Sample records for zalophus californianus californianus

  1. Asymptomatic and chronic carriage of Leptospira interrogans serovar Pomona in California sea lions (Zalophus californianus)

    USDA-ARS?s Scientific Manuscript database

    Since 1970, periodic outbreaks of leptospirosis, caused by pathogenic spirochetes in the genus Leptospira, have caused morbidity and mortality of California sea lions (Zalophus californianus) along the Pacific coast of North America. Yearly seasonal epizootics of varying magnitude occur between the ...

  2. Penetration of the small intestine of a California sea lion (Zalophus californianus) pup by adult hookworms (Uncinaria spp).

    PubMed

    Spraker, T R; Lyons, E T; DeLong, R L; Zink, R R

    2004-03-01

    During a study on the mortality of California sea lion (Zalophus californianus) pups born on San Miguel Island, California in 2002, two adult female hookworms (Uncinaria spp) were found penetrating the serosal surface of the intestinal wall and protruding into the peritoneal cavity of one pup. Documentation and a description of this unexpected finding and associated lesions are presented here. Also, adult hookworms were found in the peritoneal fluid of two other dead Z. californianus pups.

  3. Cryptococcus albidus infection in a California sea lion (Zalophus californianus).

    PubMed

    Mcleland, Shannon; Duncan, Colleen; Spraker, Terry; Wheeler, Elizabeth; Lockhart, Shawn R; Gulland, Frances

    2012-10-01

    Sporadic cases of cryptococcosis have been reported in marine mammals, typically due to Cryptococcus neoformans and, more recently, to Cryptococcus gattii in cetaceans. Cryptococcus albidus, a ubiquitous fungal species not typically considered to be pathogenic, was recovered from a juvenile California sea lion (Zalophus californianus) rescued near San Francisco Bay, California. Yeast morphologically consistent with a Cryptococcus sp. was identified histologically in a lymph node and C. albidus was identified by an rDNA sequence from the lung. Infection with C. albidus was thought to have contributed to mortality in this sea lion, along with concurrent bacterial pneumonia. Cryptococcus albidus should be considered as a potential pathogen with a role in marine mammal morbidity and mortality.

  4. Characterization of a novel papillomavirus species (ZcPV1) from two California sea lions (Zalophus californianus).

    PubMed

    Rivera, Rebecca; Robles-Sikisaka, Refugio; Hoffman, Elizabeth M; Stacy, Brian A; Jensen, Eric D; Nollens, Hendrik H; Wellehan, James F X

    2012-03-23

    A seven-year old California sea lion (Zalophus californianus) presented with focally extensive, bilaterally symmetric, proliferative axillary skin lesions and preputial lesions. A second California sea lion in the same population presented with similar proliferative lesions on the underside of the tail. Histopathology revealed epidermal hyperplasia with severe hyperkeratosis, with proliferating keratinocytes forming broad, branching pegs that extended into the dermis. Pan-papillomaviral consensus PCR was used to obtain initial E1 sequence template and the complete genome was determined using a combination of rolling circle amplification and specific-primer PCR. Analysis revealed a novel papillomavirus, Zalophus californianus papillomavirus 1 (ZcPV1), with seven open reading frames encoding five early proteins (E6, E7, E1, E2 and E4) and two late proteins (L1 and L2). Phylogenetic analysis revealed that (ZcPV1) is most closely related to Equine papillomavirus 1 (EcPV1) in the genus Zetapapillomavirus, and Canine papillomaviruses 3 and 4 (CPV3, CPV4) in the genus Chipapillomavirus. The lesions regressed without intervention over a period of several months. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Comparative biology of Uncinaria spp. in the California sea lion (Zalophus californianus) and the northern fur seal (Callorhinus ursinus) in California.

    PubMed

    Lyons, E T; DeLong, R L; Gulland, F M; Melin, S R; Tolliver, S C; Spraker, T R

    2000-12-01

    Studies on several aspects of the life cycle of hookworms (Uncinaria spp.) in the California sea lion (Zalophus californianus) and northern fur seal (Callorhinus ursinus) were conducted on material collected on San Miguel Island (SMI), California and at The Marine Mammal Center, Sausalito, California in 1997, 1998, and 1999. Examination of Z. californianus intestines for adult hookworms and feces for eggs revealed that longevity of these parasites in pups is about 6-8 mo, and infections are probably not present in older sea lions. Parasitic third-stage larvae (L3) were recovered from the ventral abdominal tissue of Z. californianus, suggesting transmammary transmission. Callorhinus ursinus pups had no hookworm eggs in their feces or adult worms (except for 1 probable contaminant) in their intestines in the fall and early winter, revealing that adult Uncinaria spp. are spontaneously lost at <3 mo of age of the pups. Sand samples from rookeries, used by both Z. californianus and C. ursinus, on SMI were negative for free-living, L3 in summer months but positive in fall and winter months, indicating seasonality occurred.

  6. Maneuverability by the sea lion Zalophus californianus: turning performance of an unstable body design.

    PubMed

    Fish, Frank E; Hurley, Jenifer; Costa, Daniel P

    2003-02-01

    Maneuverability is critical to the performance of fast-swimming marine mammals that use rapid turns to catch prey. Overhead video recordings were analyzed for two sea lions (Zalophus californianus) turning in the horizontal plane. Unpowered turns were executed by body flexion in conjunction with use of the pectoral and pelvic flippers, which were used as control surfaces. A 90 degree bank angle was used in the turns to vertically orient the control surfaces. Turning radius was dependent on body mass and swimming velocity. Relative minimum radii were 9-17% of body length and were equivalent for pinnipeds and cetaceans. However, Zalophus had smaller turning radii at higher speeds than cetaceans. Rate of turn was inversely related to turn radius. The highest turn rate observed in Zalophus was 690 degrees s(-1). Centripetal acceleration measured up to 5.1 g for Zalophus. Comparison with other marine mammals indicates that Zalophus has a morphology that enhances instability, thus providing enhanced turning performance. Enhanced turning performance is necessary for sea lions to forage after highly elusive prey in structurally complex environments.

  7. Infection of California sea lions (Zalophus californianus) with terrestrial Brucella spp.

    PubMed

    Avalos-Téllez, Rosalía; Ramírez-Pfeiffer, Carlos; Hernández-Castro, Rigoberto; Díaz-Aparicio, Efrén; Sánchez-Domínguez, Carlos; Zavala-Norzagaray, Alan; Arellano-Reynoso, Beatriz; Suárez-Güemes, Francisco; Aguirre, A Alonso; Aurioles-Gamboa, David

    2014-10-01

    Infections with Brucella ceti and pinnipedialis are prevalent in marine mammals worldwide. A total of 22 California sea lions (Zalophus californianus) were examined to determine their exposure to Brucella spp. at San Esteban Island in the Gulf of California, Mexico, in June and July 2011. Although samples of blood, vaginal mucus and milk cultured negative for these bacteria, the application of rose Bengal, agar gel immunodiffusion, PCR and modified fluorescence polarization assays found that five animals (22.7%) had evidence of exposure to Brucella strains. The data also suggested that in two of these five sea lions the strains involved were of terrestrial origin, a novel finding in marine mammals. Further work will be required to validate and determine the epidemiological significance of this finding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Organochlorine pesticides and polychlorinated biphenyls in California sea lions (Zalophus californianus californianus) from the Gulf of California, México.

    PubMed

    Niño-Torres, Carlos Alberto; Gardner, Susan C; Zenteno-Savín, Tania; Ylitalo, Gina M

    2009-02-01

    We report concentrations of several classes of organochlorines (OCs) in the blubber of California sea lions (Zalophus californianus) from the Gulf of California. Summed OC levels measured in 34 wild-ranging animals were, in general, lower than those previously reported in sea lions from the eastern Pacific. The rank order of OCs was SigmaDDTs (mean=3400 ng g(-1 ) lipid weight [lw]) > SigmaPCBs (1400 ng g(-1 ) lw) > SigmaHCHs (50 ng g(-1 ) lw) >or= SigmaCHLORs (46 ng g(-1 ) lw). The most abundant OC measured was the DDT metabolite, p,p'-DDE. No significant differences in OC profiles were found between genders or rookeries. Although the mean concentrations of OCs measured in adult males and females were similar, only adult females had significantly higher (p<0.05) mean blubber concentrations of summation SigmaDDTs and summation SigmaHCHs than pups.

  9. Tissue heavy metal concentrations of stranded California sea lions (Zalophus californianus) in Southern California.

    PubMed

    Harper, Erin R; St Leger, Judy A; Westberg, Jody A; Mazzaro, Lisa; Schmitt, Todd; Reidarson, Tom H; Tucker, Melinda; Cross, Dee H; Puschner, Birgit

    2007-06-01

    Concentrations of nine heavy metals (As, Cd, Cu, Fe, Hg, Pb, Mn, Mo and Zn) were determined in the hepatic and renal tissues of 80 stranded California sea lions (Zalophus californianus). Significant age-dependant increases were observed in liver and kidney concentrations of cadmium and mercury, and renal zinc concentrations. Hepatic iron concentrations were significantly higher in females than males. Animals with suspected domoic acid associated pathological findings had significantly higher concentrations of liver and kidney cadmium; and significantly higher liver mercury concentrations when compared to animals classified with infectious disease or traumatic mortality. Significantly higher hepatic burdens of molybdenum and zinc were found in animals that died from infectious diseases. This is the largest study of tissue heavy metal concentrations in California sea lions to date. These data demonstrate how passive monitoring of stranded animals can provide insight into environmental impacts on marine mammals.

  10. Personality dimensions of the captive California sea lion (Zalophus californianus).

    PubMed

    Ciardelli, Lillian E; Weiss, Alexander; Powell, David M; Reiss, Diana

    2017-02-01

    Although the field of animal personality research is growing, information on sea lion personality is lacking. This is surprising as sea lions are charismatic, cognitively advanced, and relatively accessible for research. In addition, their presence in captivity and frequent interactions with humans allow for them to be closely observed in various contexts. These interactions provide a valuable and unique opportunity to assess dimensions of their personality. This study created a personality survey for captive California sea lions (Zalophus californianus) using a 3-step approach that balances comprehensiveness and comparability to other species. Zookeepers (N = 43) at 5 zoological parks rated sea lions (N = 16) on 52 personality traits and 7 training traits. A principal components analysis and regularized exploratory factor analysis revealed 3 dimensions (Extraversion/Impulsivity, Dominance/Confidence, and Reactivity/Undependability). Each dimension was significantly correlated with at least 1 training trait. Pups and juveniles scored significantly higher on Extraversion/Impulsivity than adults. No other age or sex effects were present on this or any other dimension. Sea lions are cognitively complex marine mammals that represent a valuable addition to the group of species in which personality structure and function have been studied. The unique behavioral and ecological characteristics of sea lions offer another vantage point for understanding how personality varies between disparate species. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Underwater psychophysical audiogram of a young male California sea lion (Zalophus californianus).

    PubMed

    Mulsow, Jason; Houser, Dorian S; Finneran, James J

    2012-05-01

    Auditory evoked potential (AEP) data are commonly obtained in air while sea lions are under gas anesthesia; a procedure that precludes the measurement of underwater hearing sensitivity. This is a substantial limitation considering the importance of underwater hearing data in designing criteria aimed at mitigating the effects of anthropogenic noise exposure. To determine if some aspects of underwater hearing sensitivity can be predicted using rapid aerial AEP methods, this study measured underwater psychophysical thresholds for a young male California sea lion (Zalophus californianus) for which previously published aerial AEP thresholds exist. Underwater thresholds were measured in an aboveground pool at frequencies between 1 and 38 kHz. The underwater audiogram was very similar to those previously published for California sea lions, suggesting that the current and previously obtained psychophysical data are representative for this species. The psychophysical and previously measured AEP audiograms were most similar in terms of high-frequency hearing limit (HFHL), although the underwater HFHL was sharper and occurred at a higher frequency. Aerial AEP methods are useful for predicting reductions in the HFHL that are potentially independent of the testing medium, such as those due to age-related sensorineural hearing loss.

  12. Prevalence of Urogenital Carcinoma in Stranded California Sea Lions ( Zalophus Californianus) from 2005-2015.

    PubMed

    Deming, Alissa C; Colegrove, Kathleen M; Duignan, Padraig J; Hall, Ailsa J; Wellehan, James F X; Gulland, Frances M D

    2018-03-02

    Urogenital carcinoma is common in wild California sea lions ( Zalophus californianus) along the west coast of the US. From 1979 to 1994, this cancer was observed in 18% (66/370) of necropsied subadult and adult sea lions at The Marine Mammal Center in Sausalito, California. A retrospective review of records from 1 January 2005 to 31 December 2015 was performed to characterize prevalence and characteristics of cancer over this decade. Fourteen percent (263/1917) of necropsied sea lions had cancer, of which 90% (237/263) were urogenital carcinoma. The prevalence of urogenital carcinoma was significantly higher in adults compared to juveniles and subadults. Advanced-stage disease with metastases was identified histologically in 78% (182/232) of cases and was the cause of death in 95% (172/182) of these cases. Metastases were most common in lung and lymph nodes, and hydronephrosis, secondary to ureter obstruction by metastases, was identified in 62% (114/185) of animals with advanced disease. No significant temporal change in prevalence was detected over the decade, and this highly aggressive, fatal cancer remains common in stranded California sea lions.

  13. IDENTIFICATION OF TWO NOVEL COCCIDIAN SPECIES SHED BY CALIFORNIA SEA LIONS (ZALOPHUS CALIFORNIANUS)

    PubMed Central

    Carlson-Bremer, Daphne; Johnson, Christine K.; Miller, Robin H.; Gulland, Frances M. D.; Conrad, Patricia A.; Wasmuth, James D.; Colegrove, Kathleen M.

    2016-01-01

    Routine fecal examination revealed novel coccidian oocysts in asymptomatic California sea lions (Zalophus californianus) in a rehabilitation facility. Coccidian oocysts were observed in fecal samples collected from 15 of 410 California sea lions admitted to The Marine Mammal Center between April 2007 and October 2009. Phylogenetic analysis using the full ITS-1 region, partial small subunit 18S rDNA sequence, and the Apicomplexa rpoB region identified 2 distinct sequence clades, referred to as Coccidia A and Coccidia B, and placed them in the Sarcocystidae, grouped with the tissue-cyst–forming coccidia. Both sequence clades resolved as individual taxa at ITS-1 and rpoB and were most closely related to Neospora caninum. Coccidia A was identified in 11 and Coccidia B in 4 of 12 sea lion oocyst samples successfully sequenced (3 of those sea lions were co-infected with both parasites). Shedding of Coccidia A oocysts was not associated with age class, sex, or stranding location, but yearlings represented the majority of shedders (8/15). This is the first study to use molecular phylogenetics to identify and describe coccidian parasites shed by a marine mammal. PMID:22091999

  14. Identification of two novel coccidian species shed by California sea lions (Zalophus californianus).

    PubMed

    Carlson-Bremer, Daphne; Johnson, Christine K; Miller, Robin H; Gulland, Frances M D; Conrad, Patricia A; Wasmuth, James D; Colegrove, Kathleen M; Grigg, Michael E

    2012-04-01

    Routine fecal examination revealed novel coccidian oocysts in asymptomatic California sea lions (Zalophus californianus) in a rehabilitation facility. Coccidian oocysts were observed in fecal samples collected from 15 of 410 California sea lions admitted to The Marine Mammal Center between April 2007 and October 2009. Phylogenetic analysis using the full ITS-1 region, partial small subunit 18S rDNA sequence, and the Apicomplexa rpoB region identified 2 distinct sequence clades, referred to as Coccidia A and Coccidia B, and placed them in the Sarcocystidae, grouped with the tissue-cyst-forming coccidia. Both sequence clades resolved as individual taxa at ITS-1 and rpoB and were most closely related to Neospora caninum. Coccidia A was identified in 11 and Coccidia B in 4 of 12 sea lion oocyst samples successfully sequenced (3 of those sea lions were co-infected with both parasites). Shedding of Coccidia A oocysts was not associated with age class, sex, or stranding location, but yearlings represented the majority of shedders (8/15). This is the first study to use molecular phylogenetics to identify and describe coccidian parasites shed by a marine mammal.

  15. MANAGEMENT OF ACUTE RENAL FAILURE WITH DELAYED HYPERCALCEMIA SECONDARY TO SARCOCYSTIS NEURONA-INDUCED MYOSITIS AND RHABDOMYOLYSIS IN A CALIFORNIA SEA LION (ZALOPHUS CALIFORNIANUS).

    PubMed

    Alexander, Amy B; Hanley, Christopher S; Duncan, Mary C; Ulmer, Kyle; Padilla, Luis R

    2015-09-01

    A 3-yr-old captive-born California sea lion (Zalophus californianus) developed Sarcocystis neurona-induced myositis and rhabdomyolysis that led to acute renal failure. The sea lion was successfully managed with fluid therapy, antiprotozoals, antibiotics, anti-inflammatories, antiemetics, gastroprotectants, and diuretics, but developed severe delayed hypercalcemia, a syndrome identified in humans after traumatic or exertion-induced rhabdomyolysis. Treatment with calcitonin was added to the management, and the individual recovered fully. The case emphasizes that animals with rhabdomyolysis-induced renal failure risk developing delayed hypercalcemia, which may be life threatening, and calcium levels should be closely monitored past the resolution of renal failure.

  16. Pathology of domoic acid toxicity in California sea lions (Zalophus californianus).

    PubMed

    Silvagni, P A; Lowenstine, L J; Spraker, T; Lipscomb, T P; Gulland, F M D

    2005-03-01

    Over 100 free-ranging adult California sea lions (Zalophus californianus) and one Northern fur seal (Callorhinus ursinus), predominantly adult females, were intoxicated by domoic acid (DA) during three harmful algal blooms between 1998 and 2000 in central and northern California coastal waters. The vector prey item was Northern anchovy (Engraulis mordax) and the primary DA-producing algal diatom was Psuedonitzschia australis. Postmortem examination revealed gross and histologic findings that were distinctive and aided in diagnosis. A total of 109 sea lions were examined, dying between 1 day and 10 months after admission to a marine mammal rehabilitation center. Persistent seizures with obtundation were the main clinical findings. Frequent gross findings in animals dying acutely consisted of piriform lobe malacia, myocardial pallor, bronchopneumonia, and complications related to pregnancy. Gross findings in animals dying months after intoxication included bilateral hippocampal atrophy. Histologic observations implicated limbic system seizure injury consistent with excitotoxin exposure. Peracutely, there was microvesicular hydropic degeneration within the neuropil of the hippocampus, amygdala, pyriform lobe, and other limbic structures. Acutely, there was ischemic neuronal necrosis, particularly apparent in the granular cells of the dentate gyrus and the pyramidal cells within the hippocampus cornu ammonis (CA) sectors CA4, CA3, and CA1. Dentate granular cell necrosis has not been reported in human or experimental animal DA toxicity and may be unique to sea lions. Chronically, there was gliosis, mild nonsuppurative inflammation, and loss of laminar organization in affected areas.

  17. Hippocampal neuropathology of domoic acid-induced epilepsy in California sea lions (Zalophus californianus)

    PubMed Central

    Buckmaster, Paul S.; Wen, Xiling; Toyoda, Izumi; Gulland, Frances M. D.; Van Bonn, William

    2014-01-01

    California sea lions (Zalophus californianus) are abundant human-sized carnivores with large gyrencephalic brains. They develop epilepsy after experiencing status epilepticus when naturally exposed to domoic acid. We tested whether sea lions previously exposed to DA (chronic DA sea lions) display hippocampal neuropathology similar to that of human patients with temporal lobe epilepsy. Hippocampi were obtained from control and chronic DA sea lions. Stereology was used to estimate numbers of Nissl-stained neurons per hippocampus in the granule cell layer, hilus, and the pyramidal cell layer of CA3, CA2, and CA1 subfields. Adjacent sections were processed for somatostatin-immunoreactivity or Timm-stained, and the extent of mossy fiber sprouting was measured stereologically. Chronic DA sea lions displayed hippocampal neuron loss in patterns and extents similar but not identical to those reported previously for human patients with temporal lobe epilepsy. Similar to human patients, hippocampal sclerosis in sea lions was unilateral in 79% of cases, mossy fiber sprouting was a common neuropathological abnormality, and somatostatin-immunoreactive axons were exuberant in the dentate gyrus despite loss of immunopositive hilar neurons. Thus, hippocampal neuropathology of chronic DA sea lions is similar to that of human patients with temporal lobe epilepsy. PMID:24638960

  18. Hippocampal neuropathology of domoic acid-induced epilepsy in California sea lions (Zalophus californianus).

    PubMed

    Buckmaster, Paul S; Wen, Xiling; Toyoda, Izumi; Gulland, Frances M D; Van Bonn, William

    2014-05-01

    California sea lions (Zalophus californianus) are abundant human-sized carnivores with large gyrencephalic brains. They develop epilepsy after experiencing status epilepticus when naturally exposed to domoic acid. We tested whether sea lions previously exposed to DA (chronic DA sea lions) display hippocampal neuropathology similar to that of human patients with temporal lobe epilepsy. Hippocampi were obtained from control and chronic DA sea lions. Stereology was used to estimate numbers of Nissl-stained neurons per hippocampus in the granule cell layer, hilus, and pyramidal cell layer of CA3, CA2, and CA1 subfields. Adjacent sections were processed for somatostatin immunoreactivity or Timm-stained, and the extent of mossy fiber sprouting was measured stereologically. Chronic DA sea lions displayed hippocampal neuron loss in patterns and extents similar but not identical to those reported previously for human patients with temporal lobe epilepsy. Similar to human patients, hippocampal sclerosis in sea lions was unilateral in 79% of cases, mossy fiber sprouting was a common neuropathological abnormality, and somatostatin-immunoreactive axons were exuberant in the dentate gyrus despite loss of immunopositive hilar neurons. Thus, hippocampal neuropathology of chronic DA sea lions is similar to that of human patients with temporal lobe epilepsy. Copyright © 2013 Wiley Periodicals, Inc.

  19. Molecular Epidemiology of Cryptosporidium spp. and Giardia spp. in Mussels (Mytilus californianus) and California Sea Lions (Zalophus californianus) from Central California

    PubMed Central

    Adell, A. D.; Shapiro, K.; Melli, A.; Conrad, P. A.

    2014-01-01

    Cryptosporidium and Giardia are of public health importance, with recognized transmission through recreational waters. Therefore, both can contaminate marine waters and shellfish, with potential to infect marine mammals in nearshore ecosystems. A 2-year study was conducted to evaluate the presence of Cryptosporidium and Giardia in mussels located at two distinct coastal areas in California, namely, (i) land runoff plume sites and (ii) locations near sea lion haul-out sites, as well as in feces of California sea lions (CSL) (Zalophus californianus) by the use of direct fluorescent antibody (DFA) detection methods and PCR with sequence analysis. In this study, 961 individual mussel hemolymph samples, 54 aliquots of pooled mussel tissue, and 303 CSL fecal samples were screened. Giardia duodenalis assemblages B and D were detected in hemolymph from mussels collected near two land runoff plume sites (Santa Rosa Creek and Carmel River), and assemblages C and D were detected in hemolymph from mussels collected near a sea lion haul-out site (White Rock). These results suggest that mussels are being contaminated by protozoa carried in terrestrial runoff and/or shed in the feces of CSL. Furthermore, low numbers of oocysts and cysts morphologically similar to Cryptosporidium and Giardia, respectively, were detected in CSL fecal samples, suggesting that CSL could be a source and a host of protozoan parasites in coastal environments. The results of this study showed that Cryptosporidium and Giardia spp. from the feces of terrestrial animals and CSL can contaminate mussels and coastal environments. PMID:25281384

  20. Molecular epidemiology of Cryptosporidium spp. and Giardia spp. in mussels (Mytilus californianus) and California sea lions (Zalophus californianus) from Central California.

    PubMed

    Adell, A D; Smith, W A; Shapiro, K; Melli, A; Conrad, P A

    2014-12-01

    Cryptosporidium and Giardia are of public health importance, with recognized transmission through recreational waters. Therefore, both can contaminate marine waters and shellfish, with potential to infect marine mammals in nearshore ecosystems. A 2-year study was conducted to evaluate the presence of Cryptosporidium and Giardia in mussels located at two distinct coastal areas in California, namely, (i) land runoff plume sites and (ii) locations near sea lion haul-out sites, as well as in feces of California sea lions (CSL) (Zalophus californianus) by the use of direct fluorescent antibody (DFA) detection methods and PCR with sequence analysis. In this study, 961 individual mussel hemolymph samples, 54 aliquots of pooled mussel tissue, and 303 CSL fecal samples were screened. Giardia duodenalis assemblages B and D were detected in hemolymph from mussels collected near two land runoff plume sites (Santa Rosa Creek and Carmel River), and assemblages C and D were detected in hemolymph from mussels collected near a sea lion haul-out site (White Rock). These results suggest that mussels are being contaminated by protozoa carried in terrestrial runoff and/or shed in the feces of CSL. Furthermore, low numbers of oocysts and cysts morphologically similar to Cryptosporidium and Giardia, respectively, were detected in CSL fecal samples, suggesting that CSL could be a source and a host of protozoan parasites in coastal environments. The results of this study showed that Cryptosporidium and Giardia spp. from the feces of terrestrial animals and CSL can contaminate mussels and coastal environments. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Clinical relevance of novel Otarine herpesvirus-3 in California sea lions (Zalophus californianus): lymphoma, esophageal ulcers, and strandings

    PubMed Central

    2012-01-01

    Herpesviruses have been recognized in marine mammals, but their clinical relevance is not always easy to assess. A novel otarine herpesvirus-3 (OtHV3) was detected in a geriatric California sea lion (Zalophus californianus), and using a newly developed quantitative PCR assay paired with histology, OtHV3 was associated with esophageal ulcers and B cell lymphoblastic lymphoma in this animal. The prevalence and quantities of OtHV3 were then determined among buffy coats from 87 stranded and managed collection sea lions. Stranded sea lions had a higher prevalence of OtHV3 compared to managed collection sea lions (34.9% versus 12.5%; p = 0.04), and among the stranded sea lions, yearlings were most likely to be positive. Future epidemiological studies comparing the presence and viral loads of OtHV3 among a larger population of California sea lions with and without lymphoid neoplasia or esophageal ulcers would help elucidate the relevance of OtHV3-associated pathologies to these groups. PMID:23234600

  2. Metastrongyloid nematode (Otostrongylus circumlitus) infection in a stranded California sea lion (Zalophus californianus)--a new host-parasite association.

    PubMed

    Kelly, Terra R; Greig, Denise; Colegrove, Kathleen M; Lowenstine, Linda J; Dailey, Murray; Gulland, Frances M; Haulena, Martin

    2005-07-01

    A stranded yearling male California sea lion was admitted to a rehabilitation center June 2003. On presentation, the sea lion was emaciated and had diarrhea and neutrophilia. Two weeks later, the animal became anorexic, blood and mucus were observed around the oral cavity, and corneal opacity was noted in the right eye. Hematology results at that time included leukocytosis consisting of neutrophilia with a left shift, anemia, and thrombocytopenia. Despite supportive care, the sea lion died. On post mortem examination, there were multiple areas of hemorrhage scattered throughout all lung lobes, and pulmonary blood vessels were occluded by fibrin thrombi. Nematodes identified as immature forms of Otostrongylus circumlitus were found in the right ventricle and pulmonary arteries. Histologic findings in the lungs included severe suppurative and necrotizing arteritis with vascular thrombosis, interstitial pneumonia, and large areas of pulmonary hemorrhage. This report of O. circumlitus infection in a California sea lion (Zalophus californianus) might indicate a potentially new host-parasite association.

  3. Use of laser rhinoscopy to treat a nasal obstruction in a captive California sea lion (Zalophus californianus).

    PubMed

    Sherrill, Johanna; Peavy, George M; Kopit, Mark J; Garner, Michael M; Gardiner, Chris H; Adams, Lance M

    2004-06-01

    Laser rhinoscopy was used to treat a nasal obstruction in a captive California sea lion (Zalophus californianus). The rehabilitated, adult, female sea lion developed mucopurulent, intermittent, bilateral nasal discharge and functional nasal obstruction 20 mo after acquisition by the Aquarium of the Pacific in Long Beach, California. A 3-mm-thick soft tissue structure spanning the region between the soft and hard palates, a deviated nasal septum, and several nasopharyngeal polyps were identified. Biopsies and cultures of the obstructive web showed ulcerative granulation tissue with suppurative inflammation, bacterial infection, and a partial section of an arthropod larva (not speciated). Laser rhinoscopy was performed to relieve the caudal nasopharyngeal obstruction and ablate the polyps. The sea lion appeared to breathe through the nares with lessened nasal discharge for a period of 6 wk after laser therapy, but within 8 wk the mucopurulent nasal discharge returned, the obstruction had reformed, and the sea lion was euthanized. Postmortem examination confirmed antemortem diagnoses of caudal nasopharyngeal obstruction secondary to inflammatory tissue; however, no additional sections of arthropod parasites were located microscopically.

  4. Microvasculature of the California sea lion (Zalophus californianus) eye and its functional significance.

    PubMed

    Ninomiya, Hiroyoshi

    2017-05-01

    To examine the ocular circulation in California sea lions (Zalophus californianus). Eyes were obtained postmortem from three sea lions that died while in captivity. Specimens from sea lions were investigated using scanning electron microscopy (SEM) of vascular corrosion casts. The thermal characteristics of live animal eyes were measured using an infrared imaging system. The major orbital artery of the sea lion was the ophthalmic artery. The artery was remarkably thick in diameter, showed a marked convolution and formed an ophthalmic rete around the optic nerve at the posterior pole of the eyeball. The long posterior ciliary artery terminates to form a prominent inner arterial circle at the pupillary margin. The iridial arteries originated from the arterial circle showing either a crimped or somewhat coiled course, extending toward the root of the iris and formed a root supplying a large amount of blood to the iris and ciliary bodies. The venules in the conjunctiva formed a well-developed venous plexus. The vortex veins showed a dilation and constriction at the site passing through the sclera. Thermographic examination revealed that the eye showed a higher degree of thermal emission than adjacent skin areas. These characteristics suggest that the ocular vasculature might play roles in thermoregulation as well as in hemodynamics by draining a large amount of blood so that the appropriate operating temperature for the eye can be maintained in a deep and cold aquatic environment. © 2016 American College of Veterinary Ophthalmologists.

  5. Novel symptomatology and changing epidemiology of domoic acid toxicosis in California sea lions (Zalophus californianus): an increasing risk to marine mammal health

    PubMed Central

    Goldstein, T; Mazet, J.A.K; Zabka, T.S; Langlois, G; Colegrove, K.M; Silver, M; Bargu, S; Van Dolah, F; Leighfield, T; Conrad, P.A; Barakos, J; Williams, D.C; Dennison, S; Haulena, M; Gulland, F.M.D

    2007-01-01

    Harmful algal blooms are increasing worldwide, including those of Pseudo-nitzschia spp. producing domoic acid off the California coast. This neurotoxin was first shown to cause mortality of marine mammals in 1998. A decade of monitoring California sea lion (Zalophus californianus) health since then has indicated that changes in the symptomatology and epidemiology of domoic acid toxicosis in this species are associated with the increase in toxigenic blooms. Two separate clinical syndromes now exist: acute domoic acid toxicosis as has been previously documented, and a second novel neurological syndrome characterized by epilepsy described here associated with chronic consequences of previous sub-lethal exposure to the toxin. This study indicates that domoic acid causes chronic damage to California sea lions and that these health effects are increasing. PMID:18006409

  6. Description of Uncinaria lyonsi n. sp. (Nematoda: Ancylostomatidae) from the California sea lion Zalophus californianus Lesson (Carnivora: Otariidae).

    PubMed

    Kuzmina, Tetiana A; Kuzmin, Yuriy

    2015-02-01

    A new species of hookworm, Uncinaria lyonsi n. sp., is described based on morphological studies of the nematodes collected by Dr. E. T. Lyons from the California sea lion Zalophus californianus (Lesson) on San Miguel Island, California, USA. The new species is morphologically similar to three other species of the genus Uncinaria Frölich, 1789 parasitising pinnipeds, U. lucasi Stiles, 1901, U. hamiltoni Baylis, 1933 and U. sanguinis Marcus, Higgins, Šlapeta & Gray, 2014, in the body dimensions, the structure of the buccal capsule, the shape and structure of the male caudal bursa and female genital system. Uncinaria lyonsi n. sp. is differentiated from U. lucasi by having longer spicules and gubernaculum, larger buccal capsule and more slender oesophagus. The new species differs from U. hamiltoni and U. sanguinis in having shorter spicules and narrower buccal capsule. The latter two species also occur in the Southern Hemisphere and are geographically separated from U. lyonsi n. sp. The present study confirms the existence of a host-specific species of Uncinaria in the California sea lion, previously revealed by molecular and biological investigations.

  7. Human Disturbance Influences Reproductive Success and Growth Rate in California Sea Lions (Zalophus californianus)

    PubMed Central

    French, Susannah S.; González-Suárez, Manuela; Young, Julie K.; Durham, Susan; Gerber, Leah R.

    2011-01-01

    The environment is currently undergoing changes at both global (e.g., climate change) and local (e.g., tourism, pollution, habitat modification) scales that have the capacity to affect the viability of animal and plant populations. Many of these changes, such as human disturbance, have an anthropogenic origin and therefore may be mitigated by management action. To do so requires an understanding of the impact of human activities and changing environmental conditions on population dynamics. We investigated the influence of human activity on important life history parameters (reproductive rate, and body condition, and growth rate of neonate pups) for California sea lions (Zalophus californianus) in the Gulf of California, Mexico. Increased human presence was associated with lower reproductive rates, which translated into reduced long-term population growth rates and suggested that human activities are a disturbance that could lead to population declines. We also observed higher body growth rates in pups with increased exposure to humans. Increased growth rates in pups may reflect a density dependent response to declining reproductive rates (e.g., decreased competition for resources). Our results highlight the potentially complex changes in life history parameters that may result from human disturbance, and their implication for population dynamics. We recommend careful monitoring of human activities in the Gulf of California and emphasize the importance of management strategies that explicitly consider the potential impact of human activities such as ecotourism on vertebrate populations. PMID:21436887

  8. A California sea lion (Zalophus californianus) can keep the beat: motor entrainment to rhythmic auditory stimuli in a non vocal mimic.

    PubMed

    Cook, Peter; Rouse, Andrew; Wilson, Margaret; Reichmuth, Colleen

    2013-11-01

    Is the ability to entrain motor activity to a rhythmic auditory stimulus, that is "keep a beat," dependent on neural adaptations supporting vocal mimicry? That is the premise of the vocal learning and synchronization hypothesis, recently advanced to explain the basis of this behavior (A. Patel, 2006, Musical Rhythm, Linguistic Rhythm, and Human Evolution, Music Perception, 24, 99-104). Prior to the current study, only vocal mimics, including humans, cockatoos, and budgerigars, have been shown to be capable of motoric entrainment. Here we demonstrate that a less vocally flexible animal, a California sea lion (Zalophus californianus), can learn to entrain head bobbing to an auditory rhythm meeting three criteria: a behavioral response that does not reproduce the stimulus; performance transfer to a range of novel tempos; and entrainment to complex, musical stimuli. These findings show that the capacity for entrainment of movement to rhythmic sounds does not depend on a capacity for vocal mimicry, and may be more widespread in the animal kingdom than previously hypothesized.

  9. ASSOCIATION BETWEEN POSITIVE CANINE HEARTWORM (DIROFILARIA IMMITIS) ANTIGEN RESULTS AND PRESENCE OF ACANTHOCHEILONEMA ODENDHALI MICROFILARIA IN CALIFORNIA SEA LIONS (ZALOPHUS CALIFORNIANUS).

    PubMed

    Krucik, David D R; Van Bonn, William; Johnson, Shawn P

    2016-03-01

    This study establishes a relationship between positive canine heartworm (Dirofilaria immitis) test results frequently observed in California sea lions (Zalophus californianus) and infection with the filarid nematode Acanthocheilonema odendhali. Four commercially available canine heartworm antigen tests were evaluated for cross-reaction with A. odendhali in California sea lions. Sera were tested from fifteen California sea lions with A. odendhali-associated microfilaremia, confirmed by blood smear, and with no evidence of D. immitis infection at necropsy. Ninety-five percent of tests were falsely positive for D. immitis. This study also determined that the prevalence of A. odendhali infection in stranded California sea lions from central California is approximately 23% by comparing the number of findings of mircofilaremia to the total number of California sea lions sampled at The Marine Mammal Center between 2005 and 2011, inclusive. Acanthocheilonema odenhali microfilaremia in California sea lions is likely to cross-react with canine heartworm antigen tests, and clinicians should interpret results with caution.

  10. Common cancer in a wild animal: the California sea lion (Zalophus californianus) as an emerging model for carcinogenesis

    PubMed Central

    Browning, Helen M.; Gulland, Frances M. D.; Hammond, John A.; Colegrove, Kathleen M.; Hall, Ailsa J.

    2015-01-01

    Naturally occurring cancers in non-laboratory species have great potential in helping to decipher the often complex causes of neoplasia. Wild animal models could add substantially to our understanding of carcinogenesis, particularly of genetic and environmental interactions, but they are currently underutilized. Studying neoplasia in wild animals is difficult and especially challenging in marine mammals owing to their inaccessibility, lack of exposure history, and ethical, logistical and legal limits on experimentation. Despite this, California sea lions (Zalophus californianus) offer an opportunity to investigate risk factors for neoplasia development that have implications for terrestrial mammals and humans who share much of their environment and diet. A relatively accessible California sea lion population on the west coast of the USA has a high prevalence of urogenital carcinoma and is regularly sampled during veterinary care in wildlife rehabilitation centres. Collaborative studies have revealed that genotype, persistent organic pollutants and a herpesvirus are all associated with this cancer. This paper reviews research to date on the epidemiology and pathogenesis of urogenital carcinoma in this species, and presents the California sea lion as an important and currently underexploited wild animal model of carcinogenesis. PMID:26056370

  11. PHARMACOKINETICS OF SINGLE-DOSE ORALLY ADMINISTERED CIPROFLOXACIN IN CALIFORNIA SEA LIONS (ZALOPHUS CALIFORNIANUS).

    PubMed

    Barbosa, Lorraine; Johnson, Shawn P; Papich, Mark G; Gulland, Frances

    2015-06-01

    Ciprofloxacin is commonly selected for clinical use due to its broad-spectrum efficacy and is a frequently administered antibiotic at The Marine Mammal Center, a marine mammal rehabilitation facility. Ciprofloxacin is used for treatment of California sea lions ( Zalophus californianus ) suffering from a variety of bacterial infections at doses extrapolated from other mammalian species. However, as oral absorption is variable both within and across species, a more accurate determination of appropriate dosage is needed to ensure effective treatment and avoid emergence of drug-resistant bacterial strains. A pharmacokinetic study was performed to assess plasma concentrations of ciprofloxacin in California sea lions after a single oral dose. Twenty healthy California sea lions received a single 10-mg/kg oral dose of ciprofloxacin administered in a herring fish. Blood was then collected at two of the following times from each individual: 0.5, 0.75, 1, 2, 4, 8, 10, 12, 18, and 24 hr postingestion. Plasma ciprofloxacin concentration was assessed via high-performance liquid chromatography. A population pharmacokinetics model demonstrated that an oral ciprofloxacin dose of 10 mg/kg achieved an area under the concentration vs. time curve of 6.01 μg hr/ml. Absorption was rapid, with ciprofloxacin detectable in plasma 0.54 hr after drug administration; absorption half-life was 0.09 hr. A maximum plasma concentration of 1.21 μg/ml was observed at 1.01 hr, with an elimination half-life of 3.09 hr. Ciprofloxacin administered orally at 10 mg/kg produced therapeutic antibacterial exposure for only some of the most susceptible bacterial organisms commonly isolated from California sea lions.

  12. Auditory and behavioral responses of California sea lions (Zalophus californianus) to single underwater impulses from an arc-gap transducer.

    PubMed

    Finneran, James J; Dear, Randall; Carder, Donald A; Ridgway, Sam H

    2003-09-01

    A behavioral response paradigm was used to measure underwater hearing thresholds in two California sea lions (Zalophus californianus) before and after exposure to underwater impulses from an arc-gap transducer. Preexposure and postexposure hearing thresholds were compared to determine if the subjects experienced temporary shifts in their masked hearing thresholds (MTTS). Hearing thresholds were measured at 1 and 10 kHz. Exposures consisted of single underwater impulses produced by an arc-gap transducer referred to as a "pulsed power device" (PPD). The electrical charge of the PPD was varied from 1.32 to 2.77 kJ; the distance between the subject and the PPD was varied over the range 3.4 to 25 m. No MTTS was observed in either subject at the highest received levels: peak pressures of approximately 6.8 and 14 kPa, rms pressures of approximately 178 and 183 dB re: 1 microPa, and total energy fluxes of 161 and 163 dB re: 1 microPa2s for the two subjects. Behavioral reactions to the tests were observed in both subjects. These reactions primarily consisted of temporary avoidance of the site where exposure to the PPD impulse had previously occurred.

  13. Common cancer in a wild animal: the California sea lion (Zalophus californianus) as an emerging model for carcinogenesis.

    PubMed

    Browning, Helen M; Gulland, Frances M D; Hammond, John A; Colegrove, Kathleen M; Hall, Ailsa J

    2015-07-19

    Naturally occurring cancers in non-laboratory species have great potential in helping to decipher the often complex causes of neoplasia. Wild animal models could add substantially to our understanding of carcinogenesis, particularly of genetic and environmental interactions, but they are currently underutilized. Studying neoplasia in wild animals is difficult and especially challenging in marine mammals owing to their inaccessibility, lack of exposure history, and ethical, logistical and legal limits on experimentation. Despite this, California sea lions (Zalophus californianus) offer an opportunity to investigate risk factors for neoplasia development that have implications for terrestrial mammals and humans who share much of their environment and diet. A relatively accessible California sea lion population on the west coast of the USA has a high prevalence of urogenital carcinoma and is regularly sampled during veterinary care in wildlife rehabilitation centres. Collaborative studies have revealed that genotype, persistent organic pollutants and a herpesvirus are all associated with this cancer. This paper reviews research to date on the epidemiology and pathogenesis of urogenital carcinoma in this species, and presents the California sea lion as an important and currently underexploited wild animal model of carcinogenesis. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Current prevalence of adult Uncinaria spp. in northern fur seal (Callorhinus ursinus) and California sea lion (Zalophus californianus) pups on San Miguel Island, California, with notes on the biology of these hookworms.

    PubMed

    Lyons, E T; Melin, S R; DeLong, R L; Orr, A J; Gulland, F M; Tolliver, S C

    2001-06-28

    A prevalence survey for hookworms (Uncinaria spp.) was done in northern fur seal (Callorhinus ursinus) and California sea lion (Zalophus californianus) pups on San Miguel Island, CA, in 2000. Intestines of dead pups were examined for adult hookworms in July. These parasites were found in 95% of 20 fur seal pups and 100% of 31 sea lion pups. The number of hookworms varied from 4 to 2142 (mean = 760) in fur seal pups and from 20 to 2634 (mean = 612) in sea lion pups. A direct relationship was evident between body condition and number of hookworms in the pups; that is, pups in poor condition had fewer hookworms than those in good condition. There was a decline in the number of hookworms in sea lion pups in 2000 compared to collections in 1996. Eggs of Uncinaria spp. were found in rectal feces (collected in late September and early October) of none of 35 (0%) live fur seal pups and 41 of 48 (85%) live sea lion pups. Packed cell volume values, determined for most of the same live pups, were essentially normal for C. ursinus but were much lower than normal for most Z. californianus. Hookworm larvae were not found in blubber of fur seal and sea lion pups or in rookery sand in July. Rookery sand, positive for live hookworm larvae when put in a refrigerator, was negative at removal 2.5 years later. The average number of eggs in utero of female hookworms was 285 for three specimens from a fur seal pup and 281 from three specimens from a sea lion pup. One hookworm larva was recovered from milk stripped from the teats of a stranded Z. californianus female at The Marine Mammal Center, Sausalito, CA.

  15. Epidemiology and pathology of Toxoplasma gondii in free-ranging California sea lions (Zalophus californianus).

    PubMed

    Carlson-Bremer, Daphne; Colegrove, Kathleen M; Gulland, Frances M D; Conrad, Patricia A; Mazet, Jonna A K; Johnson, Christine K

    2015-04-01

    The coccidian parasite Toxoplasma gondii infects humans and warm-blooded animals worldwide. The ecology of this parasite in marine systems is poorly understood, although many marine mammals are infected and susceptible to clinical toxoplasmosis. We summarized the lesions associated with T. gondii infection in the California sea lion (Zalophus californianus) population and investigated the prevalence of and risk factors associated with T. gondii exposure, as indicated by antibody. Five confirmed and four suspected cases of T. gondii infection were identified by analysis of 1,152 medical records of necropsied sea lions from 1975-2009. One suspected and two confirmed cases were identified in aborted fetuses from a sea lion rookery. Toxoplasmosis was the primary cause of death in five cases, including the two fetuses. Gross and histopathologic findings in T. gondii-infected sea lions were similar to those reported in other marine mammals. The most common lesions were encephalitis, meningitis, and myocarditis. The antibody prevalence in stranded, free-ranging sea lions for 1998-2009 was 2.5% (±0.03%; IgG titer 640). There was an increase in odds of exposure in sea lions with increasing age, suggesting cumulative risk of exposure and persistent antibody over time. The occurrence of disseminated T. gondii infection in aborted fetuses confirms vertical transmission in sea lions, and the increasing odds of exposure with age is consistent with additional opportunities for horizontal transmission in free-ranging sea lions over time. These data suggest that T. gondii may have two modes of transmission in the sea lion population. Overall, clinical disease was uncommon in our study which, along with low prevalence of T. gondii antibody, suggests substantially less-frequent exposure and lower susceptibility to clinical disease in California sea lions as compared to sympatric southern sea otters (Enhydra lutris nereis).

  16. Discovery of three novel coccidian parasites infecting California sea lions (Zalophus californianus), with evidence of sexual replication and interspecies pathogenicity.

    PubMed

    Colegrove, Kathleen M; Grigg, Michael E; Carlson-Bremer, Daphne; Miller, Robin H; Gulland, Frances M D; Ferguson, David J P; Rejmanek, Daniel; Barr, Bradd C; Nordhausen, Robert; Melli, Ann C; Conrad, Patricia A

    2011-10-01

    Enteric protozoal infection was identified in 5 stranded California sea lions (Zalophus californianus). Microscopically, the apical cytoplasm of distal jejunal enterocytes contained multiple stages of coccidian parasites, including schizonts with merozoites and spherical gametocytes, which were morphologically similar to coccidians. By histopathology, organisms appeared to be confined to the intestine and accompanied by only mild enteritis. Using electron microscopy, both sexual (microgametocytes, macrogamonts) and asexual (schizonts, merozoites) coccidian stages were identified in enterocytes within parasitophorous vacuoles, consistent with apicomplexan development in a definitive host. Serology was negative for tissue cyst-forming coccidians, and immunohistochemistry for Toxoplasma gondii was inconclusive and negative for Neospora caninum and Sarcocystis neurona. Analysis of ITS-1 gene sequences amplified from frozen or formalin-fixed paraffin-embedded intestinal sections identified DNA sequences with closest homology to Neospora sp. (80%); these novel sequences were referred to as belonging to coccidian parasites "A," "B," and "C." Subsequent molecular analyses completed on a neonatal harbor seal (Phoca vitulina) with protozoal lymphadenitis, hepatitis, myocarditis, and encephalitis showed that it was infected with a coccidian parasite bearing the "C" sequence type. Our results indicate that sea lions likely serve as definitive hosts for 3 newly described coccidian parasites, at least 1 of which is pathogenic in a marine mammal intermediate host species.

  17. Visitor effects on a zoo population of California sea lions (Zalophus californianus) and harbor seals (Phoca vitulina).

    PubMed

    de Vere, Amber J

    2018-05-01

    The effects of visitor presence on zoo and aquarium animals have become increasingly well studied, using measures such as behavioral responses and exhibit usage. Many taxa remain underrepresented in this literature; this is the case for marine mammals, despite widespread public concern for their welfare in managed care settings. The current study therefore used behavioral activity budgets and exhibit usage to assess the responses of California sea lions (Zalophus californianus) and harbor seals (Phoca vitulina) to visitors at the Seal Cove exhibit at Six Flags Discovery Kingdom, Vallejo CA. Data was collected via focal follow video recordings over the summer season of 2016, and analyzed using MANCOVAs, discriminant analyses, and modified Spread of Participation Indices. The sea lions showed no significant changes in behavior when visitors were present, but did show greater preference for the water bordering visitor viewing areas during these times. Two sea lions gave birth during the study period, and showed greater preference for land areas both adjacent to and out of sight of visitors when nursing compared to while pregnant. In contrast, the harbor seals showed significant behavioral changes in the presence of visitors, including increased vigilance and feeding. This was associated with increased preferential use of water areas adjacent to the visitor viewing area. Visitors were able to purchase fish to throw to the animals, which likely contributed to the differences observed. Overall, this study found little evidence for negative visitor impacts on two pinniped species in a zoo setting. © 2018 Wiley Periodicals, Inc.

  18. DISCOVERY OF THREE NOVEL COCCIDIAN PARASITES INFECTING CALIFORNIA SEA LIONS (ZALOPHUS CALIFORNIANUS), WITH EVIDENCE OF SEXUAL REPLICATION AND INTERSPECIES PATHOGENICITY

    PubMed Central

    Colegrove, Kathleen M.; Grigg, Michael E.; Carlson-Bremer, Daphne; Miller, Robin H.; Gulland, Frances M. D.; Ferguson, David J. P.; Rejmanek, Daniel; Barr, Bradd C.; Nordhausen, Robert; Melli, Ann C.; Conrad, Patricia A.

    2016-01-01

    Enteric protozoal infection was identified in 5 stranded California sea lions (Zalophus californianus). Microscopically, the apical cytoplasm of distal jejunal enterocytes contained multiple stages of coccidian parasites, including schizonts with merozoites and spherical gametocytes, which were morphologically similar to coccidians. By histopathology, organisms appeared to be confined to the intestine and accompanied by only mild enteritis. Using electron microscopy, both sexual (microgametocytes, macrogamonts) and asexual (schizonts, merozoites) coccidian stages were identified in enterocytes within parasitophorous vacuoles, consistent with apicomplexan development in a definitive host. Serology was negative for tissue cyst-forming coccidians, and immunohistochemistry for Toxoplasma gondii was inconclusive and negative for Neospora caninum and Sarcocystis neurona. Analysis of ITS-1 gene sequences amplified from frozen or formalin-fixed paraffin-embedded intestinal sections identified DNA sequences with closest homology to Neospora sp. (80%); these novel sequences were referred to as belonging to coccidian parasites ‘‘A,’’ ‘‘B,’’ and ‘‘C.’’ Subsequent molecular analyses completed on a neonatal harbor seal (Phoca vitulina) with protozoal lymphadenitis, hepatitis, myocarditis, and encephalitis showed that it was infected with a coccidian parasite bearing the ‘‘C’’ sequence type. Our results indicate that sea lions likely serve as definitive hosts for 3 newly described coccidian parasites, at least 1 of which is pathogenic in a marine mammal intermediate host species. PMID:21495828

  19. Seasonal prevalence and intensity of hookworms (Uncinaria spp.) in California sea lion (Zalophus californianus) pups born in 2002 on San Miguel Island, California.

    PubMed

    Lyons, E T; Delong, R L; Spraker, T R; Melin, S R; Laake, J L; Tolliver, S C

    2005-05-01

    Intestines of California sea lion (Zalophus californianus) pups (n= 204), born in 2002 on San Miguel Island, California, were examined for hookworms (Uncinaria spp.) as part of a seasonal mortality study from June through December 2002 and January 2003. The investigation was planned to coincide with most of the previously established hookworm infection period of the pups. Prevalence of hookworms in dead pups was 100% for each month of the study. The geometric mean intensity of infections per month was: 94.03 (n=30) for June, 629.09 (n=50) for July, 319.90 (n=31) for August, 159.90 (n=30) for October, 109.03 (n=30) for November, 37.84 (n=24) for December 2002 and 11.05 (n=9) for January 2003. In addition to the temporal pattern, the infection intensity was higher for pups in good condition and for male pups. An inter-year comparison of hookworm counts from dead pups collected in July of 1996, 2000, and 2002 also demonstrated higher intensity in pups in better condition but sex-differences in intensity were inconsistent across years. The inter-year comparison also demonstrated higher intensities in dead pups collected from portions of the rookery with sandy substrate versus rocky substrate. No annual differences in intensity were found after adjusting for substrate and condition.

  20. The role of domoic acid in abortion and premature parturition of California sea lions (Zalophus californianus) on San Miguel Island, California.

    PubMed

    Goldstein, Tracey; Zabka, Tanja S; Delong, Robert L; Wheeler, Elizabeth A; Ylitalo, Gina; Bargu, Sibel; Silver, Mary; Leighfield, Tod; Van Dolah, Frances; Langlois, Gregg; Sidor, Inga; Dunn, J Lawrence; Gulland, Frances M D

    2009-01-01

    Domoic acid is a glutaminergic neurotoxin produced by marine algae such as Pseudo-nitzschia australis. California sea lions (Zalophus californianus) ingest the toxin when foraging on planktivorous fish. Adult females comprise 60% of stranded animals admitted for rehabilitation due to acute domoic acid toxicosis and commonly suffer from reproductive failure, including abortions and premature live births. Domoic acid has been shown to cross the placenta exposing the fetus to the toxin. To determine whether domoic acid was playing a role in reproductive failure in sea lion rookeries, 67 aborted and live-born premature pups were sampled on San Miguel Island in 2005 and 2006 to investigate the causes for reproductive failure. Analyses included domoic acid, contaminant and infectious disease testing, and histologic examination. Pseudo-nitzschia spp. were present both in the environment and in sea lion feces, and domoic acid was detected in the sea lion feces and in 17% of pup samples tested. Histopathologic findings included systemic and localized inflammation and bacterial infections of amniotic origin, placental abruption, and brain edema. The primary lesion in five animals with measurable domoic acid concentrations was brain edema, a common finding and, in some cases, the only lesion observed in aborted premature pups born to domoic acid-intoxicated females in rehabilitation. Blubber organochlorine concentrations were lower than those measured previously in premature sea lion pups collected in the 1970s. While the etiology of abortion and premature parturition was varied in this study, these results suggest that domoic acid contributes to reproductive failure on California sea lion rookeries.

  1. Investigations of peritoneal and intestinal infections of adult hookworms (Uncinaria spp.) in northern fur seal (Callorhinus ursinus) and California sea lion (Zalophus californianus) pups on San Miguel Island, California (2003).

    PubMed

    Lyons, Eugene T; Delong, R L; Nadler, S A; Laake, J L; Orr, A J; Delong, B L; Pagan, C

    2011-09-01

    The peritoneal cavity (PNC) and intestine of northern fur seal (Callorhinus ursinus) pups and California sea lion (Zalophus californianus) pups that died in late July and early August, 2003, on San Miguel Island, California, were examined for hookworms. Prevalence and morphometric studies were done with the hookworms in addition to molecular characterization. Based on this and previous molecular studies, hookworms from fur seals are designated as Uncinaria lucasi and the species from sea lions as Uncinaria species A. Adult hookworms were found in the PNC of 35 of 57 (61.4%) fur seal pups and of 13 of 104 (12.5%) sea lion pups. The number of hookworms located in the PNC ranged from 1 to 33 (median = 3) for the infected fur seal pups and 1 to 16 (median = 2) for the infected sea lion pups. In addition to the PNC, intestines of 43 fur seal and 32 sea lion pups were examined. All of these pups were positive for adult hookworms. The worms were counted from all but one of the sea lion pups. Numbers of these parasites in the intestine varied from 3 to 2,344 (median = 931) for the fur seal pups and 39 to 2,766 (median = 643) for the sea lion pups. Sea lion pups with peritoneal infections had higher intensity infections in the intestines than did pups without peritoneal infections, lending some support for the hypothesis that peritoneal infections result from high-intensity infections of adult worms. There was no difference in intestinal infection intensities between fur seal pups with and without peritoneal infections. Female adult hookworms in the intestines of both host species were significantly larger than males, and sea lion hookworms were larger than those in fur seals. Worms in the intestine also were larger than worms found in the PNC. Gene sequencing and (RFLP) analysis of (PCR) amplified (ITS) ribosomal DNA were used to diagnose the species of 172 hookworms recovered from the PNC and intestine of 18 C. ursinus and seven Z. californianus hosts

  2. PHARMACOKINETICS OF TRAMADOL HYDROCHLORIDE AND ITS METABOLITE O-DESMETHYLTRAMADOL FOLLOWING A SINGLE, ORALLY ADMINISTERED DOSE IN CALIFORNIA SEA LIONS (ZALOPHUS CALIFORNIANUS).

    PubMed

    Boonstra, Jennifer L; Barbosa, Lorraine; Van Bonn, William G; Johnson, Shawn P; Gulland, Frances M D; Cox, Sherry K; Martin-Jimenez, Tomas

    2015-09-01

    Tramadol is a synthetic, centrally acting, opiate-like analgesic that is structurally related to codeine and morphine. The objective of this study was to determine the pharmacokinetics of tramadol hydrochloride and its major active metabolite O-desmethyltramadol (M1) in the California sea lion (Zalophus californianus). A single dose of tramadol was administered orally in fish at 2 mg/kg to a total of 15 wild California sea lions admitted for rehabilitation. Twenty-four total blood samples were collected post drug administration at 10, 20, 30, and 45 min and at 1, 3, 5, 6, 8, 12, and 24 hr. Blood plasma was separated and stored at -80°C until analysis with high-performance liquid chromatography was performed to determine levels of tramadol and M1, the major active metabolite. The results indicate that the plasma levels of parent tramadol are low or negligible during the first 30-45 min and then reach the predicted mean maximum plasma concentration of 358 ng/ml at 1.52 hr. The M1 metabolite was not detectable in 21 of 24 plasma samples, below the level of quantification of 5 ng/ml in one sample, and detectable at 11 and 17 ng/ml in two of the samples. This study suggests that a 2 mg/kg dose would need to be administered every 6-8 hr to maintain concentrations of tramadol above the minimum human analgesic level for mild to moderate pain. Based on dosing simulations, a dose of 4 mg/kg q8 hr or q12 hr, on average, may represent an adequate compromise, but further studies are needed using a larger sample size. Pharmacodynamic studies are warranted to determine if tramadol provides analgesic effects in this species. The potential for tramadol toxicosis at any dose also has not been determined in this species.

  3. Activity-specific ecological niche models for planning reintroductions of California condors (Gymnogyps californianus)

    Treesearch

    Jesse D’Elia; Susan M. Haig; Matthew Johnson; Richard Young; Bruce G. Marcot

    2015-01-01

    Ecological niche models can be a useful tool to identify candidate reintroduction sites for endangered species but have been infrequently used for this purpose. In this paper, we (1) develop activity-specific ecological niche models (nesting, roosting, and feeding) for the critically endangered California condor (Gymnogyps californianus) to aid in...

  4. Thoracic auscultation in captive bottlenose dolphins (Tursiops truncatus), California sea lions (Zalophus californianus), and South African fur seals (Arctocephalus pusillus) with an electronic stethoscope.

    PubMed

    Scharpegge, Julia; Hartmann, Manuel García; Eulenberger, Klaus

    2012-06-01

    Thoracic auscultation is an important diagnostic method used in cases of suspected pulmonary disease in many species, as respiratory sounds contain significant information on the physiology and pathology of the lungs and upper airways. Respiratory diseases are frequent in marine mammals and are often listed as one of their main causes of death. The aim of this study was to investigate and report baseline parameters for the electronic-mediated thoracic auscultation of one cetacean species and two pinniped species in captivity. Respiratory sounds from 20 captive bottlenose dolphins (Tursiops truncatus), 6 California sea lions (Zalophus californianus), and 5 South African fur seals (Arctocephalus pusillus) were recorded with an electronic stethoscope. The sounds were analyzed for duration of the respiratory cycle, adventitious sounds, and peak frequencies of recorded sounds during expiration and inspiration as well as for sound intensity as reflected by waveform amplitude during the respiratory cycle. In respiratory cycles of the bottlenose dolphins' expiring "on command," the duration of the expiration was significantly shorter than the duration of the inspiration. In the examined pinnipeds of this study, there was no clear pattern concerning the duration of one breathing phase: Adventitious sounds were detected most often in bottlenose dolphins that were expiring on command and could be compared with "forced expiratory wheezes" in humans. This is the first report of forced expiratory wheezes in bottlenose dolphins; they can easily be misinterpreted as pathologic respiratory sounds. The peak frequencies of the respiratory sounds reached over 2,000 Hz in bottlenose dolphins and over 1,000 Hz in California sea lions and South African fur seals, but the variation of the frequency spectra was very high in all animals. To the authors' knowledge, this is the first systematic analysis of respiratory sounds of bottlenose dolphins and two species of pinnipeds.

  5. California Sea Lion (Zalophus californianus) and Harbor Seal (Phoca vitulina richardii) Bites and Contact Abrasions in Open-Water Swimmers: A Series of 11 Cases.

    PubMed

    Nuckton, Thomas J; Simeone, Claire A; Phelps, Roger T

    2015-12-01

    To review cases of bites and contact abrasions in open-water swimmers from California sea lions (Zalophus californianus) and harbor seals (Phoca vitulina richardii). Open-water swimmers from a San Francisco swimming club were questioned about encounters with pinnipeds (seals and sea lions) that resulted in bites or contact abrasions. When possible, wounds were documented with photographs. Medical follow-up and treatment complications were also reviewed. From October 2011 to December 2014, 11 swimmers reported bites by a sea lion (n = 1), harbor seal (n = 7), or unidentified pinniped (n = 3). Ten of the encounters occurred in San Francisco Bay; 1 occurred in the Eld Inlet, in Puget Sound, near Olympia, WA. None of the swimmers were wearing wetsuits. All bites involved the lower extremities; skin was broken in 4 of 11 bites and antibiotics were prescribed in 3 cases. One swimmer, who was bitten by a harbor seal, also had claw scratches. A treatment failure occurred with amoxicillin/clavulanate in another swimmer who was bitten by an unidentified pinniped; the wound healed subsequently with doxycycline, suggesting an infection with Mycoplasma spp. There were no long-lasting consequences from any of the bites. The majority of cases occurred at low tide, and bumping of the swimmer by the animal before or after a bite was common, but no clear tide or attack pattern was identified. Bites and contact abrasions from sea lions and harbor seals are reported infrequently in open-water swimmers and typically involve the lower extremities. Because of the risk of Mycoplasma infection, treatment with a tetracycline is recommended in pinniped bites with signs of infection or serious trauma. Attempting to touch or pet sea lions or seals is inadvisable and prohibited by the Marine Mammal Protection Act. Swimmers should leave the water as soon as possible after a bite or encounter. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  6. Linkages Between Upwelling and Shell Characteristics of Mytilus californianus: Morphology and Stable Isotope (δ13C, δ18O) Signatures of a Carbonate Archive from the California Current

    NASA Astrophysics Data System (ADS)

    Hosfelt, J. D.; Hill, T. M.; Russell, A. D.; Bean, J. R.; Sanford, E.; Gaylord, B.

    2014-12-01

    Many calcareous organisms are known to record the ambient environmental conditions in which they grow, and their calcium carbonate skeletons are often valuable archives of climate records. Mytilus californianus, a widely distributed species of intertidal mussel, experiences a spatial mosaic of oceanographic conditions as it grows within the California Current System. Periodic episodes of upwelling bring high-CO2 waters to the surface, during which California coastal waters are similar to projected conditions and act as a natural analogue to future ocean acidification. To examine the link between upwelling and shell characteristics of M. californianus, we analyzed the morphology and stable isotope (δ13C, δ18O) signatures of mussel specimens collected live from seven study sites within the California Current System. Morphometric analyses utilized a combination of elliptic Fourier analysis and shell thickness measurements to determine the influence of low pH waters on the growth morphology and ecological fitness of M. californianus. These geochemical and morphological analyses were compared with concurrent high-resolution environmental (T, S, pH, TA, DIC) records from these seven study sites from 2010-2013. With appropriate calibration, new archives from modern M. californianus shells could provide a valuable tool to enable environmental reconstructions within the California Current System. These archives could in turn be used to predict the future consequences of continuing ocean acidification, as well as reconstruct past (archeological) conditions.

  7. Effect of copper on Mytilus californianus and Mytilus edulis. Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-06-06

    Mytilus edulis and Mytilus californianus have come into widespread use as valuable test animals in estimating the effects and extent of copper pollution, both naturally as indicators and under simulated conditions as bioassays. These mussels are known bioaccumulators of heavy metals. They have a broad distribution, and mutually exclusive habitats. How the mussel reacts to copper is directly related to how copper affects the physiology of the mussel. The filtration rate and oxygen consumption of Mytilus are known to decline by more than 50% under exposure to as low as 200 ppB Cu in the water. Decline in heart ratemore » (bradycardia) also occurs under exposure to copper. Byssus thread production suffers in copper concentrations of 500 ppB and higher. The ability of M. edulis to close its valves in the presence of copper has been documented by several researchers. Of all the physiological parameters, oxygen consumption, heart rate, and valve closure are basic physiological functions which are easily measured. Mortality of Mytilus edulis is known to occur at concentrations of copper 330 ppB and higher within four to five days. It would be advantageous to have a continuous monitoring of the heart, oxygen consumption, and valve gape during this period to determine the state of each and the contribution of each to the possible death of the mussel. This study involves monitoring the three above physiological functions under varying concentrations of copper. In both species, M. edulis and M. californianus, detailed toxicological response records were obtained for each function. These records were then used to compare the physiological responses of each species to different levels of ambient copper in order to explain the possibility of repeatable, species-specific, response patterns to copper. (ERB)« less

  8. Initial validation of blubber cortisol and progesterone as indicators of stress response and maturity in an otariid; the California sea lion (Zalophus californianus).

    PubMed

    Beaulieu-McCoy, Nicole E; Sherman, Kathryn K; Trego, Marisa L; Crocker, Daniel E; Kellar, Nicholas M

    2017-10-01

    Chronic stress can have detrimental effects on an individual's health and reproductive success. The use of cortisol quantification as an indicator of stress in free-ranging cetaceans and phocids is increasing but no studies have applied this technique on blubber in otariids. We measured cortisol concentrations in blubber samples obtained from California sea lions, Zalophus californianus, stranded in San Diego County and those incidentally killed in the California drift gillnet fishery. We also measured progesterone concentrations to assess female reproductive status and, in males, as a potential secondary measure of adrenal steroid production. Blubber cortisol and progesterone values were compared across demographic groups (sex and maturity), season, and proportion blubber lipid extracted. Stranded animals (247.3±70.767 SE ng/gblubber) had significantly higher cortisol concentrations compared to fishery bycaught (8.1±2.108 SE ng/gblubber) animals. These findings are likely driven by inherent differences in the cause of death and associated nutritional state coupled with the mean duration of expiration for these two groups of animals (i.e., the duration from an animal's initial perception of the threat-to-self until death). The duration of transition from healthy state to death in stranded animals is on the order of many hours to weeks while in fishery bycaught animals, this transition occurs much more rapidly (i.e., seconds to tens of minutes). The presumed longer duration of the mortality event in stranded animals gives sufficient time for elevated cortisol to diffuse into the blubber. No significant differences between demographic groups, or season were found. However, blubber cortisol declined inversely with proportion blubber lipid extracted, suggesting utility in assessing long-term nutritional status. Blubber progesterone was significantly higher in mature females than immature females (153.8±54.546 SE ng/gblubber and 9.7±3.60 SE ng/gblubber respectively

  9. 75 FR 54094 - Marine Mammals; File No. 486-1790

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... California sea lions (Zalophus californianus), northern elephant seals (Mirounga angustirostris), harbor..., and eyes. The permit also allows for mortality of up to two animals of each species per year...

  10. 77 FR 73989 - Takes of Marine Mammals Incidental to Specified Activities; Seabird and Pinniped Research...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ... colonies; observing seabird nesting habitat; restoring nesting burrows; observing breeding elephant seals... (Zalophus californianus), Pacific harbor seals (Phoca vitulina), northern elephant seals (Mirounga... authorization to take 5,104 California sea lions, 526 harbor seals, 190 northern elephant seals, and 20 Steller...

  11. Patterns of mortality in free-ranging California condors (Gymnogyps californianus)

    USGS Publications Warehouse

    Rideout, B.A.; Stalis, I.; Papendick, R.; Pessier, A.; Puschner, B.; Finkelstein, M.E.; Smith, D.R.; Johnson, Matthew; Mace, M.; Stroud, R.; Brandt, J.; Burnett, J.; Parish, C.; Petterson, J.; Witte, C.; Stringfield, C.; Orr, K.; Zuba, J.; Wallace, M.; Grantham, J.

    2012-01-01

    We document causes of death in free-ranging California Condors (Gymnogyps californianus) from the inception of the reintroduction program in 1992 through December 2009 to identify current and historic mortality factors that might interfere with establishment of self-sustaining populations in the wild. A total of 135 deaths occurred from October 1992 (the first post-release death) through December 2009, from a maximum population-at-risk of 352 birds, for a cumulative crude mortality rate of 38%. A definitive cause of death was determined for 76 of the 98 submitted cases, 70% (53/76) of which were attributed to anthropogenic causes. Trash ingestion was the most important mortality factor in nestlings (proportional mortality rate [PMR] 73%; 8/11), while lead toxicosis was the most important factor in juveniles (PMR 26%; 13/50) and adults (PMR 67%; 10/15). These results demonstrate that the leading causes of death at all California Condor release sites are anthropogenic. The mortality factors thought to be important in the decline of the historic California Condor population, particularly lead poisoning, remain the most important documented mortality factors today. Without effective mitigation, these factors can be expected to have the same effects on the sustainability of the wild populations as they have in the past.

  12. 75 FR 78228 - Takes of Marine Mammals Incidental to Specified Activities; Columbia River Crossing Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-15

    ... (Zalophus californianus), and harbor seals (Phoca vitulina). Specified Activities CRC is proposing a...-water bents, consisting of one to three drilled shafts. The permanent in-water piers of both the Columbia River and North Portland Harbor crossings will be constructed using drilled shafts, rather than...

  13. 75 FR 37388 - Marine Mammals; File No. 14535

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ...), authorizes psychological and physiological research annually on up to two captive harbor seals (Phoca vitulina), two California sea lions (Zalophus californianus), and two northern elephant seals (Mirounga... holder requests an amendment to add two non-releasable animals of each of the following species to the...

  14. 50 CFR 218.171 - Permissible methods of taking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...); (2) Northern fur seal (Callorhinus ursinus)—220 (an average of 44 annually); (3) California sea lion (Zalophus californianus)—570 (an average of 114 annually); (4) Northern elephant seal (Mirounga angustirostris)—70 (an average of 14 annually); (5) Harbor seal (Phoca vitulina richardsi) (Washington Inland...

  15. Effect of three aromatic hydrocarbons on respiration and heart rates of the mussel, mytilus californianus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabourin, T.D.; Tullis, R.E.

    1981-06-01

    The effects of petroleum derivatives on morality of marine invertebrates is now well established. Aromatics are considered to be the most toxic of all oil fractions. Recent studies of marine invertebrates have focused mainly upon respiration, locomotion, and growth. The filter feeding marine bivalves have received primary attention due to their proximity to coastal oil spills, importance in human food consumption and possible role in petroleum hydrocarbon bioconcentration. If these organisms are to be used as monitors in the future, then it is important to learn something of how quickly the bivalve responds metabolically to changes in ambient levels ofmore » petroleum hydrocarbons. Respiration and heart activity reveal a great deal of information concerning the physiological state of the bivalve. We report measrements of these two variables in the mussel, Mytilus californianus (Conrad), under conditions of exposure to, and recovery from, three aromatic hydrocarbons.« less

  16. 50 CFR 217.62 - Permissible methods of taking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Helicopter Operations, and Harbor Activities Related to Launch Vehicles From Vandenberg Air Force Base (VAFB...)—31,161; (2) California sea lions (Zalophus californianus)—465,129; (3) Northern elephant seals (Mirounga angustirostris)—80,024; (4) Northern fur seals (Callorhinus ursinus)—62,500; and (5) Steller sea...

  17. 77 FR 60109 - Takes of Marine Mammals Incidental to Specified Activities; Harbor Activities Related to the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ... California sea lions (Zalophus californianus), Pacific harbor seals (Phoca vitulina), and Northern elephant... elephant seals by Level B harassment only. We have outlined the purpose of the program in a previous notice...; and Northern elephant seals by Level B harassment only. To date, we have issued nine, 1-year...

  18. 78 FR 70537 - Takes of Marine Mammals Incidental to Specified Activities; Target and Missile Launch Activities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... over 5 years: northern elephant seal (Mirounga angustirostris), Pacific harbor seal (Phoca vitulina), and California sea lion (Zalophus californianus). The Navy is requesting a 5-year LOA proposed to be... levels from up to 40 missile launches per year. The Navy is requesting authorization to take three marine...

  19. Determination of sound types and source levels of airborne vocalizations by California sea lions, Zalophus californianus, in rehabilitation at the Marine Mammal Center in Sausalito, California

    NASA Astrophysics Data System (ADS)

    Schwalm, Afton Leigh

    California sea lions (Zalophus californianus) are a highly popular and easily recognized marine mammal in zoos, aquariums, circuses, and often seen by ocean visitors. They are highly vocal and gregarious on land. Surprisingly, little research has been performed on the vocalization types, source levels, acoustic properties, and functions of airborne sounds used by California sea lions. This research on airborne vocalizations of California sea lions will advance the understanding of this aspect of California sea lions communication, as well as examine the relationship between health condition and acoustic behavior. Using a PhillipsRTM digital recorder with attached microphone and a calibrated RadioShackRTM sound pressure level meter, acoustical data were recorded opportunistically on California sea lions during rehabilitation at The Marine Mammal Center in Sausalito, CA. Vocalizations were analyzed using frequency, time, and amplitude variables with Raven Pro: Interactive Sound Analysis Software Version 1.4 (The Cornell Lab of Ornithology, Ithaca, NY). Five frequency, three time, and four amplitude variables were analyzed for each vocalization. Differences in frequency, time, and amplitude variables were not significant by sex. The older California sea lion group produced vocalizations that were significantly lower in four frequency variables, significantly longer in two time variables, significantly higher in calibrated maximum and minimum amplitude variables, and significantly lower in frequency at maximum and minimum amplitude compared with pups. Six call types were identified: bark, goat, growl/grumble, bark/grumble, bark/growl, and grumble/moan. The growl/grumble call was higher in dominant beginning, ending, and minimum frequency, as well as in the frequency at maximum amplitude compared with the bark, goat, bark/grumble calls in the first versus last vocalization sample. The goat call was significantly higher in first harmonic interval than any other call type

  20. Vasculitis and Thrombosis due to the Sea Lion Lungworm, Parafilaroides decorus, in a Guadalupe Fur Seal ( Arctocephalus philippii townsendi).

    PubMed

    Seguel, Mauricio; Nadler, Steven; Field, Cara; Duignan, Padraig

    2018-05-01

    A free-ranging, male, yearling Guadalupe fur seal ( Arctocephalus philippii townsendi) died due to multifocal verminous vasculitis with thrombosis and several embolic infarcts in liver, kidney, and brain. Nematodes extracted from lung blood vessels were identified as Parafilaroides decorus, a parasite normally found in alveoli of California sea lions ( Zalophus californianus).

  1. California mussels (Mytilus californianus) as sentinels for marine contamination with Sarcocystis neurona.

    PubMed

    Michaels, Lauren; Rejmanek, Daniel; Aguilar, Beatriz; Conrad, Patricia; Shapiro, Karen

    2016-05-01

    Sarcocystis neurona is a terrestrial parasite that can cause fatal encephalitis in the endangered Southern sea otter (Enhydra lutris nereis). To date, neither risk factors associated with marine contamination nor the route of S. neurona infection to marine mammals has been described. This study evaluated coastal S. neurona contamination using California mussels (Mytilus californianus) as sentinels for pathogen pollution. A field investigation was designed to test the hypotheses that (1) mussels can serve as sentinels for S. neurona contamination, and (2) S. neurona contamination in mussels would be highest during the rainy season and in mussels collected near freshwater. Initial validation of molecular assays through sporocyst spiking experiments revealed the ITS-1500 assay to be most sensitive for detection of S. neurona, consistently yielding parasite amplification at concentrations ⩾5 sporocysts/1 mL mussel haemolymph. Assays were then applied on 959 wild-caught mussels, with detection of S. neurona confirmed using sequence analysis in three mussels. Validated molecular assays for S. neurona detection in mussels provide a novel toolset for investigating marine contamination with this parasite, while confirmation of S. neurona in wild mussels suggests that uptake by invertebrates may serve as a route of transmission to susceptible marine animals.

  2. Environmental contaminants in surrogates, foods, and feathers of California condors (Gymnogyps californianus)

    USGS Publications Warehouse

    Wiemeyer, Stanley N.; Jurek, R.M.; Moore, John F.

    1986-01-01

    California condor (Gymnogyps californianus) foods and feathers, and turkey vultures (Cathartes aura), common ravens (Corvus corax), and their eggs were collected within the condor range to determine exposure of condors to environmental contaminants. Samples were analyzed for organochlorines and trace elements. Food items contained low concentrations of organochlorines and generally low concentrations of lead. DDE was detected in all vulture carcasses and nearly all raven carcasses at generally moderate concentrations. Other organochlorines occurred infrequently in carcasses and generally at low concentrations. Turkey vulture eggshells were 16% thinner than the pre-DDT mean; there was no change in shell thickness of raven eggs. Vulture eggs contained an average of 6.9 ppm DDE and two contained excessive concentrations of endrin. DDE concentrations were low in raven eggs. Residues of As, Cd, Cr, Cu, Fe, Hg, Ni, Se, Tl, and Zn in tissues of vultures and ravens appeared normal when compared with reference values for other species. Lead concentrations in bone of turkey vultures and feathers of condors appeared to be elevated above normal background concentrations in some cases. Current exposure of condors to organochlorines appears low; however, we are concerned about the excessive exposure of turkey vultures to organochlorines, possibly in Central America. Lead exposure to vultures and condors has occurred, but its significance to their populations is unknown.

  3. Transcriptome profiles link environmental variation and physiological response of Mytilus californianus between Pacific tides

    PubMed Central

    Place, Sean P.; Menge, Bruce A.; Hofmann, Gretchen E.

    2011-01-01

    Summary The marine intertidal zone is characterized by large variation in temperature, pH, dissolved oxygen and the supply of nutrients and food on seasonal and daily time scales. These oceanic fluctuations drive of ecological processes such as recruitment, competition and consumer-prey interactions largely via physiological mehcanisms. Thus, to understand coastal ecosystem dynamics and responses to climate change, it is crucial to understand these mechanisms. Here we utilize transcriptome analysis of the physiological response of the mussel Mytilus californianus at different spatial scales to gain insight into these mechanisms. We used mussels inhabiting different vertical locations within Strawberry Hill on Cape Perpetua, OR and Boiler Bay on Cape Foulweather, OR to study inter- and intra-site variation of gene expression. The results highlight two distinct gene expression signatures related to the cycling of metabolic activity and perturbations to cellular homeostasis. Intermediate spatial scales show a strong influence of oceanographic differences in food and stress environments between sites separated by ~65 km. Together, these new insights into environmental control of gene expression may allow understanding of important physiological drivers within and across populations. PMID:22563136

  4. A Robotic Platform to Study the Foreflipper of the California Sea Lion.

    PubMed

    Kulkarni, Aditya A; Patel, Rahi K; Friedman, Chen; Leftwich, Megan C

    2017-01-10

    The California sea lion (Zalophus californianus), is an agile and powerful swimmer. Unlike many successful swimmers (dolphins, tuna), they generate most of their thrust with their large foreflippers. This protocol describes a robotic platform designed to study the hydrodynamic performance of the swimming California sea lion (Zalophus californianus). The robot is a model of the animal's foreflipper that is actuated by motors to replicate the motion of its propulsive stroke (the 'clap'). The kinematics of the sea lion's propulsive stroke are extracted from video data of unmarked, non-research sea lions at the Smithsonian Zoological Park (SNZ). Those data form the basis of the actuation motion of the robotic flipper presented here. The geometry of the robotic flipper is based a on high-resolution laser scan of a foreflipper of an adult female sea lion, scaled to about 60% of the full-scale flipper. The articulated model has three joints, mimicking the elbow, wrist and knuckle joint of the sea lion foreflipper. The robotic platform matches dynamics properties-Reynolds number and tip speed-of the animal when accelerating from rest. The robotic flipper can be used to determine the performance (forces and torques) and resulting flowfields.

  5. Activity-specific ecological niche models for planning reintroductions of California condors (Gymnogyps californianus)

    USGS Publications Warehouse

    D'Elia, Jesse; Haig, Susan M.; Johnson, Matthew J.; Marcot, Bruce G.; Young, Richard

    2015-01-01

    Ecological niche models can be a useful tool to identify candidate reintroduction sites for endangered species but have been infrequently used for this purpose. In this paper, we (1) develop activity-specific ecological niche models (nesting, roosting, and feeding) for the critically endangered California condor (Gymnogyps californianus) to aid in reintroduction planning in California, Oregon, and Washington, USA, (2) test the accuracy of these models using empirical data withheld from model development, and (3) integrate model results with information on condor movement ecology and biology to produce predictive maps of reintroduction site suitability. Our approach, which disentangles niche models into activity-specific components, has applications for other species where it is routinely assumed (often incorrectly) that individuals fulfill all requirements for life within a single environmental space. Ecological niche models conformed to our understanding of California condor ecology, had good predictive performance when tested with data withheld from model development, and aided in the identification of several candidate reintroduction areas outside of the current distribution of the species. Our results suggest there are large unoccupied regions of the California condor’s historical range that have retained ecological features similar to currently occupied habitats, and thus could be considered for future reintroduction efforts. Combining our activity-specific ENMs with ground reconnaissance and information on other threat factors that could not be directly incorporated into empirical ENMs will ultimately improve our ability to select successful reintroduction sites for the California condor.

  6. Biomimetic Oscillating Foil Propulsion to Enhance Underwater Vehicle Agility and Maneuverability

    DTIC Science & Technology

    2008-06-01

    Blake, A.W. Trites, and K.H.S. Chan. Turning maneuvers in steller sea lions (eumatopias jubatus). Marine Mammal Science, 23(1):94-109, 2007. [10] E.G...degree of Doctor of Philosophy in Oceanographic and Mechanical Engineering Abstract Inspired by the swimming abilities of marine animals, this thesis...with various conventional thruster /control sur- face combinations, as well as sealion (Zalophus californianus and Eu- matopias jubatus ) turning rates

  7. Status of the California condor (Gymnogyps californianus) and efforts to achieve its recovery

    USGS Publications Warehouse

    Walters, Jeffrey R.; Derrickson, Scott R.; Fry, D. Michael; Haig, Susan M.; Marzluff, John M.; Wunderle, Joseph M.

    2010-01-01

    The California Condor (Gymnogyps californianus; hereafter "condor"; Fig. 1) has long been symbolic of avian conservation in the United States. Its large size, inquisitiveness, and association with remote places make it highly charismatic, and its decline to the brink of extinction aroused a continuing public interest in its plight. By 1982, only 22 individuals remained of this species whose range once encompassed much of North America. The last wild bird was trapped and brought into captivity in 1987, which rendered the species extinct in the wild (Snyder and Snyder 1989). In the 1980s, some questioned whether viable populations could ever again exist in the natural environment, and whether limited conservation funds should be expended on what they viewed as a hopeless cause (Pitelka 1981). Nevertheless, since that low point, a captive-breeding and release program has increased the total population by an order of magnitude, and condors fly free again in California, Arizona, Utah, and Baja California, Mexico (Fig. 2). At this writing (summer 2009), more than 350 condors exist, 180 of which are in the wild (J. Grantham pers. comm.). The free-living birds face severe challenges, however, and receive constant human assistance. The intensive management applied to the free-living populations, as well as the ongoing monitoring and captive-breeding programs, are tremendously expensive and become more so as the population grows. Thus, the program has reached a crossroads, caught between the financial and logistical pressures required to maintain an increasing number of condors in the wild and the environmental problems that preclude establishment of naturally sustainable, free-ranging populations.

  8. Galápagos and Californian sea lions are separate species: Genetic analysis of the genus Zalophus and its implications for conservation management

    PubMed Central

    Wolf, Jochen BW; Tautz, Diethard; Trillmich, Fritz

    2007-01-01

    Background Accurate formal taxonomic designations are thought to be of critical importance for the conservation of endangered taxa. The Galápagos sea lion (GSL), being appreciated as a key element of the Galápagos marine ecosystem, has lately been listed as 'vulnerable' by the IUCN. To date there is, however, hardly any scientific evidence, whether it constitutes a separate entity from its abundant Californian neighbour (CSL). In this paper, we delineate the taxonomic relationships within the genus Zalophus being comprised of the Galápagos sea lion, the Californian sea lion and the already extinct Japanese sea lion (JSL). Results Using a set of different phylogenetic reconstruction approaches, we find support for monophyly of all three taxa without evidence of reticulation events. Molecular clock estimates place time to common ancestry of the Galápagos sea lion and the Californian sea lion at about 2.3 ± 0.5 mya. Genetic separation is further suggested by diagnostic SNPs in the mitochondrial and nuclear genome. Microsatellite markers confirm this trend, showing numerous private alleles at most of the 25 investigated loci. Microsatellite-based estimates of genetic differentiation between the Galápagos sea lion and the Californian sea lion indicate significant genetic differentiation. Gene diversity is 14% lower in the Galápagos sea lion than in the Californian sea lion, but there is no evidence for recent bottleneck events in the Galápagos sea lion. Conclusion Based on molecular evidence we build a case for classifying the Galápagos sea lion (Zalophus wollebaeki), the Californian sea lion (Zalophus californianus) and the Japanese sea lion (Zalophus japonicus) as true species. As morphological characters do not necessarily fully reflect the rapid divergence on the molecular level, the study can be considered as a test case for deriving species status from molecular evidence. We further use the results to discuss the role of genetics in conservation policy

  9. Molecular interactions of mussel protective coating protein, mcfp-1, from Mytilus californianus.

    PubMed

    Lu, Qingye; Hwang, Dong Soo; Liu, Yang; Zeng, Hongbo

    2012-02-01

    Protective coating of the byssus of mussels (Mytilus sp.) has been suggested as a new paradigm of medical coating due to its high extensibility and hardness co-existence without their mutual detriment. The only known biomacromolecule in the extensible and tough coating on the byssus is mussel foot protein-1 (mfp-1), which is made up with positively charged residues (~20 mol%) and lack of negatively charged residues. Here, adhesion and molecular interaction mechanisms of Mytilus californianus foot protein-1 (mcfp-1) from California blue mussel were investigated using a surface forces apparatus (SFA) in buffer solutions of different ionic concentrations (0.2-0.7 M) and pHs (3.0-5.5). Strong and reversible cohesion between opposed positively charged mcfp-1 films was measured in 0.1 M sodium acetate buffer with 0.1 M KNO(3). Cohesion of mcfp-1 was gradually reduced with increasing the ionic strength, but was not changed with pH variations. Oxidation of 3,4-dihydroxyphenylalanine (DOPA) residues of mcfp-1, a key residue for adhesive and coating proteins of mussel, didn't change the cohesion strength of mcfp-1 films, but the addition of chemicals with aromatic groups (i.e., aspirin and 4-methylcatechol) increased the cohesion. These results suggest that the cohesion of mcfp-1 films is mainly mediated by cation-π interactions between the positively charged residues and benzene rings of DOPA and other aromatic amino acids (~20 mol% of total amino acids of mcfp-1), and π-π interactions between the phenyl groups in mcfp-1. The adhesion mechanism obtained for the mcfp-1 proteins provides important insight into the design and development of functional biomaterials and coatings mimicking the extensible and robust mussel cuticle coating. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Underwater audiogram of the California sea lion by the conditioned vocalization technique1

    PubMed Central

    Schusterman, Ronald J.; Balliet, Richard F.; Nixon, James

    1972-01-01

    Conditioning techniques were developed demonstrating that pure tone frequencies under water can exert nearly perfect control over the underwater click vocalizations of the California sea lion (Zalophus californianus). Conditioned vocalizations proved to be a reliable way of obtaining underwater sound detection thresholds in Zalophus at 13 different frequencies, covering a frequency range of 250 to 64,000 Hz. The audiogram generated by these threshold measurements suggests that under water, the range of maximal sensitivity for Zalophus lies between one and 28 kHz with best sensitivity at 16 kHz. Between 28 and 36 kHz there is a loss in sensitivity of 60 dB/octave. However, with relatively intense acoustic signals (> 38 dB re 1 μb underwater), Zalophus will respond to frequencies at least as high as 192 kHz. These results are compared with the underwater hearing of other marine mammals. ImagesFig. 1. PMID:5033891

  11. Ancient DNA reveals substantial genetic diversity in the California Condor (Gymnogyps californianus) prior to a population bottleneck

    USGS Publications Warehouse

    D'Elia, Jesse; Haig, Susan M.; Mullins, Thomas D.; Miller, Mark P.

    2016-01-01

    Critically endangered species that have undergone severe population bottlenecks often have little remaining genetic variation, making it difficult to reconstruct population histories to apply in reintroduction and recovery strategies. By using ancient DNA techniques, it is possible to combine genetic evidence from the historical population with contemporary samples to provide a more complete picture of a species' genetic variation across its historical range and through time. Applying this approach, we examined changes in the mitochondrial DNA (mtDNA) control region (526 base pairs) of the endangered California Condor (Gymnogyps californianus). Results showed a >80% reduction in unique haplotypes over the past 2 centuries. We found no spatial sorting of haplotypes in the historical population; the periphery of the range contained haplotypes that were common throughout the historical range. Direct examination of mtDNA from California Condor museum specimens provided a new window into historical population connectivity and genetic diversity showing: (1) a substantial loss of haplotypes, which is consistent with the hypothesis that condors were relatively abundant in the nineteenth century, but declined rapidly as a result of human-caused mortality; and (2) no evidence of historical population segregation, meaning that the available genetic data offer no cause to avoid releasing condors in unoccupied portions of their historical range.

  12. Feather lead concentrations and (207)Pb/(206)Pb ratios reveal lead exposure history of California Condors (Gymnogyps californianus).

    PubMed

    Finkelstein, M E; George, D; Scherbinski, S; Gwiazda, R; Johnson, M; Burnett, J; Brandt, J; Lawrey, S; Pessier, A P; Clark, M; Wynne, J; Grantham, J; Smith, D R

    2010-04-01

    Lead poisoning is a primary factor impeding the survival and recovery of the critically endangered California Condor (Gymnogyps californianus). However, the frequency and magnitude of lead exposure in condors is not well-known in part because most blood lead monitoring occurs biannually, and biannual blood samples capture only approximately 10% of a bird's annual exposure history. We investigated the use of growing feathers from free-flying condors in California to establish a bird's lead exposure history. We show that lead concentration and stable lead isotopic composition analyses of sequential feather sections and concurrently collected blood samples provided a comprehensive history of lead exposure over the 2-4 month period of feather growth. Feather analyses identified exposure events not evident from blood monitoring efforts, and by fitting an empirically derived timeline to actively growing feathers, we were able to estimate the time frame for specific lead exposure events. Our results demonstrate the utility of using sequentially sampled feathers to reconstruct lead exposure history. Since exposure risk in individuals is one determinant of population health, our findings should increase the understanding of population-level effects from lead poisoning in condors; this information may also be helpful for other avian species potentially impacted by lead poisoning.

  13. Feather lead concentrations and 207Pb/206Pb ratios reveal lead exposure history of California Condors (Gymnogyps californianus)

    USGS Publications Warehouse

    Finkelstein, M.E.; George, D.; Scherbinski, S.; Gwiazda, R.; Johnson, M.; Burnett, J.; Brandt, J.; Lawrey, S.; Pessier, Allan P.; Clark, M.R.; Wynne, J.; Grantham, And J.; Smith, D.R.

    2010-01-01

    Lead poisoning is a primary factor impeding the survival and recovery of the critically endangered California Condor (Gymnogyps californianus). However, the frequency and magnitude of lead exposure in condors is not well-known in part because most blood lead monitoring occurs biannually, and biannual blood samples capture only ∼10% of a bird’s annual exposure history. We investigated the use of growing feathers from free-flying condors in California to establish a bird’s lead exposure history. We show that lead concentration and stable lead isotopic composition analyses of sequential feather sections and concurrently collected blood samples provided a comprehensive history of lead exposure over the 2−4 month period of feather growth. Feather analyses identified exposure events not evident from blood monitoring efforts, and by fitting an empirically derived timeline to actively growing feathers, we were able to estimate the time frame for specific lead exposure events. Our results demonstrate the utility of using sequentially sampled feathers to reconstruct lead exposure history. Since exposure risk in individuals is one determinant of population health, our findings should increase the understanding of population-level effects from lead poisoning in condors; this information may also be helpful for other avian species potentially impacted by lead poisoning.

  14. An analysis of monthly home range size in the critically endangered California Condor Gymnogyps californianus

    USGS Publications Warehouse

    Rivers, James W.; Johnson, Matthew J.; Haig, Susan M.; Schwarz, Carl J.; Burnett, Joseph; Brandt, Joseph; George, Daniel; Grantham, Jesse

    2014-01-01

    Condors and vultures comprise the only group of terrestrial vertebrates in the world that are obligate scavengers, and these species move widely to locate ephemeral, unpredictable, and patchily-distributed food resources. In this study, we used high-resolution GPS location data to quantify monthly home range size of the critically endangered California Condor Gymnogyps californianus throughout the annual cycle in California. We assessed whether individual-level characteristics (age, sex and breeding status) and factors related to endangered species recovery program efforts (rearing method, release site) were linked to variation in monthly home range size. We found that monthly home range size varied across the annual cycle, with the largest monthly home ranges observed during late summer and early fall (July–October), a pattern that may be linked to seasonal changes in thermals that facilitate movement. Monthly home ranges of adults were significantly larger than those of immatures, but males and females used monthly home ranges of similar size throughout the year and breeding adults did not differ from non-breeding adults in their average monthly home range size. Individuals from each of three release sites differed significantly in the size of their monthly home ranges, and no differences in monthly home range size were detected between condors reared under captive conditions relative to those reared in the wild. Our study provides an important foundation for understanding the movement ecology of the California Condor and it highlights the importance of seasonal variation in space use for effective conservation planning for this critically endangered species.

  15. Terrestrial Scavenging of Marine Mammals: Cross-Ecosystem Contaminant Transfer and Potential Risks to Endangered California Condors (Gymnogyps californianus).

    PubMed

    Kurle, Carolyn M; Bakker, Victoria J; Copeland, Holly; Burnett, Joe; Jones Scherbinski, Jennie; Brandt, Joseph; Finkelstein, Myra E

    2016-09-06

    The critically endangered California condor (Gymnogyps californianus) has relied intermittently on dead-stranded marine mammals since the Pleistocene, and this food source is considered important for their current recovery. However, contemporary marine mammals contain persistent organic pollutants that could threaten condor health. We used stable carbon and nitrogen isotope, contaminant, and behavioral data in coastal versus noncoastal condors to quantify contaminant transfer from marine mammals and created simulation models to predict the risk of reproductive impairment for condors from exposure to DDE (p,p'-DDE), a major metabolite of the chlorinated pesticide DDT. Coastal condors had higher whole blood isotope values and mean concentrations of contaminants associated with marine mammals, including mercury (whole blood), sum chlorinated pesticides (comprised of ∼95% DDE) (plasma), sum polychlorinated biphenyls (PCBs) (plasma), and sum polybrominated diphenyl ethers (PBDEs) (plasma), 12-100-fold greater than those of noncoastal condors. The mean plasma DDE concentration for coastal condors was 500 ± 670 (standard deviation) (n = 22) versus 24 ± 24 (standard deviation) (n = 8) ng/g of wet weight for noncoastal condors, and simulations predicted ∼40% of breeding-age coastal condors have DDE levels associated with eggshell thinning in other avian species. Our analyses demonstrate potentially harmful levels of marine contaminant transfer to California condors, which could hinder the recovery of this terrestrial species.

  16. Modulation of digestive physiology and biochemistry in Mytilus californianus in response to feeding level acclimation and microhabitat

    PubMed Central

    Sung, Aaron; Garcia, Nathan S.; Gracey, Andrew Y.; German, Donovan P.

    2016-01-01

    ABSTRACT The intertidal mussel Mytilus californianus is a critical foundation species that is exposed to fluctuations in the environment along tidal- and wave-exposure gradients. We investigated feeding and digestion in mussels under laboratory conditions and across environmental gradients in the field. We assessed whether mussels adopt a rate-maximization (higher ingestion and lower assimilation) or a yield-maximization acquisition (lower ingestion and higher assimilation) strategy under laboratory conditions by measuring feeding physiology and digestive enzyme activities. We used digestive enzyme activity to define resource acquisition strategies in laboratory studies, then measured digestive enzyme activities in three microhabitats at the extreme ends of the tidal- and wave-exposure gradients within a stretch of shore (<20 m) projected sea-ward. Our laboratory results indicated that mussels benefit from a high assimilation efficiency when food concentration is low and have a low assimilation efficiency when food concentration is high. Additionally, enzyme activities of carbohydrases amylase, laminarinase and cellulase were elevated when food concentration was high. The protease trypsin, however, did not increase with increasing food concentration. In field conditions, low-shore mussels surprisingly did not have high enzyme activities. Rather, high-shore mussels exhibited higher cellulase activities than low-shore mussels. Similarly, trypsin activity in the high-shore-wave-sheltered microhabitat was higher than that in high-shore-wave-exposed. As expected, mussels experienced increasing thermal stress as a function of reduced submergence from low to high shore and shelter from wave-splash. Our findings suggest that mussels compensate for limited feeding opportunities and thermal stress by modulating digestive enzyme activities. PMID:27402963

  17. Photomicrographic images of some features of Uncinaria spp (Nematoda: Ancylostomatidae) from otariid pinnipeds.

    PubMed

    Lyons, E T; DeLong, R L

    2005-03-01

    Photomicrographs of several morphologic features of hookworms (Uncinaria spp) from northern fur seal (Callorhinus ursinus) and California sea lion (Zalophus californianus) pups are presented. The main purpose is to show and describe some physical characteristics of hookworms from the two hosts; it is not to decide from these attributes whether the Uncinaria spp are the same species. The number of species of Uncinaria in pinnipeds is uncertain and specimens need to be examined from the various infected seals and sea lions before the taxonomy of these parasites can be clarified. Information in the present paper should aid in this determination.

  18. Sesavirus: prototype of a new parvovirus genus in feces of a sea lion.

    PubMed

    Phan, Tung Gia; Gulland, Frances; Simeone, Claire; Deng, Xutao; Delwart, Eric

    2015-02-01

    We describe the nearly complete genome of a highly divergent parvovirus, we tentatively name Sesavirus, from the feces of a California sea lion pup (Zalophus californianus) suffering from malnutrition and pneumonia. The 5,049-base-long genome contained two major ORFs encoding a 553-aa nonstructural protein and a 965-aa structural protein which shared closest amino acid identities of 25 and 28 %, respectively, with members of the copiparvovirus genus known to infect pigs and cows. Given the low degree of similarity, Sesavirus might be considered as prototype for a new genus with a proposed name of Marinoparvovirus in the subfamily Parvovirinae.

  19. Parasites and associated pathology observed in pinnipeds stranded along the Oregon coast.

    PubMed

    Stroud, R K

    1978-07-01

    Forty-two seals and sea lions found dead along the Oregon Coast were examined for parasites and associated pathology. Nematode infections of the lung and/or gastrointestinal tract were the primary cause of death in 5 of 42 animals examined. New distribution records were established for Pricetrema zalophi and Zalophotrema hepaticum. New host records include Z. hepaticum and Diphyllobothrium cordatum in the Steller's sea lion (Eumetopias jubatus); Nanophyetus salmincola in the California sea lion (Zalophus californianus); P. zalophi in the harbor seal (Phoca vitulina); and P. zalophi, Trigonocotyle sp. and Otostrongylus circumlitus in the northern elephant seal (Mirounga angustirostris).

  20. Resource Selection by the California Condor (Gymnogyps californianus) Relative to Terrestrial-Based Habitats and Meteorological Conditions

    PubMed Central

    Rivers, James W.; Johnson, J. Matthew; Haig, Susan M.; Schwarz, Carl J.; Glendening, John W.; Burnett, L. Joseph; George, Daniel; Grantham, Jesse

    2014-01-01

    Condors and vultures are distinct from most other terrestrial birds because they use extensive soaring flight for their daily movements. Therefore, assessing resource selection by these avian scavengers requires quantifying the availability of terrestrial-based habitats, as well as meteorological variables that influence atmospheric conditions necessary for soaring. In this study, we undertook the first quantitative assessment of habitat- and meteorological-based resource selection in the endangered California condor (Gymnogyps californianus) within its California range and across the annual cycle. We found that condor use of terrestrial areas did not change markedly within the annual cycle, and that condor use was greatest for habitats where food resources and potential predators could be detected and where terrain was amenable for taking off from the ground in flight (e.g., sparse habitats, coastal areas). Condors originating from different release sites differed in their use of habitat, but this was likely due in part to variation in habitats surrounding release sites. Meteorological conditions were linked to condor use of ecological subregions, with thermal height, thermal velocity, and wind speed having both positive (selection) and negative (avoidance) effects on condor use in different areas. We found little evidence of systematic effects between individual characteristics (i.e., sex, age, breeding status) or components of the species management program (i.e., release site, rearing method) relative to meteorological conditions. Our findings indicate that habitat type and meteorological conditions can interact in complex ways to influence condor resource selection across landscapes, which is noteworthy given the extent of anthropogenic stressors that may impact condor populations (e.g., lead poisoning, wind energy development). Additional studies will be valuable to assess small-scale condor movements in light of these stressors to help minimize their risk to

  1. Resource selection by the California condor (Gymnogyps californianus) relative to terrestrial-based habitats and meteorological conditions

    USGS Publications Warehouse

    Johnson, J. Matthew; Haig, Susan M.; Schwarz, Carl J.; Glendening, John W.; Burnett, L. Joseph; George, Daniel; Grantham, Jesse

    2014-01-01

    Condors and vultures are distinct from most other terrestrial birds because they use extensive soaring flight for their daily movements. Therefore, assessing resource selection by these avian scavengers requires quantifying the availability of terrestrial-based habitats, as well as meteorological variables that influence atmospheric conditions necessary for soaring. In this study, we undertook the first quantitative assessment of habitat- and meteorological-based resource selection in the endangered California condor (Gymnogyps californianus) within its California range and across the annual cycle. We found that condor use of terrestrial areas did not change markedly within the annual cycle, and that condor use was greatest for habitats where food resources and potential predators could be detected and where terrain was amenable for taking off from the ground in flight (e.g., sparse habitats, coastal areas). Condors originating from different release sites differed in their use of habitat, but this was likely due in part to variation in habitats surrounding release sites. Meteorological conditions were linked to condor use of ecological subregions, with thermal height, thermal velocity, and wind speed having both positive (selection) and negative (avoidance) effects on condor use in different areas. We found little evidence of systematic effects between individual characteristics (i.e., sex, age, breeding status) or components of the species management program (i.e., release site, rearing method) relative to meteorological conditions. Our findings indicate that habitat type and meteorological conditions can interact in complex ways to influence condor resource selection across landscapes, which is noteworthy given the extent of anthropogenic stressors that may impact condor populations (e.g., lead poisoning, wind energy development). Additional studies will be valuable to assess small-scale condor movements in light of these stressors to help minimize their risk to

  2. Meteorological and environmental variables affect flight behaviour and decision-making of an obligate soaring bird, the California Condor Gymnogyps californianus

    USGS Publications Warehouse

    Poessel, Sharon; Brandt, Joseph; Miller, Tricia A.; Katzner, Todd

    2018-01-01

    The movements of animals are limited by evolutionary constraints and ecological processes and are strongly influenced by the medium through which they travel. For flying animals, variation in atmospheric conditions is critically influential in movement. Obligate soaring birds depend on external sources of updraft more than do other flying species, as without that updraft they are unable to sustain flight for extended periods. These species are therefore good models for understanding how the environment can influence decisions about movement. We used meteorological and topographic variables to understand the environmental influences on the decision to engage in flight by obligate soaring and critically endangered California Condors Gymnogyps californianus. Condors were more likely to fly, soared at higher altitudes and flew over smoother terrain when weather conditions promoted either thermal or orographic updrafts, for example when turbulence and solar radiation were higher and when winds from the east and north were stronger. However, increased atmospheric stability, which is inconsistent with thermal development but may be associated with orographic updrafts, was correlated with a somewhat higher probability of being in flight at lower altitudes and over rougher terrain. The close and previously undescribed linkages between Condor flight and conditions that support development of thermal and orographic updrafts provide important insight into the behaviour of obligate soaring birds and into the environmental parameters that may define the currently expanding distribution of Condors within and outside the state of California.

  3. Killer whales are capable of vocal learning

    PubMed Central

    Foote, Andrew D; Griffin, Rachael M; Howitt, David; Larsson, Lisa; Miller, Patrick J.O; Rus Hoelzel, A

    2006-01-01

    The production learning of vocalizations by manipulation of the sound production organs to alter the physical structure of sound has been demonstrated in only a few mammals. In this natural experiment, we document the vocal behaviour of two juvenile killer whales, Orcinus orca, separated from their natal pods, which are the only cases of dispersal seen during the three decades of observation of their populations. We find mimicry of California sea lion (Zalophus californianus) barks, demonstrating the vocal production learning ability for one of the calves. We also find differences in call usage (compared to the natal pod) that may reflect the absence of a repertoire model from tutors or some unknown effect related to isolation or context. PMID:17148275

  4. Growth studies of Mytilus californianus using satellite surface temperatures and chlorophyll data for coastal Oregon

    NASA Astrophysics Data System (ADS)

    Price, J.; Lakshmi, V.

    2013-12-01

    The advancement of remote sensing technology has led to better understanding of the spatial and temporal variation in many physical and biological parameters, such as, temperature, salinity, soil moisture, vegetation cover, and community composition. This research takes a novel approach in understanding the temporal and spatial variability of mussel body growth using remotely sensed surface temperatures and chlorophyll-a concentration. Within marine rocky intertidal ecosystems, temperature and food availability influence species abundance, physiological performance, and distribution of mussel species. Current methods to determine the temperature mussel species experience range from in-situ field observations, temperature loggers, temperature models, and using other temperature variables. However, since the temperature that mussel species experience is different from the air temperature due to physical and biological characteristics (size, color, gaping, etc.), it is difficult to accurately predict the thermal stresses they experience. Methods to determine food availability (chlorophyll-a concentration used as a proxy) for mussel species are mostly done at specific study sites using water sampling. This implies that analysis of temperature and food availability across large spatial scales and long temporal scales is not a trivial task given spatial heterogeneity. However, this is an essential step in determination of the impact of changing climate on vulnerable ecosystems such as the marine rocky intertidal system. The purpose of this study was to investigate the potential of using remotely sensed surface temperatures and chlorophyll-a concentration to better understand the temporal and spatial variability of the body growth of the ecologically and economically important rocky intertidal mussel species, Mytilus californianus. Remotely sensed sea surface temperature (SST), land surface temperature (LST), intertidal surface temperature (IST), chlorophyll

  5. Underwater temporary threshold shift induced by octave-band noise in three species of pinniped.

    PubMed

    Kastak, D; Schusterman, R J; Southall, B L; Reichmuth, C J

    1999-08-01

    Pure-tone sound detection thresholds were obtained in water for one harbor seal (Phoca vitulina), two California sea lions (Zalophus californianus), and one northern elephant seal (Mirounga angustirostris) before and immediately following exposure to octave-band noise. Additional thresholds were obtained following a 24-h recovery period. Test frequencies ranged from 100 Hz to 2000 Hz and octave-band exposure levels were approximately 60-75 dB SL (sensation level at center frequency). Each subject was trained to dive into a noise field and remain stationed underwater during a noise-exposure period that lasted a total of 20-22 min. Following exposure, three of the subjects showed threshold shifts averaging 4.8 dB (Phoca), 4.9 dB (Zalophus), and 4.6 dB (Mirounga). Recovery to baseline threshold levels was observed in test sessions conducted within 24 h of noise exposure. Control sessions in which the subjects completed a simulated noise exposure produced shifts that were significantly smaller than those observed following noise exposure. These results indicate that noise of moderate intensity and duration is sufficient to induce TTS under water in these pinniped species.

  6. Mortality of sea lions along the central California coast linked to a toxic diatom bloom.

    PubMed

    Scholin, C A; Gulland, F; Doucette, G J; Benson, S; Busman, M; Chavez, F P; Cordaro, J; DeLong, R; De Vogelaere, A; Harvey, J; Haulena, M; Lefebvre, K; Lipscomb, T; Loscutoff, S; Lowenstine, L J; Marin, R; Miller, P E; McLellan, W A; Moeller, P D; Powell, C L; Rowles, T; Silvagni, P; Silver, M; Spraker, T; Trainer, V; Van Dolah, F M

    2000-01-06

    Over 400 California sea lions (Zalophus californianus) died and many others displayed signs of neurological dysfunction along the central California coast during May and June 1998. A bloom of Pseudo-nitzschia australis (diatom) was observed in the Monterey Bay region during the same period. This bloom was associated with production of domoic acid (DA), a neurotoxin that was also detected in planktivorous fish, including the northern anchovy (Engraulis mordax), and in sea lion body fluids. These and other concurrent observations demonstrate the trophic transfer of DA resulting in marine mammal mortality. In contrast to fish, blue mussels (Mytilus edulus) collected during the DA outbreak contained no DA or only trace amounts. Such findings reveal that monitoring of mussel toxicity alone does not necessarily provide adequate warning of DA entering the food web at levels sufficient to harm marine wildlife and perhaps humans.

  7. Sea Lions Develop Human-like Vernix Caseosa Delivering Branched Fats and Squalene to the GI Tract.

    PubMed

    Wang, Dong Hao; Ran-Ressler, Rinat; St Leger, Judy; Nilson, Erika; Palmer, Lauren; Collins, Richard; Brenna, J Thomas

    2018-05-10

    Vernix caseosa, the white waxy coating found on newborn human skin, is thought to be a uniquely human substance. Its signature characteristic is exceptional richness in saturated branched chain fatty acids (BCFA) and squalene. Vernix particles sloughed from the skin suspended in amniotic fluid are swallowed by the human fetus, depositing BCFA/squalene throughout the gastrointestinal (GI) tract, thereby establishing a unique microbial niche that influences development of nascent microbiota. Here we show that late-term California sea lion (Zalophus californianus) fetuses have true vernix caseosa, delivering BCFA and squalene to the fetal GI tract thereby recapitulating the human fetal gut microbial niche. These are the first data demonstrating the production of true vernix caseosa in a species other than Homo sapiens. Its presence in a marine mammal supports the hypothesis of an aquatic habituation period in the evolution of modern humans.

  8. Uncinariasis in northern fur seal and California sea lion pups from California.

    PubMed

    Lyons, E T; DeLong, R L; Melin, S R; Tolliver, S C

    1997-10-01

    Northern fur seal (Callorhinus ursinus) (n = 25) and California sea lion (Zalophus californianus) (n = 53) pups, found dead on rookeries on San Miguel Island (California, USA), were examined for adult Uncinaria spp. Prevalence of these nematodes was 96% in fur seal pups and 100% in sea lion pups. Mean intensity of Uncinaria spp. per infected pup was 643 in fur seals and 1,284 in sea lions. Eggs of Uncinaria spp. from dead sea lion pups underwent embryonation in an incubator; development to the free-living third stage larva occurred within the egg. This study provided some specific information on hookworm infections in northern fur seal and California sea lion pups on San Miguel Island. High prevalence rate of Uncinaria spp. in both species of pinnipeds was documented and much higher numbers (2X) of hookworms were present in sea lion than fur seal pups.

  9. Masking in three pinnipeds: underwater, low-frequency critical ratios.

    PubMed

    Southall, B L; Schusterman, R J; Kastak, D

    2000-09-01

    Behavioral techniques were used to determine underwater masked hearing thresholds for a northern elephant seal (Mirounga angustirostris), a harbor seal (Phoca vitulina), and a California sea lion (Zalophus californianus). Octave-band white noise maskers were centered at five test frequencies ranging from 200 to 2500 Hz; a slightly wider noise band was used for testing at 100 Hz. Critical ratios were calculated at one masking noise level for each test frequency. Above 200 Hz, critical ratios increased with frequency. This pattern is similar to that observed in most animals tested, and indicates that these pinnipeds lack specializations for detecting low-frequency tonal sounds in noise. However, the individual pinnipeds in this study, particularly the northern elephant seal, detected signals at relatively low signal-to-noise ratios. These results provide a means of estimating zones of auditory masking for pinnipeds exposed to anthropogenic noise sources.

  10. An Examination of Body Temperature for the Rocky Intertidal Mussel species, Mytilus californianus, Using Remotely Sensed Satellite Observations

    NASA Astrophysics Data System (ADS)

    Price, J.; Liff, H.; Lakshmi, V.

    2012-12-01

    Temperature is considered to be one of the most important physical factors in determining organismal distribution and physiological performance of species in rocky intertidal ecosystems, especially the growth and survival of mussels. However, little is known about the spatial and temporal patterns of temperature in intertidal ecosystems or how those patterns affect intertidal mussel species because of limitations in data collection. We collected in situ temperature at Strawberry Hill, Oregon USA using mussel loggers embedded among the intertidal mussel species, Mytilus californianus. Remotely sensed surface temperatures were used in conjunction with in situ weather and ocean data to determine if remotely sensed surface temperatures can be used as a predictor for changes in the body temperature of a rocky intertidal mussel species. The data used in this study was collected between January 2003 and December 2010. The mussel logger temperatures were compared to in situ weather data collected from a local weather station, ocean data collected from a NOAA buoy, and remotely sensed surface temperatures collected from NASA's sun-synchronous Moderate Resolution Imaging Spectroradiometer aboard the Earth Observing System Aqua and EOS Terra satellites. Daily surface temperatures were collected from four pixel locations which included two sea surface temperature (SST) locations and two land surface temperature (LST) locations. One of the land pixels was chosen to represent the intertidal surface temperature (IST) because it was located within the intertidal zone. As expected, all surface temperatures collected via satellite were significantly correlated to each other and the associated in situ temperatures. Examination of temperatures from the off-shore NOAA buoy and the weather station provide evidence that remotely sensed temperatures were similar to in situ temperature data and explain more variability in mussel logger temperatures than the in situ temperatures. Our

  11. Development and validation of a quantitative PCR for rapid and specific detection of California sea lion adenovirus 1 and prevalence in wild and managed populations.

    PubMed

    Cortés-Hinojosa, Galaxia; Gulland, Frances M D; Goldstein, Tracey; Venn-Watson, Stephanie; Rivera, Rebecca; Archer, Linda L; Waltzek, Thomas B; Gray, Gregory C; Wellehan, James F X

    2017-03-01

    California sea lion adenovirus 1 (CSLAdV-1) has been associated with hepatitis and enteritis in several wild and captive populations of diverse pinniped species. Currently available tests have been limited to pan-adenoviral polymerase chain reaction (PCR) followed by sequencing. We present the development of a quantitative probe-hybridization PCR (qPCR) assay for rapid, sensitive, and specific detection of this virus in California sea lions ( Zalophus californianus) and other pinnipeds. This assay did not amplify other mammalian adenoviruses and is able to detect consistently down to 10 viral copies per well. Compared with the gold standard conventional pan-adenovirus PCR/sequencing assay, diagnostic sensitivity and specificity of 100% and 88.2% were found, respectively. The lower diagnostic specificity of this qPCR assay may be the result of the lower limit of detection of this assay compared with the gold standard rather than the result of detection of true false-positives.

  12. Seasonal variation in blood and muscle oxygen stores attributed to diving behavior, environmental temperature and pregnancy in a marine predator, the California sea lion.

    PubMed

    Villegas-Amtmann, Stella; Atkinson, Shannon; Paras-Garcia, Alberto; Costa, Daniel P

    2012-08-01

    Survival depends on an animal's ability to find and acquire prey. In diving vertebrates, this ability is directly related to their physiological capability (e.g. oxygen stores). We studied the seasonal variation in oxygen stores, body temperature and body condition in California sea lions (Zalophus californianus) (CSL) as a function of seasonal variation in temperature, primary productivity, diving behavior and reproductive stage. During summer, blood oxygen stores were significantly greater and muscle oxygen stores were significantly lower than in winter. Total oxygen stores, body condition and body temperature did not change between seasons but variations in body temperature were greater during summer. Changes in oxygen stores are partly attributed to diving behavior, temperature and pregnancy that could increase oxygen consumption. Blood and muscle oxygen stores appear to be influenced by reproductive state. Blood oxygen stores are more likely influenced by diving behavior and temperature than muscle oxygen stores. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. California sea lion (Zalophus californianus) aerial hearing sensitivity measured using auditory steady-state response and psychophysical methods.

    PubMed

    Mulsow, Jason; Finneran, James J; Houser, Dorian S

    2011-04-01

    Although electrophysiological methods of measuring the hearing sensitivity of pinnipeds are not yet as refined as those for dolphins and porpoises, they appear to be a promising supplement to traditional psychophysical procedures. In order to further standardize electrophysiological methods with pinnipeds, a within-subject comparison of psychophysical and auditory steady-state response (ASSR) measures of aerial hearing sensitivity was conducted with a 1.5-yr-old California sea lion. The psychophysical audiogram was similar to those previously reported for otariids, with a U-shape, and thresholds near 10 dB re 20 μPa at 8 and 16 kHz. ASSR thresholds measured using both single and multiple simultaneous amplitude-modulated tones closely reproduced the psychophysical audiogram, although the mean ASSR thresholds were elevated relative to psychophysical thresholds. Differences between psychophysical and ASSR thresholds were greatest at the low- and high-frequency ends of the audiogram. Thresholds measured using the multiple ASSR method were not different from those measured using the single ASSR method. The multiple ASSR method was more rapid than the single ASSR method, and allowed for threshold measurements at seven frequencies in less than 20 min. The multiple ASSR method may be especially advantageous for hearing sensitivity measurements with otariid subjects that are untrained for psychophysical procedures.

  14. Phylogenomic characterization of California sea lion adenovirus-1.

    PubMed

    Cortés-Hinojosa, Galaxia; Gulland, Frances M D; Goldstein, Tracey; Venn-Watson, Stephanie; Rivera, Rebecca; Waltzek, Thomas B; Salemi, Marco; Wellehan, James F X

    2015-04-01

    Significant adenoviral diversity has been found in humans, but in domestic and wild animals the number of identified viruses is lower. Here we present the complete genome of a recently discovered mastadenovirus, California sea lion adenovirus 1 (CSLAdV-1) isolated from California sea lions (Zalophus californianus), an important pathogen associated with hepatitis in pinnipeds. The genome of this virus has the typical mastadenoviral structure with some notable differences at the carboxy-terminal end, including a dUTPase that does not cluster with other mastadenoviral dUTPases, and a fiber that shows similarity to a trans-sialidase of Trypanosoma cruzi and choline-binding protein A (CbpA) of Streptococcus pneumoniae. The GC content is low (36%), and phylogenetic analyses placed the virus near the root of the clade infecting laurasiatherian hosts in the genus Mastadenovirus. These findings support the hypothesis that CSLAdV-1 in California sea lions represents a host jump from an unknown mammalian host in which it is endemic. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Mortality related to spotted ratfish (Hydrolagus colliei) in Pacific harbor seals (Phoca vitulina) in Washington State.

    PubMed

    Akmajian, Adrianne M; Lambourn, Dyanna M; Lance, Monique M; Raverty, Stephen; Gaydos, Joseph K

    2012-10-01

    Tissue perforation and penetration by dorsal fin spines of spotted ratfish (Hydrolagus colliei) were responsible for the death of seven harbor seals (Phoca vitulina) in Washington State (USA) between 2006 and 2011. In six animals, necropsy revealed spines or spine parts that had perforated the esophagus or stomach and migrated into vital tissues, resulting in hemothorax, pneumothorax, pleuritis, and peritonitis. In a seventh case, a ratfish spine was recovered from the mouth of a harbor seal euthanized due to clinical symptoms of encephalitis. Gross examination revealed an abscess within the left cerebrum, which was attributed to direct extension of inflammatory infiltrate associated with the ratfish spine. Between 2009 and 2011, spotted ratfish spines were also recovered from the head or neck region of three Steller sea lions (Eumetopias jubatus) and one California sea lion (Zalophus californianus). Ratfish-related trauma appears to be a novel mortality factor for harbor seals in Washington State and could be related to increased ratfish abundance and a shifting prey base for harbor seals.

  16. Inflation and deflation pressure-volume loops in anesthetized pinnipeds confirms compliant chest and lungs

    PubMed Central

    Fahlman, Andreas; Loring, Stephen H.; Johnson, Shawn P.; Haulena, Martin; Trites, Andrew W.; Fravel, Vanessa A.; Van Bonn, William G.

    2014-01-01

    We examined structural properties of the marine mammal respiratory system, and tested Scholander's hypothesis that the chest is highly compliant by measuring the mechanical properties of the respiratory system in five species of pinniped under anesthesia (Pacific harbor seal, Phoca vitulina; northern elephant seal, Mirounga angustirostris; northern fur seal Callorhinus ursinus; California sea lion, Zalophus californianus; and Steller sea lion, Eumetopias jubatus). We found that the chest wall compliance (CCW) of all five species was greater than lung compliance (airways and alveoli, CL) as predicted by Scholander, which suggests that the chest provides little protection against alveolar collapse or lung squeeze. We also found that specific respiratory compliance was significantly greater in wild animals than in animals raised in an aquatic facility. While differences in ages between the two groups may affect this incidental finding, it is also possible that lung conditioning in free-living animals may increase pulmonary compliance and reduce the risk of lung squeeze during diving. Overall, our data indicate that compliance of excised pinniped lungs provide a good estimate of total respiratory compliance. PMID:25426080

  17. Analysis of California Condor (Gymnogyps californianus) use of six management units using location data from global positioning system transmitters, southern California, 2004-09-Initial report

    USGS Publications Warehouse

    Johnson, Matthew; Kern, Jeffrey; Haig, Susan M.

    2010-01-01

    This report provides an analysis of California Condor (Gymnogyps californianus) space use of six management units in southern California (Hopper Mountain and Bitter Creek National Wildlife Refuges, Wildlands Conservancy-Wind Wolves Preserve, Tejon Mountain Village Specific Plan, California Condor Study Area, and the Tejon Ranch excluding Tejon Mountain Village Specific Plan and California Condor Study Area). Space use was analyzed to address urgent management needs using location data from Global Positioning System transmitters. The U.S. Fish and Wildlife Service provided the U.S. Geological Survey with location data (2004-09) for California Condors from Global Positioning System transmitters and Geographic Information System data for the six management units in southern California. We calculated relative concentration of use estimates for each management unit for each California Condor (n = 21) on an annual basis (n = 39 annual home ranges) and evaluated resource selection for the population each year using the individual as our sampling unit. The most striking result from our analysis was the recolonization of the Tejon Mountain Village Specific Plan, California Condor Study Area, and Tejon Ranch management units during 2008. During 2004-07, the home range estimate for two (25 percent) California Condors overlapped the Tejon Mountain Village Specific Plan, California Condor Study Area, and Tejon Ranch management units (n = 8), and use within the annual home range generally was bimodal and was concentrated on the Bitter Creek and Hopper Mountain National Wildlife Refuges. However, 10 (77 percent) California Condor home ranges overlapped the Tejon Mountain Village Specific Plan, California Condor Study Area, and Tejon Ranch management units during 2008 (n = 13), and by 2009, the home range of every condor carrying a Global Positioning System transmitter (n = 14) overlapped these management units. Space use was multimodal within the home range during 2008-09 and was

  18. Dirofilaria immitis in pinnipeds and a new host record.

    PubMed

    Alho, Ana Margarida; Marcelino, Inês; Colella, Vito; Flanagan, Carla; Silva, Nuno; Correia, Jorge Jesus; Latrofa, Maria Stefania; Otranto, Domenico; Madeira de Carvalho, Luís

    2017-03-13

    Dirofilaria immitis is a mosquito-borne pathogen that is spreading worldwide, and the associated infection (i.e. dirofilariosis) is becoming a threat to animals and humans living in endemic areas. Little is known about the occurrence and risk of infection of D. immitis in pinnipeds. Here we report dirofilariosis by D. immitis in several pinniped species kept in captivity in Portugal. Animals were housed in an oceanographic park located in Algarve, southern Portugal, a geographical area endemic for canine dirofilariosis. To assess the occurrence of D. immitis, blood was collected from the park's resident pinniped population, which consisted of 16 animals (5 common seals Phoca vitulina, 2 grey seals Halichoerus grypus, 3 California sea lions Zalophus californianus and 6 South African fur seals Arctocephalus pusillus pusillus). Dirofilaria immitis nematodes were detected by real-time PCR and by the presence of circulating antigens. In addition, modified Knott's technique was performed to detect circulating microfilariae. Necropsies and histopathological examination of two animals which died during the study were also conducted. Out of the 16 pinnipeds housed at the park, seven (43.8%) were positive for D. immitis by real-time PCR (3 P. vitulina, 2 Z. californianus and 2 A. p. pusillus), two of which (P. vitulina) were also positive for the nematode's antigen. Additionally, D. immitis microfilariae were detected in one A. p. pusillus. Furthermore, several D. immitis specimens were retrieved from the right ventricle and pulmonary arteries at the necropsy of one P. vitulina and one A. p. pusillus. This study provides new epidemiological data on D. immitis infection in pinnipeds diagnosed through clinical, molecular and pathological findings. Additionally, the South African fur seal is herein reported as a new host for this zoonotic filarioid. The situation herein described could also occur in other parks located in areas where canine dirofilariosis is endemic. Active

  19. Molecular systematics of pinniped hookworms (Nematoda: Uncinaria): species delimitation, host associations and host-induced morphometric variation.

    PubMed

    Nadler, Steven A; Lyons, Eugene T; Pagan, Christopher; Hyman, Derek; Lewis, Edwin E; Beckmen, Kimberlee; Bell, Cameron M; Castinel, Aurelie; Delong, Robert L; Duignan, Padraig J; Farinpour, Cher; Huntington, Kathy Burek; Kuiken, Thijs; Morgades, Diana; Naem, Soraya; Norman, Richard; Parker, Corwin; Ramos, Paul; Spraker, Terry R; Berón-Vera, Bárbara

    2013-12-01

    Hookworms of the genus Uncinaria have been widely reported from juvenile pinnipeds, however investigations of their systematics has been limited, with only two species described, Uncinaria lucasi from northern fur seals (Callorhinus ursinus) and Uncinaria hamiltoni from South American sea lions (Otaria flavescens). Hookworms were sampled from these hosts and seven additional species including Steller sea lions (Eumetopias jubatus), California sea lions (Zalophus californianus), South American fur seals (Arctocephalus australis), Australian fur seals (Arctocephalus pusillus), New Zealand sea lions (Phocarctos hookeri), southern elephant seals (Mirounga leonina), and the Mediterranean monk seal (Monachus monachus). One hundred and thirteen individual hookworms, including an outgroup species, were sequenced for four genes representing two loci (nuclear ribosomal DNA and mitochondrial DNA). Phylogenetic analyses of these sequences recovered seven independent evolutionary lineages or species, including the described species and five undescribed species. The molecular evidence shows that U. lucasi parasitises both C. ursinus and E. jubatus, whereas U. hamiltoni parasitises O. flavescens and A. australis. The five undescribed hookworm species were each associated with single host species (Z. californianus, A. pusillus, P. hookeri, M. leonina and M. monachus). For parasites of otarids, patterns of Uncinaria host-sharing and phylogenetic relationships had a strong biogeographic component with separate clades of parasites from northern versus southern hemisphere hosts. Comparison of phylogenies for these hookworms and their hosts suggests that the association of U. lucasi with northern fur seals results from a host-switch from Steller sea lions. Morphometric data for U. lucasi shows marked host-associated size differences for both sexes, with U. lucasi individuals from E. jubatus significantly larger. This result suggests that adult growth of U. lucasi is reduced within the

  20. 76 FR 51002 - Marine Mammals; File No. 16553

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-17

    ... californianus), northern elephant seals (Mirounga angustirostris), and harbor seals (Phoca vitulina). DATES.... California sea lions, northern elephant seals, and harbor seals would be captured and samples at several...

  1. In Utero Domoic Acid Toxicity: A Fetal Basis to Adult Disease in the California Sea Lion (Zalophus californianus)

    PubMed Central

    Ramsdell, John S.; Zabka, Tanja S.

    2008-01-01

    California sea lions have been a repeated subject of investigation for early life toxicity, which has been documented to occur with increasing frequency from late February through mid-May in association with organochlorine (PCB and DDT) poisoning and infectious disease in the 1970’s and domoic acid poisoning in the last decade. The mass early life mortality events result from the concentrated breeding grounds and synchronization of reproduction over a 28 day post partum estrus cycle and 11 month in utero phase. This physiological synchronization is triggered by a decreasing photoperiod of 11.48 h/day that occurs approximately 90 days after conception at the major California breeding grounds. The photoperiod trigger activates implantation of embryos to proceed with development for the next 242 days until birth. Embryonic diapause is a selectable trait thought to optimize timing for food utilization and male migratory patterns; yet from the toxicological perspective presented here also serves to synchronize developmental toxicity of pulsed environmental events such as domoic acid poisoning. Research studies in laboratory animals have defined age-dependent neurotoxic effects during development and windows of susceptibility to domoic acid exposure. This review will evaluate experimental domoic acid neurotoxicity in developing rodents and, aided by comparative allometric projections, will analyze potential prenatal toxicity and exposure susceptibility in the California sea lion. This analysis should provide a useful tool to forecast fetal toxicity and understand the impact of fetal toxicity on adult disease of the California sea lion. PMID:18728728

  2. Characterization of phylogenetically diverse astroviruses of marine mammals.

    PubMed

    Rivera, Rebecca; Nollens, Hendrik H; Venn-Watson, Stephanie; Gulland, Frances M D; Wellehan, James F X

    2010-01-01

    Astroviruses are small, non-enveloped, positive-stranded RNA viruses. Previously studied mammalian astroviruses have been associated with diarrhoeal disease. Knowledge of astrovirus diversity is very limited, with only six officially recognized astrovirus species from mammalian hosts and, in addition, one human and some bat astroviruses were recently described. We used consensus PCR techniques for initial identification of five astroviruses of marine mammals: three from California sea lions (Zalophus californianus), one from a Steller sea lion (Eumetopias jubatus) and one from a bottlenose dolphin (Tursiops truncatus). Bayesian and maximum-likelihood phylogenetic analysis found that these viruses showed significant diversity at a level consistent with novel species. Astroviruses that we identified from marine mammals were found across the mamastrovirus tree and did not form a monophyletic group. Recombination analysis found that a recombination event may have occurred between a human and a California sea lion astrovirus, suggesting that both lineages may have been capable of infecting the same host at one point. The diversity found amongst marine mammal astroviruses and their similarity to terrestrial astroviruses suggests that the marine environment plays an important role in astrovirus ecology.

  3. Underwater temporary threshold shift in pinnipeds: effects of noise level and duration.

    PubMed

    Kastak, David; Southall, Brandon L; Schusterman, Ronald J; Kastak, Colleen Reichmuth

    2005-11-01

    Behavioral psychophysical techniques were used to evaluate the residual effects of underwater noise on the hearing sensitivity of three pinnipeds: a California sea lion (Zalophus californianus), a harbor seal (Phoca vitulina), and a northern elephant seal (Mirounga angustirostris). Temporary threshold shift (TTS), defined as the difference between auditory thresholds obtained before and after noise exposure, was assessed. The subjects were exposed to octave-band noise centered at 2500 Hz at two sound pressure levels: 80 and 95 dB SL (re: auditory threshold at 2500 Hz). Noise exposure durations were 22, 25, and 50 min. Threshold shifts were assessed at 2500 and 3530 Hz. Mean threshold shifts ranged from 2.9-12.2 dB. Full recovery of auditory sensitivity occurred within 24 h of noise exposure. Control sequences, comprising sham noise exposures, did not result in significant mean threshold shifts for any subject. Threshold shift magnitudes increased with increasing noise sound exposure level (SEL) for two of the three subjects. The results underscore the importance of including sound exposure metrics (incorporating sound pressure level and exposure duration) in order to fully assess the effects of noise on marine mammal hearing.

  4. Comparative assessment of amphibious hearing in pinnipeds.

    PubMed

    Reichmuth, Colleen; Holt, Marla M; Mulsow, Jason; Sills, Jillian M; Southall, Brandon L

    2013-06-01

    Auditory sensitivity in pinnipeds is influenced by the need to balance efficient sound detection in two vastly different physical environments. Previous comparisons between aerial and underwater hearing capabilities have considered media-dependent differences relative to auditory anatomy, acoustic communication, ecology, and amphibious life history. New data for several species, including recently published audiograms and previously unreported measurements obtained in quiet conditions, necessitate a re-evaluation of amphibious hearing in pinnipeds. Several findings related to underwater hearing are consistent with earlier assessments, including an expanded frequency range of best hearing in true seals that spans at least six octaves. The most notable new results indicate markedly better aerial sensitivity in two seals (Phoca vitulina and Mirounga angustirostris) and one sea lion (Zalophus californianus), likely attributable to improved ambient noise control in test enclosures. An updated comparative analysis alters conventional views and demonstrates that these amphibious pinnipeds have not necessarily sacrificed aerial hearing capabilities in favor of enhanced underwater sound reception. Despite possessing underwater hearing that is nearly as sensitive as fully aquatic cetaceans and sirenians, many seals and sea lions have retained acute aerial hearing capabilities rivaling those of terrestrial carnivores.

  5. Predictive Habitat Use of California Sea Lions and Its Implications for Fisheries Management

    NASA Astrophysics Data System (ADS)

    Briscoe, D.

    2016-02-01

    Advancements in satellite telemetry and remotely-sensed oceanography have shown that species and the environment they utilize are highly dynamic in space and time. However, biophysical features often overlap with human use. For this reason, spatially-explicit management approaches may only provide a snapshot of protection for a highly mobile species throughout its range. As a migratory species, California sea lions (Zalophus californianus) utilize dynamic oceanographic features that overlap with the California swordfish fishery, and are subject to incidental catch. The development of near-real time tools can assist in management efforts to mitigate against human impacts, such as fisheries interactions and dynamic marine species. Here, we combine near-real time remotely-sensed satellite oceanography, animal tracking data, and Generalized Additive Mixed Models (GAMMs) to: a) determine suitable habitat for 75 female California sea lions throughout their range, b) forecast when and where these non-target interactions are likely to occur, and c) validate these models with observed data of such interactions. Model results can be used to provide resource management that are highly responsive to the movement of managed species, ocean users, and underlying ocean features.

  6. Predictive Habitat Use of California Sea Lions and Its Implications for Fisheries Management

    NASA Astrophysics Data System (ADS)

    Briscoe, D.

    2016-12-01

    Advancements in satellite telemetry and remotely-sensed oceanography have shown that species and the environment they utilize are highly dynamic in space and time. However, biophysical features often overlap with human use. For this reason, spatially-explicit management approaches may only provide a snapshot of protection for a highly mobile species throughout its range. As a migratory species, California sea lions (Zalophus californianus) utilize dynamic oceanographic features that overlap with the California swordfish fishery, and are subject to incidental catch. The development of near-real time tools can assist in management efforts to mitigate against human impacts, such as fisheries interactions and dynamic marine species. Here, we combine near-real time remotely-sensed satellite oceanography, animal tracking data, and Generalized Additive Mixed Models (GAMMs) to: a) determine suitable habitat for 75 female California sea lions throughout their range, b) forecast when and where these non-target interactions are likely to occur, and c) validate these models with observed data of such interactions. Model results can be used to provide resource management that are highly responsive to the movement of managed species, ocean users, and underlying ocean features.

  7. Preliminary Observations on the Uptake of Poliovirus by West Coast Shore Crabs

    PubMed Central

    DiGirolamo, Rudolph; Wiczynski, Leokadia; Daley, Michael; Miranda, Florencio

    1972-01-01

    West Coast shore crabs (Pachygrapsus sp. and Hemigrapsus sp.), when in seawater contaminated with poliovirus or allowed to feed on virus-contaminated mussels (Mytilus californianus), were found to accumulate high titers of virus. PMID:4333894

  8. Influence of a weak field of pulsed DC electricity on the behavior and incidence of injury in adult Steelhead and Pacific Lamprey

    USGS Publications Warehouse

    Mesa, Matthew G.; Copeland, Elizabeth S.

    2009-01-01

    Predation by pinnipeds, such as California sea lions Zalophus californianus, Pacific harbor seals Phoca vitulina, and Stellar sea lions Eumetopias jubatus on adult Pacific salmon Oncorhynchus spp in the lower Columbia River has become a serious concern for fishery managers trying to conserve and restore runs of threatened and endangered fish. As a result, Smith-Root, Incorporated (SRI; Vancouver, Washington), manufacturers of electrofishing and closely-related equipment, proposed a project to evaluate the potential of an electrical barrier to deter marine mammals and reduce the amount of predation on adult salmonids (SRI 2007). The objectives of their work were to develop, deploy, and evaluate a passive, integrated sonar and electric barrier that would selectively inhibit the upstream movements of marine mammals and reduce predation, but would not injure pinnipeds or impact anadromous fish migrations. However, before such a device could be deployed in the field, concerns by regional fishery managers about the potential effects of such a device on the migratory behavior of Pacific salmon, steelhead O. mykiss, Pacific lampreys Entoshpenus tridentata, and white sturgeon Acipenser transmontanus, needed to be addressed. In this report, we describe the results of laboratory research designed to evaluate the effects of prototype electric barriers on adult steelhead and Pacific lampreys.

  9. Auditory sensitivity of seals and sea lions in complex listening scenarios.

    PubMed

    Cunningham, Kane A; Southall, Brandon L; Reichmuth, Colleen

    2014-12-01

    Standard audiometric data, such as audiograms and critical ratios, are often used to inform marine mammal noise-exposure criteria. However, these measurements are obtained using simple, artificial stimuli-i.e., pure tones and flat-spectrum noise-while natural sounds typically have more complex structure. In this study, detection thresholds for complex signals were measured in (I) quiet and (II) masked conditions for one California sea lion (Zalophus californianus) and one harbor seal (Phoca vitulina). In Experiment I, detection thresholds in quiet conditions were obtained for complex signals designed to isolate three common features of natural sounds: Frequency modulation, amplitude modulation, and harmonic structure. In Experiment II, detection thresholds were obtained for the same complex signals embedded in two types of masking noise: Synthetic flat-spectrum noise and recorded shipping noise. To evaluate how accurately standard hearing data predict detection of complex sounds, the results of Experiments I and II were compared to predictions based on subject audiograms and critical ratios combined with a basic hearing model. Both subjects exhibited greater-than-predicted sensitivity to harmonic signals in quiet and masked conditions, as well as to frequency-modulated signals in masked conditions. These differences indicate that the complex features of naturally occurring sounds enhance detectability relative to simple stimuli.

  10. Epidemiological models to control the spread of information in marine mammals.

    PubMed

    Schakner, Zachary A; Buhnerkempe, Michael G; Tennis, Mathew J; Stansell, Robert J; van der Leeuw, Bjorn K; Lloyd-Smith, James O; Blumstein, Daniel T

    2016-12-14

    Socially transmitted wildlife behaviours that create human-wildlife conflict are an emerging problem for conservation efforts, but also provide a unique opportunity to apply principles of infectious disease control to wildlife management. As an example, California sea lions (Zalophus californianus) have learned to exploit concentrations of migratory adult salmonids below the fish ladders at Bonneville Dam, impeding endangered salmonid recovery. Proliferation of this foraging behaviour in the sea lion population has resulted in a controversial culling programme of individual sea lions at the dam, but the impact of such culling remains unclear. To evaluate the effectiveness of current and alternative culling strategies, we used network-based diffusion analysis on a long-term dataset to demonstrate that social transmission is implicated in the increase in dam-foraging behaviour and then studied different culling strategies within an epidemiological model of the behavioural transmission data. We show that current levels of lethal control have substantially reduced the rate of social transmission, but failed to effectively reduce overall sea lion recruitment. Earlier implementation of culling could have substantially reduced the extent of behavioural transmission and, ultimately, resulted in fewer animals being culled. Epidemiological analyses offer a promising tool to understand and control socially transmissible behaviours. © 2016 The Author(s).

  11. Serological evidence of Toxoplasma gondii infection in captive marine mammals in Mexico.

    PubMed

    Alvarado-Esquivel, C; Sánchez-Okrucky, R; Dubey, J P

    2012-03-23

    Toxoplasma gondii infection in marine mammals is important because they are considered as a sentinel for contamination of seas with T. gondii oocysts, and toxoplasmosis causes mortality in these animals, particularly sea otters. Serological evidence of T. gondii infection was determined in 75 captive marine mammals from four facilities in southern and central geographical regions in Mexico using the modified agglutination test (MAT). Antibodies (MAT, 1:25 or higher) to T. gondii were found in 55 (87.3%) of 63 Atlantic bottlenose dolphins (Tursiops truncatus truncatus), 3 of 3 Pacific bottlenose dolphins (Tursiops truncatus gillii), 2 of 4 California sea lions (Zalophus californianus), but not in 3 West Indian manatees (Trichechus manatus), and 2 Patagonian sea lions (Otaria flavescens). Seropositive marine mammals were found in all 4 (100%) facilities sampled. All marine mammals were healthy and there has not been any case of clinical toxoplasmosis in the facilities sampled for at least the last 15 years. The seroprevalence of T. gondii infection in marine mammals of the same species did not vary significantly with respect to sex and age. This is the first report on the detection of antibodies to T. gondii in marine mammals in Mexico. Published by Elsevier B.V.

  12. Attendance patterns of California sea lion (Zalophus californianus) females and pups during the non-breeding season at San Miguel Island

    USGS Publications Warehouse

    Melin, S.R.; DeLong, R.L.; Thomason, J.R.; VanBlaricom, G.R.

    2000-01-01

    The attendance patterns of California sea lions were studied during the non-breeding seasons from 1991 to 1994. Lactating females frequented the rookery to nurse their pups until weaning; most non-lactating females left the rookery for the season. Females spent over 70% of their time at sea except in 1993 when they spent 59% of their time at sea. The mean foraging trip length in the winter and spring ranged from 3.3 to 4.6 d; the mean nursing visit ranged from 1.2 to 1.4 d. The duration of foraging trips and nursing visits was variable over the season for individuals but no pattern of change was detected. Interannual and seasonal differences were not significant for time at sea, visits ashore, or foraging-trip duration before, during, or after the 1992-1993 El Nino event. Pups spent an average of 66.6% of their time ashore and up to three days away from the rookery during their mother's absence. Most females and pups stayed associated until April or May. The results suggest that seasonal movement of prey is more important in determining attendance patterns late in the lactation period than increasing energy demands of the pup.

  13. 76 FR 13603 - Marine Mammals; File No. 16087

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... californianus), Pacific harbor seals (Phoca vitulina), and northern elephant seals (Mirounga angustrirostris... capture and handling, and 1,135 by incidental disturbance. Up to 2,766 northern elephant seals may be... northern elephant seals. Up to 4,500 northern fur seals (Callorhinus ursinus) may be incidentally disturbed...

  14. Auditory detection of ultrasonic coded transmitters by seals and sea lions.

    PubMed

    Cunningham, Kane A; Hayes, Sean A; Michelle Wargo Rub, A; Reichmuth, Colleen

    2014-04-01

    Ultrasonic coded transmitters (UCTs) are high-frequency acoustic tags that are often used to conduct survivorship studies of vulnerable fish species. Recent observations of differential mortality in tag control studies suggest that fish instrumented with UCTs may be selectively targeted by marine mammal predators, thereby skewing valuable survivorship data. In order to better understand the ability of pinnipeds to detect UCT outputs, behavioral high-frequency hearing thresholds were obtained from a trained harbor seal (Phoca vitulina) and a trained California sea lion (Zalophus californianus). Thresholds were measured for extended (500 ms) and brief (10 ms) 69 kHz narrowband stimuli, as well as for a stimulus recorded directly from a Vemco V16-3H UCT, which consisted of eight 10 ms, 69 kHz pure-tone pulses. Detection thresholds for the harbor seal were as expected based on existing audiometric data for this species, while the California sea lion was much more sensitive than predicted. Given measured detection thresholds of 113 dB re 1 μPa and 124 dB re 1 μPa, respectively, both species are likely able to detect acoustic outputs of the Vemco V16-3H under water from distances exceeding 200 m in typical natural conditions, suggesting that these species are capable of using UCTs to detect free-ranging fish.

  15. Observations in 2001 on hookworms ( Uncinaria spp.) in otariid pinnipeds.

    PubMed

    Lyons, E T; DeLong, R L; Spraker, T R; Melin, S R; Tolliver, S C

    2003-04-01

    Uncinaria spp. were recovered from the milk of California sea lions ( Zalophus californianus) collected from the: (1) teats of a cow just after parturition (one parasitic third-stage larva, L(3)), (2) stomach of her nursing pup (two L(3)), and (3) stomach of a dead pup about 2 days old (one L(3), one headless, probably L(3), and four L(4)) on San Miguel Island, California in May 2001. This, in addition to earlier research, indicates transmammary transmission of hookworms in this host. Uncinaria spp. were found in dead northern fur seals ( Callorhinus ursinus) in the: (1) intestines of 2 of 75 pups (either one or two adult specimens in each infected pup) and (2) ventral abdominal blubber of 3 of 78 subadult males (one to seven L(3) in each infected seal) on St. Paul Island (SPI), Alaska in July and August 2001. These findings verify the low current prevalence of Uncinariaspp. in fur seals on SPI. Rectal fecal samples taken from 50 live Steller sea lion ( Eumetopias jubatus) pups, about 1 month old, on Rogue Reef in Curry County, Oregon in July 2001, were all negative for the eggs of Uncinaria spp. The apparent zero infection rate in these pups is possibly because the rocky terrain of this rookery is not suitable for hookworm transmission.

  16. Harbor seal vibrissa morphology suppresses vortex-induced vibrations.

    PubMed

    Hanke, Wolf; Witte, Matthias; Miersch, Lars; Brede, Martin; Oeffner, Johannes; Michael, Mark; Hanke, Frederike; Leder, Alfred; Dehnhardt, Guido

    2010-08-01

    Harbor seals (Phoca vitulina) often live in dark and turbid waters, where their mystacial vibrissae, or whiskers, play an important role in orientation. Besides detecting and discriminating objects by direct touch, harbor seals use their whiskers to analyze water movements, for example those generated by prey fish or by conspecifics. Even the weak water movements left behind by objects that have passed by earlier can be sensed and followed accurately (hydrodynamic trail following). While scanning the water for these hydrodynamic signals at a swimming speed in the order of meters per second, the seal keeps its long and flexible whiskers in an abducted position, largely perpendicular to the swimming direction. Remarkably, the whiskers of harbor seals possess a specialized undulated surface structure, the function of which was, up to now, unknown. Here, we show that this structure effectively changes the vortex street behind the whiskers and reduces the vibrations that would otherwise be induced by the shedding of vortices from the whiskers (vortex-induced vibrations). Using force measurements, flow measurements and numerical simulations, we find that the dynamic forces on harbor seal whiskers are, by at least an order of magnitude, lower than those on sea lion (Zalophus californianus) whiskers, which do not share the undulated structure. The results are discussed in the light of pinniped sensory biology and potential biomimetic applications.

  17. Temporal changes in the prevalence of parasites in two Oregon estuary-dwelling fishes.

    PubMed

    Olson, Robert E; Pierce, Jack R; Jacobson, Kym C; Burreson, Eugene M

    2004-06-01

    The parasite faunas of juvenile English sole (Parophrys vetulus) in 1971-1972 and staghorn sculpin (Leptocottus armatus) in 1971 from Yaquina Bay, Oregon, were compared with faunas found in the same estuary in 1997-2000 (English sole) and 1999-2000 (staghorn sculpin). The 7 most commonly occurring parasites in 1971 were compared with the same species observed during the same month and sampling sites in 1997-2000. Multivariate community analysis of juvenile English sole parasites supported the suggestion that the 1971 parasite data were representative of the early-1970s time period. Four of the parasite species infecting English sole and 6 of those infecting staghorn sculpins had significantly lower prevalences in 1997-2000. Parasite species with significantly lower prevalences also had reduced intensity levels. One parasite (Glugea stephani) of English sole increased in prevalence in the 1997-2000 samples in association with the warm estuarine temperatures during the 1997 El Niño year. Although the causes for the changes in occurrence of other parasites were not determined, ecological changes in Yaquina Bay that may have influenced parasite ecology include apparent changes in the estuary ichthyofauna that occurred between the sampling periods. Such changes could be associated with increases in the number of California sea lions (Zalophus californianus) subsequent to establishment of the Marine Mammal Protection Act in 1972.

  18. Final Environmental Assessment Addressing Construction, Operation, and Maintenance of a Military Working Dog Facility at Kirtland Air Force Base, New Mexico

    DTIC Science & Technology

    2011-03-01

    dove (Zenaida macroura), greater roadrunner (Geococcyx californianus), American crow (Cowus brachyrhynchos), northern mockingbird (Mimus polyglottos...permitted by regulations, the MBTA makes it unlawful to pursue, hunt, take, capture, or kill ; attempt to take, capture, or kill ; possess; offer to or...or through a foreign country, any bird, part, nest, or egg that was captured, killed , taken, shipped, transported, or carried contrary to the laws

  19. Comparative anatomy of the ophthalmic rete and its relationship to ocular blood flow in three species of marine mammal.

    PubMed

    Ninomiya, Hiroyoshi; Imamura, Emi; Inomata, Tomo

    2014-03-01

    To examine the blood supply to the eyes of bottlenose dolphin (Tursiops truncatus), spotted seal (Phoca largha), and California sea lion (Zalophus californianus). Emphasis is placed on exploring the anatomic function in the context of aquatic life. Methyl methacrylate casts were prepared and studied using a scanning electron microscope. Infrared images of the eye were recorded using a thermocamera. In all three marine species, blood is supplied to the ophthalmic rete. The main source of blood supply to the rete is the basilar rete via the spinal rete in the dolphin and via the ophthalmic artery in the seal and sea lion. The retinal and choroidal arteries are derived from the rete. The dolphin rete showed a very well-developed arterial network occupying most of the orbit. The rete in pinnipeds was less developed with several entwining arteries, unlike that in cetaceans. Thermographic examination revealed that the eye shows a higher degree of thermal emission than adjacent areas of the skin in these 3 species. The role of the rete in aquatic mammals appears to conserve ocular temperature so that the appropriate operating temperature for photoreceptors and ocular muscles can be maintained in a cold ambient temperature. Additionally, the rete might have a flow-damping effect by maintaining resistance to blood flow in the orbit. This study highlights the special nature of ocular vascular anatomy and function that enabled the unique adaptation of aquatic mammals to life in aquatic habitats. © 2013 American College of Veterinary Ophthalmologists.

  20. ANTIDOG IgG SECONDARY ANTIBODY SUCCESSFULLY DETECTS IgG IN A VARIETY OF AQUATIC MAMMALS.

    PubMed

    Roehl, Katherine; Jankowski, Mark; Hofmeister, Erik

    2016-12-01

    Serological tests play an important role in the detection of wildlife diseases. However, while there are many commercial assays and reagents available for domestic species, there is a need to develop efficient serological assays for wildlife. In recent years, marine mammals have represented a wildlife group with emerging infectious diseases, such as influenza, brucellosis, and leptospirosis. However, with the exception of disease-agent-specific assays or functional assays, few reports describe the use of antibody detection assays in marine mammals. In an indirect enzyme-linked immunoassay (EIA) or an immunofluorescence assay, antibody is detected using an antitarget species secondary conjugated antibody. The sensitivity of the assay depends on the avidity of the binding reaction between the bound antibody and the detection antibody. A commercial polyclonal antidog IgG conjugated antibody was tested in an EIA for its ability to sensitively detect the IgG of seven marine mammals including sea otter ( Enhydra lutris ), polar bear ( Ursus maritimus ), grey seal ( Halichoerus grypus ), harbor seal ( Phoca vitulina ), northern elephant seal ( Mirounga angustirostris ), California sea lion ( Zalophus californianus ), Pacific walrus ( Odobenus rosmarus ) and one freshwater mammal: Asian small-clawed otter ( Aonyx cinerea ). With the exception of Asian small-clawed sea otters, the detection of IgG in these marine mammals either exceeded or was nearly equal to detection of dog IgG. The use of the tested commercial antidog IgG antibody may be a valid approach to the detection of antibody response to disease in sea mammals.

  1. Ecotoxicoparasitology of the gastrointestinal tracts of pinnipeds: the effect of parasites on the potential bioavailability of total mercury (THg).

    PubMed

    McGrew, Ashley K; O'Hara, Todd M; Stricker, Craig A; Salman, Mo D; Van Bonn, William; Gulland, Frances M D; Whiting, Alex; Ballweber, Lora R

    2018-08-01

    Acanthocephalans, cestodes, and some species of nematodes acquire nutrients from the lumen contents in the gastrointestinal (GI) tract of their definitive host. These parasites are exposed to toxicants, such as mercury (Hg), through passive or active feeding mechanisms; therefore, the focus of this study was to determine if there is an effect of parasites on the dietary availability of total mercury (THg) within piscivorous pinniped hosts. THg concentrations ([THg]) in selected host tissues, parasites, and GI lumen contents from 22 California sea lions (Zalophus californianus), 15 ringed seals (Phoca hispida), and 4 spotted seals (Phoca largha) were determined. Among all pinnipeds, [THg] in acanthocephalans of the large intestine were significantly higher than concentrations in other samples (host lumen contents, other parasites and host intestinal wall), irrespective of location within the host GI tract. δ 15 N values of parasites depended both on parasite group and location within the GI tract. δ 15 N values were consistently higher in parasites inhabiting the large intestine, compared to elsewhere in the GI tract, for both sea lions and seals. δ 13 C values in parasites did not differ significantly from host GI tissues. Based on both [THg] and stable isotope values, parasites are likely affecting the Hg bioavailability within the GI lumen contents and host tissues, and toxicant-parasite interactions appear to depend on both parasitic taxon as well as their location within the host intestine. Copyright © 2018. Published by Elsevier B.V.

  2. Anti-dog IgG secondary antibody successfully detects IgG in a variety of aquatic mammals

    USGS Publications Warehouse

    Roehl, Katherine; Jankowski, Mark D.; Hofmeister, Erik K.

    2016-01-01

    Serological tests play an important role in the detection of wildlife diseases. However, while there are many commercial assays and reagents available for domestic species, there is a need to develop efficient serological assays for wildlife. In recent years, marine mammals have represented a wildlife group with emerging infectious diseases, such as influenza, brucellosis, and leptospirosis. However, with the exception of disease-agent-specific assays or functional assays, few reports describe the use of antibody detection assays in marine mammals. In an indirect enzyme-linked immunoassay (EIA) or an immunofluorescence assay, antibody is detected using an antitarget species secondary conjugated antibody. The sensitivity of the assay depends on the avidity of the binding reaction between the bound antibody and the detection antibody. A commercial polyclonal antidog IgG conjugated antibody was tested in an EIA for its ability to sensitively detect the IgG of seven marine mammals including sea otter (Enhydra lutris), polar bear (Ursus maritimus), grey seal (Halichoerus grypus), harbor seal (Phoca vitulina), northern elephant seal (Mirounga angustirostris), California sea lion (Zalophus californianus), Pacific walrus (Odobenus rosmarus) and one freshwater mammal: Asian small-clawed otter (Aonyx cinerea). With the exception of Asian small-clawed sea otters, the detection of IgG in these marine mammals either exceeded or was nearly equal to detection of dog IgG. The use of the tested commercial antidog IgG antibody may be a valid approach to the detection of antibody response to disease in sea mammals.

  3. Characterizing habitat suitability for a central-place forager in a dynamic marine environment.

    PubMed

    Briscoe, Dana K; Fossette, Sabrina; Scales, Kylie L; Hazen, Elliott L; Bograd, Steven J; Maxwell, Sara M; McHuron, Elizabeth A; Robinson, Patrick W; Kuhn, Carey; Costa, Daniel P; Crowder, Larry B; Lewison, Rebecca L

    2018-03-01

    Characterizing habitat suitability for a marine predator requires an understanding of the environmental heterogeneity and variability over the range in which a population moves during a particular life cycle. Female California sea lions ( Zalophus californianus ) are central-place foragers and are particularly constrained while provisioning their young. During this time, habitat selection is a function of prey availability and proximity to the rookery, which has important implications for reproductive and population success. We explore how lactating females may select habitat and respond to environmental variability over broad spatial and temporal scales within the California Current System. We combine near-real-time remotely sensed satellite oceanography, animal tracking data ( n  = 72) from November to February over multiple years (2003-2009) and Generalized Additive Mixed Models (GAMMs) to determine the probability of sea lion occurrence based on environmental covariates. Results indicate that sea lion presence is associated with cool ( <14°C ), productive waters, shallow depths, increased eddy activity, and positive sea-level anomalies. Predictive habitat maps generated from these biophysical associations suggest winter foraging areas are spatially consistent in the nearshore and offshore environments, except during the 2004-2005 winter, which coincided with an El Niño event. Here, we show how a species distribution model can provide broadscale information on the distribution of female California sea lions during an important life history stage and its implications for population dynamics and spatial management.

  4. Historical baselines and the future of shell calcification for a foundation species in a changing ocean

    PubMed Central

    Pfister, Catherine A.; Roy, Kaustuv; Wootton, J. Timothy; McCoy, Sophie J.; Paine, Robert T.; Suchanek, Thomas H.; Sanford, Eric

    2016-01-01

    Seawater pH and the availability of carbonate ions are decreasing due to anthropogenic carbon dioxide emissions, posing challenges for calcifying marine species. Marine mussels are of particular concern given their role as foundation species worldwide. Here, we document shell growth and calcification patterns in Mytilus californianus, the California mussel, over millennial and decadal scales. By comparing shell thickness across the largest modern shells, the largest mussels collected in the 1960s–1970s and shells from two Native American midden sites (∼1000–2420 years BP), we found that modern shells are thinner overall, thinner per age category and thinner per unit length. Thus, the largest individuals of this species are calcifying less now than in the past. Comparisons of shell thickness in smaller individuals over the past 10–40 years, however, do not show significant shell thinning. Given our sampling strategy, these results are unlikely to simply reflect within-site variability or preservation effects. Review of environmental and biotic drivers known to affect shell calcification suggests declining ocean pH as a likely explanation for the observed shell thinning. Further future decreases in shell thickness could have significant negative impacts on M. californianus survival and, in turn, negatively impact the species-rich complex that occupies mussel beds. PMID:27306049

  5. Historical baselines and the future of shell calcification for a foundation species in a changing ocean

    USGS Publications Warehouse

    Pfister, Catherine A.; Roy, Kaustuv; Wootton, Timothy J.; McCoy, Sophie J.; Paine, Robert T.; Suchanek, Tom; Sanford, Eric

    2016-01-01

    Seawater pH and the availability of carbonate ions are decreasing due to anthropogenic carbon dioxide emissions, posing challenges for calcifying marine species. Marine mussels are of particular concern given their role as foundation species worldwide. Here, we document shell growth and calcification patterns in Mytilus californianus, the California mussel, over millennial and decadal scales. By comparing shell thickness across the largest modern shells, the largest mussels collected in the 1960s–1970s and shells from two Native American midden sites (∼1000–2420 years BP), we found that modern shells are thinner overall, thinner per age category and thinner per unit length. Thus, the largest individuals of this species are calcifying less now than in the past. Comparisons of shell thickness in smaller individuals over the past 10–40 years, however, do not show significant shell thinning. Given our sampling strategy, these results are unlikely to simply reflect within-site variability or preservation effects. Review of environmental and biotic drivers known to affect shell calcification suggests declining ocean pH as a likely explanation for the observed shell thinning. Further future decreases in shell thickness could have significant negative impacts on M. californianus survival and, in turn, negatively impact the species-rich complex that occupies mussel beds..

  6. Historical baselines and the future of shell calcification for a foundation species in a changing ocean.

    PubMed

    Pfister, Catherine A; Roy, Kaustuv; Wootton, J Timothy; McCoy, Sophie J; Paine, Robert T; Suchanek, Thomas H; Sanford, Eric

    2016-06-15

    Seawater pH and the availability of carbonate ions are decreasing due to anthropogenic carbon dioxide emissions, posing challenges for calcifying marine species. Marine mussels are of particular concern given their role as foundation species worldwide. Here, we document shell growth and calcification patterns in Mytilus californianus, the California mussel, over millennial and decadal scales. By comparing shell thickness across the largest modern shells, the largest mussels collected in the 1960s-1970s and shells from two Native American midden sites (∼1000-2420 years BP), we found that modern shells are thinner overall, thinner per age category and thinner per unit length. Thus, the largest individuals of this species are calcifying less now than in the past. Comparisons of shell thickness in smaller individuals over the past 10-40 years, however, do not show significant shell thinning. Given our sampling strategy, these results are unlikely to simply reflect within-site variability or preservation effects. Review of environmental and biotic drivers known to affect shell calcification suggests declining ocean pH as a likely explanation for the observed shell thinning. Further future decreases in shell thickness could have significant negative impacts on M. californianus survival and, in turn, negatively impact the species-rich complex that occupies mussel beds. © 2016 The Author(s).

  7. Adhesion beyond the interface: Molecular adaptations of the mussel byssus to the intertidal zone

    NASA Astrophysics Data System (ADS)

    MIller, Dusty Rose

    The California mussel, Mytilus californianus, adheres robustly in the high-energy and oxidizing intertidal zone with a fibrous holdfast called the byssus using 3,4-dihydroxyphenyl-L-alanine (Dopa)-containing adhesive mussel foot proteins (mfps). There are many supporting roles to mussel adhesion that are intimately linked and ultimately responsible for mussel byssus's durable and dynamic adhesion. This dissertation explores these supporting mechanisms, including delivery of materials underwater, iron binding, friction, and antioxidant activity. As the outermost covering of the byssus, the cuticle deserves particular attention for its supporting roles to adhesion including the high stiffness and extensibility of the M. californianus byssal cuticle, which make it one of the most energy tolerant materials known. The cuticle's matrix-granule composite structure contributes to its toughness by microcracking between its harder granules and softer matrix. We investigated delivery of cuticular material underwater, cohesion of cuticle proteins, and surface damage mitigation by cuticle protein-based coacervates. To investigate underwater material delivery, we made cuticle matrix mimics by coacervating a key cuticular protein, Mytilus californianus foot protein 1, mfp-1, with hyaluronic acid. These matrix mimics coacervated over a wide range of solution conditions, delivered concentrated material, settled on and coated surfaces underwater. Because the granules are composed of mfp-1 condensed with iron, we used the surface forces apparatus to investigate the effects of iron on the cohesion of mfp-1 from two different species of mussels and found that subtle sequence variations modulate cohesion. Using the coacervate matrix mimics and, modeling the granules as a hard surface (mica), we investigated the wear protection of coacervated mfp-1/HA to mica under frictional shear and found that preventing wear depends critically on the presence of Dopa groups. In addition to cuticle

  8. Evaluating hair as a predictor of blood mercury: the influence of ontogenetic phase and life history in pinnipeds

    USGS Publications Warehouse

    Peterson, Sarah H.; McHuron, Elizabeth A.; Kennedy, Stephanie N.; Ackerman, Joshua T.; Rea, Lorrie D.; Castellini, J. Margaret; O'Hara, Todd M.; Costa, Daniel P.

    2016-01-01

    Mercury (Hg) biomonitoring of pinnipeds increasingly utilizes nonlethally collected tissues such as hair and blood. The relationship between total Hg concentrations ([THg]) in these tissues is not well understood for marine mammals, but it can be important for interpretation of tissue concentrations with respect to ecotoxicology and biomonitoring. We examined [THg] in blood and hair in multiple age classes of four pinniped species. For each species, we used paired blood and hair samples to quantify the ability of [THg] in hair to predict [THg] in blood at the time of sampling and examined the influence of varying ontogenetic phases and life history of the sampled animals. Overall, we found that the relationship between [THg] in hair and blood was affected by factors including age class, weaning status, growth, and the time difference between hair growth and sample collection. Hair [THg] was moderately to strongly predictive of current blood [THg] for adult female Steller sea lions (Eumetopias jubatus), adult female California sea lions (Zalophus californianus), and adult harbor seals (Phoca vitulina), whereas hair [THg] was poorly predictive or not predictive (different times of year) of blood [THg] for adult northern elephant seals (Mirounga angustirostris). Within species, except for very young pups, hair [THg] was a weaker predictor of blood [THg] for prereproductive animals than for adults likely due to growth, variability in foraging behavior, and transitions between ontogenetic phases. Our results indicate that the relationship between hair [THg] and blood [THg] in pinnipeds is variable and that ontogenetic phase and life history should be considered when interpreting [THg] in these tissues.

  9. Diagnosis and treatment of Sarcocystis neurona-induced myositis in a free-ranging California sea lion.

    PubMed

    Carlson-Bremer, Daphne P; Gulland, Frances M D; Johnson, Christine K; Colegrove, Kathleen M; Van Bonn, William G

    2012-02-01

    An underweight, lethargic adult female California sea lion (Zalophus californianus) became stranded along the California shore and was captured and transported to a rehabilitation hospital for assessment and care. Initial physical assessment revealed the sea lion was lethargic and in poor body condition. Active myositis was diagnosed on the basis of concurrent elevations in activities of alanine aminotransferase and creatine kinase detected during serum biochemical analysis. Infection with Sarcocystis neurona was diagnosed after serologic titers increased 4-fold over a 3-week period. Diagnosis was confirmed on the basis of histopathologic findings, positive results on immunohistochemical staining, and results of quantitative PCR assay on biopsy specimens obtained from the diaphragm and muscles of the dorsal cervical region. Anticoccidial treatment was instituted with ponazuril (10 mg/kg [4.5 mg/lb], PO, q 24 h) and continued for 28 days. Prednisone (0.2 mg/kg [0.09 mg/lb], PO, q 12 h) was administered for 2 days and then every 24 hours for 5 days to treat associated inflammation. At the end of treatment, the sea lion was clinically normal, alanine aminotransferase and creatine kinase values were within reference limits, and antibody titers against S neurona had decreased 6-fold. The sea lion was released approximately 3 months after becoming stranded. S neurona-induced myositis was diagnosed in a free-ranging California sea lion. On the basis of the successful treatment and release of this sea lion, anticoccidial treatment should be considered for marine mammals in which protozoal disease is diagnosed.

  10. A novel antibody-based biomarker for chronic algal toxin exposure and sub-acute neurotoxicity

    USGS Publications Warehouse

    Lefebvre, Kathi A.; Frame, Elizabeth R.; Gulland, Frances; Hansen, John D.; Kendrick, Preston S.; Beyer, Richard P.; Bammler, Theo K.; Farin, Frederico M.; Hiolski, Emma M.; Smith, Donald R.; Marcinek, David J.

    2012-01-01

    The neurotoxic amino acid, domoic acid (DA), is naturally produced by marine phytoplankton and presents a significant threat to the health of marine mammals, seabirds and humans via transfer of the toxin through the foodweb. In humans, acute exposure causes a neurotoxic illness known as amnesic shellfish poisoning characterized by seizures, memory loss, coma and death. Regular monitoring for high DA levels in edible shellfish tissues has been effective in protecting human consumers from acute DA exposure. However, chronic low-level DA exposure remains a concern, particularly in coastal and tribal communities that subsistence harvest shellfish known to contain low levels of the toxin. Domoic acid exposure via consumption of planktivorous fish also has a profound health impact on California sea lions (Zalophus californianus) affecting hundreds of animals yearly. Due to increasing algal toxin exposure threats globally, there is a critical need for reliable diagnostic tests for assessing chronic DA exposure in humans and wildlife. Here we report the discovery of a novel DA-specific antibody response that is a signature of chronic low-level exposure identified initially in a zebrafish exposure model and confirmed in naturally exposed wild sea lions. Additionally, we found that chronic exposure in zebrafish caused increased neurologic sensitivity to DA, revealing that repetitive exposure to DA well below the threshold for acute behavioral toxicity has underlying neurotoxic consequences. The discovery that chronic exposure to low levels of a small, water-soluble single amino acid triggers a detectable antibody response is surprising and has profound implications for the development of diagnostic tests for exposure to other pervasive environmental toxins.

  11. Hydrodynamic perception in true seals (Phocidae) and eared seals (Otariidae).

    PubMed

    Hanke, Wolf; Wieskotten, Sven; Marshall, Christopher; Dehnhardt, Guido

    2013-06-01

    Pinnipeds, that is true seals (Phocidae), eared seals (Otariidae), and walruses (Odobenidae), possess highly developed vibrissal systems for mechanoreception. They can use their vibrissae to detect and discriminate objects by direct touch. At least in Phocidae and Otariidae, the vibrissae can also be used to detect and analyse water movements. Here, we review what is known about this ability, known as hydrodynamic perception, in pinnipeds. Hydrodynamic perception in pinnipeds developed convergently to the hydrodynamic perception with the lateral line system in fish and the sensory hairs in crustaceans. So far two species of pinnipeds, the harbour seal (Phoca vitulina) representing the Phocidae and the California sea lion (Zalophus californianus) representing the Otariidae, have been studied for their ability to detect local water movements (dipole stimuli) and to follow hydrodynamic trails, that is the water movements left behind by objects that have passed by at an earlier point in time. Both species are highly sensitive to dipole stimuli and can follow hydrodynamic trails accurately. In the individuals tested, California sea lions were clearly more sensitive to dipole stimuli than harbour seals, and harbour seals showed a superior trail following ability as compared to California sea lions. Harbour seals have also been shown to derive additional information from hydrodynamic trails, such as motion direction, size and shape of the object that caused the trail (California sea lions have not yet been tested). The peculiar undulated shape of the harbour seals' vibrissae appears to play a crucial role in trail following, as it suppresses self-generated noise while the animal is swimming.

  12. A novel antibody-based biomarker for chronic algal toxin exposure and sub-acute neurotoxicity.

    PubMed

    Lefebvre, Kathi A; Frame, Elizabeth R; Gulland, Frances; Hansen, John D; Kendrick, Preston S; Beyer, Richard P; Bammler, Theo K; Farin, Frederico M; Hiolski, Emma M; Smith, Donald R; Marcinek, David J

    2012-01-01

    The neurotoxic amino acid, domoic acid (DA), is naturally produced by marine phytoplankton and presents a significant threat to the health of marine mammals, seabirds and humans via transfer of the toxin through the foodweb. In humans, acute exposure causes a neurotoxic illness known as amnesic shellfish poisoning characterized by seizures, memory loss, coma and death. Regular monitoring for high DA levels in edible shellfish tissues has been effective in protecting human consumers from acute DA exposure. However, chronic low-level DA exposure remains a concern, particularly in coastal and tribal communities that subsistence harvest shellfish known to contain low levels of the toxin. Domoic acid exposure via consumption of planktivorous fish also has a profound health impact on California sea lions (Zalophus californianus) affecting hundreds of animals yearly. Due to increasing algal toxin exposure threats globally, there is a critical need for reliable diagnostic tests for assessing chronic DA exposure in humans and wildlife. Here we report the discovery of a novel DA-specific antibody response that is a signature of chronic low-level exposure identified initially in a zebrafish exposure model and confirmed in naturally exposed wild sea lions. Additionally, we found that chronic exposure in zebrafish caused increased neurologic sensitivity to DA, revealing that repetitive exposure to DA well below the threshold for acute behavioral toxicity has underlying neurotoxic consequences. The discovery that chronic exposure to low levels of a small, water-soluble single amino acid triggers a detectable antibody response is surprising and has profound implications for the development of diagnostic tests for exposure to other pervasive environmental toxins.

  13. Molecular and morphometric evidence for separate species of Uncinaria (Nematoda: Ancylostomatidae) in California sea lions and northern fur seals: hypothesis testing supplants verification.

    PubMed

    Nadler, S A; Adams, B J; Lyons, E T; DeLong, R L; Melin, S R

    2000-10-01

    California sea lions (Zalophus californianus) and northern fur seals (Callorhinus ursinus) are each believed to host distinct hookworm species (Uncinaria spp.). However, a recent morphometric analysis suggested that a single species parasitizes multiple pinniped hosts, and that the observed differences are host-induced. To explore the systematics of these hookworms and test these competing hypotheses, we obtained nucleotide sequences of nuclear ribosomal DNA (D2/D3 28S, D18/D19 28S, and internal transcribed spacer [ITS] regions) from 20 individual hookworms parasitizing California sea lion and northern fur seal pups where their breeding grounds are sympatric. Five individuals from an allopatric population of California sea lions were also sampled for ITS-1 and D18/D19 28S sequences. The 28S D2/D3 sequences showed no diagnostic differences among hookworms sampled from individual sea lions and fur seals, whereas the 28S D18/D19 sequences had one derived (apomorphic) character demarcating hookworms from northern fur seals. ITS sequences were variable for 7 characters, with 4 derived (apomorphic) states in ITS-1 demarcating hookworms from California sea lions. Multivariate analysis of morphometric data also revealed significant differences between nematodes representing these 2 host-associated lineages. These results indicate that these hookworms represent 2 species that are not distributed indiscriminately between these host species, but instead exhibit host fidelity, evolving independently with each respective host species. This evolutionary approach to analyzing sequence data for species delimitation is contrasted with similarity-based methods that have been applied to numerous diagnostic studies of nematode parasites.

  14. Microbes, metagenomes and marine mammals: enabling the next generation of scientist to enter the genomic era

    PubMed Central

    2013-01-01

    Background The revolution in DNA sequencing technology continues unabated, and is affecting all aspects of the biological and medical sciences. The training and recruitment of the next generation of researchers who are able to use and exploit the new technology is severely lacking and potentially negatively influencing research and development efforts to advance genome biology. Here we present a cross-disciplinary course that provides undergraduate students with practical experience in running a next generation sequencing instrument through to the analysis and annotation of the generated DNA sequences. Results Many labs across world are installing next generation sequencing technology and we show that the undergraduate students produce quality sequence data and were excited to participate in cutting edge research. The students conducted the work flow from DNA extraction, library preparation, running the sequencing instrument, to the extraction and analysis of the data. They sequenced microbes, metagenomes, and a marine mammal, the Californian sea lion, Zalophus californianus. The students met sequencing quality controls, had no detectable contamination in the targeted DNA sequences, provided publication quality data, and became part of an international collaboration to investigate carcinomas in carnivores. Conclusions Students learned important skills for their future education and career opportunities, and a perceived increase in students’ ability to conduct independent scientific research was measured. DNA sequencing is rapidly expanding in the life sciences. Teaching undergraduates to use the latest technology to sequence genomic DNA ensures they are ready to meet the challenges of the genomic era and allows them to participate in annotating the tree of life. PMID:24007365

  15. Skin histology and its role in heat dissipation in three pinniped species

    PubMed Central

    2012-01-01

    Background Pinnipeds have a thick blubber layer and may have difficulty maintaining their body temperature during hot weather when on land. The skin is the main thermoregulatory conduit which emits excessive body heat. Methods Thorough evaluation of the skin histology in three pinniped species; the California sea lion-Zalophus californianus, the Pacific harbor seal-Phoca vitulina richardsi, and the Northern elephant seal-Mirounga angustirostris, was conducted to identify the presence, location and distribution of skin structures which contribute to thermoregulation. These structures included hair, adipose tissue, sweat glands, vasculature, and arteriovenous anastomoses (AVA). Thermal imaging was performed on live animals of the same species to correlate histological findings with thermal emission of the skin. Results The presence and distribution of skin structures directly relates to emissivity of the skin in all three species. Emissivity of skin in phocids (Pacific harbor and Northern elephant seals) follows a different pattern than skin in otariids (California sea lions). The flipper skin in phocids tends to be the most emissive region during hot weather and least emissive during cold weather. On the contrary in otariids, skin of the entire body has a tendency to be emissive during both hot and cold weather. Conclusion Heat dissipation of the skin directly relates to the presence and distribution of skin structures in all three species. Different skin thermal dissipation patterns were observed in phocid versus otariid seals. Observed thermal patterns can be used for proper understanding of optimum thermal needs of seals housed in research facilities, rescue centers and zoo exhibits. PMID:22889205

  16. Can variable pH and low oxygen moderate ocean acidification outcomes for mussel larvae?

    PubMed

    Frieder, Christina A; Gonzalez, Jennifer P; Bockmon, Emily E; Navarro, Michael O; Levin, Lisa A

    2014-03-01

    Natural variation and changing climate in coastal oceans subject meroplanktonic organisms to broad ranges of pH and oxygen ([O2 ]) levels. In controlled-laboratory experiments we explored the interactive effects of pH, [O2 ], and semidiurnal pH fluctuations on the survivorship, development, and size of early life stages of two mytilid mussels, Mytilus californianus and M. galloprovincialis. Survivorship of larvae was unaffected by low pH, low [O2 ], or semidiurnal fluctuations for both mytilid species. Low pH (<7.6) resulted in delayed transition from the trochophore to veliger stage, but this effect of low pH was absent when incorporating semidiurnal fluctuations in both species. Also at low pH, larval shells were smaller and had greater variance; this effect was absent when semidiurnal fluctuations of 0.3 units were incorporated at low pH for M. galloprovincialis but not for M. californianus. Low [O2 ] in combination with low pH had no effect on larval development and size, indicating that early life stages of mytilid mussels are largely tolerant to a broad range of [O2 ] reflective of their environment (80-260 μmol kg(-1) ). The role of pH variability should be recognized as an important feature in coastal oceans that has the capacity to modulate the effects of ocean acidification on biological responses. © 2013 John Wiley & Sons Ltd.

  17. Cyclical changes in seroprevalence of leptospirosis in California sea lions: endemic and epidemic disease in one host species?

    PubMed Central

    Lloyd-Smith, James O; Greig, Denise J; Hietala, Sharon; Ghneim, George S; Palmer, Lauren; St Leger, Judy; Grenfell, Bryan T; Gulland, Frances MD

    2007-01-01

    Background Leptospirosis is a zoonotic disease infecting a broad range of mammalian hosts, and is re-emerging globally. California sea lions (Zalophus californianus) have experienced recurrent outbreaks of leptospirosis since 1970, but it is unknown whether the pathogen persists in the sea lion population or is introduced repeatedly from external reservoirs. Methods We analyzed serum samples collected over an 11-year period from 1344 California sea lions that stranded alive on the California coast, using the microscopic agglutination test (MAT) for antibodies to Leptospira interrogans serovar Pomona. We evaluated seroprevalence among yearlings as a measure of incidence in the population, and characterized antibody persistence times based on temporal changes in the distribution of titer scores. We conducted multinomial logistic regression to determine individual risk factors for seropositivity with high and low titers. Results The serosurvey revealed cyclical patterns in seroprevalence to L. interrogans serovar Pomona, with 4–5 year periodicity and peak seroprevalence above 50%. Seroprevalence in yearling sea lions was an accurate index of exposure among all age classses, and indicated on-going exposure to leptospires in non-outbreak years. Analysis of titer decay rates showed that some individuals probably maintain high titers for more than a year following exposure. Conclusion This study presents results of an unprecedented long-term serosurveillance program in marine mammals. Our results suggest that leptospirosis is endemic in California sea lions, but also causes periodic epidemics of acute disease. The findings call into question the classical dichotomy between maintenance hosts of leptospirosis, which experience chronic but largely asymptomatic infections, and accidental hosts, which suffer acute illness or death as a result of disease spillover from reservoir species. PMID:17986335

  18. A New Perspective on the Foraging Ecology of Apex Predators in the California Current: Results from a Fully Coupled Ecosystem Model

    NASA Astrophysics Data System (ADS)

    Fiechter, J.; Huckstadt, L. A.; Rose, K.; Costa, D. P.; Curchitser, E. N.; Hedstrom, K.; Edwards, C. A.; Moore, A. M.

    2016-02-01

    Results from a fully coupled end-to-end ecosystem model for the California Current Large Marine Ecosystem are used to describe the impact of environmental variability on the foraging ecology of its most abundant apex predator, California sea lions (Zalophus californianus). The ecosystem model consists of a biogeochemical submodel embedded in a regional ocean circulation submodel, and both coupled with a multi-species individual-based submodel for forage fish (sardine and anchovy) and California sea lions. For sea lions, bioenergetics and behavioral attributes are specified using available TOPP (Tagging Of Pacific Predators) data on their foraging patterns and diet in the California Current. Sardine and anchovy are explicitly included in the model as they represent important prey sources for California sea lions and exhibit significant interannual and decadal variability in population abundances. Output from a 20-year run (1989-2008) of the model demonstrates how different physical and biological processes control habitat utilization and foraging success of California sea lions on interannual time scales. A principal component analysis of sea lion foraging patterns indicates that the first mode of variability is alongshore and tied to sardine availability, while the second mode is cross-shore and associated with coastal upwelling intensity (a behavior consistent with male sea lion tracking data collected in 2004 vs. 2005). The results also illustrate how variability in environmental conditions and forage fish distribution affects sea lions feeding success. While specifically focusing on the foraging ecology of sea lions, our modeling framework has the ability to provide new and unique perspectives on trophic interactions in the California Current, or other regions where similar end-to-end ecosystem models may be implemented.

  19. Effects of Age, Colony, and Sex on Mercury Concentrations in California Sea Lions.

    PubMed

    McHuron, Elizabeth A; Peterson, Sarah H; Ackerman, Joshua T; Melin, Sharon R; Harris, Jeffrey D; Costa, Daniel P

    2016-01-01

    We measured total mercury (THg) concentrations in California sea lions (Zalophus californianus) and examined how concentrations varied with age class, colony, and sex. Because Hg exposure is primarily via diet, we used nitrogen (δ (15)N) and carbon (δ (13)C) stable isotopes to determine if intraspecific differences in THg concentrations could be explained by feeding ecology. Blood and hair were collected from 21 adult females and 57 juveniles from three colonies in central and southern California (San Nicolas, San Miguel, and Año Nuevo Islands). Total Hg concentrations ranged from 0.01 to 0.31 μg g(-1) wet weight (ww) in blood and 0.74 to 21.00 μg g(-1) dry weight (dw) in hair. Adult females had greater mean THg concentrations than juveniles in blood (0.15 vs. 0.03 μg(-1) ww) and hair (10.10 vs. 3.25 μg(-1) dw). Age class differences in THg concentrations did not appear to be driven by trophic level or habitat type because there were no differences in δ (15)N or δ (13)C values between adults and juveniles. Total Hg concentrations in adult females were 54 % (blood) and 24 % (hair) greater in females from San Miguel than females from San Nicolas Island, which may have been because sea lions from the two islands foraged in different areas. For juveniles, we detected some differences in THg concentrations with colony and sex, although these were likely due to sampling effects and not ecological differences. Overall, THg concentrations in California sea lions were within the range documented for other marine mammals and were generally below toxicity benchmarks for fish-eating wildlife.

  20. Zebrafish seizure model identifies p,p -DDE as the dominant contaminant of fetal California sea lions that accounts for synergistic activity with domoic acid.

    PubMed

    Tiedeken, Jessica A; Ramsdell, John S

    2010-04-01

    Fetal poisoning of California sea lions (CSLs; Zalophus californianus) has been associated with exposure to the algal toxin domoic acid. These same sea lions accumulate a mixture of persistent environmental contaminants including pesticides and industrial products such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). Developmental exposure to the pesticide dichlorodiphenyltrichloroethane (DDT) and its stable metabolite 1,1-bis-(4-chlorophenyl)-2,2-dichloroethene (p,p -DDE) has been shown to enhance domoic acid-induced seizures in zebrafish; however, the contribution of other co-occurring contaminants is unknown. We formulated a mixture of contaminants to include PCBs, PBDEs, hexachlorocyclohexane (HCH), and chlordane at levels matching those reported for fetal CSL blubber to determine the impact of co-occurring persistent contaminants with p,p -DDE on chemically induced seizures in zebrafish as a model for the CSLs. Embryos were exposed (6-30 hr postfertilization) to p,p -DDE in the presence or absence of a defined contaminant mixture prior to neurodevelopment via either bath exposure or embryo yolk sac microinjection. After brain maturation (7 days postfertilization), fish were exposed to a chemical convulsant, either pentylenetetrazole or domoic acid; resulting seizure behavior was then monitored and analyzed for changes, using cameras and behavioral tracking software. Induced seizure behavior did not differ significantly between subjects with embryonic exposure to a contaminant mixture and those exposed to p,p -DDE only. These studies demonstrate that p,p -DDE--in the absence of PCBs, HCH, chlordane, and PBDEs that co-occur in fetal sea lions--accounts for the synergistic activity that leads to greater sensitivity to domoic acid seizures.

  1. Flipper stroke rate and venous oxygen levels in free-ranging California sea lions.

    PubMed

    Tift, Michael S; Hückstädt, Luis A; McDonald, Birgitte I; Thorson, Philip H; Ponganis, Paul J

    2017-04-15

    The depletion rate of the blood oxygen store, development of hypoxemia and dive capacity are dependent on the distribution and rate of blood oxygen delivery to tissues while diving. Although blood oxygen extraction by working muscle would increase the blood oxygen depletion rate in a swimming animal, there is little information on the relationship between muscle workload and blood oxygen depletion during dives. Therefore, we examined flipper stroke rate, a proxy of muscle workload, and posterior vena cava oxygen profiles in four adult female California sea lions ( Zalophus californianus ) during foraging trips at sea. Flipper stroke rate analysis revealed that sea lions minimized muscle metabolism with a stroke-glide strategy when diving, and exhibited prolonged glides during the descent of deeper dives (>100 m). During the descent phase of these deep dives, 55±21% of descent was spent gliding, with the longest glides lasting over 160 s and covering a vertical distance of 340 m. Animals also consistently glided to the surface from 15 to 25 m depth during these deeper dives. Venous hemoglobin saturation ( S O 2 ) profiles were highly variable throughout dives, with values occasionally increasing during shallow dives. The relationship between S O 2 and flipper stroke rate was weak during deeper dives, while this relationship was stronger during shallow dives. We conclude that (1) the depletion of oxygen in the posterior vena cava in deep-diving sea lions is not dependent on stroke effort, and (2) stroke-glide patterns during dives contribute to a reduction of muscle metabolic rate. © 2017. Published by The Company of Biologists Ltd.

  2. Impact of the 2015 El Niño-Southern Oscillation on the Abundance and Foraging Habits of Guadalupe Fur Seals and California Sea Lions from the San Benito Archipelago, Mexico.

    PubMed

    Elorriaga-Verplancken, Fernando R; Sierra-Rodríguez, Gema E; Rosales-Nanduca, Hiram; Acevedo-Whitehouse, Karina; Sandoval-Sierra, Julieta

    2016-01-01

    The abundance of California sea lions (Zalophus californianus) (CSLs) and Guadalupe fur seals (Arctocephalus philippii townsendi) (GFSs) from the San Benito Archipelago (SBA) was determined through nine monthly surveys in 2014-2015. Assessment of their foraging habits was examined based on the isotopic analysis of pups (maternal indicators) (SIAR/SIBER-R). Environmental variability between 2014 and 2015 was also analyzed, in terms of sea surface temperature (SST) and chlorophyll (Chl-a) concentration. Both otariids reached their highest abundance in July of both years; however, relative to 2014, the 2015 survey showed a 59.7% decline in the total GFS abundance and a 42.9% decrease of GFS pups, while total CSL abundance decreased 52.0% and CSL pup presence decreased in 61.7%. All monthly surveys for both otariids showed a similar trend (>50% decrease in 2015). Compared to 2014, the 2015 GFSs isotopic niche was three times larger (2.0 in 2015, 0.6 in 2014) and the δ13C was significantly lower. CSLs also showed significantly lower δ13C and higher δ15N in 2015. Interannual segregation was greater for CSLs, and their pup body mass was also significantly lower during the 2015 breeding season (mean = 8.7 kg) than in the same season of 2014 (mean = 9.9 kg). The decrease in δ13C for both otariids reflected a more oceanic foraging; most likely associated with the decline in primary productivity in surrounding areas to the SBA, related to a higher SST caused by the 2015 ENSO, with a subsequent increase in foraging effort. These would explain the fewer observed individuals on land, especially pups, which showed diminished body condition (CSLs). This study highlights the importance of marine mammals as sentinel species that respond dynamically to changes in environment, providing valuable information on the effect of ENSO on pinnipeds in Mexican waters.

  3. Effects of age, colony, and sex on mercury concentrations in California sea lions

    USGS Publications Warehouse

    McHuron, Elizibeth A; Peterson, Sarah H.; Ackerman, Joshua T.; Melin, Sharon R.; Harris, Jeffrey D.; Costa, Daniel P.

    2016-01-01

    We measured total mercury (THg) concentrations in California sea lions (Zalophus californianus) and examined how concentrations varied with age class, colony, and sex. Because Hg exposure is primarily via diet, we used nitrogen (δ 15N) and carbon (δ 13C) stable isotopes to determine if intraspecific differences in THg concentrations could be explained by feeding ecology. Blood and hair were collected from 21 adult females and 57 juveniles from three colonies in central and southern California (San Nicolas, San Miguel, and Año Nuevo Islands). Total Hg concentrations ranged from 0.01 to 0.31 μg g−1 wet weight (ww) in blood and 0.74 to 21.00 μg g−1 dry weight (dw) in hair. Adult females had greater mean THg concentrations than juveniles in blood (0.15 vs. 0.03 μg−1 ww) and hair (10.10 vs. 3.25 μg−1 dw). Age class differences in THg concentrations did not appear to be driven by trophic level or habitat type because there were no differences in δ 15N or δ 13C values between adults and juveniles. Total Hg concentrations in adult females were 54 % (blood) and 24 % (hair) greater in females from San Miguel than females from San Nicolas Island, which may have been because sea lions from the two islands foraged in different areas. For juveniles, we detected some differences in THg concentrations with colony and sex, although these were likely due to sampling effects and not ecological differences. Overall, THg concentrations in California sea lions were within the range documented for other marine mammals and were generally below toxicity benchmarks for fish-eating wildlife.

  4. Weak Polygyny in California Sea Lions and the Potential for Alternative Mating Tactics

    PubMed Central

    Flatz, Ramona; González-Suárez, Manuela; Young, Julie K.; Hernández-Camacho, Claudia J.; Immel, Aaron J.; Gerber, Leah R.

    2012-01-01

    Female aggregation and male territoriality are considered to be hallmarks of polygynous mating systems. The development of genetic parentage assignment has called into question the accuracy of behavioral traits in predicting true mating systems. In this study we use 14 microsatellite markers to explore the mating system of one of the most behaviorally polygynous species, the California sea lion (Zalophus californianus). We sampled a total of 158 female-pup pairs and 99 territorial males across two breeding rookeries (San Jorge and Los Islotes) in the Gulf of California, Mexico. Fathers could be identified for 30% of pups sampled at San Jorge across three breeding seasons and 15% of sampled pups at Los Islotes across two breeding seasons. Analysis of paternal relatedness between the pups for which no fathers were identified (sampled over four breeding seasons at San Jorge and two at Los Islotes) revealed that few pups were likely to share a father. Thirty-one percent of the sampled males on San Jorge and 15% of the sampled males on Los Islotes were assigned at least one paternity. With one exception, no male was identified as the father of more than two pups. Furthermore, at Los Islotes rookery there were significantly fewer pups assigned paternity than expected given the pool of sampled males (p<0.0001). Overall, we found considerably lower variation in male reproductive success than expected in a species that exhibits behavior associated with strongly polygynous mating. Low variation in male reproductive success may result from heightened mobility among receptive females in the Gulf of California, which reduces the ability of males to monopolize groups of females. Our results raise important questions regarding the adaptive role of territoriality and the potential for alternative mating tactics in this species. PMID:22432039

  5. PATHOGENIC LEPTOSPIRA SEROVARS IN FREE-LIVING SEA LIONS IN THE GULF OF CALIFORNIA AND ALONG THE BAJA CALIFORNIA COAST OF MEXICO.

    PubMed

    Avalos-Téllez, Rosalía; Carrillo-Casas, Erika M; Atilano-López, Daniel; Godínez-Reyes, Carlos R; Díaz-Aparicio, Efrén; Ramírez-Delgado, David; Ramírez-Echenique, María F; Leyva-Leyva, Margarita; Suzán, Gerardo; Suárez-Güemes, Francisco

    2016-04-28

    The California sea lion ( Zalophus californianus ), a permanent inhabitant of the Gulf of California in Mexico, is susceptible to pathogenic Leptospira spp. infection, which can result in hepatic and renal damage and may lead to renal failure and death. During summer 2013, we used the microscopic agglutination test (MAT) to investigate the prevalence of anti-Leptospira antibodies in blood of clinically healthy sea lion pups from seven rookery islands on the Pacific Coast of Baja California (Pacific Ocean) and in the Gulf of California. We also used PCR to examine blood for Leptospira DNA. Isolation of Leptospira in liquid media was unsuccessful. We found higher antibody prevalence in sea lions from the rookery islands in the gulf than in those from the Pacific Coast. Antibodies against 11 serovars were identified in the Gulf of California population; the most frequent reactions were against serovars Bataviae (90%), Pyrogenes (86%), Wolffi (86%), Celledoni (71%), and Pomona (65%). In the Pacific Ocean population, MAT was positive against eight serovars, where Wolffi (88%), Pomona (75%), and Bataviae (70%) were the most frequent. Serum samples agglutinated with more than one Leptospira serovar. The maximum titer was 3,200. Each island had a different serology profile, and islands combined showed a distinct profile for each region. We detected pathogenic Leptospira DNA in 63% of blood samples, but we found no saprophytic Leptospira. Positive PCR results were obtained in blood samples with high and low MAT titers. Together, these two methods enhance the diagnosis and interpretation of sea lion leptospirosis. Our results may be related to human activities or the presence of other reservoirs with which sea lions interact, and they may also be related to sea lion stranding.

  6. Detection and characterization of diverse coccidian protozoa shed by California sea lions.

    PubMed

    Girard, Yvette A; Johnson, Christine K; Fritz, Heather M; Shapiro, Karen; Packham, Andrea E; Melli, Ann C; Carlson-Bremer, Daphne; Gulland, Frances M; Rejmanek, Daniel; Conrad, Patricia A

    2016-04-01

    Tissue-cyst forming coccidia in the family Sarcocystidae are etiologic agents of protozoal encephalitis in marine mammals including the federally listed Southern sea otter (Enhydra lutris). California sea lions (Zalophus californianus), whose coastal habitat overlaps with sea otters, are definitive hosts for coccidian protozoa provisionally named Coccidia A, B and C. While Coccidia A and B have unknown clinical effects on aquatic wildlife hosts, Coccidia C is associated with severe protozoal disease in harbor seals (Phoca vitulina). In this study, we conducted surveillance for protozoal infection and fecal shedding in hospitalized and free-ranging California sea lions on the Pacific Coast and examined oocyst morphology and phenotypic characteristics of isolates via mouse bioassay and cell culture. Coccidia A and B were shed in similar frequency, particularly by yearlings. Oocysts shed by one free-ranging sea lion sampled at Año Nuevo State Park in California were previously unidentified in sea lions and were most similar to coccidia infecting Guadalupe fur seals (Arctocephalus townsendi) diagnosed with protozoal disease in Oregon (USA). Sporulated Coccidia A and B oocysts did not replicate in three strains of mice or in African green monkey kidney cells. However, cultivation experiments revealed that the inoculum of fecally-derived Coccidia A and B oocysts additionally contained organisms with genetic and antigenic similarity to Sarcocystis neurona; despite the absence of detectable free sporocysts in fecal samples by microscopic examination. In addition to the further characterization of Coccidia A and B in free-ranging and hospitalized sea lions, these results provide evidence of a new role for sea lions as putative mechanical vectors of S. neurona, or S. neurona-like species. Future work is needed to clarify the distribution, taxonomical status, and pathogenesis of these parasites in sea lions and other marine mammals that share their the near-shore marine

  7. Detection and characterization of diverse coccidian protozoa shed by California sea lions

    PubMed Central

    Girard, Yvette A.; Johnson, Christine K.; Fritz, Heather M.; Shapiro, Karen; Packham, Andrea E.; Melli, Ann C.; Carlson-Bremer, Daphne; Gulland, Frances M.; Rejmanek, Daniel; Conrad, Patricia A.

    2015-01-01

    Tissue-cyst forming coccidia in the family Sarcocystidae are etiologic agents of protozoal encephalitis in marine mammals including the federally listed Southern sea otter (Enhydra lutris). California sea lions (Zalophus californianus), whose coastal habitat overlaps with sea otters, are definitive hosts for coccidian protozoa provisionally named Coccidia A, B and C. While Coccidia A and B have unknown clinical effects on aquatic wildlife hosts, Coccidia C is associated with severe protozoal disease in harbor seals (Phoca vitulina). In this study, we conducted surveillance for protozoal infection and fecal shedding in hospitalized and free-ranging California sea lions on the Pacific Coast and examined oocyst morphology and phenotypic characteristics of isolates via mouse bioassay and cell culture. Coccidia A and B were shed in similar frequency, particularly by yearlings. Oocysts shed by one free-ranging sea lion sampled at Año Nuevo State Park in California were previously unidentified in sea lions and were most similar to coccidia infecting Guadalupe fur seals (Arctocephalus townsendi) diagnosed with protozoal disease in Oregon (USA). Sporulated Coccidia A and B oocysts did not replicate in three strains of mice or in African green monkey kidney cells. However, cultivation experiments revealed that the inoculum of fecally-derived Coccidia A and B oocysts additionally contained organisms with genetic and antigenic similarity to Sarcocystis neurona; despite the absence of detectable free sporocysts in fecal samples by microscopic examination. In addition to the further characterization of Coccidia A and B in free-ranging and hospitalized sea lions, these results provide evidence of a new role for sea lions as putative mechanical vectors of S. neurona, or S. neurona-like species. Future work is needed to clarify the distribution, taxonomical status, and pathogenesis of these parasites in sea lions and other marine mammals that share their the near-shore marine

  8. HYPERMUCOVISCOUS KLEBSIELLA PNEUMONIAE ISOLATES FROM STRANDED AND WILD-CAUGHT MARINE MAMMALS OF THE US PACIFIC COAST: PREVALENCE, PHENOTYPE, AND GENOTYPE.

    PubMed

    Whitaker, Dane M; Reichley, Stephen R; Griffin, Matt J; Prager, Katherine; Richey, Christine A; Kenelty, Kirsten V; Stevens, Brittany N; Lloyd-Smith, James O; Johnson, Christine K; Duignan, Padraig; Johnson, Shawn; Rios, Carlos; DeLong, Robert; Halaska, Barbie; Rust, Lauren; Byrne, Barbara A; Struve, Carsten; Barnum, Samantha; Soto, Esteban

    2018-05-07

    Emergent hypermucoviscous (HMV) strains of Klebsiella pneumoniae have been reported in multiple marine mammal species; however, there is limited information regarding the epidemiology and pathogenesis of this infection in these species. We determined the prevalence of HMV K. pneumoniae in wild-caught and stranded marine mammal populations on the US Pacific Coast. Samples were collected from 270 free-ranging California sea lions (CSLs, Zalophus californianus) captured at three discrete sampling sites and from 336 stranded marine mammals of various species. We recovered HMV K. pneumoniae only from CSLs, with a prevalence of 1.5% (4 of 275) in stranded animals, compared with 1.1% (3 of 270) in wild-caught animals. We assessed the phenotypic and genotypic variability of recovered HMV K. pneumoniae isolates recovered from CSLs ( n=11) and of archival HMV and non-HMV isolates from stranded marine mammals ( n=19). All but two HMV isolates were of the K2 serotype, whereas none of the non-HMV isolates belonged to this serotype. Of the HMV isolates, 96% (24 of 25) were PCR positive for the HMV-associated gene p- rmpA, whereas 92% (23 of 25) were PCR positive for p- rmpA2. Genetic fingerprinting by repetitive extragenic palindromic PCR showed four discrete clusters, demonstrating genotypic variability that loosely correlated with phenotype. Antimicrobial susceptibility testing revealed all isolates from stranded CSLs were susceptible to ceftiofur, indicating this antimicrobial agent is an appropriate choice for treatment of HMV K. pneumoniae infections in stranded CSLs. Our culture assay could reliably detect HMV K. pneumoniae from concentrations as low as 10 2 colony-forming units per milligram of feces. We identified the presence of HMV K. pneumoniae in both wild-caught and stranded CSLs from the US Pacific Coast and highlight the need for further studies to evaluate the potential impact of this pathogen on marine mammal health.

  9. Mechanical design of mussel byssus: material yield enhances attachment strength

    PubMed

    Bell; Gosline

    1996-01-01

    The competitive dominance of mussels in the wave-swept rocky intertidal zone is in part due to their ability to maintain a secure attachment. Mussels are tethered to the substratum by a byssus composed of numerous extracellular, collagenous threads secreted by the foot. Each byssal thread has three serially arranged parts: a corrugated proximal region, a smooth distal region and an adhesive plaque. This study examines the material and structural properties of the byssal threads of three mussel species: Mytilus californianus, M. trossulus, and M. galloprovincialis. Tensile tests in general reveal similar material properties among species: the proximal region has a lower initial modulus, a lower ultimate stress and a higher ultimate strain than the distal region. The distal region also yields at a stress well below its ultimate value. In whole thread tests, the proximal region and adhesive plaque are common sites of structural failure and are closely matched in strength, while the distal region appears to be excessively strong. We propose that the high strength of the distal region is the byproduct of a material designed to yield and extend before structural failure occurs. Experimental and theoretical evidence is presented suggesting that thread yield and extensibility provide two important mechanisms for increasing the overall attachment strength of the mussel: (1) the reorientation of threads towards the direction of applied load, and (2) the 'recruitment' of more threads into tension and the consequent distribution of applied load over a larger cross-sectional area, thereby reducing the stress on each thread. This distal region yield behavior is most striking for M. californianus and may be a key to its success in extreme wave-swept environments.

  10. Keystone predation and molecules of keystone significance

    PubMed Central

    Zimmer, Richard K.; Ferrier, Graham A.; Kim, Steven J.; Ogorzalek Loo, Rachel R.; Zimmer, Cheryl Ann; Loo, Joseph A.

    2017-01-01

    Keystone species structure ecological communities and are major determinants of biodiversity. A synthesis of research on keystone species is nonetheless missing a critical component – the sensory mechanisms for behavioral interactions that determine population- and community-wide attributes. Here, we establish the chemosensory basis for keystone predation by sea stars (Pisaster ochraceus) on mussels. This consumer-resource interaction is prototypic of top-down driven trophic cascades. Each mussel species (Mytilus californianus and M. galloprovincialis) secretes a glycoprotein orthologue (29.6 and 28.1 kDa, respectively) that acts, singularly, to evoke the sea star predatory response. The orthologues (named ‘KEYSTONEin’) are localized in the epidermis, extrapallial fluid, and organic shell coating (periostracum) of live, intact mussels. Thus, KEYSTONEin contacts chemosensory receptors on tube feet as sea stars crawl over rocky surfaces in search of prey. The complete nucleotide sequences reveal that KEYSTONEin shares 87 % (M. californianus) or 98 % (M. galloprovincialis) homology with a calcium-binding protein in the shell matrix of a closely related congener, M. edulis. All three molecules cluster tightly within the Complement Component 1 Domain Containing (C1qDC) protein family; each exhibits a large globular domain, low complexity region(s), coiled coil, and at least four of five histidine-aspartic acid tandem motifs. Collective results support the hypothesis that KEYSTONEin evolved ancestrally in immunological, and later, in biomineralization roles. More recently, the substance has become exploited by sea stars as a contact cue for prey recognition. As the first identified compound to evoke keystone predation, KEYSTONEin provides valuable sensory information, promotes biodiversity, and shapes community structure and function. Without this molecule, there would be no predation by sea stars on mussels. PMID:28376248

  11. The Andean condor as a research surrogate for the California condor

    USGS Publications Warehouse

    Carpenter, J.W.; Dein, F.J.; Ellis, D.H.

    1985-01-01

    Captive propagation of Andean Condors (Vultur gryphus) was initiated at the Patuxent Wildlife Research Center in 1966 in anticipation of the need to apply resulting techniques to the captive breeding of the endangered California Condor (Gymnogyps californianus). This report summarizes the progress made on this Andean Condor breeding and research project, with emphasis on recent fostering/cross-fostering studies. These studies include: (a) fostering eggs/chicks between Andean Condors; (b) fostering of two chicks each to Andean Condor pairs; (c) cross-fostering of a Turkey Vulture (Cathartes aura) to Andean Condors; and (d) cross-fostering an Andean Condor chick to wild California Condors. Implications of these studies for the recovery of the California Condor will be discussed.

  12. The Andean condor as a research surrogate for the California condor

    USGS Publications Warehouse

    Carpenter, J.W.; Dein, F.J.; Ellis, D.H.

    1985-01-01

    Captive propagation of Andean Condors (Vultur gryphus) was initiated at the Patuxent Wildlife Research Center in 1966 in anticipation of the need to apply resulting techniques to the captive breeding of the endangered California Condor (Gymnogyps californianus). This report summarizes the progress made on this Andean Condor breeding and research project, with emphasis on recent fostering/cross-fostering studies. These studies include: a) fostering eggs/chicks between Andean Condors; b) fostering of two chicks each to Andean Condor pairs; c) cross-fostering of a TurkeyVulture (Cathartes aura) to Andean Condors; and d) cross-fostering an Andean Condor chick to wild California Condors. Implications of these studies for the recovery of the California Condor will be discussed.

  13. Age and diet of fossil california condors in grand canyon, Arizona.

    PubMed

    Emslie, S D

    1987-08-14

    A dozen new radiocarbon dates, together with a thorough review of its fossil distribution, shed new light on the time and probable cause of extinction of the California condor, Gymnogyps californianus, in Grand Canyon, Arizona. The radiocarbon data indicate that this species became extinct in Grand Canyon, and other parts of the inland West, more than 10,000 years ago in coincidence with the extinction of megafauna (proboscidians, edentates, perissodactyls). That condors relied on the megafauna for food is suggested by the recovery of food bones from a late Pleistocene nest cave in Grand Canyon. These fossil data have relevance to proposed release and recovery programs of the present endangered population of California condors.

  14. Effect of Angle on Flow-Induced Vibrations of Pinniped Vibrissae

    PubMed Central

    Murphy, Christin T.; Eberhardt, William C.; Calhoun, Benton H.; Mann, Kenneth A.; Mann, David A.

    2013-01-01

    Two types of vibrissal surface structures, undulated and smooth, exist among pinnipeds. Most Phocidae have vibrissae with undulated surfaces, while Otariidae, Odobenidae, and a few phocid species possess vibrissae with smooth surfaces. Variations in cross-sectional profile and orientation of the vibrissae also exist between pinniped species. These factors may influence the way that the vibrissae behave when exposed to water flow. This study investigated the effect that vibrissal surface structure and orientation have on flow-induced vibrations of pinniped vibrissae. Laser vibrometry was used to record vibrations along the whisker shaft from the undulated vibrissae of harbor seals (Phoca vitulina) and northern elephant seals (Mirounga angustirostris) and the smooth vibrissae of California sea lions (Zalophus californianus). Vibrations along the whisker shaft were measured in a flume tank, at three orientations (0°, 45°, 90°) to the water flow. The results show that vibration frequency and velocity ranges were similar for both undulated and smooth vibrissae. Angle of orientation, rather than surface structure, had the greatest effect on flow-induced vibrations. Vibration velocity was up to 60 times higher when the wide, flat aspect of the whisker faced into the flow (90°), compared to when the thin edge faced into the flow (0°). Vibration frequency was also dependent on angle of orientation. Peak frequencies were measured up to 270 Hz and were highest at the 0° orientation for all whiskers. Furthermore, CT scanning was used to quantify the three-dimensional structure of pinniped vibrissae that may influence flow interactions. The CT data provide evidence that all vibrissae are flattened in cross-section to some extent and that differences exist in the orientation of this profile with respect to the major curvature of the hair shaft. These data support the hypothesis that a compressed cross-sectional profile may play a key role in reducing self-noise of the

  15. Diagnosis and seroprevalence of leptospirosis in California sea lions from coastal California.

    PubMed

    Colagross-Schouten, Angela M; Mazet, Jonna A K; Gulland, Frances M D; Miller, Melissa A; Hietala, Sharon

    2002-01-01

    The sensitivity and specificity of the microscopic agglutination test (MAT) as a method for detection of exposure to Leptospira spp. in California sea lions (Zalophus californianus) were determined. Sera came from individuals that demonstrated clinical signs of renal disease, had lesions suggestive of leptospirosis at necropsy, and had visible leptospires in silver stained kidney sections as positive controls. Sera from unexposed captive individuals were used as negative controls. The test was 100% sensitive at 1:3,200 for confirming renal infection and 100% specific at negative < 1:100 for detection of Leptospira interrogans scrovar pomona antibodies by MAT in California sea lions. Leptospira interrogans serovar pomona was used as a screening serovar because it has been isolated previously from the kidneys and placentas of California sea lions, and there appears to be cross-reactivity between serovar pomona and other serovars. Sera from 225 free-ranging California sea lions presented to one of three participating California (USA) coastal marine mammal rehabilitation centers in 1996 were then evaluated for antibodies to serovar pomona using the MAT. The overall seroprevalence was 38.2% (86/225), although the prevalence varied among locations from 100% (38/38) in animals at the Marine Mammal Care Center (Fort MacArthur, California, USA) to 0% (0/14) at SeaWorld California (San Diego, California). At The Marine Mammal Center (Sausalito, California) [prevalence 27.8% (48/173)], the majority of seropositive animals were subadults and adults, and males were 4.7 times more likely to be seropositive to serovar pomona than females. When combining results from all three centers, subadult and adult animals were more likely to be seropositive than pups and juvenile sea lions, and the highest proportion of seropositive animals presented during the autumn months. Serum elevations of blood urea nitrogen, creatinine, phosphorus, and/or calcium were associated with seropositivity

  16. Impact of the 2015 El Niño-Southern Oscillation on the Abundance and Foraging Habits of Guadalupe Fur Seals and California Sea Lions from the San Benito Archipelago, Mexico

    PubMed Central

    Elorriaga-Verplancken, Fernando R.; Sierra-Rodríguez, Gema E.; Rosales-Nanduca, Hiram; Acevedo-Whitehouse, Karina; Sandoval-Sierra, Julieta

    2016-01-01

    The abundance of California sea lions (Zalophus californianus) (CSLs) and Guadalupe fur seals (Arctocephalus philippii townsendi) (GFSs) from the San Benito Archipelago (SBA) was determined through nine monthly surveys in 2014–2015. Assessment of their foraging habits was examined based on the isotopic analysis of pups (maternal indicators) (SIAR/SIBER-R). Environmental variability between 2014 and 2015 was also analyzed, in terms of sea surface temperature (SST) and chlorophyll (Chl-a) concentration. Both otariids reached their highest abundance in July of both years; however, relative to 2014, the 2015 survey showed a 59.7% decline in the total GFS abundance and a 42.9% decrease of GFS pups, while total CSL abundance decreased 52.0% and CSL pup presence decreased in 61.7%. All monthly surveys for both otariids showed a similar trend (>50% decrease in 2015). Compared to 2014, the 2015 GFSs isotopic niche was three times larger (2.0 in 2015, 0.6 in 2014) and the δ13C was significantly lower. CSLs also showed significantly lower δ13C and higher δ15N in 2015. Interannual segregation was greater for CSLs, and their pup body mass was also significantly lower during the 2015 breeding season (mean = 8.7 kg) than in the same season of 2014 (mean = 9.9 kg). The decrease in δ13C for both otariids reflected a more oceanic foraging; most likely associated with the decline in primary productivity in surrounding areas to the SBA, related to a higher SST caused by the 2015 ENSO, with a subsequent increase in foraging effort. These would explain the fewer observed individuals on land, especially pups, which showed diminished body condition (CSLs). This study highlights the importance of marine mammals as sentinel species that respond dynamically to changes in environment, providing valuable information on the effect of ENSO on pinnipeds in Mexican waters. PMID:27171473

  17. Comparative study of notoungulate (Placentalia, Mammalia) bony labyrinths and new phylogenetically informative inner ear characters

    PubMed Central

    Macrini, Thomas E; Flynn, John J; Ni, Xijun; Croft, Darin A; Wyss, André R

    2013-01-01

    -frequency hearing limits in notoungulates based on the ratio of radii of the apical and basal turns of the cochlea. These limits range from 15 Hz in Notostylops to 149 Hz in Pachyrukhos, values comparable to the Asian elephant (Elephas maximus) and the California sea lion (Zalophus californianus) when hearing in air, respectively. PMID:24102069

  18. Toxoplasma gondii, Neospora caninum, Sarcocystis neurona, and Sarcocystis canis-like infections in marine mammals

    USGS Publications Warehouse

    Dubey, J.P.; Zarnke, R.; Thomas, N.J.; Wong, S.K.; Vanbonn, W.; Briggs, M.; Davis, J.W.; Ewing, R.; Mense, M.; Kwok, O.C.H.; Romand, S.; Thulliez, P.

    2003-01-01

    Toxoplasma gondii, Neospora caninum, Sarcocystis neurona, and S. canis are related protozoans that can cause mortality in many species of domestic and wild animals. Recently, T. gondii and S. neurona were recognized to cause encephalitis in marine mammals. As yet, there is no report of natural exposure of N. caninum in marine mammals. In the present study, antibodies to T. gondii and N. caninum were assayed in sera of several species of marine mammals. For T. gondii, sera were diluted 1:25, 1:50, and 1:500 and assayed in the T. gondii modified agglutination test (MAT). Antibodies (MAT a?Y1:25) to T. gondii were found in 89 of 115 (77%) dead, and 18 of 30 (60%) apparently healthy sea otters (Enhydra lutris), 51 of 311 (16%) Pacific harbor seals (Phoca vitulina), 19 of 45 (42%) sea lions (Zalophus californianus), 5 of 32 (16%) ringed seals (Phoca hispida), 4 of 8 (50%) bearded seals (Erignathus barbatus), 1 of 9 (11.1%) spotted seals (Phoca largha), 138 of 141 (98%) Atlantic bottlenose dolphins (Tursiops truncatus), and 3 of 53 (6%) walruses (Odobenus rosmarus). For N. caninum, sera were diluted 1:40, 1:80, 1:160, and 1:320 and examined with the Neospora agglutination test (NAT) using mouse-derived tachyzoites. NAT antibodies were found in 3 of 53 (6%) walruses, 28 of 145 (19%) sea otters, 11 of 311 (3.5%) harbor seals, 1 of 27 (3.7%) sea lions, 4 of 32 (12.5%) ringed seals, 1 of 8 (12.5%) bearded seals, and 43 of 47 (91%) bottlenose dolphins. To our knowledge, this is the first report of N. caninum antibodies in any marine mammal, and the first report of T. gondii antibodies in walruses and in ringed, bearded, spotted, and ribbon seals. Current information on T. gondii-like and Sarcocystis-like infections in marine mammals is reviewed. New cases of clinical S. canis and T. gondii infections are also reported in sea lions, and T. gondii infection in an Antillean manatee (Trichechus manatus manatus).

  19. Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae

    PubMed Central

    Waldbusser, George G.; Hales, Burke; Langdon, Chris J.; Haley, Brian A.; Schrader, Paul; Brunner, Elizabeth L.; Gray, Matthew W.; Miller, Cale A.; Gimenez, Iria; Hutchinson, Greg

    2015-01-01

    Ocean acidification (OA) is altering the chemistry of the world’s oceans at rates unparalleled in the past roughly 1 million years. Understanding the impacts of this rapid change in baseline carbonate chemistry on marine organisms needs a precise, mechanistic understanding of physiological responses to carbonate chemistry. Recent experimental work has shown shell development and growth in some bivalve larvae, have direct sensitivities to calcium carbonate saturation state that is not modulated through organismal acid-base chemistry. To understand different modes of action of OA on bivalve larvae, we experimentally tested how pH, PCO2, and saturation state independently affect shell growth and development, respiration rate, and initiation of feeding in Mytilus californianus embryos and larvae. We found, as documented in other bivalve larvae, that shell development and growth were affected by aragonite saturation state, and not by pH or PCO2. Respiration rate was elevated under very low pH (~7.4) with no change between pH of ~ 8.3 to ~7.8. Initiation of feeding appeared to be most sensitive to PCO2, and possibly minor response to pH under elevated PCO2. Although different components of physiology responded to different carbonate system variables, the inability to normally develop a shell due to lower saturation state precludes pH or PCO2 effects later in the life history. However, saturation state effects during early shell development will carry-over to later stages, where pH or PCO2 effects can compound OA effects on bivalve larvae. Our findings suggest OA may be a multi-stressor unto itself. Shell development and growth of the native mussel, M. californianus, was indistinguishable from the Mediterranean mussel, Mytilus galloprovincialis, collected from the southern U.S. Pacific coast, an area not subjected to seasonal upwelling. The concordance in responses suggests a fundamental OA bottleneck during development of the first shell material affected only by

  20. Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae.

    PubMed

    Waldbusser, George G; Hales, Burke; Langdon, Chris J; Haley, Brian A; Schrader, Paul; Brunner, Elizabeth L; Gray, Matthew W; Miller, Cale A; Gimenez, Iria; Hutchinson, Greg

    2015-01-01

    Ocean acidification (OA) is altering the chemistry of the world's oceans at rates unparalleled in the past roughly 1 million years. Understanding the impacts of this rapid change in baseline carbonate chemistry on marine organisms needs a precise, mechanistic understanding of physiological responses to carbonate chemistry. Recent experimental work has shown shell development and growth in some bivalve larvae, have direct sensitivities to calcium carbonate saturation state that is not modulated through organismal acid-base chemistry. To understand different modes of action of OA on bivalve larvae, we experimentally tested how pH, PCO2, and saturation state independently affect shell growth and development, respiration rate, and initiation of feeding in Mytilus californianus embryos and larvae. We found, as documented in other bivalve larvae, that shell development and growth were affected by aragonite saturation state, and not by pH or PCO2. Respiration rate was elevated under very low pH (~7.4) with no change between pH of ~ 8.3 to ~7.8. Initiation of feeding appeared to be most sensitive to PCO2, and possibly minor response to pH under elevated PCO2. Although different components of physiology responded to different carbonate system variables, the inability to normally develop a shell due to lower saturation state precludes pH or PCO2 effects later in the life history. However, saturation state effects during early shell development will carry-over to later stages, where pH or PCO2 effects can compound OA effects on bivalve larvae. Our findings suggest OA may be a multi-stressor unto itself. Shell development and growth of the native mussel, M. californianus, was indistinguishable from the Mediterranean mussel, Mytilus galloprovincialis, collected from the southern U.S. Pacific coast, an area not subjected to seasonal upwelling. The concordance in responses suggests a fundamental OA bottleneck during development of the first shell material affected only by

  1. Environmental contaminants in California condors

    USGS Publications Warehouse

    Wiemeyer, Stanley N.; Scott, J.M.; Anderson, M.P.; Bloom, P.H.; Stafford, C.J.

    1988-01-01

    Five wild Califorinia condors (Gymnogyps californianus) that died in 1980-86 were necropsied and tissues were analyzed for environmental contaminants. Three died of lead (Pb) poisoning, 1 presumably of cyanide (CN) poisoning, and 1 nestling of handling shock. Organochlorine concentrations were low in 4 condors that were analyzed for these contaminants. Blood samples from 14 wild and 14 captive condors were analyzed primarily for Pb. Five of 14 wild condors sampled had elevated (> 0.70 ppm) concentrations of Pb in blood whereas Pb concentrations in all captive condors were low. Lead levels in individual birds often fluctuated over time. Lead exposure, especially poisoning, was a major factor affecting the wild California condor population during 1982-86. The probable source of Pb was bullet fragments in carrion on which condors were feeding.

  2. Recent terebratulide brachiopods: Do they faithfully record oceanographic conditions throughout ontogeny?

    NASA Astrophysics Data System (ADS)

    Kercher, P.; Carlson, S. J.

    2012-12-01

    Brachiopods have commonly been used to infer secular changes in ocean chemistry over the Phanerozoic Eon since Lowenstam (1961) concluded that Recent brachiopod calcite was precipitated in equilibrium with seawater. In order to infer paleoenvironmental conditions with confidence, however, the impact of potential kinetic and metabolic fractionation effects on the final isotopic signature, as it varies among individuals, must be determined. In this study, we analyzed the oxygen and carbon isotopic composition of closely spaced (~2/mm) samples of calcite along growth transects from individuals of the rhynchonelliform brachiopod, Laqueus californianus. By combining local oceanographic information with knowledge of brachiopod shell structure and growth patterns through ontogeny, in individuals of different ages from the same locality that died simultaneously, we can address the fidelity of brachiopod shell calcite as both an environmental proxy and a recorder of biological activity among conspecific individuals, in real time. This is an essential, but largely ignored, component in the paleoenvironmental interpretation of brachiopod shell calcite. In May 2011, more than 75 live L. californianus specimens were collected by Dr. J. Barry at Monterey Bay Aquarium Research Institute (MBARI) from Monterey Bay at 160 m water depth (36.7322N, 121.9739W) and generously given to us for use in this study. The specimens range in length from 5.75 to 46.16 mm, representing a range of ontogenetic ages. Water temperatures at 160 m range annually from 8C in the spring/summer upwelling season to 10C during the winter, while salinity fluctuates from 33.76 ppt in the winter to 34.11 ppt in the summer. Daily temperature and salinity data collected by MBARI over three decades allow us to calculate approximate equilibrium calcite values. We use these values to evaluate the claim that brachiopods mineralize in isotopic equilibrium with seawater throughout their lifespan with minimal

  3. Spatial auditory processing in pinnipeds

    NASA Astrophysics Data System (ADS)

    Holt, Marla M.

    Given the biological importance of sound for a variety of activities, pinnipeds must be able to obtain spatial information about their surroundings thorough acoustic input in the absence of other sensory cues. The three chapters of this dissertation address spatial auditory processing capabilities of pinnipeds in air given that these amphibious animals use acoustic signals for reproduction and survival on land. Two chapters are comparative lab-based studies that utilized psychophysical approaches conducted in an acoustic chamber. Chapter 1 addressed the frequency-dependent sound localization abilities at azimuth of three pinniped species (the harbor seal, Phoca vitulina, the California sea lion, Zalophus californianus, and the northern elephant seal, Mirounga angustirostris). While performances of the sea lion and harbor seal were consistent with the duplex theory of sound localization, the elephant seal, a low-frequency hearing specialist, showed a decreased ability to localize the highest frequencies tested. In Chapter 2 spatial release from masking (SRM), which occurs when a signal and masker are spatially separated resulting in improvement in signal detectability relative to conditions in which they are co-located, was determined in a harbor seal and sea lion. Absolute and masked thresholds were measured at three frequencies and azimuths to determine the detection advantages afforded by this type of spatial auditory processing. Results showed that hearing sensitivity was enhanced by up to 19 and 12 dB in the harbor seal and sea lion, respectively, when the signal and masker were spatially separated. Chapter 3 was a field-based study that quantified both sender and receiver variables of the directional properties of male northern elephant seal calls produce within communication system that serves to delineate dominance status. This included measuring call directivity patterns, observing male-male vocally-mediated interactions, and an acoustic playback study

  4. Interactions of marine mammals and birds with offshore membrane enclosures for growing algae (OMEGA)

    PubMed Central

    2014-01-01

    Background OMEGA is an integrated aquatic system to produce biofuels, treat and recycle wastewater, capture CO2, and expand aquaculture production. This system includes floating photobioreactors (PBRs) that will cover hundreds of hectares in marine bays. To assess the interactions of marine mammals and birds with PBRs, 9 × 1.3 m flat panel and 9.5 × 0.2 m tubular PBRs were deployed in a harbor and monitored day and night from October 10, 2011 to Janurary 22, 2012 using infrared video. To observe interactions with pinnipeds, two trained sea lions (Zalophus californianus) and one trained harbor seal (Phoca vitulina richardii) were observed and directed to interact with PBRs in tanks. To determine the forces required to puncture PBR plastic and the effects of weathering, Instron measurements were made with a sea otter (Enhydra lutris) tooth and bird beaks. Results A total of 1,445 interactions of marine mammals and birds with PBRs were observed in the 2,424 hours of video recorded. The 95 marine mammal interactions, 94 by sea otters and one by a sea lion had average durations of three minutes (max 44 min) and represented about 1% of total recording time. The 1,350 bird interactions, primarily coots (Fulica americana) and gulls (Larus occidentalis and L. californicus) had average durations of six minutes (max. 170) and represented 5% of recording time. Interactive behaviors were characterized as passive (feeding, walking, resting, grooming, and social activity) or proactive (biting, pecking, investigating, and unspecified manipulating). Mammal interactions were predominantly proactive, whereas birds were passive. All interactions occurred primarily during the day. Ninety-six percent of otter interactions occurred in winter, whereas 73% of bird interactions in fall, correlating to their abundance in the harbor. Trained pinnipeds followed most commands to bite, drag, and haul-out onto PBRs, made no overt undirected interactions with the PBRs, but showed avoidance

  5. Interactions of marine mammals and birds with offshore membrane enclosures for growing algae (OMEGA).

    PubMed

    Hughes, Stephanie N; Tozzi, Sasha; Harris, Linden; Harmsen, Shawn; Young, Colleen; Rask, Jon; Toy-Choutka, Sharon; Clark, Kit; Cruickshank, Marilyn; Fennie, Hamilton; Kuo, Julie; Trent, Jonathan D

    2014-01-01

    OMEGA is an integrated aquatic system to produce biofuels, treat and recycle wastewater, capture CO2, and expand aquaculture production. This system includes floating photobioreactors (PBRs) that will cover hundreds of hectares in marine bays. To assess the interactions of marine mammals and birds with PBRs, 9 × 1.3 m flat panel and 9.5 × 0.2 m tubular PBRs were deployed in a harbor and monitored day and night from October 10, 2011 to Janurary 22, 2012 using infrared video. To observe interactions with pinnipeds, two trained sea lions (Zalophus californianus) and one trained harbor seal (Phoca vitulina richardii) were observed and directed to interact with PBRs in tanks. To determine the forces required to puncture PBR plastic and the effects of weathering, Instron measurements were made with a sea otter (Enhydra lutris) tooth and bird beaks. A total of 1,445 interactions of marine mammals and birds with PBRs were observed in the 2,424 hours of video recorded. The 95 marine mammal interactions, 94 by sea otters and one by a sea lion had average durations of three minutes (max 44 min) and represented about 1% of total recording time. The 1,350 bird interactions, primarily coots (Fulica americana) and gulls (Larus occidentalis and L. californicus) had average durations of six minutes (max. 170) and represented 5% of recording time. Interactive behaviors were characterized as passive (feeding, walking, resting, grooming, and social activity) or proactive (biting, pecking, investigating, and unspecified manipulating). Mammal interactions were predominantly proactive, whereas birds were passive. All interactions occurred primarily during the day. Ninety-six percent of otter interactions occurred in winter, whereas 73% of bird interactions in fall, correlating to their abundance in the harbor. Trained pinnipeds followed most commands to bite, drag, and haul-out onto PBRs, made no overt undirected interactions with the PBRs, but showed avoidance behavior to PBR

  6. Adjusting the thermostat: the threshold induction temperature for the heat-shock response in intertidal mussels (genus Mytilus) changes as a function of thermal history.

    PubMed

    Buckley, B A; Owen, M E; Hofmann, G E

    2001-10-01

    Spatio-temporal variation in heat-shock gene expression gives organisms the ability to respond to changing thermal environments. The temperature at which heat-shock genes are induced, the threshold induction temperature, varies as a function of the recent thermal history of an organism. To elucidate the mechanism by which this plasticity in gene expression is achieved, we determined heat-shock protein (Hsp) induction threshold temperatures in the intertidal mussel Mytilus trossulus collected from the field in February and again in August. In a separate experiment, threshold induction temperatures, endogenous levels of both the constitutive and inducible isoforms of Hsps from the 70 kDa family and the quantity of ubiquitinated proteins (a measure of cellular protein denaturation) were measured in M. trossulus after either 6 weeks of cold acclimation in the laboratory or acclimatization to warm, summer temperatures in the field over the same period. In addition, we quantified levels of activated heat-shock transcription factor 1 (HSF1) in both groups of mussels (HSF1 inducibly transactivates all classes of Hsp genes). Lastly, we compared the temperature of HSF1 activation with the induction threshold temperature in the congeneric M. californianus. It was found that the threshold induction temperature in M. trossulus was 23 degrees C in February and 28 degrees C in August. This agreed with the acclimation/acclimatization experiment, in which mussels acclimated in seawater tables to a constant temperature of 10-11 degrees C for 6 weeks displayed a threshold induction temperature of 20-23 degrees C compared with 26-29 degrees C for individuals that were experiencing considerably warmer body temperatures in the intertidal zone over the same period. This coincided with a significant increase in the inducible isoform of Hsp70 in warm-acclimatized individuals but no increase in the constitutive isoform or in HSF1. Levels of ubiquitin-conjugated protein were significantly

  7. Incorporating Context Dependency of Species Interactions in Species Distribution Models.

    PubMed

    Lany, Nina K; Zarnetske, Phoebe L; Gouhier, Tarik C; Menge, Bruce A

    2017-07-01

    Species distribution models typically use correlative approaches that characterize the species-environment relationship using occurrence or abundance data for a single species. However, species distributions are determined by both abiotic conditions and biotic interactions with other species in the community. Therefore, climate change is expected to impact species through direct effects on their physiology and indirect effects propagated through their resources, predators, competitors, or mutualists. Furthermore, the sign and strength of species interactions can change according to abiotic conditions, resulting in context-dependent species interactions that may change across space or with climate change. Here, we incorporated the context dependency of species interactions into a dynamic species distribution model. We developed a multi-species model that uses a time-series of observational survey data to evaluate how abiotic conditions and species interactions affect the dynamics of three rocky intertidal species. The model further distinguishes between the direct effects of abiotic conditions on abundance and the indirect effects propagated through interactions with other species. We apply the model to keystone predation by the sea star Pisaster ochraceus on the mussel Mytilus californianus and the barnacle Balanus glandula in the rocky intertidal zone of the Pacific coast, USA. Our method indicated that biotic interactions between P. ochraceus and B. glandula affected B. glandula dynamics across >1000 km of coastline. Consistent with patterns from keystone predation, the growth rate of B. glandula varied according to the abundance of P. ochraceus in the previous year. The data and the model did not indicate that the strength of keystone predation by P. ochraceus varied with a mean annual upwelling index. Balanus glandula cover increased following years with high phytoplankton abundance measured as mean annual chlorophyll-a. M. californianus exhibited the same

  8. Revisiting Paine’s 1966 sea star removal experiment, the most-cited empirical article in the American Naturalist

    USGS Publications Warehouse

    Lafferty, Kevin D.; Suchanek, Tom

    2016-01-01

    “Food Web Complexity and Species Diversity” (Paine 1966) is the most-cited empirical article published in the American Naturalist. In short, Paine removed predatory sea stars (Pisaster ochraceus) from the rocky intertidal and watched the key prey species, mussels (Mytilus californianus), crowd out seven subordinate primary space-holding species. However, because these mussels are a foundational species, they provide three-dimensional habitat for over 300 associated species inhabiting the mussel beds; thus, removing sea stars significantly increases community-wide diversity. In any case, most ecologists cite Paine (1966) to support a statement that predators increase diversity by interfering with competition. Although detractors remained skeptical of top-down effects and keystone concepts, the paradigm that predation increases diversity spread. By 1991, “Food Web Complexity and Species Diversity” was considered a classic ecological paper, and after 50 years it continues to influence ecological theory and conservation biology.

  9. A biophysical basis for patchy mortality during heat waves.

    PubMed

    Mislan, K A S; Wethey, David S

    2015-04-01

    Extreme heat events cause patchy mortality in many habitats. We examine biophysical mechanisms responsible for patchy mortality in beds of the competitively dominant ecosystem engineer, the marine mussel Mytilus californianus, on the west coast of the United States. We used a biophysical model to predict daily fluctuations in body temperature at sites from southern California to Washington and used results of laboratory experiments on thermal tolerance to determine mortality rates from body temperature. In our model, we varied the rate of thermal conduction within mussel beds and found that this factor can account for large differences in body temperature and consequent mortality during heat waves. Mussel beds provide structural habitat for other species and increase local biodiversity, but, as sessile organisms, they are particularly vulnerable to extreme weather conditions. Identifying critical biophysical mechanisms related to mortality and ecological performance will improve our ability to predict the effects of climate change on these vulnerable ecosystems.

  10. Experimental lead poisoning in Turkey Vultures, Cathartes aura

    USGS Publications Warehouse

    Carpenter, J.W.; Pattee, O.H.; Fritts, S.H.; Rattner, B.A.; Wiemeyer, Stanley N.; Royle, J. Andrew; Smith, M.R.

    2003-01-01

    Lead-induced mortality appears to have been a major factor in the decline of the California condor, Gymnogyps californianus. We orally dosed turkey vultures (Cathartes aura) with BB-sized lead shot from January 1988 through July 1988 to determine physiological response (delta-aminolevulinic acid dehydratase inhibition, erythrocyte protoporphyrin levels, anemia), diagnostic tissue lead concentrations (blood, liver, and kidney), and comparative sensitivity of this species. Two turkey vultures died and two became so intoxicated they were euthanized. Overall, responses of measured parameters were comparable to other species exposed to lead although there was considerable individual variation. Survival time (143-211 days), even with the large number of shot and constant redosing, was much longer than reported for other species of birds, suggesting considerable tolerance by turkey vultures to the deleterious effects of lead ingestion. Based on these observations, turkey vultures appear to be poor models for assessing the risk of lead poisoning to California condors or predicting their physiological response.

  11. Structural studies of naturally occurring toxicogenic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, J. P.

    1977-10-01

    The paralytic shellfish poison (PSP), saxitoxin, is a neurotoxin isolated from Alaska butter clams (Saxidomus giganteus), mussels (Mytilus californianus) and axenic cultures of the dinoflagellate Gonyaulax catenella. The structure of saxitoxin has been determined through the use of single crystal X-ray diffraction. It possesses a unique tricyclic arrangement of atoms containing two guanidinium moieties and also a hydrated ketone. The relative stereochemistry is presented as well as the absolute configuration. The chemical constitution of a tremorgenic metabolite, paxilline, isolated from extracts of the fungus Penicillium paxilli Bainier has been determined. Paxilline represents a previously unreported class of natural compounds formedmore » by the combination of tryptophan and mevalonate subunits. The complete stereostructure of two other fungal metabolites, paspaline and paspalicine, closely related to paxilline but isolated from Claviceps paspali Stammes have also been determined and are presented. The stereochemistries of paxilline, paspaline and paspalicine are identical at corresponding chiral centers.« less

  12. Lead contamination of golden eagles Aquila chrysaetos within the range of the California condor Gymnogyps californianus

    USGS Publications Warehouse

    Bloom, P.H.; Scott, J.M.; Pattee, O.H.; Smith, M.R.; Meyburg, B-U.; Chancellor, R.D.

    1989-01-01

    Blood samples were taken from 66 golden eagles from June 1985 to January 1986 and analyzed for their lead content. Thirty-nine percent had blood lead levels greater than 0.2 ppm, indicating exposure to environmental lead. Within the exposed group, 3 had blood levels exceeding 0.6 ppm and one exceeded 1.0 ppm. These data suggest that lead, probably in the form of shot, bullets, or bullet fragments, poses a hazard to scavenging birds within the range of the California condor.

  13. Fishing gear-related injury in California marine wildlife.

    PubMed

    Dau, Brynie Kaplan; Gilardi, Kirsten V K; Gulland, Frances M; Higgins, Ali; Holcomb, Jay B; Leger, Judy St; Ziccardi, Michael H

    2009-04-01

    We reviewed medical records from select wildlife rehabilitation facilities in California to determine the prevalence of injury in California Brown Pelicans (Pelecanus occidentalis), gulls (Larus spp.), and pinniped species (Zalophus californianus, Mirounga angustirostris, and Phoca vitulina) due to fishing gear entanglement and ingestion from 2001 to 2006. Of 9,668 Brown Pelican, gull, and pinniped cases described during the 6-yr study period (2001-06), 1,090 (11.3%) were fishing gear-related. Pelican injuries caused by fishing gear were most common in the Monterey Bay region, where 59.6% of the pelicans rescued in this area and admitted to a rehabilitation center were injured by fishing gear over the 6-yr period. The highest prevalence of fishing gear-related injury in gulls was documented in the Los Angeles/Orange County region (16.1%), whereas the highest prevalences in pinnipeds were seen in the San Diego region (3.7%). Despite these higher prevalences of gull and pinniped fishing gear-related injuries in these specific regions, there was no statistical significance in these trends. Juvenile gulls and pinnipeds were more commonly injured by fishing gear than adults (gulls: P = 0.03, odds ratio = 1.29; pinnipeds: P = 0.01, odds ratio = 2.07). Male pinnipeds were twice as likely to be injured by fishing gear as females (P < 0.01, odds ratio = 2.19). The proportion of fishing gear-related injury cases that were successfully rehabilitated and released (percentage of cases successfully rehabilitated to the point of release out of the total number of fishing gear-related injury cases) was high in all three species groups (pelicans: 63%; gulls: 54%; pinnipeds: 70%). Fishing gear-related injuries in Brown Pelicans and gulls were highest in the fall, but there was only a significant difference between seasons for fishing gear-related injuries in pelicans. Fishing gear-related injuries in pinnipeds most commonly occurred in summer; however, a statistical difference was

  14. Silicon Utilizing Microbial Bioactivities in the Biosphere

    NASA Astrophysics Data System (ADS)

    Sen, M. M.; Das, S.

    2012-12-01

    Diatoms are unicellular eukaryotic algae and an important member of the silicon utilizing organisms, that generate ~20% of the ~100 billion metric tons of organic carbon produced through photosynthesis on Earth each year. Fragilariopsis is a dominating psychrophilic diatom genus in polar sea ice. The two species Fragilariopsis cylindrus and Fragilariopsis curta are able to grow and divide below freezing temperature. Antifreeze proteins (AFPs), involved in cold adaptation in several psychrophilic organisms, are widespread in this two polar species. Achanthes minutissima isolated as dominant diatom has degradable effects involving petroleum hydocarbons. Phaeodactylum tricornutum, have antibacterial activity and the fatty acid, eicosapentaenoic acid (EPA), has been identified as one compound responsible for this activity. Other antibacterial compounds are monounsaturated fatty acid (9Z)-hexadecenoic acid (palmitoleic acid; C16:1 n-7) and the relatively unusual polyunsaturated fatty acid (6Z, 9Z, 12Z)-hexadecatrienoic acid (HTA; C16:3 n-4). Both are active against Gram-positive bacteria and many Gram-negative pathogen. Palmitoleic acid is active at micro-molar concentrations, kills bacteria rapidly, and is highly active against multidrug-resistant Staphylococcus aureus. Domoic acid -a neurotoxin produced by Pseudo-nitzschia accumulates in marine invertebrates. Evidences of sea lion (Zalophus californianus) and human poisoning following consumption of contaminated blue mussels (Mytilus edulis) is mainly due to this toxin. Among the most prominent features described in human beings was memory impairment which led to the name Amnesic Shellfish Poisoning [ASP]. Silicon utilizing organisms can act as a bioindicator of environmental contamination, thus a rapid change in phytochelatins to both the increase in and the withdrawal of environmental Cd stress was found in Thalassiosira nordenskioeldii. Some of them also can produce biofuels particularly diatoms have significant

  15. Lead in ammunition: a persistent threat to health and conservation.

    PubMed

    Johnson, C K; Kelly, T R; Rideout, B A

    2013-12-01

    Many scavenging bird populations have experienced abrupt declines across the globe, and intensive recovery activities have been necessary to sustain several species, including the critically endangered California condor (Gymnogyps californianus). Exposure to lead from lead-based ammunition is widespread in condors and lead toxicosis presents an immediate threat to condor recovery, accounting for the highest proportion of adult mortality. Lead contamination of carcasses across the landscape remains a serious threat to the health and sustainability of scavenging birds, and here we summarize recent evidence for exposure to lead-based ammunition and health implications across many species. California condors and other scavenging species are sensitive indicators of the occurrence of lead contaminated carcasses in the environment. Transdisciplinary science-based approaches have been critical to managing lead exposure in California condors and paving the way for use of non-lead ammunition in California. Similar transdisciplinary approaches are now needed to translate the science informing on this issue and establish education and outreach efforts that focus on concerns brought forth by key stakeholders.

  16. Sublethal landrin toxicity: Behavioral and physiological effects on captive vultures

    USGS Publications Warehouse

    Forthman-Quick, D.L.; Hill, E.F.

    1988-01-01

    Use of conditioned taste aversion (CTA) has been proposed to reduce consumption of California condor (Gymnogyps californianus) eggs by ravens (Corvus corax). Although landrin has induced aversions in ravens and other birds, no data were available on behavioral and physiological effects of landrin on condors, non-target birds that might consume treated eggs. Because condors are endangered, we selected taxonomically related surrogates to approximate the effects on condors of acute oral doses of landrin. Seven black vultures (Coragyps atratus), 2 turkey vultures (Cathartes aura), and 2 king vultures (Sarcoramphus papa) received landrin and placebo treatments 1 week apart. Plasma cholinesterase (ChE) activity was monitored at zero, 3, and 24 hours posttreatment, and behavioral observations were made for 2 hours posttreatment. The doses tested were nonlethal, and ChE levels approached normal within 24 hours after treatment. Only the frequency of vomiting differed statistically between the placebo and landrin treatment. We conclude that with appropriate precautions, landrin can be used in applications of CTA to discourage consumption of condor eggs by ravens, while posing no apparent risk to reintroduced condors.

  17. Surveillance for Toxoplasma gondii in California mussels (Mytilus californianus) reveals transmission of atypical genotypes from land to sea.

    PubMed

    Shapiro, Karen; VanWormer, Elizabeth; Aguilar, Beatriz; Conrad, Patricia A

    2015-11-01

    Coastal habitat contamination with Toxoplasma gondii is a health risk to humans and marine wildlife, with infections documented in both nearshore and pelagic marine mammals. Due to lack of sensitive methods for detection of T. gondii in water, this study utilized an alternative surveillance approach for evaluating marine habitat contamination using wild mussels. The objectives of this study were to (i) validate sensitive molecular tools for T. gondii detection in mussels and (ii) apply optimized methods in a surveillance study to determine the prevalence and genotype(s) of T. gondii in mussels. Simplex polymerase chain reaction screening and multiplex genotyping assays were validated and then applied on 959 wild-caught mussels collected from central California. Thirteen mussels (1.4%) had detectable T. gondii DNA and the presence of T. gondii in mussels was significantly associated with proximity to freshwater run-off and collection during the wet season. Molecular characterization revealed alleles from T. gondii types I, II/III, X at the B1 locus, and a novel atypical B1 allele that was recently documented in T. gondii-infected carnivores from California. Findings demonstrate higher than previously reported T. gondii contamination of California coastlines, and describe novel strains of the parasite that further link terrestrial sources with marine contamination. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Copulation by California condors

    USGS Publications Warehouse

    Wilbur, S.R.; Borneman, J.C.

    1972-01-01

    Koford (Res. Rept. No. 3, Natl. Audubon Soc., 1953) observed sexual display among California Condors (Gymnogyps californianus) on more than 30 occasions, yet only once did he see what he thought was copulation. Some of the displays he watched were quite intricate, with considerable posturing and "male" aggression, but no such activity preceded this copulation. The birds sat several feet apart for over 1 hour, then one climbed onto the other's back, staying there 1/2 minute and flapping gently at the apparent moment of coition. Afterward they sat quietly 1/2 hour before flying away. This led Koford to state (p. 79) that "possibly in Gymnogyps copulation is not immediately preceded by display." We have records of 8 California Condor copulations, 5 of which are similar to that described above. The three other occasions began similarly, with the birds sitting quietly, but then the "male" displayed briefly before the "female" with wings half spread and head drooping forward. This elicited no apparent response, but the male immediately walked behind and mounted the female. The apparent moment of coition was accompanied by gentle wing flapping in all instances.

  19. Collagen insulated from tensile damage by domains that unfold reversibly: in situ X-ray investigation of mechanical yield and damage repair in the mussel byssus

    PubMed Central

    Harrington, Matthew J.; Gupta, Himadri S.; Fratzl, Peter; Waite, J. Herbert

    2009-01-01

    The byssal threads of the California mussel, Mytilus californianus, are highly hysteretic, elastomeric fibers that collectively perform a holdfast function in wave-swept rocky seashore habitats. Following cyclic loading past the mechanical yield point, threads exhibit a damage-dependent reduction in mechanical performance. However, the distal portion of the byssal thread is capable of recovering initial material properties through a time-dependent healing process in the absence of active cellular metabolism. Byssal threads are composed almost exclusively of multi-domain hybrid collagens known as preCols, which largely determine the mechanical properties of the thread. Here, the structure-property relationships that govern thread mechanical performance are further probed. The molecular rearrangements that occur during yield and damage repair were investigated using time-resolved in situ wide angle X-ray diffraction (WAXD) coupled with cyclic tensile loading of threads and through thermally enhanced damage-repair studies. Results indicate that the collagen domains in byssal preCols are mechanically protected by the unfolding of sacrificial non-collagenous domains that refold on a slower time-scale. Time-dependent healing is primarily attributed to stochastic recoupling of broken histidine-metal coordination complexes. PMID:19275941

  20. Lead poisoning in captive Andean condors (Vultur gryphus)

    USGS Publications Warehouse

    Pattee, O.H.; Carpenter, J.W.; Fritts, S.H.; Rattner, B.A.; Wiemeyer, Stanley N.; Royle, J. Andrew; Smith, M.R.

    2006-01-01

    Elevated lead in the tissues of raptors, especially those that scavenge, is a common occurrence, and lead poisoning appears to be a significant problem in the ongoing recovery effort for California condors (Gymnogyps californianus). Elevated blood lead levels have been found in released birds, and a number of birds have died of lead poisoning. In earlier work, we dosed turkey vultures (Cathartes aura) with lead shot but found them to be a poor model for lead poisoning. In this study, we dosed four Andean condors (Vultur gryphus) with lead shot and found them to be quite sensitive, as two of the birds died and the other two exhibit signs of lead poisoning within 50 days. All lead-responsive parameters were affected, and regurgitation of dosed shot occurred only once. The response of the Andean condors appeared to mimic California condors, suggesting that once exposed to lead, the possibility of survival is poor. This is consistent with observations in the wild, where otherwise healthy birds exposed to metallic lead quickly succumb. At the very least, the release program has to maintain constant surveillance and an active lead monitoring program.

  1. Uranium in larval shells as a barometer of molluscan ocean acidification exposure.

    PubMed

    Frieder, Christina A; Gonzalez, Jennifer P; Levin, Lisa A

    2014-06-03

    As the ocean undergoes acidification, marine organisms will become increasingly exposed to reduced pH, yet variability in many coastal settings complicates our ability to accurately estimate pH exposure for those organisms that are difficult to track. Here we present shell-based geochemical proxies that reflect pH exposure from laboratory and field settings in larvae of the mussels Mytilus californianus and M. galloprovincialis. Laboratory-based proxies were generated from shells precipitated at pH 7.51 to 8.04. U/Ca, Sr/Ca, and multielemental signatures represented as principal components varied with pH for both species. Of these, U/Ca was the best predictor of pH and did not vary with larval size, with semidiurnal pH fluctuations, or with oxygen concentration. Field applications of U/Ca were tested with mussel larvae reared in situ at both known and unknown pH conditions. Larval shells precipitated in a region of greater upwelling had higher U/Ca, and these U/Ca values corresponded well with the laboratory-derived U/Ca-pH proxy. Retention of the larval shell after settlement in molluscs allows use of this geochemical proxy to assess ocean acidification effects on marine populations.

  2. The role of macrobiota in structuring microbial communities along rocky shores

    PubMed Central

    Gilbert, Jack A.; Gibbons, Sean M.

    2014-01-01

    Rocky shore microbial diversity presents an excellent system to test for microbial habitat specificity or generality, enabling us to decipher how common macrobiota shape microbial community structure. At two coastal locations in the northeast Pacific Ocean, we show that microbial composition was significantly different between inert surfaces, the biogenic surfaces that included rocky shore animals and an alga, and the water column plankton. While all sampled entities had a core of common OTUs, rare OTUs drove differences among biotic and abiotic substrates. For the mussel Mytilus californianus, the shell surface harbored greater alpha diversity compared to internal tissues of the gill and siphon. Strikingly, a 7-year experimental removal of this mussel from tidepools did not significantly alter the microbial community structure of microbes associated with inert surfaces when compared with unmanipulated tidepools. However, bacterial taxa associated with nitrate reduction had greater relative abundance with mussels present, suggesting an impact of increased animal-derived nitrogen on a subset of microbial metabolism. Because the presence of mussels did not affect the structure and diversity of the microbial community on adjacent inert substrates, microbes in this rocky shore environment may be predominantly affected through direct physical association with macrobiota. PMID:25337459

  3. Urban life of Galapagos sea lions (Zalophus wollebaeki) on San Cristobal Island, Ecuador: colony trends and threats

    NASA Astrophysics Data System (ADS)

    Denkinger, Judith; Gordillo, Luis; Montero-Serra, Ignasi; Murillo, Juan Carlos; Guevara, Nataly; Hirschfeld, Maximilian; Fietz, Katharina; Rubianes, Francisco; Dan, Michael

    2015-11-01

    Worldwide, pristine environments are influenced by human societies. In the Galapagos Islands, the endangered, endemic Galapagos sea lion (Zalophus wollebaeki) has formed one of the biggest colonies within the town center of Puerto Baquerizo Moreno. About 8,000 people live there and human wildlife interactions occur daily. With colony counts and direct observations from 2008 to 2012, we analyze cause of death, injuries and disease of urban sea lion colonies at Wreck Bay. Population increase since 2008 can be attributed to an immigration of adult sea lions in 2010, resulting in an increase in the pup and juvenile production in 2011 and 2012. Pup mortality increased drastically to 2009 and again in 2011 and 2012. Besides pup mortality, most of the deaths are caused by increased disease incidences and human activity. Our observations suggest that overall 65% of the injuries observed are produced by human interaction. The increase in threats leading to death, injuries or disease can have long-term effects on the population. Although threats that cause physical injuries can be managed locally, sea lions range movements contributes to the spread of infectious pathogens, which may affect neighbor colonies and potentially have an impact on the survival of the species. Our study reveals the need of stronger efforts towards a more complete understanding of threats and especially disease spread among Galapagos Sea lions in urban environments and the establishment of more effective management measures.

  4. Stable Isotopes Reveal Long-Term Fidelity to Foraging Grounds in the Galapagos Sea Lion (Zalophus wollebaeki)

    PubMed Central

    Drago, Massimiliano; Franco-Trecu, Valentina; Cardona, Luis; Inchausti, Pablo; Tapia, Washington; Páez-Rosas, Diego

    2016-01-01

    Most otariids have colony-specific foraging areas during the breeding season, when they behave as central place foragers. However, they may disperse over broad areas after the breeding season and individuals from different colonies may share foraging grounds at that time. Here, stable isotope ratios in the skull bone of adult Galapagos sea lions (Zalophus wollebaeki) were used to assess the long-term fidelity of both sexes to foraging grounds across the different regions of the Galapagos archipelago. Results indicated that the stable isotope ratios (δ13C and δ15N) of sea lion bone significantly differed among regions of the archipelago, without any significant difference between sexes and with a non significant interaction between sex and region. Moreover, standard ellipses, estimated by Bayesian inference and used as a measure of the isotopic resource use area at the population level, overlapped widely for the sea lions from the southern and central regions, whereas the overlap of the ellipses for sea lions from the central and western regions was small and non-existing for those from the western and southern regions. These results suggest that males and females from the same region within the archipelago use similar foraging grounds and have similar diets. Furthermore, they indicate that the exchange of adults between regions is limited, thus revealing a certain degree of foraging philopatry at a regional scale within the archipelago. The constraints imposed on males by an expanded reproductive season (~ 6 months), resulting from the weak reproductive synchrony among females, and those imposed on females by a very long lactation period (at least one year but up to three years), may explain the limited mobility of adult Galapagos sea lions of both sexes across the archipelago. PMID:26808381

  5. The role of macrobiota in structuring microbial communities along rocky shores

    DOE PAGES

    Pfister, Catherine A.; Gilbert, Jack A.; Gibbons, Sean M.

    2014-10-16

    Rocky shore microbial diversity presents an excellent system to test for microbial habitat specificity or generality, enabling us to decipher how common macrobiota shape microbial community structure. At two coastal locations in the northeast Pacific Ocean, we show that microbial composition was significantly different between inert surfaces, the biogenic surfaces that included rocky shore animals and an alga, and the water column plankton. While all sampled entities had a core of common OTUs, rare OTUs drove differences among biotic and abiotic substrates. For the mussel Mytilus californianus, the shell surface harbored greater alpha diversity compared to internal tissues of themore » gill and siphon. Strikingly, a 7-year experimental removal of this mussel from tidepools did not significantly alter the microbial community structure of microbes associated with inert surfaces when compared with unmanipulated tidepools. However, bacterial taxa associated with nitrate reduction had greater relative abundance with mussels present, suggesting an impact of increased animal-derived nitrogen on a subset of microbial metabolism. Because the presence of mussels did not affect the structure and diversity of the microbial community on adjacent inert substrates, microbes in this rocky shore environment may be predominantly affected through direct physical association with macrobiota.« less

  6. Edge effects reverse facilitation by a widespread foundation species

    NASA Astrophysics Data System (ADS)

    Jurgens, Laura J.; Gaylord, Brian

    2016-11-01

    Dense aggregations of foundation species often mitigate environmental stresses for organisms living among them. Considerable work documents such benefits by comparing conditions inside versus outside these biogenic habitats. However, environmental gradients commonly arise across the extent of even single patches of habitat-forming species, including cases where stresses diverge between habitat interiors and edges. We ask here whether such edge effects could alter how habitat-forming species influence residents, potentially changing the strength or direction of interactions (i.e., from stress amelioration to exacerbation). We take as a model system the classic marine foundation species, Mytilus californianus, the California mussel. Results demonstrate that mussel beds both increase and decrease thermal stresses. Over a distance of 6 to 10 cm from the bed interior to its upper surface, peak temperatures climb from as much as 20 °C below to 5 °C above those of adjacent bedrock. This directional shift in temperature modification affects interactions with juvenile mussels, such that thermal stresses and associated mortality risk are higher at the bed surface, but substantially reduced deeper within the adult matrix. These findings provide a case example of how stress gradients generated across biogenic habitats can markedly alter ecological interactions even within a single habitat patch.

  7. Edge effects reverse facilitation by a widespread foundation species.

    PubMed

    Jurgens, Laura J; Gaylord, Brian

    2016-11-23

    Dense aggregations of foundation species often mitigate environmental stresses for organisms living among them. Considerable work documents such benefits by comparing conditions inside versus outside these biogenic habitats. However, environmental gradients commonly arise across the extent of even single patches of habitat-forming species, including cases where stresses diverge between habitat interiors and edges. We ask here whether such edge effects could alter how habitat-forming species influence residents, potentially changing the strength or direction of interactions (i.e., from stress amelioration to exacerbation). We take as a model system the classic marine foundation species, Mytilus californianus, the California mussel. Results demonstrate that mussel beds both increase and decrease thermal stresses. Over a distance of 6 to 10 cm from the bed interior to its upper surface, peak temperatures climb from as much as 20 °C below to 5 °C above those of adjacent bedrock. This directional shift in temperature modification affects interactions with juvenile mussels, such that thermal stresses and associated mortality risk are higher at the bed surface, but substantially reduced deeper within the adult matrix. These findings provide a case example of how stress gradients generated across biogenic habitats can markedly alter ecological interactions even within a single habitat patch.

  8. Dietary controls on extinction versus survival among avian megafauna in the late Pleistocene

    NASA Astrophysics Data System (ADS)

    Fox-Dobbs, Kena; Stidham, Thomas A.; Bowen, Gabriel J.; Emslie, Steven D.; Koch, Paul L.

    2006-08-01

    The late Pleistocene extinction decimated terrestrial megafaunal communities in North America, but did not affect marine mammal populations. In coastal regions, marine megafauna may have provided a buffer that allowed some large predators or scavengers, such as California condors (Gymnogyps californianus), to survive into the Holocene. To track the influence of marine resources on avifaunas we analyzed the carbon, nitrogen, and hydrogen isotope composition of collagen from late Pleistocene vultures and raptors, including species that survived the extinction (condor, bald eagle, golden eagle) and extinct species (teratorn, black vulture). At the Rancho La Brea and McKittrick tar pits of southern California, isotope values for extinct teratorns (Teratornis merriami, n = 10) and black vultures (Coragyps occidentalis, n = 8) show that they fed entirely in a terrestrial C3 ecosystem. In contrast, La Brea condors cluster into two groups, one with a terrestrial diet (n = 4), and the other with a strong marine influence (n = 5). At localities in the American southwest, Texas, and Florida, where condors became extinct, they have isotope values indicating entirely terrestrial diets (n = 10). Our results suggest that dependence upon terrestrial megafaunal carrion as a food source led to the extinction of inland California condor populations and coastal populations of teratorns and black vultures at the Pleistocene-Holocene boundary, whereas use of marine foods allowed coastal condor populations to survive.

  9. Micro-scale environmental variation amplifies physiological variation among individual mussels.

    PubMed

    Jimenez, Ana Gabriela; Jayawardene, Sarah; Alves, Shaina; Dallmer, Jeremiah; Dowd, W Wesley

    2015-12-07

    The contributions of temporal and spatial environmental variation to physiological variation remain poorly resolved. Rocky intertidal zone populations are subjected to thermal variation over the tidal cycle, superimposed with micro-scale variation in individuals' body temperatures. Using the sea mussel (Mytilus californianus), we assessed the consequences of this micro-scale environmental variation for physiological variation among individuals, first by examining the latter in field-acclimatized animals, second by abolishing micro-scale environmental variation via common garden acclimation, and third by restoring this variation using a reciprocal outplant approach. Common garden acclimation reduced the magnitude of variation in tissue-level antioxidant capacities by approximately 30% among mussels from a wave-protected (warm) site, but it had no effect on antioxidant variation among mussels from a wave-exposed (cool) site. The field-acclimatized level of antioxidant variation was restored only when protected-site mussels were outplanted to a high, thermally stressful site. Variation in organismal oxygen consumption rates reflected antioxidant patterns, decreasing dramatically among protected-site mussels after common gardening. These results suggest a highly plastic relationship between individuals' genotypes and their physiological phenotypes that depends on recent environmental experience. Corresponding context-dependent changes in the physiological mean-variance relationships within populations complicate prediction of responses to shifts in environmental variability that are anticipated with global change. © 2015 The Author(s).

  10. Seroepidemiologic Survey of Potential Pathogens in Obligate and Facultative Scavenging Avian Species in California

    PubMed Central

    Straub, Mary H.; Kelly, Terra R.; Rideout, Bruce A.; Eng, Curtis; Wynne, Janna; Braun, Josephine; Johnson, Christine K.

    2015-01-01

    Throughout the world, populations of scavenger birds are declining rapidly with some populations already on the brink of extinction. Much of the current research into the factors contributing to these declines has focused on exposure to drug residues, lead, and other toxins. Despite increased monitoring of these declining populations, little is known about infectious diseases affecting scavenger bird species. To assess potential infectious disease risks to both obligate and facultative scavenger bird species, we performed a serosurvey for eleven potential pathogens in three species of scavenging birds in California: the California condor (Gymnogyps californianus), turkey vulture (Cathartes aura) and golden eagle (Aquila chrysaetos). California condors were seropositive for avian adenovirus, infectious bronchitis virus, Mycoplasma gallisepticum, avian paramyxovirus-2, West Nile virus (WNV) and Toxoplasma gondii. Golden eagles were seropositive for avian adenovirus, Chlamydophila psittaci and Toxoplasma gondii, and turkey vultures were seropositive for avian adenovirus, Chlamydophila psittaci, avian paramyxovirus-1, Toxoplasma gondii and WNV. Risk factor analyses indicated that rearing site and original release location were significantly associated with a positive serologic titer to WNV among free-flying condors. This study provides preliminary baseline data on infectious disease exposure in these populations for aiding in early disease detection and provides potentially critical information for conservation of the endangered California condor as it continues to expand its range and encounter new infectious disease threats. PMID:26606755

  11. Health Status of Galápagos Sea Lions (Zalophus wollebaeki) on San Cristóbal Island Rookeries Determined by Hematology, Biochemistry, Blood Gases, and Physical Examination.

    PubMed

    Páez-Rosas, Diego; Hirschfeld, Maximilian; Deresienski, Diane; Lewbart, Gregory A

    2016-01-01

    The Galápagos sea lion, Zalophus wollebaeki, is an endemic and endangered species subject to population decline associated with environmental variability, such as El Niño events, constant feeding stress, and exposure to diseases through contact with introduced species. Reference blood parameter intervals have been published for some pinniped species, but baseline biochemical and blood gas values are lacking from Z. wollebaeki. We analyzed blood samples from 30 juvenile Galápagos sea lions (19 females, 11 males) captured in two rookeries on San Cristóbal Island. A portable blood analyzer (iSTAT) was used to obtain near-immediate field results for pH, partial pressure of O2, partial pressure of CO2, bicarbonate (HCO3(-)), hematocrit (Hct), hemoglobin, Na, K, ionized Ca, and glucose, and blood lactate was measured using a portable Lactate Plus(TM) analyzer. Average heart rate, biochemistry, and hematology parameters were comparable with healthy individuals of other pinniped species. Hemoglobin was significantly correlated with body condition of juvenile Galápagos sea lions. When compared with available blood values of clinically healthy California sea lions, Galápagos sea lions had higher total protein and Hct and lower Ca and K levels. Our results provide baseline data that may be useful in comparisons among populations and in detecting changes in health status among Galápagos sea lions.

  12. Primary molt of California condors

    USGS Publications Warehouse

    Snyder, N.F.R.; Johnson, E.V.; Clendenen, D.A.

    1987-01-01

    Primary molt of the California Condor (Gymnogyps californianus) was studied intensively from 1982 through 1985, using repeated flight photographs of the remaining individuals in the wild population as a basis for most analyses. On the average, wild condors replaced 4.4 of the 8 emarginated primaries on each wing each year. The sepcific primaries molted were generally the ones missed in the previous year and were usually well-distributed among the eight possibilities, with a tendency for low-numbered primaries to molt earlier than high-numbered primaries. Within individuals, molt of one wing was commonly very different from that of the other wing. Primarily molt of captive juveniles was similar to that of wild juveniles. The interval from loss to full replacement of individual primary feathers was normally 3 1/2 to 4 months, with the primaries closest to the leading edge of the wing growing most slowly. Most primarities were shed between 1 February and 1 September. Primaries lost in late fall and early winter were not replaced until the following summer, indicating interrupted molt over the winter. In general, primary molt of the condor differs from that of smaller cathartids in being highly seasonal, highly variable in sequence, highly asymmetric between wings, and in following a roughly 2-year cycle. Molt of the condor shows many similarities to that of the White Stork (Ciconia ciconia) and to that of large accipitrid vultures.

  13. Use of mussel casts from archaeological sites as paleoecological indicators: An example from CA-MRN-254, Marin County, Alta California

    USGS Publications Warehouse

    McGann, Mary; Starratt, Scott W.; Powell, Charles L.; Bieling, David G

    2016-01-01

    Archaeological investigations at prehistoric site CA-MRN-254 at the Dominican University of California in Marin County, California, revealed evidence of Native American occupation spanning the past 1,800 years. A dominant source of food for the inhabitants in the San Francisco Bay area was the intertidal, quiet-water dwelling blue mussel (Mytilus trossulus), although rare occurrences of the open coast-dwelling California mussel (Mytilus californianus) suggest that this species was also utilized sporadically. On rare occasions, cultural horizons at this site contain abundant sediment-filled casts of the smaller mussel Modiolus sp. These casts were formed soon after death when the shells filled with sediment and were roasted along with living bivalve shellfish for consumption. Thin sections of these mussel casts display sedimentological and microbiological constituents that shed light on the paleoenvironmental conditions when they were alive. Fine-grained sediment and pelletal muds comprising these casts suggest that the mussels were collected in a low energy, inner bay environment. The rare presence of the diatoms Triceratium dubium and Thalassionema nitzschioides indicate more normal marine (35 psu) and possibly warmer conditions than presently exist in San Francisco Bay. Radiocarbon dating of charcoal associated with the mussel casts containing these diatoms correlates with a 600-year period of warming from ca. A.D. 700–1300, known as the Medieval Climatic Anomaly. Results of this mussel cast study demonstrate that they have great potential for providing paleoenvironmental information at this and other archaeological sites.

  14. A mineralogical record of ocean change: Decadal and centennial patterns in the California mussel.

    PubMed

    McCoy, Sophie J; Kamenos, Nicholas A; Chung, Peter; Wootton, Timothy J; Pfister, Catherine A

    2018-06-01

    Ocean acidification, a product of increasing atmospheric carbon dioxide, may already have affected calcified organisms in the coastal zone, such as bivalves and other shellfish. Understanding species' responses to climate change requires the context of long-term dynamics. This can be particularly difficult given the longevity of many important species in contrast with the relatively rapid onset of environmental changes. Here, we present a unique archival dataset of mussel shells from a locale with recent environmental monitoring and historical climate reconstructions. We compare shell structure and composition in modern mussels, mussels from the 1970s, and mussel shells dating back to 1000-2420 years BP. Shell mineralogy has changed dramatically over the past 15 years, despite evidence for consistent mineral structure in the California mussel, Mytilus californianus, over the prior 2500 years. We present evidence for increased disorder in the calcium carbonate shells of mussels and greater variability between individuals. These changes in the last decade contrast markedly from a background of consistent shell mineralogy for centuries. Our results use an archival record of natural specimens to provide centennial-scale context for altered minerology and variability in shell features as a response to acidification stress and illustrate the utility of long-term studies and archival records in global change ecology. Increased variability between individuals is an emerging pattern in climate change responses, which may equally expose the vulnerability of organisms and the potential of populations for resilience. © 2017 John Wiley & Sons Ltd.

  15. Using Stable Isotopes to Assess Connectivity: the Importance ...

    EPA Pesticide Factsheets

    Estuaries located at the interface of terrestrial and oceanic ecosystems receive nutrients from both ecosystems. Stable isotopes of primary producers and consumers are often used as an indicator of nutrient sources. We assembled natural abundance nitrogen stable isotope (δ15N) data for dissolved inorganic nitrate, green macroalgae, seagrass (Zostera marina) and mussels in the nearshore and in estuaries along the west coast of North America to assess the relative importance of terrestrial and oceanic nutrient sources in these systems. We found a latitudinal gradient in nearshore δ15N of nitrate of -0.2 ‰ per degree latitude from Mexico to British Columbia with more depleted isotope ratio to the north. Primary producers (green macroalgae and Zostera marina) located in the nearshore and the marine dominated portion of Pacific Coast estuaries exhibited a similar latitudinal gradient in δ15N of -0.3 ‰ per degree latitude. This latitudinal gradient is similar to δ15N observed for intertidal mussels (Mytilus californianus), which are known to reflect the isotope ratio of the phytoplankton they feed on. The consistent latitudinal gradient for multiple primary producers and a consumer, and the agreement with the gradient in nearshore δ15N of nitrate, suggests that it is a result of oceanic source waters. On the watershed side, there is a gradient in the δ15N of nitrate with southern California systems receiving nitrate with a δ15N-NO3 of about +12 ‰,

  16. Treated wastewater effluent as a source of pyrethroids and fipronil at todos santos bay, Mexico: Its impact on sediments and organisms.

    PubMed

    Hernández-Guzmán, Félix Augusto; Macías-Zamora, José Vinicio; Ramírez-Álvarez, Nancy; Alvarez-Aguilar, Arturo; Quezada-Hernández, Cristina; Fonseca, Ana Paula

    2017-11-01

    Pyrethroids are insecticides widely used to control pests and disease vectors in residential areas and agricultural lands. Pyrethroids are emerging pollutants, and their use is a growing concern because of their toxicity potential to aquatic organisms. Todos Santos Bay and the Punta Banda estuary, 2 coastal bodies located to the south of the Southern California Bight, were studied to establish a baseline of the current conditions of pollution by pyrethroids and fipronil. Eight pyrethroids, along with fipronil and its 2 metabolites, were determined in effluents from wastewater-treatment plants (n = 3), surface sediments (n = 32), and 3 locations with mussels (Mytilus californianus, n = 9). Bifenthrin, permethrin, and cypermethrin were the most common pyrethroids found in the study areas and were widespread in sediments, mussels, and wastewater-treated effluents. Fipronil and its metabolites were detected in mussels and wastewater-treated effluents only. Total pyrethroid concentrations in sediments ranged from 0.04 to 1.95 ng/g dry weight in the Punta Banda estuary (n = 13) and from 0.07 to 6.62 ng/g dry weight in Todos Santos Bay (n = 19). Moreover, total pyrethroids in mussels ranged from 1.19 to 6.15 ng/g wet weight. Based on the toxic unit data calculated for pyrethroids and fipronil for Eohaustorius estuarius and Hyalella azteca, little to no impact is expected to the benthic population structure. Environ Toxicol Chem 2017;36:3057-3064. © 2017 SETAC. © 2017 SETAC.

  17. Variation in the sensitivity of organismal body temperature to climate change over local and geographic scales.

    PubMed

    Gilman, Sarah E; Wethey, David S; Helmuth, Brian

    2006-06-20

    Global climate change is expected to have broad ecological consequences for species and communities. Attempts to forecast these consequences usually assume that changes in air or water temperature will translate into equivalent changes in a species' organismal body temperature. This simple change is unlikely because an organism's body temperature is determined by a complex series of interactions between the organism and its environment. Using a biophysical model, validated with 5 years of field observations, we examined the relationship between environmental temperature change and body temperature of the intertidal mussel Mytilus californianus over 1,600 km of its geographic distribution. We found that at all locations examined simulated changes in air or water temperature always produced less than equivalent changes in the daily maximum mussel body temperature. Moreover, the magnitude of body temperature change was highly variable, both within and among locations. A simulated 1 degrees C increase in air or water temperature raised the maximum monthly average of daily body temperature maxima by 0.07-0.92 degrees C, depending on the geographic location, vertical position, and temperature variable. We combined these sensitivities with predicted climate change for 2100 and calculated increases in monthly average maximum body temperature of 0.97-4.12 degrees C, depending on location and climate change scenario. Thus geographic variation in body temperature sensitivity can modulate species' experiences of climate change and must be considered when predicting the biological consequences of climate change.

  18. Flight response to spatial and temporal correlates informs risk from wind turbines to the California Condor

    USGS Publications Warehouse

    Poessel, Sharon; Brandt, Joseph; Mendenhall, Laura C.; Braham, Melissa A.; Lanzone, Michael J.; McGann, Andrew J.; Katzner, Todd

    2018-01-01

    Wind power is a fast-growing energy resource, but wind turbines can kill volant wildlife, and the flight behavior of obligate soaring birds can place them at risk of collision with these structures. We analyzed altitudinal data from GPS telemetry of critically endangered California Condors (Gymnogyps californianus) to assess the circumstances under which their flight behavior may place them at risk from collision with wind turbines. Condor flight behavior was strongly influenced by topography and land cover, and birds flew at lower altitudes and closer to the rotor-swept zone of wind turbines when over ridgelines and steep slopes and over forested and grassland cover types. Condor flight behavior was temporally predictable, and birds flew lower and closer to the rotor-swept zone during early morning and evening hours and during the winter months, when thermal updrafts were weakest. Although condors only occasionally flew at altitudes that placed them in the rotor-swept zone of turbines, they regularly flew near or within wind resource areas preferred by energy developers. Practitioners aiming to mitigate collision risk to this and other soaring bird species of conservation concern can consider the manner in which flight behavior varies temporally and in response to areas of high topographic relief and proximity to nocturnal roosting sites. By contrast, collision risk to large soaring birds from turbines should be relatively lower over flatter and less rugged areas and in habitat used during daytime soaring.

  19. Coupling Eco-Physiology and Shell Geochemistry of California Mussels: Carry-Over Effects of Larval Exposure to Upwelling and Relaxation Regimes

    NASA Astrophysics Data System (ADS)

    Rivest, E.; Hill, T. M.; Gaylord, B.; Sanford, E.; Fehrenbacher, J. S.; Russell, A. D.

    2016-02-01

    Laboratory studies have shown that environmental conditions experienced by marine invertebrate larvae can create long-lasting effects that shape the performance of juvenile and adult stages. In a naturally variable marine environment, establishing the link between the in situ environmental exposure of an animal and its physiological performance will enhance our predictions of the biological consequences of long-term anthropogenic change. However, in study systems such as zooplankton communities, it is often difficult to reconstruct the environmental conditions to which study organisms have been exposed. Here, we tested how differing histories of environmental exposure during the larval phase shape the subsequent performance of benthic Mytilus californianus mussel recruits. In particular, we reconstructed the in situ pH conditions experienced by mussels during planktonic dispersal by analyzing remnants of their larval shells for the composition of U/Ca, a recently developed biogeochemical proxy. Six cohorts of mussel recruits, each obtained from a two-week deployment of collectors in the intertidal zone at Bodega Marine Reserve, CA, were analyzed to assess rates of oxygen consumption, condition index, growth rate, and shell thickness. Metabolic rate was higher for recruits that arrived during periods of upwelling vs. those that arrived during conditions of relaxation or non-upwelling. However, other metrics of performance did not differ among these groups. We also correlated individual performance with pH exposure of the larval stage estimated from shell U/Ca. Future ocean acidification may intensify these biological responses to underlying variability in coastal ocean chemistry.

  20. Lead poisoning and the deceptive recovery of the critically endangered California condor

    PubMed Central

    Finkelstein, Myra E.; Doak, Daniel F.; George, Daniel; Burnett, Joe; Brandt, Joseph; Church, Molly; Grantham, Jesse; Smith, Donald R.

    2012-01-01

    Endangered species recovery programs seek to restore populations to self-sustaining levels. Nonetheless, many recovering species require continuing management to compensate for persistent threats in their environment. Judging true recovery in the face of this management is often difficult, impeding thorough analysis of the success of conservation programs. We illustrate these challenges with a multidisciplinary study of one of the world’s rarest birds—the California condor (Gymnogyps californianus). California condors were brought to the brink of extinction, in part, because of lead poisoning, and lead poisoning remains a significant threat today. We evaluated individual lead-related health effects, the efficacy of current efforts to prevent lead-caused deaths, and the consequences of any reduction in currently intensive management actions. Our results show that condors in California remain chronically exposed to harmful levels of lead; 30% of the annual blood samples collected from condors indicate lead exposure (blood lead ≥ 200 ng/mL) that causes significant subclinical health effects, measured as >60% inhibition of the heme biosynthetic enzyme δ-aminolevulinic acid dehydratase. Furthermore, each year, ∼20% of free-flying birds have blood lead levels (≥450 ng/mL) that indicate the need for clinical intervention to avert morbidity and mortality. Lead isotopic analysis shows that lead-based ammunition is the principle source of lead poisoning in condors. Finally, population models based on condor demographic data show that the condor’s apparent recovery is solely because of intensive ongoing management, with the only hope of achieving true recovery dependent on the elimination or substantial reduction of lead poisoning rates. PMID:22733770

  1. Functional impacts of ocean acidification in an ecologically critical foundation species.

    PubMed

    Gaylord, Brian; Hill, Tessa M; Sanford, Eric; Lenz, Elizabeth A; Jacobs, Lisa A; Sato, Kirk N; Russell, Ann D; Hettinger, Annaliese

    2011-08-01

    Anthropogenic CO(2) is reducing the pH and altering the carbonate chemistry of seawater, with repercussions for marine organisms and ecosystems. Current research suggests that calcification will decrease in many species, but compelling evidence of impaired functional performance of calcium carbonate structures is sparse, particularly in key species. Here we demonstrate that ocean acidification markedly degrades the mechanical integrity of larval shells in the mussel Mytilus californianus, a critical community member on rocky shores throughout the northeastern Pacific. Larvae cultured in seawater containing CO(2) concentrations expected by the year 2100 (540 or 970 ppm) precipitated weaker, thinner and smaller shells than individuals raised under present-day seawater conditions (380 ppm), and also exhibited lower tissue mass. Under a scenario where mussel larvae exposed to different CO(2) levels develop at similar rates, these trends suggest a suite of potential consequences, including an exacerbated vulnerability of new settlers to crushing and drilling attacks by predators; poorer larval condition, causing increased energetic stress during metamorphosis; and greater risks from desiccation at low tide due to shifts in shell area to body mass ratios. Under an alternative scenario where responses derive exclusively from slowed development, with impacted individuals reaching identical milestones in shell strength and size by settlement, a lengthened larval phase could increase exposure to high planktonic mortality rates. In either case, because early life stages operate as population bottlenecks, driving general patterns of distribution and abundance, the ecological success of this vital species may be tied to how ocean acidification proceeds in coming decades.

  2. Lead poisoning and the deceptive recovery of the critically endangered California condor.

    PubMed

    Finkelstein, Myra E; Doak, Daniel F; George, Daniel; Burnett, Joe; Brandt, Joseph; Church, Molly; Grantham, Jesse; Smith, Donald R

    2012-07-10

    Endangered species recovery programs seek to restore populations to self-sustaining levels. Nonetheless, many recovering species require continuing management to compensate for persistent threats in their environment. Judging true recovery in the face of this management is often difficult, impeding thorough analysis of the success of conservation programs. We illustrate these challenges with a multidisciplinary study of one of the world's rarest birds-the California condor (Gymnogyps californianus). California condors were brought to the brink of extinction, in part, because of lead poisoning, and lead poisoning remains a significant threat today. We evaluated individual lead-related health effects, the efficacy of current efforts to prevent lead-caused deaths, and the consequences of any reduction in currently intensive management actions. Our results show that condors in California remain chronically exposed to harmful levels of lead; 30% of the annual blood samples collected from condors indicate lead exposure (blood lead ≥ 200 ng/mL) that causes significant subclinical health effects, measured as >60% inhibition of the heme biosynthetic enzyme δ-aminolevulinic acid dehydratase. Furthermore, each year, ∼20% of free-flying birds have blood lead levels (≥450 ng/mL) that indicate the need for clinical intervention to avert morbidity and mortality. Lead isotopic analysis shows that lead-based ammunition is the principle source of lead poisoning in condors. Finally, population models based on condor demographic data show that the condor's apparent recovery is solely because of intensive ongoing management, with the only hope of achieving true recovery dependent on the elimination or substantial reduction of lead poisoning rates.

  3. Range use and movements of California condors

    USGS Publications Warehouse

    Meretsky, V.J.; Snyder, N.F.R.

    1992-01-01

    Between 1982 and 1987, photographic and telemetric tracking of California Condors (Gymnogyps californianus) yielded information on use of the last known range of the species by 23 individual birds. Except for yearlings, most and possibly all individuals in the population used all major foraging zones. Use of the foraging zones was not uniform among individuals, however. Breeding pairs tended to forage most frequently in zones close to their nests (usually within 70 km, occasionally as far away as 180 km). Immatures (at least older immatures), unpaired birds, and paired birds that were not breeding foraged more widely. Male and female adults used the foraging range in a similar manner. Although most portions of the foraging range received some condor use throughout the year, use varied seasonally in accord with recent and historical patterns of food availability. Nesting areas were separated from foraging zones and were visited much less freely than foraging zones. Paired birds tended strongly to visit only their own and immediately adjacent nesting areas. Their nesting areas remained stable over the years. Unpaired adults and immatures ranged more widely among nesting areas. Condors were sometimes documented flying more than 200 km and traversing the entire range of the species during a day. Birds were variably social in movements. Pair members tended to stay together during long-distance travels. Immatures and unpaired birds sometimes traveled with other condors but often moved singly. In years when the population still included many breeders, the largest observed aggregations included one-half to two-thirds of the total population. The comparative strengths and weaknesses of photographic and telemetric methods are described for tracking and other research endeavors.

  4. Proteins in Load-Bearing Junctions: The Histidine-Rich Metal-Binding Protein of Mussel Byssus†,‡

    PubMed Central

    Zhao, Hua; Waite, J. Herbert

    2007-01-01

    Building complex load-bearing scaffolds depends on effective ways of joining functionally different biomacromolecules. The junction between collagen fibers and foamlike adhesive plaques in mussel byssus is robust despite the strikingly dissimilar connected structures. mcfp-4, the matrix protein from this junction, and its presecreted form from the foot tissue of Mytilus californianus were isolated and characterized. mcfp-4 has a mass of ∼93 kDa as determined by MALDI-TOF mass spectrometry. Its composition is dominated by histidine (22 mol %), but levels of lysine, arginine, and aspartate are also significant. A small amount of 3,4-dihydroxyphenyl-L-alanine (2 mol %) can be detected by amino acid analysis and redox cycling assays. The cDNA-deduced sequence of mcfp-4 reveals multiple variants with highly repetitive internal structures, including ∼36 tandemly repeated His-rich decapeptides (e.g., HVHTHRVLHK) in the N-terminal half and 16 somewhat more degenerate aspartate-rich undecapeptides (e.g., DDHVNDIAQTA) in the C-terminal half. Incubation of a synthetic peptide based on the His-rich decapeptide with Fe3+, Co2+, Ni2+, Zn2+, and Cu2+ indicates that only Cu is strongly bound. MALDI-TOF mass spectrometry of the peptide modified with diethyl pyrocarbonate before and after Cu binding suggests that histidine residues dominate Cu binding. In contrast, the aspartate-rich undecapeptides preferentially bind Ca2+. mcfp-4 is strategically positioned to function as a macromolecular bifunctional linker by using metal ions to couple its own His-rich domains to the His-rich termini of the preCOLs. Ca2+ may mediate coupling of the C-terminus to other calcium-binding plaque proteins. PMID:17115717

  5. Using present-day observations to detect when anthropogenic change forces surface ocean carbonate chemistry outside preindustrial bounds

    NASA Astrophysics Data System (ADS)

    Sutton, Adrienne J.; Sabine, Christopher L.; Feely, Richard A.; Cai, Wei-Jun; Cronin, Meghan F.; McPhaden, Michael J.; Morell, Julio M.; Newton, Jan A.; Noh, Jae-Hoon; Ólafsdóttir, Sólveig R.; Salisbury, Joseph E.; Send, Uwe; Vandemark, Douglas C.; Weller, Robert A.

    2016-09-01

    One of the major challenges to assessing the impact of ocean acidification on marine life is detecting and interpreting long-term change in the context of natural variability. This study addresses this need through a global synthesis of monthly pH and aragonite saturation state (Ωarag) climatologies for 12 open ocean, coastal, and coral reef locations using 3-hourly moored observations of surface seawater partial pressure of CO2 and pH collected together since as early as 2010. Mooring observations suggest open ocean subtropical and subarctic sites experience present-day surface pH and Ωarag conditions outside the bounds of preindustrial variability throughout most, if not all, of the year. In general, coastal mooring sites experience more natural variability and thus, more overlap with preindustrial conditions; however, present-day Ωarag conditions surpass biologically relevant thresholds associated with ocean acidification impacts on Mytilus californianus (Ωarag < 1.8) and Crassostrea gigas (Ωarag < 2.0) larvae in the California Current Ecosystem (CCE) and Mya arenaria larvae in the Gulf of Maine (Ωarag < 1.6). At the most variable mooring locations in coastal systems of the CCE, subseasonal conditions approached Ωarag = 1. Global and regional models and data syntheses of ship-based observations tended to underestimate seasonal variability compared to mooring observations. Efforts such as this to characterize all patterns of pH and Ωarag variability and change at key locations are fundamental to assessing present-day biological impacts of ocean acidification, further improving experimental design to interrogate organism response under real-world conditions, and improving predictive models and vulnerability assessments seeking to quantify the broader impacts of ocean acidification.

  6. Physiologically grounded metrics of model skill: a case study estimating heat stress in intertidal populations

    PubMed Central

    Kish, Nicole E.; Helmuth, Brian; Wethey, David S.

    2016-01-01

    Models of ecological responses to climate change fundamentally assume that predictor variables, which are often measured at large scales, are to some degree diagnostic of the smaller-scale biological processes that ultimately drive patterns of abundance and distribution. Given that organisms respond physiologically to stressors, such as temperature, in highly non-linear ways, small modelling errors in predictor variables can potentially result in failures to predict mortality or severe stress, especially if an organism exists near its physiological limits. As a result, a central challenge facing ecologists, particularly those attempting to forecast future responses to environmental change, is how to develop metrics of forecast model skill (the ability of a model to predict defined events) that are biologically meaningful and reflective of underlying processes. We quantified the skill of four simple models of body temperature (a primary determinant of physiological stress) of an intertidal mussel, Mytilus californianus, using common metrics of model performance, such as root mean square error, as well as forecast verification skill scores developed by the meteorological community. We used a physiologically grounded framework to assess each model's ability to predict optimal, sub-optimal, sub-lethal and lethal physiological responses. Models diverged in their ability to predict different levels of physiological stress when evaluated using skill scores, even though common metrics, such as root mean square error, indicated similar accuracy overall. Results from this study emphasize the importance of grounding assessments of model skill in the context of an organism's physiology and, especially, of considering the implications of false-positive and false-negative errors when forecasting the ecological effects of environmental change. PMID:27729979

  7. Persistent free radical ESR signals in marine bivalve tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehlorn, R.J.; Mendez, A.T.; Higashi, R.

    1992-08-01

    Freeze-dried homogenates of the oyster Crassostrea rhizophorae collected from waters in Puerto Rico near urban and industrial sites as well as at relatively pristine locations yielded electron spin resonance (ESR) spectra characteristic of free radicals as well as spectral components of transition metal ions, dominated by manganese. The magnitudes of these ESR signals and the concentrations of trace elements (determined by X-ray fluorescence) varied considerably among oyster samples, masking any potential correlation with polluted waters. Laboratory studies were initiated to identify the factors controlling the magnitudes of the tissue free radical ESR signals. Another mollusc, Mytilus californianus collected at themore » Bodega Marine laboratory in northern California, was fractionated into goneds and remaining tissue. Freeze-dried homogenates of both fractions exhibited ESR signals that increased gradually with time. ESR signals were observed in freeze-dried perchloric acid (PCA) precipitates of the homogenates, delipidated PCA precipitates, and in chloroform extracts of these precipitates. Acid hydrolysis to degrade proteins to amino acids produced a residue, which yielded much larger ESR free radical signals after freeze-drying. Freshly thawed homogenates of Crassostrea rhizophorae also exhibited ESR signals. A laboratory model of copper stress in Crassostrea rhizophorae was developed to study the effect of this transition metal on dssue free radicals. Preliminary results suggested that sublethal copper exposure had little effect on tissue fire radicals, except possibly for a signal enhancement in an oyster fraction that was enriched in kidney granules. Since kidney granules are known to accumulate heavy metals in mussels and probably other marine bivalves, this signal enhancement may prove to be an indicator of free radical processes associated with heavy metal deposition in molluscs.« less

  8. Persistent free radical ESR signals in marine bivalve tissues. [Electron Spin Resonance (ESR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehlorn, R.J.; Mendez, A.T.; Higashi, R.

    1992-08-01

    Freeze-dried homogenates of the oyster Crassostrea rhizophorae collected from waters in Puerto Rico near urban and industrial sites as well as at relatively pristine locations yielded electron spin resonance (ESR) spectra characteristic of free radicals as well as spectral components of transition metal ions, dominated by manganese. The magnitudes of these ESR signals and the concentrations of trace elements (determined by X-ray fluorescence) varied considerably among oyster samples, masking any potential correlation with polluted waters. Laboratory studies were initiated to identify the factors controlling the magnitudes of the tissue free radical ESR signals. Another mollusc, Mytilus californianus collected at themore » Bodega Marine laboratory in northern California, was fractionated into goneds and remaining tissue. Freeze-dried homogenates of both fractions exhibited ESR signals that increased gradually with time. ESR signals were observed in freeze-dried perchloric acid (PCA) precipitates of the homogenates, delipidated PCA precipitates, and in chloroform extracts of these precipitates. Acid hydrolysis to degrade proteins to amino acids produced a residue, which yielded much larger ESR free radical signals after freeze-drying. Freshly thawed homogenates of Crassostrea rhizophorae also exhibited ESR signals. A laboratory model of copper stress in Crassostrea rhizophorae was developed to study the effect of this transition metal on dssue free radicals. Preliminary results suggested that sublethal copper exposure had little effect on tissue fire radicals, except possibly for a signal enhancement in an oyster fraction that was enriched in kidney granules. Since kidney granules are known to accumulate heavy metals in mussels and probably other marine bivalves, this signal enhancement may prove to be an indicator of free radical processes associated with heavy metal deposition in molluscs.« less

  9. Lack of observed movement response to lead exposure of California condors

    USGS Publications Warehouse

    Poessel, Sharon; Brandt, Joseph; Uyeda, Linda; Astell, Molly; Katzner, Todd E.

    2018-01-01

    Lead poisoning is an important conservation concern for wildlife, and scavenging birds are especially at risk from consumption of carcasses of animals killed with lead ammunition. Because current methods to identify lead exposure require animal capture and blood collection, management would benefit from the development of a less costly and noninvasive behavioral test for illness in wild animals. We attempted to design such a test to identify lead exposure in California condors (Gymnogyps californianus) that we tracked with global positioning system (GPS) telemetry in southern California, USA, 2013–2016. We measured blood-lead concentrations in tracked birds and expected that flight behavior would be influenced by lead exposure; thus, we measured the effect of blood-lead concentrations on 2 different types of movement rates and on the proportion of time condors spent in flight. We found no effect of lead exposure on any of these 3 behavioral metrics. Our work suggests that the measurements we took of flight behaviors were not a useful tool in predicting lead exposure in the mildly to moderately exposed birds we studied. Wild birds are effective at hiding illness, especially condors who have a strong social hierarchy in which showing weakness is a disadvantage. However, focusing on behaviors other than flight, expanding the sample studied to include birds with a wider range of lead concentration values, or analyzing tissues such as feathers (rather than, or in addition to, blood) may be more useful for identification of lead exposure and other diseases that may limit wildlife populations. © 2017 This article is a U.S. Government work and is in the public domain in the USA.

  10. Relationships between human disturbance and wildlife land use in urban habitat fragments.

    PubMed

    Markovchick-Nicholls, Lisa; Regan, Helen M; Deutschman, Douglas H; Widyanata, Astrid; Martin, Barry; Noreke, Lani; Hunt, Timothy Ann

    2008-02-01

    Habitat remnants in urbanized areas typically conserve biodiversity and serve the recreation and urban open-space needs of human populations. Nevertheless, these goals can be in conflict if human activity negatively affects wildlife. Hence, when considering habitat remnants as conservation refuges it is crucial to understand how human activities and land uses affect wildlife use of those and adjacent areas. We used tracking data (animal tracks and den or bed sites) on 10 animal species and information on human activity and environmental factors associated with anthropogenic disturbance in 12 habitat fragments across San Diego County, California, to examine the relationships among habitat fragment characteristics, human activity, and wildlife presence. There were no significant correlations of species presence and abundance with percent plant cover for all species or with different land-use intensities for all species, except the opossum (Didelphis virginiana), which preferred areas with intensive development. Woodrats (Neotoma spp.) and cougars (Puma concolor) were associated significantly and positively and significantly and negatively, respectively, with the presence and prominence of utilities. Woodrats were also negatively associated with the presence of horses. Raccoons (Procyon lotor) and coyotes (Canis latrans) were associated significantly and negatively and significantly and positively, respectively, with plant bulk and permanence. Cougars and gray foxes (Urocyon cinereoargenteus) were negatively associated with the presence of roads. Roadrunners (Geococcyx californianus) were positively associated with litter. The only species that had no significant correlations with any of the environmental variables were black-tailed jackrabbits (Lepus californicus) and mule deer (Odocoileus hemionus). Bobcat tracks were observed more often than gray foxes in the study area and bobcats correlated significantly only with water availability, contrasting with results from

  11. Linking cases of illegal shootings of the endangered California condor using stable lead isotope analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finkelstein, Myra E., E-mail: myraf@ucsc.edu; Kuspa, Zeka E.; Welch, Alacia

    Lead poisoning is preventing the recovery of the critically endangered California condor (Gymnogyps californianus) and lead isotope analyses have demonstrated that ingestion of spent lead ammunition is the principal source of lead poisoning in condors. Over an 8 month period in 2009, three lead-poisoned condors were independently presented with birdshot embedded in their tissues, evidencing they had been shot. No information connecting these illegal shooting events existed and the timing of the shooting(s) was unknown. Using lead concentration and stable lead isotope analyses of feathers, blood, and recovered birdshot, we observed that: i) lead isotope ratios of embedded shot frommore » all three birds were measurably indistinguishable from each other, suggesting a common source; ii) lead exposure histories re-constructed from feather analysis suggested that the shooting(s) occurred within the same timeframe; and iii) two of the three condors were lead poisoned from a lead source isotopically indistinguishable from the embedded birdshot, implicating ingestion of this type of birdshot as the source of poisoning. One of the condors was subsequently lead poisoned the following year from ingestion of a lead buckshot (blood lead 556 µg/dL), illustrating that ingested shot possess a substantially greater lead poisoning risk compared to embedded shot retained in tissue (blood lead ∼20 µg/dL). To our knowledge, this is the first study to use lead isotopes as a tool to retrospectively link wildlife shooting events. - Highlights: • We conducted a case-based analysis of illegal shootings of California condors. • Blood and feather Pb isotopes were used to reconstruct the illegal shooting events. • Embedded birdshot from the three condors had the same Pb isotope ratios. • Feather and blood Pb isotopes indicated that the condors were shot in a common event. • Ingested shot causes substantially greater lead exposure compared to embedded shot.« less

  12. Connectivity clues from short-term variability in settlement and geochemical tags of mytilid mussels

    NASA Astrophysics Data System (ADS)

    Fodrie, F. Joel; Becker, Bonnie J.; Levin, Lisa A.; Gruenthal, Kristen; McMillan, Pat A.

    2011-01-01

    The use of geochemical tags in calcified structures of fish and invertebrates is an exciting tool for investigating larval population connectivity. Tag evaluation over relatively short intervals (weeks) may detect environmental and ecological variability at a temporal scale highly relevant to larval transport and settlement. We collected newly settled mussels ( Mytilus californianus and M. galloprovincialis) weekly during winter/spring of 2002 along the coast of San Diego, CA, USA, at sites on the exposed coast (SIO) and in a protected coastal bay (HI), to investigate temporal patterns of geochemical tags in mussel shells. Analyses of post-settlement shell via LA-ICP-MS revealed statistically significant temporal variability for all elements we examined (Mg, Mn, Cu, Sr, Cd, Ba, Pb and U). Despite this, our ability to distinguish multielemental signatures between sites was largely conserved. Throughout our 13-week study, SIO and HI mussels could be chemically distinguished from one another in 78-87% of all cases. Settlement varied between 2 and 27 settlers gram-byssus -1 week -1 at SIO and HI, and both sites were characterized by 2-3 weeks with "high" settlement. Geochemical tags recorded in early larval shell of newly settled mussels differed between "high" and "low" settlement weeks at both sites (MANOVA), driven by Mg and Sr at SIO (p = 0.013) and Sr, Cd, Ba and Pb at HI (p < 0.001). These data imply that shifts in larval sources or transport corridors were responsible for observed settlement variation, rather than increased larval production. In particular, increased settlement at HI was observed concurrent with the appearance of geochemical tags (e.g., elevated Cd), suggesting that those larvae were retained in upwelled water near the mouth of the bay. Such shifts may reflect short-term changes in connectivity among sites due to altered transport corridors, and influence the demography of local populations.

  13. The Purisima Formation at Capitola Beach, Santa Cruz County, CA: A Deeper Examination of Pliocene Fossils

    NASA Astrophysics Data System (ADS)

    White, L. D.; Brooks, K.; Chen, R.; Chen, T.; James, T.; Gonzales, J.; Schumaker, D.; Williams, D.

    2005-12-01

    Fossil samples from the Pliocene Purisima Formation at Capitola Beach in Santa Cruz County, CA were collected in July-August 2005. The Purisima Formation composes the bulk of the cliffs exposed at Capitola Beach and a rich assemblage of well-preserved fossils occur in gray to brown sandstone and siltstone. Erosion of the cliff face averages 0.3 meter/year and fresh cliff falls in the winter and spring months of 2005 provided an excellent opportunity to resample the Capitola Beach section of the Purisima Formation previously documented by Perry (1988). Organisms were identified from information in Perry (1988) and were compared with collections at the California Academy of Sciences. The most abundant fossils found are from the phylum Mollusca, classes Bivalvia and Gastropoda. Abundant bivalve taxa are: Anadara trilineata, Clinocardium meekianum, Macoma sp., Protothaca staleyi, and Tresus pajaroanus. Also common are the gastropods, Calyptraea fastigata, Crepdiula princeps, Mitrella gausapata, Nassarius grammatus, Nassarius californianus, Natica clausa, and Olivella pedroana. Less common invertebrate fossils are from the phylum Echinodermata ( Dendraster sp., the extinct fossil sand dollar) and from the phylum Arthropoda ( Crustacea), crab fragments ( Cancer) and barnacles ( Balanus). Because numerous fossils are concentrated as fragments in shell beds, Norris (1986) and Perry (1988) believe many were redeposited as storm beds during strong current events that promoted rapid burial. In contrast, whale and other vertebrate bones are common in certain horizons and their presence may be related to the conditions that promoted phosphate mineralization, such as episodes of low sedimentation rates and prolonged exposure on the seafloor (Föllmi and Garrison, 1991). The bone beds, together with the rich infaunal and epifaunal invertebrate assemblages, represent a community of invertebrate organisms that thrived in a shallow marine sea during the Pliocene epoch, approximately

  14. Home range dynamics, habitat selection, and survival of Greater Roadrunners

    USGS Publications Warehouse

    Kelley, S.W.; Ransom, D.; Butcher, J.A.; Schulz, G.G.; Surber, B.W.; Pinchak, W.E.; Santamaria, C.A.; Hurtado, L.A.

    2011-01-01

    Greater Roadrunners (Geococcyx californianus) are common, poorly studied birds of arid and semi-arid ecosystems in the southwestern United States. Conservation of this avian predator requires a detailed understanding of their movements and spatial requirements that is currently lacking. From 2006 to 2009, we quantified home-range and core area sizes and overlap, habitat selection, and survival of roadrunners (N= 14 males and 20 females) in north-central Texas using radio-telemetry and fixed kernel estimators. Median home-range and core-area sizes were 90.4 ha and 19.2 ha for males and 80.1 ha and 16.7 ha for females, respectively. The size of home range and core areas did not differ significantly by either sex or season. Our home range estimates were twice as large (x??= 108.9 ha) as earlier published estimates based on visual observations (x??= 28-50 ha). Mean percent overlap was 38.4% for home ranges and 13.7% for core areas. Male roadrunners preferred mesquite woodland and mesquite savanna cover types, and avoided the grass-forb cover type. Female roadrunners preferred mesquite savanna and riparian woodland cover types, and avoided grass-forb habitat. Kaplan-Meier annual survival probabilities for females (0.452 ?? 0.118[SE]) were twice that estimated for males (0.210 ?? 0.108), but this difference was not significant. Mortality rates of male roadrunners were higher than those of females during the spring when males call from elevated perches, court females, and chase competing males. Current land use practices that target woody-shrub removal to enhance livestock forage production could be detrimental to roadrunner populations by reducing availability of mesquite woodland and mesquite savanna habitat required for nesting and roosting and increasing the amount of grass-forb habitat that roadrunners avoid. ??2011 The Authors. Journal of Field Ornithology ??2011 Association of Field Ornithologists.

  15. 76 FR 30309 - Marine Mammals; File No. 16087

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... authorizes taking marine mammals in California, Oregon, and Washington to investigate population status, health, demographic parameters, life history and foraging ecology of California sea lions (Zalophus...

  16. Effectiveness of action to reduce exposure of free-ranging California condors in Arizona and Utah to lead from spent ammunition.

    PubMed

    Green, Rhys E; Hunt, W Grainger; Parish, Christopher N; Newton, Ian

    2008-01-01

    California condors (Gymnogyps californianus) released into the wild in Arizona ranged widely in Arizona and Utah. Previous studies have shown that the blood lead concentrations of many of the birds rise because of ingestion of spent lead ammunition. Condors were routinely recaptured and treated to reduce their lead levels as necessary but, even so, several died from lead poisoning. We used tracking data from VHF and satellite tags, together with the results of routine testing of blood lead concentrations, to estimate daily changes in blood lead level in relation to the location of each bird. The mean daily increment in blood lead concentration depended upon both the location of the bird and the time of year. Birds that spent time during the deer hunting season in two areas in which deer were shot with lead ammunition (Kaibab Plateau (Arizona) and Zion (Utah)) were especially likely to have high blood lead levels. The influence upon blood lead level of presence in a particular area declined with time elapsed since the bird was last there. We estimated the daily blood lead level for each bird and its influence upon daily mortality rate from lead poisoning. Condors with high blood lead over a protracted period were much more likely to die than birds with low blood lead or short-term elevation. We simulated the effect of ending the existing lead exposure reduction measures at Kaibab Plateau, which encourage the voluntary use of non-lead ammunition and removal of gut piles of deer and elk killed using lead ammunition. The estimated mortality rate due to lead in the absence of this program was sufficiently high that the condor population would be expected to decline rapidly. The extension of the existing lead reduction program to cover Zion (Utah), as well as the Kaibab plateau, would be expected to reduce mortality caused by lead substantially and allow the condor population to increase.

  17. Effectiveness of Action to Reduce Exposure of Free-Ranging California Condors in Arizona and Utah to Lead from Spent Ammunition

    PubMed Central

    Green, Rhys E.; Hunt, W. Grainger; Parish, Christopher N.; Newton, Ian

    2008-01-01

    California condors (Gymnogyps californianus) released into the wild in Arizona ranged widely in Arizona and Utah. Previous studies have shown that the blood lead concentrations of many of the birds rise because of ingestion of spent lead ammunition. Condors were routinely recaptured and treated to reduce their lead levels as necessary but, even so, several died from lead poisoning. We used tracking data from VHF and satellite tags, together with the results of routine testing of blood lead concentrations, to estimate daily changes in blood lead level in relation to the location of each bird. The mean daily increment in blood lead concentration depended upon both the location of the bird and the time of year. Birds that spent time during the deer hunting season in two areas in which deer were shot with lead ammunition (Kaibab Plateau (Arizona) and Zion (Utah)) were especially likely to have high blood lead levels. The influence upon blood lead level of presence in a particular area declined with time elapsed since the bird was last there. We estimated the daily blood lead level for each bird and its influence upon daily mortality rate from lead poisoning. Condors with high blood lead over a protracted period were much more likely to die than birds with low blood lead or short-term elevation. We simulated the effect of ending the existing lead exposure reduction measures at Kaibab Plateau, which encourage the voluntary use of non-lead ammunition and removal of gut piles of deer and elk killed using lead ammunition. The estimated mortality rate due to lead in the absence of this program was sufficiently high that the condor population would be expected to decline rapidly. The extension of the existing lead reduction program to cover Zion (Utah), as well as the Kaibab plateau, would be expected to reduce mortality caused by lead substantially and allow the condor population to increase. PMID:19107211

  18. Ammunition is the principal source of lead accumulated by California condors re-introduced to the wild.

    PubMed

    Church, Molly E; Gwiazda, Roberto; Risebrough, Robert W; Sorenson, Kelly; Chamberlain, C Page; Farry, Sean; Heinrich, William; Rideout, Bruce A; Smith, Donald R

    2006-10-01

    The endangered California Condor (Gymnogyps californianus) was reduced to a total population of 22 birds by the end of 1982. Their captive-bred descendants are now being released back into the wild in California, Arizona, and Baja California, where monitoring indicates they may accumulate lead to toxic levels. Fragments of ammunition in the carcasses of game animals such as deer, elk, and feral pigs not retrieved by hunters or in gut piles left in the field have been considered a plausible source of the lead, though little direct evidence is available to support this hypothesis. Here, we measured lead concentrations and isotope ratios in blood from 18 condors living in the wild in central California, in 8 pre-release birds, and in diet and ammunition samples to determine the importance of ammunition as a source of exposure. Blood lead levels in pre-release condors were low (average 27.7 ng/mL, SD 4.9 ng/ mL) and isotopically similar to dietary and background environmental lead in California. In contrast, blood lead levels in free-flying condors were substantially higher (average 246 ng/mL, SD 229 ng/mL) with lead isotopic compositions that approached or matched those of the lead ammunition. A two-endmember mixing model defined by the background 207Pb/206Pb ratio of representative condor diet samples (0.8346) and the upper 207Pb/206Pb ratio of the ammunition samples (0.8184) was able to account for the blood lead isotopic compositions in 20 out of the 26 live condors sampled in this study (i.e., 77%). Finally, lead in tissues and in a serially sampled growing feather recovered postmortem from a lead-poisoned condor in Arizona evidence acute exposure from an isotopically distinct lead source. Together, these data indicate that incidental ingestion of ammunition in carcasses of animals killed by hunters is the principal source of elevated lead exposure that threatens the recovery in the wild of this endangered species.

  19. Compound-specific δ15N amino acid measurements in littoral mussels in the California upwelling ecosystem: a new approach to generating baseline δ15N Isoscapes for coastal ecosystems.

    PubMed

    Vokhshoori, Natasha L; McCarthy, Matthew D

    2014-01-01

    We explored δ(15)N compound-specific amino acid isotope data (CSI-AA) in filter-feeding intertidal mussels (Mytilus californianus) as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ(15)N gradients in the California Upwelling Ecosystem (CUE), determining bulk δ(15)N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ(15)N values showed a strong linear trend with latitude, increasing from North to South (from ∼ 7‰ to ∼ 12‰, R(2) = 0.759). In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ(15)N trend is therefore most consistent with a baseline δ(15)N gradient, likely due to the mixing of two source waters: low δ(15)N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC), with (15)N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ(15)N values of phenylalanine (δ(15)NPhe), the best AA proxy for baseline δ(15)N values. We hypothesize δ(15)N(Phe) values in intertidal mussels can approximate annual integrated δ(15)N values of coastal phytoplankton primary production. We therefore used δ(15)N(Phe) values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ(15)N values. We propose that δ(15)N(Phe) isoscapes derived from filter feeders can directly characterize baseline δ(15)N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives.

  20. Improve wildlife species tracking—Implementing an enhanced global positioning system data management system for California condors

    USGS Publications Warehouse

    Waltermire, Robert G.; Emmerich, Christopher U.; Mendenhall, Laura C.; Bohrer, Gil; Weinzierl, Rolf P.; McGann, Andrew J.; Lineback, Pat K.; Kern, Tim J.; Douglas, David C.

    2016-05-03

    U.S. Fish and Wildlife Service (USFWS) staff in the Pacific Southwest Region and at the Hopper Mountain National Wildlife Refuge Complex requested technical assistance to improve their global positioning system (GPS) data acquisition, management, and archive in support of the California Condor Recovery Program. The USFWS deployed and maintained GPS units on individual Gymnogyps californianus (California condor) in support of long-term research and daily operational monitoring and management of California condors. The U.S. Geological Survey (USGS) obtained funding through the Science Support Program to provide coordination among project participants, provide GPS Global System for Mobile Communication (GSM) transmitters for testing, and compare GSM/GPS with existing Argos satellite GPS technology. The USFWS staff worked with private companies to design, develop, and fit condors with GSM/GPS transmitters. The Movebank organization, an online database of animal tracking data, coordinated with each of these companies to automatically stream their GPS data into Movebank servers and coordinated with USFWS to improve Movebank software for managing transmitter data, including proofing/error checking of incoming GPS data. The USGS arranged to pull raw GPS data from Movebank into the USGS California Condor Management and Analysis Portal (CCMAP) (https://my.usgs.gov/ccmap) for production and dissemination of a daily map of condor movements including various automated alerts. Further, the USGS developed an automatic archiving system for pulling raw and proofed Movebank data into USGS ScienceBase to comply with the Federal Information Security Management Act of 2002. This improved data management system requires minimal manual intervention resulting in more efficient data flow from GPS data capture to archive status. As a result of the project’s success, Pinnacles National Park and the Ventana Wildlife Society California condor programs became partners and adopted the same

  1. Adult Pacific Lamprey Migration Behavior and Escapement in the Bonneville Reservoir and Lower Columbia River Monitored Using the Juvenile Salmonid Acoustic Telemetry System (JSATS), 2011

    DTIC Science & Technology

    2012-01-01

    sea lions (Zalophus californicus, Eumetopias jubatus) or white sturgeon (Acipenser transmontanus) in the tailrace, moved to spawning tributaries...and management of three parasitic lampreys of North America. Fisheries 35:580-594. Close, D. A., M. Fitzpatrick, and H. Li. 2002. The ecological

  2. Pinniped Hearing in Complex Acoustic Environments

    DTIC Science & Technology

    2013-09-30

    published] Mulsow, J. & Reichmuth, C. (2013). The binaural click-evoked auditory brainstem response of the California sea lion (Zalophus...California sea lion can keep the beat : Motor entrainment to rhythmic auditory stimuli in a non vocal mimic. Journal of Comparative Psychology, online first. [published

  3. Behavior and survival of Mytilus congeners following episodes of elevated body temperature in air and seawater.

    PubMed

    Dowd, W Wesley; Somero, George N

    2013-02-01

    Coping with environmental stress may involve combinations of behavioral and physiological responses. We examined potential interactions between adult mussels' simple behavioral repertoire - opening/closing of the shell valves - and thermal stress physiology in common-gardened individuals of three Mytilus congeners found on the West Coast of North America: two native species (M. californianus and M. trossulus) and one invasive species from the Mediterranean (M. galloprovincialis). We first continuously monitored valve behavior over three consecutive days on which body temperatures were gradually increased, either in air or in seawater. A temperature threshold effect was evident between 25 and 33°C in several behavioral measures. Mussels tended to spend much less time with the valves in a sealed position following exposure to 33°C body temperature, especially when exposed in air. This behavior could not be explained by decreases in adductor muscle glycogen (stores of this metabolic fuel actually increased in some scenarios), impacts of forced valve sealing on long-term survival (none observed in a second experiment), or loss of contractile function in the adductor muscles (individuals exhibited as many or more valve adduction movements following elevated body temperature compared with controls). We hypothesize that this reduced propensity to seal the valves following thermal extremes represents avoidance of hypoxia-reoxygenation cycles and concomitant oxidative stress. We further conjecture that prolonged valve gaping following episodes of elevated body temperature may have important ecological consequences by affecting species interactions. We then examined survival over a 90 day period following exposure to elevated body temperature and/or emersion, observing ongoing mortality throughout this monitoring period. Survival varied significantly among species (M. trossulus had the lowest survival) and among experimental contexts (survival was lowest after experiencing

  4. Viruses in Marine Animals: Discovery, Detection, and Characterization

    NASA Astrophysics Data System (ADS)

    Fahsbender, Elizabeth

    seals, viral metagenomics led to the discovery of 152 novel anellovirus genomes, encompassing two anellovirus species. Characterizing these viruses is important for understanding the prevalence and diversity of ssDNA viruses, which have only recently been described in marine animals. Furthermore, since emerging diseases can be caused by changing conditions affecting host susceptibility to a virus that was previously not related to disease (opportunistic pathogen), having baseline data allows for quick identification of the pathogen. In addition to determining baseline data, viral metagenomics can explore the role of viruses in disease. A novel virus, Asterias forbesi-associated circular virus (AfaCV), was discovered in the Atlantic sea star Asterias forbesi displaying symptoms of sea star wasting disease (SSWD). AfaCV was the first circular replicase-encoding ssDNA (CRESS-DNA) virus discovered in echinoderms, but it was only present in 10% of SSWD sea stars indicating it is not involved in the development of the disease. This dissertation also focuses on elucidating the role of two previously characterized viruses, chelonid fibropapillomatosis-associated herpesvirus (CHHV5; Chelonid herpesvirus 5, ChHV5) and Zalophus californianus anellovirus (ZcAV), in animal health. PCR amplicon sequencing was used to obtain large portions of the 132 kb genome of ChHV5, the putative etiological agent of the neoplastic sea turtle disease, fibropapillomatosis. Obtaining the genome of ChHV5 from Florida green, Kemp's ridley, and loggerhead sea turtles provides data for phylogenetic analysis across geographic locations and sea turtle species, as well as a reference for designing downstream molecular assays to examine viral latency. ZcAV was first described from the lungs of captive sea lions involved in a mortality event. PCR could not detect ZcAV in the blood of infected animals, and since sea lions are a protected species, it is not possible to obtain lung biopsies from live sea lions

  5. First report of parasites from pinnipeds in the Galapagos Islands, Ecuador, with a description of a new species of Philophthalmus (Digenea: Philophthalmidae).

    PubMed

    Dailey, M; Ellin, R; Parás, A

    2005-06-01

    A new species of digenetic trematode and 2 species of ectoparasites from Zalophus wollebaeki Silvertsen, 1953 (Carnivora: Otariidae) in the Galapagos Islands, Ecuador, are reported. These include an eye fluke of Philophthalmus Looss, 1899 (Echinostomata: Philophthalmidae) as well as, to our knowledge, the first report of Antarctophthirus microchir (Trouessart and Neumann, 1888) Enderlein, 1906 (Arthropoda: Anoplura) and Orthohalarachne diminuata (Doetschman, 1944) Newell, 1947 (Arthropoda: Acarina) from this host and location. Philophthalmus zalophi n. sp. differs from the 4 other marine species of Philophthalmus (P. andersoni Dronen and Penner, 1975; P. burrili Howell and Bearup, 1967; P. hegeneri Penner and Fried, 1963; and P. larsoni Penner and Trimble, 1970) by its mammalian host, large body size, lack of tegumental spines, posterior length of seminal vesicle, placement of genital pore, size ratio of oral sucker to acetabulum, shape and size of testes, and size ratio of ovary to testis.

  6. Divergent allele advantage at MHC-DRB through direct and maternal genotypic effects and its consequences for allele pool composition and mating

    PubMed Central

    Lenz, Tobias L.; Mueller, Birte; Trillmich, Fritz; Wolf, Jochen B. W.

    2013-01-01

    It is still debated whether main individual fitness differences in natural populations can be attributed to genome-wide effects or to particular loci of outstanding functional importance such as the major histocompatibility complex (MHC). In a long-term monitoring project on Galápagos sea lions (Zalophus wollebaeki), we collected comprehensive fitness and mating data for a total of 506 individuals. Controlling for genome-wide inbreeding, we find strong associations between the MHC locus and nearly all fitness traits. The effect was mainly attributable to MHC sequence divergence and could be decomposed into contributions of own and maternal genotypes. In consequence, the population seems to have evolved a pool of highly divergent alleles conveying near-optimal MHC divergence even by random mating. Our results demonstrate that a single locus can significantly contribute to fitness in the wild and provide conclusive evidence for the ‘divergent allele advantage’ hypothesis, a special form of balancing selection with interesting evolutionary implications. PMID:23677346

  7. Determination of paralytic shellfish toxins in shellfish by receptor binding assay: collaborative study.

    PubMed

    Van Dolah, Frances M; Fire, Spencer E; Leighfield, Tod A; Mikulski, Christina M; Doucette, Gregory J

    2012-01-01

    A collaborative study was conducted on a microplate format receptor binding assay (RBA) for paralytic e shellfish toxins (PST). The assay quantifies the composite PST toxicity in shellfish samples based on the ability of sample extracts to compete with (3)H saxitoxin (STX) diHCl for binding to voltage-gated sodium channels in a rat brain membrane preparation. Quantification of binding can be carried out using either a microplate or traditional scintillation counter; both end points were included in this study. Nine laboratories from six countries completed the study. One laboratory analyzed the samples using the precolumn oxidation HPLC method (AOAC Method 2005.06) to determine the STX congener composition. Three laboratories performed the mouse bioassay (AOAC Method 959.08). The study focused on the ability of the assay to measure the PST toxicity of samples below, near, or slightly above the regulatory limit of 800 (microg STX diHCl equiv./kg). A total of 21 shellfish homogenates were extracted in 0.1 M HCl, and the extracts were analyzed by RBA in three assays on separate days. Samples included naturally contaminated shellfish samples of different species collected from several geographic regions, which contained varying STX congener profiles due to their exposure to different PST-producing dinoflagellate species or differences in toxin metabolism: blue mussel (Mytilus edulis) from the U.S. east and west coasts, California mussel (Mytilus californianus) from the U.S. west coast, chorito mussel (Mytilus chiliensis) from Chile, green mussel (Perna canaliculus) from New Zealand, Atlantic surf clam (Spisula solidissima) from the U.S. east coast, butter clam (Saxidomus gigantea) from the west coast of the United States, almeja clam (Venus antiqua) from Chile, and Atlantic sea scallop (Plactopecten magellanicus) from the U.S. east coast. All samples were provided as whole animal homogenates, except Atlantic sea scallop and green mussel, from which only the

  8. Pacific Continental Shelf Environmental Assessment (PaCSEA): aerial seabird and marine mammal surveys off northern California, Oregon, and Washington, 2011-2012

    USGS Publications Warehouse

    Adams, Josh; Felis, Jonathan J.; Mason, John W.; Takekawa, John Y.

    2014-01-01

    (-2) and similar during winter (37.4 ± 4.6 birds km-2) and summer (37.5 ± 6.4 birds km-2). Within the outer-shelf domain (100 – 200-m depth), average densities for all marine birds combined were greatest during winter (34.6 ± 4.2 birds km-2), lesser during fall (16.2 ± 1.7 birds km-2), and least during summer (6.9 ± 1.1 birds km-2). Within the farthest offshore waters over the continental slope domain (200 – 2000-m depth) average densities for all marine birds combined were greatest during fall (10.0 ± 2.2 birds km-2) and winter (9.3 ± 1.5 birds km-2), and lesser during summer (6.2 ± 1.4 birds km-2). We observed 16 cetacean species and five pinniped species. Among the Mysticeti (baleen whales), humpback whales (Megaptera novaeangliae) were most frequently observed (114 sightings of 264 individuals) during summer and fall mostly over the outer-shelf and slope waters, however, individuals were also seen within the Siltcoos, Nehalem, Fort Bragg, and Eureka Focal Areas. We recorded 11 Odontoceti (toothed whale) species. Harbor porpoises (Phocoena phocoena) were the most frequently sighted (164 sightings of 270 individuals). Harbor porpoises were present year-round and most frequently sighted within the inner-shelf domain throughout the entire study area in all seasons. Harbor porpoises occurred in all six Focal Areas, with noteworthy aggregations within the Eureka, Siltcoos, and Grays Harbor Focal Areas. We recorded 246 sightings of 375 individual pinnipeds (5 species). California sea lions (Zalophus californianus) were the most frequently sighted and were present year-round with slightly more sightings recorded during the fall. California sea lions showed a decreasing frequency of sightings and relative abundance with distance from shore across the bathymetric domains surveyed, being most frequently observed over the inner-shelf. Northern elephant seals (Mirounga angustirostris), harbor seals (Phoca vitulina), and northern fur seals (Callorhinus ursinus) were

  9. Differences in foraging ecology align with genetically divergent ecotypes of a highly mobile marine top predator.

    PubMed

    Jeglinski, Jana W E; Wolf, Jochen B W; Werner, Christiane; Costa, Daniel P; Trillmich, Fritz

    2015-12-01

    Foraging differentiation within a species can contribute to restricted gene flow between ecologically different groups, promoting ecological speciation. Galapagos sea lions (Zalophus wollebaeki) show genetic and morphological divergence between the western and central archipelago, possibly as a result of an ecologically mediated contrast in the marine habitat. We use global positioning system (GPS) data, time-depth recordings (TDR), stable isotope and scat data to compare foraging habitat characteristics, diving behaviour and diet composition of Galapagos sea lions from a western and a central colony. We consider both juvenile and adult life stages to assess the potential role of ontogenetic shifts that can be crucial in shaping foraging behaviour and habitat choice for life. We found differences in foraging habitat use, foraging style and diet composition that aligned with genetic differentiation. These differences were consistent between juvenile and adult sea lions from the same colony, overriding age-specific behavioural differences. Our study contributes to an understanding of the complex interaction of ecological condition, plastic behavioural response and genetic make-up of interconnected populations.

  10. Applicability of Single-Camera Photogrammetry to Determine Body Dimensions of Pinnipeds: Galapagos Sea Lions as an Example

    PubMed Central

    Meise, Kristine; Mueller, Birte; Zein, Beate; Trillmich, Fritz

    2014-01-01

    Morphological features correlate with many life history traits and are therefore of high interest to behavioral and evolutionary biologists. Photogrammetry provides a useful tool to collect morphological data from species for which measurements are otherwise difficult to obtain. This method reduces disturbance and avoids capture stress. Using the Galapagos sea lion (Zalophus wollebaeki) as a model system, we tested the applicability of single-camera photogrammetry in combination with laser distance measurement to estimate morphological traits which may vary with an animal’s body position. We assessed whether linear morphological traits estimated by photogrammetry can be used to estimate body length and mass. We show that accurate estimates of body length (males: ±2.0%, females: ±2.6%) and reliable estimates of body mass are possible (males: ±6.8%, females: 14.5%). Furthermore, we developed correction factors that allow the use of animal photos that diverge somewhat from a flat-out position. The product of estimated body length and girth produced sufficiently reliable estimates of mass to categorize individuals into 10 kg-classes of body mass. Data of individuals repeatedly photographed within one season suggested relatively low measurement errors (body length: 2.9%, body mass: 8.1%). In order to develop accurate sex- and age-specific correction factors, a sufficient number of individuals from both sexes and from all desired age classes have to be captured for baseline measurements. Given proper validation, this method provides an excellent opportunity to collect morphological data for large numbers of individuals with minimal disturbance. PMID:24987983

  11. Applicability of single-camera photogrammetry to determine body dimensions of pinnipeds: Galapagos sea lions as an example.

    PubMed

    Meise, Kristine; Mueller, Birte; Zein, Beate; Trillmich, Fritz

    2014-01-01

    Morphological features correlate with many life history traits and are therefore of high interest to behavioral and evolutionary biologists. Photogrammetry provides a useful tool to collect morphological data from species for which measurements are otherwise difficult to obtain. This method reduces disturbance and avoids capture stress. Using the Galapagos sea lion (Zalophus wollebaeki) as a model system, we tested the applicability of single-camera photogrammetry in combination with laser distance measurement to estimate morphological traits which may vary with an animal's body position. We assessed whether linear morphological traits estimated by photogrammetry can be used to estimate body length and mass. We show that accurate estimates of body length (males: ±2.0%, females: ±2.6%) and reliable estimates of body mass are possible (males: ±6.8%, females: 14.5%). Furthermore, we developed correction factors that allow the use of animal photos that diverge somewhat from a flat-out position. The product of estimated body length and girth produced sufficiently reliable estimates of mass to categorize individuals into 10 kg-classes of body mass. Data of individuals repeatedly photographed within one season suggested relatively low measurement errors (body length: 2.9%, body mass: 8.1%). In order to develop accurate sex- and age-specific correction factors, a sufficient number of individuals from both sexes and from all desired age classes have to be captured for baseline measurements. Given proper validation, this method provides an excellent opportunity to collect morphological data for large numbers of individuals with minimal disturbance.

  12. Tracing early stages of species differentiation: Ecological, morphological and genetic divergence of Galápagos sea lion populations

    PubMed Central

    2008-01-01

    Background Oceans are high gene flow environments that are traditionally believed to hamper the build-up of genetic divergence. Despite this, divergence appears to occur occasionally at surprisingly small scales. The Galápagos archipelago provides an ideal opportunity to examine the evolutionary processes of local divergence in an isolated marine environment. Galápagos sea lions (Zalophus wollebaeki) are top predators in this unique setting and have an essentially unlimited dispersal capacity across the entire species range. In theory, this should oppose any genetic differentiation. Results We find significant ecological, morphological and genetic divergence between the western colonies and colonies from the central region of the archipelago that are exposed to different ecological conditions. Stable isotope analyses indicate that western animals use different food sources than those from the central area. This is likely due to niche partitioning with the second Galápagos eared seal species, the Galápagos fur seal (Arctocephalus galapagoensis) that exclusively dwells in the west. Stable isotope patterns correlate with significant differences in foraging-related skull morphology. Analyses of mitochondrial sequences as well as microsatellites reveal signs of initial genetic differentiation. Conclusion Our results suggest a key role of intra- as well as inter-specific niche segregation in the evolution of genetic structure among populations of a highly mobile species under conditions of free movement. Given the monophyletic arrival of the sea lions on the archipelago, our study challenges the view that geographical barriers are strictly needed for the build-up of genetic divergence. The study further raises the interesting prospect that in social, colonially breeding mammals additional forces, such as social structure or feeding traditions, might bear on the genetic partitioning of populations. PMID:18485220

  13. On the Challenge of Interpreting Census Data: Insights from a Study of an Endangered Pinniped

    PubMed Central

    Trillmich, Fritz; Meise, Kristine; Kalberer, Stephanie; Mueller, Birte; Piedrahita, Paolo; Pörschmann, Ulrich; Wolf, Jochen B. W.; Krüger, Oliver

    2016-01-01

    Population monitoring is vital for conservation and management. However, simple counts of animals can be misleading and this problem is exacerbated in seals (pinnipeds) where individuals spend much time foraging away from colonies. We analyzed a 13-year-series of census data of Galapagos sea lions (Zalophus wollebaeki) from the colony of Caamaño, an islet in the center of the Galapagos archipelago where a large proportion of animals was individually marked. Based on regular resighting efforts during the cold, reproductive (cold-R; August to January) and the warm, non-reproductive (warm-nR; February to May) season, we document changes in numbers for different sex and age classes. During the cold-R season the number of adults increased as the number of newborn pups increased. Numbers were larger in the morning and evening than around mid-day and not significantly influenced by tide levels. More adults frequented the colony during the warm-nR season than the cold-R season. Raw counts suggested a decline in numbers over the 13 years, but Lincoln-Petersen (LP-) estimates (assuming a closed population) did not support that conclusion. Raw counts and LP estimates were not significantly correlated, demonstrating the overwhelming importance of variability in attendance patterns of individuals. The probability of observing a given adult in the colony varied between 16% (mean for cold-R season) and 23% (warm-nR season) and may be much less for independent 2 to 4 year olds. Dependent juveniles (up to the age of about 2 years) are observed much more frequently ashore (35% during the cold-R and 50% during the warm-nR seasons). Simple counts underestimate real population size by a factor of 4–6 and may lead to erroneous conclusions about trends in population size. PMID:27148735

  14. Immune Activity, Body Condition and Human-Associated Environmental Impacts in a Wild Marine Mammal

    PubMed Central

    Brock, Patrick M.; Hall, Ailsa J.; Goodman, Simon J.; Cruz, Marilyn; Acevedo-Whitehouse, Karina

    2013-01-01

    Within individuals, immunity may compete with other life history traits for resources, such as energy and protein, and the damage caused by immunopathology can sometimes outweigh the protective benefits that immune responses confer. However, our understanding of the costs of immunity in the wild and how they relate to the myriad energetic demands on free-ranging organisms is limited. The endangered Galapagos sea lion (Zalophus wollebaeki) is threatened simultaneously by disease from domestic animals and rapid changes in food availability driven by unpredictable environmental variation. We made use of this unique ecology to investigate the relationship between changes in immune activity and changes in body condition. We found that during the first three months of life, changes in antibody concentration were negatively correlated with changes in mass per unit length, skinfold thickness and serum albumin concentration, but only in a sea lion colony exposed to anthropogenic environmental impacts. It has previously been shown that changes in antibody concentration during early Galapagos sea lion development were higher in a colony exposed to anthropogenic environmental impacts than in a control colony. This study allows for the possibility that these relatively large changes in antibody concentration are associated with negative impacts on fitness through an effect on body condition. Our findings suggest that energy availability and the degree of plasticity in immune investment may influence disease risk in natural populations synergistically, through a trade-off between investment in immunity and resistance to starvation. The relative benefits of such investments may change quickly and unpredictably, which allows for the possibility that individuals fine-tune their investment strategies in response to changes in environmental conditions. In addition, our results suggest that anthropogenic environmental impacts may impose subtle energetic costs on individuals, which

  15. Predictive equations for the estimation of body size in seals and sea lions (Carnivora: Pinnipedia)

    PubMed Central

    Churchill, Morgan; Clementz, Mark T; Kohno, Naoki

    2014-01-01

    Body size plays an important role in pinniped ecology and life history. However, body size data is often absent for historical, archaeological, and fossil specimens. To estimate the body size of pinnipeds (seals, sea lions, and walruses) for today and the past, we used 14 commonly preserved cranial measurements to develop sets of single variable and multivariate predictive equations for pinniped body mass and total length. Principal components analysis (PCA) was used to test whether separate family specific regressions were more appropriate than single predictive equations for Pinnipedia. The influence of phylogeny was tested with phylogenetic independent contrasts (PIC). The accuracy of these regressions was then assessed using a combination of coefficient of determination, percent prediction error, and standard error of estimation. Three different methods of multivariate analysis were examined: bidirectional stepwise model selection using Akaike information criteria; all-subsets model selection using Bayesian information criteria (BIC); and partial least squares regression. The PCA showed clear discrimination between Otariidae (fur seals and sea lions) and Phocidae (earless seals) for the 14 measurements, indicating the need for family-specific regression equations. The PIC analysis found that phylogeny had a minor influence on relationship between morphological variables and body size. The regressions for total length were more accurate than those for body mass, and equations specific to Otariidae were more accurate than those for Phocidae. Of the three multivariate methods, the all-subsets approach required the fewest number of variables to estimate body size accurately. We then used the single variable predictive equations and the all-subsets approach to estimate the body size of two recently extinct pinniped taxa, the Caribbean monk seal (Monachus tropicalis) and the Japanese sea lion (Zalophus japonicus). Body size estimates using single variable regressions

  16. Individual Foraging Strategies Reveal Niche Overlap between Endangered Galapagos Pinnipeds

    PubMed Central

    Villegas-Amtmann, Stella; Jeglinski, Jana W. E.; Costa, Daniel P.; Robinson, Patrick W.; Trillmich, Fritz

    2013-01-01

    Most competition studies between species are conducted from a population-level approach. Few studies have examined inter-specific competition in conjunction with intra-specific competition, with an individual-based approach. To our knowledge, none has been conducted on marine top predators. Sympatric Galapagos fur seals (Arctocephalus galapagoensis) and sea lions (Zalophus wollebaeki) share similar geographic habitats and potentially compete. We studied their foraging niche overlap at Cabo Douglas, Fernandina Island from simultaneously collected dive and movement data to examine spatial and temporal inter- and intra-specific competition. Sea lions exhibited 3 foraging strategies (shallow, intermediate and deep) indicating intra-specific competition. Fur seals exhibited one foraging strategy, diving predominantly at night, between 0–80 m depth and mostly at 19–22 h. Most sea lion dives also occurred at night (63%), between 0–40 m, within fur seals' diving depth range. 34% of sea lions night dives occurred at 19–22 h, when fur seals dived the most, but most of them occurred at dawn and dusk, when fur seals exhibited the least amount of dives. Fur seals and sea lions foraging behavior overlapped at 19 and 21 h between 0–30 m depths. Sea lions from the deep diving strategy exhibited the greatest foraging overlap with fur seals, in time (19 h), depth during overlapping time (21–24 m), and foraging range (37.7%). Fur seals foraging range was larger. Cabo Douglas northwest coastal area, region of highest diving density, is a foraging “hot spot” for both species. Fur seals and sea lions foraging niche overlap occurred, but segregation also occurred; fur seals primarily dived at night, while sea lions exhibited night and day diving. Both species exploited depths and areas exclusive to their species. Niche breadth generally increases with environmental uncertainty and decreased productivity. Potential competition between these species could be greater during