Sample records for zakir ishmatov yuriy

  1. Dr. Zakir Husain on Education and Language

    ERIC Educational Resources Information Center

    Kumar, Deepak; Radha Gayathri, Ch.

    2017-01-01

    Dr. Zakir Husain is known as a self-less nationalist leader and also as an educationist "par excellence." Taking a cue from his educational ideas like the "Nai Talim," this article brings into focus his views on the medium-conundrum. Dr. Husain was very clear about the role of Indian languages and the relevance of mother…

  2. Cosmonaut Yuriy Onufriyenko simulates parachute drop into water

    NASA Image and Video Library

    1994-10-13

    S94-47232 (13 Oct 1994) --- Cosmonaut Yuriy I. Onufriyenko (right), in the United States to participate in training for joint Russia-United States space missions, simulates a parachute drop into water. The training took place in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F) because it contains a 25-feet-deep pool. Onufriyenko, a Mir reserve team member, and a number of other cosmonauts and astronauts participating in the joint program were in Houston, Texas to prepare for upcoming missions which involve crewmembers from the two nations.

  3. 77 FR 68882 - The Designation of Qari Zakir, Also Known as Abdul Rauf, as a Specially Designated Global...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... DEPARTMENT OF STATE [Public Notice 8088] The Designation of Qari Zakir, Also Known as Abdul Rauf..., committed, or poses a significant risk of committing, acts of terrorism that threaten the security of U.S. nationals or the national security, foreign policy, or economy of the United States. Consistent with the...

  4. Mir 21 crew portrait in Base Block and Priroda

    NASA Image and Video Library

    1996-03-01

    NM21-395-024 (March 1996) --- Posed near a microgravity glove box on the Priroda Module aboard Russia’s Mir Space Station are the Mir-21 crew members. From the left are astronaut Shannon W. Lucid, cosmonaut guest researcher; Yuriy V. Usachov, flight engineer; and Yuriy I. Onufriyenko, commander. Lucid went on to spend a total of 188 consecutive days in space before returning to Earth with the STS-79 crew.

  5. Issues of Language Maintenance and Education of Aboriginal Children in India: An Interview with Ajit K. Mohanty, Internationally Acclaimed Indian Psycholinguist

    ERIC Educational Resources Information Center

    Pattnaik, Jyotsna

    2005-01-01

    Ajit Kumar Mohanty is a Professor of Social Psychology of Education at the Zakir Husain Centre for Educational Studies, Jawaharlal Nehru University, New Delhi, India. Mohanty received his doctorate from University of Alberta, Canada, in 1978, and was a postdoctoral Fulbright fellow at the University of Wisconsin, Madison, between 1981-1982. He was…

  6. Mir 21 crew portraits

    NASA Image and Video Library

    1995-07-14

    S95-16674 (14 July 1995) --- On the left is the Mir-21 crew consisting of cosmonaut Yuriy V. Usachov (standing), flight engineer; Yuriy I. Onufriyenko (seated), commander; and Shannon W. Lucid, cosmonaut guest researcher. On the right side is the Mir-23 crew consisting of John E. Blaha (standing), cosmonaut guest researcher; Vasili V. Tsibliyev (seated), commander; and Aleksandr I. Lazutkin, flight engineer. NASA astronauts Lucid and Blaha each will go into space to board Russia's Mir Space Station for lengthy research on their respective missions. Lucid will board the Mir during the STS-76 mission. Blaha will replace Lucid onboard the Mir during the STS-79 mission.

  7. Educational Thought of Ukraine and Poland within Renaissance Culture: From the History of Intellectual Discourse of XVI-XVII Centuries

    ERIC Educational Resources Information Center

    Petruk, Natalia

    2014-01-01

    The article deals with the peculiarities of formation of pedagogical thought in Ukraine and Poland during the propagation of Renaissance ideas into pedagogical culture of 16th-17th centuries. It has been emphasized that founders of humanistic pedagogical culture in Ukraine were such outstanding scientists as Grygoriy Sanotskyi, Yuriy Drogobych,…

  8. Translations on USSR Military Affairs, Number 1388

    DTIC Science & Technology

    1978-10-23

    senior lieutenants V. Kochnev, L. Kuznetsov and L. Kulik and other comrades. All of them serve in exemplary fashion and lead the Komsomol members and...Jr Sgt Oleg Karpenko asked: "Just what are you proposing?" Yuriy answered firmly. "We have to increase the range of fire. The weapons permit it

  9. Mir 21 cosmonauts assemble a truss during EVA

    NASA Image and Video Library

    1996-10-01

    NM21-382-024 (For Release October 1996) --- Cosmonaut Yuriy I. Onufriyenko was photographed by astronaut and cosmonaut guest researcher Shannon W. Lucid as the Mir-21 commander performed a scheduled Extravehicular Activity (EVA) at a truss assembly in the early days of Lucid’s extended stay aboard Russia’s Mir Space Station.

  10. Translations on USSR Military Affairs, Number 1270 DOSAAF Eighth All-Union Congress Proceedings

    DTIC Science & Technology

    1977-04-04

    mission. Presentation of the reports was followed by a discussion. Speakers at the morning session included D. N. Kuznetsov , Chairman of the Moscow City... Oleg Konstantinovich Antonov. DOSAAF can also be proud of the fact that cosmonauts Yuriy Gagarin, Valentina Nikolayeva-Tereshkova, and others...PATRIOT in Russian 26 Jan 77 p 4 [Speech by D. N. Kuznetsov , Chairman of the Moscow City DOSAAF Committee, at the Eighth Ail-Union DOSAAF Congress

  11. USSR Report, International Affairs

    DTIC Science & Technology

    1987-05-06

    the Future of the Region ("Round Table" in Mexico , Part 2) 52 USSR—LATIN AMERICA South America Applauds Soviet Ballet (Interview with Yuriy...Continuation) 79 ART AND LITERATURE Sintio Vitier: "...Toward Eternally New Horizons" 96 His Art Is As Immortal As Mexico Herself (on the 100th Anniversary of...In certain countries the reduction was even sharper (37 percent in Peru, 28 percent in Chile, 26.8 percent in Mexico and 33.3 percent in Guatemala

  12. STS-105 Flight Day 5 Highlights

    NASA Technical Reports Server (NTRS)

    2001-01-01

    On this fifth day of the STS-105 mission, the transfer of supplies from the Leonardo Multipurpose Logistics Module to the International Space Station (ISS) and the handover of control of the ISS from the Expedition 2 crew (Yuriy Usachev, Jim Voss, and Susan Helms) to the Expedition 3 crew (Frank Culbertson, Jr., Mikhail Turin, and Vladimir Dezhurov) continue. Commanders Usachev and Culbertson answer questions about the ISS in an on-orbit interview, and the Expedition 3 crewmembers give a video tour of their new sleeping quarters on the ISS. The north Pacific Ocean and the United States Pacific northwest are seen from space.

  13. STS-102 Crew Activity Report/Flight Day 12 Highlights

    NASA Technical Reports Server (NTRS)

    2001-01-01

    On this 12th day of the STS-102 mission, the crews of STS-102 (Commander James Wetherbee, Pilot James Kelly, and Mission Specialists Andrew Thomas and Paul Richards), Expedition 1 (William Shepherd, Yuri Gidzenko, and Sergei Krikalev), and Expedition 2 (James Voss, Susan Helms, and Yuriy Usachev) are seen during the in-flight ceremony where Commander Shepherd transfers control of the International Space Station (ISS) to Commander Usachev. The hatch between the ISS and the Discovery Orbiter is closed, and Discovery is seen undocking from the ISS. External views of the ISS are shown against a backdrop of Earth. The Great Lakes area and Chicago are seen from space during night, when lights outline the city.

  14. Radioelectronics and space exploration

    NASA Astrophysics Data System (ADS)

    Sarafanov, T.; Bogoroditskiy, Y.; Milyukov, I.

    1985-03-01

    Citing the 23 years since Yuriy Gagarin's first radio transmission from outer space, the developments in radio communications and their role in mission control are summarized. Use of satellites for radio and television links with ground stations are an important part of information exchange. Construction and preventive maintenance activities by Soviet cosmonauts, use of radio technology for docking procedures and the reliability of such equipment, and the growing role of computer technology in space vehicles with human crews and pilotless craft are discussed. Automatic interplanetary vehicles that have landed on the moon, Mars and Venus, as well as artificial earth satellites, are facilitating weather and communication advances. Mock space equipment using radio and computer technology is of great importance for training cosmonauts. Despite all these practical applications, optimum utilization of automated equipment has yet to be achieved, and offers further challenge to Soviet and other engineers and technicians.

  15. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data

    PubMed Central

    2014-01-01

    Abstract ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool has its own advantages for detecting motifs that other tools may not discover. We recommended the users to use multiple motif finding Web tools that implement different algorithms for obtaining significant motifs, overlapping resemble motifs, and non-overlapping motifs. Finally, we provided our suggestions for future development of motif finding Web tool that better assists researchers for finding motifs in ChIP-Seq data. Reviewers This article was reviewed by Prof. Sandor Pongor, Dr. Yuriy Gusev, and Dr. Shyam Prabhakar (nominated by Prof. Limsoon Wong). PMID:24555784

  16. Informal portrait of STS-71/Mir cosmonauts and astronauts

    NASA Image and Video Library

    1994-10-28

    S94-47050 (28 Oct 1994) --- Crew members for the joint Space Shuttle/Russian Mir Space Station missions assemble for an informal portrait during a break in training in the Systems Integration Facility at the Johnson Space Center (JSC). In front (left to right) are astronaut Bonnie J. Dunbar; cosmonauts Aleksandr F. Poleshchuk, Yuriy I. Onufriyenko, Gennadiy M. Strekalov and Vladimir N. Dezhurov. In the rear are astronaut Gregory J. Harbaugh; cosmonaut Anatoliy Y. Solovyev, and astronauts Charles J. Precourt, Robert L. Gibson, Ellen S. Baker and Norman E. Thagard. In a precedent-setting flight, Thagard will be launched as a guest researcher along with Dezhurov, commander, and Strekalov, flight engineer, to Russia's Mir Space Station early next year for a three month mission, designated as Mir 18. Then in late spring, as the assignment of STS-71, the Space Shuttle Atlantis will rendezvous with Mir to pick up the Mir 18 crew and transfer cosmonauts Solovyov and Nikolai M. Budarin to the station for the Mir 19 mission. STS-71 mission specialist Dunbar is training as Thagard's backup.

  17. KSC-99pp1379

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-102's Expedition II discuss the Pressurized Mating Adapter (PMA-3) (top of photo) with workers from Johnson Space Center. From left are Yuriy Vladimirovich Usachev, Dave Moore (JSC), Susan J. Helms, James S. Voss, Arne Aamodt and Matt Myers (both of JSC). The PMA-3 is a component of the International Space Station (ISS). Voss, Helms and Usachev will be staying on the ISS, replacing the Expedition I crew, Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. Along with the crew, Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center

  18. KSC-99pp1376

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- STS-102 crew member Susan J. Helms looks over a Pressurized Mating Adapter (PMA-3) in the Space Station Processing Facility. The PMA-3 is a component of the International Space Station (ISS). Helms is one of three who will be staying on the ISS as the Expedition II crew. The others are Yuriy Vladimirovich Usachev and James S. Voss. Along with the crew, Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. On the return of STS-102 to Earth, it will bring back the first crew on the station: Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center

  19. KSC-99pp1375

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- Looking over a Pressurized Mating Adapter (PMA-3) in the Space Station Processing Facility are Arne Aamodt, with Johnson Space Center, Yuriy Vladimirovich Usachev and Susan J. Helms. Usachev and Helms are two members of the STS-102 crew, who will be staying on the International Space Station (ISS). The third crew member is James S. Voss. They have been designated the Expedition II crew. Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. On the return of STS-102 to Earth, it will bring back the first crew on the station: Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center

  20. KSC-99pp1378

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- From a work stand in the Space Station Processing Facility, STS-102 crew members James S. Voss (left) and Yuriy Vladimirovich Usachev (right), of Russia, look over the Pressurized Mating Adapter (PMA-3). The PMA-3 is a component of the International Space Station (ISS). Voss and Usachev are two crew members who will be staying on the ISS as the Expedition II crew. The third is Susan J. Helms. Along with the crew, Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. On the return of STS-102 to Earth, it will bring back the first crew on the station: Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center

  1. KSC-99pp1377

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- Members of the STS-102 crew, known as the Expedition II crew, and workers from Johnson Space Center get a close look at the Pressurized Mating Adapter (PMA-3) in the Space Station Processing Facility. The PMA-3 is a component of the International Space Station (ISS). Making up the Expedition II crew are James S. Voss, Susan J. Helms and Yuriy Vladimirovich Usachev, of Russia. Along with the crew, Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. On the return of STS-102 to Earth, it will bring back the first crew on the station: Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center

  2. KSC-99pp1380

    NASA Image and Video Library

    1999-12-02

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, members of the STS-102 crew pose with workers from Johnson Space Center in front of the Pressurized Mating Adapter (PMA-3), a component of the International Space Station (ISS). From left are Dave Moore (JSC), Susan J. Helms, Arne Aamodt (JSC), Yuriy Vladimirovich Usachev, Matt Myers (JSC) and James S. Voss. Voss, Helms and Usachev, known as the Expedition II crew, will be staying on the ISS, replacing the Expedition I crew, Bill Shepherd, Sergei Krikalev and Yuri Gidzenko. Along with the crew, Mission STS-102 also will be carrying the Leonardo Multi-Purpose Logistics Module (MPLM) to the ISS. The Leonardo will be filled with equipment and supplies to outfit the U.S. laboratory module, which will have been carried to the ISS on a preceding Shuttle flight. In order to function as an attached station module as well as a cargo transport, logistics modules (there are three) also include components that provide some life support, fire detection and suppression, electrical distribution and computer functions. Eventually, the modules also will carry refrigerator freezers for transporting experiment samples and food to and from the station. STS-102 is scheduled to launch no earlier than Oct. 19, 2000, from Launch Pad 39A, Kennedy Space Center

  3. Rockets and People. Volume 1

    NASA Technical Reports Server (NTRS)

    Chertok, Boris E; Siddiqi, Asif A. (Editor)

    2005-01-01

    Much has been written in the West on the history of the Soviet space program but few Westerners have read direct first-hand accounts of the men and women who were behind the many Russian accomplishments in exploring space.The memoirs of Academician Boris Chertok, translated from the original Russian, fills that gap.Chertok began his career as an electrician in 1930 at an aviation factory near Moscow.Twenty-seven years later, he became deputy to the founding figure of the Soviet space program, the mysterious Chief Designer Sergey Korolev. Chertok s sixty-year-long career and the many successes and failures of the Soviet space program constitute the core of his memoirs, Rockets and People. These writings are spread over four volumes. This is volume I. Academician Chertok not only describes and remembers, but also elicits and extracts profound insights from an epic story about a society s quest to explore the cosmos. In Volume 1, Chertok describes his early years as an engineer and ends with the mission to Germany after the end of World War II when the Soviets captured Nazi missile technology and expertise. Volume 2 takes up the story with the development of the world s first intercontinental ballistic missile ICBM) and ends with the launch of Sputnik and the early Moon probes. In Volume 3, Chertok recollects the great successes of the Soviet space program in the 1960s including the launch of the world s first space voyager Yuriy Gagarin as well as many events connected with the Cold War. Finally, in Volume 4, Chertok meditates at length on the massive Soviet lunar project designed to beat the Americans to the Moon in the 1960s, ending with his remembrances of the Energiya-Buran project.

  4. Recognizing short coding sequences of prokaryotic genome using a novel iteratively adaptive sparse partial least squares algorithm

    PubMed Central

    2013-01-01

    Background Significant efforts have been made to address the problem of identifying short genes in prokaryotic genomes. However, most known methods are not effective in detecting short genes. Because of the limited information contained in short DNA sequences, it is very difficult to accurately distinguish between protein coding and non-coding sequences in prokaryotic genomes. We have developed a new Iteratively Adaptive Sparse Partial Least Squares (IASPLS) algorithm as the classifier to improve the accuracy of the identification process. Results For testing, we chose the short coding and non-coding sequences from seven prokaryotic organisms. We used seven feature sets (including GC content, Z-curve, etc.) of short genes. In comparison with GeneMarkS, Metagene, Orphelia, and Heuristic Approachs methods, our model achieved the best prediction performance in identification of short prokaryotic genes. Even when we focused on the very short length group ([60–100 nt)), our model provided sensitivity as high as 83.44% and specificity as high as 92.8%. These values are two or three times higher than three of the other methods while Metagene fails to recognize genes in this length range. The experiments also proved that the IASPLS can improve the identification accuracy in comparison with other widely used classifiers, i.e. Logistic, Random Forest (RF) and K nearest neighbors (KNN). The accuracy in using IASPLS was improved 5.90% or more in comparison with the other methods. In addition to the improvements in accuracy, IASPLS required ten times less computer time than using KNN or RF. Conclusions It is conclusive that our method is preferable for application as an automated method of short gene classification. Its linearity and easily optimized parameters make it practicable for predicting short genes of newly-sequenced or under-studied species. Reviewers This article was reviewed by Alexey Kondrashov, Rajeev Azad (nominated by Dr J.Peter Gogarten) and Yuriy Fofanov

  5. Report from the organizers Report from the organizers

    NASA Astrophysics Data System (ADS)

    Kes, Peter

    2009-04-01

    conferences time is reserved for prize ceremonies. The recipients of the most important prize in low temperature physics, the Fritz London Memorial Prize 2008, were Yuriy M Bunkov (Institute Néel, Grenoble), Vladimir V Dmitriev, and Igor A Fomin (both Kapitza Institute, Moscow). They got the prize for their discovery and understanding of the 'phase coherent spin precession and spin superfluidity of 3He-B'. The Simon Prize 2008 of The Physical Society went to Yasunobu Nakamura and Jaw-Shen Tsai (NEC Laboratories, Tsukuba) for their 'pioneering demonstration of quantum coherent behaviour in a macroscopic object and for their subsequent explorations of quantum coherent physics in a series of novel superconducting devices'. The Nicholas Kurti European Science Prize (sponsored by Oxford Instruments) was awarded to Lieven Vandersypen (Delft University of Technology) for his 'ground-breaking work on the coherent control of nuclear and electron spins, with possible application to quantum information processing'. Finally, the first IUPAP Young Scientist Prizes in Low Temperature Physics went to Kostya Novoselov (University of Manchester) for his 'contribution in the discovery of graphene and for pioneering studies of its extraordinary properties', to Dai Aoki (Tohuko University, Sendai) for his 'discovery of novel heavy fermion superconductivity in actinide compounds', and to Viktor Tsepelin (Lancaster University) for 'the development of new experimental techniques and key discoveries in the fields of 3He crystals and quantum turbulence'. All prize recipients got the opportunity to present their work in an invited oral contribution. As is common practice nowadays all announcements, registrations, paper submissions and communications regarding program and practical matters were done electronically, either by email or via the internet. Nevertheless, the program book was still printed and handed out to all participants at registration and they received an electronic version on a USB

  6. REPORT FROM THE ORGANIZERS: The 25th International Conference on Low Temperature Physics

    NASA Astrophysics Data System (ADS)

    Kes, Peter

    2009-03-01

    recipients of the most important prize in low temperature physics, the Fritz London Memorial Prize 2008, were Yuriy M Bunkov (Institute Neël, Grenoble), Vladimir V Dmitriev, and Igor A Fomin (both Kapitza Institute, Moscow). They got the prize for their discovery and understanding of the 'Phase Coherent Spin Precession and Spin Superfluidity of 3He-B'. The Simon Prize 2008 of The Physical Society went to Yasunobu Nakamura and Jaw-Shen Tsai (NEC Laboratories, Tsukuba) for their 'Pioneering demonstration of quantum coherent behaviour in a macroscopic object and for their subsequent explorations of quantum coherent physics in a series of novel superconducting devices'. The Nicholas Kurti European Science Prize (sponsored by Oxford Instruments) was awarded to Lieven Vandersypen (Delft University of Technology) for his 'Ground-breaking work on the coherent control of nuclear and electron spins, with possible application to quantum information processing'. Finally, the first IUPAP Young Scientist Prizes in Low Temperature Physics went to Kostya Novoselov (University of Manchester) for his 'Contribution in the discovery of graphene and for pioneering studies of its extraordinary properties', to Dai Aoki (Tohuko University, Sendai) for his 'Discovery of novel heavy fermion superconductivity in actinide compounds', and to Viktor Tsepelin (Lancaster University) for 'The development of new experimental techniques and key discoveries in the fields of 3He crystals and quantum turbulence'. All prize recipients got the opportunity to present their work in an invited oral contribution. As is common practice nowadays all announcements, registrations, paper submissions and communications regarding program and practical matters were done electronically, either by email or via internet. Nevertheless, the program book was still printed and handed out to all participants at registration and they received an electronic version on a USB stick as well. The stick also contained all the submitted

  7. PREFACE: XVth International Conference on Calorimetry in High Energy Physics (CALOR2012)

    NASA Astrophysics Data System (ADS)

    Akchurin, Nural

    2012-12-01

    Livan, Pavia Univ. & INFN Pasquale Lubrano, INFN Perugia Steve Magill, ANL Amelia Maio, LIPP Lisbon Horst Oberlack, MPI Munich Adam Para, FNAL Klaus Pretzl, Univ. of Bern Yifang Wang, IHEP Beijing Richard Wigmans, TTU Ren-Yuan Zhu, Caltech Local Organizing Committee: Nural Akchurin, TTU Debra Boyce, TTU (Secretary) Xiadong Jiang, LANL Jon Kapustinsky, LANL Sung-Won Lee, TTU Sally Seidel, UNM Igor Volobouev, TTU Session Conveners: LHC I-III: David Barney (CERN) Ana Henriques (CERN) Sally Seidel (UNM) Calorimetry Techniques I-II: Francesca Tedaldi (ETH-Zurich) Tao Hu (IHEP-Beijing) Calorimetry Techniques III-IV: Craig Woody (BNL) Tohru Takeshita (Shinshu) Astrophysics and Neutrinos: Don Groom (LBNL) Steve Magill (ANL) Operating Calorimeters: Jordan Damgov (TTU) Gabriella Gaudio (INFN-Pavia) Frank Chlebana (FNAL) Algorithms and Simulations: Artur Apresyan (Caltech) Igor Volobouev (TTU) Front-end and Trigger: Chris Tully (Princeton) Kejun Zhu (IHEP-Beijing) Future Calorimetry: Michele Livan (Pavia Univ.) Frank Simon (MPI) Vishnu Zutshi (NICADD) List of Participants: ABOUZEID, Hass University of Toronto AKCHURIN, Nural Texas Tech University ANDEEN, Timothy Columbia University ANDERSON, Jake Fermilab APRESYAN, Artur California Institute of Technology AUFFRAY, Etiennette CERN BARILLARI, Teresa Max-Planck-Inst. fuer Physik BARNEY, David CERN BESSON, Dave University of Kansas BOYCE, Debra Texas Tech University BRUEL, Philippe LLR, Ecole Polytechnique, CNRS/IN2P3 BUCHANAN, Norm Colorado State University CARLOGANU, Cristina LPC Clermont Ferrand / IN2P3 / CNRS CHEFDEVILLE, Maximilien CNRS/IN2P3/LAPP CHLEBANA, Frank Fermilab CLARK, Jonathan Texas Tech University CONDE MUINO, Patricia LIP-Lisboa COWDEN, Christopher Texas Tech University DA SILVA, Cesar Luiz Los Alamos National Lab DAMGOV, Jordan Texas Tech University DAVYGORA, Yuriy University of Heidelberg DEMERS, Sarah Yale University EIGEN, Gerald University of Bergen EUSEBI, Ricardo Texas A&M University FERRI, Federico CEA