Sample records for zao ural turbine

  1. Using the CAE technologies of engineering analysis for designing steam turbines at ZAO Ural Turbine Works

    NASA Astrophysics Data System (ADS)

    Goloshumova, V. N.; Kortenko, V. V.; Pokhoriler, V. L.; Kultyshev, A. Yu.; Ivanovskii, A. A.

    2008-08-01

    We describe the experience ZAO Ural Turbine Works specialists gained from mastering the series of CAD/CAE/CAM/PDM technologies, which are modern software tools of computer-aided engineering. We also present the results obtained from mathematical simulation of the process through which high-and intermediate-pressure rotors are heated for revealing the most thermally stressed zones, as well as the results from mathematical simulation of a new design of turbine cylinder shells for improving the maneuverability of these turbines.

  2. Experience gained at the Ural Turbine Works with retrofitting steam turbine units for thermal power stations

    NASA Astrophysics Data System (ADS)

    Valamin, A. E.; Kultyshev, A. Yu.; Gol'dberg, A. A.; Shibaev, T. L.; Paneque Aguilera, H. C.

    2013-08-01

    Examples of projects on retrofitting, modernizing, and renovating steam turbine units at thermal power stations implemented with participation of the Ural Turbine Works are given. Advanced construction and layout solutions were used in implementing these projects both on the territory of Russia and abroad.

  3. Simultaneous determination of multiple active components in rat plasma using ultra-fast liquid chromatography with tandem mass spectrometry and application to a comparative pharmacokinetic study after oral administration of Suan-Zao-Ren decoction and Suan-Zao-Ren granule.

    PubMed

    Du, Yiyang; He, Bosai; Li, Qing; He, Jiao; Wang, Di; Bi, Kaishun

    2017-05-01

    Suan-Zao-Ren decoction has been used to treat insomnia for many years. In this work, a rapid and sensitive ultra-fast liquid chromatography with tandem mass spectrometry method was first developed and fully validated for the simultaneous quantification of seven main active components, spinosin, mangiferin, neomangiferin, ferulic acid, liquiritin, isoliquiritin, and liquiritin apioside in rat plasma. The method was also successfully applied to compare the pharmacokinetics of these active ingredients after oral administration of Suan-Zao-Ren decoction and Suan-Zao-Ren granule. The separation was achieved on a Venusil MP C 18 column and the detection was conducted by the multiple reaction monitoring mode using negative ion mode. Each calibration curve had good linearity over a wide concentration range. The precision of intra- and interday were all within 15%, and the extraction recoveries at different analyte concentrations were all above 82.0%. The established method was successfully applied to compare the pharmacokinetic profiles of the analytes between Suan-Zao-Ren decoction and Suan-Zao-Ren granule groups. The results indicated that all the analytes had similar mean concentration-time curves trend between two groups. No significant differences were observed in pharmacokinetic parameters of mangiferin, while the others had significant differences. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Experimental investigation on photoelectric properties of ZAO thin film deposited on flexible substrate by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hao, Ming; Liu, Kun; Liu, Xinghua; Wang, Dongyang; Ba, Dechun; Xie, Yuanhua; Du, Guangyu; Ba, Yaoshuai

    2016-12-01

    Transparent conductive ZAO (Zinc Aluminum Oxide) films on flexible substrates have a great potential for low-cost mass-production solar cells. ZAO thin films were achieved on flexible PET (polyethylene terephthalate) substrates by RF magnetron sputtering technology. The surface morphology and element content, the transmittance and the sheet resistance of the films were measured to determine the optical process parameters. The results show that the ZAO thin film shows the best parameters in terms of photoelectric performance including sputtering power, working pressure, sputtering time, substrate temperature (100 W, 1.5 Pa, 60 min, 125 °C). The sheet resistance of 510 Ω and transmittance in visible region of 92% were obtained after characterization. Surface morphology was uniform and compact with a good crystal grain.

  5. Ural Mountains, Russia

    NASA Image and Video Library

    2015-10-06

    This image from NASA Terra spacecraft shows the Ural Mountains, which run 2500 km north-south through western Russia, and form the boundary between Europe and Asia. Since the 17th century, the mountains were exploited for their deposits of iron, copper, gold, coal, oil, mica and gemstones. The Urals are among the world's oldest existing mountain ranges, having been formed about 275 million years ago due to the collision of the Laurussia supercontinent with the continent of Kazakhstania. The image was acquired July 13, 2011, covers an area of 39 by 62 km, and is located near 65.5 degrees north, 59.9 degrees east. http://photojournal.jpl.nasa.gov/catalog/PIA19795

  6. Audio-frequency magnetotelluric, and total magnetic intensity observations in 2014-2016, at Zao volcano, NE Japan

    NASA Astrophysics Data System (ADS)

    Ichiki, M.; Moriyama, T.; Kaida, T.; Kanda, W.; Demachi, T.; Hirahara, S.; Miura, S.; Nakayama, T.; Ogawa, Y.; Seki, K.; Akutagawa, M.; Ushioda, M.; Kobayashi, T.; Uyeshima, M.; Yamamoto, M.; Matsu'ura, S.; Omori, S.; Ono, K.; Seki, S.

    2017-12-01

    Zao volcano is situated at a distance of about 40 km SW from Sendai in NE Japan. There exists the crater lake, Okama, with about 360 m diameter and about 30 m depth, in the summit area. The seismicity of the low frequency earthquakes deeper than 20 km depth beneath Zao volcano has turned active since middle of 2012. We have also observed shallow (˜5 km) volcanic earthquakes beneath Zao volcano in 2013 to 2017. In the historical records, fumaroles, degassing and phreato-magmatic eruptions occurred close to Okama in 1867 to 1943. Since 1940, fumaroles have observed in about 1 to 1.5 km NE of Okama. Subsurface hydrotherm distribution and geotherm variation are the key feature to forecast future phreatic or phreato-magmatic eruption. In this presentation, we report electrical resistivity distribution and demagnetized region beneath Zao volcano.We observed total magnetic intensity variation of a demagnetized spatial pattern between June and October in 2014. To model a demagnetized region, we carried out a global optimized inversion of grid search assuming ellipsoidal shape and 5 A/m demagnetization intensity. The estimated demagnetized body located in 800 m northeastern side of the center of Okama, and the top surface is 330 m depth. The principal axis length is 500, 425, 190 m, respectively. The demagnetized region locates at the middle points between the recent fumarole region and Okama.AMT data were acquired at 24 sites in the area of 2 km by 2 km. The observation sites do not cover over the demagnetized region described above. We obtained the AMT response of 10 kHz to 0.1 Hz and calculated a 3-D electrical conductivity model beneath around Okama. The conductor (1-30 Ohm-m) is embedded in 200-600 m depth beneath Okama and the lateral dimension is up to 400 m. The conductor is isolated and neither expands in deeper parts nor tends to elongate to the demagnetized region. We interpret the conductor as a hydrothermal alteration zone of the past volcanic activities

  7. URSEIS peeks under Urals for mountain-building clues

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    Just three weeks out of the field, a team of geologists, geophysicists, and seismologists from four nations announced on December 11 that they have used seismic reflection techniques to see what appears to be the base of the lithosphere beneath Russia's Ural Mountains. Working on Project URSEIS Urals Reflection Seismic Experiment and Integrated Studies), the team of scientists from Spain, Germany, Russia, and the United States has produced a seismic profile of the southern Urals extending as far as 150-185 km beneath the Earth's skin. The group presented its preliminary findings at the AGU Fall Meeting in San Francisco.

  8. The Chelyabinsk Meteorite Hits an Anomalous Zone in the Urals

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2013-09-01

    The Chelyabinsk meteorite is "strange" because it hits an area in the Urals where anomalous events are observed: shining skies, light balls, UFOs, electrphonic bolids. The area tectonically occurs at the intersection of two fold belts: Urals and Timan.

  9. Improving Energy Efficiency of Buildings in the Urals

    NASA Astrophysics Data System (ADS)

    Kiyanets, A. V.

    2017-11-01

    The article is devoted to the results of studies of energy efficiency improvements of the buildings which are constructed under the climatic conditions of the Ural Federal District of the Russian Federation. The relevance of the stated problem is corroborated. The requirements of the existing regulatory legal acts of the Russian Federation on energy conservation and energy efficiency in construction are given. The article specifies that energy efficiency in construction refers to a set of measures aimed at the reduction of energy resources which are consumed by buildings and are necessary to maintain the required microclimate parameters indoors. The main modern measures for improving the energy efficiency of buildings are presented, and their application under the climatic conditions of the Urals are analyzed and calculated. Each of the proposed methods is evaluated. Basing on the research results, it is concluded that most of the currently known measures for improving the energy efficiency of buildings are significantly limited in the Ural Federal District due to the small economic effect connected with the complexity and high cost of their implementation and operation, the peculiarities of climatic conditions and the conditions of the population density of the territories or significant ineffectiveness of the measures themselves; the most promising measures for improving the energy efficiency of buildings under the climatic and economic conditions of the Urals are the measures for reducing heat loss through the building envelopes (for improving the heat-insulation characteristics of the applied materials and structures).

  10. [Hygienic evaluation of transboundary pollution of the Ural River basin].

    PubMed

    Iskakov, A Zh; Lestsova, N A; Zasorin, B V; Boev, M V

    2009-01-01

    The anthropogenic pollution of the Ural River and its tributaries is the most important problem of the Ural-Caspian basin. Transboundary inflow from Kazakhstan to Russian is 30.9 km3/year. The border Ilek river pollution was hygienically evaluated and the contribution of pollution sources was ascertained, with the seasonal variations and hydrochemical background being kept in mind, from 2002 to 2007. The monitoring data on the content of priority pollutants of the surface waters of the basin of the Ilek River, a tributary of the Ural River, which come from the Republic of Kazakhstan, are given. Semiquantitative spectral estimation and the atomic absorption method were used to study the chemical composition of bottom sediments in the Ilek River and its tributaries. The magnitude and sources of influence of man-caused pollution on the quality of the river water were established.

  11. Treeline advances along the Urals mountain range - driven by improved winter conditions?

    PubMed

    Hagedorn, Frank; Shiyatov, Stepan G; Mazepa, Valeriy S; Devi, Nadezhda M; Grigor'ev, Andrey A; Bartysh, Alexandr A; Fomin, Valeriy V; Kapralov, Denis S; Terent'ev, Maxim; Bugman, Harald; Rigling, Andreas; Moiseev, Pavel A

    2014-11-01

    High-altitude treelines are temperature-limited vegetation boundaries, but little quantitative evidence exists about the impact of climate change on treelines in untouched areas of Russia. Here, we estimated how forest-tundra ecotones have changed during the last century along the Ural mountains. In the South, North, Sub-Polar, and Polar Urals, we compared 450 historical and recent photographs and determined the ages of 11,100 trees along 16 altitudinal gradients. In these four regions, boundaries of open and closed forests (crown covers above 20% and 40%) expanded upwards by 4 to 8 m in altitude per decade. Results strongly suggest that snow was an important driver for these forest advances: (i) Winter precipitation has increased substantially throughout the Urals (~7 mm decade(-1) ), which corresponds to almost a doubling in the Polar Urals, while summer temperatures have only changed slightly (~0.05°C decade(-1) ). (ii) There was a positive correlation between canopy cover, snow height and soil temperatures, suggesting that an increasing canopy cover promotes snow accumulation and, hence, a more favorable microclimate. (iii) Tree age analysis showed that forest expansion mainly began around the year 1900 on concave wind-sheltered slopes with thick snow covers, while it started in the 1950s and 1970s on slopes with shallower snow covers. (iv) During the 20th century, dominant growth forms of trees have changed from multistemmed trees, resulting from harsh winter conditions, to single-stemmed trees. While 87%, 31%, and 93% of stems appearing before 1950 were from multistemmed trees in the South, North and Polar Urals, more than 95% of the younger trees had a single stem. Currently, there is a high density of seedlings and saplings in the forest-tundra ecotone, indicating that forest expansion is ongoing and that alpine tundra vegetation will disappear from most mountains of the South and North Urals where treeline is already close to the highest peaks. © 2014

  12. Observation of Snow cover glide on Sub-Alpine Coniferous Forests in Mount Zao, Northeastern Japan

    NASA Astrophysics Data System (ADS)

    Sasaki, A.; Suzuki, K.

    2017-12-01

    This is the study to clarify the snow cover glide behavior in the sub-alpine coniferous forests on Mount Zao, Northeastern Japan, in the winter of 2014-2015. We installed the glide-meter which is sled type, and measured the glide motion on the slope of Abies mariesii forest and its surrounding slope. In addition, we observed the air temperature, snow depth, density of snow, and snow temperature to discuss relationship between weather conditions and glide occurrence. The snow cover of the 2014-15 winter started on November 13th and disappeared on April 21st. The maximum snow depth was 242 cm thick, it was recorded at February 1st. The snow cover glide in the surrounding slope was occurred first at February 10th, although maximum snow depth recorded on February 1st. The glide motion in the surrounding slope is continuing and its velocity was 0.4 cm per day. The glide in the surrounding slope stopped at March 16th. The cumulative amount of the glide was 21.1 cm. The snow cover glide in the A. mariesii forest was even later occurred first at February 21st. The glide motion of it was intermittent and extremely small. On sub-alpine zone of Mount Zao, snow cover glide intensity is estimated to be 289 kg/m2 on March when snow water equivalent is maximum. At same period, maximum snow cover glide intensity is estimated to be about 1000 kg/m2 at very steep slopes where the slope angle is about 35 degree. Although potential of snow cover glide is enough high, the snow cover glide is suppressed by stem of A. mariesii trees, in the sub-alpine coniferous forest.

  13. The Ural-Herirud transcontinental postcollisional strike-slip fault and its role in the formation of the Earth's crust

    NASA Astrophysics Data System (ADS)

    Leonov, Yu. G.; Volozh, Yu. A.; Antipov, M. P.; Kheraskova, T. N.

    2015-11-01

    The paper considers the morphology, deep structure, and geodynamic features of the Ural-Herirud postorogenic strike-slip fault (UH fault), along which the Moho (the "M") shifts along the entire axial zone of the Ural Orogen, then further to the south across the Scythian-Turan Plate to the Herirud sublatitudinal fault in Afghanistan. The postcollisional character of dextral displacements along the Ural-Herirud fault and its Triassic-Jurassic age are proven. We have estimated the scale of displacements and made an attempt to make a paleoreconstruction, illustrating the relationship between the Variscides of the Urals and the Tien Shan before tectonic displacements. The analysis of new data includes the latest generation of 1: 200000 geological maps and the regional seismic profiling data obtained in the most elevated part of the Urals (from the seismic profile of the Middle Urals in the north to the Uralseis seismic profile in the south), as well as within the sedimentary cover of the Turan Plate, from Mugodzhary to the southern boundaries of the former water area of the Aral Sea. General typomorphic signs of transcontinental strike-slip fault systems are considered and the structural model of the Ural-Herirud postcollisional strike-slip fault is presented.

  14. [Gypsy moth Lymantria dispar L. in the South Urals: Patterns in population dynamics and modelling].

    PubMed

    Soukhovolsky, V G; Ponomarev, V I; Sokolov, G I; Tarasova, O V; Krasnoperova, P A

    2015-01-01

    The analysis is conducted on population dynamics of gypsy moth from different habitats of the South Urals. The pattern of cyclic changes in population density is examined, the assessment of temporal conjugation in time series of gypsy moth population dynamics from separate habitats of the South Urals is carried out, the relationships between population density and weather conditions are studied. Based on the results obtained, a statistical model of gypsy moth population dynamics in the South Urals is designed, and estimations are given of regulatory and modifying factors effects on the population dynamics.

  15. Estimation of food consumption from pellets cast by captive Ural Owls (Strix uralensis)

    Treesearch

    Aki Higuchi; Manabu T. Abe

    1997-01-01

    There is considerable data in the literature on the diet of the Ural Owl (Strix uralensis) based on pellet analysis. Though it is possible to identify prey items by this method, the volume of food consumption is still unknown. The population of Ural Owls in Japan is declining due to the reduction of old-growth forest and the concurrent loss of...

  16. Identification and analysis of chemical constituents and rat serum metabolites in Suan-Zao-Ren granule using ultra high performance liquid chromatography quadrupole time-of-flight mass spectrometry combined with multiple data processing approaches.

    PubMed

    Du, Yiyang; He, Bosai; Li, Qing; He, Jiao; Wang, Di; Bi, Kaishun

    2017-07-01

    Suan-Zao-Ren granule is widely used to treat insomnia in China. However, because of the complexity and diversity of the chemical compositions in traditional Chinese medicine formula, the comprehensive analysis of constituents in vitro and in vivo is rather difficult. In our study, an ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry and the PeakView® software, which uses multiple data processing approaches including product ion filter, neutral loss filter, and mass defect filter, method was developed to characterize the ingredients and rat serum metabolites in Suan-Zao-Ren granule. A total of 101 constituents were detected in vitro. Under the same analysis conditions, 68 constituents were characterized in rat serum, including 35 prototype components and 33 metabolites. The metabolic pathways of main components were also illustrated. Among them, the metabolic pathways of timosaponin AI were firstly revealed. The bioactive compounds mainly underwent the phase I metabolic pathways including hydroxylation, oxidation, hydrolysis, and phase II metabolic pathways including sulfate conjugation, glucuronide conjugation, cysteine conjugation, acetycysteine conjugation, and glutathione conjugation. In conclusion, our results showed that this analysis approach was extremely useful for the in-depth pharmacological research of Suan-Zao-Ren granule and provided a chemical basis for its rational. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ordovician volcanic and plutonic complexes of the Sakmara allochthon in the southern Urals

    NASA Astrophysics Data System (ADS)

    Ryazantsev, A. V.; Tolmacheva, T. Yu.

    2016-11-01

    The Ordovician terrigenous, volcanic-sedimentary and volcanic sequences that formed in rifts of the active continental margin and igneous complexes of intraoceanic suprasubduction settings structurally related to ophiolites are closely spaced in allochthons of the Sakmara Zone in the southern Urals. The stratigraphic relationships of the Ordovician sequences have been established. Their age and facies features have been specified on the basis of biostratigraphic and geochronological data. The gabbro-tonalite-trondhjemite complex and the basalt-andesite-rhyolite sequence with massive sulfide mineralization make up a volcanic-plutonic association. These rock complexes vary in age from Late Ordovician to Early Silurian in certain structural units of the Sakmara Allochthon and to the east in the southern Urals. The proposed geodynamic model for the Ordovician in Paleozoides of the southern Urals reconstructs the active continental margin, whose complexes formed under extension settings, and the intraoceanic suprasubduction structures. The intraoceanic complexes display the evolution of a volcanic arc, back-, or interarc trough.

  18. Modern Church Construction in Urals. Problems and Prospects

    NASA Astrophysics Data System (ADS)

    Surin, D. N.; Tereshina, O. B.

    2017-11-01

    The article analyzes the problems of the modern Orthodox church architecture in Russia, special attention is paid to the problems of the Ural region. It justifies the importance of addressing to this issue connected with the Orthodox traditions revival in Russia over the last decades and the need to compensate for tens of thousands of the churches destroyed in the Soviet period. The works on the theory and history of the Russian architecture and art, studies of the architectural heritage and the art of building of the Ural craftsmen are used as a scientific and methodological base for the church architecture development. The article discloses the historically formed architectural features of the Russian Orthodox churches the artistic image of which is designed to create a certain religious and aesthetic experience. It is stated that the restoration of the Russian church construction tradition is possible on the background of architectural heritage. It sets the tendencies and vital tasks in church construction and outlines a complex of measures to solve these tasks at the public and regional levels.

  19. Substantiation of the cogeneration turbine unit selection for reconstruction of power units with a T-250/300-23.5 turbine

    NASA Astrophysics Data System (ADS)

    Valamin, A. E.; Kultyshev, A. Yu.; Shibaev, T. L.; Gol'dberg, A. A.; Sakhnin, Yu. A.; Stepanov, M. Yu.; Bilan, V. N.; Kadkina, I. V.

    2016-11-01

    The selection of a cogeneration steam turbine unit (STU) for the reconstruction of power units with a T-250/300-23.5 turbine is substantiated by the example of power unit no. 9 at the cogeneration power station no. 22 (TETs-22) of Mosenergo Company. Series T-250 steam turbines have been developed for combined heat and power generation. A total of 31 turbines were manufactured. By the end of 2015, the total operation time of prototype power units with the T-250/300-23.5 turbine exceeded 290000 hours. Considering the expiry of the service life, the decision was made that the reconstruction of the power unit at st. no. 9 of TETs-22 should be the first priority. The main issues that arose in developing this project—the customer's requirements and the request for the reconstruction, the view on certain problems of Ural Turbine Works (UTZ) as the manufacturer of the main power unit equipment, and the opinions of other project parties—are examined. The decisions were made with account taken of the experience in operation of all Series T-250 turbines and the results of long-term discussions of pressing problems at scientific and technical councils, meetings, and negotiations. For the new power unit, the following parameters have been set: a live steam pressure of 23.5 MPa and live steam/reheat temperature of 565/565°C. Considering that the boiler equipment will be upgraded, the live steam flow is increased up to 1030 t/h. The reconstruction activities involving the replacement of the existing turbine with a new one will yield a service life of 250000 hours for turbine parts exposed to a temperature of 450°C or higher and 200000 hours for pipeline components. Hence, the decision has been made to reuse the arrangement of the existing turbine: a four-cylinder turbine unit comprising a high-pressure cylinder (HPC), two intermediate pressure cylinders (IPC-1 & 2), and a low-pressure cylinder (LPC). The flow path in the new turbine will have active blading in LPC and IPC-1

  20. Petroleum geology and resources of the Volga-Ural province, U.S.S.R.

    USGS Publications Warehouse

    Peterson, James A.; Clarke, James W.

    1983-01-01

    The Volga-Ural petroleum province is, in general, coincident with the Volga-Ural regional high, a broad upwarp of the east-central part of the Russian (East European) Platform. The central part of the province is occupied by the Tatar arch, which contains the major share of the oilfields of the province. The Komi-Perm arch forms the northeastern part of the regional high, and the Zhigulevsko-Pugachev and Orenburg arches make up the southern part. These arches are separated from one another by elongate downwarps. The platform cover overlies an Archean crystalline basement and consists of seven main sedimentation cycles. (1) Riphean (lower Bavly) continental sandstone, shale, and conglomerate beds, from 500 to 5,000 m thick, were deposited in aulacogens. (2) Vendian (upper Bavly) continental and marine shale and sandstone are up to 3,000 m thick. (3) Middle Devonian-Tournaisian transgressive deposits, which are sandstone, siltstone, and shale in the lower part and carbonates and abundant reefs in the upper part, range from 300 to 1,000 m in thickness. The upper carbonate part includes the Kamsko-Kinel trough system, which consists of narrow, interconnected, deepwater troughs. (4) The Visean-Namurian-Bashkirian cycle began with deposition of Visean clastic deposits, which draped over reefs of the previous cycle and filled in an erosional relief that had formed in some places on the sediments of the previous cycle. The Visean clastic deposits are overlain by marine carbonate beds. The cycle is from 50 to 800 m thick. (5) The lower Moscovian-Lower Permian cycle consists of 1,000 to 3,000 m of terrigenous clastic deposits and marine carbonate beds. (6) The upper Lower Permian-Upper Permian cycle reflects the maximum growth of the Ural Mountains and the associated Ural foredeep. Evaporite deposits were first laid down, followed by marine limestones and dolomites, which intertongue eastward with clastic sediments from the Ural Mountains. (7) Continental red beds of

  1. Ankaramite: A New Type of High-Magnesium and High-Calcium Primitive Melt in the Magnitogorsk Island-Arc Zone (Southern Urals)

    NASA Astrophysics Data System (ADS)

    Pushkarev, E. V.; Ryazancev, A. V.; Gottman, I. A.; Degtyarev, K. E.; Kamenetsky, V. S.

    2018-04-01

    This work describes the geological position, mineral and chemical composition of high-Mg effusive ankaramites occurring as dykes and lava flows. They were found in the mélange zone of the western margin of the Magnitogorsk island arc zone in the Southern Urals. Data on the liquidus association of phenocrysts and on the composition of the matrix of effusives are given. According to the data obtained, the conclusion was drawn that the ankaramites studied can be attributed to the primary island arc melts, which were not subject to essential differentiation. This type of effusives has not been distinguished previously among island arc volcanogenic formations of the Urals. It is shown that ankaramites can be considered to be primary melts parental for dunite-clinopyroxenites-gabbro complexes of Ural-Alaskan type. The occurrence of ankaramites in the Paleozoic island arc formations of the Urals indicates the wehrlite composition of the mantle as the reason for the extremely wide development of wehrlites and clinopyroxenites in different mafic-ultramafic complexes of the Urals.

  2. Natural and anthropogenic influences on depositional architecture of the Ural Delta, Kazakhstan, northern Caspian Sea, during the past 70 years

    NASA Astrophysics Data System (ADS)

    Scarelli, Frederico M.; Cantelli, Luigi; Barboza, Eduardo G.; Gabbianelli, Giovanni

    2017-05-01

    This paper focuses on the Ural Delta in the northern zone of the Caspian Sea, an area with particular characteristics, where intense influence from anthropogenic and natural factors exists, which acts on the fragile delta system. We built a database to integrate the data from the published sources, bathymetric survey, and recent images in the geographical information system (GIS) environment. The results were linked to the Caspian Sea level (CSL) curve, which had many variations, changing the Ural Delta system's dynamics and in its architecture. In addition, the anthropogenic changes contribute to shaping the actual Ural Delta architecture. Through the link between the results and CSL, we reconstructed an evolution model for the Ural Delta system for the last century and identified three different architectures for the Ural Delta, determined by the energy that acted on the system in the last century and by the anthropogenic changes. This work identifies six different delta phases, which are shaped by CSL changes during the last 70 years and by anthropogenic changes. The delta phases recognized are: i) a Lobate Delta phase, shaped during high CSL before 1935; ii) Natural Elongate Delta 1935-1950 formed during rapid CSL fall; iii) Anthropogenic Elongate Delta 1950-1966, formed during rapid CSL fall and after the Ural-Caspian Sea canal construction, which modified the sedimentary deposition on the delta; iv) Anthropogenic Elongate Delta 1966-1982 shaped during low CSL phase; v) Anthropogenic Elongate Delta 1982-1996 formed during a rapid CSL rise phase; and vi) Anthropogenic Elongate Delta 1996-2009 shaped during high CSL that represent the last phase and actual Ural Delta architecture.

  3. Assessment of Inhalation Risk to Public Health in the Southern Ural

    NASA Astrophysics Data System (ADS)

    Ulrikh, D. V.; Ivanova, S. V.; Riabchikova, I. A.

    2017-11-01

    A large number of iron and steel companies in the Southern Ural cause severe air pollution in the towns of Karabash (Chelyabinsk region), Sibay (Republic of Bashkortostan), Gai (Orenburg region). The article aims to assess the inhalation effects of hazardous substances on the Southern Ural population. The analysis focused on cancer and non-cancer risks to public health that arise from the surface air pollution caused by the metallurgical industry emissions. The assessment was carried out on the basis of methodological guidelines R 2.1.10.1920-04 using modern sanitary and hygienic standards. We analysed the level of ambient air pollution in the impact area of the metallurgical industry of Karabash, Sibay and Gai over the past eleven years. We established that the ambient air of all the studied towns contain carcinogenic substances that cause unacceptable cancer risks. Formaldehyde has the main share in this risk. We calculated the hazard quotients HQ for the identified priority pollutants and the total hazard indices HI. It is shown that the non-cancer inhalation risk to the Southern Ural population exceeds the safe level manyfold. Sulfur dioxide has the main share in this risk. The conducted assessment showed that in 2006-2016, there was a continuous inhalation exposure of the population to hazardous substances. Sanitary and technological solutions that will allow a reduction of risk to acceptable values are required.

  4. Structural evolution of the Ural-Tian Shan junction: A view from Karatau ridge, South Kazakhstan

    NASA Astrophysics Data System (ADS)

    Alexeiev, Dmitriy V.; Cook, Harry E.; Buvtyshkin, Vasiliy M.; Golub, Lyudmila Y.

    2009-02-01

    The deformation history of the Late Palaeozoic Ural-Tian Shan junction is discussed for the example of the Karatau ridge in southern Kazakhstan. Three deformation events are recognized. The Late Carboniferous D1 event is characterized by Laramide-style thrust-and-fold structures on the southern margin of Kazakhstan with shortening in a NE-SW direction. The Latest Permian and Triassic D2 event is controlled by compression in an east-west direction, which reflects collisional deformation in the Urals. The main structures are submeridional folds and north-west-striking sinistral strike-slip faults. The Triassic D3 event with shortening in a north-south direction reflects collision of the Turan microcontinent against the southern margin of Kazakhstan. The main structures are north-west-striking dextral strike-slip faults. Our new data provides important clues for the reconstruction of pre-Cretaceous structures between the Urals and the Tian Shan.

  5. Geology of the Volga-Ural petroleum province and detailed description of the Ramashkino and Arlan oil fields

    USGS Publications Warehouse

    Peterson, James A.; Clarke, James W.

    1983-01-01

    The Volga-Ural petroleum province is in general coincident with the Volga-Ural regional high, a broad upwarp of the east-central part of the Russian (East European) platform. The central part of the province is occupied by the Tatar arch, which contains the major share of the oil fields of the province. The Perm-Bashkir arch forms the northeastern part of the regional high, and the Zhigulevsko-Orenburg arch makes up the southern part. These arches are separated from one another by elongate downwarps. The platform cover overlies an Archean crystalline basement and consists of seven main sedimentation cycles as follows: 1) Riphean (lower Bavly) continental sandstone, shale, and conglomerate beds from 500 to 5,000 m thick deposited in aulacogens. 2) Vendian (upper Bavly) continental and marine shale and sandstone up to 3,000 m thick. 3) Middle Devonian-Tournaisian transgressive deposits, which are sandstone, siltstone, and shale in the lower part and carbonates with abundant reefs in the upper; thickness is 300-1,000 m. In the upper carbonate part is the Kamsko-Kinel trough system, which consists of narrow interconnected deep-water troughs. 4) The Visean-Namurian-Bashkirian cycle, which began with deposition of Visean clastics that draped over reefs of the previous cycle and filled in an erosional relief that had formed in some places on the sediments of the previous cycle. The Visean clastics are overlain by marine carbonates. Thickness of the cycle is 50-800 m. 5) Early Moscovian-Early Permian terrigenous clastic deposits and marine carbonate beds 1,000-3,000 m thick. 6) The late Early Permian-Late Permian cycle, which reflects maximum growth of the Ural Mountains and associated Ural foredeep. Evaporites were first deposited, then marine limestones and dolomites, which intertongue eastward with clastic sediments from the Ural Mountains. 7) Continental redbeds of Triassic age and mixed continental and marine elastic beds of Jurassic and Cretaceous age, which were

  6. The Hirnantian δ13C Positive Excursion in the Nabiullino Section (South Urals)

    NASA Astrophysics Data System (ADS)

    Yakupov, R. R.; Mavrinskaya, T. M.; Smoleva, I. V.

    2018-02-01

    The upper Sandbian, Katian, and Hirnantian complexes of conodonts in the upper Ordovician section of the western slope of the Southern Urals near the village of Nabiullino were studied. The δ13C positive excursion with a maximum of 3.3‰ associated with the global Hirnantian isotopic event, HICE, was fixed for the first time. This excursion shows the beginning of the Hirnantian stage in the terrigenous-carbonate section of the upper Ordovician in the Southern Urals. It coincides with the first occurrence of the Hirnantian conodont species of Gamachignathus ensifer and the conodonts of shallow-water biophacies, Aphelognathus-Ozarkodina, reflecting the global glacio-eustatic event.

  7. Structural evolution of the Ural-Tian Shan junction: A view from Karatau ridge, South Kazakhstan

    USGS Publications Warehouse

    Alexeiev, D.V.; Cook, H.E.; Buvtyshkin, V.M.; Golub, L.Y.

    2009-01-01

    The deformation history of the Late Palaeozoic Ural-Tian Shan junction is discussed for the example of the Karatau ridge in southern Kazakhstan. Three deformation events are recognized. The Late Carboniferous D1 event is characterized by Laramide-style thrust-and-fold structures on the southern margin of Kazakhstan with shortening in a NE-SW direction. The Latest Permian and Triassic D2 event is controlled by compression in an east-west direction, which reflects collisional deformation in the Urals. The main structures are submeridional folds and north-west-striking sinistral strike-slip faults. The Triassic D3 event with shortening in a north-south direction reflects collision of the Turan microcontinent against the southern margin of Kazakhstan. The main structures are north-west-striking dextral strike-slip faults. Our new data provides important clues for the reconstruction of pre-Cretaceous structures between the Urals and the Tian Shan. ?? 2008 Acad??mie des sciences.

  8. Renewable Energy Sources in Formation of South Urals Modern Urban Systems

    NASA Astrophysics Data System (ADS)

    Khudyakov, A. Ju; Shabiev, S. G.

    2017-11-01

    The article considers the vital problems of renewable energy sources using by the example of the South Urals as a part of a general energy system of the Russian Federation, makes a forecast and gives recommendations on the application of specific technologies: solar energy, wind energy, deep heat energy and geothermal energy. It also considers the influence of the climatology on selection of the development pattern for the alternative energy industry. The article contains an example of wind energy used as a driver of the Karabash company town development in the Chelyabinsk region. The development of the economic energy sector is extremely important for the Russian Federation, both from the point of view of strategic security and from the point of view of integration into a modern development on the principles of Sustainable Development. To provide a full understanding of the role of alternative energy in the energy sector of the country, the article presents the materials illustrating the regional potential in terms of alternative energy sources use. This article is a part of the global research on the settlement system evolution in the South Urals. The authors studied the historical, geographical, demographic, economic characteristics of the region. Finally, a forecast for development at the regional level was made. Some of the aforementioned results were obtained due to the testing research in the learning process of the students from the South Ural State University (national research university).

  9. International Field School on Permafrost, Polar Urals, 2012

    NASA Astrophysics Data System (ADS)

    Streletskiy, D. A.; Grebenets, V.; Ivanov, M.; Sheinkman, V.; Shiklomanov, N. I.; Shmelev, D.

    2012-12-01

    The international field school on permafrost was held in the Polar Urals region from June, 30 to July 9, 2012 right after the Tenth International Conference on Permafrost which was held in Salekhard, Russia. The travel and accommodation support generously provided by government of Yamal-Nenets Autonomous Region allowed participation of 150 permafrost young research scientists, out of which 35 students from seven countries participated in the field school. The field school was organized under umbrella of International Permafrost Association and Permafrost Young Research Network. The students represented diverse educational backgrounds including hydrologists, engineers, geologists, soil scientists, geocryologists, glaciologists and geomorphologists. The base school camp was located near the Harp settlement in the vicinity of Polar Urals foothills. This unique location presented an opportunity to study a diversity of cryogenic processes and permafrost conditions characteristic for mountain and plain regions as well as transition between glacial and periglacial environments. A series of excursions was organized according to the following topics: structural geology of the Polar Urals and West Siberian Plain (Chromite mine "Centralnaya" and Core Storage in Labitnangy city); quaternary geomorphology (investigation of moraine complexes and glacial conditions of Ronamantikov and Topographov glaciers); principles of construction and maintains of structures built on permafrost (Labitnangy city and Obskaya-Bovanenkovo Railroad); methods of temperature and active-layer monitoring in tundra and forest-tundra; cryosols and soil formation in diverse landscape condition; periglacial geomorphology; types of ground ice, etc. Every evening students and professors gave a series of presentations on climate, vegetation, hydrology, soil conditions, permafrost and cryogenic processes of the region as well as on history, economic development, endogenous population of the Siberia and the

  10. Climate change-driven treeline advances in the Urals alter soil microbial communities

    NASA Astrophysics Data System (ADS)

    Djukic, Ika; Moiseev, Pavel; Hagedorn, Frank

    2016-04-01

    Climatic warming may affect microbial communities and their functions either directly through increased temperatures or indirectly by changes in vegetation. Treelines are temperature-limited vegetation boundaries from tundra to forests. In unmanaged regions of the Ural mountains, there is evidence that the forest-tundra ecotone has shifted upward in response to climate warming during the 20th century. Little is known about the effects of the treeline advances on the microbial structure and function and hence they feedbacks on the belowground carbon and nitrogen cycling In our study, we aimed to estimate how ongoing upward shifts of the treeline ecotone might affect soil biodiversity and its function and hence soil carbon (C) and nitrogen (N) dynamics in the Southern and Polar Ural mountains. Along altitudinal gradients reaching from the tundra to forests, we determined the soil microbial community composition (using Phospholipid Fatty Acids method) and quantified the activity of several extracellular enzymes involved in the C and nutrient cycling. In addition, we measured C pools in biomass and soils and quantified C and N mineralization. The results for the top soils, both in South Urals and in the Polar Ural, indicate a close link between climate change driven vegetation changes and soil microbial communities. The observed changes in microbial structure are induced through the resulting more favorable conditions than due to a shift in litter quality. The activities of chitinase were significantly higher under trees than under herbaceous plants, while activities of cellulase and protease declined with altitude from the tundra to the closed forest. In contrast to enzymatic activities, soil carbon stocks did not change significantly with altitude very likely as a result of a balancing out of increased C inputs from vegetation by an enhanced C output through mineralization with forest expansion. The accelerated organic matter turnover in the forest than in the tundra

  11. The Astronomical Instruments from the Tomb of Xiahou Zao (? - 165BCE) Revisited

    NASA Astrophysics Data System (ADS)

    Shi, Yunli

    2012-09-01

    In 1977, archaeologists unearthed a piece of lacquerware from the tomb of Xiahou Zao (?--165BCE), the 2nd Marquis of Ruyin of the Western Han dynasty (206BCE--24ACE). It has been named ``A Lacquerware Article of Unkown Name" for no one understands its function. Our analysis shows that the article is actually a gnomon for the determination of 4 major seasons in ancient Chinese calendar, viz. Spring Equinox, Summer Solstice, Autumn Equinox and Winter Solstice, and the size and function of the article coincide quite well with those of the ``Earth Gnomon-Scale" as described in the Rites of Zhou, a Confucian Classic appeared in the middle of the 2nd century BCE. This is the earliest example of its kind that we have hitherto seen in a complete form. Moreover, the "Disks with 28 Lunar Lodges" from the same tomb have caused a lasting dispute over their possible function. While some scholars believe it to be a pure astrological instrument, others guess that it was an instrument for the measurement of celestial coordinates. Our analysis shows that, with the so-called ``Supporting Frame for the Cosmic Boards" unearthed from the same tomb, the disks can actually be mounted onto the plane of the celestial equator and thus form the earliest and definitely dated example of an equatorial device for astronomical observation that still can be seen in the world.

  12. Traditional Chinese medicine compound ShengJinRunZaoYangXue granules for treatment of primary Sjögren's syndrome: a randomized, double-blind, placebo-controlled clinical trial.

    PubMed

    Hu, Wei; Qian, Xian; Guo, Feng; Zhang, Miaojia; Lyu, Chengyin; Tao, Juan; Gao, Zhong'en; Zhou, Zhengqiu

    2014-01-01

    Traditional Chinese medical treatment of primary Sjögren's syndrome has advantages over Western medicine in terms of fewer side effects and improved patient conditions. This study was a multicenter, randomized, double-blind, placebo-controlled clinical trial of the efficacy and safety of ShengJinRunZaoYangXue granules for the treatment of primary Sjögren's syndrome, including the symptoms of dry mouth and dry eye. We undertook a 6-week, double-blind, randomized trial involving 240 patients with primary Sjögren's syndrome at five centers in East China. A computer-generated randomization schedule assigned patients at a 2:1 ratio to receive either ShengJinRunZaoYangXue granules or placebo once daily. Patients and investigators were blinded to treatment allocation. The primary endpoints were the salivary flow rate, Schirmer test results, and sugar test results. Intention-to-treat and per-protocol analyses were performed. All 240 patients were randomly allocated to either the treatment group (n = 160, ShengJinRunZaoYangXue granules) or placebo group (n = 80) and were included in the intention-to-treat analysis. After program violation and loss to follow-up, a total of 199 patients were included in the per-protocol analysis. At six week, intention-to-treat and per-protocol analyses of the left-eye Schirmer I test results showed an improved difference of 1.36 mm/5 min (95% CI: 0.03 to 2.69 mm/5 min) and 1.35 mm/5 min (95% CI: 0.04 to 2.73 mm/5 min), respectively, and those of the right-eye Schirmer I test results showed an improved difference of 1.12 mm/5 min (95% CI: 0.02 to 2.22 mm/5 min) and 1.12 mm/5 min (95% CI: -0.02 to 2.27 mm/5 min), respectively. There was no significant difference between the two groups before treatment. After treatment, the between-group and within-group before-and-after paired comparison results were statistically significant (P < 0.05). Intention-to-treat and per-protocol analyses showed an improved salivary flow rate by 0.04 ml/15 min (95

  13. Quintinite-1 M from the Mariinsky Deposit, Ural Emerald Mines, Central Urals, Russia

    NASA Astrophysics Data System (ADS)

    Zhitova, E. S.; Popov, M. P.; Krivovichev, S. V.; Zaitsev, A. N.; Vlasenko, N. S.

    2017-12-01

    The paper describes the first finding of quintinite [Mg4Al2(OH)12][(CO3)(H2O)3] at the Mariinsky deposit in the Central Urals, Russia. The mineral occurs as white tabular crystals in cavities within altered gabbro in association with prehnite, calcite, and a chlorite-group mineral. Quintinite is the probable result of late hydrothermal alteration of primary mafic and ultramafic rocks hosting emerald-bearing glimmerite. According to electron microprobe data, the Mg: Al ratio is 2: 1. IR spectroscopy has revealed hydroxyl and carbonate groups and H2O molecules in the mineral. According to single crystal XRD data, quintinite is monoclinic, space group C2/ m, a =5.233(1), b = 9.051(2), c = 7.711(2) Å, β = 103.09(3)°, V = 355.7(2) Å3. Based on structure refinement, the polytype of quintinite should be denoted as 1M. This is the third approved occurrence of quintinite-1M in the world after the Kovdor complex and Bazhenovsky chrysotile-asbestos deposit.

  14. The reconstruction of Lymantria dispar outbreaks by dendrochronological methods in the South Urals

    Treesearch

    Sergei Kucherov

    1991-01-01

    Interest in investigating the influence of extreme ecological factors on the radial growth of oak (Quercus robur L.) is bound up with oak dieback in the South Urals during the last decade. Factors contributing to this problem in the study area are hard winter frosts, late spring frosts, and Lymantria dispar L. outbreaks. To...

  15. Developing the mechatronics and robotics at Nizhny Tagil Technological Institute of Ural Federal University

    NASA Astrophysics Data System (ADS)

    Goman, V. V.; Fedoreev, S. A.

    2018-02-01

    This report concerns the development trends of education in the field of the Mechatronics and Robotics at Nizhny Tagil Technological Institute (branch of Ural Federal University). The paper considers new teaching technologies, experience in upgrade of the laboratory facilities and some results of development Mechatronics and Robotics educational courses.

  16. [Genetic structure of people from the Volga-Ural region and Central Asia from data of Alu-polymorphism].

    PubMed

    Khusainova, R I; Akhmetova, V L; Kutuev, I A; Salimova, A Z; Korshunova, T Iu; Lebedev, Iu B; Khusnutdinova, E K

    2004-04-01

    Nine Alu loci (Ya5NBC5, Ya5NBC27, Ya5NBC148, Ya5NBC182, YA5NBC361, ACE, ApoA1, PV92, TPA25) were analyzed in six ethnic populations (Trans-Ural Bashkirs, Tatars-Mishars, Mordovians-Moksha, Mountain Maris, Udmurts, and Komi-Permyaks) of the Volga-Ural region and in three Central Asian populations (Uzbeks, Kazakhs, and Uigurs). All Alu insertions analyzed appeared to be polymorphic in all populations examined. The frequency of insertion varied from 0.110 in Mountain Maris at the Ya5NBC5 locus to 0.914 in Tatars at the ApoA1 locus. The data on the allele frequency distribution at nine loci point to the existence of substantial genetic diversity in the populations examined. The value of the observed heterozygosity averaged over nine Alu insertions varied from 0.326 in Mountain Maris to 0.445 in Kazakhs and Uigurs. The level of the interpopulation genetic differences for the Volga-Ural population (Fst = 0.061) was higher than for the populations of Central Asia (Fst = 0.024), Europe (Fst = 0.02), and Southeastern Asia (Fst = 0.018). The populations examined were highly differentiated both in respect of linguistic characteristics and the geographical position. The data obtained confirmed the effectiveness of the marker system used for the assessment of genetic differentiation and the relationships between the ethnic groups.

  17. Geochemistry of Thorium and Uranium in Soils of the Southern Urals

    NASA Astrophysics Data System (ADS)

    Asylbaev, I. G.; Khabirov, I. K.; Gabbasova, I. M.; Rafikov, B. V.; Lukmanov, N. A.

    2017-12-01

    Specific features of the horizontal and vertical distribution of uranium and thorium in soils and parent materials of the Southern Urals within the Bashkortostan Republic have been studied with the use of mass spectrometry with inductively coupled plasma. The dependence of distribution patterns of these elements on the local environmental conditions is shown. A scale for soil evaluation according to the concentrations of uranium and thorium (mg/kg) is suggested: the low level, up to 3; medium, up to 9; high, up to 15; and very high, above 15 mg/kg. On the basis of to this scale, the ecological state of the soils is evaluated, and the schematic geochemical map of the region is compiled. The territory of Bashkortostan is subdivided into two parts according to the contents of radioactive elements in soils: the western part with distinct accumulation of uranium and the eastern part with predominant thorium accumulation. This finding supports the charriage (thrust fault) nature of the fault zone of the Southern Urals. The vertical distribution patterns of uranium and thorium in soils of the region are of the same character. The dependence between the contents of these two elements and rare-earth elements has been established. The results of this study are applied for assessing the ecological state of soils in the region.

  18. Results of in vivo measurements of strontium-90 body-burden in Urals residents: analyses of data obtained 2006-2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolstykh, E. I.; Bougrov, N. G.; Krivoshchapov, Victor A.

    2012-06-01

    A part of the Urals territory was contaminated with 90Sr and 137Cs in the 1950s as a result of accidents at the "Mayak" Production Association. The paper describes the analysis of in vivo 90Sr measurements in Urals residents. The measurements were performed with the use of whole-body-counter SICH-9.1M in 2006-2012. Totally 5840 measurements for 4876 persons were performed from 2006 to 2012; maximal measured value was 24 kBq. Earlier, similar measurements were performed with SICH-9.1 (1974-1997). Comparison of the results obtained with SICH-9.1 and SICH-9.1M has shown a good agreement of the two data sets.

  19. Magnetic Characterization of Proposed Tektite-like Objects (Urengoites, South-Ural Glass) from Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Bezaeva, N. S.; Rochette, P.; Masaitis, V. L.; Badyukov, D. D.; Kosterov, A.

    2017-12-01

    Urengoites and South-Ural glass are proposed `tektite-like' objects from Western Siberia (Russia), previously described in [1-3]. Urengoites (U-1, U-2, U-3; 24 Ma [1]) were discovered near the West-Siberian town of Novy Urengoi [1-2]. Total recovered mass: 21.65 g. The only recovered South-Ural glass A-1 was found near Magnitogorsk ( 90 g) [3]. In spite of previous works [1-3], the magnetic properties of urengoites and South-Ural glass remain unknown. Here we present a comprehensive magnetic characterization for all three currently known urengoite specimens and the only discovered South-Ural glass. Rock magnetic investigations revealed the presence of ferrimagnetic minerals in all samples. Low-temperature magnetometry (ZFC-FC dataset) points out to magnetite, which was detected in the most magnetic urengoite sample (U-3) via its characteristic Verwey transition at 120K (<1 ppm). Contrary to previous investigations [2], we could measure NRM for all samples and acquire alternating field demagnetization spectra for the biggest samples (U-1 and A-1). The following SIRM values were recorded: 4.33 μAm2/kg (U-1). 13.20 μAm2/kg (U-2), 62.40 μAm2/kg (U-3) and 9.36 μAm2/kg (A-1). The obtained χ0 values for all four samples (U-1 to U-3: from 9.98 to 19.90·10-9 m3/kg; A-1: 4.66·10-9 m3/kg) are close to those for Libyan glassed (see Table 1 in [4]). Anisotropy of magnetic susceptibility (AMS) measurements for A-1 sample revealed 28% of anisotropy. SIRM values and non-isotropic susceptibility demonstrate a composite ferrimagnetic and paramagnetic origin of susceptibility. U-1 and A-1 do not demonstrate any field nor frequency dependence of χ0, which likely indicates the absence of superparamagnetic grains of nanometric size. Acknowledgements: The work is supported by Act 211 Government of the Russian Federation, agreement № 02.A03.21.0006 and is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University. This research has

  20. Upper Permian vertebrates and their sedimentological context in the South Urals, Russia

    NASA Astrophysics Data System (ADS)

    Tverdokhlebov, Valentin P.; Tverdokhlebova, Galina I.; Minikh, Alla V.; Surkov, Mikhail V.; Benton, Michael J.

    2005-02-01

    Fossil fishes and tetrapods (amphibians and reptiles) have been discovered at 81 localities in the Upper Permian of the Southern Urals area of European Russia. The first sites were found in the 1940s, and subsequent surveys have revealed many more. Broad-scale stratigraphic schemes have been published, but full documentation of the rich tetrapod faunas has not been presented before. The area of richest deposits covers some 900,000 km 2 of territory between Samara on the River Volga in the NW, and Orenburg and Sakmara in the SW. A continental succession, some 3 km thick, of mudstones, siltstones, and sandstones, deposited on mudflats and in small rivers flowing off the Ural Mountain chain, span the last two stages of the Permian (Kazanian, Tatarian). The succession is divided into seven successive units of Kazanian (Kalinovskaya, Osinovskaya, and Belebey svitas, in succession) and Tatarian age, which is further subdivided into the early Tatatian Urzhumian Gorizont (Bolshekinelskaya and Amanakskaya svitas, in succession), and the late Tatarian Severodvinian (Vyazovskaya and Malokinelskaya svitas, of equivalent age) and Vyatkian gorizonts (Kulchumovskaya and Kutulukskaya svitas, of equivalent age). This succession documents major climatic changes, with increasing aridity through the Late Permian. The climate changes are manifested in changing sedimentation and the spread of dryland plants, and peak aridity was achieved right at the Permo-Triassic (PTr) boundary, coincident with global warming. Uplift of the Urals and extinction of land plants led to stripping of soils and massive run-off from the mountains; these phenomena have been identified at the PTr boundary elsewhere (South Africa, Australia) and this may be a key part of the end-Permian mass extinction. The succession of Late Permian fish and tetrapod faunas in Russia documents their richness and diversity before the mass extinction. The terminal Permian Kulchomovskaya and Kutulukskaya svitas have yielded

  1. Reconstruction of radionuclide intakes for the residents of East Urals Radioactive Trace (1957–2011)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolstykh, Evgenia I.; Peremyslova, Lyudmila M.; Degteva, Marina O.

    The East Urals Radioactive Trace (EURT) was formed after a chemical explosion in the radioactive waste-storage facility of the Mayak Production Association in 1957 (Southern Urals, Russia) and resulted in an activity dispersion of 7.4 × 10 16 Bq into the atmosphere. Internal exposure due to ingestion of radionuclides with local foodstuffs was the main factor of public exposure at the EURT. The EURT cohort, combining residents of most contaminated settlements, was formed for epidemiological study at the Urals Research Center for Radiation Medicine, Russia (URCRM). For the purpose of improvement of radionuclide intake estimates for cohort members, the followingmore » data sets collected in URCRM were used: (1) Total β-activity and radiochemical measurements of 90Sr in local foodstuffs over all of the period of interest (1958–2011; n = 2200), which were used for relative 90Sr intake estimations. (2) 90Sr measurements in human bones and whole body ( n = 338); these data were used for average 90Sr intake derivations using an age- and gender-dependent Sr-biokinetic model. Non-strontium radionuclide intakes were evaluated on the basis of 90Sr intake data and the radionuclide composition of contaminated foodstuffs. Validation of radionuclide intakes during the first years after the accident was first carried out using measurements of the feces β-activity of EURT residents ( n = 148). The comparison of experimental and reconstructed values of feces β-activity shows good agreement. 90Sr intakes for residents of settlements evacuated 7–14 days after the accident were also obtained from 90Sr measurements in human bone and whole body. Furthermore, the results of radionuclide intake reconstruction will be used to estimate the internal doses for the members of the EURT cohort.« less

  2. Reconstruction of radionuclide intakes for the residents of East Urals Radioactive Trace (1957–2011)

    DOE PAGES

    Tolstykh, Evgenia I.; Peremyslova, Lyudmila M.; Degteva, Marina O.; ...

    2017-01-19

    The East Urals Radioactive Trace (EURT) was formed after a chemical explosion in the radioactive waste-storage facility of the Mayak Production Association in 1957 (Southern Urals, Russia) and resulted in an activity dispersion of 7.4 × 10 16 Bq into the atmosphere. Internal exposure due to ingestion of radionuclides with local foodstuffs was the main factor of public exposure at the EURT. The EURT cohort, combining residents of most contaminated settlements, was formed for epidemiological study at the Urals Research Center for Radiation Medicine, Russia (URCRM). For the purpose of improvement of radionuclide intake estimates for cohort members, the followingmore » data sets collected in URCRM were used: (1) Total β-activity and radiochemical measurements of 90Sr in local foodstuffs over all of the period of interest (1958–2011; n = 2200), which were used for relative 90Sr intake estimations. (2) 90Sr measurements in human bones and whole body ( n = 338); these data were used for average 90Sr intake derivations using an age- and gender-dependent Sr-biokinetic model. Non-strontium radionuclide intakes were evaluated on the basis of 90Sr intake data and the radionuclide composition of contaminated foodstuffs. Validation of radionuclide intakes during the first years after the accident was first carried out using measurements of the feces β-activity of EURT residents ( n = 148). The comparison of experimental and reconstructed values of feces β-activity shows good agreement. 90Sr intakes for residents of settlements evacuated 7–14 days after the accident were also obtained from 90Sr measurements in human bone and whole body. Furthermore, the results of radionuclide intake reconstruction will be used to estimate the internal doses for the members of the EURT cohort.« less

  3. Parkerite and bismutohauchecornite in chromitites of the Urals: Example of the Uralian Emerald Mines

    NASA Astrophysics Data System (ADS)

    Koroteev, V. A.; Popov, M. P.; Erokhin, Yu. V.; Khiller, V. V.

    2017-04-01

    An unusual ore mineralization represented by parkerite, millerite, bismutohauchecornite, bismuthinite, and nickeline was registered in altered chromitite from the Mariinsk emerald-beryllium deposit. Such mineralization is typical of Cu-Ni sulfide ores and hydrothermal veins from the five-element formation. This mineral assemblage was not registered in ophiolitic ultrabasic rocks and related chromitites. The find of bismutohauchecornite is the first in the Urals; the find of parkerite is the third.

  4. Assessment of undiscovered oil and gas resources of the Volga-Ural Region Province, Russia and Kazakhstan, 2010

    USGS Publications Warehouse

    Klett, T.R.; Schenk, Christopher J.; Charpentier, Ronald R.; Brownfield, Michael E.; Pitman, Janet K.; Cook, Troy A.; Tennyson, Marilyn E.

    2010-01-01

    The U.S. Geological Survey estimated mean volumes of technically recoverable, conventional, undiscovered petroleum resources at 1.4 billion barrels of crude oil, 2.4 trillion cubic feet of natural gas, and 85 million barrels of natural gas liquids for the Volga-Ural Region Province, using a geology-based assessment methodology.

  5. Occurrence modes of As, Sb, Te, Bi, Ag in sulfide assemblages of gold deposits of the Urals

    NASA Astrophysics Data System (ADS)

    Vikent'eva, O.; Vikentev, I.

    2016-04-01

    Review of occurrence modes of trace toxic elements ("potential pollutants") in ores from large gold deposits (the Urals) of different genetic types is presented. Mineral forms of these elements as well as their presence in main minerals from gold-bearing sulfide assemblages according to SEM, EPMA, INAA, ICP-MS and LA-ICP-MS are demonstrated.

  6. Radiological medical data preservation in the Southern Urals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melamed, E.

    2000-07-01

    Information is being microfilmed and scanned in the Southern Urals to ensure the archival preservation of the unique, important and irreplaceable records documenting chromic low-level radiation exposure to workers and neighboring populations of the Mayak Production Association (MAYAK), as well as health effects. The records include dosimetric and epidemiologic information maintained on workers and neighboring populations located at facilities in Ozyorsk and Chelyabinsk. Microfilming is being done in Ozyorsk, and on a more limited basis in Chelyabinsk, where a scanning project has also recently been initiated. Over 1,800 rolls of film have been produced as of the fall of 1999.more » This article describes the background and results of this data preservation effort and includes brief summary tables describing the types of records being preserved. Researchers interested in access to these records should contact Paul Seligman, Deputy Assistant Secretary for the Office of Health Studies at the Department of Energy (DOE) for more information.« less

  7. Oil and gas reserve growth-a model for the Volga-Ural Province, Russia

    USGS Publications Warehouse

    Verma, M.K.; Ulmishek, G.F.; Gilbershtein, A.P.

    2000-01-01

    An understanding of reserve growth in known oil and gas fields has become a critical component of energy resource analysis. Significant statistical studies of reserve growth have been published in the U.S., whereas little information is available on other regions of the world. It may be expected that in many countries the magnitude of reserve growth is different from that in the U.S. because of differences in reporting systems and in exploration and production practices. This paper describes the results of a reserve growth study in a group of largest oil and gas fields of the Volga-Ural petroleum province, Russia. The dynamics of reserve growth in these fields shows rapid reserve additions during the first 5 years of field exploration and development, which results from intensive step-out and delineation drilling. Later reserve growth is slow and is related to improvements in recovery technologies and discoveries of new pools and extensions. These two stages of reserve growth are described by two different groups of empirical models. A comparison of these models with the models developed for the lower 48 states and Gulf Coast offshore of the U.S. demonstrates that the reserve growth in the Volga-Ural province is significantly lower than in the U.S. The proposed models may be used for assessment of future reserve additions in known fields of countries that presently have or recently had a centrally-planned economic system.

  8. Turbokon scientific and production implementation company—25 years of activity

    NASA Astrophysics Data System (ADS)

    Favorskii, O. N.; Leont'ev, A. I.; Milman, O. O.

    2016-05-01

    The main results of studies performed at ZAO Turbokon NPVP in cooperation with leading Russian scientific organizations during 25 years of its activity in the field of development of unique ecologically clean electric power and heat production technologies are described. They include the development and experimental verification using prototypes and full-scale models of highly efficient air-cooled condensers for steam turbines, a high temperature gas steam turbine for stationary and transport power engineering, a nonfuel technology of electric power production using steam turbine installations with a unit power of 4-20 MW at gas-main pipelines and industrial boiler houses and heat stations. The results of efforts in the field of reducing vibroactivity of power equipment for transport installations are given. Basic directions of further research for increasing the efficiency and ecological safety of home power engineering are discussed.

  9. Granitoids of the Ufalei block (South Urals): Sr-Nd isotope systematics, geodynamic position and genetic reconstructions

    NASA Astrophysics Data System (ADS)

    Ronkin, Yu. L.; Shardakova, G. Yu.; Maslov, A. V.; Shagalov, E. S.; Lepikhina, O. P.

    2009-04-01

    Petrogeochemical and isotopic-geochronological signatures in granitoids developed in structures with complex geological history represent an important feature for reconstructing paleogeodynamic settings. Granitoids are widespread in the western slope of the Urals, where the Uralian Orogen contacts via a collage of different-age blocks of the east European Platform. The Ufalei block located in the Central Urals megazone at the junction between the South and Middle Urals’ segments represents one such boundary structure with multistage geological evolution. The isotopic ages obtained by different methods for acid igneous rocks range from 1290 to 245 Ma. We determined close Rb-Sr and Sm-Nd ages (317 Ma) for granites of the Nizhnii Ufalei Massif. By their petrochemical parameters, granitoids and host granite-gneisses differ principally from each other: the former are close to subduction-related, while the latter, to continental-riftogenic varieties. The primary ratio (87Sr/86Sr)0 = 0.70428 and ɛNd ≈ +4 values indicate significant contribution of oceanic (island-arc?) material to the substrate, which served as a source for granites of the Nizhnii Ufalei Massif. Model Nd ages of granites vary from 641 to 550 Ma. Distinct oceanic rocks and varieties with such ages are missing from the surrounding structures. New isotopic dates obtained for ultramafic and mafic rocks from different zones of the Urals related to the Cadomian cycle imply development of unexposed Upper Riphean-Vendian “oceanic” rocks in the central part of the Ufalei block, which played a substantial role in the formation of the Nizhnii Ufalei granitoids. Such rocks could be represented, for example, by fragments of the Precambrian Timanide-type ophiolite association. The analysis of original materials combined with published data point to the heterogeneous composition and structure of the Ufalei block and a significant part of the western segment of the Central Uralian Uplift and extremely complex

  10. The Ufa indenter: stratigraphic and geophysic evidences for an actual indentation of the Southern Urals by the East European craton

    NASA Astrophysics Data System (ADS)

    Lefort, Jean-Pierre; Danukalova, Guzel

    2014-07-01

    Study of the altitudes of the lowest part of the Upper Cretaceous-Eocene and Aktschagylian-Quaternary stratigraphic ensembles known on the western slope of the Southern Urals evidences the existence of an East-West elongated dome which follows the N53° latitude. This ridge is superimposed at depth with the remnants of the Sernovodsk-Abdulino Aulacogen and with the Belaya tear fault, which support the existence of a recent rejuvenation of these old structures. North of these disruptions the Southern Urals display a clear bent towards the East. Detailed microstructural studies show that this curvature is associated with a typical stress pattern which suggests the existence of an indentation of the fold belt by the East European craton. The hypothesis of an Ufa indenter is not supported by an equivalent East-West deep fault north of the bend. However, a long N100° magnetic anomaly, interpreted as a shear zone, suggests that the indenter is a reality. Quaternary uplift and crustal thickening at its front as well as seismological data support our interpretation. It is not stressed that the curvature of the Urals observed at 56° latitude results solely from this recent indentation. It is only assumed that the actual indentation is rejuvenating a former unevenness which existed before in the East European craton. Study of the inner part of the indenter shows that this type of structure is not necessarily rigid and undeformed. Some of the structures described on the URSEIS deep seismic line could be much younger than previously expected.

  11. Phytomining Perspectives in Rehabilitation of Mining and Industrial Areas of South Ural

    NASA Astrophysics Data System (ADS)

    Timofeeva, S. S.; Ulrikh, D. V.; Timofeev, S. S.

    2017-05-01

    The ability of midland hawthorn (Crataegus laevigata (Poir)), common barberry (Berberis vulgaris), red elder (Sambucus racemosa), cinnamon rose (Rosa cinnamomea L.), couch grass (Elytrigia repens), crested wheat grass (Agropyron cristatum), meadow fescue (Festuca pratensis) and meadow grass (Poa pratensis) for phytoextraction of heavy metals from technogenic soil is proved in the article. The possibility of effective phytoextraction with the use of hawthorn and elder is shown. Maximum accumulation of zinc takes place in the surface mass of couch grass and meadow fescue. In regard to the conditions of South Ural, planting of elder and hawthorn with seeding of couch grass and meadow fescue is recommended for phytomining purposes.

  12. EXPLORATORY PLASMA BIOCHEMISTRY REFERENCE INTERVALS FOR URAL OWLS (STRIX URALENSIS, PALLAS 1771) FROM THE AUSTRIAN REINTRODUCTION PROJECT.

    PubMed

    Scope, Alexandra; Schwendenwein, Ilse; Stanclova, Gabriela; Vobornik, Angela; Zink, Richard

    2016-06-01

    The Ural owl (Strix uralensis) is the biggest forest-living owl in Austria; however, it became extinct in Austria through poaching and habitat loss more than half a century ago. The birds examined in the present study were breeding pairs from the reintroduction project with the aim of determining exploratory plasma biochemistry reference intervals in Ural owls and evaluating the amount of biological variation between seasons, sexes, and ages. A total of 45 birds were sampled, including 13 adult males, 14 adult females, and 18 juvenile birds. Remarkably, almost all of the analytes showed significant differences between the subgroups, primarily between seasons, followed by age and sex. Only creatinkinase, glucose, lactatdehydrogenase, and triglycerides did not show any significant variations. Despite partitioning of reference values into subgroups according to biological variation diminishing the number of reference individuals in the respective groups, the resulting smaller reference intervals will improve medical assessment. The results of the present study once again demonstrate that significant seasonal fluctuations must be expected and considered in the interpretation. It can be assumed that these differences are probably even greater in free-range birds with considerable changes in food quantity and quality during and between years.

  13. Morphological and molecular observations on the cereal cyst nematode Heterodera filipjevi from the Volga and South Ural regions of Russia

    USDA-ARS?s Scientific Manuscript database

    During 2010-2012, a survey was conducted to determine the distribution and species diversity of the cereal cyst nematode Heterodera filipjevi within the Volga and South Ural regions of the Russian Federation. A total of 270 soil samples were collected. Seven populations of CCN were found in the rhiz...

  14. Assessment of undiscovered continuous oil and gas resources in the Domanik-type formations of the Volga-Ural Region Province, Russia, 2017

    USGS Publications Warehouse

    Klett, Timothy R.; Brownfield, Michael E.; Finn, Thomas M.; Gaswirth, Stephanie B.; Le, Phuong A.; Leathers-Miller, Heidi M.; Marra, Kristen R.; Mercier, Tracey J.; Pitman, Janet K.; Schenk, Christopher J.; Tennyson, Marilyn E.; Woodall, Cheryl A.

    2018-02-27

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable continuous resources of 2.8 billion barrels of oil and 34 trillion cubic feet of gas in the Domanik-type formations of the Volga-Ural Region Province, Russia.

  15. Seismic wide-angle constraints on the crust of the southern Urals

    NASA Astrophysics Data System (ADS)

    Carbonell, R.; Gallart, J.; PéRez-Estaún, A.; Diaz, J.; Kashubin, S.; Mechie, J.; Wenzel, F.; Knapp, J.

    2000-06-01

    A wide-angle seismic reflection/refraction data set was acquired during spring 1995 across the southern Urals to characterize the lithosphere beneath this Paleozoic orogen. The wide-angle reflectivity features a strong frequency dependence. While the lower crustal reflectivity is in the range of 6-15 Hz, the PmP is characterized by frequencies below 6 Hz. After detailed frequency filtering, the seismic phases constrain a new average P wave velocity crustal model that consists of an upper layer of 5.0-6.0 km/s, which correlates with the surface geology; 5-7 km depths at which the velocities increase to 6.2-6.3 km/s; 10-30 km depths at which, on average, the crust is characterized by velocities of 6.6 km/s; and finally, the lower crust, from 30-35 km down to the Moho, which has velocities ranging from 6.8 to 7.4 km/s. Two different S wave velocity models, one for the N-S and one for the E-W, were derived from the analysis of the horizontal component recordings. Crustal sections of Poisson's ratio and anisotropy were calculated from the velocity models. The Poisson's ratio increases in the lower crust at both sides of the root zone. A localized 2-3% anisotropy zone is imaged within the lower crust beneath the terranes east of the root. This feature is supported by time differences in the SmS phase and by the particle motion diagrams, which reveal two polarized directions of motion. Velocities are higher in the central part of the orogen than for the Siberian and eastern plates. These seismic recordings support a 50-56 km crustal thickness beneath the central part of the orogen in contrast to Moho depths of ≈ 45 km documented at the edges of the transect. The lateral variation of the PmP phase in frequency content and in waveform can be taken as evidence of different genetic origins of the Moho in the southern Urals.

  16. Uranium-Bearing Srilankite from High-Pressure Garnetites of the Southern Urals: First Data

    NASA Astrophysics Data System (ADS)

    Gottman, I. A.; Pushkarev, E. V.; Khiller, V. V.

    2018-04-01

    This work presents the results of studying srilankite, a rare zirconium titanate (ZrTi2O6), associated with ilmenite, rutile, zircon, uraninite, and other minerals discovered in high-pressure garnetites of the lherzolite Mindyak massif (Southern Urals). Srilankite occurs as inclusions in ilmenite and rutile of up to several tens of microns in size. It was established for the first time that srilankite contains a significant UO2 admixture (up to 20%). The negative correlation between Zr and U is evidence of isomorphism in the srilankite-brannerite system. The association of srilankite with high-Zr rutile indicates that formation of these minerals occurred at T > 850°C.

  17. Turbine component, turbine blade, and turbine component fabrication process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delvaux, John McConnell; Cairo, Ronald Ralph; Parolini, Jason Robert

    A turbine component, a turbine blade, and a turbine component fabrication process are disclosed. The turbine component includes ceramic matrix composite plies and a feature configured for preventing interlaminar tension of the ceramic matrix composite plies. The feature is selected from the group consisting of ceramic matrix composite tows or precast insert tows extending through at least a portion of the ceramic matrix composite plies, a woven fabric having fiber tows or a precast insert preventing contact between a first set of the ceramic matrix composite plies and a second set of the ceramic matrix composite plies, and combinations thereof.more » The process includes laying up ceramic matrix composite plies in a preselected arrangement and securing a feature configured for interlaminar tension.« less

  18. Gold in Accessory Zircon (the Kozhim Massif, Subpolar Urals)

    NASA Astrophysics Data System (ADS)

    Denisova, Yuliya; Pystin, Aleksandr

    2017-12-01

    The crystals of zircon due to their resistance to external impact of various processes can reveal information about the environment of their formation and the inclusions observed of them. Zircon contains different mineral inclusions: biotite, plagioclase, quartz, apatite, etc. However, there is no information about gold inclusions in the zircons from granites of the Sudpolar Urals. The study results of the inclusions of gold in accessory zircon of the Kozhim granitic massif are presented in this paper. The studied mineral is a dark-brown translucent short-prismatic crystal containing the inclusion of gold and the allocations of quartz. According to studies, the inclusion of gold formed during the growth of zircon and it is the gold covered with a thin film of oxide gold. It was confirmed that the crystallization of the studied zircon occurred at a temperature of 800°C and above on the stage of formation of granites of Kozhim massif. The assumption is made about the additional temperature in the course of which was caused by decreasing of temperature up to 700° C and below during postmagmatic stage.

  19. Lower Carboniferous Siderites: A Product of Bottom Seeps and Bacterial Metanogenesis (Subpolar Urals)

    NASA Astrophysics Data System (ADS)

    Antoshkina, A. I.; Ryabinkina, N. N.

    2018-02-01

    Complex modern micro- and spectroscopic methods for study of siderite concretions in the Lower Carboniferous terrigenous strata on the Kozhym River (Subpolar Urals) have shown that its formation was caused by destruction of clay minerals due to the activity of bacterial communities. The abundance of these bacteria was caused by gas-fluid seeps and bacterial methanogenesis processes in bottom deposits. In basins with normal marine fauna, this led to local desalination, hydrogen sulfide contamination, mass collapse of primary organisms, and the development of element-specific bacteria. The occurrence of these bacteria caused the formation of specific authigenic mineralization in the concretion of sideritic bacteriolites: the framboidal pyrite, sphalerite, galenite, barite, sulfoselenides, and tellurides.

  20. Advanced turbine study. [airfoil coling in rocket turbines

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Experiments to determine the available increase in turbine horsepower achieved by increasing turbine inlet temperature over a range of 1800 to 2600 R, while applying current gas turbine airfoil cling technology are discussed. Four cases of rocket turbine operating conditions were investigated. Two of the cases used O2/H2 propellant, one with a fuel flowrate of 160 pps, the other 80 pps. Two cases used O2/CH4 propellant, each having different fuel flowrates, pressure ratios, and inlet pressures. Film cooling was found to be the required scheme for these rocket turbine applications because of the high heat flux environments. Conventional convective or impingement cooling, used in jet engines, is inadequate in a rocket turbine environment because of the resulting high temperature gradients in the airfoil wall, causing high strains and low cyclic life. The hydrogen-rich turbine environment experienced a loss, or no gain, in delivered horsepower as turbine inlet temperature was increased at constant airfoil life. The effects of film cooling with regard to reduced flow available for turbine work, dilution of mainstream gas temperature and cooling reentry losses, offset the relatively low specific work capability of hydrogen when increasing turbine inlet temperature over the 1800 to 2600 R range. However, the methane-rich environment experienced an increase in delivered horsepower as turbine inlet temperature was increased at constant airfoil life. The results of a materials survey and heat transfer and durability analysis are discussed.

  1. Lead Isotope Characteristics of the Mindyak Gold Deposit, Southern Urals: Evidence for the Source of Metals

    NASA Astrophysics Data System (ADS)

    Chugaev, A. V.; Znamensky, S. E.

    2018-01-01

    The isotopic composition of Pb in pyrite of the Mindyak orogenic gold deposit located in the Main Ural Fault Zone, the Southern Urals, has been studied by the high-precision MC-ICP-MS method. Orebodies at the deposit are composed of early pyrite and late polysulfide-carbonate-quartz mineral assemblages. The orebodies are localized in olistostrome with carbonaceous clayey-cherty cement. Pyrites from early and late mineral assemblages are close in Pb isotope ratios. For early pyrite 206Pb/204Pb = 18.250-18.336, 207Pb/204Pb = 15.645-15.653, 208Pb/204Pb = 38.179-38.461; while for late pyrite 206Pb/204Pb = 18.102-18.378, 207Pb/204Pb = 15.635-15.646, 208Pb/204Pb = 38.149-38.320. The model parameters μ2 (238U/204Pb = 9.91 ± 2), ω2 (232Th/204Pb = 38.5 ± 4), and 232Th/238U = 3.88 ± 3 indicate that an upper crustal Pb source played a leading role in ore formation. Carbonaceous shale as an olistostrome cement and syngenetic sulfide mineralization are considered to be the main Pb sources of both early and late mineral assemblages. An additional recept in apparently magmatic lead is suggested for the late veinlet mineralization. The involvement of lead from several sources in ore formation is consistent with the genetic model, which assumes a two-stage formation of orebodies at the Mindyak deposit.

  2. The Role of Nutrition in the Biological Adaptation of the Medieval Population of the Cis-Ural Perm Region (Archeological and Anthropological Evidence)

    ERIC Educational Resources Information Center

    Krylasova, Natalya B.; Brykhova, Natalya G.; Burova, Natalya D.

    2016-01-01

    The aim of this article is to reconstruct the nutrition system of the medieval inhabitants of the Perm Territory located in the western foothills of the Ural mountain range. The investigation is built on a comprehensive analysis of archaeological sources available and on the basis if anthropological materials with involvement of radioactive tracer…

  3. Methods for Ensuring High Quality of Coding of Cause of Death. The Mortality Register to Follow Southern Urals Populations Exposed to Radiation.

    PubMed

    Startsev, N; Dimov, P; Grosche, B; Tretyakov, F; Schüz, J; Akleyev, A

    2015-01-01

    To follow up populations exposed to several radiation accidents in the Southern Urals, a cause-of-death registry was established at the Urals Center capturing deaths in the Chelyabinsk, Kurgan and Sverdlovsk region since 1950. When registering deaths over such a long time period, quality measures need to be in place to maintain quality and reduce the impact of individual coders as well as quality changes in death certificates. To ensure the uniformity of coding, a method for semi-automatic coding was developed, which is described here. Briefly, the method is based on a dynamic thesaurus, database-supported coding and parallel coding by two different individuals. A comparison of the proposed method for organizing the coding process with the common procedure of coding showed good agreement, with, at the end of the coding process, 70  - 90% agreement for the three-digit ICD -9 rubrics. The semi-automatic method ensures a sufficiently high quality of coding by at the same time providing an opportunity to reduce the labor intensity inherent in the creation of large-volume cause-of-death registries.

  4. The Ural train-gas pipeline catastrophe: the report of the IDF medical corps assistance.

    PubMed

    Benmeir, P; Levine, I; Shostak, A; Oz, V; Shemer, J; Sokolova, T

    1991-08-01

    Following the destruction of two trains in the Urals 2000 km east of Moscow, as a consequence of the conflagration caused by an explosion from a leaking natural gas pipeline, 3000 people were injured;* most of them (2200) died* immediately and the others (about 800) were badly burned. At the request of the Soviet Union Government a medical military delegation was sent to give assistance to the injured people. This report describes the treatment given by the delegation to 40 patients with burns of between 40 and 90 per cent TBSA during a period of 10 days. An insight into a Soviet Union Trauma Center is given and the good treatment given by the Soviet colleagues is emphasized.

  5. Main consistent patterns of Stromatoporoid Development in the Late Ordovician and Silurian in the North Urals Palaeobasin

    NASA Astrophysics Data System (ADS)

    Antropova, E.

    2009-04-01

    In the history of the Earth there have been no basins with similar characteristics. The North Urals palaeobasin had its own unique features. The dominant benthic organisms of basin ecosystem during the Ordovician and Silurian were stromatoporoids, corals, and brachiopods. This fauna is vitally important for the aims of stratigraphy so long as conodonts are extremely rare in sections of the Northern Urals area. The most complete ordering of stromatoporoid complexes has been established and made it possible to estimate rates and measures of extinction at a level of the province. It was also found out that stromatoporoids were organisms responsive to subtle changes of environment and that they accommodated differently to those changing conditions. The evolution of stromatoporoids was accompanied by phylogenetic reorganization and formation of endemic communities in the Late Ordovician and Early Silurian. In the Late Silurian taxonomical diversity of stromatoporoids was mainly controlled by migration processes and cosmopolites with wide palaeogeographic links prevailed in the palaeobasin. Therefore palaeobasin at that time was open to stromatoporoid fauna migration which is confirmed by the occurrence of genera and species that disperse in coeval deposits of many areas, for example, Baltic States, Sweden, Ukraine (Podolia), Western Siberia, Arctic islands of Russia, Mongolia, Canada (islands). The evolution of stromatoporoid communities in the Ordovician-Silurian was intermitted by biotic crises. The analysis of stromatoporoid development helps to define crucial points of ecosystem's reorganizations coinciding with critical geological and biotic events in the history of the North Urals palaeobasin existence, as well as global events during the Ordovician and Silurian (Hirnantian Event, Ireviken Event, Lau Event). The analysis of crises indicates local dependence of stromatoporoid biodiversity on depositional environments. Large local biocenos reorganizations and biotic

  6. The first Lu-Hf zircon isotope data for gabbro-diorite-tonalite associations of the Urals

    NASA Astrophysics Data System (ADS)

    Ronkin, Yu. L.; Smirnov, V. N.; Ivanov, K. S.; Gerdes, A.

    2017-01-01

    The Lu-Hf isotope systematics of zircon from the gabbro-plagiogranite association (gabbro, diorite, tonalite, and plagiogranite), which is one of the most typical associations of igneous rocks in the Urals, was studied for the first time. The isotope study yielded a unified age limit of 433 Ma, which corresponds to the time of formation of this rock association. The younger "rejuvenated" ages characterize superimposed thermal impact events, induced by the volcanic arc activity, as well as collisional and postcollisional processes. Here, the initial 176Hf/177Hf( t) ratio in the studied zircon from gabbro and plagiogranite corresponds in fact to a highly LILE-depleted (DM) mantle.

  7. Turbine repair process, repaired coating, and repaired turbine component

    DOEpatents

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  8. Turbine design review text

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Three-volume publication covers theoretical, design, and performance aspects of turbines. Volumes cover thermodynamic and fluid-dynamic concepts, velocity diagram design, turbine blade aerodynamic design, turbine energy losses, supersonic turbines, radial-inflow turbines, turbine cooling, and aerodynamic performance testing.

  9. Rotating housing turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allouche, Erez; Jaganathan, Arun P.

    The invention is a new turbine structure having a housing that rotates. The housing has a sidewall, and turbine blades are attached to a sidewall portion. The turbine may be completely open in the center, allowing space for solids and debris to be directed out of the turbine without jamming the spinning blades/sidewall. The turbine may be placed in a generator for generation of electrical current.

  10. Plan Turbines 3 & 4, Side View Turbines ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Plan - Turbines 3 & 4, Side View - Turbines 3 & 4, Section A-A - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  11. The swirl turbine

    NASA Astrophysics Data System (ADS)

    Haluza, M.; Pochylý, F.; Rudolf, P.

    2012-11-01

    In the article is introduced the new type of the turbine - swirl turbine. This turbine is based on opposite principle than Kaplan turbine. Euler equation is satisfied in the form gHηh = -u2vu2. From this equation is seen, that inflow of liquid into the runner is without rotation and on the outflow is a rotation of liquid opposite of rotation of runner. This turbine is suitable for small head and large discharge. Some constructional variants of this turbine are introduced in the article and theoretical aspects regarding losses in the draft tube. The theory is followed by computational simulations in Fluent and experiments using laser Doppler anemometry.

  12. Integrated Turbine Tip Clearance and Gas Turbine Engine Simulation

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Kratz, Jonathan; Guo, Ten-Huei; Litt, Jonathan

    2016-01-01

    Gas turbine compressor and turbine blade tip clearance (i.e., the radial distance between the blade tip of an axial compressor or turbine and the containment structure) is a major contributing factor to gas path sealing, and can significantly affect engine efficiency and operational temperature. This paper details the creation of a generic but realistic high pressure turbine tip clearance model that may be used to facilitate active tip clearance control system research. This model uses a first principles approach to approximate thermal and mechanical deformations of the turbine system, taking into account the rotor, shroud, and blade tip components. Validation of the tip clearance model shows that the results are realistic and reflect values found in literature. In addition, this model has been integrated with a gas turbine engine simulation, creating a platform to explore engine performance as tip clearance is adjusted. Results from the integrated model explore the effects of tip clearance on engine operation and highlight advantages of tip clearance management.

  13. Turbine system and adapter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogberg, Nicholas Alvin; Garcia-Crespo, Andres Jose

    A turbine system and adapter are disclosed. The adapter includes a turbine attachment portion having a first geometry arranged to receive a corresponding geometry of a wheelpost of a turbine rotor, and a bucket attachment portion having a second geometry arranged to receive a corresponding geometry of a root portion of a non-metallic turbine bucket. Another adapter includes a turbine attachment portion arranged to receive a plurality of wheelposts of a turbine rotor, and a bucket attachment portion arranged to receive a plurality of non-metallic turbine buckets having single dovetail configuration root portions. The turbine system includes a turbine rotormore » wheel configured to receive metal buckets, at least one adapter secured to at least one wheelpost on the turbine rotor wheel, and at least one non-metallic bucket secured to the at least one adapter.« less

  14. 30. VICTOR WATER TURBINE, STILWELLBIERCE CO., DAYTON, OHIO. SIMILAR TURBINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VICTOR WATER TURBINE, STILWELL-BIERCE CO., DAYTON, OHIO. SIMILAR TURBINE TO LEFT (DOUBLE TURBINE SYSTEM), PHOTO TAKEN FROM PENSTOCK. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  15. Effect of steam sterilization inside the turbine chambers of dental turbines.

    PubMed

    Andersen, H K; Fiehn, N E; Larsen, T

    1999-02-01

    It has been demonstrated that contamination of the insides of high-speed dental turbines occurs and that bacteria as well as viruses may remain infectious when expelled from such turbines during subsequent use. Consequently, it has been widely recommended that a high-speed turbine be sterilized after each patient. The purpose of this study was to evaluate the effect of steam autoclaving on a high-speed dental turbine with a contaminated turbine chamber. Streptococcus salivarius and endospores of Bacillus stearothermophilus were used as test organisms to determine the effectiveness of 4 different small non-vacuum autoclaves and one vacuum autoclave. The study demonstrated different efficiencies among the small non-vacuum autoclaves, the best showing close to a 6 log reduction of the test organisms inside the turbine chamber. When cleaning and lubrication of the high-speed dental turbine was carried out before autoclaving, this level of reduction was observed for all the examined non-vacuum autoclaves. It is concluded that cleaning before sterilization is essential for safe use of high-speed dental turbines and that small non-vacuum autoclaves should be carefully evaluated before being used for the reprocessing of hollow instruments such as high-speed turbines.

  16. Turbine system

    DOEpatents

    McMahan, Kevin Weston; Dillard, Daniel Jackson

    2016-05-03

    A turbine system is disclosed. The turbine system includes a transition duct having an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The turbine system further includes a turbine section connected to the transition duct. The turbine section includes a plurality of shroud blocks at least partially defining a hot gas path, a plurality of buckets at least partially disposed in the hot gas path, and a plurality of nozzles at least partially disposed in the hot gas path. At least one of a shroud block, a bucket, or a nozzle includes means for withstanding high temperatures.

  17. A mixed solution-processed gate dielectric for zinc-tin oxide thin-film transistor and its MIS capacitance

    NASA Astrophysics Data System (ADS)

    Kim, Hunho; Kwack, Young-Jin; Yun, Eui-Jung; Choi, Woon-Seop

    2016-09-01

    Solution-processed gate dielectrics were fabricated with the combined ZrO2 and Al2O3 (ZAO) in the form of mixed and stacked types for oxide thin film transistors (TFTs). ZAO thin films prepared with double coatings for solid gate dielectrics were characterized by analytical tools. For the first time, the capacitance of the oxide semiconductor was extracted from the capacitance-voltage properties of the zinc-tin oxide (ZTO) TFTs with the combined ZAO dielectrics by using the proposed metal-insulator-semiconductor (MIS) structure model. The capacitance evolution of the semiconductor from the TFT model structure described well the threshold voltage shift observed in the ZTO TFT with the ZAO (1:2) gate dielectric. The electrical properties of the ZTO TFT with a ZAO (1:2) gate dielectric showed low voltage driving with a field effect mobility of 37.01 cm2/Vs, a threshold voltage of 2.00 V, an on-to-off current ratio of 1.46 × 105, and a subthreshold slope of 0.10 V/dec.

  18. A mixed solution-processed gate dielectric for zinc-tin oxide thin-film transistor and its MIS capacitance

    PubMed Central

    Kim, Hunho; Kwack, Young-Jin; Yun, Eui-Jung; Choi, Woon-Seop

    2016-01-01

    Solution-processed gate dielectrics were fabricated with the combined ZrO2 and Al2O3 (ZAO) in the form of mixed and stacked types for oxide thin film transistors (TFTs). ZAO thin films prepared with double coatings for solid gate dielectrics were characterized by analytical tools. For the first time, the capacitance of the oxide semiconductor was extracted from the capacitance-voltage properties of the zinc-tin oxide (ZTO) TFTs with the combined ZAO dielectrics by using the proposed metal-insulator-semiconductor (MIS) structure model. The capacitance evolution of the semiconductor from the TFT model structure described well the threshold voltage shift observed in the ZTO TFT with the ZAO (1:2) gate dielectric. The electrical properties of the ZTO TFT with a ZAO (1:2) gate dielectric showed low voltage driving with a field effect mobility of 37.01 cm2/Vs, a threshold voltage of 2.00 V, an on-to-off current ratio of 1.46 × 105, and a subthreshold slope of 0.10 V/dec. PMID:27641430

  19. Gas Turbine Engine Having Fan Rotor Driven by Turbine Exhaust and with a Bypass

    NASA Technical Reports Server (NTRS)

    Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)

    2016-01-01

    A gas turbine engine has a core engine incorporating a core engine turbine. A fan rotor is driven by a fan rotor turbine. The fan rotor turbine is in the path of gases downstream from the core engine turbine. A bypass door is moveable from a closed position at which the gases from the core engine turbine pass over the fan rotor turbine, and moveable to a bypass position at which the gases are directed away from the fan rotor turbine. An aircraft is also disclosed.

  20. New data concerning the age and specific features of magmatism of timanides in the southern part of the Lyapin structure (Northern Urals)

    NASA Astrophysics Data System (ADS)

    Petrov, G. A.; Ronkin, Yu. L.; Gerdes, A.; Maslov, A. V.

    2017-10-01

    New data on composition and age of Precambrian granites and volcanic rocks in the southern part of the Lyapin structure (Northern Urals) are considered. The geochemical features of the igneous rocks are similar to those of the rocks formed in both divergent and convergent environments. In the Late Precambrian (583-553 Ma), the investigated area is assumed to have been a part of the active margin above the mantle plume.

  1. Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-02-22

    Broad Funding Opportunity Announcement Project: FloDesign Wind Turbine’s innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign Wind Turbine’s unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable tomore » larger-scale conventional turbines.« less

  2. Airship-floated wind turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, W. K.

    1985-01-01

    A wind turbine, by use of a tethered airship for support, may be designed for the economical recovery of power at heights of 2,000 feet or more above ground, at which height power density in the wind is typically three times the power density available to a conventionally supported wind turbine. Means can be added to such an airship-floated wind turbine which will permit its generators to be used to meet load demand even during periods of little or no wind. Described to this end is a wind turbine system which combines, among other novel features: a novel tether linemore » system which provides access for men and materials to the supporting airship while in active service, a novel system for providing additional buoyant lift at the nose of the turbine-supporting airship to offset the vertical component of tension induced in the tether line by the downwind force exerted by the turbine blades, a novel bearing assembly at the nose of the supporting airship which permits the airship to rotate as a unit with the turbine it supports without causing a similar rotation of the tether line, a novel turbine airship structure which handles concentrated loads from the turbine efficiently and also permits the safe use of hydrogen for buoyancy, a novel ''space frame'' structure which supports the turbine blades and greatly reduces blade weight, a novel system for controlling turbine blade angle of incidence and for varying blade incidene in synchrony with blade angular position abut the turbine axis to provide greater control over airship movement, a novel system for locating propellor-driven generators out at the wind turbine perimeter and for using lightweight, high-RPM generators to produce electrical energy at a power line frequency, which greatly reduces the weight required to convert turbine blade torque into useful power, and a novel system for incorporating compressed air storage and combustion turbine components into the wind turbine's generator drive systems.« less

  3. Turbine inner shroud and turbine assembly containing such inner shroud

    DOEpatents

    Bagepalli, Bharat Sampathkumaran; Corman, Gregory Scot; Dean, Anthony John; DiMascio, Paul Stephen; Mirdamadi, Massoud

    2001-01-01

    A turbine inner shroud and a turbine assembly. The turbine assembly includes a turbine stator having a longitudinal axis and having an outer shroud block with opposing and longitudinally outward facing first and second sides having open slots. A ceramic inner shroud has longitudinally inward facing hook portions which can longitudinally and radially surround a portion of the sides of the outer shroud block. In one attachment, the hook portions are engageable with, and are positioned within, the open slots.

  4. Steam Turbines

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Turbonetics Energy, Inc.'s steam turbines are used as power generating systems in the oil and gas, chemical, pharmaceuticals, metals and mining, and pulp and paper industries. The Turbonetics line benefited from use of NASA research data on radial inflow steam turbines and from company contact with personnel of Lewis Research Center, also use of Lewis-developed computer programs to determine performance characteristics of turbines.

  5. Single Rotor Turbine

    DOEpatents

    Platts, David A.

    2004-10-26

    A rotor for use in turbine applications has a centrifugal compressor having axially disposed spaced apart fins forming passages and an axial turbine having hollow turbine blades interleaved with the fins and through which fluid from the centrifugal compressor flows.

  6. Turbine Manufacture

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The machinery pictured is a set of Turbodyne steam turbines which power a sugar mill at Bell Glade, Florida. A NASA-developed computer program called NASTRAN aided development of these and other turbines manufactured by Turbodyne Corporation's Steam Turbine Division, Wellsville, New York. An acronym for NASA Structural Analysis Program, NASTRAN is a predictive tool which advises development teams how a structural design will perform under service use conditions. Turbodyne uses NASTRAN to analyze the dynamic behavior of steam turbine components, achieving substantial savings in development costs. One of the most widely used spinoffs, NASTRAN is made available to private industry through NASA's Computer Software Management Information Center (COSMIC) at the University of Georgia.

  7. Analysis of turbine-grid interaction of grid-connected wind turbine using HHT

    NASA Astrophysics Data System (ADS)

    Chen, A.; Wu, W.; Miao, J.; Xie, D.

    2018-05-01

    This paper processes the output power of the grid-connected wind turbine with the denoising and extracting method based on Hilbert Huang transform (HHT) to discuss the turbine-grid interaction. At first, the detailed Empirical Mode Decomposition (EMD) and the Hilbert Transform (HT) are introduced. Then, on the premise of decomposing the output power of the grid-connected wind turbine into a series of Intrinsic Mode Functions (IMFs), energy ratio and power volatility are calculated to detect the unessential components. Meanwhile, combined with vibration function of turbine-grid interaction, data fitting of instantaneous amplitude and phase of each IMF is implemented to extract characteristic parameters of different interactions. Finally, utilizing measured data of actual parallel-operated wind turbines in China, this work accurately obtains the characteristic parameters of turbine-grid interaction of grid-connected wind turbine.

  8. Cold-air performance of compressor-drive turbine of department of energy upgraded automobile gas turbine engine. 3: Performance of redesigned turbine

    NASA Technical Reports Server (NTRS)

    Roelke, R. J.; Haas, J. E.

    1984-01-01

    The aerodynamic performance of a redesigned compressor drive turbine of the gas turbine engine is determined in air at nominal inlet conditions of 325 K and 0.8 bar absolute. The turbine is designed with a lower flow factor, higher rotor reaction and a redesigned inlet volute compared to the first turbine. Comparisons between this turbine and the originally designed turbine show about 2.3 percentage points improvement in efficiency at the same rotor tip clearance. Two versions of the same rotor are tested: (1) an as cast rotor, and (2) the same rotor with reduced surface roughness. The effect of reducing surface roughness is about one half percentage point improvement in efficiency. Tests made to determine the effect of Reynolds number on the turbine performance show no effect for the range from 100,000 to 500,000.

  9. Coalescing Wind Turbine Wakes

    DOE PAGES

    Lee, S.; Churchfield, M.; Sirnivas, S.; ...

    2015-06-18

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the globalmore » meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a "triplet" structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. In conclusion, the turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions« less

  10. Rhenium in ores of the Mikheevskoe porphyry Cu-Mo deposit, South Urals

    NASA Astrophysics Data System (ADS)

    Plotinskaya, O. Yu.; Grabezhev, A. I.; Seltmann, R.

    2015-03-01

    The distribution of Re in ores of the Mikheevskoe Mo-Cu deposit in the South Urals is studied. It is established that the grade of Re in the ores usually does not exceed 0.5 g/t. A positive correlation between concentrations of Re and Mo (correlation coefficient 0.94), and Re and Cu (correlation coefficient 0.52) is found. EMPA of individual flakes of molybdenite showed that a Re content higher than the detection limit has been measured in most flakes studied, as a rule as high as 0.4-0.5 wt %, but occasionally reaching 1.34 wt %. Re within flakes of molybdenite is irregularly distributed. Patchy, linear, and concentric-zoned patterns of zones with elevated Re content (usually 0.5-1 wt % Re, sometimes higher) are found against the lower content (up to 0.2 wt % Re) that is regularly distributed within the flake. Later hydrothermal processes and mechanical deformation of flakes result in epigenetic Re redistribution in molybdenite that leads to homogenization of molybdenite composition and smoothing of primary pattern, or removal of Re from molybdenite.

  11. Turbine Inlet Air Cooling for Industrial and Aero-derivative Gas Turbine in Malaysia Climate

    NASA Astrophysics Data System (ADS)

    Nordin, A.; Salim, D. A.; Othoman, M. A.; Kamal, S. N. Omar; Tam, Danny; Yusof, M. KY

    2017-12-01

    The performance of a gas turbine is dependent on the ambient temperature. A higher temperature results in a reduction of the gas turbine’s power output and an increase in heat rate. The warm and humid climate in Malaysia with its high ambient air temperature has an adverse effect on the performance of gas turbine generators. In this paper, the expected effect of turbine inlet air cooling technology on the annual performance of an aero-derivative gas turbine (GE LM6000PD) is compared against that of an industrial gas turbine (GEFr6B.03) using GT Pro software. This study investigated the annual net energy output and the annual net electrical efficiency of a plant with and without turbine inlet air cooling technology. The results show that the aero-derivative gas turbine responds more favorably to turbine inlet air cooling technology, thereby yielding higher annual net energy output and higher net electrical efficiency when compared to the industrial gas turbine.

  12. Diamond and Unusual Minerals Discovered from the Chromitite in Polar Ural: A First Report

    NASA Astrophysics Data System (ADS)

    Yang, J.; Bai, W.; Fang, Q.; Meng, F.; Chen, S.; Zhang, Z.

    2007-12-01

    Ultrahigh pressure (UHP) minerals, such as diamond, coesite, and pseudomorphs of octahedral olivine, and as well as about 80 other mineral species have been recovered from podiform chromitites of the Luobusa ophiolite, southern Tibet, and a new mineral, Luobusaite (Fe0.82Si2), has been approved recently by CNMMN. The UHP minerals from Luobusa are controversial because they have not found in situ and because ophiolites are currently believed to form at shallow levels above oceanic spreading centers. More detailed study and experimental work are needed to understand the origin and significance of these unusual minerals and investigations of other ophiolites are needed to determine if such minerals occur elsewhere. For this purpose, we collected about 1500 kg of chromitite from two orebodies in an ultramafic body in the Polar Urals. Thus far, more than 60 different mineral species have been separated from these ores. The most exciting discovery is the common occurrence of diamond, a typical UHP mineral in the Luobusa chromitites. Diamonds from Ural chromitite are clear, colorless, well-developed crystals with octahedral morphology, generally 0.2-0.3 mm in size. Attached with the diamonds and perhaps also occurring as inclusions within them are many minerals as chromite, MnNiCrFe alloy, native Si and Ta, corundum, zircon, feldspar, garnet, moissanite, confirming their natural origin and suggesting a long residence time in the mantle. Other mineral group include: (1) native elements: Cr, W, Ni, Co, Si, Al and Ta; (2) carbides: SiC and WC; (3) alloys: Cr-Fe, Si-Al-Fe, Ni-Cu, Ag-Au, Ag-Sn, Fe-Si, Fe-P, and Ag-Zn-Sn; (4) oxides: NiCrFe, PbSn, REE, rutile and Si- bearing rutile, ilmenite, corundum, chromite, MgO, and SnO2; (5) silicates: kyanite, pseudomorphs of octahedral olivine, zircon, garnet, feldspar, and quartz,; (6) sulfides of Fe, Ni, Cu, Mo, Pb, Ab, AsFe, FeNi, CuZn, and CoFeNi; and (7) iron groups: native Fe, FeO, and Fe2O3. These minerals are very similar in

  13. Body Potassium Content and Radiation Dose from 40K for the Urals Population (Russia)

    PubMed Central

    Tolstykh, Evgenia I.; Degteva, Marina O.; Bougrov, Nikolay G.; Napier, Bruce A.

    2016-01-01

    Long-term whole-body monitoring of radionuclides in residents of the Urals Region has been performed at the Urals Research Center for Radiation Medicine (URCRM, Chelyabinsk). Quantification of 40K was achieved by measuring the 40K photopeak with four phoswich detectors in whole body counter SICH-9.1M. The current study presents the results of 40K measurements in 3,651 women and 1,961 t-test; U-test men aged 11–90; measurements were performed in 2006–2014. The residents belonged to two ethnic groups, Turkic (Tatar, Bashkir) and Slavs (mainly Russian). The levels of 40K-body contents depend upon gender, age, and body mass. Significant ethnic-differences were not found in 40K-body contents and 40K concentrations in terms of Bq per kg of body weight (in groups homogenous by age and gender). Both 40K-body contents and concentrations were significantly higher in men than in women in all age-groups; the difference was about 25%. The measured 40K-body content in men of 20–50 years was about 4200 Bq (134 g of K) and about 3000 Bq (95 g of K) in women. By the age of 80 these values decreased to 3200 Bq (102 g of K) in men and 2500 Bq (80 g of K) in women. Annual dose rates were maximal in the age group of 20–30 years– 0.16 mGy/y for men and 0.13 mGy/y for women. Further, the dose-rates decreased with age and in the groups of 60–80 years were 0.13 mGy/y for men and 0.10 mGy/y for women. Within groups homogeneous by age and gender, individual dose rates are described by a normal statistical distribution. The coefficient of variation ranges from 9 to 14%, and on the average is 12.5%. Doses from naturally occurring 40K accumulated over 70 years were found to be 9.9 mGy for men and 8.3 mGy for women; over 90 years - 12.5 and 10.4 mGy. PMID:27111330

  14. TURBINE COOLING FLOW AND THE RESULTING DECREASE IN TURBINE EFFICIENCY

    NASA Technical Reports Server (NTRS)

    Gauntner, J. W.

    1994-01-01

    This algorithm has been developed for calculating both the quantity of compressor bleed flow required to cool a turbine and the resulting decrease in efficiency due to cooling air injected into the gas stream. Because of the trend toward higher turbine inlet temperatures, it is important to accurately predict the required cooling flow. This program is intended for use with axial flow, air-breathing jet propulsion engines with a variety of airfoil cooling configurations. The algorithm results have compared extremely well with figures given by major engine manufacturers for given bulk metal temperatures and cooling configurations. The program calculates the required cooling flow and corresponding decrease in stage efficiency for each row of airfoils throughout the turbine. These values are combined with the thermodynamic efficiency of the uncooled turbine to predict the total bleed airflow required and the altered turbine efficiency. There are ten airfoil cooling configurations and the algorithm allows a different option for each row of cooled airfoils. Materials technology is incorporated and requires the date of the first year of service for the turbine stator vane and rotor blade. The user must specify pressure, temperatures, and gas flows into the turbine. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 3080 series computer with a central memory requirement of approximately 61K of 8 bit bytes. This program was developed in 1980.

  15. 11. Power room, view of Westinghouse steam turbine: turbine RPM6,000, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Power room, view of Westinghouse steam turbine: turbine RPM-6,000, governor RPM-1017, turbine number 8695, manufactured by Westinghouse Electric Manufacturing company, East Pittsburg, Pennsylvania - Norfolk Manufacturing Company Cotton Mill, 90 Milton Street, Dedham, Norfolk County, MA

  16. Hermetic turbine generator

    DOEpatents

    Meacher, John S.; Ruscitto, David E.

    1982-01-01

    A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

  17. Turbine blade tip gap reduction system

    DOEpatents

    Diakunchak, Ihor S.

    2012-09-11

    A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

  18. Management and recovery options for Ural river beluga sturgeon.

    PubMed

    Doukakis, Phaedra; Babcock, Elizabeth A; Pikitch, Ellen K; Sharov, Alexei R; Baimukhanov, Mirgaly; Erbulekov, Sagiden; Bokova, Yelena; Nimatov, Akhat

    2010-06-01

    Management of declining fisheries of anadromous species sometimes relies heavily on supplementation of populations with captive breeding, despite evidence that captive breeding can have negative consequences and may not address the root cause of decline. The beluga sturgeon (Huso huso), a species threatened by the market for black caviar and reductions in habitat quality, is managed through harvest control and hatchery supplementation, with an emphasis on the latter. We used yield per recruit and elasticity analyses to evaluate the population status and current levels of fishing and to identify the life-history stages that are the best targets for conservation of beluga of the Ural River. Harvest rates in recent years were four to five times higher than rates that would sustain population abundance. Sustainable rates of fishing mortality are similar to those for other long-lived marine species such as sharks and mammals. Yield per recruit, which is maximized if fish are first harvested at age 31 years, would be greatly enhanced by raising minimum size limits or reducing illegal take of subadults. Improving the survival of subadult and adult females would increase population productivity by 10 times that achieved by improving fecundity and survival from egg to age 1 year (i.e., hatchery supplementation). These results suggest that reducing mortality of subadults and adult wild fish is a more effective conservation strategy than hatchery supplementation. Because genetics is not factored into hatchery management practices, supplementation may even reduce the viability of the beluga sturgeon.

  19. Single rotor turbine engine

    DOEpatents

    Platts, David A.

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  20. Cooling of Gas Turbines. 6 - Computed Temperature Distribution through Cross Section of Water-Cooled Turbine Blade

    DTIC Science & Technology

    1947-05-01

    AERONAUTICS Figure 7. - Cross section of water-cooleä turbine blade showing location and size of seven coolant...Power Plants.~ Jet and~ Turbine ($) [SECTION. Turbines (I3) [CROSS DEFERENCES. Turbine blades - Thermal measurements (95350); Turbine blades ...section of water-cooled turbine blade FORG’N. TITLE: v.. ’V, ORIGINATING AGENCY. TRANSLATION. National Advisory Committee for Aeronautics

  1. New technology in turbine aerodynamics.

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.; Moffitt, T. P.

    1972-01-01

    Cursory review of some recent work that has been done in turbine aerodynamic research. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flowfields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

  2. Cooled snubber structure for turbine blades

    DOEpatents

    Mayer, Clinton A.; Campbell, Christian X.; Whalley, Andrew; Marra, John J.

    2014-04-01

    A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

  3. Ceramic turbine nozzle

    DOEpatents

    Shaffer, James E.; Norton, Paul F.

    1996-01-01

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

  4. New technology in turbine aerodynamics

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.; Moffitt, T. P.

    1972-01-01

    A cursory review is presented of some of the recent work that has been done in turbine aerodynamic research at NASA-Lewis Research Center. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. An extensive bibliography is included. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Turbines currently being investigated make use of advanced blading concepts designed to maintain high efficiency under conditions of high aerodynamic loading. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flow fields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

  5. Braconid wasps of subfamily Alysiinae (Hymenoptera: Braconidae) as endoparasitoids of Selachops flavocinctus Wahlberg, 1844 (Diptera: Agromyzidae) in the Central Urals, Russia.

    PubMed

    Kostromina, Tatiana S; Timokhov, Alexander V; Belokobylskij, Sergey A

    2016-11-29

    The Agromyzidae fly Selachops flavocinctus Wahlberg, 1844 as host of the Alysiinae genera Asyntactus Marshall, 1898 (Alysiini) and Protochorebus Perepechaenko, 1997 (Dacnusini) is recorded for the first time. A new species from Central Urals, Protochorebus pervushini sp. nov., is described and illustrated. The new material for Asyntactus rhogaleus Marshall, 1898 is studied. A key to Protochorebus species is provided. Description of puparium of Selachops flavocinctus and new data on its life history are published for the first time.

  6. Ceramic turbine nozzle

    DOEpatents

    Shaffer, J.E.; Norton, P.F.

    1996-12-17

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components have a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment, each of the first and second vane segments having a vertical portion, and each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component. 4 figs.

  7. Coordinated Control of Cross-Flow Turbines

    NASA Astrophysics Data System (ADS)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2016-11-01

    Cross-flow turbines, also known as vertical-axis turbines, have several advantages over axial-flow turbines for a number of applications including urban wind power, high-density arrays, and marine or fluvial currents. By controlling the angular velocity applied to the turbine as a function of angular blade position, we have demonstrated a 79 percent increase in cross-flow turbine efficiency over constant-velocity control. This strategy uses the downhill simplex method to optimize control parameter profiles during operation of a model turbine in a recirculating water flume. This optimization method is extended to a set of two turbines, where the blade motions and position of the downstream turbine are optimized to beneficially interact with the coherent structures in the wake of the upstream turbine. This control scheme has the potential to enable high-density arrays of cross-flow turbines to operate at cost-effective efficiency. Turbine wake and force measurements are analyzed for insight into the effect of a coordinated control strategy.

  8. Aircraft engine with inter-turbine engine frame supported counter rotating low pressure turbine rotors

    NASA Technical Reports Server (NTRS)

    Seda, Jorge F. (Inventor); Dunbar, Lawrence W. (Inventor); Gliebe, Philip R. (Inventor); Szucs, Peter N. (Inventor); Brauer, John C. (Inventor); Johnson, James E. (Inventor); Moniz, Thomas (Inventor); Steinmetz, Gregory T. (Inventor)

    2003-01-01

    An aircraft gas turbine engine assembly includes an inter-turbine frame axially located between high and low pressure turbines. Low pressure turbine has counter rotating low pressure inner and outer rotors with low pressure inner and outer shafts which are at least in part rotatably disposed co-axially within a high pressure rotor. Inter-turbine frame includes radially spaced apart radially outer first and inner second structural rings disposed co-axially about a centerline and connected by a plurality of circumferentially spaced apart struts. Forward and aft sump members having forward and aft central bores are fixedly joined to axially spaced apart forward and aft portions of the inter-turbine frame. Low pressure inner and outer rotors are rotatably supported by a second turbine frame bearing mounted in aft central bore of aft sump member. A mount for connecting the engine to an aircraft is located on first structural ring.

  9. Wind Turbine Wakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, Christopher Lee; Maniaci, David Charles; Resor, Brian R.

    2015-10-01

    The total energy produced by a wind farm depends on the complex interaction of many wind turbines operating in proximity with the turbulent atmosphere. Sometimes, the unsteady forces associated with wind negatively influence power production, causing damage and increasing the cost of producing energy associated with wind power. Wakes and the motion of air generated by rotating blades need to be better understood. Predicting wakes and other wind forces could lead to more effective wind turbine designs and farm layouts, thereby reducing the cost of energy, allowing the United States to increase the installed capacity of wind energy. The Windmore » Energy Technologies Department at Sandia has collaborated with the University of Minnesota to simulate the interaction of multiple wind turbines. By combining the validated, large-eddy simulation code with Sandia’s HPC capability, this consortium has improved its ability to predict unsteady forces and the electrical power generated by an array of wind turbines. The array of wind turbines simulated were specifically those at the Sandia Scaled Wind Farm Testbed (SWiFT) site which aided the design of new wind turbine blades being manufactured as part of the National Rotor Testbed project with the Department of Energy.« less

  10. 76. TURBINE HALL, UNIT 2 SHOWING BOTH TURBINE AND CONDENSER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    76. TURBINE HALL, UNIT 2 SHOWING BOTH TURBINE AND CONDENSER (SEE ALSO, DRAWING No. 12 OF 13) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  11. 40. VIEW OF TURBINE HALL LOOKING SOUTHWEST AT WESTINGHOUSEPARSONS TURBINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. VIEW OF TURBINE HALL LOOKING SOUTHWEST AT WESTINGHOUSE-PARSONS TURBINE NUMBER 2. THIS UNIT WAS INSTALLED IN 1925. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  12. Numerical simulation of turbulence flow in a Kaplan turbine -Evaluation on turbine performance prediction accuracy-

    NASA Astrophysics Data System (ADS)

    Ko, P.; Kurosawa, S.

    2014-03-01

    The understanding and accurate prediction of the flow behaviour related to cavitation and pressure fluctuation in a Kaplan turbine are important to the design work enhancing the turbine performance including the elongation of the operation life span and the improvement of turbine efficiency. In this paper, high accuracy turbine and cavitation performance prediction method based on entire flow passage for a Kaplan turbine is presented and evaluated. Two-phase flow field is predicted by solving Reynolds-Averaged Navier-Stokes equations expressed by volume of fluid method tracking the free surface and combined with Reynolds Stress model. The growth and collapse of cavitation bubbles are modelled by the modified Rayleigh-Plesset equation. The prediction accuracy is evaluated by comparing with the model test results of Ns 400 Kaplan model turbine. As a result that the experimentally measured data including turbine efficiency, cavitation performance, and pressure fluctuation are accurately predicted. Furthermore, the cavitation occurrence on the runner blade surface and the influence to the hydraulic loss of the flow passage are discussed. Evaluated prediction method for the turbine flow and performance is introduced to facilitate the future design and research works on Kaplan type turbine.

  13. Wind Turbine Control Systems | Wind | NREL

    Science.gov Websites

    Turbine Control Systems Wind Turbine Control Systems Advanced wind turbine controls can reduce the loads on wind turbine components while capturing more wind energy and converting it into electricity turbines. A photo of a wind turbine against blue sky with white blades on their sides in the foreground

  14. Wind Turbine Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, D. R. (Editor)

    1978-01-01

    A workshop on wind turbine structural dynamics was held to review and document current United States work on the dynamic behavior of large wind turbines, primarily of the horizontal-axis type, and to identify and discuss other wind turbine configurations that may have lower cost and weight. Information was exchanged on the following topics: (1) Methods for calculating dynamic loads; (2) Aeroelasticity stability (3) Wind loads, both steady and transient; (4) Critical design conditions; (5) Drive train dynamics; and (6) Behavior of operating wind turbines.

  15. Ceramic Cerami Turbine Nozzle

    DOEpatents

    Boyd, Gary L.

    1997-04-01

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

  16. Cogeneration steam turbines from Siemens: New solutions

    NASA Astrophysics Data System (ADS)

    Kasilov, V. F.; Kholodkov, S. V.

    2017-03-01

    The Enhanced Platform system intended for the design and manufacture of Siemens AG turbines is presented. It combines organizational and production measures allowing the production of various types of steam-turbine units with a power of up to 250 MWel from standard components. The Enhanced Platform designs feature higher efficiency, improved reliability, better flexibility, longer overhaul intervals, and lower production costs. The design features of SST-700 and SST-900 steam turbines are outlined. The SST-700 turbine is used in backpressure steam-turbine units (STU) or as a high-pressure cylinder in a two-cylinder condensing turbine with steam reheat. The design of an SST-700 single-cylinder turbine with a casing without horizontal split featuring better flexibility of the turbine unit is presented. An SST-900 turbine can be used as a combined IP and LP cylinder (IPLPC) in steam-turbine or combined-cycle power units with steam reheat. The arrangements of a turbine unit based on a combination of SST-700 and SST-900 turbines or SST-500 and SST-800 turbines are presented. Examples of this combination include, respectively, PGU-410 combinedcycle units (CCU) with a condensing turbine and PGU-420 CCUs with a cogeneration turbine. The main equipment items of a PGU-410 CCU comprise an SGT5-4000F gas-turbine unit (GTU) and STU consisting of SST-700 and SST-900RH steam turbines. The steam-turbine section of a PGU-420 cogeneration power unit has a single-shaft turbine unit with two SST-800 turbines and one SST-500 turbine giving a power output of N el. STU = 150 MW under condensing conditions.

  17. An experimental investigation on wind turbine aeromechanics and wake interferences among multiple wind turbines

    NASA Astrophysics Data System (ADS)

    Ozbay, Ahmet

    A comprehensive experimental study was conducted to investigate wind turbine aeromechanics and wake interferences among multiple wind turbines sited in onshore and offshore wind farms. The experiments were carried out in a large-scale Aerodynamic/Atmospheric Boundary Layer (AABL) Wind Tunnel available at Iowa State University. An array of scaled three-blade Horizontal Axial Wind Turbine (HAWT) models were placed in atmospheric boundary layer winds with different mean and turbulence characteristics to simulate the situations in onshore and offshore wind farms. The effects of the important design parameters for wind farm layout optimization, which include the mean and turbulence characteristics of the oncoming surface winds, the yaw angles of the turbines with respect to the oncoming surface winds, the array spacing and layout pattern, and the terrain topology of wind farms on the turbine performances (i.e., both power output and dynamic wind loadings) and the wake interferences among multiple wind turbines, were assessed in detail. The aeromechanic performance and near wake characteristics of a novel dual-rotor wind turbine (DRWT) design with co-rotating or counter-rotating configuration were also investigated, in comparison to a conventional single rotor wind turbine (SRWT). During the experiments, in addition to measuring dynamic wind loads (both forces and moments) and the power outputs of the scaled turbine models, a high-resolution Particle Image Velocity (PIV) system was used to conduct detailed flow field measurements (i.e., both free-run and phase-locked flow fields measurements) to reveal the transient behavior of the unsteady wake vortices and turbulent flow structures behind wind turbines and to quantify the characteristics of the wake interferences among the wind turbines sited in non-homogenous surface winds. A miniature cobra anemometer was also used to provide high-temporal-resolution data at points of interest to supplement the full field PIV

  18. Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foust, J.; Hecker, G.; Li, S.

    2011-10-01

    The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), themore » design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall within

  19. Automotive gas turbine fuel control

    NASA Technical Reports Server (NTRS)

    Gold, H. (Inventor)

    1978-01-01

    A fuel control system is reported for automotive-type gas turbines and particulary advanced gas turbines utilizing variable geometry components to improve mileage and reduce pollution emission. The fuel control system compensates for fuel density variations, inlet temperature variations, turbine vane actuation, acceleration, and turbine braking. These parameters are utilized to control various orifices, spool valves and pistons.

  20. Turbine Design and Application, Volume 3

    NASA Technical Reports Server (NTRS)

    Glassman, A. J. (Editor)

    1975-01-01

    Turbine technology concepts for thermodynamic and fluid dynamics are presented along with velocity diagrams, losses, mechanical design, operation and performance. Designs discussed include: supersonic turbines, radial-inflow turbines, and turbine cooling.

  1. Turbine-Driven Pipe-Cleaning Brush

    NASA Technical Reports Server (NTRS)

    Werlink, Rudy J.; Rowell, David E.

    1994-01-01

    Simple pipe-cleaning device includes small turbine wheel axially connected, by standoff, to circular brush. Turbine wheel turns on hub bearing attached to end of upstream cable. Turbine-and-brush assembly inserted in pipe with cable trailing upstream and brush facing downstream. Water or cleaning solution pumped through pipe. Cable held at upstream end, so it holds turbine and brush in pipe at location to be cleaned. Flow in pipe turns turbine, which turns wheel, producing desired cleaning action. In addition to brushing action, device provides even mixing of cleaning solution in pipe.

  2. Graphene in turbine blades

    NASA Astrophysics Data System (ADS)

    Das, D. K.; Swain, P. K.; Sahoo, S.

    2016-07-01

    Graphene, the two-dimensional (2D) nanomaterial, draws interest of several researchers due to its many superior properties. It has extensive applications in numerous fields. A turbine is a hydraulic machine which extracts energy from a fluid and converts it into useful work. Recently, Gudukeya and Madanhire have tried to increase the efficiency of Pelton turbine. Beucher et al. have also tried the same by reducing friction between fluid and turbine blades. In this paper, we study the advantages of using graphene as a coating on Pelton turbine blades. It is found that the efficiency of turbines increases, running and maintenance cost is reduced with more power output. By the application of graphene in pipes, cavitation will be reduced, durability of pipes will increase, operation and maintenance cost of water power plants will be less.

  3. RLV Turbine Performance Optimization

    NASA Technical Reports Server (NTRS)

    Griffin, Lisa W.; Dorney, Daniel J.

    2001-01-01

    A task was developed at NASA/Marshall Space Flight Center (MSFC) to improve turbine aerodynamic performance through the application of advanced design and analysis tools. There are four major objectives of this task: 1) to develop, enhance, and integrate advanced turbine aerodynamic design and analysis tools; 2) to develop the methodology for application of the analytical techniques; 3) to demonstrate the benefits of the advanced turbine design procedure through its application to a relevant turbine design point; and 4) to verify the optimized design and analysis with testing. Final results of the preliminary design and the results of the two-dimensional (2D) detailed design of the first-stage vane of a supersonic turbine suitable for a reusable launch vehicle (R-LV) are presented. Analytical techniques for obtaining the results are also discussed.

  4. 63. VIEW OF TYPICAL TURBINE IN TURBINE WELL IN POWERHOUSE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. VIEW OF TYPICAL TURBINE IN TURBINE WELL IN POWERHOUSE, LOOKING DOWN THE SHAFT FROM JUST ABOVE NORMAL WATER LEVEL. LADDER IS ON DOWNSTREAM WALL. PHOTOGRAPHER STOOD ON DECK SHOWN IN LOWER LEFT CORNER - Swan Falls Dam, Snake River, Kuna, Ada County, ID

  5. Gas turbine engine

    DOEpatents

    Lawlor, Shawn P.; Roberts, II, William Byron

    2016-03-08

    A gas turbine engine with a compressor rotor having compressor impulse blades that delivers gas at supersonic conditions to a stator. The stator includes a one or more aerodynamic ducts that each have a converging portion and a diverging portion for deceleration of the selected gas to subsonic conditions and to deliver a high pressure oxidant containing gas to flameholders. The flameholders may be provided as trapped vortex combustors, for combustion of a fuel to produce hot pressurized combustion gases. The hot pressurized combustion gases are choked before passing out of an aerodynamic duct to a turbine. Work is recovered in a turbine by expanding the combustion gases through impulse blades. By balancing the axial loading on compressor impulse blades and turbine impulse blades, asymmetrical thrust is minimized or avoided.

  6. Eutectic Composite Turbine Blade Development

    DTIC Science & Technology

    1976-11-01

    turbine blades for aircraft engines . An MC carbide fiber reinforced eutectic alloy, NiTaC-13...composites in turbine blades for aircraft engines . An MC carbide fiber reinforced eutectic alloy, NiTaC-13 and the low pressure turbine blade of the...identified that appeared to have potential for application to aircraft engine turbine blade hardware. The potential benefits offered by these materials

  7. Large wind turbine generators

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Donovon, R. M.

    1978-01-01

    The development associated with large wind turbine systems is briefly described. The scope of this activity includes the development of several large wind turbines ranging in size from 100 kW to several megawatt levels. A description of the wind turbine systems, their programmatic status and a summary of their potential costs is included.

  8. Mechanical power efficiency of modified turbine blades

    NASA Astrophysics Data System (ADS)

    Mahmud, Syahir; Sampebatu, Limbran; Kwang, Suendy Ciayadi

    2017-01-01

    Abstract-The problem of energy crisis has become one of the unsolved issues until today. Indonesia has a lot of non-conventional energy sources that does not utilized effectively yet. For that the available resources must utilized efficiently due to the energy crisis and the growing energy needs. Among the abundant resources of energy, one potential source of energy is hydroelectric energy. This research compares the mechanical power efficiency generated by the Darrieus turbine, Savonius turbine and the Darrieus-Savonius turbine. The comparation of the mechanical power amongst the three turbine starts from the measurement of the water flow rate, water temperature, turbine rotation and force on the shaft on each type of turbine. The comparison will show the mechanical power efficiency of each turbine to find the most efficient turbine that can work optimally. The results show that with 0.637m/s flow velocity and 44.827 Watt of water flow power, the Darrieus-Savonius turbine can generate power equal to 29.927 Watt and shaft force around by 17 N. The Darrieus-Savonius turbine provides around 66.76% efficiency betwen the three turbines; Darrieus turbine, Savonius turbine and the Darrieus-Savonius turbine. Overall, the Darrieus Savonius turbine has the ability to work optimally at the research location.

  9. Turbine and method for reducing shock losses in a turbine

    DOEpatents

    Ristau, Neil

    2015-09-01

    A turbine includes a rotor and a casing that circumferentially surrounds at least a portion of the rotor. The rotor and the casing at least partially define a gas path through the turbine. A last stage of rotating blades is circumferentially arranged around the rotor and includes a downstream swept portion radially outward from the rotor. A method for reducing shock losses in a turbine includes removing a last stage of rotating blades circumferentially arranged around a rotor and replacing the last stage of rotating blades with rotating blades having a downstream swept portion radially outward from the rotor.

  10. Comparison of Water Turbine Characteristics using Different Blades in Darrieus Water Turbines used for Tidal Current Generations

    NASA Astrophysics Data System (ADS)

    Shiono, Mitsuhiro; Suzuki, Katsuyuki; Kiho, Seiji

    The use of renewable energies has been focused on for preserving environments and coping with the shortage of future energy supplies. In oceans, a tide reverses its current direction every six hours, and the current velocity changes into a sine wave after a period of time. Tidal current generation uses a generator to produce energy, changing the kinetic energy of current into a turning force by setting a water turbine in the tidal current. Therefore, it is considered to be very advantageous to use a water turbine that can always revolve in a fixed direction without any influence from tidal current directions. Water turbines with these characteristics are known as Darrieus water turbines. The Darrieus water turbines were modified for water from turbines originally developed for windmills. Darrieus water turbines have a difficulty in starting, but these days Darrieus water turbines have been developed with spiral blades, which make it easy to get the turbines started. However, there are very few reports regarding Darrieus water turbines with spiral blades, and therefore their characteristics are unknown. From the above points of view, this study devises and investigates spiral blade-Darrieus water turbines to clarify their characteristics through hydrographic experiments, and at the same time, it compares the characteristics of spiral-blade Darrieus water turbines with those of straight-blade ones.

  11. Effects of Herbal Medicine (Gan Mai Da Zao Decoction) on Several Types of Neuropsychiatric Disorders in an Animal Model: A Systematic Review: Herbal medicine for animal studies of neuropsychiatric diseases.

    PubMed

    Kim, Su Ran; Lee, Hye Won; Jun, Ji Hee; Ko, Byoung-Seob

    2017-03-01

    Gan Mai Da Zao (GMDZ) decoction is widely used for the treatment of various diseases of the internal organ and of the central nervous system. The aim of this study is to investigate the effects of GMDZ decoction on neuropsychiatric disorders in an animal model. We searched seven databases for randomized animal studies published until April 2015: Pubmed, four Korean databases (DBpia, Oriental Medicine Advanced Searching Integrated System, Korean Studies Information Service System, and Research Information Sharing Service), and one Chinese database (China National Knowledge Infrastructure). The randomized animal studies were included if the effects of GMDZ decoction were tested on neuropsychiatric disorders. All articles were read in full and extracted predefined criteria by two independent reviewers. From a total of 258 hits, six randomized controlled animal studies were included. Five studies used a Sprague Dawley rat model for acute psychological stress, post-traumatic stress disorders, and unpredictable mild stress depression whereas one study used a Kunming mouse model for prenatal depression. The results of the studies showed that GMDZ decoction improved the related outcomes. Regardless of the dose and concentration used, GMDZ decoction significantly improved neuropsychiatric disease-related outcomes in animal models. However, additional systematic and extensive studies should be conducted to establish a strong conclusion.

  12. Design Tools to Assess Hydro-Turbine Biological Performance: Priest Rapids Dam Turbine Replacement Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Marshall C.; Rakowski, Cynthia L.; Serkowski, John A.

    2013-06-25

    Over the past two decades, there have been many studies describing injury mechanisms associated with turbine passage, the response of various fish species to these mechanisms, and the probability of survival through dams. Although developing tools to design turbines that improve passage survival has been difficult and slow, a more robust quantification of the turbine environment has emerged through integrating physical model data, fish survival data, and computational fluid dynamics (CFD) studies. Grant County Public Utility District (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbinemore » units that are now almost 50 years old. The Utility District plans to refit all of these aging turbines with new turbines. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when replacing the turbines. In this presentation, a method for turbine biological performance assessment (BioPA) is introduced. Using this method, a suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We will present application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.« less

  13. Miniature cryogenic expansion turbines - A review

    NASA Astrophysics Data System (ADS)

    Sixsmith, H.

    Lord Rayleigh (1898) has first suggested the use of a turbine instead of a piston expander for the liquification of air. The development of expansion turbines is discussed, taking into account the first successful commercial application for cryogenic expansion turbines in Germany, Kapitza's turbine, work on much smaller turbines conducted in England, the development of a helium expansion turbine at the National Bureau of Standards, the development of small turboexpanders in Switzerland, the development of gas bearing expansion turbines, and the development of a small turboexpander similar to designs developed at the National Bureau of Standards. The reliability of cryogenic expansion turbines is discussed. It is found that applications for helium refrigerators and the demand for them would greatly increase if the reliability of these devices could be improved. Such a development would be crucial for the adoption of superconducting machinery by industry.

  14. Axial pico turbine - construction and experimental research

    NASA Astrophysics Data System (ADS)

    Peczkis, G.; Goryca, Z.; Korczak, A.

    2017-08-01

    The paper concerns axial water turbine of power equal to 1 kW. The example of axial water turbine constructional calculations was provided, as well as turbine rotor construction with NACA profile blades. The laboratory test rig designed and built to perform measurements on pico turbine was described. The turbine drove three-phase electrical generator. On the basis of highest efficiency parameters, pico turbine basic characteristics were elaborated. The experimental research results indicated that pico turbine can achieve maximum efficiency close to the values of larger water turbines.

  15. Sliding vane geometry turbines

    DOEpatents

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  16. Turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greer, D.

    1988-02-16

    In a turbine propulsion engine, an elongated motor is described including a power means and having a drive shaft projecting therefrom. A first compressor includes an elongated rotatable first casing coaxially mounted upon the motor having a fuel inlet for pressure feeding of fuel lengthwise of the first compressor. A second compressor includes a casing coaxially mounted upon and along the first compressor casing secured to the motor having an air inlet at its forward end for feeding high velocity compressed air lengthwise of the second compressor casing. An intermediate diverging casing at one end is peripherally connected to themore » second compressor casing having inner and outer diffusor chambers communicating respectively with the compressor for receiving high velocity vaporized fuel and compressed air. A turbine casing at one end is peripherally connected to the intermediate casing and at its other end having a converging exhaust outlet. An elongated combustion chamber of circular cross-section rotatably mounted and spaced within and journaled upon the turbine casing; an engine shaft extending axially through the combustion chamber, journaled upon the turbine casing and axially connected to the drive shaft.« less

  17. New two-tier low pressure turbine for heavy duty steam turbines

    NASA Astrophysics Data System (ADS)

    Zaryankin, A. E.; Rogalev, A. N.; Osipov, S. K.; Bychkov, N. M.

    2017-11-01

    Among factors characterising steam turbine units of power plants, a specific metal content which value decreases inversely to turbine power is of substantive importance. In turn, their maximum power depends on the capacity of low pressure turbines. It is traditionally managed to increase either by installation of larger number of low pressure turbines or by lengthening the exhaust blades. It is worth noting that the above-mentioned methods have some technical restrictions by the number of rotors to be connected. Currently some works aimed at solving the stated technical problems appear in the literature for the purpose of increasing the unit power of turbomachines, for example, by using exhaust blades with the length of 1 500 mm and longer. However, it is to be understood that increasing the exhaust area of turbomachine only by lengthening exhaust blades cannot provide a cost-effective and reliable work of the turbine flow part. Here new problems appear: losses rise abruptly due to the stage fan-out, the turbomachine dimensions increase, etc. In this connection, an issue of development of new, technically implementable ways of turbo-units power increase is very acute today.

  18. Two stage turbine for rockets

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1993-01-01

    The aerodynamic design and rig test evaluation of a small counter-rotating turbine system is described. The advanced turbine airfoils were designed and tested by Pratt & Whitney. The technology represented by this turbine is being developed for a turbopump to be used in an advanced upper stage rocket engine. The advanced engine will use a hydrogen expander cycle and achieve high performance through efficient combustion of hydrogen/oxygen propellants, high combustion pressure, and high area ratio exhaust nozzle expansion. Engine performance goals require that the turbopump drive turbines achieve high efficiency at low gas flow rates. The low mass flow rates and high operating pressures result in very small airfoil heights and diameters. The high efficiency and small size requirements present a challenging turbine design problem. The shrouded axial turbine blades are 50 percent reaction with a maximum thickness to chord ratio near 1. At 6 deg from the tangential direction, the nozzle and blade exit flow angles are well below the traditional design minimum limits. The blade turning angle of 160 deg also exceeds the maximum limits used in traditional turbine designs.

  19. Inspection system for a turbine blade region of a turbine engine

    DOEpatents

    Smed, Jan P [Winter Springs, FL; Lemieux, Dennis H [Casselberry, FL; Williams, James P [Orlando, FL

    2007-06-19

    An inspection system formed at least from a viewing tube for inspecting aspects of a turbine engine during operation of the turbine engine. An outer housing of the viewing tube may be positioned within a turbine engine using at least one bearing configured to fit into an indentation of a support housing to form a ball and socket joint enabling the viewing tube to move during operation as a result of vibrations and other movements. The viewing tube may also include one or more lenses positioned within the viewing tube for viewing the turbine components. The lenses may be kept free of contamination by maintaining a higher pressure in the viewing tube than a pressure outside of the viewing tube and enabling gases to pass through an aperture in a cap at a viewing end of the viewing tube.

  20. Wind turbines acoustic measurements

    NASA Astrophysics Data System (ADS)

    Trematerra, Amelia; Iannace, Gino

    2017-07-01

    The importance of wind turbines has increased over the last few years throughout the European Community. The European energy policy guidelines state that for the year 2020 20% of all energy must be produced by alternative energy sources. Wind turbines are an important type of energy production without petrol. A wind speed in a range from 2.5 m/s to 25.0 m/s is needed. One of the obstacles to the widespread diffusion of wind turbine is noise generation. This work presents some noise measurements of wind turbines in the South of Italy, and discusses the noise problems for the people living near wind farms.

  1. Turbine Engine Flowpath Averaging Techniques

    DTIC Science & Technology

    1980-10-01

    u~%x AEDC- TMR- 8 I-G 1 • R. P TURBINE ENGINE FLOWPATH AVERAGING TECHNIQUES T. W. Skiles ARO, Inc. October 1980 Final Report for Period...COVERED 00-01-1980 to 00-10-1980 4. TITLE AND SUBTITLE Turbine Engine Flowpath Averaging Techniques 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...property for gas turbine engines were investigated. The investigation consisted of a literature review and review of turbine engine current flowpath

  2. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  3. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  4. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  5. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  6. Radial turbine cooling

    NASA Technical Reports Server (NTRS)

    Roelke, Richard J.

    1992-01-01

    Radial turbines have been used extensively in many applications including small ground based electrical power generators, automotive engine turbochargers and aircraft auxiliary power units. In all of these applications the turbine inlet temperature is limited to a value commensurate with the material strength limitations and life requirements of uncooled metal rotors. To take advantage of all the benefits that higher temperatures offer, such as increased turbine specific power output or higher cycle thermal efficiency, requires improved high temperature materials and/or blade cooling. Extensive research is on-going to advance the material properties of high temperature superalloys as well as composite materials including ceramics. The use of ceramics with their high temperature potential and low cost is particularly appealing for radial turbines. However until these programs reach fruition the only way to make significant step increases beyond the present material temperature barriers is to cool the radial blading.

  7. Turbine Engine Hot Section Technology, 1985

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Turbine Engine Section Technology (HOST) Project Office of the Lewis Research Center sponsored a workshop to discuss current research pertinent to turbine engine hot section durability problems. Presentations were made concerning hot section environment and the behavior of combustion liners, turbine blades, and turbine vanes.

  8. The Cooling of Turbine Blades,

    DTIC Science & Technology

    1981-06-11

    aviation gas turbine engine , everyone has ceaselessly come up with ways of raising the temperature of gases in a turbine before combustion. The reason for...temperature of the blade concerned by approximately 200 degrees. Jet -type cooling. When the surface of a turbine blade is at a temperature which is...the blade and multiplying the drop in the temperature of the blade . Figure 3 is a cross-section diagram of a turbine blade cooled by the jet

  9. 44. KNIGHT WATER IMPULSE TURBINES 12'. THESE TWO TURBINES ARE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. KNIGHT WATER IMPULSE TURBINES 12'. THESE TWO TURBINES ARE SIMILAR TO THOSE THAT POWER THE FOUNDRY AND ENABLE PRODUCTION OF CAST MACHINERY PARTS SUCH AS THOSE IN THE BACKGROUND, RECENTLY MADE FOR RESTORING RAILROAD TURNTABLES IN CAMINO, FOLSOM, PLACERVILLE, AND PARIS, CALIFORNIA. - Knight Foundry, 13 Eureka Street, Sutter Creek, Amador County, CA

  10. Treeline advances and associated shifts in the ground vegetation alter fine root dynamics and mycelia production in the South and Polar Urals.

    PubMed

    Solly, Emily F; Djukic, Ika; Moiseev, Pavel A; Andreyashkina, Nelly I; Devi, Nadezhda M; Göransson, Hans; Mazepa, Valeriy S; Shiyatov, Stepan G; Trubina, Marina R; Schweingruber, Fritz H; Wilmking, Martin; Hagedorn, Frank

    2017-02-01

    Climate warming is shifting the elevational boundary between forests and tundra upwards, but the related belowground responses are poorly understood. In the pristine South and Polar Urals with shifts of the treeline ecotone documented by historical photographs, we investigated fine root dynamics and production of extramatrical mycorrhizal mycelia (EMM) along four elevational transects reaching from the closed forest to the treeless tundra. In addition, we analysed elevational differences in climate and vegetation structure, and excavated trees to estimate related changes in the partitioning between below- and aboveground biomass. Fine root biomass of trees (<2 mm) increased by 13-79% with elevation, paralleled by a 35-72% increase in ground vegetation fine roots from the closed forest to the tundra. During the first year of decomposition, mass loss of fine root litter from different vegetation types was greater at lower elevations in the forest-tundra ecotone. The ratio between fine roots of trees and stem biomass largely increased with elevation in both regions, but these increases were not accompanied by a distinct production of EMM. Production of EMM, however, increased with the presence of ectomycorrhizal trees at the transition from the tundra to the forest. Our results imply that the recorded upward expansion of forest into former tundra in the Ural Mountains by 4-8 m per decade is decreasing the partitioning of plant biomass to fine roots. They further suggest that climate-driven forest advances will alter EMM production rates with potential feedbacks on soil carbon and nutrient cycling in these ecosystems.

  11. Snubber assembly for turbine blades

    DOEpatents

    Marra, John J

    2013-09-03

    A snubber associated with a rotatable turbine blade in a turbine engine, the turbine blade including a pressure sidewall and a suction sidewall opposed from the pressure wall. The snubber assembly includes a first snubber structure associated with the pressure sidewall of the turbine blade, a second snubber structure associated with the suction sidewall of the turbine blade, and a support structure. The support structure extends through the blade and is rigidly coupled at a first end portion thereof to the first snubber structure and at a second end portion thereof to the second snubber structure. Centrifugal loads exerted by the first and second snubber structures caused by rotation thereof during operation of the engine are at least partially transferred to the support structure, such that centrifugal loads exerted on the pressure and suctions sidewalls of the turbine blade by the first and second snubber structures are reduced.

  12. Calculation of gas turbine characteristic

    NASA Astrophysics Data System (ADS)

    Mamaev, B. I.; Murashko, V. L.

    2016-04-01

    The reasons and regularities of vapor flow and turbine parameter variation depending on the total pressure drop rate π* and rotor rotation frequency n are studied, as exemplified by a two-stage compressor turbine of a power-generating gas turbine installation. The turbine characteristic is calculated in a wide range of mode parameters using the method in which analytical dependences provide high accuracy for the calculated flow output angle and different types of gas dynamic losses are determined with account of the influence of blade row geometry, blade surface roughness, angles, compressibility, Reynolds number, and flow turbulence. The method provides satisfactory agreement of results of calculation and turbine testing. In the design mode, the operation conditions for the blade rows are favorable, the flow output velocities are close to the optimal ones, the angles of incidence are small, and the flow "choking" modes (with respect to consumption) in the rows are absent. High performance and a nearly axial flow behind the turbine are obtained. Reduction of the rotor rotation frequency and variation of the pressure drop change the flow parameters, the parameters of the stages and the turbine, as well as the form of the characteristic. In particular, for decreased n, nonmonotonic variation of the second stage reactivity with increasing π* is observed. It is demonstrated that the turbine characteristic is mainly determined by the influence of the angles of incidence and the velocity at the output of the rows on the losses and the flow output angle. The account of the growing flow output angle due to the positive angle of incidence for decreased rotation frequencies results in a considerable change of the characteristic: poorer performance, redistribution of the pressure drop at the stages, and change of reactivities, growth of the turbine capacity, and change of the angle and flow velocity behind the turbine.

  13. Wind Turbine With Concentric Ducts

    NASA Technical Reports Server (NTRS)

    Muhonen, A. J.

    1983-01-01

    Wind Turbine device is relatively compact and efficient. Converging inner and outer ducts increase pressure difference across blades of wind turbine. Turbine shaft drives alternator housed inside exit cone. Suitable for installation on such existing structures as water towers, barns, houses, and commercial buildings.

  14. Wind Turbine Research Validation | Wind | NREL

    Science.gov Websites

    Wind Turbine Research Validation Wind Turbine Research Validation Photo of a large wind turbine operators with turbine and component research validation that ensures performance and reliability. Prototype research is especially important to capture manufacturing flaws. The NWTC staff conducts research on

  15. Tail Shape Design of Boat Wind Turbines

    NASA Astrophysics Data System (ADS)

    Singamsitty, Venkatesh

    Wind energy is a standout among the most generally utilized sustainable power source assets. A great deal of research and improvements have been happening in the wind energy field. Wind turbines are mechanical devices that convert kinetic energy into electrical power. Boat wind turbines are for the small-scale generation of electric power. In order to catch wind energy effectively, boat wind turbines need to face wind direction. Tails are used in boat wind turbines to alter the wind turbine direction and receive the variation of the incoming direction of wind. Tails are used to change the performance of boat wind turbines in an effective way. They are required to generate a quick and steady response as per change in wind direction. Tails can have various shapes, and their effects on boat wind turbines are different. However, the effects of tail shapes on the performance of boat wind turbines are not thoroughly studied yet. In this thesis, five tail shapes were studied. Their effects on boat wind turbines were investigated. The power extracted by the turbines from the air and the force acting on the boat wind turbine tail were analyzed. The results of this thesis provide a guideline of tail shape design for boat wind turbines.

  16. Large, horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Linscott, B. S.; Perkins, P.; Dennett, J. T.

    1984-01-01

    Development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generating systems are presented. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. There are several ongoing large wind system development projects and applied research efforts directed toward meeting the technology requirements for utility applications. Detailed information on these projects is provided. The Mod-O research facility and current applied research effort in aerodynamics, structural dynamics and aeroelasticity, composite and hybrid composite materials, and multiple system interaction are described. A chronology of component research and technology development for large, horizontal axis wind turbines is presented. Wind characteristics, wind turbine economics, and the impact of wind turbines on the environment are reported. The need for continued wind turbine research and technology development is explored. Over 40 references are sited and a bibliography is included.

  17. Wind turbine

    DOEpatents

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  18. Centaur boost pump turbine icing investigation

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. J.

    1976-01-01

    An investigation was conducted to determine if ice formation in the Centaur vehicle liquid oxygen boost pump turbine could prevent rotation of the pump and whether or not this phenomenon could have been the failure mechanism for the Titan/Centaur vehicle TC-1. The investigation consisted of a series of tests done in the LeRC Space Power Chamber Facility to evaluate evaporative cooling behavior patterns in a turbine as a function of the quantity of water trapped in the turbine and as a function of the vehicle ascent pressure profile. It was found that evaporative freezing of water in the turbine housing, due to rapid depressurization within the turbine during vehicle ascent, could result in the formation of ice that would block the turbine and prevent rotation of the boost pump. But for such icing conditions to exist it would be necessary to have significant quantities of water in the turbine and/or its components, and the turbine housing temperature would have to be colder than 40 F at vehicle liftoff.

  19. Towers for Offshore Wind Turbines

    NASA Astrophysics Data System (ADS)

    Kurian, V. J.; Narayanan, S. P.; Ganapathy, C.

    2010-06-01

    Increasing energy demand coupled with pollution free production of energy has found a viable solution in wind energy. Land based windmills have been utilized for power generation for more than two thousand years. In modern times wind generated power has become popular in many countries. Offshore wind turbines are being used in a number of countries to tap the energy from wind over the oceans and convert to electric energy. The advantages of offshore wind turbines as compared to land are that offshore winds flow at higher speed than onshore winds and the more available space. In some land based settings, for better efficiency, turbines are separated as much as 10 rotor diameters from each other. In offshore applications where only two wind directions are likely to predominate, the distances between the turbines arranged in a line can be shortened to as little as two or four rotor diameters. Today, more than a dozen offshore European wind facilities with turbine ratings of 450 kw to 3.6 MW exist offshore in very shallow waters of 5 to 12 m. Compared to onshore wind turbines, offshore wind turbines are bigger and the tower height in offshore are in the range of 60 to 80 m. The water depths in oceans where offshore turbines can be located are within 30 m. However as the distance from land increases, the costs of building and maintaining the turbines and transmitting the power back to shore also increase sharply. The objective of this paper is to review the parameters of design for the maximum efficiency of offshore wind turbines and to develop types offshore towers to support the wind turbines. The methodology of design of offshore towers to support the wind turbine would be given and the environmental loads for the design of the towers would be calculated for specific cases. The marine corrosion on the towers and the methods to control the corrosion also would be briefly presented. As the wind speeds tend to increase with distance from the shore, turbines build father

  20. Advanced Gas Turbine (AGT) Technology Project

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Technical work on the design and effort leading to the testing of a 74.5 kW (100 hp) automotive gas turbine engine is reviewed. Development of the engine compressor, gasifier turbine, power turbine, combustor, regenerator, and secondary system is discussed. Ceramic materials development and the application of such materials in the gas turbine engine components is described.

  1. Wind turbine acoustics

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-01-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  2. Water turbine technology for small power stations

    NASA Astrophysics Data System (ADS)

    Salovaara, T.

    1980-02-01

    The paper examines hydro-power stations and the efficiency and costs of using water turbines to run them. Attention is given to different turbine types emphasizing the use of Kaplan-turbines and runners. Hydraulic characteristics and mechanical properties of low head turbines and small turbines, constructed of fully fabricated steel plate structures, are presented.

  3. Predicting Noise From Wind Turbines

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1990-01-01

    Computer program WINDY predicts broadband noise spectra of horizontal-axis wind-turbine generators. Enables adequate assessment of impact of broadband wind-turbine noise. Effects of turbulence, trailing-edge wakes, and bluntness taken into account. Program has practical application in design and siting of wind-turbine machines acceptable to community. Written in GW-Basic.

  4. Pump for spawning channels includes a turbine and motor. Turbine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pump for spawning channels includes a turbine and motor. Turbine is Berkeley H-17500, model 8C2PH, Serial No. 2889, B.M. No. 4886 - Berkeley Pump Co. The Motor is G.E. Induction Motor, model 5K4256XA3YI, serial no. GAJ728337, Tri-Clad. View looking northeast. - Prairie Creek Fish Hatchery, Hwy. 101, Orick, Humboldt County, CA

  5. CFD analysis of a Darrieus wind turbine

    NASA Astrophysics Data System (ADS)

    Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Pepelea, D.; Dumitrache, A.; Crunteanu, D. E.

    2017-07-01

    The Darrieus wind turbine has some advantages over the horizontal-axis wind turbine. Firstly, its tip speed ratio is lower than that of the horizontal-axis wind turbine and, therefore, its noise is smaller, privileging their placement near populated areas. Secondly, the Darrieus wind turbine does needs no orientation mechanism with respect to wind direction in contrast to the horizontal-axis wind turbine. However, the efficiency of the Darrieus wind turbine is lower than that of the horizontal-axis wind turbine since its aerodynamics is much more complex. With the advances in computational fluids and computers, it is possible to simulate the Darrieus wind turbine more accurately to understand better its aerodynamics. For these reasons, the present papers deals with the computational aerodynamics of a Darrieus wind turbine applying the state of the art of CFD methods (anisotropic turbulence models, transition from laminar to turbulent, scale adaptive simulation) to better understand its unsteady behavior.

  6. Component Performance Investigation of J71 Type II Turbines: III - Overall Performance of J71 Type IIA Turbine

    NASA Technical Reports Server (NTRS)

    Schum, Harold J.; Davison, Elmer H.; Petrash, Donald A.

    1955-01-01

    The over-all component performance characteristics of the J71 Type IIA three-stage turbine were experimentally determined over a range of speed and over-all turbine total-pressure ratio at inlet-air conditions af 35 inches of mercury absolute and 700 deg. R. The results are compared with those obtained for the J71 Type IIF turbine, which was previously investigated, the two turbines being designed for the same engine application. Geometrically the two turbines were much alike, having the same variation of annular flow area and the same number of blades for corresponding stator and rotor rows. However, the blade throat areas downstream of the first stator of the IIA turbine were smaller than those of the IIF; and the IIA blade profiles were curve-backed, whereas those of the IIF were straight-backed. The IIA turbine passed the equivalent design weight flow and had a brake internal efficiency of 0.880 at design equivalent speed and work output. A maximum efficiency of 0.896 occurred at 130 percent of design equivalent speed and a pressure ratio of 4.0. The turbine had a wide range of efficient operation. The IIA turbine had slightly higher efficiencies than the IIF turbine at comparable operating conditions. The fact that the IIA turbine obtained the design equivalent weight flow at the design equivalent operating point was probably a result of the decrease in the blading throat areas downstream of the first stator from those of the IIF turbine, which passed 105 percent of design weight flow at the corresponding operating point. The third stator row of blades of the IIA turbine choked at the design equivalent speed and at an over-all pressure ratio of 4.2; the third rotor choked at a pressure ratio of approximately 4.9

  7. Next Generation Wind Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheraghi, S. Hossein; Madden, Frank

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the researchmore » and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.« less

  8. Radial-radial single rotor turbine

    DOEpatents

    Platts, David A [Los Alamos, NM

    2006-05-16

    A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power.

  9. Variable Pitch Darrieus Water Turbines

    NASA Astrophysics Data System (ADS)

    Kirke, Brian; Lazauskas, Leo

    In recent years the Darrieus wind turbine concept has been adapted for use in water, either as a hydrokinetic turbine converting the kinetic energy of a moving fluid in open flow like an underwater wind turbine, or in a low head or ducted arrangement where flow is confined, streamtube expansion is controlled and efficiency is not subject to the Betz limit. Conventional fixed pitch Darrieus turbines suffer from two drawbacks, (i) low starting torque and (ii) shaking due to cyclical variations in blade angle of attack. Ventilation and cavitation can also cause problems in water turbines when blade velocities are high. Shaking can be largely overcome by the use of helical blades, but these do not produce large starting torque. Variable pitch can produce high starting torque and high efficiency, and by suitable choice of pitch regime, shaking can be minimized but not entirely eliminated. Ventilation can be prevented by avoiding operation close to a free surface, and cavitation can be prevented by limiting blade velocities. This paper summarizes recent developments in Darrieus water turbines, some problems and some possible solutions.

  10. Septoplasty and Turbinate Surgery

    MedlinePlus

    ... RESOURCES Medical Societies Patient Education About this Website Font Size + - Home > TREATMENTS > Septoplasty & Turbinate Surgery Nasal/Sinus ... they are too large. There are several different types of turbinates in the nose. The ones that ...

  11. Cost/benefit studies of advanced materials technologies for future aircraft turbine engines: Materials for advanced turbine engines

    NASA Technical Reports Server (NTRS)

    Stearns, M.; Wilbers, L.

    1982-01-01

    Cost benefit studies were conducted on six advanced materials and processes technologies applicable to commercial engines planned for production in the 1985 to 1990 time frame. These technologies consisted of thermal barrier coatings for combustor and high pressure turbine airfoils, directionally solidified eutectic high pressure turbine blades, (both cast and fabricated), and mixers, tail cones, and piping made of titanium-aluminum alloys. A fabricated titanium fan blisk, an advanced turbine disk alloy with improved low cycle fatigue life, and a long-life high pressure turbine blade abrasive tip and ceramic shroud system were also analyzed. Technologies showing considerable promise as to benefits, low development costs, and high probability of success were thermal barrier coating, directionally solidified eutectic turbine blades, and abrasive-tip blades/ceramic-shroud turbine systems.

  12. Kshara application for turbinate hypertrophy.

    PubMed

    Kotrannavar, Vijay Kumar S; Angadi, Savita S

    2013-10-01

    Nasapratinaha (nasal obstruction) is a commonly encountered disease in clinical practice. It is one of the nasal disorders, explained in Ayurveda, having nasal obstruction leading to difficulty in breathing as the main cardinal feature. In contemporary science, this condition can be correlated with various diseases such as turbinate hypertrophy, deviated nasal septum, nasal mass, mucosal congestion, allergic rhinitis, and others; among which turbinate hypertrophy is a common cause. Turbinate hypertrophy can be treated with surgical and medical methods. The medical treatment has limitation for prolonged use because of health purpose, surgical approaches too have failed to achieve desired results in turbinate hypertrophy due to complications and high recurrence rate. The medical and surgical managements have their own limitations, merits, and demerits like synechiae formation, rhinitis sicca, severe bleeding, or osteonecrosis of the turbinate bone A parasurgical treatment explained in Ayurveda, known as kshara pratisarana, which is a minimal invasive and precise procedure for this ailment, tried to overcome this problem. 'Kshara Karma' is a popular treatment modality in Ayurveda, which has been advocated in disorders of nose like arbuda (tumor) and adhimamsa (muscular growth). Clinical observation has shown its effectiveness in the management of turbinate hypertrophy. A case report of 45-year-old male who presented with complaints of frequent nasal obstruction, nasal discharge, discomfort in nose, and headache; and diagnosed as turbinate hypertrophy has been presented here. The patient was treated with one application of Kshara over the turbinates. The treatment was effective and no recurrence was noticed in the follow up.

  13. Kshara application for turbinate hypertrophy

    PubMed Central

    Kotrannavar, Vijay Kumar S.; Angadi, Savita S.

    2013-01-01

    Nasapratinaha (nasal obstruction) is a commonly encountered disease in clinical practice. It is one of the nasal disorders, explained in Ayurveda, having nasal obstruction leading to difficulty in breathing as the main cardinal feature. In contemporary science, this condition can be correlated with various diseases such as turbinate hypertrophy, deviated nasal septum, nasal mass, mucosal congestion, allergic rhinitis, and others; among which turbinate hypertrophy is a common cause. Turbinate hypertrophy can be treated with surgical and medical methods. The medical treatment has limitation for prolonged use because of health purpose, surgical approaches too have failed to achieve desired results in turbinate hypertrophy due to complications and high recurrence rate. The medical and surgical managements have their own limitations, merits, and demerits like synechiae formation, rhinitis sicca, severe bleeding, or osteonecrosis of the turbinate bone A parasurgical treatment explained in Ayurveda, known as kshara pratisarana, which is a minimal invasive and precise procedure for this ailment, tried to overcome this problem. ‘Kshara Karma’ is a popular treatment modality in Ayurveda, which has been advocated in disorders of nose like arbuda (tumor) and adhimamsa (muscular growth). Clinical observation has shown its effectiveness in the management of turbinate hypertrophy. A case report of 45-year-old male who presented with complaints of frequent nasal obstruction, nasal discharge, discomfort in nose, and headache; and diagnosed as turbinate hypertrophy has been presented here. The patient was treated with one application of Kshara over the turbinates. The treatment was effective and no recurrence was noticed in the follow up. PMID:24459392

  14. MOD-2 wind turbine development

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.; Andrews, J. S.; Zimmerman, D. K.

    1983-01-01

    The development of the Mod-2 turbine, designed to achieve a cost of electricity for the 100th production unit that will be competitive with conventional electric power generation is discussed. The Mod-2 wind turbine system (WTS) background, project flow, and a chronology of events and problem areas leading to Mod-2 acceptance are addressed. The role of the participating utility during site preparation, turbine erection and testing, remote operation, and routine operation and maintenance activity is reviewed. The technical areas discussed pertain to system performance, loads, and controls. Research and technical development of multimegawatt turbines is summarized.

  15. Thermal Response Turbine Shroud.

    DTIC Science & Technology

    1979-11-01

    AD-AO82 754. GENERAL ELECTRIC CO CINCINNATI OH AIRCRAFT ENGINE GROUP F/G 21/5 THERMAL RESPONSE TURBINE SHROUO.(UI NOV 79 C N GAY F33615-7B-C-2071...SUPPLEMENTARY NOTES IS. IEV WORDS (C..tIam. ON guinea 80410 Itf08M 8". 1~0 &VU~ b lma n-M-) Clearance Shroud Clearance Control Turbine Shroud engine / aircrafte ...compressor Active Clearance Control Systems (ACC) de-signed for aircraft gas turbine engine applications. The study vas conducted by personnel of the

  16. Turbine blade vibration dampening

    DOEpatents

    Cornelius, Charles C.; Pytanowski, Gregory P.; Vendituoli, Jonathan S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass "M" or combined mass "CM" of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics.

  17. Features of steam turbine cooling by the example of an SKR-100 turbine for supercritical steam parameters

    NASA Astrophysics Data System (ADS)

    Arkadyev, B. A.

    2015-10-01

    Basic principles of cooling of high-temperature steam turbines and constructive solutions used for development of the world's first cooled steam turbine SKR-100 (R-100-300) are described. Principal differences between the thermodynamic properties of cooling medium in the steam and gas turbines and the preference of making flow passes of cooled cylinders of steam turbines as reactive are shown. Some of its operation results and their conclusions are given. This turbine with a power of 100 MW, initial steam parameters approximately 30 MPa and 650°C, and back pressure 3 MPa was made by a Kharkov turbine plant in 1961 and ran successfully at a Kashira GRES (state district power plant) up to 1979, when it was taken out of use in a still fully operating condition. For comparison, some data on construction features and operation results of the super-high pressure cylinder of steam turbines of American Philo 6 (made by General Electric Co.) and Eddystone 1 (made by Westinghouse Co.) power generating units, which are close to the SKR-100 turbine by design initial steam parameters and the implementation time, are given. The high operational reliability and effectiveness of the cooling system that was used in the super-high pressure cylinder of the SKR-100 turbine of the power-generating unit, which were demonstrated in operation, confirms rightfulness and expediency of principles and constructive solutions laid at its development. As process steam temperatures are increased, the realization of the proposed approach to cooling of multistage turbines makes it possible to limit for large turbine parts the application of new, more expensive high-temperature materials, which are required for making steam boilers, and, in some cases, to do completely away with their utilization.

  18. Open-Cycle Gas Turbine/Steam Turbine Combined Cycles with synthetic fuels from coal

    NASA Technical Reports Server (NTRS)

    Shah, R. P.; Corman, J. C.

    1977-01-01

    The Open-Cycle Gas Turbine/Steam Turbine Combined Cycle can be an effective energy conversion system for converting coal to electricity. The intermediate step in this energy conversion process is to convert the coal into a fuel acceptable to a gas turbine. This can be accomplished by producing a synthetic gas or liquid, and by removing, in the fuel conversion step, the elements in the fuel that would be harmful to the environment if combusted. In this paper, two open-cycle gas turbine combined systems are evaluated: one employing an integrated low-Btu gasifier, and one utilizing a semi-clean liquid fuel. A consistent technical/economic information base is developed for these two systems, and is compared with a reference steam plant burning coal directly in a conventional furnace.

  19. Mean-line Modeling of an Axial Turbine

    NASA Astrophysics Data System (ADS)

    Tkachenko, A. Yu; Ostapyuk, Ya A.; Filinov, E. P.

    2018-01-01

    The article describes the approach for axial turbine modeling along the mean line. It bases on the developed model of an axial turbine blade row. This model is suitable for both nozzle vanes and rotor blades simulations. Consequently, it allows the simulation of the single axial turbine stage as well as a multistage turbine. The turbine stage model can take into account the cooling air flow before and after a throat of each blade row, outlet straightener vanes existence and stagger angle controlling of nozzle vanes. The axial turbine estimation method includes the loss estimation and thermogasdynamic analysis. The single stage axial turbine was calculated with the developed model. The obtained results deviation was within 3% when comparing with the results of CFD modeling.

  20. Development of Advanced Seals for Industrial Turbine Applications

    NASA Astrophysics Data System (ADS)

    Chupp, Raymond E.; Aksit, Mahmut F.; Ghasripoor, Farshad; Turnquist, Norman A.; Dinc, Saim; Mortzheim, Jason; Demiroglu, Mehmet

    2002-10-01

    A critical area being addressed to improve industrial turbine performance is reducing the parasitic leakage flows through the various static and dynamic seals. Implementation of advanced seals into General Electric (GE) industrial turbines has progressed well over the last few years with significant operating performance gains achieved. Advanced static seals have been placed in gas turbine hot gas-path junctions and steam turbine packing ring segment end gaps. Brush seals have significantly decreased labyrinth seal leakages in gas turbine compressors and turbine interstages, steam turbine interstage and end packings, industrial compressor shaft seals, and generator seals. Abradable seals are being developed for blade-tip locations in various turbine locations. This presentation summarizes the status of advanced seal development for industrial turbines at GE.

  1. Floating wind turbine system

    NASA Technical Reports Server (NTRS)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  2. Turbine nozzle positioning system

    DOEpatents

    Norton, Paul F.; Shaffer, James E.

    1996-01-30

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.

  3. Turbine nozzle positioning system

    DOEpatents

    Norton, P.F.; Shaffer, J.E.

    1996-01-30

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine. 9 figs.

  4. Turbine Engine Hot Section Technology 1986

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Turbine Engine Hot Section Technology (HOST) Project of the NASA Lewis Research Center sponsored a workshop to discuss current research pertinent to turbine engine durability problems. Presentations were made concerning the hot section environment and the behavior of combustion liners, turbine blades, and turbine vanes. The presentations were divided into six sessions: Instrumentation, Combustion, Turbine Heat Transfer, Structural Analysis, Fatigue and Fracture, and Surface Protection. Topics discussed included modeling of thermal and fluid-flow phenomena, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior of materials, stress-strain response, and life-prediction methods. Researchers from industry, academia, and government presented results of their work sponsored by the HOST project.

  5. Sub-fossil beetle assemblages associated with the "mammoth fauna" in the Late Pleistocene localities of the Ural Mountains and West Siberia.

    PubMed

    Zinovyev, Evgeniy

    2011-01-01

    The distribution of beetles at the end of the Middle Pleninglacial (=terminal Quaternary) was examined based on sub-fossil material from the Ural Mountains and Western Siberia, Russia. All relevant localities of fossil insects have similar radiocarbon dates, ranging between 33,000 and 22,000 C14 years ago. Being situated across the vast territory from the southern Ural Mountains in the South to the middle Yamal Peninsula in the North, they allow latitudinal changes in beetle assemblages of that time to be traced. These beetles lived simultaneously with mammals of the so-called "mammoth fauna" with mammoth, bison, and wooly rhinoceros, the often co-occurring mega-mammalian bones at some of the sites being evidence of this. The beetle assemblages found between 59° and 57°N appear to be the most interesting. Their bulk is referred to as a "mixed" type, one which includes a characteristic combination of arcto-boreal, boreal, steppe and polyzonal species showing no analogues among recent insect complexes. These peculiar faunas seem to have represented a particular zonal type, which disappeared since the end of the Last Glaciation to arrive here with the extinction of the mammoth biota. In contrast, on the sites lying north of 60°N, the beetle communities were similar to modern sub-arctic and arctic faunas, yet with the participation of some sub-boreal steppe components, such as Poecilus ravus Lutshnik and Carabus sibiricus Fischer-Waldheim. This information, when compared with our knowledge of synchronous insect faunas from other regions of northern Eurasia, suggests that the former distribution of beetles in this region could be accounted for both by palaeo-environmental conditions and the impact of grazing by large ruminant mammals across the so-called "mammoth savannas".

  6. Turbine blade vibration dampening

    DOEpatents

    Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

  7. Effect of Air Cooling of Turbine Disk on Power and Efficiency of Turbine from Turbo Engineering Corporation TT13-18 Turbosupercharger.

    NASA Technical Reports Server (NTRS)

    Berkey, William E.

    1949-01-01

    An investigation was conducted to determine the effect of turbine-disk cooling with air on the efficiency and the power output of the radial-flow turbine from the Turbo Engineering Corporation TT13-18 turbosupercharger. The turbine was operated at a constant range of ratios of turbine-inlet total pressure to turbine-outlet static pressure of 1,5 and 2.0, turbine-inlet total pressure of 30 inches mercury absolute, turbine-inlet total temperature of 12000 to 20000 R, and rotor speeds of 6000 to 22,000 rpm, Over the normal operating range of the turbine, varying the corrected cooling-air weight flow from approximately 0,30 to 0.75 pound per second produced no measurable effect on the corrected turbine shaft horsepower or the turbine shaft adiabatic efficiency. Varying the turbine-inlet total temperature from 12000 to 20000 R caused no measurable change in the corrected cooling-air weight flow. Calculations indicated that the cooling-air pumping power in the disk passages was small and was within the limits of the accuracy of the power measurements. For high turbine power output, the power loss to the compressor for compressing the cooling air was approximately 3 percent of the total turbine shaft horsepower.

  8. Magnetic particle testing of turbine blades mounted on the turbine rotor shaft

    NASA Astrophysics Data System (ADS)

    Imbert, Clement; Rampersad, Krishna

    1992-07-01

    An outline is presented of the general technique of magnetic particle inspection (MPI) of turbine blades mounted on the turbine rotor shaft with specific reference to the placement of the magnetizing coils. In particular, this study reports on the use of MPI in the examination of martensitic stainless steel turbine blades in power plants in Trinidad and Tobago in order to establish procedures for the detection of discontinuities. The techniques described are applicable to ferromagnetic turbine blades in general. The two practical techniques mentioned are the method of placing a preformed coil over a number of blades in one row and the method of wrapping the coil around the rotor shaft across an entire row of blades. Of the two methods, the former is preferred to the latter one, because there is greater uniformity of magnetic flux induced and lower current required to induce adequate flux density with the preformed coil. However, both methods provide satisfactory magnetic flux, and either can be used.

  9. Collecting Currents with Water Turbines

    NASA Astrophysics Data System (ADS)

    Allen, J.; Allen, S.

    2017-12-01

    Our science poster is inspired by Florida Atlantic University's recent program to develop three types of renewable energy. They are using water turbines and the Gulf Stream Current to produce a renewable energy source. Wave, tidal and current driven energy. Our poster is called "Collecting Currents with Water Turbines". In our science poster, the purpose was to see which turbine design could produce the most power. We tested three different variables, the number of blades (four, six, and eight), the material of the blades and the shape of the blades. To test which number of blades produced the most power we cut slits into a cork. We used plastic from a soda bottle to make the blades and then we put the blades in the cork to make the turbines. We observed each blade and how much time it took for the water turbines to pull up 5 pennies. Currently water turbines are used in dams to make hydroelectric energy. But with FAU we could understand how to harness the Gulf Stream current off Florida's coast we could soon have new forms of renewable energy.

  10. Turbine blade processing

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Space processing of directionally solidified eutectic-alloy type turbine blades is envisioned as a simple remelt operations in which precast blades are remelted in a preformed mold. Process systems based on induction melting, continuous resistance furnaces, and batch resistance furnaces were evaluated. The batch resistance furnace type process using a multiblade mold is considered to offer the best possibility for turbine blade processing.

  11. Wind turbine spoiler

    DOEpatents

    Sullivan, W.N.

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  12. Wind turbine spoiler

    DOEpatents

    Sullivan, William N.

    1985-01-01

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  13. Wind Turbines Benefit Crops

    ScienceCinema

    Takle, Gene

    2018-05-16

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  14. Zonally Asymmetric Ozone and the Morphology of the Planetary Waveguide

    DTIC Science & Technology

    2011-07-15

    sections for the 271 troposphere , J. Atmos. Sci., 37, 2600-2616. 272 Eyring, V., et al. (2007), Multimodel projections of stratospheric ozone ...GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, JULY 15, 2011 Zonally asymmetric ozone and the morphology of the 1 planetary waveguide...that zonally asymmetric 6 ozone (ZAO) profoundly changes the morphology of the Northern Hemisphere planetary 7 waveguide (PWG). ZAO causes the PWG to

  15. Wind Turbine Controller to Mitigate Structural Loads on a Floating Wind Turbine Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Paul A.; Peiffer, Antoine; Schlipf, David

    This paper summarizes the control design work that was performed to optimize the controller of a wind turbine on the WindFloat structure. The WindFloat is a semi-submersible floating platform designed to be a support structure for a multi-megawatt power-generating wind turbine. A controller developed for a bottom-fixed wind turbine configuration was modified for use when the turbine is mounted on the WindFloat platform. This results in an efficient platform heel resonance mitigation scheme. In addition several control modules, designed with a coupled linear model, were added to the fixed-bottom baseline controller. The approach was tested in a fully coupled nonlinearmore » aero-hydroelastic simulation tool in which wind and wave disturbances were modeled. This testing yielded significant improvements in platform global performance and tower-base-bending loading.« less

  16. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Advanced Turbine Technology Application Project (ATTAP) activities during the past year were highlighted by test-bed engine design and development activities; ceramic component design; materials and component characterization; ceramic component process development and fabrication; component rig testing; and test-bed engine fabrication and testing. Although substantial technical challenges remain, all areas exhibited progress. Test-bed engine design and development activity included engine mechanical design, power turbine flow-path design and mechanical layout, and engine system integration aimed at upgrading the AGT-5 from a 1038 C metal engine to a durable 1371 C structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities include: the ceramic combustor body, the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, the ceramic/metal power turbine static structure, and the ceramic power turbine rotors. The materials and component characterization efforts included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities are being conducted for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig testing activities include the development of the necessary test procedures and conduction of rig testing of the ceramic components and assemblies. Four-hundred hours of hot gasifier rig test time were accumulated with turbine inlet temperatures exceeding 1204 C at 100 percent design gasifier speed. A total of 348.6 test hours were achieved on a single ceramic rotor without failure and a second ceramic rotor was retired in engine-ready condition at 364.9 test hours. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology

  17. MOD-2 wind turbine farm stability study

    NASA Technical Reports Server (NTRS)

    Hinrichsen, E. N.

    1980-01-01

    The dynamics of single and multiple 2.5 ME, Boeing MOD-2 wind turbine generators (WTGs) connected to utility power systems were investigated. The analysis was based on digital simulation. Both time response and frequency response methods were used. The dynamics of this type of WTG are characterized by two torsional modes, a low frequency 'shaft' mode below 1 Hz and an 'electrical' mode at 3-5 Hz. High turbine inertia and low torsional stiffness between turbine and generator are inherent features. Turbine control is based on electrical power, not turbine speed as in conventional utility turbine generators. Multi-machine dynamics differ very little from single machine dynamics.

  18. The U.S.-Russian radiation health effects research program in the Southern Urals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seligman, P.J.

    2000-07-01

    The Joint Coordinating Committee for Radiation Effects Research (JCCRER) was established through a bilateral US-Russian agreement to support research and exchange information on radiation health effects. The U.S. member agencies include the Department of Energy (DOE), Nuclear Regulatory Commission (NRC), Department of Health and Human Services (DHHS), Department of Defense (DoD), National Aeronautics and Space Administration (NASA), and Environmental Protection Agency (EPA). The Russians are represented by the Ministries of Emergencies (EMERCOM), the Atomic Energy (MINATOM) and Health (MINZDRAV), and the Russian Academy of Sciences (IBRAE). The focus of this research is on the workers from the Mayak Production Associationmore » (MAYAK) in the Southern Urals and on the neighboring populations along the Techa River exposed to contamination from the plant. The goal of the program is to better define the relationship between the health effects and the chronic low dose and dose-rate exposure, these data being essential to validate current radiation protection standards and practices. The current primary areas of JCCRER research include dose reconstruction, epidemiologic health studies, molecular epidemiology/biodosimetry, and the creation of tissue banks. The organization of the ongoing research conducted under the aegis of the JCCRER and the rationale for this work are described.« less

  19. The U.S.-Russian radiation health effects research program in the Southern Urals.

    PubMed

    Seligman, P J

    2000-07-01

    The Joint Coordinating Committee for Radiation Effects Research (JCCRER) was established through a bilateral U.S.-Russian agreement to support research and exchange information on radiation health effects. The U.S. member agencies include the Department of Energy (DOE), Nuclear Regulatory Commission (NRC), Department of Health and Human Services (DHHS), Department of Defense (DoD), National Aeronautics and Space Administration (NASA), and Environmental Protection Agency (EPA). The Russians are represented by the Ministries of Emergencies (EMERCOM), Atomic Energy (MINATOM) and Health (MINZDRAV), and the Russian Academy of Sciences (IBRAE). The focus of this research is on the workers from the Mayak Production Association (MAYAK) in the Southern Urals and on the neighboring populations along the Techa River exposed to contamination from the plant. The goal of the program is to better define the relationship between the health effects and the chronic low dose and dose-rate exposure, these data being essential to validate current radiation protection standards and practices. The current primary areas of JCCRER research include dose reconstruction, epidemiologic health studies, molecular epidemiology/biodosimetry, and the creation of tissue banks. The organization of the ongoing research conducted under the aegis of the JCCRER and the rationale for this work are described.

  20. Large-scale wind turbine structures

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    1988-01-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  1. Behavior of bats at wind turbines

    PubMed Central

    Cryan, Paul. M.; Gorresen, P. Marcos; Hein, Cris D.; Schirmacher, Michael R.; Diehl, Robert H.; Huso, Manuela M.; Hayman, David T. S.; Fricker, Paul D.; Bonaccorso, Frank J.; Johnson, Douglas H.; Heist, Kevin; Dalton, David C.

    2014-01-01

    Wind turbines are causing unprecedented numbers of bat fatalities. Many fatalities involve tree-roosting bats, but reasons for this higher susceptibility remain unknown. To better understand behaviors associated with risk, we monitored bats at three experimentally manipulated wind turbines in Indiana, United States, from July 29 to October 1, 2012, using thermal cameras and other methods. We observed bats on 993 occasions and saw many behaviors, including close approaches, flight loops and dives, hovering, and chases. Most bats altered course toward turbines during observation. Based on these new observations, we tested the hypotheses that wind speed and blade rotation speed influenced the way that bats interacted with turbines. We found that bats were detected more frequently at lower wind speeds and typically approached turbines on the leeward (downwind) side. The proportion of leeward approaches increased with wind speed when blades were prevented from turning, yet decreased when blades could turn. Bats were observed more frequently at turbines on moonlit nights. Taken together, these observations suggest that bats may orient toward turbines by sensing air currents and using vision, and that air turbulence caused by fast-moving blades creates conditions that are less attractive to bats passing in close proximity. Tree bats may respond to streams of air flowing downwind from trees at night while searching for roosts, conspecifics, and nocturnal insect prey that could accumulate in such flows. Fatalities of tree bats at turbines may be the consequence of behaviors that evolved to provide selective advantages when elicited by tall trees, but are now maladaptive when elicited by wind turbines. PMID:25267628

  2. Behavior of bats at wind turbines.

    PubMed

    Cryan, Paul M; Gorresen, P Marcos; Hein, Cris D; Schirmacher, Michael R; Diehl, Robert H; Huso, Manuela M; Hayman, David T S; Fricker, Paul D; Bonaccorso, Frank J; Johnson, Douglas H; Heist, Kevin; Dalton, David C

    2014-10-21

    Wind turbines are causing unprecedented numbers of bat fatalities. Many fatalities involve tree-roosting bats, but reasons for this higher susceptibility remain unknown. To better understand behaviors associated with risk, we monitored bats at three experimentally manipulated wind turbines in Indiana, United States, from July 29 to October 1, 2012, using thermal cameras and other methods. We observed bats on 993 occasions and saw many behaviors, including close approaches, flight loops and dives, hovering, and chases. Most bats altered course toward turbines during observation. Based on these new observations, we tested the hypotheses that wind speed and blade rotation speed influenced the way that bats interacted with turbines. We found that bats were detected more frequently at lower wind speeds and typically approached turbines on the leeward (downwind) side. The proportion of leeward approaches increased with wind speed when blades were prevented from turning, yet decreased when blades could turn. Bats were observed more frequently at turbines on moonlit nights. Taken together, these observations suggest that bats may orient toward turbines by sensing air currents and using vision, and that air turbulence caused by fast-moving blades creates conditions that are less attractive to bats passing in close proximity. Tree bats may respond to streams of air flowing downwind from trees at night while searching for roosts, conspecifics, and nocturnal insect prey that could accumulate in such flows. Fatalities of tree bats at turbines may be the consequence of behaviors that evolved to provide selective advantages when elicited by tall trees, but are now maladaptive when elicited by wind turbines.

  3. Behavior of bats at wind turbines

    USGS Publications Warehouse

    Cryan, Paul M.; Gorresen, P. Marcos; Hine, Cris D.; Schirmacher, Michael; Diehl, Robert H.; Huso, Manuela M.; Hayman, David T.S.; Fricker, Paul D.; Bonaccorso, Frank J.; Johnson, Douglas H.; Heist, Kevin W.; Dalton, David C.

    2014-01-01

    Wind turbines are causing unprecedented numbers of bat fatalities. Many fatalities involve tree-roosting bats, but reasons for this higher susceptibility remain unknown. To better understand behaviors associated with risk, we monitored bats at three experimentally manipulated wind turbines in Indiana, United States, from July 29 to October 1, 2012, using thermal cameras and other methods. We observed bats on 993 occasions and saw many behaviors, including close approaches, flight loops and dives, hovering, and chases. Most bats altered course toward turbines during observation. Based on these new observations, we tested the hypotheses that wind speed and blade rotation speed influenced the way that bats interacted with turbines. We found that bats were detected more frequently at lower wind speeds and typically approached turbines on the leeward (downwind) side. The proportion of leeward approaches increased with wind speed when blades were prevented from turning, yet decreased when blades could turn. Bats were observed more frequently at turbines on moonlit nights. Taken together, these observations suggest that bats may orient toward turbines by sensing air currents and using vision, and that air turbulence caused by fast-moving blades creates conditions that are less attractive to bats passing in close proximity. Tree bats may respond to streams of air flowing downwind from trees at night while searching for roosts, conspecifics, and nocturnal insect prey that could accumulate in such flows. Fatalities of tree bats at turbines may be the consequence of behaviors that evolved to provide selective advantages when elicited by tall trees, but are now maladaptive when elicited by wind turbines.

  4. The methodology of the gas turbine efficiency calculation

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Job, Marcin; Brzęczek, Mateusz; Nawrat, Krzysztof; Mędrych, Janusz

    2016-12-01

    In the paper a calculation methodology of isentropic efficiency of a compressor and turbine in a gas turbine installation on the basis of polytropic efficiency characteristics is presented. A gas turbine model is developed into software for power plant simulation. There are shown the calculation algorithms based on iterative model for isentropic efficiency of the compressor and for isentropic efficiency of the turbine based on the turbine inlet temperature. The isentropic efficiency characteristics of the compressor and the turbine are developed by means of the above mentioned algorithms. The gas turbine development for the high compressor ratios was the main driving force for this analysis. The obtained gas turbine electric efficiency characteristics show that an increase of pressure ratio above 50 is not justified due to the slight increase in the efficiency with a significant increase of turbine inlet combustor outlet and temperature.

  5. A reference Pelton turbine design

    NASA Astrophysics Data System (ADS)

    Solemslie, B. W.; Dahlhaug, O. G.

    2012-09-01

    The designs of hydraulic turbines are usually close kept corporation secrets. Therefore, the possibility of innovation and co-operation between different academic institutions regarding a specific turbine geometry is difficult. A Ph.D.-project at the Waterpower Laboratory, NTNU, aim to design several model Pelton turbines where all measurements, simulations, the design strategy, design software in addition to the physical model will be available to the public. In the following paper a short description of the methods and the test rig that are to be utilized in the project are described. The design will be based on empirical data and NURBS will be used as the descriptive method for the turbine geometry. In addition CFX and SPH simulations will be included in the design process. Each turbine designed and produced in connection to this project will be based on the experience and knowledge gained from the previous designs. The first design will be based on the philosophy to keep a near constant relative velocity through the bucket.

  6. LIST/BMI Turbines Instrumentation and Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JONES,PERRY L.; SUTHERLAND,HERBERT J.; NEAL,BYRON A.

    2001-06-01

    In support of two major SNL programs, the Long-term Inflow and Structural Test (LIST) program and the Blade Manufacturing Initiative (BMI), three Micon 65/13M wind turbines have been erected at the USDA Agriculture Research Service (ARS) center in Bushland, Texas. The inflow and structural response of these turbines are being monitored with an array of 60 instruments: 34 to characterize the inflow, 19 to characterize structural response and 7 to characterize the time-varying state of the turbine. The primary characterization of the inflow into the LIST turbine relies upon an array of five sonic anemometers. Primary characterization of the structuralmore » response of the turbine uses several sets of strain gauges to measure bending loads on the blades and the tower and two accelerometers to measure the motion of the nacelle. Data are sampled at a rate of 30 Hz using a newly developed data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these turbines and their inflow.« less

  7. Chapter 15: Reliability of Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Shuangwen; O'Connor, Ryan

    The global wind industry has witnessed exciting developments in recent years. The future will be even brighter with further reductions in capital and operation and maintenance costs, which can be accomplished with improved turbine reliability, especially when turbines are installed offshore. One opportunity for the industry to improve wind turbine reliability is through the exploration of reliability engineering life data analysis based on readily available data or maintenance records collected at typical wind plants. If adopted and conducted appropriately, these analyses can quickly save operation and maintenance costs in a potentially impactful manner. This chapter discusses wind turbine reliability bymore » highlighting the methodology of reliability engineering life data analysis. It first briefly discusses fundamentals for wind turbine reliability and the current industry status. Then, the reliability engineering method for life analysis, including data collection, model development, and forecasting, is presented in detail and illustrated through two case studies. The chapter concludes with some remarks on potential opportunities to improve wind turbine reliability. An owner and operator's perspective is taken and mechanical components are used to exemplify the potential benefits of reliability engineering analysis to improve wind turbine reliability and availability.« less

  8. K-65-12.8 condensing steam turbine

    NASA Astrophysics Data System (ADS)

    Valamin, A. E.; Kultyshev, A. Yu.; Gol'dberg, A. A.; Sakhnin, Yu. A.; Bilan, V. N.; Stepanov, M. Yu.; Polyaeva, E. N.; Shekhter, M. V.; Shibaev, T. L.

    2016-11-01

    A new condensing steam turbine K-65-12.8 is considered, which is the continuation of the development of the steam turbine family of 50-70 MW and the fresh steam pressure of 12.8 MPa, such as twocylinder T-50-12.8 and T-60/65-12.8 turbines. The turbine was developed using the modular design. The design and the main distinctive features of the turbine are described, such as a single two-housing cylinder with the steam flow loop; the extraction from the blading section for the regeneration, the inner needs, and heating; and the unification of some assemblies of serial turbines with shorter time of manufacture. The turbine uses the throttling steam distribution; steam from a boiler is supplied to a turbine through a separate valve block consisting of a central shut-off valve and two side control valves. The blading section of a turbine consists of 23 stages: the left flow contains ten stages installed in the inner housing and the right flow contains 13 stages with diaphragm placed in holders installed in the outer housing. The disks of the first 16 stages are forged together with a rotor, and the disks of the rest stages are mounted. Before the two last stages, the uncontrolled steam extraction is performed for the heating of a plant with the heat output of 38-75 GJ/h. Also, a turbine has five regenerative extraction points for feed water heating and the additional steam extraction to a collector for the inner needs with the consumption of up to 10 t/h. The feasibility parameters of a turbine plant are given. The main solutions for the heat flow diagram and the layout of a turbine plant are presented. The main principles and features of the microprocessor electro hydraulic control and protection system are formulated.

  9. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    DOEpatents

    Tomlinson, Leroy Omar; Smith, Raub Warfield

    2002-01-01

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  10. Wingtip vortex turbine investigation for vortex energy recovery

    NASA Technical Reports Server (NTRS)

    Abeyounis, William K.; Patterson, James C., Jr.; Stough, H. P., III; Wunschel, Alfred J.; Curran, Patrick D.

    1990-01-01

    A flight test investigation has been conducted to determine the performance of wingtip vortex turbines and their effect on aircraft performance. The turbines were designed to recover part of the large energy loss (induced drag) caused by the wingtip vortex. The turbine, driven by the vortex flow, reduces the strength of the vortex, resulting in an associated induced drag reduction. A four-blade turbine was mounted on each wingtip of a single-engine, T-tail, general aviation airplane. Two sets of turbine blades were tested, one with a 15' twist (washin) and one with no twist. Th power recovered by the turbine and the installed drag increment were measured. A trade-off between turbine power and induced drag reduction was found to be a function of turbine blade incidence angle. This test has demonstrated that the wingtip vortex turbine is an attractive alternate, as well as an emergency, power source.

  11. Gas turbine combustor transition

    DOEpatents

    Coslow, Billy Joe; Whidden, Graydon Lane

    1999-01-01

    A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

  12. Cooling scheme for turbine hot parts

    DOEpatents

    Hultgren, Kent Goran; Owen, Brian Charles; Dowman, Steven Wayne; Nordlund, Raymond Scott; Smith, Ricky Lee

    2000-01-01

    A closed-loop cooling scheme for cooling stationary combustion turbine components, such as vanes, ring segments and transitions, is provided. The cooling scheme comprises: (1) an annular coolant inlet chamber, situated between the cylinder and blade ring of a turbine, for housing coolant before being distributed to the turbine components; (2) an annular coolant exhaust chamber, situated between the cylinder and the blade ring and proximate the annular coolant inlet chamber, for collecting coolant exhaust from the turbine components; (3) a coolant inlet conduit for supplying the coolant to said coolant inlet chamber; (4) a coolant exhaust conduit for directing coolant from said coolant exhaust chamber; and (5) a piping arrangement for distributing the coolant to and directing coolant exhaust from the turbine components. In preferred embodiments of the invention, the cooling scheme further comprises static seals for sealing the blade ring to the cylinder and flexible joints for attaching the blade ring to the turbine components.

  13. ABB's advanced steam turbine program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chellini, R.

    Demand for industrial steam turbines for combined-cycle applications and cogeneration plants has influenced turbine manufacturers to standardize their machines to reduce delivery time and cost. ABB, also a supplier of turnkey plants, manufactures steam turbines in Finspong, Sweden, at the former ASEA Stal facilities and in Nuernberg, Germany, at the former AEG facilities. The companies have joined forces, setting up the advanced Steam Turbine Program (ATP) that, once completed, will cover a power range from two to 100 MW. The company decided to use two criteria as a starting point, the high efficiency design of the Swedish turbines and themore » high reliability of the German machines. Thus, the main task was combining the two designs in standard machines that could be assembled quickly into predefined packages to meet specific needs of combined-cycle and cogeneration plants specified by customers. In carrying out this project, emphasis was put on cost reduction as one of the main goals. The first results of the ATP program, presented by ABB Turbinen Nuernberg, is the range of 2-30 MW turbines covered by two frame sizes comprising standard components supporting the thermodynamic module. An important feature is the standardization of the speed reduction gearbox.« less

  14. Turbine Engine Hot Section Technology, 1987

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Presentations were made concerning the development of design analysis tools for combustor liners, turbine vanes, and turbine blades. Presentations were divided into six sections: instrumentation, combustion, turbine heat transfer, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior of materials, stress-strain response and life prediction methods.

  15. Exhaust turbine and jet propulsion systems

    NASA Technical Reports Server (NTRS)

    Leist, Karl; Knornschild, Eugen

    1951-01-01

    DVL experimental and analytical work on the cooling of turbine blades by using ram air as the working fluid over a sector or sectors of the turbine annulus area is summarized. The subsonic performance of ram-jet, turbo-jet, and turbine-propeller engines with both constant pressure and pulsating-flow combustion is investigated. Comparison is made with the performance of a reciprocating engine and the advantages of the gas turbine and jet-propulsion engines are analyzed. Nacelle installation methods and power-level control are discussed.

  16. An integrated modeling method for wind turbines

    NASA Astrophysics Data System (ADS)

    Fadaeinedjad, Roohollah

    To study the interaction of the electrical, mechanical, and aerodynamic aspects of a wind turbine, a detailed model that considers all these aspects must be used. A drawback of many studies in the area of wind turbine simulation is that either a very simple mechanical model is used with a detailed electrical model, or vice versa. Hence the interactions between electrical and mechanical aspects of wind turbine operation are not accurately taken into account. In this research, it will be shown that a combination of different simulation packages, namely TurbSim, FAST, and Simulink can be used to model the aerodynamic, mechanical, and electrical aspects of a wind turbine in detail. In this thesis, after a review of some wind turbine concepts and software tools, a simulation structure is proposed for studying wind turbines that integrates the mechanical and electrical components of a wind energy conversion device. Based on the simulation structure, a comprehensive model for a three-bladed variable speed wind turbine with doubly-fed induction generator is developed. Using the model, the impact of a voltage sag on the wind turbine tower vibration is investigated under various operating conditions such as power system short circuit level, mechanical parameters, and wind turbine operating conditions. It is shown how an electrical disturbance can cause more sustainable tower vibrations under high speed and turbulent wind conditions, which may disrupt the operation of pitch control system. A similar simulation structure is used to model a two-bladed fixed speed wind turbine with an induction generator. An extension of the concept is introduced by adding a diesel generator system. The model is utilized to study the impact of the aeroelastic aspects of wind turbine (i.e. tower shadow, wind shears, yaw error, turbulence, and mechanical vibrations) on the power quality of a stand-alone wind-diesel system. Furthermore, an IEEE standard flickermeter model is implemented in a

  17. Cold-air performance of compressor-drive turbine of Department of Energy upgraded automobile gas turbine engine. 2: Stage performance

    NASA Technical Reports Server (NTRS)

    Roelke, R. J.; Haas, J. E.

    1982-01-01

    The aerodynamic performance of the compressor-drive turbine of the DOE upgraded gas turbine engine was determined in low temperature air. The as-received cast rotor blading had a significantly thicker profile than design and a fairly rough surface finish. Because of these blading imperfections a series of stage tests with modified rotors were made. These included the as-cast rotor, a reduced-roughness rotor, and a rotor with blades thinned to near design. Significant performance changes were measured. Tests were also made to determine the effect of Reynolds number on the turbine performance. Comparisons are made between this turbine and the compressor-drive turbine of the DOE baseline gas turbine engine.

  18. Wind Turbine Contingency Control Through Generator De-Rating

    NASA Technical Reports Server (NTRS)

    Frost, Susan; Goebel, Kai; Balas, Mark

    2013-01-01

    Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbines with contingency control to balance the trade-offs between maintaining system health and energy capture. The contingency control involves de-rating the generator operating point to achieve reduced loads on the wind turbine. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  19. Cold-air performance of the compressor-drive turbine of the Department of Energy baseline automobile gas-turbine engine

    NASA Technical Reports Server (NTRS)

    Roelke, R. J.; Mclallin, K. L.

    1978-01-01

    The aerodynamic performance of the compressor-drive turbine of the DOE baseline gas-turbine engine was determined over a range of pressure ratios and speeds. In addition, static pressures were measured in the diffusing transition duct located immediately downstream of the turbine. Results are presented in terms of mass flow, torque, specific work, and efficiency for the turbine and in terms of pressure recovery and effectiveness for the transition duct.

  20. Mechanisms of formation of mantle section pyroxenites of Voykar Ophiolite, Polar Urals, Russia

    NASA Astrophysics Data System (ADS)

    Belousov, Ivan; Batanova, Valentina; Sobolev, Alexander; Savelieva, Galina

    2010-05-01

    Ural Mountains mark a major mid Paleozoic collision event, which resulted in the closure of an ocean basin separating the Siberian and European plates. Voykar Ophiolite is located in the Northern part of Uralian Ophiolite Belt. Ophiolitic sequence rocks of Polar Urals are usually considered as giant fragments of mantle and MORB-type crust formed in back-arc settings (e.g. Savelieva et al., 1987). Mantle section of Voykar Ophiolite comprises most of the ophiolitic sequence. It is up to 8 km thick and consists mostly of spinel harzburgites with multiple dunitic bodies and pyroxenitic veins representing pathways for different melts/fluids. While it is generally accepted that dunites in mantle sections are formed by melt-rock reaction and mark melt pathways (e.g. Kelemen et al., 1995), formation of pyroxenites is a subject of debate. Often pyroxenites from mantle sections of ophiolites (Varfalvy et al., 1997), as well as pyroxenites from mantle wedge xenoliths (Arai et al., 2006, Bali et al., 2007, Gregoire et al., 2008) are interpreted as interaction products between high-SiO2 melts and mantle peridotites. Such melts are believed to be widespread in SSZ mantle: boninites, high-MgO andesites and adakites. However, some researchers (e.g. Berly et al., 2006, Halama et al., 2009) propose pyroxenite formation in metasomatic reaction with fluid from subducting plate. Moreover, some pyroxenites could be formed by the melt crystallization in hydrous conditions (Muntener et al., 2001). We present comprehensive study of mineral major and trace element compositions from the mantle section rocks of Voykar Ophiolite in order to determine mechanism of formation of pyroxenites in ophiolitic mantle sections. Compositions of clinopyroxene and olivine from pyroxenites were compared to their compositions in harzburgites and dunites. Furthermore, compositions of clinopyroxene and magmatic amphibole from mantle section pyroxenites were used to calculate equilibrium melts. Geochemical data

  1. Turbine bucket natural frequency tuning rib

    DOEpatents

    Wang, John Zhiqiang; Norton, Paul Francis; Barb, Kevin Joseph; Jacala, Ariel Caesar-Prepena

    2002-01-01

    A tuning rib is added preferably in the aft cavity of a cored turbine bucket to alter the bucket's natural frequencies. The tuning rib may be a solid rib or a segmented rib and is particularly suited for altering high order frequency modes such as 2T, 4F and 1-3S. As such, detrimental crossings of natural bucket frequencies and gas turbine stimuli can be avoided to thereby improve the reliability of a gas turbine without impacting other features of the bucket that are important to the performance of the gas turbine.

  2. A Take Stock of Turbine Blades Failure Phenomenon

    NASA Astrophysics Data System (ADS)

    Roy, Abhijit

    2018-02-01

    Turbine Blade design and engineering is one of the most complicated and important aspects of turbine technology. Experiments with blades can be simple or very complicated, depending upon parameters of analysis. Turbine blades are subjected to vigorous environments, such as high temperatures, high stresses, and a potentially high vibration environment. All these factors can lead to blade failures, which can destroy the turbine, and engine, so careful design is the prime consideration to resist those conditions. A high cycle of fatigue of compressor and turbine blades due to high dynamic stress caused by blade vibration and resonance within the operating range of machinery is common failure mode for turbine machine. Continuous study and investigation on failure of turbine blades are going on since last five decades. Some review papers published during these days aiming to present a review on recent studies and investigations done on failures of turbine blades. All the detailed literature related with the turbine blades has not been described but emphasized to provide all the methodologies of failures adopted by various researches to investigate turbine blade. This paper illustrate on various factors of failure.

  3. 3D-PTV around Operational Wind Turbines

    NASA Astrophysics Data System (ADS)

    Brownstein, Ian; Dabiri, John

    2016-11-01

    Laboratory studies and numerical simulations of wind turbines are typically constrained in how they can inform operational turbine behavior. Laboratory experiments are usually unable to match both pertinent parameters of full-scale wind turbines, the Reynolds number (Re) and tip speed ratio, using scaled-down models. Additionally, numerical simulations of the flow around wind turbines are constrained by the large domain size and high Re that need to be simulated. When these simulations are preformed, turbine geometry is typically simplified resulting in flow structures near the rotor not being well resolved. In order to bypass these limitations, a quantitative flow visualization method was developed to take in situ measurements of the flow around wind turbines at the Field Laboratory for Optimized Wind Energy (FLOWE) in Lancaster, CA. The apparatus constructed was able to seed an approximately 9m x 9m x 5m volume in the wake of the turbine using artificial snow. Quantitative measurements were obtained by tracking the evolution of the artificial snow using a four camera setup. The methodology for calibrating and collecting data, as well as preliminary results detailing the flow around a 2kW vertical-axis wind turbine (VAWT), will be presented.

  4. Modal testing of a rotating wind turbine

    NASA Astrophysics Data System (ADS)

    Carne, T. G.; Nord, A. R.

    1982-11-01

    A testing technique was developed to measure the modes of vibration of a rotating vertical-axis wind turbine. This technique was applied to the Sandia Two-Meter Turbine, where the changes in individual modal frequencies as a function of the rotational speed were tracked from 0 rpm (parked) to 600 rpm. During rotational testing, the structural response was measured using a combination of strain gages and accelerometers, passing the signals through slip rings. Excitation of the turbine structure was provided by a scheme which suddenly released a pretensioned cable, thus plucking the turbine as it was rotating at a set speed. In addition to calculating the real modes of the parked turbine, the modes of the rotating turbine were also determined at several rotational speeds. The modes of the rotating system proved to be complex due to centrifugal and Coriolis effects. The modal data for the parked turbine were used to update a finite-element model. Also, the measured modal parameters for the rotating turbine were compared to the analytical results, thus verifying the analytical procedures used to incorporate the effects of the rotating coordinate system.

  5. Turbine Engine Mathematical Model Validation

    DTIC Science & Technology

    1976-12-01

    AEDC-TR-76-90 ~Ec i ? Z985 TURBINE ENGINE MATHEMATICAL MODEL VALIDATION ENGINE TEST FACILITY ARNOLD ENGINEERING DEVELOPMENT CENTER AIR FORCE...i f n e c e s e a ~ ~ d i den t i f y by b l ock number) YJI01-GE-100 engine turbine engines mathematical models computations mathematical...report presents and discusses the results of an investigation to develop a rationale and technique for the validation of turbine engine steady-state

  6. Method of making an aero-derivative gas turbine engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiebe, David J.

    A method of making an aero-derivative gas turbine engine (100) is provided. A combustor outer casing (68) is removed from an existing aero gas turbine engine (60). An annular combustor (84) is removed from the existing aero gas turbine engine. A first row of turbine vanes (38) is removed from the existing aero gas turbine engine. A can annular combustor assembly (122) is installed within the existing aero gas turbine engine. The can annular combustor assembly is configured to accelerate and orient combustion gasses directly onto a first row of turbine blades of the existing aero gas turbine engine. Amore » can annular combustor assembly outer casing (108) is installed to produce the aero-derivative gas turbine engine (100). The can annular combustor assembly is installed within an axial span (85) of the existing aero gas turbine engine vacated by the annular combustor and the first row of turbine vanes.« less

  7. Feasibility of water injection into the turbine coolant to permit gas turbine contingency power for helicopter application

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J.

    1983-01-01

    A system which would allow a substantially increased output from a turboshaft engine for brief periods in emergency situations with little or no loss of turbine stress rupture life is proposed and studied analytically. The increased engine output is obtained by overtemperaturing the turbine; however, the temperature of the compressor bleed air used for hot section cooling is lowered by injecting and evaporating water. This decrease in cooling air temperature can offset the effect of increased gas temperature and increased shaft speed and thus keep turbine blade stress rupture life constant. The analysis utilized the NASA-Navy-Engine-Program or NNEP computer code to model the turboshaft engine in both design and off-design modes. This report is concerned with the effect of the proposed method of power augmentation on the engine cycle and turbine components. A simple cycle turboshaft engine with a 16:1 pressure ratio and a 1533 K (2760 R) turbine inlet temperature operating at sea level static conditions was studied to determine the possible power increase and the effect on turbine stress rupture life that could be expected using the proposed emergency cooling scheme. The analysis showed a 54 percent increse in output power can be achieved with no loss in gas generator turbine stress rupture life. A 231 K (415 F) rise in turbine inlet temperature is required for this level of augmentation. The required water flow rate was found to be .0109 kg water per kg of engine air flow.

  8. Gas turbine combustor transition

    DOEpatents

    Coslow, B.J.; Whidden, G.L.

    1999-05-25

    A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

  9. Composite turbine bucket assembly

    DOEpatents

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  10. Wind Turbine Acoustics

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    2009-01-01

    Wind turbine generators, ranging in size from a few kilowatts to several megawatts, are producing electricity both singly and in wind power stations that encompass hundreds of machines. Many installations are in uninhabited areas far from established residences, and therefore there are no apparent environmental impacts in terms of noise. There is, however, the potential for situations in which the radiated noise can be heard by residents of adjacent neighborhoods, particularly those neighborhoods with low ambient noise levels. A widely publicized incident of this nature occurred with the operation of the experimental Mod-1 2-MW wind turbine, which is described in detail elsewhere. Pioneering studies which were conducted at the Mod-1 site on the causes and remedies of noise from wind turbines form the foundation of much of the technology described in this chapter.

  11. WindPACT Reference Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, Katherine L; Rinker, Jennifer

    To fully understand how loads and turbine cost scale with turbine size, it is necessary to have identical turbine models that have been scaled to different rated powers. The report presents the WindPACT baseline models, which are a series of four baseline models that were designed to facilitate investigations into the scalings of loads and turbine cost with size. The models have four different rated powers (750 kW, 1.5 MW, 3.0 MW, and 5.0 MW), and each model was designed to its specified rated power using the same design methodology. The models were originally implemented in FAST_AD, the predecessor tomore » NREL's open-source wind turbine simulator FAST, but have yet to be implemented in FAST. This report contains the specifications for all four WindPACT baseline models - including structural, aerodynamic, and control specifications - along with the inherent assumptions and equations that were used to calculate the model parameters. It is hoped that these baseline models will serve as extremely useful resources for investigations into the scalings of costs, loads, or optimization routines.« less

  12. Materials for Wind Turbine Blades: An Overview.

    PubMed

    Mishnaevsky, Leon; Branner, Kim; Petersen, Helga Nørgaard; Beauson, Justine; McGugan, Malcolm; Sørensen, Bent F

    2017-11-09

    A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed.

  13. Materials for Wind Turbine Blades: An Overview

    PubMed Central

    Branner, Kim; Petersen, Helga Nørgaard; Beauson, Justine; McGugan, Malcolm; Sørensen, Bent F.

    2017-01-01

    A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed. PMID:29120396

  14. Wingtip vortex turbine

    NASA Technical Reports Server (NTRS)

    Patterson, James C., Jr. (Inventor)

    1990-01-01

    A means for extracting rotational energy from the vortex created at aircraft wing tips which consists of a turbine with blades located in the crossflow of the vortex and attached downstream of the wingtip. The turbine has blades attached to a core. When the aircraft is in motion, rotation of a core transmits energy to a centrally attached shaft. The rotational energy thus generated may be put to use within the airfoil or aircraft fuselage.

  15. Advanced IGCC/Hydrogen Gas Turbine Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    York, William; Hughes, Michael; Berry, Jonathan

    2015-07-30

    The objective of this program was to develop the technologies required for a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC that met DOE turbine performance goals. The overall DOE Advanced Power System goal was to conduct the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency, near-zero emissions, and competitive capital cost. To meet this goal, the DOE Fossil Energy Turbine Program had as an interim objective of 2 to 3 percentage points improvement in combined cycle (CC) efficiency. The final goal is 3 to 5 percentage points improvement in CCmore » efficiency above the state of the art for CC turbines in IGCC applications at the time the program started. The efficiency goals were for NOx emissions of less than 2 ppm NOx (@15 % O2). As a result of the technologies developed under this program, the DOE goals were exceeded with a projected 8 point efficiency improvement. In addition, a new combustion technology was conceived of and developed to overcome the challenges of burning hydrogen and achieving the DOE’s NOx goal. This report also covers the developments under the ARRA-funded portion of the program that include gas turbine technology advancements for improvement in the efficiency, emissions, and cost performance of gas turbines for industrial applications with carbon capture and sequestration. Example applications could be cement plants, chemical plants, refineries, steel and aluminum plants, manufacturing facilities, etc. The DOE’s goal for more than 5 percentage point improvement in efficiency was met with cycle analyses performed for representative IGCC Steel Mill and IGCC Refinery applications. Technologies were developed in this program under the following areas: combustion, larger latter stage buckets, CMC and EBC, advanced materials and coatings, advanced configurations to reduce cooling, sealing and rotor purge flows, turbine aerodynamics, advanced sensors, advancements in

  16. Algorithm for calculating turbine cooling flow and the resulting decrease in turbine efficiency

    NASA Technical Reports Server (NTRS)

    Gauntner, J. W.

    1980-01-01

    An algorithm is presented for calculating both the quantity of compressor bleed flow required to cool the turbine and the decrease in turbine efficiency caused by the injection of cooling air into the gas stream. The algorithm, which is intended for an axial flow, air routine in a properly written thermodynamic cycle code. Ten different cooling configurations are available for each row of cooled airfoils in the turbine. Results from the algorithm are substantiated by comparison with flows predicted by major engine manufacturers for given bulk metal temperatures and given cooling configurations. A list of definitions for the terms in the subroutine is presented.

  17. Extended parametric representation of compressor fans and turbines. Volume 2: Part user's manual (parametric turbine)

    NASA Technical Reports Server (NTRS)

    Coverse, G. L.

    1984-01-01

    A turbine modeling technique has been developed which will enable the user to obtain consistent and rapid off-design performance from design point input. This technique is applicable to both axial and radial flow turbine with flow sizes ranging from about one pound per second to several hundred pounds per second. The axial flow turbines may or may not include variable geometry in the first stage nozzle. A user-specified option will also permit the calculation of design point cooling flow levels and corresponding changes in efficiency for the axial flow turbines. The modeling technique has been incorporated into a time-sharing program in order to facilitate its use. Because this report contains a description of the input output data, values of typical inputs, and example cases, it is suitable as a user's manual. This report is the second of a three volume set. The titles of the three volumes are as follows: (1) Volume 1 CMGEN USER's Manual (Parametric Compressor Generator); (2) Volume 2 PART USER's Manual (Parametric Turbine); (3) Volume 3 MODFAN USER's Manual (Parametric Modulation Flow Fan).

  18. Jet spoiler arrangement for wind turbine

    DOEpatents

    Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

    1983-09-15

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  19. Jet spoiler arrangement for wind turbine

    DOEpatents

    Cyrus, Jack D.; Kadlec, Emil G.; Klimas, Paul C.

    1985-01-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  20. Jet spoiler arrangement for wind turbine

    NASA Astrophysics Data System (ADS)

    Cyrus, J. D.; Kablec, E. G.; Klimas, P. C.

    1983-09-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stal conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  1. Experimental evaluation of a translating nozzle sidewall radial turbine

    NASA Technical Reports Server (NTRS)

    Roelke, Richard J.; Rogo, Casimir

    1987-01-01

    An experimental performance evaluation was made of two movable sidewall variable area radial turbines. The turbine designs were representative of the gas generator turbine of a variable flow capacity rotorcraft engine. The first turbine was an uncooled design while the second turbine had a cooled nozzle but an uncooled rotor. The cooled nozzle turbine was evaluated both with and without coolant flow. The test results showed that the movable nozzle wall is a viable and efficient means to effectively control the flow capacity of a radial turbine. Peak efficiencies of the second turbine with and without nozzle coolant were 86.5 and 88 percent respectively. These values are comparable to pivoting vane variable geometry turbines; however, the decrease in efficiency as the flow was varied from the design value was much less for the movable wall turbine. Several design improvements which should increase the turbine efficiency one or two more points are identified. These design improvements include reduced leakage losses and relocation of the vane coolant ejection holes to reduce mainstream disturbance.

  2. Computational examination of utility scale wind turbine wake interactions

    DOE PAGES

    Okosun, Tyamo; Zhou, Chenn Q.

    2015-07-14

    We performed numerical simulations of small, utility scale wind turbine groupings to determine how wakes generated by upstream turbines affect the performance of the small turbine group as a whole. Specifically, various wind turbine arrangements were simulated to better understand how turbine location influences small group wake interactions. The minimization of power losses due to wake interactions certainly plays a significant role in the optimization of wind farms. Since wind turbines extract kinetic energy from the wind, the air passing through a wind turbine decreases in velocity, and turbines downstream of the initial turbine experience flows of lower energy, resultingmore » in reduced power output. Our study proposes two arrangements of turbines that could generate more power by exploiting the momentum of the wind to increase velocity at downstream turbines, while maintaining low wake interactions at the same time. Furthermore, simulations using Computational Fluid Dynamics are used to obtain results much more quickly than methods requiring wind tunnel models or a large scale experimental test.« less

  3. Cultural and climatic changes shape the evolutionary history of the Uralic languages.

    PubMed

    Honkola, T; Vesakoski, O; Korhonen, K; Lehtinen, J; Syrjänen, K; Wahlberg, N

    2013-06-01

    Quantitative phylogenetic methods have been used to study the evolutionary relationships and divergence times of biological species, and recently, these have also been applied to linguistic data to elucidate the evolutionary history of language families. In biology, the factors driving macroevolutionary processes are assumed to be either mainly biotic (the Red Queen model) or mainly abiotic (the Court Jester model) or a combination of both. The applicability of these models is assumed to depend on the temporal and spatial scale observed as biotic factors act on species divergence faster and in smaller spatial scale than the abiotic factors. Here, we used the Uralic language family to investigate whether both 'biotic' interactions (i.e. cultural interactions) and abiotic changes (i.e. climatic fluctuations) are also connected to language diversification. We estimated the times of divergence using Bayesian phylogenetics with a relaxed-clock method and related our results to climatic, historical and archaeological information. Our timing results paralleled the previous linguistic studies but suggested a later divergence of Finno-Ugric, Finnic and Saami languages. Some of the divergences co-occurred with climatic fluctuation and some with cultural interaction and migrations of populations. Thus, we suggest that both 'biotic' and abiotic factors contribute either directly or indirectly to the diversification of languages and that both models can be applied when studying language evolution. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  4. Smoother Turbine Blades Resist Thermal Shock Better

    NASA Technical Reports Server (NTRS)

    Czerniak, Paul; Longenecker, Kent; Paulus, Don; Ullman, Zane

    1991-01-01

    Surface treatment increases resistance of turbine blades to low-cycle fatigue. Smoothing removes small flaws where cracks start. Intended for blades in turbines subject to thermal shock of rapid starting. No recrystallization occurs at rocket-turbine operating temperatures.

  5. Dense Array Optimization of Cross-Flow Turbines

    NASA Astrophysics Data System (ADS)

    Scherl, Isabel; Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2017-11-01

    Cross-flow turbines, where the axis of rotation is perpendicular to the freestream flow, can be used to convert the kinetic energy in wind or water currents to electrical power. By taking advantage of mean and time-resolved wake structures, the optimal density of an array of cross-flow turbines has the potential for higher power output per unit area of land or sea-floor than an equivalent array of axial-flow turbines. In addition, dense arrays in tidal or river channels may be able to further elevate efficiency by exploiting flow confinement and surface proximity. In this work, a two-turbine array is optimized experimentally in a recirculating water channel. The spacing between turbines, as well as individual and coordinated turbine control strategies are optimized. Array efficiency is found to exceed the maximum efficiency for a sparse array (i.e., no interaction between turbines) for stream-wise rotor spacing of less than two diameters. Results are discussed in the context of wake measurements made behind a single rotor.

  6. Radial turbine cooling

    NASA Technical Reports Server (NTRS)

    Roelke, Richard J.

    1992-01-01

    The technology of high temperature cooled radial turbines is reviewed. Aerodynamic performance considerations are described. Heat transfer and structural analysis are addressed, and in doing so the following topics are covered: cooling considerations, hot side convection, coolant side convection, and rotor mechanical analysis. Cooled rotor concepts and fabrication are described, and the following are covered in this context: internally cooled rotor, hot isostatic pressure bonded rotor, laminated rotor, split blade rotor, and the NASA radial turbine program.

  7. Onshore industrial wind turbine locations for the United States

    USGS Publications Warehouse

    Diffendorfer, Jay E.; Compton, Roger; Kramer, Louisa; Ancona, Zach; Norton, Donna

    2017-01-01

    This dataset provides industrial-scale onshore wind turbine locations in the United States, corresponding facility information, and turbine technical specifications. The database has wind turbine records that have been collected, digitized, locationally verified, and internally quality controlled. Turbines from the Federal Aviation Administration Digital Obstacles File, through product release date July 22, 2013, were used as the primary source of turbine data points. The dataset was subsequently revised and reposted as described in the revision histories for the report. Verification of the turbine positions was done by visual interpretation using high-resolution aerial imagery in Environmental Systems Research Institute (Esri) ArcGIS Desktop. Turbines without Federal Aviation Administration Obstacles Repository System numbers were visually identified and point locations were added to the collection. We estimated a locational error of plus or minus 10 meters for turbine locations. Wind farm facility names were identified from publicly available facility datasets. Facility names were then used in a Web search of additional industry publications and press releases to attribute additional turbine information (such as manufacturer, model, and technical specifications of wind turbines). Wind farm facility location data from various wind and energy industry sources were used to search for and digitize turbines not in existing databases. Technical specifications for turbines were assigned based on the wind turbine make and model as described in literature, specifications listed in the Federal Aviation Administration Digital Obstacles File, and information on the turbine manufacturer’s Web site. Some facility and turbine information on make and model did not exist or was difficult to obtain. Thus, uncertainty may exist for certain turbine specifications. That uncertainty was rated and a confidence was recorded for both location and attribution data quality.

  8. Study of turbine and guide vanes integration to enhance the performance of cross flow vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Wibowo, Andreas; Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi; Situmorang, Marcelinus Risky Clinton

    2018-02-01

    The main purpose of this study is to investigate the best configuration between guide vanes and cross flow vertical axis wind turbine with variation of several parameters including guide vanes tilt angle and the number of turbine and guide vane blades. The experimental test were conducted under various wind speed and directions for testing cross flow wind turbine, consisted of 8, 12 and 16 blades. Two types of guide vane were developed in this study, employing 20° and 60° tilt angle. Both of the two types of guide vane had three variations of blade numbers which had same blade numbers variations as the turbines. The result showed that the configurations between 60° guide vane with 16 blade numbers and turbine with 16 blade numbers had the best configurations. The result also showed that for certain configuration, guide vane was able to increase the power generated by the turbine significantly by 271.39% compared to the baseline configuration without using of guide vane.

  9. Turbine blade tip durability analysis

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Laflen, J. H.; Spamer, G. T.

    1981-01-01

    An air-cooled turbine blade from an aircraft gas turbine engine chosen for its history of cracking was subjected to advanced analytical and life-prediction techniques. The utility of advanced structural analysis techniques and advanced life-prediction techniques in the life assessment of hot section components are verified. Three dimensional heat transfer and stress analyses were applied to the turbine blade mission cycle and the results were input into advanced life-prediction theories. Shortcut analytical techniques were developed. The proposed life-prediction theories are evaluated.

  10. 14 CFR 27.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...

  11. 14 CFR 27.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...

  12. 14 CFR 27.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...

  13. 14 CFR 29.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...

  14. 14 CFR 29.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...

  15. 14 CFR 29.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...

  16. 14 CFR 29.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...

  17. 14 CFR 27.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...

  18. 14 CFR 27.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...

  19. 14 CFR 29.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...

  20. Gas turbine structural mounting arrangement between combustion gas duct annular chamber and turbine vane carrier

    DOEpatents

    Wiebe, David J.; Charron, Richard C.; Morrison, Jay A.

    2016-10-18

    A gas turbine engine ducting arrangement (10), including: an annular chamber (14) configured to receive a plurality of discrete flows of combustion gases originating in respective can combustors and to deliver the discrete flows to a turbine inlet annulus, wherein the annular chamber includes an inner diameter (52) and an outer diameter (60); an outer diameter mounting arrangement (34) configured to permit relative radial movement and to prevent relative axial and circumferential movement between the outer diameter and a turbine vane carrier (20); and an inner diameter mounting arrangement (36) including a bracket (64) secured to the turbine vane carrier, wherein the bracket is configured to permit the inner diameter to move radially with the outer diameter and prevent axial deflection of the inner diameter with respect to the outer diameter.

  1. 77 FR 3514 - Protection Against Turbine Missiles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2009-0481] Protection Against Turbine Missiles AGENCY: Nuclear... (NRC or Commission) is issuing a revision to Regulatory Guide 1.115, ``Protection Against Turbine... structures, systems, and components against missiles resulting from turbine failure by the appropriate...

  2. Turbine disc sealing assembly

    DOEpatents

    Diakunchak, Ihor S.

    2013-03-05

    A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

  3. Closed loop air cooling system for combustion turbines

    DOEpatents

    Huber, David John; Briesch, Michael Scot

    1998-01-01

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

  4. Closed loop air cooling system for combustion turbines

    DOEpatents

    Huber, D.J.; Briesch, M.S.

    1998-07-21

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

  5. Wind turbines and human health.

    PubMed

    Knopper, Loren D; Ollson, Christopher A; McCallum, Lindsay C; Whitfield Aslund, Melissa L; Berger, Robert G; Souweine, Kathleen; McDaniel, Mary

    2014-01-01

    The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation [electromagnetic fields (EMF), shadow flicker, audible noise, low-frequency noise, infrasound]. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review, we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low-frequency noise, and infrasound), EMF, and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low-frequency noise, and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance) especially at sound pressure levels >40 dB(A). Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations) are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts) even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health.

  6. Wind Turbines and Human Health

    PubMed Central

    Knopper, Loren D.; Ollson, Christopher A.; McCallum, Lindsay C.; Whitfield Aslund, Melissa L.; Berger, Robert G.; Souweine, Kathleen; McDaniel, Mary

    2014-01-01

    The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation [electromagnetic fields (EMF), shadow flicker, audible noise, low-frequency noise, infrasound]. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review, we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low-frequency noise, and infrasound), EMF, and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low-frequency noise, and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance) especially at sound pressure levels >40 dB(A). Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations) are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts) even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health. PMID:24995266

  7. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.

  8. Optimization of Turbine Rim Seals

    NASA Technical Reports Server (NTRS)

    Wagner, J. H.; Tew, D. E.; Stetson, G. M.; Sabnis, J. S.

    2006-01-01

    Experiments are being conducted to gain an understanding of the physics of rim scale cavity ingestion in a turbine stage with the high-work, single-stage characteristics envisioned for Advanced Subsonic Transport (AST) aircraft gas turbine engines fo the early 21st century. Initial experimental measurements to be presented include time-averaged turbine rim cavity and main gas path static pressure measurements for rim seal coolant to main gas path mass flow ratios between 0 and 0.02. The ultimate objective of this work is develop improved rim seal design concepts for use in modern high-work, single sage turbines n order to minimize the use of secondary coolant flow. Toward this objective the time averaged and unsteady data to be obtained in these experiments will be used to 1) Quantify the impact of the rim cavity cooling air on the ingestion process. 2) Quantify the film cooling benefits of the rim cavity purge flow in the main gas path. 3) Quantify the impact of the cooling air on turbine efficiency. 4) Develop/evaluate both 3D CFD and analytical models of the ingestion/cooling process.

  9. 'Wind turbine syndrome': fact or fiction?

    PubMed

    Farboud, A; Crunkhorn, R; Trinidade, A

    2013-03-01

    Symptoms, including tinnitus, ear pain and vertigo, have been reported following exposure to wind turbine noise. This review addresses the effects of infrasound and low frequency noise and questions the existence of 'wind turbine syndrome'. This review is based on a search for articles published within the last 10 years, conducted using the PubMed database and Google Scholar search engine, which included in their title or abstract the terms 'wind turbine', 'infrasound' or 'low frequency noise'. There is evidence that infrasound has a physiological effect on the ear. Until this effect is fully understood, it is impossible to conclude that wind turbine noise does not cause any of the symptoms described. However, many believe that these symptoms are related largely to the stress caused by unwanted noise exposure. There is some evidence of symptoms in patients exposed to wind turbine noise. The effects of infrasound require further investigation.

  10. 14 CFR 34.61 - Turbine fuel specifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... be present. Specification for Fuel To Be Used in Aircraft Turbine Engine Emission Testing Property... 34.61 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.61 Turbine fuel...

  11. 14 CFR 34.61 - Turbine fuel specifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.61 Turbine fuel... be present. Specification for Fuel To Be Used in Aircraft Turbine Engine Emission Testing Property... 34.61 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...

  12. 14 CFR 34.61 - Turbine fuel specifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.61 Turbine fuel... be present. Specification for Fuel To Be Used in Aircraft Turbine Engine Emission Testing Property... 34.61 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...

  13. Preliminary design of an alternate high-temperature turbine. A topical report for Phase II of the High-Temperature-Turbine Technology Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strough, R.I.

    The feasibility of designing a convectively air-cooled turbine to operate in the environment of a 3000/sup 0/F combustor exit temperature with maximum turbine airfoil metal temperatures held to 1500/sup 0/F was established. The United Technologies-Kraftwerk Union V84.3 gas turbine design was used as the basic configuration for the design of the 3000/sup 0/F turbine. Turbine cooling requirements were determined based on the use of the modified V84.3 type silo combustor with a pattern factor of 0.1. The convective air-cooling technology levels in terms of cooling effectiveness required to satisfy the airfoil cooling requirements were identified. Cooling schemes and fabrication technologiesmore » required are discussed. Turbine airfoil cooling technology levels required for the 3000/sup 0/F engine were selected. The performance of the 3000/sup 0/F convectively air-cooled gas turbine in simple and combined cycle was calculated. The 3000/sup 0/F gas turbine combined-cycle system provides an increase in power of 61% and a decrease in heat rate of 10% compared to a similar system with a combustor exit temperature of 2210/sup 0/F and the same airflow. The development of a successful 3000/sup 0/F convectively air-cooled turbine can be accomplished with a reasonable design and fabrication development effort on the cooled turbine airfoils. Use of the convectively air-cooled turbine provides the transfer of technology from extensive aircraft engines developed programs and operating experience to industrial gas turbines. It eliminates the requirement for large investments in alternate cooling techniques tailored specifically for industrial engines which offer no additional benefits.« less

  14. Turbine inter-disk cavity cooling air compressor

    DOEpatents

    Little, David Allen

    2001-01-01

    A combustion turbine may have a cooling circuit for directing a cooling medium through the combustion turbine to cool various components of the combustion turbine. This cooling circuit may include a compressor, a combustor shell and a component of the combustion turbine to be cooled. This component may be a rotating blade of the combustion turbine. A pressure changing mechanism is disposed in the combustion turbine between the component to be cooled and the combustor shell. The cooling medium preferably flows from the compressor to the combustor shell, through a cooler, the component to the cooled and the pressure changing mechanism. After flowing through the pressure changing mechanism, the cooling medium is returned to the combustor shell. The pressure changing mechanism preferably changes the pressure of the cooling medium from a pressure at which it is exhausted from the component to be cooled to approximately that of the combustor shell.

  15. Advanced Thermoplastic Resins for Manufacturing Wind Turbine Blades |

    Science.gov Websites

    Turbine Blades Advanced Thermoplastic Resins for Manufacturing Wind Turbine Blades At its Composites Arkema's Elium liquid thermoplastic resin. Photo of men working on turbine blades in a dome-shaped building composite structures of wind turbine blades. Capabilities Learn more about NREL's IACMI projects and its

  16. Basic investigation of turbine erosion phenomena

    NASA Technical Reports Server (NTRS)

    Pouchot, W. D.; Kothmann, R. E.; Fentress, W. K.; Heymann, F. J.; Varljen, T. C.; Chi, J. W. H.; Milton, J. D.; Glassmire, C. M.; Kyslinger, J. A.; Desai, K. A.

    1971-01-01

    An analytical-empirical model is presented of turbine erosion that fits and explains experience in both steam and metal vapor turbines. Because of the complexities involved in analyzing turbine problems, in a pure scientific sense, it is obvious that this goal can be only partially realized. Therefore, emphasis is placed on providing a useful model for preliminary erosion estimates for given configurations, fluids, and flow conditions.

  17. ORPC RivGen Hydrokinetic Turbine Wake Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, Jim; Guerra, Maricarmen

    Field measurements of mean flow and turbulence parameters at the Kvichak river prior to and after the deployment of ORPC's RivGen hydrokinetic turbine. Data description and turbine wake analysis are presented in the attached manuscript "Wake measurements from a hydrokinetic river turbine" by Guerra and Thomson (recently submitted to Renewable Energy). There are three data sets: NoTurbine (prior to deployment), Not_Operational_Turbine (turbine underwater, but not operational), and Operational_Turbine. The data has been quality controlled and organized into a three-dimensional grid using a local coordinate system described in the paper. All data sets are in Matlab format (.mat). Variables available inmore » the data sets are: qx: X coordinate matrix (m) qy: Y coordinate matrix (m) z : z coordinate vector (m) lat : grid cell latitude (degrees) lon: grid cell longitude (degrees) U : velocity magnitude (m/s) Ux: x velocity (m/s) Vy: y velocity (m/s) W: vertical velocity (m/s) Pseudo_beam.b_i: pseudo-along beam velocities (i = 1 to 4) (m/s) (structure with raw data within each grid cell) beam5.b5: 5th-beam velocity (m/s) (structure with raw data within each grid cell) tke: turbulent kinetic energy (m2/s2) epsilon: TKE dissipation rate (m2/s3) Reynolds stresses: uu, vv, ww, uw, vw (m2/s2) Variables from the Not Operational Turbine data set are identified with _T Variables from the Operational Turbine data set are identified with _TO« less

  18. High-Order Numerical Simulations of Wind Turbine Wakes

    NASA Astrophysics Data System (ADS)

    Kleusberg, E.; Mikkelsen, R. F.; Schlatter, P.; Ivanell, S.; Henningson, D. S.

    2017-05-01

    Previous attempts to describe the structure of wind turbine wakes and their mutual interaction were mostly limited to large-eddy and Reynolds-averaged Navier-Stokes simulations using finite-volume solvers. We employ the higher-order spectral-element code Nek5000 to study the influence of numerical aspects on the prediction of the wind turbine wake structure and the wake interaction between two turbines. The spectral-element method enables an accurate representation of the vortical structures, with lower numerical dissipation than the more commonly used finite-volume codes. The wind-turbine blades are modeled as body forces using the actuator-line method (ACL) in the incompressible Navier-Stokes equations. Both tower and nacelle are represented with appropriate body forces. An inflow boundary condition is used which emulates homogeneous isotropic turbulence of wind-tunnel flows. We validate the implementation with results from experimental campaigns undertaken at the Norwegian University of Science and Technology (NTNU Blind Tests), investigate parametric influences and compare computational aspects with existing numerical simulations. In general the results show good agreement between the experiments and the numerical simulations both for a single-turbine setup as well as a two-turbine setup where the turbines are offset in the spanwise direction. A shift in the wake center caused by the tower wake is detected similar to experiments. The additional velocity deficit caused by the tower agrees well with the experimental data. The wake is captured well by Nek5000 in comparison with experiments both for the single wind turbine and in the two-turbine setup. The blade loading however shows large discrepancies for the high-turbulence, two-turbine case. While the experiments predicted higher thrust for the downstream turbine than for the upstream turbine, the opposite case was observed in Nek5000.

  19. ON THE PROBLEM OF CORRECTING TWISTED TURBINE BLADES,

    DTIC Science & Technology

    TURBINE BLADES , DESIGN), GAS TURBINES , STEAM TURBINES , BLADE AIRFOILS , ASPECT RATIO, FLUID DYNAMICS, SECONDARY FLOW, ANGLE OF ATTACK, INLET GUIDE VANES , CORRECTIONS, PERFORMANCE( ENGINEERING ), OPTIMIZATION, USSR

  20. A parabolic velocity-decomposition method for wind turbines

    NASA Astrophysics Data System (ADS)

    Mittal, Anshul; Briley, W. Roger; Sreenivas, Kidambi; Taylor, Lafayette K.

    2017-02-01

    An economical parabolized Navier-Stokes approximation for steady incompressible flow is combined with a compatible wind turbine model to simulate wind turbine flows, both upstream of the turbine and in downstream wake regions. The inviscid parabolizing approximation is based on a Helmholtz decomposition of the secondary velocity vector and physical order-of-magnitude estimates, rather than an axial pressure gradient approximation. The wind turbine is modeled by distributed source-term forces incorporating time-averaged aerodynamic forces generated by a blade-element momentum turbine model. A solution algorithm is given whose dependent variables are streamwise velocity, streamwise vorticity, and pressure, with secondary velocity determined by two-dimensional scalar and vector potentials. In addition to laminar and turbulent boundary-layer test cases, solutions for a streamwise vortex-convection test problem are assessed by mesh refinement and comparison with Navier-Stokes solutions using the same grid. Computed results for a single turbine and a three-turbine array are presented using the NREL offshore 5-MW baseline wind turbine. These are also compared with an unsteady Reynolds-averaged Navier-Stokes solution computed with full rotor resolution. On balance, the agreement in turbine wake predictions for these test cases is very encouraging given the substantial differences in physical modeling fidelity and computer resources required.

  1. 40 CFR 87.61 - Turbine fuel specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 87.61 Turbine fuel specifications. For... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Turbine fuel specifications. 87.61...

  2. 40 CFR 87.61 - Turbine fuel specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 87.61 Turbine fuel specifications. For... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Turbine fuel specifications. 87.61...

  3. Low thermal stress ceramic turbine nozzle

    DOEpatents

    Glezer, Boris; Bagheri, Hamid; Fierstein, Aaron R.

    1996-01-01

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of vanes therebetween. Each of the plurality of vanes have a device for heating and cooling a portion of each of the plurality of vanes. Furthermore, the inner shroud has a plurality of bosses attached thereto. A cylindrical member has a plurality of grooves formed therein and each of the plurality of bosses are positioned in corresponding ones of the plurality of grooves. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

  4. Low thermal stress ceramic turbine nozzle

    DOEpatents

    Glezer, B.; Bagheri, H.; Fierstein, A.R.

    1996-02-27

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components, the metallic components having a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of vanes there between. Each of the plurality of vanes have a device for heating and cooling a portion of each of the plurality of vanes. Furthermore, the inner shroud has a plurality of bosses attached thereto. A cylindrical member has a plurality of grooves formed therein and each of the plurality of bosses are positioned in corresponding ones of the plurality of grooves. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component. 4 figs.

  5. Why do Cross-Flow Turbines Stall?

    NASA Astrophysics Data System (ADS)

    Cavagnaro, Robert; Strom, Benjamin; Polagye, Brian

    2015-11-01

    Hydrokinetic turbines are prone to instability and stall near their peak operating points under torque control. Understanding the physics of turbine stall may help to mitigate this undesirable occurrence and improve the robustness of torque controllers. A laboratory-scale two-bladed cross-flow turbine operating at a chord-based Reynolds number ~ 3 ×104 is shown to stall at a critical tip-speed ratio. Experiments are conducting bringing the turbine to this critical speed in a recirculating current flume by increasing resistive torque and allowing the rotor to rapidly decelerate while monitoring inflow velocity, torque, and drag. The turbine stalls probabilistically with a distribution generated from hundreds of such events. A machine learning algorithm identifies stall events and indicates the effectiveness of available measurements or combinations of measurements as predictors. Bubble flow visualization and PIV are utilized to observe fluid conditions during stall events including the formation, separation, and advection of leading-edge vortices involved in the stall process.

  6. Wind turbine remote control using Android devices

    NASA Astrophysics Data System (ADS)

    Rat, C. L.; Panoiu, M.

    2018-01-01

    This paper describes the remote control of a wind turbine system over the internet using an Android device, namely a tablet or a smartphone. The wind turbine workstation contains a LabVIEW program which monitors the entire wind turbine energy conversion system (WECS). The Android device connects to the LabVIEW application, working as a remote interface to the wind turbine. The communication between the devices needs to be secured because it takes place over the internet. Hence, the data are encrypted before being sent through the network. The scope was the design of remote control software capable of visualizing real-time wind turbine data through a secure connection. Since the WECS is fully automated and no full-time human operator exists, unattended access to the turbine workstation is needed. Therefore the device must not require any confirmation or permission from the computer operator in order to control it. Another condition is that Android application does not have any root requirements.

  7. Brush Seals for Improved Steam Turbine Performance

    NASA Technical Reports Server (NTRS)

    Turnquist, Norman; Chupp, Ray; Baily, Fred; Burnett, Mark; Rivas, Flor; Bowsher, Aaron; Crudgington, Peter

    2006-01-01

    GE Energy has retrofitted brush seals into more than 19 operating steam turbines. Brush seals offer superior leakage control compared to labyrinth seals, owing to their compliant nature and ability to maintain very tight clearances to the rotating shaft. Seal designs have been established for steam turbines ranging in size from 12 MW to over 1200 MW, including fossil, nuclear, combined-cycle and industrial applications. Steam turbines present unique design challenges that must be addressed to ensure that the potential performance benefits of brush seals are realized. Brush seals can have important effects on the overall turbine system that must be taken into account to assure reliable operation. Subscale rig tests are instrumental to understanding seal behavior under simulated steam-turbine operating conditions, prior to installing brush seals in the field. This presentation discusses the technical challenges of designing brush seals for steam turbines; subscale testing; performance benefits of brush seals; overall system effects; and field applications.

  8. An overview of aerospace gas turbine technology of relevance to the development of the automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Evans, D. G.; Miller, T. J.

    1978-01-01

    Technology areas related to gas turbine propulsion systems with potential for application to the automotive gas turbine engine are discussed. Areas included are: system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.

  9. CFD Aided Design and Production of Hydraulic Turbines

    NASA Astrophysics Data System (ADS)

    Kaplan, Alper; Cetinturk, Huseyin; Demirel, Gizem; Ayli, Ece; Celebioglu, Kutay; Aradag, Selin; ETU Hydro Research Center Team

    2014-11-01

    Hydraulic turbines are turbo machines which produce electricity from hydraulic energy. Francis type turbines are the most common one in use today. The design of these turbines requires high engineering effort since each turbine is tailor made due to different head and discharge. Therefore each component of the turbine is designed specifically. During the last decades, Computational Fluid Dynamics (CFD) has become very useful tool to predict hydraulic machinery performance and save time and money for designers. This paper describes a design methodology to optimize a Francis turbine by integrating theoretical and experimental fundamentals of hydraulic machines and commercial CFD codes. Specific turbines are designed and manufactured with the help of a collaborative CFD/CAD/CAM methodology based on computational fluid dynamics and five-axis machining for hydraulic electric power plants. The details are presented in this study. This study is financially supported by Turkish Ministry of Development.

  10. Turbine bucket for use in gas turbine engines and methods for fabricating the same

    DOEpatents

    Garcia-Crespo, Andres

    2014-06-03

    A turbine bucket for use with a turbine engine. The turbine bucket includes an airfoil that extends between a root end and a tip end. The airfoil includes an outer wall that defines a cavity that extends from the root end to the tip end. The outer wall includes a first ceramic matrix composite (CMC) substrate that extends a first distance from the root end to the tip end. An inner wall is positioned within the cavity. The inner wall includes a second CMC substrate that extends a second distance from the root end towards the tip end that is different than the first distance.

  11. Aviation turbine fuels: An assessment of alternatives

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The general outlook for aviation turbine fuels, the effect that broadening permissible aviation turbine fuel properties could have on the overall availability of such fuels, the fuel properties most likely to be affected by use of lower grade petroleum crudes, and the research and technology required to ensure that aviation turbine fuels and engines can function satisfactorily with fuels having a range of fuel properties differing from those of current specification fuel are assessed. Views of industry representatives on alternative aviation turbine fuels are presented.

  12. The AGT 101 advanced automotive gas turbine

    NASA Technical Reports Server (NTRS)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    A development program is described whose goal is the accumulation of the technology base needed by the U.S. automotive industry for the production of automotive gas turbine powertrains. Such gas turbine designs must exhibit reduced fuel consumption, a multi-fuel capability, and low exhaust emissions. The AGT101 powertrain described is a 74.6 kW, regenerated single-shaft gas turbine, operating at a maximum inlet temperature of 1644 K and coupled to a split differential gearbox and automatic overdrive transmission. The engine's single stage centrifugal compressor and single stage radial inflow turbine are mounted on a common shaft, and will operate at a maximum rotor speed of 100,000 rpm. All high temperature components, including the turbine rotor, are ceramic.

  13. Taking advantage of modern turbines

    NASA Astrophysics Data System (ADS)

    Thresher, Robert

    2018-06-01

    Wind facilities have generally deployed turbines of the same power and height in regular uniform arrays. Now, the modern generation of turbines, with customer-selectable tower heights and larger rotors, can significantly increase wind energy's economic potential using less land to generate cheaper electricity.

  14. Taking advantage of modern turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thresher, Robert

    Here, wind facilities have generally deployed turbines of the same power and height in regular uniform arrays. Now, the modern generation of turbines, with customer-selectable tower heights and larger rotors, can significantly increase wind energy's economic potential using less land to generate cheaper electricity.

  15. Taking advantage of modern turbines

    DOE PAGES

    Thresher, Robert

    2018-05-14

    Here, wind facilities have generally deployed turbines of the same power and height in regular uniform arrays. Now, the modern generation of turbines, with customer-selectable tower heights and larger rotors, can significantly increase wind energy's economic potential using less land to generate cheaper electricity.

  16. On the problem of zinc extraction from the slags of lead heat

    NASA Astrophysics Data System (ADS)

    Kozyrev, V. V.; Besser, A. D.; Paretskii, V. M.

    2013-12-01

    The possibilities of zinc extraction from the slags of lead heat are studied as applied to the ZAO Karat-TsM lead plant to be built for processing ore lead concentrates. The process of zinc extraction into commercial fumes using the technology of slag fuming by natural gas developed in Gintsvetmet is recommended for this purpose. Technological rules are developed for designing a commercial fuming plant, as applied to the conditions of the ZAO Karat-TsM plant.

  17. Air cooling of disk of a solid integrally cast turbine rotor for an automotive gas turbine

    NASA Technical Reports Server (NTRS)

    Gladden, H. J.

    1977-01-01

    A thermal analysis is made of surface cooling of a solid, integrally cast turbine rotor disk for an automotive gas turbine engine. Air purge and impingement cooling schemes are considered and compared with an uncooled reference case. Substantial reductions in blade temperature are predicted with each of the cooling schemes studied. It is shown that air cooling can result in a substantial gain in the stress-rupture life of the blade. Alternatively, increases in the turbine inlet temperature are possible.

  18. 7 CFR 2902.60 - Turbine drip oils.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Turbine drip oils. 2902.60 Section 2902.60... Items § 2902.60 Turbine drip oils. (a) Definition. Products that are lubricants for use in drip lubrication systems for water well line shaft bearings, water turbine bearings for irrigation pumps, and other...

  19. Effect of thermal barrier coatings on the performance of steam and water-cooled gas turbine/steam turbine combined cycle system

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.

    1978-01-01

    An analytical study was made of the performance of air, steam, and water-cooled gas-turbine/steam turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal barrier coatings permit an increase in the turbine inlet temperature from 1205 C (2200 F), resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4 percent, when the turbine inlet temperature is increased from 1425 C (2600 F) to 1675 C (3050 F) and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683 C (3062 F) and the maximum specific power improvement is 36.6 percent by increasing the turbine inlet temperature from 1425 C (2600 F) to 1730 C (3150 F) and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air cooling at a turbine inlet temperature of 1205 C (2200 F). The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.

  20. Thermal stresses investigation of a gas turbine blade

    NASA Astrophysics Data System (ADS)

    Gowreesh, S.; Pravin, V. K.; Rajagopal, K.; Veena, P. H.

    2012-06-01

    The analysis of structural and thermal stress values that are produced while the turbine is operating are the key factors of study while designing the next generation gas turbines. The present study examines structural, thermal, modal analysis of the first stage rotor blade of a two stage gas turbine. The design features of the turbine segment of the gas turbine have been taken from the preliminary design of a power turbine for maximization of an existing turbojet engine with optimized dump gap of the combustion chamber, since the allowable temperature on the turbine blade dependents on the hot gas temperatures from the combustion chamber. In the present paper simplified 3-D Finite Element models are developed with governing boundary conditions and solved using the commercial FEA software ANSYS. As the temperature has a significant effect on the overall stress on the rotor blades, a detail study on mechanical and thermal stresses are estimated and evaluated with the experimental values.

  1. An analytic approach to optimize tidal turbine fields

    NASA Astrophysics Data System (ADS)

    Pelz, P.; Metzler, M.

    2013-12-01

    Motivated by global warming due to CO2-emission various technologies for harvesting of energy from renewable sources are developed. Hydrokinetic turbines get applied to surface watercourse or tidal flow to gain electrical energy. Since the available power for hydrokinetic turbines is proportional to the projected cross section area, fields of turbines are installed to scale shaft power. Each hydrokinetic turbine of a field can be considered as a disk actuator. In [1], the first author derives the optimal operation point for hydropower in an open-channel. The present paper concerns about a 0-dimensional model of a disk-actuator in an open-channel flow with bypass, as a special case of [1]. Based on the energy equation, the continuity equation and the momentum balance an analytical approach is made to calculate the coefficient of performance for hydrokinetic turbines with bypass flow as function of the turbine head and the ratio of turbine width to channel width.

  2. Computational study of the effects of shroud geometric variation on turbine performance in a 1.5-stage high-loaded turbine

    NASA Astrophysics Data System (ADS)

    Jia, Wei; Liu, Huoxing

    2013-10-01

    Generally speaking, main flow path of gas turbine is assumed to be perfect for standard 3D computation. But in real engine, the turbine annulus geometry is not completely smooth for the presence of the shroud and associated cavity near the end wall. Besides, shroud leakage flow is one of the dominant sources of secondary flow in turbomachinery, which not only causes a deterioration of useful work but also a penalty on turbine efficiency. It has been found that neglect shroud leakage flow makes the computed velocity profiles and loss distribution significantly different to those measured. Even so, the influence of shroud leakage flow is seldom taken into consideration during the routine of turbine design due to insufficient understanding of its impact on end wall flows and turbine performance. In order to evaluate the impact of tip shroud geometry on turbine performance, a 3D computational investigation for 1.5-stage turbine with shrouded blades was performed in this paper. The following geometry parameters were varied respectively: Inlet cavity length and exit cavity length

  3. Turbine vane structure

    DOEpatents

    Irwin, John A.

    1980-08-19

    A liquid cooled stator blade assembly for a gas turbine engine includes an outer shroud having a pair of liquid inlets and a pair of liquid outlets supplied through a header and wherein means including tubes support the header radially outwardly of the shroud and also couple the header with the pair of liquid inlets and outlets. A pair of turbine vanes extend radially between the shroud and a vane platform to define a gas turbine motive fluid passage therebetween; and each of the vanes is cooled by an internal body casting of super alloy material with a grooved layer of highly heat conductive material that includes spaced apart flat surface trailing edges in alignment with a flat trailing edge of the casting joined to wall segments of the liner which are juxtaposed with respect to the internal casting to form an array of parallel liquid inlet passages on one side of the vane and a second plurality of parallel liquid return passages on the opposite side of the vane; and a superalloy heat and wear resistant imperforate skin covers the outer surface of the composite blade including the internal casting and the heat conductive layer; a separate trailing edge section includes an internal casting and an outer skin butt connected to the end surfaces of the internal casting and the heat conductive layer to form an easily assembled liquid cooled trailing edge section in the turbine vane.

  4. RANS Simulation (Actuator Disk Model[ADM]) of the NREL Phase VI wind turbine modeled as MHK Turbine

    DOE Data Explorer

    Javaherchi, Teymour

    2016-06-08

    Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. In this case study the flow field around and in the wake of the NREL Phase VI wind turbine, modeled is MHK turbine, is simulated using Actuator Disk Model (a.k.a Porous Media) by solving RANS equations coupled with a turbulence closure model. It should be highlighted that in this simulation the actual geometry of the rotor blade is not modeled. The effect of turbine rotating blades are modeled using the Actuator Disk Theory (see the stated section of attached M.Sc. thesis for more details).

  5. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    ATTAP activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Significant technical challenges remain, but all areas exhibited progress. Test-bed engine design and development included engine mechanical design, combustion system design, alternate aerodynamic designs of gasifier scrolls, and engine system integration aimed at upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1372 C (2500 F) structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities completed include the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, ceramic combustors, the ceramic regenerator disk, the ceramic power turbine rotors, and the ceramic/metal power turbine static structure. The material and component characterization efforts included the testing and evaluation of seven candidate materials and three development components. Ceramic component process development and fabrication proceeded for the gasifier turbine rotor, gasifier turbine scroll, gasifier turbine vanes and vane platform, extruded regenerator disks, and thermal insulation. Component rig activities included the development of both rigs and the necessary test procedures, and conduct of rig testing of the ceramic components and assemblies. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that permit the achievement of both program performance and durability goals. Total test time in 1991 amounted to 847 hours, of which 128 hours were engine testing, and 719 were hot rig testing.

  6. Mod-1 Wind Turbine at Boone, North Carolina

    NASA Image and Video Library

    1979-06-21

    A Mod-1 2000-kilowatt wind turbine designed by National Aeronautics and Space Administration (NASA) Lewis Research Center and constructed in Boone, North Carolina. The wind turbine program was a joint program between NASA and the Energy Research and Development Administration (ERDA) during the 1970s to develop less expensive forms of energy. NASA Lewis was assigned the responsibility of developing large horizontal-axis wind turbines. The program included a series of increasingly powerful wind turbines, designated: Mod-0A, Mod-1, WTS-4, and Mod-5. The program’s first device was a Mod-0 100-kilowatt wind turbine test bed at NASA’s Plum Brook Station. There were four Mod-0A 200-kilowatt turbines built in New Mexico, Hawaii, Puerto Rico, and Rhode Island. The 2000-kilowatt wind turbine in North Carolina, seen here, was the only Mod-1 machine constructed. The two-bladed, 200-foot diameter device was built in May 1979 and began operation that September. The Mod-1 turbine performed exceedingly well and was fully integrated into the local power grid. NASA researchers also used the North Carolina device to study its effect on noise and television transmission.

  7. Feasibility Study for a Practical High Rotor Tip Clearance Turbine.

    DTIC Science & Technology

    GAS TURBINE BLADES ), (* TURBINE BLADES , TOLERANCES(MECHANICS)), (* TURBOFAN ENGINES , GAS TURBINES , AXIAL FLOW TURBINES , AXIAL FLOW TURBINE ROTORS...AERODYNAMIC CONFIGURATIONS, LEAKAGE(FLUID), MEASUREMENT, TEST METHODS, PERFORMANCE( ENGINEERING ), MATHEMATICAL PREDICTION, REDUCTION, PRESSURE, PREDICTIONS, NOZZLE GAS FLOW, COMBUSTION CHAMBER GASES, GAS FLOW.

  8. Water turbine system and method of operation

    DOEpatents

    Costin, Daniel P [Montpelier, VT

    2011-05-10

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  9. Water turbine system and method of operation

    DOEpatents

    Costin, Daniel P [Montpelier, VT

    2009-02-10

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  10. Water turbine system and method of operation

    DOEpatents

    Costin, Daniel P.

    2010-06-15

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  11. Low-frequency noise from large wind turbines.

    PubMed

    Møller, Henrik; Pedersen, Christian Sejer

    2011-06-01

    As wind turbines get larger, worries have emerged that the turbine noise would move down in frequency and that the low-frequency noise would cause annoyance for the neighbors. The noise emission from 48 wind turbines with nominal electric power up to 3.6 MW is analyzed and discussed. The relative amount of low-frequency noise is higher for large turbines (2.3-3.6 MW) than for small turbines (≤ 2 MW), and the difference is statistically significant. The difference can also be expressed as a downward shift of the spectrum of approximately one-third of an octave. A further shift of similar size is suggested for future turbines in the 10-MW range. Due to the air absorption, the higher low-frequency content becomes even more pronounced, when sound pressure levels in relevant neighbor distances are considered. Even when A-weighted levels are considered, a substantial part of the noise is at low frequencies, and for several of the investigated large turbines, the one-third-octave band with the highest level is at or below 250 Hz. It is thus beyond any doubt that the low-frequency part of the spectrum plays an important role in the noise at the neighbors. © 2011 Acoustical Society of America

  12. 7 CFR 3201.60 - Turbine drip oils.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Designated Items § 3201.60 Turbine drip oils. (a) Definition. Products that are lubricants for use in drip lubrication systems for water well line shaft bearings, water turbine bearings for irrigation pumps, and other... 7 Agriculture 15 2013-01-01 2013-01-01 false Turbine drip oils. 3201.60 Section 3201.60...

  13. 7 CFR 3201.60 - Turbine drip oils.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Designated Items § 3201.60 Turbine drip oils. (a) Definition. Products that are lubricants for use in drip lubrication systems for water well line shaft bearings, water turbine bearings for irrigation pumps, and other... 7 Agriculture 15 2012-01-01 2012-01-01 false Turbine drip oils. 3201.60 Section 3201.60...

  14. 7 CFR 3201.60 - Turbine drip oils.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Designated Items § 3201.60 Turbine drip oils. (a) Definition. Products that are lubricants for use in drip lubrication systems for water well line shaft bearings, water turbine bearings for irrigation pumps, and other... 7 Agriculture 15 2014-01-01 2014-01-01 false Turbine drip oils. 3201.60 Section 3201.60...

  15. Ceramic technology for automotive turbines

    NASA Technical Reports Server (NTRS)

    Mclean, A. F.

    1982-01-01

    The paper presents an update on ceramic technology for automotive turbines. Progress in research and development of improved ceramics is reviewed, including approaches for assessing time-dependent strength characteristics. Processes for making shapes are discussed, and the design and testing of selected ceramic turbine components are reviewed.

  16. Radar Cross Section (RCS) Simulation for Wind Turbines

    DTIC Science & Technology

    2013-06-01

    SECTION (RCS) SIMULATION FOR WIND TURBINES by Cuong Ton June 2013 Thesis Advisor: David C. Jenn Second Reader: Ric Romero THIS PAGE...TITLE AND SUBTITLE RADAR CROSS SECTION (RCS) SIMULATION FOR WIND TURBINES 5. FUNDING NUMBERS 6. AUTHOR(S) Cuong Ton 7. PERFORMING ORGANIZATION...ABSTRACT (maximum 200 words) Wind - turbine power provides energy-independence and greenhouse-gas reduction benefits, but if wind turbines are built

  17. Turbine nozzle attachment system

    DOEpatents

    Norton, Paul F.; Shaffer, James E.

    1995-01-01

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine.

  18. Turbine nozzle attachment system

    DOEpatents

    Norton, P.F.; Shaffer, J.E.

    1995-10-24

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine. 3 figs.

  19. A reference pelton turbine - design and efficiency measurements

    NASA Astrophysics Data System (ADS)

    Solemslie, Bjørn W.; Dahlhaug, Ole G.

    2014-03-01

    The Pelton turbine has been subject to a varying degree of research interest since the debut of the technology over a century ago. Despite its age there are gaps in the knowledge concerning the flow mechanisms effecting the flow through the turbine. A Pelton turbine has been designed at the Waterpower Laboratory at NTNU. This has been done in connection to a Ph.D. project focusing on the flow in Pelton turbine buckets. The design of the turbine has been conducted using in-house knowledge in addition to some comments from a turbine producer. To describe the geometry multiple Bezier curves were used and the design strategy aimed to give a smooth and continuous gradient along the main flow directions in the bucket. The turbine has been designed for the operational conditions of the Pelton test rig installed at the Waterpower Laboratory which is a horizontal single jet test rig with a jet diameter(ds) of 35 mm. The diameter(D) of the runner was set to 513 mm and the width(W) of a bucket 114 mm, leading to a D/W ratio of 4.5. Manufacturing of the turbine has been carried out in aluminium and the turbine has undergone efficiency testing and visual inspection during operation at a head of 70 m. The turbine did not performed as expected and the maximum efficiency was found to be 77.75%. The low efficiency is mainly caused by a large amount of water leaving the bucket through the lip and hence transferring close to zero of its energy to the shaft. The reason for the large lip loss is discussed and two possible causes are found; the jet is located too close to the lip, and the inner surface of the bucket does not lead the water away from the lip. The turbine geometry and all data from both measurements and simulations will be available upon request in an effort to increase the amount of available data concerning Pelton turbines.

  20. Airfoil for a turbine of a gas turbine engine

    DOEpatents

    Liang, George

    2010-12-21

    An airfoil for a turbine of a gas turbine engine is provided. The airfoil comprises a main body comprising a wall structure defining an inner cavity adapted to receive a cooling air. The wall structure includes a first diffusion region and at least one first metering opening extending from the inner cavity to the first diffusion region. The wall structure further comprises at least one cooling circuit comprising a second diffusion region and at least one second metering opening extending from the first diffusion region to the second diffusion region. The at least one cooling circuit may further comprise at least one third metering opening, at least one third diffusion region and a fourth diffusion region.

  1. Leaf seal for transition duct in turbine system

    DOEpatents

    Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston; Dillard, Daniel Jackson; Pentecost, Ronnie Ray

    2013-06-11

    A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface member for interfacing with a turbine section. The turbine system further includes a leaf seal contacting the interface member to provide a seal between the interface member and the turbine section.

  2. Development and Analysis of a Bi-Directional Tidal Turbine

    DTIC Science & Technology

    2012-03-01

    commercial CFD software ANSYS CFX was utilized to build a turbine map. The basic turbine map was developed for a 25 blade bi-axial turbine under...directional turbine created for this purpose. In the present study, the commercial CFD software ANSYS CFX was utilized to build a turbine map. The...sheath C. PROBLEM SPECIFICATIONS AND BOUNDARY CONDITIONS The simulation definition was created using ANSYS CFX -Pre. The best measurements to determine

  3. Method and apparatus for preventing overspeed in a gas turbine

    DOEpatents

    Walker, William E.

    1976-01-01

    A method and apparatus for preventing overspeed in a gas turbine in response to the rapid loss of applied load is disclosed. The method involves diverting gas from the inlet of the turbine, bypassing the same around the turbine and thereafter injecting the diverted gas at the turbine exit in a direction toward or opposing the flow of gas through the turbine. The injected gas is mixed with the gas exiting the turbine to thereby minimize the thermal shock upon equipment downstream of the turbine exit.

  4. Manufacturing Processes for Long-Life Gas Turbines

    NASA Astrophysics Data System (ADS)

    Hoppin, G. S.; Danesi, W. P.

    1986-07-01

    Dual-alloy turbine wheels produced by solid-state diffusion bonding of vacuum investment cast blade rings of one superalloy to preconsolidated powder metal hubs of a second superalloy have the long cyclic lives characteristic of wrought or powder superalloys combined with the high creep strength and net-shape blades characteristic of cast superalloys. A wide variety of superalloys and turbine configurations are compatible with this technology. Improved temperature capability turbine blades and vanes of the MAR-M 247 alloy made by directional solidification casting processes are now in volume production for Garrett gas turbines. Single-crystal alloys derivative to MAR-M 247 further extend the temperature capability of turbine blades and have been successfully engine tested. These blades are produced by a relatively simple modification of the processes used to manufacture directionally solidified blades.

  5. Interactions Between Channel Topography and Hydrokinetic Turbines: Sediment Transport, Turbine Performance, and Wake Characteristics

    NASA Astrophysics Data System (ADS)

    Hill, Craig Steven

    Accelerating marine hydrokinetic (MHK) renewable energy development towards commercial viability requires investigating interactions between the engineered environment and its surrounding physical and biological environments. Complex and energetic hydrodynamic and morphodynamic environments desired for such energy conversion installations present difficulties for designing efficient yet robust sustainable devices, while permitting agency uncertainties regarding MHK device environmental interactions result in lengthy and costly processes prior to installing and demonstrating emerging technologies. A research program at St. Anthony Falls Laboratory (SAFL), University of Minnesota, utilized multi-scale physical experiments to study the interactions between axial-flow hydrokinetic turbines, turbulent open channel flow, sediment transport, turbulent turbine wakes, and complex hydro-morphodynamic processes in channels. Model axial-flow current-driven three-bladed turbines (rotor diameters, dT = 0.15m and 0.5m) were installed in open channel flumes with both erodible and non-erodible substrates. Device-induced local scour was monitored over several hydraulic conditions and material sizes. Synchronous velocity, bed elevation and turbine performance measurements provide an indication into the effect channel topography has on device performance. Complimentary experiments were performed in a realistic meandering outdoor research channel with active sediment transport to investigate device interactions with bedform migration and secondary turbulent flow patterns in asymmetric channel environments. The suite of experiments undertaken during this research program at SAFL in multiple channels with stationary and mobile substrates under a variety of turbine configurations provides an in-depth investigation into how axial-flow hydrokinetic devices respond to turbulent channel flow and topographic complexity, and how they impact local and far-field sediment transport characteristics

  6. A status of the Turbine Technology Team activities

    NASA Technical Reports Server (NTRS)

    Griffin, Lisa W.

    1992-01-01

    The recent activities of the Turbine Technology Team of the Consortium for Computational Fluid Dynamics (CFD) Application in Propulsion Technology is presented. The team consists of members from the government, industry, and universities. The goal of this team is to demonstrate the benefits to the turbine design process attainable through the application of CFD. This goal is to be achieved by enhancing and validating turbine design tools for improved loading and flowfield definition and loss prediction, and transferring the advanced technology to the turbine design process. In order to demonstrate the advantages of using CFD early in the design phase, the Space Transportation Main Engine (STME) turbines for the National Launch System (NLS) were chosen on which to focus the team's efforts. The Turbine Team activities run parallel to the STME design work.

  7. A wind turbine hybrid simulation framework considering aeroelastic effects

    NASA Astrophysics Data System (ADS)

    Song, Wei; Su, Weihua

    2015-04-01

    In performing an effective structural analysis for wind turbine, the simulation of turbine aerodynamic loads is of great importance. The interaction between the wake flow and the blades may impact turbine blades loading condition, energy yield and operational behavior. Direct experimental measurement of wind flow field and wind profiles around wind turbines is very helpful to support the wind turbine design. However, with the growth of the size of wind turbines for higher energy output, it is not convenient to obtain all the desired data in wind-tunnel and field tests. In this paper, firstly the modeling of dynamic responses of large-span wind turbine blades will consider nonlinear aeroelastic effects. A strain-based geometrically nonlinear beam formulation will be used for the basic structural dynamic modeling, which will be coupled with unsteady aerodynamic equations and rigid-body rotations of the rotor. Full wind turbines can be modeled by using the multi-connected beams. Then, a hybrid simulation experimental framework is proposed to potentially address this issue. The aerodynamic-dominant components, such as the turbine blades and rotor, are simulated as numerical components using the nonlinear aeroelastic model; while the turbine tower, where the collapse of failure may occur under high level of wind load, is simulated separately as the physical component. With the proposed framework, dynamic behavior of NREL's 5MW wind turbine blades will be studied and correlated with available numerical data. The current work will be the basis of the authors' further studies on flow control and hazard mitigation on wind turbine blades and towers.

  8. Turbulent Flow over Rough Turbine Airfoils.

    DTIC Science & Technology

    1985-08-01

    SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB. GR. Turbine blades ’ vanes ; surface roughness...turbulent boundary layer over rough turbine vanes or blades is developed. A new formulation of the mixing length model, expressed in the velocity-space...A-163 005 TURBULENT FLOW OVER ROUGH TURBINE AIRFOILS (U) OHIO 1/ STATE UNIV RESEARCH FOUNDATION COLUMBUS L S HAN AUG B5 OSURF-76357/?i4467 AFWL-TR-95

  9. Gas Turbine Engine with Air/Fuel Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Krautheim, Michael Stephen (Inventor); Chouinard, Donald G. (Inventor); Donovan, Eric Sean (Inventor); Karam, Michael Abraham (Inventor); Vetters, Daniel Kent (Inventor)

    2017-01-01

    One embodiment of the present invention is a unique aircraft propulsion gas turbine engine. Another embodiment is a unique gas turbine engine. Another embodiment is a unique gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engines with heat exchange systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  10. Turbine Research Program Cold Weather Turbine Project: Period of Performance May 27, 1999 -- March 31, 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, J.; Bywaters, G.; Costin, D.

    2004-08-01

    Northern Power Systems completed the Cold Weather Turbine (CWT) project, which was funded by the National Renewable Energy Laboratory (NREL), under subcontract XAT-9-29200-01. The project's primary goal is to develop a 100-kW wind turbine suited for deployment in remote villages in cold regions. The contract required testing and certification of the turbine to the International Electrotechnical Commission (IEC) 61400-1 international standard through Underwriters Laboratories (UL). The contract also required Northern Power Systems to study design considerations for operation in extreme cold (-80F at the South Pole, for example). The design was based on the successful proof of concept (POC) turbinemore » (developed under NREL and NASA contracts), considered the prototype turbine that would be refined and manufactured to serve villages in cold regions around the world.« less

  11. Locations and attributes of wind turbines in Colorado, 2011

    USGS Publications Warehouse

    Carr, Natasha B.; Diffendorfer, James E.; Fancher, Tammy; Hawkins, Sarah J.; Latysh, Natalie; Leib, Kenneth J.; Matherne, Anne Marie

    2013-01-01

    This dataset represents an update to U.S. Geological Survey Data Series 597. Locations and attributes of wind turbines in Colorado, 2009 (available at http://pubs.usgs.gov/ds/597/). This updated Colorado wind turbine Data Series provides geospatial data for all 1,204 wind turbines established within the State of Colorado as of September 2011, an increase of 297 wind turbines from 2009. Attributes specific to each turbine include: turbine location, manufacturer and model, rotor diameter, hub height, rotor height, potential megawatt output, land ownership, county, and development status of the wind turbine. Wind energy facility data for each turbine include: facility name, facility power capacity, number of turbines associated with each facility to date, facility developer, facility ownership, and year the facility went online. The locations of turbines are derived from 1-meter true-color aerial photographs produced by the National Agriculture Imagery Program (NAIP); the photographs have a positional accuracy of about ±5 meters. Locations of turbines constructed during or prior to August 2009 are based on August 2009 NAIP imagery and turbine locations constructed after August 2009 were based on September 2011 NAIP imagery. The location of turbines under construction during September 2011 likely will be less accurate than the location of existing turbines. This data series contributes to an Online Interactive Energy Atlas developed by the U.S. Geological Survey (http://my.usgs.gov/eerma/). The Energy Atlas synthesizes data on existing and potential energy development in Colorado and New Mexico and includes additional natural resource data layers. This information may be used by decisionmakers to evaluate and compare the potential benefits and tradeoffs associated with different energy development strategies or scenarios. Interactive maps, downloadable data layers, comprehensive metadata, and decision-support tools also are included in the Energy Atlas. The format of

  12. Annoyance, detection and recognition of wind turbine noise.

    PubMed

    Van Renterghem, Timothy; Bockstael, Annelies; De Weirt, Valentine; Botteldooren, Dick

    2013-07-01

    Annoyance, recognition and detection of noise from a single wind turbine were studied by means of a two-stage listening experiment with 50 participants with normal hearing abilities. In-situ recordings made at close distance from a 1.8-MW wind turbine operating at 22 rpm were mixed with road traffic noise, and processed to simulate indoor sound pressure levels at LAeq 40 dBA. In a first part, where people were unaware of the true purpose of the experiment, samples were played during a quiet leisure activity. Under these conditions, pure wind turbine noise gave very similar annoyance ratings as unmixed highway noise at the same equivalent level, while annoyance by local road traffic noise was significantly higher. In a second experiment, listeners were asked to identify the sample containing wind turbine noise in a paired comparison test. The detection limit of wind turbine noise in presence of highway noise was estimated to be as low as a signal-to-noise ratio of -23 dBA. When mixed with local road traffic, such a detection limit could not be determined. These findings support that noticing the sound could be an important aspect of wind turbine noise annoyance at the low equivalent levels typically observed indoors in practice. Participants that easily recognized wind-turbine(-like) sounds could detect wind turbine noise better when submersed in road traffic noise. Recognition of wind turbine sounds is also linked to higher annoyance. Awareness of the source is therefore a relevant aspect of wind turbine noise perception which is consistent with previous research. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Capability Extension to the Turbine Off-Design Computer Program AXOD With Applications to the Highly Loaded Fan-Drive Turbines

    NASA Technical Reports Server (NTRS)

    Chen, Shu-cheng S.

    2011-01-01

    The axial flow turbine off-design computer program AXOD has been upgraded to include the outlet guide vane (OGV) into its acceptable turbine configurations. The mathematical bases and the techniques used for the code implementation are described and discussed in lengths in this paper. This extended capability is verified and validated with two cases of highly loaded fan-drive turbines, designed and tested in the V/STOL Program of NASA. The first case is a 4 1/2-stage turbine with an average stage loading factor of 4.66, designed by Pratt & Whitney Aircraft. The second case is a 3 1/2-stage turbine with an average loading factor of 4.0, designed in-house by the NASA Lewis Research Center (now the NASA Glenn Research Center). Both cases were experimentally tested in the turbine facility located at the Glenn Research Center. The processes conducted in these studies are described in detail in this paper, and the results in comparison with the experimental data are presented and discussed. The comparisons between the AXOD results and the experimental data are in excellent agreement.

  14. Multi-stage internal gear/turbine fuel pump

    DOEpatents

    Maier, Eugen; Raney, Michael Raymond

    2004-07-06

    A multi-stage internal gear/turbine fuel pump for a vehicle includes a housing having an inlet and an outlet and a motor disposed in the housing. The multi-stage internal gear/turbine fuel pump also includes a shaft extending axially and disposed in the housing. The multi-stage internal gear/turbine fuel pump further includes a plurality of pumping modules disposed axially along the shaft. One of the pumping modules is a turbine pumping module and another of the pumping modules is a gerotor pumping module for rotation by the motor to pump fuel from the inlet to the outlet.

  15. Modeling Smart Structure of Wind Turbine Blade

    NASA Astrophysics Data System (ADS)

    Qiao, Yin-hu; Han, Jiang; Zhang, Chun-yan; Chen, Jie-ping

    2012-06-01

    With the increasing size of wind turbine blades, the need for more sophisticated load control techniques has induced the interest for aerodynamic control systems with build-in intelligence on the blades. The paper aims to provide a way for modeling the adaptive wind turbine blades and analyze its ability for vibration suppress. It consists of the modeling of the adaptive wind turbine blades with the wire of piezoelectric material embedded in blade matrix, and smart sandwich structure of wind turbine blade. By using this model, an active vibration method which effectively suppresses the vibrations of the smart blade is designed.

  16. Intracycle angular velocity control of cross-flow turbines

    NASA Astrophysics Data System (ADS)

    Strom, Benjamin; Brunton, Steven L.; Polagye, Brian

    2017-08-01

    Cross-flow turbines, also known as vertical-axis turbines, are attractive for power generation from wind and water currents. Some cross-flow turbine designs optimize unsteady fluid forces and maximize power output by controlling blade kinematics within one rotation. One established method is to dynamically pitch the blades. Here we introduce a mechanically simpler alternative: optimize the turbine rotation rate as a function of angular blade position. We demonstrate experimentally that this approach results in a 59% increase in power output over standard control methods. Analysis of fluid forcing and blade kinematics suggest that power increase is achieved through modification of the local flow conditions and alignment of fluid force and rotation rate extrema. The result is a low-speed, structurally robust turbine that achieves high efficiency and could enable a new generation of environmentally benign turbines for renewable power generation.

  17. Theory and tests of two-phase turbines

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1982-01-01

    A theoretical model for two-phase turbines was developed. Apparatus was constructed for testing one- and two-stage turbines (using speed decrease from stage to stage). Turbines were tested with water and nitrogen mixtures and refrigerant 22. Nozzle efficiencies were 0.78 (measured) and 0.72 (theoretical) for water and nitrogen mixtures at a water/nitrogen mixture ratio of 68, by mass; and 0.89 (measured) and 0.84 (theoretical) for refrigerant 22 expanding from 0.02 quality to 0.28 quality. Blade efficiencies (shaft power before windage and bearing loss divided by nozzle jet power) were 0.63 (measured) and 0.71 (theoretical) for water and nitrogen mixtures and 0.62 (measured) and 0.63 (theoretical) for refrigerant 22 with a single stage turbine, and 0,70 (measured) and 0.85 (theoretical) for water and nitrogen mixtures with a two-stage turbine.

  18. Adaptation of a Turbine Test Facility to High-Temperature Research (Adaptation d’un banc de Turbine aux Recherches pour les Hautes Temperatures,

    DTIC Science & Technology

    1980-12-19

    Des hautes temperatures devant turbine sur turborgacteur et turbines A gaz. (High turbine inlet temperatures in turbo - jet engines and gas turbines ... turbo - jet engines .) Revue Gn(rale de Thermique, No. 166, October 1975 15 D. Arnal Etude exprimentale et thgorique de la transition de la couche J.C...r AD-AIOl 374 ROYAL AIRCRAFT ESTABLISHMENT FARNBOROUBH (ENGLAND) F/B 10/1 ADAPTATION OF A TURBINE TEST FACILITY TO HIGH-TEMPERATURE RESEA--ETC(U) DEC

  19. Small Wind Research Turbine: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbus, D.; Meadors, M.

    2005-10-01

    The Small Wind Research Turbine (SWRT) project was initiated to provide reliable test data for model validation of furling wind turbines and to help understand small wind turbine loads. This report will familiarize the user with the scope of the SWRT test and support the use of these data. In addition to describing all the testing details and results, the report presents an analysis of the test data and compares the SWRT test data to simulation results from the FAST aeroelastic simulation model.

  20. AGT (Advanced Gas Turbine) technology project

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An overall summary documentation is provided for the Advanced Gas Turbine Technology Project conducted by the Allison Gas Turbine Division of General Motors. This advanced, high risk work was initiated in October 1979 under charter from the U.S. Congress to promote an engine for transportation that would provide an alternate to reciprocating spark ignition (SI) engines for the U.S. automotive industry and simultaneously establish the feasibility of advanced ceramic materials for hot section components to be used in an automotive gas turbine. As this program evolved, dictates of available funding, Government charter, and technical developments caused program emphases to focus on the development and demonstration of the ceramic turbine hot section and away from the development of engine and powertrain technologies and subsequent vehicular demonstrations. Program technical performance concluded in June 1987. The AGT 100 program successfully achieved project objectives with significant technology advances. Specific AGT 100 program achievements are: (1) Ceramic component feasibility for use in gas turbine engines has been demonstrated; (2) A new, 100 hp engine was designed, fabricated, and tested for 572 hour at operating temperatures to 2200 F, uncooled; (3) Statistical design methodology has been applied and correlated to experimental data acquired from over 5500 hour of rig and engine testing; (4) Ceramic component processing capability has progressed from a rudimentary level able to fabricate simple parts to a sophisticated level able to provide complex geometries such as rotors and scrolls; (5) Required improvements for monolithic and composite ceramic gas turbine components to meet automotive reliability, performance, and cost goals have been identified; (6) The combustor design demonstrated lower emissions than 1986 Federal Standards on methanol, JP-5, and diesel fuel. Thus, the potential for meeting emission standards and multifuel capability has been initiated

  1. Description of an 8 MW reference wind turbine

    NASA Astrophysics Data System (ADS)

    Desmond, Cian; Murphy, Jimmy; Blonk, Lindert; Haans, Wouter

    2016-09-01

    An 8 MW wind turbine is described in terms of mass distribution, dimensions, power curve, thrust curve, maximum design load and tower configuration. This turbine has been described as part of the EU FP7 project LEANWIND in order to facilitate research into logistics and naval architecture efficiencies for future offshore wind installations. The design of this 8 MW reference wind turbine has been checked and validated by the design consultancy DNV-GL. This turbine description is intended to bridge the gap between the NREL 5 MW and DTU 10 reference turbines and thus contribute to the standardisation of research and development activities in the offshore wind energy industry.

  2. Convolution seal for transition duct in turbine system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston

    2015-03-10

    A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface member for interfacing with a turbine section. The turbine system further includes a convolution seal contacting the interface member to provide a seal between the interface member and themore » turbine section.« less

  3. A review of turbine blade tip heat transfer.

    PubMed

    Bunker, R S

    2001-05-01

    This paper presents a review of the publicly available knowledge base concerning turbine blade tip heat transfer, from the early fundamental research which laid the foundations of our knowledge, to current experimental and numerical studies utilizing engine-scaled blade cascades and turbine rigs. Focus is placed on high-pressure, high-temperature axial-turbine blade tips, which are prevalent in the majority of today's aircraft engines and power generating turbines. The state of our current understanding of turbine blade tip heat transfer is in the transitional phase between fundamentals supported by engine-based experience, and the ability to a priori correctly predict and efficiently design blade tips for engine service.

  4. Variable stator radial turbine

    NASA Technical Reports Server (NTRS)

    Rogo, C.; Hajek, T.; Chen, A. G.

    1984-01-01

    A radial turbine stage with a variable area nozzle was investigated. A high work capacity turbine design with a known high performance base was modified to accept a fixed vane stagger angle moveable sidewall nozzle. The nozzle area was varied by moving the forward and rearward sidewalls. Diffusing and accelerating rotor inlet ramps were evaluated in combinations with hub and shroud rotor exit rings. Performance of contoured sidewalls and the location of the sidewall split line with respect to the rotor inlet was compared to the baseline. Performance and rotor exit survey data are presented for 31 different geometries. Detail survey data at the nozzle exit are given in contour plot format for five configurations. A data base is provided for a variable geometry concept that is a viable alternative to the more common pivoted vane variable geometry radial turbine.

  5. HOST turbine heat transfer program summary

    NASA Technical Reports Server (NTRS)

    Gladden, Herbert J.; Simoneau, Robert J.

    1988-01-01

    The objectives of the HOST Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena and to assess and improve the analytical methods used to predict the flow and heat transfer in high temperature gas turbines. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. A building-block approach was utilized and the research ranged from the study of fundamental phenomena and modeling to experiments in simulated real engine environments. Experimental research accounted for approximately 75 percent of the funding with the remainder going to analytical efforts. A healthy government/industry/university partnership, with industry providing almost half of the research, was created to advance the turbine heat transfer design technology base.

  6. ? stability of wind turbine switching control

    NASA Astrophysics Data System (ADS)

    Palejiya, Dushyant; Shaltout, Mohamed; Yan, Zeyu; Chen, Dongmei

    2015-01-01

    In order to maximise the wind energy capture, wind turbines are operated at variable speeds. Depending on the wind speed, a turbine switches between two operating modes: a low wind speed mode and a high wind speed mode. During the low wind speed mode, the control objective is to maximise wind energy capture by controlling both the blade pitch angle and the electrical generator torque. During the high wind speed mode, the control goal is to maintain the rated power generation by only adjusting the blade pitch angle. This paper establishes the stability criteria for the switching operation of wind turbines using ? gain under the nonlinear control framework. Also, the performance of the wind turbine system is analysed by using the step response, a well-known measure for second-order linear systems.

  7. The 200-kilowatt wind turbine project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The three 200 kilowatt wind turbines described, compose the first of three separate systems. Proposed wind turbines of the two other systems, although similar in design, are larger in both physical size and rated power generation. The overall objective of the project is to obtain early operation and performance data while gaining initial experience in the operation of large, horizontal-axis wind turbines in typical utility environments. Several of the key issues addressed include the following: (1) impact of the variable power output (due to varying wind speeds) on the utility grid (2) compatibility with utility requirements (voltage and frequency control of generated power) (3) demonstration of unattended, fail-safe operation (4) reliability of the wind turbine system (5) required maintenance and (6) initial public reaction and acceptance.

  8. Piezoelectric wind turbine

    NASA Astrophysics Data System (ADS)

    Kishore, Ravi Anant; Priya, Shashank

    2013-03-01

    In past few years, there has been significant focus towards developing small scale renewable energy based power sources for powering wireless sensor nodes in remote locations such as highways and bridges to conduct continuous health monitoring. These prior efforts have led to the development of micro-scale solar modules, hydrogen fuel cells and various vibration based energy harvesters. However, the cost effectiveness, reliability, and practicality of these solutions remain a concern. Harvesting the wind energy using micro-to-small scale wind turbines can be an excellent solution in variety of outdoor scenarios provided they can operate at few miles per hour of wind speed. The conventional electromagnetic generator used in the wind mills always has some cogging torque which restricts their operation above certain cut-in wind speed. This study aims to develop a novel piezoelectric wind turbine that utilizes bimorph actuators for electro-mechanical energy conversion. This device utilizes a Savonius rotor that is connected to a disk having magnets at the periphery. The piezoelectric actuators arranged circumferentially around the disk also have magnets at the tip which interacts with the magnetic field of the rotating disk and produces cyclical deflection. The wind tunnel experiments were conducted between 2-12 mph of wind speeds to characterize and optimize the power output of the wind turbine. Further, testing was conducted in the open environment to quantify the response to random wind gusts. An attempt was made towards integration of the piezoelectric wind turbine with the wireless sensor node.

  9. 14 CFR 25.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbine engine operating characteristics... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be investigated in...

  10. 14 CFR 25.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbine engine operating characteristics... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be investigated in...

  11. 14 CFR 25.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbine engine operating characteristics... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be investigated in...

  12. 14 CFR 25.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine operating characteristics... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be investigated in...

  13. 14 CFR 25.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine operating characteristics... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be investigated in...

  14. Ecohydrologic Changes due to Tree Expansion into Tundra in the Polar Urals, Russia

    NASA Astrophysics Data System (ADS)

    Ivanov, V. Y.; Wang, J.; El Sharif, H. A.; Liu, D.; Sheshukov, A. Y.; Mazepa, V.; Shiyatov, S.; Sokolov, A.

    2017-12-01

    The Arctic has been warming at an accelerating rate over the last several decades and the changing climate has caused the invasion of trees and shrubs into tundra across the polar regions of Alaska, Canada, and Russia. These vegetation changes may have the potential to impact regional hydrology and climate. This study aims to develop mechanistic and quantitative understanding of implications of forest encroachment into tundra. Specifically, for several areas with well-documented larch and spruce expansion in the Polar Urals and southern Yamal Peninsula of Russia over 1960-2010s, we hypothesize that the encroachment process alters the seasonality of energy budget characterized by enhanced total evapotranspiration and concomitant subsurface warming. We are collecting a comprehensive set of field observational data on micrometeorology, snow conditions, radiative fluxes, tree sap flows, soil temperature, moisture, and heat fluxes, and active layer thickness. A novel model of maximum entropy production (MEP) is used to derive the surface energy budgets as the partition of radiative fluxes into turbulent and conductive heat fluxes across the ecotone interface. We are presenting preliminary findings that illustrate the identified differences of seasonal snow and heat budget regimes for two contrasting sites: one of which has experienced a recent tree encroachment, while for the other this process has not yet occurred. Observed and modeled heat fluxes are used to inform a comprehensive physical model to study the impact of vegetation encroachment process on the permafrost dynamics.

  15. Dynamics and stability of wind turbine generators

    NASA Technical Reports Server (NTRS)

    Hinrichsen, E. N.; Nolan, P. J.

    1981-01-01

    Synchronous and induction generators are considered. A comparison is made between wind turbines, steam, and hydro units. The unusual phenomena associated with wind turbines are emphasized. The general control requirements are discussed, as well as various schemes for torsional damping such as speed sensitive stabilizer and blade pitch control. Integration between adjacent wind turbines in a wind farm is also considered.

  16. Microprocessor control of a wind turbine generator

    NASA Technical Reports Server (NTRS)

    Gnecco, A. J.; Whitehead, G. T.

    1978-01-01

    A microprocessor based system was used to control the unattended operation of a wind turbine generator. The turbine and its microcomputer system are fully described with special emphasis on the wide variety of tasks performed by the microprocessor for the safe and efficient operation of the turbine. The flexibility, cost and reliability of the microprocessor were major factors in its selection.

  17. Inverse load calculation procedure for offshore wind turbines and application to a 5-MW wind turbine support structure: Inverse load calculation procedure for offshore wind turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pahn, T.; Rolfes, R.; Jonkman, J.

    A significant number of wind turbines installed today have reached their designed service life of 20 years, and the number will rise continuously. Most of these turbines promise a more economical performance if they operate for more than 20 years. To assess a continued operation, we have to analyze the load-bearing capacity of the support structure with respect to site-specific conditions. Such an analysis requires the comparison of the loads used for the design of the support structure with the actual loads experienced. This publication presents the application of a so-called inverse load calculation to a 5-MW wind turbine supportmore » structure. The inverse load calculation determines external loads derived from a mechanical description of the support structure and from measured structural responses. Using numerical simulations with the software fast, we investigated the influence of wind-turbine-specific effects such as the wind turbine control or the dynamic interaction between the loads and the support structure to the presented inverse load calculation procedure. fast is used to study the inverse calculation of simultaneously acting wind and wave loads, which has not been carried out until now. Furthermore, the application of the inverse load calculation procedure to a real 5-MW wind turbine support structure is demonstrated. In terms of this practical application, setting up the mechanical system for the support structure using measurement data is discussed. The paper presents results for defined load cases and assesses the accuracy of the inversely derived dynamic loads for both the simulations and the practical application.« less

  18. Microfossils in cherts from the Middle Riphean (Mesoproterozoic) Avzyan Formation, southern Ural Mountains, Russian Federation

    NASA Technical Reports Server (NTRS)

    Sergeev, V. N.; Knoll, A. H. (Principal Investigator)

    1994-01-01

    A diverse assemblage of well-preserved microorganisms has been detected in black cherts from the approximately 1200 Ma-old Avzyan Formation (Suite) of the southern Ural Mountains, Russian Federation. The lower Kataskin Member contains a diverse, abundant microbiota dominated by mat-forming filamentous cyanobacteria, several types of colonial unicells, and morphologically distinctive stalked cyanobacteria. The upper Revet Member contains a less diverse biota dominated by unicellular cyanobacteria. Palaeoecological evidence indicates that the microbial community of the Kataskin Member inhabited a shallow water, presumably marine, carbonate environment. Revet microorganisms possibly lived in restricted peritidal environments. The biostratigraphic significance of the Avzyan microbiota is limited. Many of the taxa are long-ranging; they were already abundant in Palaeoproterozoic successions and continue into the Neoproterozoic. Nevertheless, in many respects, the Kataskin assemblage is comparable to those reported from the Middle-Late Riphean deposits of Northern America, Australia and Eurasia. The following taxa are here described: Chroococcaceae-Eogloeocapsa avzyanica Sergeev, Gloeodiniopsis lamellosa Schopf emend. Knoll et Golubic; Entophysalidaceae-Eoentophysalis belcherensis Hofmann; Dermocarpaceae-Polybessurus bipartitus Fairchild ex Green et al.; Nostocaceae-Eosphaeronostoc kataskinicum Sergeev; Nostocaceae or Oscillatoriaceae-Siphonophycus robustum (Schopf) emend. Knoll et Golubic emend. Knoll et al., Siphonophycus sp.; Incertae sedis-Eosynechococcus amadeus Knoll et Golubic.

  19. Climate and Vegetation Changes over the Past 7000 Years in the Cis-Ural Steppe

    NASA Astrophysics Data System (ADS)

    Khokhlova, O. S.; Morgunova, N. L.; Khokhlov, A. A.; Gol'eva, A. A.

    2018-05-01

    A multilayered archaeological site Turganik Settlement in the valley of the Tok River in the Cis- Ural steppe (Orenburg oblast) was examined with the use of paleopedological and microbiomorph methods. Ancient people inhabited this area in the Latest Neolithic (Eneolithic) (5th millennium BC) and Early Bronze (4th millennium BC) ages. It was found that cultural layers dating back to the Atlantic period of the Holocene had been formed under conditions of a predominance of grassy-forb vegetation with a small portion of tree species and dry climate; the ancient settlement was not affected by floods and was suitable for permanent living. It is probable that soils of the chestnut type with salinization and solonetzic features were developed in that time. The final stages of the accumulation of cultural layers were marked by strong shortterm floods, whose sediments partly masked the features of the previous long arid epoch. The highest degree of aridity was at the end of the Atlantic period. In the Subboreal and Subatlantic periods, soils of the meadowchernozemic type were formed; the spore-pollen spectra of these periods are characterized by a higher portion of tree species and by the presence of phytoliths of meadow grasses. The climatic conditions were generally colder and more humid, though some short-term aridization stages could take place. Some of these stages are recorded in the thickness of the studied sediments.

  20. Effective solidity in vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Parker, Colin M.; Leftwich, Megan C.

    2016-11-01

    The flow surrounding vertical axis wind turbines (VAWTs) is investigated using particle imaging velocimetry (PIV). This is done in a low-speed wind tunnel with a scale model that closely matches geometric and dynamic properties tip-speed ratio and Reynolds number of a full size turbine. Previous results have shown a strong dependance on the tip-speed ratio on the wake structure of the spinning turbine. However, it is not clear whether this is a speed or solidity effect. To determine this, we have measured the wakes of three turbines with different chord-to-diameter ratios, and a solid cylinder. The flow is visualized at the horizontal mid-plane as well as the vertical mid-plane behind the turbine. The results are both ensemble averaged and phase averaged by syncing the PIV system with the rotation of the turbine. By keeping the Reynolds number constant with both chord and diameter, we can determine how each effects the wake structure. As these parameters are varied there are distinct changes in the mean flow of the wake. Additionally, by looking at the vorticity in the phase averaged profiles we can see structural changes to the overall wake pattern.

  1. Smart structure for small wind turbine blade

    NASA Astrophysics Data System (ADS)

    Supeni, E. E.; Epaarachchi, J. A.; Islam, M. M.; Lau, K. T.

    2013-08-01

    Wind energy is seen as a viable alternative energy option for future energy demand. The blades of wind turbines are generally regarded as the most critical component of the wind turbine system. Ultimately, the blades act as the prime mover of the whole system which interacts with the wind flow during the production of energy. During wind turbine operation the wind loading cause the deflection of the wind turbine blade which can be significant and affect the turbine efficiency. Such a deflection in wind blade not only will result in lower performance in electrical power generation but also increase of material degradation due high fatigue life and can significantly shorten the longevity for the wind turbine material. In harnessing stiffness of the blade will contribute massive weight factor and consequently excessive bending moment. To overcome this excessive deflection due to wind loading on the blade, it is feasible to use shape memory alloy (SMA) wires which has ability take the blade back to its optimal operational shape. This paper details analytical and experimental work being carried out to minimize blade flapping deflection using SMA.

  2. Wind turbine with automatic pitch and yaw control

    DOEpatents

    Cheney, Jr., Marvin Chapin; Spierings, Petrus A. M.

    1978-01-01

    A wind turbine having a flexible central beam member supporting aerodynamic blades at opposite ends thereof and fabricated of uni-directional high tensile strength material bonded together into beam form so that the beam is lightweight, and has high tensile strength to carry the blade centrifugal loads, low shear modulus to permit torsional twisting thereof for turbine speed control purposes, and adequate bending stiffness to permit out-of-plane deflection thereof for turbine yard control purposes. A selectively off-set weighted pendulum member is pivotally connected to the turbine and connected to the beam or blade so as to cause torsional twisting thereof in response to centrifugal loading of the pendulum member for turbine speed control purposes.

  3. Large experimental wind turbines: Where we are now

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.

    1976-01-01

    Several large wind turbine projects have been initiated by NASA-Lewis as part of the ERDA wind energy program. The projects consist of progressively large wind turbine ranging from 100 kW with a rotor diameter of 125 feet to 1500 kW with rotor diameters of 200 to 300 feet. Also included is supporting research and technology for large wind turbines and for lowering the costs and increasing the reliability of the major wind turbine components. The results and status of the above projects are briefly discussed in this report. In addition, a brief summary and status of the plans for selecting the utility sites for the experimental wind turbines is also discussed.

  4. Determining effects of turbine blades on fluid motion

    DOEpatents

    Linn, Rodman Ray [Los Alamos, NM; Koo, Eunmo [Los Alamos, NM

    2012-05-01

    Disclosed is a technique for simulating wind interaction with wind turbines. A turbine blade is divided into radial sections. The effect that each of these radial sections has on the velocities in Eulerian computational cells they overlap is determined. The effect is determined using Lagrangian techniques such that the calculations need not include wind components in the radial direction. A force on each radial section of turbine blade is determined. This force depends on the axial and azimuthal components of the fluid flow in the computational cell and the geometric properties of the turbine blade. The force on the turbine blade is fed back to effect the fluid flow in the computational cell for the next time step.

  5. Determining effects of turbine blades on fluid motion

    DOEpatents

    Linn, Rodman Ray [Los Alamos, NM; Koo, Eunmo [Los Alamos, NM

    2011-05-31

    Disclosed is a technique for simulating wind interaction with wind turbines. A turbine blade is divided into radial sections. The effect that each of these radial sections has on the velocities in Eulerian computational cells they overlap is determined. The effect is determined using Lagrangian techniques such that the calculations need not include wind components in the radial direction. A force on each radial section of turbine blade is determined. This force depends on the axial and azimuthal components of the fluid flow in the computational cell and the geometric properties of the turbine blade. The force on the turbine blade is fed back to effect the fluid flow in the computational cell for the next time step.

  6. AGT 100 automotive gas turbine system development

    NASA Technical Reports Server (NTRS)

    Helms, H. E. G.

    1982-01-01

    General Motors is developing an automotive gas turbine system that can be an alternate powerplant for future automobiles. Work sponsored by DOE and administered by NASA Lewis Research Center is emphasizing small component aerodynamics and high-temperature structural ceramics. Reliability requirements of the AGT 100 turbine system include chemical and structural ceramic component stability in the gas turbine environment. The power train system, its configuration and schedule are presented, and its performance tested. The aerodynamic component development is reviewed with discussions on the compressor, turbine, regenerator, interturbine duct and scroll, and combustor. Ceramic component development is also reviewed, and production cost and required capital investment are taken into consideration.

  7. AGT101 automotive gas turbine system development

    NASA Technical Reports Server (NTRS)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    The AGT101 automotive gas turbine system consisting of a 74.6 kw regenerated single-shaft gas turbine engine, is presented. The development and testing of the system is reviewed, and results for aerothermodynamic components indicate that compressor and turbine performance levels are within one percent of projected levels. Ceramic turbine rotor development is encouraging with successful cold spin testing of simulated rotors to speeds over 12,043 rad/sec. Spin test results demonstrate that ceramic materials having the required strength levels can be fabricated by net shape techniques to the thick hub cross section, which verifies the feasibility of the single-stage radial rotor in single-shaft engines.

  8. Thermoelastic steam turbine rotor control based on neural network

    NASA Astrophysics Data System (ADS)

    Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.

    2015-12-01

    Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.

  9. Design and development of nautilus whorl-wind turbine

    NASA Astrophysics Data System (ADS)

    R, Pramod; Kumar, G. B. Veeresh; Harsha, P. Sai Sri; Kumar, K. A. Udaya

    2017-07-01

    Our life is directly related to energy and its consumption, and the issues of energy research are extremely important and highly sensitive. Scientists and researchers attempt to accelerate solutions for wind energy generation, design parameters under the influence of novel policies adopted for energy management and the concerns for global warming and climate change. The objective of this study is to design a small wind turbine that is optimized for the constraints that come with residential use. The study is aimed at designing a wind turbine for tapping the low speed wind in urban locations. The design process includes the selection of the wind turbine type and the determination of the blade airfoil, finding the maximum drag model and manufacturing of the turbine economically. In this study, the Nautilus turbine is modeled, simulated and the characteristic curves are plotted. The cutting in wind speed for the turbine is around 1m/s. The turbine rotates in a range of 20 rpm to 500 rpm at wind speeds 1m/s to 10m/s On a below average day at noon where the wind speed are usually low the turbine recorded an rpm of 120 (average value) at 4m/s wind speeds. This study focuses on a computational fluid dynamics analysis of compressible radially outward flow.

  10. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing

  11. Vertical axis wind turbine airfoil

    DOEpatents

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  12. Method and apparatus for wind turbine braking

    DOEpatents

    Barbu, Corneliu [Laguna Hills, CA; Teichmann, Ralph [Nishkayuna, NY; Avagliano, Aaron [Houston, TX; Kammer, Leonardo Cesar [Niskayuna, NY; Pierce, Kirk Gee [Simpsonville, SC; Pesetsky, David Samuel [Greenville, SC; Gauchel, Peter [Muenster, DE

    2009-02-10

    A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

  13. Theory and Tests of Two-Phase Turbines

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1986-01-01

    New turbines open possibility of new types of power cycles. Report describes theoretical analysis and experimental testing of two-phase impulse turbines. Such turbines open possibility of new types of power cycles operating with extremely wet mixtures of steam and water, organic fluids, or immiscible liquids and gases. Possible applications are geothermal power, waste-heat recovery, refrigerant expansion, solar conversion, transportation, and engine-bottoming cycles.

  14. Cost Effective Repair Techniques for Turbine Airfoils. Volume I

    DTIC Science & Technology

    1978-11-01

    Turbine blades and vanes in current engines are subjected to the most hostile environment...payoff potential in turbine vanes / blades . The criteria used included: • Incidence of damage - Scrapped or damaged turbine airfoils at the ALC centers...Corporate Author: GENERAL ELECTRIC CO CINCINNATI OHIO AIRCRAFT ENGINE GROUP Unclassified Title: (U) Cost Effective Repair Techniques for Turbine

  15. Overview of Advanced Turbine Systems Program

    NASA Astrophysics Data System (ADS)

    Webb, H. A.; Bajura, R. A.

    The US Department of Energy initiated a program to develop advanced gas turbine systems to serve both central power and industrial power generation markets. The Advanced Turbine Systems (ATS) Program will lead to commercial offerings by the private sector by 2002. ATS will be developed to fire natural gas but will be adaptable to coal and biomass firing. The systems will be: highly efficient (15 percent improvement over today's best systems); environmentally superior (10 percent reduction in nitrogen oxides over today's best systems); and cost competitive (10 percent reduction in cost of electricity). The ATS Program has five elements. Innovative cycle development will lead to the demonstration of systems with advanced gas turbine cycles using current gas turbine technology. High temperature development will lead to the increased firing temperatures needed to achieve ATS Program efficiency goals. Ceramic component development/demonstration will expand the current DOE/CE program to demonstrate industrial-scale turbines with ceramic components. Technology base will support the overall program by conducting research and development (R&D) on generic technology issues. Coal application studies will adapt technology developed in the ATS program to coal-fired systems being developed in other DOE programs.

  16. Sandia SWiFT Wind Turbine Manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Jonathan; LeBlanc, Bruce Philip; Berg, Jonathan Charles

    The Scaled Wind Farm Technology (SWiFT) facility, operated by Sandia National Laboratories for the U.S. Department of Energy's Wind and Water Power Program, is a wind energy research site with multiple wind turbines scaled for the experimental study of wake dynamics, advanced rotor development, turbine control, and advanced sensing for production-scale wind farms. The SWiFT site currently includes three variable-speed, pitch-regulated, three-bladed wind turbines. The six volumes of this manual provide a detailed description of the SWiFT wind turbines, including their operation and user interfaces, electrical and mechanical systems, assembly and commissioning procedures, and safety systems. Further dissemination only asmore » authorized to U.S. Government agencies and their contractors; other requests shall be approved by the originating facility or higher DOE programmatic authority. 111 UNCLASSIFIED UNLIMITED RELEASE Sandia SWiFT Wind Turbine Manual (SAND2016-0746 ) approved by: Department Manager SWiFT Site Lead Dave Minster (6121) Date Jonathan White (6121) Date SWiFT Site Supervisor Dave Mitchell (6121) Date Note: Document revision logs are found after the title page of each volume of this manual. iv« less

  17. Cavitation study of a pump-turbine at turbine mode with critical cavitation coefficient condition

    NASA Astrophysics Data System (ADS)

    Wang, J.; Yang, D.; Xu, J. W.; Liu, J. T.; Jiao, L.

    2016-05-01

    To study the cavitation phenomenon of a pump-turbine at turbine mode when it ran at the critical cavitation coefficient condition, a high-head model pump-turbine was disperse using hexahedron grid. Three dimensional, steady cavitating flow was numerically studied using SST k-ω model. It is confirmed that ZGB cavitation model and SST k-ω model are useful ways to study the two-phase cavitation flow in pump-turbine. Mass flow inlet and pressure outlet were specified at the casing inlet and draft tube outlet, respectively. The static pressure was set according to the cavitation coefficient. The steady cavitating flows at critical cavitation coefficient condition were analysed. The cavitation area in the runner was investigated. It was found that the pressure of the suction on the blade surface was decreasing gradually with the decrease of the cavitation coefficient. In addition, the vortex flow in the draft tube was observed at the critical cavitation coefficient. It was found that the vortex flow appeared at the center of the draft tube inlet with the decreasing of the cavitation coefficient. Compared with the experimental data, the simulation results show reasonable agreement with the experimental data.

  18. Energy efficient engine: Turbine intermediate case and low-pressure turbine component test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Leach, K.; Thulin, R. D.; Howe, D. C.

    1982-01-01

    A four stage, low pressure turbine component has been designed to power the fan and low pressure compressor system in the Energy Efficient Engine. Designs for a turbine intermediate case and an exit guide vane assembly also have been established. The components incorporate numerous technology features to enhance efficiency, durability, and performance retention. These designs reflect a positive step towards improving engine fuel efficiency on a component level. The aerodynamic and thermal/mechanical designs of the intermediate case and low pressure turbine components are presented and described. An overview of the predicted performance of the various component designs is given.

  19. Gas turbine engine active clearance control

    NASA Technical Reports Server (NTRS)

    Deveau, Paul J. (Inventor); Greenberg, Paul B. (Inventor); Paolillo, Roger E. (Inventor)

    1985-01-01

    Method for controlling the clearance between rotating and stationary components of a gas turbine engine are disclosed. Techniques for achieving close correspondence between the radial position of rotor blade tips and the circumscribing outer air seals are disclosed. In one embodiment turbine case temperature modifying air is provided in flow rate, pressure and temperature varied as a function of engine operating condition. The modifying air is scheduled from a modulating and mixing valve supplied with dual source compressor air. One source supplies relatively low pressure, low temperature air and the other source supplies relatively high pressure, high temperature air. After the air has been used for the active clearance control (cooling the high pressure turbine case) it is then used for cooling the structure that supports the outer air seal and other high pressure turbine component parts.

  20. Collected Papers on Wind Turbine Technology

    NASA Technical Reports Server (NTRS)

    Spera, David A. (Editor)

    1995-01-01

    R and D projects on electricity generating wind turbines were conducted at the NASA Lewis Research Center from 1973 to 1988. Most projects were sponsored by the U.S. Department of Energy (DOE), a major element of its Federal Wind Energy Program. Another large wind turbine project was by the Bureau of Reclamation of the U.S. Department of Interior (DOI). From 1988 to 1995, NASA wind energy activities have been directed toward the transfer of technology to commercial and academic organizations. As part of these technology transfer activities, previously unpublished manuscripts have been assembled and presented here to share the wind turbine research results with the wind energy community. A variety of wind turbine technology topics are discussed: Wind and wake models; Airfoil properties; Structural analysis and testing; Control systems; Variable speed generators; and acoustic noise. Experimental and theoretical results are discussed.

  1. Gas turbine sealing apparatus

    DOEpatents

    Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H

    2013-02-19

    A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.

  2. Gas turbine bucket wall thickness control

    DOEpatents

    Stathopoulos, Dimitrios; Xu, Liming; Lewis, Doyle C.

    2002-01-01

    A core for use in casting a turbine bucket including serpentine cooling passages is divided into two pieces including a leading edge core section and a trailing edge core section. Wall thicknesses at the leading edge and the trailing edge of the turbine bucket can be controlled independent of each other by separately positioning the leading edge core section and the trailing edge core section in the casting die. The controlled leading and trailing edge thicknesses can thus be optimized for efficient cooling, resulting in more efficient turbine operation.

  3. Gas turbine engines with particle traps

    DOEpatents

    Boyd, Gary L.; Sumner, D. Warren; Sheoran, Yogendra; Judd, Z. Daniel

    1992-01-01

    A gas turbine engine (10) incorporates a particle trap (46) that forms an entrapment region (73) in a plenum (24) which extends from within the combustor (18) to the inlet (32) of a radial-inflow turbine (52, 54). The engine (10) is thereby adapted to entrap particles that originate downstream from the compressor (14) and are otherwise propelled by combustion gas (22) into the turbine (52, 54). Carbonaceous particles that are dislodged from the inner wall (50) of the combustor (18) are incinerated within the entrapment region (73) during operation of the engine (10).

  4. Aircraft gas turbine materials and processes.

    PubMed

    Kear, B H; Thompson, E R

    1980-05-23

    Materials and processing innovations that have been incorporated into the manufacture of critical components for high-performance aircraft gas turbine engines are described. The materials of interest are the nickel- and cobalt-base superalloys for turbine and burner sections of the engine, and titanium alloys and composites for compressor and fan sections of the engine. Advanced processing methods considered include directional solidification, hot isostatic pressing, superplastic foring, directional recrystallization, and diffusion brazing. Future trends in gas turbine technology are discussed in terms of materials availability, substitution, and further advances in air-cooled hardware.

  5. Computational Tools to Assess Turbine Biological Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Marshall C.; Serkowski, John A.; Rakowski, Cynthia L.

    2014-07-24

    Public Utility District No. 2 of Grant County (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now more than 50 years old. Plans are underway to refit these aging turbines with new runners. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when upgrading the turbines. In this paper, a method for turbine biological performance assessment (BioPA) is demonstrated. Using this method, amore » suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We present an application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.« less

  6. Foundations for offshore wind turbines.

    PubMed

    Byrne, B W; Houlsby, G T

    2003-12-15

    An important engineering challenge of today, and a vital one for the future, is to develop and harvest alternative sources of energy. This is a firm priority in the UK, with the government setting a target of 10% of electricity from renewable sources by 2010. A component central to this commitment will be to harvest electrical power from the vast energy reserves offshore, through wind turbines or current or wave power generators. The most mature of these technologies is that of wind, as much technology transfer can be gained from onshore experience. Onshore wind farms, although supplying 'green energy', tend to provoke some objections on aesthetic grounds. These objections can be countered by locating the turbines offshore, where it will also be possible to install larger capacity turbines, thus maximizing the potential of each wind farm location. This paper explores some civil-engineering problems encountered for offshore wind turbines. A critical component is the connection of the structure to the ground, and in particular how the load applied to the structure is transferred safely to the surrounding soil. We review previous work on the design of offshore foundations, and then present some simple design calculations for sizing foundations and structures appropriate to the wind-turbine problem. We examine the deficiencies in the current design approaches, and the research currently under way to overcome these deficiencies. Designs must be improved so that these alternative energy sources can compete economically with traditional energy suppliers.

  7. Industrial wind turbines and adverse health effects.

    PubMed

    Jeffery, Roy D; Krogh, Carmen M E; Horner, Brett

    2014-01-01

    Some people living in the environs of industrial wind turbines (IWTs) report experiencing adverse health and socioeconomic effects. This review considers the hypothesis that annoyance from audible IWTs is the cause of these adverse health effects. We searched PubMed and Google Scholar for articles published since 2000 that included the terms "wind turbine health," "wind turbine infrasound," "wind turbine annoyance," "noise annoyance" or "low frequency noise" in the title or abstract. Industrial wind turbines produce sound that is perceived to be more annoying than other sources of sound. Reported effects from exposure to IWTs are consistent with well-known stress effects from persistent unwanted sound. If placed too close to residents, IWTs can negatively affect the physical, mental and social well-being of people. There is sufficient evidence to support the conclusion that noise from audible IWTs is a potential cause of health effects. Inaudible low-frequency noise and infrasound from IWTs cannot be ruled out as plausible causes of health effects.

  8. Review of fluid and control technology of hydraulic wind turbines

    NASA Astrophysics Data System (ADS)

    Cai, Maolin; Wang, Yixuan; Jiao, Zongxia; Shi, Yan

    2017-09-01

    This study examines the development of the fluid and control technology of hydraulic wind turbines. The current state of hydraulic wind turbines as a new technology is described, and its basic fluid model and typical control method are expounded by comparing various study results. Finally, the advantages of hydraulic wind turbines are enumerated. Hydraulic wind turbines are expected to become the main development direction of wind turbines.

  9. 46 CFR 58.10-15 - Gas turbine installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-15 Gas turbine installations. (a) Standards. The design, construction, workmanship and tests of gas turbines and their associated... 46 Shipping 2 2010-10-01 2010-10-01 false Gas turbine installations. 58.10-15 Section 58.10-15...

  10. 46 CFR 58.10-15 - Gas turbine installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-15 Gas turbine installations. (a) Standards. The design, construction, workmanship and tests of gas turbines and their associated... 46 Shipping 2 2011-10-01 2011-10-01 false Gas turbine installations. 58.10-15 Section 58.10-15...

  11. 7 CFR 3201.107 - Water turbine bearing oils.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Water turbine bearing oils. 3201.107 Section 3201.107... Designated Items § 3201.107 Water turbine bearing oils. (a) Definition. Lubricants that are specifically formulated for use in the bearings found in water turbines for electric power generation. Previously...

  12. Retrofitting Steam Turbines with Expired Service Life

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.; Zubov, A. P.; Koshelev, S. A.; Babiev, A. N.; Kremer, V. L.

    2018-06-01

    Many pieces of equipment installed at thermal power stations (TPS) have an expired service life or are close to expiry and are obsolete. In addition, the structure of heat consumption by end users has changed. Among the ways for solving the problem of aging equipment is the retrofitting of turbines that allows for service life recovery and improvement of their performance to the modern level. The service life is recovered through replacement of high-temperature assemblies and parts of a turbine, and the performance is improved by retrofitting and major overhaul of low-temperature assemblies. Implementation of modern engineering solutions and numerical methods in designing upgraded flow paths of steam turbines considerably improves the turbine effectiveness. New flow paths include sabre-like guide vanes, integrally-machined shrouds, and effective honeycomb or axial-radial seals. The flow paths are designed using optimization and hydraulic simulation methods as well as approaches for improving the performance on the turbine blading and internal steam flow paths. Retrofitting of turbines should be performed to meet the customers' needs. The feasibility of implementation of one or another alternative must be determined on a case-by-case basis depending on the turbine conditions, the availability of reserves for generating live steam and supplying circulation water, and the demands and capacities for generation and delivery of power and heat. The main principle of retrofitting is to retain the foundation and the auxiliary and heat-exchange equipment that is fit for further operation. With the example of PT-60-130 and T-100-130, the experience is presented of a comprehensive approach to retrofitting considering the customer's current needs and the actual equipment conditions. Due to the use of modern engineering solutions and procedures, retrofitting yields updating and upgrading of the turbine at a relatively low cost.

  13. Turbinate surgery

    MedlinePlus

    ... with sedation, so you are asleep and pain-free during surgery. Radiofrequency or laser ablation: A thin probe is placed into the nose. Laser light or radiofrequency energy goes through this tube and shrinks the turbinate ...

  14. Comparative analysis of the roles of Ixodes persulcatus and I. trianguliceps ticks in natural foci of ixodid tick-borne borrelioses in the Middle Urals, Russia.

    PubMed

    Korenberg, Edward I; Kovalevskii, Yurii V; Gorelova, Natalya B; Nefedova, Valentina V

    2015-04-01

    Long-term studies on natural foci of ixodid tick-borne borrelioses (ITBB) have been performed in Chusovskoi district of Perm region, the Middle Urals, where the vectors of these infections are represented by two ixodid tick species: the taiga tick Ixodes persulcatus and many times less abundant vole tick I. trianguliceps. Over 10 years, more than 6000 half-engorged ticks were collected from small forest mammals using the standard procedure, and 1027 I. persulcatus and 1142 I. trianguliceps ticks, individually or in pools, were used to inoculate BSK-2 medium. As a result, 199 Borrelia isolates were obtained. Among them, 177 isolates were identified, and the rrf(5S)-rrl(23S) intergenic spacer sequence was determined in 57 isolates. The prevalence of Borrelia infection in I. persulcatus larvae and nymphs averaged 31.0 and 53.3%, while that in I. trianguliceps larvae, nymphs, and adult ticks was five to ten times lower: 2.6, 10.2, and 8.1%, respectively. Each of the two tick species was found to carry both ITBB agents circulating in the Middle Ural foci (Borrelia garinii and B. afzelii), but the set of genogroups and genovariants of these spirochetes in I. trianguliceps proved to be far less diverse. According to the available data, this tick, compared to I. persulcatus, is generally less susceptible to Borrelia infection (especially by B. afzelii). Taking into account of its relatively low abundance, it appears that I. trianguliceps cannot seriously influence the course of epizootic process in ITBB foci of the study region, whereas highly abundant I. persulcatus with the high level of Borrelia infection is obviously a key component of these parasitic systems. A similar situation may well be typical for the entire geographic range shared by the two tick species. Copyright © 2015. Published by Elsevier GmbH.

  15. Aerodynamic Interactions between Pairs of Vertical-Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Brownstein, Ian; Dabiri, John

    2017-11-01

    Increased power production has been observed in downstream vertical-axis wind turbines (VAWTs) when positioned offset from the wake of upstream turbines. This effect was found to exist in both laboratory and field environments with pairs of co- and counter-rotating turbines. It is hypothesized that the observed power production enhancement is due to flow acceleration adjacent to the upstream turbine caused by bluff body blockage, which increases the incident freestream velocity on appropriately positioned downstream turbines. This type of flow acceleration has been observed in computational and laboratory studies of VAWTs and will be further investigated here using 3D-PTV measurements around pairs of laboratory-scale VAWTs. These measurements will be used to understand the mechanisms behind the performance enhancement effect and seek to determine optimal separation distances and angles between turbines based on turbine design parameters. These results will lead to recommendations for optimizing the power production of VAWT wind farms which utilize this effect.

  16. Two-phase turbine engines. [using gas-liquid mixture accelerated in nozzles

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.; Hays, L. G.

    1976-01-01

    A description is given of a two-phase turbine which utilizes a uniform mixture of gas and liquid accelerated in nozzles of the types reported by Elliott and Weinberg (1968). The mixture acts directly on an axial flow or tangential impulse turbine or is separated into gas and liquid streams which operate separately on a gas turbine and a hydraulic turbine. The basic two-phase cycles are examined, taking into account working fluids, aspects of nozzle expansion, details of turbine cycle operation, and the effect of mixture ratio variation. Attention is also given to two-phase nozzle efficiency, two-phase turbine operating characteristics and efficiencies, separator turbines, and impulse turbine experiments.

  17. Preliminary study of Low-Cost Micro Gas Turbine

    NASA Astrophysics Data System (ADS)

    Fikri, M.; Ridzuan, M.; Salleh, Hamidon

    2016-11-01

    The electricity consumption nowadays has increased due to the increasing development of portable electronic devices. The development of low cost micro gas turbine engine, which is designed for the purposes of new electrical generation Micro turbines are a relatively new distributed generation technology being used for stationary energy generation applications. They are a type of combustion turbine that produces both heat and electricity on a relatively small scaled.. This research are focusing of developing a low-cost micro gas turbine engine based on automotive turbocharger and to evaluation the performance of the developed micro gas turbine. The test rig engine basically was constructed using a Nissan 45V3 automotive turbocharger, containing compressor and turbine assemblies on a common shaft. The operating performance of developed micro gas turbine was analyzed experimentally with the increment of 5000 RPM on the compressor speed. The speed of the compressor was limited at 70000 RPM and only 1000 degree Celsius at maximum were allowed to operate the system in order to avoid any failure on the turbocharger bearing and the other components. Performance parameters such as inlet temperature, compressor temperature, exhaust gas temperature, and fuel and air flow rates were measured. The data was collected electronically by 74972A data acquisition and evaluated manually by calculation. From the independent test shows the result of the system, The speed of the LP turbine can be reached up to 35000 RPM and produced 18.5kw of mechanical power.

  18. Study on an undershot cross-flow water turbine

    NASA Astrophysics Data System (ADS)

    Nishi, Yasuyuki; Inagaki, Terumi; Li, Yanrong; Omiya, Ryota; Fukutomi, Junichiro

    2014-06-01

    This study aims to develop a water turbine suitable for ultra-low heads in open channels, with the end goal being the effective utilization of unutilized hydroelectric energy in agricultural water channels. We performed tests by applying a cross-flow runner to an open channel as an undershot water turbine while attempting to simplify the structure and eliminate the casing. We experimentally investigated the flow fields and performance of water turbines in states where the flow rate was constant for the undershot cross-flow water turbine mentioned above. In addition, we compared existing undershot water turbines with our undershot cross-flow water turbine after attaching a bottom plate to the runner. From the results, we were able to clarify the following. Although the effective head for cross-flow runners with no bottom plate was lower than those found in existing runners equipped with a bottom plate, the power output is greater in the high rotational speed range because of the high turbine efficiency. Also, the runner with no bottom plate differed from runners that had a bottom plate in that no water was being wound up by the blades or retained between the blades, and the former received twice the flow due to the flow-through effect. As a result, the turbine efficiency was greater for runners with no bottom plate in the full rotational speed range compared with that found in runners that had a bottom plate.

  19. Boiler-turbine life extension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natzkov, S.; Nikolov, M.

    1995-12-01

    The design life of the main power equipment-boilers and turbines is about 105 working hours. The possibilities for life extension are after normatively regulated control tests. The diagnostics and methodology for Boilers and Turbines Elements Remaining Life Assessment using up to date computer programs, destructive and nondestructive control of metal of key elements of units equipment, metal creep and low cycle fatigue calculations. As well as data for most common damages and some technical decisions for elements life extension are presented.

  20. An optimal tuning strategy for tidal turbines

    NASA Astrophysics Data System (ADS)

    Vennell, Ross

    2016-11-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This `impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing `patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a `smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.

  1. An optimal tuning strategy for tidal turbines.

    PubMed

    Vennell, Ross

    2016-11-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This 'impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing 'patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a 'smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.

  2. Turbine with radial acting seal

    DOEpatents

    Eng, Darryl S; Ebert, Todd A

    2016-11-22

    A floating brush seal in a rim cavity of a turbine in a gas turbine engine, where the floating brush seal includes a seal holder in which the floating brush seal floats, and a expandable seal that fits within two radial extending seal slots that maintains a seal with radial displacement of the floating brush seal and the seal holder.

  3. Spin test of turbine rotor

    NASA Technical Reports Server (NTRS)

    Vavra, M. H.; Hammer, J. E.; Bell, L. E.

    1972-01-01

    Experimental data are presented for the tangential and radial stresses in the disks of the 36,000 horsepower, 4000 rpm turbine for the M-1 engine oxidizer turbopump. The two-stage Curtis turbine is a special light-weight design utilizing thin conical disks with hollow sheet metal blades attached by electron-beam welding techniques. The turbine was fabricated from Inconel 718, a nickel-chromium alloy. The stresses were obtained by strain-gage measurements using a slip-ring assembly to transmit the electrical signals. Measurements were made at different rotative speeds and different thermal loads. In addition to presenting test data, the report describes test equipment, design of associated hardware, test procedures, instrumentation, and tests for the selection and calibration of strain gages.

  4. Performance characteristics of aerodynamically optimum turbines for wind energy generators

    NASA Technical Reports Server (NTRS)

    Rohrbach, C.; Worobel, R.

    1975-01-01

    This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.

  5. Steam Turbine Flow Path Seals (a Review)

    NASA Astrophysics Data System (ADS)

    Neuimin, V. M.

    2018-03-01

    Various types of shroud, diaphragm, and end seals preventing idle leak of working steam are installed in the flow paths of steam turbine cylinders for improving their efficiency. Widely known labyrinth seals are most extensively used in the Russian turbine construction industry. The category of labyrinth seals also includes seals with honeycomb inserts. The developers of seals with honeycomb inserts state that the use of such seals makes it possible to achieve certain gain due to smaller leaks of working fluid and more reliable operation of the system under the conditions in which the rotor rotating parts may rub against the stator elements. However, a positive effect can only be achieved if the optimal design parameters of the honeycomb structure are fulfilled with due regard to the specific features of its manufacturing technology and provided that this structure is applied in a goal-seeking manner in the seals of steam and gas turbines and compressors without degrading their vibration stability. Calculated and preliminary assessments made by experts testify that the replacement of conventional labyrinth seals by seals with honeycomb inserts alone, due to which the radial gaps in the shroud seal can be decreased from 1.5 to 0.5 mm, allows the turbine cylinder efficiency to be increased at the initial stage by approximately 1% with the corresponding gain in the turbine set power output. The use of rectangular-cellular seals may result, according to estimates made by their developers, in a further improvement of turbine efficiency by 0.5-1.0%. The labor input required to fabricate such seals is six to eight times smaller than that to fabricate labyrinth seals with honeycomb inserts. Recent years have seen the turbine construction companies of the United States and Germany advertising the use of abradable (sealing) coatings (borrowed from the gas turbine construction technology) in the turbine designs instead of labyrinth seals. The most efficient performance of

  6. Very Low Head Turbine Deployment in Canada

    NASA Astrophysics Data System (ADS)

    Kemp, P.; Williams, C.; Sasseville, Remi; Anderson, N.

    2014-03-01

    The Very Low Head (VLH) turbine is a recent turbine technology developed in Europe for low head sites in the 1.4 - 4.2 m range. The VLH turbine is primarily targeted for installation at existing hydraulic structures to provide a low impact, low cost, yet highly efficient solution. Over 35 VLH turbines have been successfully installed in Europe and the first VLH deployment for North America is underway at Wasdell Falls in Ontario, Canada. Deployment opportunities abound in Canada with an estimated 80,000 existing structures within North America for possible low-head hydro development. There are several new considerations and challenges for the deployment of the VLH turbine technology in Canada in adapting to the hydraulic, environmental, electrical and social requirements. Several studies were completed to determine suitable approaches and design modifications to mitigate risk and confirm turbine performance. Diverse types of existing weirs and spillways pose certain hydraulic design challenges. Physical and numerical modelling of the VLH deployment alternatives provided for performance optimization. For this application, studies characterizing the influence of upstream obstacles using water tunnel model testing as well as full-scale prototype flow dynamics testing were completed. A Cold Climate Adaptation Package (CCA) was developed to allow year-round turbine operation in ice covered rivers. The CCA package facilitates turbine extraction and accommodates ice forces, frazil ice, ad-freezing and cold temperatures that are not present at the European sites. The Permanent Magnet Generator (PMG) presents some unique challenges in meeting Canadian utility interconnection requirements. Specific attention to the frequency driver control and protection requirements resulted in a driver design with greater over-voltage capability for the PMG as well as other key attributes. Environmental studies in Europe included fish friendliness testing comprised of multiple in

  7. Flexible metallic seal for transition duct in turbine system

    DOEpatents

    Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston; Dillard, Daniel Jackson; Pentecost, Ronnie Ray

    2014-04-22

    A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface member for interfacing with a turbine section. The turbine system further includes a flexible metallic seal contacting the interface member to provide a seal between the interface member and the turbine section.

  8. Successful Solutions to SSME/AT Development Turbine Blade Distress

    NASA Technical Reports Server (NTRS)

    Montgomery, Stuart K.

    1999-01-01

    As part of the High-Pressure Fuel Turbopump/Alternate Turbopump (HPFTP/AT) turbine blade development program, unique turbine blade design features were implemented to address 2nd stage turbine blade high cycle fatigue distress and improve turbine robustness. Features included the addition of platform featherseal dampers, asymmetric blade tip seal segments, gold plating of the blade attachments, and airfoil tip trailing edge modifications. Development testing shows these features have eliminated turbine blade high cycle fatigue distress and consequently these features are currently planned for incorporation to the flight configuration. Certification testing will begin in 1999. This presentation summarizes these features.

  9. Advanced Seal Development for Large Industrial Gas Turbines

    NASA Technical Reports Server (NTRS)

    Chupp, Raymond E.

    2006-01-01

    Efforts are in progress to develop advanced sealing for large utility industrial gas turbine engines (combustion turbines). Such seals have been under developed for some time for aero gas turbines. It is desired to transition this technology to combustion turbines. Brush seals, film riding face and circumferential seals, and other dynamic and static sealing approaches are being incorporated into gas turbines for aero applications by several engine manufacturers. These seals replace labyrinth or other seals with significantly reduced leakage rates. For utility industrial gas turbines, leakage reduction with advanced sealing can be even greater with the enormous size of the components. Challenges to transitioning technology include: extremely long operating times between overhauls; infrequent but large radial and axial excursions; difficulty in coating larger components; and maintenance, installation, and durability requirements. Advanced sealing is part of the Advanced Turbine Systems (ATS) engine development being done under a cooperative agreement between Westinghouse and the US Department of Energy, Office of Fossil Energy. Seal development focuses on various types of seals in the 501ATS engine both at dynamic and static locations. Each development includes rig testing of candidate designs and subsequent engine validation testing of prototype seals. This presentation gives an update of the ongoing ATS sealing efforts with special emphasis on brush seals.

  10. Tiny bubbles challenge giant turbines: Three Gorges puzzle.

    PubMed

    Li, Shengcai

    2015-10-06

    Since the birth of the first prototype of the modern reaction turbine, cavitation as conjectured by Euler in 1754 always presents as a challenge. Following his theory, the evolution of modern reaction (Francis and Kaplan) turbines has been completed by adding the final piece of the element 'draft-tube' that enables turbines to explore water energy at efficiencies of almost 100%. However, during the last two and a half centuries, with increasing unit capacity and specific speed, the problem of cavitation has been manifested and complicated by the draft-tube surges rather than being solved. Particularly, during the last 20 years, the fierce competition in the international market for extremely large turbines with compact design has encouraged the development of giant Francis turbines of 700-1000 MW. The first group (24 units) of such giant turbines of 700 MW each was installed in the Three Gorges project. Immediately after commission, a strange erosion phenomenon appeared on the guide vane of the machines that has puzzled professionals. From a multi-disciplinary analysis, this Three Gorges puzzle could reflect an unknown type of cavitation inception presumably triggered by turbulence production from the boundary-layer streak transitional process. It thus presents a fresh challenge not only to this old turbine industry, but also to the fundamental sciences.

  11. Lightning protection system for a wind turbine

    DOEpatents

    Costin, Daniel P [Chelsea, VT; Petter, Jeffrey K [Williston, VT

    2008-05-27

    In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

  12. Adaptor assembly for coupling turbine blades to rotor disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell

    2014-09-23

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is described. The adaptor assembly includes a turbine blade having a blade root and an adaptor body having an adaptor root. The adaptor body defines a slot having an open end configured to receive the blade root of the turbine blade such that the adaptor root of the adaptor body and the blade root of the turbine blade are adjacent to one another when the blade root of the turbine blade is positioned within the slot. Both the adaptor rootmore » of the adaptor body and the blade root of the turbine blade are configured to be received within the root slot of the rotor disk.« less

  13. Forced pitch motion of wind turbines

    NASA Astrophysics Data System (ADS)

    Leble, V.; Barakos, G.

    2016-09-01

    The possibility of a wind turbine entering vortex ring state during pitching oscillations is explored in this paper. The aerodynamic performance of the rotor was computed using the Helicopter Multi-Block flow solver. This code solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. A 10-MW wind turbine was put to perform yawing and pitching oscillations suggesting the partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance.

  14. ISGV Self-rectifying Turbine Design For Thermoacoustic Application

    NASA Astrophysics Data System (ADS)

    Sammak, Shervin; Asghary, Maryam; Ghorbanian, Kaveh

    2014-11-01

    Thermoacoustic engines produce the acoustic power from wasted heat and then electricity can be generated from acoustic power. Utilizing self-rectifying turbine after a thermoacoustic engine allows for deploying standard generators with high enough rotational speed that remarkably reduce abrasion, size and cost and significantly increase efficiency and controllability in comparison with linear alternators. In this paper, by evaluating all different type of self-rectifying turbine, impulse turbine with self-piched controlled (ISGV) is chosen as the most appropriate type for this application. This kind of turbine is designed in detail for a popular engine, thermoacoustic stirling heat engine (TASHE). In order to validate the design, a full scale size of designed turbine is modeled in ANSYS CFX. As a result, optimum power and efficiency gained based on numerical data.

  15. On the biological plausibility of Wind Turbine Syndrome.

    PubMed

    Harrison, Robert V

    2015-01-01

    An emerging environmental health issue relates to potential ill-effects of wind turbine noise. There have been numerous suggestions that the low-frequency acoustic components in wind turbine signals can cause symptoms associated with vestibular system disorders, namely vertigo, nausea, and nystagmus. This constellation of symptoms has been labeled as Wind Turbine Syndrome, and has been identified in case studies of individuals living close to wind farms. This review discusses whether it is biologically plausible for the turbine noise to stimulate the vestibular parts of the inner ear and, by extension, cause Wind Turbine Syndrome. We consider the sound levels that can activate the semicircular canals or otolith end organs in normal subjects, as well as in those with preexisting conditions known to lower vestibular threshold to sound stimulation.

  16. Effects of Pulsing on Film Cooling of Gas Turbine Airfoils

    DTIC Science & Technology

    2005-05-09

    turbine engine . 15. NUMBER OF PAGES 70 14. SUBJECT TERMS: Turbine blade ; Film cooling ; Pulsed jet 16. PRICE CODE 17...with additional research, ultimately allowing for an increased efficiency in a gas turbine engine . 2 Keywords Turbine blade Film cooling Pulsed jet ... engine for aircraft propulsion…………………. 11 Figure 2: Thermodynamic cycle of a general turbine engine . ………………………..…… 11

  17. Millwright Apprenticeship. Related Training Modules. 8.1-8.5 Turbines.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet, part of the instructional materials for the Oregon apprenticeship program for millwright training, contains five modules covering turbines. The modules provide information on the following topics: types, components, and auxiliaries of steam turbines; operation and maintenance of steam turbines; and gas turbines. Each module consists…

  18. Efficiency limit factor analysis for the Francis-99 hydraulic turbine

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Zhang, L. X.; Guo, J. P.; Guo, Y. K.; Pan, Q. L.; Qian, J.

    2017-01-01

    The energy loss in hydraulic turbine is the most direct factor that affects the efficiency of the hydraulic turbine. Based on the analysis theory of inner energy loss of hydraulic turbine, combining the measurement data of the Francis-99, this paper calculates characteristic parameters of inner energy loss of the hydraulic turbine, and establishes the calculation model of the hydraulic turbine power. Taken the start-up test conditions given by Francis-99 as case, characteristics of the inner energy of the hydraulic turbine in transient and transformation law are researched. Further, analyzing mechanical friction in hydraulic turbine, we think that main ingredients of mechanical friction loss is the rotation friction loss between rotating runner and water body, and defined as the inner mechanical friction loss. The calculation method of the inner mechanical friction loss is given roughly. Our purpose is that explore and research the method and way increasing transformation efficiency of water flow by means of analysis energy losses in hydraulic turbine.

  19. 19 CFR 10.62b - Aircraft turbine fuel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Aircraft turbine fuel. 10.62b Section 10.62b... Supplies and Equipment for Vessels § 10.62b Aircraft turbine fuel. (a) General. Unless otherwise provided, aircraft turbine fuel withdrawn from a Customs bonded warehouse for use under section 309, Tariff Act of...

  20. 19 CFR 10.62b - Aircraft turbine fuel.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Aircraft turbine fuel. 10.62b Section 10.62b... Supplies and Equipment for Vessels § 10.62b Aircraft turbine fuel. (a) General. Unless otherwise provided, aircraft turbine fuel withdrawn from a Customs bonded warehouse for use under section 309, Tariff Act of...

  1. 19 CFR 10.62b - Aircraft turbine fuel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Aircraft turbine fuel. 10.62b Section 10.62b... Supplies and Equipment for Vessels § 10.62b Aircraft turbine fuel. (a) General. Unless otherwise provided, aircraft turbine fuel withdrawn from a Customs bonded warehouse for use under section 309, Tariff Act of...

  2. 19 CFR 10.62b - Aircraft turbine fuel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Aircraft turbine fuel. 10.62b Section 10.62b... Supplies and Equipment for Vessels § 10.62b Aircraft turbine fuel. (a) General. Unless otherwise provided, aircraft turbine fuel withdrawn from a Customs bonded warehouse for use under section 309, Tariff Act of...

  3. 19 CFR 10.62b - Aircraft turbine fuel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Aircraft turbine fuel. 10.62b Section 10.62b... Supplies and Equipment for Vessels § 10.62b Aircraft turbine fuel. (a) General. Unless otherwise provided, aircraft turbine fuel withdrawn from a Customs bonded warehouse for use under section 309, Tariff Act of...

  4. Closed-loop air cooling system for a turbine engine

    DOEpatents

    North, William Edward

    2000-01-01

    Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

  5. Locations and attributes of wind turbines in New Mexico, 2011

    USGS Publications Warehouse

    Carr, Natasha B.; Diffendorfer, James B.; Fancher, Tammy; Hawkins, Sarah J.; Latysh, Natalie; Leib, Kenneth J.; Matherne, Anne Marie

    2013-01-01

    This dataset represents an update to U.S. Geological Survey Data Series 596. Locations and attributes of wind turbines in New Mexico, 2009 (available at http://pubs.usgs.gov/ds/596/).This updated New Mexico wind turbine Data Series provides geospatial data for all 562 wind turbines established within the State of New Mexico as of June 2011, an increase of 155 wind turbines from 2009. Attributes specific to each turbine include: turbine location, manufacturer and model, rotor diameter, hub height, rotor height, potential megawatt output, land ownership, county, and development status of wind turbine. Wind energy facility data for each turbine include: facility name, facility power capacity, number of turbines associated with each facility to date, facility developer, facility ownership, and year the facility went online. The locations of turbines are derived from 1-meter true-color aerial photographs produced by the National Agriculture Imagery Program (NAIP); the photographs have a positional accuracy of about ±5 meters. The locations of turbines constructed during or prior to August 2009 are based on August 2009 NAIP imagery and turbine locations constructed after August 2009 were based June 2011 NAIP imagery. The location of turbines under construction during June 2011 likely will be less accurate than the location of existing turbines. This data series contributes to an Online Interactive Energy Atlas developed by the U.S. Geological Survey (http://my.usgs.gov/eerma/). The Energy Atlas synthesizes data on existing and potential energy development in Colorado and New Mexico and includes additional natural resource data layers. This information may be used by decisionmakers to evaluate and compare the potential benefits and tradeoffs associated with different energy development strategies or scenarios. Interactive maps, downloadable data layers, comprehensive metadata, and decision-support tools also are included in the Energy Atlas. The format of the Energy

  6. Experimental Investigation of an Air-Cooled Turbine Operating in a Turbojet Engine at Turbine Inlet Temperatures up to 2500 F

    NASA Technical Reports Server (NTRS)

    Cochran, Reeves P.; Dengler, Robert P.

    1961-01-01

    An experimental investigation was made of an air-cooled turbine at average turbine inlet temperatures up to 2500 F. A modified production-model 12-stage axial-flow-compressor turbojet engine operating in a static sea-level stand was used as the test vehicle. The modifications to the engine consisted of the substitution of special combustor and turbine assemblies and double-walled exhaust ducting for the standard parts of the engine. All of these special parts were air-cooled to withstand the high operating temperatures of the investigation. The air-cooled turbine stator and rotor blades were of the corrugated-insert type. Leading-edge tip caps were installed on the rotor blades to improve leading-edge cooling by diverting the discharge of coolant to regions of lower gas pressure toward the trailing edge of the blade tip. Caps varying in length from 0.15- to 0.55-chord length were used in an attempt to determine the optimum cap length for this blade. The engine was operated over a range of average turbine inlet temperatures from about 1600 to about 2500 F, and a range of average coolant-flow ratios of 0.012 to 0.065. Temperatures of the air-cooled turbine rotor blades were measured at all test conditions by the use of thermocouples and temperature-indicating paints. The results of the investigation indicated that this type of blade is feasible for operation in turbojet engines at the average turbine inlet temperatures and stress levels tested(maximums of 2500 F and 24,000 psi, respectively). An average one-third-span blade temperature of 1300 F could be maintained on 0.35-chord tip cap blades with an average coolant-flow ratio of about 0.022 when the average turbine inlet temperature was 2500 F and cooling-air temperature was about 260 F. All of the leading-edge tip cap lengths improved the cooling of the leading-edge region of the blades, particularly at low average coolant-flow ratios. At high gas temperatures, such parts as the turbine stator and the combustor

  7. The Impact of Middle Turbinate Concha Bullosa on the Severity of Inferior Turbinate Hypertrophy in Patients with a Deviated Nasal Septum.

    PubMed

    Tomblinson, C M; Cheng, M-R; Lal, D; Hoxworth, J M

    2016-07-01

    Inferior turbinate hypertrophy and concha bullosa often occur opposite the direction of nasal septal deviation. The objective of this retrospective study was to determine whether a concha bullosa impacts inferior turbinate hypertrophy in patients who have nasal septal deviation. The electronic medical record was used to identify sinus CT scans exhibiting nasal septal deviation for 100 adult subjects without and 100 subjects with unilateral middle turbinate concha bullosa. Exclusion criteria included previous sinonasal surgery, tumor, sinusitis, septal perforation, and craniofacial trauma. Nasal septal deviation was characterized in the coronal plane by distance from the midline (severity) and height from the nasal floor. Measurement differences between sides for inferior turbinate width (overall and bone), medial mucosa, and distance to the lateral nasal wall were calculated as inferior turbinate hypertrophy indicators. The cohorts with and without concha bullosa were similarly matched for age, sex, and nasal septal deviation severity, though nasal septal deviation height was greater in the cohort with concha bullosa than in the cohort without concha bullosa (19.1 ± 4.3 mm versus 13.5 ± 4.1 mm, P < .001). Compensatory inferior turbinate hypertrophy was significantly greater in the cohort without concha bullosa than in the cohort with it as measured by side-to-side differences in turbinate overall width, bone width, and distance to the lateral nasal wall (P < .01), but not the medial mucosa. Multiple linear regression analyses found nasal septal deviation severity and height to be significant predictors of inferior turbinate hypertrophy with positive and negative relationships, respectively (P < .001). Inferior turbinate hypertrophy is directly proportional to nasal septal deviation severity and inversely proportional to nasal septal deviation height. The effect of a concha bullosa on inferior turbinate hypertrophy is primarily mediated through influence on septal

  8. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  9. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  10. Velocity pump reaction turbine

    DOEpatents

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  11. Development of Pelton turbine using numerical simulation

    NASA Astrophysics Data System (ADS)

    Patel, K.; Patel, B.; Yadav, M.; Foggia, T.

    2010-08-01

    This paper describes recent research and development activities in the field of Pelton turbine design. Flow inside Pelton turbine is most complex due to multiphase (mixture of air and water) and free surface in nature. Numerical calculation is useful to understand flow physics as well as effect of geometry on flow. The optimized design is obtained using in-house special optimization loop. Either single phase or two phase unsteady numerical calculation could be performed. Numerical results are used to visualize the flow pattern in the water passage and to predict performance of Pelton turbine at full load as well as at part load. Model tests are conducted to determine performance of turbine and it shows good agreement with numerically predicted performance.

  12. Turbine Blade and Endwall Heat Transfer Measured in NASA Glenn's Transonic Turbine Blade Cascade

    NASA Technical Reports Server (NTRS)

    Giel, Paul W.

    2000-01-01

    Higher operating temperatures increase the efficiency of aircraft gas turbine engines, but can also degrade internal components. High-pressure turbine blades just downstream of the combustor are particularly susceptible to overheating. Computational fluid dynamics (CFD) computer programs can predict the flow around the blades so that potential hot spots can be identified and appropriate cooling schemes can be designed. Various blade and cooling schemes can be examined computationally before any hardware is built, thus saving time and effort. Often though, the accuracy of these programs has been found to be inadequate for predicting heat transfer. Code and model developers need highly detailed aerodynamic and heat transfer data to validate and improve their analyses. The Transonic Turbine Blade Cascade was built at the NASA Glenn Research Center at Lewis Field to help satisfy the need for this type of data.

  13. Rim seal for turbine wheel

    DOEpatents

    Glezer, Boris; Boyd, Gary L.; Norton, Paul F.

    1996-01-01

    A turbine wheel assembly includes a disk having a plurality of blades therearound. A ceramic ring is mounted to the housing of the turbine wheel assembly. A labyrinth rim seal mounted on the disk cooperates with the ceramic ring to seal the hot gases acting on the blades from the disk. The ceramic ring permits a tighter clearance between the labyrinth rim seal and the ceramic ring.

  14. Fretting in aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Johnson, R. L.; Bill, R. C.

    1974-01-01

    The problem of fretting in aircraft turbine engines is discussed. Critical fretting can occur on fan, compressor, and turbine blade mountings, as well as on splines, rolling element bearing races, and secondary sealing elements of face type seals. Structural fatigue failures have been shown to occur at fretted areas on component parts. Methods used by designers to reduce the effects of fretting are given.

  15. Turbine design and application volumes 1, 2, and 3

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J. (Editor)

    1994-01-01

    NASA has an interest in turbines related primarily to aeronautics and space applications. Airbreathing turbine engines provide jet and turboshaft propulsion, as well as auxiliary power for aircraft. Propellant-driven turbines provide rocket propulsion and auxiliary power for spacecraft. Closed-cycle turbine engines using inert gases, organic fluids, and metal fluids have been studied for providing long-duration electric power for spacecraft. Other applications of interest for turbine engines include land-vehicle (cars, trucks, buses, trains, etc.) propulsion power and ground-based electrical power. In view of the turbine-system interest and efforts at Lewis Research Center, a course entitled 'Turbine Design and Application' was presented during 1968-69 as part of the In-house Graduate Study Program. The course was somewhat revised and again presented in 1972-73. Various aspects of turbine technology were covered including thermodynamic and fluid-dynamic concepts, fundamental turbine concepts, velocity diagrams, losses, blade aerodynamic design, blade cooling, mechanical design, operation, and performance. The notes written and used for the course have been revised and edited for publication. Such a publication can serve as a foundation for an introductory turbine course, a means for self-study, or a reference for selected topics. Any consistent set of units will satisfy the equations presented. Two commonly used consistent sets of units and constant values are given after the symbol definitions. These are the SI units and the U.S. customary units. A single set of equations covers both sets of units by including all constants required for the U.S. customary units and defining as unity those not required for the SI units. Three volumes are compiled into one.

  16. The prediction of the hydrodynamic performance of tidal current turbines

    NASA Astrophysics Data System (ADS)

    Y Xiao, B.; Zhou, L. J.; Xiao, Y. X.; Wang, Z. W.

    2013-12-01

    Nowadays tidal current energy is considered to be one of the most promising alternative green energy resources and tidal current turbines are used for power generation. Prediction of the open water performance around tidal turbines is important for the reason that it can give some advice on installation and array of tidal current turbines. This paper presents numerical computations of tidal current turbines by using a numerical model which is constructed to simulate an isolated turbine. This paper aims at studying the installation of marine current turbine of which the hydro-environmental impacts influence by means of numerical simulation. Such impacts include free-stream velocity magnitude, seabed and inflow direction of velocity. The results of the open water performance prediction show that the power output and efficiency of marine current turbine varies from different marine environments. The velocity distribution should be clearly and the suitable unit installation depth and direction be clearly chosen, which can ensure the most effective strategy for energy capture before installing the marine current turbine. The findings of this paper are expected to be beneficial in developing tidal current turbines and array in the future.

  17. Visualization and analysis of vortex-turbine intersections in wind farms.

    PubMed

    Shafii, Sohail; Obermaier, Herald; Linn, Rodman; Koo, Eunmo; Hlawitschka, Mario; Garth, Christoph; Hamann, Bernd; Joy, Kenneth I

    2013-09-01

    Characterizing the interplay between the vortices and forces acting on a wind turbine's blades in a qualitative and quantitative way holds the potential for significantly improving large wind turbine design. This paper introduces an integrated pipeline for highly effective wind and force field analysis and visualization. We extract vortices induced by a turbine's rotation in a wind field, and characterize vortices in conjunction with numerically simulated forces on the blade surfaces as these vortices strike another turbine's blades downstream. The scientifically relevant issue to be studied is the relationship between the extracted, approximate locations on the blades where vortices strike the blades and the forces that exist in those locations. This integrated approach is used to detect and analyze turbulent flow that causes local impact on the wind turbine blade structure. The results that we present are based on analyzing the wind and force field data sets generated by numerical simulations, and allow domain scientists to relate vortex-blade interactions with power output loss in turbines and turbine life expectancy. Our methods have the potential to improve turbine design to save costs related to turbine operation and maintenance.

  18. Visualization and Analysis of Vortex-Turbine Intersections in Wind Farms.

    PubMed

    Shafii, Sohail; Obermaier, Harald; Linn, Rodman; Koo, Eunmo; Hlawitschka, Mario; Garth, Christoph; Hamann, Bernd; Joy, Kenneth

    2013-02-13

    Characterizing the interplay between the vortices and forces acting on a wind turbine's blades in a qualitative and quantitative way holds the potential for significantly improving large wind turbine design. The paper introduces an integrated pipeline for highly effective wind and force field analysis and visualization. We extract vortices induced by a turbine's rotation in a wind field, and characterize vortices in conjunction with numerically simulated forces on the blade surfaces as these vortices strike another turbine's blades downstream. The scientifically relevant issue to be studied is the relationship between the extracted, approximate locations on the blades where vortices strike the blades and the forces that exist in those locations. This integrated approach is used to detect and analyze turbulent flow that causes local impact on the wind turbine blade structure. The results that we present are based on analyzing the wind and force field data sets generated by numerical simulations, and allow domain scientists to relate vortex-blade interactions with power output loss in turbines and turbine life-expectancy. Our methods have the potential to improve turbine design in order to save costs related to turbine operation and maintenance.

  19. Performance of a wind turbine over a ridged terrain

    NASA Astrophysics Data System (ADS)

    Santoni, Christian; Ciri, Umberto; Leonardi, Stefano

    2016-11-01

    Performance of wind turbines is affected by their interaction with the topography. Low momentum flow from the terrain may impinge the turbine resulting in fatigue loads that may reduce durability. However, at the same time it may promote the transport of momentum and kinetic energy into the wake improving the power production on the downstream turbines. In order to address how the topography affects the flow, Large Eddy Simulations of a wind turbine located on a wavy surface are performed. The height variation of the topography is described by a sinusoidal wave. Two different amplitudes were considered, 0 . 10 D and 0 . 05 D , where D is the rotor diameter. The wavelength has been kept constant to 3 D . The effect of the relative position of rotor and terrain geometry was assessed by placing the turbine either at the crest or at the trough of the undulated wall. NREL-5MW turbine blades were modeled using the actuator line model whereas the tower, nacelle and topography using the immersed boundary method. A simulation of a wind turbine on a flat terrain was performed as reference case. The performance of the turbine was evaluated in terms of the power production and blade load fluctuations, as well as for the energy entrainment into the wake of the turbine. The numerical simulations were performed on XSEDE TACC under Grant No. CTS070066. This work was supported by the National Science Foundation, Grant Number IIA-1243482 (the WINDINSPIRE project).

  20. Radar-cross-section reduction of wind turbines. part 1.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brock, Billy C.; Loui, Hung; McDonald, Jacob J.

    2012-03-05

    In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites,more » but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.« less

  1. Four-dimensional characterization of inflow to and wakes from a multi-MW turbine: overview of the Turbine Wake and Inflow Characterization Study (TWICS2011)

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Banta, R. M.; Pichugina, Y.; Brewer, A.; Alvarez, R. J.; Sandberg, S. P.; Kelley, N. D.; Aitken, M.; Clifton, A.; Mirocha, J. D.

    2011-12-01

    To support substantial deployment of renewably-generated electricity from the wind, critical information about the variability of wind turbine wakes in the real atmosphere from multi-MW turbines is required. The assessment of the velocity deficit and turbulence associated with industrial-scale turbines is a major issue for wind farm design, particularly with respect to the optimization of the spacing between turbines. The significant velocity deficit and turbulence generated by upstream turbines can reduce the power production and produce harmful vibrations in downstream turbines, which can lead to excess maintenance costs. The complexity of wake effects depends on many factors arising from both hardware (turbine size, rotor speed, and blade geometry, etc.) and from meteorological considerations such as wind velocity, gradients of wind across the turbine rotor disk, atmospheric stability, and atmospheric turbulence. To characterize the relationships between the meteorological inflow and turbine wakes, a collaborative field campaign was designed and carried out at the Department of Energy's National Wind Technology Center (NREL/NWTC) in south Boulder, Colorado, in spring 2011. This site often experiences channeled flow with a consistent wind direction, enabling robust statistics of wake velocity deficits and turbulence enhancements. Using both in situ and remote sensing instrumentation, measurements upwind and downwind of multi-megawatt wind turbine in complex terrain quantified the variability of wind turbine inflow and wakes from an industrial-scale turbine. The turbine of interest has a rated power of 2.3 MW, a rotor diameter of 100m, and a hub height of 80m. In addition to several meteorological towers, one extending to hub height (80m) and another extending above the top of the rotor disk (135m), a Triton mini-sodar and a Windcube lidar characterized the inflow to the turbine and the variability across the site. The centerpiece instrument of the TWICS campaign

  2. Development of Wave Turbine Emulator in a Laboratory Environment

    NASA Astrophysics Data System (ADS)

    Vinatha, U.; Vittal K, P.

    2013-07-01

    Wave turbine emulator (WTE) is an important equipment for developing wave energy conversion system. The emulator reflects the actual behavior of the wave turbine by reproducing the characteristics of real wave turbine without reliance on natural wave resources and actual wave turbine. It offers a controllable test environment that allows the evaluation and improvement of control schemes for electric generators. The emulator can be used for research applications to drive an electrical generator in a similar way as a practical wave turbine. This article presents the development of a WTE in a laboratory environment and studies on the behavior of electrical generator coupled to the emulator. The structure of a WTE consists of a PC where the characteristics of the turbine are implemented, ac drive to emulate the turbine rotor, feedback mechanism from the drive and power electronic equipment to control the drive. The feedback signal is acquired by the PC through an A/D converter, and the signal for driving the power electronic device comes from the PC through a D/A converter.

  3. Flow interaction of diffuser augmented wind turbines

    NASA Astrophysics Data System (ADS)

    Göltenbott, U.; Ohya, Y.; Yoshida, S.; Jamieson, P.

    2016-09-01

    Up-scaling of wind turbines has been a major trend in order to reduce the cost of energy generation from the wind. Recent studies however show that for a given technology, the cost always rises with upscaling, notably due to the increased mass of the system. To reach capacities beyond 10 MW, multi-rotor systems (MRS) have promising advantages. On the other hand, diffuser augmented wind turbines (DAWTs) can significantly increase the performance of the rotor. Up to now, diffuser augmentation has only been applied to single small wind turbines. In the present research, DAWTs are used in a multi-rotor system. In wind tunnel experiments, the aerodynamics of two and three DAWTs, spaced in close vicinity in the same plane normal to a uniform flow, have been analysed. Power increases of up to 5% and 9% for the two and three rotor configurations are respectively achieved in comparison to a stand-alone turbine. The physical dynamics of the flows are analysed on the basis of the results obtained with a stand-alone turbine.

  4. The effects of solarization on the performance of a gas turbine

    NASA Astrophysics Data System (ADS)

    Homann, Christiaan; van der Spuy, Johan; von Backström, Theodor

    2016-05-01

    Various hybrid solar gas turbine configurations exist. The Stellenbosch University Solar Power Thermodynamic (SUNSPOT) cycle consists of a heliostat field, solar receiver, primary Brayton gas turbine cycle, thermal storage and secondary Rankine steam cycle. This study investigates the effect of the solarization of a gas turbine on its performance and details the integration of a gas turbine into a solar power plant. A Rover 1S60 gas turbine was modelled in Flownex, a thermal-fluid system simulation and design code, and validated against a one-dimensional thermodynamic model at design input conditions. The performance map of a newly designed centrifugal compressor was created and implemented in Flownex. The effect of the improved compressor on the performance of the gas turbine was evident. The gas turbine cycle was expanded to incorporate different components of a CSP plant, such as a solar receiver and heliostat field. The solarized gas turbine model simulates the gas turbine performance when subjected to a typical variation in solar resource. Site conditions at the Helio100 solar field were investigated and the possibility of integrating a gas turbine within this system evaluated. Heat addition due to solar irradiation resulted in a decreased fuel consumption rate. The influence of the additional pressure drop over the solar receiver was evident as it leads to decreased net power output. The new compressor increased the overall performance of the gas turbine and compensated for pressure losses incurred by the addition of solar components. The simulated integration of the solarized gas turbine at Helio100 showed potential, although the solar irradiation is too little to run the gas turbine on solar heat alone. The simulation evaluates the feasibility of solarizing a gas turbine and predicts plant performance for such a turbine cycle.

  5. Ceramic applications in turbine engines

    NASA Technical Reports Server (NTRS)

    Helms, H. E.; Heitman, P. W.; Lindgren, L. C.; Thrasher, S. R.

    1984-01-01

    The application of ceramic components to demonstrate improved cycle efficiency by raising the operating temperature of the existing Allison IGI 404 vehicular gas turbine engine is discussed. This effort was called the Ceramic Applications in Turbine Engines (CATE) program and has successfully demonstrated ceramic components. Among these components are two design configurations featuring stationary and rotating caramic components in the IGT 404 engine. A complete discussion of all phases of the program, design, materials development, fabrication of ceramic components, and testing-including rig, engine, and vehicle demonstation test are presented. During the CATE program, a ceramic technology base was established that is now being applied to automotive and other gas turbine engine programs. This technology base is outlined and also provides a description of the CATE program accomplishments.

  6. The Electromagnetic Impact of Wind Turbines

    DTIC Science & Technology

    2015-07-06

    Applied Project 4. TITLE AND SUBTITLE THE ELECTROMAGNETIC IMPACT OF WIND TURBINES 5. FUNDING NUMBERS 6. AUTHOR(S) Gregory Sasarita and Charles R...DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) The objective of this project was to investigate the impact that a wind turbine can have on

  7. AFB/open cycle gas turbine conceptual design study

    NASA Technical Reports Server (NTRS)

    Dickinson, T. W.; Tashjian, R.

    1983-01-01

    Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.

  8. AFB/open cycle gas turbine conceptual design study

    NASA Astrophysics Data System (ADS)

    Dickinson, T. W.; Tashjian, R.

    1983-09-01

    Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.

  9. Aerodynamic design and analysis of a highly loaded turbine exhaust

    NASA Technical Reports Server (NTRS)

    Huber, F. W.; Montesdeoca, X. A.; Rowey, R. J.

    1993-01-01

    The aerodynamic design and analysis of a turbine exhaust volute manifold is described. This turbine exhaust system will be used with an advanced gas generator oxidizer turbine designed for very high specific work. The elevated turbine stage loading results in increased discharge Mach number and swirl velocity which, along with the need for minimal circumferential variation of fluid properties at the turbine exit, represent challenging volute design requirements. The design approach, candidate geometries analyzed, and steady state/unsteady CFD analysis results are presented.

  10. Advanced turbine study

    NASA Technical Reports Server (NTRS)

    Castro, J. H.

    1985-01-01

    The feasibility of an advanced convective cooling concept applied to rocket turbine airfoils which operate in a high pressure hydrogen and methane environment was investigated. The concept consists of a central structural member in which grooves are machined. The grooves are temporarily filled with a removable filler and the entire airfoil is covered with a layer of electroformed nickel, or nickel base alloy. After removal of the filler, the low thermal resistance of the nickel closure causes the wall temperature to be reduced by heat transfer to the coolant. The program is divided in the following tasks: (1) turbine performance appraisal; (2) coolant geometry evaluation; (3) test hardware design and analysis; and (4) test airfoil fabrication.

  11. Understanding Trends in Wind Turbine Prices Over the Past Decade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolinger, Mark; Wiser, Ryan

    Taking a bottom-up approach, this report examines seven primary drivers of wind turbine prices in the United States, with the goal of estimating the degree to which each contributed to the doubling in turbine prices from 2002 through 2008, as well as the subsequent decline in prices through 2010 (our analysis does not extend into 2011 because several of these drivers are best gauged on a full-year basis due to seasonality issues). The first four of these drivers can be considered, at least to some degree, endogenous influences – i.e., those that are largely within the control of the windmore » industry – and include changes in: 1) Labor costs, which have historically risen during times of tight turbine supply; 2) Warranty provisions, which reflect technology performance and reliability, and are most often capitalized in turbine prices; 3) Turbine manufacturer profitability, which can impact turbine prices independently of costs; and 4) Turbine design, which for the purpose of this analysis is principally manifested through increased turbine size. The other three drivers analyzed in this study can be considered exogenous influences, in that they can impact wind turbine costs but fall mostly outside of the direct control of the wind industry. These exogenous drivers include changes in: 5) Raw materials prices, which affect the cost of inputs to the manufacturing process; 6) Energy prices, which impact the cost of manufacturing and transporting turbines; and 7) Foreign exchange rates, which can impact the dollar amount paid for turbines and components imported into the United States.« less

  12. Midwest Consortium for Wind Turbine Reliability and Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott R. Dana; Douglas E. Adams; Noah J. Myrent

    2012-05-11

    This report provides an overview of the efforts aimed to establish a student focused laboratory apparatus that will enhance Purdue's ability to recruit and train students in topics related to the dynamics, operations and economics of wind turbines. The project also aims to facilitate outreach to students at Purdue and in grades K-12 in the State of Indiana by sharing wind turbine operational data. For this project, a portable wind turbine test apparatus was developed and fabricated utilizing an AirX 400W wind energy converter. This turbine and test apparatus was outfitted with an array of sensors used to monitor windmore » speed, turbine rotor speed, power output and the tower structural dynamics. A major portion of this project included the development of a data logging program used to display real-time sensor data and the recording and creation of output files for data post-processing. The apparatus was tested in an open field to subject the turbine to typical operating conditions and the data acquisition system was adjusted to obtain desired functionality to facilitate use for student projects in existing courses offered at Purdue University and Indiana University. Data collected using the data logging program is analyzed and presented to demonstrate the usefulness of the test apparatus related to wind turbine dynamics and operations.« less

  13. Design and Analysis of Turbines for Space Applications

    NASA Technical Reports Server (NTRS)

    Griffin, Lisa W.; Dorney, Daniel J.; Huber, Frank W.

    2003-01-01

    In order to mitigate the risk of rocket propulsion development, efficient, accurate, detailed fluid dynamics analysis of the turbomachinery is necessary. This analysis is used for component development, design parametrics, performance prediction, and environment definition. To support this requirement, a task was developed at NASAh4arshall Space Flight Center (MSFC) to improve turbine aerodynamic performance through the application of advanced design and analysis tools. There are four major objectives of this task: 1) to develop, enhance, and integrate advanced turbine aerodynamic design and analysis tools; 2) to develop the methodology for application of the analytical techniques; 3) to demonstrate the benefits of the advanced turbine design procedure through its application to a relevant turbine design point; and 4) to verify the optimized design and analysis with testing. The turbine chosen on which to demonstrate the procedure was a supersonic design suitable for a reusable launch vehicle (RLV). The hot gas path and blading were redesigned to obtain an increased efficiency. The redesign of the turbine was conducted with a consideration of system requirements, realizing that a highly efficient turbine that, for example, significantly increases engine weight, is of limited benefit. Both preliminary and detailed designs were considered. To generate an improved design, one-dimensional (1D) design and analysis tools, computational fluid dynamics (CFD), response surface methodology (RSM), and neural nets (NN) were used.

  14. Tiny bubbles challenge giant turbines: Three Gorges puzzle

    PubMed Central

    Li, Shengcai

    2015-01-01

    Since the birth of the first prototype of the modern reaction turbine, cavitation as conjectured by Euler in 1754 always presents as a challenge. Following his theory, the evolution of modern reaction (Francis and Kaplan) turbines has been completed by adding the final piece of the element ‘draft-tube’ that enables turbines to explore water energy at efficiencies of almost 100%. However, during the last two and a half centuries, with increasing unit capacity and specific speed, the problem of cavitation has been manifested and complicated by the draft-tube surges rather than being solved. Particularly, during the last 20 years, the fierce competition in the international market for extremely large turbines with compact design has encouraged the development of giant Francis turbines of 700–1000 MW. The first group (24 units) of such giant turbines of 700 MW each was installed in the Three Gorges project. Immediately after commission, a strange erosion phenomenon appeared on the guide vane of the machines that has puzzled professionals. From a multi-disciplinary analysis, this Three Gorges puzzle could reflect an unknown type of cavitation inception presumably triggered by turbulence production from the boundary-layer streak transitional process. It thus presents a fresh challenge not only to this old turbine industry, but also to the fundamental sciences. PMID:26442144

  15. Assessing hydraulic conditions through Francis turbines using an autonomous sensor device

    DOE PAGES

    Fu, Tao; Deng, Zhiqun Daniel; Duncan, Joanne P.; ...

    2016-08-19

    Downstream migratory fish, including some endangered species, can be injured or killed during turbine passage. In this study an autonomous Sensor Fish device was deployed at Arrowrock Dam, Cougar Dam, and Detroit Dam to evaluate the hydraulic conditions and physical stresses that fish experienced when passing through these Francis turbines. Pressure data was used to identify the location of the Sensor Fish and to calculate the nadir pressure and the magnitude and the rate of change in pressure during turbine passage. Acceleration data was used to identify events (collisions or shear) Sensor Fish experienced and to categorize the severity levelmore » (severe, medium, and slight) of each event. The results showed that Sensor Fish experienced severe events mostly in the stay vane/wicket gate region and the runner region. In the stay vane/wicket gate region, almost all severe events were collisions. In the runner region, Sensor fish experienced both severe collisions and severe shear events. Sensor Fish data at three wicket gate opening treatments at Cougar Dam indicated that the wicket gate opening of the Francis turbine can affect the hydraulic conditions in the turbine runner region. Fewer Sensor Fish experienced severe collisions in the turbine runner region at the peak efficiency than at the minimum opening and the maximum opening treatments. Comparisons between the Francis turbines at the three dams and the AHT Kaplan turbine at Wanapum Dam showed that higher percentage of Sensor Fish experienced severe events in the runner region when passing through Francis turbines than the AHT Kaplan turbine. The nadir pressures of the Francis turbines were lower than those of the AHT Kaplan turbine at Wanapum Dam. Both the magnitude and the rate of change in pressure were higher in Francis turbines than in the AHT Kaplan turbine at Wanapum Dam in the runner region. This study can be used to guide future laboratory studies of fish passing through Francis turbine and help

  16. Assessing hydraulic conditions through Francis turbines using an autonomous sensor device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Tao; Deng, Zhiqun Daniel; Duncan, Joanne P.

    Downstream migratory fish, including some endangered species, can be injured or killed during turbine passage. In this study an autonomous Sensor Fish device was deployed at Arrowrock Dam, Cougar Dam, and Detroit Dam to evaluate the hydraulic conditions and physical stresses that fish experienced when passing through these Francis turbines. Pressure data was used to identify the location of the Sensor Fish and to calculate the nadir pressure and the magnitude and the rate of change in pressure during turbine passage. Acceleration data was used to identify events (collisions or shear) Sensor Fish experienced and to categorize the severity levelmore » (severe, medium, and slight) of each event. The results showed that Sensor Fish experienced severe events mostly in the stay vane/wicket gate region and the runner region. In the stay vane/wicket gate region, almost all severe events were collisions. In the runner region, Sensor fish experienced both severe collisions and severe shear events. Sensor Fish data at three wicket gate opening treatments at Cougar Dam indicated that the wicket gate opening of the Francis turbine can affect the hydraulic conditions in the turbine runner region. Fewer Sensor Fish experienced severe collisions in the turbine runner region at the peak efficiency than at the minimum opening and the maximum opening treatments. Comparisons between the Francis turbines at the three dams and the AHT Kaplan turbine at Wanapum Dam showed that higher percentage of Sensor Fish experienced severe events in the runner region when passing through Francis turbines than the AHT Kaplan turbine. The nadir pressures of the Francis turbines were lower than those of the AHT Kaplan turbine at Wanapum Dam. Both the magnitude and the rate of change in pressure were higher in Francis turbines than in the AHT Kaplan turbine at Wanapum Dam in the runner region. This study can be used to guide future laboratory studies of fish passing through Francis turbine and help

  17. Multiple piece turbine airfoil

    DOEpatents

    Kimmel, Keith D; Wilson, Jr., Jack W.

    2010-11-02

    A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

  18. Advanced wind turbine design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamieson, P.M.; Jaffrey, A.

    1995-09-01

    Garrad Hassan have a project in progress funded by the UK Department of Trade and Industry (DTI) to assess the prospects and cost benefits of advanced wind turbine design. In the course of this work, a new concept, the coned rotor design, has been developed. This enables a wind turbine system to operate in effect with variable rotor diameter augmenting energy capture in light winds and shedding loads in storm conditions. Comparisons with conventional design suggest that a major benefit in reduced cost of wind generated electricity may be possible.

  19. Advanced wind turbine design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamieson, P.M.; Jaffrey, A.

    1997-11-01

    Garrad Hassan have a project in progress funded by the U.K. Department of Trade and Industry (DTI) to assess the prospects and cost benefits of advanced wind turbine design. In the course of this work, a new concept, the coned rotor design, has been developed. This enables a wind turbine system to operate in effect with variable rotor diameter augmenting energy capture in light winds and shedding loads in storm conditions. Comparisons with conventional design suggest that a major benefit in reduced cost of wind-generated electricity may be possible.

  20. Trends in increasing gas-turbine units efficiency

    NASA Astrophysics Data System (ADS)

    Lebedev, A. S.; Kostennikov, S. V.

    2008-06-01

    A review of the latest models of gas-turbine units (GTUs) manufactured by leading firms of the world is given. With the example of units made by General Electric, Siemens, and Alstom, modern approaches to the problem of increasing the efficiency of gas-turbine units are dealt with. Basic principles of designing of moderate-size capacity gas turbine units are discussed, and comparison between characteristics of foreign-made GTUs belonging to this class and the advanced domestic GTE-65 unit is made.

  1. SINGLE PHASE ANALYTICAL MODELS FOR TERRY TURBINE NOZZLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling

    All BWR RCIC (Reactor Core Isolation Cooling) systems and PWR AFW (Auxiliary Feed Water) systems use Terry turbine, which is composed of the wheel with turbine buckets and several groups of fixed nozzles and reversing chambers inside the turbine casing. The inlet steam is accelerated through the turbine nozzle and impacts on the wheel buckets, generating work to drive the RCIC pump. As part of the efforts to understand the unexpected “self-regulating” mode of the RCIC systems in Fukushima accidents and extend BWR RCIC and PWR AFW operational range and flexibility, mechanistic models for the Terry turbine, based on Sandiamore » National Laboratories’ original work, has been developed and implemented in the RELAP-7 code to simulate the RCIC system. RELAP-7 is a new reactor system code currently under development with the funding support from U.S. Department of Energy. The RELAP-7 code is a fully implicit code and the preconditioned Jacobian-free Newton-Krylov (JFNK) method is used to solve the discretized nonlinear system. This paper presents a set of analytical models for simulating the flow through the Terry turbine nozzles when inlet fluid is pure steam. The implementation of the models into RELAP-7 will be briefly discussed. In the Sandia model, the turbine bucket inlet velocity is provided according to a reduced-order model, which was obtained from a large number of CFD simulations. In this work, we propose an alternative method, using an under-expanded jet model to obtain the velocity and thermodynamic conditions for the turbine bucket inlet. The models include both adiabatic expansion process inside the nozzle and free expansion process out of the nozzle to reach the ambient pressure. The combined models are able to predict the steam mass flow rate and supersonic velocity to the Terry turbine bucket entrance, which are the necessary input conditions for the Terry Turbine rotor model. The nozzle analytical models were validated with experimental data

  2. SSME HPFTP/AT Turbine Blade Platform Featherseal Damper Design

    NASA Technical Reports Server (NTRS)

    Montgomery, S. K.

    1999-01-01

    During the Space Shuttle Main Engines (SSM) HPFtP/AT development program, engine hot fire testing resulted in turbine blade fatigue cracks. The cracks were noted after only a few tests and a several hundred seconds versus the design goal of 60 tests and >30,000 seconds. Subsequent investigation attributed the distress to excessive steady and dynamic loads. To address these excessive turbine blade loads, Pratt & Whitney Liquid Space Propulsion engineers designed and developed retrofitable turbine blade to blade platform featherseal dampers. Since incorporation of these dampers, along with other turbine blade system improvements, there has been no observed SSME HPFTP/AT turbine blade fatigue cracking. The high time HPFTP/AT blade now has accumulated 32 starts and 19,200 seconds hot fire test time. Figure #1 illustrates the HPFTP/AT turbine blade platform featherseal dampers. The approached selected was to improve the turbine blade structural capability while simultaneously reducing loads. To achieve this goal, the featherseal dampers were designed to seal the blade to blade platform gap and damp the dynamic motions. Sealing improves the steady stress margins by increasing turbine efficiency and improving turbine blade attachment thermal conditioning. Load reduction was achieved through damping. Thin Haynes 188 sheet metal was selected based on its material properties (hydrogen resistance, elongation, tensile strengths, etc.). The 36,000 rpm wheel speed of the rotor result in a normal load of 120#/blade. The featherseals then act as micro-slip dampers during actual SSME operation. After initial design and analysis (prior to full engine testing), the featherseal dampers were tested in P&W's spin rig facility in West Palm Beach, Florida. Both dynamic strain gages and turbine blade tip displacement measurements were utilized to quantify the featherseal damper effectiveness. Full speed (36,000 rpm), room temperature rig testing verified the elimination of fundamental mode

  3. Stabilization of gas turbine unit power

    NASA Astrophysics Data System (ADS)

    Dolotovskii, I.; Larin, E.

    2017-11-01

    We propose a new cycle air preparation unit which helps increasing energy power of gas turbine units (GTU) operating as a part of combined cycle gas turbine (CCGT) units of thermal power stations and energy and water supply systems of industrial enterprises as well as reducing power loss of gas turbine engines of process blowers resulting from variable ambient air temperatures. Installation of GTU power stabilizer at CCGT unit with electric and thermal power of 192 and 163 MW, respectively, has resulted in reduction of produced electrical energy production costs by 2.4% and thermal energy production costs by 1.6% while capital expenditures after installation of this equipment increased insignificantly.

  4. The system design and performance test of hybrid vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Dwiyantoro, Bambang Arip; Suphandani, Vivien

    2017-04-01

    Vertical axis wind turbine is a tool that is being developed to generate energy from wind. One cause is still little use of wind energy is the design of wind turbines that are less precise. Therefore in this study will be developed the system design of hybrid vertical axis wind turbine and tested performance with experimental methods. The design of hybrid turbine based on a straight bladed Darrieus turbine along with a double step Savonius turbine. The method used to design wind turbines is by studying literature, analyzing the critical parts of a wind turbine and the structure of the optimal design. Wind turbine prototype of the optimal design characteristic tests in the wind tunnel experimentally by varying the speed of the wind. From the experimental results show that the greater the wind speed, the greater the wind turbine rotation and torque is raised. The hybrid vertical axis wind turbine has much better self-starting and better conversion efficiency.

  5. Analysis of the Environmental Impact on Remanufacturing Wind Turbines

    NASA Astrophysics Data System (ADS)

    Sosa Skrainka, Manuel R.

    To deliver clean energy the use of wind turbines is essential. In June 2011 there was an installed wind capacity equivalent to 211,000MW world-wide (WWEA, 2011). By the end of the year 2009 the U.S. had 35,100MW of wind energy installed capacity to generate electricity (AWEA, 2010). This industry has grown in recent years and is expected to grow even more in the future. The environmental impacts that will arise from the increased number of wind turbines and their end-of-life should be addressed, as large amounts of resources will be required to satisfy the current and future market demands for wind turbines. Since future 10MW wind turbines are expected to be as heavy as 1000 tons each, the study of the environmental response of profitable retirement strategies, such as remanufacturing for these machines, must be considered. Because of the increased number of wind turbines and the materials used, this study provides a comparison between the environmental impacts from remanufacturing the components installed inside the nacelle of multi-megawatt wind turbines and wind turbines manufactured using new components. The study methodology is the following: • Describe the life-cycle and the materials and processes employed for the manufacture and remanufacturing for components inside the nacelle. • Identify remanufacturing alternatives for the components inside the nacelle at the end of the expected life-time service of wind turbines. • Evaluate the environmental impacts from the remanufactured components and compare the results with the impacts of the manufacturing of new components using SimaPro. • Conduct sensitivity analysis over the critical parameters of the life cycle assessment • Propose the most environmentally friendly options for the retirement of each major component of wind turbines. After an analysis of the scenarios the goal of the study is to evaluate remanufacturing as an end-of-life option from an environmental perspective for commercial multi

  6. Climate-driven shift of the tree-line ecotone in the Polar Urals and impacts on land-surface properties

    NASA Astrophysics Data System (ADS)

    Ivanov, V. Y.; Shiyatov, S.; Mazepa, V.

    2013-12-01

    Warming of the Arctic climate has triggered a number of changes in terrestrial physical and biogeochemical systems. One of the eloquent expressions of such changes is an expansion of trees and shrubs into tundra areas. There is an emerging need to understand how changes of land-surface thermal, hydrological, and biogeochemical regimes will impact ecosystems in future as well as the associated feedback mechanisms. This study focuses on the area that has undergone one of the rapidest changes in the forest-tundra alpine areas of the Polar Urals, Russia (66.7N, 65.4E). The prevailing species of this forest-tundra ecotone underlain by continuous permafrost is larch (L. sibirica), a predominant species of the Russian Arctic. Open larch and mixed forests with Siberian spruce (P. obovata) and birch (B. tortuosa) are abundant in the downslope, valley areas. Average frost-free period is 64 days with growing season lasting between mid-June to early August. Based on meteorological record at a station in Salekhard, over the period of 1920-2004, the mean summer temperatures have increased by 0.9 deg. and the mean winter temperatures by 1.2 deg., as compared to the 1883-1920 period. The mean summer precipitation has increased from 146 to 178 mm, while as winter precipitation has grown from 67 to 113 mm. This has resulted in 80-100 m altitudinal expansion of single trees and forest that was accompanied by a marked increase in the vertical and radial tree growth, crown density, and productivity of tree stands. Eleven altitudinal transects 300-1100 m long and 20-80 m wide have been developed for long-term monitoring of spatiotemporal dynamics of communities starting in early 1960s. In order to quantitatively assess changes in the composition, structure, and spatial distribution of the forest-tundra communities, census campaigns of 1960-62, 1999, and 2011 produced detailed mappings of locations of all alive and dead trees, and measurements of their essential allometric

  7. Can Fish Morphological Characteristics be Used to Re-design Hydroelectric Turbines?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cada, G. F.; Richmond, Marshall C.

    2011-07-19

    Safe fish passage affects not only migratory species, but also populations of resident fish by altering biomass, biodiversity, and gene flow. Consequently, it is important to estimate turbine passage survival of a wide range of susceptible fish. Although fish-friendly turbines show promise for reducing turbine passage mortality, experimental data on their beneficial effects are limited to only a few species, mainly salmon and trout. For thousands of untested species and sizes of fish, the particular causes of turbine passage mortality and the benefits of fish-friendly turbine designs remain unknown. It is not feasible to measure the turbine-passage survival of everymore » species of fish in every hydroelectric turbine design. We are attempting to predict fish mortality based on an improved understanding of turbine-passage stresses (pressure, shear stress, turbulence, strike) and information about the morphological, behavioral, and physiological characteristics of different fish taxa that make them susceptible to the stresses. Computational fluid dynamics and blade strike models of the turbine environment are re-examined in light of laboratory and field studies of fish passage effects. Comparisons of model-predicted stresses to measured injuries and mortalities will help identify fish survival thresholds and the aspects of turbines that are most in need of re-design. The coupled model and fish morphology evaluations will enable us to make predictions of turbine-passage survival among untested fish species, for both conventional and advanced turbines, and to guide the design of hydroelectric turbines to improve fish passage survival.« less

  8. An analytical method of estimating turbine performance

    NASA Technical Reports Server (NTRS)

    Kochendorfer, Fred D; Nettles, J Cary

    1949-01-01

    A method is developed by which the performance of a turbine over a range of operating conditions can be analytically estimated from the blade angles and flow areas. In order to use the method, certain coefficients that determine the weight flow and the friction losses must be approximated. The method is used to calculate the performance of the single-stage turbine of a commercial aircraft gas-turbine engine and the calculated performance is compared with the performance indicated by experimental data. For the turbine of the typical example, the assumed pressure losses and the tuning angles give a calculated performance that represents the trends of the experimental performance with reasonable accuracy. The exact agreement between analytical performance and experimental performance is contingent upon the proper selection of a blading-loss parameter.

  9. On the wake of a Darrieus turbine

    NASA Technical Reports Server (NTRS)

    Base, T. E.; Phillips, P.; Robertson, G.; Nowak, E. S.

    1981-01-01

    The theory and experimental measurements on the aerodynamic decay of a wake from high performance vertical axis wind turbine are discussed. In the initial experimental study, the wake downstream of a model Darrieus rotor, 28 cm diameter and a height of 45.5 cm, was measured in a Boundary Layer Wind Tunnel. The wind turbine was run at the design tip speed ratio of 5.5. It was found that the wake decayed at a slower rate with distance downstream of the turbine, than a wake from a screen with similar troposkein shape and drag force characteristics as the Darrieus rotor. The initial wind tunnel results indicated that the vertical axis wind turbines should be spaced at least forty diameters apart to avoid mutual power depreciation greater than ten per cent.

  10. In utero exposure to radiation and haematological malignancies: pooled analysis of Southern Urals cohorts

    PubMed Central

    Schüz, Joachim; Deltour, Isabelle; Krestinina, Lyudmila Y; Tsareva, Yulia V; Tolstykh, Evgenia I; Sokolnikov, Mikhail E; Akleyev, Alexander V

    2017-01-01

    Background: It is scientifically uncertain whether in utero exposure to low-dose ionising radiation increases the lifetime risk of haematological malignancies. Methods: We pooled two cohorts from the Southern Urals comprising offspring of female workers of a large nuclear facility (the Mayak Production Association) and of women living in areas along the Techa River contaminated by nuclear accidents/waste from the same facility, with detailed dosimetry. Results: The combined cohort totalled 19 536 subjects with 700 504 person-years at risk over the period of incidence follow-up, and slightly more over the period of mortality follow-up, yielding 58 incident cases and 36 deaths up to age 61 years. Risk was increased in subjects who received in utero doses of ⩾80 mGy (excess relative risk (ERR): 1.27; 95% confidence interval (CI): −0.20 to 4.71), and the risk increased consistently per 100 mGy of continuous exposure in utero (ERR: 0.77; CI: 0.02 to 2.56). No association was apparent in mortality-based analyses. Results for leukaemia and lymphoma were similar. A very weak positive association was observed between incidence and postnatal exposure. Conclusions: In summary, the results suggest a positive association between in utero exposure to ionising radiation and risk of haematological malignancies, but the small number of outcomes and inconsistent incidence and mortality findings preclude firm conclusions. PMID:27855443

  11. [Development of new type plastics air turbine handpiece for dental use].

    PubMed

    Kusano, M

    1989-06-01

    The noise generated by the metal air turbine handpiece employed in dental practice is considerable and attended with predominant high frequency components. Therefore, investigation of the noise generation mechanism and development of a silent air turbine handpiece was only a matter of course. In addition, the metal air turbine hardpiece is comparatively heavy and its production cost is high. From this point of view as well, production of a light air turbine handpiece at low cost is also desirable. In order to overcome the objections to the metal air turbine handpiece, appropriate plastics materials were employed wherever possible. In this study, the number of revolutions, noise level, frequency analysis, start pressure and weight of newly produced plastics handpieces and metal handpieces were examined and compared. The following results were obtained: 1. The number of revolutions of single-nozzle type air turbine handpieces encased in plastics housings and fitted with metal turbine rotors was higher than that of all-metal air turbine handpieces. The noise level of the former tended to be lower. 2. The number of revolutions of multi-nozzle type air turbine handpieces encased in plastics housings and fitted with turbine rotors with plastics turbine blades was almost equal to that of similar metal handpieces, with the noise level tending to be lower. 3. In the case of handpieces fitted with turbine rotors with dynamic balance, the number of revolutions was high and the noise level was low. This indicated that dynamic balance was a factor affecting the number of revolutions and noise level. 4. Narrow band sound frequency analysis of single-nozzle type air turbine handpieces showed a sharp peak at the fundamental frequency which was the same as the number of revolutions multiplied by the number of rotor turbine blades. It is thought that the noise from air turbine handpieces was aerodynamic in origin, being generated by the periodical interruption of steady air flow by

  12. Locations and attributes of wind turbines in Colorado, 2009

    USGS Publications Warehouse

    Carr, Natasha B.; Diffendorfer, Jay E.; Fancher, Tammy S.; Latysh, Natalie E.; Leib, Kenneth J.; Matherne, Anne-Marie; Turner, Christine

    2011-01-01

    The Colorado wind-turbine data series provides geospatial data for all wind turbines established within the State as of August 2009. Attributes specific to each turbine include: turbine location, manufacturer and model, rotor diameter, hub height, rotor height, potential megawatt output, land ownership, and county. Wind energy facility data for each turbine include: facility name, facility power capacity, number of turbines associated with each facility to date, facility developer, facility ownership, year the facility went online, and development status of wind facility. Turbine locations were derived from August 2009 1-meter true-color aerial photographs produced by the National Agriculture Imagery Program; the photographs have a positional accuracy of about + or - 5 meters. The location of turbines under construction during August 2009 likely will be less accurate than the location of existing turbines. This data series contributes to an Online Interactive Energy Atlas currently (2011) in development by the U.S. Geological Survey. The Energy Atlas will synthesize data on existing and potential energy development in Colorado and New Mexico and will include additional natural resource data layers. This information may be used by decisionmakers to evaluate and compare the potential benefits and tradeoffs associated with different energy development strategies or scenarios. Interactive maps, downloadable data layers, comprehensive metadata, and decision-support tools will be included in the Energy Atlas. The format of the Energy Atlas will facilitate the integration of information about energy with key terrestrial and aquatic resources for evaluating resource values and minimizing risks from energy development.

  13. Tacholess order-tracking approach for wind turbine gearbox fault detection

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Xie, Yong; Xu, Guanghua; Zhang, Sicong; Hou, Chenggang

    2017-09-01

    Monitoring of wind turbines under variable-speed operating conditions has become an important issue in recent years. The gearbox of a wind turbine is the most important transmission unit; it generally exhibits complex vibration signatures due to random variations in operating conditions. Spectral analysis is one of the main approaches in vibration signal processing. However, spectral analysis is based on a stationary assumption and thus inapplicable to the fault diagnosis of wind turbines under variable-speed operating conditions. This constraint limits the application of spectral analysis to wind turbine diagnosis in industrial applications. Although order-tracking methods have been proposed for wind turbine fault detection in recent years, current methods are only applicable to cases in which the instantaneous shaft phase is available. For wind turbines with limited structural spaces, collecting phase signals with tachometers or encoders is difficult. In this study, a tacholess order-tracking method for wind turbines is proposed to overcome the limitations of traditional techniques. The proposed method extracts the instantaneous phase from the vibration signal, resamples the signal at equiangular increments, and calculates the order spectrum for wind turbine fault identification. The effectiveness of the proposed method is experimentally validated with the vibration signals of wind turbines.

  14. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42%more » and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.« less

  15. Numerical simulation of a cross flow Marine Hydrokinetic turbine.

    NASA Astrophysics Data System (ADS)

    Hall, Taylor; Aliseda, Alberto

    2011-11-01

    In the search for alternative sources of energy, the kinetic energy of water currents in oceans, rivers and estuaries is being explored as predictable and environmentally benign. We are investigating the flow past a cross flow turbine in which a helical blade under hydrodynamic forces turns around a shaft perpendicular to the free stream. This type of turbine, while very different from the classical horizontal axis turbine commonly used in the wind energy field, presents advantages for stacking in very narrow constricted channels where the water currents are consistently high and therefore turbine installation may be economically feasible. We use a model of a helical four-bladed turbine in cross flow to investigate the efficiency of the energy capture and the dynamics of the turbulent wake. Scale model experiments in a flume are used to validate the numerical results on a stationary configuration as an initial step towards creating an accurate numerical model of the turbine. The simulation of the rotating turbine provides a full perspective on the effect of angular position on flow detachment and vortex shedding from the blade, as well as on the fluctuations of the shaft torque produced (a problematic feature of this type of turbine). The results are analyzed in terms of hydrodynamic optimization of the blade and its structural loading. Supported by DOE through the Northwest National Marine Renewable Energy Center.

  16. Effects of Offshore Wind Turbines on Ocean Waves

    NASA Astrophysics Data System (ADS)

    Wimer, Nicholas; Churchfield, Matthew; Hamlington, Peter

    2014-11-01

    Wakes from horizontal axis wind turbines create large downstream velocity deficits, thus reducing the available energy for downstream turbines while simultaneously increasing turbulent loading. Along with this deficit, however, comes a local increase in the velocity around the turbine rotor, resulting in increased surface wind speeds. For offshore turbines, these increased speeds can result in changes to the properties of wind-induced waves at the ocean surface. In this study, the characteristics and implications of such waves are explored by coupling a wave simulation code to the Simulator for Offshore Wind Farm Applications (SOWFA) developed by the National Renewable Energy Laboratory. The wave simulator and SOWFA are bi-directionally coupled using the surface wind field produced by an offshore wind farm to drive an ocean wave field, which is used to calculate a wave-dependent surface roughness that is fed back into SOWFA. The details of this combined framework are outlined. The potential for using the wave field created at offshore wind farms as an additional energy resource through the installation of on-site wave converters is discussed. Potential negative impacts of the turbine-induced wave field are also discussed, including increased oscillation of floating turbines.

  17. Quantifying the hurricane risk to offshore wind turbines.

    PubMed

    Rose, Stephen; Jaramillo, Paulina; Small, Mitchell J; Grossmann, Iris; Apt, Jay

    2012-02-28

    The U.S. Department of Energy has estimated that if the United States is to generate 20% of its electricity from wind, over 50 GW will be required from shallow offshore turbines. Hurricanes are a potential risk to these turbines. Turbine tower buckling has been observed in typhoons, but no offshore wind turbines have yet been built in the United States. We present a probabilistic model to estimate the number of turbines that would be destroyed by hurricanes in an offshore wind farm. We apply this model to estimate the risk to offshore wind farms in four representative locations in the Atlantic and Gulf Coastal waters of the United States. In the most vulnerable areas now being actively considered by developers, nearly half the turbines in a farm are likely to be destroyed in a 20-y period. Reasonable mitigation measures--increasing the design reference wind load, ensuring that the nacelle can be turned into rapidly changing winds, and building most wind plants in the areas with lower risk--can greatly enhance the probability that offshore wind can help to meet the United States' electricity needs.

  18. Quantifying the hurricane risk to offshore wind turbines

    PubMed Central

    Rose, Stephen; Jaramillo, Paulina; Small, Mitchell J.; Grossmann, Iris; Apt, Jay

    2012-01-01

    The U.S. Department of Energy has estimated that if the United States is to generate 20% of its electricity from wind, over 50 GW will be required from shallow offshore turbines. Hurricanes are a potential risk to these turbines. Turbine tower buckling has been observed in typhoons, but no offshore wind turbines have yet been built in the United States. We present a probabilistic model to estimate the number of turbines that would be destroyed by hurricanes in an offshore wind farm. We apply this model to estimate the risk to offshore wind farms in four representative locations in the Atlantic and Gulf Coastal waters of the United States. In the most vulnerable areas now being actively considered by developers, nearly half the turbines in a farm are likely to be destroyed in a 20-y period. Reasonable mitigation measures—increasing the design reference wind load, ensuring that the nacelle can be turned into rapidly changing winds, and building most wind plants in the areas with lower risk—can greatly enhance the probability that offshore wind can help to meet the United States’ electricity needs. PMID:22331894

  19. Wake Survey of a Marine Current Turbine Under Steady Conditions

    NASA Astrophysics Data System (ADS)

    Lust, Ethan; Luznik, Luksa; Flack, Karen

    2016-11-01

    A submersible particle image velocimetry (PIV) system was used to study the wake of a horizontal axis marine current turbine. The turbine was tested in a large tow tank facility at the United States Naval Academy. The turbine is a 1/25th scale model of the U.S. National Renewable Energy Laboratory's Reference Model 1 (RM1) tidal turbine. It is a two-bladed turbine measuring 0.8 m in diameter and featuring a NACA 63-618 airfoil cross section. Separate wind tunnel testing has shown the foil section used on the turbine to be Reynolds number independent with respect to lift at the experimental parameters of tow carriage speed (Utow = 1 . 68 m/s) and tip speed ratio (TSR = 7). The wake survey was conducted over an area extending 0.25D forward of the turbine tip path to 2.0D aft, and to a depth of 1.0D beneath the turbine output shaft in the streamwise plane. Each field of view was approximately 30 cm by 30 cm, and each overlapped the adjacent fields of view by 5 cm. The entire flow field was then reconstructed into a single field of investigation. Results include streamwise and vertical ensemble average velocity fields averaged over approximately 1,000 realizations, as well as higher-order statistics. Turbine tip vortex centers were identified and plotted showing increasing aperiodicity with wake age. keywords: horizontal axis marine current turbine, particle image velocimetry, towing tank, wake survey

  20. Mod-0A Wind Turbine in Block Island, Rhode Island

    NASA Image and Video Library

    1979-06-21

    A Mod-0A 200-kilowatt wind turbine designed by National Aeronautics and Space Administration (NASA) Lewis Research Center and constructed in Block Island, Rhode Island. The wind turbine program was a joint program between NASA and the Energy Research and Development Administration (ERDA) during the 1970s to develop less expensive forms of energy. NASA Lewis was assigned the responsibility of developing large horizontal-axis wind turbines. The program included a series of increasingly powerful wind turbines, designated: Mod-0A, Mod-1, WTS-4, and Mod-5. The program’s first device was a Mod-0 100-kilowatt wind turbine test bed at NASA’s Plum Brook Station. This Mod-0A 200-kilowatt turbine, completed in 1977, was the program’s second-generation device. It included a 125-foot diameter blade atop a 100-foot tall tower. This early wind turbine was designed determine its operating problems, integrate with the local utilities, and assess the attitude of the local community. There were additional Mod-0A turbines built in Culebra, Puerto Rico; Clayton, New Mexico; and Oahu, Hawaii. The Mod-0A turbines suffered durability issues with the rotor blade and initially appeared unreliable. NASA engineers addressed the problems, and the turbines proved to be reliable and efficient devices that operated for a number of years. The information gained from these early models was vital to the design and improvement of the later generations.

  1. Backup Mechanical Brake System of the Wind Turbine

    NASA Astrophysics Data System (ADS)

    Sirotkin, E. A.; Solomin, E. V.; Gandzha, S. A.; Kirpichnikova, I. M.

    2018-01-01

    Paper clarifies the necessity of the emergency mechanical brake systems usage for wind turbines. We made a deep analysis of the wind turbine braking methods available on the market, identifying their strengths and weaknesses. The electromechanical braking appeared the most technically reasonable and economically attractive. We described the developed combined electromechanical brake system for vertical axis wind turbine driven from electric drive with variable torque enough to brake over the turbine even on the storm wind speed up to 45 m/s. The progress was made due to the development of specific kinematic brake system diagram and intelligent control system managed by special operation algorithm.

  2. A microscale turbine driven by diffusive mass flux.

    PubMed

    Yang, Mingcheng; Liu, Rui; Ripoll, Marisol; Chen, Ke

    2015-10-07

    An external diffusive mass flux is shown to be able to generate a mechanical torque on a microscale object based on anisotropic diffusiophoresis. In light of this finding, we propose a theoretical prototype micro-turbine driven purely by diffusive mass flux, which is in strong contrast to conventional turbines driven by convective mass flows. The rotational velocity of the proposed turbine is determined by the external concentration gradient, the geometry and the diffusiophoretic properties of the turbine. This scenario is validated by performing computer simulations. Our finding thus provides a new type of chemo-mechanical response which could be used to exploit existing chemical energies at small scales.

  3. New airfoil sections for straight bladed turbine

    NASA Astrophysics Data System (ADS)

    Boumaza, B.

    1987-07-01

    A theoretical investigation of aerodynamic performance for vertical axis Darrieus wind turbine with new airfoils sections is carried out. The blade section aerodynamics characteristics are determined from turbomachines cascade model. The model is also adapted to the vertical Darrieus turbine for the performance prediction of the machine. In order to choose appropriate value of zero-lift-drag coefficient in calculation, an analytical expression is introduced as function of chord-radius ratio and Reynolds numbers. New airfoils sections are proposed and analyzed for straight-bladed turbine.

  4. Quantitative analysis of backflow of reversible pump-turbine in generating mode

    NASA Astrophysics Data System (ADS)

    Liu, K. H.; Zhang, Y. N.; Li, J. W.; Xian, H. Z.

    2016-05-01

    Significant vibration and pressure fluctuations are usually observed when pump- turbine is operated during the off-design conditions, especially turbine brake and runaway. The root cause of these instability phenomena is the abnormal unsteady flow (especially the backflow) inside the pump-turbine. In the present paper, numerical simulation method is adopted to investigate the characteristics of the flow inside the whole passage of pump-turbine with two guide vane openings (6° and 21° respectively) and three kinds of operating conditions (turbine, runaway and turbine braking respectively). A quantitative analysis of backflow is performed in both the axial and radial directions and the generation and development of backflow in the pump turbine are revealed with great details.

  5. Efficient, Low Pressure Ratio Propulsor for Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Gallagher, Edward J. (Inventor); Monzon, Byron R. (Inventor)

    2015-01-01

    A gas turbine engine includes a spool, a turbine coupled to drive the spool, and a propulsor that is coupled to be driven by the turbine through the spool. A gear assembly is coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extends from the hub. The row includes no more than 20 of the propulsor blades.

  6. Efficient, Low Pressure Ratio Propulsor for Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Monzon, Byron R. (Inventor); Gallagher, Edward J. (Inventor)

    2016-01-01

    A gas turbine engine includes a spool, a turbine coupled to drive the spool, and a propulsor that is coupled to be driven by the turbine through the spool. A gear assembly is coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extends from the hub. The row includes no more than 20 of the propulsor blades.

  7. Causes of bat fatalities at wind turbines: Hypotheses and predictions

    USGS Publications Warehouse

    Cryan, P.M.; Barclay, R.M.R.

    2009-01-01

    Thousands of industrial-scale wind turbines are being built across the world each year to meet the growing demand for sustainable energy. Bats of certain species are dying at wind turbines in unprecedented numbers. Species of bats consistently affected by turbines tend to be those that rely on trees as roosts and most migrate long distances. Although considerable progress has been made in recent years toward better understanding the problem, the causes of bat fatalities at turbines remain unclear. In this synthesis, we review hypothesized causes of bat fatalities at turbines. Hypotheses of cause fall into 2 general categoriesproximate and ultimate. Proximate causes explain the direct means by which bats die at turbines and include collision with towers and rotating blades, and barotrauma. Ultimate causes explain why bats come close to turbines and include 3 general types: random collisions, coincidental collisions, and collisions that result from attraction of bats to turbines. The random collision hypothesis posits that interactions between bats and turbines are random events and that fatalities are representative of the bats present at a site. Coincidental hypotheses posit that certain aspects of bat distribution or behavior put them at risk of collision and include aggregation during migration and seasonal increases in flight activity associated with feeding or mating. A surprising number of attraction hypotheses suggest that bats might be attracted to turbines out of curiosity, misperception, or as potential feeding, roosting, flocking, and mating opportunities. Identifying, prioritizing, and testing hypothesized causes of bat collisions with wind turbines are vital steps toward developing practical solutions to the problem. ?? 2009 American Society of Mammalogists.

  8. Investigation of the Effect of the Non-uniform Flow Distribution After Compressor of Gas Turbine Engine on Inlet Parameters of the Turbine

    NASA Astrophysics Data System (ADS)

    Orlov, M. Yu; Lukachev, S. V.; Anisimov, V. M.

    2018-01-01

    The position of combustion chamber between compressor and turbine and combined action of these elements imply that the working processes of all these elements are interconnected. One of the main requirements of the combustion chamber is the formation of the desirable temperature field at the turbine inlet, which can realize necessary durability of nozzle assembly and blade wheel of the first stage of high-pressure turbine. The method of integrated simulation of combustion chamber and neighboring nodes (compressor and turbine) was developed. On the first stage of the study, this method was used to investigate the influence of non-uniformity of flow distribution, occurred after compressor blades on combustion chamber workflow. The goal of the study is to assess the impact of non-uniformity of flow distribution after the compressor on the parameters before the turbine. The calculation was carried out in a transient case for some operation mode of the engine. The simulation showed that the inclusion of compressor has an effect on combustion chamber workflow and allows us to determine temperature field at the turbine inlet and assesses its durability more accurately. In addition, the simulation with turbine showed the changes in flow velocity distribution and pressure in combustion chamber.

  9. Control of large wind turbine generators connected to utility networks

    NASA Technical Reports Server (NTRS)

    Hinrichsen, E. N.

    1983-01-01

    This is an investigation of the control requirements for variable pitch wind turbine generators connected to electric power systems. The requirements include operation in very small as well as very large power systems. Control systems are developed for wind turbines with synchronous, induction, and doubly fed generators. Simulation results are presented. It is shown how wind turbines and power system controls can be integrated. A clear distinction is made between fast control of turbine torque, which is a peculiarity of wind turbines, and slow control of electric power, which is a traditional power system requirement.

  10. Experimental investigation of a supersonic micro turbine running with hexamethyldisiloxane

    NASA Astrophysics Data System (ADS)

    Weiß Andreas, P.; Josef, Hauer; Tobias, Popp; Markus, Preißinger

    2017-09-01

    Experimentally determined efficiency characteristics of a supersonic micro turbine are discussed in the present paper. The micro turbine is a representative of a "micro-turbine-generator-construction-kit" for ORC small scale waste heat recovery. The isentropic total-to-static efficiency of the 12 kW turbine reaches an excellent design point performance of 73.4 %. Furthermore, its off-design operating behavior is very advantageous for small waste heat recovery plants: the turbine efficiency keeps a high level over a wide range of pressure ratio and rotational speed.

  11. Evaluation of Erosion Resistance of Advanced Turbine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Kuczmarski, Maria A.; Miller, Robert A.; Cuy, Michael D.

    2007-01-01

    The erosion resistant turbine thermal barrier coating system is critical to aircraft engine performance and durability. By demonstrating advanced turbine material testing capabilities, we will be able to facilitate the critical turbine coating and subcomponent development and help establish advanced erosion-resistant turbine airfoil thermal barrier coatings design tools. The objective of this work is to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and/or thermal gradient environments, validating advanced turbine airfoil thermal barrier coating systems based on nano-tetragonal phase toughening design approaches.

  12. Tornado type wind turbines

    DOEpatents

    Hsu, Cheng-Ting

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  13. Single-ended counter-rotating radial turbine for space application

    DOEpatents

    Coomes, E.P.; Wilson, D.G.; Webb, B.J.; McCabe, S.J.

    1987-05-13

    A single-ended turbine with counter-rotating blades operating with sodium as the working fluid. The single-ended, counter-rotating feature of the turbine results in zero torque application to a space platform. Thus, maneuvering of the platform is not adversely affected by the turbine. 4 figs.

  14. Phase Resolved Angular Velocity Control of Cross Flow Turbines

    NASA Astrophysics Data System (ADS)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2015-11-01

    Cross flow turbines have a number of operational advantages for the conversion of kinetic energy in marine or fluvial currents, but they are often less efficient than axial flow devices. Here a control scheme is presented in which the angular velocity of a cross flow turbine with two straight blades is prescribed as a function of azimuthal blade position, altering the time-varying effective angle of attack. Flume experiments conducted with a scale model turbine show approximately an 80% increase in turbine efficiency versus optimal constant angular velocity and constant resistive torque control schemes. Torque, drag, and lateral forces on one- and two-bladed turbines are analyzed and interpreted with bubble flow visualization to develop a simple model that describes the hydrodynamics responsible for the observed increase in mean efficiency. Challenges associated with implementing this control scheme on commercial-scale devices are discussed. If solutions are found, the performance increase presented here may impact the future development of cross flow turbines.

  15. Indirect-fired gas turbine dual fuel cell power cycle

    DOEpatents

    Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  16. First International Workshop on Grid Simulator Testing of Wind Turbine

    Science.gov Websites

    of Wind Turbine Drivetrains First International Workshop on Grid Simulator Testing of Wind Turbine Wind Turbine Drivetrains June 13-14, 2013, at the National Wind Technology Center near Boulder apparatuses involved in grid compliance testing of utility-scale wind turbine generators. This includes both

  17. RTOD- RADIAL TURBINE OFF-DESIGN PERFORMANCE ANALYSIS

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1994-01-01

    The RTOD program was developed to accurately predict radial turbine off-design performance. The radial turbine has been used extensively in automotive turbochargers and aircraft auxiliary power units. It is now being given serious consideration for primary powerplant applications. In applications where the turbine will operate over a wide range of power settings, accurate off-design performance prediction is essential for a successful design. RTOD predictions have already illustrated a potential improvement in off-design performance offered by rotor back-sweep for high-work-factor radial turbines. RTOD can be used to analyze other potential performance enhancing design features. RTOD predicts the performance of a radial turbine (with or without rotor blade sweep) as a function of pressure ratio, speed, and stator setting. The program models the flow with the following: 1) stator viscous and trailing edge losses; 2) a vaneless space loss between the stator and the rotor; and 3) rotor incidence, viscous, trailing-edge, clearance, and disk friction losses. The stator and rotor viscous losses each represent the combined effects of profile, endwall, and secondary flow losses. The stator inlet and exit and the rotor inlet flows are modeled by a mean-line analysis, but a sector analysis is used at the rotor exit. The leakage flow through the clearance gap in a pivoting stator is also considered. User input includes gas properties, turbine geometry, and the stator and rotor viscous losses at a reference performance point. RTOD output includes predicted turbine performance over a specified operating range and any user selected flow parameters. The RTOD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 100K of 8 bit bytes. The RTOD program was developed in 1983.

  18. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1994-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  19. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1992-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  20. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1993-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.