-01

    We report on the first detection of a global change in the X-ray emitting properties of a wind–wind collision, thanks to XMM-Newton observations of the massive Small Magellenic Cloud (SMC) system HD 5980. While its light curve had remained unchanged between 2000 and 2005, the X-ray flux has now increased by a factor of ∼2.5, and slightly hardened. The new observations also extend the observational coverage over the entire orbit, pinpointing the light-curve shape. It has not varied much despite the large overall brightening, and a tight correlation of fluxes with orbital separation is found without any hysteresis effect. Moreover, the absence of eclipses and of absorption effects related to orientation suggests a large size for the X-ray emitting region. Simple analytical models of the wind–wind collision, considering the varying wind properties of the eruptive component in HD 5980, are able to reproduce the recent hardening and the flux-separation relationship, at least qualitatively, but they predict a hardening at apastron and little change in mean flux, contrary to observations. The brightness change could then possibly be related to a recently theorized phenomenon linked to the varying strength of thin-shell instabilities in shocked wind regions. Based on XMM-Newton and Chandra data.

  20. Collision in space

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.

    2000-01-01

    On June 25, 1997, the Russian supply spacecraft Progress 234 collided with the Mir space station, rupturing Mir's pressure hull, throwing it into an uncontrolled attitude drift, and nearly forcing evacuation of the station. Like many high-profile accidents, this collision was the consequence of a chain of events leading to the final piloting errors that were its immediate cause. The discussion in this article does not resolve the relative contributions of the actions and decisions in this chain. Neither does it suggest corrective measures, many of which are straightforward and have already been implemented by the National Aeronautics and Space Administration (NASA) and the Russian Space Agency. Rather, its purpose is to identify the human factors that played a pervasive role in the incident. Workplace stress, fatigue, and sleep deprivation were identified by NASA as contributory factors in the Mir-Progress collision (Culbertson, 1997; NASA, forthcoming), but other contributing factors, such as requiring crew to perform difficult tasks for which their training is not current, could potentially become important factors in future situations.

  1. Modeling Vehicle Collision Angle in Traffic Crashes Based on Three-Dimensional Laser Scanning Data

    PubMed Central

    Lyu, Nengchao; Huang, Gang; Wu, Chaozhong; Duan, Zhicheng; Li, Pingfan

    2017-01-01

    In road traffic accidents, the analysis of a vehicle’s collision angle plays a key role in identifying a traffic accident’s form and cause. However, because accurate estimation of vehicle collision angle involves many factors, it is difficult to accurately determine it in cases in which less physical evidence is available and there is a lack of monitoring. This paper establishes the mathematical relation model between collision angle, deformation, and normal vector in the collision region according to the equations of particle deformation and force in Hooke’s law of classical mechanics. At the same time, the surface reconstruction method suitable for a normal vector solution is studied. Finally, the estimation model of vehicle collision angle is presented. In order to verify the correctness of the model, verification of multi-angle collision experiments and sensitivity analysis of laser scanning precision for the angle have been carried out using three-dimensional (3D) data obtained by a 3D laser scanner in the collision deformation zone. Under the conditions with which the model has been defined, validation results show that the collision angle is a result of the weighted synthesis of the normal vector of the collision point and the weight value is the deformation of the collision point corresponding to normal vectors. These conclusions prove the applicability of the model. The collision angle model proposed in this paper can be used as the theoretical basis for traffic accident identification and cause analysis. It can also be used as a theoretical reference for the study of the impact deformation of elastic materials. PMID:28264517

  2. Modeling Vehicle Collision Angle in Traffic Crashes Based on Three-Dimensional Laser Scanning Data.

    PubMed

    Lyu, Nengchao; Huang, Gang; Wu, Chaozhong; Duan, Zhicheng; Li, Pingfan

    2017-02-28

    In road traffic accidents, the analysis of a vehicle's collision angle plays a key role in identifying a traffic accident's form and cause. However, because accurate estimation of vehicle collision angle involves many factors, it is difficult to accurately determine it in cases in which less physical evidence is available and there is a lack of monitoring. This paper establishes the mathematical relation model between collision angle, deformation, and normal vector in the collision region according to the equations of particle deformation and force in Hooke's law of classical mechanics. At the same time, the surface reconstruction method suitable for a normal vector solution is studied. Finally, the estimation model of vehicle collision angle is presented. In order to verify the correctness of the model, verification of multi-angle collision experiments and sensitivity analysis of laser scanning precision for the angle have been carried out using three-dimensional (3D) data obtained by a 3D laser scanner in the collision deformation zone. Under the conditions with which the model has been defined, validation results show that the collision angle is a result of the weighted synthesis of the normal vector of the collision point and the weight value is the deformation of the collision point corresponding to normal vectors. These conclusions prove the applicability of the model. The collision angle model proposed in this paper can be used as the theoretical basis for traffic accident identification and cause analysis. It can also be used as a theoretical reference for the study of the impact deformation of elastic materials.

  3. Small Collision Systems at RHIC

    NASA Astrophysics Data System (ADS)

    Novitzky, Norbert

    2018-02-01

    The observation of long range correlations in highly asymmetric systems, as in p+Pb and d+Au collisions, suggests a creation of a medium with collective behavior. It is still an open question if the quark-gluon plasma is formed in these collision. Hence, the RHIC collider invested time to study the small systems in different collision systems and energies. Here we discuss the recent results from the PHENIX and STAR collaborations in four different collision systems p+Al, p+Au, d+Au and 3He+Au at = 200 GeV, and also for the energy scan in d+Au collisions between = 19.6 - 200 GeV.

  4. Nanodust released in interplanetary collisions

    NASA Astrophysics Data System (ADS)

    Lai, H. R.; Russell, C. T.

    2018-07-01

    The lifecycle of near-Earth objects (NEOs) involves a collisional cascade that produces ever smaller debris ending with nanoscale particles which are removed from the solar system by radiation pressure and electromagnetic effects. It has been proposed that the nanodust clouds released in collisions perturb the background interplanetary magnetic field and create the interplanetary field enhancements (IFEs). Assuming that this IFE formation scenario is actually operating, we calculate the interplanetary collision rate, estimate the total debris mass carried by nanodust, and compare the collision rate with the IFE rate. We find that to release the same amount of nanodust, the collision rate is comparable to the observed IFE rate. Besides quantitatively testing the association between the collisions evolving large objects and giant solar wind structures, such a study can be extended to ranges of smaller scales and to investigate the source of moderate and small solar wind perturbations.

  5. Collisions in Compact Star Clusters.

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, S. F.

    The high stellar densities in young compact star clusters, such as the star cluster R136 in the 30 Doradus region, may lead to a large number of stellar collisions. Such collisions were recently found to be much more frequent than previous estimates. The number of collisions scales with the number of stars for clusters with the same initial relaxation time. These collisions take place in a few million years. The collision products may finally collapse into massive black holes. The fraction of the total mass in the star cluster which ends up in a single massive object scales with the total mass of the cluster and its relaxation time. This mass fraction is rather constant, within a factor two or so. Wild extrapolation from the relatively small masses of the studied systems to the cores of galactic nuclei may indicate that the massive black holes in these systems have formed in a similar way.

  6. Sixteenth International Conference on the physics of electronic and atomic collisions

    SciT

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

  7. Providing plastic zone extrusion

    SciT

    Manchiraju, Venkata Kiran; Feng, Zhili; David, Stan A.

    Plastic zone extrusion may be provided. First, a compressor may generate frictional heat in stock to place the stock in a plastic zone of the stock. Then, a conveyer may receive the stock in its plastic zone from the compressor and transport the stock in its plastic zone from the compressor. Next, a die may receive the stock in its plastic zone from the conveyer and extrude the stock to form a wire.

  8. Vadose zone microbiology

    SciT

    Kieft, Thomas L.; Brockman, Fred J.

    2001-01-17

    The vadose zone is defined as the portion of the terrestrial subsurface that extends from the land surface downward to the water table. As such, it comprises the surface soil (the rooting zone), the underlying subsoil, and the capillary fringe that directly overlies the water table. The unsaturated zone between the rooting zone and the capillary fringe is termed the "intermediate zone" (Chapelle, 1993). The vadose zone has also been defined as the unsaturated zone, since the sediment pores and/or rock fractures are generally not completely water filled, but instead contain both water and air. The latter characteristic results inmore » the term "zone of aeration" to describe the vadose zone. The terms "vadose zone," "unsaturated zone", and "zone of aeration" are nearly synonymous, except that the vadose zone may contain regions of perched water that are actually saturated. The term "subsoil" has also been used for studies of shallow areas of the subsurface immediately below the rooting zone. This review focuses almost exclusively on the unsaturated region beneath the soil layer since there is already an extensive body of literature on surface soil microbial communities and process, e.g., Paul and Clark (1989), Metting (1993), Richter and Markowitz, (1995), and Sylvia et al. (1998); whereas the deeper strata of the unsaturated zone have only recently come under scrutiny for their microbiological properties.« less

  9. Collision avoidance sensor skin

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The objective was to totally eliminate the possibility of a robot (or any mechanism for that matter) inducing a collision in space operations. We were particularly concerned that human beings were safe under all circumstances. This was apparently accomplished, and it is shown that GSFC has a system that is ready for space qualification and flight. However, it soon became apparent that much more could be accomplished with this technology. Payloads could be made invulnerable to collision avoidance and the blind spots behind them eliminated. This could be accomplished by a simple, non-imaging set of 'Capaciflector' sensors on each payload. It also is evident that this system could be used to align and dock the system with a wide margin of safety. Throughout, lighting problems could be ignored, and unexpected events and modeling errors taken in stride. At the same time, computational requirements would be reduced. This can be done in a simple, rugged, reliable manner that will not disturb the form factor of space systems. It will be practical for space applications. The lab experiments indicate we are well on the way to accomplishing this. Still, the research trail goes deeper. It now appears that the sensors can be extended to end effectors to provide precontact information and make robot docking (or any docking connection) very smooth, with minimal loads impacted back into the mating structures. This type of ability would be a major step forward in basic control techniques in space. There are, however, baseline and restructuring issues to be tackled. The payloads must get power and signals to them from the robot or from the astronaut servicing tool. This requires a standard electromechanical interface. Any of several could be used. The GSFC prototype shown in this presentation is a good one. Sensors with their attendant electronics must be added to the payloads, end effectors, and robot arms and integrated into the system.

  10. 3-D Numerical Modelling of Oblique Continental Collisions with ASPECT

    NASA Astrophysics Data System (ADS)

    Karatun, L.; Pysklywec, R.

    2017-12-01

    Among the fundamental types of tectonic plate boundaries, continent-continent collision is least well understood. Deformation of the upper and middle crustal layers can be inferred from surface structures and geophysical imaging, but the fate of lower crustal rocks and mantle lithosphere is not well resolved. Previous research suggests that shortening of mantle lithosphere generally may be occurring by either: 1) a distributed thickening with a formation of a Raleigh-Tailor (RT) type instability (possibly accompanied with lithospheric folding); or 2) plate-like subduction, which can be one- or two-sided, with or without delamination and slab break-off; a combination of both could be taking place too. 3-D features of the orogens such as along-trench material transfer, bounding subduction zones can influence the evolution of the collision zone significantly. The current study was inspired by South Island of New Zealand - a young collision system where a block of continental crust is being shortened by the relative Australian-Pacific plate motion. The collision segment of the plate boundary is relatively small ( 800 km), and is bounded by oppositely verging subduction zones to the North and South. Here, we present results of 3-D forward numerical modelling of continental collision to investigate some of these processes. To conduct the simulations, we used ASPECT - a highly parallel community-developed code based on the Finite Element method. Model setup for three different sets of models featured 2-D vertical across strike, 3-D with periodic front and back walls, and 3-D with open front and back walls, with velocities prescribed on the left and right faces. We explored the importance of values of convergent velocity, strike-slip velocity and their ratio, which defines the resulting velocity direction relative to the plate boundary (obliquity). We found that higher strike-slip motion promotes strain localization, weakens the lithosphere close to the plate boundary and

  11. Collision and Break-off : Numerical models and surface observables

    NASA Astrophysics Data System (ADS)

    Bottrill, Andrew; van Hunen, Jeroen; Allen, Mark

    2013-04-01

    The process of continental collision and slab break-off has been explored by many authors using a number of different numerical models and approaches (Andrews and Billen, 2009; Gerya et al., 2004; van Hunen and Allen, 2011). One of the challenges of using numerical models to explore collision and break-off is relating model predictions to real observables from current collision zones. Part of the reason for this is that collision zones by their nature destroy a lot of potentially useful surface evidence of deep dynamics. One observable that offers the possibility for recording mantle dynamics at collision zones is topography. Here we present topography predictions from numerical models and show how these can be related to actual topography changes recoded in the sedimentary record. Both 2D and 3D numerical simulation of the closure of a small oceanic basin are presented (Bottrill et al., 2012; van Hunen and Allen, 2011). Topography is calculated from the normal stress at the surface applied to an elastic beam, to give a more realist prediction of topography by accounting for the expected elasticity of the lithosphere. Predicted model topography showed a number of interesting features on the overriding plate. The first is the formation of a basin post collision at around 300km from the suture. Our models also showed uplift postdating collision between the suture and this basin, caused by subduction of buoyant material. Once break-off has occurred we found that this uplift moved further into the overriding plate due to redistribution of stresses from the subducted plate. With our 3D numerical models we simulate a collision that propagates laterally along a subduction system. These models show that a basin forms, similar to that found in our 2D models, which propagates along the system at the same rate as collision. The apparent link between collision and basin formation leads to the investigation into the stress state in the overriding lithosphere. Preliminary

  12. Collinear collision chemistry. II. Energy disposition in reactive collisions

    SciT

    Mahan, B.H.

    1974-06-01

    A model describing the mechanics of collinear atom-diatom collisions and previously reported by the author is extended to describe reactive collisions. The model indicates the effects of such factors as the mass distribution and potential energy barriers and wells on the reaction probability and on the distribution of energy among the modes of motion of the products. Simple geometry and trigonometry are sufficient to solve the model.

  13. Linking magmatism with collision in an accretionary orogen

    PubMed Central

    Li, Shan; Chung, Sun-Lin; Wilde, Simon A.; Wang, Tao; Xiao, Wen-Jiao; Guo, Qian-Qian

    2016-01-01

    A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geological evidence, indicate that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred from 255 ± 2 Ma to 251 ± 2 Ma along the Solonker-Xar Moron suture zone. The linear or belt distribution of end-Permian magmatism is interpreted to have taken place in a setting of final orogenic contraction and weak crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the early phase of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251–245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, most likely caused by regional lithospheric extension and orogenic collapse. Collision-related magmatism from the southern CAOB is thus a prime example of the minor, yet tell-tale linking of magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen. PMID:27167207

  14. The relationship between continental collision process and metamorphic pattern in the Himalayan collision belts

    NASA Astrophysics Data System (ADS)

    Oh, Chang-Whan

    2015-04-01

    east indicating propagation of collision towards east. The following collision model of the Himalayan collision belt is proposed based on data published in previous studies. Collision between the Indian and Asian blocks started in the west before ca. 55 Ma. In the western part, the amount of oceanic slab subducted prior to continent collision was enough to pull the continental crust down to the depths of UHP metamorphism, as a wide ocean existed between the Asian and Indian blocks prior to collision. Following UHP metamorphism, oceanic slab break-off started at ca. 55~46 Ma in the west due to the very strong buoyancy of the deeply subducted continental block. In contrast, the subduction of continental crust continued at this time in the middle and eastern parts of the belt. The zone of break-off migrated eastward, initiating a change from steep- to low-angle subduction. Final break-off may have occurred in the easternmost part of the belt at ca. 22-25 Ma. The depth of slab break-off decreased toward the east due to the westward decrease of the amount of subducted oceanic crust along the Himalayan collision belt, resulting eastwards decrease of an uplifting rate due to a decrease in buoyancy of the continental slab. The slower uplift resulted in a longer period of thermal relaxation and a higher geothermal gradient. In the west, the high rate of uplift resulted the epidote amphibolite facies (580-610°C) retrograde metamorphic overprint on the UHP eclogites, whereas the relatively slow uplift in the mid-eastern part caused high-grade granulites (850°C) retrograde metamorphic overprint on the HP eclogites. The study indicates that the metamorphic pattern along the collision belt is strongly related to the amount of subducted oceanic crust between continents before collision and the depth of slab break-off. Therefore metamorphic pattern can be used to interpret both the disappeared and ongoing tectonic process during continental collision.

  15. Adakites from collision-modified lithosphere

    NASA Astrophysics Data System (ADS)

    Haschke, M.; Ben-Avraham, Z.

    2005-08-01

    Adakitic melts from Papua New Guinea (PNG) show adakitic geochemical characteristics, yet their geodynamic context is unclear. Modern adakites are associated with hot-slab melting and/or remelting of orogenic mafic underplate at convergent margins. Rift-propagation over collision-modified lithosphere may explain the PNG adakite enigma, as PNG was influenced by rapid creation and subduction of oceanic microplates since Mesozoic times. In a new (rift) tectonic regime, decompressional rift melts encountered and melted remnant mafic eclogite and/or garnet-amphibolite slab fragments in arc collisional-modified mantle, and partially equilibrated with metasomatized mantle. Alternatively, hot-slab melting in a proposed newborn subduction zone along the Trobriand Trough could generate adakitic melts, but recent seismic P-wave tomographic models lack evidence for subducting oceanic lithosphere in the adakite melt region; however they do show deep subduction zone remnants as a number of high P-wave anomalies at lithospheric depths, which supports our proposed scenario.

  16. Collision attack against Tav-128 hash function

    NASA Astrophysics Data System (ADS)

    Hariyanto, Fajar; Hayat Susanti, Bety

    2017-10-01

    Tav-128 is a hash function which is designed for Radio Frequency Identification (RFID) authentication protocol. Tav-128 is expected to be a cryptographically secure hash function which meets collision resistance properties. In this research, a collision attack is done to prove whether Tav-128 is a collision resistant hash function. The results show that collisions can be obtained in Tav-128 hash function which means in other word, Tav-128 is not a collision resistant hash function.

  17. Horizontal Collision Avoidance Systems Study

    DOT National Transportation Integrated Search

    1973-12-01

    This report presents the results of an analytical study of the merits and mechanization requirements of horizontal collision avoidance systems (CAS). The horizontal and combined horizontal/vertical maneuvers which provide adequate miss distance with ...

  18. Road collision facts Ireland, 2004

    DOT National Transportation Integrated Search

    2005-11-01

    This report covers all road traffic collisions reported to : the Garda Sochna, where details were recorded and : forwarded to the National Roads Authority, involving : fatalities, personal injury or material damage which : occurred on public road...

  19. Road collision facts Ireland, 2003

    DOT National Transportation Integrated Search

    2005-02-01

    This report covers all road traffic collisions reported to : the Garda Sochna, where details were recorded and : forwarded to the National Roads Authority, involving : fatalities, personal injury or material damage which : occurred on public road...

  20. Gyrokinetics with Advanced Collision Operators

    NASA Astrophysics Data System (ADS)

    Belli, E. A.; Candy, J.

    2014-10-01

    For gyrokinetic studies in the pedestal region, collisions are expected to play a more critical role than in the core and there is concern that more advanced collision operators, as well as numerical methods optimized for the strong collisionality regime, are needed. For this purpose, a new gyrokinetic solver CGYRO has been developed for precise studies of high collisionality regimes. Building on GYRO and NEO, CGYRO uses the NEO pitch angle and energy velocity-space coordinate system to optimize the accuracy of the collision dynamics, particularly for multi-species collisions and including energy diffusion. With implementation of the reduced Hirshman-Sigmar collision operator with full cross-species coupling, CGYRO recovers linear ITG growth rates and the collisional GAM test at moderate collision frequency. Methods to improve the behavior in the collisionless regime, particularly for the trapped/passing particle boundary physics for kinetic electrons, are studied. Extensions to advanced model operators with finite-k⊥ corrections, e.g., the Sugama operator, and the impact of high collisionality on linear gyrokinetic stability in the edge are explored. Work supported by the US DOE under DE-FG02-95ER54309.

  1. Collisional zones in Puerto Rico and the northern Caribbean

    NASA Astrophysics Data System (ADS)

    Laó-Dávila, Daniel A.

    2014-10-01

    Puerto Rico is an amalgamation of island arc terranes that has recorded the deformational and tectonic history of the North American-Caribbean Plate boundary. Four collisional zones indicate the contractional events that have occurred at the plate boundary. Metamorphism and deformation of Middle Jurassic to Early Cretaceous oceanic lithosphere during the Early Cretaceous indicate the earliest collisional event. Then, an ophiolitic mélange, mostly comprised of blocks of the metamorphosed oceanic lithosphere, was formed and emplaced in the backarc region during the Turonian-Coniacian deformational event. A possible collision with a buoyant block in the North American Plate caused late Maastrichtian-early Paleocene contraction that created fold-and-thrust belts and the remobilization and uplift of serpentinite bodies in the Southwest Block. Late Eocene-early Oligocene transpression was localized along the Southern and Northern Puerto Rico fault zones, which occur north and south of large granodiorite intrusions in the strong Central Block. The deformation was accommodated in pure shear domains of fold-and-thrust belts and conjugate strike-slip faults, and simple shear domains of large mostly left-lateral faults. In addition, it reactivated faults in the weak Southwest Block. This island-wide transpression is the result of a Greater Antilles arc and continental North American collision. The kinematic model of the structures described in Puerto Rico correlate with some structures in Hispaniola and Cuba, and shows how the northern boundary of the Caribbean Plate was shortened by collisions with continental lithosphere of the North American Plate throughout its history. The tectonic evolution of the Greater Antilles shows a history of collisions, in which the latest collision accretes Cuba to the North American Plate, reorganizes the plate boundary, and deforms with transpression Hispaniola and Puerto Rico. The latest collision in Puerto Rico shows the case in which an

  2. Mountain building processes during continent continent collision in the Uralides

    NASA Astrophysics Data System (ADS)

    Brown, D.; Juhlin, C.; Ayala, C.; Tryggvason, A.; Bea, F.; Alvarez-Marron, J.; Carbonell, R.; Seward, D.; Glasmacher, U.; Puchkov, V.; Perez-Estaun, A.

    2008-08-01

    Since the early 1990's the Paleozoic Uralide Orogen of Russia has been the target of a significant research initiative as part of EUROPROBE and GEODE, both European Science Foundation programmes. One of the main objectives of these research programmes was the determination of the tectonic processes that went into the formation of the orogen. In this review paper we focus on the Late Paleozoic continent-continent collision that took place between Laurussia and Kazakhstania. Research in the Uralides was concentrated around two deep seismic profiles crossing the orogen. These were accompanied by geological, geophysical, geochronological, geochemical, and low-temperature thermochronological studies. The seismic profiles demonstrate that the Uralides has an overall bivergent structural architecture, but with significantly different reflectivity characteristics from one tectonic zone to another. The integration of other types of data sets with the seismic data allows us to interpret what tectonic processes where responsible for the formation of the structural architecture, and when they were active. On the basis of these data, we suggest that the changes in the crustal-scale structural architecture indicate that there was significant partitioning of tectonothermal conditions and deformation from zone to zone across major fault systems, and between the lower and upper crust. Also, a number of the structural features revealed in the bivergent architecture of the orogen formed either in the Neoproterozoic or in the Paleozoic, prior to continent-continent collision. From the end of continent-continent collision to the present, low-temperature thermochronology suggests that the evolution of the Uralides has been dominated by erosion and slow exhumation. Despite some evidence for more recent topographic uplift, it has so far proven difficult to quantify it.

  3. Northern Papua New Guinea: Structure and sedimentation in a modern arc-continent collision

    SciT

    Abbott, L.; Silver, E.

    Northern Papua New Guinea and the Solomon Sea are the site of a modern oblique, arc-continent collision, which is progressing from northwest to southeast. By combining offshore seismic data from the Solomon Sea with geologic mapping in the Markham Valley area of northern Papua New Guinea the authors are predicting the outcome of this collision. The Huon Gulf is the present site of initial collision. Seismic profiles show this area is dominated by thin thrust sheets. Onshore, the bulk of the uplifted accretionary wedge is a melange with exotic blocks of a variety of lithologies. Structurally below the melange liesmore » the Leron Formation composed of thick channelized sandstone and conglomerate. It dips north at approximately 40{degree} and is cut by several thrust fault with associated folds. Limestone blocks within the melange are reported to be 2 Ma, and Beryllium 10 anomalies from Bismarck arc volcanoes suggest that initial collision of the Finisterre block (375 km northwest of the present collision point) began no earlier than 3 Ma. This implies the collision is propagating laterally at about 125 km/m.y.. Large outcrops of basalt and gabbro within the melange suggest that segments of oceanic crust were incorporated into the accretionary wedge. Modern sedimentation within the collision zone grades from fluvial sediments in the Markham Valley to deep-water turbidites ponded behind a structural ridge near the point of incipient collision. The Markham submarine canyon occupies the collision front here, and efficiently erodes the accretionary wedge. This setting may serve as a modem analog for deposition of much of the Leron Formation which exhibits tremendous sediment reworking.« less

  4. Automatic Collision Avoidance Technology (ACAT)

    NASA Technical Reports Server (NTRS)

    Swihart, Donald E.; Skoog, Mark A.

    2007-01-01

    This document represents two views of the Automatic Collision Avoidance Technology (ACAT). One viewgraph presentation reviews the development and system design of Automatic Collision Avoidance Technology (ACAT). Two types of ACAT exist: Automatic Ground Collision Avoidance (AGCAS) and Automatic Air Collision Avoidance (AACAS). The AGCAS Uses Digital Terrain Elevation Data (DTED) for mapping functions, and uses Navigation data to place aircraft on map. It then scans DTED in front of and around aircraft and uses future aircraft trajectory (5g) to provide automatic flyup maneuver when required. The AACAS uses data link to determine position and closing rate. It contains several canned maneuvers to avoid collision. Automatic maneuvers can occur at last instant and both aircraft maneuver when using data link. The system can use sensor in place of data link. The second viewgraph presentation reviews the development of a flight test and an evaluation of the test. A review of the operation and comparison of the AGCAS and a pilot's performance are given. The same review is given for the AACAS is given.

  5. The environment of the wind-wind collision region of η Carinae

    NASA Astrophysics Data System (ADS)

    Panagiotou, C.; Walter, R.

    2018-02-01

    Context. η Carinae is a colliding wind binary hosting two of the most massive stars and featuring the strongest wind collision mechanical luminosity. The wind collision region of this system is detected in X-rays and γ-rays and offers a unique laboratory for the study of particle acceleration and wind magneto-hydrodynamics. Aim. Our main goal is to use X-ray observations of η Carinae around periastron to constrain the wind collision zone geometry and understand the reasons for its variability. Methods: We analysed 10 Nuclear Spectroscopic Telescope Array (NuSTAR) observations, which were obtained around the 2014 periastron. The NuSTAR array monitored the source from 3 to 30 keV, which allowed us to grasp the continuum and absorption parameters with very good accuracy. We were able to identify several physical components and probe their variability. Results: The X-ray flux varied in a similar way as observed during previous periastrons and largely as expected if generated in the wind collision region. The flux detected within 10 days of periastron is lower than expected, suggesting a partial disruption of the central region of the wind collision zone. The Fe Kα line is likely broadened by the electrons heated along the complex shock fronts. The variability of its equivalent width indicates that the fluorescence region has a complex geometry and that the source obscuration varies quickly with the line of sight.

  6. Intermittency in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Murray, Michael; HELIOS Collaboration

    1991-04-01

    This paper describes a study of multiplicity and transverse energy fluctuations using factorial moments for sulphur collisions with silver — bromide emulsion and platinium targets at 200 GeV/A. The data were taken with the HELIOS experiment at CERN. Bialas and Peschanski [1] predicted a power law dependence of the moments on the rapidity bin size if the fluctuations are invariant over a range of scales. This pattern is known as intermittency in the theory of turbulence, and indicates a fractal structure. Fluctuations were studied for a range of pseudorapidity scales using scaled factorial moments. Correlated fluctuations were studied using correlated scaled factorial moments. For peripheral collisions the data are weakly intermittent and consistent with a simple cascading mechanism, the a model. For central collisions no clear signal of intermittency was seen.

  7. Intermittency in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    1991-04-01

    This paper describes a study of multiplicity and transverse energy fluctuations using factorial moments for sulphur collisions with silver - bromide emulsion and platinium targets at 200 GeV/A. The data were taken with the HELIOS experiment at CERN. Bialas and Peschanski [1] predicted a power law dependence of the moments on the rapidity bin size if the fluctuations are invariant over a range of scales. This pattern is known as intermittency in the theory of turbulence, and indicates a fractal structure. Fluctuations were studied for a range of pseudorapidity scales using scaled factorial moments. Correlated fluctuations were studied using correlated scaled factorial moments. For peripheral collisions the data are weakly intermittent and consistent with a simple cascading mechanism, the a model. For central collisions no clear signal of intermittency was seen.

  8. Heavy truck casualty collisions, 1994-1998

    DOT National Transportation Integrated Search

    2001-12-01

    This document reviews the number of collisions, vehicles involved, and casualties (fatalities and injuries) resulting from heavy truck collisions for each of straight trucks (greater than 4.536 kg) and tractor-trailers. The report also presents table...

  9. 2010 Washington State collision data summary

    DOT National Transportation Integrated Search

    2011-07-08

    The Washington State Department of Transportations (WSDOT) Statewide Travel and Collision Data Office (STCDO) is responsible for : collecting, processing, analyzing and disseminating traffic, roadway and collision data pertaining to all public roa...

  10. Outreach Materials for the Collision Repair Campaign

    EPA Pesticide Factsheets

    The Collision Repair Campaign offers outreach materials to help collision repair shops reduce toxic air exposure. Materials include a DVD, poster, training video, and materials in Spanish (materiales del outreach en español).

  11. 46 CFR 174.340 - Collision bulkhead.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PERTAINING TO SPECIFIC VESSEL TYPES Hopper Dredges With Working Freeboard Assignments Design § 174.340 Collision bulkhead. Each hopper dredge must have a collision bulkhead that is located not less than 5...

  12. 46 CFR 174.340 - Collision bulkhead.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PERTAINING TO SPECIFIC VESSEL TYPES Hopper Dredges With Working Freeboard Assignments Design § 174.340 Collision bulkhead. Each hopper dredge must have a collision bulkhead that is located not less than 5...

  13. Sinkholes, collapse structures and large landslides in an active salt dome submerged by a reservoir: The unique case of the Ambal ridge in the Karun River, Zagros Mountains, Iran

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Francisco; Lizaga, Iván

    2016-02-01

    Ambal ridge, covering 4 km2, is a salt pillow of Gachsaran Formation with significant salt exposures in direct contact with the Karun River, Zagros Mountains. The highly cavernous salt dome is currently being flooded by the Gotvand Reservoir, second largest in Iran. Geomorphic evidence, including the sharp deflection of the Karun River and defeated streams indicate that Ambal is an active halokinetic structure, probably driven by erosional unloading. Around 30% of the salt dome is affected by large landslides up to ca. 50 × 106 m3 in volume. Slope oversteepening related to fluvial erosion and halokinetic rise seems to be the main controlling factor. A total of 693 sinkholes have been inventoried (170 sinkholes/km2), for which a scaling relationship has been produced. The depressions occur preferentially along a belt with a high degree of clustering. This spatial distribution is controlled by the proximity to the river, slope gradient and halite content in the bedrock. A large compound depression whose bottom lies below the normal maximum level of the reservoir will likely be flooded by water table rise forming a lake. The impoundment of the reservoir has induced peculiar collapse structures 220-280 m across, expressed by systems of arcuate fissures and scarps. Rapid subsurface salt dissolution is expected to generate and reactivate a large number of sinkholes and may reactivate landslides with a significant vertical component due to lack of basal support.

  14. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia

    PubMed Central

    van Hinsbergen, Douwe J. J.; Lippert, Peter C.; Dupont-Nivet, Guillaume; McQuarrie, Nadine; Doubrovine, Pavel V.; Spakman, Wim; Torsvik, Trond H.

    2012-01-01

    Cenozoic convergence between the Indian and Asian plates produced the archetypical continental collision zone comprising the Himalaya mountain belt and the Tibetan Plateau. How and where India–Asia convergence was accommodated after collision at or before 52 Ma remains a long-standing controversy. Since 52 Ma, the two plates have converged up to 3,600 ± 35 km, yet the upper crustal shortening documented from the geological record of Asia and the Himalaya is up to approximately 2,350-km less. Here we show that the discrepancy between the convergence and the shortening can be explained by subduction of highly extended continental and oceanic Indian lithosphere within the Himalaya between approximately 50 and 25 Ma. Paleomagnetic data show that this extended continental and oceanic “Greater India” promontory resulted from 2,675 ± 700 km of North–South extension between 120 and 70 Ma, accommodated between the Tibetan Himalaya and cratonic India. We suggest that the approximately 50 Ma “India”–Asia collision was a collision of a Tibetan-Himalayan microcontinent with Asia, followed by subduction of the largely oceanic Greater India Basin along a subduction zone at the location of the Greater Himalaya. The “hard” India–Asia collision with thicker and contiguous Indian continental lithosphere occurred around 25–20 Ma. This hard collision is coincident with far-field deformation in central Asia and rapid exhumation of Greater Himalaya crystalline rocks, and may be linked to intensification of the Asian monsoon system. This two-stage collision between India and Asia is also reflected in the deep mantle remnants of subduction imaged with seismic tomography. PMID:22547792

  15. Collision Processes in Methyl Chloride

    NASA Astrophysics Data System (ADS)

    Pape, Travis W.

    Time-resolved, double resonance spectroscopy using infrared pump radiation and millimeter-wave and submillimeter -wave probe radiation (IRMMDR) has been used to study rotational and vibrational collision processes in CH_3 ^{35}Cl and CH_3 ^{37}Cl. A collisional energy transfer model using only five parameters for rotational processes plus those needed for vibrational processes accurately models over 500 IRMMDR time responses for 105 pump-probe combinations, using three pump coincidences and a wide range of probed rotational states. Previous studies in this laboratory revealed that J- and K-changing rotational energy transfer (RET) have vastly different characteristics in CH_3 F. As was found for CH_3F, J-changing rotational collision rates in CH_3 Cl are modeled accurately by both the Statistical Power Gap law and the Infinite Order Sudden approximation using a power law expression for the basis rates. However, in contrast to CH_3F, where all IRMMDR time responses for K-changing collisions have the same shape, many time responses of CH_3 Cl states populated by K-changing collisions contain an additional early-time feature (ETF) that varies with pump and probe state. Nonetheless, a simple generalization of the previously reported model for K-changing collisions is shown to account for all of the additional features observed in CH_3Cl. Rather than observing a fixed temperature for K-changing collisions as was the case for CH_3F, the temperature is found to be a function of time for CH_3 Cl. Moreover, the two new parameters this adds to the RET model are related to known physical quantities. A qualitative argument of K-changing collisions based on a classical picture is offered to explain the difference between the measured J- and K-changing state-to-state rates in CH_3Cl. As was observed in CH_3F, the principal vibrational collision processes are the near -resonant V-swap process, in which two colliding molecules exchange a quantum of vibrational energy, and a

  16. 46 CFR 179.210 - Collision bulkhead.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....210 Collision bulkhead. (a) A vessel of more than 19.8 meters (65 feet) in length must have a collision bulkhead. (b) A vessel of not more than 19.8 meters (65 feet) in length must have a collision....2 meters (40 feet) in length and operates on partially protected waters; or (4) Is constructed of...

  17. Effects of longitudinal asymmetry in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Raniwala, Rashmi; Raniwala, Sudhir; Loizides, Constantin

    2018-02-01

    In collisions of identical nuclei at a given impact parameter, the number of nucleons participating in the overlap region of each nucleus can be unequal due to nuclear density fluctuations. The asymmetry due to the unequal number of participating nucleons, referred to as longitudinal asymmetry, causes a shift in the center-of-mass rapidity of the participant zone. The information of the event asymmetry allows us to isolate and study the effect of longitudinal asymmetry on rapidity distribution of final state particles. In a Monte Carlo Glauber model the average rapidity shift is found to be almost linearly related to the asymmetry. Using toy models, as well as Monte Carlo data for Pb-Pb collisions at 2.76 TeV generated with hijing, two different versions of ampt and dpmjet models, we demonstrate that the effect of asymmetry on final state rapidity distribution can be quantitatively related to the average rapidity shift via a third-order polynomial with a dominantly linear term. The coefficients of the polynomial are proportional to the rapidity shift with the dependence being sensitive to the details of the rapidity distribution. Experimental estimates of the spectator asymmetry through the measurement of spectator nucleons in a zero-degree calorimeter may hence be used to further constrain the initial conditions in ultra-relativistic heavy-ion collisions.

  18. Asymmetric Fireballs in Symmetric Collisions

    DOE PAGES

    Bialas, A.; Bzdak, A.; Zalewski, K.

    2013-01-01

    Here, this contribution reports on the results obtained in the two recently published papers demonstrating that data of the STAR Collaboration show a substantial asymmetric component in the rapidity distribution of the system created in central Au-Au collisions, implying that boost invariance is violated on the event-by-event basis even at the mid c.m. rapidity.

  19. High velocity collisions of nanoparticles

    NASA Astrophysics Data System (ADS)

    Johnson, Donald F.; Mattson, William D.

    2017-01-01

    Nanoparticles (NPs) are a unique class of material with highly functionalizable surfaces and exciting applications. With a large surface-to-volume ratio and potentially high surface tension, shocked nanoparticles might display unique materials behavior. Using density functional theory, we have simulated high-velocity NP collisions under a variety of conditions. NPs composed of diamond-C, cubic-BN, and diamond-Si were considered with particle sizes up to 3.5 nm diameter. Additional simulations involved NPs that were destabilized by incorporating internal strain. The initial spherical NP structures were carved out of bulk crystals while the NPs with internal strain were constructed as a dense core (compressive strain) encompassed by a thin shell (tensile strain). Both on-axis and off-axis collisions were simulated at 10 km/s relative velocity. The amount of internal strain was artificially increased by creating a dense inner core with bond lengths compressed up to 8%. Collision dynamics, shock propagation, and fragmentation will be analyzed, but the simulation are ongoing and results are not finalized. The effect of material properties, internal strain, and collision velocity will be discussed.

  20. Occupant injury protection in automobile collisions.

    PubMed

    Peters, G A; Peters, B J

    1999-12-01

    Modern technology has produced automotive vehicles that have become both a luxury and a necessity in modern civilization. They have become highly useful, even more varied in form and function, and capable of high speeds on crowded roadways. One unfortunate consequence is the high frequency of accidents and the greater severity of injuries when collisions do occur. In response, modern technology has produced a variety of safety and health features, devices and designs intended for better occupant protection on in high speed vehicles. Injury reduction has become a prime design objective, but there are residual risks, which, as technology evolves, require effective communication to those risk. There can be little risk avoidance behavior without awareness of the hazards and effective communication to the vehicle occupant, as to what could and should be done for self-protection. For example, one out of three drivers apparently fails to understand the function of head restraints, few understand the 'safe zone' posture required for air bags and many believe safety features should be adjusted only for comfort. Some of the current residual injury producing problems in occupant systems are specifically described here in order to illustrate what is needed in terms of both design remedies and health promotion activities.

  1. Bose-Einstein correlations in pp and PbPb collisions with ALICE at the LHC

    Kisiel, Adam

    2018-05-14

    We report on the results of identical pion femtoscopy at the LHC. The Bose-Einstein correlation analysis was performed on the large-statistics ALICE p+p at sqrt{s}= 0.9 TeV and 7 TeV datasets collected during 2010 LHC running and the first Pb+Pb dataset at sqrt{s_NN}= 2.76 TeV. Detailed pion femtoscopy studies in heavy-ion collisions have shown that emission region sizes ("HBT radii") decrease with increasing pair momentum, which is understood as a manifestation of the collective behavior of matter. 3D radii were also found to universally scale with event multiplicity. In p+p collisions at 7 TeV one measures multiplicities which are comparable with those registered in peripheral AuAu and CuCu collisions at RHIC, so direct comparisons and tests of scaling laws are now possible. We show the results of double-differential 3D pion HBT analysis, as a function of multiplicity and pair momentum. The results for two collision energies are compared to results obtained in the heavy-ion collisions at similar multiplicity and p+p collisions at lower energy. We identify the relevant scaling variables for the femtoscopic radii and discuss the similarities and differences to results from heavy-ions. The observed trends give insight into the soft particle production mechanism in p+p collisions and suggest that a self-interacting collective system may be created in sufficiently high multiplicity events. First results for the central Pb+Pb collisions are also shown. A significant increase of the reaction zone volume and lifetime in comparison to RHIC is observed. Signatures of collective hydrodynamics-like behavior of the system are also apparent, and are compared to model predictions.

  2. Coastal zone management

    NASA Technical Reports Server (NTRS)

    Tilton, E. L., III

    1975-01-01

    A panel of federal and state representatives concerned with coastal zone affairs discussed their problems in this area. In addition, several demonstrations of the application of remote sensing technology to coastal zone management were described. These demonstrations were performed by several agencies in a variety of geographical areas.

  3. Investigating Aquatic Dead Zones

    ERIC Educational Resources Information Center

    Testa, Jeremy; Gurbisz, Cassie; Murray, Laura; Gray, William; Bosch, Jennifer; Burrell, Chris; Kemp, Michael

    2010-01-01

    This article features two engaging high school activities that include current scientific information, data, and authentic case studies. The activities address the physical, biological, and chemical processes that are associated with oxygen-depleted areas, or "dead zones," in aquatic systems. Students can explore these dead zones through both…

  4. Work zone safety analysis.

    DOT National Transportation Integrated Search

    2013-11-01

    This report presents research performed analyzing crashes in work zones in the state of New Jersey so as to : identify critical areas in work zones susceptible to crashes and key factors that contribute to these crashes. A field : data collection on ...

  5. California tree seed zones

    John M. Buck; Ronald S. Adams; Jerrold Cone; M. Thompson Conkle; William J. Libby; Cecil J. Eden; Michel J. Knight

    1970-01-01

    California forest tree seed zones were established originally by Fowells (1946), with revisions proposed by Roy (1963) and Schubert (1966). The Forest Tree Seed Committee of the Northern California Section, Society of American Foresters, has revised the original zones and updated the recording system described in the earlier reports. Fowells' (1946) Research Note...

  6. Float Zone Workshop

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1980-01-01

    A summary of the Analytical Float Zone Experiment System (AFZES) concept is presented. The types of experiments considered for such a facility are discussed. Reports from various industrial producers and users of float zone material are presented. Special emphasis is placed on state-of-the-art developments in low gravity manufacturing and their applications to space processing.

  7. Longleaf pine site zones

    Phillip J. Craul; John S. Kush; William D. Boyer

    2005-01-01

    The authors delineate six major climatic areas of the longleaf pine (Pinus palustris Mill.) region. They subdivide these areas into 21 site zones, each of which is deemed homogenous with respect to climate, physiography, and soils. The site zones are mapped and their climate, physiography, and soils described. The authors recommend that plantings of...

  8. Iowa Work Zone Fatalities

    DOT National Transportation Integrated Search

    2011-01-01

    From March through November, the Iowa DOT may have up to 500 road construction work zones, and each of the department's maintenance garages may establish one or more short-term work zones per day. Couple that with the work of cities and counties, and...

  9. Oblique collision and deformation partitioning in the SW Iberian Variscides

    NASA Astrophysics Data System (ADS)

    Pérez-Cáceres, Irene; Simancas, José Fernando; Martínez Poyatos, David; Azor, Antonio; González Lodeiro, Francisco

    2016-05-01

    Different transpressional scenarios have been proposed to relate kinematics and complex deformation patterns. We apply the most suitable of them to the Variscan orogeny in SW Iberia, which is characterized by a number of successive left-lateral transpressional structures developed in the Devonian to Carboniferous period. These structures resulted from the oblique convergence between three continental terranes (Central Iberian Zone, Ossa-Morena Zone and South Portuguese Zone), whose amalgamation gave way to both intense shearing at the suture-like contacts and transpressional deformation of the continental pieces in-between, thus showing strain partitioning in space and time. We have quantified the kinematics of the collisional convergence by using the available data on folding, shearing and faulting patterns, as well as tectonic fabrics and finite strain measurements. Given the uncertainties regarding the data and the boundary conditions modeled, our results must be considered as a semi-quantitative approximation to the issue, though very significant from a regional point of view. The total collisional convergence surpasses 1000 km, most of them corresponding to left-lateral displacement parallel to terrane boundaries. The average vector of convergence is oriented E-W (present-day coordinates), thus reasserting the left-lateral oblique collision in SW Iberia, in contrast with the dextral component that prevailed elsewhere in the Variscan orogen. This particular kinematics of SW Iberia is understood in the context of an Avalonian plate salient currently represented by the South Portuguese Zone.

  10. In-Orbit Collision Analysis for VEGA Second Flight

    NASA Astrophysics Data System (ADS)

    Volpi, M.; Fossati, T.; Battie, F.

    2013-08-01

    ELV, as prime contractor of the VEGA launcher, which operates in the protected LEO zone (up to 2000 km altitude), has to demonstrate that it abides by ESA debris mitigation rules, as well as by those imposed by the French Law on Space Operations (LOS). After the full success of VEGA qualification flight, the second flight(VV02) will extend the qualification domain of the launcher to multi-payload missions, with the release of two satellites (Proba-V and VNRedSat-1) and one Cubesat (ESTCube-1) on different SSO orbits The multi-payload adapter, VESPA, also separates its upper part before the second payload release. This paper will present the results of the long-term analyses on inorbit collision between these different bodies. Typical duration of propagation requested by ELV customer is around 50 orbits, requiring a state-of-the-art simulator able to compute efficiently orbits disturbs, usually neglected in launcher trajectory optimization itself. To address the issue of in-orbit collision, ELV has therefore developed its own simulator, POLPO [1], a FORTRAN code which performs the long-term propagation of the released objects trajectories and computes the mutual distance between them. The first part of the paper shall introduce the simulator itself, explaining the computation method chosen and briefly discussing the perturbing effects and their models taken into account in the tool, namely: - gravity field modeling (zonal and tesseral harmonics) - atmospheric model - solar pressure - third-body interaction A second part will describe the application of the in-orbit collision analysis to the second flight mission. Main characteristics of the second flight will be introduced, as well as the dispersions considered for the Monte-Carlo analysis performed. The results of the long-term collision analysis between all the separated bodies will then be presented and discussed.

  11. Habitable Zone Evolution

    NASA Astrophysics Data System (ADS)

    Waltham, D.; Lota, J.

    2012-12-01

    The location of the habitable zone around a star depends upon stellar luminosity and upon the properties of a potentially habitable planet such as its mass and near-surface volatile inventory. Stellar luminosity generally increases as a star ages whilst planetary properties change through time as a consequence of biological and geological evolution. Hence, the location of the habitable zone changes through time as a result of both stellar evolution and planetary evolution. Using the Earth's Phanerozoic temperature history as a constraint, it is shown that changes in our own habitable zone over the last 540 My have been dominated by planetary evolution rather than solar evolution. Furthermore, sparse data from earlier times suggests that planetary evolution may have dominated habitable zone development throughout our biosphere's history. Hence, the existence of a continuously habitable zone depends upon accidents of complex bio-geochemical evolution more than it does upon relatively simple stellar-evolution. Evolution of the inner margin of the habitable zone through time using three different estimates for climate sensitivity. The dashed line shows a typical predicted evolution assuming this was driven simply by a steady increase in solar luminosity. Solar evolution does not account for the observations. Evolution of the outer margin of the habitable zone through time using three different estimates for climate sensitivity. The dashed line shows a typical predicted evolution assuming this was driven simply by a steady increase in solar luminosity. Solar evolution does not account for the observations.

  12. Fault zone hydrogeology

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (< 1 km) introduces permeability heterogeneity and anisotropy, which has an important impact on processes such as regional groundwater flow, hydrocarbon migration, and hydrothermal fluid circulation. Fault zones have the capacity to be hydraulic conduits connecting shallow and deep geological environments, but simultaneously the fault cores of many faults often form effective barriers to flow. The direct evaluation of the impact of faults to fluid flow patterns remains a challenge and requires a multidisciplinary research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and

  13. Chirality in molecular collision dynamics

    NASA Astrophysics Data System (ADS)

    Lombardi, Andrea; Palazzetti, Federico

    2018-02-01

    Chirality is a phenomenon that permeates the natural world, with implications for atomic and molecular physics, for fundamental forces and for the mechanisms at the origin of the early evolution of life and biomolecular homochirality. The manifestations of chirality in chemistry and biochemistry are numerous, the striking ones being chiral recognition and asymmetric synthesis with important applications in molecular sciences and in industrial and pharmaceutical chemistry. Chiral discrimination phenomena, due to the existence of two enantiomeric forms, very well known in the case of interaction with light, but still nearly disregarded in molecular collision studies. Here we review some ideas and recent advances about the role of chirality in molecular collisions, designing and illustrating molecular beam experiments for the demonstration of chiral effects and suggesting a scenario for a stereo-directional origin of chiral selection.

  14. COLLIDE: Collisions into Dust Experiment

    NASA Technical Reports Server (NTRS)

    Colwell, Joshua E.

    1999-01-01

    The Collisions Into Dust Experiment (COLLIDE) was completed and flew on STS-90 in April and May of 1998. After the experiment was returned to Earth, the data and experiment were analyzed. Some anomalies occurred during the flight which prevented a complete set of data from being obtained. However, the experiment did meet its criteria for scientific success and returned surprising results on the outcomes of very low energy collisions into powder. The attached publication, "Low Velocity Microgravity Impact Experiments into Simulated Regolith," describes in detail the scientific background, engineering, and scientific results of COLLIDE. Our scientific conclusions, along with a summary of the anomalies which occurred during flight, are contained in that publication. We offer it as our final report on this grant.

  15. Collision-free coordination of fiber positioners in multi-object spectrographs

    NASA Astrophysics Data System (ADS)

    Makarem, Laleh; Kneib, Jean-Paul; Gillet, Denis

    2016-07-01

    Many fiber-fed spectroscopic survey projects, such as DESI, PFS and MOONS, will use thousands of fiber positioners packed at a focal plane. To maximize observation time, the positioners need to move simultaneously and reach their targets swiftly. We have previously presented a motion planning method based on a decentralized navigation function for the collision-free coordination of the fiber positioners in DESI. In MOONS, the end effector of each positioner handling the fiber can reach the centre of its neighbours. There is therefore a risk of collision with up to 18 surrounding positioners in the chosen dense hexagonal configuration. Moreover, the length of the second arm of the positioner is almost twice the length of the first one. As a result, the geometry of the potential collision zone between two positioners is not limited to the extremity of their end-effector, but surrounds the second arm. In this paper, we modify the navigation function to take into account the larger collision zone resulting from the extended geometrical shape of the positioners. The proposed navigation function takes into account the configuration of the positioners as well as the constraints on the actuators, such as their maximal velocity and their mechanical clearance. Considering the fact that all the positioners' bases are fixed to the focal plane, collisions can occur locally and the risk of collision is limited to the 18 surrounding positioners. The decentralizing motion planning and trajectory generation takes advantage of this limited number of positioners and the locality of collisions, hence significantly reduces the complexity of the algorithm to a linear order. The linear complexity ensures short computation time. In addition, the time needed to move all the positioners to their targets is independent of the number of positioners. These two key advantages of the chosen decentralization approach turn this method to a promising solution for the collision-free motion

  16. The calc-alkaline and adakitic volcanism of the Sabzevar structural zone (NE Iran): Implications for the Eocene magmatic flare-up in Central Iran

    NASA Astrophysics Data System (ADS)

    Moghadam, Hadi Shafaii; Rossetti, Federico; Lucci, Federico; Chiaradia, Massimo; Gerdes, Axel; Martinez, Margarita Lopez; Ghorbani, Ghasem; Nasrabady, Mohsen

    2016-04-01

    A major magmatic flare-up is documented along the Bitlis-Zagros suture zone in Eocene-Oligocene times. The Cenozoic magmatism of intraplate Central Iran is an integrant part of this tectono-magmatic scenario. The Cenozoic magmatism of the Sabzevar structural zone consists of mostly intermediate to felsic intrusions and volcanic products. These igneous rocks have calc-alkaline and adakitic geochemical signatures, with nearly coincident zircon U-Pb and mica Ar-Ar ages of ca. 45 Ma. Adakitic rocks have quite low HREE and high Sr/Y ratio, but share most of their geochemical features with the calc-alkaline rocks. The Sabzevar volcanic rocks have similar initial Sr, Nd and Pb isotope ratios, showing their cogenetic nature. Nd model ages cluster tightly around 0.2-0.3 Ga. The geochemistry of the Sabzevar volcanic rocks, along with their isotopic signatures, might strangle that an upper mantle source, metasomatized by slab-derived melts was involved in generating the Sabzevar calc-alkaline rocks. A bulk rock trace element modeling suggests that amphibole-plagioclase-titanite-dominated replenishment-fractional crystallization (RFC) is further responsible for the formation of the middle Eocene Sabzevar adakitic rocks. Extensional tectonics accompanied by lithospheric delamination, possibly assisted by slab break-off and melting at depth was responsible for the Eocene formation of the Sabzevar magmatic rocks and, more in general, for the magmatic "flare-up" in Iran.

  17. QCD studies in ep collisions

    SciT

    Smith, W.H.

    1997-06-01

    These lectures describe QCD physics studies over the period 1992--1996 from data taken with collisions of 27 GeV electrons and positrons with 820 GeV protons at the HERA collider at DESY by the two general-purpose detectors H1 and ZEUS. The focus of these lectures is on structure functions and jet production in deep inelastic scattering, photoproduction, and diffraction. The topics covered start with a general introduction to HERA and ep scattering. Structure functions are discussed. This includes the parton model, scaling violation, and the extraction of F{sub 2}, which is used to determine the gluon momentum distribution. Both low andmore » high Q{sup 2} regimes are discussed. The low Q{sup 2} transition from perturbative QCD to soft hadronic physics is examined. Jet production in deep inelastic scattering to measure {alpha}{sub s}, and in photoproduction to study resolved and direct photoproduction, is also presented. This is followed by a discussion of diffraction that begins with a general introduction to diffraction in hadronic collisions and its relation to ep collisions, and moves on to deep inelastic scattering, where the structure of diffractive exchange is studied, and in photoproduction, where dijet production provides insights into the structure of the Pomeron. 95 refs., 39 figs.« less

  18. Buffer Zone Fact Sheets

    EPA Pesticide Factsheets

    New requirements for buffer zones and sign posting contribute to soil fumigant mitigation and protection for workers and bystanders. The buffer provides distance between the pesticide application site and bystanders, reducing exposure risk.

  19. Speeds in school zones.

    DOT National Transportation Integrated Search

    2009-02-01

    School speed zones are frequently requested traffic controls for school areas, based on the common belief : that if the transportation agency would only install a reduced speed limit, then drivers would no longer : speed through the area. This resear...

  20. Cascadia Subduction Zone

    Frankel, Arthur D.; Petersen, Mark D.

    2008-01-01

    The geometry and recurrence times of large earthquakes associated with the Cascadia Subduction Zone (CSZ) were discussed and debated at a March 28-29, 2006 Pacific Northwest workshop for the USGS National Seismic Hazard Maps. The CSZ is modeled from Cape Mendocino in California to Vancouver Island in British Columbia. We include the same geometry and weighting scheme as was used in the 2002 model (Frankel and others, 2002) based on thermal constraints (Fig. 1; Fluck and others, 1997 and a reexamination by Wang et al., 2003, Fig. 11, eastern edge of intermediate shading). This scheme includes four possibilities for the lower (eastern) limit of seismic rupture: the base of elastic zone (weight 0.1), the base of transition zone (weight 0.2), the midpoint of the transition zone (weight 0.2), and a model with a long north-south segment at 123.8? W in the southern and central portions of the CSZ, with a dogleg to the northwest in the northern portion of the zone (weight 0.5). The latter model was derived from the approximate average longitude of the contour of the 30 km depth of the CSZ as modeled by Fluck et al. (1997). A global study of the maximum depth of thrust earthquakes on subduction zones by Tichelaar and Ruff (1993) indicated maximum depths of about 40 km for most of the subduction zones studied, although the Mexican subduction zone had a maximum depth of about 25 km (R. LaForge, pers. comm., 2006). The recent inversion of GPS data by McCaffrey et al. (2007) shows a significant amount of coupling (a coupling factor of 0.2-0.3) as far east as 123.8? West in some portions of the CSZ. Both of these lines of evidence lend support to the model with a north-south segment at 123.8? W.

  1. Is the Ventersdorp rift system of southern Africa related to a continental collision between the Kaapvaal and Zimbabwe Cratons at 2.64 Ga AGO?

    NASA Technical Reports Server (NTRS)

    Burke, K.; Kidd, W. S. F.; Kusky, T.

    1985-01-01

    Rocks of the Ventersdorp Supergroup were deposited in a system of northeast trending grabens on the Kaapvaal Craton approximately 2.64 Ga ago contemporary with a continental collision between the Kaapvaal and Zimbabwe Cratons. It is suggested that it was this collision that initiated the Ventersdorp rifting. Individual grabens strike at high angles toward the continental collision zone now exposed in the Limpopo Province where late orogenic left-lateral strike-slip faulting and anatectic granites are recognized. The Ventersdorp rift province is related to extension in the Kaapvaal Craton associated with the collision, and some analogy is seen with such rifts as the Shansi and Baikal Systems associated with the current India-Asia continental collision.

  2. Large-scale deformation related to the collision of the Aleutian Arc with Kamchatka

    Gesit, Eric L.; Scholl, David W.

    1994-01-01

    The far western Aleutian Island Arc is actively colliding with Kamchatka. Westward motion of the Aleutian Arc is brought about by the tangential relative motion of the Pacific plate transferred to major, right-lateral shear zones north and south of the arc. Early geologic mapping of Cape Kamchatka (a promontory of Kamchatka along strike with the Aleutian Arc) revealed many similarities to the geology of the Aleutian Islands. Later studies support the notion that Cape Kamchatka is the farthest west Aleutian “island” and that it has been accreted to Kamchatka by the process of arc-continent collision. Deformation associated with the collision onshore Kamchatka includes gravimetrically determined crustal thickening and formation of a narrow thrust belt of intensely deformed rocks directly west of Cape Kamchatka. The trend of the thrust faults is concave toward the collision zone, indicating a radial distribution of maximum horizontal compressive stress. Offshore, major crustal faults trend either oblique to the Kamchatka margin or parallel to major Aleutian shear zones. These offshore faults are complex, accommodating both strike-slip and thrust displacements as documented by focal mechanisms and seismic reflection data. Earthquake activity is much higher in the offshore region within a zone bounded to the north by the northernmost Aleutian shear zone and to the west by an apparent aseismic front. Analysis of focal mechanisms in the region indicate that the present-day arc-continent “contact zone” is located directly east of Cape Kamchatka. In modeling the dynamics of the collision zone using thin viscous sheet theory, the rheological parameters are only partially constrained to values of n (the effective power law exponent) ≥ 3 and Ar(the Argand number) ≤ 30. These values are consistent with a forearc thermal profile of Kamchatka, previously determined from heat flow modeling. The thin viscous sheet modeling also indicates that onshore thrust faulting

  3. Relativistic collisions as Yang-Baxter maps

    NASA Astrophysics Data System (ADS)

    Kouloukas, Theodoros E.

    2017-10-01

    We prove that one-dimensional elastic relativistic collisions satisfy the set-theoretical Yang-Baxter equation. The corresponding collision maps are symplectic and admit a Lax representation. Furthermore, they can be considered as reductions of a higher dimensional integrable Yang-Baxter map on an invariant manifold. In this framework, we study the integrability of transfer maps that represent particular periodic sequences of collisions.

  4. Integrated Collision Avoidance System for Air Vehicle

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2013-01-01

    Collision with ground/water/terrain and midair obstacles is one of the common causes of severe aircraft accidents. The various data from the coremicro AHRS/INS/GPS Integration Unit, terrain data base, and object detection sensors are processed to produce collision warning audio/visual messages and collision detection and avoidance of terrain and obstacles through generation of guidance commands in a closed-loop system. The vision sensors provide more information for the Integrated System, such as, terrain recognition and ranging of terrain and obstacles, which plays an important role to the improvement of the Integrated Collision Avoidance System.

  5. Collinear Collision Chemistry: 1. A Simple Model for Inelastic and Reactive Collision Dynamics

    ERIC Educational Resources Information Center

    Mahan, Bruce H.

    1974-01-01

    Discusses a model for the collinear collision of an atom with a diatomic molecule on a simple potential surface. Indicates that the model can provide a framework for thinking about molecular collisions and reveal many factors which affect the dynamics of reactive and inelastic collisions. (CC)

  6. Simplified bionic solutions: a simple bio-inspired vehicle collision detection system.

    PubMed

    Hartbauer, Manfred

    2017-02-15

    Modern cars are equipped with both active and passive sensor systems that can detect potential collisions. In contrast, locusts avoid collisions solely by responding to certain visual cues that are associated with object looming. In neurophysiological experiments, I investigated the possibility that the 'collision-detector neurons' of locusts respond to impending collisions in films recorded with dashboard cameras of fast driving cars. In a complementary modelling approach, I developed a simple algorithm to reproduce the neuronal response that was recorded during object approach. Instead of applying elaborate algorithms that factored in object recognition and optic flow discrimination, I tested the hypothesis that motion detection restricted to a 'danger zone', in which frontal collisions on the motorways are most likely, is sufficient to estimate the risk of a collision. Furthermore, I investigated whether local motion vectors, obtained from the differential excitation of simulated direction-selective networks, could be used to predict evasive steering maneuvers and prevent undesired responses to motion artifacts. The results of the study demonstrate that the risk of impending collisions in real traffic scenes is mirrored in the excitation of the collision-detecting neuron (DCMD) of locusts. The modelling approach was able to reproduce this neuronal response even when the vehicle was driving at high speeds and image resolution was low (about 200  ×  100 pixels). Furthermore, evasive maneuvers that involved changing the steering direction and steering force could be planned by comparing the differences in the overall excitation levels of the simulated right and left direction-selective networks. Additionally, it was possible to suppress undesired responses of the algorithm to translatory movements, camera shake and ground shadows by evaluating local motion vectors. These estimated collision risk values and evasive steering vectors could be used as input

  7. Comment on "Relict Basin Closure and Crustal Shortening Budgets During Continental Collision: An Example From Caucasus Sediment Provenance" by Cowgill et al. (2016)

    NASA Astrophysics Data System (ADS)

    Vincent, Stephen J.; Saintot, Aline; Mosar, Jon; Okay, Aral I.; Nikishin, Anatoly M.

    2018-03-01

    The southern slope of the Greater Caucasus mountains is the site of a former rift basin. In order to explain shortening deficits, plate deceleration, and the 5 Ma reorganization of the Arabia-Eurasia collision zone Cowgill et al. (2016) proposed that this basin closed 5 Myrs ago. Within the western Greater Caucasus, at least, careful examination of sedimentological, provenance, and seismic data, however, supports an earlier 35 Ma basin closure age. Basin closure cannot therefore be the driving mechanism for the 5 Ma deceleration of the Arabian plate and reorganization of the Arabia-Eurasia collision zone.

  8. Mushy zone modeling

    NASA Astrophysics Data System (ADS)

    Glicksman, Martin E.; Smith, Richard N.; Marsh, Steven P.; Kuklinski, Robert

    A key element of mushy zone modeling is the description of the microscopic evolution of the lengthscales within the mushy zone and the influence of macroscopic transport processes. This paper describes some recent progress in developing a mean-field statistical theory of phase coarsening in adiabatic mushy zones. The main theoretical predictions are temporal scaling laws that indicate that average lengthscale increases as time 1/3, a self-similar distribution of mushy zone lengthscales based on spherical solid particle shapes, and kinetic rate constants which provide the dependences of the coarsening process on material parameters and the volume fraction of the solid phase. High precision thermal decay experiments are described which verify aspects of the theory in pure material mushy zones held under adiabatic conditions. The microscopic coarsening theory is then integrated within a macroscopic heat transfer model of one-dimensional alloy solidification, using the Double Integral Method. The method demonstrates an ability to predict the influence of macroscopic heat transfer on the evolution of primary and secondary dendrite arm spacings in Al-Cu alloys. Finally, some suggestions are made for future experimental and theoretical studies required in developing comprehensive solidification processing models.

  9. Modeling hyporheic zone processes

    Runkel, Robert L.; McKnight, Diane M.; Rajaram, Harihar

    2003-01-01

    Stream biogeochemistry is influenced by the physical and chemical processes that occur in the surrounding watershed. These processes include the mass loading of solutes from terrestrial and atmospheric sources, the physical transport of solutes within the watershed, and the transformation of solutes due to biogeochemical reactions. Research over the last two decades has identified the hyporheic zone as an important part of the stream system in which these processes occur. The hyporheic zone may be loosely defined as the porous areas of the stream bed and stream bank in which stream water mixes with shallow groundwater. Exchange of water and solutes between the stream proper and the hyporheic zone has many biogeochemical implications, due to differences in the chemical composition of surface and groundwater. For example, surface waters are typically oxidized environments with relatively high dissolved oxygen concentrations. In contrast, reducing conditions are often present in groundwater systems leading to low dissolved oxygen concentrations. Further, microbial oxidation of organic materials in groundwater leads to supersaturated concentrations of dissolved carbon dioxide relative to the atmosphere. Differences in surface and groundwater pH and temperature are also common. The hyporheic zone is therefore a mixing zone in which there are gradients in the concentrations of dissolved gasses, the concentrations of oxidized and reduced species, pH, and temperature. These gradients lead to biogeochemical reactions that ultimately affect stream water quality. Due to the complexity of these natural systems, modeling techniques are frequently employed to quantify process dynamics.

  10. 2006 Washington State collision data summary : highways only

    DOT National Transportation Integrated Search

    2007-01-01

    This report covers collisions on all State Highways (includes Interstates and State Highways only) in Washington State for the year 2006. : Tables and charts show frequency and rate of collisions, multi-year trends, collision types, contributing circ...

  11. Trends in motor vehicle traffic collision statistics, 1988-1997

    DOT National Transportation Integrated Search

    2001-02-01

    This report presents descriptive statistics about Canadian traffic collisions during the ten-year period : from 1988 to 1997, focusing specifically on casualty collisions. Casualty collisions are defined as all : reportable motor vehicle crashes resu...

  12. Freeway work zone lane capacity.

    DOT National Transportation Integrated Search

    2009-01-01

    The focus of this report is a capacity analysis of two long-term urban freeway Work Zones. Work Zone #1 : tapered four mainline lanes to two, using two separate tapers; Work Zone #2 tapered two mainline lanes to one. : Work Zone throughput was analyz...

  13. Collision models in quantum optics

    NASA Astrophysics Data System (ADS)

    Ciccarello, Francesco

    2017-12-01

    Quantum collision models (CMs) provide advantageous case studies for investigating major issues in open quantum systems theory, and especially quantum non-Markovianity. After reviewing their general definition and distinctive features, we illustrate the emergence of a CM in a familiar quantum optics scenario. This task is carried out by highlighting the close connection between the well-known input-output formalism and CMs. Within this quantum optics framework, usual assumptions in the CMs' literature - such as considering a bath of noninteracting yet initially correlated ancillas - have a clear physical origin.

  14. Dike zones on Venus

    NASA Technical Reports Server (NTRS)

    Markov, M. S.; Sukhanov, A. L.

    1987-01-01

    Venusian dike zone structures were identified from Venera 15 and 16 radar images. These include: a zone of subparallel rows centered at 30 deg N, 7 deg E; a system of intersecting bands centered at 67 deg N, 284 deg E; polygonal systems in lavas covering the structural base uplift centered at 47 deg N, 200 deg E; a system of light bands in the region of the ring structure centered at 43 deg N, 13 deg E; and a dike band centered at 27 deg N, 36 deg E.

  15. Mechanical Energy Changes in Perfectly Inelastic Collisions

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2013-01-01

    Suppose a block of mass "m"[subscript 1] traveling at speed "v"[subscript 1] makes a one-dimensional perfectly inelastic collision with another block of mass "m"[subscript 2]. What else does one need to know to calculate the fraction of the mechanical energy that is dissipated in the collision? (Contains 1 figure.)

  16. 46 CFR 171.085 - Collision bulkhead.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the collision bulkhead must be at least— (1) 5 percent of the LBP from the forward perpendicular in a motor vessel; and (2) 5 feet (1.52 meters) from the forward perpendicular in a steam vessel. (d) The collision bulkhead must be no more than 10 feet (3 meters) plus 5 percent of the LBP from the forward...

  17. 46 CFR 171.085 - Collision bulkhead.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the collision bulkhead must be at least— (1) 5 percent of the LBP from the forward perpendicular in a motor vessel; and (2) 5 feet (1.52 meters) from the forward perpendicular in a steam vessel. (d) The collision bulkhead must be no more than 10 feet (3 meters) plus 5 percent of the LBP from the forward...

  18. Crab Waist Collision at DAFNE

    SciT

    Milardi, C.; Alesini, D.; Biagini, M.E.

    DAFNE is an accelerator complex consisting of a double ring lepton collider working at the c.m. energy of the {Phi}-resonance (1.02 GeV) and an injection system. In its original configuration the collider consisted of two independent rings, each {approx}97 m long, sharing two 10 m long interaction regions (IR1 and IR2) where the KLOE and FINUDA or DEAR detectors were respectively installed. A full energy injection system, including an S-band linac, 180 m long transfer lines and an accumulator/damping ring, provides fast and high efficiency electron positron injection also in topping-up mode during collisions. Recently the DAFNE collider has beenmore » upgraded in order to implement a new collision scheme based on large Piwinski angle and cancellation of the synchro-betatron resonances by means of electromagnetic sextupoles (Crab-Waist compensation). The novel approach has proved to be effective in improving beam-beam interaction and collider luminosity.« less

  19. Ground Collision Avoidance System (Igcas)

    NASA Technical Reports Server (NTRS)

    Prosser, Kevin (Inventor); Hook, Loyd (Inventor); Skoog, Mark A (Inventor)

    2017-01-01

    The present invention is a system and method for aircraft ground collision avoidance (iGCAS) comprising a modular array of software, including a sense own state module configured to gather data to compute trajectory, a sense terrain module including a digital terrain map (DTM) and map manger routine to store and retrieve terrain elevations, a predict collision threat module configured to generate an elevation profile corresponding to the terrain under the trajectory computed by said sense own state module, a predict avoidance trajectory module configured to simulate avoidance maneuvers ahead of the aircraft, a determine need to avoid module configured to determine which avoidance maneuver should be used, when it should be initiated, and when it should be terminated, a notify Module configured to display each maneuver's viability to the pilot by a colored GUI, a pilot controls module configured to turn the system on and off, and an avoid module configured to define how an aircraft will perform avoidance maneuvers through 3-dimensional space.

  20. SU-E-T-754: Three-Dimensional Patient Modeling Using Photogrammetry for Collision Avoidance

    SciT

    Popple, R; Cardan, R

    2015-06-15

    Purpose: To evaluate photogrammetry for creating a three-dimensional patient model. Methods: A mannequin was configured on the couch of a CT scanner to simulate a patient setup using an indexed positioning device. A CT fiducial was placed on the indexed CT table-overlay at the reference index position. Two dimensional photogrammetry targets were placed on the table in known positions. A digital SLR camera was used to obtain 27 images from different positions around the CT table. The images were imported into a commercial photogrammetry package and a 3D model constructed. Each photogrammetry target was identified on 2 to 5 images.more » The CT DICOM metadata and the position of the CT fiducial were used to calculate the coordinates of the photogrammetry targets in the CT image frame of reference. The coordinates were transferred to the photogrammetry software to orient the 3D model. The mannequin setup was transferred to the treatment couch of a linear accelerator and positioned at isocenter using in-room lasers. The treatment couch coordinates were noted and compared with prediction. The collision free regions were measured over the full range of gantry and table motion and were compared with predictions obtained using a general purpose polygon interference algorithm. Results: The reconstructed 3D model consisted of 180000 triangles. The difference between the predicted and measured couch positions were 5 mm, 1 mm, and 1 mm for longitudinal, lateral, and vertical, respectively. The collision prediction tested 64620 gantry table combinations in 11.1 seconds. The accuracy was 96.5%, with false positive and negative results occurring at the boundaries of the collision space. Conclusion: Photogrammetry can be used as a tool for collision avoidance during treatment planning. The results indicate that a buffer zone is necessary to avoid false negatives at the boundary of the collision-free zone. Testing with human patients is underway. Research partially supported by a

  1. Neogene collision and deformation of convergent margins along the backbone of the Americas

    von Huene, Roland E.; Ranero, C.R.

    2009-01-01

    Along Pacific convergent margins of the Americas, high-standing relief on the subducting oceanic plate "collides" with continental slopes and subducts. Features common to many collisions are uplift of the continental margin, accelerated seafloor erosion, accelerated basal subduction erosion, a flat slab, and a lack of active volcanism. Each collision along America's margins has exceptions to a single explanation. Subduction of an ???600 km segment of the Yakutat terrane is associated with >5000-m-high coastal mountains. The terrane may currently be adding its unsubducted mass to the continent by a seaward jump of the deformation front and could be a model for docking of terranes in the past. Cocos Ridge subduction is associated with >3000-m-high mountains, but its shallow subduction zone is not followed by a flat slab. The entry point of the Nazca and Juan Fernandez Ridges into the subduction zone has migrated southward along the South American margin and the adjacent coast without unusually high mountains. The Nazca Ridge and Juan Fernandez Ridges are not actively spreading but the Chile Rise collision is a triple junction. These collisions form barriers to trench sediment transport and separate accreting from eroding segments of the frontal prism. They also occur at the separation of a flat slab from a steeply dipping one. At a smaller scale, the subduction of seamounts and lesser ridges causes temporary surface uplift as long as they remain attached to the subducting plate. Off Costa Rica, these features remain attached beneath the continental shelf. They illustrate, at a small scale, the processes of collision. ?? 2009 The Geological Society of America. All rights reserved.

  2. Dynamic simulation of train-truck collision at level crossings

    NASA Astrophysics Data System (ADS)

    Ling, Liang; Guan, Qinghua; Dhanasekar, Manicka; Thambiratnam, David P.

    2017-01-01

    Trains crashing onto heavy road vehicles stuck across rail tracks are more likely occurrences at level crossings due to ongoing increase in the registration of heavy vehicles and these long heavy vehicles getting caught in traffic after partly crossing the boom gate; these incidents lead to significant financial losses and societal costs. This paper presents an investigation of the dynamic responses of trains under frontal collision on road trucks obliquely stuck on rail tracks at level crossings. This study builds a nonlinear three-dimensional multi-body dynamic model of a passenger train colliding with an obliquely stuck road truck on a ballasted track. The model is first benchmarked against several train dynamics packages and its predictions of the dynamic response and derailment potential are shown rational. A geometry-based derailment assessment criterion is applied to evaluate the derailment behaviour of the frontal obliquely impacted trains under different conditions. Sensitivities of several key influencing parameters, such as the train impact speed, the truck mass, the friction at truck tyres, the train-truck impact angle, the contact friction at the collision zone, the wheel/rail friction and the train suspension are reported.

  3. Buffer Zone Sign Template

    EPA Pesticide Factsheets

    The certified pesticide applicator is required to post a comparable sign, designating a buffer zone around the soil fumigant application block in order to control exposure risk. It must include the don't walk symbol, product name, and applicator contact.

  4. Arid Zone Hydrology

    Arid zone hydrology encompasses a wide range of topics and hydro-meteorological and ecological characteristics. Although arid and semi-arid watersheds perform the same functions as those in humid environments, their hydrology and sediment transport characteristics cannot be readily predicted by inf...

  5. Zone of intrusion study.

    DOT National Transportation Integrated Search

    2010-10-15

    The Midwest Roadside Safety Facility (MwRSF) performed an analysis using LS-DYNA simulation to investigate the zone of intrusion (ZOI) of an NCHRP Report No. 350 2000p pickup truck when impacting a 40-in. high F-shape parapet. : The ZOI for the 40-in...

  6. Splenic marginal zone lymphoma.

    PubMed

    Piris, Miguel A; Onaindía, Arantza; Mollejo, Manuela

    Splenic marginal zone lymphoma (SMZL) is an indolent small B-cell lymphoma involving the spleen and bone marrow characterized by a micronodular tumoral infiltration that replaces the preexisting lymphoid follicles and shows marginal zone differentiation as a distinctive finding. SMZL cases are characterized by prominent splenomegaly and bone marrow and peripheral blood infiltration. Cells in peripheral blood show a villous cytology. Bone marrow and peripheral blood characteristic features usually allow a diagnosis of SMZL to be performed. Mutational spectrum of SMZL identifies specific findings, such as 7q loss and NOTCH2 and KLF2 mutations, both genes related with marginal zone differentiation. There is a striking clinical variability in SMZL cases, dependent of the tumoral load and performance status. Specific molecular markers such as 7q loss, p53 loss/mutation, NOTCH2 and KLF2 mutations have been found to be associated with the clinical variability. Distinction from Monoclonal B-cell lymphocytosis with marginal zone phenotype is still an open issue that requires identification of precise and specific thresholds with clinical meaning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Fast aurora zone analysis

    NASA Technical Reports Server (NTRS)

    Booker, Mattie

    1992-01-01

    The Flight Dynamics Facility (FDF) of the Flight Dynamics Division (FDD), of the Goddard Space Flight Center provides acquisition data to tracking stations and orbit and attitude services to scientists and mission support personnel. The following paper explains how a method was determined that found spacecraft entry and exit times of the aurora zone.

  8. Crossing Comfort Zones.

    ERIC Educational Resources Information Center

    Madison, D. Soyini

    1993-01-01

    Offers a narrative based on a real event, in the form of a "docustory," describing that moment when teaching worked--when, in an instructional setting, communication was "perfect" or "excellent." Describes how three very different students, in a course on the cultures of women of color, moved beyond comfort zones while working together on a class…

  9. Evaluating the impact of bike network indicators on cyclist safety using macro-level collision prediction models.

    PubMed

    Osama, Ahmed; Sayed, Tarek

    2016-12-01

    Many cities worldwide are recognizing the important role that cycling plays in creating green and livable communities. However, vulnerable road users such as cyclists are usually subjected to an elevated level of injury risk which discourages many road users to cycle. This paper studies cyclist-vehicle collisions at 134 traffic analysis zones in the city of Vancouver to assess the impact of bike network structure on cyclist safety. Several network indicators were developed using Graph theory and their effect on cyclist safety was investigated. The indicators included measures of connectivity, directness, and topography of the bike network. The study developed several macro-level (zonal) collision prediction models that explicitly incorporated bike network indicators as explanatory variables. As well, the models incorporated the actual cyclist exposure (bike kilometers travelled) as opposed to relying on proxies such as population or bike network length. The macro-level collision prediction models were developed using generalized linear regression and full Bayesian techniques, with and without spatial effects. The models showed that cyclist collisions were positively associated with bike and vehicle exposure. The exponents of the exposure variables were less than one which supports the "safety in numbers" hypothesis. Moreover, the models showed positive associations between cyclist collisions and the bike network connectivity and linearity indicators. In contrast, negative associations were found between cyclist collisions and the bike network continuity and topography indicators. The spatial effects were statistically significant in all of the developed models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Possible detachment zone in Precambrian rocks of Kanjamalai Hills, Cauvery Suture Zone, Southern India: Implications to accretionary tectonics

    NASA Astrophysics Data System (ADS)

    Mohanty, D. P.; Chetty, T. R. K.

    2014-07-01

    Existence of a possible detachment zone at Elampillai region, NW margin of Kanjamalai Hills, located in the northern part of Cauvery Suture Zone (CSZ), Southern India, is reported here for the first time. Detailed structural mapping provides anatomy of the zone, which are rarely preserved in Precambrian high grade terranes. The detachment surface separates two distinct rock units of contrasting lithological and structural characters: the upper and lower units. The detachment zone is characterized by a variety of fold styles with the predominance of tight isoclinal folds with varied plunge directions, limb rotations and the hinge line variations often leading to lift-off fold like geometries and deformed sheath folds. Presence of parasitic folding and associated penetrative strains seem to be controlled by differences in mechanical stratigraphy, relative thicknesses of the competent and incompetent units, and the structural relief of the underlying basement. Our present study in conjunction with other available geological, geochemical and geochronological data from the region indicates that the structures of the detachment zone are genetically related to thrust tectonics forming a part of subduction-accretion-collision tectonic history of the Neoproterozoic Gondwana suture.

  11. The Tanami deep seismic reflection experiment: An insight into gold mineralization and Paleoproterozoic collision in the North Australian Craton

    NASA Astrophysics Data System (ADS)

    Goleby, Bruce R.; Huston, David L.; Lyons, Patrick; Vandenberg, Leon; Bagas, Leon; Davies, Brett M.; Jones, Leonie E. A.; Gebre-Mariam, Musie; Johnson, Wade; Smith, Tim; English, Luc

    2009-07-01

    Imaging of a major collision zone between the Tanami region and Aileron Province of the Arunta Orogen in Northern Australia, and recognition that several of the major gold deposits within the Tanami region are within near-surface antiformal stacks or uplifted and exhumed crustal sections associated with major crustal-penetrating shear zones, are fundamental results from the 2005 Tanami Seismic Collaborative Research Project. The suture, which is interpreted to have resulted from collision, separates the northwest-dipping structural grain of the Aileron Province crust in the south from the southeast-dipping structural grain of the Tanami crust in the northwest. The collision between the Tanami region and the Aileron Province is interpreted to have occurred prior to ca. 1840 Ma. The correlation between the surface extension of crustal-penetrating shear zones that extend to the Moho boundary and the locations of known gold-rich mineral fields is significant and has implications for minerals explorers within the Tanami region, and elsewhere. In the near-surface, where the crustal-penetrating structures cut relatively shallow upper crustal Tanami Group rocks, there is a significant increase in the degree of local deformation and results in through-going thrust faults, associated pop-up structures, ramp anticlines and antiformal stacking. All known ore deposits appear to be located within these more complexly deformed zones and therefore have a direct association with larger-scale structures.

  12. Evaluation of Ohio work zone speed zones process.

    DOT National Transportation Integrated Search

    2014-06-01

    This report describes the methodology and results of analyses performed to determine the effectiveness of Ohio Department of Transportation processes for establishing work zone speed zones. Researchers observed motorists speed choice upstream of a...

  13. A method of inferring collision ratio based on maneuverability of own ship under critical collision conditions

    NASA Astrophysics Data System (ADS)

    You, Youngjun; Rhee, Key-Pyo; Ahn, Kyoungsoo

    2013-06-01

    In constructing a collision avoidance system, it is important to determine the time for starting collision avoidance maneuver. Many researchers have attempted to formulate various indices by applying a range of techniques. Among these indices, collision risk obtained by combining Distance to the Closest Point of Approach (DCPA) and Time to the Closest Point of Approach (TCPA) information with fuzzy theory is mostly used. However, the collision risk has a limit, in that membership functions of DCPA and TCPA are empirically determined. In addition, the collision risk is not able to consider several critical collision conditions where the target ship fails to take appropriate actions. It is therefore necessary to design a new concept based on logical approaches. In this paper, a collision ratio is proposed, which is the expected ratio of unavoidable paths to total paths under suitably characterized operation conditions. Total paths are determined by considering categories such as action space and methodology of avoidance. The International Regulations for Preventing Collisions at Sea (1972) and collision avoidance rules (2001) are considered to solve the slower ship's dilemma. Different methods which are based on a constant speed model and simulated speed model are used to calculate the relative positions between own ship and target ship. In the simulated speed model, fuzzy control is applied to determination of command rudder angle. At various encounter situations, the time histories of the collision ratio based on the simulated speed model are compared with those based on the constant speed model.

  14. Restricted Collision List method for faster Direct Simulation Monte-Carlo (DSMC) collisions

    SciT

    Macrossan, Michael N., E-mail: m.macrossan@uq.edu.au

    The ‘Restricted Collision List’ (RCL) method for speeding up the calculation of DSMC Variable Soft Sphere collisions, with Borgnakke–Larsen (BL) energy exchange, is presented. The method cuts down considerably on the number of random collision parameters which must be calculated (deflection and azimuthal angles, and the BL energy exchange factors). A relatively short list of these parameters is generated and the parameters required in any cell are selected from this list. The list is regenerated at intervals approximately equal to the smallest mean collision time in the flow, and the chance of any particle re-using the same collision parameters inmore » two successive collisions is negligible. The results using this method are indistinguishable from those obtained with standard DSMC. The CPU time saving depends on how much of a DSMC calculation is devoted to collisions and how much is devoted to other tasks, such as moving particles and calculating particle interactions with flow boundaries. For 1-dimensional calculations of flow in a tube, the new method saves 20% of the CPU time per collision for VSS scattering with no energy exchange. With RCL applied to rotational energy exchange, the CPU saving can be greater; for small values of the rotational collision number, for which most collisions involve some rotational energy exchange, the CPU may be reduced by 50% or more.« less

  15. Twin Convergence Zones

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's QuikSCAT satellite has confirmed a 30-year old largely unproven theory that there are two areas near the equator where the winds converge year after year and drive ocean circulation south of the equator. By analyzing winds, QuikSCAT has found a year-round southern and northern Intertropical Convergence Zone. This find is important to climate modelers and weather forecasters because it provides more detail on how the oceans and atmosphere interact near the equator. The Intertropical Convergence Zone (ITCZ) is the region that circles the Earth near the equator, where the trade winds of both the Northern and Southern Hemispheres come together. North of the equator, strong sun and warm water of the equator heats the air in the ITCZ, drawing air in from north and south and causing the air to rise. As the air rises it cools, releasing the accumulated moisture in an almost perpetual series of thunderstorms. Satellite data, however, has confirmed that there is an ITCZ north of the equator and a parallel ITCZ south of the equator. Variation in the location of the ITCZ is important to people around the world because it affects the north-south atmospheric circulation, which redistributes energy. It drastically affects rainfall in many equatorial nations, resulting in the wet and dry seasons of the tropics rather than the cold and warm seasons of higher latitudes. Longer term changes in the ITCZ can result in severe droughts or flooding in nearby areas. 'The double ITCZ is usually only identified in the Pacific and Atlantic Oceans on a limited and seasonal basis,' said Timothy Liu, of NASA's Jet Propulsion Laboratory and California Institute of Technology, Pasadena, Calif., and lead researcher on the project. In the eastern Pacific Ocean, the southern ITCZ is usually seen springtime. In the western Atlantic Ocean, the southern ITCZ was recently clearly identified only in the summertime. However, QuikSCAT's wind data has seen the southern ITCZ in all seasons across the

  16. Continuum modeling of catastrophic collisions

    NASA Technical Reports Server (NTRS)

    Ryan, Eileen V.; Aspaug, Erik; Melosh, H. J.

    1991-01-01

    A two dimensional hydrocode based on 2-D SALE was modified to include strength effects and fragmentation equations for fracture resulting from tensile stress in one dimension. Output from this code includes a complete fragmentation summary for each cell of the modeled object: fragment size (mass) distribution, vector velocities of particles, peak values of pressure and tensile stress, and peak strain rates associated with fragmentation. Contour plots showing pressure and temperature at given times within the object are also produced. By invoking axial symmetry, three dimensional events can be modeled such as zero impact parameter collisions between asteroids. The code was tested against the one dimensional model and the analytical solution for a linearly increasing tensile stress under constant strain rate.

  17. Positronium collisions with molecular nitrogen

    NASA Astrophysics Data System (ADS)

    Wilde, R. S.; Fabrikant, I. I.

    2018-05-01

    For many atomic and molecular targets positronium (Ps) scattering looks very similar to electron scattering if total scattering cross sections are plotted as functions of the projectile velocity. Recently this similarity was observed for the resonant scattering by the N2 molecule. For correct treatment of Ps-molecule scattering incorporation of the exchange interaction and short-range correlations is of paramount importance. In the present work we have used a free-electron-gas model to describe these interactions in collisions of Ps with the N2 molecule. The results agree reasonably well with the experiment, but the position of the resonance is somewhat shifted towards lower energies, probably due to the fixed-nuclei approximation employed in the calculations. The partial-wave analysis of the resonant peak shows that its composition is more complex than in the case of e -N2 scattering.

  18. Weak values in collision theory

    NASA Astrophysics Data System (ADS)

    de Castro, Leonardo Andreta; Brasil, Carlos Alexandre; Napolitano, Reginaldo de Jesus

    2018-05-01

    Weak measurements have an increasing number of applications in contemporary quantum mechanics. They were originally described as a weak interaction that slightly entangled the translational degrees of freedom of a particle to its spin, yielding surprising results after post-selection. That description often ignores the kinetic energy of the particle and its movement in three dimensions. Here, we include these elements and re-obtain the weak values within the context of collision theory by two different approaches, and prove that the results are compatible with each other and with the results from the traditional approach. To provide a more complete description, we generalize weak values into weak tensors and use them to provide a more realistic description of the Stern-Gerlach apparatus.

  19. Symmetrical collision of multiple vortex rings

    NASA Astrophysics Data System (ADS)

    Hernández, R. H.; Reyes, T.

    2017-10-01

    In this work, we investigate the motion, interaction, and simultaneous collision between many initially stable vortex rings arranged symmetrically in two initial configurations, three and six rings making an angle of 60 and 120° between their straight path lines, respectively. We report results for laminar vortex rings in air obtained through numerical simulations of the ring velocity, pressure, and vorticity fields, both in free flight and during the entire collision. Each collision was studied for small Reynolds numbers R e <1 03 based on both the self-induced velocity and diameter of the ring. The case of three rings produces secondary vortical structures formed by laterally expanding dipolar arms with top and bottom secondary vortex rings. The case of six colliding rings produces, as secondary structures, two big rings moving in opposite directions, a process that reminds us of the head-on collision of two rings [T. T. Lim and T. B. Nickels, "Instability and reconnection in the head-on collision of two vortex rings," Nature 357, 225-227 (1992)] under a hypothetical time reversal transformation. Both collisions display a characteristic kinetic energy evolution where mean collision stages can be identified within the range of Reynolds numbers investigated here.

  20. Cold Collisions in a Molecular Synchrotron

    NASA Astrophysics Data System (ADS)

    van der Poel, Aernout P. P.; Zieger, Peter C.; van de Meerakker, Sebastiaan Y. T.; Loreau, Jérôme; van der Avoird, Ad; Bethlem, Hendrick L.

    2018-01-01

    We study collisions between neutral, deuterated ammonia molecules (ND3 ) stored in a 50 cm diameter synchrotron and argon atoms in copropagating supersonic beams. The advantages of using a synchrotron in collision studies are twofold: (i) By storing ammonia molecules many round-trips, the sensitivity to collisions is greatly enhanced; (ii) the collision partners move in the same direction as the stored molecules, resulting in low collision energies. We tune the collision energy in three different ways: by varying the velocity of the stored ammonia packets, by varying the temperature of the pulsed valve that releases the argon atoms, and by varying the timing between the supersonic argon beam and the stored ammonia packets. These give consistent results. We determine the relative, total, integrated cross section for ND3+Ar collisions in the energy range of 40 - 140 cm-1 , with a resolution of 5 - 10 cm-1 and an uncertainty of 7%-15%. Our measurements are in good agreement with theoretical scattering calculations.

  1. Vadose zone water fluxmeter

    DOEpatents

    Faybishenko, Boris A.

    2005-10-25

    A Vadose Zone Water Fluxmeter (WFM) or Direct Measurement WFM provides direct measurement of unsaturated water flow in the vadose zone. The fluxmeter is a cylindrical device that fits in a borehole or can be installed near the surface, or in pits, or in pile structures. The fluxmeter is primarily a combination of tensiometers and a porous element or plate in a water cell that is used for water injection or extraction under field conditions. The same water pressure measured outside and inside of the soil sheltered by the lower cylinder of the fluxmeter indicates that the water flux through the lower cylinder is similar to the water flux in the surrounding soil. The fluxmeter provides direct measurement of the water flow rate in the unsaturated soils and then determines the water flux, i.e. the water flow rate per unit area.

  2. Aeration Zone Symposium

    NASA Astrophysics Data System (ADS)

    Merkel, B.

    The International Symposium on Recent Investigations in the Zone of Aeration (RIZA) was organized by the Institute for Hydrogeology and Hydrochemistry of the Technical University of Munich and held October 1-5, 1984, in the lecture halls of the Grosshadern Klinik in Munich, Federal Republic of Germany (FRG). P. Udluft, B. Merkel, and K.-H. Prüsl, all of the university, were responsible for the organization of the symposium, which was under the patronage of K.-E. Quentin. There were over 200 participants from 22 different countries, among them Australia, Canada, China, India, and the United States. The topics of the symposium were the physical, chemical, and microbiological processes in the unsaturated zone, the region between the surface and the groundwater level. Here a number of complex processes occur that on the one hand are of natural origin and on the other hand are influenced by human activities in a number of ways.

  3. Crash characteristics at work zones.

    DOT National Transportation Integrated Search

    2002-01-01

    Work zones tend to cause hazardous conditions for drivers and construction workers since they generate conflicts between construction activities and traffic. A clear understanding of the characteristics of work zone crashes will enhance the selection...

  4. Cornell Mixing Zone Expert System

    EPA Pesticide Factsheets

    This page provides an overview Cornell Mixing Zone Expert System water quality modeling and decision support system designed for environmental impact assessment of mixing zones resulting from wastewater discharge from point sources

  5. Radiant zone heated particulate filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2011-12-27

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  6. Work zone intrusion alarm effectiveness.

    DOT National Transportation Integrated Search

    2010-09-01

    16. Abstract : The New Jersey Department of Transportation (NJDOT) commissioned a study to evaluate how : effective a work zone safety device known as the SonoBlaster! Work Zone Intrusion Alarm would be : in protecting maintenance workers fro...

  7. Trojans in habitable zones.

    PubMed

    Schwarz, Richard; Pilat-Lohinger, Elke; Dvorak, Rudolf; Erdi, Balint; Sándor, Zsolt

    2005-10-01

    With the aid of numerical experiments we examined the dynamical stability of fictitious terrestrial planets in 1:1 mean motion resonance with Jovian-like planets of extrasolar planetary systems. In our stability study of the so-called "Trojan" planets in the habitable zone, we used the restricted three-body problem with different mass ratios of the primary bodies. The application of the three-body problem showed that even massive Trojan planets can be stable in the 1:1 mean motion resonance. From the 117 extrasolar planetary systems only 11 systems were found with one giant planet in the habitable zone. Out of this sample set we chose four planetary systems--HD17051, HD27442, HD28185, and HD108874--for further investigation. To study the orbital behavior of the stable zone in the different systems, we used direct numerical computations (Lie Integration Method) that allowed us to determine the escape times and the maximum eccentricity of the fictitious "Trojan planets."

  8. Holographic heavy ion collisions with baryon charge

    DOE PAGES

    Casalderrey-Solana, Jorge; Mateos, David; van der Schee, Wilke; ...

    2016-09-19

    We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15%. Finally, we find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.

  9. Collisions between quasi-parallel shocks

    NASA Technical Reports Server (NTRS)

    Cargill, Peter J.

    1991-01-01

    The collision between pairs of quasi-parallel shocks is examined using hybrid numerical simulations. In the interaction, the two shocks are transmitted through each other leaving behind a hot plasma with a population of particles with energies in excess of 40 E0, where E0 is the kinetic energy of particles in the shock frame prior to the collision. The energization is more efficient for quasi-parallel shocks than parallel shocks. Collisions between shocks of equal strengths are more efficient than those that are unequal. The results are of importance for phenomena during the impulsive phase of solar flares, in the distant solar wind and at planetary bow shocks.

  10. Collision safety of a hard-shell low-mass vehicle

    SciT

    Kaeser, R.; Walz, F.H.; Brunner, A.

    1994-06-01

    Low-mass vehicles and in particular low-mass electric vehicles as produced today in very small quantities are in general not designed for crashworthiness in collisions. Particular problems of compact low-mass cars are: reduced length of the car front, low mass compared to other vehicles, and heavy batteries in the case of an electric car. With the intention of studying design improvements, three frontal crash tests were run last year: the first one with a commercial, lightweight electric car; the second with a reinforced version of the same car; and the last one with a car based on a different structural designmore » with a `hard-shell` car body. Crash tests showed that the latter solution made better use of the small zone available for continuous energy absorption. The paper discusses further the problem of frontal collisions between vehicles of different weight and, in particular, the side collision. A side-collision test was run with the hard-shell vehicle following the ECE lateral-impact test procedure at 50 km/h and led to results for the EuroSIDI-dummy well below current injury tolerance criteria.« less

  11. Collision safety of a hard-shell low-mass vehicle.

    PubMed

    Kaeser, R; Walz, F H; Brunner, A

    1994-06-01

    Low-mass vehicles and in particular low-mass electric vehicles as produced today in very small quantities are in general not designed for crashworthiness in collisions. Particular problems of compact low-mass cars are: reduced length of the car front, low mass compared to other vehicles, and heavy batteries in the case of an electric car. With the intention of studying design improvements, three frontal crash tests were run last year: the first one with a commercial, lightweight electric car; the second with a reinforced version of the same car; and the last one with a car based on a different structural design with a "hard-shell" car body. Crash tests showed that the latter solution made better use of the small zone available for continuous energy absorption. The paper discusses further the problem of frontal collisions between vehicles of different weight and, in particular, the side collision. A side-collision test was run with the hard-shell vehicle following the ECE lateral-impact test procedure at 50 km/h and led to results for the EuroSID1-dummy well below current injury tolerance criteria.

  12. Exploration of the aftermath of a large collision in an extreme debris disk

    NASA Astrophysics Data System (ADS)

    Moor, Attila; Abraham, Peter; Cataldi, Gianni; Kospal, Agnes; Pal, Andras; Vida, Krisztian

    2018-05-01

    Warm debris disks with extremely high fractional luminosities are exceptional, rare systems. Not explainable by steady-state evolutionary models, these extreme debris disks are believed to stem from a recent large collision of planetary embryos in the terrestrial zone. Our team recently discovered a new extreme debris disk around TYC 4209-1322-1, whose WISE W1/W2 band photometry showed a significant brightening probably related to a giant collision in the inner disk. In Cycle 13 we monitor the system by Spitzer, revealing a fading trend with an e-folding time of 1500 days with hints for a quasi-periodic modulation and a possible second smaller amplitude collision event. Here we propose to continue the monitoring campaign until the end of Cycle 14 to explore the evolution of the current long fading trend and of the second collision, and characterize the hinted modulation. Thanks to a better sampled Spitzer light curve and the unique opportunity that NASA's TESS satellite will obtain high-precision optical photometry in the same period, a new dimension will be opened in Cycle 14 in the study of one of the most spectacular extreme debris disk, scrutinizing for the first time the possible influence of stellar activity on a debris disk.

  13. Use of Cad Systems in Testing the Collision of Underground Transportation Means / Zastosowanie systemów Cad w badaniach kolizyjności środków transportu podziemnego

    NASA Astrophysics Data System (ADS)

    Dudek, Marek

    2013-06-01

    A concept of use of CAD systems in testing collision of underground transportation means is presented. Reasons for undertaking this problem are given with end users identified. The concept of the system for collision analyses of transported loads is described. Examples of collision analysis during transportation of powered roof support are given. Presented system is designed to aid planning, organizational and training activities undertaken in management of transportation safety in mines. It will be also possible to use software resources, developed within the system as the didactic material as regards safe transportation process, which include hazards to the employees working in the area of transportation operations. Developed prototype of a system for testing the collision of underground transportation means was positively assessed by employees of the Coal Company, JSC - industrial partner of KOMAG. This prototype is continuously improved and adapted for commercial implementation in the selected coal mines. W pracy przedstawiono koncepcję zastosowania systemów CAD w badaniach kolizyjności środków transportu podziemnego. Określono przyczyny podjęcia tematu oraz zidentyfikowano końcowych użytkowników. Zaprezentowano koncepcję systemu do analiz kolizyjności transportowanych ładunków. Pokazano przykłady analizy kolizyjności podczas transportu sekcji obudowy zmechanizowanej. Przedstawiony system przeznaczony jest do wspomagania działań planistycznych, organizacyjnych i szkoleniowych podejmowanych w zarządzaniu bezpieczeństwem transportu w zakładach górniczych. Opracowane w ramach systemu zasoby programowe będzie można również wykorzystać jako materiał dydaktyczny z zakresu bezpieczeństwa pracy w transporcie, uwzględniający zagrożenia dla pracowników pracujących w bezpośredniej strefie prac transportowych. Opracowany prototyp systemu do badania kolizyjności środków transportu podziemnego został pozytywnie oceniony przez pracownik

  14. Aeromagnetic evidence for a major strike-slip fault zone along the boundary between the Weddell Sea Rift and East Antarctica

    NASA Astrophysics Data System (ADS)

    Jordan, T. A.; Ferraccioli, F.; Ross, N.; Siegert, M. J.; Corr, H.; Leat, P. T.; Bingham, R. G.; Rippin, D. M.; le Brocq, A.

    2012-04-01

    The >500 km wide Weddell Sea Rift was a major focus for Jurassic extension and magmatism during the early stages of Gondwana break-up, and underlies the Weddell Sea Embayment, which separates East Antarctica from a collage of crustal blocks in West Antarctica. Here we present new aeromagnetic data combined with airborne radar and gravity data collected during the 2010-11 field season over the Institute and Moeller ice stream in West Antarctica. Our interpretations identify the major tectonic boundaries between the Weddell Sea Rift, the Ellsworth-Whitmore Mountains block and East Antarctica. Digitally enhanced aeromagnetic data and gravity anomalies indicate the extent of Proterozoic basement, Middle Cambrian rift-related volcanic rocks, Jurassic granites, and post Jurassic sedimentary infill. Two new joint magnetic and gravity models were constructed, constrained by 2D and 3D magnetic depth-to-source estimates to assess the extent of Proterozoic basement and the thickness of major Jurassic intrusions and post-Jurassic sedimentary infill. The Jurassic granites are modelled as 5-8 km thick and emplaced at the transition between the thicker crust of the Ellsworth-Whitmore Mountains block and the thinner crust of the Weddell Sea Rift, and within the Pagano Fault Zone, a newly identified ~75 km wide left-lateral strike-slip fault system that we interpret as a major tectonic boundary between East and West Antarctica. We also suggest a possible analogy between the Pagano Fault Zone and the Dead Sea transform. In this scenario the Jurassic Pagano Fault Zone is the kinematic link between extension in the Weddell Sea Rift and convergence across the Pacific margin of West Antarctica, as the Dead Sea transform links Red Sea extension to compression within the Zagros Mountains.

  15. Are There Frame-Distortion Contributions to Collision-Induced Absorption and Collision-Induced Light Scattering?

    NASA Astrophysics Data System (ADS)

    Hohm, Uwe

    2007-12-01

    Collision-induced spectroscopy, such as collision-induced absorption (CIA) and collision-induced light scattering (CILS), can give valuable information on permanent electric moments, polarizabilities and intermolecular-interaction potentials. In general the collision-induced spectra of the pure rare-gases and their binary mixtures are understood fairly well. However if at least one of the collision partners is a molecule then in some cases the spectra show features which can hardly be explained by current theories which deal with the case of undistorted molecules. Here we discuss the possibility of collision-induced frame distortion as an additional effect to be considered in collision-induced spectroscopy.

  16. Automotive collision avoidance system field operational test

    DOT National Transportation Integrated Search

    2005-03-01

    The Automotive Collision Avoidance System field operational test (or ACAS FOT) program was led by General Motors (GM) under a cooperative agreement with the U.S. Department of Transportation. This report summarizes the activities of the entire progra...

  17. Opportunities for collision countermeasures using intelligent technologies.

    DOT National Transportation Integrated Search

    1997-01-01

    Since 1991, the National Highway Traffic Safety Administration (NHTSA) has had a concentrated program to facilitate the development and deployment of effective safety-related collision avoidance systems as part of the Intelligent Transportation Syste...

  18. Studying Thermodynamics in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.; Wosiek, J.

    1999-01-01

    We discuss the possibility of measuring entropy of the system created in heavy ion collisions using the Ma coincidence method. The same method can also be used to test whether the system in question is in a state of equilibrium.

  19. Measuring an entropy in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.; Wosiek, J.

    1999-03-01

    We propose to use the coincidence method of Ma to measure an entropy of the system created in heavy ion collisions. Moreover we estimate, in a simple model, the values of parameters for which the thermodynamical behaviour sets in.

  20. Collision Detection for Underwater ROV Manipulator Systems

    PubMed Central

    Rossi, Matija; Dooly, Gerard; Toal, Daniel

    2018-01-01

    Work-class ROVs equipped with robotic manipulators are extensively used for subsea intervention operations. Manipulators are teleoperated by human pilots relying on visual feedback from the worksite. Operating in a remote environment, with limited pilot perception and poor visibility, manipulator collisions which may cause significant damage are likely to happen. This paper presents a real-time collision detection algorithm for marine robotic manipulation. The proposed collision detection mechanism is developed, integrated into a commercial ROV manipulator control system, and successfully evaluated in simulations and experimental setup using a real industry standard underwater manipulator. The presented collision sensing solution has a potential to be a useful pilot assisting tool that can reduce the task load, operational time, and costs of subsea inspection, repair, and maintenance operations. PMID:29642396

  1. Collision Detection for Underwater ROV Manipulator Systems.

    PubMed

    Sivčev, Satja; Rossi, Matija; Coleman, Joseph; Omerdić, Edin; Dooly, Gerard; Toal, Daniel

    2018-04-06

    Work-class ROVs equipped with robotic manipulators are extensively used for subsea intervention operations. Manipulators are teleoperated by human pilots relying on visual feedback from the worksite. Operating in a remote environment, with limited pilot perception and poor visibility, manipulator collisions which may cause significant damage are likely to happen. This paper presents a real-time collision detection algorithm for marine robotic manipulation. The proposed collision detection mechanism is developed, integrated into a commercial ROV manipulator control system, and successfully evaluated in simulations and experimental setup using a real industry standard underwater manipulator. The presented collision sensing solution has a potential to be a useful pilot assisting tool that can reduce the task load, operational time, and costs of subsea inspection, repair, and maintenance operations.

  2. OKCARS : Oklahoma Collision Analysis and Response System.

    DOT National Transportation Integrated Search

    2012-10-01

    By continuously monitoring traffic intersections to automatically detect that a collision or nearcollision : has occurred, automatically call for assistance, and automatically forewarn oncoming traffic, : our OKCARS has the capability to effectively ...

  3. Electron impact collision strengths in Ne VII

    SciT

    Di, L.; Shi, J.R.; Zhao, G., E-mail: gzhao@bao.ac.cn

    2012-07-15

    The lines of Ne VII have been observed in many astronomical objects, and some transitions from high energy levels were observed both in Seyfert galaxies and stellar coronae. Thus, the atomic data for these transitions are important for modeling. Using the code FAC we calculated the collision strengths based on the distorted-wave method with large configuration interactions included. The Maxwellian averaged effective collision strengths covering the typical temperature range of astronomical and laboratory hot plasmas are presented. We extend the calculation of the energy levels to n=4 and 5. The energy levels, wavelengths, spontaneous transition rates, weighted oscillator strengths, andmore » effective collision strengths were reported. Compared with the results from experiment or previous theoretical calculations a general agreement is found. It is found that the resonance effects are important in calculating the effective collision strengths.« less

  4. Fibonacci-like zone plate

    NASA Astrophysics Data System (ADS)

    Cheng, Shubo; Liu, Mengsi; Xia, Tian; Tao, Shaohua

    2018-06-01

    We present a new family of diffractive lenses, Fibonacci-like zone plates, generated with a modified Fibonacci sequence. The focusing properties and the evolution of transverse diffraction pattern for the Fibonacci-like zone plates have been analytically investigated both theoretically and experimentally and compared with the corresponding Fresnel zone plates of the same resolution. The results demonstrate that the Fibonacci-like zone plates possess the self-similar property and the multifocal behavior. Furthermore, the Fibonacci-like zone plate beams are found to possess the self-reconstruction property, and would be promising for 3D optical tweezers, laser machining, and optical imaging.

  5. The generalized mean zone plate

    NASA Astrophysics Data System (ADS)

    Xia, Tian; Cheng, Shubo; Tao, Shaohua

    2018-06-01

    In this paper a generalized mean zone plate is proposed, which generates twin foci located at the positions satisfying the expression of the generalized mean, which includes the m-golden mean, precious mean, and so on. The generalized mean zone plate can be designed to generate twin foci with various position ratios. The diffraction properties of the generalized mean zone plates have been investigated with simulations and experiments. The results show that the ratio of the positions of the twin foci for the generalized mean zone plate can be designed with the selected zone plate parameters.

  6. The variation of crustal structure along the Song Ma Shear Zone, Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Su, Chien-Min; Wen, Strong; Tang, Chi-Chia; Yeh, Yu-Lien; Chen, Chau-Huei

    2018-06-01

    Northern Vietnam is divided into two regions by suture zone. The southwestern region belongs to the Indochina block, and the northeastern region is a portion of the South China block with distinct geological characteristics. From previous studies, the closing the Paleotethys led the collision between the Indochina and South China blocks, and this collision form the suture zone in the Middle Triassic. In the Tertiary, Indian and Eurasian plates started to collide, and this collision caused the extrusion of the Indochina block along the suture zone and a clockwise rotation. Metamorphic rocks associated with the subduction process have been found at the Song Ma Shear Zone (SMSZ) from geological surveys, which indicated that the SMSZ is a possible boundary between the South China and Indochina block. However, according to previous study, there is an argument of whether the SMSZ is a subduction zone of the South China and Indochina plates or not. In this study, we applied the H-κ and the common conversion point (CCP) stacking method using teleseismic converted waves recorded by a seismic broadband array to obtain the Moho depth, VP/VS ratio and the crustal structure along the SMSZ. The CCP results are further used to identify whether the fault extends through the entire crust or not. We have selected two profiles along the SMSZ and a profile across the SMSZ for imaging lateral variations of impedance from stacking. According to H-κ stacking results, crustal thickness vary from 26.0 to 29.3 km, and the average of VP/VS ratio is about 1.77. Finally, the CCP results also show the heterogeneity of crust among the SMSZ. These evidences might support that SMSZ is the suture zone between the South China and Indochina plates.

  7. Molecular vibrational states during a collision

    NASA Technical Reports Server (NTRS)

    Recamier, Jose A.; Jauregui, Rocio

    1995-01-01

    Alternative algebraic techniques to approximate a given Hamiltonian by a harmonic oscillator are described both for time-independent and time-dependent systems. We apply them to the description of a one dimensional atom-diatom collision. From the resulting evolution operator, we evaluate vibrational transition probabilities as well as other time-dependent properties. As expected, the ground vibrational state becomes a squeezed state during the collision.

  8. Global Λ hyperon polarization in nuclear collisions

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; de La Barca Sánchez, M. Calderón; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; de Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.

    2017-08-01

    The extreme energy densities generated by ultra-relativistic collisions between heavy atomic nuclei produce a state of matter that behaves surprisingly like a fluid, with exceptionally high temperature and low viscosity. Non-central collisions have angular momenta of the order of 1,000ћ, and the resulting fluid may have a strong vortical structure that must be understood to describe the fluid properly. The vortical structure is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have yet been found. Since vorticity represents a local rotational structure of the fluid, spin-orbit coupling can lead to preferential orientation of particle spins along the direction of rotation. Here we present measurements of an alignment between the global angular momentum of a non-central collision and the spin of emitted particles (in this case the collision occurs between gold nuclei and produces Λ baryons), revealing that the fluid produced in heavy ion collisions is the most vortical system so far observed. (At high energies, this fluid is a quark-gluon plasma.) We find that Λ and hyperons show a positive polarization of the order of a few per cent, consistent with some hydrodynamic predictions. (A hyperon is a particle composed of three quarks, at least one of which is a strange quark; the remainder are up and down quarks, found in protons and neutrons.) A previous measurement that reported a null result, that is, zero polarization, at higher collision energies is seen to be consistent with the trend of our observations, though with larger statistical uncertainties. These data provide experimental access to the vortical structure of the nearly ideal liquid created in a heavy ion collision and should prove valuable in the development of hydrodynamic models that

  9. The Underlying Physics in Wetted Particle Collisions

    NASA Astrophysics Data System (ADS)

    Donahue, Carly; Hrenya, Christine; Davis, Robert

    2008-11-01

    Wetted granular particles are relevant in many industries including the pharmaceutical and chemical industries and has applications to granulation, filtration, coagulation, spray coating, drying and pneumatic transport. In our current focus, we investigate the dynamics of a three-body normal wetted particle collision. In order to conduct collisions we use an apparatus called a ``Stokes Cradle,'' similar to the Newton's Cradle (desktop toy) except that the target particles are covered with oil. Here, we are able to vary the oil thickness, oil viscosity, and material properties. With a three particle collision there are four possible outcomes: fully agglomerated (FA); Newton's Cradle (NC), the striker and the first target ball are agglomerated and the last target ball is separated; Reverse Newton's Cradle (RNC), the striker is separated and the two targets are agglomerated; and fully separated (FS). Varying the properties of the collisions, we have observed all four outcomes. We use elastohydrodynamics as a theoretical basis for modeling the system. We also have considered the glass transition of the oil as the pressure increases upon impact and the cavitation of the oil as the pressure drops below the vapor pressure upon rebound. A toy model has been developed where the collision is modeled as a series of two-body collisions. A qualitative agreement between the toy model and experiments gives insight into the underlying physics.

  10. Planetesimal Collisions as a Chondrule Forming Event

    NASA Astrophysics Data System (ADS)

    Wakita, Shigeru; Matsumoto, Yuji; Oshino, Shoichi; Hasegawa, Yasuhiro

    2017-01-01

    Chondritic meteorites contain unique spherical materials named chondrules: sub-mm sized silicate grains once melted in a high temperature condition in the solar nebula. We numerically explore one of the chondrule forming processes—planetesimal collisions. Previous studies have found that impact jetting via protoplanet-planetesimal collisions can make chondrules with 1% of the impactors’ mass, when the impact velocity exceeds 2.5 km s-1. Based on the mineralogical data of chondrules, undifferentiated planetesimals would be more suitable for chondrule-forming collisions than potentially differentiated protoplanets. We examine planetesimal-planetesimal collisions using a shock physics code and find two things: one is that planetesimal-planetesimal collisions produce nearly the same amount of chondrules as protoplanet-planetesimal collisions (˜1%). The other is that the amount of produced chondrules becomes larger as the impact velocity increases when two planetesimals collide with each other. We also find that progenitors of chondrules can originate from deeper regions of large targets (planetesimals or protoplanets) than small impactors (planetesimals). The composition of targets is therefore important, to fully account for the mineralogical data of currently sampled chondrules.

  11. Liquid zone seal

    DOEpatents

    Klebanoff, Leonard E.

    2001-01-01

    A seal assembly that provides a means for establishing multiple pressure zones within a system. The seal assembly combines a plate extending from the inner wall of a housing or inner enclosure that intersects with and is immersed in the fluid contained in a well formed in a tray contained within the enclosure. The fluid is a low vapor pressure oil, chemically inert and oxidation resistant. The use of a fluid as the sealing component provides a seal that is self-healing and mechanically robust not subject to normal mechanical wear, breakage, and formation of cracks or pinholes and decouples external mechanical vibrations from internal structural members.

  12. Smartphones and Time Zones

    NASA Astrophysics Data System (ADS)

    Baird, William; Secrest, Jeffery; Padgett, Clifford; Johnson, Wayne; Hagrelius, Claire

    2016-09-01

    Using the Sun to tell time is an ancient idea, but we can take advantage of modern technology to bring it into the 21st century for students in astronomy, physics, or physical science classes. We have employed smartphones, Google Earth, and 3D printing to find the moment of local noon at two widely separated locations. By reviewing GPS time-stamped photos from each place, we are able to illustrate that local noon is longitude-dependent and therefore explain the need for time zones.

  13. Marginal Ice Zone Bibliography.

    DTIC Science & Technology

    1985-06-01

    A Voyage of Discovery. George Deacon 70th An-niversary Volume, (M. Angel, ed.), Pergamon Press, Oxford, p.15-41. Coachman, L.K., C.A. Barnes, 1961...some polar contrasts. In: S "" RUsium on Antarctic Ice and Water Masses, ( George Deacon, ed.), Sci- 72 Lebedev, A.A., 1968: Zone of possible icing of...Atlantic and Western Europe. British Meteorological Office. Geophysical Memoirs, 4(41). Brost , R.A., J.C. Wyngaard, 1978: A model study of the stably

  14. Collision prediction software for radiotherapy treatments.

    PubMed

    Padilla, Laura; Pearson, Erik A; Pelizzari, Charles A

    2015-11-01

    This work presents a method of collision predictions for external beam radiotherapy using surface imaging. The present methodology focuses on collision prediction during treatment simulation to evaluate the clearance of a patient's treatment position and allow for its modification if necessary. A Kinect camera (Microsoft, Redmond, WA) is used to scan the patient and immobilization devices in the treatment position at the simulator. The surface is reconstructed using the skanect software (Occipital, Inc., San Francisco, CA). The treatment isocenter is marked using simulated orthogonal lasers projected on the surface scan. The point cloud of this surface is then shifted to isocenter and converted from Cartesian to cylindrical coordinates. A slab models the treatment couch. A cylinder with a radius equal to the normal distance from isocenter to the collimator plate, and a height defined by the collimator diameter is used to estimate collisions. Points within the cylinder clear through a full gantry rotation with the treatment couch at 0°, while points outside of it collide. The angles of collision are reported. This methodology was experimentally verified using a mannequin positioned in an alpha cradle with both arms up. A planning CT scan of the mannequin was performed, two isocenters were marked in pinnacle, and this information was exported to AlignRT (VisionRT, London, UK)--a surface imaging system for patient positioning. This was used to ensure accurate positioning of the mannequin in the treatment room, when available. Collision calculations were performed for the two treatment isocenters and the results compared to the collisions detected the room. The accuracy of the Kinect-Skanect surface was evaluated by comparing it to the external surface of the planning CT scan. Experimental verification results showed that the predicted angles of collision matched those recorded in the room within 0.5°, in most cases (largest deviation -1.2°). The accuracy study for

  15. A numerical investigation of continental collision styles

    NASA Astrophysics Data System (ADS)

    Ghazian, Reza Khabbaz; Buiter, Susanne J. H.

    2013-06-01

    Continental collision after closure of an ocean can lead to different deformation styles: subduction of continental crust and lithosphere, lithospheric thickening, folding of the unsubducted continents, Rayleigh-Taylor (RT) instabilities and/or slab break-off. We use 2-D thermomechanical models of oceanic subduction followed by continental collision to investigate the sensitivity of these collision styles to driving velocity, crustal and lithospheric temperature, continental rheology and the initial density difference between the oceanic lithosphere and the asthenosphere. We find that these parameters influence the collision system, but that driving velocity, rheology and lithospheric (rather than Moho and mantle) temperature can be classified as important controls, whereas reasonable variations in the initial density contrast between oceanic lithosphere and asthenosphere are not necessarily important. Stable continental subduction occurs over a relatively large range of values of driving velocity and lithospheric temperature. Fast and cold systems are more likely to show folding, whereas slow and warm systems can experience RT-type dripping. Our results show that a continent with a strong upper crust can experience subduction of the entire crust and is more likely to fold. Accretion of the upper crust at the trench is feasible when the upper crust has a moderate to weak strength, whereas the entire crust can be scraped-off in the case of a weak lower crust. We also illustrate that weakening of the lithospheric mantle promotes RT-type of dripping in a collision system. We use a dynamic collision model, in which collision is driven by slab pull only, to illustrate that adjacent plates can play an important role in continental collision systems. In dynamic collision models, exhumation of subducted continental material and sediments is triggered by slab retreat and opening of a subduction channel, which allows upward flow of buoyant materials. Exhumation continues

  16. Accuracy Estimation of the Approximated Methods Used for Assessing Risk of Buildings Damage Under the Influence of Underground Exploitation in the Light of World's and Polish Experience - Part 2 / Analiza Dokładności Przybliżonych Metod Oceny Zagrożenia Budynków Wpływami Podziemnej Eksploatacji Stosowanych W Świecie I Polskiej Metody Punktowej - Część 2

    NASA Astrophysics Data System (ADS)

    Malinowska, Agnieszka

    2013-09-01

    This paper is a continuation of theoretical analyses of World's methods used for assessing damage risk to buildings with continuous strains, which were presented in Part 1. The authors focus only on those methods in which the scale of damage to buildings can be approximated. Selected methods were tested on 100 random objects sited in hard coal excavation-induced areas. The efficiency and effectiveness of those methods was evaluated. The damage risk was also verified with the use of a method currently used in Poland. The efficiency results obtained for World's methods and the one used in Poland turned out to be comparable. Practical studies were made to evaluate the adaptability of those methods in the underground exploitation-induced conditions in Poland. Artykuł stanowi kontynuację badań teoretycznych zaprezentowanych w części pierwszej, dotyczących oceny możliwości wykorzystania metod stosowanych na świecie do oceny zagrożenia budynków deformacjami ciągłymi. Skoncentrowano się jedynie na metodach pozwalających na przybliżoną ocenę stopnia uszkodzenia obiektów. Wybrane metody przetestowano na 100 losowo wybranych obiektach z terenu poddanego wpływom eksploatacji węgla kamiennego. Przyjęty tok postępowania pozwolił na ocenę efektywności oraz skuteczności tych metod. Ocenę zagrożenia budynków przeprowadzono również przy wykorzystaniu metody stosowanej obecnie w Polsce. Wyniki ewaluacji zagrożenia metodami światowymi można było porównać z efektywnością Polskiej metody. Badania praktyczne pozwoliły na ocenę możliwości adaptacji tych metod w warunkach eksploatacji podziemnej w Polsce.

  17. Increased Rail Transit Vehicle Crashworthiness in Head-On Collisions. Volume II. Primary Collision.

    DOT National Transportation Integrated Search

    1980-06-01

    A specific goal of safety is to reduce the number of injuries that may result from the collision of two trains. In Volume II, an analytical model in two dimensions, longitudinal and vertical, of the primary collision of two impacting urban railcar co...

  18. [Current approach to zoning atomic shipbuilding plants].

    PubMed

    Blekher, A Ia

    2005-01-01

    The paper discusses the currently introduced radiation-and-hygienic system for zoning atomic shipbuilding plants, in accordance with which three radiation-and-hygienic zones (a strict regime zone, a controlled approach zone, and a free regime zone) are established at the plant site and two zones (a sanitary-and-protective zone and a follow-up zone) are also established outside the plant site.

  19. Effects of Cocos Ridge Collision on the Western Caribbean: Is there a Panama Block?

    NASA Astrophysics Data System (ADS)

    Kobayashi, D.; La Femina, P. C.; Geirsson, H.; Chichaco, E.; Abrego M, A. A.; Fisher, D. M.; Camacho, E. I.

    2011-12-01

    It has been recognized that the subduction and collision of the Cocos Ridge, a 2 km high aseismic ridge standing on >20 km thick oceanic crust of the Cocos plate, drives upper plate deformation in southern Central America. Recent studies of Global Positioning System (GPS) derived horizontal velocities relative to the Caribbean Plate showed a radial pattern centered on the Cocos Ridge axis where Cocos-Caribbean convergence is orthogonal, and margin-parallel velocities to the northwest. Models of the full three-dimensional GPS velocity field and earthquake slip vectors demonstrate low mechanical coupling along the Middle America subduction zone in Nicaragua and El Salvador, and a broad zone of high coupling beneath the Osa Peninsula, where the Cocos Ridge intersects the margin. These results suggest that Cocos Ridge collision may be the main driver for trench-parallel motion of the fore arc to the northwest and for uplift and shortening of the outer fore arc in southern Central America, whereby thickened and hence buoyant Cocos Ridge crust acts as an indenter causing the tectonic escape of the fore arc. These studies, however, were not able to constrain well the pattern of surface deformation east-southeast of the ridge axis due to a lack of GPS stations, and Cocos Ridge collision may be responsible for the kinematics and deformation of the proposed Panama block. Recent reinforcement of the GPS network in southeastern Costa Rica and Panama has increased the spatial and temporal resolution of the network and made it possible to further investigate surface deformation of southern Central America and the Panama block. We present a new regional surface velocity field for Central America from geodetic GPS data collected at 11 recently-installed and 178 existing episodic, semi-continuous, and continuous GPS sites in Nicaragua, Costa Rica, and Panama. We investigate the effects of Cocos Ridge collision on the Panama block through kinematic block modeling. Published

  20. Does a tow-bar increase the risk of neck injury in rear-end collisions?

    PubMed

    Olesen, Anne Vingaard; Elvik, Rune; Andersen, Camilla Sloth; Lahrmann, Harry S

    2018-06-01

    Does a tow-bar increase the risk of neck injury in the struck car in a rear-end collision? The rear part of a modern car has collision zones that are rendered nonoperational when the car is equipped with a tow-bar. Past crash tests have shown that a car's acceleration was higher in a car equipped with a tow-bar and also that a dummy placed in a car with a tow-bar had higher peak acceleration in the lower neck area. This study aimed to investigate the association between the risk of neck injury in drivers and passengers, and the presence of a registered tow-bar on the struck car in a rear-end collision. We performed a merger of police reports, the National Hospital Discharge Registry, and the National Registry of Motor Vehicles in Denmark. We identified 9,370 drivers and passengers of whom 1,519 were diagnosed with neck injury within the first year after the collision. We found a statistically insignificant 5% decrease in the risk of neck injury in the occupants of the struck car when a tow-bar was fitted compared to when it was not fitted (hazard ratio=0.95; 95% confidence level=0.85-1.05; p=0.32). The result was controlled for gender, age, and the seat of the occupant. Several other collision and car characteristics and demographic information on the drivers and passengers were evaluated as confounders but were not statistically significant. The present study may serve as valuable input for a meta-analysis on the effect of a tow-bar because negative results are necessary in order to avoid publication bias. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Impact and implications of the Afro-Eurasian collision south of Cyprus from reflection seismic data

    NASA Astrophysics Data System (ADS)

    Klimke, Jennifer; Ehrhardt, Axel

    2014-06-01

    The Cyprus Arc in the Eastern Mediterranean represents the active collision front between the African and Eurasian (Anatolian) Plates. Along the Cyprus Arc, the Eratosthenes Seamount is believed to have been blocking the northward motion of the African Plate since the Late Pliocene-Early Pleistocene. Based on a dense grid of 2D reflection seismic profiles covering the Eratosthenes Seamount and western Levant Basin offshore Cyprus, new observations regarding the Cyprus Arc collision front at the triple transition zone Eratosthenes Seamount-Levant Basin-Hecataeus Rise are presented. The data show that the Levant Basin is filled with ~ 10 km of sediments of Early Mesozoic (probably Jurassic) to Plio-Quaternary age with only a localized deformation affecting the Miocene-Oligocene rock units. The sediments onlap directly against the steep eastern flank of the Eratosthenes Seamount to the west and the southern flank of the Hecataeus Rise to the north. The sediments show no deformation that could be associated with collision and are undeformed even very close to the two prominent structures. Pinching out of the Base Miocene reflector in the Levant Basin due to onlapping of the Middle Miocene reflector indicates uplift of the Eratosthenes Seamount and the Hecataeus Rise. In contrast to the Messinian Evaporites north of the Eratosthenes Seamount, the salt in the Levant Basin, even close to the Hecataeus Rise, is tectonically undeformed. It is proposed that the Eratosthenes Seamount, the western Levant Basin and the Hecataeus Rise act as one tectonic unit. This implies that the collision front is located north of this unit and that the Hecataeus Rise shields the sediments south of it from deformation associated with collision of the African and Anatolian Plates.

  2. Identifying contributing factors to fatal and serious injury motorcycle collisions involving children in Malaysia

    PubMed Central

    Oxley, Jennifer; Ravi, Mano Deepa; Yuen, Jeremy; Hoareau, Effie; Hashim, Hizal Hanis

    2013-01-01

    In Malaysia, motorcycle crashes constitute approximately 60 percent of all road trauma, and a substantial proportion involve children 16 years and younger. There are, however, many gaps in our knowledge on contributing factors to crashes and injury patterns amongst children killed and seriously injured in motorcycle crashes. The aim of this study was to examine fatal and serious injury motorcycle-related collisions to identify contributing factors and injury patterns amongst child motorcyclists. All identified motorcyclist fatal crashes between 2007 and 2011 (inclusive) were extracted from the national Police-reported crash database (M-ROADS) and a range of variables were selected for examination. A total of 17,677 crashes were extracted where a rider or pillion was killed and of these crashes 2,038 involved children, equating to 12 percent. Examination of crashes involving children revealed that some crashes involved more than two children on the motorcycle, therefore, overall children constituted 9.5% of fatal and 18.4% of serious injury collisions. A high proportion of child fatal or serious injury collisions involved the child as the rider (62%), and this was most common for children aged between 10 and 16 years. The majority of collisions occurred on rural roads, in speed limit zones of 50–70km/h, and approximately one-third occurred at an intersection. Collisions involving another motorcycle or a passenger vehicle contributed to 41% and 53% of the total fatalities and severe injuries, respectively. A high proportion (43.9%) of the children (25.5% riders and 18.8% pillion) sustained head injuries with 37.7% being in the 10–16 age group. Furthermore, 52.4% of the children sustaining head injuries did not wear a helmet. The implications of these findings for countermeasures within a Safe System framework, particularly interventions aimed at reducing the rate of unlicensed riding and helmet wearing, and infrastructure countermeasures are discussed. PMID

  3. Structural evidence for slip partitioning and inclined dextral transpression along the SE Sanandaj-Sirjan zone, Iran

    NASA Astrophysics Data System (ADS)

    Shafiei Bafti, Shahram; Mohajjel, Mohammad

    2015-04-01

    The structural evolution of the Sanandaj-Sirjan zone is the result of the convergence of the Iranian microcontinent and the Afro-Arabian continent. The study area at Khabr in the SE Sanandaj-Sirjan zone, in the hinterland of the Zagros orogen, consists of Paleozoic, Mesozoic and Cenozoic rocks. In this area, deformation phases were distinguished in different rock units based on structural and stratigraphical evidence, and the deformational events are divided into two stages: (1) a Late Triassic event and (2) a Late Cretaceous to Miocene event. The Late Triassic deformation event caused regional metamorphism in the Paleozoic units. These units are overlain by unmetamorphosed Jurassic clastic sequences. Fabrics and structural evidence confirm that the F1 folding recumbent and refolded folds were synchronous with the metamorphism of the Paleozoic units and terminated in the Early Jurassic. The time table of the orogenic phases shows that this deformation event is related to the Cimmerian orogenic phase. From a geodynamic point of view, the early Cimmerian deformation in the southeastern Iranian margin suggests that the SE Sanandaj-Sirjan zone was an active margin at that time. The early Cimmerian discordance recorded the onset of a contractional component related to the oblique subduction of Neo-Tethys beneath the central Iranian microcontinent. Structures related to the Late Cretaceous to Miocene deformation phase are observed in Jurassic to Oligocene units, which contain moderately inclined and plunging folds. Comparing these folds with domains of deformation generated in models of transpression shows that the folding was caused by a combination of contractional and dip-slip components of movement, eventually resulting in the formation of a thrust system. The Khabr thrust systems consist of five sheets of oblique thrusts, duplex structures and shear zones. The shear zones generally strike E-W and dip moderately N (30°-40°). The occurrence of asymmetric folds with

  4. Simulating immersed particle collisions: the Devil's in the details

    NASA Astrophysics Data System (ADS)

    Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart

    2015-11-01

    Simulating densely-packed particle-laden flows with any degree of confidence requires accurate modeling of particle-particle collisions. To this end, we investigate a few collision models from the fluids and granular flow communities using sphere-wall collisions, which have been studied by a number of experimental groups. These collisions involve enough complexities--gravity, particle-wall lubrication forces, particle-wall contact stresses, particle-wake interactions--to challenge any collision model. Evaluating the successes and shortcomings of the collision models, we seek improvements in order to obtain more consistent results. We will highlight several implementation details that are crucial for obtaining accurate results.

  5. Breathing zone air sampler

    DOEpatents

    Tobin, John

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  6. The Geology of the Persian Gulf-Gulf of Oman Region: A Synthesis (Paper 6R0118)

    NASA Astrophysics Data System (ADS)

    Ross, David A.; Uchupi, Elazar; White, Robert S.

    1986-08-01

    During the Mesozoic most of the Arabian Peninsula, Persian Gulf, south-western Iran, and eastern Iraq constituted the Arabian platform. Deformation of the Musandam Peninsula in the Late Cretaceous and mid-Tertiary by compression (subduction) from the east and southwest, collision of the Arabian platform and Eurasian plate along the Zagros Crush zone during the Oligocene or early Miocene, and emplacement of the Zagros Mountains by gravitational sliding during the Neogene and Pleistocene have reduced the platform area to the Persian Gulf. Other factors that contributed to the reduction of the Arabian platform include the uplift of the Arabian Peninsula during the opening of the Red Sea in the Tertiary, tectonism of the Infracambrian Hormuz salt, upwarp of the platform sediment cover by basement uplift and/or salt tectonics, and a 600- to 400-m drop in sea level since the Cretaceous. At present, tectonism in the region is restricted to the northern edge of the Gulf of Oman where the Arabian plate is subducting the Eurasian plate from the south and to the Zagros Crush zone where the Arabian and Eurasian plates are colliding with one another.

  7. Dynamical evolution of spectator systems produced in ultrarelativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Mazurek, K.; Szczurek, A.; Schmitt, C.; Nadtochy, P. N.

    2018-02-01

    In peripheral heavy-ion collisions at ultrarelativistic energies, usually only parts of the colliding nuclei effectively interact with each other. In the overlapping zone, a fireball or quark-gluon plasma is produced. The excitation energy of the heavy remnant can range from a few tens to several hundreds of MeV, depending on the impact parameter. The decay of these excited spectators is investigated in this work for the first time within a dynamical approach based on the multidimensional stochastic Langevin equation. The potential of this exploratory work to understand the connection between electromagnetic fields generated by the heavy spectators and measured pion distributions is discussed.

  8. Fossil imprints of the Pan-African collision process revealed by seismic anisotropy in southern Madagasca

    NASA Astrophysics Data System (ADS)

    Tilmann, F. J.; Rindraharisaona, E. J.; Reiss, M. C.; Dreiling, J.; Rumpker, G.; Yuan, X.; Giese, J.; Priestley, K. F.; Wysession, M. E.; Barruol, G.; Rambolamanana, G.

    2017-12-01

    In the assembly of Pangaea during the Proterozoic Pan-African Orogeny and later rifting and break-up of Gondwanaland, Madagascar occupied a central position, sandwiched between East Africa and India-Seychelles. Today, its metamorphic terranes still bear witness to the collision process. In the SELASOMA project we have deployed a seismic array in southern Madagascar in order to determine the imprint of these events onto the present day-crustal structure. 25 broadband and 23 SP stations were deployed for a period of 1-2 years. We present an overview of the results of several studies (receiver functions, ambient noise surface wave analysis, SKS splitting) constraining the isotropic and anisotropic crustal structure of southern Madagascar based on this deployment, supplemented by permanent stations and the contemporaneous MACOMO and RHUM-RUM deployments. The upper and middle crust of the Archean and Proterozoic provinces is overall quite similar, but a remarkable difference is that the Archean crust shows clear signs of underplating; we surmise that the Proterozoic crust was lost in the Pan-African collision. Both horizontal (from shear-wave splitting) and radial (SH/SV from Love and Rayleigh discrepancy) anisotropy shows evidence of collisional processes. A 150 km-wide zone of anomalous splitting measurements (deviating from the APM-parallel fast directions in most of Madagascar) in the region, where several major fossil shear zones have been mapped, can be explained as a zone of extensive coherent deformation within the crust; fast directions here align with the dominant strike of the major fossil shear zones. Negative radial anisotropy (i.e., SV faster than SH) in the mid-crust, likewise interpreted to have been formed by the collision, highlights the likely role of vertical shearing, presumably caused by extensive folding. In the lower crust, however, positive radial anisotropy is found in most of the Proterozoic and Archean terranes, which, analogous to the

  9. Observation of correlated excitations in bimolecular collisions

    NASA Astrophysics Data System (ADS)

    Gao, Zhi; Karman, Tijs; Vogels, Sjoerd N.; Besemer, Matthieu; van der Avoird, Ad; Groenenboom, Gerrit C.; van de Meerakker, Sebastiaan Y. T.

    2018-02-01

    Although collisions between atoms and molecules are largely understood, collisions between two molecules have proven much harder to study. In both experiment and theory, our ability to determine quantum-state-resolved bimolecular cross-sections lags behind their atom-molecule counterparts by decades. For many bimolecular systems, even rules of thumb—much less intuitive understanding—of scattering cross sections are lacking. Here, we report the measurement of state-to-state differential cross sections on the collision of state-selected and velocity-controlled nitric oxide (NO) radicals and oxygen (O2) molecules. Using velocity map imaging of the scattered NO radicals, the full product-pair correlations of rotational excitation that occurs in both collision partners from individual encounters are revealed. The correlated cross sections show surprisingly good agreement with quantum scattering calculations using ab initio NO-O2 potential energy surfaces. The observations show that the well-known energy-gap law that governs atom-molecule collisions does not generally apply to bimolecular excitation processes, and reveal a propensity rule for the vector correlation of product angular momenta.

  10. Outcome regimes of binary raindrop collisions

    NASA Astrophysics Data System (ADS)

    Testik, Firat Y.

    2009-11-01

    This study delineates the physical conditions that are responsible for the occurrence of main outcome regimes (i.e., bounce, coalescence, and breakup) for binary drop collisions with a precipitation microphysics perspective. Physical considerations based on the collision kinetic energy and the surface energies of the colliding drops lead to the development of a theoretical regime diagram for the drop/raindrop collision outcomes in the We- p plane ( We — Weber number, p — raindrop diameter ratio). This theoretical regime diagram is supported by laboratory experimental observations of drop collisions using high-speed imaging. Results of this fundamental study bring in new insights into the quantitative understanding of drop dynamics, applications of which extend beyond precipitation microphysics. In particular, results of this drop collision study are expected to give impetus to the physics-based dynamic modeling of the drop size distributions that is essential for various typical modern engineering applications, including numerical modeling of evolution of raindrop size distribution in rain shaft.

  11. Modelling of a collision between two smartphones

    NASA Astrophysics Data System (ADS)

    de Jesus, V. L. B.; Sasaki, D. G. G.

    2016-09-01

    In the predominant approach in physics textbooks, the collision between particles is treated as a black box, where no physical quantity can be measured. This approach becomes even more evident in experimental classes where collisions are the simplest and most common way of applying the theorem of conservation of linear momentum in the asymptotic behavior. In this paper we develop and analyse an experiment on collisions using only two smartphones. The experimental setup is amazingly simple; the two devices are aligned on a horizontal table of lacquered wood, in order to slide more easily. At the edge of one of them a piece of common sponge is glued using double-sided tape. By using a free smartphone application, the values generated by the accelerometer of the two devices in full motion are measured and tabulated. Through numerical iteration, the speed graphs of the smartphones before, during, and after the collision are obtained. The main conclusions were: (i) the demonstration of the feasibility of using smartphones as an alternative to air tracks and electronic sensors employed in a teaching lab, (ii) the possibility of investigating the collision itself, its characteristics and effects; this is the great advantage of the use of smartphones over traditional experiments, (iii) the compatibility of the results with the impulse-momentum theorem, within the margin of uncertainty.

  12. Quantitative kinematic analysis within the Khlong Marui shear zone, southern Thailand

    NASA Astrophysics Data System (ADS)

    Kanjanapayont, Pitsanupong; Grasemann, Bernhard; Edwards, Michael A.; Fritz, Harald

    2012-02-01

    The NNE trending Khlong Marui shear zone has a strong geomorphic signal with marked fault-strike parallel topographic ridges. The lithologies within the strike-slip zone mainly consist of vertical layers of mylonitic meta-sedimentary rocks associated with orthogneisses, mylonitic granites, and pegmatitic veins. The pegmatitic veins concordantly intrude the mylonitic foliation but were sheared at the rims indicating syn-kinematic emplacement. Microstructures and mineral assemblages suggest that the rocks in the area have been metamorphosed at amphibolite facies and low to medium greenschist facies by the first deformation. The Khlong Marui shear zone was deformed under dextral simple shear flow with a small finite strain. The ductile-to-brittle deformation involves a period of exhumation of lenses of higher grade rocks together with low grade fault rocks probably associated with positive flower structures. The final stage brittle deformation is reflected by normal faulting and formation of proto-cataclasites to cataclasites of the original mylonitic meta-sedimentary host rock. Although clear age-constraints are still missing, we use regional relationships to speculate that earlier dextral strike-slip displacement of the Khlong Marui shear zone was related to the West Burma and Shan-Thai collision and subduction along the Sunda Trench in the Late Cretaceous, while the major exhumation period of the ductile lens was tectonically influenced by the early India-Asia collision. The changing stress field has responded by switching from dextral strike-slip to normal faulting in the Khlong Marui shear zone, and is associated with "escape tectonics" arising from the overall India-Asia collision.

  13. Fuel conditioning facility zone-to-zone transfer administrative controls.

    SciT

    Pope, C. L.

    2000-06-21

    The administrative controls associated with transferring containers from one criticality hazard control zone to another in the Argonne National Laboratory (ANL) Fuel Conditioning Facility (FCF) are described. FCF, located at the ANL-West site near Idaho Falls, Idaho, is used to remotely process spent sodium bonded metallic fuel for disposition. The process involves nearly forty widely varying material forms and types, over fifty specific use container types, and over thirty distinct zones where work activities occur. During 1999, over five thousand transfers from one zone to another were conducted. Limits are placed on mass, material form and type, and container typesmore » for each zone. Ml material and containers are tracked using the Mass Tracking System (MTG). The MTG uses an Oracle database and numerous applications to manage the database. The database stores information specific to the process, including material composition and mass, container identification number and mass, transfer history, and the operators involved in each transfer. The process is controlled using written procedures which specify the zone, containers, and material involved in a task. Transferring a container from one zone to another is called a zone-to-zone transfer (ZZT). ZZTs consist of four distinct phases, select, request, identify, and completion.« less

  14. A comprehensive assessment of collision likelihood in Geosynchronous Earth Orbit

    NASA Astrophysics Data System (ADS)

    Oltrogge, D. L.; Alfano, S.; Law, C.; Cacioni, A.; Kelso, T. S.

    2018-06-01

    Knowing the likelihood of collision for satellites operating in Geosynchronous Earth Orbit (GEO) is of extreme importance and interest to the global community and the operators of GEO spacecraft. Yet for all of its importance, a comprehensive assessment of GEO collision likelihood is difficult to do and has never been done. In this paper, we employ six independent and diverse assessment methods to estimate GEO collision likelihood. Taken in aggregate, this comprehensive assessment offer new insights into GEO collision likelihood that are within a factor of 3.5 of each other. These results are then compared to four collision and seven encounter rate estimates previously published. Collectively, these new findings indicate that collision likelihood in GEO is as much as four orders of magnitude higher than previously published by other researchers. Results indicate that a collision is likely to occur every 4 years for one satellite out of the entire GEO active satellite population against a 1 cm RSO catalogue, and every 50 years against a 20 cm RSO catalogue. Further, previous assertions that collision relative velocities are low (i.e., <1 km/s) in GEO are disproven, with some GEO relative velocities as high as 4 km/s identified. These new findings indicate that unless operators successfully mitigate this collision risk, the GEO orbital arc is and will remain at high risk of collision, with the potential for serious follow-on collision threats from post-collision debris when a substantial GEO collision occurs.

  15. The record of India-Asia collision preserved in Tethyan ocean basin sediments.

    NASA Astrophysics Data System (ADS)

    Najman, Yani; Jenks, Dan; Godin, Laurent; Boudagher-Fadel, Marcelle; Bown, Paul; Horstwood, Matt; Garzanti, Eduardo; Bracialli, Laura; Millar, Ian

    2015-04-01

    The timing of India-Asia collision is critical to the understanding of crustal deformation processes, since, for example, it impacts on calculations regarding the amount of convergence that needs to be accommodated by various mechanisms. In this research we use sediments originally deposited in the Tethyan ocean basin and now preserved in the Himalayan orogeny to constrain the timing of collision. In the NW Himalaya, a number of workers have proposed a ca 55-50 Ma age for collision along the Indus suture zone which separates India from the Kohistan-Ladakh Intraoceanic Island arc (KLA) to the north. This is based on a number of factors including the age of youngest marine sediments in the Indus suture (e.g. Green et al. 2008), age of eclogites indicative of onset of Indian continental subduction (e.g. de Sigoyer et al. 2000), and first evidence of detritus from north of the suture zone deposited on the Indian plate (e.g. Clift et al. 2002). Such evidence can be interpreted as documenting the age of India-Asia collision if one takes the KLA to have collided with the Asian plate prior to its collision with India (e.g. Petterson 2010 and refs therein). However, an increasing number of workers propose that the KLA collided with Asia subsequent to its earlier collision with India, dated variously at 85 Ma (Chatterjee et al. 2013), 61 Ma (Khan et al. 2009) and 50 Ma (Bouilhol et al. 2013). This, plus the questioning of earlier provenance work (Clift et al. 2002) regarding the validity of their data for constraining timing of earliest arrival of material north of the suture deposited on the Indian plate (Henderson et al. 2011) suggests that the time is right for a reappraisal of this topic. We use a provenance-based approach here, using combined U-Pb and Hf on detrital zircons from Tethyan ocean basin sediments, along with petrography and biostratigraphy, to identify first arrival of material from north of the Indian plate to arrive on the Indian continent, to constrain

  16. Molecular differences in transition zone and peripheral zone prostate tumors

    PubMed Central

    Sinnott, Jennifer A.; Rider, Jennifer R.; Carlsson, Jessica; Gerke, Travis; Tyekucheva, Svitlana; Penney, Kathryn L.; Sesso, Howard D.; Loda, Massimo; Fall, Katja; Stampfer, Meir J.; Mucci, Lorelei A.; Pawitan, Yudi; Andersson, Sven-Olof; Andrén, Ove

    2015-01-01

    Prostate tumors arise primarily in the peripheral zone (PZ) of the prostate, but 20–30% arise in the transition zone (TZ). Zone of origin may have prognostic value or reflect distinct molecular subtypes; however, it can be difficult to determine in practice. Using whole-genome gene expression, we built a signature of zone using normal tissue from five individuals and found that it successfully classified nine tumors of known zone. Hypothesizing that this signature captures tumor zone of origin, we assessed its relationship with clinical factors among 369 tumors of unknown zone from radical prostatectomies (RPs) and found that tumors that molecularly resembled TZ tumors showed lower mortality (P = 0.09) that was explained by lower Gleason scores (P = 0.009). We further applied the signature to an earlier study of 88 RP and 333 transurethral resection of the prostate (TURP) tumor samples, also of unknown zone, with gene expression on ~6000 genes. We had observed previously substantial expression differences between RP and TURP specimens, and hypothesized that this might be because RPs capture primarily PZ tumors, whereas TURPs capture more TZ tumors. Our signature distinguished these two groups, with an area under the receiver operating characteristic curve of 87% (P < 0.0001). Our findings that zonal differences in normal tissue persist in tumor tissue and that these differences are associated with Gleason score and sample type suggest that subtypes potentially resulting from different etiologic pathways might arise in these zones. Zone of origin may be important to consider in prostate tumor biomarker research. PMID:25870172

  17. Chiral Magnetic Effect in Heavy Ion Collisions

    DOE PAGES

    Liao, Jinfeng

    2016-12-01

    The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. We show it is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields |Β →|~m 2 π are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. Lastly, in this contribution we give amore » brief overview on the status of such efforts.« less

  18. Active Collision Avoidance for Planetary Landers

    NASA Technical Reports Server (NTRS)

    Rickman, Doug; Hannan, Mike; Srinivasan, Karthik

    2014-01-01

    Present day robotic missions to other planets require precise, a priori knowledge of the terrain to pre-determine a landing spot that is safe. Landing sites can be miles from the mission objective, or, mission objectives may be tailored to suit landing sites. Future robotic exploration missions should be capable of autonomously identifying a safe landing target within a specified target area selected by mission requirements. Such autonomous landing sites must (1) 'see' the surface, (2) identify a target, and (3) land the vehicle. Recent advances in radar technology have resulted in small, lightweight, low power radars that are used for collision avoidance and cruise control systems in automobiles. Such radar systems can be adapted for use as active hazard avoidance systems for planetary landers. The focus of this CIF proposal is to leverage earlier work on collision avoidance systems for MSFC's Mighty Eagle lander and evaluate the use of automotive radar systems for collision avoidance in planetary landers.

  19. Analytical formulation of impulsive collision avoidance dynamics

    NASA Astrophysics Data System (ADS)

    Bombardelli, Claudio

    2014-02-01

    The paper deals with the problem of impulsive collision avoidance between two colliding objects in three dimensions and assuming elliptical Keplerian orbits. Closed-form analytical expressions are provided that accurately predict the relative dynamics of the two bodies in the encounter b-plane following an impulsive delta-V manoeuvre performed by one object at a given orbit location prior to the impact and with a generic three-dimensional orientation. After verifying the accuracy of the analytical expressions for different orbital eccentricities and encounter geometries the manoeuvre direction that maximises the miss distance is obtained numerically as a function of the arc length separation between the manoeuvre point and the predicted collision point. The provided formulas can be used for high-accuracy instantaneous estimation of the outcome of a generic impulsive collision avoidance manoeuvre and its optimisation.

  20. Computations of Drop Collision and Coalescence

    NASA Technical Reports Server (NTRS)

    Tryggvason, Gretar; Juric, Damir; Nas, Selman; Mortazavi, Saeed

    1996-01-01

    Computations of drops collisions, coalescence, and other problems involving drops are presented. The computations are made possible by a finite difference/front tracking technique that allows direct solutions of the Navier-Stokes equations for a multi-fluid system with complex, unsteady internal boundaries. This method has been used to examine the various collision modes for binary collisions of drops of equal size, mixing of two drops of unequal size, behavior of a suspension of drops in linear and parabolic shear flows, and the thermal migration of several drops. The key results from these simulations are reviewed. Extensions of the method to phase change problems and preliminary results for boiling are also shown.

  1. STCA, TCAS, Airproxes and Collision Risk

    NASA Astrophysics Data System (ADS)

    Brooker, Peter

    2005-09-01

    The focus here is on the performance of and interaction between the Traffic Alert and Collision Avoidance System (TCAS) and the controller's short-term conflict alert (STCA) system. The data source used is UK Airprox Board Reports of close encounters between aircraft, and the focus is on commercial air transport aircraft using UK controlled airspace with a radar service. Do the systems work well together? Are controllers surprised when they find out that a pilot has received a TCAS resolution advisory? What do TCAS and STCA events say about collision risk? Generally, the systems seem to work together well. On most occasions, controllers are not surprised by TCAS advisories: either they have detected the problem themselves or STCA has alerted them to it. The statistically expected rate of future mid-air collisions is estimated by extrapolation of Airprox closest encounter distances.

  2. Collision-spike sputtering of Au nanoparticles

    DOE PAGES

    Sandoval, Luis; Urbassek, Herbert M.

    2015-08-06

    Ion irradiation of nanoparticles leads to enhanced sputter yields if the nanoparticle size is of the order of the ion penetration depth. While this feature is reasonably well understood for collision-cascade sputtering, we explore it in the regime of collision-spike sputtering using molecular-dynamics simulation. For the particular case of 200-keV Xe bombardment of Au particles, we show that collision spikes lead to abundant sputtering with an average yield of 397 ± 121 atoms compared to only 116 ± 48 atoms for a bulk Au target. Only around 31 % of the impact energy remains in the nanoparticles after impact; themore » remainder is transported away by the transmitted projectile and the ejecta. As a result, the sputter yield of supported nanoparticles is estimated to be around 80 % of that of free nanoparticles due to the suppression of forward sputtering.« less

  3. Neutrino quantum kinetic equations: The collision term

    DOE PAGES

    Blaschke, Daniel N.; Cirigliano, Vincenzo

    2016-08-01

    We derive the collision term relevant for neutrino quantum kinetic equations in the early universe and compact astrophysical objects, displaying its full matrix structure in both flavor and spin degrees of freedom. We include in our analysis neutrino-neutrino processes, scattering and annihilation with electrons and positrons, and neutrino scattering off nucleons (the latter in the low-density limit). After presenting the general structure of the collision terms, we take two instructive limiting cases. The one-flavor limit highlights the structure in helicity space and allows for a straightforward interpretation of the off-diagonal entries in terms of the product of scattering amplitudes ofmore » the two helicity states. As a result, the isotropic limit is relevant for studies of the early universe: in this case the terms involving spin coherence vanish and the collision term can be expressed in terms of two-dimensional integrals, suitable for computational implementation.« less

  4. Somatostatinoma: collision with neurofibroma and ultrastructural features.

    PubMed

    Varikatt, W; Yong, J L C; Killingsworth, M C

    2006-11-01

    The clinical presentation, histopathology and immunoelectron microscopic features of two cases of duodenal somatostatinoma are described, one of which is a hitherto unreported example of a collision tumour with a neurofibroma. Ultrastructural morphometric immunoelectron microscopy studies revealed the presence of four types of cells in both tumours, but there was no difference in the proportions of these cells between the collision tumour and the non-collision tumour. Neurosecretory granules ranging in size from 255-815 nm were generally larger than those previously reported for somatostatinomas and somatostatin was identified in granules of all sizes across this range. Neither tumour was associated with the somatostatinoma syndrome comprising associated diabetes mellitis, steatorrhoea and cholelithiasis.

  5. Collision Tumor between Trichofolliculoma and Melanocytic Nevus.

    PubMed

    Bolte, Christel; Cullen, Roberto; Sazunic, Ivo

    2017-01-01

    Trichofolliculoma (TF) is a hamartomatous hair follicle-related tumor, clinically described as a dome-shaped papule with a central pore crossed by one or more silky white hairs. Histologically, it described as a cystic cavity containing keratinous debris, hair shaft fragments, and numerous hair follicles arising from its linings. Collision or compound tumors are a coexistence of two or more identifiable tumors in the same lesion. We present a case of a 47-year-old man with a lesion on his left cheek clinically characterized as a TF. However, the histopathological study reveals a collision tumor involving a TF and a melanocytic nevus. Collision tumors involving melanocytic nevi and hair follicle-related tumors have been previously reported, such as desmoplastic trichoepithelioma, epidermoid cyst, folliculosebaceous cystic hamartoma, and trichoadenoma.

  6. Collisions between ultracold metastable He atoms

    NASA Astrophysics Data System (ADS)

    Woestenenk, G.; Mastwijk, H. C.; Thomsen, J. W.; vna der Straten, P.; Pieksma, M.; van Rijnbach, M.; Niehaus, A.

    1999-06-01

    We present experimental data on collisions between excited He-atoms occurring in a magneto-optical trap (MOT) at a temperature of 1.1 mK. He(2 3S)-atoms produced in a discharge are pre-cooled and trapped using the He(2 3S)-He(2 3P 2) transition for laser manipulation. Measurements of the Penning ionization rate as a function of the MOT-laser frequency are presented and theoretically analyzed. The analysis, based on a model which is presented in detail for the first time, leads to a good understanding of the complex nature of optical collisions. Further, first and preliminary measurements of the kinetic energy distributions of He 2+- and He +-ions formed by Penning ionization in optical collisions are presented.

  7. Rapidity dependence in holographic heavy ion collisions

    DOE PAGES

    Wilke van der Schee; Schenke, Bjorn

    2015-12-11

    We present an attempt to closely mimic the initial stage of heavy ion collisions within holography, assuming a decoupling of longitudinal and transverse dynamics in the very early stage. We subsequently evolve the obtained initial state using state-of-the-art hydrodynamic simulations and compare results with experimental data. We present results for charged hadron pseudorapidity spectra and directed and elliptic flow as functions of pseudorapidity for √s NN = 200GeV Au-Au and 2.76TeV Pb-Pb collisions. As a result, the directed flow interestingly turns out to be quite sensitive to the viscosity. The results can explain qualitative features of the collisions, but themore » rapidity spectra in our current model is narrower than the experimental data.« less

  8. Tilting Uranus without a Collision

    NASA Astrophysics Data System (ADS)

    Rogoszinski, Zeeve; Hamilton, Douglas P.

    2016-10-01

    The most accepted hypothesis for the origin of Uranus' 98° obliquity is a giant collision during the late stages of planetary accretion. This model requires a single Earth mass object striking Uranus at high latitudes; such events occur with a probability of about 10%. Alternatively, Uranus' obliquity may have arisen from a sequence of smaller impactors which lead to a uniform distribution of obliquities. Here we explore a third model for tilting Uranus using secular spin-orbit resonance theory. We investigate early Solar System configurations in which a secular resonance between Uranus' axial precession frequency and another planet's orbital node precession frequency might occur.Thommes et al. (1999) hypothesized that Uranus and Neptune initially formed between Jupiter and Saturn, and were then kicked outward. In our scenario, Neptune leaves first while Uranus remains behind. As an exterior Neptune slowly migrates outward, it picks up both Uranus and Saturn in spin-orbit resonances (Ward and Hamilton 2004; Hamilton and Ward 2004). Only a distant Neptune has a nodal frequency slow enough to resonate with Uranus' axial precession.This scenario, with diverging orbits, results in resonance capture. As Neptune migrates outward its nodal precession slows. While in resonance, Uranus and Saturn each tilt a bit further, slowing their axial precession rates to continually match Neptune's nodal precession rate. Tilting Uranus to high obliquities takes a few 100 Myrs. This timescale may be too long to hold Uranus captive between Jupiter and Saturn, and we are investigating how to reduce it. We also find that resonance capture is rare if Uranus' initial obliquity is greater than about 10°, as the probability of capture decreases as the planet's initial obliquity increases. We will refine this estimate by quantifying capture statistics, and running accretion simulations to test the likelihood of a low early obliquity. Our preliminary findings show that most assumptions about

  9. Rail passenger equipment collision tests : analysis of occupant protection measurements

    DOT National Transportation Integrated Search

    2000-01-01

    The Federal Railroad Administration has been conducting research : on occupant protection in train collisions. As part of this research, : computer simulations have been performed, passenger seats have been sled tested, and two full-scale collision t...

  10. Evaluation of an automotive rear-end collision avoidance system

    DOT National Transportation Integrated Search

    2006-04-01

    This report presents the results of an independent evaluation of the Automotive Collision Avoidance System (ACAS). The ACAS integrates forward collision warning (FCW) and adaptive cruise control (ACC) functions for light-vehicle applications. The FCW...

  11. A toolkit of measures for reducing animal-vehicle collisions.

    DOT National Transportation Integrated Search

    2006-01-01

    Animal-vehicle collisions are a growing concern in terms of human safety; costs related to injury, property damage, and disposal; and the viability of wildlife populations. These collisions are rapidly increasing throughout the United States, and Vir...

  12. QCD tests in $$p\\bar{p}$$ collisions

    SciT

    Huth, John E.; Mangano, Michelangelo L.

    1993-02-01

    We review the status of QCD tests in high energy p-pbar collisions. Contents: i) Introduction ii) QCD in Hadronic Collisions iii) Jet Production iv) Heavy Flavour Production v) W and Z Production vi) Direct Photons.

  13. Collision diagram software compatibility with Iowa accident database

    DOT National Transportation Integrated Search

    1998-01-01

    The Iowa DOT was interested in automated collision diagram products. The Center for Transportation Research and Education (CTRE), an Iowa State University center, completed an evaluation. This paper presents the findings. An automated collision diagr...

  14. Achieving That Elusive "Leadership Zone"

    ERIC Educational Resources Information Center

    Martin, Ann M.

    2016-01-01

    Reaching the "leadership zone" happens when librarians tap into the extraordinary skills lying within to overcome obstacles and transform sometimes-difficult situations into meaningful outcomes. Maturing into an experienced leader who stays in the leadership zone requires knowledge, training, and practice. This article provides tactical…

  15. Coulomb collisions in the solar wind

    NASA Technical Reports Server (NTRS)

    Klein, L. W.; Ogilvie, K. W.; Burlaga, L. F.

    1985-01-01

    A major improvement of the present investigation over previous studies of the subject is related to the use of helium temperatures obtained from helium ion measurements uncontaminated by the high-velocity tail of the proton distribution. More observations, covering a large parameter range, were employed, and the effects of interspecies drift were taken into account. It is shown in a more definite way than has been done previously, that Coulomb collisions provide the most important mechanism bringing about equilibrium between helium and protons in the solar wind. Other mechanisms may play some part in restricted regions, but Coulomb collisions are dominant on the macroscale.

  16. Fully dynamical simulation of central nuclear collisions.

    PubMed

    van der Schee, Wilke; Romatschke, Paul; Pratt, Scott

    2013-11-27

    We present a fully dynamical simulation of central nuclear collisions around midrapidity at LHC energies. Unlike previous treatments, we simulate all phases of the collision, including the equilibration of the system. For the simulation, we use numerical relativity solutions to anti-de Sitter space/conformal field theory for the preequilibrium stage, viscous hydrodynamics for the plasma equilibrium stage, and kinetic theory for the low-density hadronic stage. Our preequilibrium stage provides initial conditions for hydrodynamics, resulting in sizable radial flow. The resulting light particle spectra reproduce the measurements from the ALICE experiment at all transverse momenta.

  17. Resonance Production in Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Knospe, Anders G.

    2018-02-01

    Hadronic resonances are unique probes that allow the properties of heavyion collisions to be studied. Topics that can be studied include modification of spectral shapes, in-medium energy loss of parsons, vector-meson spin alignment, hydrodynamic flow, recombination, strangeness production, and the properties of the hadronic phase. Measurements of resonances in p+p, p+A, and d+A collisions serve as baselines for heavy-ion studies and also permit searches for possible collective effects in these smaller systems. These proceedings present a selection of results related to these topics from experiments at RHIC, LHC, and other facilities, as well as comparisons to theoretical models.

  18. A numerical 4D Collision Risk Model

    NASA Astrophysics Data System (ADS)

    Schmitt, Pal; Culloch, Ross; Lieber, Lilian; Kregting, Louise

    2017-04-01

    With the growing number of marine renewable energy (MRE) devices being installed across the world, some concern has been raised about the possibility of harming mobile, marine fauna by collision. Although physical contact between a MRE device and an organism has not been reported to date, these novel sub-sea structures pose a challenge for accurately estimating collision risks as part of environmental impact assessments. Even if the animal motion is simplified to linear translation, ignoring likely evasive behaviour, the mathematical problem of establishing an impact probability is not trivial. We present a numerical algorithm to obtain such probability distributions using transient, four-dimensional simulations of a novel marine renewable device concept, Deep Green, Minesto's power plant and hereafter referred to as the 'kite' that flies in a figure-of-eight configuration. Simulations were carried out altering several configurations including kite depth, kite speed and kite trajectory while keeping the speed of the moving object constant. Since the kite assembly is defined as two parts in the model, a tether (attached to the seabed) and the kite, collision risk of each part is reported independently. By comparing the number of collisions with the number of collision-free simulations, a probability of impact for each simulated position in the cross- section of the area is considered. Results suggest that close to the bottom, where the tether amplitude is small, the path is always blocked and the impact probability is 100% as expected. However, higher up in the water column, the collision probability is twice as high in the mid line, where the tether passes twice per period than at the extremes of its trajectory. The collision probability distribution is much more complex in the upper end of the water column, where the kite and tether can simultaneously collide with the object. Results demonstrate the viability of such models, which can also incorporate empirical

  19. Automobile Collisions, Kinematics and Related Injury Patterns

    PubMed Central

    Siegel, A. W.

    1972-01-01

    It has been determined clinically that fatalities and injury severity resulting from automobile collisions have decreased during the last five years for low impact speeds. This reduction is a direct result of the application of biomechanics and occupant kinematics, as well as changes in automobile design. The paper defines terminology used in the field of mechanics and develops examples and illustrations of the physical concepts of acceleration, force strength, magnitude duration, rate of onset and others, as they apply to collision phenomena and injury. The mechanism of injury pattern reduction through the use of restraint systems is illustrated. PMID:5059661

  20. Multichannel seismic measurements on the northern edge of the Bahaman-Cuban collision zone

    Ball, M.M.

    1983-01-01

    This paper presents geophysical data obtained, in the western reaches of the Old Bahama Channel separating Cuba and the Bahamas (Figure 1). These data were collected as part of an ongoing investigation of Caribbean and Bahaman geology primarily conducted by University of Miami and the U.S. Geological Survey (USGS). The work was done on the R/V Gilliss of Rosenstiel School of Marine and Atmospheric Sciences, (RSMAS), University of Miami. The scientific party included members of the Woods Hole Oceanographic Institute (WHOI) and RSMAS.

  1. Support for the Elimination of Roadside Hazards : Evaluating Roadside Collision Data and Clear Zone Requirements

    DOT National Transportation Integrated Search

    2009-09-01

    Over a three year period (2004-2006), there were more than 60,000 crashes involving fixed objects (trees, utility poles, : culverts, bridge piers, etc.) located within South Carolina roadsides. These fixed object crashes accounted for 20% of all cras...

  2. Magnetism at Depth: A View from an Ancient Continental Subduction and Collision Zone

    NASA Astrophysics Data System (ADS)

    McEnroe, Suzanne A.; Robinson, Peter; Church, Nathan; Purucker, Michael

    2018-04-01

    Recent sophisticated global data compilations and magnetic surveys have been used to investigate the nature of magnetization in the lower crust and upper mantle. Two approaches to constraining magnetizations are developed, providing minimum (0.01 SI) and maximum (0.04 SI) susceptibility estimates, given some assumed thickness (15+ km here). These values are higher than are found in many continental rocks. Are there rocks deeper in the crust or upper mantle that are more magnetic than expected, or are the model assumptions incomplete? What is the magnetic behavior of deep-crustal and upper mantle rocks, when slightly cooler than the Curie or Néel temperatures of their magnetic minerals, after being exhumed from locations of high-grade metamorphism at greater depth? Different sets of equilibrium metamorphic minerals can be considered that would form under different conditions. Results on 1,501 samples from the Western Gneiss Region (WGR) Norway, mainly from mafic and ultramafic bodies subducted to depths of 60-200 km and temperatures of 750 up to 950°C at the very highest pressures, show that rocks did not fully equilibrate to the dominant metamorphic-facies conditions. There is a large variation in petrophysical properties, oxide minerals, and mineral assemblages in WGR samples, though they cannot explain the broad high-amplitude (deep-seated) anomalies measured in this region. The presence of magnetite, and exsolved titanohematite and hemoilmenite in samples, shows those magnetic phases are preserved even at eclogite-facies conditions, in part because complete eclogite-facies equilibrium was rarely achieved.

  3. The Supergalactic Habitable Zone

    NASA Astrophysics Data System (ADS)

    Mason, Paul

    2018-01-01

    Habitability in the local universe is examined. Constrained by metal abundance and exposure to sterilizing events, life as we know it requires significantly long periods of stable environmental conditions. Planets within galaxies undergoing major mergers, active AGN, starburst episodes, and merging black holes pose serious threats to long-term habitability. Importantly, the development of several layers of protection from high-energy particles such as a thick atmosphere, a strong planetary magnetic field, an astrosphere, and a galactic magnetic field is of great benefit. Factors such as star type and activity, planet type and composition, the location of a planet within its host galaxy, and even the location within a supercluster of galaxies can affect the potential habitability of planets. We discuss the concept of the Supergalactic Habitable Zone introduced by Mason and Biermann in terms of habitability in the local universe and find that galaxies near the center of the Virgo cluster, for example, have a much lower probability for the development of life as we know it as compared to locations in the Milky Way.

  4. Detecting livestock production zones.

    PubMed

    Grisi-Filho, J H H; Amaku, M; Ferreira, F; Dias, R A; Neto, J S Ferreira; Negreiros, R L; Ossada, R

    2013-07-01

    Communities are sets of nodes that are related in an important way, most likely sharing common properties and/or playing similar roles within a network. Unraveling a network structure, and hence the trade preferences and pathways, could be useful to a researcher or a decision maker. We implemented a community detection algorithm to find livestock communities, which is consistent with the definition of a livestock production zone, assuming that a community is a group of farm premises in which an animal is more likely to stay during its lifetime than expected by chance. We applied this algorithm to the network of animal movements within the state of Mato Grosso for 2007. This database holds information concerning 87,899 premises and 521,431 movements throughout the year, totaling 15,844,779 animals moved. The community detection algorithm achieved a network partition that shows a clear geographical and commercial pattern, two crucial features for preventive veterinary medicine applications; this algorithm provides also a meaningful interpretation to trade networks where links emerge based on trader node choices. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Contact Zone: Missoula

    2015-07-23

    A rock outcrop dubbed "Missoula," near Marias Pass on Mars, is seen in this image mosaic taken by the Mars Hand Lens Imager on NASA's Curiosity rover. Pale mudstone (bottom of outcrop) meets coarser sandstone (top) in this geological contact zone, which has piqued the interest of Mars scientists. White mineral veins that fill fractures in the lower rock unit abruptly end when they meet the upper rock unit. Such clues help scientists understand the possible timing of geological events. First, the fine sediment that now forms the lower unit would have hardened into rock. It then would have fractured, and groundwater would have deposited calcium sulfate minerals into the fractures. Next, the coarser sediment that forms the upper unit would have been deposited. The area pictured is about 16 inches (40 centimeters) across. The image was taken on the 1,031st Martian day, or sol, of the mission (July 1, 2015). MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http://photojournal.jpl.nasa.gov/catalog/PIA19829

  6. Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Johnson, B.

    1988-01-01

    The Coastal Zone Color Scanner (CZCS) spacecraft ocean color instrument is capable of measuring and mapping global ocean surface chlorophyll concentration. It is a scanning radiometer with multiband capability. With new electronics and some mechanical, and optical re-work, it probably can be made flight worthy. Some additional components of a second flight model are also available. An engineering study and further tests are necessary to determine exactly what effort is required to properly prepare the instrument for spaceflight and the nature of interfaces to prospective spacecraft. The CZCS provides operational instrument capability for monitoring of ocean productivity and currents. It could be a simple, low cost alternative to developing new instruments for ocean color imaging. Researchers have determined that with global ocean color data they can: specify quantitatively the role of oceans in the global carbon cycle and other major biogeochemical cycles; determine the magnitude and variability of annual primary production by marine phytoplankton on a global scale; understand the fate of fluvial nutrients and their possible affect on carbon budgets; elucidate the coupling mechanism between upwelling and large scale patterns in ocean basins; answer questions concerning the large scale distribution and timing of spring blooms in the global ocean; acquire a better understanding of the processes associated with mixing along the edge of eddies, coastal currents, western boundary currents, etc., and acquire global data on marine optical properties.

  7. Jovian 'Twilight Zone'

    2018-03-01

    This image captures the swirling cloud formations around the south pole of Jupiter, looking up toward the equatorial region. NASA's Juno spacecraft took the color-enhanced image during its eleventh close flyby of the gas giant planet on Feb. 7 at 7:11 a.m. PST (10:11 a.m. EST). At the time, the spacecraft was 74,896 miles (120,533 kilometers) from the tops of Jupiter's clouds at 84.9 degrees south latitude. Citizen scientist Gerald Gerald Eichstädt processed this image using data from the JunoCam imager. This image was created by reprocessing raw JunoCam data using trajectory and pointing data from the spacecraft. This image is one in a series of images taken in an experiment to capture the best results for illuminated parts of Jupiter's polar region. To make features more visible in Jupiter's terminator -- the region where day meets night -- the Juno team adjusted JunoCam so that it would perform like a portrait photographer taking multiple photos at different exposures, hoping to capture one image with the intended light balance. For JunoCam to collect enough light to reveal features in Jupiter's dark twilight zone, the much brighter illuminated day-side of Jupiter becomes overexposed with the higher exposure. https://photojournal.jpl.nasa.gov/catalog/PIA21980

  8. 33 CFR 165.169 - Safety and Security Zones: New York Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety and Security Zones: New York Marine Inspection Zone and Captain of the Port Zone. 165.169 Section 165.169 Navigation and... Areas First Coast Guard District § 165.169 Safety and Security Zones: New York Marine Inspection Zone...

  9. 33 CFR 165.169 - Safety and Security Zones: New York Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety and Security Zones: New York Marine Inspection Zone and Captain of the Port Zone. 165.169 Section 165.169 Navigation and... Areas First Coast Guard District § 165.169 Safety and Security Zones: New York Marine Inspection Zone...

  10. 33 CFR 165.169 - Safety and Security Zones: New York Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety and Security Zones: New York Marine Inspection Zone and Captain of the Port Zone. 165.169 Section 165.169 Navigation and... Areas First Coast Guard District § 165.169 Safety and Security Zones: New York Marine Inspection Zone...

  11. 33 CFR 165.169 - Safety and Security Zones: New York Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety and Security Zones: New York Marine Inspection Zone and Captain of the Port Zone. 165.169 Section 165.169 Navigation and... Areas First Coast Guard District § 165.169 Safety and Security Zones: New York Marine Inspection Zone...

  12. 33 CFR 165.169 - Safety and Security Zones: New York Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety and Security Zones: New York Marine Inspection Zone and Captain of the Port Zone. 165.169 Section 165.169 Navigation and... Areas First Coast Guard District § 165.169 Safety and Security Zones: New York Marine Inspection Zone...

  13. Analysis of bus collision and non-collision incidents using transit ITS and other archived operations data.

    DOT National Transportation Integrated Search

    2010-11-01

    This report analyzes factors contributing to bus operations safety incidents at TriMet, the transit provider for the Portland Oregon metropolitan : region. The analysis focuses on 4,631 collision and non-collision incidents that occurred between 2006...

  14. Professor Daniel M Segal and studies of collision and `half-collision' complexes at Imperial College London and Oxford University

    NASA Astrophysics Data System (ADS)

    Burnett, Keith

    2018-03-01

    We discuss Danny Segal's key roles in the development of the spectroscopy of collision complexes at Imperial College and Oxford. We explain how his work lead to a number of new insights into collision dynamics in external fields.

  15. 14 CFR 437.65 - Collision avoidance analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Collision avoidance analysis. 437.65... analysis. (a) For a permitted flight with a planned maximum altitude greater than 150 kilometers, a permittee must obtain a collision avoidance analysis from United States Strategic Command. (b) The collision...

  16. 14 CFR 417.231 - Collision avoidance analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Collision avoidance analysis. 417.231..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.231 Collision avoidance analysis. (a) General. A flight safety analysis must include a collision avoidance analysis that...

  17. Temperature Variations and N+/O+ in the Orion Nebula II. The Collision Strengths

    NASA Astrophysics Data System (ADS)

    Rubin, R. H.; Dufour, R. J.; Martin, P. G.; Ferland, G. J.; Baldwin, J. A.; Ortiz, C. O.; Walter, D. K.

    2001-03-01

    We continue an investigation of electron temperature (T[e]), mean-square T[e] variation (t2), and the N+/O+ abundance ratio. Our previous analysis of HST spectra of the Orion Nebula used collision strengths for N+ by Stafford et al. (1994). Here we examine the consequences of changing just these collision strengths by using those of Lennon & Burke (1994). Rather than utilize the standard analytical, low electron density (N[e]) regime treatment for the analysis, we develop a numerical technique that is valid at any density. With Stafford et al. collision strengths, we find the average N[e] for the (N+, O+)-zone is 7500 cm-3, the average T[e] is 9160 K, t2 is 0.045, and N+/O+ is 0.14. Using Lennon & Burke values, the ``best" solution is found when these respective quantities are: 9000 cm-3, 9920 K, 0.00073, and 0.15. The value for t2 is dramatically lower than that found using Stafford et al. data.

  18. Plate boundary reorganization in the active Banda Arc-continent collision: Insights from new GPS measurements

    NASA Astrophysics Data System (ADS)

    Nugroho, Hendro; Harris, Ron; Lestariya, Amin W.; Maruf, Bilal

    2009-12-01

    New GPS measurements reveal that large sections of the SE Asian Plate are progressively accreting to the edge of the Australian continent by distribution of strain away from the deformation front to forearc and backarc plate boundary segments. The study was designed to investigate relative motions across suspected plate boundary segments in the transition from subduction to collision. The oblique nature of the collision provides a way to quantify the spatial and temporal distribution of strain from the deformation front to the back arc. The 12 sites we measured from Bali to Timor included some from an earlier study and 7 additional stations, which extended the epoch of observation to ten years at many sites. The resulting GPS velocity field delineates at least three Sunda Arc-forearc regions around 500 km in strike-length that shows different amounts of coupling to the Australian Plate. Movement of these regions relative to SE Asia increases from 21% to 41% to 63% eastward toward the most advanced stages of collision. The regions are bounded by the deformation front to the south, the Flores-Wetar backarc thrust system to the north, and poorly defined structures on the sides. The suture zone between the NW Australian continental margin and the Sunda-Banda Arcs is still evolving with more than 20 mm/yr of movement measured across the Timor Trough deformation front between Timor and Australia.

  19. Smart Collision Avoidance and Hazard Routing Mechanism for Intelligent Transport Network

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Gupta, Pooja; Wahab, Mohd Helmy Abd

    2017-08-01

    The smart vehicular ad-hoc network is the network that consists of vehicles for smooth movement and better management of the vehicular connectivity across the given network. This research paper aims to propose a set of solution for the VANETs consisting of the automatic driven vehicles, also called as the autonomous car. Such vehicular networks are always prone to collision due to the natural or un-natural reasons which must be solved before the large-scale deployment of the autonomous transport systems. The newly designed intelligent transport movement control mechanism is based upon the intelligent data propagation along with the vehicle collision and traffic jam prevention schema [8], which may help the future designs of smart cities to become more robust and less error-prone. In the proposed model, the focus is on designing a new dynamic and robust hazard routing protocol for intelligent vehicular networks for improvement of the overall performance in various aspects. It is expected to improve the overall transmission delay as well as the number of collisions or adversaries across the vehicular network zone.

  20. A finite volume Fokker-Planck collision operator in constants-of-motion coordinates

    NASA Astrophysics Data System (ADS)

    Xiong, Z.; Xu, X. Q.; Cohen, B. I.; Cohen, R.; Dorr, M. R.; Hittinger, J. A.; Kerbel, G.; Nevins, W. M.; Rognlien, T.

    2006-04-01

    TEMPEST is a 5D gyrokinetic continuum code for edge plasmas. Constants of motion, namely, the total energy E and the magnetic moment μ, are chosen as coordinate s because of their advantage in minimizing numerical diffusion in advection operato rs. Most existing collision operators are written in other coordinates; using them by interpolating is shown to be less satisfactory in maintaining overall numerical accuracy and conservation. Here we develop a Fokker-Planck collision operator directly in (E,μ) space usin g a finite volume approach. The (E, μ) grid is Cartesian, and the turning point boundary represents a straight line cutting through the grid that separates the ph ysical and non-physical zones. The resulting cut-cells are treated by a cell-mergin g technique to ensure a complete particle conservation. A two dimensional fourth or der reconstruction scheme is devised to achieve good numerical accuracy with modest number of grid points. The new collision operator will be benchmarked by numerical examples.

  1. 49 CFR 71.11 - Alaska zone.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Alaska zone. 71.11 Section 71.11 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.11 Alaska zone. The sixth zone, the Alaska standard time zone, includes the entire State of Alaska, except as provided in § 71.12...

  2. 49 CFR 71.13 - Samoa zone.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Samoa zone. 71.13 Section 71.13 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.13 Samoa zone. The eighth zone, the Samoa standard time zone, includes that part of the United States that is between 169 degrees...

  3. 49 CFR 71.6 - Central zone.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.6 Central zone. The third zone, the central standard time zone, includes that part of the United States that is west of the boundary line between the eastern and central standard time zones described in § 71.5 and east of the...

  4. 49 CFR 71.4 - Eastern zone.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Eastern zone. 71.4 Section 71.4 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.4 Eastern zone. The second zone, the eastern standard time zone, includes that part of the United States that is west of 67°30″ W...

  5. 49 CFR 71.3 - Atlantic zone.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Atlantic zone. 71.3 Section 71.3 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.3 Atlantic zone. The first zone, the Atlantic standard time zone, includes that part of the United States that is between 52°30″ W...

  6. 49 CFR 71.14 - Chamorro Zone.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Chamorro Zone. 71.14 Section 71.14 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.14 Chamorro Zone. The ninth zone, the Chamorro standard time zone, includes the Island of Guam and the Commonwealth of the Northern...

  7. 49 CFR 71.8 - Mountain zone.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.8 Mountain zone. The fourth zone, the mountain standard time zone, includes that part of the United States that is west of the boundary line between the central and mountain standard time zones described in § 71.7 and east of the...

  8. 49 CFR 71.10 - Pacific zone.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.10 Pacific zone. The fifth zone, the Pacific standard time zone, includes that part of the continental United States that is west of the boundary line between the mountain and Pacific standard time zones described in § 71.9, but...

  9. 3D numerical modeling of India-Asia-like collision

    NASA Astrophysics Data System (ADS)

    -Erika Püsök, Adina; Kaus, Boris; Popov, Anton

    2013-04-01

    One of the most striking features of plate tectonics and lithospheric deformation is the India-Asia collision zone, which formed when the Indian continent collided with Eurasia, around 50 million years ago. The rise of the abnormally thick Tibetan plateau, the deformation at its Eastern and Western syntaxes, the transition from subduction to collision and uplift and the interaction of tectonics and climate are processes not fully understood. Though various geophysical methods have been employed to shed light on the present structure of the Indian-Asian lithosphere, the driving mechanisms that uplifted the Tibetan plateau remain highly controversial and different hypotheses imply contradictory scenarios. Models for double crustal thickness include: wholescale underthrusting of Indian lithospheric mantle under Tibet (Argand model), distributed homogeneous shortening or the thin-sheet model (England and Houseman, 1986), slip-line field model to also explain extrusion of Eastern side of Tibet away from Indian indentor (Tapponier and Molnar, 1976) or lower crustal flow models for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau (Royden et al., 1998, Beaumont et al., 2004). The thin-sheet model has emerged as a more successful (or at least more widely used) model, but one of its major shortcomings is that it cannot simultaneously represent channel flow and gravitational collapse of the mantle lithosphere (Lechmann et al., 2011), since these mechanisms require the lithosphere to interact with the underlying mantle, or to have a vertically non-homogeneous rheology. Of those who favour a layered structure of the lithosphere beneath Tibet, some attribute the lack of substantial seismicity underneath the Moho as evidence that all the strength of the lithosphere resides in the upper crust and the mantle is weak - the crème brulée model (Jackson, 2002), while others point out that some processes can be well explained if the crust resides

  10. Intersection collision avoidance using ITS countermeasures. Task 9, Intersection collision avoidance system performance guidelines

    DOT National Transportation Integrated Search

    2000-09-01

    Phase III of the Intersection Collision Avoidance Using ITS Countermeasures program developed testbed systems, implemented the systems on a vehicle, and performed testing to determine the potential effectiveness of this system in preventing intersect...

  11. Collision and subduction structure of the Izu-Bonin arc, central Japan: Recent studies from refraction/wide-angle reflection analysis and seismic tomography

    NASA Astrophysics Data System (ADS)

    Arai, R.; Iwasaki, T.; Sato, H.; Abe, S.; Hirata, N.

    2009-12-01

    Since the middle Miocene, the Izu-Bonin arc has been colliding from south with the Honshu arc in central Japan associated with subduction of the Philippine Sea plate. This process is responsible for forming a complex crustal structure called the Izu collision zone. Geological studies indicate the several geological blocks derived from the Izu-Bonin arc, such as the Misaka Mountains (MM), the Tanzawa Mountains (TM) and the Izu Peninsula (IP), were accreted onto the Honshu crust in the course of the collision, forming several tectonic boundaries in and around this collision zone (e.g. Amano, 1991). Recent seismic experiments succeeded in revealing the deep crustal structure in the eastern part of the Izu collision zone by reflection analysis (Sato et al., 2005) and refraction/wide-angle reflection analysis (Arai et al., 2009). Although these studies delineate the collision boundary between the Honshu crust and TM, and the upper surface of the subducting Philippine Sea plate, the southern part of the profile including the Kozu-Matsuda Fault (KMF, the tectonic boundary between TM and IP) is not well constrained due to the poor ray coverage. Moreover, clear images of tectonic boundaries are not obtained for the central or western part of the collision zone. In order to construct the structure model dominated by collision and subduction for the whole part of the collision zone, we carried out the following two analyses: (1) refraction tomography of active source data including another profile line in the western part of the collision zone (Sato et al., 2006), and (2) seismic tomography combining active and passive source data. In the analysis (1), we applied first arrival seismic tomography (Zelt and Barton, 1998) to the refraction data .We inverted over 39,000 travel times to construct a P wave velocity model for the 75-km-long transect, and a fine-scale structure with strong lateral heterogeneity was recovered. We conducted checkerboard resolution test to evaluate a

  12. Capture zones for simple aquifers

    McElwee, Carl D.

    1991-01-01

    Capture zones showing the area influenced by a well within a certain time are useful for both aquifer protection and cleanup. If hydrodynamic dispersion is neglected, a deterministic curve defines the capture zone. Analytical expressions for the capture zones can be derived for simple aquifers. However, the capture zone equations are transcendental and cannot be explicitly solved for the coordinates of the capture zone boundary. Fortunately, an iterative scheme allows the solution to proceed quickly and efficiently even on a modest personal computer. Three forms of the analytical solution must be used in an iterative scheme to cover the entire region of interest, after the extreme values of the x coordinate are determined by an iterative solution. The resulting solution is a discrete one, and usually 100-1000 intervals along the x-axis are necessary for a smooth definition of the capture zone. The presented program is written in FORTRAN and has been used in a variety of computing environments. No graphics capability is included with the program; it is assumed the user has access to a commercial package. The superposition of capture zones for multiple wells is expected to be satisfactory if the spacing is not too close. Because this program deals with simple aquifers, the results rarely will be the final word in a real application.

  13. Collision risk model for NAT region.

    DOT National Transportation Integrated Search

    1971-05-01

    The paper reviews and summarizes the essential features of the collision risk model used to analyze the effects of separation standards on safety for the parallel tracking system employed in the North Atlantic. The derivation of the model is traced f...

  14. South Carolina traffic collision fact book, 2007

    DOT National Transportation Integrated Search

    2007-01-01

    In accordance with Section 56-5-1350 of the South Carolina Code of Laws, a : tabulation and analysis of collision reports has been completed for the year : 2007 as disclosed in this publication. : The number of traffic fatalities increased from 1,044...

  15. Radio Frequency Electromagnetic Radiation From Streamer Collisions

    NASA Astrophysics Data System (ADS)

    Luque, Alejandro

    2017-10-01

    We present a full electromagnetic model of streamer propagation where the Maxwell equations are solved self-consistently together with electron transport and reactions including photoionization. We apply this model to the collision of counter-propagating streamers in gaps tens of centimeters wide and with large potential differences of hundreds of kilovolts. Our results show that streamer collisions emit electromagnetic pulses that, at atmospheric pressure, dominate the radio frequency spectrum of an extended corona in the range from about 100 MHz to a few gigahertz. We also investigate the fast penetration, after a collision, of electromagnetic fields into the streamer heads and show that these fields are capable of accelerating electrons up to about 100 keV. By substantiating the link between X-rays and high-frequency radio emissions and by describing a mechanism for the early acceleration of runaway electrons, our results support the hypothesis that streamer collisions are essential precursors of high-energy processes in electric discharges.

  16. Radio Frequency Electromagnetic Radiation From Streamer Collisions.

    PubMed

    Luque, Alejandro

    2017-10-16

    We present a full electromagnetic model of streamer propagation where the Maxwell equations are solved self-consistently together with electron transport and reactions including photoionization. We apply this model to the collision of counter-propagating streamers in gaps tens of centimeters wide and with large potential differences of hundreds of kilovolts. Our results show that streamer collisions emit electromagnetic pulses that, at atmospheric pressure, dominate the radio frequency spectrum of an extended corona in the range from about 100 MHz to a few gigahertz. We also investigate the fast penetration, after a collision, of electromagnetic fields into the streamer heads and show that these fields are capable of accelerating electrons up to about 100 keV. By substantiating the link between X-rays and high-frequency radio emissions and by describing a mechanism for the early acceleration of runaway electrons, our results support the hypothesis that streamer collisions are essential precursors of high-energy processes in electric discharges.

  17. Stationary transport processes with unbounded collision operators

    NASA Astrophysics Data System (ADS)

    Greenberg, William; van der Mee, C. V. M.

    1984-01-01

    An abstract Hilbert space equation is studied, which models many of the stationary, one-dimensional transport equations with partial-range boundary conditions. In particular, the collision term may be unbounded and nondissipative. A complete existence and uniqueness theory is presented.

  18. Primordial Particles; Collisions of Inelastic Particles

    NASA Astrophysics Data System (ADS)

    Sagi, George

    2011-03-01

    Three-dimensional matter is not defined by Euclidian or Cartesian geometries. Newton's and Einstein's laws are related to the motions of elastic masses. The study of collisions of inelastic particles opens up new vistas in physics. The present article reveals how such particles create clusters composed of various numbers of particles. The Probability of each formation, duplets, triplets, etc. can be calculated. The particles are held together by a binding force, and depending upon the angles of collisions they may also rotate around their center of geometry. Because of these unique properties such inelastic particles are referred to as primordial particles, Pp. When a given density of Pp per cubic space is given, then random collisions create a field. The calculation of the properties of such primordial field is very complex and beyond the present study. However, the angles of collisions are infinite in principle, but the probabilities of various cluster sizes are quantum dependent. Consequently, field calculations will require new complex mathematical methods to be discovered yet.

  19. Passive Collision Avoidance System for UAS

    DTIC Science & Technology

    2008-09-01

    feasibility of using SWAP efficient LWIR microbolometers as outlined in the Priest report circa 1998 as a solution to the collision avoidance problems for UASs...81 7.3 LWIR Multispectral Sensor ..........................................................................................84 7.4 LWIR ... LWIR image of the Ultralight. Muffler runs at approximately 1200 F. ......................32 Figure 36: 3D model of LVDS circuit board with L-3

  20. High energy nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Wosiek, B.

    1986-01-01

    Experimental results on high energy nucleus-nucleus interactions are presented. The data are discussed within the framework of standard super-position models and from the point-of-view of the possible formation of new states of matter in heavy ion collisions.

  1. Collision detection for spacecraft proximity operations

    NASA Technical Reports Server (NTRS)

    Vaughan, Robin M.; Bergmann, Edward V.; Walker, Bruce K.

    1991-01-01

    A new collision detection algorithm has been developed for use when two spacecraft are operating in the same vicinity. The two spacecraft are modeled as unions of convex polyhedra, where the resulting polyhedron many be either convex or nonconvex. The relative motion of the two spacecraft is assumed to be such that one vehicle is moving with constant linear and angular velocity with respect to the other. Contacts between the vertices, faces, and edges of the polyhedra representing the two spacecraft are shown to occur when the value of one or more of a set of functions is zero. The collision detection algorithm is then formulated as a search for the zeros (roots) of these functions. Special properties of the functions for the assumed relative trajectory are exploited to expedite the zero search. The new algorithm is the first algorithm that can solve the collision detection problem exactly for relative motion with constant angular velocity. This is a significant improvement over models of rotational motion used in previous collision detection algorithms.

  2. Conservative discretization of the Landau collision integral

    DOE PAGES

    Hirvijoki, E.; Adams, M. F.

    2017-03-28

    Here we describe a density, momentum-, and energy-conserving discretization of the nonlinear Landau collision integral. The method is suitable for both the finite-element and discontinuous Galerkin methods and does not require structured meshes. The conservation laws for the discretization are proven algebraically and demonstrated numerically for an axially symmetric nonlinear relaxation problem using a finite-element implementation.

  3. Relativistic Hydrodynamics for Heavy-Ion Collisions

    ERIC Educational Resources Information Center

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  4. South Carolina traffic collision fact book, 2006

    DOT National Transportation Integrated Search

    2006-01-01

    In accordance with Section 56-5-1350 of the South Carolina Code of Laws, a : tabulation and analysis of collision reports has been completed for the year : 2006 as disclosed in this publication. : The number of traffic fatalities decreased from 1,093...

  5. The calculation of aircraft collision probabilities

    DOT National Transportation Integrated Search

    1971-10-01

    The basic limitation of, air traffic compression, from the safety point of view, is the increased risk of collision due to reduced separations. In order to evolve new procedures, and eventually a fully, automatic system, it is desirable to have a mea...

  6. Electron-Atom Collisions in Gases

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2013-01-01

    Electron-atom collisions in gases are an aspect of atomic physics. Three experiments in this field employing a thyratron are described: (i) the Ramsauer-Townsend effect, (ii) the excitation and ionization potentials of xenon and (iii) the ion-electron recombination after interrupting the electric discharge.

  7. Initial conditions in high-energy collisions

    NASA Astrophysics Data System (ADS)

    Petreska, Elena

    This thesis is focused on the initial stages of high-energy collisions in the saturation regime. We start by extending the McLerran-Venugopalan distribution of color sources in the initial wave-function of nuclei in heavy-ion collisions. We derive a fourth-order operator in the action and discuss its relevance for the description of color charge distributions in protons in high-energy experiments. We calculate the dipole scattering amplitude in proton-proton collisions with the quartic action and find an agreement with experimental data. We also obtain a modification to the fluctuation parameter of the negative binomial distribution of particle multiplicities in proton-proton experiments. The result implies an advancement of the fourth-order action towards Gaussian when the energy is increased. Finally, we calculate perturbatively the expectation value of the magnetic Wilson loop operator in the first moments of heavy-ion collisions. For the magnetic flux we obtain a first non-trivial term that is proportional to the square of the area of the loop. The result is close to numerical calculations for small area loops.

  8. Two-Dimensional Distributed Velocity Collision Avoidance

    DTIC Science & Technology

    2014-02-11

    place (i.e., in the global problem space) as much as possible in an effort to simplify the process/description. Additionally, to make some of the...guide agents without collision in the vast majority of cases. NAWCWD TP 8786 31 7.0 REFERENCES 1. P. L. Franchi . “Near Misses Between

  9. Fan Affinity Laws from a Collision Model

    ERIC Educational Resources Information Center

    Bhattacharjee, Shayak

    2012-01-01

    The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…

  10. A collision detection algorithm for telerobotic arms

    NASA Technical Reports Server (NTRS)

    Tran, Doan Minh; Bartholomew, Maureen Obrien

    1991-01-01

    The telerobotic manipulator's collision detection algorithm is described. Its applied structural model of the world environment and template representation of objects is evaluated. Functional issues that are required for the manipulator to operate in a more complex and realistic environment are discussed.

  11. Behavioral training to improve collision detection

    PubMed Central

    DeLoss, Denton J.; Bian, Zheng; Watanabe, Takeo; Andersen, George J.

    2015-01-01

    Young drivers are a high-risk group for vehicle crashes due to inexperience in detecting an impending collision and are one group that may benefit from perceptual learning (PL) training. The present study assessed whether PL could be used to improve performance in collision detection. Ten college-aged subjects participated in the first experiment, which consisted of seven 1-hr sessions conducted on separate days. Thresholds at three observer/object speeds were measured prior to training using a two-alternative forced choice procedure during which they indicated whether an approaching object would result in a collision or noncollision event. Participants were then trained near threshold at one of these speeds for 5 days. After training, participants showed a significant reduction in the time needed to detect a collision at the trained speed. This improvement was also found to transfer to the higher observer speed condition. A second experiment was conducted to determine whether this improvement was due to training near threshold or whether this improvement was merely due to practice with the task. Training with stimuli well above threshold showed no significant improvement in performance, indicating that the improvement seen in the first experiment was not solely due to task practice. PMID:26230917

  12. Statistical Analysis For Nucleus/Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1989-01-01

    Report describes use of several statistical techniques to charactertize angular distributions of secondary particles emitted in collisions of atomic nuclei in energy range of 24 to 61 GeV per nucleon. Purpose of statistical analysis to determine correlations between intensities of emitted particles and angles comfirming existence of quark/gluon plasma.

  13. Asteroid collisions, craters, regoliths, and lifetimes

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.

    1978-01-01

    Laboratory experiments and computer modeling are used to predict the development of regoliths on all asteroids more than a few tens of kilometers in diameter, allowing for a wide range in the intrinsic strength of asteroidal surface materials. The high frequency of interasteroid collisions requires nearly all asteroids to be fragments of precursors.

  14. Global Λ hyperon polarization in nuclear collisions

    DOE PAGES

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...

    2017-08-02

    The extreme energy densities generated by ultra-relativistic collisions between heavy atomic nuclei produce a state of matter that behaves surprisingly like a fluid, with exceptionally high temperature and low viscosity. Non-central collisions have angular momenta of the order of 1,000ћ, and the resulting fluid may have a strong vortical structure that must be understood to describe the fluid properly. The vortical structure is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. But, no experimental indications of fluid vorticity in heavy ion collisionsmore » have yet been found. Since vorticity represents a local rotational structure of the fluid, spin–orbit coupling can lead to preferential orientation of particle spins along the direction of rotation. Here we present measurements of an alignment between the global angular momentum of a non-central collision and the spin of emitted particles (in this case the collision occurs between gold nuclei and produces Λ baryons), revealing that the fluid produced in heavy ion collisions is the most vortical system so far observed. (At high energies, this fluid is a quark–gluon plasma.) We find that Λ and hyperons show a positive polarization of the order of a few per cent, consistent with some hydrodynamic predictions. (A hyperon is a particle composed of three quarks, at least one of which is a strange quark; the remainder are up and down quarks, found in protons and neutrons.) A previous measurement that reported a null result, that is, zero polarization, at higher collision energies is seen to be consistent with the trend of our observations, though with larger statistical uncertainties. Furthermore, these data provide experimental access to the vortical structure of the nearly ideal liquid created in a heavy ion collision and should prove valuable in the development of

  15. Global Λ hyperon polarization in nuclear collisions

    SciT

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.

    The extreme energy densities generated by ultra-relativistic collisions between heavy atomic nuclei produce a state of matter that behaves surprisingly like a fluid, with exceptionally high temperature and low viscosity. Non-central collisions have angular momenta of the order of 1,000ћ, and the resulting fluid may have a strong vortical structure that must be understood to describe the fluid properly. The vortical structure is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. But, no experimental indications of fluid vorticity in heavy ion collisionsmore » have yet been found. Since vorticity represents a local rotational structure of the fluid, spin–orbit coupling can lead to preferential orientation of particle spins along the direction of rotation. Here we present measurements of an alignment between the global angular momentum of a non-central collision and the spin of emitted particles (in this case the collision occurs between gold nuclei and produces Λ baryons), revealing that the fluid produced in heavy ion collisions is the most vortical system so far observed. (At high energies, this fluid is a quark–gluon plasma.) We find that Λ and hyperons show a positive polarization of the order of a few per cent, consistent with some hydrodynamic predictions. (A hyperon is a particle composed of three quarks, at least one of which is a strange quark; the remainder are up and down quarks, found in protons and neutrons.) A previous measurement that reported a null result, that is, zero polarization, at higher collision energies is seen to be consistent with the trend of our observations, though with larger statistical uncertainties. Furthermore, these data provide experimental access to the vortical structure of the nearly ideal liquid created in a heavy ion collision and should prove valuable in the development of

  16. Collision prediction software for radiotherapy treatments

    SciT

    Padilla, Laura; Pearson, Erik A.; Pelizzari, Charles A., E-mail: c-pelizzari@uchicago.edu

    2015-11-15

    Purpose: This work presents a method of collision predictions for external beam radiotherapy using surface imaging. The present methodology focuses on collision prediction during treatment simulation to evaluate the clearance of a patient’s treatment position and allow for its modification if necessary. Methods: A Kinect camera (Microsoft, Redmond, WA) is used to scan the patient and immobilization devices in the treatment position at the simulator. The surface is reconstructed using the SKANECT software (Occipital, Inc., San Francisco, CA). The treatment isocenter is marked using simulated orthogonal lasers projected on the surface scan. The point cloud of this surface is thenmore » shifted to isocenter and converted from Cartesian to cylindrical coordinates. A slab models the treatment couch. A cylinder with a radius equal to the normal distance from isocenter to the collimator plate, and a height defined by the collimator diameter is used to estimate collisions. Points within the cylinder clear through a full gantry rotation with the treatment couch at 0° , while points outside of it collide. The angles of collision are reported. This methodology was experimentally verified using a mannequin positioned in an alpha cradle with both arms up. A planning CT scan of the mannequin was performed, two isocenters were marked in PINNACLE, and this information was exported to AlignRT (VisionRT, London, UK)—a surface imaging system for patient positioning. This was used to ensure accurate positioning of the mannequin in the treatment room, when available. Collision calculations were performed for the two treatment isocenters and the results compared to the collisions detected the room. The accuracy of the Kinect-Skanect surface was evaluated by comparing it to the external surface of the planning CT scan. Results: Experimental verification results showed that the predicted angles of collision matched those recorded in the room within 0.5°, in most cases (largest

  17. On the quantum Landau collision operator and electron collisions in dense plasmas

    SciT

    Daligault, Jérôme, E-mail: daligaul@lanl.gov

    2016-03-15

    The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck formmore » of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.« less

  18. On the quantum Landau collision operator and electron collisions in dense plasmas

    NASA Astrophysics Data System (ADS)

    Daligault, Jérôme

    2016-03-01

    The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck form of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.

  19. ELECTROMAGNETIC STIRRING IN ZONE REFINING

    SciT

    Braun, I.; Frank, F.C.; Marshall, S.

    1958-02-01

    The efficiency of the zone refining process can obviously be increased by stirring the molten zone to disperse the impurity-rich layer at the solid- liquid surface. Induction heating is sometimes preferred to radiant heat because it produces more convection, but no marked improvement has been reported. Pfann and Dorsi(1967) have described a method of stirring the melt by passing an electric current through the ingot and compressing a magnetic field across the molten zone. Preliminary results obtained by using a rotating magnetic field us the stirring agent during the purification of aluminum are described. (A.C.)

  20. 77 FR 6007 - Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, Drawbridge Operation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ...] Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, Drawbridge Operation... they could be published in the Federal Register. This notice lists temporary safety zones, security zones, special local regulations, drawbridge operation regulations and regulated navigation areas, all...