Sample records for zc3h14 gene generate

  1. The RNA-binding protein, ZC3H14, is required for proper poly(A) tail length control, expression of synaptic proteins, and brain function in mice.

    PubMed

    Rha, Jennifer; Jones, Stephanie K; Fidler, Jonathan; Banerjee, Ayan; Leung, Sara W; Morris, Kevin J; Wong, Jennifer C; Inglis, George Andrew S; Shapiro, Lindsey; Deng, Qiudong; Cutler, Alicia A; Hanif, Adam M; Pardue, Machelle T; Schaffer, Ashleigh; Seyfried, Nicholas T; Moberg, Kenneth H; Bassell, Gary J; Escayg, Andrew; García, Paul S; Corbett, Anita H

    2017-10-01

    A number of mutations in genes that encode ubiquitously expressed RNA-binding proteins cause tissue specific disease. Many of these diseases are neurological in nature revealing critical roles for this class of proteins in the brain. We recently identified mutations in a gene that encodes a ubiquitously expressed polyadenosine RNA-binding protein, ZC3H14 (Zinc finger CysCysCysHis domain-containing protein 14), that cause a nonsyndromic, autosomal recessive form of intellectual disability. This finding reveals the molecular basis for disease and provides evidence that ZC3H14 is essential for proper brain function. To investigate the role of ZC3H14 in the mammalian brain, we generated a mouse in which the first common exon of the ZC3H14 gene, exon 13 is removed (Zc3h14Δex13/Δex13) leading to a truncated ZC3H14 protein. We report here that, as in the patients, Zc3h14 is not essential in mice. Utilizing these Zc3h14Δex13/Δex13mice, we provide the first in vivo functional characterization of ZC3H14 as a regulator of RNA poly(A) tail length. The Zc3h14Δex13/Δex13 mice show enlarged lateral ventricles in the brain as well as impaired working memory. Proteomic analysis comparing the hippocampi of Zc3h14+/+ and Zc3h14Δex13/Δex13 mice reveals dysregulation of several pathways that are important for proper brain function and thus sheds light onto which pathways are most affected by the loss of ZC3H14. Among the proteins increased in the hippocampi of Zc3h14Δex13/Δex13 mice compared to control are key synaptic proteins including CaMK2a. This newly generated mouse serves as a tool to study the function of ZC3H14 in vivo. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. The Polyadenosine RNA-binding Protein, Zinc Finger Cys3His Protein 14 (ZC3H14), Regulates the Pre-mRNA Processing of a Key ATP Synthase Subunit mRNA*

    PubMed Central

    Wigington, Callie P.; Morris, Kevin J.; Newman, Laura E.; Corbett, Anita H.

    2016-01-01

    Polyadenosine RNA-binding proteins (Pabs) regulate multiple steps in gene expression. This protein family includes the well studied Pabs, PABPN1 and PABPC1, as well as the newly characterized Pab, zinc finger CCCH-type containing protein 14 (ZC3H14). Mutations in ZC3H14 are linked to a form of intellectual disability. To probe the function of ZC3H14, we performed a transcriptome-wide analysis of cells depleted of either ZC3H14 or the control Pab, PABPN1. Depletion of PABPN1 affected ∼17% of expressed transcripts, whereas ZC3H14 affected only ∼1% of expressed transcripts. To assess the function of ZC3H14 in modulating target mRNAs, we selected the gene encoding the ATP synthase F0 subunit C (ATP5G1) transcript. Knockdown of ZC3H14 significantly reduced ATP5G1 steady-state mRNA levels. Consistent with results suggesting that ATP5G1 turnover increases upon depletion of ZC3H14, double knockdown of ZC3H14 and the nonsense-mediated decay factor, UPF1, rescues ATP5G1 transcript levels. Furthermore, fractionation reveals an increase in the amount of ATP5G1 pre-mRNA that reaches the cytoplasm when ZC3H14 is depleted and that ZC3H14 binds to ATP5G1 pre-mRNA in the nucleus. These data support a role for ZC3H14 in ensuring proper nuclear processing and retention of ATP5G1 pre-mRNA. Consistent with the observation that ATP5G1 is a rate-limiting component for ATP synthase activity, knockdown of ZC3H14 decreases cellular ATP levels and causes mitochondrial fragmentation. These data suggest that ZC3H14 modulates pre-mRNA processing of select mRNA transcripts and plays a critical role in regulating cellular energy levels, observations that have broad implications for proper neuronal function. PMID:27563065

  3. The polyadenosine RNA-binding protein ZC3H14 interacts with the THO complex and coordinately regulates the processing of neuronal transcripts.

    PubMed

    Morris, Kevin J; Corbett, Anita H

    2018-06-15

    The polyadenosine RNA-binding protein ZC3H14 is important in RNA processing. Although ZC3H14 is ubiquitously expressed, mutation of the ZC3H14 gene causes a non-syndromic form of intellectual disability. Here, we examine the function of ZC3H14 in the brain by identifying ZC3H14-interacting proteins using unbiased mass spectrometry. Through this analysis, we identified physical interactions between ZC3H14 and multiple RNA processing factors. Notably, proteins that comprise the THO complex were amongst the most enriched proteins. We demonstrate that ZC3H14 physically interacts with THO components and that these proteins are required for proper RNA processing, as loss of ZC3H14 or THO components leads to extended bulk poly(A) tail length. Furthermore, we identified the transcripts Atp5g1 and Psd95 as shared RNA targets of ZC3H14 and the THO complex. Our data suggest that ZC3H14 and the THO complex are important for proper processing of Atp5g1 and Psd95 RNA, as depletion of ZC3H14 or THO components leads to decreased steady-state levels of each mature transcript accompanied by accumulation of Atp5g1 and Psd95 pre-mRNA in the cytoplasm. Taken together, this work provides the first unbiased identification of nuclear ZC3H14-interacting proteins from the brain and links the functions of ZC3H14 and the THO complex in the processing of RNA.

  4. Silica-induced initiation of circular ZC3H4 RNA/ZC3H4 pathway promotes the pulmonary macrophage activation.

    PubMed

    Yang, Xiyue; Wang, Jing; Zhou, Zewei; Jiang, Rong; Huang, Jie; Chen, Lulu; Cao, Zhouli; Chu, Han; Han, Bing; Cheng, Yusi; Chao, Jie

    2018-06-01

    Phagocytosis of silicon dioxide (SiO 2 ) into lung cells causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Circular RNAs (circRNAs) are a subclass of noncoding RNAs that are present within mammalian cells; however, researchers have not determined whether circRNAs are involved in the pathophysiologic process of silicosis. To elucidate the role of these RNAs in SiO 2 -induced inflammation in pulmonary macrophages, we investigated the upstream molecular mechanisms and functional effects of circRNAs on cell apoptosis, proliferation, and migration. Primary cultures of alveolar macrophages from healthy donors and from patients and the RAW264.7 macrophage cell line were used to explore the functions of circZC3H4 RNA in macrophage activation. The experimental results indicated the following: 1) SiO 2 concomitantly increased circZC3H4 RNA expression and increased ZC3H4 protein levels; 2) circular ZC3H4 (circZC3H4) RNA and ZC3H4 protein participated in SiO 2 -induced macrophage activation; and 3) SiO 2 -activated macrophages promoted fibroblast proliferation and migration via the circZC3H4 RNA/ZC3H4 pathway. The up-regulation of the ZC3H4 protein was confirmed in tissue samples from patients with silicosis. Our study elucidates a link between SiO 2 -induced macrophage activation and the circZC3H4 RNA/ZC3H4 pathway, thereby providing novel insight into the potential use of ZC3H4 to develop novel therapeutic strategies for silicosis.-Yang, X., Wang, J., Zhou, Z., Jiang, R., Huang, J., Chen, L., Cao, Z., Chu, H., Han, B., Cheng, Y., Chao, J. Silica-induced initiation of circular ZC3H4 RNA/ZC3H4 pathway promotes the pulmonary macrophage activation.

  5. Knockout of the CCCH zinc finger protein TcZC3H31 blocks Trypanosoma cruzi differentiation into the infective metacyclic form.

    PubMed

    Alcantara, Monica Visnieski; Kessler, Rafael Luis; Gonçalves, Rosana Elisa Gonçalves; Marliére, Newmar Pinto; Guarneri, Alessandra Aparecida; Picchi, Gisele Fernanda Assine; Fragoso, Stenio Perdigão

    2018-04-01

    In the protozoan parasite Trypanosoma cruzi - the causative agent of Chagas disease - gene expression control is mainly post-transcriptional, where RNA-binding proteins (RBPs) play a central role, by controlling mRNA stability, distribution and translation. A large variety of RBPs are encoded in the T. cruzi genome, including the CCCH-type zinc finger (CCCH ZnF) protein family, which is characterized by the presence of the C-X 7/8 -C-X 5 -C-X 3 -H (CCCH) motif. In the related parasite T. brucei, CCCH ZnF proteins have been shown to control key differentiation steps in the parasite's life cycle. However, little is known about the CCCH ZnF proteins in T. cruzi. We have worked on the generation of T. cruzi mutants for CCCH ZnF proteins in an effort to shed light on the functions of these proteins in this parasite. Here, we characterize the expression and function of the CCCH ZnF protein TcZC3H31 of T. cruzi. TcZC3H31 is almost exclusively expressed in epimastigotes and metacyclic trypomastigotes, the parasite forms found in the invertebrate host. Importantly, we show that the epimastigote form of the T. cruzi knockout for the TcZC3H31 gene (TcZC3H31 KO) is incapable, both in vitro and in vivo (in infected triatomine insects), to differentiate into the metacyclic trypomastigote form, which is responsible for infection transmission from vectors to humans. The epimastigote forms recovered from the excreta of insects infected with TcZC3H31 KO parasites do not have the typical epimastigote morphology, suggesting that parasites are arrested in a mid-differentiation step. Also, epimastigotes overexpressing TcZC3H31 differentiate into metacyclics more efficiently than wild-type epimastigotes, in vitro. These data suggest that TcZC3H31 is an essential positive regulator of T. cruzi differentiation into the human-infective metacyclic form. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The CCCH-type zinc finger transcription factor Zc3h8 represses NF-κB-mediated inflammation in digestive organs in zebrafish.

    PubMed

    Zou, Qingliang; Gang, Kai; Yang, Qifen; Liu, Xiaolin; Tang, Xuemei; Lu, Huiqiang; He, Jianbo; Luo, Lingfei

    2018-06-05

    Degenerative diseases of organs lead to their impaired function. The cellular and molecular mechanisms underlying organ degeneration are therefore of great research and clinical interest but are currently incompletely characterized. Here, using a forward-genetic screen for genes regulating liver development and function in zebrafish, we identified a cq5 mutant that exhibited a liver-degeneration phenotype at 5 days post-fertilization, the developmental stage at which a functional liver develops. Positional cloning revealed that the liver degeneration was caused by a single point mutation in the gene zinc finger CCCH-type containing 8 (zc3h8), changing a highly conserved histidine to glutamine at position 353 of the Zc3h8 protein. The zc3h8 mutation-induced liver degeneration in the mutant was accompanied by reduced proliferation, increased apoptosis, and macrophage phagocytosis of hepatocytes. Transcriptional profile analyses revealed up-regulation and activation of both pro-inflammatory cytokines and the NF-κB signaling pathway in the zc3h8 mutant. Suppression of NF-κB signaling activity efficiently rescued the pro-inflammatory cytokine response as well as the inflammation-mediated liver degeneration phenotype of the mutant. Of note, the zc3h8 mutation induced degeneration of several other organs, including the gut and exocrine pancreas, indicating that Zc3h8 is a general repressor of inflammation in zebrafish. Collectively, our findings demonstrate that Zc3h8 maintains organ homeostasis by inhibiting the NF-κB-mediated inflammatory response in zebrafish and that Zc3h8 dysfunction causes degeneration of multiple organs, including the liver, gut, and pancreas. Copyright © 2018, The American Society for Biochemistry and Molecular Biology.

  7. Novel BCOR-MAML3 and ZC3H7B-BCOR Gene Fusions in Undifferentiated Small Blue Round Cell Sarcomas

    PubMed Central

    Specht, Katja; Zhang, Lei; Sung, Yun-Shao; Nucci, Marisa; Dry, Sarah; Vaiyapuri, Sumathi; Richter, Gunther HS; Fletcher, Christopher DM; Antonescu, Cristina R

    2015-01-01

    Small blue round cell tumors (SBRCTs) are a heterogenous group of tumors that are difficult to diagnose due to overlapping morphologic, immunohistochemical and clinical features. About two-thirds of EWSR1-negative SBRCTs are associated with CIC-DUX4 related fusions, while another small subset shows BCOR-CCNB3 X-chromosomal paracentric inversion. Applying paired-end RNA sequencing to an SBRCT index case of a 44 year-old male, we identified a novel BCOR-MAML3 chimeric fusion, which was validated by RT-PCR and FISH techniques. We then screened a total of 75 SBRCTs lacking EWSR1, FUS, SYT, CIC and BCOR-CCNB3 abnormalities, for BCOR break-apart probes by FISH to detect potential recurrent BCOR gene rearrangements, outside the typical X-chromosomal inversion. Indeed, 8/75 (11%) SBRCTs showed distinct BCOR gene rearrangements, with 2 cases each showing either a BCOR-MAML3 or the alternative ZC3H7B-BCOR fusion, while no fusion partner was detected in the remaining 4 cases. Gene expression of the BCOR-MAML3 positive index case showed a distinct transcriptional profile with upregulation of HOX-gene signature, compared to classic Ewing sarcoma or CIC-DUX4-positive SBRCTs. The clinicopathologic features of the SRBCTs with alternative BCOR rearrangements were also compared with a group of BCOR-CCNB3 inversion positive cases, combining 11 from our files with a meta-analysis of 42 published cases. The BCOR-CCNB3-positive tumors occurred preferentially in children and in bone, in contrast to alternative BCOR-rearranged SBRCTs which presented in young adults, with a variable anatomic distribution. Furthermore BCOR-rearranged tumors often displayed spindle cell areas, either well-defined in intersecting fascicles or blending with the round cell component, which appears distinct from most other fusion-positive SBRCTs and shares histologic overlap with poorly differentiated synovial sarcoma. PMID:26752546

  8. Novel BCOR-MAML3 and ZC3H7B-BCOR Gene Fusions in Undifferentiated Small Blue Round Cell Sarcomas.

    PubMed

    Specht, Katja; Zhang, Lei; Sung, Yun-Shao; Nucci, Marisa; Dry, Sarah; Vaiyapuri, Sumathi; Richter, Gunther H S; Fletcher, Christopher D M; Antonescu, Cristina R

    2016-04-01

    Small blue round cell tumors (SBRCTs) are a heterogenous group of tumors that are difficult to diagnose because of overlapping morphologic, immunohistochemical, and clinical features. About two-thirds of EWSR1-negative SBRCTs are associated with CIC-DUX4-related fusions, whereas another small subset shows BCOR-CCNB3 X-chromosomal paracentric inversion. Applying paired-end RNA sequencing to an SBRCT index case of a 44-year-old man, we identified a novel BCOR-MAML3 chimeric fusion, which was validated by reverse transcription polymerase chain reaction and fluorescence in situ hybridization techniques. We then screened a total of 75 SBRCTs lacking EWSR1, FUS, SYT, CIC, and BCOR-CCNB3 abnormalities for BCOR break-apart probes by fluorescence in situ hybridization to detect potential recurrent BCOR gene rearrangements outside the typical X-chromosomal inversion. Indeed, 8/75 (11%) SBRCTs showed distinct BCOR gene rearrangements, with 2 cases each showing either a BCOR-MAML3 or the alternative ZC3H7B-BCOR fusion, whereas no fusion partner was detected in the remaining 4 cases. Gene expression of the BCOR-MAML3-positive index case showed a distinct transcriptional profile with upregulation of HOX-gene signature, compared with classic Ewing's sarcoma or CIC-DUX4-positive SBRCTs. The clinicopathologic features of the SBRCTs with alternative BCOR rearrangements were also compared with a group of BCOR-CCNB3 inversion-positive cases, combining 11 from our files with a meta-analysis of 42 published cases. The BCOR-CCNB3-positive tumors occurred preferentially in children and in bone, in contrast to alternative BCOR-rearranged SBRCTs, which presented in young adults, with a variable anatomic distribution. Furthermore, BCOR-rearranged tumors often displayed spindle cell areas, either well defined in intersecting fascicles or blending with the round cell component, which appears distinct from most other fusion-positive SBRCTs and shares histologic overlap with poorly

  9. ZC4H2 Mutations Are Associated with Arthrogryposis Multiplex Congenita and Intellectual Disability through Impairment of Central and Peripheral Synaptic Plasticity

    PubMed Central

    Hirata, Hiromi; Nanda, Indrajit; van Riesen, Anne; McMichael, Gai; Hu, Hao; Hambrock, Melanie; Papon, Marie-Amélie; Fischer, Ute; Marouillat, Sylviane; Ding, Can; Alirol, Servane; Bienek, Melanie; Preisler-Adams, Sabine; Grimme, Astrid; Seelow, Dominik; Webster, Richard; Haan, Eric; MacLennan, Alastair; Stenzel, Werner; Yap, Tzu Ying; Gardner, Alison; Nguyen, Lam Son; Shaw, Marie; Lebrun, Nicolas; Haas, Stefan A.; Kress, Wolfram; Haaf, Thomas; Schellenberger, Elke; Chelly, Jamel; Viot, Géraldine; Shaffer, Lisa G.; Rosenfeld, Jill A.; Kramer, Nancy; Falk, Rena; El-Khechen, Dima; Escobar, Luis F.; Hennekam, Raoul; Wieacker, Peter; Hübner, Christoph; Ropers, Hans-Hilger; Gecz, Jozef; Schuelke, Markus; Laumonnier, Frédéric; Kalscheuer, Vera M.

    2013-01-01

    Arthrogryposis multiplex congenita (AMC) is caused by heterogeneous pathologies leading to multiple antenatal joint contractures through fetal akinesia. Understanding the pathophysiology of this disorder is important for clinical care of the affected individuals and genetic counseling of the families. We thus aimed to establish the genetic basis of an AMC subtype that is associated with multiple dysmorphic features and intellectual disability (ID). We used haplotype analysis, next-generation sequencing, array comparative genomic hybridization, and chromosome breakpoint mapping to identify the pathogenic mutations in families and simplex cases. Suspected disease variants were verified by cosegregation analysis. We identified disease-causing mutations in the zinc-finger gene ZC4H2 in four families affected by X-linked AMC plus ID and one family affected by cerebral palsy. Several heterozygous females were also affected, but to a lesser degree. Furthermore, we found two ZC4H2 deletions and one rearrangement in two female and one male unrelated simplex cases, respectively. In mouse primary hippocampal neurons, transiently produced ZC4H2 localized to the postsynaptic compartment of excitatory synapses, and the altered protein influenced dendritic spine density. In zebrafish, antisense-morpholino-mediated zc4h2 knockdown caused abnormal swimming and impaired α-motoneuron development. All missense mutations identified herein failed to rescue the swimming defect of zebrafish morphants. We conclude that ZC4H2 point mutations, rearrangements, and small deletions cause a clinically variable broad-spectrum neurodevelopmental disorder of the central and peripheral nervous systems in both familial and simplex cases of both sexes. Our results highlight the importance of ZC4H2 for genetic testing of individuals presenting with ID plus muscle weakness and minor or major forms of AMC. PMID:23623388

  10. A Sub-Element in PRE enhances nuclear export of intronless mRNAs by recruiting the TREX complex via ZC3H18

    PubMed Central

    Chi, Binkai; Wang, Ke; Du, Yanhua; Gui, Bin; Chang, Xingya; Wang, Lantian; Fan, Jing; Chen, She; Wu, Xudong; Li, Guohui; Cheng, Hong

    2014-01-01

    Viral RNA elements that facilitate mRNA export are useful tools for identifying cellular RNA export factors. Here we show that hepatitis B virus post-transcriptional element (PRE) is one such element, and using PRE several new cellular mRNA export factors were identified. We found that PRE drastically enhances the cytoplasmic accumulation of cDNA transcripts independent of any viral protein. Systematic deletion analysis revealed the existence of a 116 nt functional Sub-Element of PRE (SEP1). The RNP that forms on the SEP1 RNA was affinity purified, in which TREX components as well as several other proteins were identified. TREX components and the SEP1-associating protein ZC3H18 are required for SEP1-mediated mRNA export. Significantly, ZC3H18 directly binds to the SEP1 RNA, interacts with TREX and is required for stable association of TREX with the SEP1-containing mRNA. Requirements for SEP1-mediated mRNA export are similar to those for splicing-dependent mRNA export. Consistent with these similarities, several SEP1-interacting proteins, including ZC3H18, ARS2, Acinus and Brr2, are required for efficient nuclear export of polyA RNAs. Together, our data indicate that SEP1 enhances mRNA export by recruiting TREX via ZC3H18. The new mRNA export factors that we identified might be involved in cap- and splicing-dependent TREX recruitment to cellular mRNAs. PMID:24782531

  11. Analgesic activity of ZC88, a novel N-type voltage-dependent calcium channel blocker, and its modulation of morphine analgesia, tolerance and dependence.

    PubMed

    Meng, Ge; Wu, Ning; Zhang, Cheng; Su, Rui-Bin; Lu, Xin-Qiang; Liu, Yin; Yun, Liu-Hong; Zheng, Jian-Quan; Li, Jin

    2008-05-31

    ZC88 is a novel non-peptide N-type voltage-sensitive calcium channel blocker synthesized by our institute. In the present study, the oral analgesic activity of ZC88 in animal models of acute and neuropathic pain, and functional interactions between ZC88 and morphine in terms of analgesia, tolerance and dependence were investigated. In mice acetic acid writhing tests, ZC88 (10-80 mg/kg) administered by oral route showed significant antinociceptive effects in a dose-dependent manner. The ED50 values of ZC88 were 14.5 and 14.3 mg/kg in male and female mice, respectively. In sciatic nerve chronic constriction injury rats, mechanical allodynia was ameliorated by oral administration of ZC88 at doses of 14, 28 and 56 mg/kg, suggesting ZC88 relieved allodynic response of neuropathic pain. When concurrently administered with morphine, ZC88 (20-80 mg/kg) dose-dependently potentiated morphine analgesia and attenuated morphine analgesic tolerance in hot-plate tests. ZC88 also prevented chronic exposure to morphine-induced physical dependence and withdrawal, but not morphine-induced psychological dependence in conditioned place preference model. These results suggested that ZC88, a new non-peptide N-type calcium channel blocker, had notable oral analgesia and anti-allodynia for acute and neuropathic pain. ZC88 might be used in pain relief by either application alone or in combination with opioids because it enhanced morphine analgesia while prevented morphine-induced tolerance and physical dependence.

  12. The ZC3HC1 rs11556924 polymorphism is associated with increased carotid intima-media thickness in patients with rheumatoid arthritis

    PubMed Central

    2013-01-01

    Introduction Rheumatoid arthritis (RA) is a complex polygenic disease associated with chronic inflammation, accelerated atherosclerosis and increased cardiovascular (CV) mortality. A recent meta-analysis has described the ZC3HC1 rs11556924 polymorphism as one of the most important signals associated with coronary artery disease (CAD) in non-rheumatic Caucasian individuals. In this study we evaluated the potential association of this gene polymorphism with subclinical atherosclerosis assessed by the evaluation of carotid intima-media thickness (cIMT) in RA patients. Methods This study included 502 RA patients from Northern Spain. The ZC3HC1 rs11556924 polymorphism was genotyped with TaqMan single-nucleotide polymorphism (SNP) genotyping assays (C__31283062_10) in a 7900HT real-time polymerase chain reaction (PCR) system. cIMT was also assessed in these patients by carotid ultrasonography (US) technology. Results RA patients carrying the TT genotype had significantly higher cIMT values than those homozygous for the CC genotype (mean ± standard deviation (SD): 0.76 ± 0.18 mm and mean ± SD: 0.71 ± 0.16 mm respectively; P = 0.03) even after adjusting the results for sex, age at the time of US study, follow-up time and traditional CV risk factors (P = 0.04) evidencing that the effect conferred by ZC3HC1 rs11556924 polymorphism is independent of the traditional CV risk factors. Conclusion Our results indicate that ZC3HC1 rs11556924 polymorphism is associated with subclinical atherosclerosis in RA. PMID:24286297

  13. Tumor suppressor function of Betaig-H3 gene in radiation carcinogenesis

    NASA Astrophysics Data System (ADS)

    Zhao, Y. L.; Piao, C. Q.; Hei, T. K.

    Interaction between cell and extracellular matrix (ECM) plays a crucial role in tumor invasiveness and metastasis. Using an immortalized human bronchial epithelial (BEP2D) cell model, we showed previously that expression of a list of genes including Betaig-h3 (induced by transforming growth factor-β) DCC (deleted in colorectal cancer), p21 cip1, c-fos , Heat shock protein (HSP27) and cytokeratin 14 were differentially expressed in several independently generated, radiation-induced tumor cell lines (TL1-TL5) relative to parental BEP2D cells. Our previous data further demonstrated that loss of tumor suppressor gene(s) as a likely mechanism of radiation carcinogenesis. In the present study, we chose Betaig-h3 and DCC that were downregulated in tumorigenic cells for further study. Restored expression of Betaig-h3 gene, not DCC gene, by transfecting cDNA into tumor cells resulted in a significant reduction in tumor growth. While integrin receptor α5β1 was overexpressed in tumor cells, its expression was corrected to the level found in control BEP2D cells after Betaig-h3 transfection. These data suggest that Betaig-h3 gene is involved in tumor progression by regulating integrin α5β1 receptor. Furthermore, exogenous TGF-β1 induced expression of Betaig-h3 gene and inhibited the growth of both control and tumorigenic BEP2D cells. Therefore, downregulation of Betaig-h3 gene may results from the decreased expression of upstream mediators such as TGF-β. The findings provide strong evidence that the Betaig-h3 gene has tumor suppressor function in radiation-induced tumorigenic human bronchial epithelial cells and suggest a potential target for interventional therapy.

  14. Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Arabidopsis.

    PubMed

    Wang, Likai; Zhang, Fan; Rode, Siddharth; Chin, Kevin K; Ko, Eun Esther; Kim, Jonghwan; Iyer, Vishwanath R; Qiao, Hong

    2017-07-17

    Histone acetylation and deacetylation are essential for gene regulation and have been implicated in the regulation of plant hormone responses. Many studies have indicated the role of histone acetylation in ethylene signaling; however, few studies have investigated how ethylene signaling regulates the genomic landscape of chromatin states. Recently, we found that ethylene can specifically elevate histone H3K14 acetylation and the non-canonical histone H3K23 acetylation in etiolated seedlings and the gene activation is positively associated with the elevation of H3K14Ac and H3K23Ac in response to ethylene. To assess the role of H3K9, H3K14, and H3K23 histone modifications in the ethylene response, we examined how ethylene regulates histone acetylation and the transcriptome at global level and in ethylene regulated genes both in wild type (Col-0) and ein2-5 seedlings. Our results revealed that H3K9Ac, H3K14Ac, and H3K23Ac are preferentially enriched around the transcription start sites and are positively correlated with gene expression levels in Col-0 and ein2-5 seedlings both with and without ethylene treatment. In the absence of ethylene, no combinatorial effect of H3K9Ac, H3K14Ac, and H3K23Ac on gene expression was detected. In the presence of ethylene, however, combined enrichment of the three histone acetylation marks was associated with high gene expression levels, and this ethylene-induced change was EIN2 dependent. In addition, we found that ethylene-regulated genes are expressed at medium or high levels, and a group of ethylene regulated genes are marked by either one of H3K9Ac, H3K14Ac or H3K23Ac. In this group of genes, the levels of H3K9Ac were altered by ethylene, but in the absence of ethylene the levels of H3K9Ac and peak breadths are distinguished in up- and down- regulated genes. In the presence of ethylene, the changes in the peak breadths and levels of H3K14Ac and H3K23Ac are required for the alteration of gene expressions. Our study reveals that

  15. Systematic study of Zc+ family from a multiquark color flux-tube model

    NASA Astrophysics Data System (ADS)

    Deng, Chengrong; Ping, Jialun; Huang, Hongxia; Wang, Fan

    2015-08-01

    Inspired by the present experimental results of charged charmonium-like states Zc+, we present a systematic study of the tetraquark states [c u ][c ¯ d ¯ ] in a color flux-tube model with a multibody confinement potential. Our investigation indicates that charged charmonium-like states Zc+(3900 ) or Zc+(3885 ), Zc+(3930 ) , Zc+(4020 ) or Zc+(4025 ), Z1+(4050 ), Z2+(4250 ), and Zc+(4200 ) can be described as a family of tetraquark [c u ][c ¯d ¯] states with the quantum numbers n 2SL+1 J and JP of 1 3S1 and 1+, 2 3S1 and 1+, 1 5S2 and 2+, 1 3P1 and 1-, 1 5D1 and 1+, and 1 3D1 and 1+, respectively. The predicted lowest mass charged tetraquark state [c u ][c ¯ d ¯ ] with 0+ and 1 1S0 lies at 3780 ±10 MeV /c2 in the model. These tetraquark states have compact three-dimensional spatial configurations similar to a rugby ball with higher orbital angular momentum L between the diquark [c u ] and antidiquark [c ¯d ¯] corresponding to a more prolate spatial distribution. The multibody color flux tube, a collective degree of freedom, plays an important role in the formation of those charged tetraquark states. However, the two heavier charged states Zc+(4430 ) and Zc+(4475 ) cannot be explained as tetraquark states [c u ][c ¯d ¯] in this model approach.

  16. Experimental results on Zc(3900)

    NASA Astrophysics Data System (ADS)

    Shen, C. P.

    2015-10-01

    This report reviewed the recently discovered Zc(3900) at around 3.9 GeV/c2 in the π±J/ψ mass spectrum by the Belle and BESIII collaborations simultaneously. Belle collaboration observed it in the process e+e- → π+π- J/ψ within the Y (4260) signal region with a 967 fb-1 data sample using initial-stateradiation technology. BESIII collaboration discovered it in the same process at a fixed center-of-mass energy of 4.260 GeV using a 525 pb-1 data sample. The measured resonance masses and widths from Belle and BESIII measurements are consistent with each other within the errors. The Zc(3900) can be interpreted as a new charged charmonium-like state.

  17. Genome-wide association analysis in East Asians identifies breast cancer susceptibility loci at 1q32.1, 5q14.3 and 15q26.1.

    PubMed

    Cai, Qiuyin; Zhang, Ben; Sung, Hyuna; Low, Siew-Kee; Kweon, Sun-Seog; Lu, Wei; Shi, Jiajun; Long, Jirong; Wen, Wanqing; Choi, Ji-Yeob; Noh, Dong-Young; Shen, Chen-Yang; Matsuo, Keitaro; Teo, Soo-Hwang; Kim, Mi Kyung; Khoo, Ui Soon; Iwasaki, Motoki; Hartman, Mikael; Takahashi, Atsushi; Ashikawa, Kyota; Matsuda, Koichi; Shin, Min-Ho; Park, Min Ho; Zheng, Ying; Xiang, Yong-Bing; Ji, Bu-Tian; Park, Sue K; Wu, Pei-Ei; Hsiung, Chia-Ni; Ito, Hidemi; Kasuga, Yoshio; Kang, Peter; Mariapun, Shivaani; Ahn, Sei Hyun; Kang, Han Sung; Chan, Kelvin Y K; Man, Ellen P S; Iwata, Hiroji; Tsugane, Shoichiro; Miao, Hui; Liao, Jiemin; Nakamura, Yusuke; Kubo, Michiaki; Delahanty, Ryan J; Zhang, Yanfeng; Li, Bingshan; Li, Chun; Gao, Yu-Tang; Shu, Xiao-Ou; Kang, Daehee; Zheng, Wei

    2014-08-01

    In a three-stage genome-wide association study among East Asian women including 22,780 cases and 24,181 controls, we identified 3 genetic loci newly associated with breast cancer risk, including rs4951011 at 1q32.1 (in intron 2 of the ZC3H11A gene; P=8.82×10(-9)), rs10474352 at 5q14.3 (near the ARRDC3 gene; P=1.67×10(-9)) and rs2290203 at 15q26.1 (in intron 14 of the PRC1 gene; P=4.25×10(-8)). We replicated these associations in 16,003 cases and 41,335 controls of European ancestry (P=0.030, 0.004 and 0.010, respectively). Data from the ENCODE Project suggest that variants rs4951011 and rs10474352 might be located in an enhancer region and transcription factor binding sites, respectively. This study provides additional insights into the genetics and biology of breast cancer.

  18. Genome-wide association analysis in East Asians identifies breast cancer susceptibility loci at 1q32.1, 5q14.3 and 15q26.1

    PubMed Central

    Cai, Qiuyin; Zhang, Ben; Sung, Hyuna; Low, Siew-Kee; Kweon, Sun-Seog; Lu, Wei; Shi, Jiajun; Long, Jirong; Wen, Wanqing; Choi, Ji-Yeob; Noh, Dong-Young; Shen, Chen-Yang; Matsuo, Keitaro; Teo, Soo-Hwang; Kim, Mi Kyung; Khoo, Ui Soon; Iwasaki, Motoki; Hartman, Mikael; Takahashi, Atsushi; Ashikawa, Kyota; Matsuda, Koichi; Shin, Min-Ho; Park, Min Ho; Zheng, Ying; Xiang, Yong-Bing; Ji, Bu-Tian; Park, Sue K.; Wu, Pei-Ei; Hsiung, Chia-Ni; Ito, Hidemi; Kasuga, Yoshio; Kang, Peter; Mariapun, Shivaani; Ahn, Sei Hyun; Kang, Han Sung; Chan, Kelvin Y. K.; Man, Ellen P. S.; Iwata, Hiroji; Tsugane, Shoichiro; Miao, Hui; Liao, Jiemin; Nakamura, Yusuke; Kubo, Michiaki; Delahanty, Ryan J.; Zhang, Yanfeng; Li, Bingshan; Li, Chun; Gao, Yu-Tang; Shu, Xiao-Ou; Kang, Daehee; Zheng, Wei

    2014-01-01

    In a three-stage genome-wide association study among East Asian women including 22,780 cases and 24,181 controls, we identified three novel genetic loci associated with breast cancer risk, including rs4951011 at 1q32.1 (in intron 2 of the ZC3H11A gene, P = 8.82 × 10−9), rs10474352 at 5q14.3 (near the ARRDC3 gene, P = 1.67 × 10−9), and rs2290203 at 15q26.1 (in intron 14 of the PRC1 gene, P = 4.25 × 10−8). These associations were replicated in European-ancestry populations including 16,003 cases and 41,335 controls (P = 0.030, 0.004, and 0.010, respectively). Data from the ENCODE project suggest that variants rs4951011 and rs10474352 may be located in an enhancer region and transcription factor binding sites, respectively. This study provides additional insights into the genetics and biology of breast cancer. PMID:25038754

  19. The histone H3 variant H3.3 regulates gene body DNA methylation in Arabidopsis thaliana.

    PubMed

    Wollmann, Heike; Stroud, Hume; Yelagandula, Ramesh; Tarutani, Yoshiaki; Jiang, Danhua; Jing, Li; Jamge, Bhagyshree; Takeuchi, Hidenori; Holec, Sarah; Nie, Xin; Kakutani, Tetsuji; Jacobsen, Steven E; Berger, Frédéric

    2017-05-18

    Gene bodies of vertebrates and flowering plants are occupied by the histone variant H3.3 and DNA methylation. The origin and significance of these profiles remain largely unknown. DNA methylation and H3.3 enrichment profiles over gene bodies are correlated and both have a similar dependence on gene transcription levels. This suggests a mechanistic link between H3.3 and gene body methylation. We engineered an H3.3 knockdown in Arabidopsis thaliana and observed transcription reduction that predominantly affects genes responsive to environmental cues. When H3.3 levels are reduced, gene bodies show a loss of DNA methylation correlated with transcription levels. To study the origin of changes in DNA methylation profiles when H3.3 levels are reduced, we examined genome-wide distributions of several histone H3 marks, H2A.Z, and linker histone H1. We report that in the absence of H3.3, H1 distribution increases in gene bodies in a transcription-dependent manner. We propose that H3.3 prevents recruitment of H1, inhibiting H1's promotion of chromatin folding that restricts access to DNA methyltransferases responsible for gene body methylation. Thus, gene body methylation is likely shaped by H3.3 dynamics in conjunction with transcriptional activity.

  20. Histone H3 Lysine 14 (H3K14) Acetylation Facilitates DNA Repair in a Positioned Nucleosome by Stabilizing the Binding of the Chromatin Remodeler RSC (Remodels Structure of Chromatin)*

    PubMed Central

    Duan, Ming-Rui; Smerdon, Michael J.

    2014-01-01

    Histone H3 acetylation is induced by UV damage in yeast and may play an important role in regulating the repair of UV photolesions in nucleosome-loaded genomic loci. However, it remains elusive how H3 acetylation facilitates repair. We generated a strongly positioned nucleosome containing homogeneously acetylated H3 at Lys-14 (H3K14ac) and investigated possible mechanisms by which H3K14 acetylation modulates repair. We show that H3K14ac does not alter nucleosome unfolding dynamics or enhance the repair of UV-induced cyclobutane pyrimidine dimers by UV photolyase. Importantly, however, nucleosomes with H3K14ac have a higher affinity for purified chromatin remodeling complex RSC (Remodels the Structure of Chromatin) and show greater cyclobutane pyrimidine dimer repair compared with unacetylated nucleosomes. Our study indicates that, by anchoring RSC, H3K14 acetylation plays an important role in the unfolding of strongly positioned nucleosomes during repair of UV damage. PMID:24515106

  1. The matrix peptide exporter HAF-1 signals a mitochondrial unfolded protein response by activating the transcription factor ZC376.7 in C. elegans

    PubMed Central

    Haynes, Cole M.; Yang, Yun; Blais, Steven P.; Neubert, Thomas A.; Ron, David

    2010-01-01

    Summary Genetic analyses previously implicated the matrix-localized protease ClpP in signaling the stress of protein misfolding in the mitochondrial matrix to activate nuclear encoded mitochondrial chaperone genes in C. elegans (UPRmt). Here we report that haf-1, a gene encoding a mitochondria-localized ATP-binding cassette protein, is required for signaling within the UPRmt and for coping with misfolded protein stress. Peptide efflux from isolated mitochondria was ATP-dependent and required HAF-1 and the protease ClpP. Defective UPRmt signaling in the haf-1 deleted worms was associated with failure of the bZIP protein, ZC376.7, to localize to nuclei in worms with perturbed mitochondrial protein folding, whereas zc376.7(RNAi) strongly inhibited the UPRmt. These observations suggest a simple model whereby perturbation of the protein-folding environment in the mitochondrial matrix promotes ClpP-mediated generation of peptides whose haf-1-dependent export from the matrix contributes to UPRmt signaling across the mitochondrial inner membrane. PMID:20188671

  2. Identification and Characterization of Switchgrass Histone H3 and CENH3 Genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Jiamin; Frazier, Taylor; Huang, Linkai

    Switchgrass is one of the most promising energy crops and only recently has been employed for biofuel production. The draft genome of switchgrass was recently released; however, relatively few switchgrass genes have been functionally characterized. CENH3, the major histone protein found in centromeres, along with canonical H3 and other histones, plays an important role in maintaining genome stability and integrity. Despite their importance, the histone H3 genes of switchgrass have remained largely uninvestigated. In this study, we identified 17 putative switchgrass histone H3 genes in silico. Of these genes, 15 showed strong homology to histone H3 genes including six H3.1more » genes, three H3.3 genes, four H3.3-like genes and two H3.1-like genes. The remaining two genes were found to be homologous to CENH3. RNA-seq data derived from lowland cultivar Alamo and upland cultivar Dacotah allowed us to identify SNPs in the histone H3 genes and compare their differential gene expression. Interestingly, we also found that overexpression of switchgrass histone H3 and CENH3 genes in N. benthamiana could trigger cell death of the transformed plant cells. Localization and deletion analyses of the histone H3 and CENH3 genes revealed that nuclear localization of the N-terminal tail is essential and sufficient for triggering the cell death phenotype. Lastly, our results deliver insight into the mechanisms underlying the histone-triggered cell death phenotype and provide a foundation for further studying the variations of the histone H3 and CENH3 genes in switchgrass.« less

  3. Identification and Characterization of Switchgrass Histone H3 and CENH3 Genes

    DOE PAGES

    Miao, Jiamin; Frazier, Taylor; Huang, Linkai; ...

    2016-07-12

    Switchgrass is one of the most promising energy crops and only recently has been employed for biofuel production. The draft genome of switchgrass was recently released; however, relatively few switchgrass genes have been functionally characterized. CENH3, the major histone protein found in centromeres, along with canonical H3 and other histones, plays an important role in maintaining genome stability and integrity. Despite their importance, the histone H3 genes of switchgrass have remained largely uninvestigated. In this study, we identified 17 putative switchgrass histone H3 genes in silico. Of these genes, 15 showed strong homology to histone H3 genes including six H3.1more » genes, three H3.3 genes, four H3.3-like genes and two H3.1-like genes. The remaining two genes were found to be homologous to CENH3. RNA-seq data derived from lowland cultivar Alamo and upland cultivar Dacotah allowed us to identify SNPs in the histone H3 genes and compare their differential gene expression. Interestingly, we also found that overexpression of switchgrass histone H3 and CENH3 genes in N. benthamiana could trigger cell death of the transformed plant cells. Localization and deletion analyses of the histone H3 and CENH3 genes revealed that nuclear localization of the N-terminal tail is essential and sufficient for triggering the cell death phenotype. Lastly, our results deliver insight into the mechanisms underlying the histone-triggered cell death phenotype and provide a foundation for further studying the variations of the histone H3 and CENH3 genes in switchgrass.« less

  4. Post-Transcriptional Regulation of the Trypanosome Heat Shock Response by a Zinc Finger Protein

    PubMed Central

    Droll, Dorothea; Minia, Igor; Fadda, Abeer; Singh, Aditi; Stewart, Mhairi; Queiroz, Rafael; Clayton, Christine

    2013-01-01

    In most organisms, the heat-shock response involves increased heat-shock gene transcription. In Kinetoplastid protists, however, virtually all control of gene expression is post-transcriptional. Correspondingly, Trypanosoma brucei heat-shock protein 70 (HSP70) synthesis after heat shock depends on regulation of HSP70 mRNA turnover. We here show that the T. brucei CCCH zinc finger protein ZC3H11 is a post-transcriptional regulator of trypanosome chaperone mRNAs. ZC3H11 is essential in bloodstream-form trypanosomes and for recovery of insect-form trypanosomes from heat shock. ZC3H11 binds to mRNAs encoding heat-shock protein homologues, with clear specificity for the subset of trypanosome chaperones that is required for protein refolding. In procyclic forms, ZC3H11 was required for stabilisation of target chaperone-encoding mRNAs after heat shock, and the HSP70 mRNA was also decreased upon ZC3H11 depletion in bloodstream forms. Many mRNAs bound to ZC3H11 have a consensus AUU repeat motif in the 3′-untranslated region. ZC3H11 bound preferentially to AUU repeats in vitro, and ZC3H11 regulation of HSP70 mRNA in bloodstream forms depended on its AUU repeat region. Tethering of ZC3H11 to a reporter mRNA increased reporter expression, showing that it is capable of actively stabilizing an mRNA. These results show that expression of trypanosome heat-shock genes is controlled by a specific RNA-protein interaction. They also show that heat-shock-induced chaperone expression in procyclic trypanosome enhances parasite survival at elevated temperatures. PMID:23592996

  5. Determination of the Spin and Parity of the Zc(3900 )

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fedorov, O.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Y.; Huang, Z. L.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, J. J.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2017-08-01

    The spin and parity of the Zc(3900)± state are determined to be JP=1+ with a statistical significance larger than 7 σ over other quantum numbers in a partial wave analysis of the process e+e-→π+π-J /ψ . We use a data sample of 1.92 fb-1 accumulated at √{s }=4.23 and 4.26 GeV with the BESIII experiment. When parametrizing the Zc(3900)± with a Flatté-like formula, we determine its pole mass Mpole=(3881.2 ±4. 2stat±52. 7syst) MeV /c2 and pole width Γpole=(51.8 ±4.6stat±36.0syst) MeV . We also measure cross sections for the process e+e-→Zc(3900 )+π-+c .c .→J /ψ π+π- and determine an upper limit at the 90% confidence level for the process e+e-→Zc(4020 )+π-+c .c .→J /ψ π+π- .

  6. Comparative and evolutionary analysis of the 14-3-3 family genes in eleven fishes.

    PubMed

    Cao, Jun; Tan, Xiaona

    2018-07-01

    14-3-3 proteins are a type of highly conserved acidic proteins, which are distributed over a wide variety of organisms and are involved in multiple cellular processes. While the comparative and evolutionary analysis of this gene family is unavailable in various fish species. In this study, we identified 101 putative 14-3-3 genes in 11 fish species and divided them into 5 groups via phylogenetic analysis. Synteny analysis implied conserved and dynamic evolution characteristics near the 14-3-3 gene loci in some vertebrates. We also found that some recombination events have accelerated the evolution of this gene family. Moreover, a positive selection site was also identified, and mutation of this site could reduce the 14-3-3 stability. Divergent expression profiles of the zebrafish 14-3-3 genes were further investigated under organophosphorus stress, suggesting that they may be involved in the different osmoregulation and immune response. The results will serve as a foundation for the further functional investigation into the 14-3-3 genes in fishes. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d

    PubMed Central

    Knuckles, Philip; Lence, Tina; Haussmann, Irmgard U.; Jacob, Dominik; Kreim, Nastasja; Carl, Sarah H.; Masiello, Irene; Hares, Tina; Villaseñor, Rodrigo; Hess, Daniel; Andrade-Navarro, Miguel A.; Biggiogera, Marco; Helm, Mark; Soller, Matthias; Bühler, Marc; Roignant, Jean-Yves

    2018-01-01

    N6-methyladenosine (m6A) is the most abundant mRNA modification in eukaryotes, playing crucial roles in multiple biological processes. m6A is catalyzed by the activity of methyltransferase-like 3 (Mettl3), which depends on additional proteins whose precise functions remain poorly understood. Here we identified Zc3h13 (zinc finger CCCH domain-containing protein 13)/Flacc [Fl(2)d-associated complex component] as a novel interactor of m6A methyltransferase complex components in Drosophila and mice. Like other components of this complex, Flacc controls m6A levels and is involved in sex determination in Drosophila. We demonstrate that Flacc promotes m6A deposition by bridging Fl(2)d to the mRNA-binding factor Nito. Altogether, our work advances the molecular understanding of conservation and regulation of the m6A machinery. PMID:29535189

  8. Metabolism of D-[1-3H]glucose, D-[2-3H]glucose, D-[5-3H]glucose, D-[6-3H]glucose and D-[U-14C]glucose by rat and human erythrocytes incubated in the presence of H2O or D2O.

    PubMed

    Conget, I; Malaisse, W J

    1995-02-01

    The present study investigates whether heavy water affects the efficiency of 3HOH production from D-[1-3H]glucose, D-[2-3H]glucose, D-[5-3H]glucose and D-[6-3H]glucose relative to the total generation of tritiated metabolites produced by either rat or human erythrocytes. The relative 3HOH yield was close to 95% with D-[5-3H]glucose, 72% with D-[2-3H]glucose, 22-32% with D-[1-3H]glucose, and only 12% with D-[6-3H]glucose. In the latter case, the comparison of the specific radioactivity of intracellular and extracellular acidic metabolites, expressed relative to that of 14C-labelled metabolites produced from D-[U-14C]glucose, indicated that the generation of 3HOH from D-[6-3H]glucose occurs at distal metabolic steps, such as the partial reversion of the pyruvate kinase reaction or the interconversion of pyruvate and L-alanine in the reaction catalysed by glutamate-pyruvate transaminase. As a rule, the substitution of H2O by D2O only caused minor to negligible changes in the relative 3HOH yield. This implies that the unexpectedly high deuteration of 13C-labelled D-glucose metabolites recently documented in erythrocytes exposed to D2O cannot be attributed to any major interference of heavy water with factors regulating both the deuteration and detritiation efficiency, such as the enzyme-to-enzyme tunnelling of specific glycolytic intermediates.

  9. Tumor suppression function of the Big-h3 gene in radiation carcinogenesis

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Piao, C.; Hei, T.

    Interaction between cell and extracellular matrix (ECM) plays a crucial role in tumor invasiveness and metastasis. Using an immortalized human bronchial epithelial (BEP2D) cell model, we show here that expression of Big-h3 gene, a secreted adhesion molecule induced by transforming growth factor- beta (TGF-beta ), is markedly decreased in independently generated, high LET radiation-induced tumor cell lines (TL1-TL5) relative to parental BEP2D cells. Expression of this gene was restored to control level in fusion cell lines between the tumorigenic and parental BEP2D cells that were no longer tumorigenic in nude mice. Transfection of Big-h3 gene into tumor cells resulted in a significant reduction of tumor growth. While integrin receptor alpha 5/beta 1 was overexpressed in tumor cells, its expression was corrected to the level of control BEP2D cells after Big-h3 transfection. These data suggest that Big-h3 is involved in tumor progression by regulating integrin receptor alpha 5/beta 1. . WWee We further show that down regulation of Big-h3 results from loss of expression of TGFbeta1 in tumor cells. The findings provide strong evidence that the Big-h3 gene has tumor suppressor function in radiation induced tumorigenic human bronchial epithelial cells and suggest a potential target for interventional therapy.

  10. Z_c(3900): confronting theory and lattice simulations

    NASA Astrophysics Data System (ADS)

    Albaladejo, Miguel; Fernandez-Soler, Pedro; Nieves, Juan

    2016-10-01

    We consider a recent T-matrix analysis by Albaladejo et al. (Phys Lett B 755:337, 2016), which accounts for the J/ψ π and D^*bar{D} coupled-channels dynamics, and which successfully describes the experimental information concerning the recently discovered Z_c(3900)^± . Within such scheme, the data can be similarly well described in two different scenarios, where Z_c(3900) is either a resonance or a virtual state. To shed light into the nature of this state, we apply this formalism in a finite box with the aim of comparing with recent Lattice QCD (LQCD) simulations. We see that the energy levels obtained for both scenarios agree well with those obtained in the single-volume LQCD simulation reported in Prelovsek et al. (Phys Rev D 91:014504, 2015), thus making it difficult to disentangle the two possibilities. We also study the volume dependence of the energy levels obtained with our formalism and suggest that LQCD simulations performed at several volumes could help in discerning the actual nature of the intriguing Z_c(3900) state.

  11. Cochlear Modeling Using Time-Averaged Lagrangian" Method:. Comparison with VBM, PST, and ZC Measurements

    NASA Astrophysics Data System (ADS)

    Yoon, Y.; Kim, N.; Puria, S.; Steele, C. R.

    2009-02-01

    In this work, basilar membrane velocity (VBM), scala tympani intracochlear pressure (PST), and cochlear input impedances (Zc) for gerbil and chinchilla are implemented using a three-dimensional hydro-dynamic cochlear model using 1) time-averaged Lagrangian, 2) push-pull mechanism in active case, and 3) the complex anatomy of cochlear scalae by micro computed tomography (μCT) scanning and 3-D reconstructions of gerbil and chinchilla temporal bones. The objective of this work is to compare the calculations and the physiological measurements of gerbil and chinchilla cochlear such as VBM (Ren and Nuttall [1]), PST (Olson [2]), and ZC (Decraemer et al. [3], Songer and Rosowski [4], Ruggero et al. [5]) with present model. A WKB asymptotic method combined with Fourier series expansions is used to provide an efficient simulation. VBM and PST simulation results for the gerbil cochlea show good agreement both in the magnitude and the phase for the physiological measurements without larger phase excursion. ZC simulation from the gerbil and chinchilla model show reasonably good agreement with measurement.

  12. The 14-3-3σ gene promoter is methylated in both human melanocytes and melanoma

    PubMed Central

    2009-01-01

    Background Recent evidence demonstrates that 14-3-3σ acts as a tumor suppressor gene inactivated by methylation of its 5' CpG islands in epithelial tumor cells, while remaining un-methylated in normal human epithelia. The methylation analysis of 14-3-3σ has been largely overlooked in melanoma. Methods The methylation status of 14-3-3σ CpG island in melanocytes and melanoma cells was analyzed by methylation-specific sequencing (MSS) and quantitative methylation-specific PCR (Q-MSP). 14-3-3σ mRNA and protein expression in cell lines was detected by real-time RT-PCR and western blot. Melanoma cells were also treated by 5-aza-2'-deoxycytidine (DAC), a demethylating agent, and/or histone deacetylase inhibitor, Trichostatin A (TSA), to evaluate their effects on 14-3-3σ gene expression. Results 14-3-3σ is hypermethylated in both human melanocytes and most melanoma cells in a lineage-specific manner, resulting in the silencing of 14-3-3σ gene expression and the active induction of 14-3-3σ mRNA and protein expression following treatment with DAC. We also observed a synergistic effect upon gene expression when DAC was combined with TSA. The promoter methylation status of 14-3-3σ was analyzed utilizing Q-MSP in 20 melanoma tissue samples and 10 cell lines derived from these samples, showing that the majority of melanoma samples maintain their hypermethylation status of the 14-3-3σ gene. Conclusion 14-3-3σ is hypermethylated in human melanoma in a cell-linage specific manner. Spontaneous demethylation and re-expression of 14-3-3σ is a rare event in melanoma, indicating 14-3-3σ might have a tentative role in the pathogenesis of melanoma. PMID:19473536

  13. Treating Zc(3900 ) and Z (4430 ) as the ground state and first radially excited tetraquarks

    NASA Astrophysics Data System (ADS)

    Agaev, S. S.; Azizi, K.; Sundu, H.

    2017-08-01

    Exploration of the resonances Zc(3900 ) and Z (4430 ) are performed by assuming that they are the ground state and first radial excitation of the same tetraquark with JP=1+. The mass and current coupling of the Zc(3900 ) and Z (4430 ) states are calculated using the QCD two-point sum rule method by taking into account vacuum condensates up to eight dimensions. We investigate the vertices ZcMhMl and Z MhMl, with Mh and Ml being the heavy and light mesons and evaluate the strong couplings gZcMhMl and gZ MhMl using the QCD sum rule on the light cone. The extracted couplings allow us to find the partial width of the decays Zc(3900 )→J /ψ π , ψ'π , ηcρ and Z (4430 )→ψ'π , J /ψ π , ηc'ρ , ηcρ , which may help in comprehensive investigation of these resonances. We compare the width of the decays of Zc(3900 ) and Z (4430 ) resonances with available experimental data as well as existing theoretical predictions.

  14. H3K27me3 and H3K4me3 chromatin environment at super-induced dehydration stress memory genes of Arabidopsis thaliana.

    PubMed

    Liu, Ning; Fromm, Michael; Avramova, Zoya

    2014-03-01

    Pre-exposure to a stress may alter the plant's cellular, biochemical, and/or transcriptional responses during future encounters as a 'memory' from the previous stress. Genes increasing transcription in response to a first dehydration stress, but producing much higher transcript levels in a subsequent stress, represent the super-induced 'transcription memory' genes in Arabidopsis thaliana. The chromatin environment (histone H3 tri-methylations of Lys 4 and Lys 27, H3K4me3, and H3K27me3) studied at five dehydration stress memory genes revealed existence of distinct memory-response subclasses that responded differently to CLF deficiency and displayed different transcriptional activities during the watered recovery periods. Among the most important findings is the novel aspect of the H3K27me3 function observed at specific dehydration stress memory genes. In contrast to its well-known role as a chromatin repressive mechanism at developmentally regulated genes, H3K27me3 did not prevent transcription from the dehydration stress-responding genes. The high H3K27me3 levels present during transcriptionally inactive states did not interfere with the transition to active transcription and with H3K4me3 accumulation. H3K4me3 and H3K27me3 marks function independently and are not mutually exclusive at the dehydration stress-responding memory genes.

  15. Identification of the 14-3-3 gene family in Rafflesia cantleyi

    NASA Astrophysics Data System (ADS)

    Rosli, Khadijah; Wan, Kiew-Lian

    2018-04-01

    Rafflesia is known to be the largest flower in the world. Due to its size and appearance, it is considered to be very unique. Little is known about the molecular biology of this rare parasitic flowering plant as it is very difficult to locate and has a short life-span as a flower. Physiological activities in plants are regulated by signalling regulators such as the members of the 14-3-3 gene family. The number of members of this gene family varies in plants and there are thirteen known members in Arabidopsis thaliana. Their role is to bind to phosphorylated targets to complete signal transduction processes. Sequence comparison using BLAST of transcriptome data from three different Rafflesia cantleyi floral bud stages against the Swissprot database revealed 27 transcripts annotated as members of this gene family. All of the transcripts were expressed during floral bud stage 1 (S1) while 14 and four transcripts were expressed during floral bud stages 2 (S2) and 3 (S3), respectively. Significant downregulation was recorded for six and nine transcripts at S1 vs. S2 and S2 vs. S3 respectively. This gene family may play a critical role as signalling regulators during the development of Rafflesia floral bud.

  16. Nicosulfuron Biodegradation by a Novel Cold-Adapted Strain Oceanisphaera psychrotolerans LAM-WHM-ZC.

    PubMed

    Zhou, Shan; Song, Jinlong; Dong, Weiwei; Mu, Yingchun; Zhang, Qi; Fan, Ziwen; Wang, Yanwei; Kong, Delong; Zhou, Yiqing; Jiang, Xu; Zhao, Bin; Han, Gang; Ruan, Zhiyong

    2017-11-29

    Nicosulfuron is a common environmental pollutant, posing a great threat to aquatic systems and causing significant damage to crops. This study reported a cold-adapted strain Oceanisphaera psychrotolerans LAM-WHM-ZC, which efficiently degrades nicosulfuron over a wide range of temperatures (5 to 40 °C). The Box-Behnken design method was used to optimize the degradation conditions. O. psychrotolerans LAM-WHM-ZC can degrade 92.4% and 74.6% of initially supplemented 100 mg/L nicosulfuron under the optimum and low temperature of 18.1 and 5 °C, respectively, within 7 days. O. psychrotolerans LAM-WHM-ZC was found to be highly efficient in degrading cinosulfuron, chlorsulfuron, rimsulfuron, bensulfuron methyl, and ethametsulfuron methyl. Metabolites from nicosulfuron degradation were identified by UPLC-MS, and a possible degradation pathway was proposed. Furthermore, O. psychrotolerans LAM-WHM-ZC can also degrade nicosulfuron in soil; 78.6% and 67.4% of the initial nicosulfuron supplemented at 50 mg/kg were removed at 18.1 and 5 °C, respectively, within 15 days.

  17. The conserved, disease-associated RNA binding protein dNab2 interacts with the Fragile-X protein ortholog in Drosophila neurons

    PubMed Central

    Bienkowski, Rick S.; Banerjee, Ayan; Rounds, J. Christopher; Rha, Jennifer; Omotade, Omotola F.; Gross, Christina; Morris, Kevin J.; Leung, Sara W.; Pak, ChangHui; Jones, Stephanie K.; Santoro, Michael R.; Warren, Stephen T.; Zheng, James Q.; Bassell, Gary J.; Corbett, Anita H.; Moberg, Kenneth H.

    2017-01-01

    Summary The Drosophila dNab2 protein is an ortholog of human ZC3H14, a poly(A) RNA-binding protein required for intellectual function. dNab2 supports memory and axon projection, but its molecular role in neurons is undefined. Here we present a network of interactions that links dNab2 to cytoplasmic control of neuronal mRNAs in conjunction with and the Fragile-X protein ortholog dFMRP. dNab2 and dfmr1 interact genetically in control of neurodevelopment and olfactory memory and their encoded proteins co-localize in puncta within neuronal processes. dNab2 regulates CaMKII but not futsch mRNA, implying a selective role in control of dFMRP-bound transcripts. Reciprocally, dFMRP and vertebrate FMRP restrict mRNA poly(A)-tail length similar to dNab2/ZC3H14. Parallel studies of murine hippocampal neurons indicate that ZC3H14 is also a cytoplasmic regulator of neuronal mRNAs. In sum these findings suggest that dNab2 represses expression of a subset of dFMRP-target mRNAs, which could underlie brain-specific defects in patients lacking ZC3H14. PMID:28793261

  18. Fate of the Tetraquark Candidate Z_{c}(3900) from Lattice QCD.

    PubMed

    Ikeda, Yoichi; Aoki, Sinya; Doi, Takumi; Gongyo, Shinya; Hatsuda, Tetsuo; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Murano, Keiko; Sasaki, Kenji

    2016-12-09

    The possible exotic meson Z_{c}(3900), found in e^{+}e^{-} reactions, is studied by the method of coupled-channel scattering in lattice QCD. The interactions among πJ/ψ, ρη_{c}, and D[over ¯]D^{*} channels are derived from (2+1)-flavor QCD simulations at m_{π}=410-700  MeV. The interactions are dominated by the off-diagonal πJ/ψ-D[over ¯]D^{*} and ρη_{c}-D[over ¯]D^{*} couplings, which indicates that the Z_{c}(3900) is not a usual resonance but a threshold cusp. Semiphenomenological analyses with the coupled-channel interaction are also presented to confirm this conclusion.

  19. Histone H3.3 promotes IgV gene diversification by enhancing formation of AID-accessible single-stranded DNA.

    PubMed

    Romanello, Marina; Schiavone, Davide; Frey, Alexander; Sale, Julian E

    2016-07-01

    Immunoglobulin diversification is driven by activation-induced deaminase (AID), which converts cytidine to uracil within the Ig variable (IgV) regions. Central to the recruitment of AID to the IgV genes are factors that regulate the generation of single-stranded DNA (ssDNA), the enzymatic substrate of AID Here, we report that chicken DT40 cells lacking variant histone H3.3 exhibit reduced IgV sequence diversification. We show that this results from impairment of the ability of AID to access the IgV genes due to reduced formation of ssDNA during IgV transcription. Loss of H3.3 also diminishes IgV R-loop formation. However, reducing IgV R-loops by RNase HI overexpression in wild-type cells does not affect IgV diversification, showing that these structures are not necessary intermediates for AID access. Importantly, the reduction in the formation of AID-accessible ssDNA in cells lacking H3.3 is independent of any effect on the level of transcription or the kinetics of RNAPII elongation, suggesting the presence of H3.3 in the nucleosomes of the IgV genes increases the chances of the IgV DNA becoming single-stranded, thereby creating an effective AID substrate. © 2016 MRC Laboratory of Molecular Biology. Published under the terms of the CC BY 4.0 license.

  20. Citrullination/Methylation Crosstalk on Histone H3 Regulates ER-Target Gene Transcription.

    PubMed

    Clancy, Kathleen W; Russell, Anna-Maria; Subramanian, Venkataraman; Nguyen, Hannah; Qian, Yuewei; Campbell, Robert M; Thompson, Paul R

    2017-06-16

    Posttranslational modifications of histone tails are a key contributor to epigenetic regulation. Histone H3 Arg26 and Lys27 are both modified by multiple enzymes, and their modifications have profound effects on gene expression. Citrullination of H3R26 by PAD2 and methylation of H3K27 by PRC2 have opposing downstream impacts on gene regulation; H3R26 citrullination activates gene expression, and H3K27 methylation represses gene expression. Both of these modifications are drivers of a variety of cancers, and their writer enzymes, PAD2 and EZH2, are the targets of drug therapies. After biochemical and cell-based analysis of these modifications, a negative crosstalk interaction is observed. Methylation of H3K27 slows citrullination of H3R26 30-fold, whereas citrullination of H3R26 slows methylation 30,000-fold. Examination of the mechanism of this crosstalk interaction uncovered a change in structure of the histone tail upon citrullination which prevents methylation by the PRC2 complex. This mechanism of crosstalk is reiterated in cell lines using knockdowns and inhibitors of both enzymes. Based our data, we propose a model in which, after H3 Cit26 formation, H3K27 demethylases are recruited to the chromatin to activate transcription. In total, our studies support the existence of crosstalk between citrullination of H3R26 and methylation of H3K27.

  1. Generation of cell lines for drug discovery through random activation of gene expression: application to the human histamine H3 receptor.

    PubMed

    Song, J; Doucette, C; Hanniford, D; Hunady, K; Wang, N; Sherf, B; Harrington, J J; Brunden, K R; Stricker-Krongrad, A

    2005-06-01

    Target-based high-throughput screening (HTS) plays an integral role in drug discovery. The implementation of HTS assays generally requires high expression levels of the target protein, and this is typically accomplished using recombinant cDNA methodologies. However, the isolated gene sequences to many drug targets have intellectual property claims that restrict the ability to implement drug discovery programs. The present study describes the pharmacological characterization of the human histamine H3 receptor that was expressed using random activation of gene expression (RAGE), a technology that over-expresses proteins by up-regulating endogenous genes rather than introducing cDNA expression vectors into the cell. Saturation binding analysis using [125I]iodoproxyfan and RAGE-H3 membranes revealed a single class of binding sites with a K(D) value of 0.77 nM and a B(max) equal to 756 fmol/mg of protein. Competition binding studies showed that the rank order of potency for H3 agonists was N(alpha)-methylhistamine approximately (R)-alpha- methylhistamine > histamine and that the rank order of potency for H3 antagonists was clobenpropit > iodophenpropit > thioperamide. The same rank order of potency for H3 agonists and antagonists was observed in the functional assays as in the binding assays. The Fluorometic Imaging Plate Reader assays in RAGE-H3 cells gave high Z' values for agonist and antagonist screening, respectively. These results reveal that the human H3 receptor expressed with the RAGE technology is pharmacologically comparable to that expressed through recombinant methods. Moreover, the level of expression of the H3 receptor in the RAGE-H3 cells is suitable for HTS and secondary assays.

  2. Identification and expression analysis of four 14-3-3 genes during fruit ripening in banana (Musa acuminata L. AAA group, cv. Brazilian).

    PubMed

    Li, Mei-Ying; Xu, Bi-Yu; Liu, Ju-Hua; Yang, Xiao-Liang; Zhang, Jian-Bin; Jia, Cai-Hong; Ren, Li-Cheng; Jin, Zhi-Qiang

    2012-02-01

    To investigate the regulation of 14-3-3 proteins in banana (Musa acuminata L. AAA group, cv. Brazilian) fruit postharvest ripening, four cDNAs encoding 14-3-3 proteins were isolated from banana and designated as Ma-14-3-3a, Ma-14-3-3c, Ma-14-3-3e, and Ma-14-3-3i, respectively. Amino acid sequence alignment showed that the four 14-3-3 proteins shared a highly conserved core structure and variable C-terminal as well as N-terminal regions with 14-3-3 proteins from other plant species. Phylogenetic analysis revealed that the four 14-3-3 genes belong to the non-ε groups. They were differentially and specifically expressed in various tissues. Real-time RT-PCR analysis indicated that these four genes function differentially during banana fruit postharvest ripening. Three genes, Ma-14-3-3a, Ma-14-3-3c, and Ma-14-3-3e, were significantly induced by exogenous ethylene treatment. However, gene function differed in naturally ripened fruits. Ethylene could induce Ma-14-3-3c expression during postharvest ripening, but expression patterns of Ma-14-3-3a and Ma-14-3-3e suggest that these two genes appear to be involved in regulating ethylene biosynthesis during fruit ripening. No obvious relationship emerged between Ma-14-3-3i expression in naturally ripened and 1-MCP (1-methylcyclopropene)-treated fruit groups during fruit ripening. These results indicate that the 14-3-3 proteins might be involved in various regulatory processes of banana fruit ripening. Further studies will mainly focus on revealing the detailed biological mechanisms of these four 14-3-3 genes in regulating banana fruit postharvest ripening.

  3. RPA Interacts with HIRA and Regulates H3.3 Deposition at Gene Regulatory Elements in Mammalian Cells.

    PubMed

    Zhang, Honglian; Gan, Haiyun; Wang, Zhiquan; Lee, Jeong-Heon; Zhou, Hui; Ordog, Tamas; Wold, Marc S; Ljungman, Mats; Zhang, Zhiguo

    2017-01-19

    The histone chaperone HIRA is involved in depositing histone variant H3.3 into distinct genic regions, including promoters, enhancers, and gene bodies. However, how HIRA deposits H3.3 to these regions remains elusive. Through a short hairpin RNA (shRNA) screening, we identified single-stranded DNA binding protein replication protein A (RPA) as a regulator of the deposition of newly synthesized H3.3 into chromatin. We show that RPA physically interacts with HIRA to form RPA-HIRA-H3.3 complexes, and it co-localizes with HIRA and H3.3 at gene promoters and enhancers. Depletion of RPA1, the largest subunit of the RPA complex, dramatically reduces both HIRA association with chromatin and the deposition of newly synthesized H3.3 at promoters and enhancers and leads to altered transcription at gene promoters. These results support a model whereby RPA, best known for its role in DNA replication and repair, recruits HIRA to promoters and enhancers and regulates deposition of newly synthesized H3.3 to these regulatory elements for gene regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. 14-3-3 α and 14-3-3 ζ contribute to immune responses in planarian Dugesia japonica.

    PubMed

    Lu, Qingqing; Wu, Suge; Zhen, Hui; Deng, Hongkuan; Song, Qian; Ma, Kaifu; Cao, Zhonghong; Pang, Qiuxiang; Zhao, Bosheng

    2017-06-05

    14-3-3 proteins are a family of highly conserved acidic proteins that regulate cellular processes. They act as a kind of important signaling molecules taking part in many crucial decisions throughout the development process. We have isolated and characterized two members of the 14-3-3 family, namely, Dj14-3-3 α and Dj14-3-3 ζ in the planarian Dugesia japonica. The Dj14-3-3 α and ζ genes encode polypeptides of 260 and 255 amino acids respectively. We have proved that the Dj14-3-3 α and ζ genes were especially expressed in the pharynx in adult and regenerating planarians by in situ hybridization and they were not involved in regeneration process. Besides, Dj14-3-3 α and ζ genes can compensate each other in planarians by RNA interference. The Dj14-3-3 α and ζ were significantly up-regulated expression when planarians were stimulated with the pathogen-associated molecular patterns including lipopolysaccharide (LPS), peptidoglycan (PGN), β-Glu and Poly (I:C), indicating that the Dj14-3-3 α and ζ may be involved in the immune responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The Tomato 14-3-3 Protein TFT4 Modulates H+ Efflux, Basipetal Auxin Transport, and the PKS5-J3 Pathway in the Root Growth Response to Alkaline Stress1[C][W

    PubMed Central

    Xu, Weifeng; Jia, Liguo; Shi, Weiming; Baluška, František; Kronzucker, Herbert J.; Liang, Jiansheng; Zhang, Jianhua

    2013-01-01

    Alkaline stress is a common environmental stress, in particular in salinized soils. Plant roots respond to a variety of soil stresses by regulating their growth, but the nature of the regulatory pathways engaged in the alkaline stress response (ASR) is not yet understood. Previous studies show that PIN-FORMED2, an auxin (indole-3-acetic acid [IAA]) efflux transporter, PKS5, a protein kinase, and DNAJ HOMOLOG3 (J3), a chaperone, play key roles in root H+ secretion by regulating plasma membrane (PM) H+-ATPases directly or by targeting 14-3-3 proteins. Here, we investigated the expression of all 14-3-3 gene family members (TOMATO 14-3-3 PROTEIN1 [TFT1]–TFT12) in tomato (Solanum lycopersicum) under ASR, showing the involvement of four of them, TFT1, TFT4, TFT6, and TFT7. When these genes were separately introduced into Arabidopsis (Arabidopsis thaliana) and overexpressed, only the growth of TFT4 overexpressors was significantly enhanced when compared with the wild type under stress. H+ efflux and the activity of PM H+-ATPase were significantly enhanced in the root tips of TFT4 overexpressors. Microarray analysis and pharmacological examination of the overexpressor and mutant plants revealed that overexpression of TFT4 maintains primary root elongation by modulating PM H+-ATPase-mediated H+ efflux and basipetal IAA transport in root tips under alkaline stress. TFT4 further plays important roles in the PKS5-J3 signaling pathway. Our study demonstrates that TFT4 acts as a regulator in the integration of H+ efflux, basipetal IAA transport, and the PKS5-J3 pathway in the ASR of roots and coordinates root apex responses to alkaline stress for the maintenance of primary root elongation. PMID:24134886

  6. Transcriptome Analysis of an Anthracnose-Resistant Tea Plant Cultivar Reveals Genes Associated with Resistance to Colletotrichum camelliae

    PubMed Central

    Wang, Lu; Wang, Yuchun; Cao, Hongli; Hao, Xinyuan; Zeng, Jianming; Yang, Yajun; Wang, Xinchao

    2016-01-01

    Tea plant breeding is a topic of great economic importance. However, disease remains a major cause of yield and quality losses. In this study, an anthracnose-resistant cultivar, ZC108, was developed. An infection assay revealed different responses to Colletotrichum sp. infection between ZC108 and its parent cultivar LJ43. ZC108 had greater resistance than LJ43 to Colletotrichum camelliae. Additionally, ZC108 exhibited earlier sprouting in the spring, as well as different leaf shape and plant architecture. Microarray data revealed that the genes that are differentially expressed between LJ43 and ZC108 mapped to secondary metabolism-related pathways, including phenylpropanoid biosynthesis, phenylalanine metabolism, and flavonoid biosynthesis pathways. In addition, genes involved in plant hormone biosynthesis and signaling as well as plant-pathogen interaction pathways were also changed. Quantitative real-time PCR was used to examine the expression of 27 selected genes in infected and uninfected tea plant leaves. Genes encoding a MADS-box transcription factor, NBS-LRR disease-resistance protein, and phenylpropanoid metabolism pathway components (CAD, CCR, POD, beta-glucosidase, ALDH and PAL) were among those differentially expressed in ZC108. PMID:26849553

  7. Pathogenicity and Transmissibility of Novel Reassortant H3N2 Influenza Viruses with 2009 Pandemic H1N1 Genes in Pigs

    PubMed Central

    Ma, Jingjiao; Shen, Huigang; Liu, Qinfang; Bawa, Bhupinder; Qi, Wenbao; Duff, Michael; Lang, Yuekun; Lee, Jinhwa; Yu, Hai; Bai, Jianfa; Tong, Guangzhi; Hesse, Richard A.; Richt, Jürgen A.

    2014-01-01

    ABSTRACT At least 10 different genotypes of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 [A(H1N1)pdm09] gene(s) have been identified in U.S. pigs, including the H3N2 variant with a single A(H1N1)pdm09 M gene, which has infected more than 300 people. To date, only three genotypes of these viruses have been evaluated in animal models, and the pathogenicity and transmissibility of the other seven genotype viruses remain unknown. Here, we show that three H3N2 reassortant viruses that contain 3 (NP, M, and NS) or 5 (PA, PB2, NP, M, and NS) genes from A(H1N1)pdm09 were pathogenic in pigs, similar to the endemic H3N2 swine virus. However, the reassortant H3N2 virus with 3 A(H1N1)pdm09 genes and a recent human influenza virus N2 gene was transmitted most efficiently among pigs, whereas the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes was transmitted less efficiently than the endemic H3N2 virus. Interestingly, the polymerase complex of reassortant H3N2 virus with 5 A(H1N1)pdm09 genes showed significantly higher polymerase activity than those of endemic and reassortant H3N2 viruses with 3 A(H1N1)pdm09 genes. Further studies showed that an avian-like glycine at position 228 at the hemagglutinin (HA) receptor binding site is responsible for inefficient transmission of the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes. Taken together, our results provide insights into the pathogenicity and transmissibility of novel reassortant H3N2 viruses in pigs and suggest that a mammalian-like serine at position 228 in the HA is critical for the transmissibility of these reassortant H3N2 viruses. IMPORTANCE Swine influenza is a highly contagious zoonotic disease that threatens animal and public health. Introduction of 2009 pandemic H1N1 virus [A(H1N1)pdm09] into swine herds has resulted in novel reassortant influenza viruses in swine, including H3N2 and H1N2 variants that have caused human infections in the United States. We showed that reassortant H3N2 influenza

  8. Effects of Nickel Treatment on H3K4 Trimethylation and Gene Expression

    PubMed Central

    Tchou-Wong, Kam-Meng; Kluz, Thomas; Arita, Adriana; Smith, Phillip R.; Brown, Stuart; Costa, Max

    2011-01-01

    Occupational exposure to nickel compounds has been associated with lung and nasal cancers. We have previously shown that exposure of the human lung adenocarcinoma A549 cells to NiCl2 for 24 hr significantly increased global levels of trimethylated H3K4 (H3K4me3), a transcriptional activating mark that maps to the promoters of transcribed genes. To further understand the potential epigenetic mechanism(s) underlying nickel carcinogenesis, we performed genome-wide mapping of H3K4me3 by chromatin immunoprecipitation and direct genome sequencing (ChIP-seq) and correlated with transcriptome genome-wide mapping of RNA transcripts by massive parallel sequencing of cDNA (RNA-seq). The effect of NiCl2 treatment on H3K4me3 peaks within 5,000 bp of transcription start sites (TSSs) on a set of genes highly induced by nickel in both A549 cells and human peripheral blood mononuclear cells were analyzed. Nickel exposure increased the level of H3K4 trimethylation in both the promoters and coding regions of several genes including CA9 and NDRG1 that were increased in expression in A549 cells. We have also compared the extent of the H3K4 trimethylation in the absence and presence of formaldehyde crosslinking and observed that crosslinking of chromatin was required to observe H3K4 trimethylation in the coding regions immediately downstream of TSSs of some nickel-induced genes including ADM and IGFBP3. This is the first genome-wide mapping of trimethylated H3K4 in the promoter and coding regions of genes induced after exposure to NiCl2. This study may provide insights into the epigenetic mechanism(s) underlying the carcinogenicity of nickel compounds. PMID:21455298

  9. [BLG gene knockout and hLF gene knock-in at BLG locus in goat by TALENs].

    PubMed

    Song, Shaozheng; Zhu, Mengmin; Yuan, Yuguo; Rong, Yao; Xu, Sheng; Chen, Si; Mei, Junyan; Cheng, Yong

    2016-03-01

    To knock out β-lactoglobulin (BLG) gene and insert human lactoferrin (hLF) coding sequence at BLG locus of goat, the transcription activator-like effector nucleases (TALEN) mediated recombination was used to edit the BLG gene of goat fetal fibroblast, then as donor cells for somatic cell nuclear transfer. We designed a pair of specific plasmid TALEN-3-L/R for goat BLG exon III recognition sites, and BLC14-TK vector containing a negative selection gene HSV-TK, was used for the knock in of hLF gene. TALENs plasmids were transfected into the goat fetal fibroblast cells, and the cells were screened three days by 2 μg/mL puromycin. DNA cleavage activities of cells were verified by PCR amplification and DNA production sequencing. Then, targeting vector BLC14-TK and plasmids TALEN-3-L/R were co-transfected into goat fetal fibroblasts, both 700 μg/mL G418 and 2 μg/mL GCV were simultaneously used to screen G418-resistant cells. Detections of integration and recombination were implemented to obtain cells with hLF gene site-specific integration. We chose targeting cells as donor cells for somatic cell nuclear transfer. The mutagenicity of TALEN-3-L/R was between 25% and 30%. A total of 335 reconstructed embryos with 6 BLG-/hLF+ targeting cell lines were transferred into 16 recipient goats. There were 9 pregnancies confirmed by ultrasound on day 30 to 35 (pregnancy rate of 39.1%), and one of 50-day-old fetus with BLG-/hLF+ was achieved. These results provide the basis for hLF gene knock-in at BLG locus of goat and cultivating transgenic goat of low allergens and rich hLF in the milk.

  10. Comparative Analyses of H3K4 and H3K27 Trimethylations Between the Mouse Cerebrum and Testis

    PubMed Central

    Cui, Peng; Liu, Wanfei; Zhao, Yuhui; Lin, Qiang; Zhang, Daoyong; Ding, Feng; Xin, Chengqi; Zhang, Zhang; Song, Shuhui; Sun, Fanglin; Yu, Jun; Hu, Songnian

    2012-01-01

    The global features of H3K4 and H3K27 trimethylations (H3K4me3 and H3K27me3) have been well studied in recent years, but most of these studies were performed in mammalian cell lines. In this work, we generated the genome-wide maps of H3K4me3 and H3K27me3 of mouse cerebrum and testis using ChIP-seq and their high-coverage transcriptomes using ribominus RNA-seq with SOLiD technology. We examined the global patterns of H3K4me3 and H3K27me3 in both tissues and found that modifications are closely-associated with tissue-specific expression, function and development. Moreover, we revealed that H3K4me3 and H3K27me3 rarely occur in silent genes, which contradicts the findings in previous studies. Finally, we observed that bivalent domains, with both H3K4me3 and H3K27me3, existed ubiquitously in both tissues and demonstrated an invariable preference for the regulation of developmentally-related genes. However, the bivalent domains tend towards a “winner-takes-all” approach to regulate the expression of associated genes. We also verified the above results in mouse ES cells. As expected, the results in ES cells are consistent with those in cerebrum and testis. In conclusion, we present two very important findings. One is that H3K4me3 and H3K27me3 rarely occur in silent genes. The other is that bivalent domains may adopt a “winner-takes-all” principle to regulate gene expression. PMID:22768982

  11. Confirmation of a charged charmoniumlike state Zc(3885 )∓ in e+e-→π±(D D¯ *)∓ with double D tag

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, J. J.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. N.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2015-11-01

    We present a study of the process e+e-→π±(D D¯ *)∓ using data samples of 1092 pb-1 at √{s }=4.23 GeV and 826 pb-1 at √{s }=4.26 GeV collected with the BESIII detector at the BEPCII storage ring. With full reconstruction of the D meson pair and the bachelor π± in the final state, we confirm the existence of the charged structure Zc(3885 )∓ in the (D D¯*)∓ system in the two isospin processes e +e-→π+D0D*- and e+e-→π+D-D*0. By performing a simultaneous fit, the statistical significance of Z c (3885 )∓ signal is determined to be greater than 10 σ , and its pole mass and width are measured to be Mpole=(3881.7 ±1.6 (stat )±1.6 (syst )) MeV /c2 and Γpole=(26.6 ±2.0 (stat )±2.1 (syst )) MeV , respectively. The Born cross section times the (D D¯*)∓ branching fraction (σ (e+e-→π±Zc(3885 )∓)×B r(Zc(3885 )∓→(DD¯*)∓) ) is measured to be (141.6 ±7.9 (stat )±12.3 (syst )) pb at √{s }=4.23 GeV and (108.4 ±6.9 (stat )±8.8 (syst )) pb at √{s }=4.26 GeV . The polar angular distribution of the π±-Zc(3885 )∓ system is consistent with the expectation of a quantum number assignment of JP=1+ for Zc(3885)∓.

  12. Potential antimicrobial agents from triazole-functionalized 2H-benzo[b][1,4]oxazin-3(4H)-ones.

    PubMed

    Bollu, Rajitha; Banu, Saleha; Bantu, Rajashaker; Reddy, A Gopi; Nagarapu, Lingaiah; Sirisha, K; Kumar, C Ganesh; Gunda, Shravan Kumar; Shaik, Kamal

    2017-12-01

    A series of substituted triazole functionalized 2H-benzo[b][1,4]oxazin-3(4H)-ones were synthesized by employing click chemistry and further characterized based on 1 H NMR, 13 C NMR, IR and mass spectral studies. All the synthesized derivatives were screened for their in vitro antimicrobial activities. Further, molecular docking studies were accomplished to explore the binding interactions between 1,2,3-triazol-4-yl-2H-benzo[b][1,4]oxazin-3(4H)-one and the active site of Staphylococcus aureus (CrtM) dehydrosqualene synthase (PDB ID: 2ZCS). These docking studies revealed that the synthesized derivatives showed high binding energies and strong H-bond interactions with the dehydrosqualene synthase validating the observed antimicrobial activity data. Based on antimicrobial activity and docking studies, the compounds 9c, 9d and 9e were identified as promising antimicrobial leads. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Histone H3.3 maintains genome integrity during mammalian development

    PubMed Central

    Jang, Chuan-Wei; Shibata, Yoichiro; Starmer, Joshua; Yee, Della; Magnuson, Terry

    2015-01-01

    Histone H3.3 is a highly conserved histone H3 replacement variant in metazoans and has been implicated in many important biological processes, including cell differentiation and reprogramming. Germline and somatic mutations in H3.3 genomic incorporation pathway components or in H3.3 encoding genes have been associated with human congenital diseases and cancers, respectively. However, the role of H3.3 in mammalian development remains unclear. To address this question, we generated H3.3-null mouse models through classical genetic approaches. We found that H3.3 plays an essential role in mouse development. Complete depletion of H3.3 leads to developmental retardation and early embryonic lethality. At the cellular level, H3.3 loss triggers cell cycle suppression and cell death. Surprisingly, H3.3 depletion does not dramatically disrupt gene regulation in the developing embryo. Instead, H3.3 depletion causes dysfunction of heterochromatin structures at telomeres, centromeres, and pericentromeric regions of chromosomes, leading to mitotic defects. The resulting karyotypical abnormalities and DNA damage lead to p53 pathway activation. In summary, our results reveal that an important function of H3.3 is to support chromosomal heterochromatic structures, thus maintaining genome integrity during mammalian development. PMID:26159997

  14. The Histone Modification H3K27me3 Is Retained after Gene Duplication and Correlates with Conserved Noncoding Sequences in Arabidopsis

    PubMed Central

    Berke, Lidija; Snel, Berend

    2014-01-01

    The histone modification H3K27me3 is involved in repression of transcription and plays a crucial role in developmental transitions in both animals and plants. It is deposited by PRC2 (Polycomb repressive complex 2), a conserved protein complex. In Arabidopsis thaliana, H3K27me3 is found at 15% of all genes. These tend to encode transcription factors and other regulators important for development. However, it is not known how PRC2 is recruited to target loci nor how this set of target genes arose during Arabidopsis evolution. To resolve the latter, we integrated A. thaliana gene families with five independent genome-wide H3K27me3 data sets. Gene families were either significantly enriched or depleted of H3K27me3, showing a strong impact of shared ancestry to H3K27me3 distribution. To quantify this, we performed ancestral state reconstruction of H3K27me3 on phylogenetic trees of gene families. The set of H3K27me3-marked genes changed less than expected by chance, suggesting that H3K27me3 was retained after gene duplication. This retention suggests that the PRC2-recruiting signal could be encoded in the DNA and also conserved among certain duplicated genes. Indeed, H3K27me3-marked genes were overrepresented among paralogs sharing conserved noncoding sequences (CNSs) that are enriched with transcription factor binding sites. The association of upstream CNSs with H3K27me3-marked genes represents the first genome-wide connection between H3K27me3 and potential regulatory elements in plants. Thus, we propose that CNSs likely function as part of the PRC2 recruitment in plants. PMID:24567304

  15. Isolation of 1,4-Li(2)-C(6)H(4) and its reaction with [(Ph(3)P)AuCl].

    PubMed

    Flower, Kevin R; McGown, A T; Miles, Philip J; Pritchard, Robin G; Warren, John E

    2010-04-14

    The difficulty in generating 1,4-Li2-C6H4 utilising the lithium halogen exchange reaction on 1,4-Br2-C6H4, 1,4-I2-C6H4 and 1-Br-4-I-C6H4 is revisited and only on treatment of 1,4-I2-C6H4 with 2 molar equivalents of n-BuLi can 1,4-Li2-C6H4 1 be isolated in excellent yield. Treatment of 1 with two equivalents of [ClAu(PPh3)] gives [1,4-(Ph3PAu)2-C6H4] 2a in excellent yield. Subsequent treatment of 2a with 2.5 molar equivalents of PPh2Me, PPhMe2 or PMe3 affords the PPh3 substituted compounds [1,4-(LAu)2-C6H4] (L = PPh2Me 2b, PPhMe2 2c, PMe3 2d) in essentially quantitative yields. On treatment of 1,4-Br2-C6H4 or 1-Br-4-I-C6H4 with 2 molar equivalents of n-BuLi only mono-lithiation takes place to give 1-Br-4-Li-C6H4 3 as shown through the isolation of essentially 1:1 molar equivalents of Ph2PC6H4-4-Br and Ph2PBu on treatment with 2 molar equivalents of ClPPh2. Treatment of 3, prepared by lithium/iodine exchange on 1-Br-4-I-C6H4, with [ClAu(PPh3)] affords [(Ph3P)Au(C6H4-4-Br)] 4 as expected and in addition [(Ph3P)Au(n-Bu)(C6H4-4-Br)2] 5, indicating the straightforward chloride/aryl exchange at gold may proceed in competition with oxidative addition of the n-BuI, generated in the initial lithium/iodine exchange reaction, to some aurate complex Li[Au(C6H4-4-Br)2] 6 formed in situ followed by reductive elimination of Br-C6H4-4-n-Bu in a manner that mimics lithium diorganocuprate chemistry. All of the gold-containing compounds have been spectroscopically characterised by 1H and 31P-{1H} NMR and in addition compounds 2a-d and 5 by single crystal X-ray diffraction studies. The solid state structures observed for 2a-d are dictated by non-conventional hydrogen bonding and the packing requirements of the phosphine ligands. For 2a and 2b there is no close Au...Au approach, however for 2c and 2d the reduction in the number of phenyl rings allows the formation of Au...Au contacts. For 2c and 2d the extended structures appear to be helical chains with Au...Au contact parameters of 3

  16. Mutation analysis of the chromosome 14q24.3 dihydrolipoyl succinyltransferase (DLST) gene in patients with early-onset Alzheimer disease.

    PubMed

    Cruts, M; Backhovens, H; Van Gassen, G; Theuns, J; Wang, S Y; Wehnert, A; van Duijn, C M; Karlsson, T; Hofman, A; Adolfsson, R

    1995-10-13

    Linkage analysis studies have indicated that the chromosome band 14q24.3 harbours a major gene for familial early-onset Alzheimer's disease (AD). Recently we localized the chromosome 14 AD gene (AD3) in the 6.4 cM interval between the markers D14S289 and D14S61. We mapped the gene encoding dihydrolipoyl succinyltransferase (DLST), the E2k component of human alpha-ketoglutarate dehydrogenase complex (KGDHC), in the AD3 candidate region using yeast artificial chromosomes (YACs). The DLST gene is a candidate for the AD3 gene since deficiencies in KGDHC activity have been observed in brain tissue and fibroblasts of AD patients. The 15 exons and the promoter region of the DLST gene were analysed for mutations in chromosome 14 linked AD cases and in two series of unrelated early-onset AD cases (onset age < 55 years). Sequence variations in intronic sequences (introns 3, 5 and 10) or silent mutations in exonic sequences (exons 8 and 14) were identified. However, no AD related mutations were observed, suggesting that the DLST gene is not the chromosome 14 AD3 gene.

  17. (3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayer films for gene delivery.

    PubMed

    Li, Cuicui; Tzeng, Stephany Y; Tellier, Liane E; Green, Jordan J

    2013-07-10

    Biodegradable polyelectrolyte surfaces for gene delivery were created through electrospinning of biodegradable polycations combined with iterative solution-based multilayer coating. Poly(β-amino ester) (PBAE) poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-capped with 1-(3-aminopropyl)-4-methylpiperazine was utilized because of its ability to electrostatically interact with anionic molecules like DNA, its biodegradability, and its low cytotoxicity. A new DNA release system was developed for sustained release of DNA over 24 h, accompanied by high exogenous gene expression in primary human glioblastoma (GB) cells. Electrospinning a different PBAE, poly(1,4-butanediol diacrylate-co-4,4'-trimethylenedipiperidine), and its combination with polyelectrolyte 1-(3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayers are promising for DNA release and intracellular delivery from a surface.

  18. Characterization of a novel papillomavirus species (ZcPV1) from two California sea lions (Zalophus californianus).

    PubMed

    Rivera, Rebecca; Robles-Sikisaka, Refugio; Hoffman, Elizabeth M; Stacy, Brian A; Jensen, Eric D; Nollens, Hendrik H; Wellehan, James F X

    2012-03-23

    A seven-year old California sea lion (Zalophus californianus) presented with focally extensive, bilaterally symmetric, proliferative axillary skin lesions and preputial lesions. A second California sea lion in the same population presented with similar proliferative lesions on the underside of the tail. Histopathology revealed epidermal hyperplasia with severe hyperkeratosis, with proliferating keratinocytes forming broad, branching pegs that extended into the dermis. Pan-papillomaviral consensus PCR was used to obtain initial E1 sequence template and the complete genome was determined using a combination of rolling circle amplification and specific-primer PCR. Analysis revealed a novel papillomavirus, Zalophus californianus papillomavirus 1 (ZcPV1), with seven open reading frames encoding five early proteins (E6, E7, E1, E2 and E4) and two late proteins (L1 and L2). Phylogenetic analysis revealed that (ZcPV1) is most closely related to Equine papillomavirus 1 (EcPV1) in the genus Zetapapillomavirus, and Canine papillomaviruses 3 and 4 (CPV3, CPV4) in the genus Chipapillomavirus. The lesions regressed without intervention over a period of several months. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Tunicate cytostatic factor TC14-3 induces a polycomb group gene and histone modification through Ca2+ binding and protein dimerization

    PubMed Central

    2012-01-01

    Background As many invertebrate species have multipotent cells that undergo cell growth and differentiation during regeneration and budding, many unique and interesting homeostatic factors are expected to exist in those animals. However, our understanding of such factors and global mechanisms remains very poor. Single zooids of the tunicate, Polyandrocarpa misakiensis, can give off as many as 40 buds during the life span. Bud development proceeds by means of transdifferentiation of very limited number of cells and tissues. TC14-3 is one of several different but closely related polypeptides isolated from P. misakiensis. It acts as a cytostatic factor that regulates proliferation, adhesion, and differentiation of multipotent cells, although the molecular mechanism remains uncertain. The Polycomb group (PcG) genes are involved in epigenetic control of genomic activity in mammals. In invertebrates except Drosophila, PcG and histone methylation have not been studied so extensively, and genome-wide gene regulation is poorly understood. Results When Phe65 of TC14-3 was mutated to an acidic amino acid, the resultant mutant protein failed to dimerize. The replacement of Thr69 with Arg69 made dimers unstable. When Glu106 was changed to Gly106, the resultant mutant protein completely lost Ca2+ binding. All these mutant proteins lacked cytostatic activity, indicating the requirement of protein dimerization and calcium for the activity. Polyandrocarpa Eed, a component of PcG, is highly expressed during budding, like TC14-3. When wild-type and mutant TC14-3s were applied in vivo and in vitro to Polyandrocarpa cells, only wild-type TC14-3 could induce Eed without affecting histone methyltransferase gene expression. Eed-expressing cells underwent trimethylation of histone H3 lysine27. PmEed knockdown by RNA interference rescued cultured cells from the growth-inhibitory effects of TC14-3. Conclusion These results show that in P. misakiensis, the cytostatic activity of TC14-3 is

  20. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes.

    PubMed

    Chen, Kaifu; Chen, Zhong; Wu, Dayong; Zhang, Lili; Lin, Xueqiu; Su, Jianzhong; Rodriguez, Benjamin; Xi, Yuanxin; Xia, Zheng; Chen, Xi; Shi, Xiaobing; Wang, Qianben; Li, Wei

    2015-10-01

    Tumor suppressors are mostly defined by inactivating mutations in tumors, yet little is known about their epigenetic features in normal cells. Through integrative analysis of 1,134 genome-wide epigenetic profiles, mutations from >8,200 tumor-normal pairs and our experimental data from clinical samples, we discovered broad peaks for trimethylation of histone H3 at lysine 4 (H3K4me3; wider than 4 kb) as the first epigenetic signature for tumor suppressors in normal cells. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity, which together lead to exceptionally high gene expression, and is distinct from other broad epigenetic features, such as super-enhancers. Genes with broad H3K4me3 peaks conserved across normal cells may represent pan-cancer tumor suppressors, such as TP53 and PTEN, whereas genes with cell type-specific broad H3K4me3 peaks may represent cell identity genes and cell type-specific tumor suppressors. Furthermore, widespread shortening of broad H3K4me3 peaks in cancers is associated with repression of tumor suppressors. Thus, the broad H3K4me3 epigenetic signature provides mutation-independent information for the discovery and characterization of new tumor suppressors.

  1. Trans-tail regulation of MLL4-catalyzed H3K4 methylation by H4R3 symmetric dimethylation is mediated by a tandem PHD of MLL4

    PubMed Central

    Dhar, Shilpa S.; Lee, Sung-Hun; Kan, Pu-Yeh; Voigt, Philipp; Ma, Li; Shi, Xiaobing; Reinberg, Danny; Lee, Min Gyu

    2012-01-01

    Mixed-lineage leukemia 4 (MLL4; also called MLL2 and ALR) enzymatically generates trimethylated histone H3 Lys 4 (H3K4me3), a hallmark of gene activation. However, how MLL4-deposited H3K4me3 interplays with other histone marks in epigenetic processes remains largely unknown. Here, we show that MLL4 plays an essential role in differentiating NT2/D1 stem cells by activating differentiation-specific genes. A tandem plant homeodomain (PHD4–6) of MLL4 recognizes unmethylated or asymmetrically dimethylated histone H4 Arg 3 (H4R3me0 or H4R3me2a) and is required for MLL4's nucleosomal methyltransferase activity and MLL4-mediated differentiation. Kabuki syndrome mutations in PHD4–6 reduce PHD4–6's binding ability and MLL4's catalytic activity. PHD4–6's binding strength is inhibited by H4R3 symmetric dimethylation (H4R3me2s), a gene-repressive mark. The protein arginine methyltransferase 7 (PRMT7), but not PRMT5, represses MLL4 target genes by up-regulating H4R3me2s levels and antagonizes MLL4-mediated differentiation. Consistently, PRMT7 knockdown increases MLL4-catalyzed H3K4me3 levels. During differentiation, decreased H4R3me2s levels are associated with increased H3K4me3 levels at a cohort of genes, including many HOXA and HOXB genes. These findings indicate that the trans-tail inhibition of MLL4-generated H3K4me3 by PRMT7-regulated H4R3me2s may result from H4R3me2s's interference with PHD4–6's binding activity and is a novel epigenetic mechanism that underlies opposing effects of MLL4 and PRMT7 on cellular differentiation. PMID:23249737

  2. Trans-tail regulation of MLL4-catalyzed H3K4 methylation by H4R3 symmetric dimethylation is mediated by a tandem PHD of MLL4.

    PubMed

    Dhar, Shilpa S; Lee, Sung-Hun; Kan, Pu-Yeh; Voigt, Philipp; Ma, Li; Shi, Xiaobing; Reinberg, Danny; Lee, Min Gyu

    2012-12-15

    Mixed-lineage leukemia 4 (MLL4; also called MLL2 and ALR) enzymatically generates trimethylated histone H3 Lys 4 (H3K4me3), a hallmark of gene activation. However, how MLL4-deposited H3K4me3 interplays with other histone marks in epigenetic processes remains largely unknown. Here, we show that MLL4 plays an essential role in differentiating NT2/D1 stem cells by activating differentiation-specific genes. A tandem plant homeodomain (PHD(4-6)) of MLL4 recognizes unmethylated or asymmetrically dimethylated histone H4 Arg 3 (H4R3me0 or H4R3me2a) and is required for MLL4's nucleosomal methyltransferase activity and MLL4-mediated differentiation. Kabuki syndrome mutations in PHD(4-6) reduce PHD(4-6)'s binding ability and MLL4's catalytic activity. PHD(4-6)'s binding strength is inhibited by H4R3 symmetric dimethylation (H4R3me2s), a gene-repressive mark. The protein arginine methyltransferase 7 (PRMT7), but not PRMT5, represses MLL4 target genes by up-regulating H4R3me2s levels and antagonizes MLL4-mediated differentiation. Consistently, PRMT7 knockdown increases MLL4-catalyzed H3K4me3 levels. During differentiation, decreased H4R3me2s levels are associated with increased H3K4me3 levels at a cohort of genes, including many HOXA and HOXB genes. These findings indicate that the trans-tail inhibition of MLL4-generated H3K4me3 by PRMT7-regulated H4R3me2s may result from H4R3me2s's interference with PHD(4-6)'s binding activity and is a novel epigenetic mechanism that underlies opposing effects of MLL4 and PRMT7 on cellular differentiation.

  3. Copy number variation analysis implicates the cell polarity gene glypican 5 as a human spina bifida candidate gene

    PubMed Central

    Bassuk, Alexander G.; Muthuswamy, Lakshmi B.; Boland, Riley; Smith, Tiffany L.; Hulstrand, Alissa M.; Northrup, Hope; Hakeman, Matthew; Dierdorff, Jason M.; Yung, Christina K.; Long, Abby; Brouillette, Rachel B.; Au, Kit Sing; Gurnett, Christina; Houston, Douglas W.; Cornell, Robert A.; Manak, J. Robert

    2013-01-01

    Neural tube defects (NTDs) are common birth defects of complex etiology. Family and population-based studies have confirmed a genetic component to NTDs. However, despite more than three decades of research, the genes involved in human NTDs remain largely unknown. We tested the hypothesis that rare copy number variants (CNVs), especially de novo germline CNVs, are a significant risk factor for NTDs. We used array-based comparative genomic hybridization (aCGH) to identify rare CNVs in 128 Caucasian and 61 Hispanic patients with non-syndromic lumbar-sacral myelomeningocele. We also performed aCGH analysis on the parents of affected individuals with rare CNVs where parental DNA was available (42 sets). Among the eight de novo CNVs that we identified, three generated copy number changes of entire genes. One large heterozygous deletion removed 27 genes, including PAX3, a known spina bifida-associated gene. A second CNV altered genes (PGPD8, ZC3H6) for which little is known regarding function or expression. A third heterozygous deletion removed GPC5 and part of GPC6, genes encoding glypicans. Glypicans are proteoglycans that modulate the activity of morphogens such as Sonic Hedgehog (SHH) and bone morphogenetic proteins (BMPs), both of which have been implicated in NTDs. Additionally, glypicans function in the planar cell polarity (PCP) pathway, and several PCP genes have been associated with NTDs. Here, we show that GPC5 orthologs are expressed in the neural tube, and that inhibiting their expression in frog and fish embryos results in NTDs. These results implicate GPC5 as a gene required for normal neural tube development. PMID:23223018

  4. Nucleotide sequence variation at two genes of the phenylpropanoid pathway, the FAH1 and F3H genes, in Arabidopsis thaliana.

    PubMed

    Aguadé, M

    2001-01-01

    The FAH1 and F3H genes encode ferulate-5-hydroxylase and flavanone-3-hydroxylase, which are enzymes in the pathways leading to the synthesis of sinapic acid esters and flavonoids, respectively. Nucleotide variation at these genes was surveyed by sequencing a sample of 20 worldwide Arabidopsis thaliana ecotypes and one Arabidopsis lyrata spp. petraea stock. In contrast with most previously studied genes, the percentage of singletons was rather low in both the FAH1 and the F3H gene regions. There was, therefore, no footprint of a recent species expansion in the pattern of nucleotide variation in these regions. In both FAH1 and F3H, nucleotide variation was structured into two major highly differentiated haplotypes. In both genes, there was a peak of silent polymorphism in the 5' part of the coding region without a parallel increase in silent divergence. In FAH1, the peak was centered at the beginning of the second exon. In F3H, nucleotide diversity was highest at the beginning of the gene. The observed pattern of variation in both FAH1 and F3H, although suggestive of balancing selection, was compatible with a neutral model with no recombination.

  5. Super-Enhancers and Broad H3K4me3 Domains Form Complex Gene Regulatory Circuits Involving Chromatin Interactions.

    PubMed

    Cao, Fan; Fang, Yiwen; Tan, Hong Kee; Goh, Yufen; Choy, Jocelyn Yeen Hui; Koh, Bryan Thean Howe; Hao Tan, Jiong; Bertin, Nicolas; Ramadass, Aroul; Hunter, Ewan; Green, Jayne; Salter, Matthew; Akoulitchev, Alexandre; Wang, Wilson; Chng, Wee Joo; Tenen, Daniel G; Fullwood, Melissa J

    2017-05-19

    Stretched histone regions, such as super-enhancers and broad H3K4me3 domains, are associated with maintenance of cell identity and cancer. We connected super-enhancers and broad H3K4me3 domains in the K562 chronic myelogenous leukemia cell line as well as the MCF-7 breast cancer cell line with chromatin interactions. Super-enhancers and broad H3K4me3 domains showed higher association with chromatin interactions than their typical counterparts. Interestingly, we identified a subset of super-enhancers that overlap with broad H3K4me3 domains and show high association with cancer-associated genes including tumor suppressor genes. Besides cell lines, we could observe chromatin interactions by a Chromosome Conformation Capture (3C)-based method, in primary human samples. Several chromatin interactions involving super-enhancers and broad H3K4me3 domains are constitutive and can be found in both cancer and normal samples. Taken together, these results reveal a new layer of complexity in gene regulation by super-enhancers and broad H3K4me3 domains.

  6. Transforming growth factor-β-induced gene product-h3 inhibits odontoblastic differentiation of dental pulp cells.

    PubMed

    Serita, Suguru; Tomokiyo, Atsushi; Hasegawa, Daigaku; Hamano, Sayuri; Sugii, Hideki; Yoshida, Shinichiro; Mizumachi, Hiroyuki; Mitarai, Hiromi; Monnouchi, Satoshi; Wada, Naohisa; Maeda, Hidefumi

    2017-06-01

    The aim of this study was to investigate transforming growth factor-β-induced gene product-h3 (βig-h3) expression in dental pulp tissue and its effects on odontoblastic differentiation of dental pulp cells (DPCs). A rat direct pulp capping model was prepared using perforated rat upper first molars capped with mineral trioxide aggregate cement. Human DPCs (HDPCs) were isolated from extracted teeth. βig-h3 expression in rat dental pulp tissue and HDPCs was assessed by immunostaining. Mineralization of HDPCs was assessed by Alizarin red-S staining. Odontoblast-related gene expression in HDPCs was analyzed by quantitative RT-PCR. Expression of βig-h3 was detected in rat dental pulp tissue, and attenuated by direct pulp capping, while expression of interleukin-1β and tumor necrosis factor-α was increased in exposed pulp tissue. βig-h3 expression was also detected in HDPCs, with reduced expression during odontoblastic differentiation. The above cytokines reduced βig-h3 expression in HDPCs, and promoted their mineralization. Recombinant βig-h3 inhibited the expression of odontoblast-related genes and mineralization of HDPCs, while knockdown of βig-h3 gene expression promoted the expression of odontoblast-related genes in HDPCs. The present findings suggest that βig-h3 in DPCs may be involved in reparative dentin formation and that its expression is likely to negatively regulate this process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Genome-Wide Survey and Expression Profiling of CCCH-Zinc Finger Family Reveals a Functional Module in Macrophage Activation

    PubMed Central

    Liang, Jian; Song, Wenjun; Tromp, Gail; Kolattukudy, Pappachan E.; Fu, Mingui

    2008-01-01

    Previously, we have identified a novel CCCH zinc finger protein family as negative regulators of macrophage activation. To gain an overall insight into the entire CCCH zinc finger gene family and to evaluate their potential role in macrophage activation, here we performed a genome-wide survey of CCCH zinc finger genes in mouse and human. Totally 58 CCCH zinc finger genes in mouse and 55 in human were identified and most of them have not been reported previously. Phylogenetic analysis revealed that the mouse CCCH family was divided into 6 groups. Meanwhile, we employed quantitative real-time PCR to profile their tissue expression patterns in adult mice. Clustering analysis showed that most of CCCH genes were broadly expressed in all of tissues examined with various levels. Interestingly, several CCCH genes Mbnl3, Zfp36l2, Zfp36, Zc3h12a, Zc3h12d, Zc3h7a and Leng9 were enriched in macrophage-related organs such as thymus, spleen, lung, intestine and adipose. Consistently, a comprehensive assessment of changes in expression of the 58 members of the mouse CCCH family during macrophage activation also revealed that these CCCH zinc finger genes were associated with the activation of bone marrow-derived macrophages by lipopolysaccharide. Taken together, this study not only identified a functional module of CCCH zinc finger genes in the regulation of macrophage activation but also provided the framework for future studies to dissect the function of this emerging gene family. PMID:18682727

  8. FOXP3 Orchestrates H4K16 Acetylation and H3K4 Tri-Methylation for Activation of Multiple Genes through Recruiting MOF and Causing Displacement of PLU-1

    PubMed Central

    Katoh, Hiroto; Qin, Zhaohui S.; Liu, Runhua; Wang, Lizhong; Li, Weiquan; Li, Xiangzhi; Wu, Lipeng; Du, Zhanwen; Lyons, Robert; Liu, Chang-Gong; Liu, Xiuping; Dou, Yali; Zheng, Pan; Liu, Yang

    2011-01-01

    SUMMARY Both H4K16 acetylation and H3K4 tri-methylation are required for gene activation. However, it is still largely unclear how these modifications are orchestrated by transcriptional factors. Here we analyzed the mechanism of the transcriptional activation by FOXP3, an X-linked suppressor of autoimmune diseases and cancers. FOXP3 binds near transcriptional start sites of its target genes. By recruiting MOF and displacing histone H3K4 demethylase PLU-1, FOXP3 increases both H4K16 acetylation and H3K4 tri-methylation at the FOXP3-associated chromatins of multiple FOXP3-activated genes. RNAi-mediated silencing of MOF reduced both gene activation and tumor suppression by FOXP3, while both somatic mutations in clinical cancer samples and targeted mutation of FOXP3 in mouse prostate epithelial disrupted nuclear localization of MOF. Our data demonstrate a pull-push model in which a single transcription factor orchestrates two epigenetic alterations necessary for gene activation and provide a mechanism for somatic inactivation of the FOXP3 protein function in cancer cells. PMID:22152480

  9. Efficient androst-1,4-diene-3,17-dione production by co-expressing 3-ketosteroid-Δ1 -dehydrogenase and catalase in Bacillus subtilis.

    PubMed

    Shao, M; Sha, Z; Zhang, X; Rao, Z; Xu, M; Yang, T; Xu, Z; Yang, S

    2017-01-01

    3-ketosteroid-Δ 1 -dehydrogenase (KSDD), a flavin adenine dinucleotide (FAD)-dependent enzyme involved in sterol metabolism, specifically catalyses the conversion of androst-4-ene-3,17-dione (AD) to androst-1,4-diene-3,17-dione (ADD). However, the low KSDD activity and the toxic effects of hydrogen peroxide (H 2 O 2 ) generated during the biotransformation of AD to ADD with FAD regeneration hinder its application on AD conversion. The aim of this work was to improve KSDD activity and eliminate the toxic effects of the generated H 2 O 2 to enhance ADD production. The ksdd gene obtained from Mycobacterium neoaurum JC-12 was codon-optimized to increase its expression level in Bacillus subtilis, and the KSDD activity reached 12·3 U mg -1 , which was sevenfold of that of codon-unoptimized gene. To improve AD conversion, catalase was co-expressed with KSDD in B. subtilis 168/pMA5-ksdd opt -katA to eliminate the toxic effects of H 2 O 2 generated during AD conversion. Finally, under optimized bioconversion conditions, fed-batch strategy was carried out and the ADD yield improved to 8·76 g l -1 . This work demonstrates the potential to improve enzyme activity by codon-optimization and eliminate the toxic effects of H 2 O 2 by co-expressing catalase. This study showed the highest ADD productivity ever reported and provides a promising strain for efficient ADD production in the pharmaceutical industry. © 2016 The Society for Applied Microbiology.

  10. Functional role of SETD2, BAP1, PARP-3 and PBRM1 candidate genes on the regulation of hTERT gene expression

    PubMed Central

    Linne, Hannah; Yasaei, Hemad; Marriott, Alison; Harvey, Amanda; Mokbel, Kefah; Newbold, Robert; Roberts, Terry

    2017-01-01

    Narrowing the search for the critical hTERT repressor sequence(s) has identified three regions on chromosome 3p (3p12-p21.1, 3p21.2 and 3p21.3-p22). However, the precise location and identity of the sequence(s) responsible for hTERT transcriptional repression remains elusive. In order to identify critical hTERT repressor sequences located within human chromosome 3p12-p22, we investigated hTERT transcriptional activity within 21NT microcell hybrid clones containing chromosome 3 fragments. Mapping of chromosome 3 structure in a single hTERT-repressed 21NT-#3fragment hybrid clone, revealed a 490kb region of deletion localised to 3p21.3 and encompassing the histone H3, lysine 36 (H3K36) trimethyltransferase enzyme SETD2; a putative tumour suppressor gene in breast cancer. Three additional genes, BAP1, PARP-3 and PBRM1, were also selected for further investigation based on their location within the 3p21.1-p21.3 region, together with their documented role in the epigenetic regulation of target gene expression or hTERT regulation. All four genes (SETD2, BAP1, PARP-3 and PBRM1) were found to be expressed at low levels in 21NT. Gene copy number variation (CNV) analysis of SETD2, BAP1, PARP-3 and PBRM1 within a panel of nine breast cancer cell lines demonstrated single copy number loss of all candidate genes within five (56%) cell lines (including 21NT cells). Stable, forced overexpression of BAP1, but not PARP2, SETD2 or PBRM1, within 21NT cells was associated with a significant reduction in hTERT expression levels relative to wild-type controls. We propose that at least two sequences exist on human chromosome 3p, that function to regulate hTERT transcription within human breast cancer cells. PMID:28977912

  11. Functional role of SETD2, BAP1, PARP-3 and PBRM1 candidate genes on the regulation of hTERT gene expression.

    PubMed

    Linne, Hannah; Yasaei, Hemad; Marriott, Alison; Harvey, Amanda; Mokbel, Kefah; Newbold, Robert; Roberts, Terry

    2017-09-22

    Narrowing the search for the critical hTERT repressor sequence(s) has identified three regions on chromosome 3p (3p12-p21.1, 3p21.2 and 3p21.3-p22). However, the precise location and identity of the sequence(s) responsible for hTERT transcriptional repression remains elusive. In order to identify critical hTERT repressor sequences located within human chromosome 3p12-p22, we investigated hTERT transcriptional activity within 21NT microcell hybrid clones containing chromosome 3 fragments. Mapping of chromosome 3 structure in a single hTERT- repressed 21NT-#3fragment hybrid clone, revealed a 490kb region of deletion localised to 3p21.3 and encompassing the histone H3, lysine 36 (H3K36) trimethyltransferase enzyme SETD2; a putative tumour suppressor gene in breast cancer. Three additional genes, BAP1, PARP-3 and PBRM1, were also selected for further investigation based on their location within the 3p21.1-p21.3 region, together with their documented role in the epigenetic regulation of target gene expression or hTERT regulation. All four genes (SETD2, BAP1, PARP-3 and PBRM1) were found to be expressed at low levels in 21NT. Gene copy number variation (CNV) analysis of SETD2, BAP1, PARP-3 and PBRM1 within a panel of nine breast cancer cell lines demonstrated single copy number loss of all candidate genes within five (56%) cell lines (including 21NT cells). Stable, forced overexpression of BAP1, but not PARP2, SETD2 or PBRM1, within 21NT cells was associated with a significant reduction in hTERT expression levels relative to wild-type controls. We propose that at least two sequences exist on human chromosome 3p, that function to regulate hTERT transcription within human breast cancer cells.

  12. MLL4 Is Required to Maintain Broad H3K4me3 Peaks and Super-Enhancers at Tumor Suppressor Genes.

    PubMed

    Dhar, Shilpa S; Zhao, Dongyu; Lin, Tao; Gu, Bingnan; Pal, Khusboo; Wu, Sarah J; Alam, Hunain; Lv, Jie; Yun, Kyuson; Gopalakrishnan, Vidya; Flores, Elsa R; Northcott, Paul A; Rajaram, Veena; Li, Wei; Shilatifard, Ali; Sillitoe, Roy V; Chen, Kaifu; Lee, Min Gyu

    2018-06-07

    Super-enhancers are large clusters of enhancers that activate gene expression. Broad trimethyl histone H3 lysine 4 (H3K4me3) often defines active tumor suppressor genes. However, how these epigenomic signatures are regulated for tumor suppression is little understood. Here we show that brain-specific knockout of the H3K4 methyltransferase MLL4 (a COMPASS-like enzyme, also known as KMT2D) in mice spontaneously induces medulloblastoma. Mll4 loss upregulates oncogenic Ras and Notch pathways while downregulating neuronal gene expression programs. MLL4 enhances DNMT3A-catalyzed DNA methylation and SIRT1/BCL6-mediated H4K16 deacetylation, which antagonize expression of Ras activators and Notch pathway components, respectively. Notably, Mll4 loss downregulates tumor suppressor genes (e.g., Dnmt3a and Bcl6) by diminishing broad H3K4me3 and super-enhancers and also causes widespread impairment of these epigenomic signatures during medulloblastoma genesis. These findings suggest an anti-tumor role for super-enhancers and provide a unique tumor-suppressive mechanism in which MLL4 is necessary to maintain broad H3K4me3 and super-enhancers at tumor suppressor genes. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. The gene for spinal cerebellar ataxia 3 (SCA3) is located in a region of approximately 3 cM on chromosome 14q24.3-q32.2.

    PubMed Central

    Stevanin, G; Cancel, G; Dürr, A; Chneiweiss, H; Dubourg, O; Weissenbach, J; Cann, H M; Agid, Y; Brice, A

    1995-01-01

    SCA3, the gene for spinal cerebellar ataxia 3, was recently mapped to a 15-cM interval between D14S67 and D14S81 on chromosome 14q, by linkage analysis in two families of French ancestry. The SCA3 candidate region has now been refined by linkage analysis with four new microsatellite markers (D14S256, D14S291, D14S280, and AFM343vf1) in the same two families, in which 19 additional individuals were genotyped, and in a third French family. Combined two-point linkage analyses show that the new markers, D14S280 and AFM343vf1, are tightly linked to the SCA3 locus, with maximal lod scores, at recombination fraction, (theta) = .00, of 7.05 and 13.70, respectively. Combined multipoint and recombinant haplotype analyses localize the SCA3 locus to a 3-cM interval flanked by D14S291 and D14S81. The same allele for D14S280 segregates with the disease locus in the three kindreds. This allele is frequent in the French population, however, and linkage disequilibrium is not clearly established. The SCA3 locus remains within the 29-cM region on 14q24.3-q32.2 containing the gene for the Machado-Joseph disease, which is clinically related to the phenotype determined by SCA3, but it cannot yet be concluded that both diseases result from alterations of the same gene. PMID:7825578

  14. H3K27me3 dynamics dictate evolving uterine states in pregnancy and parturition

    PubMed Central

    Nancy, Patrice; Siewiera, Johan; Tagliani, Elisa; Osokine, Ivan; Manandhar, Priyanka; Clementi, Caterina

    2017-01-01

    Uncovering the causes of pregnancy complications such as preterm labor requires greater insight into how the uterus remains in a noncontractile state until term and then surmounts this state to enter labor. Here, we show that dynamic generation and erasure of the repressive histone modification tri-methyl histone H3 lysine 27 (H3K27me3) in decidual stromal cells dictate both elements of pregnancy success in mice. In early gestation, H3K27me3-induced transcriptional silencing of select gene targets ensured uterine quiescence by preventing the decidua from expressing parturition-inducing hormone receptors, manifesting type 1 immunity, and most unexpectedly, generating myofibroblasts and associated wound-healing responses. In late gestation, genome-wide H3K27 demethylation allowed for target gene upregulation, decidual activation, and labor entry. Pharmacological inhibition of H3K27 demethylation in late gestation not only prevented term parturition, but also inhibited delivery while maintaining pup viability in a noninflammatory model of preterm parturition. Immunofluorescence analysis of human specimens suggested that similar regulatory events might occur in the human decidua. Together, these results reveal the centrality of regulated gene silencing in the uterine adaptation to pregnancy and suggest new areas in the study and treatment of pregnancy disorders. PMID:29202469

  15. Fluoroethoxy-1,4-diphenethylpiperidine and piperazine derivatives: Potent and selective inhibitors of [3H]dopamine uptake at the vesicular monoamine transporter-2.

    PubMed

    Hankosky, Emily R; Joolakanti, Shyam R; Nickell, Justin R; Janganati, Venumadhav; Dwoskin, Linda P; Crooks, Peter A

    2017-12-15

    A small library of fluoroethoxy-1,4-diphenethyl piperidine and fluoroethoxy-1,4-diphenethyl piperazine derivatives were designed, synthesized and evaluated for their ability to inhibit [ 3 H]dopamine (DA) uptake at the vesicular monoamine transporter-2 (VMAT2) and dopamine transporter (DAT), [ 3 H]serotonin (5-HT) uptake at the serotonin transporter (SERT), and [ 3 H]dofetilide binding at the human-ether-a-go-go-related gene (hERG) channel. The majority of the compounds exhibited potent inhibition of [ 3 H]DA uptake at VMAT2, Ki changes in the nanomolar range (K i  = 0.014-0.073 µM). Compound 15d exhibited the highest affinity (K i  = 0.014 µM) at VMAT2, and had 160-, 5-, and 60-fold greater selectivity for VMAT2 vs. DAT, SERT and hERG, respectively. Compound 15b exhibited the greatest selectivity (>60-fold) for VMAT2 relative to all the other targets evaluated, and 15b had high affinity for VMAT2 (K i  = 0.073 µM). Compound 15b was considered the lead compound from this analog series due to its high affinity and selectivity for VMAT2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Identification of host genes linked with the survivability of chickens infected with recombinant viruses possessing H5N1 surface antigens from a highly pathogenic avian influenza virus.

    PubMed

    Uchida, Yuko; Watanabe, Chiaki; Takemae, Nobuhiro; Hayashi, Tsuyoshi; Oka, Takehiko; Ito, Toshihiro; Saito, Takehiko

    2012-03-01

    Seventeen recombinant viruses were generated by a reverse genetic technique to elucidate the pathogenicity of highly pathogenic avian influenza viruses (HPAIVs) in chickens. The recombinant viruses generated possessed hemagglutinin (HA) and neuraminidase (NA) genes from an HPAIV. Other segments were combinations of the genes from an HPAIV and two low-pathogenic avian influenza viruses (LPAIVs) derived from chicken (LP) and wild bird (WB). Exchange of whole internal genes from an HPAIV with those of an LPAIV resulted in a significant extension of the survival time following intranasal infection of the chickens with the recombinants. Survival analysis demonstrated that the exchange of a gene segment affected survivability of the chickens with statistical significance. The analysis revealed three groups of recombinants with various gene constellations that depended upon the survivability of the infected chickens. Recombinants where the PA gene was exchanged from LP to WB in the LP gene background, LP (W/PA), did not kill any chickens. LP (W/PA) replicated less efficiently both in vitro and in vivo, suggesting that the intrinsic replication ability of LP (W/PA) affects pathogenicity; however, such a correlation was not seen for the other recombinants. Microarray analysis of the infected chicken lungs indicated that the expression of 7 genes, CD274, RNF19B, OASL, ZC3HAV1 [corrected] , PLA2G6, GCH1, and USP18, correlated with the survivability of the chickens infected (P < 0.01). Further analysis of the functions of these genes in chickens would aid in the understanding of host gene responses following fatal infections by HPAIVs.

  17. Modelling disorder in 3,3' -dimethoxybensil, C[subscript 16]H[subscript 14]O[subscript 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goossens, Darren J.; Welberry, T.Richard; Heerdegen, Aidan P.

    2008-06-18

    This work is part of an extended study of benzil (C{sub 14}H{sub 10}O{sub 2}) and some of its derivatives which aims to understand the role of molecular flexibility in crystal packing and polymorphism. Significant steps have been made in modelling the structured thermal diffuse scattering from 3,3'-dimethoxybenzil, C{sub 16}H{sub 1}4O{sub 4}. It appears that the structure can be considered as a stack of layers of molecules in which interactions are strongest within the layers. The layers interact weakly along the a direction but more strongly along c, so shearing of the planes relative to each other is energetically likely. Themore » molecule must be treated as flexible for a good model to be found.« less

  18. Exome sequencing and digital PCR analyses reveal novel mutated genes related to the metastasis of pancreatic ductal adenocarcinoma.

    PubMed

    Zhou, Bin; Irwanto, Astrid; Guo, Yun-Miao; Bei, Jin-Xin; Wu, Qiao; Chen, Ge; Zhang, Tai-Ping; Lei, Jin-Jv; Feng, Qi-Sheng; Chen, Li-Zhen; Liu, Jianjun; Zhao, Yu-Pei

    2012-08-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant cancers with more than 94% mortality rate mainly due to the widespread metastases. To find out the somatically mutated genes related to the metastasis of PDAC, we analyzed the matched tumor and normal tissue samples from a patient diagnosed with liver metastatic PDAC using intensive exome capture-sequencing analysis (> 170× coverage). Searching for the somatic mutations that drive the clonal expansion of metastasis, we identified 12 genes with higher allele frequencies (AFs) of functional mutations in the metastatic tumor, including known genes KRAS and TP53 for metastasis. Of the 10 candidate genes, 6 (ADRB1, DCLK1, KCNH2, NOP14, SIGLEC1, and ZC3H7A), together with KRAS and TP53, were clustered into a single network (p value = 1 × 10(-22)) that is related to cancer development. Moreover, these candidate genes showed abnormal expression in PDAC tissues and functional impacts on the migration, proliferation, and colony formation abilities of pancreatic cancer cell lines. Furthermore, through digital PCR analysis, we revealed potential genomic mechanisms for the KRAS and TP53 mutations in the metastatic tumor. Taken together, our study shows the possibility for such personalized genomic profiling to provide new biological insight into the metastasis of PDAC.

  19. Cotton (Gossypium hirsutum) 14-3-3 proteins participate in regulation of fibre initiation and elongation by modulating brassinosteroid signalling.

    PubMed

    Zhou, Ying; Zhang, Ze-Ting; Li, Mo; Wei, Xin-Zheng; Li, Xiao-Jie; Li, Bing-Ying; Li, Xue-Bao

    2015-02-01

    Cotton (Gossypium hirsutum) fibre is an important natural raw material for textile industry in the world. Understanding the molecular mechanism of fibre development is important for the development of future cotton varieties with superior fibre quality. In this study, overexpression of Gh14-3-3L in cotton promoted fibre elongation, leading to an increase in mature fibre length. In contrast, suppression of expression of Gh14-3-3L, Gh14-3-3e and Gh14-3-3h in cotton slowed down fibre initiation and elongation. As a result, the mature fibres of the Gh14-3-3 RNAi transgenic plants were significantly shorter than those of wild type. This 'short fibre' phenotype of the 14-3-3 RNAi cotton could be partially rescued by application of 2,4-epibrassinolide (BL). Expression levels of the BR-related and fibre-related genes were altered in the Gh14-3-3 transgenic fibres. Furthermore, we identified Gh14-3-3 interacting proteins (including GhBZR1) in cotton. Site mutation assay revealed that Ser163 in GhBZR1 and Lys51/56/53 in Gh14-3-3L/e/h were required for Gh14-3-3-GhBZR1 interaction. Nuclear localization of GhBZR1 protein was induced by BR, and phosphorylation of GhBZR1 by GhBIN2 kinase was helpful for its binding to Gh14-3-3 proteins. Additionally, 14-3-3-regulated GhBZR1 protein may directly bind to GhXTH1 and GhEXP promoters to regulate gene expression for responding rapid fibre elongation. These results suggested that Gh14-3-3 proteins may be involved in regulating fibre initiation and elongation through their interacting with GhBZR1 to modulate BR signalling. Thus, our study provides the candidate intrinsic genes for improving fibre yield and quality by genetic manipulation. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  20. The radioactivity estimation of 14C and 3H in graphite waste samples of the KRR-2.

    PubMed

    Reyoung Kim, Hee

    2013-09-01

    The radioactivity of (14)C and (3)H in graphite samples from the dismantled Korea Research Reactor-2 (the KRR-2) site was analyzed by high-temperature oxidation and liquid scintillation counting, and the graphite waste was suggested to be disposed of as a low-level radioactive waste. The graphite samples were oxidized at a high temperature of 800 °C, and their counting rates were measured by using a liquid scintillation counter (LSC). The combustion ratio of the graphite was about 99% on the sample with a maximum weight of 1g. The recoveries from the combustion furnace were around 100% and 90% in (14)C and (3)H, respectively. The minimum detectable activity was 0.04-0.05 Bq/g for the (14)C and 0.13-0.15 Bq/g for the (3)H at the same background counting time. The activity of (14)C was higher than that of (3)H over all samples with the activity ratios of the (14)C to (3)H, (14)C/(3)H, being between 2.8 and 25. The dose calculation was carried out from its radioactivity analysis results. The dose estimation gave a higher annual dose than the domestic legal limit for a clearance. It was thought that the sampled graphite waste from the dismantled research reactor was not available for reuse or recycling and should be monitored as low-level radioactive waste. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. First Generation Gene Expression Signature for Early Prediction of Late Occurring Hematological Acute Radiation Syndrome in Baboons.

    PubMed

    Port, M; Herodin, F; Valente, M; Drouet, M; Lamkowski, A; Majewski, M; Abend, M

    2016-07-01

    We implemented a two-stage study to predict late occurring hematologic acute radiation syndrome (HARS) in a baboon model based on gene expression changes measured in peripheral blood within the first two days after irradiation. Eighteen baboons were irradiated to simulate different patterns of partial-body and total-body exposure, which corresponded to an equivalent dose of 2.5 or 5 Gy. According to changes in blood cell counts the surviving baboons (n = 17) exhibited mild (H1-2, n = 4) or more severe (H2-3, n = 13) HARS. Blood samples taken before irradiation served as unexposed control (H0, n = 17). For stage I of this study, a whole genome screen (mRNA microarrays) was performed using a portion of the samples (H0, n = 5; H1-2, n = 4; H2-3, n = 5). For stage II, using the remaining samples and the more sensitive methodology, qRT-PCR, validation was performed on candidate genes that were differentially up- or down-regulated during the first two days after irradiation. Differential gene expression was defined as significant (P < 0.05) and greater than or equal to a twofold difference above a H0 classification. From approximately 20,000 genes, on average 46% appeared to be expressed. On day 1 postirradiation for H2-3, approximately 2-3 times more genes appeared up-regulated (1,418 vs. 550) or down-regulated (1,603 vs. 735) compared to H1-2. This pattern became more pronounced at day 2 while the number of differentially expressed genes decreased. The specific genes showed an enrichment of biological processes coding for immune system processes, natural killer cell activation and immune response (P = 1 × E-06 up to 9 × E-14). Based on the P values, magnitude and sustained differential gene expression over time, we selected 89 candidate genes for validation using qRT-PCR. Ultimately, 22 genes were confirmed for identification of H1-3 classifications and seven genes for identification of H2-3 classifications using qRT-PCR. For H1-3 classifications, most genes were

  2. Respiratory strategy is a major determinant of [3H]water and [14C]chlorpyrifos uptake in aquatic insects

    USGS Publications Warehouse

    Buchwalter, D.B.; Jenkins, J.J.; Curtis, L.R.

    2002-01-01

    Despite the extensive use of aquatic insects to evaluate freshwater ecosystem health, little is known about the underlying factors that result in sensitivity differences between taxa. Organismal characteristics (respiratory strategy and body size) were used to explore the rates of [3H]H2O and [14)C]chlorpyrifos accumulation in aquatic insects. Ten aquatic insect taxa, including ephemeropteran, trichopteran, dipteran, hemipteran, and coleopteran species, were exposed to [14C]chlorpyrifos (240 ng??L-1) and [3H]H2O for up to 12 h. Because exchange epithelial surfaces on the)integument are permeable to water, [3H]H2O was used as a quantitative surrogate for exposed cellular surface area.) [14C]Chlorpyrifos uptake rates were highly correlated with water permeability in all 10 taxa tested and largely covaried with body size and respiratory strategy. Rates were highest among smaller organisms on a per-weight basis and in taxa with relatively large external cellular surfaces such as gills. Air-breathing taxa were significantly less permeable to both [3)HH20 and [14C)C]chlorpyrifos. A method for labeling exposed epithelial surfaces with a fluorescent dye was developed. This technique allowed discrimination between exchange epithelium and barrier tissue on the integument. Fluorescent dye distributions on the body surface provided a rapid method for estimating exposed epithelium consistent with [3H]H2O and [14)C]chlorpyrifos accumulation.

  3. Induction of AID-targeting adaptor 14-3-3γ is mediated by NF-κB-dependent recruitment of CFP1 to the 5′-CpG-3′-rich 14-3-3γ promoter and is sustained by E2A

    PubMed Central

    Mai, Thach; Pone, Egest J.; Li, Guideng; Lam, Tonika S.; Moehlman, J’aime; Xu, Zhenming; Casali, Paolo

    2013-01-01

    Class switch DNA recombination (CSR) crucially diversifies antibody biological effectors functions. 14-3-3γ specifically binds to the 5′-AGCT-3′ repeats in the IgH locus switch (S) regions. By directly interacting with the C-terminal region of activation-induced cytidine deaminase (AID), 14-3-3γ targets this enzyme to S regions to mediate CSR. Here, we showed that 14-3-3γ was expressed in germinal center B cells in vivo and induced in B cells by T-dependent and T-independent primary CSR-inducing stimuli in vitro in humans and mice. Induction of 14-3-3γ was rapid, peaking within 3 h of stimulation by lipopolysaccharides (LPS), and sustained over the course of AID and CSR induction. It was dependent on recruitment of NF-κB to the 14-3-3γ gene promoter. The NF-κB recruitment enhanced the occupancy of the CpG island within the 14-3-3γ promoter by CFP1, a component of the COMPASS histone methyltransferase complex, and promoter-specific enrichment of histone 3 lysine 4 trimethylation (H3K4me3), which is indicative of open chromatin state and marks transcription-competent promoters. NF-κB also potentiated the binding of B cell lineage-specific factor E2A to an E-box motif located immediately downstream of the two closely-spaced transcription start sites (TSSs) for sustained 14-3-3γ expression and CSR induction. Thus, 14-3-3γ induction in CSR is enabled by the CFP1-mediated H3K4me3 enrichment in the promoter, dependent on NF-κB and sustained by E2A. PMID:23851690

  4. Phylogenetic relationships of the HA and NA genes between vaccine and seasonal influenza A(H3N2) strains in Korea

    PubMed Central

    Park, Sehee; Bae, Joon-Yong; Yoo, Kirim; Cheong, Hee Jin; Noh, Ji Yun; Hong, Kyung Wook; Lemey, Philippe; Vrancken, Bram; Kim, Juwon; Nam, Misun; Yun, Soo-Hyeon; Cho, Woo In; Song, Joon Young; Kim, Woo Joo; Park, Mee Sook; Song, Jin-Won; Kee, Sun-Ho; Song, Ki-Joon; Park, Man-Seong

    2017-01-01

    Seasonal influenza is caused by two influenza A subtype (H1N1 and H3N2) and two influenza B lineage (Victoria and Yamagata) viruses. Of these antigenically distinct viruses, the H3N2 virus was consistently detected in substantial proportions in Korea during the 2010/11-2013/14 seasons when compared to the other viruses and appeared responsible for the influenza-like illness rate peak during the first half of the 2011/12 season. To further scrutinize possible causes for this, we investigated the evolutionary and serological relationships between the vaccine and Korean H3N2 strains during the 2011/12 season for the main antigenic determinants of influenza viruses, the hemagglutinin (HA) and neuraminidase (NA) genes. In the 2011/12 season, when the number of H3N2 cases peaked, the majority of the Korean strains did not belong to the HA clade of A/Perth/16/2009 vaccine, and no Korean strains were of this lineage in the NA segment. In a serological assay, post-vaccinated human sera exhibited much reduced hemagglutination inhibition antibody titers against the non-vaccine clade Korean H3N2 strains. Moreover, Korean strains harbored several amino acid differences in the HA antigenic sites and in the NA with respect to vaccine lineages during this season. Of these, the HA antigenic site C residues 45 and 261 and the NA residue 81 appeared to be the signatures of positive selection. In subsequent seasons, when H3N2 cases were lower, the HA and NA genes of vaccine and Korean strains were more phylogenetically related to each other. Combined, our results provide indirect support for using phylogenetic clustering patterns of the HA and possibly also the NA genes in the selection of vaccine viruses and the assessment of vaccine effectiveness. PMID:28257427

  5. Generation and characterization of highly strained dibenzotetrakisdehydro[12]- and dibenzopentakisdehydro[14]annulenes.

    PubMed

    Hisaki, Ichiro; Eda, Takeshi; Sonoda, Motohiro; Niino, Hiroyuki; Sato, Tadatake; Wakabayashi, Tomonari; Tobe, Yoshito

    2005-03-04

    To generate dibenzotetrakisdehydro[12]- and dibenzopentakisdehydro[14]annulenes ([12]- and [14]DBAs) having a highly deformed triyne moiety, [4.3.2]propellatriene-anneleted dehydro[12]- and dehydro[14]annulenes were prepared as their precursors. UV irradiation of the precursors resulted in the photochemical [2 + 2] cycloreversion to generate the strained [12]- and [14]DBAs, respectively. The [12]DBA was not detected by 1H NMR spectroscopy, but it was intercepted as Diels-Alder adducts in solution, suggesting its intermediacy. Its spectroscopic characterization was successfully carried out by UV-vis spectroscopy in a 2-methyltetrahydrofuran (MTHF) glass matrix at 77 K and by FT-IR spectroscopy in an argon matrix at 20 K. On the other hand, the [14]DBA was stable enough for observation by 1H and 13C NMR spectra in solution, though it was not isolated because of the low efficiency of the cycloreversion. The [14]DBA was also characterized by interception as Diels-Alder adducts in solution and by UV-vis spectroscopy in a MTHF glass matrix at 77 K. The kinetic stabilities of the DBAs are compared with the related dehydrobenzoannulenes with respect to the topology of the pi-systems. In addition, the tropicity of the [14]DBA is discussed based on its experimental and theoretical 1H NMR chemical shifts.

  6. Porcine Knock-in Fibroblasts Expressing hDAF on α-1,3-Galactosyltransferase (GGTA1) Gene Locus.

    PubMed

    Kim, Ji Woo; Kim, Hye-Min; Lee, Sang Mi; Kang, Man-Jong

    2012-10-01

    The Galactose-α1,3-galactose (α1,3Gal) epitope is responsible for hyperacute rejection in pig-to-human xenotransplantation. Human decay-accelerating factor (hDAF) is a cell surface regulatory protein that serves as a complement inhibitor to protect self cells from complement attack. The generation of α1,3-galactosyltransferase (GGTA1) knock-out pigs expressing DAF is a necessary step for their use as organ donors for humans. In this study, we established GGTA1 knock-out cell lines expressing DAF from pig ear fibroblasts for somatic cell nuclear transfer. hDAF expression was detected in hDAF knock-in heterozygous cells, but not in normal pig cells. Expression of the GGTA1 gene was lower in the knock-in heterozygous cell line compared to the normal pig cell. Knock-in heterozygous cells afforded more effective protection against cytotoxicity with human serum than with GGTA1 knock-out heterozygous and control cells. These cell lines may be used in the production of GGTA1 knock-out and DAF expression pigs for xenotransplantation.

  7. Infrared spectra of ovalene (C32H14) and hydrogenated ovalene (C32H15˙) in solid para-hydrogen.

    PubMed

    Tsuge, Masashi; Bahou, Mohammed; Wu, Yu-Jong; Allamandola, Louis; Lee, Yuan-Pern

    2016-10-19

    We report the infrared (IR) spectra of ovalene (C 32 H 14 ) and hydrogenated ovalene (C 32 H 15 ˙) in solid para-hydrogen (p-H 2 ). The hydrogenated ovalene and protonated ovalene were generated from electron bombardment of a mixture of ovalene and p-H 2 during deposition of a matrix at 3.2 K. The features that decreased with time have been previously assigned to 7-C 32 H 15 + , the most stable isomer of protonated ovalene (Astrophys. J., 2016, 825, 96). The spectral features that increased with time are assigned to the most stable isomer of hydrogenated ovalene (7-C 32 H 15 ˙) based on the expected chemistry and on a comparison with the vibrational wavenumbers and IR intensities predicted by the B3PW91/6-311++G(2d,2p) method. The mechanism of formation of 7-C 32 H 15 ˙ is discussed according to the observed changes in intensity and calculated energetics of possible reactions of H + C 32 H 14 and isomerization of C 32 H 15 ˙. The formation of 7-C 32 H 15 ˙ is dominated by the reaction H + C 32 H 14 → 7-C 32 H 15 ˙, implying that, regardless of the presence of a barrier, the hydrogenation of polycyclic aromatic hydrocarbons occurs even at 3.2 K.

  8. The chromatin-binding protein HMGN3 stimulates histone acetylation and transcription across the Glyt1 gene

    PubMed Central

    Barkess, Gráinne; Postnikov, Yuri; Campos, Chrisanne D.; Mishra, Shivam; Mohan, Gokula; Verma, Sakshi; Bustin, Michael; West, Katherine L.

    2013-01-01

    HMGNs are nucleosome-binding proteins that alter the pattern of histone modifications and modulate the binding of linker histones to chromatin. The HMGN3 family member exists as two splice forms, HMGN3a which is full-length and HMGN3b which lacks the C-terminal RD (regulatory domain). In the present study, we have used the Glyt1 (glycine transporter 1) gene as a model system to investigate where HMGN proteins are bound across the locus in vivo, and to study how the two HMGN3 splice variants affect histone modifications and gene expression. We demonstrate that HMGN1, HMGN2, HMGN3a and HMGN3b are bound across the Glyt1 gene locus and surrounding regions, and are not enriched more highly at the promoter or putative enhancer. We conclude that the peaks of H3K4me3 (trimethylated Lys4 of histone H3) and H3K9ac (acetylated Lys9 of histone H3) at the active Glyt1a promoter do not play a major role in recruiting HMGN proteins. HMGN3a/b binding leads to increased H3K14 (Lys14 of histone H3) acetylation and stimulates Glyt1a expression, but does not alter the levels of H3K4me3 or H3K9ac enrichment. Acetylation assays show that HMGN3a stimulates the ability of PCAF [p300/CREB (cAMP-response-element-binding protein)-binding protein-associated factor] to acetylate nucleosomal H3 in vitro, whereas HMGN3b does not. We propose a model where HMGN3a/b-stimulated H3K14 acetylation across the bodies of large genes such as Glyt1 can lead to more efficient transcription elongation and increased mRNA production. PMID:22150271

  9. LncRNA H19 and Target Gene-mediated Cleft Palate Induced by TCDD.

    PubMed

    Gao, Li Yun; Zhang, Feng Quan; Zhao, Wei Hui; Han, Guang Liang; Wang, Xiao; Li, Qiang; Gao, Shan Shan; Wu, Wei Dong

    2017-09-01

    This study investigated the role of long non-coding RNAs (lncRNAs) in the development of the palatal tissues. Cleft palates in mice were induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Expression levels of long non-coding RNA H19 (lncRNA H19) and insulin-like growth factor 2 (IGF2) gene were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The rate of occurrence of cleft palate was found to be 100% by TCDD exposure, and TCDD could cause short upper limb, cerebral fissure, webbed neck, and short neck. The expression levels of lncRNA H19 and IGF2 gene specifically showed embryo age-related differences on E13, E14, and E15 in the palatal tissues. The expression levels of lncRNA H19 and IGF2 gene showed an inverse relationship on E13, E14, and E15. These findings demonstrated that lncRNA H19 and IGF2 can mediate the development of mouse cleft palate. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  10. The histone demethylase Jarid1b ensures faithful mouse development by protecting developmental genes from aberrant H3K4me3.

    PubMed

    Albert, Mareike; Schmitz, Sandra U; Kooistra, Susanne M; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C; Johansen, Jens V; Abarrategui, Iratxe; Helin, Kristian

    2013-04-01

    Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications.

  11. The Histone Demethylase Jarid1b Ensures Faithful Mouse Development by Protecting Developmental Genes from Aberrant H3K4me3

    PubMed Central

    Kooistra, Susanne M.; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C.; Johansen, Jens V.; Abarrategui, Iratxe; Helin, Kristian

    2013-01-01

    Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications. PMID:23637629

  12. Synthesis and biological evaluation of new 2-(4,5-dihydro-1H-imidazol-2-yl)-3,4-dihydro-2H-1,4-benzoxazine derivatives.

    PubMed

    Touzeau, Frédérique; Arrault, Axelle; Guillaumet, Gérald; Scalbert, Elizabeth; Pfeiffer, Bruno; Rettori, Marie-Claire; Renard, Pierre; Mérour, Jean-Yves

    2003-05-08

    2-(4,5-Dihydro-1H-imidazol-2-yl)-3,4-dihydro-2H-1,4-benzoxazine derivatives and tricyclic analogues with a fused additional ring on the nitrogen atom of the benzoxazine moiety have been prepared and evaluated for their cardiovascular effects as potential antihypertensive agents. The imidazoline ring was generated by reaction of the corresponding ethyl ester with ethylenediamine. Affinities for imidazoline binding sites (IBS) I(1) and I(2) and alpha(1) and alpha(2) adrenergic receptors were evaluated as well as the effects on mean arterial blood pressure (MAP) and heart rate (HR) of spontaneously hypertensive rats. With few exceptions the most active compounds on MAP were those with high affinities for IBS and alpha(2) receptor. Among these, compound 4h was the most interesting and is now, together with its enantiomers, under complementary pharmacological evaluation.

  13. A sodium channel knockin mutant (NaV1.4-R669H) mouse model of hypokalemic periodic paralysis

    PubMed Central

    Wu, Fenfen; Mi, Wentao; Burns, Dennis K.; Fu, Yu; Gray, Hillery F.; Struyk, Arie F.; Cannon, Stephen C.

    2011-01-01

    Hypokalemic periodic paralysis (HypoPP) is an ion channelopathy of skeletal muscle characterized by attacks of muscle weakness associated with low serum K+. HypoPP results from a transient failure of muscle fiber excitability. Mutations in the genes encoding a calcium channel (CaV1.1) and a sodium channel (NaV1.4) have been identified in HypoPP families. Mutations of NaV1.4 give rise to a heterogeneous group of muscle disorders, with gain-of-function defects causing myotonia or hyperkalemic periodic paralysis. To address the question of specificity for the allele encoding the NaV1.4-R669H variant as a cause of HypoPP and to produce a model system in which to characterize functional defects of the mutant channel and susceptibility to paralysis, we generated knockin mice carrying the ortholog of the gene encoding the NaV1.4-R669H variant (referred to herein as R669H mice). Homozygous R669H mice had a robust HypoPP phenotype, with transient loss of muscle excitability and weakness in low-K+ challenge, insensitivity to high-K+ challenge, dominant inheritance, and absence of myotonia. Recovery was sensitive to the Na+/K+-ATPase pump inhibitor ouabain. Affected fibers had an anomalous inward current at hyperpolarized potentials, consistent with the proposal that a leaky gating pore in R669H channels triggers attacks, whereas a reduction in the amplitude of action potentials implies additional loss-of-function changes for the mutant NaV1.4 channels. PMID:21881211

  14. H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome

    PubMed Central

    Pauler, Florian M.; Sloane, Mathew A.; Huang, Ru; Regha, Kakkad; Koerner, Martha V.; Tamir, Ido; Sommer, Andreas; Aszodi, Andras; Jenuwein, Thomas; Barlow, Denise P.

    2009-01-01

    In mammals, genome-wide chromatin maps and immunofluorescence studies show that broad domains of repressive histone modifications are present on pericentromeric and telomeric repeats and on the inactive X chromosome. However, only a few autosomal loci such as silent Hox gene clusters have been shown to lie in broad domains of repressive histone modifications. Here we present a ChIP-chip analysis of the repressive H3K27me3 histone modification along chr 17 in mouse embryonic fibroblast cells using an algorithm named broad local enrichments (BLOCs), which allows the identification of broad regions of histone modifications. Our results, confirmed by BLOC analysis of a whole genome ChIP-seq data set, show that the majority of H3K27me3 modifications form BLOCs rather than focal peaks. H3K27me3 BLOCs modify silent genes of all types, plus flanking intergenic regions and their distribution indicates a negative correlation between H3K27me3 and transcription. However, we also found that some nontranscribed gene-poor regions lack H3K27me3. We therefore performed a low-resolution analysis of whole mouse chr 17, which revealed that H3K27me3 is enriched in mega-base-pair-sized domains that are also enriched for genes, short interspersed elements (SINEs) and active histone modifications. These genic H3K27me3 domains alternate with similar-sized gene-poor domains. These are deficient in active histone modifications, as well as H3K27me3, but are enriched for long interspersed elements (LINEs) and long-terminal repeat (LTR) transposons and H3K9me3 and H4K20me3. Thus, an autosome can be seen to contain alternating chromatin bands that predominantly separate genes from one retrotransposon class, which could offer unique domains for the specific regulation of genes or the silencing of autonomous retrotransposons. PMID:19047520

  15. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor suppressor genes

    PubMed Central

    Chen, Kaifu; Chen, Zhong; Wu, Dayong; Zhang, Lili; Lin, Xueqiu; Su, Jianzhong; Rodriguez, Benjamin; Xi, Yuanxin; Xia, Zheng; Chen, Xi; Shi, Xiaobing; Wang, Qianben; Li, Wei

    2016-01-01

    Tumor suppressors are mostly defined by inactivating mutations in tumors, yet little is known about their epigenetic features in normal cells. Through integrative analysis of 1,134 genome-wide epigenetic profiles, mutations from >8,200 tumor-normal pairs, and our experimental data from clinical samples, we discovered broad H3K4me3 (wider than 4 kb) as the first epigenetic signature for tumor suppressors in normal cells. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity together leading to exceptionally high gene expression, and is distinct from other broad epigenetic features, such as super-enhancers. Broad H3K4me3 conserved across normal cells may represent pan-cancer tumor suppressors, such as P53 and PTEN, whereas cell-type-specific broad H3K4me3 may indicate cell-identity genes and cell-type-specific tumor suppressors. Furthermore, widespread shortening of broad H3K4me3 in cancers is associated with repression of tumor suppressors. Together, the broad H3K4me3 epigenetic signature provides mutation-independent information for the discovery and characterization of novel tumor suppressors. PMID:26301496

  16. Observation of a Neutral Charmoniumlike State Zc(4025 )0 in e+e-→(D*D¯ *)0π0

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Eren, E. E.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kühn, W.; Kupsc, A.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ren, H. L.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. N.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2015-10-01

    We report a study of the process e+e-→(D*D¯ *)0π0 using e+e- collision data samples with integrated luminosities of 1092 pb-1 at √{s }=4.23 GeV and 826 pb-1 at √{s }=4.26 GeV collected with the BESIII detector at the BEPCII storage ring. We observe a new neutral structure near the (D*D¯*)0 mass threshold in the π0 recoil mass spectrum, which we denote as Zc(4025 )0. Assuming a Breit-Wigner line shape, its pole mass and pole width are determined to be (4025. 5-4.7+2.0±3.1 ) MeV /c2 and (23.0 ±6.0 ±1.0 ) MeV , respectively. The Born cross sections of e+e-→Zc(4025 )0π0→(D*D¯ *)0π0 are measured to be (61.6 ±8.2 ±9.0 ) pb at √{s }=4.23 GeV and (43.4 ±8.0 ±5.4 ) pb at √{s }=4.26 GeV . The first uncertainties are statistical and the second are systematic.

  17. Histone H3.3 sub-variant H3mm7 is required for normal skeletal muscle regeneration.

    PubMed

    Harada, Akihito; Maehara, Kazumitsu; Ono, Yusuke; Taguchi, Hiroyuki; Yoshioka, Kiyoshi; Kitajima, Yasuo; Xie, Yan; Sato, Yuko; Iwasaki, Takeshi; Nogami, Jumpei; Okada, Seiji; Komatsu, Tetsuro; Semba, Yuichiro; Takemoto, Tatsuya; Kimura, Hiroshi; Kurumizaka, Hitoshi; Ohkawa, Yasuyuki

    2018-04-11

    Regulation of gene expression requires selective incorporation of histone H3 variant H3.3 into chromatin. Histone H3.3 has several subsidiary variants but their functions are unclear. Here we characterize the function of histone H3.3 sub-variant, H3mm7, which is expressed in skeletal muscle satellite cells. H3mm7 knockout mice demonstrate an essential role of H3mm7 in skeletal muscle regeneration. Chromatin analysis reveals that H3mm7 facilitates transcription by forming an open chromatin structure around promoter regions including those of myogenic genes. The crystal structure of the nucleosome containing H3mm7 reveals that, unlike the S57 residue of other H3 proteins, the H3mm7-specific A57 residue cannot form a hydrogen bond with the R40 residue of the cognate H4 molecule. Consequently, the H3mm7 nucleosome is unstable in vitro and exhibited higher mobility in vivo compared with the H3.3 nucleosome. We conclude that the unstable H3mm7 nucleosome may be required for proper skeletal muscle differentiation.

  18. The Bromodomain of Gcn5 Regulates Site Specificity of Lysine Acetylation on Histone H3*

    PubMed Central

    Cieniewicz, Anne M.; Moreland, Linley; Ringel, Alison E.; Mackintosh, Samuel G.; Raman, Ana; Gilbert, Tonya M.; Wolberger, Cynthia; Tackett, Alan J.; Taverna, Sean D.

    2014-01-01

    In yeast, the conserved histone acetyltransferase (HAT) Gcn5 associates with Ada2 and Ada3 to form the catalytic module of the ADA and SAGA transcriptional coactivator complexes. Gcn5 also contains an acetyl-lysine binding bromodomain that has been implicated in regulating nucleosomal acetylation in vitro, as well as at gene promoters in cells. However, the contribution of the Gcn5 bromodomain in regulating site specificity of HAT activity remains unclear. Here, we used a combined acid-urea gel and quantitative mass spectrometry approach to compare the HAT activity of wild-type and Gcn5 bromodomain-mutant ADA subcomplexes (Gcn5-Ada2-Ada3). Wild-type ADA subcomplex acetylated H3 lysines with the following specificity; H3K14 > H3K23 > H3K9 ≈ H3K18 > H3K27 > H3K36. However, when the Gcn5 bromodomain was defective in acetyl-lysine binding, the ADA subcomplex demonstrated altered site-specific acetylation on free and nucleosomal H3, with H3K18ac being the most severely diminished. H3K18ac was also severely diminished on H3K14R, but not H3K23R, substrates in wild-type HAT reactions, further suggesting that Gcn5-catalyzed acetylation of H3K14 and bromodomain binding to H3K14ac are important steps preceding H3K18ac. In sum, this work details a previously uncharacterized cross-talk between the Gcn5 bromodomain “reader” function and enzymatic HAT activity that might ultimately affect gene expression. Future studies of how mutations in bromodomains or other histone post-translational modification readers can affect chromatin-templated enzymatic activities will yield unprecedented insight into a potential “histone/epigenetic code.” MS data are available via ProteomeXchange with identifier PXD001167. PMID:25106422

  19. Influence of Background H2O on the Collision-Induced Dissociation Products Generated from [UO2NO3]+

    NASA Astrophysics Data System (ADS)

    Van Stipdonk, Michael J.; Iacovino, Anna; Tatosian, Irena

    2018-04-01

    Developing a comprehensive understanding of the reactivity of uranium-containing species remains an important goal in areas ranging from the development of nuclear fuel processing methods to studies of the migration and fate of the element in the environment. Electrospray ionization (ESI) is an effective way to generate gas-phase complexes containing uranium for subsequent studies of intrinsic structure and reactivity. Recent experiments by our group have demonstrated that the relatively low levels of residual H2O in a 2-D, linear ion trap (LIT) make it possible to examine fragmentation pathways and reactions not observed in earlier studies conducted with 3-D ion traps (Van Stipdonk et al. J. Am. Soc. Mass Spectrom. 14, 1205-1214, 2003). In the present study, we revisited the dissociation of complexes composed of uranyl nitrate cation [UVIO2(NO3)]+ coordinated by alcohol ligands (methanol and ethanol) using the 2-D LIT. With relatively low levels of background H2O, collision-induced dissociation (CID) of [UVIO2(NO3)]+ primarily creates [UO2(O2)]+ by the ejection of NO. However, CID (using He as collision gas) of [UVIO2(NO3)]+ creates [UO2(H2O)]+ and UO2 + when the 2-D LIT is used with higher levels of background H2O. Based on the results presented here, we propose that product ion spectrum in the previous experiments was the result of a two-step process: initial formation of [UVIO2(O2)]+ followed by rapid exchange of O2 for H2O by ion-molecule reaction. Our experiments illustrate the impact of residual H2O in ion trap instruments on the product ions generated by CID and provide a more accurate description of the intrinsic dissociation pathway for [UVIO2(NO3)]+. [Figure not available: see fulltext.

  20. ATRX binds to atypical chromatin domains at the 3′ exons of zinc finger genes to preserve H3K9me3 enrichment

    PubMed Central

    Chowdhury, Asif H.; Hasson, Dan; Dyer, Michael A.

    2016-01-01

    ABSTRACT ATRX is a SWI/SNF chromatin remodeler proposed to govern genomic stability through the regulation of repetitive sequences, such as rDNA, retrotransposons, and pericentromeric and telomeric repeats. However, few direct ATRX target genes have been identified and high-throughput genomic approaches are currently lacking for ATRX. Here we present a comprehensive ChIP-sequencing study of ATRX in multiple human cell lines, in which we identify the 3′ exons of zinc finger genes (ZNFs) as a new class of ATRX targets. These 3′ exonic regions encode the zinc finger motifs, which can range from 1–40 copies per ZNF gene and share large stretches of sequence similarity. These regions often contain an atypical chromatin signature: they are transcriptionally active, contain high levels of H3K36me3, and are paradoxically enriched in H3K9me3. We find that these ZNF 3′ exons are co-occupied by SETDB1, TRIM28, and ZNF274, which form a complex with ATRX. CRISPR/Cas9-mediated loss-of-function studies demonstrate (i) a reduction of H3K9me3 at the ZNF 3′ exons in the absence of ATRX and ZNF274 and, (ii) H3K9me3 levels at atypical chromatin regions are particularly sensitive to ATRX loss compared to other H3K9me3-occupied regions. As a consequence of ATRX or ZNF274 depletion, cells with reduced levels of H3K9me3 show increased levels of DNA damage, suggesting that ATRX binds to the 3′ exons of ZNFs to maintain their genomic stability through preservation of H3K9me3. PMID:27029610

  1. Determination of beta emitters ( 90Sr, 14C and 3H) in routine measurements using plastic scintillation beads

    NASA Astrophysics Data System (ADS)

    Tarancón, A.; García, J. F.; Rauret, G.

    2004-01-01

    Plastic scintillation has recently been shown to be a powerful alternative to liquid scintillation and Cherenkov techniques in radionuclide determination due to the good values obtained for the measurement parameters and the low amount of wastes generated. The present study evaluated the capability of plastic scintillation beads and polyethylene vials for routine measurements of beta emitters ( 90Sr, 14C, 3H). Results show that high- and medium-energetic beta emitters can be quantified with relative errors less than 5% in low-activity aqueous samples, whereas low-energetic beta emitters can only be quantified in medium-activity samples.

  2. hSMR3A as a Marker for Patients With Erectile Dysfunction

    PubMed Central

    Tong, Yuehong; Tar, Moses; Monrose, Val; DiSanto, Michael; Melman, Arnold; Davies, Kelvin P.

    2007-01-01

    Purpose We recently reported that Vcsa1 is one of the most down-regulated genes in the corpora of rats in 3 distinct models of erectile dysfunction. Since gene transfer of plasmids expressing Vcsa1 or intracorporeal injection of its mature peptide product sialorphin into the corpora of aging rats was shown to restore erectile function, we proposed that the Vcsa1 gene has a direct role in erectile function. To determine if similar changes in gene expression occur in the corpora of human subjects with erectile dysfunction we identified a human homologue of Vcsa1 (hSMR3A) and determined the level of expression of hSMR3A in patients. Materials and Methods hSMR3A was identified as a homologue of Vcsa1 by searching protein databases for proteins with similarity. hSMR3A cDNA was generated and subcloned into the plasmid pVAX to generate pVAX-hSMR3A. pVAX-hSMR3A (25 or 100 μg) was intracorporeally injected into aging rats. The effect on erectile physiology was compared histologically and by measuring intracorporeal pressure/blood pressure with controls treated with the empty plasmid pVAX. Total RNA was extracted from human corporeal tissue obtained from patients undergoing previously scheduled penile surgery. Patients were grouped according to normal erectile function (3), erectile dysfunction and diabetes (5) and patients without diabetes but with erectile dysfunction (5). Quantitative reverse-transcriptase polymerase chain reaction was used to determine the hSMR3A expression level. Results Intracorporeal injection of 25 μg pVAX-hSMR3A was able to significantly increase the intracorporeal pressure-to-blood pressure ratio in aging rats compared to age matched controls. Higher amounts (100 μg) of gene transfer of the plasmid caused less of an improvement in the intracorporeal pressure-to-blood pressure ratio compared to controls, although there was histological and visual evidence that the animals were post-priapitic. These physiological effects were similar to previously

  3. hSMR3A as a marker for patients with erectile dysfunction.

    PubMed

    Tong, Yuehong; Tar, Moses; Monrose, Val; DiSanto, Michael; Melman, Arnold; Davies, Kelvin P

    2007-07-01

    We recently reported that Vcsa1 is one of the most down-regulated genes in the corpora of rats in 3 distinct models of erectile dysfunction. Since gene transfer of plasmids expressing Vcsa1 or intracorporeal injection of its mature peptide product sialorphin into the corpora of aging rats was shown to restore erectile function, we proposed that the Vcsa1 gene has a direct role in erectile function. To determine if similar changes in gene expression occur in the corpora of human subjects with erectile dysfunction we identified a human homologue of Vcsa1 (hSMR3A) and determined the level of expression of hSMR3A in patients. hSMR3A was identified as a homologue of Vcsa1 by searching protein databases for proteins with similarity. hSMR3A cDNA was generated and subcloned into the plasmid pVAX to generate pVAX-hSMR3A. pVAX-hSMR3A (25 or 100 microg) was intracorporeally injected into aging rats. The effect on erectile physiology was compared histologically and by measuring intracorporeal pressure/blood pressure with controls treated with the empty plasmid pVAX. Total RNA was extracted from human corporeal tissue obtained from patients undergoing previously scheduled penile surgery. Patients were grouped according to normal erectile function (3), erectile dysfunction and diabetes (5) and patients without diabetes but with erectile dysfunction (5). Quantitative reverse-transcriptase polymerase chain reaction was used to determine the hSMR3A expression level. Intracorporeal injection of 25 microg pVAX-hSMR3A was able to significantly increase the intracorporeal pressure-to-blood pressure ratio in aging rats compared to age matched controls. Higher amounts (100 microg) of gene transfer of the plasmid caused less of an improvement in the intracorporeal pressure-to-blood pressure ratio compared to controls, although there was histological and visual evidence that the animals were post-priapitic. These physiological effects were similar to previously reported effects of

  4. Threshold groundwater ages and young water fractions estimated from 3H, 3He, and 14C

    NASA Astrophysics Data System (ADS)

    Kirchner, James; Jasechko, Scott

    2016-04-01

    It is widely recognized that a water sample taken from a running stream is not described by a single age, but rather by a distribution of ages. It is less widely recognized that the same principle holds true for groundwaters, as indicated by the commonly observed discordances between model ages obtained from different tracers (e.g., 3H vs 14C) in the same sample. Water age distributions are often characterized by their mean residence times (MRT's). However, MRT estimates are highly uncertain because they depend on the shape of the assumed residence time distribution (in particular on the thickness of the long-time tail), which is difficult or impossible to constrain with data. Furthermore, because MRT's are typically nonlinear functions of age tracer concentrations, they are subject to aggregation bias. That is, MRT estimates derived from a mixture of waters with different ages (and thus different tracer concentrations) will systematically underestimate the mixture's true mean age. Here, building on recent work with stable isotope tracers in surface waters [1-3], we present a new framework for using 3H, 3He and 14C to characterize groundwater age distributions. Rather than describing groundwater age distributions by their MRT, we characterize them by the fraction of the distribution that is younger or older than a threshold age. The threshold age that separates "young" from "old" water depends on the characteristics of the specific tracer, including its history of atmospheric inputs. Our approach depends only on whether a given slice of the age distribution is younger or older than the threshold age, but not on how much younger or older it is. Thus our approach is insensitive to the tails of the age distribution, and is therefore relatively unaffected by uncertainty in the distribution's shape. Here we show that concentrations of 3H, 3He, and 14C are almost linearly related to the fractions of water that are younger or older than specified threshold ages. These

  5. Cloning and characterization of an inulinase gene from the marine yeast Candida membranifaciens subsp. flavinogenie W14-3 and its expression in Saccharomyces sp. W0 for ethanol production.

    PubMed

    Zhang, Lin-Lin; Tan, Mei-Juan; Liu, Guang-Lei; Chi, Zhe; Wang, Guang-Yuan; Chi, Zhen-Ming

    2015-04-01

    The INU1 gene encoding an exo-inulinase from the marine-derived yeast Candida membranifaciens subsp. flavinogenie W14-3 was cloned and characterized. It had an open reading frame of 1,536 bp long encoding an inulinase. The coding region of it was not interrupted by any intron. The cloned gene encoded 512 amino acid residues of a protein with a putative signal peptide of 23 amino acids and a calculated molecular mass of 57.8 kDa. The protein sequence deduced from the inulinase gene contained the inulinase consensus sequences (WMNDPNGL), (RDP), ECP FS and Q. The protein also had six conserved putative N-glycosylation sites. The deduced inulinase from the yeast strain W14-3 was found to be closely related to that from Candida kutaonensis sp. nov. KRF1, Kluyveromyces marxianus, and Cryptococcus aureus G7a. The inulinase gene with its signal peptide encoding sequence was subcloned into the pMIRSC11 expression vector and expressed in Saccharomyces sp. W0. The recombinant yeast strain W14-3-INU-112 obtained could produce 16.8 U/ml of inulinase activity and 12.5 % (v/v) ethanol from 250 g/l of inulin within 168 h. The monosaccharides were detected after the hydrolysis of inulin with the crude inulinase (the yeast culture). All the results indicated that the cloned gene and the recombinant yeast strain W14-3-INU-112 had potential applications in biotechnology.

  6. Telobox motifs recruit CLF/SWN-PRC2 for H3K27me3 deposition via TRB factors in Arabidopsis.

    PubMed

    Zhou, Yue; Wang, Yuejun; Krause, Kristin; Yang, Tingting; Dongus, Joram A; Zhang, Yijing; Turck, Franziska

    2018-05-01

    Polycomb repressive complexes (PRCs) control organismic development in higher eukaryotes through epigenetic gene repression 1-4 . PRC proteins do not contain DNA-binding domains, thus prompting questions regarding how PRCs find their target loci 5 . Here we present genome-wide evidence of PRC2 recruitment by telomere-repeat-binding factors (TRBs) through telobox-related motifs in Arabidopsis. A triple trb1-2, trb2-1, and trb3-2 (trb1/2/3) mutant with a developmental phenotype and a transcriptome strikingly similar to those of strong PRC2 mutants showed redistribution of trimethyl histone H3 Lys27 (H3K27me3) marks and lower H3K27me3 levels, which were correlated with derepression of TRB1-target genes. TRB1-3 physically interacted with the PRC2 proteins CLF and SWN. A SEP3 reporter gene with a telobox mutation showed ectopic expression, which was correlated with H3K27me3 depletion, whereas tethering TRB1 to the mutated cis element partially restored repression. We propose that telobox-related motifs recruit PRC2 through the interaction between TRBs and CLF/SWN, a mechanism essential for H3K27me3 deposition at a subset of target genes.

  7. Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation

    PubMed Central

    Grandy, Rodrigo A.; Whitfield, Troy W.; Wu, Hai; Fitzgerald, Mark P.; VanOudenhove, Jennifer J.; Zaidi, Sayyed K.; Montecino, Martin A.; Lian, Jane B.; van Wijnen, André J.; Stein, Janet L.

    2015-01-01

    Stem cell phenotypes are reflected by posttranslational histone modifications, and this chromatin-related memory must be mitotically inherited to maintain cell identity through proliferative expansion. In human embryonic stem cells (hESCs), bivalent genes with both activating (H3K4me3) and repressive (H3K27me3) histone modifications are essential to sustain pluripotency. Yet, the molecular mechanisms by which this epigenetic landscape is transferred to progeny cells remain to be established. By mapping genomic enrichment of H3K4me3/H3K27me3 in pure populations of hESCs in G2, mitotic, and G1 phases of the cell cycle, we found striking variations in the levels of H3K4me3 through the G2-M-G1 transition. Analysis of a representative set of bivalent genes revealed that chromatin modifiers involved in H3K4 methylation/demethylation are recruited to bivalent gene promoters in a cell cycle-dependent fashion. Interestingly, bivalent genes enriched with H3K4me3 exclusively during mitosis undergo the strongest upregulation after induction of differentiation. Furthermore, the histone modification signature of genes that remain bivalent in differentiated cells resolves into a cell cycle-independent pattern after lineage commitment. These results establish a new dimension of chromatin regulation important in the maintenance of pluripotency. PMID:26644406

  8. MoSET1 (Histone H3K4 Methyltransferase in Magnaporthe oryzae) Regulates Global Gene Expression during Infection-Related Morphogenesis

    PubMed Central

    Pham, Kieu Thi Minh; Inoue, Yoshihiro; Vu, Ba Van; Nguyen, Hanh Hieu; Nakayashiki, Toru; Ikeda, Ken-ichi; Nakayashiki, Hitoshi

    2015-01-01

    Here we report the genetic analyses of histone lysine methyltransferase (KMT) genes in the phytopathogenic fungus Magnaporthe oryzae. Eight putative M. oryzae KMT genes were targeted for gene disruption by homologous recombination. Phenotypic assays revealed that the eight KMTs were involved in various infection processes at varying degrees. Moset1 disruptants (Δmoset1) impaired in histone H3 lysine 4 methylation (H3K4me) showed the most severe defects in infection-related morphogenesis, including conidiation and appressorium formation. Consequently, Δmoset1 lost pathogenicity on wheat host plants, thus indicating that H3K4me is an important epigenetic mark for infection-related gene expression in M. oryzae. Interestingly, appressorium formation was greatly restored in the Δmoset1 mutants by exogenous addition of cAMP or of the cutin monomer, 16-hydroxypalmitic acid. The Δmoset1 mutants were still infectious on the super-susceptible barley cultivar Nigrate. These results suggested that MoSET1 plays roles in various aspects of infection, including signal perception and overcoming host-specific resistance. However, since Δmoset1 was also impaired in vegetative growth, the impact of MoSET1 on gene regulation was not infection specific. ChIP-seq analysis of H3K4 di- and tri-methylation (H3K4me2/me3) and MoSET1 protein during infection-related morphogenesis, together with RNA-seq analysis of the Δmoset1 mutant, led to the following conclusions: 1) Approximately 5% of M. oryzae genes showed significant changes in H3K4-me2 or -me3 abundance during infection-related morphogenesis. 2) In general, H3K4-me2 and -me3 abundance was positively associated with active transcription. 3) Lack of MoSET1 methyltransferase, however, resulted in up-regulation of a significant portion of the M. oryzae genes in the vegetative mycelia (1,491 genes), and during infection-related morphogenesis (1,385 genes), indicating that MoSET1 has a role in gene repression either directly or more

  9. Binding of phosphatidic acid to 14-3-3 proteins hampers their ability to activate the plant plasma membrane H+-ATPase.

    PubMed

    Camoni, Lorenzo; Di Lucente, Cristina; Pallucca, Roberta; Visconti, Sabina; Aducci, Patrizia

    2012-08-01

    Phosphatidic acid is a phospholipid second messenger implicated in various cellular processes in eukaryotes. In plants, production of phosphatidic acid is triggered in response to a number of biotic and abiotic stresses. Here, we show that phosphatidic acid binds to 14-3-3 proteins, a family of regulatory proteins which bind client proteins in a phosphorylation-dependent manner. Binding of phosphatidic acid involves the same 14-3-3 region engaged in protein target binding. Consequently, micromolar phosphatidic acid concentrations significantly hamper the interaction of 14-3-3 proteins with the plasma membrane H(+)-ATPase, a well characterized plant 14-3-3 target, thus inhibiting the phosphohydrolitic enzyme activity. Moreover, the proton pump is inhibited when endogenous PA production is triggered by phospholipase D and the G protein agonist mastoparan-7. Hence, our data propose a possible mechanism involving PA that regulates 14-3-3-mediated cellular processes in response to stress. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  10. Generation of gene edited birds in one generation using sperm transfection assisted gene editing (STAGE).

    PubMed

    Cooper, Caitlin A; Challagulla, Arjun; Jenkins, Kristie A; Wise, Terry G; O'Neil, Terri E; Morris, Kirsten R; Tizard, Mark L; Doran, Timothy J

    2017-06-01

    Generating transgenic and gene edited mammals involves in vitro manipulation of oocytes or single cell embryos. Due to the comparative inaccessibility of avian oocytes and single cell embryos, novel protocols have been developed to produce transgenic and gene edited birds. While these protocols are relatively efficient, they involve two generation intervals before reaching complete somatic and germline expressing transgenic or gene edited birds. Most of this work has been done with chickens, and many protocols require in vitro culturing of primordial germ cells (PGCs). However, for many other bird species no methodology for long term culture of PGCs exists. Developing methodologies to produce germline transgenic or gene edited birds in the first generation would save significant amounts of time and resource. Furthermore, developing protocols that can be readily adapted to a wide variety of avian species would open up new research opportunities. Here we report a method using sperm as a delivery mechanism for gene editing vectors which we call sperm transfection assisted gene editing (STAGE). We have successfully used this method to generate GFP knockout embryos and chickens, as well as generate embryos with mutations in the doublesex and mab-3 related transcription factor 1 (DMRT1) gene using the CRISPR/Cas9 system. The efficiency of the method varies from as low as 0% to as high as 26% with multiple factors such as CRISPR guide efficiency and mRNA stability likely impacting the outcome. This straightforward methodology could simplify gene editing in many bird species including those for which no methodology currently exists.

  11. Dynamics of genomic H3K27me3 domains and role of EZH2 during pancreatic endocrine specification

    PubMed Central

    Xu, Cheng-Ran; Li, Lin-Chen; Donahue, Greg; Ying, Lei; Zhang, Yu-Wei; Gadue, Paul; Zaret, Kenneth S

    2014-01-01

    Endoderm cells undergo sequential fate choices to generate insulin-secreting beta cells. Ezh2 of the PRC2 complex, which generates H3K27me3, modulates the transition from endoderm to pancreas progenitors, but the role of Ezh2 and H3K27me3 in the next transition to endocrine progenitors is unknown. We isolated endoderm cells, pancreas progenitors, and endocrine progenitors from different staged mouse embryos and analyzed H3K27me3 genome-wide. Unlike the decline in H3K27me3 domains reported during embryonic stem cell differentiation in vitro, we find that H3K27me3 domains increase in number during endocrine progenitor development in vivo. Genes that lose the H3K27me3 mark typically encode transcriptional regulators, including those for pro-endocrine fates, whereas genes that acquire the mark typically are involved in cell biology and morphogenesis. Deletion of Ezh2 at the pancreas progenitor stage enhanced the production of endocrine progenitors and beta cells. Inhibition of EZH2 in embryonic pancreas explants and in human embryonic stem cell cultures increased endocrine progenitors in vitro. Our studies reveal distinct dynamics in H3K27me3 targets in vivo and a means to modulate beta cell development from stem cells. PMID:25107471

  12. The DNA methylation profile of liver tumors in C3H mice and identification of differentially methylated regions involved in the regulation of tumorigenic genes.

    PubMed

    Matsushita, Junya; Okamura, Kazuyuki; Nakabayashi, Kazuhiko; Suzuki, Takehiro; Horibe, Yu; Kawai, Tomoko; Sakurai, Toshihiro; Yamashita, Satoshi; Higami, Yoshikazu; Ichihara, Gaku; Hata, Kenichiro; Nohara, Keiko

    2018-03-22

    C3H mice have been frequently used in cancer studies as animal models of spontaneous liver tumors and chemically induced hepatocellular carcinoma (HCC). Epigenetic modifications, including DNA methylation, are among pivotal control mechanisms of gene expression leading to carcinogenesis. Although information on somatic mutations in liver tumors of C3H mice is available, epigenetic aspects are yet to be clarified. We performed next generation sequencing-based analysis of DNA methylation and microarray analysis of gene expression to explore genes regulated by DNA methylation in spontaneous liver tumors of C3H mice. Overlaying these data, we selected cancer-related genes whose expressions are inversely correlated with DNA methylation levels in the associated differentially methylated regions (DMRs) located around transcription start sites (TSSs) (promoter DMRs). We further assessed mutuality of the selected genes for expression and DNA methylation in human HCC using the Cancer Genome Atlas (TCGA) database. We obtained data on genome-wide DNA methylation profiles in the normal and tumor livers of C3H mice. We identified promoter DMRs of genes which are reported to be related to cancer and whose expressions are inversely correlated with the DNA methylation, including Mst1r, Slpi and Extl1. The association between DNA methylation and gene expression was confirmed using a DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) in Hepa1c1c7 cells and Hepa1-6 cells. Overexpression of Mst1r in Hepa1c1c7 cells illuminated a novel downstream pathway via IL-33 upregulation. Database search indicated that gene expressions of Mst1r and Slpi are upregulated and the TSS upstream regions are hypomethylated also in human HCC. These results suggest that DMRs, including those of Mst1r and Slpi, are involved in liver tumorigenesis in C3H mice, and also possibly in human HCC. Our study clarified genome wide DNA methylation landscape of C3H mice. The data provide useful information

  13. Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation.

    PubMed

    Grandy, Rodrigo A; Whitfield, Troy W; Wu, Hai; Fitzgerald, Mark P; VanOudenhove, Jennifer J; Zaidi, Sayyed K; Montecino, Martin A; Lian, Jane B; van Wijnen, André J; Stein, Janet L; Stein, Gary S

    2016-02-15

    Stem cell phenotypes are reflected by posttranslational histone modifications, and this chromatin-related memory must be mitotically inherited to maintain cell identity through proliferative expansion. In human embryonic stem cells (hESCs), bivalent genes with both activating (H3K4me3) and repressive (H3K27me3) histone modifications are essential to sustain pluripotency. Yet, the molecular mechanisms by which this epigenetic landscape is transferred to progeny cells remain to be established. By mapping genomic enrichment of H3K4me3/H3K27me3 in pure populations of hESCs in G2, mitotic, and G1 phases of the cell cycle, we found striking variations in the levels of H3K4me3 through the G2-M-G1 transition. Analysis of a representative set of bivalent genes revealed that chromatin modifiers involved in H3K4 methylation/demethylation are recruited to bivalent gene promoters in a cell cycle-dependent fashion. Interestingly, bivalent genes enriched with H3K4me3 exclusively during mitosis undergo the strongest upregulation after induction of differentiation. Furthermore, the histone modification signature of genes that remain bivalent in differentiated cells resolves into a cell cycle-independent pattern after lineage commitment. These results establish a new dimension of chromatin regulation important in the maintenance of pluripotency. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. N-(3-Benzoylphenyl)-1H-Indole-2-Carboxamide decreases triglyceride levels by downregulation of Apoc3 gene expression in acute hyperlipidemic rat model.

    PubMed

    Hamadneh, Lama; Al-Essa, Luay; Hikmat, Suhair; Al-Qirim, Tariq; Abu Sheikha, Ghassan; Al-Hiari, Yusuf; Azmy, Nisrin; Shattat, Ghassan

    2017-07-01

    Hyperlipidemia is a known cause of coronary vascular diseases, which is a major cause of death in many parts of the world. Targeting several pathways that lead to increase in lipid profiles is of great potential to control diseases. 1H-indole-2-carboxamide derivatives were tested for their hypolipidemic activity at the molecular level in comparison with bezafibrate. The gene expression profiles of lipoprotein signaling and cholesterol metabolism and fatty acid metabolism PCR arrays were determined in rats with acute hyperlipidemia induced by Triton WR1339. Lipid profiles of serum from treated rats showed significant hypolipidemic effect by the compounds. Several genes of potential interest were reported to be overexpressed by Triton WR1339 including Apoc3, Apob, Hmgcs2, Apoa1, Apoe, Apof, acsl1, and Decr1. Most of the overexpressed genes were downregulated by N-(3-Benzoylphenyl)-1H-Indole-2-Carboxamide with significant decreases in Apoc3, Apob, Acaa2, Acsl1, and Slc247a5 gene expression levels. N-(4-Benzoylphenyl)-1H-Indole-2-Carboxamide and bezafibrate did not significantly affect the gene expression levels which were increased with acute hyperlipidemia induced by Triton WR1339. In conclusion, gene expression profiling identified the possible mechanism in which Triton WR1339 induces its acute hyperlipidemic effect which was reversed by the use of N-(3-Benzoylphenyl)-1H-Indole-2-Carboxamide.

  15. AKT phosphorylates H3-threonine 45 to facilitate termination of gene transcription in response to DNA damage.

    PubMed

    Lee, Jong-Hyuk; Kang, Byung-Hee; Jang, Hyonchol; Kim, Tae Wan; Choi, Jinmi; Kwak, Sojung; Han, Jungwon; Cho, Eun-Jung; Youn, Hong-Duk

    2015-05-19

    Post-translational modifications of core histones affect various cellular processes, primarily through transcription. However, their relationship with the termination of transcription has remained largely unknown. In this study, we show that DNA damage-activated AKT phosphorylates threonine 45 of core histone H3 (H3-T45). By genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis, H3-T45 phosphorylation was distributed throughout DNA damage-responsive gene loci, particularly immediately after the transcription termination site. H3-T45 phosphorylation pattern showed close-resemblance to that of RNA polymerase II C-terminal domain (CTD) serine 2 phosphorylation, which establishes the transcription termination signal. AKT1 was more effective than AKT2 in phosphorylating H3-T45. Blocking H3-T45 phosphorylation by inhibiting AKT or through amino acid substitution limited RNA decay downstream of mRNA cleavage sites and decreased RNA polymerase II release from chromatin. Our findings suggest that AKT-mediated phosphorylation of H3-T45 regulates the processing of the 3' end of DNA damage-activated genes to facilitate transcriptional termination. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. The gene ICS3 from the yeast Saccharomyces cerevisiae is involved in copper homeostasis dependent on extracellular pH.

    PubMed

    Alesso, C A; Discola, K F; Monteiro, G

    2015-09-01

    In the yeast Saccharomyces cerevisiae, many genes are involved in the uptake, transport, storage and detoxification of copper. Large scale studies have noted that deletion of the gene ICS3 increases sensitivity to copper, Sortin 2 and acid exposure. Here, we report a study on the Δics3 strain, in which ICS3 is related to copper homeostasis, affecting the intracellular accumulation of this metal. This strain is sensitive to hydrogen peroxide and copper exposure, but not to other tested transition metals. At pH 6.0, the Δics3 strain accumulates a larger amount of intracellular copper than the wild-type strain, explaining the sensitivity to oxidants in this condition. Unexpectedly, sensitivity to copper exposure only occurs in acidic conditions. This can be explained by the fact that the exposure of Δics3 cells to high copper concentrations at pH 4.0 results in over-accumulation of copper and iron. Moreover, the expression of ICS3 increases in acidic pH, and this is correlated with CCC2 gene expression, since both genes are regulated by Rim101 from the pH regulon. CCC2 is also upregulated in Δics3 in acidic pH. Together, these data indicate that ICS3 is involved in copper homeostasis and is dependent on extracellular pH. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. H3 K79 dimethylation marks developmental activation of the beta-globin gene but is reduced upon LCR-mediated high-level transcription.

    PubMed

    Sawado, Tomoyuki; Halow, Jessica; Im, Hogune; Ragoczy, Tobias; Bresnick, Emery H; Bender, M A; Groudine, Mark

    2008-07-15

    Genome-wide analyses of the relationship between H3 K79 dimethylation and transcription have revealed contradictory results. To clarify this relationship at a single locus, we analyzed expression and H3 K79 modification levels of wild-type (WT) and transcriptionally impaired beta-globin mutant genes during erythroid differentiation. Analysis of fractionated erythroid cells derived from WT/Delta locus control region (LCR) heterozygous mice reveals no significant H3 K79 dimethylation of the beta-globin gene on either allele prior to activation of transcription. Upon transcriptional activation, H3 K79 di-methylation is observed along both WT and DeltaLCR alleles, and both alleles are located in proximity to H3 K79 dimethylation nuclear foci. However, H3 K79 di-methylation is significantly increased along the DeltaLCR allele compared with the WT allele. In addition, analysis of a partial LCR deletion mutant reveals that H3 K79 dimethylation is inversely correlated with beta-globin gene expression levels. Thus, while our results support a link between H3 K79 dimethylation and gene expression, high levels of this mark are not essential for high level beta-globin gene transcription. We propose that H3 K79 dimethylation is destabilized on a highly transcribed template.

  18. Photoaffinity labelling of the cardiac calcium channel. (-)-[3H]azidopine labels a 165 kDa polypeptide, and evidence against a [3H]-1,4-dihydropyridine-isothiocyanate being a calcium-channel-specific affinity ligand.

    PubMed

    Ferry, D R; Goll, A; Glossmann, H

    1987-04-01

    The arylazide 1,4-dihydropyridine (-)-[3H]azidopine binds to a saturable population of sites in guinea-pig heart membranes with a dissociation constant (KD) of 30 +/- 7 pM and a density (Bmax.) of 670 +/- 97 fmol/mg of protein. This high-affinity binding site is assumed to reside on voltage-operated calcium channels because reversible binding is blocked stereoselectively by 1,4-dihydropyridine channel blockers and by the enantiomers of Bay K 8644. A low-affinity (KD 25 +/- 7 nM) high-capacity (Bmax. 21.6 +/- 9 pmol/mg of protein) site does not bind (-)- or (+)-Bay K 8644, but is blocked by high concentrations (greater than 500 nM) of dihydro-2,6-dimethyl-4-(2-isothiocyanatophenyl)-3,5-pyridinedicarboxy lic acid dimethyl ester (1,4-DHP-isothiocyanate) or, e.g., (+/-)-nicardipine. (-)-[3H]Azidopine was photoincorporated covalently into bands of 165 +/- 8, 39 +/- 2 and 35 +/- 3 kDa, as determined by SDS/polyacrylamide-gel electrophoresis. Labelling of the 165 kDa band is protected stereoselectively by 1,4-dihydropyridine enantiomers at low (nM) concentrations and by (-)- and (+)-Bay K 8644, whereas the lower-Mr bands are not. Thus, only the 165 kDa band is the calcium-channel-linked 1,4-dihydropyridine receptor. Photolabelling of the 39 or 35 kDa bands was only blocked by 10 microM-1,4-DHP-isothiocyanate or 50 microM-(+/-)-nicardipine but not by 10 microM-(-)-Bay K 8644. [3H]-1,4-DHP-isothiocyanate binds to guinea-pig heart membranes with a KD of 0.35 nM and dissociates with a k-1 of 0.2 min-1 at 30 degrees C. [3H]-1,4 DHP-isothiocyanate irreversibly labels bands of 39 and 35 kDa which are protected by greater than 10 microM-(+/-)-nicardipine or unlabelled ligand but not by 10 microM-(-)-Bay K 8644. Thus, [3H]-1,4-DHP-isothiocyanate is not an affinity probe for the calcium channel.

  19. Targeted next generation sequencing identifies novel NOTCH3 gene mutations in CADASIL diagnostics patients.

    PubMed

    Maksemous, Neven; Smith, Robert A; Haupt, Larisa M; Griffiths, Lyn R

    2016-11-24

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a monogenic, hereditary, small vessel disease of the brain causing stroke and vascular dementia in adults. CADASIL has previously been shown to be caused by varying mutations in the NOTCH3 gene. The disorder is often misdiagnosed due to its significant clinical heterogeneic manifestation with familial hemiplegic migraine and several ataxia disorders as well as the location of the currently identified causative mutations. The aim of this study was to develop a new, comprehensive and efficient single assay strategy for complete molecular diagnosis of NOTCH3 mutations through the use of a custom next-generation sequencing (NGS) panel for improved routine clinical molecular diagnostic testing. Our custom NGS panel identified nine genetic variants in NOTCH3 (p.D139V, p.C183R, p.R332C, p.Y465C, p.C597W, p.R607H, p.E813E, p.C977G and p.Y1106C). Six mutations were stereotypical CADASIL mutations leading to an odd number of cysteine residues in one of the 34 NOTCH3 gene epidermal growth factor (EGF)-like repeats, including three new typical cysteine mutations identified in exon 11 (p.C597W; c.1791C>G); exon 18 (p.C977G; c.2929T>G) and exon 20 (p.Y1106C; c.3317A>G). Interestingly, a novel missense mutation in the CACNA1A gene was also identified in one CADASIL patient. All variants identified (novel and known) were further investigated using in silico bioinformatic analyses and confirmed through Sanger sequencing. NGS provides an improved and effective methodology for the diagnosis of CADASIL. The NGS approach reduced time and cost for comprehensive genetic diagnosis, placing genetic diagnostic testing within reach of more patients.

  20. Differential Expression of Histone H3.3 Genes and Their Role in Modulating Temperature Stress Response in Caenorhabditis elegans.

    PubMed

    Delaney, Kamila; Mailler, Jonathan; Wenda, Joanna M; Gabus, Caroline; Steiner, Florian A

    2018-04-10

    Replication-independent variant histones replace canonical histones in nucleosomes and act as important regulators of chromatin function. H3.3 is a major variant of histone H3 that is remarkably conserved across all taxa and is distinguished from canonical H3 by just four key amino acids. Most genomes contain two or more genes expressing H3.3, and complete loss of the protein usually causes sterility or embryonic lethality. Here we investigated the developmental expression pattern of the five Caenorhabditis elegans H3.3 homologues and identified two previously uncharacterized homologues to be restricted to the germ line. We demonstrate an essential role for the conserved histone chaperone HIRA in the nucleosomal loading of all H3.3 variants. This requirement can be bypassed by mutation of the H3.3-specific residues to those found in H3. Analysis of H3.3 knockout mutants revealed a surprising absence of developmental phenotypes. While removal of all H3.3 homologues did not result in lethality, it led to reduced fertility and viability in response to high temperature stress. Our results thus show that H3.3 is non-essential in C. elegans , but is critical for ensuring adequate response to stress. Copyright © 2018, Genetics.

  1. Functions, structure, and read-through alternative splicing of feline APOBEC3 genes

    PubMed Central

    Münk, Carsten; Beck, Thomas; Zielonka, Jörg; Hotz-Wagenblatt, Agnes; Chareza, Sarah; Battenberg, Marion; Thielebein, Jens; Cichutek, Klaus; Bravo, Ignacio G; O'Brien, Stephen J; Lochelt, Martin; Yuhki, Naoya

    2008-01-01

    Background Over the past years a variety of host restriction genes have been identified in human and mammals that modulate retrovirus infectivity, replication, assembly, and/or cross-species transmission. Among these host-encoded restriction factors, the APOBEC3 (A3; apolipoprotein B mRNA-editing catalytic polypeptide 3) proteins are potent inhibitors of retroviruses and retrotransposons. While primates encode seven of these genes (A3A to A3H), rodents carry only a single A3 gene. Results Here we identified and characterized several A3 genes in the genome of domestic cat (Felis catus) by analyzing the genomic A3 locus. The cat genome presents one A3H gene and three very similar A3C genes (a-c), probably generated after two consecutive gene duplications. In addition to these four one-domain A3 proteins, a fifth A3, designated A3CH, is expressed by read-through alternative splicing. Specific feline A3 proteins selectively inactivated only defined genera of feline retroviruses: Bet-deficient feline foamy virus was mainly inactivated by feA3Ca, feA3Cb, and feA3Cc, while feA3H and feA3CH were only weakly active. The infectivity of Vif-deficient feline immunodeficiency virus and feline leukemia virus was reduced only by feA3H and feA3CH, but not by any of the feA3Cs. Within Felidae, A3C sequences show significant adaptive selection, but unexpectedly, the A3H sequences present more sites that are under purifying selection. Conclusion Our data support a complex evolutionary history of expansion, divergence, selection and individual extinction of antiviral A3 genes that parallels the early evolution of Placentalia, becoming more intricate in taxa in which the arms race between host and retroviruses is harsher. PMID:18315870

  2. Obesity increases histone H3 lysine 9 and 18 acetylation at Tnfa and Ccl2 genes in mouse liver.

    PubMed

    Mikula, Michal; Majewska, Aneta; Ledwon, Joanna Karolina; Dzwonek, Artur; Ostrowski, Jerzy

    2014-12-01

    Obesity contributes to the development of non-alcoholic fatty liver disease (NAFLD), which is characterized by the upregulated expression of two key inflammatory mediators: tumor necrosis factor (Tnfa) and monocyte chemotactic protein 1 (Mcp1; also known as Ccl2). However, the chromatin make-up at these genes in the liver in obese individuals has not been explored. In this study, to identify obesity-mediated epigenetic changes at Tnfa and Ccl2, we used a murine model of obesity induced by a high-fat diet (HFD) and hyperphagic (ob/ob) mice. Chromatin immunoprecipitation (ChIP) assay was used to determine the abundance of permissive histone marks, namely histone H3 lysine 9 and 18 acetylation (H3K9/K18Ac), H3 lysine 4 trimethylation (H3K4me3) and H3 lysine 36 trimethylation (H3K36me3), in conjunction with polymerase 2 RNA (Pol2) and nuclear factor (Nf)-κB recruitment in the liver. Additionally, to correlate the liver tissue-derived ChIP measurements with a robust in vitro transcriptional response at the Tnfa and Ccl2 genes, we used lipopolysaccharide (LPS) treatment to induce an inflammatory response in Hepa1-6 cells, a cell line derived from murine hepatocytes. ChIP revealed increased H3K9/K18Ac at Tnfa and Ccl2 in the obese mice, although the differences were only statistically significant for Tnfa (p<0.05). Unexpectedly, the levels of H3K4me3 and H3K36me3 marks, as well as Pol2 and Nf-κB recruitment, did not correspond with the increased expression of these two genes in the obese mice. By contrast, the acute treatment of Hepa1-6 cells with LPS significantly increased the H3K9/K18Ac marks, as well as Pol2 and Nf-κB recruitment at both genes, while the levels of H3K4me3 and H3K36me3 marks remained unaltered. These results demonstrate that increased Tnfa and Ccl2 expression in fatty liver at the chromatin level corresponds to changes in the level of histone H3 acetylation.

  3. Analysis of the Arabidopsis IRX9/IRX9-L and IRX14/IRX14-L pairs of glycosyltransferase genes reveals critical contributions to biosynthesis of the hemicellulose glucuronoxylan.

    PubMed

    Wu, Ai-Min; Hörnblad, Emma; Voxeur, Aline; Gerber, Lorenz; Rihouey, Christophe; Lerouge, Patrice; Marchant, Alan

    2010-06-01

    The hemicellulose glucuronoxylan (GX) is a major component of plant secondary cell walls. However, our understanding of GX synthesis remains limited. Here, we identify and analyze two new genes from Arabidopsis (Arabidopsis thaliana), IRREGULAR XYLEM9-LIKE (IRX9-L) and IRX14-LIKE (IRX14-L) that encode glycosyltransferase family 43 members proposed to function during xylan backbone elongation. We place IRX9-L and IRX14-L in a genetic framework with six previously described glycosyltransferase genes (IRX9, IRX10, IRX10-L, IRX14, FRAGILE FIBER8 [FRA8], and FRA8 HOMOLOG [F8H]) and investigate their function in GX synthesis. Double-mutant analysis identifies IRX9-L and IRX14-L as functional homologs of IRX9 and IRX14, respectively. Characterization of irx9 irx10 irx14 fra8 and irx9-L irx10-L irx14-L f8h quadruple mutants allows definition of a set of genes comprising IRX9, IRX10, IRX14, and FRA8 that perform the main role in GX synthesis during vegetative development. The IRX9-L, IRX10-L, IRX14-L, and F8H genes are able to partially substitute for their respective homologs and normally perform a minor function. The irx14 irx14-L double mutant virtually lacks xylan, whereas irx9 irx9-L and fra8 f8h double mutants form lowered amounts of GX displaying a greatly reduced degree of backbone polymerization. Our findings reveal two distinct sets of four genes each differentially contributing to GX biosynthesis.

  4. Ilyukhinite (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)2 • 3H2O, a New Mineral of the Eudialyte Group

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Rastsvetaeva, R. K.; Rozenberg, K. A.; Aksenov, S. M.; Pekov, I. V.; Belakovsky, D. I.; Kristiansen, R.; Van, K. V.

    2017-12-01

    A new eudialyte-group mineral, ilyukhinite, ideally (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)2 · 3H2O, has been found in peralkaline pegmatite at Mt. Kukisvumchorr, Khibiny alkaline pluton, Kola Peninsula, Russia. It occurs as brownish orange, with vitreous luster anhedral grains up to 1 mm across in hydrothermally altered peralkaline rock, in association with aegirine, murmanite, albite, microcline, rhabdophane-(Ce), fluorite, sphalerite and molybdenite. The Mohs hardness is 5; cleavage is not observed. D meas 2.67(2), D calc 2.703 g/cm3. Ilyukhinite is optically uniaxial (-): ω = 1.585(2), ɛ = 1.584(2). The IR spectrum is given. The average chemical composition of ilyukhinite (wt %; electron microprobe, ranges given in parentheses; H2O determined by gas chromatography) is as follows: 3.07 (3.63-4.43) Na2O, 0.32 (0.28-0.52) K2O, 10.63 (10.26-10.90) CaO, 3.06 (2.74-3.22) MnO, 1.15 (0.93-1.37) FeO, 0.79 (0.51-0.89) La2O3, 1.21 (0.97-1.44) Ce2O3, 0.41 (0.30-0.56) Nd2O3, 0.90 (0.77-1.12) TiO2, 10.94 (10.15-11.21) ZrO2, 1.40 (0.76-1.68) Nb2O5, 51.24 (49.98-52.28) SiO2, 1.14 (0.89-1.37) SO3, 0.27 (0.19—0.38) Cl, 10.9(5 )H2O,-0.06-O = C1, total is 98.27. The empirical formula is H36.04(Na3.82K0.20)(Ca5.65Ce0.22La0.14Nd0.07)(Mn1.285Fe0.48)(Zr2.645Ti0.34)Nb0.31Si25.41S0.42Cl0.23O86.82. The crystal structure has been solved ( R = 0.046). Ilyukhinite is trigonal, R3 m; a = 14.1695(6) Å, b = 31.026(1) Å, V = 5394.7(7) Å3, Z = 3. The strongest XRD reflections [ d, Å (I, %) ( hkl)] are 11.44 (82) (101), 7.09 (70) (110), 6.02 (44) (021), 4.371 (89) 205), 3.805 (47) (303, 033), 3.376 (41) (131), 2.985 (100) (315, 128), 2.852 (92) (404). Ilyukhinite was named in memory of Vladimir V. Ilyukhin (1934-1982), an outstanding Soviet crystallographer. The type specimen of ilyukhinite has been deposited in the collection of the Natural History Museum, University of Oslo, Norway.

  5. 14 CFR Appendix H to Part 151 - Appendix H to Part 151

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Appendix H to Part 151 H Appendix H to Part...) AIRPORTS FEDERAL AID TO AIRPORTS Pt. 151, App. H Appendix H to Part 151 There is set forth below the...)). H. Withholding for unpaid wages and liquidated damages, and priority of payment (1) The FAA may...

  6. Gene-for-genes interactions between cotton R genes and Xanthomonas campestris pv. malvacearum avr genes.

    PubMed

    De Feyter, R; Yang, Y; Gabriel, D W

    1993-01-01

    Six plasmid-borne avirulence (avr) genes were previously cloned from strain XcmH of the cotton pathogen, Xanthomonas campestris pv. malvacearum. We have now localized all six avr genes on the cloned fragments by subcloning and Tn5-gusA insertional mutagenesis. None of these avr genes appeared to exhibit exclusively gene-for-gene patterns of interactions with cotton R genes, and avrB4 was demonstrated to confer avr gene-for-R genes (plural) avirulence to X. c. pv. malvacearum on congenic cotton lines carrying either of two different resistance loci, B1 or B4. Furthermore, the B1 locus appeared to confer R gene-for-avr genes resistance to cotton against isogenic X. c. pv. malvacearum strains carrying any one of three avr genes: avrB4, avrb6, or avrB102. Restriction enzyme, Southern blot hybridization, and DNA sequence analyses showed that the XcmH avr genes are all highly similar to each other, to avrBs3 and avrBsP from the pepper pathogen X. c. pv. vesicatoria, and to the host-specific virulence gene pthA from the citrus pathogen X. citri. The XcmH avr genes differed primarily in the multiplicity of a tandemly repeated 102-base pair motif within the central portions of the genes, repeated from 14 to 23 times in members of this gene family. The complete nucleotide sequence of avrb6 revealed that it is 97% identical in DNA sequence to avrB4, avrBs3, avrBsP, and pthA and that 62-bp inverted terminal repeats mark the boundaries of homology between avrb6 and all members of this Xanthomonas virulence/avirulence gene family sequenced to date. The terminal 38 bp of both inverted repeats are highly similar to the 38-bp consensus terminal sequence of the Tn3 family of transposons. Up to 11 members of the avr gene family appear to be present in North American strains of X. c. pv. malvacearum, including XcmH. The high level of homology observed among these avr genes and their presence in multiple copies may explain the gene-for-genes interactions and also the observed high

  7. A gene variation of 14-3-3 zeta isoform in rat hippocampus.

    PubMed

    Murakami, K; Situ, S Y; Eshete, F

    1996-11-14

    A variant form of 14-3-3 zeta was isolated from the rat hippocampal cDNA library. The cloned cDNA is 1687 bp in length and it contains an entire ORF (nt = 63-797) with 245 amino acids that is characteristic to 14-3-3 zeta subtype. By comparing with reported sequences of 14-3-3 zeta, we found three nucleotide substitutions within the coding sequence in our clone; C<-->T transition at nt = 325 and G<-->C transversions at nt = 387 and 388. Both are missense mutations, leading ACG (Thr) to ATG (Met) and CGT (Arg) to GCT (Ala) conversions at residue 88 and 109, respectively. Our results show that at least three different genetic variants of 14-3-3 zeta are present in rat species which results in protein variations. Such mutation in the amino acid sequence is an important indication of the diverse functions of this protein and may also contribute to the recent contradictory observations regarding the role of the 14-3-3 zeta subtype.

  8. Genetic progression in microsatellite instability high (MSI-H) colon cancers correlates with clinico-pathological parameters: A study of the TGRbetaRII, BAX, hMSH3, hMSH6, IGFIIR and BLM genes.

    PubMed

    Calin, G A; Gafà, R; Tibiletti, M G; Herlea, V; Becheanu, G; Cavazzini, L; Barbanti-Brodano, G; Nenci, I; Negrini, M; Lanza, G

    2000-05-20

    Colon carcinomas with microsatellite mutator phenotype exhibit specific genetic and clinico-pathological features. This report describes the analysis of 63 "microsatellite instability-high" (MSI-H) tumors for the presence of mutations in microsatellites located in the coding regions (CDRs) of 6 genes: TGFbetaRII, BAX, hMSH3, hMSH6, IGFIIR, and BLM. The following frequencies of mutations were detected: TGFbetaRII (70%), BAX (54%), hMSH3 (36.5%), IGFIIR (22%), hMSH6 (17.5%), and BLM (16%). The overall picture revealed combinations of mutations suggestive of a progressive order of accumulation, with mutations of TGFbetaRII and BAX first, followed by frameshifts in hMSH3, hMSH6, IGFIIR, and BLM. Correlations with 12 clinico-pathological parameters revealed that tumors with frameshifts in 1 or 2 CDRs were significantly better differentiated than tumors with frameshifts in more than 2 CDRs. We also found that mutations in the hMSH3 gene were significantly associated with decreased wall invasiveness and aneuploidy, and frameshifts in the BLM gene were significantly associated with the mucinous histotype. A trend toward an association between hMSH3 and IGFIIR with the medullary and conventional adenocarcinoma histotypes, respectively, was seen. Our results strengthen the concept that mutations in target genes have a role in the tumorigenic process of MSI-H tumors, and indicate that frameshifts in microsatellites located in CDRs occur in a limited number of combinations that could determine distinct clinico-pathological traits. Copyright 2000 Wiley-Liss, Inc.

  9. Sodium phenylbutyrate abrogates African swine fever virus replication by disrupting the virus-induced hypoacetylation status of histone H3K9/K14.

    PubMed

    Frouco, Gonçalo; Freitas, Ferdinando B; Martins, Carlos; Ferreira, Fernando

    2017-10-15

    African swine fever virus (ASFV) causes a highly lethal disease in swine for which neither a vaccine nor treatment are available. Recently, a new class of drugs that inhibit histone deacetylases enzymes (HDACs) has received an increasing interest as antiviral agents. Considering studies by others showing that valproic acid, an HDAC inhibitor (HDACi), blocks the replication of enveloped viruses and that ASFV regulates the epigenetic status of the host cell by promoting heterochromatinization and recruitment of class I HDACs to viral cytoplasmic factories, the antiviral activity of four HDACi against ASFV was evaluated in this study. Results showed that the sodium phenylbutyrate fully abrogates the ASFV replication, whereas the valproic acid leads to a significant reduction of viral progeny at 48h post-infection (-73.9%, p=0.046), as the two pan-HDAC inhibitors tested (Trichostatin A: -82.2%, p=0.043; Vorinostat: 73.9%, p=0.043). Further evaluation showed that protective effects of NaPB are dose-dependent, interfering with the expression of late viral genes and reversing the ASFV-induced histone H3 lysine 9 and 14 (H3K9K14) hypoacetylation status, compatible to an open chromatin state and possibly enabling the expression of host genes non-beneficial to infection progression. Additionally, a synergic antiviral effect was detected when NaPB is combined with an ASFV-topoisomerase II poison (Enrofloxacin). Altogether, our results strongly suggest that cellular HDACs are involved in the establishment of ASFV infection and emphasize that further in vivo studies are needed to better understand the antiviral activity of HDAC inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Nine Loci for Ocular Axial Length Identified through Genome-wide Association Studies, Including Shared Loci with Refractive Error

    PubMed Central

    Cheng, Ching-Yu; Schache, Maria; Ikram, M. Kamran; Young, Terri L.; Guggenheim, Jeremy A.; Vitart, Veronique; MacGregor, Stuart; Verhoeven, Virginie J.M.; Barathi, Veluchamy A.; Liao, Jiemin; Hysi, Pirro G.; Bailey-Wilson, Joan E.; St. Pourcain, Beate; Kemp, John P.; McMahon, George; Timpson, Nicholas J.; Evans, David M.; Montgomery, Grant W.; Mishra, Aniket; Wang, Ya Xing; Wang, Jie Jin; Rochtchina, Elena; Polasek, Ozren; Wright, Alan F.; Amin, Najaf; van Leeuwen, Elisabeth M.; Wilson, James F.; Pennell, Craig E.; van Duijn, Cornelia M.; de Jong, Paulus T.V.M.; Vingerling, Johannes R.; Zhou, Xin; Chen, Peng; Li, Ruoying; Tay, Wan-Ting; Zheng, Yingfeng; Chew, Merwyn; Rahi, Jugnoo S.; Hysi, Pirro G.; Yoshimura, Nagahisa; Yamashiro, Kenji; Miyake, Masahiro; Delcourt, Cécile; Maubaret, Cecilia; Williams, Cathy; Guggenheim, Jeremy A.; Northstone, Kate; Ring, Susan M.; Davey-Smith, George; Craig, Jamie E.; Burdon, Kathryn P.; Fogarty, Rhys D.; Iyengar, Sudha K.; Igo, Robert P.; Chew, Emily; Janmahasathian, Sarayut; Iyengar, Sudha K.; Igo, Robert P.; Chew, Emily; Janmahasathian, Sarayut; Stambolian, Dwight; Wilson, Joan E. Bailey; MacGregor, Stuart; Lu, Yi; Jonas, Jost B.; Xu, Liang; Saw, Seang-Mei; Baird, Paul N.; Rochtchina, Elena; Mitchell, Paul; Wang, Jie Jin; Jonas, Jost B.; Nangia, Vinay; Hayward, Caroline; Wright, Alan F.; Vitart, Veronique; Polasek, Ozren; Campbell, Harry; Vitart, Veronique; Rudan, Igor; Vatavuk, Zoran; Vitart, Veronique; Paterson, Andrew D.; Hosseini, S. Mohsen; Iyengar, Sudha K.; Igo, Robert P.; Fondran, Jeremy R.; Young, Terri L.; Feng, Sheng; Verhoeven, Virginie J.M.; Klaver, Caroline C.; van Duijn, Cornelia M.; Metspalu, Andres; Haller, Toomas; Mihailov, Evelin; Pärssinen, Olavi; Wedenoja, Juho; Wilson, Joan E. Bailey; Wojciechowski, Robert; Baird, Paul N.; Schache, Maria; Pfeiffer, Norbert; Höhn, René; Pang, Chi Pui; Chen, Peng; Meitinger, Thomas; Oexle, Konrad; Wegner, Aharon; Yoshimura, Nagahisa; Yamashiro, Kenji; Miyake, Masahiro; Pärssinen, Olavi; Yip, Shea Ping; Ho, Daniel W.H.; Pirastu, Mario; Murgia, Federico; Portas, Laura; Biino, Genevra; Wilson, James F.; Fleck, Brian; Vitart, Veronique; Stambolian, Dwight; Wilson, Joan E. Bailey; Hewitt, Alex W.; Ang, Wei; Verhoeven, Virginie J.M.; Klaver, Caroline C.; van Duijn, Cornelia M.; Saw, Seang-Mei; Wong, Tien-Yin; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Wong, Tien-Yin; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Wong, Tien-Yin; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Tai, E-Shyong; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Mackey, David A.; MacGregor, Stuart; Hammond, Christopher J.; Hysi, Pirro G.; Deangelis, Margaret M.; Morrison, Margaux; Zhou, Xiangtian; Chen, Wei; Paterson, Andrew D.; Hosseini, S. Mohsen; Mizuki, Nobuhisa; Meguro, Akira; Lehtimäki, Terho; Mäkelä, Kari-Matti; Raitakari, Olli; Kähönen, Mika; Burdon, Kathryn P.; Craig, Jamie E.; Iyengar, Sudha K.; Igo, Robert P.; Lass, Jonathan H.; Reinhart, William; Belin, Michael W.; Schultze, Robert L.; Morason, Todd; Sugar, Alan; Mian, Shahzad; Soong, Hunson Kaz; Colby, Kathryn; Jurkunas, Ula; Yee, Richard; Vital, Mark; Alfonso, Eduardo; Karp, Carol; Lee, Yunhee; Yoo, Sonia; Hammersmith, Kristin; Cohen, Elisabeth; Laibson, Peter; Rapuano, Christopher; Ayres, Brandon; Croasdale, Christopher; Caudill, James; Patel, Sanjay; Baratz, Keith; Bourne, William; Maguire, Leo; Sugar, Joel; Tu, Elmer; Djalilian, Ali; Mootha, Vinod; McCulley, James; Bowman, Wayne; Cavanaugh, H. Dwight; Verity, Steven; Verdier, David; Renucci, Ann; Oliva, Matt; Rotkis, Walter; Hardten, David R.; Fahmy, Ahmad; Brown, Marlene; Reeves, Sherman; Davis, Elizabeth A.; Lindstrom, Richard; Hauswirth, Scott; Hamilton, Stephen; Lee, W. Barry; Price, Francis; Price, Marianne; Kelly, Kathleen; Peters, Faye; Shaughnessy, Michael; Steinemann, Thomas; Dupps, B.J.; Meisler, David M.; Mifflin, Mark; Olson, Randal; Aldave, Anthony; Holland, Gary; Mondino, Bartly J.; Rosenwasser, George; Gorovoy, Mark; Dunn, Steven P.; Heidemann, David G.; Terry, Mark; Shamie, Neda; Rosenfeld, Steven I.; Suedekum, Brandon; Hwang, David; Stone, Donald; Chodosh, James; Galentine, Paul G.; Bardenstein, David; Goddard, Katrina; Chin, Hemin; Mannis, Mark; Varma, Rohit; Borecki, Ingrid; Chew, Emily Y.; Haller, Toomas; Mihailov, Evelin; Metspalu, Andres; Wedenoja, Juho; Simpson, Claire L.; Wojciechowski, Robert; Höhn, René; Mirshahi, Alireza; Zeller, Tanja; Pfeiffer, Norbert; Lackner, Karl J.; Donnelly, Peter; Barroso, Ines; Blackwell, Jenefer M.; Bramon, Elvira; Brown, Matthew A.; Casas, Juan P.; Corvin, Aiden; Deloukas, Panos; Duncanson, Audrey; Jankowski, Janusz; Markus, Hugh S.; Mathew, Christopher G.; Palmer, Colin N.A.; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J.; Trembath, Richard C.; Viswanathan, Ananth C.; Wood, Nicholas W.; Spencer, Chris C.A.; Band, Gavin; Bellenguez, Céline; Freeman, Colin; Hellenthal, Garrett; Giannoulatou, Eleni; Pirinen, Matti; Pearson, Richard; Strange, Amy; Su, Zhan; Vukcevic, Damjan; Donnelly, Peter; Langford, Cordelia; Hunt, Sarah E.; Edkins, Sarah; Gwilliam, Rhian; Blackburn, Hannah; Bumpstead, Suzannah J.; Dronov, Serge; Gillman, Matthew; Gray, Emma; Hammond, Naomi; Jayakumar, Alagurevathi; McCann, Owen T.; Liddle, Jennifer; Potter, Simon C.; Ravindrarajah, Radhi; Ricketts, Michelle; Waller, Matthew; Weston, Paul; Widaa, Sara; Whittaker, Pamela; Barroso, Ines; Deloukas, Panos; Mathew, Christopher G.; Blackwell, Jenefer M.; Brown, Matthew A.; Corvin, Aiden; Spencer, Chris C.A.; Bettecken, Thomas; Meitinger, Thomas; Oexle, Konrad; Pirastu, Mario; Portas, Laura; Nag, Abhishek; Williams, Katie M.; Yonova-Doing, Ekaterina; Klein, Ronald; Klein, Barbara E.; Hosseini, S. Mohsen; Paterson, Andrew D.; Genuth, S.; Nathan, D.M.; Zinman, B.; Crofford, O.; Crandall, J.; Reid, M.; Brown-Friday, J.; Engel, S.; Sheindlin, J.; Martinez, H.; Shamoon, H.; Engel, H.; Phillips, M.; Gubitosi-Klug, R.; Mayer, L.; Pendegast, S.; Zegarra, H.; Miller, D.; Singerman, L.; Smith-Brewer, S.; Novak, M.; Quin, J.; Dahms, W.; Genuth, Saul; Palmert, M.; Brillon, D.; Lackaye, M.E.; Kiss, S.; Chan, R.; Reppucci, V.; Lee, T.; Heinemann, M.; Whitehouse, F.; Kruger, D.; Jones, J.K.; McLellan, M.; Carey, J.D.; Angus, E.; Thomas, A.; Galprin, A.; Bergenstal, R.; Johnson, M.; Spencer, M.; Morgan, K.; Etzwiler, D.; Kendall, D.; Aiello, Lloyd Paul; Golden, E.; Jacobson, A.; Beaser, R.; Ganda, O.; Hamdy, O.; Wolpert, H.; Sharuk, G.; Arrigg, P.; Schlossman, D.; Rosenzwieg, J.; Rand, L.; Nathan, D.M.; Larkin, M.; Ong, M.; Godine, J.; Cagliero, E.; Lou, P.; Folino, K.; Fritz, S.; Crowell, S.; Hansen, K.; Gauthier-Kelly, C.; Service, J.; Ziegler, G.; Luttrell, L.; Caulder, S.; Lopes-Virella, M.; Colwell, J.; Soule, J.; Fernandes, J.; Hermayer, K.; Kwon, S.; Brabham, M.; Blevins, A.; Parker, J.; Lee, D.; Patel, N.; Pittman, C.; Lindsey, P.; Bracey, M.; Lee, K.; Nutaitis, M.; Farr, A.; Elsing, S.; Thompson, T.; Selby, J.; Lyons, T.; Yacoub-Wasef, S.; Szpiech, M.; Wood, D.; Mayfield, R.; Molitch, M.; Schaefer, B.; Jampol, L.; Lyon, A.; Gill, M.; Strugula, Z.; Kaminski, L.; Mirza, R.; Simjanoski, E.; Ryan, D.; Kolterman, O.; Lorenzi, G.; Goldbaum, M.; Sivitz, W.; Bayless, M.; Counts, D.; Johnsonbaugh, S.; Hebdon, M.; Salemi, P.; Liss, R.; Donner, T.; Gordon, J.; Hemady, R.; Kowarski, A.; Ostrowski, D.; Steidl, S.; Jones, B.; Herman, W.H.; Martin, C.L.; Pop-Busui, R.; Sarma, A.; Albers, J.; Feldman, E.; Kim, K.; Elner, S.; Comer, G.; Gardner, T.; Hackel, R.; Prusak, R.; Goings, L.; Smith, A.; Gothrup, J.; Titus, P.; Lee, J.; Brandle, M.; Prosser, L.; Greene, D.A.; Stevens, M.J.; Vine, A.K.; Bantle, J.; Wimmergren, N.; Cochrane, A.; Olsen, T.; Steuer, E.; Rath, P.; Rogness, B.; Hainsworth, D.; Goldstein, D.; Hitt, S.; Giangiacomo, J.; Schade, D.S.; Canady, J.L.; Chapin, J.E.; Ketai, L.H.; Braunstein, C.S.; Bourne, P.A.; Schwartz, S.; Brucker, A.; Maschak-Carey, B.J.; Baker, L.; Orchard, T.; Silvers, N.; Ryan, C.; Songer, T.; Doft, B.; Olson, S.; Bergren, R.L.; Lobes, L.; Rath, P. Paczan; Becker, D.; Rubinstein, D.; Conrad, P.W.; Yalamanchi, S.; Drash, A.; Morrison, A.; Bernal, M.L.; Vaccaro-Kish, J.; Malone, J.; Pavan, P.R.; Grove, N.; Iyer, M.N.; Burrows, A.F.; Tanaka, E.A.; Gstalder, R.; Dagogo-Jack, S.; Wigley, C.; Ricks, H.; Kitabchi, A.; Murphy, M.B.; Moser, S.; Meyer, D.; Iannacone, A.; Chaum, E.; Yoser, S.; Bryer-Ash, M.; Schussler, S.; Lambeth, H.; Raskin, P.; Strowig, S.; Zinman, B.; Barnie, A.; Devenyi, R.; Mandelcorn, M.; Brent, M.; Rogers, S.; Gordon, A.; Palmer, J.; Catton, S.; Brunzell, J.; Wessells, H.; de Boer, I.H.; Hokanson, J.; Purnell, J.; Ginsberg, J.; Kinyoun, J.; Deeb, S.; Weiss, M.; Meekins, G.; Distad, J.; Van Ottingham, L.; Dupre, J.; Harth, J.; Nicolle, D.; Driscoll, M.; Mahon, J.; Canny, C.; May, M.; Lipps, J.; Agarwal, A.; Adkins, T.; Survant, L.; Pate, R.L.; Munn, G.E.; Lorenz, R.; Feman, S.; White, N.; Levandoski, L.; Boniuk, I.; Grand, G.; Thomas, M.; Joseph, D.D.; Blinder, K.; Shah, G.; Boniuk; Burgess; Santiago, J.; Tamborlane, W.; Gatcomb, P.; Stoessel, K.; Taylor, K.; Goldstein, J.; Novella, S.; Mojibian, H.; Cornfeld, D.; Lima, J.; Bluemke, D.; Turkbey, E.; van der Geest, R.J.; Liu, C.; Malayeri, A.; Jain, A.; Miao, C.; Chahal, H.; Jarboe, R.; Maynard, J.; Gubitosi-Klug, R.; Quin, J.; Gaston, P.; Palmert, M.; Trail, R.; Dahms, W.; Lachin, J.; Cleary, P.; Backlund, J.; Sun, W.; Braffett, B.; Klumpp, K.; Chan, K.; Diminick, L.; Rosenberg, D.; Petty, B.; Determan, A.; Kenny, D.; Rutledge, B.; Younes, Naji; Dews, L.; Hawkins, M.; Cowie, C.; Fradkin, J.; Siebert, C.; Eastman, R.; Danis, R.; Gangaputra, S.; Neill, S.; Davis, M.; Hubbard, L.; Wabers, H.; Burger, M.; Dingledine, J.; Gama, V.; Sussman, R.; Steffes, M.; Bucksa, J.; Nowicki, M.; Chavers, B.; O’Leary, D.; Polak, J.; Harrington, A.; Funk, L.; Crow, R.; Gloeb, B.; Thomas, S.; O’Donnell, C.; Soliman, E.; Zhang, Z.M.; Prineas, R.; Campbell, C.; Ryan, C.; Sandstrom, D.; Williams, T.; Geckle, M.; Cupelli, E.; Thoma, F.; Burzuk, B.; Woodfill, T.; Low, P.; Sommer, C.; Nickander, K.; Budoff, M.; Detrano, R.; Wong, N.; Fox, M.; Kim, L.; Oudiz, R.; Weir, G.; Espeland, M.; Manolio, T.; Rand, L.; Singer, D.; Stern, M.; Boulton, A.E.; Clark, C.; D’Agostino, R.; Lopes-Virella, M.; Garvey, W.T.; Lyons, T.J.; Jenkins, A.; Virella, G.; Jaffa, A.; Carter, Rickey; Lackland, D.; Brabham, M.; McGee, D.; Zheng, D.; Mayfield, R.K.; Boright, A.; Bull, S.; Sun, L.; Scherer, S.; Zinman, B.; Natarajan, R.; Miao, F.; Zhang, L.; Chen;, Z.; Nathan, D.M.; Makela, Kari-Matti; Lehtimaki, Terho; Kahonen, Mika; Raitakari, Olli; Yoshimura, Nagahisa; Matsuda, Fumihiko; Chen, Li Jia; Pang, Chi Pui; Yip, Shea Ping; Yap, Maurice K.H.; Meguro, Akira; Mizuki, Nobuhisa; Inoko, Hidetoshi; Foster, Paul J.; Zhao, Jing Hua; Vithana, Eranga; Tai, E-Shyong; Fan, Qiao; Xu, Liang; Campbell, Harry; Fleck, Brian; Rudan, Igor; Aung, Tin; Hofman, Albert; Uitterlinden, André G.; Bencic, Goran; Khor, Chiea-Chuen; Forward, Hannah; Pärssinen, Olavi; Mitchell, Paul; Rivadeneira, Fernando; Hewitt, Alex W.; Williams, Cathy; Oostra, Ben A.; Teo, Yik-Ying; Hammond, Christopher J.; Stambolian, Dwight; Mackey, David A.; Klaver, Caroline C.W.; Wong, Tien-Yin; Saw, Seang-Mei; Baird, Paul N.

    2013-01-01

    Refractive errors are common eye disorders of public health importance worldwide. Ocular axial length (AL) is the major determinant of refraction and thus of myopia and hyperopia. We conducted a meta-analysis of genome-wide association studies for AL, combining 12,531 Europeans and 8,216 Asians. We identified eight genome-wide significant loci for AL (RSPO1, C3orf26, LAMA2, GJD2, ZNRF3, CD55, MIP, and ALPPL2) and confirmed one previously reported AL locus (ZC3H11B). Of the nine loci, five (LAMA2, GJD2, CD55, ALPPL2, and ZC3H11B) were associated with refraction in 18 independent cohorts (n = 23,591). Differential gene expression was observed for these loci in minus-lens-induced myopia mouse experiments and human ocular tissues. Two of the AL genes, RSPO1 and ZNRF3, are involved in Wnt signaling, a pathway playing a major role in the regulation of eyeball size. This study provides evidence of shared genes between AL and refraction, but importantly also suggests that these traits may have unique pathways. PMID:24144296

  11. Primer development to obtain complete coding sequence of HA and NA genes of influenza A/H3N2 virus.

    PubMed

    Agustiningsih, Agustiningsih; Trimarsanto, Hidayat; Setiawaty, Vivi; Artika, I Made; Muljono, David Handojo

    2016-08-30

    Influenza is an acute respiratory illness and has become a serious public health problem worldwide. The need to study the HA and NA genes in influenza A virus is essential since these genes frequently undergo mutations. This study describes the development of primer sets for RT-PCR to obtain complete coding sequence of Hemagglutinin (HA) and Neuraminidase (NA) genes of influenza A/H3N2 virus from Indonesia. The primers were developed based on influenza A/H3N2 sequence worldwide from Global Initiative on Sharing All Influenza Data (GISAID) and further tested using Indonesian influenza A/H3N2 archived samples of influenza-like illness (ILI) surveillance from 2008 to 2009. An optimum RT-PCR condition was acquired for all HA and NA fragments designed to cover complete coding sequence of HA and NA genes. A total of 71 samples were successfully sequenced for complete coding sequence both of HA and NA genes out of 145 samples of influenza A/H3N2 tested. The developed primer sets were suitable for obtaining complete coding sequences of HA and NA genes of Indonesian samples from 2008 to 2009.

  12. Imprinting defects at human 14q32 locus alters gene expression and is associated with the pathobiology of osteosarcoma

    PubMed Central

    Shu, Jingmin; Li, Lihua; Sarver, Anne E.; Pope, Emily A.; Varshney, Jyotika; Thayanithy, Venugopal; Spector, Logan; Largaespada, David A.; Steer, Clifford J.; Subramanian, Subbaya

    2016-01-01

    Osteosarcoma is the most common primary bone malignancy affecting children and adolescents. Although several genetic predisposing conditions have been associated with osteosarcoma, our understanding of its pathobiology is rather limited. Here we show that, first, an imprinting defect at human 14q32-locus is highly prevalent (87%) and specifically associated with osteosarcoma patients < 30 years of age. Second, the average demethylation at differentially methylated regions (DMRs) in the 14q32-locus varied significantly compared to genome-wide demethylation. Third, the 14q32-locus was enriched in both H3K4-me3 and H3K27-me3 histone modifications that affected expression of all imprinted genes and miRNAs in this region. Fourth, imprinting defects at 14q32 - DMRs are present in triad DNA samples from affected children and their biological parents. Finally, imprinting defects at 14q32-DMRs were also observed at higher frequencies in an Rb1/Trp53 mutation-induced osteosarcoma mouse model. Further analysis of normal and tumor tissues from a Sleeping Beauty mouse model of spontaneous osteosarcoma supported the notion that these imprinting defects may be a key factor in osteosarcoma pathobiology. In conclusion, we demonstrate that imprinting defects at the 14q32 locus significantly alter gene expression, may contribute to the pathogenesis of osteosarcoma, and could be predictive of survival outcomes. PMID:26802029

  13. Isolation and functional analysis of a homolog of flavonoid 3',5'-hydroxylase gene from Pericallis × hybrida.

    PubMed

    Sun, Yi; Huang, He; Meng, Li; Hu, Ke; Dai, Si-Lan

    2013-10-01

    As the key enzyme in the biosynthesis of blue flower color pigments, flavonoid 3',5'-hydroxylase (F3'5'H) can catalyze the conversion of its major substrates, 2-S naringenin and dihydrokaempferol, into 3',4',5'-hydroxylated pentahydroxyflavanone and dihydromyricetin, respectively. Unlike other F3'5'Hs belonging to the CYP75A subfamily, Asteraceae-specific F3'5'Hs belong to the CYP75B subfamily. Furthermore, cineraria F3'5'H expressed in yeast exhibited not only F3'H (flavonoid 3'-hydroxylase) activity but also F3'5'H activity in vitro. In this study, Southern blotting showed that there was only one copy of a homolog of the F3'5'H gene PCFH in the Pericallis × hybrida genome. This gene could be detected by Northern blot in the primary developmental stages of ligulate florets of the purple- and blue-flowered cultivars, and its transcripts also accumulated in the leaves. Heterologous expression of PCFH could produce new delphinidin derivatives in the corollas of transgenic tobacco plants, increased the content of cyanidin derivatives and lead to the blue- and red-shifting of flower color in T₀ generation plants. These results indicate that cineraria F3'5'H exhibited both F3'5'H- and F3'H-activity in vivo. The types and contents of anthocyanins and flower color phenotypes of the T₁ generation were similar to those of T₀ generation plants. PCFH exhibited stable inheritance and normal functions between generations. This study supplies new evidence to understand Asteraceae-specific F3'5'Hs and provides important references for the further study of molecular breeding of blue-flowered chrysanthemums using the PCFH gene. © 2013 Scandinavian Plant Physiology Society.

  14. 14-3-3 proteins mediate inhibitory effects of cAMP on salt-inducible kinases (SIKs).

    PubMed

    Sonntag, Tim; Vaughan, Joan M; Montminy, Marc

    2018-02-01

    The salt-inducible kinase (SIK) family regulates cellular gene expression via the phosphorylation of cAMP-regulated transcriptional coactivators (CRTCs) and class IIA histone deacetylases, which are sequestered in the cytoplasm by phosphorylation-dependent 14-3-3 interactions. SIK activity toward these substrates is inhibited by increases in cAMP signaling, although the underlying mechanism is unclear. Here, we show that the protein kinase A (PKA)-dependent phosphorylation of SIKs inhibits their catalytic activity by inducing 14-3-3 protein binding. SIK1 and SIK3 contain two functional PKA/14-3-3 sites, while SIK2 has four. In keeping with the dimeric nature of 14-3-3s, the presence of multiple binding sites within target proteins dramatically increases binding affinity. As a result, loss of a single 14-3-3-binding site in SIK1 and SIK3 abolished 14-3-3 association and rendered them insensitive to cAMP. In contrast, mutation of three sites in SIK2 was necessary to fully block cAMP regulation. Superimposed on the effects of PKA phosphorylation and 14-3-3 association, an evolutionary conserved domain in SIK1 and SIK2 (the so called RK-rich region; 595-624 in hSIK2) is also required for the inhibition of SIK2 activity. Collectively, these results point to a dual role for 14-3-3 proteins in repressing a family of Ser/Thr kinases as well as their substrates. © 2017 Federation of European Biochemical Societies.

  15. A Simple Restriction Fragment Length Polymorphism-Based Strategy That Can Distinguish the Internal Genes of Human H1N1, H3N2, and H5N1 Influenza A Viruses

    PubMed Central

    Cooper, Lynn A.; Subbarao, Kanta

    2000-01-01

    A simple molecular technique for rapid genotyping was developed to monitor the internal gene composition of currently circulating influenza A viruses. Sequence information from recent H1N1, H3N2, and H5N1 human virus isolates was used to identify conserved regions within each internal gene, and gene-specific PCR primers capable of amplifying all three virus subtypes were designed. Subtyping was based on subtype-specific restriction fragment length polymorphism (RFLP) patterns within the amplified regions. The strategy was tested in a blinded fashion using 10 control viruses of each subtype (total, 30) and was found to be very effective. Once standardized, the genotyping method was used to identify the origin of the internal genes of 51 influenza A viruses isolated from humans in Hong Kong during and immediately following the 1997–1998 H5N1 outbreak. No avian-human or H1-H3 reassortants were detected. Less than 2% (6 of 486) of the RFLP analyses were inconclusive; all were due to point mutations within a restriction site. The technique was also used to characterize the internal genes of two avian H9N2 viruses isolated from children in Hong Kong during 1999. PMID:10878047

  16. Genomic characterization of H14 subtype influenza A viruses in New World waterfowl and experimental infectivity in mallards Anas platyrhynchos

    USGS Publications Warehouse

    Ramey, Andy M.; Poulson, Rebecca L.; Gonzalez-Reiche, Ana S.; Perez, Daniel R.; Stalknecht, David E.; Brown, Justin D.

    2014-01-01

    Recent repeated isolation of H14 hemagglutinin subtype influenza A viruses (IAVs) in the New World waterfowl provides evidence to suggest that host and/or geographic ranges for viruses of this subtype may be expanding. In this study, we used genomic analyses to gain inference on the origin and evolution of H14 viruses in New World waterfowl and conducted an experimental challenge study in mallards (Anas platyrhynchos) to evaluate pathogenicity, viral replication, and transmissibility of a representative viral strain in a natural host species. Genomic characterization of H14 subtype IAVs isolated from New World waterfowl, including three isolates sequenced specifically for this study, revealed high nucleotide identity among individual gene segments (e.g. ≥95% shared identity among H14 HA gene segments). In contrast, lower shared identity was observed among internal gene segments. Furthermore, multiple neuraminidase subtypes were observed for H14 IAVs isolated in the New World. Gene segments of H14 viruses isolated after 2010 shared ancestral genetic lineages with IAVs isolated from wild birds throughout North America. Thus, genomic characterization provided evidence for viral evolution in New World waterfowl through genetic drift and genetic shift since purported introduction from Eurasia. In the challenge study, no clinical disease or lesions were observed among mallards experimentally inoculated with A/blue-winged teal/Texas/AI13-1028/2013(H14N5) or exposed via contact with infected birds. Titers of viral shedding for mallards challenged with the H14N5 IAV were highest at two days post-inoculation (DPI); however shedding was detected up to nine DPI using cloacal swabs. The distribution of viral antigen among mallards infected with H14N5 IAV was largely restricted to enterocytes lining the villi in the lower intestinal tract and in the epithelium of the bursa of Fabricius. Characterization of the infectivity of A/blue-winged teal/Texas/AI13-1028/2013(H14N5) in

  17. Reassortant swine influenza viruses isolated in Japan contain genes from pandemic A(H1N1) 2009.

    PubMed

    Kanehira, Katsushi; Takemae, Nobuhiro; Uchida, Yuko; Hikono, Hirokazu; Saito, Takehiko

    2014-06-01

    In 2013, three reassortant swine influenza viruses (SIVs)-two H1N2 and one H3N2-were isolated from symptomatic pigs in Japan; each contained genes from the pandemic A(H1N1) 2009 virus and endemic SIVs. Phylogenetic analysis revealed that the two H1N2 viruses, A/swine/Gunma/1/2013 and A/swine/Ibaraki/1/2013, were reassortants that contain genes from the following three distinct lineages: (i) H1 and nucleoprotein (NP) genes derived from a classical swine H1 HA lineage uniquely circulating among Japanese SIVs; (ii) neuraminidase (NA) genes from human-like H1N2 swine viruses; and (iii) other genes from pandemic A(H1N1) 2009 viruses. The H3N2 virus, A/swine/Miyazaki/2/2013, comprised genes from two sources: (i) hemagglutinin (HA) and NA genes derived from human and human-like H3N2 swine viruses and (ii) other genes from pandemic A(H1N1) 2009 viruses. Phylogenetic analysis also indicated that each of the reassortants may have arisen independently in Japanese pigs. A/swine/Miyazaki/2/2013 were found to have strong antigenic reactivities with antisera generated for some seasonal human-lineage viruses isolated during or before 2003, whereas A/swine/Miyazaki/2/2013 reactivities with antisera against viruses isolated after 2004 were clearly weaker. In addition, antisera against some strains of seasonal human-lineage H1 viruses did not react with either A/swine/Gunma/1/2013 or A/swine/Ibaraki/1/2013. These findings indicate that emergence and spread of these reassortant SIVs is a potential public health risk. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.

  18. The avian-origin PB1 gene segment facilitated replication and transmissibility of the H3N2/1968 pandemic influenza virus.

    PubMed

    Wendel, Isabel; Rubbenstroth, Dennis; Doedt, Jennifer; Kochs, Georg; Wilhelm, Jochen; Staeheli, Peter; Klenk, Hans-Dieter; Matrosovich, Mikhail

    2015-04-01

    The H2N2/1957 and H3N2/1968 pandemic influenza viruses emerged via the exchange of genomic RNA segments between human and avian viruses. The avian hemagglutinin (HA) allowed the hybrid viruses to escape preexisting immunity in the human population. Both pandemic viruses further received the PB1 gene segment from the avian parent (Y. Kawaoka, S. Krauss, and R. G. Webster, J Virol 63:4603-4608, 1989), but the biological significance of this observation was not understood. To assess whether the avian-origin PB1 segment provided pandemic viruses with some selective advantage, either on its own or via cooperation with the homologous HA segment, we modeled by reverse genetics the reassortment event that led to the emergence of the H3N2/1968 pandemic virus. Using seasonal H2N2 virus A/California/1/66 (Cal) as a surrogate precursor human virus and pandemic virus A/Hong Kong/1/68 (H3N2) (HK) as a source of avian-derived PB1 and HA gene segments, we generated four reassortant recombinant viruses and compared pairs of viruses which differed solely by the origin of PB1. Replacement of the PB1 segment of Cal by PB1 of HK facilitated viral polymerase activity, replication efficiency in human cells, and contact transmission in guinea pigs. A combination of PB1 and HA segments of HK did not enhance replicative fitness of the reassortant virus compared with the single-gene PB1 reassortant. Our data suggest that the avian PB1 segment of the 1968 pandemic virus served to enhance viral growth and transmissibility, likely by enhancing activity of the viral polymerase complex. Despite the high impact of influenza pandemics on human health, some mechanisms underlying the emergence of pandemic influenza viruses still are poorly understood. Thus, it was unclear why both H2N2/1957 and H3N2/1968 reassortant pandemic viruses contained, in addition to the avian HA, the PB1 gene segment of the avian parent. Here, we addressed this long-standing question by modeling the emergence of the H3N2

  19. The Avian-Origin PB1 Gene Segment Facilitated Replication and Transmissibility of the H3N2/1968 Pandemic Influenza Virus

    PubMed Central

    Wendel, Isabel; Rubbenstroth, Dennis; Doedt, Jennifer; Kochs, Georg; Wilhelm, Jochen; Staeheli, Peter; Klenk, Hans-Dieter

    2015-01-01

    ABSTRACT The H2N2/1957 and H3N2/1968 pandemic influenza viruses emerged via the exchange of genomic RNA segments between human and avian viruses. The avian hemagglutinin (HA) allowed the hybrid viruses to escape preexisting immunity in the human population. Both pandemic viruses further received the PB1 gene segment from the avian parent (Y. Kawaoka, S. Krauss, and R. G. Webster, J Virol 63:4603–4608, 1989), but the biological significance of this observation was not understood. To assess whether the avian-origin PB1 segment provided pandemic viruses with some selective advantage, either on its own or via cooperation with the homologous HA segment, we modeled by reverse genetics the reassortment event that led to the emergence of the H3N2/1968 pandemic virus. Using seasonal H2N2 virus A/California/1/66 (Cal) as a surrogate precursor human virus and pandemic virus A/Hong Kong/1/68 (H3N2) (HK) as a source of avian-derived PB1 and HA gene segments, we generated four reassortant recombinant viruses and compared pairs of viruses which differed solely by the origin of PB1. Replacement of the PB1 segment of Cal by PB1 of HK facilitated viral polymerase activity, replication efficiency in human cells, and contact transmission in guinea pigs. A combination of PB1 and HA segments of HK did not enhance replicative fitness of the reassortant virus compared with the single-gene PB1 reassortant. Our data suggest that the avian PB1 segment of the 1968 pandemic virus served to enhance viral growth and transmissibility, likely by enhancing activity of the viral polymerase complex. IMPORTANCE Despite the high impact of influenza pandemics on human health, some mechanisms underlying the emergence of pandemic influenza viruses still are poorly understood. Thus, it was unclear why both H2N2/1957 and H3N2/1968 reassortant pandemic viruses contained, in addition to the avian HA, the PB1 gene segment of the avian parent. Here, we addressed this long-standing question by modeling the

  20. A gene for Waardenburg syndrome type 2 maps close to the human homologue of the microphthalmia gene at chromosome 3p12-p14.1.

    PubMed

    Hughes, A E; Newton, V E; Liu, X Z; Read, A P

    1994-08-01

    Waardenburg syndrome (WS), an autosomal dominant syndrome of hearing loss and pigmentary disturbances, comprises at least two separate conditions. WS type 1 is normally caused by mutations in PAX3 located at chromosome 2q35 and is distinguished clinically by minor facial malformations. We have now located a gene for WS type 2. Two families show linkage to a group of microsatellite markers located on chromosome 3p12-p14.1. D3S1261 gave a maximum lod score of 6.5 at zero recombination in one large Type 2 family. In a second, smaller family the adjacent marker D3S1210 gave a lod of 2.05 at zero recombination. Interestingly, the human homologue (MITF) of the mouse microphthalmia gene, a good candidate at the phenotypic level, has recently been mapped to 3p12.3-p14.4.

  1. PHD Finger Recognition of Unmodified Histone H3R2 Links UHRF1 to Regulation of Euchromatic Gene Expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E Rajakumara; Z Wang; H Ma

    2011-12-31

    Histone methylation occurs on both lysine and arginine residues, and its dynamic regulation plays a critical role in chromatin biology. Here we identify the UHRF1 PHD finger (PHD{sub UHRF1}), an important regulator of DNA CpG methylation, as a histone H3 unmodified arginine 2 (H3R2) recognition modality. This conclusion is based on binding studies and cocrystal structures of PHD{sub UHRF1} bound to histone H3 peptides, where the guanidinium group of unmodified R2 forms an extensive intermolecular hydrogen bond network, with methylation of H3R2, but not H3K4 or H3K9, disrupting complex formation. We have identified direct target genes of UHRF1 from microarraymore » and ChIP studies. Importantly, we show that UHRF1's ability to repress its direct target gene expression is dependent on PHD{sub UHRF1} binding to unmodified H3R2, thereby demonstrating the functional importance of this recognition event and supporting the potential for crosstalk between histone arginine methylation and UHRF1 function.« less

  2. PHD Finger Recognition of Unmodified Histone H3R2 Links UHRF1 to Regulation of Euchromatic Gene Expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajakumara, Eerappa; Wang, Zhentian; Ma, Honghui

    2011-08-29

    Histone methylation occurs on both lysine and arginine residues, and its dynamic regulation plays a critical role in chromatin biology. Here we identify the UHRF1 PHD finger (PHD{sub UHRF1}), an important regulator of DNA CpG methylation, as a histone H3 unmodified arginine 2 (H3R2) recognition modality. This conclusion is based on binding studies and cocrystal structures of PHD{sub UHRF1} bound to histone H3 peptides, where the guanidinium group of unmodified R2 forms an extensive intermolecular hydrogen bond network, with methylation of H3R2, but not H3K4 or H3K9, disrupting complex formation. We have identified direct target genes of UHRF1 from microarraymore » and ChIP studies. Importantly, we show that UHRF1's ability to repress its direct target gene expression is dependent on PHD{sub UHRF1} binding to unmodified H3R2, thereby demonstrating the functional importance of this recognition event and supporting the potential for crosstalk between histone arginine methylation and UHRF1 function.« less

  3. Analysis of the Arabidopsis IRX9/IRX9-L and IRX14/IRX14-L Pairs of Glycosyltransferase Genes Reveals Critical Contributions to Biosynthesis of the Hemicellulose Glucuronoxylan1[C][W

    PubMed Central

    Wu, Ai-Min; Hörnblad, Emma; Voxeur, Aline; Gerber, Lorenz; Rihouey, Christophe; Lerouge, Patrice; Marchant, Alan

    2010-01-01

    The hemicellulose glucuronoxylan (GX) is a major component of plant secondary cell walls. However, our understanding of GX synthesis remains limited. Here, we identify and analyze two new genes from Arabidopsis (Arabidopsis thaliana), IRREGULAR XYLEM9-LIKE (IRX9-L) and IRX14-LIKE (IRX14-L) that encode glycosyltransferase family 43 members proposed to function during xylan backbone elongation. We place IRX9-L and IRX14-L in a genetic framework with six previously described glycosyltransferase genes (IRX9, IRX10, IRX10-L, IRX14, FRAGILE FIBER8 [FRA8], and FRA8 HOMOLOG [F8H]) and investigate their function in GX synthesis. Double-mutant analysis identifies IRX9-L and IRX14-L as functional homologs of IRX9 and IRX14, respectively. Characterization of irx9 irx10 irx14 fra8 and irx9-L irx10-L irx14-L f8h quadruple mutants allows definition of a set of genes comprising IRX9, IRX10, IRX14, and FRA8 that perform the main role in GX synthesis during vegetative development. The IRX9-L, IRX10-L, IRX14-L, and F8H genes are able to partially substitute for their respective homologs and normally perform a minor function. The irx14 irx14-L double mutant virtually lacks xylan, whereas irx9 irx9-L and fra8 f8h double mutants form lowered amounts of GX displaying a greatly reduced degree of backbone polymerization. Our findings reveal two distinct sets of four genes each differentially contributing to GX biosynthesis. PMID:20424005

  4. Structural basis for recognition of H3K56-acetylated histone H3-H4 by the chaperone Rtt106

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Dan; Hu, Qi; Li, Qing

    2013-04-08

    Dynamic variations in the structure of chromatin influence virtually all DNA-related processes in eukaryotes and are controlled in part by post-translational modifications of histones. One such modification, the acetylation of lysine 56 (H3K56ac) in the amino-terminal α-helix (αN) of histone H3, has been implicated in the regulation of nucleosome assembly during DNA replication and repair, and nucleosome disassembly during gene transcription. In Saccharomyces cerevisiae, the histone chaperone Rtt106 contributes to the deposition of newly synthesized H3K56ac-carrying H3-H4 complex on replicating DNA, but it is unclear how Rtt106 binds H3-H4 and specifically recognizes H3K56ac as there is no apparent acetylated lysinemore » reader domain in Rtt106. Here, we show that two domains of Rtt106 are involved in a combinatorial recognition of H3-H4. An N-terminal domain homodimerizes and interacts with H3-H4 independently of acetylation while a double pleckstrin-homology (PH) domain binds the K56-containing region of H3. Affinity is markedly enhanced upon acetylation of K56, an effect that is probably due to increased conformational entropy of the αN helix of H3. Our data support a mode of interaction where the N-terminal homodimeric domain of Rtt106 intercalates between the two H3-H4 components of the (H3-H4) 2 tetramer while two double PH domains in the Rtt106 dimer interact with each of the two H3K56ac sites in (H3-H4) 2. We show that the Rtt106-(H3-H4) 2 interaction is important for gene silencing and the DNA damage response.« less

  5. Centromeres Off the Hook: Massive Changes in Centromere Size and Structure Following Duplication of CenH3 Gene in Fabeae Species

    PubMed Central

    Neumann, Pavel; Pavlíková, Zuzana; Koblížková, Andrea; Fuková, Iva; Jedličková, Veronika; Novák, Petr; Macas, Jiří

    2015-01-01

    In most eukaryotes, centromere is determined by the presence of the centromere-specific histone variant CenH3. Two types of chromosome morphology are generally recognized with respect to centromere organization. Monocentric chromosomes possess a single CenH3-containing domain in primary constriction, whereas holocentric chromosomes lack the primary constriction and display dispersed distribution of CenH3. Recently, metapolycentric chromosomes have been reported in Pisum sativum, representing an intermediate type of centromere organization characterized by multiple CenH3-containing domains distributed across large parts of chromosomes that still form a single constriction. In this work, we show that this type of centromere is also found in other Pisum and closely related Lathyrus species, whereas Vicia and Lens genera, which belong to the same legume tribe Fabeae, possess only monocentric chromosomes. We observed extensive variability in the size of primary constriction and the arrangement of CenH3 domains both between and within individual Pisum and Lathyrus species, with no obvious correlation to genome or chromosome size. Search for CenH3 gene sequences revealed two paralogous variants, CenH3-1 and CenH3-2, which originated from a duplication event in the common ancestor of Fabeae species. The CenH3-1 gene was subsequently lost or silenced in the lineage leading to Vicia and Lens, whereas both genes are retained in Pisum and Lathyrus. Both of these genes appear to have evolved under purifying selection and produce functional CenH3 proteins which are fully colocalized. The findings described here provide the first evidence for a highly dynamic centromere structure within a group of closely related species, challenging previous concepts of centromere evolution. PMID:25771197

  6. Centromeres Off the Hook: Massive Changes in Centromere Size and Structure Following Duplication of CenH3 Gene in Fabeae Species.

    PubMed

    Neumann, Pavel; Pavlíková, Zuzana; Koblížková, Andrea; Fuková, Iva; Jedličková, Veronika; Novák, Petr; Macas, Jiří

    2015-07-01

    In most eukaryotes, centromere is determined by the presence of the centromere-specific histone variant CenH3. Two types of chromosome morphology are generally recognized with respect to centromere organization. Monocentric chromosomes possess a single CenH3-containing domain in primary constriction, whereas holocentric chromosomes lack the primary constriction and display dispersed distribution of CenH3. Recently, metapolycentric chromosomes have been reported in Pisum sativum, representing an intermediate type of centromere organization characterized by multiple CenH3-containing domains distributed across large parts of chromosomes that still form a single constriction. In this work, we show that this type of centromere is also found in other Pisum and closely related Lathyrus species, whereas Vicia and Lens genera, which belong to the same legume tribe Fabeae, possess only monocentric chromosomes. We observed extensive variability in the size of primary constriction and the arrangement of CenH3 domains both between and within individual Pisum and Lathyrus species, with no obvious correlation to genome or chromosome size. Search for CenH3 gene sequences revealed two paralogous variants, CenH3-1 and CenH3-2, which originated from a duplication event in the common ancestor of Fabeae species. The CenH3-1 gene was subsequently lost or silenced in the lineage leading to Vicia and Lens, whereas both genes are retained in Pisum and Lathyrus. Both of these genes appear to have evolved under purifying selection and produce functional CenH3 proteins which are fully colocalized. The findings described here provide the first evidence for a highly dynamic centromere structure within a group of closely related species, challenging previous concepts of centromere evolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Stability of transgene integration and expression in subsequent generations of doubled haploid oilseed rape transformed with chitinase and beta-1,3-glucanase genes in a double-gene construct.

    PubMed

    Melander, Margareta; Kamnert, Iréne; Happstadius, Ingrid; Liljeroth, Erland; Bryngelsson, Tomas

    2006-09-01

    A double-gene construct with one chitinase and one beta-1,3-glucanase gene from barley, both driven by enhanced 35S promoters, was transformed into oilseed rape. From six primary transformants expressing both transgenes 10 doubled haploid lines were produced and studied for five generations. The number of inserted copies for both the genes was determined by Southern blotting and real-time PCR with full agreement between the two methods. When copy numbers were analysed in different generations, discrepancies were found, indicating that at least part of the inserted sequences were lost in one of the alleles of some doubled haploids. Chitinase and beta-1,3-glucanase expression was analysed by Western blotting in all five doubled haploid generations. Despite that both the genes were present on the same T-DNA and directed by the same promoter their expression pattern between generations was different. The beta-1,3-glucanase was expressed at high and stable levels in all generations, while the chitinase displayed lower expression that varied between generations. The transgenic plants did not show any major impact on fungal resistance when assayed in greenhouse, although purified beta-1,3-glucanase and chitinase caused retardment of fungal growth in vitro.

  8. Tetraquark candidate Zc(3900) from coupled-channel scattering - how to extract hadronic interactions? -

    NASA Astrophysics Data System (ADS)

    Ikeda, Yoichi

    2018-03-01

    We present recent progress of lattice QCD studies on hadronic interactions which play a crucial role to understand the properties of atomic nuclei and hadron resonances. There are two methods, the plateau method (or the direct method) and the HAL QCD method, to study the hadronic interactions. In the plateau method, the determination of a ground state energy from the temporal correlation functions of multi-hadron systems is a key to reliably extract the physical observables. It turns out that, due to the contamination of excited elastic scattering states nearby, one can easily be misled by a fake plateau into extracting the ground state energy. We introduce a consistency check (sanity check) which can rule out obviously false results obtained from a fake plateau, and find that none of the results obtained at the moment for two-baryon systems in the plateau method pass the test. On the other hand, the HAL QCD method is free from the fake-plateau problem. We investigate the systematic uncertainties of the HAL QCD method, which are found to be well controlled. On the basis of the HAL QCD method, the structure of the tetraquark candidate Zc(3900), which was experimentally reported in e+e- collisions, is studied by the s-wave two-meson coupled-channel scattering. The results show that the Zc(3900) is not a conventional resonance but a threshold cusp. A semi-phenomenological analysis with the coupled-channel interaction to the experimentally observed decay mode is also presented to confirm the conclusion.

  9. Using SNP genetic markers to elucidate the linkage of the Co-34/Phg-3 anthracnose and angular leaf spot resistance gene cluster with the Ur-14 resistance gene

    USDA-ARS?s Scientific Manuscript database

    The Ouro Negro common bean cultivar contains the Co-34/Phg-3 gene cluster that confers resistance to the anthracnose (ANT) and angular leaf spot (ALS) pathogens. These genes are tightly linked on chromosome 4. Ouro Negro also has the Ur-14 rust resistance gene, reportedly in the vicinity of Co- 34; ...

  10. 14-3-3η Amplifies Androgen Receptor Actions in Prostate Cancer

    PubMed Central

    Titus, Mark A.; Tan, Jiann-an; Gregory, Christopher W.; Ford, O. Harris; Subramanian, Romesh R.; Fu, Haian; Wilson, Elizabeth M.; Mohler, James L.; French, Frank S.

    2009-01-01

    Purpose Androgen receptor (AR) abundance and AR-regulated gene expression in castration-recurrent prostate cancer (CaP) are indicative of AR activation in the absence of testicular androgen. AR transactivation of target genes in castration-recurrent CaP occurs in part through mitogen signaling that amplifies the actions of AR and its coregulators. Herein we report on the role of 14-3-3η in AR action. Experimental Design and Results AR and 14-3-3η co-localized in COS cell nuclei with and without androgen and 14-3-3η promoted AR nuclear localization in the absence of androgen. 14-3-3η interacted with AR in cell-free binding and coimmunoprecipitation assays. In the recurrent human CaP cell line, CWR-R1, native endogenous AR transcriptional activation was stimulated by 14-3-3η at low DHT concentrations and was increased by EGF. Moreover, the DHT and EGF dependent increase in AR transactivation was inhibited by a dominant negative 14-3-3η. In the CWR22 CaP xenograft model, 14-3-3η expression was increased by androgen, suggesting a feed-forward mechanism that potentiates both 14-3-3η and AR actions. 14-3-3η mRNA and protein decreased following castration of tumor bearing mice and increased in tumors of castrate mice after treatment with testosterone. CWR22 tumors that recurred 5 months after castration contained 14-3-3η levels similar to the androgen-stimulated tumors removed before castration. In a human prostate tissue microarray of clinical specimens, 14-3-3η localized with AR in nuclei and the similar amounts expressed in castration-recurrent CaP, androgen-stimulated CaP and benign prostatic hyperplasia were consistent with AR activation in recurrent CaP. Conclusion 14-3-3η enhances androgen and mitogen induced AR transcriptional activity in castration-recurrent CaP. PMID:19996220

  11. [Target gene sequence capture and next generation sequencing technology to diagnose four children with Alagille syndrome].

    PubMed

    Gao, M L; Zhong, X M; Ma, X; Ning, H J; Zhu, D; Zou, J Z

    2016-06-02

    To make genetic diagnosis of Alagille syndrome (ALGS) patients using target gene sequence capture and next generation sequencing technology. Target gene sequence capture and next generation sequencing were used to detect ALGS gene of 4 patients. They were hospitalized at the Affiliated Hospital, Capital Institute of Pediatrics between January 2014 and December 2015, referred to clinical diagnosis of ALGS typical and atypical respectively in 2 cases. Blood samples were collected from patients and their parents and genomic DNA was extracted from lymphocytes. Target gene sequence capture and next generation sequencing was detected. Sanger sequencing was used to confirm the results of the patients and their parents. Cholestasis, heart defects, inverted triangular face and butterfly vertebrae were presented as main clinical features in 4 male patients. The first hospital visiting ages ranged from 3 months and 14 days to 3 years and 1 month. The age of onset ranged from 3 days to 42 days (median 23 days). According to the clinical diagnostic criteria of ALGS, patient 1 and patient 2 were considered as typical ALGS. The other 2 patients were considered as atypical ALGS. Four Jagged 1(JAG1) pathogenic mutations were detected. Three different missense mutations were detected in patient 1 to patient 3 with ALGS(c.839C>T(p.W280X), c. 703G>A(p.R235X), c. 1720C>T(p.V574M)). The JAG1 mutation of patient 3 was first reported. Patient 4 had one novel insertion mutation (c.1779_1780insA(p.Ile594AsnfsTer23)). Parental analysis verified that the JAG1 missense mutation of 3 patients were de novo. The results of sanger sequencing was consistent with the results of the next generation sequencing. Target gene sequence capture combined with next generation sequencing can detect two pathogenic genes in ALGS and test genes of other related diseases in infantile cholestatic diseases simultaneously and presents a high throughput, high efficiency and low cost. It may provide molecular

  12. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer.

    PubMed

    van Haaften, Gijs; Dalgliesh, Gillian L; Davies, Helen; Chen, Lina; Bignell, Graham; Greenman, Chris; Edkins, Sarah; Hardy, Claire; O'Meara, Sarah; Teague, Jon; Butler, Adam; Hinton, Jonathan; Latimer, Calli; Andrews, Jenny; Barthorpe, Syd; Beare, Dave; Buck, Gemma; Campbell, Peter J; Cole, Jennifer; Forbes, Simon; Jia, Mingming; Jones, David; Kok, Chai Yin; Leroy, Catherine; Lin, Meng-Lay; McBride, David J; Maddison, Mark; Maquire, Simon; McLay, Kirsten; Menzies, Andrew; Mironenko, Tatiana; Mulderrig, Lee; Mudie, Laura; Pleasance, Erin; Shepherd, Rebecca; Smith, Raffaella; Stebbings, Lucy; Stephens, Philip; Tang, Gurpreet; Tarpey, Patrick S; Turner, Rachel; Turrell, Kelly; Varian, Jennifer; West, Sofie; Widaa, Sara; Wray, Paul; Collins, V Peter; Ichimura, Koichi; Law, Simon; Wong, John; Yuen, Siu Tsan; Leung, Suet Yi; Tonon, Giovanni; DePinho, Ronald A; Tai, Yu-Tzu; Anderson, Kenneth C; Kahnoski, Richard J; Massie, Aaron; Khoo, Sok Kean; Teh, Bin Tean; Stratton, Michael R; Futreal, P Andrew

    2009-05-01

    Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase gene UTX, pointing to histone H3 lysine methylation deregulation in multiple tumor types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene.

  13. Viral reprogramming of the Daxx histone H3.3 chaperone during early Epstein-Barr virus infection.

    PubMed

    Tsai, Kevin; Chan, Lilian; Gibeault, Rebecca; Conn, Kristen; Dheekollu, Jayaraju; Domsic, John; Marmorstein, Ronen; Schang, Luis M; Lieberman, Paul M

    2014-12-01

    Host chromatin assembly can function as a barrier to viral infection. Epstein-Barr virus (EBV) establishes latent infection as chromatin-assembled episomes in which all but a few viral genes are transcriptionally silent. The factors that control chromatin assembly and guide transcription regulation during the establishment of latency are not well understood. Here, we demonstrate that the EBV tegument protein BNRF1 binds the histone H3.3 chaperone Daxx to modulate histone mobility and chromatin assembly on the EBV genome during the early stages of primary infection. We demonstrate that BNRF1 substitutes for the repressive cochaperone ATRX to form a ternary complex of BNRF1-Daxx-H3.3-H4, using coimmunoprecipitation and size-exclusion chromatography with highly purified components. FRAP (fluorescence recovery after photobleaching) assays were used to demonstrate that BNRF1 promotes global mobilization of cellular histone H3.3. Mutation of putative nucleotide binding motifs on BNRF1 attenuates the displacement of ATRX from Daxx. We also show by immunofluorescence combined with fluorescence in situ hybridization that BNRF1 is important for the dissociation of ATRX and Daxx from nuclear bodies during de novo infection of primary B lymphocytes. Virion-delivered BNRF1 suppresses Daxx-ATRX-mediated H3.3 loading on viral chromatin as measured by chromatin immunoprecipitation assays and enhances viral gene expression during early infection. We propose that EBV tegument protein BNRF1 replaces ATRX to reprogram Daxx-mediated H3.3 loading, in turn generating chromatin suitable for latent gene expression. Epstein-Barr Virus (EBV) is a human herpesvirus that efficiently establishes latent infection in primary B lymphocytes. Cellular chromatin assembly plays an important role in regulating the establishment of EBV latency. We show that the EBV tegument protein BNRF1 functions to regulate chromatin assembly on the viral genome during early infection. BNRF1 alters the host cellular

  14. 3D 14N/1H Double Quantum/1H Single Quantum Correlation Solid-State NMR for Probing Parallel and Anti-Parallel Beta-Sheet Arrangement of Oligo-Peptides at Natural Abundance.

    PubMed

    Hong, You-Lee; Asakura, Tetsuo; Nishiyama, Yusuke

    2018-05-08

    β-sheet structure of oligo- and poly-peptides can be formed in anti-parallel (AP)- and parallel (P)-structure, which is the important feature to understand the structures. In principle, P- and AP-β-sheet structures can be identified by the presence (AP) and absence (P) of the interstrand 1HNH/1HNH correlations on a diagonal in 2D 1H double quantum (DQ)/1H single quantum (SQ) spectrum due to the different interstrand 1HNH/1HNH distances between these two arrangements. However, the 1HNH/1HNH peaks overlap to the 1HNH3+/1HNH3+ peaks, which always give cross peaks regardless of the β-sheet arrangement. The 1HNH3+/1HNH3+ peaks disturb the observation of the presence/absence of 1HNH/1HNH correlations and the assignment of 1HNH and 1HNH3+ is not always available. Here, 3D 14N/1H DQ/1H SQ correlation solid-state NMR experiments at fast magic angle spinning (70 kHz) are introduced to distinguish AP and P β-sheet structure. The 14N dimension allows the separate observation of 1HNH/1HNH peaks from 1HNH3+/1HNH3+ peaks with clear assignment of 1HNH and 1HNH3+. In addition, the high natural abundance of 1H and 14N enables 3D 14N/1H DQ/1H SQ experiments of oligo-alanines (Ala3-6) in four hours without any isotope labelling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Laser phase control of high-order harmonic generation at large internuclear distance: the H+ -H2+ system.

    PubMed

    Bandrauk, André D; Barmaki, Samira; Kamta, Gerard Lagmago

    2007-01-05

    Exact (Born-Oppenheimer) 3-D numerical solutions of the time-dependent Schrödinger equation are obtained for the one electron linear H+-H2+ atom-molecule system at large internuclear distance R in interaction with two-cycles intense (I>10(14) W cm(-2)) 800 nm laser pulses. High-order harmonic generation (HHG) spectra are obtained with an energy cutoff larger than the atomic maximum of I(p)+3U(p), where I(p) is the ionization potential and U(p) is the ponderomotive energy. At large R, this extended cutoff is shown to be related to the nature of electron transfer, whose direction is shown to depend critically on the carrier-envelope phase (CEP) of the ultrashort pulse. Constructive and destructive interferences in the HHG spectrum resulting from coherent superpositions of electronic states in the H+-H2+ system are interpreted in terms of multiple electron trajectories extracted from a time profile analysis.

  16. Plant 14-3-3 proteins assist ion channels and pumps.

    PubMed

    de Boer, A H

    2002-08-01

    Turgor pressure is a cellular parameter, important for a range of physiological processes in plants, like cell elongation, gas exchange and gravitropic/phototropic bending. Regulation of turgor pressure involves ion and water transport at the expense of metabolic energy (ATP). The primary pump in the plasma membrane (the H(+)-ATPase) is a key player in turgor regulation since it provides the driving force for ion uptake, followed by water influx through osmosis. Using the phytotoxin fusicoccin (a well-known activator of the ATPase) as a tool, 14-3-3 proteins were identified as regulators of the H(+)-ATPase. Since fusicoccin has a dramatic effect on K(+) accumulation and cellular respiration as well, we studied whether 14-3-3 proteins play a role in the regulation of the mitochondrial F(0)F(1)-ATP synthase and ion channels in the vacuolar and plasma membranes. Besides the plasma membrane H(+)-ATPase, we have identified thus far at least four other transport proteins that are regulated by 14-3-3 proteins. The mechanism of regulation will be described and the possibility that 14-3-3 proteins act as coordinators of ion transporters with varied but interdependent functions will be discussed.

  17. Generation of α1,3-galactosyltransferase and cytidine monophospho-N-acetylneuraminic acid hydroxylase gene double-knockout pigs

    PubMed Central

    MIYAGAWA, Shuji; MATSUNARI, Hitomi; WATANABE, Masahito; NAKANO, Kazuaki; UMEYAMA, Kazuhiro; SAKAI, Rieko; TAKAYANAGI, Shuko; TAKEISHI, Toki; FUKUDA, Tooru; YASHIMA, Sayaka; MAEDA, Akira; EGUCHI, Hiroshi; OKUYAMA, Hiroomi; NAGAYA, Masaki; NAGASHIMA, Hiroshi

    2015-01-01

    Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) are new tools for producing gene knockout (KO) animals. The current study reports produced genetically modified pigs, in which two endogenous genes were knocked out. Porcine fibroblast cell lines were derived from homozygous α1,3-galactosyltransferase (GalT) KO pigs. These cells were subjected to an additional KO for the cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) gene. A pair of ZFN-encoding mRNAs targeting exon 8 of the CMAH gene was used to generate the heterozygous CMAH KO cells, from which cloned pigs were produced by somatic cell nuclear transfer (SCNT). One of the cloned pigs obtained was re-cloned after additional KO of the remaining CMAH allele using the same ZFN-encoding mRNAs to generate GalT/CMAH-double homozygous KO pigs. On the other hand, the use of TALEN-encoding mRNAs targeting exon 7 of the CMAH gene resulted in efficient generation of homozygous CMAH KO cells. These cells were used for SCNT to produce cloned pigs homozygous for a double GalT/CMAH KO. These results demonstrate that the combination of TALEN-encoding mRNA, in vitro selection of the nuclear donor cells and SCNT provides a robust method for generating KO pigs. PMID:26227017

  18. Generation of α1,3-galactosyltransferase and cytidine monophospho-N-acetylneuraminic acid hydroxylase gene double-knockout pigs.

    PubMed

    Miyagawa, Shuji; Matsunari, Hitomi; Watanabe, Masahito; Nakano, Kazuaki; Umeyama, Kazuhiro; Sakai, Rieko; Takayanagi, Shuko; Takeishi, Toki; Fukuda, Tooru; Yashima, Sayaka; Maeda, Akira; Eguchi, Hiroshi; Okuyama, Hiroomi; Nagaya, Masaki; Nagashima, Hiroshi

    2015-01-01

    Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) are new tools for producing gene knockout (KO) animals. The current study reports produced genetically modified pigs, in which two endogenous genes were knocked out. Porcine fibroblast cell lines were derived from homozygous α1,3-galactosyltransferase (GalT) KO pigs. These cells were subjected to an additional KO for the cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) gene. A pair of ZFN-encoding mRNAs targeting exon 8 of the CMAH gene was used to generate the heterozygous CMAH KO cells, from which cloned pigs were produced by somatic cell nuclear transfer (SCNT). One of the cloned pigs obtained was re-cloned after additional KO of the remaining CMAH allele using the same ZFN-encoding mRNAs to generate GalT/CMAH-double homozygous KO pigs. On the other hand, the use of TALEN-encoding mRNAs targeting exon 7 of the CMAH gene resulted in efficient generation of homozygous CMAH KO cells. These cells were used for SCNT to produce cloned pigs homozygous for a double GalT/CMAH KO. These results demonstrate that the combination of TALEN-encoding mRNA, in vitro selection of the nuclear donor cells and SCNT provides a robust method for generating KO pigs.

  19. Frequent epigenetic inactivation of chromosome 3p candidate tumor suppressor genes in gallbladder carcinoma.

    PubMed

    Riquelme, Erick; Tang, Moying; Baez, Sergio; Diaz, Alfonso; Pruyas, Martha; Wistuba, Ignacio I; Corvalan, Alejandro

    2007-05-18

    Gallbladder carcinoma (GBC) is a highly malignant neoplasm that represents the leading cause of death for cancer in Chilean females. There is limited information about the molecular abnormalities involved in its pathogenesis. We have identified a number of molecular changes in GBC, including frequent allelic losses at chromosome 3p regions. Four distinct 3p sites (3p12, 3p14.2, 3p21.3 and 3p22-24) with frequent and early allelic losses in the sequential pathogenesis of this neoplasm have been detected. We investigated epigenetic and genetic abnormalities in GBC affecting 6 candidate tumor suppressor genes (TSG) located in chromosome 3p, including DUTT1 (3p12), FHIT (3p14.2), BLU, RASSF1A, SEMA3B and hMLH1 (3p21.3). DNA extracted from frozen tissue obtained from 50 surgical resected GBCs was examined for gene promoter methylation using MSP (methylation-specific PCR) technique after bisulfite treatment in all 6 genes. In addition, we performed PCR-based mutation examination using SSCP in FHIT and RASSF1A genes and loss of heterozygosity (LOH) analysis using microdissected tissue in a subset of tumors for the 3p21.3 region with 8 microsatellite markers. A very high frequency of GBC methylation was detected in SEMA3B (46/50, 92%) and FHIT (33/50, 66%), intermediate incidences in BLU (13/50, 26%) and DUTT1 (11/50, 22%) and very low frequencies in RASSF1A (4/50, 8%) and hMLH1 (2/50, 4%). Allelic loss at 3p21.3 was found in nearly half of the GBCs examined. We conclude that epigenetic inactivation by abnormal promoter methylation is a frequent event in chromosome 3p candidate TSGs in GBC pathogenesis, especially affecting genes SEMA3B (3p21.3) and FHIT (3p14.2).

  20. Nine loci for ocular axial length identified through genome-wide association studies, including shared loci with refractive error.

    PubMed

    Cheng, Ching-Yu; Schache, Maria; Ikram, M Kamran; Young, Terri L; Guggenheim, Jeremy A; Vitart, Veronique; MacGregor, Stuart; Verhoeven, Virginie J M; Barathi, Veluchamy A; Liao, Jiemin; Hysi, Pirro G; Bailey-Wilson, Joan E; St Pourcain, Beate; Kemp, John P; McMahon, George; Timpson, Nicholas J; Evans, David M; Montgomery, Grant W; Mishra, Aniket; Wang, Ya Xing; Wang, Jie Jin; Rochtchina, Elena; Polasek, Ozren; Wright, Alan F; Amin, Najaf; van Leeuwen, Elisabeth M; Wilson, James F; Pennell, Craig E; van Duijn, Cornelia M; de Jong, Paulus T V M; Vingerling, Johannes R; Zhou, Xin; Chen, Peng; Li, Ruoying; Tay, Wan-Ting; Zheng, Yingfeng; Chew, Merwyn; Burdon, Kathryn P; Craig, Jamie E; Iyengar, Sudha K; Igo, Robert P; Lass, Jonathan H; Chew, Emily Y; Haller, Toomas; Mihailov, Evelin; Metspalu, Andres; Wedenoja, Juho; Simpson, Claire L; Wojciechowski, Robert; Höhn, René; Mirshahi, Alireza; Zeller, Tanja; Pfeiffer, Norbert; Lackner, Karl J; Bettecken, Thomas; Meitinger, Thomas; Oexle, Konrad; Pirastu, Mario; Portas, Laura; Nag, Abhishek; Williams, Katie M; Yonova-Doing, Ekaterina; Klein, Ronald; Klein, Barbara E; Hosseini, S Mohsen; Paterson, Andrew D; Makela, Kari-Matti; Lehtimaki, Terho; Kahonen, Mika; Raitakari, Olli; Yoshimura, Nagahisa; Matsuda, Fumihiko; Chen, Li Jia; Pang, Chi Pui; Yip, Shea Ping; Yap, Maurice K H; Meguro, Akira; Mizuki, Nobuhisa; Inoko, Hidetoshi; Foster, Paul J; Zhao, Jing Hua; Vithana, Eranga; Tai, E-Shyong; Fan, Qiao; Xu, Liang; Campbell, Harry; Fleck, Brian; Rudan, Igor; Aung, Tin; Hofman, Albert; Uitterlinden, André G; Bencic, Goran; Khor, Chiea-Chuen; Forward, Hannah; Pärssinen, Olavi; Mitchell, Paul; Rivadeneira, Fernando; Hewitt, Alex W; Williams, Cathy; Oostra, Ben A; Teo, Yik-Ying; Hammond, Christopher J; Stambolian, Dwight; Mackey, David A; Klaver, Caroline C W; Wong, Tien-Yin; Saw, Seang-Mei; Baird, Paul N

    2013-08-08

    Refractive errors are common eye disorders of public health importance worldwide. Ocular axial length (AL) is the major determinant of refraction and thus of myopia and hyperopia. We conducted a meta-analysis of genome-wide association studies for AL, combining 12,531 Europeans and 8,216 Asians. We identified eight genome-wide significant loci for AL (RSPO1, C3orf26, LAMA2, GJD2, ZNRF3, CD55, MIP, and ALPPL2) and confirmed one previously reported AL locus (ZC3H11B). Of the nine loci, five (LAMA2, GJD2, CD55, ALPPL2, and ZC3H11B) were associated with refraction in 18 independent cohorts (n = 23,591). Differential gene expression was observed for these loci in minus-lens-induced myopia mouse experiments and human ocular tissues. Two of the AL genes, RSPO1 and ZNRF3, are involved in Wnt signaling, a pathway playing a major role in the regulation of eyeball size. This study provides evidence of shared genes between AL and refraction, but importantly also suggests that these traits may have unique pathways. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  1. Retrovirus-mediated siRNA targeting TRPM7 gene induces apoptosis in RBL-2H3 cells.

    PubMed

    Ng, N-M; Jiang, S-P; Lv, Z-Q

    2012-09-01

    Calcium signaling is important for both normal physiologic processes and pathology of various diseases. Transient receptor potential melastatin 7 (TRPM7) gene has been reported to be a potential candidate for calcium influx. The present study aimed to investigate the possible role of TRPM7 channels in apoptosis in rat basophilic leukemia mast cell line (RBL-2H3), which is widely used in mast cell-associated studies. A recombinant retrovirus vector siRNA targeting rat TRPM7 gene was constructed and identified. Cellular survival was assessed by MTT. Cell apoptosis was evaluated by flow cytometry and TUNEL-FITC/Hoechst 33258 staining. The transfection efficiency by retrovirus vector was about 60%-70%. Transfection with TRPM7 siRNA significantly reduced TRPM7 expression both at mRNA and protein levels. Suppression of TRPM7 expression by siRNA led to significantly decreased cellular survival rates and increased apoptosis rates in RBL-2H3 cells. This study indicates that TRPM7 is involved in the apoptosis process in RBL-2H3 cells.

  2. 3,4-Dimethyl-1-phenyl­pyrano[2,3-c]pyrazol-6(1H)-one

    PubMed Central

    Ahmad, Neman; Tahir, M. Nawaz; Khan, Misbahul Ain; Ather, Abdul Qayyum; Khan, Muhammad Naeem

    2011-01-01

    In the title compound, C14H12N2O2, the dihedral angle between the phenyl ring and the 3,4-dimethyl­pyrano[2,3-c]pyrazol-6(1H)-one system is 7.28 (6)°. An intra­molecular C—H⋯O inter­action generates an S(6) ring. In the crystal, the mol­ecules are linked by C—H⋯O hydrogen bonds, forming C(8) chains. C–H⋯π and π–π inter­actions [centroid–centroid separation = 3.6374 (12) Å] further consolidate the packing. PMID:21754037

  3. Generation of gas-phase sodiated arenes such as [(Na3(C6H4)+] from benzene dicarboxylate salts.

    PubMed

    Attygalle, Athula B; Chan, Chang-Ching; Axe, Frank U; Bolgar, Mark

    2010-01-01

    Upon collision-induced activation, gaseous sodium adducts generated by electrospray ionization of disodium salts of 1,2- 1,3-, and 1,4-benzene dicarboxylic acids (m/z 233) undergo an unprecedented expulsion of CO(2) by a rearrangement process to produce an ion of m/z 189 in which all three sodium atoms are retained. When isolated in a collision cell of a tandem-in-space mass spectrometer, and subjected to collision-induced dissociation (CID), only the m/z 189 ions derived from the meta and para isomers underwent a further CO(2) loss to produce a peak at m/z 145 for a sodiated arene of formula (Na(3)C(6)H(4))(+). This previously unreported m/z 145 ion, which is useful to differentiate meta and para benzene dicarboxylates from their ortho isomer, is in fact the sodium adduct of phenelenedisodium. Moreover, the m/z 189 ion from all three isomers readily expelled a sodium radical to produce a peak at m/z 166 for a radical cation [(*C(6)H(4)CO(2)Na(2))(+)], which then eliminated CO(2) to produce a peak at m/z 122 for the distonic cation (*C(6)H(4)Na(2))(+). Copyright 2009 John Wiley & Sons, Ltd.

  4. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Advanced Simulation H Appendix H to Part... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Pt. 121, App. H Appendix H to Part 121—Advanced... ensure that all instructors and check airmen used in appendix H training and checking are highly...

  5. H3K4me3 breadth is linked to cell identity and transcriptional consistency.

    PubMed

    Benayoun, Bérénice A; Pollina, Elizabeth A; Ucar, Duygu; Mahmoudi, Salah; Karra, Kalpana; Wong, Edith D; Devarajan, Keerthana; Daugherty, Aaron C; Kundaje, Anshul B; Mancini, Elena; Hitz, Benjamin C; Gupta, Rakhi; Rando, Thomas A; Baker, Julie C; Snyder, Michael P; Cherry, J Michael; Brunet, Anne

    2014-07-31

    Trimethylation of histone H3 at lysine 4 (H3K4me3) is a chromatin modification known to mark the transcription start sites of active genes. Here, we show that H3K4me3 domains that spread more broadly over genes in a given cell type preferentially mark genes that are essential for the identity and function of that cell type. Using the broadest H3K4me3 domains as a discovery tool in neural progenitor cells, we identify novel regulators of these cells. Machine learning models reveal that the broadest H3K4me3 domains represent a distinct entity, characterized by increased marks of elongation. The broadest H3K4me3 domains also have more paused polymerase at their promoters, suggesting a unique transcriptional output. Indeed, genes marked by the broadest H3K4me3 domains exhibit enhanced transcriptional consistency and [corrected] increased transcriptional levels, and perturbation of H3K4me3 breadth leads to changes in transcriptional consistency. Thus, H3K4me3 breadth contains information that could ensure transcriptional precision at key cell identity/function genes. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Novel Reassortant Human-Like H3N2 and H3N1 Influenza A Viruses Detected in Pigs Are Virulent and Antigenically Distinct from Swine Viruses Endemic to the United States

    PubMed Central

    Rajão, Daniela S.; Gauger, Phillip C.; Anderson, Tavis K.; Lewis, Nicola S.; Abente, Eugenio J.; Killian, Mary Lea; Sutton, Troy C.; Zhang, Jianqiang

    2015-01-01

    ABSTRACT Human-like swine H3 influenza A viruses (IAV) were detected by the USDA surveillance system. We characterized two novel swine human-like H3N2 and H3N1 viruses with hemagglutinin (HA) genes similar to those in human seasonal H3 strains and internal genes closely related to those of 2009 H1N1 pandemic viruses. The H3N2 neuraminidase (NA) was of the contemporary human N2 lineage, while the H3N1 NA was of the classical swine N1 lineage. Both viruses were antigenically distant from swine H3 viruses that circulate in the United States and from swine vaccine strains and also showed antigenic drift from human seasonal H3N2 viruses. Their pathogenicity and transmission in pigs were compared to those of a human H3N2 virus with a common HA ancestry. Both swine human-like H3 viruses efficiently infected pigs and were transmitted to indirect contacts, whereas the human H3N2 virus did so much less efficiently. To evaluate the role of genes from the swine isolates in their pathogenesis, reverse genetics-generated reassortants between the swine human-like H3N1 virus and the seasonal human H3N2 virus were tested in pigs. The contribution of the gene segments to virulence was complex, with the swine HA and internal genes showing effects in vivo. The experimental infections indicate that these novel H3 viruses are virulent and can sustain onward transmission in pigs, and the naturally occurring mutations in the HA were associated with antigenic divergence from H3 IAV from humans and swine. Consequently, these viruses could have a significant impact on the swine industry if they were to cause more widespread outbreaks, and the potential risk of these emerging swine IAV to humans should be considered. IMPORTANCE Pigs are important hosts in the evolution of influenza A viruses (IAV). Human-to-swine transmissions of IAV have resulted in the circulation of reassortant viruses containing human-origin genes in pigs, greatly contributing to the diversity of IAV in swine worldwide

  7. Novel Reassortant Human-Like H3N2 and H3N1 Influenza A Viruses Detected in Pigs Are Virulent and Antigenically Distinct from Swine Viruses Endemic to the United States.

    PubMed

    Rajão, Daniela S; Gauger, Phillip C; Anderson, Tavis K; Lewis, Nicola S; Abente, Eugenio J; Killian, Mary Lea; Perez, Daniel R; Sutton, Troy C; Zhang, Jianqiang; Vincent, Amy L

    2015-11-01

    Human-like swine H3 influenza A viruses (IAV) were detected by the USDA surveillance system. We characterized two novel swine human-like H3N2 and H3N1 viruses with hemagglutinin (HA) genes similar to those in human seasonal H3 strains and internal genes closely related to those of 2009 H1N1 pandemic viruses. The H3N2 neuraminidase (NA) was of the contemporary human N2 lineage, while the H3N1 NA was of the classical swine N1 lineage. Both viruses were antigenically distant from swine H3 viruses that circulate in the United States and from swine vaccine strains and also showed antigenic drift from human seasonal H3N2 viruses. Their pathogenicity and transmission in pigs were compared to those of a human H3N2 virus with a common HA ancestry. Both swine human-like H3 viruses efficiently infected pigs and were transmitted to indirect contacts, whereas the human H3N2 virus did so much less efficiently. To evaluate the role of genes from the swine isolates in their pathogenesis, reverse genetics-generated reassortants between the swine human-like H3N1 virus and the seasonal human H3N2 virus were tested in pigs. The contribution of the gene segments to virulence was complex, with the swine HA and internal genes showing effects in vivo. The experimental infections indicate that these novel H3 viruses are virulent and can sustain onward transmission in pigs, and the naturally occurring mutations in the HA were associated with antigenic divergence from H3 IAV from humans and swine. Consequently, these viruses could have a significant impact on the swine industry if they were to cause more widespread outbreaks, and the potential risk of these emerging swine IAV to humans should be considered. Pigs are important hosts in the evolution of influenza A viruses (IAV). Human-to-swine transmissions of IAV have resulted in the circulation of reassortant viruses containing human-origin genes in pigs, greatly contributing to the diversity of IAV in swine worldwide. New human-like H3N2

  8. An essential role of variant histone H3.3 for ectomesenchyme potential of the cranial neural crest.

    PubMed

    Cox, Samuel G; Kim, Hyunjung; Garnett, Aaron Timothy; Medeiros, Daniel Meulemans; An, Woojin; Crump, J Gage

    2012-09-01

    The neural crest (NC) is a vertebrate-specific cell population that exhibits remarkable multipotency. Although derived from the neural plate border (NPB) ectoderm, cranial NC (CNC) cells contribute not only to the peripheral nervous system but also to the ectomesenchymal precursors of the head skeleton. To date, the developmental basis for such broad potential has remained elusive. Here, we show that the replacement histone H3.3 is essential during early CNC development for these cells to generate ectomesenchyme and head pigment precursors. In a forward genetic screen in zebrafish, we identified a dominant D123N mutation in h3f3a, one of five zebrafish variant histone H3.3 genes, that eliminates the CNC-derived head skeleton and a subset of pigment cells yet leaves other CNC derivatives and trunk NC intact. Analyses of nucleosome assembly indicate that mutant D123N H3.3 interferes with H3.3 nucleosomal incorporation by forming aberrant H3 homodimers. Consistent with CNC defects arising from insufficient H3.3 incorporation into chromatin, supplying exogenous wild-type H3.3 rescues head skeletal development in mutants. Surprisingly, embryo-wide expression of dominant mutant H3.3 had little effect on embryonic development outside CNC, indicating an unexpectedly specific sensitivity of CNC to defects in H3.3 incorporation. Whereas previous studies had implicated H3.3 in large-scale histone replacement events that generate totipotency during germ line development, our work has revealed an additional role of H3.3 in the broad potential of the ectoderm-derived CNC, including the ability to make the mesoderm-like ectomesenchymal precursors of the head skeleton.

  9. An Essential Role of Variant Histone H3.3 for Ectomesenchyme Potential of the Cranial Neural Crest

    PubMed Central

    Cox, Samuel G.; Kim, Hyunjung; Garnett, Aaron Timothy; Medeiros, Daniel Meulemans; An, Woojin; Crump, J. Gage

    2012-01-01

    The neural crest (NC) is a vertebrate-specific cell population that exhibits remarkable multipotency. Although derived from the neural plate border (NPB) ectoderm, cranial NC (CNC) cells contribute not only to the peripheral nervous system but also to the ectomesenchymal precursors of the head skeleton. To date, the developmental basis for such broad potential has remained elusive. Here, we show that the replacement histone H3.3 is essential during early CNC development for these cells to generate ectomesenchyme and head pigment precursors. In a forward genetic screen in zebrafish, we identified a dominant D123N mutation in h3f3a, one of five zebrafish variant histone H3.3 genes, that eliminates the CNC–derived head skeleton and a subset of pigment cells yet leaves other CNC derivatives and trunk NC intact. Analyses of nucleosome assembly indicate that mutant D123N H3.3 interferes with H3.3 nucleosomal incorporation by forming aberrant H3 homodimers. Consistent with CNC defects arising from insufficient H3.3 incorporation into chromatin, supplying exogenous wild-type H3.3 rescues head skeletal development in mutants. Surprisingly, embryo-wide expression of dominant mutant H3.3 had little effect on embryonic development outside CNC, indicating an unexpectedly specific sensitivity of CNC to defects in H3.3 incorporation. Whereas previous studies had implicated H3.3 in large-scale histone replacement events that generate totipotency during germ line development, our work has revealed an additional role of H3.3 in the broad potential of the ectoderm-derived CNC, including the ability to make the mesoderm-like ectomesenchymal precursors of the head skeleton. PMID:23028350

  10. Inhibitory effects of LPA1 on cell motile activities stimulated by hydrogen peroxide and 2,3-dimethoxy-1,4-naphthoquinone in fibroblast 3T3 cells.

    PubMed

    Hirane, Miku; Araki, Mutsumi; Dong, Yan; Honoki, Kanya; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2013-11-08

    Reactive oxygen species (ROS) are known to mediate a variety of biological responses, including cell motility. Recently, we indicated that lysophosphatidic acid (LPA) receptor-3 (LPA3) increased cell motile activity stimulated by hydrogen peroxide. In the present study, we assessed the role of LPA1 in the cell motile activity mediated by ROS in mouse fibroblast 3T3 cells. 3T3 cells were treated with hydrogen peroxide and 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) at concentrations of 0.1 and 1 μM for 48 h. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3 cells treated with hydrogen peroxide and DMNQ were significantly higher than those of untreated cells. 3T3 cells treated with hydrogen peroxide and DMNQ showed elevated expression levels of the Lpar3 gene, but not the Lpar1 and Lpar2 genes. To investigate the effects of LPA1 on the cell motile activity induced by hydrogen peroxide and DMNQ, Lpar1-overexpressing (3T3-a1) cells were generated from 3T3 cells and treated with hydrogen peroxide and DMNQ. The cell motile activities stimulated by hydrogen peroxide and DMNQ were markedly suppressed in 3T3-a1 cells. These results suggest that LPA signaling via LPA1 inhibits the cell motile activities stimulated by hydrogen peroxide and DMNQ in 3T3 cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. H3N2 canine influenza virus causes severe morbidity in dogs with induction of genes related to inflammation and apoptosis

    PubMed Central

    2013-01-01

    Dogs are companion animals that live in close proximity with humans. Canine H3N2 influenza virus has been isolated from pet dogs that showed severe respiratory signs and other clinical symptoms such as fever, reduced body weight, and interstitial pneumonia. The canine H3N2 influenza virus can be highly transmissible among dogs via aerosols. When we analyzed global gene expression in the lungs of infected dogs, the genes associated with the immune response and cell death were greatly elevated. Taken together, our results suggest that canine H3N2 influenza virus can be easily transmitted among dogs, and that severe pneumonia in the infected dogs may be partially due to the elevated expression of genes related to inflammation and apoptosis. PMID:24090140

  12. 12q14 microdeletion associated with HMGA2 gene disruption and growth restriction.

    PubMed

    Alyaqoub, Fadel; Pyatt, Robert E; Bailes, Andrea; Brock, Amanda; Deeg, Carol; McKinney, Aimee; Astbury, Caroline; Reshmi, Shalini; Shane, Kate P; Thrush, Devon Lamb; Sommer, Annemarie; Gastier-Foster, Julie M

    2012-11-01

    The 12q14 microdeletion syndrome is a rare condition that has previously been characterized by pre- and postnatal growth restriction, proportionate short stature, failure to thrive, developmental delay, and osteopoikilosis. Previously reported microdeletions within this region have ranged in size from 1.83 to 10.12 Mb with a proposed 2.61 Mb smallest region of overlap containing the LEMD3, HMGA2, and GRIP1 genes. Here, we report on the identification of a 12q14 microdeletion in a female child presenting with proportionate short stature, failure to thrive, and speech delay. The genomic loss (minimum size 4.17 Mb, maximum size 4.21 Mb) contained 25 RefSeq genes including IRAK3, GRIP1, and the 3' portion of the HMGA2 gene. This is the first partial deletion of HMGA2 associated with the 12q14 microdeletion syndrome. This case further clarifies the association of LEMD3 deletions with the 12q14 microdeletion syndrome and provides additional support for the role of the HMGA2 gene in human growth. Copyright © 2012 Wiley Periodicals, Inc.

  13. Uptake, metabolism and excretion of orally and intravenously administered, 14C- and 3H-labeled N-acetylneuraminic acid mixture in the mouse and rat.

    PubMed

    Nöhle, U; Schauer, R

    1981-11-01

    N-Acetyl-D-[2-14C,9-3H]neuraminic acid, enzymically prepared from sodium [2-14C]-pyruvate and N-acetyl-D-[6-3H]mannosamine by N-acetylneuraminate lyase in 75% yield, was orally administered to 20 day old fasted mice. 90% of the administered neuraminic acid was absorbed from the intestine in the course of 4 h, at a rate depending on the retention time of neuraminic acid in the intestine and the mental conditions of the animals. Between 60 and 90% of the neuraminic acid was excreted in the urine without chemical alteration within the first 6 h. Four hours after administration 10% of the 3H- and 1.3% of the 14C-radioactivity were recovered in the whole blood and in liver, spleen, kidney and brain. After 3 days 0.5% of 3H- and 0.01% of 14C-radioactivity still remained in these tissues. The discrepancy of the 14C-amount relative to the 3H-quantity was accounted for by exhaled 14CO2. After intravenous injection of N-acetylneuraminic acid into rats, 90% of the radioactivity corresponding to the original substance was excreted in the urine within 10 min. Four hours after administration only 5% of the applied 3H- and 1.2% of the 14C-radioactivity were left in the blood and in liver, spleen, kidney and brain. The experiments show that neither orally nor intravenously applied N-acetylneuraminic acid can penetrate cell membranes to a large extent, with the exception of the intestine. The isotopic ratio and N-acetylneuraminate lyase activity suggest that the small amount of the neuraminic acid retained in tissues was largely cleaved by the lyase, followed by metabolism of the reaction products. It may be concluded from these observations that neuraminic acid occurring in food cannot directly be used for the biosynthesis of glycoconjugates on a large scale.

  14. Low molecular weight glutenin subunit gene Glu-B3h confers superior dough strength and breadmaking quality in wheat (Triticum aestivum L.)

    PubMed Central

    Wang, Yaping; Zhen, Shoumin; Luo, Nana; Han, Caixia; Lu, Xiaobing; Li, Xiaohui; Xia, Xianchun; He, Zhonghu; Yan, Yueming

    2016-01-01

    Low molecular weight glutenin subunit is one of the important quality elements in wheat (Triticum aestivum L.). Although considerable allelic variation has been identified, the functional properties of individual alleles at Glu-3 loci are less studied. In this work, we performed the first comprehensive study on the molecular characteristics and functional properties of the Glu-B3h gene using the wheat cultivar CB037B and its Glu-B3 deletion line CB037C. The results showed that the Glu-B3h deletion had no significant effects on plant morphological or yield traits, but resulted in a clear reduction in protein body number and size and main quality parameters, including inferior mixing property, dough strength, loaf volume, and score. Molecular characterization showed that the Glu-B3h gene consists of 1179 bp, and its encoded B-subunit has a longer repetitive domain and an increased number of α-helices, as well as higher expression, which could contribute to superior flour quality. The SNP-based allele-specific PCR markers designed for the Glu-B3h gene were developed and validated with bread wheat holding various alleles at Glu-B3 locus, which could effectively distinguish the Glu-B3h gene from others at the Glu-B3 locus, and have potential applications for wheat quality improvement through marker-assisted selection. PMID:27273251

  15. Identification of a gene from the arbuscular mycorrhizal fungus Glomus intraradices encoding for a 14-3-3 protein that is up-regulated by drought stress during the AM symbiosis.

    PubMed

    Porcel, Rosa; Aroca, Ricardo; Cano, Custodia; Bago, Alberto; Ruiz-Lozano, Juan Manuel

    2006-10-01

    In the present study, a 14-3-3 protein-encoding gene from Glomus intraradices has been identified after differential hybridization of a cDNA library constructed from the fungus growing in vitro and subjected to drought stress by addition of 25% PEG 6000. Subsequently, we have studied its expression pattern under drought stress in vitro and also when forming natural symbioses with different host plants. The results obtained suggest that Gi14-3-3 gene may be involved in the protection that the arbuscular mycorrhizal (AM) symbiosis confers to the host plant against drought stress. Our findings provide new evidences that the contribution of AM fungi to the enhanced drought tolerance of the host plant can be mediated by a group of proteins (the 14-3-3) that regulate both signaling pathways and also effector proteins involved in the final plant responses.

  16. SETDB1 modulates PRC2 activity at developmental genes independently of H3K9 trimethylation in mouse ES cells

    PubMed Central

    Fei, Qi; Yang, Xiaoqin; Jiang, Hua; Wang, Qian; Yu, Yanyan; Yu, Yiling; Yi, Wei; Zhou, Shaolian; Chen, Taiping; Lu, Chris; Atadja, Peter; Liu, Xiaole Shirley; Li, En; Zhang, Yong; Shou, Jianyong

    2015-01-01

    SETDB1, a histone methyltransferase responsible for methylation of histone H3 lysine 9 (H3K9), is involved in maintenance of embryonic stem (ES) cells and early embryonic development of the mouse. However, how SETDB1 regulates gene expression during development is largely unknown. Here, we characterized genome-wide SETDB1 binding and H3K9 trimethylation (H3K9me3) profiles in mouse ES cells and uncovered two distinct classes of SETDB1 binding sites, termed solo and ensemble peaks. The solo peaks were devoid of H3K9me3 and enriched near developmental regulators while the ensemble peaks were associated with H3K9me3. A subset of the SETDB1 solo peaks, particularly those near neural development–related genes, was found to be associated with Polycomb Repressive Complex 2 (PRC2) as well as PRC2-interacting proteins JARID2 and MTF2. Genetic deletion of Setdb1 reduced EZH2 binding as well as histone 3 lysine 27 (H3K27) trimethylation level at SETDB1 solo peaks and facilitated neural differentiation. Furthermore, we found that H3K27me3 inhibits SETDB1 methyltransferase activity. The currently identified reciprocal action between SETDB1 and PRC2 reveals a novel mechanism underlying ES cell pluripotency and differentiation regulation. PMID:26160163

  17. Swine influenza virus vaccine serologic cross-reactivity to contemporary U.S. swine H3N2 and efficacy in pigs infected with an H3N2 similar to 2011-2012 H3N2v

    USDA-ARS?s Scientific Manuscript database

    Background: Swine influenza A virus (IAV) reassortment with 2009 H1N1 pandemic (H1N1pdm09) virus has been documented and new genotypes and sub-clusters of H3N2 have since expanded in the U.S. swine population. An H3N2 variant (H3N2v) virus with the H1N1pdm09 matrix gene and the remaining genes of sw...

  18. Plant Aquaporin AtPIP1;4 Links Apoplastic H2O2 Induction to Disease Immunity Pathways.

    PubMed

    Tian, Shan; Wang, Xiaobing; Li, Ping; Wang, Hao; Ji, Hongtao; Xie, Junyi; Qiu, Qinglei; Shen, Dan; Dong, Hansong

    2016-07-01

    Hydrogen peroxide (H2O2) is a stable component of reactive oxygen species, and its production in plants represents the successful recognition of pathogen infection and pathogen-associated molecular patterns (PAMPs). This production of H2O2 is typically apoplastic but is subsequently associated with intracellular immunity pathways that regulate disease resistance, such as systemic acquired resistance and PAMP-triggered immunity. Here, we elucidate that an Arabidopsis (Arabidopsis thaliana) aquaporin (i.e. the plasma membrane intrinsic protein AtPIP1;4) acts to close the cytological distance between H2O2 production and functional performance. Expression of the AtPIP1;4 gene in plant leaves is inducible by a bacterial pathogen, and the expression accompanies H2O2 accumulation in the cytoplasm. Under de novo expression conditions, AtPIP1;4 is able to mediate the translocation of externally applied H2O2 into the cytoplasm of yeast (Saccharomyces cerevisiae) cells. In plant cells treated with H2O2, AtPIP1;4 functions as an effective facilitator of H2O2 transport across plasma membranes and mediates the translocation of externally applied H2O2 from the apoplast to the cytoplasm. The H2O2-transport role of AtPIP1;4 is essentially required for the cytoplasmic import of apoplastic H2O2 induced by the bacterial pathogen and two typical PAMPs in the absence of induced production of intracellular H2O2 As a consequence, cytoplasmic H2O2 quantities increase substantially while systemic acquired resistance and PAMP-triggered immunity are activated to repress the bacterial pathogenicity. By contrast, loss-of-function mutation at the AtPIP1;4 gene locus not only nullifies the cytoplasmic import of pathogen- and PAMP-induced apoplastic H2O2 but also cancels the subsequent immune responses, suggesting a pivotal role of AtPIP1;4 in apocytoplastic signal transduction in immunity pathways. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. Generation of diversity in Streptococcus mutans genes demonstrated by MLST.

    PubMed

    Do, Thuy; Gilbert, Steven C; Clark, Douglas; Ali, Farida; Fatturi Parolo, Clarissa C; Maltz, Marisa; Russell, Roy R; Holbrook, Peter; Wade, William G; Beighton, David

    2010-02-05

    Streptococcus mutans, consisting of serotypes c, e, f and k, is an oral aciduric organism associated with the initiation and progression of dental caries. A total of 135 independent Streptococcus mutans strains from caries-free and caries-active subjects isolated from various geographical locations were examined in two versions of an MLST scheme consisting of either 6 housekeeping genes [accC (acetyl-CoA carboxylase biotin carboxylase subunit), gki (glucokinase), lepA (GTP-binding protein), recP (transketolase), sodA (superoxide dismutase), and tyrS (tyrosyl-tRNA synthetase)] or the housekeeping genes supplemented with 2 extracellular putative virulence genes [gtfB (glucosyltransferase B) and spaP (surface protein antigen I/II)] to increase sequence type diversity. The number of alleles found varied between 20 (lepA) and 37 (spaP). Overall, 121 sequence types (STs) were defined using the housekeeping genes alone and 122 with all genes. However pi, nucleotide diversity per site, was low for all loci being in the range 0.019-0.007. The virulence genes exhibited the greatest nucleotide diversity and the recombination/mutation ratio was 0.67 [95% confidence interval 0.3-1.15] compared to 8.3 [95% confidence interval 5.0-14.5] for the 6 concatenated housekeeping genes alone. The ML trees generated for individual MLST loci were significantly incongruent and not significantly different from random trees. Analysis using ClonalFrame indicated that the majority of isolates were singletons and no evidence for a clonal structure or evidence to support serotype c strains as the ancestral S. mutans strain was apparent. There was also no evidence of a geographical distribution of individual isolates or that particular isolate clusters were associated with caries. The overall low sequence diversity suggests that S. mutans is a newly emerged species which has not accumulated large numbers of mutations but those that have occurred have been shuffled as a consequence of intra

  20. YThe BigH3 Tumor Suppressor Gene in Radiation-Induced Malignant Transformation of Human Bronchial Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Shao, G.; Piao, C.; Hei, T.

    Carcinogenesis is a multi-stage process with sequences of genetic events governing the phenotypic expression of a series of transformation steps leading to the development of metastatic cancer Previous studies from this laboratory have identified a 7 fold down- regulation of the novel tumor suppressor Big-h3 among radiation induced tumorigenic BEP2D cells Furthermore ectopic re-expression of this gene suppresses tumorigenic phenotype and promotes the sensitivity of these tumor cells to etoposide-induced apoptosis To extend these studies using a genomically more stable bronchial cell line we ectopically expresses the catalytic subunit of telomerase hTERT in primary human small airway epithelial SAE cells and generated several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice These cells show no alteration in the p53 gene but a decrease in p16 expression Exponentially growing SAEh cells were exposed to graded doses of 1 GeV nucleon of 56 Fe ions accelerated at the Brookhaven National Laboratory Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium These findings indicate

  1. Enhanced genetic characterization of influenza A(H3N2) viruses and vaccine effectiveness by genetic group, 2014–2015

    PubMed Central

    Flannery, Brendan; Zimmerman, Richard K.; Gubareva, Larisa V.; Garten, Rebecca J.; Chung, Jessie R.; Nowalk, Mary Patricia; Jackson, Michael L.; Jackson, Lisa A.; Monto, Arnold S.; Ohmit, Suzanne E.; Belongia, Edward A.; McLean, Huong Q.; Gaglani, Manjusha; Piedra, Pedro A.; Mishin, Vasiliy P.; Chesnokov, Anton P.; Spencer, Sarah; Thaker, Swathi N.; Barnes, John R.; Foust, Angie; Sessions, Wendy; Xu, Xiyan; Katz, Jacqueline; Fry, Alicia M.

    2018-01-01

    Background During the 2014–15 US influenza season, expanded genetic characterization of circulating influenza A(H3N2) viruses was used to assess the impact of genetic variability of influenza A(H3N2) viruses on influenza vaccine effectiveness (VE). Methods A novel pyrosequencing assay was used to determine genetic group based on hemagglutinin (HA) gene sequences of influenza A(H3N2) viruses from patients enrolled US Flu Vaccine Effectiveness network sites. Vaccine effectiveness was estimated using a test-negative design comparing vaccination among patients infected with influenza A(H3N2) viruses and uninfected patients. Results Among 9710 enrollees, 1868 (19%) tested positive for influenza A(H3N2); genetic characterization of 1397 viruses showed 1134 (81%) belonged to one HA genetic group (3C.2a) of antigenically drifted H3N2 viruses. Effectiveness of 2014–15 influenza vaccination varied by A(H3N2) genetic group from 1% (95% confidence interval [CI], −14% to 14%) against illness caused by antigenically drifted A(H3N2) group 3C.2a viruses versus 44% (95% CI, 16% to 63%) against illness caused by vaccine-like A(H3N2) group 3C.3b viruses. Conclusion Effectiveness of 2014–15 influenza vaccination varied by genetic group of influenza A(H3N2) virus. Changes in hemagglutinin genes related to antigenic drift were associated with reduced vaccine effectiveness. PMID:27190176

  2. Investigation of four porcine candidate genes (H-FABP, MYOD1, UCP3 and MASTR) for meat quality traits in Large White pigs.

    PubMed

    Han, Xuelei; Jiang, Tengfei; Yang, Huawei; Zhang, Qingde; Wang, Weimin; Fan, Bin; Liu, Bang

    2012-06-01

    Meat quality traits are economically important traits of swine, and are controlled by multiple genes as complex quantitative traits. In the present study four genes, H-FABP (heart fatty acid-binding protein), MASTR (MEF2 activating motif and SAP domain containing transcriptional regulator), UCP3 (uncoupling protein 3) and MYOD1 (myogenic differentiation 1) were researched in Large White pigs. The polymorphisms H-FABP T/C of 5'UTR, MYOD1 g.257 A>C, UCP3 g.1406 G>A in exon 3 and MASTR c.187 C>T have been reported to be associated with meat quality traits in pigs. The aim of this study was to analyze the effect of single and multiple markers for single traits in Large White pigs. The single marker association analysis showed that the H-FABP and MASTR genes were associated with IMF (intramuscular fat content) (P < 0.05), and that the g.257 A>C of MYOD1 gene was most significantly related to muscle pH value (P < 0.01). The multiple markers for IMF were analyzed by combining the markers and quantitative trait modes into the linear regression. The results revealed that H-FABP and MASTR integrate gene networks for IMF. Thus, our study results suggested that H-FABP and MASTR polymorphisms could be used as genetic markers in the marker-assisted selection towards the improvement of IMF in Large White pigs.

  3. Neuroprotective Effect of TAT-14-3-3ε Fusion Protein against Cerebral Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Liu, Xiaoyan; Hu, Wenhui; Wang, Yinye

    2014-01-01

    Stroke is the major cause of death and disability worldwide, and the thrombolytic therapy currently available was unsatisfactory. 14-3-3ε is a well characterized member of 14-3-3 family, and has been reported to protect neurons against apoptosis in cerebral ischemia. However, it cannot transverse blood brain barrier (BBB) due to its large size. A protein transduction domain (PTD) of HIV TAT protein, is capable of delivering a large variety of proteins into the brain. In this study, we generated a fusion protein TAT-14-3-3ε, and evaluated its potential neuroprotective effect in rat focal ischemia/reperfusion (I/R) model. Western blot analysis validated the efficient transduction of TAT-14-3-3ε fusion protein into brain via a route of intravenous injection. TAT-14-3-3ε pre-treatment 2 h before ischemia significantly reduced cerebral infarction volume and improved neurologic score, while post-treatment 2 h after ischemia was less effective. Importantly, pre- or post-ischemic treatment with TAT-14-3-3ε significantly increased the number of surviving neurons as determined by Nissl staining, and attenuated I/R-induced neuronal apoptosis as showed by the decrease in apoptotic cell numbers and the inhibition of caspase-3 activity. Moreover, the introduction of 14-3-3ε into brain by TAT-mediated delivering reduced the formation of autophagosome, attenuated LC3B-II upregulation and reversed p62 downregulation induced by ischemic injury. Such inhibition of autophagy was reversed by treatment with an autophagy inducer rapamycin (RAP), which also attenuated the neuroprotective effect of TAT-14-3-3ε. Conversely, autophagy inhibitor 3-methyladenine (3-MA) inhibited I/R-induced the increase in autophagic activity, and attenuated I/R-induced brain infarct. These results suggest that TAT-14-3-3ε can be efficiently transduced into brain and exert significantly protective effect against brain ischemic injury through inhibiting neuronal apoptosis and autophagic activation. PMID

  4. Using 14C and 3H to understand groundwater flow and recharge in an aquifer window

    NASA Astrophysics Data System (ADS)

    Atkinson, A. P.; Cartwright, I.; Gilfedder, B. S.; Cendón, D. I.; Unland, N. P.; Hofmann, H.

    2014-12-01

    Knowledge of groundwater residence times and recharge locations is vital to the sustainable management of groundwater resources. Here we investigate groundwater residence times and patterns of recharge in the Gellibrand Valley, southeast Australia, where outcropping aquifer sediments of the Eastern View Formation form an "aquifer window" that may receive diffuse recharge from rainfall and recharge from the Gellibrand River. To determine recharge patterns and groundwater flow paths, environmental isotopes (3H, 14C, δ13C, δ18O, δ2H) are used in conjunction with groundwater geochemistry and continuous monitoring of groundwater elevation and electrical conductivity. The water table fluctuates by 0.9 to 3.7 m annually, implying recharge rates of 90 and 372 mm yr-1. However, residence times of shallow (11 to 29 m) groundwater determined by 14C are between 100 and 10 000 years, 3H activities are negligible in most of the groundwater, and groundwater electrical conductivity remains constant over the period of study. Deeper groundwater with older 14C ages has lower δ18O values than younger, shallower groundwater, which is consistent with it being derived from greater altitudes. The combined geochemistry data indicate that local recharge from precipitation within the valley occurs through the aquifer window, however much of the groundwater in the Gellibrand Valley predominantly originates from the regional recharge zone, the Barongarook High. The Gellibrand Valley is a regional discharge zone with upward head gradients that limits local recharge to the upper 10 m of the aquifer. Additionally, the groundwater head gradients adjacent to the Gellibrand River are generally upwards, implying that it does not recharge the surrounding groundwater and has limited bank storage. 14C ages and Cl concentrations are well correlated and Cl concentrations may be used to provide a first-order estimate of groundwater residence times. Progressively lower chloride concentrations from 10

  5. Osmoregulation in Lilium Pollen Grains Occurs via Modulation of the Plasma Membrane H+ ATPase Activity by 14-3-3 Proteins1[C][W][OA

    PubMed Central

    Pertl, Heidi; Pöckl, Magdalena; Blaschke, Christian; Obermeyer, Gerhard

    2010-01-01

    To allow successful germination and growth of a pollen tube, mature and dehydrated pollen grains (PGs) take up water and have to adjust their turgor pressure according to the water potential of the surrounding stigma surface. The turgor pressure of PGs of lily (Lilium longiflorum) was measured with a modified pressure probe for simultaneous recordings of turgor pressure and membrane potential to investigate the relation between water and electrogenic ion transport in osmoregulation. Upon hyperosmolar shock, the turgor pressure decreased, and the plasma membrane (PM) hyperpolarizes in parallel, whereas depolarization of the PM was observed with hypoosmolar treatment. An acidification and alkalinization of the external medium was monitored after hyper- and hypoosmotic treatments, respectively, and pH changes were blocked by vanadate, indicating a putative role of the PM H+ ATPase. Indeed, an increase in PM-associated 14-3-3 proteins and an increase in PM H+ ATPase activity were detected in PGs challenged by hyperosmolar medium. We therefore suggest that in PGs the PM H+ ATPase via modulation of its activity by 14-3-3 proteins is involved in the regulation of turgor pressure. PMID:20974894

  6. The polymorphism of YWHAE, a gene encoding 14-3-3epsilon, and orbitofrontal sulcogyral pattern in patients with schizophrenia and healthy subjects.

    PubMed

    Takahashi, Tsutomu; Nakamura, Yumiko; Nakamura, Yukako; Aleksic, Branko; Takayanagi, Yoichiro; Furuichi, Atsushi; Kido, Mikio; Nakamura, Mihoko; Sasabayashi, Daiki; Ikeda, Masashi; Noguchi, Kyo; Kaibuchi, Kozo; Iwata, Nakao; Ozaki, Norio; Suzuki, Michio

    2014-06-03

    An altered sulcogyral pattern in the orbitofrontal cortex (OFC) has been implicated in schizophrenia as a possible marker of abnormal neurodevelopment, while its genetic mechanism remains unknown. This magnetic resonance imaging study investigated the relationship between the polymorphism of YWHAE (rs28365859), a gene encoding 14-3-3epsilon that is a Disrupted-in-Schizophrenia 1 (DISC1)-interacting molecule associated with neuronal development, and the OFC subtypes of the 'H-shaped' sulcus (Types I, II, and III) in a Japanese sample of 72 schizophrenia patients and 86 healthy controls. The schizophrenia patients had significantly increased Type III (p = 0.004) and decreased Type I (p = 0.013) expression on the right hemisphere compared to the controls. The subjects carrying the protective C allele showed a decrease in Type III (p = 0.005) and an increase in Type I (p = 0.017) compared to the G allele homozygotes, especially for the healthy subjects in the left hemisphere. These results suggest a possible role for the YWHAE genotype in the early development of the OFC sulcogyral pattern, but its effect alone is not likely to explain the altered sulcogyral pattern in schizophrenia. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Generation of Mice Deficient in both KLF3/BKLF and KLF8 Reveals a Genetic Interaction and a Role for These Factors in Embryonic Globin Gene Silencing

    PubMed Central

    Funnell, Alister P. W.; Mak, Ka Sin; Twine, Natalie A.; Pelka, Gregory J.; Norton, Laura J.; Radziewic, Tania; Power, Melinda; Wilkins, Marc R.; Bell-Anderson, Kim S.; Fraser, Stuart T.; Perkins, Andrew C.; Tam, Patrick P.; Pearson, Richard C. M.

    2013-01-01

    Krüppel-like factors 3 and 8 (KLF3 and KLF8) are highly related transcriptional regulators that bind to similar sequences of DNA. We have previously shown that in erythroid cells there is a regulatory hierarchy within the KLF family, whereby KLF1 drives the expression of both the Klf3 and Klf8 genes and KLF3 in turn represses Klf8 expression. While the erythroid roles of KLF1 and KLF3 have been explored, the contribution of KLF8 to this regulatory network has been unknown. To investigate this, we have generated a mouse model with disrupted KLF8 expression. While these mice are viable, albeit with a reduced life span, mice lacking both KLF3 and KLF8 die at around embryonic day 14.5 (E14.5), indicative of a genetic interaction between these two factors. In the fetal liver, Klf3 Klf8 double mutant embryos exhibit greater dysregulation of gene expression than either of the two single mutants. In particular, we observe derepression of embryonic, but not adult, globin expression. Taken together, these results suggest that KLF3 and KLF8 have overlapping roles in vivo and participate in the silencing of embryonic globin expression during development. PMID:23716600

  8. The two single nucleotide polymorphisms in the H37/RBM5 tumour suppressor gene at 3p21.3 correlated with different subtypes of non-small cell lung cancers

    PubMed Central

    Oh, Juliana J.; Koegel, Ashley; Phan, Diana T.; Razfar, Ali; Slamon, Dennis J.

    2007-01-01

    Summary Allele loss and genetic alteration in chromosome 3p, particularly in 3p21.3 region, are the most frequent and the earliest genomic abnormalities found in lung cancer. Multiple 3p21.3 genes exhibit various degrees of tumour suppression activity suggesting that 3p21.3 genes may function as an integrated tumour suppressor region through their diverse biological activities. We have previously demonstrated growth inhibitory effects and tumour suppression mechanism of the H37/RBM5 gene which is one of the 19 genes residing in the 370kb minimal overlap region at 3p21.3. In the current study, in an attempt to find, if any, mutations in the H37 coding region in lung cancer cells, we compared nucleotide sequences of the entire H37 gene in tumour vs. adjacent normal tissues from 17 non-small cell lung cancer (NSCLC) patients. No mutations were detected, instead, we found the two silent single nucleotide polymorphisms (SNPs), C1138T and C2185T, within the coding region of the H37 gene. In addition, we found that specific allele types at these SNP positions are correlated with different histological subtypes of NSCLC; tumours containing heterozygous alleles (C+T) at these SNP positions are more likely to be associated with adenocarcinoma (AC) whereas homozygous alleles (either C or T) are associated with squamous cell carcinoma (SCC) (p=0.0098). We postulate that, these two silent polymorphisms may be in linkage disequilibrium (LD) with a disease causative allele in the 3p21.3 tumour suppressor region which is packed with a large number of important genes affecting lung cancer development. In addition, because of prevalent loss of heterozygosity (LOH) detected at 3p21.3 which precedes lung cancer initiation, these SNPs may be developed into a marker screening for the high risk individuals. PMID:17606309

  9. A De Novo Deletion in the Regulators of Complement Activation Cluster Producing a Hybrid Complement Factor H/Complement Factor H-Related 3 Gene in Atypical Hemolytic Uremic Syndrome.

    PubMed

    Challis, Rachel C; Araujo, Geisilaine S R; Wong, Edwin K S; Anderson, Holly E; Awan, Atif; Dorman, Anthony M; Waldron, Mary; Wilson, Valerie; Brocklebank, Vicky; Strain, Lisa; Morgan, B Paul; Harris, Claire L; Marchbank, Kevin J; Goodship, Timothy H J; Kavanagh, David

    2016-06-01

    The regulators of complement activation cluster at chromosome 1q32 contains the complement factor H (CFH) and five complement factor H-related (CFHR) genes. This area of the genome arose from several large genomic duplications, and these low-copy repeats can cause genome instability in this region. Genomic disorders affecting these genes have been described in atypical hemolytic uremic syndrome, arising commonly through nonallelic homologous recombination. We describe a novel CFH/CFHR3 hybrid gene secondary to a de novo 6.3-kb deletion that arose through microhomology-mediated end joining rather than nonallelic homologous recombination. We confirmed a transcript from this hybrid gene and showed a secreted protein product that lacks the recognition domain of factor H and exhibits impaired cell surface complement regulation. The fact that the formation of this hybrid gene arose as a de novo event suggests that this cluster is a dynamic area of the genome in which additional genomic disorders may arise. Copyright © 2016 by the American Society of Nephrology.

  10. Chromosomal mapping of H3 histone and 5S rRNA genes in eight species of Astyanax (Pisces, Characiformes) with different diploid numbers: syntenic conservation of repetitive genes.

    PubMed

    Piscor, Diovani; Parise-Maltempi, Patricia Pasquali

    2016-03-01

    The genus Astyanax is widely distributed from the southern United States to northern Patagonia, Argentina. While cytogenetic studies have been performed for this genus, little is known about the histone gene families. The aim of this study was to examine the chromosomal relationships among the different species of Astyanax. The chromosomal locations of the 5S rRNA and H3 histone genes were determined in A. abramis, A. asuncionensis, A. altiparanae, A. bockmanni, A. eigenmanniorum, A. mexicanus (all 2n = 50), A. fasciatus (2n = 46), and A. schubarti (2n = 36). All eight species exhibited H3 histone clusters on two chromosome pairs. In six species (A. abramis, A. asuncionensis, A. altiparanae, A. bockmanni, A. eigenmanniorum, and A. fasciatus), syntenic clusters of H3 histone and 5S rDNA were observed on metacentric (m) or submetacentric (sm) chromosomes. In seven species, clusters of 5S rDNA sequences were located on one or two chromosome pairs. In A. mexicanus, 5S rDNA clusters were located on four chromosome pairs. This study demonstrates that H3 histone clusters are conserved on two chromosome pairs in the genus Astyanax, and specific chromosomal features may contribute to the genomic organization of the H3 histone and 5S rRNA genes.

  11. Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations.

    PubMed

    Jiang, WenZhi; Yang, Bing; Weeks, Donald P

    2014-01-01

    The newly developed CRISPR/Cas9 system for targeted gene knockout or editing has recently been shown to function in plants in both transient expression systems as well as in primary T1 transgenic plants. However, stable transmission of genes modified by the Cas9/single guide RNA (sgRNA) system to the T2 generation and beyond has not been demonstrated. Here we provide extensive data demonstrating the efficiency of Cas9/sgRNA in causing modification of a chromosomally integrated target reporter gene during early development of transgenic Arabidopsis plants and inheritance of the modified gene in T2 and T3 progeny. Efficient conversion of a nonfunctional, out-of-frame GFP gene to a functional GFP gene was confirmed in T1 plants by the observation of green fluorescent signals in leaf tissues as well as the presence of mutagenized DNA sequences at the sgRNA target site within the GFP gene. All GFP-positive T1 transgenic plants and nearly all GFP-negative plants examined contained mutagenized GFP genes. Analyses of 42 individual T2 generation plants derived from 6 different T1 progenitor plants showed that 50% of T2 plants inherited a single T-DNA insert. The efficiency of the Cas9/sgRNA system and stable inheritance of edited genes point to the promise of this system for facile editing of plant genes.

  12. Ras-Induced Changes in H3K27me3 Occur after Those in Transcriptional Activity

    PubMed Central

    Hosogane, Masaki; Funayama, Ryo; Nishida, Yuichiro; Nagashima, Takeshi; Nakayama, Keiko

    2013-01-01

    Oncogenic signaling pathways regulate gene expression in part through epigenetic modification of chromatin including DNA methylation and histone modification. Trimethylation of histone H3 at lysine-27 (H3K27), which correlates with transcriptional repression, is regulated by an oncogenic form of the small GTPase Ras. Although accumulation of trimethylated H3K27 (H3K27me3) has been implicated in transcriptional regulation, it remains unclear whether Ras-induced changes in H3K27me3 are a trigger for or a consequence of changes in transcriptional activity. We have now examined the relation between H3K27 trimethylation and transcriptional regulation by Ras. Genome-wide analysis of H3K27me3 distribution and transcription at various times after expression of oncogenic Ras in mouse NIH 3T3 cells identified 115 genes for which H3K27me3 level at the gene body and transcription were both regulated by Ras. Similarly, 196 genes showed Ras-induced changes in transcription and H3K27me3 level in the region around the transcription start site. The Ras-induced changes in transcription occurred before those in H3K27me3 at the genome-wide level, a finding that was validated by analysis of individual genes. Depletion of H3K27me3 either before or after activation of Ras signaling did not affect the transcriptional regulation of these genes. Furthermore, given that H3K27me3 enrichment was dependent on Ras signaling, neither it nor transcriptional repression was maintained after inactivation of such signaling. Unexpectedly, we detected unannotated transcripts derived from intergenic regions at which the H3K27me3 level is regulated by Ras, with the changes in transcript abundance again preceding those in H3K27me3. Our results thus indicate that changes in H3K27me3 level in the gene body or in the region around the transcription start site are not a trigger for, but rather a consequence of, changes in transcriptional activity. PMID:24009517

  13. Haloimpatiens lingqiaonensis gen. nov., sp. nov., an anaerobic bacterium isolated from paper-mill wastewater.

    PubMed

    Wu, Dildar; Zhang, Nai-Fang; Sun, Cong; Zhang, Wen-Wu; Han, Shuai-Bo; Pan, Jie; Wu, Min; Th, Dilbar; Zhu, Xu-Fen

    2016-02-01

    An anaerobic bacterium, strain ZC-CMC3 T , was isolated from a wastewater sample in Zhejiang, China. Cells were Gram-stain-positive, peritrichous, non-spore-forming, rod-shaped (0.6-1.2 × 2.9-5.1 μm) and catalase- and oxidase-negative. Strain ZC-CMC3 T was able to grow at 25-48 °C (optimum 43 °C) and pH 5.5-8.0 (optimum pH 7.0). The NaCl concentration range for growth was 0-3 % (w/v) (optimum 0 %). The major polar lipids of the isolate were diphosphatidylglycerol, phosphatidylglycerol, several phospholipids and glycolipids. Main fermentation products from PYG medium were formate, acetate, lactate and ethanol. Substrates which could be utilized were peptone, tryptone, yeast extract and beef extract. No respiratory quinone was detected. The main fatty acids were C 14 : 0 , C 16 : 0 , C 16 : 1 cis 7 and C 16 : 1 cis 9. The DNA G+C content was 30.0 mol%. 16S rRNA gene sequence analysis revealed that the isolate belonged to the family Clostridiaceae . Phylogenetically, the most closely related species were Oceanirhabdus sediminicola NH-JN4 T (92.8 % 16S rRNA gene sequence similarity) and Clostridium tepidiprofundi SG 508 T (92.6 %). On the basis of phylogenetic, chemotaxonomic and phenotypic characteristics, strain ZC-CMC3 T represents a novel species of a new genus in the family Clostridiaceae, for which the name Haloimpatiens lingqiaonensis gen. nov., sp. nov. is proposed. The type strain of the type species is ZC-CMC3 T ( = KCTC 15321 T  = JCM 19210 T  = CCTCC AB 2013104 T ).

  14. The structures of 1,4-diaryl-5-trifluoromethyl-1H-1,2,3-triazoles related to J147, a drug for treating Alzheimer's disease.

    PubMed

    Farrán, M Ángeles; Bonet, M Ángels; Claramunt, Rosa M; Torralba, M Carmen; Alkorta, Ibon; Elguero, José

    2018-04-01

    J147 [N-(2,4-dimethylphenyl)-2,2,2-trifluoro-N'-(3-methoxybenzylidene)acetohydrazide] has recently been reported as a promising new drug for the treatment of Alzheimer's disease. The X-ray structures of seven new 1,4-diaryl-5-trifluoromethyl-1H-1,2,3-triazoles, namely 1-(3,4-dimethylphenyl)-4-phenyl-5-trifluoromethyl-1H-1,2,3-triazole (C 17 H 14 F 3 N 3 , 1), 1-(3,4-dimethylphenyl)-4-(3-methoxyphenyl)-5-trifluoromethyl-1H-1,2,3-triazole (C 18 H 16 F 3 N 3 O, 2), 1-(3,4-dimethylphenyl)-4-(4-methoxyphenyl)-5-trifluoromethyl-1H-1,2,3-triazole (C 18 H 16 F 3 N 3 O, 3), 1-(2,4-dimethylphenyl)-4-(4-methoxyphenyl)-5-trifluoromethyl-1H-1,2,3-triazole (C 18 H 16 F 3 N 3 O, 4), 1-[2,4-bis(trifluoromethyl)phenyl]-4-(3-methoxyphenyl)-5-trifluoromethyl-1H-1,2,3-triazole (C 18 H 10 F 9 N 3 O, 5), 1-(3,4-dimethoxyphenyl)-4-(3,4-dimethoxyphenyl)-5-trifluoromethyl-1H-1,2,3-triazole (C 19 H 18 F 3 N 3 O 4 , 6) and 3-[4-(3,4-dimethoxyphenyl)-5-(trifluoromethyl)-1H-1,2,3-triazol-1-yl]phenol (C 17 H 14 F 3 N 3 O 3 , 7), have been determined and compared to that of J147. B3LYP/6-311++G(d,p) calculations have been performed to determine the potential surface and molecular electrostatic potential (MEP) of J147, and to examine the correlation between hydrazone J147 and the 1,2,3-triazoles, both bearing a CF 3 substituent. Using MEPs, it was found that the minimum-energy conformation of 4, which is nearly identical to its X-ray structure, is closely related to one of the J147 seven minima.

  15. Two novel Pb(II) coordination polymers (CPs) based on 4-(4-oxopyridin-1(4H)-yl) and 3-(4-oxopyridin-1(4H)-yl) phthalic acid: Band gaps, structures, and their photoelectrocatalytic properties in CO2-saturated system

    NASA Astrophysics Data System (ADS)

    Yan, Zhi Shuo; Long, Ji Ying; Gong, Yun; Lin, Jian Hua

    2018-05-01

    Based on 4-(4-oxopyridin-1(4H)-yl) phthalic acid (H2L1) and 3-(4-oxopyridin-1(4H)-yl) phthalic acid (H2L2), two novel Pb(II) coordination polymers (CPs) formulated as [Pb4Cl4·(L1)2·H2O]n (CP 1), [Pb3Cl4·L2·H2O]n (CP 2) were solvothermally synthesized and characterized by single-crystal X-ray diffraction. The two novel Pb(II) CPs (CPs 1 and 2) possessed different structures. Density functional theory (DFT) calculations revealed the two CPs had different band structures yet the characteristic of semiconductors in common. Their valence band (VB) and conduction band (CB) positions were determined by Mott-Schottky and UV-visible diffuse reflectance analyses. The photoelectrocatalytic performance of the two CPs towards CO2 reduction were tested by photocurrent responses at various applied potentials. And the E =-1.4 V vs SCE (-0.74 V vs NHE) was selected as the required potential according to the regulation of photocurrent responses at various tested potentials in CO2-saturated system. The photoelectrocatalytic performance of CP 2 was superior to that of CP 1 owing to the well-matched CB position of CP 2 and CO2 reduction potentials at the required potential of -1.4 V vs SCE (-0.74 V vs NHE). In addition, the photoelectrolytic experiment were performed 1 h in the CO2-saturated 0.2 M Na2SO4 solution at the required potential of -1.4 V vs SCE (-0.74 V vs NHE) with and without illumination, and we initially demonstrated the influence of visible light in the CO2-saturated photoelectrocatalytic measurement system and the reason of stability in 1 h chronoamperometry.

  16. Genome-Wide Identification, Phylogeny, and Expression Analyses of the 14-3-3 Family Reveal Their Involvement in the Development, Ripening, and Abiotic Stress Response in Banana

    PubMed Central

    Li, Meiying; Ren, Licheng; Xu, Biyu; Yang, Xiaoliang; Xia, Qiyu; He, Pingping; Xiao, Susheng; Guo, Anping; Hu, Wei; Jin, Zhiqiang

    2016-01-01

    Plant 14-3-3 proteins act as critical components of various cellular signaling processes and play an important role in regulating multiple physiological processes. However, less information is known about the 14-3-3 gene family in banana. In this study, 25 14-3-3 genes were identified from the banana genome. Based on the evolutionary analysis, banana 14-3-3 proteins were clustered into ε and non-ε groups. Conserved motif analysis showed that all identified banana 14-3-3 genes had the typical 14-3-3 motif. The gene structure of banana 14-3-3 genes showed distinct class-specific divergence between the ε group and the non-ε group. Most banana 14-3-3 genes showed strong transcript accumulation changes during fruit development and postharvest ripening in two banana varieties, indicating that they might be involved in regulating fruit development and ripening. Moreover, some 14-3-3 genes also showed great changes after osmotic, cold, and salt treatments in two banana varieties, suggested their potential role in regulating banana response to abiotic stress. Taken together, this systemic analysis reveals the involvement of banana 14-3-3 genes in fruit development, postharvest ripening, and response to abiotic stress and provides useful information for understanding the functions of 14-3-3 genes in banana. PMID:27713761

  17. Using 14C and 3H to understand groundwater flow and recharge in an aquifer window

    NASA Astrophysics Data System (ADS)

    Atkinson, A. P.; Cartwright, I.; Gilfedder, B. S.; Cendón, D. I.; Unland, N. P.; Hofmann, H.

    2014-06-01

    Knowledge of groundwater residence times and recharge locations are vital to the sustainable management of groundwater resources. Here we investigate groundwater residence times and patterns of recharge in the Gellibrand Valley, southeast Australia, where outcropping aquifer sediments of the Eastern View Formation form an "aquifer window" that may receive diffuse recharge and recharge from the Gellibrand River. To determine recharge patterns and groundwater flowpaths, environmental isotopes (3H, 14C, δ13C, δ18O, δ2H) are used in conjunction with groundwater geochemistry and continuous monitoring of groundwater elevation and electrical conductivity. Despite the water table fluctuating by 0.9-3.7 m annually producing estimated recharge rates of 90 and 372 mm yr-1, residence times of shallow (11-29 m) groundwater determined by 14C ages are between 100 and 10 000 years. 3H activities are negligible in most of the groundwater and groundwater electrical conductivity in individual areas remains constant over the period of study. Although diffuse local recharge is evident, the depth to which it penetrates is limited to the upper 10 m of the aquifer. Rather, groundwater in the Gellibrand Valley predominantly originates from the regional recharge zone, the Barongarook High, and acts as a regional discharge zone where upward head gradients are maintained annually, limiting local recharge. Additionally, the Gellibrand River does not recharge the surrounding groundwater and has limited bank storage. 14C ages and Cl concentrations are well correlated and Cl concentrations may be used to provide a first-order estimate of groundwater residence times. Progressively lower chloride concentrations from 10 000 years BP to the present day are interpreted to indicate an increase in recharge rates on the Barongarook High.

  18. Discovery of ALK-PTPN3 gene fusion from human non-small cell lung carcinoma cell line using next generation RNA sequencing.

    PubMed

    Jung, Yeonjoo; Kim, Pora; Jung, Yeonhwa; Keum, Juhee; Kim, Soon-Nam; Choi, Yong Soo; Do, In-Gu; Lee, Jinseon; Choi, So-Jung; Kim, Sujin; Lee, Jong-Eun; Kim, Jhingook; Lee, Sanghyuk; Kim, Jaesang

    2012-06-01

    An increasing number of chromosomal aberrations is being identified in solid tumors providing novel biomarkers for various types of cancer and new insights into the mechanisms of carcinogenesis. We applied next generation sequencing technique to analyze the transcriptome of the non-small cell lung carcinoma (NSCLC) cell line H2228 and discovered a fusion transcript composed of multiple exons of ALK (anaplastic lymphoma receptor tyrosine kinase) and PTPN3 (protein tyrosine phosphatase, nonreceptor Type 3). Detailed analysis of the genomic structure revealed that a portion of genomic region encompassing Exons 10 and 11 of ALK has been translocated into the intronic region between Exons 2 and 3 of PTPN3. The key net result appears to be the null mutation of one allele of PTPN3, a gene with tumor suppressor activity. Consistently, ectopic expression of PTPN3 in NSCLC cell lines led to inhibition of colony formation. Our study confirms the utility of next generation sequencing as a tool for the discovery of somatic mutations and has led to the identification of a novel mutation in NSCLC that may be of diagnostic, prognostic, and therapeutic importance. Copyright © 2012 Wiley Periodicals, Inc.

  19. The Generation and Genetic Analysis of Suppressors of Lethal Mutations in the Caenorhabditis Elegans Rol-3(v) Gene

    PubMed Central

    Barbazuk, W. B.; Johnsen, R. C.; Baillie, D. L.

    1994-01-01

    The Caenorhabditis elegans rol-3(e754) mutation is a member of a general glass of mutations affecting gross morphology, presumably through disruption of the nematode cuticle. Adult worms homozygous for rol-3(e754) exhibit rotation about their long axis associated with a left-hand twisted cuticle, musculature, gut and ventral nerve cord. Our laboratory previously isolated 12 recessive lethal alleles of rol-3. All these lethal alleles cause an arrest in development at either early or mid-larval stages, suggesting that the rol-3 gene product performs an essential developmental function. Furthermore, through the use of the heterochronic mutants lin-14 and lin-29, we have established that the expression of rol-3(e754)'s adult specific visible function is not dependent on the presence of an adult cuticle. In an attempt to understand rol-3's developmental role we sought to identify other genes whose products interact with that of rol-3. Toward this end, we generated eight EMS induced and two gamma irradiation-induced recessive suppressors of the temperature sensitive (ts) mid-larval lethal phenotype of rol-3(s1040ts). These suppressors define two complementation groups srl-1 II and srl-2 III; and, while they suppress the rol-3(s1040) lethality, they do not suppress the adult specific visible rolling phenotype. Furthermore, there is a complex genetic interaction between srl-2 and srl-1 such that srl-2(s2506) fails to complement all srl alleles tested. These results suggest that srl-1 and srl-2 may share a common function and, thus, possibly constitute members of the same gene family. Mutations in both srl-1 and srl-2 produce no obvious hermaphrodite phenotypes in the absence of rol-3(s1040ts); however, males homozygous for either srl-1 or srl-2 display aberrant tail morphology. We present evidence suggesting that the members of srl-2 are not allele specific with respect to their suppression of rol-3 lethality, and that rol-3 may act in some way to influence proper

  20. The PB2, PA, HA, NP, and NS genes of a highly pathogenic avian influenza virus A/whooper swan/Mongolia/3/2005 (H5N1) are responsible for pathogenicity in ducks

    PubMed Central

    2013-01-01

    Background Wild ducks are the natural hosts of influenza A viruses. Duck influenza, therefore, has been believed inapparent infection with influenza A viruses, including highly pathogenic avian influenza viruses (HPAIVs) in chickens. In fact, ducks experimentally infected with an HPAIV strain, A/Hong Kong/483/1997 (H5N1) (HK483), did not show any clinical signs. Another HPAIV strain, A/whooper swan/Mongolia/3/2005 (H5N1) (MON3) isolated from a dead swan, however, caused neurological dysfunction and death in ducks. Method To understand the mechanism whereby MON3 shows high pathogenicity in ducks, HK483, MON3, and twenty-four reassortants generated between these two H5N1 viruses were compared for their pathogenicity in domestic ducks. Results None of the ducks infected with MON3-based single-gene reassortants bearing the PB2, NP, or NS gene segment of HK483 died, and HK483-based single-gene reassortants bearing PB2, NP, or NS genes of MON3 were not pathogenic in ducks, suggesting that multiple gene segments contribute to the pathogenicity of MON3 in ducks. All the ducks infected with the reassortant bearing PB2, PA, HA, NP, and NS gene segments of MON3 died within five days post-inoculation, as did those infected with MON3. Each of the viruses was assessed for replication in ducks three days post-inoculation. MON3 and multi-gene reassortants pathogenic in ducks were recovered from all of the tissues examined and replicated with high titers in the brains and lungs. Conclusion The present results indicate that multigenic factors are responsible for efficient replication of MON3 in ducks. In particular, virus growth in the brain might correlate with neurological dysfunction and the disease severity. PMID:23374292

  1. Genes encoding p-coumarate 3-hydroxylase (C3H) and methods of use

    DOEpatents

    Chapple, Clinton C. S.; Franke, Rochus; Ruegger, Max O.

    2006-07-04

    The present invention is directed to a method for altering secondary metabolism in plants, specifically phenylpropanoid metabolism. The present invention is further directed to a mutant p-coumarate 3-hydroxylase gene, referred to herein as the ref8 gene, its protein product which can be used to prepare gene constructs and transgenic plants. The gene constructs and transgenic plants are further aspects of the present invention.

  2. 14-3-3 sigma and 14-3-3 zeta plays an opposite role in cell growth inhibition mediated by transforming growth factor-beta 1.

    PubMed

    Hong, Hye-Young; Jeon, Woo-Kwang; Bae, Eun-Jin; Kim, Shin-Tae; Lee, Ho-Jae; Kim, Seong-Jin; Kim, Byung-Chul

    2010-03-01

    The expression of 14-3-3 proteins is dysregulated in various types of cancer. This study was undertaken to investigate the effects of 14-3-3 zeta and 14-3-3 sigma on cell growth inhibition mediated by transforming growth factor-beta 1 (TGF-beta1). Mouse mammary epithelial cells (Eph4) that are transformed with oncogenic c-H-Ras (EpRas) and no longer sensitive to TGF-beta1-mediated growth inhibition displayed increased expression of 14-3-3 zeta and decreased expression of 14-3-3 sigma compared with parental Eph4 cells. Using small interfering RNA-mediated knockdown and overexpression of 14-3-3 sigma or 14-3-3 zeta, we showed that 14-3-3 sigma is required for TGF-beta1-mediated growth inhibition whereas 14-3-3 zeta negatively modulates this growth inhibitory response. Notably, overexpression of 14-3-3 zeta increased the level of Smad3 protein that is phosphorylated at linker regions and cannot mediate the TGF-beta1 growth inhibitory response. Consistent with this finding, mutation of the 14-3-3 zeta phosphorylation sites in Smad3 markedly reduced the 14-3-3 zeta-mediated inhibition of TGF-beta1-induced p15 promoter-reporter activity and cell cycle arrest, suggesting that these residues are critical targets of 14-3-3 zeta in the suppression of TGF-beta1-mediated growth. Taken together, our findings indicate that dysregulation of 14-3-3 sigma or 14-3-3 zeta contributes to TGF-beta1 resistance in cancer cells.

  3. Antiviral resistance due to deletion in the neuraminidase gene and defective interfering-like viral polymerase basic 2 RNA of influenza A virus subtype H3N2.

    PubMed

    Trebbien, Ramona; Christiansen, Claus Bohn; Fischer, Thea Kølsen

    2018-05-01

    Antiviral treatment of influenza virus infections can lead to drug resistance of virus. This study investigates a selection of mutations in the full genome of H3N2 influenza A virus isolated from a patient in treatment with oseltamivir. Respiratory samples from a patient were collected before, during, and after antiviral treatment. Whole genome sequencing of the influenza virus by next generation sequencing, and low-frequency-variant analysis was performed. Neuraminidase-inhibition tests were performed with oseltamivir and zanamivir, and viruses were propagated in sial-transferase gene transfected Madin-Darby Canine Kidney cells. A deletion at amino acid position 245-248 in the neuraminidase gene occurred after initiation of treatment with oseltamivir. The deleted virus had highly reduced inhibition against oseltamivir but was sensitive to zanamivir. Nine days after discontinuation of oseltamivir treatment the deleted H3N2 virus was still present in the patient. After three passages of the deleted virus in cell culture, the deletion was retained. Several variant mutations appeared in the other genes of the H3N2 virus, where most striking were two major out-of-frame deletions in the polymerase basic 2 (PB2) gene, indicating defective interfering-like viral RNA. The viruses harboring the 245-248 deletion in the neuraminidase gene were still present after discontinuation of oseltamivir treatment and passages in cell cultures, indicating a potential risk for transmission of the deleted virus. Full genome deep sequencing was useful to reveal variant mutations that might be selected due to antiviral treatment, and defective interfering-like viral PB2 RNA in the respiratory samples was detected. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Genomic reassortants of pandemic A (H1N1) 2009 virus and endemic porcine H1 and H3 viruses in swine in Japan.

    PubMed

    Kirisawa, Rikio; Ogasawara, Yoshitaka; Yoshitake, Hayato; Koda, Asuka; Furuya, Tokujiro

    2014-11-01

    From 2010 to 2013 in Japan, we isolated 11 swine influenza viruses (SIVs) from pigs showing respiratory symptoms. Sequence and phylogenetic analyses showed that 6 H1N1 viruses originated from the pandemic (H1N1) 2009 (pdm 09) virus and the other 5 viruses were reassortants between SIVs and pdm 09 viruses, representing 4 genotypes. Two H1N2 viruses contained H1 and N2 genes originated from Japanese H1N2 SIV together with internal genes of pdm 09 viruses. Additionally, 1 H1N2 virus contained a further NP gene originating from Japanese H1N2 SIV. One H1N1 virus contained only the H1 gene originating from Japanese H1 SIV in a pdm 09 virus background. One H3N2 virus contained H3 and N2 genes originating from Japanese H3N2 SIV together with internal genes of pdm 09 virus. The results indicate that pdm 09 viruses are distributed widely in the Japanese swine population and that several reassortments with Japanese SIVs have occurred.

  5. Histone H3 Lysine 36 Methyltransferase Whsc1 Promotes the Association of Runx2 and p300 in the Activation of Bone-Related Genes

    PubMed Central

    Lee, Yu Fei; Nimura, Keisuke; Lo, Wan Ning; Saga, Kotaro; Kaneda, Yasufumi

    2014-01-01

    The orchestration of histone modifiers is required to establish the epigenomic status that regulates gene expression during development. Whsc1 (Wolf-Hirschhorn Syndrome candidate 1), a histone H3 lysine 36 (H3K36) trimethyltransferase, is one of the major genes associated with Wolf-Hirshhorn syndrome, which is characterized by skeletal abnormalities. However, the role of Whsc1 in skeletal development remains unclear. Here, we show that Whsc1 regulates gene expression through Runt-related transcription factor (Runx) 2, a transcription factor central to bone development, and p300, a histone acetyltransferase, to promote bone differentiation. Whsc1 −/− embryos exhibited defects in ossification in the occipital bone and sternum. Whsc1 knockdown in pre-osteoblast cells perturbed histone modification patterns in bone-related genes and led to defects in bone differentiation. Whsc1 increased the association of p300 with Runx2, activating the bone-related genes Osteopontin (Opn) and Collagen type Ia (Col1a1), and Whsc1 suppressed the overactivation of these genes via H3K36 trimethylation. Our results suggest that Whsc1 fine-tunes the expression of bone-related genes by acting as a modulator in balancing H3K36 trimethylation and histone acetylation. Our results provide novel insight into the mechanisms by which this histone methyltransferase regulates gene expression. PMID:25188294

  6. [Methylation Status of the SOCS3 Gene Promoter in H2228 Cells and 
EML4-ALK-positive Lung Cancer Tissues].

    PubMed

    Liu, Chunlai; Li, Yongwen; Dong, Yunlong; Zhang, Hongbing; Li, Ying; Liu, Hongyu; Chen, Jun

    2016-09-20

    The EML4-ALK fusion gene is a newly discovered driver gene of non-small cell lung cancer and exhibits special clinical and pathological features. The JAK-STAT signaling pathway, an important downstream signaling pathway of EML4-ALK, is aberrantly sustained and activated in EML4-ALK-positive lung cancer cells fusion gene, but the underlying reason remains unknown. The suppressor of cytokine signaling (SOCS) is a negative regulatory factor that mainly inhibits the proliferation, differentiation, and induction of apoptotic cells by inhibiting the JAK-STAT signaling pathway. The aberrant methylation of the SOCS gene leads to inactivation of tumors and abnormal activation of the JAK2-STAT signaling pathway. The aim of this study is to investigate the methylation status of the SOCS3 promoter in EML4-ALK-positive H2228 cells and lung cancer tissues. The methylation status of the SOCS3 promoter in EML4-ALK-positive H2228 lung cancer cells and lung cancer tissues was detected by methylation-specific PCR (MSP) analysis and verified by DNA sequencing. The expression levels of SOCS3 in H2228 cells were detected by Western blot and Real-time PCR analyses after treatment with the DNA methyltransferase inhibitor 5'-Aza-dC. MSP and DNA sequencing assay results indicated the presence of SOCS3 promoter methylation in H2228 cells as well as in three cases of seven EML4-ALK-positive lung cancer tissues. The expression level of SOCS3 significantly increased in H2228 cells after 5'-Aza-dC treatment. The aerrant methylation of the SOCS3 promoter region in EML4-ALK (+) H2228 cells and lung cancer tissues may be significantly involved in the pathogenesis of EML4-ALK-positive lung cancer.

  7. High current H2(+) and H3(+) beam generation by pulsed 2.45 GHz electron cyclotron resonance ion source.

    PubMed

    Xu, Yuan; Peng, Shixiang; Ren, Haitao; Zhao, Jie; Chen, Jia; Zhang, Ailin; Zhang, Tao; Guo, Zhiyu; Chen, Jia'er

    2014-02-01

    The permanent magnet 2.45 GHz electron cyclotron resonance ion source at Peking University can produce more than 100 mA hydrogen ion beam working at pulsed mode. For the increasing requirements of cluster ions (H2(+) and H3(+)) in linac and cyclotron, experimental study was carried out to further understand the hydrogen plasma processes in the ion source for the generation of cluster ions. The constituents of extracted beam have been analyzed varying with the pulsed duration from 0.3 ms to 2.0 ms (repetition frequency 100 Hz) at different operation pressure. The fraction of cluster ions dramatically increased when the pulsed duration was lower than 0.6 ms, and more than 20 mA pure H3(+) ions with fraction 43.2% and 40 mA H2(+) ions with fraction 47.7% were obtained when the operation parameters were adequate. The dependence of extracted ion fraction on microwave power was also measured at different pressure as the energy absorbed by plasma will greatly influence electron temperature and electron density then the plasma processes in the ion source. More details will be presented in this paper.

  8. Piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine as orally-active adhesion molecule inhibitors.

    PubMed

    Kaneko, Toshihiko; Clark, Richard S J; Ohi, Norihito; Ozaki, Fumihiro; Kawahara, Tetsuya; Kamada, Atsushi; Okano, Kazuo; Yokohama, Hiromitsu; Ohkuro, Masayoshi; Muramoto, Kenzo; Takenaka, Osamu; Kobayashi, Seiichi

    2004-06-01

    Novel piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine were prepared and evaluated for their inhibitory activity on the upregulation of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1). Replacement of the methanesulfonyl group on the piperidine ring of previously prepared derivatives with a carboxylic acid-containing moiety resulted in a number of potent adhesion molecule inhibitors. Of these, (anti) [3-(10H-pyrazino[2,3-b][1,4]benzothiazin-8-yl)methyl-3-azabicyclo[3.3.1]non-9-yl]acetic acid 2q (ER-49890), showed the most potent oral inhibitory activities against neutrophil migration in an interleukin-1 (IL-1) induced paw inflammation model using mice, and leukocyte accumulation in a carrageenan pleurisy model in the rat, and therapeutic effect on collagen-induced arthritis in rats.

  9. Novel Phenotype-Genotype Correlations of Restrictive Cardiomyopathy With Myosin-Binding Protein C (MYBPC3) Gene Mutations Tested by Next-Generation Sequencing.

    PubMed

    Wu, Wei; Lu, Chao-Xia; Wang, Yi-Ning; Liu, Fang; Chen, Wei; Liu, Yong-Tai; Han, Ye-Chen; Cao, Jian; Zhang, Shu-Yang; Zhang, Xue

    2015-07-10

    MYBPC3 dysfunctions have been proven to induce dilated cardiomyopathy, hypertrophic cardiomyopathy, and/or left ventricular noncompaction; however, the genotype-phenotype correlation between MYBPC3 and restrictive cardiomyopathy (RCM) has not been established. The newly developed next-generation sequencing method is capable of broad genomic DNA sequencing with high throughput and can help explore novel correlations between genetic variants and cardiomyopathies. A proband from a multigenerational family with 3 live patients and 1 unrelated patient with clinical diagnoses of RCM underwent a next-generation sequencing workflow based on a custom AmpliSeq panel, including 64 candidate pathogenic genes for cardiomyopathies, on the Ion Personal Genome Machine high-throughput sequencing benchtop instrument. The selected panel contained a total of 64 genes that were reportedly associated with inherited cardiomyopathies. All patients fulfilled strict criteria for RCM with clinical characteristics, echocardiography, and/or cardiac magnetic resonance findings. The multigenerational family with 3 adult RCM patients carried an identical nonsense MYBPC3 mutation, and the unrelated patient carried a missense mutation in the MYBPC3 gene. All of these results were confirmed by the Sanger sequencing method. This study demonstrated that MYBPC3 gene mutations, revealed by next-generation sequencing, were associated with familial and sporadic RCM patients. It is suggested that the next-generation sequencing platform with a selected panel provides a highly efficient approach for molecular diagnosis of hereditary and idiopathic RCM and helps build new genotype-phenotype correlations. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  10. Cloning and Characterization of a Flavonoid 3′-Hydroxylase Gene from Tea Plant (Camellia sinensis)

    PubMed Central

    Zhou, Tian-Shan; Zhou, Rui; Yu, You-Ben; Xiao, Yao; Li, Dong-Hua; Xiao, Bin; Yu, Oliver; Yang, Ya-Jun

    2016-01-01

    Tea leaves contain abundant flavan-3-ols, which include dihydroxylated and trihydroxylated catechins. Flavonoid 3′-hydroxylase (F3H: EC 1.14.13.21) is one of the enzymes in the establishment of the hydroxylation pattern. A gene encoding F3H, designated as CsF3H, was isolated from Camellia sinensis with a homology-based cloning technique and deposited in the GenBank (GenBank ID: KT180309). Bioinformatic analysis revealed that CsF3H was highly homologous with the characterized F3′Hs from other plant species. Four conserved cytochrome P450-featured motifs and three F3H-specific conserved motifs were discovered in the protein sequence of CsF3H. Enzymatic analysis of the heterologously expressed CsF3H in yeast demonstrated that tea F3H catalyzed the 3′-hydroxylation of naringenin, dihydrokaempferol and kaempferol. Apparent Km values for these substrates were 17.08, 143.64 and 68.06 μM, and their apparent Vmax values were 0.98, 0.19 and 0.44 pM·min−1, respectively. Transcription level of CsF3H in the new shoots, during tea seed germination was measured, along with that of other key genes for flavonoid biosynthesis using real-time PCR technique. The changes in 3′,4′-flavan-3-ols, 3′,4′,5′-flavan-3-ols and flavan-3-ols, were consistent with the expression level of CsF3H and other related genes in the leaves. In the study of nitrogen supply for the tea plant growth, our results showed the expression level of CsF3H and all other tested genes increased in response to nitrogen depletion after 12 days of treatment, in agreement with a corresponding increase in 3′,4′-catechins, 3′,4′,5′-catechins and flavan 3-ols content in the leaves. All these results suggest the importance of CsF3H in the biosynthesis of 3′,4′-catechins, 3′,4′,5′-catechins and flavan 3-ols in tea leaves. PMID:26907264

  11. Comparative study of the hemagglutinin and neuraminidase genes of influenza A virus H3N2, H9N2, and H5N1 subtypes using bioinformatics techniques.

    PubMed

    Ahn, Insung; Son, Hyeon S

    2007-07-01

    To investigate the genomic patterns of influenza A virus subtypes, such as H3N2, H9N2, and H5N1, we collected 1842 sequences of the hemagglutinin and neuraminidase genes from the NCBI database and parsed them into 7 categories: accession number, host species, sampling year, country, subtype, gene name, and sequence. The sequences that were isolated from the human, avian, and swine populations were extracted and stored in a MySQL database for intensive analysis. The GC content and relative synonymous codon usage (RSCU) values were calculated using JAVA codes. As a result, correspondence analysis of the RSCU values yielded the unique codon usage pattern (CUP) of each subtype and revealed no extreme differences among the human, avian, and swine isolates. H5N1 subtype viruses exhibited little variation in CUPs compared with other subtypes, suggesting that the H5N1 CUP has not yet undergone significant changes within each host species. Moreover, some observations may be relevant to CUP variation that has occurred over time among the H3N2 subtype viruses isolated from humans. All the sequences were divided into 3 groups over time, and each group seemed to have preferred synonymous codon patterns for each amino acid, especially for arginine, glycine, leucine, and valine. The bioinformatics technique we introduce in this study may be useful in predicting the evolutionary patterns of pandemic viruses.

  12. SN56 neuronal cell death after 24 h and 14 days chlorpyrifos exposure through glutamate transmission dysfunction, increase of GSK-3β enzyme, β-amyloid and tau protein levels.

    PubMed

    Moyano, Paula; Frejo, María Teresa; Anadon, María José; García, José Manuel; Díaz, María Jesús; Lobo, Margarita; Sola, Emma; García, Jimena; Del Pino, Javier

    2018-06-01

    Chlorpyrifos (CPF) is an organophosphate insecticide described to induce cognitive disorders, both after acute and repeated administration. However, the mechanisms through which it induces these effects are unknown. CPF has been reported to produce basal forebrain cholinergic neuronal cell death, involved on learning and memory regulation, which could be the cause of such cognitive disorders. Neuronal cell death was partially mediated by oxidative stress generation, P75 NTR and α 7 -nAChRs gene expression alteration triggered through acetylcholinesterase (AChE) variants disruption, suggesting other mechanisms are involved. In this regard, CPF induces Aβ and tau proteins production and activation of GSK3β enzyme and alters glutamatergic transmission, which have been related with basal forebrain cholinergic neuronal cell death and development of cognitive disorders. According to these data, we hypothesized that CPF induces basal forebrain cholinergic neuronal cell death through induction of Aβ and tau proteins production, activation of GSK-3β enzyme and disruption of glutamatergic transmission. We evaluated this hypothesis in septal SN56 basal forebrain cholinergic neurons, after 24 h and 14 days CPF exposure. This study shows that CPF increases glutamate levels, upregulates GSK-3β gene expression, and increases the production of Aβ and phosphorylated tau proteins and all these effects reduced cell viability. CPF increases glutaminase activity and upregulates the VGLUT1 gene expression, which could mediate the disruption of glutamatergic transmission. Our present results provide new understanding of the mechanisms contributing to the harmful effects of CPF, and its possible relevance in the pathogenesis of neurodegenerative diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. H3.3 demarcates GC-rich coding and subtelomeric regions and serves as potential memory mark for virulence gene expression in Plasmodium falciparum

    PubMed Central

    Fraschka, Sabine Anne-Kristin; Henderson, Rob Wilhelmus Maria; Bártfai, Richárd

    2016-01-01

    Histones, by packaging and organizing the DNA into chromatin, serve as essential building blocks for eukaryotic life. The basic structure of the chromatin is established by four canonical histones (H2A, H2B, H3 and H4), while histone variants are more commonly utilized to alter the properties of specific chromatin domains. H3.3, a variant of histone H3, was found to have diverse localization patterns and functions across species but has been rather poorly studied in protists. Here we present the first genome-wide analysis of H3.3 in the malaria-causing, apicomplexan parasite, P. falciparum, which revealed a complex occupancy profile consisting of conserved and parasite-specific features. In contrast to other histone variants, PfH3.3 primarily demarcates euchromatic coding and subtelomeric repetitive sequences. Stable occupancy of PfH3.3 in these regions is largely uncoupled from the transcriptional activity and appears to be primarily dependent on the GC-content of the underlying DNA. Importantly, PfH3.3 specifically marks the promoter region of an active and poised, but not inactive antigenic variation (var) gene, thereby potentially contributing to immune evasion. Collectively, our data suggest that PfH3.3, together with other histone variants, indexes the P. falciparum genome to functionally distinct domains and contribute to a key survival strategy of this deadly pathogen. PMID:27555062

  14. Insulators to improve expression of a 3(')IgH LCR-driven reporter gene in transgenic mouse models.

    PubMed

    Guglielmi, Laurence; Le Bert, Marc; Truffinet, Véronique; Cogné, Michel; Denizot, Yves

    2003-08-01

    A locus control region (LCR) containing four transcriptional enhancers lies downstream of the IgH chain locus. We studied transgenes carrying a 3(')IgH LCR-driven GFP reporter gene for expression and B cell differentiation stage specificity. We also compared transgenes that were or were not flanked by two copies of the beta-globin HS4 insulator, an element defined by its ability to protect transgenes from the influences of surrounding genes at the insertion site. Results indicate that insulators are instrumental in sustaining GFP expression in GFP-3(')LCR transgenic mice when they were included. Flow cytometry experiments reported a strictly B cell specific GFP expression from pre-B cells in bone marrow to mature B cells in spleen. Despite addition of 5(')HS4 insulators to the GFP-3(')LCR construct, complete transgene silencing occurred in some transgenic lines and was systematically observed in ageing animals from all lines.

  15. A live attenuated cold adapted influenza A H7N3 virus vaccine provides protection against homologous and heterologous H7 viruses in mice and ferrets

    PubMed Central

    Joseph, Tomy; McAuliffe, Josephine; Lu, Bin; Vogel, Leatrice; Swayne, David; Jin, Hong; Kemble, George; Subbarao, Kanta

    2008-01-01

    The appearance of human infections caused by avian influenza A H7 subtype viruses underscore their pandemic potential and the need to develop vaccines to protect humans from viruses of this subtype. A live attenuated H7N3 virus vaccine was generated by reverse genetics using the HA and NA genes of a low pathogenicity A/chicken/BC/CN-6/04 (H7N3) virus and the six internal protein genes of the cold-adapted A/Ann Arbor/6/60 ca (H2N2) virus. The reassortant H7N3 BC 04 ca vaccine virus was temperature sensitive and showed attenuation in mice and ferrets. Intranasal immunization with one dose of the vaccine protected mice and ferrets when challenged with homologous and heterologous H7 viruses. The reassortant H7N3 BC 04 ca vaccine virus showed comparable levels of attenuation, immunogenicity and efficacy in mice and ferret models. The safety, immunogenicity, and efficacy of this vaccine in mice and ferrets support the evaluation of this vaccine in clinical trials. PMID:18585748

  16. A live attenuated cold-adapted influenza A H7N3 virus vaccine provides protection against homologous and heterologous H7 viruses in mice and ferrets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Tomy; MedImmune Inc., Mountain View, CA 94043; McAuliffe, Josephine

    2008-08-15

    The appearance of human infections caused by avian influenza A H7 subtype viruses underscores their pandemic potential and the need to develop vaccines to protect humans from viruses of this subtype. A live attenuated H7N3 virus vaccine was generated by reverse genetics using the HA and NA genes of a low pathogenicity A/chicken/BC/CN-6/04 (H7N3) virus and the six internal protein genes of the cold-adapted A/Ann Arbor/6/60 ca (H2N2) virus. The reassortant H7N3 BC 04 ca vaccine virus was temperature sensitive and showed attenuation in mice and ferrets. Intranasal immunization with one dose of the vaccine protected mice and ferrets whenmore » challenged with homologous and heterologous H7 viruses. The reassortant H7N3 BC 04 ca vaccine virus showed comparable levels of attenuation, immunogenicity and efficacy in mice and ferret models. The safety, immunogenicity, and efficacy of this vaccine in mice and ferrets support the evaluation of this vaccine in clinical trials.« less

  17. A role for repressive complexes and H3K9 di-methylation in PRDM5-associated brittle cornea syndrome.

    PubMed

    Porter, Louise F; Galli, Giorgio G; Williamson, Sally; Selley, Julian; Knight, David; Elcioglu, Nursel; Aydin, Ali; Elcioglu, Mustafa; Venselaar, Hanka; Lund, Anders H; Bonshek, Richard; Black, Graeme C; Manson, Forbes D

    2015-12-01

    Type 2 brittle cornea syndrome (BCS2) is an inherited connective tissue disease with a devastating ocular phenotype caused by mutations in the transcription factor PR domain containing 5 (PRDM5) hypothesized to exert epigenetic effects through histone and DNA methylation. Here we investigate clinical samples, including skin fibroblasts and retinal tissue from BCS2 patients, to elucidate the epigenetic role of PRDM5 and mechanisms of its dysregulation in disease. First we report abnormal retinal vascular morphology in the eyes of two cousins with BCS2 (PRDM5 Δ exons 9-14) using immunohistochemistry, and mine data from skin fibroblast expression microarrays from patients with PRDM5 mutations p.Arg590* and Δ exons 9-14, as well as from a PRDM5 ChIP-sequencing experiment. Gene ontology analysis of dysregulated PRDM5-target genes reveals enrichment for extracellular matrix (ECM) genes supporting vascular integrity and development. Q-PCR and ChIP-qPCR confirm upregulation of critical mediators of ECM stability in vascular structures (COL13A1, COL15A1, NTN1, CDH5) in patient fibroblasts. We identify H3K9 di-methylation (H3K9me2) at these PRDM5-target genes in fibroblasts, and demonstrate that the BCS2 mutation p.Arg83Cys diminishes interaction of PRDM5 with repressive complexes, including NuRD complex protein CHD4, and the repressive chromatin interactor HP1BP3, by co-immunoprecipitation combined with mass spectrometry. We observe reduced heterochromatin protein 1 binding protein 3 (HP1BP3) staining in the retinas of two cousins lacking exons 9-14 by immunohistochemistry, and dysregulated H3K9me2 in skin fibroblasts of three patients (p.Arg590*, p.Glu134* and Δ exons 9-14) by western blotting. These findings suggest that defective interaction of PRDM5 with repressive complexes, and dysregulation of H3K9me2, play a role in PRDM5-associated disease. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. (3-Aminopropyl)-4-methylpiperazine End-capped Poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based Multilayer Films for Gene Delivery

    PubMed Central

    Li, Cuicui; Tzeng, Stephany Y; Tellier, Liane E.; Green, Jordan J

    2013-01-01

    Biodegradable polyelectrolyte surfaces for gene delivery were created through electrospinning of biodegradable polycations combined with iterative solution-based multilayer coating. Poly(β-amino ester) (PBAE) poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-capped with 1-(3-aminopropyl)-4-methylpiperazine was utilized due to its ability to electrostatically interact with anionic molecules like DNA, its biodegradability, and its low cytotoxicity. A new DNA release system was developed for sustained release of DNA over 24 hours, accompanied by high exogenous gene expression in primary human glioblastoma (GB) cells. Electrospinning a different PBAE, poly(1,4-butanediol diacrylate-co-4,4′-trimethylenedipiperidine), and its combination with polyelectrolyte 1-(3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayers are promising for DNA release and intracellular delivery from a surface. PMID:23755861

  19. The Phaseolus vulgaris PvTRX1h gene regulates plant hormone biosynthesis in embryogenic callus from common bean.

    PubMed

    Barraza, Aarón; Cabrera-Ponce, José L; Gamboa-Becerra, Roberto; Luna-Martínez, Francisco; Winkler, Robert; Álvarez-Venegas, Raúl

    2015-01-01

    Common bean is the most important grain legume in the human diet. Bean improvement efforts have been focused on classical breeding techniques because bean is recalcitrant to both somatic embryogenesis and in vitro regeneration. This study was undertaken to better understand the process of somatic embryogenesis in the common bean. We focused on the mechanisms by which somatic embryogenesis in plants is regulated and the interaction of these mechanisms with plant hormones. Specifically, we examined the role of the gene PvTRX1h, an ortholog of a major known histone lysine methyltransferase in plants, in somatic embryo generation. Given the problems with regeneration and transformation, we chose to develop and use regeneration-competent callus that could be successively transformed. Embryogenic calli of common bean were generated and transformed with the PvTRX1hRiA construction to down-regulate, by RNA interference, expression of the PvTRX1h gene. Plant hormone content was measured by mass spectrometry and gene expression was assessed by q-PCR. Detailed histological analysis was performed on selected transgenic embryogenic calli. It was determined that down-regulation of PvTRX1h gene was accompanied by altered concentrations of plant hormones in the calli. PvTRX1h regulated the expression of genes involved in auxin biosynthesis and embryogenic calli in which PvTRX1h was down-regulated were capable of differentiation into somatic embryos. Also, down-regulation of PvTRX1h showed increased transcript abundance of a gene coding for a second histone lysine methyltransferase, PvASHH2h. Accordingly, the PvTRX1h gene is involved in the synthesis of plant hormones in common bean callus. These results shed light on the crosstalk among histone methyltransferases and plant hormone signaling and on gene regulation during somatic embryo generation.

  20. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Advanced Simulation H Appendix H to Part... Simulation This appendix provides guidelines and a means for achieving flightcrew training in advanced... simulator, as appropriate. Advanced Simulation Training Program For an operator to conduct Level C or D...

  1. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Advanced Simulation H Appendix H to Part... Simulation This appendix provides guidelines and a means for achieving flightcrew training in advanced... simulator, as appropriate. Advanced Simulation Training Program For an operator to conduct Level C or D...

  2. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Advanced Simulation H Appendix H to Part... Simulation This appendix provides guidelines and a means for achieving flightcrew training in advanced... simulator, as appropriate. Advanced Simulation Training Program For an operator to conduct Level C or D...

  3. Elucidation of the 14-3-3ζ interactome reveals critical roles of RNA-splicing factors during adipogenesis.

    PubMed

    Mugabo, Yves; Sadeghi, Mina; Fang, Nancy N; Mayor, Thibault; Lim, Gareth E

    2018-05-04

    Adipogenesis involves a complex signaling network requiring strict temporal and spatial organization of effector molecules. Molecular scaffolds, such as 14-3-3 proteins, facilitate such organization, and we have previously identified 14-3-3ζ as an essential scaffold in adipocyte differentiation. The interactome of 14-3-3ζ is large and diverse, and it is possible that novel adipogenic factors may be present within it, but this possibility has not yet been tested. Herein, we generated mouse embryonic fibroblasts from mice overexpressing a tandem affinity purification (TAP) epitope-tagged 14-3-3ζ molecule. After inducing adipogenesis, TAP-14-3-3ζ complexes were purified, followed by MS analysis to determine the 14-3-3ζ interactome. We observed more than 100 proteins that were unique to adipocyte differentiation, 56 of which were novel interacting partners. Among these, we were able to identify previously established regulators of adipogenesis ( i.e. Ptrf/Cavin1) within the 14-3-3ζ interactome, confirming the utility of this approach to detect adipogenic factors. We found that proteins related to RNA metabolism, processing, and splicing were enriched in the interactome. Analysis of transcriptomic data revealed that 14-3-3ζ depletion in 3T3-L1 cells affected alternative splicing of mRNA during adipocyte differentiation. siRNA-mediated depletion of RNA-splicing factors within the 14-3-3ζ interactome, that is, of Hnrpf, Hnrpk, Ddx6, and Sfpq, revealed that they have essential roles in adipogenesis and in the alternative splicing of Pparg and the adipogenesis-associated gene Lpin1 In summary, we have identified novel adipogenic factors within the 14-3-3ζ interactome. Further characterization of additional proteins within the 14-3-3ζ interactome may help identify novel targets to block obesity-associated expansion of adipose tissues. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Internal Gene Cassette from a Genotype S H9N2 Avian Influenza Virus Attenuates the Pathogenicity of H5 Viruses in Chickens and Mice.

    PubMed

    Hao, Xiaoli; Wang, Jiongjiong; Hu, Jiao; Lu, Xiaolong; Gao, Zhao; Liu, Dong; Li, Juan; Wang, Xiaoquan; Gu, Min; Hu, Zenglei; Liu, Xiaowen; Hu, Shunlin; Xu, Xiulong; Peng, Daxin; Jiao, Xinan; Liu, Xiufan

    2017-01-01

    H9N2 avian influenza virus (AIV) of genotype S frequently donate internal genes to facilitate the generation of novel reassortants such as H7N9, H10N8, H5N2 and H5N6 AIVs, posing an enormous threat to both human health and poultry industry. However, the pathogenicity and transmission of reassortant H5 viruses with internal gene cassette of genotype S H9N2-origin in chickens and mice remain unknown. In this study, four H5 reassortants carrying the HA and NA genes from different clades of H5 viruses and the remaining internal genes from an H9N2 virus of the predominant genotype S were generated by reverse genetics. We found that all four H5 reassortant viruses showed attenuated virulence in both chickens and mice, thus leading to increased the mean death times compared to the corresponding parental viruses. Consistently, the polymerase activity and replication ability in mammalian and avian cells, and the cytokine responses in the lungs of chickens and mice were also decreased when compared to their respective parental viruses. Moreover, these reassortants transmitted from birds to birds by direct contact but not by an airborne route. Our data indicate that the internal genes as a whole cassette from genotype S H9N2 viruses play important roles in reducing the pathogenicity of the H5 recombinants in chickens and mice, and might contribute to the circulation in avian or mammalian hosts.

  5. Internal Gene Cassette from a Genotype S H9N2 Avian Influenza Virus Attenuates the Pathogenicity of H5 Viruses in Chickens and Mice

    PubMed Central

    Hao, Xiaoli; Wang, Jiongjiong; Hu, Jiao; Lu, Xiaolong; Gao, Zhao; Liu, Dong; Li, Juan; Wang, Xiaoquan; Gu, Min; Hu, Zenglei; Liu, Xiaowen; Hu, Shunlin; Xu, Xiulong; Peng, Daxin; Jiao, Xinan; Liu, Xiufan

    2017-01-01

    H9N2 avian influenza virus (AIV) of genotype S frequently donate internal genes to facilitate the generation of novel reassortants such as H7N9, H10N8, H5N2 and H5N6 AIVs, posing an enormous threat to both human health and poultry industry. However, the pathogenicity and transmission of reassortant H5 viruses with internal gene cassette of genotype S H9N2-origin in chickens and mice remain unknown. In this study, four H5 reassortants carrying the HA and NA genes from different clades of H5 viruses and the remaining internal genes from an H9N2 virus of the predominant genotype S were generated by reverse genetics. We found that all four H5 reassortant viruses showed attenuated virulence in both chickens and mice, thus leading to increased the mean death times compared to the corresponding parental viruses. Consistently, the polymerase activity and replication ability in mammalian and avian cells, and the cytokine responses in the lungs of chickens and mice were also decreased when compared to their respective parental viruses. Moreover, these reassortants transmitted from birds to birds by direct contact but not by an airborne route. Our data indicate that the internal genes as a whole cassette from genotype S H9N2 viruses play important roles in reducing the pathogenicity of the H5 recombinants in chickens and mice, and might contribute to the circulation in avian or mammalian hosts. PMID:29075244

  6. Decreased expression of 14-3-3 σ, an early event of malignant transformation of respiratory epithelium, also facilitates progression of squamous cell lung cancer

    PubMed Central

    Sun, Nan; Wu, Yongkai; Huang, Bo; Liu, Qian; Dong, Yinan; Ding, Jianqiao; Liu, Yongyu

    2015-01-01

    Background It has been shown that 14-3-3 σ serves as a tumor suppressor gene, and is downregulated in various tumor tissues. However, the role of 14-3-3 σ during the initiation and progression of lung squamous cell carcinoma (SqCC) is not well understood. Methods The expression status of 14-3-3 σ in archival tissue samples from 40 lung SqCC patients (36 with normal bronchia, 19 squamous metaplasia, and 17 dysplasia/carcinoma in situ, in their tissue samples) was examined by immunohistochemical analysis. The proliferation rate and tumor formation ability of the H520 cell transfected with 14-3-3 σ was tested with methyl thiazolyl tetrazolium assay and nude mice subcutaneous injection, respectively. Results In the normal bronchial epithelia, 14-3-3 σ was highly expressed, whereas it was significantly decreased in precancerous and cancerous tissues. Compared with matched invasive cancer tissues, the expression level of 14-3-3 σ in squamous metaplasia was significantly higher (P = 0.049), while that in dysplasia/carcinoma in situ showed no significant changes (P = 0.135). Statistical analysis showed that the expression level of 14-3-3 σ in tumor tissue was associated with the differentiation grade of the tumor (P = 0.001) and the prognosis of the patient (P = 0.003). The overexpression of 14-3-3 σ significantly suppressed the proliferation of H520 cells in vitro and in vivo. Conclusion The inactivation of 14-3-3 σ may be a very early event in tumorigenesis and could facilitate the initiation and progression of lung SqCC in a sustainable way. PMID:26557909

  7. Inhibitors of adhesion molecules expression; the synthesis and pharmacological properties of 10H-pyrazino[2,3-b][1,4]benzothiazine derivatives.

    PubMed

    Kaneko, Toshihiko; Clark, Richard S J; Ohi, Norihito; Kawahara, Tetsuya; Akamatsu, Hiroshi; Ozaki, Fumihiro; Kamada, Atsushi; Okano, Kazuo; Yokohama, Hiromitsu; Muramoto, Kenzo; Ohkuro, Masayoshi; Takenaka, Osamu; Kobayashi, Seiichi

    2002-07-01

    During a search for novel, orally-active inhibitors of upregulation of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1), we found a new series of 10H-pyrazino[2,3-b][1,4]benzothiazine derivatives to be potent ICAM-1 inhibitors. Of these compounds, N-[1-(10H-Pyrazino[2,3-b][1,4]benzothiazin-8-ylmethyl)piperidin-4-yl]-N',N'-dimethylsulfamide 7p showed the potent oral inhibitory activities against neutrophil migration in a murine interleukin-1 (IL-1) induced paw inflammation model. The synthesis and structure-activity relationships of these amide derivatives are described.

  8. Regulation of the angiopoietin-2 gene by hCG in ovarian cancer cell line OVCAR-3.

    PubMed

    Pietrowski, D; Wiehle, P; Sator, M; Just, A; Keck, C

    2010-05-01

    Angiogenesis is a crucial step in growing tissues including many tumors. It is regulated by pro- and antiangiogenic factors including the family of angiopoietins and their corresponding receptors. In previous work we have shown that in human ovarian cells the expression of angiopoietin 2 (ANG2) is regulated by human chorionic gonadotropin (hCG). To better understand the mechanisms of hCG-dependent regulation of the ANG2-gene we have now investigated upstream regulatory active elements of the ANG2-promoter in the ovarian carcinoma cell line OVCAR-3. We cloned several ANG2-promoter-fragments of different lengths into a luciferase reporter-gene-vector and analyzed the corresponding ANG2 expression before and after hCG stimulation. We identified regions of the ANG2-promoter between 1 048 bp and 613 bp upstream of the transcriptional start site where hCG-dependent pathways promote a significant downregulation of gene expression. By sequence analysis of this area we found several potential binding sites for transcription factors that are involved in regulation of ANG2-expression, vascular development and ovarian function. These encompass the forkhead family transcription factors FOXC2 and FOXO1 as well as the CCAAT/enhancer binding protein family (C/EBP). In conclusion, we have demonstrated that the regulation of ANG2-expression in ovarian cancer cells is hCG-dependent and we suggest that forkhead transcription factor and C/EBP-dependent pathways are involved in the regulation of ANG2-expression in ovarian cancer cells. Georg Thieme Verlag KG Stuttgart-New York.

  9. A 3-dimensional human embryonic stem cell (hESC)-derived model to detect developmental neurotoxicity of nanoparticles.

    PubMed

    Hoelting, Lisa; Scheinhardt, Benjamin; Bondarenko, Olesja; Schildknecht, Stefan; Kapitza, Marion; Tanavde, Vivek; Tan, Betty; Lee, Qian Yi; Mecking, Stefan; Leist, Marcel; Kadereit, Suzanne

    2013-04-01

    Nanoparticles (NPs) have been shown to accumulate in organs, cross the blood-brain barrier and placenta, and have the potential to elicit developmental neurotoxicity (DNT). Here, we developed a human embryonic stem cell (hESC)-derived 3-dimensional (3-D) in vitro model that allows for testing of potential developmental neurotoxicants. Early central nervous system PAX6(+) precursor cells were generated from hESCs and differentiated further within 3-D structures. The 3-D model was characterized for neural marker expression revealing robust differentiation toward neuronal precursor cells, and gene expression profiling suggested a predominantly forebrain-like development. Altered neural gene expression due to exposure to non-cytotoxic concentrations of the known developmental neurotoxicant, methylmercury, indicated that the 3-D model could detect DNT. To test for specific toxicity of NPs, chemically inert polyethylene NPs (PE-NPs) were chosen. They penetrated deep into the 3-D structures and impacted gene expression at non-cytotoxic concentrations. NOTCH pathway genes such as HES5 and NOTCH1 were reduced in expression, as well as downstream neuronal precursor genes such as NEUROD1 and ASCL1. FOXG1, a patterning marker, was also reduced. As loss of function of these genes results in severe nervous system impairments in mice, our data suggest that the 3-D hESC-derived model could be used to test for Nano-DNT.

  10. Mfsd14a (Hiat1) gene disruption causes globozoospermia and infertility in male mice.

    PubMed

    Doran, Joanne; Walters, Cara; Kyle, Victoria; Wooding, Peter; Hammett-Burke, Rebecca; Colledge, William Henry

    2016-07-01

    The Mfsd14a gene, previously called Hiat1, encodes a transmembrane protein of unknown function with homology to the solute carrier protein family. To study the function of the MFSD14A protein, mutant mice (Mus musculus, strain 129S6Sv/Ev) were generated with the Mfsd14a gene disrupted with a LacZ reporter gene. Homozygous mutant mice are viable and healthy, but males are sterile due to a 100-fold reduction in the number of spermatozoa in the vas deferens. Male mice have adequate levels of testosterone and show normal copulatory behaviour. The few spermatozoa that are formed show rounded head defects similar to those found in humans with globozoospermia. Spermatogenesis proceeds normally up to the round spermatid stage, but the subsequent structural changes associated with spermiogenesis are severely disrupted with failure of acrosome formation, sperm head condensation and mitochondrial localization to the mid-piece of the sperm. Staining for β-galactosidase activity as a surrogate for Mfsd14a expression indicates expression in Sertoli cells, suggesting that MFSD14A may transport a solute from the bloodstream that is required for spermiogenesis. © 2016 Society for Reproduction and Fertility.

  11. H3S10ph broadly marks early-replicating domains in interphase ESCs and shows reciprocal antagonism with H3K9me2.

    PubMed

    Chen, Carol C L; Goyal, Preeti; Karimi, Mohammad M; Abildgaard, Marie H; Kimura, Hiroshi; Lorincz, Matthew C

    2018-01-01

    Phosphorylation of histone H3 at serine 10 (H3S10ph) by Aurora kinases plays an important role in mitosis; however, H3S10ph also marks regulatory regions of inducible genes in interphase mammalian cells, implicating mitosis-independent functions. Using the fluorescent ubiquitin-mediated cell cycle indicator (FUCCI), we found that 30% of the genome in interphase mouse embryonic stem cells (ESCs) is marked with H3S10ph. H3S10ph broadly demarcates gene-rich regions in G1 and is positively correlated with domains of early DNA replication timing (RT) but negatively correlated with H3K9me2 and lamin-associated domains (LADs). Consistent with mitosis-independent kinase activity, this pattern was preserved in ESCs treated with Hesperadin, a potent inhibitor of Aurora B/C kinases. Disruption of H3S10ph by expression of nonphosphorylatable H3.3S10A results in ectopic spreading of H3K9me2 into adjacent euchromatic regions, mimicking the phenotype observed in Drosophila JIL-1 kinase mutants . Conversely, interphase H3S10ph domains expand in Ehmt1 (also known as Glp ) null ESCs, revealing that H3S10ph deposition is restricted by H3K9me2. Strikingly, spreading of H3S10ph at RT transition regions (TTRs) is accompanied by aberrant transcription initiation of genes co-oriented with the replication fork in Ehmt1 -/- and Ehmt2 -/- ESCs, indicating that establishment of repressive chromatin on the leading strand following DNA synthesis may depend upon these lysine methyltransferases. H3S10ph is also anti-correlated with H3K9me2 in interphase murine embryonic fibroblasts (MEFs) and is restricted to intragenic regions of actively transcribing genes by EHMT2. Taken together, these observations reveal that H3S10ph may play a general role in restricting the spreading of repressive chromatin in interphase mammalian cells. © 2018 Chen et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Assessment of the 3H and 7Be generation in the IFMIF lithium loop

    NASA Astrophysics Data System (ADS)

    Simakov, S. P.; Fischer, U.; von Möllendorff, U.

    2004-08-01

    A complete evaluation of the 7Be and tritium inventory induced in the IFMIF lithium loop by deuterons and neutrons was performed on the basis of 3D Monte Carlo calculations with the M CDeLicious code and evaluated d-Li and n-Li cross-section data. The associated reaction cross-sections and thick lithium target yields were checked against available experimental data. The IFMIF calculations showed that the deuteron beam will produce 1.5 g of 7Be and 6 g of 3H per full power year in the lithium jet. The tritium generation in the whole lithium loop due to neutron induced reactions is at a rate of 1.5 g/fpy. The radio-active decay results in an equilibrium concentration 0.3 mg of 7Be and 50 mg of 3H per 1 kg of circulating lithium if no radioactive products are removed from the loop.

  13. Silencing PRDM14 expression by an innovative RNAi therapy inhibits stemness, tumorigenicity, and metastasis of breast cancer

    PubMed Central

    Taniguchi, Hiroaki; Hoshino, Daisuke; Moriya, Chiharu; Zembutsu, Hitoshi; Nishiyama, Nobuhiro; Yamamoto, Hiroyuki; Kataoka, Kazunori; Imai, Kohzoh

    2017-01-01

    PR domain zinc finger protein 14 (PRDM14) maintains stemness in embryonic stem cells via epigenetic mechanisms. Although PRDM14 is elevated in several cancers, it is unclear if and how PRDM14 confers stem cell-like properties and epigenetic changes to cancer cells. Here, we examined the phenotypic characteristics and epigenetic and gene expression profiles of cancer cells that differentially express PRDM14, and assessed the potential of PRDM14-targeted cancer therapy. PRDM14 expression was markedly increased in many different cancer types and correlated with poor survival of breast cancer patients. PRDM14 conferred stem cell-like phenotypes to cancer cells and regulated the expression of genes involved in cancer stemness, metastasis, and chemoresistance. PRDM14 also reduced the methylation of proto-oncogene and stemness gene promoters and PRDM14-binding regions were primarily occupied by histone H3 Lys-4 trimethylation (H3K4me3), both of which are positively correlated with gene expression. Moreover, strong PRDM14 binding sites coincided with promoters containing both H3K4me3 and H3K27me3 histone marks. Using calcium phosphate hybrid micelles as an RNAi delivery system, silencing of PRDM14 expression by chimera RNAi reduced tumor size and metastasis in vivo without causing adverse effects. Conditional loss of PRDM14 function also improved survival of MMTV-Wnt-1 transgenic mice, a spontaneous model of murine breast cancer. Our findings suggest that PRDM14 inhibition may be an effective and novel therapy for cancer stem cells. PMID:28423353

  14. Plant Aquaporin AtPIP1;4 Links Apoplastic H2O2 Induction to Disease Immunity Pathways1[OPEN

    PubMed Central

    Tian, Shan; Wang, Xiaobing; Li, Ping; Wang, Hao; Ji, Hongtao; Xie, Junyi; Qiu, Qinglei

    2016-01-01

    Hydrogen peroxide (H2O2) is a stable component of reactive oxygen species, and its production in plants represents the successful recognition of pathogen infection and pathogen-associated molecular patterns (PAMPs). This production of H2O2 is typically apoplastic but is subsequently associated with intracellular immunity pathways that regulate disease resistance, such as systemic acquired resistance and PAMP-triggered immunity. Here, we elucidate that an Arabidopsis (Arabidopsis thaliana) aquaporin (i.e. the plasma membrane intrinsic protein AtPIP1;4) acts to close the cytological distance between H2O2 production and functional performance. Expression of the AtPIP1;4 gene in plant leaves is inducible by a bacterial pathogen, and the expression accompanies H2O2 accumulation in the cytoplasm. Under de novo expression conditions, AtPIP1;4 is able to mediate the translocation of externally applied H2O2 into the cytoplasm of yeast (Saccharomyces cerevisiae) cells. In plant cells treated with H2O2, AtPIP1;4 functions as an effective facilitator of H2O2 transport across plasma membranes and mediates the translocation of externally applied H2O2 from the apoplast to the cytoplasm. The H2O2-transport role of AtPIP1;4 is essentially required for the cytoplasmic import of apoplastic H2O2 induced by the bacterial pathogen and two typical PAMPs in the absence of induced production of intracellular H2O2. As a consequence, cytoplasmic H2O2 quantities increase substantially while systemic acquired resistance and PAMP-triggered immunity are activated to repress the bacterial pathogenicity. By contrast, loss-of-function mutation at the AtPIP1;4 gene locus not only nullifies the cytoplasmic import of pathogen- and PAMP-induced apoplastic H2O2 but also cancels the subsequent immune responses, suggesting a pivotal role of AtPIP1;4 in apocytoplastic signal transduction in immunity pathways. PMID:26945050

  15. Genomic organization and expression of the human MSH3 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Atsushi; Ikejima, Miyoko; Suzuki, Noriko

    1996-02-01

    We have studied the expression and genomic organization of the human MSH3 gene, which encodes a human homologue of the bacterial DNA mismatch repair protein MutS. This gene is located upstream of the dihydrofolate reductase (DHFR) gene. Northern analysis has demonstrated that the hMSH3 gene is expressed in a variety of human tissues at low levels, like the DHFR gene. Characterization of cosmid clones has shown that the hMSH3 gene consists of 24 exons spanning at least 160 kb. All exon-intron junction sequences match the classical GT/AG rule, except that intron 6 has AT and AA at the ends. Twomore » major transcripts of 5.0 and 3.8 kb have been shown to be derived from the differential use of two polyadenylation sites. Elucidation of the complete genomic organization and the nucleotide sequences of the introns of the hMSH3 gene should be useful for studying the function of this gene and the possible involvement of specific mutations of the hMSH3 gene in some diseases. 34 refs., 5 figs., 1 tab.« less

  16. Identification of eight candidate target genes of the recurrent 3p12-p14 loss in cervical cancer by integrative genomic profiling.

    PubMed

    Lando, Malin; Wilting, Saskia M; Snipstad, Kristin; Clancy, Trevor; Bierkens, Mariska; Aarnes, Eva-Katrine; Holden, Marit; Stokke, Trond; Sundfør, Kolbein; Holm, Ruth; Kristensen, Gunnar B; Steenbergen, Renske D M; Lyng, Heidi

    2013-05-01

    The pathogenetic role, including its target genes, of the recurrent 3p12-p14 loss in cervical cancer has remained unclear. To determine the onset of the event during carcinogenesis, we used microarray techniques and found that the loss was the most frequent 3p event, occurring in 61% of 92 invasive carcinomas, in only 2% of 43 high-grade intraepithelial lesions (CIN2/3), and in 33% of 6 CIN3 lesions adjacent to invasive carcinomas, suggesting a role in acquisition of invasiveness or early during the invasive phase. We performed an integrative DNA copy number and expression analysis of 77 invasive carcinomas, where all genes within the recurrent region were included. We selected eight genes, THOC7, PSMD6, SLC25A26, TMF1, RYBP, SHQ1, EBLN2, and GBE1, which were highly down-regulated in cases with loss, as confirmed at the protein level for RYBP and TMF1 by immunohistochemistry. The eight genes were subjected to network analysis based on the expression profiles, revealing interaction partners of proteins encoded by the genes that were coordinately regulated in tumours with loss. Several partners were shared among the eight genes, indicating crosstalk in their signalling. Gene ontology analysis showed enrichment of biological processes such as apoptosis, proliferation, and stress response in the network and suggested a relationship between down-regulation of the eight genes and activation of tumourigenic pathways. Survival analysis showed prognostic impact of the eight-gene signature that was confirmed in a validation cohort of 74 patients and was independent of clinical parameters. These results support the role of the eight candidate genes as targets of the 3p12-p14 loss in cervical cancer and suggest that the strong selection advantage of the loss during carcinogenesis might be caused by a synergetic effect of several tumourigenic processes controlled by these targets. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley

  17. Global analysis of H3K27me3 as an epigenetic marker in prostate cancer progression.

    PubMed

    Ngollo, Marjolaine; Lebert, Andre; Daures, Marine; Judes, Gaelle; Rifai, Khaldoun; Dubois, Lucas; Kemeny, Jean-Louis; Penault-Llorca, Frederique; Bignon, Yves-Jean; Guy, Laurent; Bernard-Gallon, Dominique

    2017-04-12

    H3K27me3 histone marks shape the inhibition of gene transcription. In prostate cancer, the deregulation of H3K27me3 marks might play a role in prostate tumor progression. We investigated genome-wide H3K27me3 histone methylation profile using chromatin immunoprecipitation (ChIP) and 2X400K promoter microarrays to identify differentially-enriched regions in biopsy samples from prostate cancer patients. H3K27me3 marks were assessed in 34 prostate tumors: 11 with Gleason score > 7 (GS > 7), 10 with Gleason score ≤ 7 (GS ≤ 7), and 13 morphologically normal prostate samples. Here, H3K27me3 profiling identified an average of 386 enriched-genes on promoter regions in healthy control group versus 545 genes in GS ≤ 7 and 748 genes in GS > 7 group. We then ran a factorial discriminant analysis (FDA) and compared the enriched genes in prostate-tumor biopsies and normal biopsies using ANOVA to identify significantly differentially-enriched genes. The analysis identified ALG5, EXOSC8, CBX1, GRID2, GRIN3B, ING3, MYO1D, NPHP3-AS1, MSH6, FBXO11, SND1, SPATS2, TENM4 and TRA2A genes. These genes are possibly associated with prostate cancer. Notably, the H3K27me3 histone mark emerged as a novel regulatory mechanism in poor-prognosis prostate cancer. Our findings point to epigenetic mark H3K27me3 as an important event in prostate carcinogenesis and progression. The results reported here provide new molecular insights into the pathogenesis of prostate cancer.

  18. Arbuscular Mycorrhizal Fungal 14-3-3 Proteins Are Involved in Arbuscule Formation and Responses to Abiotic Stresses During AM Symbiosis

    PubMed Central

    Sun, Zhongfeng; Song, Jiabin; Xin, Xi’an; Xie, Xianan; Zhao, Bin

    2018-01-01

    Arbuscular mycorrhizal (AM) fungi are soil-borne fungi belonging to the ancient phylum Glomeromycota and are important symbionts of the arbuscular mycorrhiza, enhancing plant nutrient acquisition and resistance to various abiotic stresses. In contrast to their significant physiological implications, the molecular basis involved is poorly understood, largely due to their obligate biotrophism and complicated genetics. Here, we identify and characterize three genes termed Fm201, Ri14-3-3 and RiBMH2 that encode 14-3-3-like proteins in the AM fungi Funneliformis mosseae and Rhizophagus irregularis, respectively. The transcriptional levels of Fm201, Ri14-3-3 and RiBMH2 are strongly induced in the pre-symbiotic and symbiotic phases, including germinating spores, intraradical hyphae- and arbuscules-enriched roots. To functionally characterize the Fm201, Ri14-3-3 and RiBMH2 genes, we took advantage of a yeast heterologous system owing to the lack of AM fungal transformation systems. Our data suggest that all three genes can restore the lethal Saccharomyces cerevisiae bmh1 bmh2 double mutant on galactose-containing media. Importantly, yeast one-hybrid analysis suggests that the transcription factor RiMsn2 is able to recognize the STRE (CCCCT/AGGGG) element present in the promoter region of Fm201 gene. More importantly, Host-Induced Gene Silencing of both Ri14-3-3 and RiBMH2 in Rhizophagus irregularis impairs the arbuscule formation in AM symbiosis and inhibits the expression of symbiotic PT4 and MST2 genes from plant and fungal partners, respectively. We further subjected the AM fungus-Medicago truncatula association system to drought or salinity stress. Accordingly, the expression profiles in both mycorrhizal roots and extraradical hyphae reveal that these three 14-3-3-like genes are involved in response to drought or salinity stress. Collectively, our results provide new insights into molecular functions of the AM fungal 14-3-3 proteins in abiotic stress responses and

  19. Arbuscular Mycorrhizal Fungal 14-3-3 Proteins Are Involved in Arbuscule Formation and Responses to Abiotic Stresses During AM Symbiosis.

    PubMed

    Sun, Zhongfeng; Song, Jiabin; Xin, Xi'an; Xie, Xianan; Zhao, Bin

    2018-01-01

    Arbuscular mycorrhizal (AM) fungi are soil-borne fungi belonging to the ancient phylum Glomeromycota and are important symbionts of the arbuscular mycorrhiza, enhancing plant nutrient acquisition and resistance to various abiotic stresses. In contrast to their significant physiological implications, the molecular basis involved is poorly understood, largely due to their obligate biotrophism and complicated genetics. Here, we identify and characterize three genes termed Fm201 , Ri14-3-3 and RiBMH2 that encode 14-3-3-like proteins in the AM fungi Funneliformis mosseae and Rhizophagus irregularis , respectively. The transcriptional levels of Fm201 , Ri14-3-3 and RiBMH2 are strongly induced in the pre-symbiotic and symbiotic phases, including germinating spores, intraradical hyphae- and arbuscules-enriched roots. To functionally characterize the Fm201 , Ri14-3-3 and RiBMH2 genes, we took advantage of a yeast heterologous system owing to the lack of AM fungal transformation systems. Our data suggest that all three genes can restore the lethal Saccharomyces cerevisiae bmh1 bmh2 double mutant on galactose-containing media. Importantly, yeast one-hybrid analysis suggests that the transcription factor RiMsn2 is able to recognize the STRE (CCCCT/AGGGG) element present in the promoter region of Fm201 gene. More importantly, Host-Induced Gene Silencing of both Ri14-3-3 and RiBMH2 in Rhizophagus irregularis impairs the arbuscule formation in AM symbiosis and inhibits the expression of symbiotic PT4 and MST2 genes from plant and fungal partners, respectively. We further subjected the AM fungus- Medicago truncatula association system to drought or salinity stress. Accordingly, the expression profiles in both mycorrhizal roots and extraradical hyphae reveal that these three 14-3-3-like genes are involved in response to drought or salinity stress. Collectively, our results provide new insights into molecular functions of the AM fungal 14-3-3 proteins in abiotic stress responses and

  20. Teledyne H1RG, H2RG, and H4RG Noise Generator

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.

    2015-01-01

    This paper describes the near-infrared detector system noise generator (NG) that we wrote for the James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec). NG simulates many important noise components including; (1) white "read noise", (2) residual bias drifts, (3) pink 1/f noise, (4) alternating column noise, and (5) picture frame noise. By adjusting the input parameters, NG can simulate noise for Teledyne's H1RG, H2RG, and H4RG detectors with and without Teledyne's SIDECAR ASIC IR array controller. NG can be used as a starting point for simulating astronomical scenes by adding dark current, scattered light, and astronomical sources into the results from NG. NG is written in Python-3.4.

  1. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Advanced Simulation H Appendix H to Part... Simulation Link to an amendment published at 78 FR 67846, Nov. 12, 2013. This appendix provides guidelines... Simulation Training Program For an operator to conduct Level C or D training under this appendix all required...

  2. Functional characterization of the 5'-flanking and the promoter region of the human UCP3 (hUCP3) gene.

    PubMed

    Tu, N; Chen, H; Winnikes, U; Reinert, I; Pirke, K M; Lentes, K U

    2000-09-22

    Uncoupling protein-3 (UCP3) is considered as an important regulator of energy expenditure and thermogenesis in humans. To get insight into the mechanisms regulating its expression we have cloned and characterized about 5 kb of the 5'-flanking region of the human UCP3 (hUCP3) gene. 5'-RACE analysis suggested a single transcription initiation site 187 bp upstream from the translational start site. The promoter region contains both TATA and CAAT boxes as well as consensus motifs for PPRE, TRE, CRE and muscle-specific factors like MyoD and MEF2 sites. Functional characterization of a 3 kb hUCP3 promoter fragment in multiple cell lines using a CAT-ELISA identified a cis-acting negative regulatory element between -2983 and -982 while the region between -982 and -284 showed greatly increased basal promoter activity suggesting the presence of a strong enhancer element. Promoter activity was particularly enhanced in the murine skeletal muscle cell line C2C12 reflecting the tissue-selective expression pattern of UCP3.

  3. Synthesis and isomerization of acridine substituted 1,3-thiazolidin-4-ones and 4-oxo-1,3-thiazolidin-5-ylidene acetates. An experimental and computational study

    NASA Astrophysics Data System (ADS)

    Bečka, Michal; Vilková, Mária; Šoral, Michal; Potočňák, Ivan; Breza, Martin; Béres, Tibor; Imrich, Ján

    2018-02-01

    Acridine thiosemicarbazones 3a-g, obtained through a two-step reaction between aromatic isothiocyanates and hydrazine followed by the treatment with acridin-9-carbaldehyde, in reaction with bifunctional reagents; methyl bromoacetate (MBA) and diethyl acetylenedicarboxylate (DEAD) afforded acridin-thiazolidinone derivatives 4a-g and 7a-f and not their regioisomers 6a-g and 9a-f. Derivatives 4a-g and 7a-f exhibit ZC2N6EN7C8 configuration. Upon standing in DMSO-d6 the thiazolidinones 4a-g and 7a-f spontaneously isomerized into ZC2N6ZN7C8 isomers 5a-g and 8a-f to give a mixture of the both stereoisomers. All compounds were fully characterized by multinuclear NMR, mass spectrometry (MS) and X-ray crystal structure of 4b is also described. X-ray diffraction study revealed that the representative compound 4b crystallized in the monoclinic crystal system with the C2/c space group and Z = 4. Intramolecular C1‧sbnd H1‧⋯N-7 hydrogen bond between the acridine proton H-1‧ and nitrogen N-7 of linker existed. This hydrogen bond is responsible for the E isomerism on C-8 atom which was observed in the NMR experiments. Quantum-chemical calculations and NOESY experiments confirmed ZC2N6ZN7C8 configuration of the transformed stereoisomers 5a-g and 8a-f.

  4. Unraveling 14-3-3 proteins in C4 panicoids with emphasis on model plant Setaria italica reveals phosphorylation-dependent subcellular localization of RS splicing factor.

    PubMed

    Kumar, Karunesh; Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Roy, Riti; Prasad, Manoj

    2015-01-01

    14-3-3 proteins are a large multigenic family of regulatory proteins ubiquitously found in eukaryotes. In plants, 14-3-3 proteins are reported to play significant role in both development and response to stress stimuli. Therefore, considering their importance, genome-wide analyses have been performed in many plants including Arabidopsis, rice and soybean. But, till date, no comprehensive investigation has been conducted in any C4 panicoid crops. In view of this, the present study was performed to identify 8, 5 and 26 potential 14-3-3 gene family members in foxtail millet (Si14-3-3), sorghum (Sb14-3-3) and maize (Zm14-3-3), respectively. In silico characterization revealed large variations in their gene structures; segmental and tandem duplications have played a major role in expansion of these genes in foxtail millet and maize. Gene ontology annotation showed the participation of 14-3-3 proteins in diverse biological processes and molecular functions, and in silico expression profiling indicated their higher expression in all the investigated tissues. Comparative mapping was performed to derive the orthologous relationships between 14-3-3 genes of foxtail millet and other Poaceae members, which showed a higher, as well as similar percentage of orthology among these crops. Expression profiling of Si14-3-3 genes during different time-points of abiotic stress and hormonal treatments showed a differential expression pattern of these genes, and sub-cellular localization studies revealed the site of action of Si14-3-3 proteins within the cells. Further downstream characterization indicated the interaction of Si14-3-3 with a nucleocytoplasmic shuttling phosphoprotein (SiRSZ21A) in a phosphorylation-dependent manner, and this demonstrates that Si14-3-3 might regulate the splicing events by binding with phosphorylated SiRSZ21A. Taken together, the present study is a comprehensive analysis of 14-3-3 gene family members in foxtail millet, sorghum and maize, which provides

  5. Genetic and biological characterisation of an avian-like H1N2 swine influenza virus generated by reassortment of circulating avian-like H1N1 and H3N2 subtypes in Denmark.

    PubMed

    Trebbien, Ramona; Bragstad, Karoline; Larsen, Lars Erik; Nielsen, Jens; Bøtner, Anette; Heegaard, Peter M H; Fomsgaard, Anders; Viuff, Birgitte; Hjulsager, Charlotte Kristiane

    2013-09-18

    The influenza A virus subtypes H1N1, H1N2 and H3N2 are the most prevalent subtypes in swine. In 2003, a reassorted H1N2 swine influenza virus (SIV) subtype appeared and became prevalent in Denmark. In the present study, the reassortant H1N2 subtype was characterised genetically and the infection dynamics compared to an "avian-like" H1N1 virus by an experimental infection study. Sequence analyses were performed of the H1N2 virus. Two groups of pigs were inoculated with the reassortant H1N2 virus and an "avian-like" H1N1 virus, respectively, followed by inoculation with the opposite subtype four weeks later. Measurements of HI antibodies and acute phase proteins were performed. Nasal virus excretion and virus load in lungs were determined by real-time RT-PCR. The phylogenetic analysis revealed that the reassorted H1N2 virus contained a European "avian-like" H1-gene and a European "swine-like" N2-gene, thus being genetically distinct from most H1N2 viruses circulating in Europe, but similar to viruses reported in 2009/2010 in Sweden and Italy. Sequence analyses of the internal genes revealed that the reassortment probably arose between circulating Danish "avian-like" H1N1 and H3N2 SIVs. Infected pigs developed cross-reactive antibodies, and increased levels of acute phase proteins after inoculations. Pigs inoculated with H1N2 exhibited nasal virus excretion for seven days, peaking day 1 after inoculation two days earlier than H1N1 infected pigs and at a six times higher level. The difference, however, was not statistically significant. Pigs euthanized on day 4 after inoculation, had a high virus load in all lung lobes. After the second inoculation, the nasal virus excretion was minimal. There were no clinical sign except elevated body temperature under the experimental conditions. The "avian-like" H1N2 subtype, which has been established in the Danish pig population at least since 2003, is a reassortant between circulating swine "avian-like" H1N1 and H3N2. The Danish

  6. Genetic and biological characterisation of an avian-like H1N2 swine influenza virus generated by reassortment of circulating avian-like H1N1 and H3N2 subtypes in Denmark

    PubMed Central

    2013-01-01

    Background The influenza A virus subtypes H1N1, H1N2 and H3N2 are the most prevalent subtypes in swine. In 2003, a reassorted H1N2 swine influenza virus (SIV) subtype appeared and became prevalent in Denmark. In the present study, the reassortant H1N2 subtype was characterised genetically and the infection dynamics compared to an “avian-like” H1N1 virus by an experimental infection study. Methods Sequence analyses were performed of the H1N2 virus. Two groups of pigs were inoculated with the reassortant H1N2 virus and an “avian-like” H1N1 virus, respectively, followed by inoculation with the opposite subtype four weeks later. Measurements of HI antibodies and acute phase proteins were performed. Nasal virus excretion and virus load in lungs were determined by real-time RT-PCR. Results The phylogenetic analysis revealed that the reassorted H1N2 virus contained a European “avian-like” H1-gene and a European “swine-like” N2-gene, thus being genetically distinct from most H1N2 viruses circulating in Europe, but similar to viruses reported in 2009/2010 in Sweden and Italy. Sequence analyses of the internal genes revealed that the reassortment probably arose between circulating Danish “avian-like” H1N1 and H3N2 SIVs. Infected pigs developed cross-reactive antibodies, and increased levels of acute phase proteins after inoculations. Pigs inoculated with H1N2 exhibited nasal virus excretion for seven days, peaking day 1 after inoculation two days earlier than H1N1 infected pigs and at a six times higher level. The difference, however, was not statistically significant. Pigs euthanized on day 4 after inoculation, had a high virus load in all lung lobes. After the second inoculation, the nasal virus excretion was minimal. There were no clinical sign except elevated body temperature under the experimental conditions. Conclusions The “avian-like” H1N2 subtype, which has been established in the Danish pig population at least since 2003, is a reassortant

  7. Restricted utilization of germ-line VH genes in rabbits: implications for inheritance of VH allotypes and generation of antibody diversity.

    PubMed

    Knight, K L; Becker, R S; DiPietro, L A

    1991-01-01

    The presence of inherited VH region allotypic specificities, a1, a2 or a3, on nearly all rabbit immunoglobulins has presented a paradox. We know the germline contains hundreds of VH genes, and if we assume that most of these are used in the generation of antibody diversity, then we must ask how have the a allotype-encoding regions been maintained over time? On the other hand, if we assume that only one (or a small number) of these VH gene(s) is (are) used in VDJ gene rearrangements, then, how is antibody diversity generated? To address these questions, we have cloned and determined the nucleotide sequence of the 3'-most germline VH genes from the a1, a2 and a3 chromosomes and shown in each case that the 3'-most H gene, VH1-a1, VH1-a2, or VH1-a3, encodes an a1, a2 or a3 VH region, respectively. Analysis of rearranged VDJ genes from leukemic B cells showed that VH1 was utilized in these rearrangements. Based on these data, we propose that the allelic inheritance of the VH allotypes is explained by the preferential usage of the VH1 gene in VDJ rearrangements. Support for this hypothesis was obtained from analysis of the mutant rabbit Alicia in which most serum Ig molecules do not have VHa allotypic specificities, but instead have so-called VHa-negative Ig molecules. In this rabbit, VH1 is not expressed as it has been deleted. Analysis of cDNA clones from spleen of Alicia rabbits suggests that the expressed VHa-negative molecules also are encoded by a single germline VH gene. Thus, we suggest that nearly all rabbit VH regions are encoded by one to two germline VH genes and that antibody diversity is generated primarily by somatic hypermutation and gene conversion.

  8. Understanding self-photorechargeability of WO(3) for H(2) generation without light illumination.

    PubMed

    Ng, Charlene; Iwase, Akihide; Ng, Yun Hau; Amal, Rose

    2013-02-01

    This work presents insight into the self-photorechargeability of WO(3), whereby the intercalation of positive alkali cations is accompanied by the simultaneous storage of photo-excited electrons. The cyclic voltammetry studies verify the photo-assisted intercalation and de-intercalation of Na(+) and K(+) from the flower structured WO(3). A storage capacity of up to 0.722 C cm(-2) can be achieved in a saturated (0.68 M) K(2)SO(4) electrolyte solution. However, the best photo recharge-discharge stability of the electrode are observed at a lower (0.1 M) cation concentration. At high electrolyte concentrations, the intercalated cations are firmly trapped, as indicated by the structural modifications observed in Raman analysis, resulting in much less photocharging and discharging abilities in subsequent cycles. The study also shows that the stored electrons can be successfully used to generate H(2) with 100 % faradaic efficiency in the absence of light. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Characterization of DWARF14 Genes in Populus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Kaijie; Wang, Xiaoping; Weighill, Deborah A.

    Strigolactones are a new class of plant hormones regulating shoot branching and symbiotic interactions with arbuscular mycorrhizal fungi. Studies of branching mutants in herbaceous plants have identified several key genes involved in strigolactone biosynthesis or signaling. The strigolactone signal is perceived by a member of the α/β-fold hydrolase superfamily, known as DWARF14 (D14). However, little is known about D14 genes in the woody perennial plants. Here we report the identification of D14 homologs in the model woody plant Populus trichocarpa. We showed that there are two D14 homologs in P. trichocarpa, designated as PtD14a and PtD14b that are over 95%more » similar at the amino acid level. Expression analysis indicated that the transcript level of PtD14a is generally more abundant than that of PtD14b. However, only PtD14a was able to complement Arabidopsis d14 mutants, suggesting that PtD14a is the functional D14 ortholog. Amino acid alignment and structural modeling revealed substitutions of several highly conserved amino acids in the PtD14b protein including a phenylalanine near the catalytic triad of D14 proteins. Ultimately, we find this study lays a foundation for further characterization of strigolactone pathway and its functions in the woody perennial plants.« less

  10. Characterization of DWARF14 Genes in Populus

    DOE PAGES

    Zheng, Kaijie; Wang, Xiaoping; Weighill, Deborah A.; ...

    2016-02-15

    Strigolactones are a new class of plant hormones regulating shoot branching and symbiotic interactions with arbuscular mycorrhizal fungi. Studies of branching mutants in herbaceous plants have identified several key genes involved in strigolactone biosynthesis or signaling. The strigolactone signal is perceived by a member of the α/β-fold hydrolase superfamily, known as DWARF14 (D14). However, little is known about D14 genes in the woody perennial plants. Here we report the identification of D14 homologs in the model woody plant Populus trichocarpa. We showed that there are two D14 homologs in P. trichocarpa, designated as PtD14a and PtD14b that are over 95%more » similar at the amino acid level. Expression analysis indicated that the transcript level of PtD14a is generally more abundant than that of PtD14b. However, only PtD14a was able to complement Arabidopsis d14 mutants, suggesting that PtD14a is the functional D14 ortholog. Amino acid alignment and structural modeling revealed substitutions of several highly conserved amino acids in the PtD14b protein including a phenylalanine near the catalytic triad of D14 proteins. Ultimately, we find this study lays a foundation for further characterization of strigolactone pathway and its functions in the woody perennial plants.« less

  11. Effects of simulated microgravity on gene expression and biological phenotypes of a single generation Caenorhabditis elegans cultured on 2 different media

    NASA Astrophysics Data System (ADS)

    Tee, Ling Fei; Neoh, Hui-min; Then, Sue Mian; Murad, Nor Azian; Asillam, Mohd Fairos; Hashim, Mohd Helmy; Nathan, Sheila; Jamal, Rahman

    2017-11-01

    Studies of multigenerational Caenorhabditis elegans exposed to long-term spaceflight have revealed expression changes of genes involved in longevity, DNA repair, and locomotion. However, results from spaceflight experiments are difficult to reproduce as space missions are costly and opportunities are rather limited for researchers. In addition, multigenerational cultures of C. elegans used in previous studies contribute to mixture of gene expression profiles from both larvae and adult worms, which were recently reported to be different. Usage of different culture media during microgravity simulation experiments might also give rise to differences in the gene expression and biological phenotypes of the worms. In this study, we investigated the effects of simulated microgravity on the gene expression and biological phenotype profiles of a single generation of C. elegans worms cultured on 2 different culture media. A desktop Random Positioning Machine (RPM) was used to simulate microgravity on the worms for approximately 52 to 54 h. Gene expression profile was analysed using the Affymetrix GeneChip® C. elegans 1.0 ST Array. Only one gene (R01H2.2) was found to be downregulated in nematode growth medium (NGM)-cultured worms exposed to simulated microgravity. On the other hand, eight genes were differentially expressed for C. elegans Maintenance Medium (CeMM)-cultured worms in microgravity; six were upregulated, while two were downregulated. Five of the upregulated genes (C07E3.15, C34H3.21, C32D5.16, F35H8.9 and C34F11.17) encode non-coding RNAs. In terms of biological phenotype, we observed that microgravity-simulated worms experienced minimal changes in terms of lifespan, locomotion and reproductive capabilities in comparison with the ground controls. Taking it all together, simulated microgravity on a single generation of C. elegans did not confer major changes to their gene expression and biological phenotype. Nevertheless, exposure of the worms to microgravity

  12. The b Gene of Pea Encodes a Defective Flavonoid 3′,5′-Hydroxylase, and Confers Pink Flower Color1[W][OA

    PubMed Central

    Moreau, Carol; Ambrose, Mike J.; Turner, Lynda; Hill, Lionel; Ellis, T.H. Noel; Hofer, Julie M.I.

    2012-01-01

    The inheritance of flower color in pea (Pisum sativum) has been studied for more than a century, but many of the genes corresponding to these classical loci remain unidentified. Anthocyanins are the main flower pigments in pea. These are generated via the flavonoid biosynthetic pathway, which has been studied in detail and is well conserved among higher plants. A previous proposal that the Clariroseus (B) gene of pea controls hydroxylation at the 5′ position of the B ring of flavonoid precursors of the anthocyanins suggested to us that the gene encoding flavonoid 3′,5′-hydroxylase (F3′5′H), the enzyme that hydroxylates the 5′ position of the B ring, was a good candidate for B. In order to test this hypothesis, we examined mutants generated by fast neutron bombardment. We found allelic pink-flowered b mutant lines that carried a variety of lesions in an F3′5′H gene, including complete gene deletions. The b mutants lacked glycosylated delphinidin and petunidin, the major pigments present in the progenitor purple-flowered wild-type pea. These results, combined with the finding that the F3′5′H gene cosegregates with b in a genetic mapping population, strongly support our hypothesis that the B gene of pea corresponds to a F3′5′H gene. The molecular characterization of genes involved in pigmentation in pea provides valuable anchor markers for comparative legume genomics and will help to identify differences in anthocyanin biosynthesis that lead to variation in pigmentation among legume species. PMID:22492867

  13. Isolation and in silico analysis of a novel H+-pyrophosphatase gene orthologue from the halophytic grass Leptochloa fusca

    NASA Astrophysics Data System (ADS)

    Rauf, Muhammad; Saeed, Nasir A.; Habib, Imran; Ahmed, Moddassir; Shahzad, Khurram; Mansoor, Shahid; Ali, Rashid

    2017-02-01

    Structure prediction can provide information about function and active sites of protein which helps to design new functional proteins. H+-pyrophosphatase is transmembrane protein involved in establishing proton motive force for active transport of Na+ across membrane by Na+/H+ antiporters. A full length novel H+-pyrophosphatase gene was isolated from halophytic grass Leptochloa fusca using RT-PCR and RACE method. Full length LfVP1 gene sequence of 2292 nucleotides encodes protein of 764 amino acids. DNA and protein sequences were used for characterization using bioinformatics tools. Various important potential sites were predicted by PROSITE webserver. Primary structural analysis showed LfVP1 as stable protein and Grand average hydropathy (GRAVY) indicated that LfVP1 protein has good hydrosolubility. Secondary structure analysis showed that LfVP1 protein sequence contains significant proportion of alpha helix and random coil. Protein membrane topology suggested the presence of 14 transmembrane domains and presence of catalytic domain in TM3. Three dimensional structure from LfVP1 protein sequence also indicated the presence of 14 transmembrane domains and hydrophobicity surface model showed amino acid hydrophobicity. Ramachandran plot showed that 98% amino acid residues were predicted in the favored region.

  14. Serologic evidence of influenza A (H14) virus introduction into North America

    USGS Publications Warehouse

    Latorre-Margalef, Neus; Ramey, Andy M.; Fojtik, Alinde; Stallknecht, David E.

    2015-01-01

    Although a diverse population of influenza A viruses (IAVs) is maintained among ducks, geese, shorebirds, and gulls, not all of the 16 avian hemagglutinin (HA) subtypes are equally represented (1). The 14th HA subtype, commonly known as the H14 subtype, was historically limited to isolates from the former Soviet Union in the 1980s (2) and was not subsequently detected until 2010, when isolated in Wisconsin, USA from long-tailed ducks and a white-winged scoter (3–5). In the United States, the H14 subtype has since been isolated in California (6), Mississippi, and Texas (7); and has been reported in waterfowl in Guatemala (7). In this study, we examined whether there was serologic evidence of H14 spread among ducks in North America before (2006–2010) and after (2011–2014) the initial detection of the H14 subtype virus on this continent.

  15. Combining peptide recognition specificity and context information for the prediction of the 14-3-3-mediated interactome in S. cerevisiae and H. sapiens.

    PubMed

    Panni, Simona; Montecchi-Palazzi, Luisa; Kiemer, Lars; Cabibbo, Andrea; Paoluzi, Serena; Santonico, Elena; Landgraf, Christiane; Volkmer-Engert, Rudolf; Bachi, Angela; Castagnoli, Luisa; Cesareni, Gianni

    2011-01-01

    Large-scale interaction studies contribute the largest fraction of protein interactions information in databases. However, co-purification of non-specific or indirect ligands, often results in data sets that are affected by a considerable number of false positives. For the fraction of interactions mediated by short linear peptides, we present here a combined experimental and computational strategy for ranking the reliability of the inferred partners. We apply this strategy to the family of 14-3-3 domains. We have first characterized the recognition specificity of this domain family, largely confirming the results of previous analyses, while revealing new features of the preferred sequence context of 14-3-3 phospho-peptide partners. Notably, a proline next to the carboxy side of the phospho-amino acid functions as a potent inhibitor of 14-3-3 binding. The position-specific information about residue preference was encoded in a scoring matrix and two regular expressions. The integration of these three features in a single predictive model outperforms publicly available prediction tools. Next we have combined, by a naïve Bayesian approach, these "peptide features" with "protein features", such as protein co-expression and co-localization. Our approach provides an orthogonal reliability assessment and maps with high confidence the 14-3-3 peptide target on the partner proteins. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The SUVR4 Histone Lysine Methyltransferase Binds Ubiquitin and Converts H3K9me1 to H3K9me3 on Transposon Chromatin in Arabidopsis

    PubMed Central

    Veiseth, Silje V.; Rahman, Mohummad A.; Yap, Kyoko L.; Fischer, Andreas; Egge-Jacobsen, Wolfgang; Reuter, Gunter; Zhou, Ming-Ming; Aalen, Reidunn B.; Thorstensen, Tage

    2011-01-01

    Chromatin structure and gene expression are regulated by posttranslational modifications (PTMs) on the N-terminal tails of histones. Mono-, di-, or trimethylation of lysine residues by histone lysine methyltransferases (HKMTases) can have activating or repressive functions depending on the position and context of the modified lysine. In Arabidopsis, trimethylation of lysine 9 on histone H3 (H3K9me3) is mainly associated with euchromatin and transcribed genes, although low levels of this mark are also detected at transposons and repeat sequences. Besides the evolutionarily conserved SET domain which is responsible for enzyme activity, most HKMTases also contain additional domains which enable them to respond to other PTMs or cellular signals. Here we show that the N-terminal WIYLD domain of the Arabidopsis SUVR4 HKMTase binds ubiquitin and that the SUVR4 product specificity shifts from di- to trimethylation in the presence of free ubiquitin, enabling conversion of H3K9me1 to H3K9me3 in vitro. Chromatin immunoprecipitation and immunocytological analysis showed that SUVR4 in vivo specifically converts H3K9me1 to H3K9me3 at transposons and pseudogenes and has a locus-specific repressive effect on the expression of such elements. Bisulfite sequencing indicates that this repression involves both DNA methylation–dependent and –independent mechanisms. Transcribed genes with high endogenous levels of H3K4me3, H3K9me3, and H2Bub1, but low H3K9me1, are generally unaffected by SUVR4 activity. Our results imply that SUVR4 is involved in the epigenetic defense mechanism by trimethylating H3K9 to suppress potentially harmful transposon activity. PMID:21423664

  17. The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice

    PubMed Central

    Ju, Xiang-Chun; Hou, Qiong-Qiong; Sheng, Ai-Li; Wu, Kong-Yan; Zhou, Yang; Jin, Ying; Wen, Tieqiao; Yang, Zhengang; Wang, Xiaoqun; Luo, Zhen-Ge

    2016-01-01

    Cortical expansion and folding are often linked to the evolution of higher intelligence, but molecular and cellular mechanisms underlying cortical folding remain poorly understood. The hominoid-specific gene TBC1D3 undergoes segmental duplications during hominoid evolution, but its role in brain development has not been explored. Here, we found that expression of TBC1D3 in ventricular cortical progenitors of mice via in utero electroporation caused delamination of ventricular radial glia cells (vRGs) and promoted generation of self-renewing basal progenitors with typical morphology of outer radial glia (oRG), which are most abundant in primates. Furthermore, down-regulation of TBC1D3 in cultured human brain slices decreased generation of oRGs. Interestingly, localized oRG proliferation resulting from either in utero electroporation or transgenic expression of TBC1D3, was often found to underlie cortical regions exhibiting folding. Thus, we have identified a hominoid gene that is required for oRG generation in regulating the cortical expansion and folding. DOI: http://dx.doi.org/10.7554/eLife.18197.001 PMID:27504805

  18. Canine candidate genes for dilated cardiomyopathy: annotation of and polymorphic markers for 14 genes.

    PubMed

    Wiersma, Anje C; Leegwater, Peter Aj; van Oost, Bernard A; Ollier, William E; Dukes-McEwan, Joanna

    2007-10-19

    Dilated cardiomyopathy is a myocardial disease occurring in humans and domestic animals and is characterized by dilatation of the left ventricle, reduced systolic function and increased sphericity of the left ventricle. Dilated cardiomyopathy has been observed in several, mostly large and giant, dog breeds, such as the Dobermann and the Great Dane. A number of genes have been identified, which are associated with dilated cardiomyopathy in the human, mouse and hamster. These genes mainly encode structural proteins of the cardiac myocyte. We present the annotation of, and marker development for, 14 of these genes of the dog genome, i.e. alpha-cardiac actin, caveolin 1, cysteine-rich protein 3, desmin, lamin A/C, LIM-domain binding factor 3, myosin heavy polypeptide 7, phospholamban, sarcoglycan delta, titin cap, alpha-tropomyosin, troponin I, troponin T and vinculin. A total of 33 Single Nucleotide Polymorphisms were identified for these canine genes and 11 polymorphic microsatellite repeats were developed. The presented polymorphisms provide a tool to investigate the role of the corresponding genes in canine Dilated Cardiomyopathy by linkage analysis or association studies.

  19. Alternative SNP detection platforms, HRM and biosensors, for varietal identification in Vitis vinifera L. using F3H and LDOX genes.

    PubMed

    Gomes, Sónia; Castro, Cláudia; Barrias, Sara; Pereira, Leonor; Jorge, Pedro; Fernandes, José R; Martins-Lopes, Paula

    2018-04-11

    The wine sector requires quick and reliable methods for Vitis vinifera L. varietal identification. The number of V. vinifera varieties is estimated in about 5,000 worldwide. Single Nucleotide Polymorphisms (SNPs) represent the most basic and abundant form of genetic sequence variation, being adequate for varietal discrimination. The aim of this work was to develop DNA-based assays suitable to detect SNP variation in V. vinifera, allowing varietal discrimination. Genotyping by sequencing allowed the detection of eleven SNPs on two genes of the anthocyanin pathway, the flavanone 3-hydroxylase (F3H, EC: 1.14.11.9), and the leucoanthocyanidin dioxygenase (LDOX, EC 1.14.11.19; synonym anthocyanidin synthase, ANS) in twenty V. vinifera varieties. Three High Resolution Melting (HRM) assays were designed based on the sequencing information, discriminating five of the 20 varieties: Alicante Bouschet, Donzelinho Tinto, Merlot, Moscatel Galego and Tinta Roriz. Sanger sequencing of the HRM assay products confirmed the HRM profiles. Three probes, with different lengths and sequences, were used as bio-recognition elements in an optical biosensor platform based on a long period grating (LPG) fiber optic sensor. The label free platform detected a difference of a single SNP using genomic DNA samples. The two different platforms were successfully applied for grapevine varietal identification.

  20. Glucocorticoids Affect 24 h Clock Genes Expression in Human Adipose Tissue Explant Cultures

    PubMed Central

    Gómez-Abellán, Purificación; Díez-Noguera, Antoni; Madrid, Juan A.; Luján, Juan A.; Ordovás, José M.; Garaulet, Marta

    2012-01-01

    Aims to examine firstly whether CLOCK exhibits a circadian expression in human visceral (V) and subcutaneous (S) adipose tissue (AT) in vitro as compared with BMAL1 and PER2, and secondly to investigate the possible effect of the glucocorticoid analogue dexamethasone (DEX) on positive and negative clock genes expression. Subjects and Methods VAT and SAT biopsies were obtained from morbid obese women (body mass index≥40 kg/m2) (n = 6). In order to investigate rhythmic expression pattern of clock genes and the effect of DEX on CLOCK, PER2 and BMAL1 expression, control AT (without DEX) and AT explants treated with DEX (2 hours) were cultured during 24 h and gene expression was analyzed at the following times: 10:00 h, 14:00 h, 18:00 h, 22:00 h, 02:00 h and 06:00 h, using qRT-PCR. Results CLOCK, BMAL1 and PER2 expression exhibited circadian patterns in both VAT and SAT explants that were adjusted to a typical 24 h sinusoidal curve. PER2 expression (negative element) was in antiphase with respect to CLOCK and in phase with BMAL1 expression (both positive elements) in the SAT (situation not present in VAT). A marked effect of DEX exposure on both positive and negative clock genes expression patterns was observed. Indeed, DEX treatment modified the rhythmicity pattern towards altered patterns with a period lower than 24 hours in all genes and in both tissues. Conclusions 24 h patterns in CLOCK and BMAL1 (positive clock elements) and PER2 (negative element) mRNA levels were observed in human adipose explants. These patterns were altered by dexamethasone exposure. PMID:23251369

  1. Distribution of gene segments of the pandemic A(H1N1) 2009 virus lineage in pig populations.

    PubMed

    Okuya, K; Matsuu, A; Kawabata, T; Koike, F; Ito, M; Furuya, T; Taneno, A; Akimoto, S; Deguchi, E; Ozawa, M

    2018-05-06

    Swine influenza viruses (SIVs) are important not only for pig farming, but also for public health. In fact, pandemic A(H1N1) 2009 viruses [A(H1N1)pdm09] were derived from SIVs. Therefore, timely characterization of locally circulating SIVs is necessary for understanding the global status of SIVs. To genetically characterize SIVs circulating in Japanese pig populations, we isolated 24 SIVs of three subtypes (17 H1N1, four H1N2 and three H3N2 strains) from 14 pig farms in Japan from 2013 to 2016. Genetic analyses revealed that the haemagglutinin (HA) and neuraminidase (NA) genes of the 17 H1N1 and the HA gene of one H1N2, A/swine/Aichi/02/2016 (H1N2), SIVs belonged to the A(H1N1)pdm09 lineage. More importantly, all of the remaining six gene segments (i.e., PB1, PB1, PA, NP, M and NS) of the 24 SIVs, regardless of the HA and NA subtype, were also classified as belonging to the A(H1N1)pdm09 lineage. These results indicate that gene segments of A(H1N1)pdm09 lineage are widely distributed in SIVs circulating in Japanese pig populations In addition, the NA gene of A/swine/Aichi/02/2016 (H1N2) shared less than 88.5% nucleotide identity with that of the closest relative A/swine/Miyagi/5/2003 (H1N2), which was isolated in Japan in 2003. These results indicate the sustained circulation of classical H1N2-derived SIVs with remarkable diversity in the NA genes in Japanese pig populations. These findings highlight the necessity of both intensive biosecurity systems and active SIV surveillance in pig populations worldwide for both animal and public health. © 2018 Blackwell Verlag GmbH.

  2. H-2 compatibility requirement for virus-specific T-cell-mediated cytolysis. Evaluation of the role of H-2I region and non-H-2 genes in regulating immune response

    PubMed Central

    1976-01-01

    Lymphocytic choriomeningitis virus (LCMV) and ectromelia virus-specific T-cell-mediated cytotoxicity was assayed in various strain combinations using as targets peritoneal macrophages which have been shown to express Ia antigens. Virus-specific cytotoxicity was found only in H-2K- or D-region compatible combinations. I-region compatibility was not necessary nor alone sufficient for lysis. Six different I-region specificities had no obvious effect on the capacity to generate in vivo specific cytotoxicity (expressed in vitro) associated with Dd. Low LCMV- specific cytotoxic activity generated in DBA/2 mice was caused by the non-H-2 genetic background. This trait was inversely related to the infectious virus dose and recessive. Non-H-2 genes, possibly involved in controlling initial spread and multiplication of virus, seem to be, at least in the examples tested, more important in determining virus- specific cytotoxic T-cell activity in spleens than are Ir genes coded in H-2. PMID:1085331

  3. Natural co-infection of influenza A/H3N2 and A/H1N1pdm09 viruses resulting in a reassortant A/H3N2 virus.

    PubMed

    Rith, Sareth; Chin, Savuth; Sar, Borann; Y, Phalla; Horm, Srey Viseth; Ly, Sovann; Buchy, Philippe; Dussart, Philippe; Horwood, Paul F

    2015-12-01

    Despite annual co-circulation of different subtypes of seasonal influenza, co-infections between different viruses are rarely detected. These co-infections can result in the emergence of reassortant progeny. We document the detection of an influenza co-infection, between influenza A/H3N2 with A/H1N1pdm09 viruses, which occurred in a 3 year old male in Cambodia during April 2014. Both viruses were detected in the patient at relatively high viral loads (as determined by real-time RT-PCR CT values), which is unusual for influenza co-infections. As reassortment can occur between co-infected influenza A strains we isolated plaque purified clonal viral populations from the clinical material of the patient infected with A/H3N2 and A/H1N1pdm09. Complete genome sequences were completed for 7 clonal viruses to determine if any reassorted viruses were generated during the influenza virus co-infection. Although most of the viral sequences were consistent with wild-type A/H3N2 or A/H1N1pdm09, one reassortant A/H3N2 virus was isolated which contained an A/H1N1pdm09 NS1 gene fragment. The reassortant virus was viable and able to infect cells, as judged by successful passage in MDCK cells, achieving a TCID50 of 10(4)/ml at passage number two. There is no evidence that the reassortant virus was transmitted further. The co-infection occurred during a period when co-circulation of A/H3N2 and A/H1N1pdm09 was detected in Cambodia. It is unclear how often influenza co-infections occur, but laboratories should consider influenza co-infections during routine surveillance activities. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  4. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis

    PubMed Central

    Sun, Xiaoli; Sun, Mingzhe; Jia, Bowei; Chen, Chao; Qin, Zhiwei; Yang, Kejun; Shen, Yang; Meiping, Zhang; Mingyang, Cong; Zhu, Yanming

    2015-01-01

    It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis. PMID:26717241

  5. Histone H1 depletion triggers an interferon response in cancer cells via activation of heterochromatic repeats

    PubMed Central

    Izquierdo-Bouldstridge, Andrea; Bustillos, Alberto; Bonet-Costa, Carles; Aribau-Miralbés, Patricia; García-Gomis, Daniel; Dabad, Marc; Esteve-Codina, Anna; Pascual-Reguant, Laura; Peiró, Sandra; Esteller, Manel; Murtha, Matthew; Millán-Ariño, Lluís

    2017-01-01

    Abstract Histone H1 has seven variants in human somatic cells and contributes to chromatin compaction and transcriptional regulation. Knock-down (KD) of each H1 variant in breast cancer cells results in altered gene expression and proliferation differently in a variant specific manner with H1.2 and H1.4 KDs being most deleterious. Here we show combined depletion of H1.2 and H1.4 has a strong deleterious effect resulting in a strong interferon (IFN) response, as evidenced by an up-regulation of many IFN-stimulated genes (ISGs) not seen in individual nor in other combinations of H1 variant KDs. Although H1 participates to repress ISG promoters, IFN activation upon H1.2 and H1.4 KD is mainly generated through the activation of the IFN response by cytosolic nucleic acid receptors and IFN synthesis, and without changes in histone modifications at induced ISG promoters. H1.2 and H1.4 co-KD also promotes the appearance of accessibility sites genome wide and, particularly, at satellites and other repeats. The IFN response may be triggered by the expression of noncoding RNA generated from heterochromatic repeats or endogenous retroviruses upon H1 KD. In conclusion, redundant H1-mediated silencing of heterochromatin is important to maintain cell homeostasis and to avoid an unspecific IFN response. PMID:28977426

  6. Evolution of the real-space correlation function from next generation cluster surveys. Recovering the real-space correlation function from photometric redshifts

    NASA Astrophysics Data System (ADS)

    Sridhar, Srivatsan; Maurogordato, Sophie; Benoist, Christophe; Cappi, Alberto; Marulli, Federico

    2017-04-01

    Context. The next generation of galaxy surveys will provide cluster catalogues probing an unprecedented range of scales, redshifts, and masses with large statistics. Their analysis should therefore enable us to probe the spatial distribution of clusters with high accuracy and derive tighter constraints on the cosmological parameters and the dark energy equation of state. However, for the majority of these surveys, redshifts of individual galaxies will be mostly estimated by multiband photometry which implies non-negligible errors in redshift resulting in potential difficulties in recovering the real-space clustering. Aims: We investigate to which accuracy it is possible to recover the real-space two-point correlation function of galaxy clusters from cluster catalogues based on photometric redshifts, and test our ability to detect and measure the redshift and mass evolution of the correlation length r0 and of the bias parameter b(M,z) as a function of the uncertainty on the cluster redshift estimate. Methods: We calculate the correlation function for cluster sub-samples covering various mass and redshift bins selected from a 500 deg2 light-cone limited to H < 24. In order to simulate the distribution of clusters in photometric redshift space, we assign to each cluster a redshift randomly extracted from a Gaussian distribution having a mean equal to the cluster cosmological redshift and a dispersion equal to σz. The dispersion is varied in the range σ(z=0)=\\frac{σz{1+z_c} = 0.005,0.010,0.030} and 0.050, in order to cover the typical values expected in forthcoming surveys. The correlation function in real-space is then computed through estimation and deprojection of wp(rp). Four mass ranges (from Mhalo > 2 × 1013h-1M⊙ to Mhalo > 2 × 1014h-1M⊙) and six redshift slices covering the redshift range [0, 2] are investigated, first using cosmological redshifts and then for the four photometric redshift configurations. Results: From the analysis of the light-cone in

  7. Chromosome 3p12.3-p14.2 and 3q26.2-q26.32 are genomic markers for prognosis of advanced nasopharyngeal carcinoma.

    PubMed

    Sheu, Jim Jinn-Chyuan; Lee, Chia-Huei; Ko, Jenq-Yuh; Tsao, George S W; Wu, Chung-Chun; Fang, Chih-Yeu; Tsai, Fuu-Jen; Hua, Chun-Hung; Chen, Chi-Long; Chen, Jen-Yang

    2009-10-01

    Nasopharyngeal carcinoma is an epithelial malignancy with a remarkable racial and geographic distribution. Previous cytogenetic studies have shown nasopharyngeal carcinoma to be characterized by gross genomic aberrations. However, identification of susceptible gene loci in advanced nasopharyngeal carcinoma has been poorly discussed. A genome-wide survey of gene copy number changes was initiated with two nasopharyngeal carcinoma cell lines by array-based comparative genomic hybridization analysis. These alterations were confirmed by a parallel analysis with the data from the gene expression microarray and were validated by quantitative PCR. Clinical association of the defined target genes was analyzed by fluorescence in situ hybridization on 48 metastatic tumors. A high percentage of genes were consistently altered in dosage and expression levels with gain on 3q26.2-q26.32 and losses on 3p12.3-p14.2 and 9p21.3-p23. Six candidate genes, GPR160 (3q26.2-q27), SKIL (3q26), ADAMTS9 (3p14.2-p14.3), LRIG1 (3p14), MPDZ (9p22-p24), and ADFP (9p22.1) were validated by quantitative PCR. Fluorescence in situ hybridization studies revealed amplification of GPR160 (in 25% of cases) and SKIL (33%); and deletion of ADAMTS9 (30%), LRIG1 (35%), MPDZ (15%), and ADFP (15%). Clinical association analyses indicated a poor survival rate with genetic alterations at the defined 3p deletion (P = 0.0012) and the 3q amplification regions (P = 0.0114). The combined microarray technologies suggested novel candidate oncogenes, amplification of GPR160 and SKIL at 3q26.2-q26.32, and deletion of tumor suppressor genes ADAMTS9 and LRIG1 at 3p12.3-p14.2. Altered expression of these genes may be responsible for malignant progression and could be used as potential markers for nasopharyngeal carcinoma.

  8. Methane negative chemical ionization analysis of 1,3-dihydro-5-phenyl-1,4-benzodiazepin-2-ones.

    PubMed Central

    Garland, W A; Miwa, B J

    1980-01-01

    The methane negative chemical ionization (NCI) mass spectra of the medically important 1,3-dihydro-5-phenyl-1,4-benzodiazepin-2-ones generally consisted solely of M- and (M-H)- ions. Attempts to find the location of the H lost in the generation of the (M-H)- ion were unsuccessful, although many possibilities were eliminated. A Hammett correlation analysis of the relative sensitivities of a series of 7-substituted benzodiazepines suggested that the initial ionization takes place at the 4,5-imine bond. For certain benzodiazepines, the (M-H)- ion generated by methane NCI was 20 times more intense than the MH+ ion generated by methane positive chemical ionization (PCI). By using NCI, a sensitive and simple GC-MS assay for nordiazepam was developed that can quantitate this important metabolite of many of the clinically used benzodiazepines in the blood and brain of rats. PMID:6775944

  9. Bioinformatic and experimental survey of 14-3-3-binding sites

    PubMed Central

    Johnson, Catherine; Crowther, Sandra; Stafford, Margaret J.; Campbell, David G.; Toth, Rachel; MacKintosh, Carol

    2010-01-01

    More than 200 phosphorylated 14-3-3-binding sites in the literature were analysed to define 14-3-3 specificities, identify relevant protein kinases, and give insights into how cellular 14-3-3/phosphoprotein networks work. Mode I RXX(pS/pT)XP motifs dominate, although the +2 proline residue occurs in less than half, and LX(R/K)SX(pS/pT)XP is prominent in plant 14-3-3-binding sites. Proline at +1 is rarely reported, and such motifs did not stand up to experimental reanalysis of human Ndel1. Instead, we discovered that 14-3-3 interacts with two residues that are phosphorylated by basophilic kinases and located in the DISC1 (disrupted-in-schizophrenia 1)-interacting region of Ndel1 that is implicated in cognitive disorders. These data conform with the general findings that there are different subtypes of 14-3-3-binding sites that overlap with the specificities of different basophilic AGC (protein kinase A/protein kinase G/protein kinase C family) and CaMK (Ca2+/calmodulin-dependent protein kinase) protein kinases, and a 14-3-3 dimer often engages with two tandem phosphorylated sites, which is a configuration with special signalling, mechanical and evolutionary properties. Thus 14-3-3 dimers can be digital logic gates that integrate more than one input to generate an action, and coincidence detectors when the two binding sites are phosphorylated by different protein kinases. Paired sites are generally located within disordered regions and/or straddle either side of functional domains, indicating how 14-3-3 dimers modulate the conformations and/or interactions of their targets. Finally, 14-3-3 proteins bind to members of several multi-protein families. Two 14-3-3-binding sites are conserved across the class IIa histone deacetylases, whereas other protein families display differential regulation by 14-3-3s. We speculate that 14-3-3 dimers may have contributed to the evolution of such families, tailoring regulatory inputs to different physiological demands. PMID:20141511

  10. Additional regulatory activities of MrkH for the transcriptional expression of the Klebsiella pneumoniae mrk genes: Antagonist of H-NS and repressor.

    PubMed

    Ares, Miguel A; Fernández-Vázquez, José L; Pacheco, Sabino; Martínez-Santos, Verónica I; Jarillo-Quijada, Ma Dolores; Torres, Javier; Alcántar-Curiel, María D; González-Y-Merchand, Jorge A; De la Cruz, Miguel A

    2017-01-01

    Klebsiella pneumoniae is a common opportunistic pathogen causing nosocomial infections. One of the main virulence determinants of K. pneumoniae is the type 3 pilus (T3P). T3P helps the bacterial interaction to both abiotic and biotic surfaces and it is crucial for the biofilm formation. T3P is genetically organized in three transcriptional units: the mrkABCDF polycistronic operon, the mrkHI bicistronic operon and the mrkJ gene. MrkH is a regulatory protein encoded in the mrkHI operon, which positively regulates the mrkA pilin gene and its own expression. In contrast, the H-NS nucleoid protein represses the transcriptional expression of T3P. Here we reported that MrkH and H-NS positively and negatively regulate mrkJ expression, respectively, by binding to the promoter of mrkJ. MrkH protein recognized a sequence located at position -63.5 relative to the transcriptional start site of mrkJ gene. Interestingly, our results show that, in addition to its known function as classic transcriptional activator, MrkH also positively controls the expression of mrk genes by acting as an anti-repressor of H-NS; moreover, our results support the notion that high levels of MrkH repress T3P expression. Our data provide new insights about the complex regulatory role of the MrkH protein on the transcriptional control of T3P in K. pneumoniae.

  11. Additional regulatory activities of MrkH for the transcriptional expression of the Klebsiella pneumoniae mrk genes: Antagonist of H-NS and repressor

    PubMed Central

    Ares, Miguel A.; Fernández-Vázquez, José L.; Pacheco, Sabino; Martínez-Santos, Verónica I.; Jarillo-Quijada, Ma. Dolores; Torres, Javier; Alcántar-Curiel, María D.; González-y-Merchand, Jorge A.; De la Cruz, Miguel A.

    2017-01-01

    Klebsiella pneumoniae is a common opportunistic pathogen causing nosocomial infections. One of the main virulence determinants of K. pneumoniae is the type 3 pilus (T3P). T3P helps the bacterial interaction to both abiotic and biotic surfaces and it is crucial for the biofilm formation. T3P is genetically organized in three transcriptional units: the mrkABCDF polycistronic operon, the mrkHI bicistronic operon and the mrkJ gene. MrkH is a regulatory protein encoded in the mrkHI operon, which positively regulates the mrkA pilin gene and its own expression. In contrast, the H-NS nucleoid protein represses the transcriptional expression of T3P. Here we reported that MrkH and H-NS positively and negatively regulate mrkJ expression, respectively, by binding to the promoter of mrkJ. MrkH protein recognized a sequence located at position -63.5 relative to the transcriptional start site of mrkJ gene. Interestingly, our results show that, in addition to its known function as classic transcriptional activator, MrkH also positively controls the expression of mrk genes by acting as an anti-repressor of H-NS; moreover, our results support the notion that high levels of MrkH repress T3P expression. Our data provide new insights about the complex regulatory role of the MrkH protein on the transcriptional control of T3P in K. pneumoniae. PMID:28278272

  12. Dimethylated H3K27 Is a Repressive Epigenetic Histone Mark in the Protist Entamoeba histolytica and Is Significantly Enriched in Genes Silenced via the RNAi Pathway*

    PubMed Central

    Foda, Bardees M.; Singh, Upinder

    2015-01-01

    RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5′-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica. PMID:26149683

  13. A mass spectrometric study of gaseous H4PO+3 and H2PO-3 ions

    NASA Astrophysics Data System (ADS)

    de Petris, Giulia; Occhiucci, Giorgio; Pepi, Federico

    1994-09-01

    H4PO+3 ions have been generated in a mass spectrometer by proton-transfer to H3PO3 from different Brønsted acids. The proton affinity of H3PO3 has been estimated by bracketing and kinetic methods to be 198.6 ± 2 kcal mol-1. Gaseous H4PO+3 ions have been structurally assessed by metastable ion kinetic energy (MIKE) and collisionally induced dissociation (CID) mass spectrometry leading to the detection of a single isomeric species. The chemistry of H2PO-3 is characterized by facile addition-elimination reactions leading to formation of polyanions. Species containing up to six P atoms have been detected.

  14. H3K27 methylation and H3S28 phosphorylation-dependent transcriptional regulation by INHAT subunit SET/TAF-Iβ.

    PubMed

    Kim, Ji-Young; Kim, Kee-Beom; Son, Hye-Ju; Chae, Yun-Cheol; Oh, Si-Taek; Kim, Dong-Wook; Pak, Jhang Ho; Seo, Sang-Beom

    2012-09-21

    Significant progress has been made in understanding the relationship between histone modifications and 'reader' molecules and their effects on transcriptional regulation. A previously identified INHAT complex subunit, SET/TAF-Iβ, binds to histones and inhibits histone acetylation. To investigate the binding specificities of SET/TAF-Iβ to various histone modifications, we employed modified histone tail peptide array analyses. SET/TAF-Iβ strongly recognized PRC2-mediated H3K27me1/2/3; however, the bindings were completely disrupted by H3S28 phosphorylation. We have demonstrated that SET/TAF-Iβ is sequentially recruited to the target gene promoter ATF3 after the PRC2 complex via H3K27me recognition and may offer additive effects in the repression of the target gene. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Measles-virus-persistent infection in BGM cells. Modification of the incorporation of [3H]arachidonic acid and [14C]stearic acid into lipids.

    PubMed Central

    Anderton, P; Wild, T F; Zwingelstein, G

    1983-01-01

    In BGM cells chronically infected with measles virus, although the composition of the phospholipids is unaltered, the fatty acid composition is modified. Uninfected, lytic and persistently infected cells were labelled with [3H]arachidonic acid and [14C]stearic acid and their metabolic fate analysed. No difference in the total incorporation was observed in the different systems. However, the [14C]stearic acid and [3H]arachidonic acid were incorporated up to 2-fold and 13-fold respectively greater into the neutral lipid of persistently infected compared with that of uninfected cells. Both radioactive fatty acids were specifically accumulated in the triacylglycerol and non-esterified fatty acids fractions. Lytically infected cells were similar to uninfected cells. Although there was no significant difference in the incorporation of radioactivity into the total phospholipid in either system, there was a large decrease in [3H]arachidonic acid incorporated into phosphatidylethanolamine and to a lesser extent phosphatidylcholine and phosphatidylinositol in persistently infected cells. [14C]Stearic acid incorporation was also reduced in phosphatidylcholine and phosphatidylethanolamine fractions of persistently infected cells. PMID:6414459

  16. Resveratrol strongly enhances the retinoic acid-induced superoxide generating activity via up-regulation of gp91-phox gene expression in U937 cells.

    PubMed

    Kikuchi, Hidehiko; Mimuro, Hitomi; Kuribayashi, Futoshi

    2018-01-01

    The membrane bound cytochrome b 558 composed of gp91-phox and p22-phox proteins, and cytosolic proteins p40-, p47-and p67-phox are important components of superoxide (O 2 - )-generating system in phagocytes. Here, we describe that resveratrol, a pleiotropic phytochemical belonging to the stilbenoids, dramatically activates the O 2 - -generating system during retinoic acid (RA)-induced differentiation of human monoblastic leukemia U937 cells to macrophage-like cells. When U937 cells were cultured in the presence of RA and resveratrol, the O 2 - -generating activity increased more than 5-fold compared with that in the absence of the latter. Semiquantitative RT-PCR showed that co-treatment with RA and resveratrol strongly enhanced transcription of the gp91-phox compared with those of the RA-treatment only. On the other hand, immunoblot analysis revealed that co-treatment with RA and resveratrol caused remarkable accumulation of protein levels of gp91-phox (to 4-fold), p22-phox (to 5-fold) and p47-phox (to 4-fold) compared with those of the RA-treatment alone. In addition, ChIP assay suggested that resveratrol participates in enhancing the gene expression of gp91-phox via promoting acetylation of Lys-9 residues and Lys-14 residues of histone H3 within chromatin around the promoter regions of the gene. These results suggested that resveratrol strongly enhances the RA-induced O 2 - -generating activity via up-regulation of gp91-phox gene expression in U937 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Down regulation of ITGA4 and ITGA5 genes after formation of 3D spherules by human Wharton's jelly stem cells (hWJSCs).

    PubMed

    Mostafavi-Pour, Zohreh; Ashrafi, Mohammad Reza; Talaei-Khozani, Tahereh

    2018-06-01

    Human Wharton's jelly mesenchymal stem cells (hWJSCs) are multipotent stem cells that could be aggregated into 3D spherules. ITGA4 and ITGA5 genes encode α4 and α5 subunits of integrins, respectively. In this study, we analyzed expression levels of ITGA4 and ITGA5 gene mRNAs in undifferentiated and 3D spherules forming hWJSCs in order to determine their expression pattern for possible future treatment of cancer cells in a co-culture fashion. For the purpose of obtaining hWJSCs, umbilical cords were collected from patients with caesarian section at full term delivery. The cells were then characterized according to cell surface markers using flow cytometry. Furthermore pluripotency of the obtained cells was verified. Subsequently the cells were aggregated in 3D spherules using hanging drop cultures. Expression levels of ITGA4 and ITGA5 gene mRNAs were determined by RT-PCR and Real time PCR, both in the initial undifferentiated cells and those aggregated in the spherules. The obtained hWJSCs demonstrated pluripotency, differentiating to adipogenic and osteogenic cells. They also expressed mesenchymal stem cell surface markers. Following the aggregation of these cells and formation of 3D spherules, mRNA expression levels of both genes were significantly reduced (P < 0.05) compared with the initial undifferentiated state. The results of this study demonstrated that aggregation of hWJSCs into spherules alters their expression of ITGA4 and ITGA5. The implications of such an alteration would require further research.

  18. The non-structural (NS) gene segment of H9N2 influenza virus isolated from backyard poultry in Pakistan reveals strong genetic and functional similarities to the NS gene of highly pathogenic H5N1

    PubMed Central

    Munir, Muhammad; Zohari, Siamak; Iqbal, Munir; Abbas, Muhammad; Perez, Daniel Roberto; Berg, Mikael

    2013-01-01

    Apart from natural reassortment, co-circulation of different avian influenza virus strains in poultry populations can lead to generation of novel variants and reassortant viruses. In this report, we studied the genetics and functions of a reassorted non-structural gene (NS) of H9N2 influenza virus collected from back yard poultry (BYP) flock. Phylogenetic reconstruction based on hemagglutinin and neuraminidase genes indicates that an isolate from BYP belongs to H9N2. However, the NS gene-segment of this isolate cluster into genotype Z, clade 2.2 of the highly pathogenic H5N1. The NS gene plays essential roles in the host-adaptation, cell-tropism, and virulence of influenza viruses. However, such interpretations have not been investigated in naturally recombinant H9N2 viruses. Therefore, we compared the NS1 protein of H9N2 (H9N2/NS1) and highly pathogenic H5N1 (H5N1/NS1) in parallel for their abilities to regulate different signaling pathways, and investigated the molecular mechanisms of IFN-β production in human, avian, and mink lung cells. We found that H9N2/NS1 and H5N1/NS1 are comparably similar in inhibiting TNF-α induced nuclear factor κB and double stranded RNA induced activator protein 1 and interferon regulatory factor 3 transcription factors. Thus, the production of IFN-β was inhibited equally by both NS1s as demonstrated by IFN stimulatory response element and IFN-β promoter activation. Moreover, both NS1s predominantly localized in the nucleus when transfected to human A549 cells. This study therefore suggests the possible increased virulence of natural reassortant viruses for their efficient invasion of host immune responses, and proposes that these should not be overlooked for their epizootic and zoonotic potential. PMID:23959028

  19. 14-3-3γ Prevents Centrosome Amplification and Neoplastic Progression.

    PubMed

    Mukhopadhyay, Amitabha; Sehgal, Lalit; Bose, Arunabha; Gulvady, Anushree; Senapati, Parijat; Thorat, Rahul; Basu, Srikanta; Bhatt, Khyati; Hosing, Amol S; Balyan, Renu; Borde, Lalit; Kundu, Tapas K; Dalal, Sorab N

    2016-06-02

    More than 80% of malignant tumors show centrosome amplification and clustering. Centrosome amplification results from aberrations in the centrosome duplication cycle, which is strictly coordinated with DNA-replication-cycle. However, the relationship between cell-cycle regulators and centrosome duplicating factors is not well understood. This report demonstrates that 14-3-3γ localizes to the centrosome and 14-3-3γ loss leads to centrosome amplification. Loss of 14-3-3γ results in the phosphorylation of NPM1 at Thr-199, causing early centriole disjunction and centrosome hyper-duplication. The centrosome amplification led to aneuploidy and increased tumor formation in mice. Importantly, an increase in passage of the 14-3-3γ-knockdown cells led to an increase in the number of cells containing clustered centrosomes leading to the generation of pseudo-bipolar spindles. The increase in pseudo-bipolar spindles was reversed and an increase in the number of multi-polar spindles was observed upon expression of a constitutively active 14-3-3-binding-defective-mutant of cdc25C (S216A) in the 14-3-3γ knockdown cells. The increase in multi-polar spindle formation was associated with decreased cell viability and a decrease in tumor growth. Our findings uncover the molecular basis of regulation of centrosome duplication by 14-3-3γ and inhibition of tumor growth by premature activation of the mitotic program and the disruption of centrosome clustering.

  20. Protocadherin-1 binds to SMAD3 and suppresses TGF-β1-induced gene transcription

    PubMed Central

    Faura Tellez, Grissel; Vandepoele, Karl; Brouwer, Uilke; Koning, Henk; Elderman, Robin M.; Hackett, Tillie-Louise; Willemse, Brigitte W. M.; Holloway, John; Van Roy, Frans; Koppelman, Gerard H.

    2015-01-01

    Genetic studies have identified Protocadherin-1 (PCDH1) and Mothers against decapentaplegic homolog-3 (SMAD3) as susceptibility genes for asthma. PCDH1 is expressed in bronchial epithelial cells and has been found to interact with SMAD3 in yeast two-hybrid (Y2H) overexpression assays. Here, we test whether PCDH1 and SMAD3 interact at endogenous protein levels in bronchial epithelial cells and evaluate the consequences thereof for transforming growth factor-β1 (TGF-β1)-induced gene transcription. We performed Y2H screens and coimmunoprecipitation (co-IP) experiments of PCDH1 and SMAD3 in HEK293T and 16HBE14o− (16HBE) cell lines. Activity of a SMAD3-driven luciferase reporter gene in response to TGF-β1 was measured in BEAS-2B cells transfected with PCDH1 and in 16HBE cells transfected with PCDH1-small-interfering RNA (siRNA). TGF-β1-induced gene expression was quantified in BEAS-2B clones overexpressing PCDH1 and in human primary bronchial epithelial cells (PBECs) transfected with PCDH1-siRNA. We confirm PCDH1 and SMAD3 interactions by Y2H and by co-IP in HEK293T cells overexpressing both proteins, and at endogenous protein levels in 16HBE cells. TGF-β-induced activation of a SMAD3-driven reporter was reduced by exogenous PCDH1 in BEAS2B cells, whereas it was increased by siRNA-mediated knockdown of endogenous PCDH1 in 16HBE cells. Overexpression of PCDH1 suppressed expression of TGF-β target genes in BEAS-2B cells, whereas knockdown of PCDH1 in human PBECs increased TGF-β-induced gene expression. In conclusion, we demonstrate that PCDH1 binds to SMAD3 and regulates its activation by TGF-β signaling in bronchial epithelial cells. We propose that PCDH1 and SMAD3 act in a single pathway in asthma susceptibility that affects sensitivity of the airway epithelium to TGF-β. PMID:26209277

  1. Comprehensive identification of mutations responsible for heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA)-to-VISA conversion in laboratory-generated VISA strains derived from hVISA clinical strain Mu3.

    PubMed

    Matsuo, Miki; Cui, Longzhu; Kim, Jeeyoung; Hiramatsu, Keiichi

    2013-12-01

    Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) spontaneously produces VISA cells within its cell population at a frequency of 10(-6) or greater. We established a total of 45 VISA mutant strains independently obtained from hVISA Mu3 and its related strains by one-step vancomycin selection. We then performed high-throughput whole-genome sequencing of the 45 strains and their parent strains to identify the genes involved in the hVISA-to-VISA phenotypic conversion. A comparative genome study showed that all the VISA strains tested carried a unique set of mutations. All of the 45 VISA strains carried 1 to 4 mutations possibly affecting the expression of a total of 48 genes. Among them, 32 VISA strains carried only one gene affected by a single mutation. As many as 20 genes in more than eight functional categories were affected in the 32 VISA strains, which explained the extremely high rates of the hVISA-to-VISA phenotypic conversion. Five genes, rpoB, rpoC, walK, pbp4, and pp2c, were previously reported as being involved in vancomycin resistance. Fifteen remaining genes were newly identified as associated with vancomycin resistance in this study. The gene most frequently affected (6 out of 32 strains) was cmk, which encodes cytidylate kinase, followed closely by rpoB (5 out of 32), encoding the β subunit of RNA polymerase. A mutation prevalence study also revealed a sizable number of cmk mutants among clinical VISA strains (7 out of 38 [18%]). Reduced cytidylate kinase activity in cmk mutant strains is proposed to contribute to the hVISA-to-VISA phenotype conversion by thickening the cell wall and reducing the cell growth rate.

  2. Comprehensive Identification of Mutations Responsible for Heterogeneous Vancomycin-Intermediate Staphylococcus aureus (hVISA)-to-VISA Conversion in Laboratory-Generated VISA Strains Derived from hVISA Clinical Strain Mu3

    PubMed Central

    Matsuo, Miki; Cui, Longzhu; Kim, Jeeyoung

    2013-01-01

    Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) spontaneously produces VISA cells within its cell population at a frequency of 10−6 or greater. We established a total of 45 VISA mutant strains independently obtained from hVISA Mu3 and its related strains by one-step vancomycin selection. We then performed high-throughput whole-genome sequencing of the 45 strains and their parent strains to identify the genes involved in the hVISA-to-VISA phenotypic conversion. A comparative genome study showed that all the VISA strains tested carried a unique set of mutations. All of the 45 VISA strains carried 1 to 4 mutations possibly affecting the expression of a total of 48 genes. Among them, 32 VISA strains carried only one gene affected by a single mutation. As many as 20 genes in more than eight functional categories were affected in the 32 VISA strains, which explained the extremely high rates of the hVISA-to-VISA phenotypic conversion. Five genes, rpoB, rpoC, walK, pbp4, and pp2c, were previously reported as being involved in vancomycin resistance. Fifteen remaining genes were newly identified as associated with vancomycin resistance in this study. The gene most frequently affected (6 out of 32 strains) was cmk, which encodes cytidylate kinase, followed closely by rpoB (5 out of 32), encoding the β subunit of RNA polymerase. A mutation prevalence study also revealed a sizable number of cmk mutants among clinical VISA strains (7 out of 38 [18%]). Reduced cytidylate kinase activity in cmk mutant strains is proposed to contribute to the hVISA-to-VISA phenotype conversion by thickening the cell wall and reducing the cell growth rate. PMID:24018261

  3. Rtt109-dependent histone H3 K56 acetylation and gene activity are essential for the biological control potential of Beauveria bassiana.

    PubMed

    Cai, Qing; Wang, Juan-Juan; Shao, Wei; Ying, Sheng-Hua; Feng, Ming-Guang

    2018-04-27

    Rtt109 is a histone acetyltransferase that catalyzes histone H3K56 acetylation required for genomic stability, DNA damage repair and virulence-related gene activity in yeast-like human pathogens but remains functionally unknown in fungal insect pathogens. This study seeks to elucidate catalytic activity of Rtt109 orthologue and its possible role in sustaining biological control potential of Beauveria bassiana, a fungal entomopathogen. Deletion of rtt109 in B. bassiana abolished histone H3K56 acetylation and triggered histone H2A-S129 phosphorylation. Consequently, the deletion mutant showed increased sensitivities to the stresses of DNA damage, oxidation, cell wall perturbation, high osmolarity and heat shock during colony growth, severe conidiation defects under normal culture conditions, reduced conidial hydrophobicity, decreased conidial UV-B resistance, and attenuated virulence through normal cuticle infection. These phenotypic changes correlated well with reduced transcript levels of many genes, which encode the families of H2A-S129 dephosphorylation-related protein phosphotases, DNA damage-repairing factors, antioxidant enzymes, heat-shock proteins, key developmental activators, hydrophobins and cuticle-degrading Pr1 proteases respectively. Rtt109 can acetylate H3K56 and dephosphorylate H2A-S129 in direct and indirect manners respectively, and hence plays an essential role in sustaining genomic stability and global gene activity required for conidiation capacity, environmental fitness and pest-control potential in B. bassiana. This article is protected by copyright. All rights reserved.

  4. Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility.

    PubMed Central

    Geber, A; Hitchcock, C A; Swartz, J E; Pullen, F S; Marsden, K E; Kwon-Chung, K J; Bennett, J E

    1995-01-01

    We have cloned and sequenced the structural genes encoding the delta 5,6 sterol desaturase (ERG3 gene) and the 14 alpha-methyl sterol demethylase (ERG11 gene) from Candida glabrata L5 (leu2). Single and double mutants of these genes were created by gene deletion. The phenotypes of these mutants, including sterol profiles, aerobic viabilities, antifungal susceptibilities, and generation times, were studied. Strain L5D (erg3 delta::LEU2) accumulated mainly ergosta-7,22-dien-3 beta-ol, was aerobically viable, and remained susceptible to antifungal agents but had a slower generation time than its parent strain. L5LUD (LEU2 erg11 delta::URA3) strains required medium supplemented with ergosterol and an anaerobic environment for growth. A spontaneous aerobically viable mutant, L5LUD40R (LEU erg11 delta::URA3), obtained from L5LUD (LEU2 erg11 delta::URA3), was found to accumulate lanosterol and obtusifoliol, was resistant to azole antifungal agents, demonstrated some increase in resistance to amphotericin B, and exhibited a 1.86-fold increase in generation time in comparison with L5 (leu2). The double-deletion mutant L5DUD61 (erg3 delta::LEU2 erg11 delta::URA3) was aerobically viable, produced mainly 14 alpha-methyl fecosterol, and had the same antifungal susceptibility pattern as L5LUD40R (LEU2 erg11 delta::URA3), and its generation time was threefold greater than that of L5 (leu2). Northern (RNA) analysis revealed that the single-deletion mutants had a marked increase in message for the undeleted ERG3 and ERG11 genes. These results indicate that differences in antifungal susceptibilities and the restoration of aerobic viability exist between the C. glabrata ergosterol mutants created in this study and those sterol mutants with similar genetic lesions previously reported for Saccharomyces cerevisiae. PMID:8593007

  5. Genetic Compatibility and Virulence of Reassortants Derived from Contemporary Avian H5N1 and Human H3N2 Influenza A Viruses

    PubMed Central

    Zhou, Hong; Cox, Nancy J.; Donis, Ruben O.

    2008-01-01

    The segmented structure of the influenza virus genome plays a pivotal role in its adaptation to new hosts and the emergence of pandemics. Despite concerns about the pandemic threat posed by highly pathogenic avian influenza H5N1 viruses, little is known about the biological properties of H5N1 viruses that may emerge following reassortment with contemporary human influenza viruses. In this study, we used reverse genetics to generate the 63 possible virus reassortants derived from H5N1 and H3N2 viruses, containing the H5N1 surface protein genes, and analyzed their viability, replication efficiency, and mouse virulence. Specific constellations of avian–human viral genes proved deleterious for viral replication in cell culture, possibly due to disruption of molecular interaction networks. In particular, striking phenotypes were noted with heterologous polymerase subunits, as well as NP and M, or NS. However, nearly one-half of the reassortants replicated with high efficiency in vitro, revealing a high degree of compatibility between avian and human virus genes. Thirteen reassortants displayed virulent phenotypes in mice and may pose the greatest threat for mammalian hosts. Interestingly, one of the most pathogenic reassortants contained avian PB1, resembling the 1957 and 1968 pandemic viruses. Our results reveal the broad spectrum of phenotypes associated with H5N1/H3N2 reassortment and a possible role for the avian PB1 in the emergence of pandemic influenza. These observations have important implications for risk assessment of H5N1 reassortant viruses detected in surveillance programs. PMID:18497857

  6. A687V EZH2 is a driver of histone H3 lysine 27 (H3K27) hypertrimethylation.

    PubMed

    Ott, Heidi M; Graves, Alan P; Pappalardi, Melissa B; Huddleston, Michael; Halsey, Wendy S; Hughes, Ashley M; Groy, Arthur; Dul, Edward; Jiang, Yong; Bai, Yuchen; Annan, Roland; Verma, Sharad K; Knight, Steven D; Kruger, Ryan G; Dhanak, Dashyant; Schwartz, Benjamin; Tummino, Peter J; Creasy, Caretha L; McCabe, Michael T

    2014-12-01

    The EZH2 methyltransferase silences gene expression through methylation of histone H3 on lysine 27 (H3K27). Recently, EZH2 mutations have been reported at Y641, A677, and A687 in non-Hodgkin lymphoma. Although the Y641F/N/S/H/C and A677G mutations exhibit clearly increased activity with substrates dimethylated at lysine 27 (H3K27me2), the A687V mutant has been shown to prefer a monomethylated lysine 27 (H3K27me1) with little gain of activity toward H3K27me2. Herein, we demonstrate that despite this unique substrate preference, A687V EZH2 still drives increased H3K27me3 when transiently expressed in cells. However, unlike the previously described mutants that dramatically deplete global H3K27me2 levels, A687V EZH2 retains normal levels of H3K27me2. Sequencing of B-cell-derived cancer cell lines identified an acute lymphoblastic leukemia cell line harboring this mutation. Similar to exogenous expression of A687V EZH2, this cell line exhibited elevated H3K27me3 while possessing H3K27me2 levels higher than Y641- or A677-mutant lines. Treatment of A687V EZH2-mutant cells with GSK126, a selective EZH2 inhibitor, was associated with a global decrease in H3K27me3, robust gene activation, caspase activation, and decreased proliferation. Structural modeling of the A687V EZH2 active site suggests that the increased catalytic activity with H3K27me1 may be due to a weakened interaction with an active site water molecule that must be displaced for dimethylation to occur. These findings suggest that A687V EZH2 likely increases global H3K27me3 indirectly through increased catalytic activity with H3K27me1 and cells harboring this mutation are highly dependent on EZH2 activity for their survival. ©2014 American Association for Cancer Research.

  7. Down-regulation of p-coumaroyl quinate/shikimate 3'-hydroxylase (C3'H) and cinnamate 4-hydroxylase (C4H) genes in the lignin biosynthetic pathway of Eucalyptus urophylla x E. grandis leads to improved sugar release

    DOE PAGES

    Sykes, Robert W.; Gjersing, Erica L.; Foutz, Kirk; ...

    2015-08-27

    In this study, lignocellulosic materials provide an attractive replacement for food-based crops used to produce ethanol. Understanding the interactions within the cell wall is vital to overcome the highly recalcitrant nature of biomass. One factor imparting plant cell wall recalcitrance is lignin, which can be manipulated by making changes in the lignin biosynthetic pathway. In this study, eucalyptus down-regulated in expression of cinnamate 4-hydroxylase (C4H, EC 1.14.13.11) or p-coumaroyl quinate/shikimate 3'-hydroxylase (C3'H, EC 1.14.13.36) were evaluated for cell wall composition and reduced recalcitrance.

  8. Regions of very low H3K27me3 partition the Drosophila genome into topological domains

    PubMed Central

    Flower, Rosalyn; Choo, Siew Woh

    2017-01-01

    It is now well established that eukaryote genomes have a common architectural organization into topologically associated domains (TADs) and evidence is accumulating that this organization plays an important role in gene regulation. However, the mechanisms that partition the genome into TADs and the nature of domain boundaries are still poorly understood. We have investigated boundary regions in the Drosophila genome and find that they can be identified as domains of very low H3K27me3. The genome-wide H3K27me3 profile partitions into two states; very low H3K27me3 identifies Depleted (D) domains that contain housekeeping genes and their regulators such as the histone acetyltransferase-containing NSL complex, whereas domains containing moderate-to-high levels of H3K27me3 (Enriched or E domains) are associated with regulated genes, irrespective of whether they are active or inactive. The D domains correlate with the boundaries of TADs and are enriched in a subset of architectural proteins, particularly Chromator, BEAF-32, and Z4/Putzig. However, rather than being clustered at the borders of these domains, these proteins bind throughout the H3K27me3-depleted regions and are much more strongly associated with the transcription start sites of housekeeping genes than with the H3K27me3 domain boundaries. While we have not demonstrated causality, we suggest that the D domain chromatin state, characterised by very low or absent H3K27me3 and established by housekeeping gene regulators, acts to separate topological domains thereby setting up the domain architecture of the genome. PMID:28282436

  9. MTA3 regulates CGB5 and Snail genes in trophoblast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying; Miyazaki, Jun; Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake

    Highlights: •Impaired MTA3, raised CGB5 and Snail expression are associated with preeclampsia. •Knock-down of MTA3 causes up-regulation of CGB5 and Snail genes in BeWo cells. •MTA3 occupies CGB5 and Snail gene promoters in BeWo cells. -- Abstract: Secreted by the placental trophoblast, human chorionic gonadotropin (hCG) is an important hormone during pregnancy and is required for the maintenance of pregnancy. Previous studies have shown that dys-regulation of hCG expression is associated with preeclampsia. However, the exact relationship between altered hCG levels and development of preeclampsia is unknown. Metastasis associated protein 3 (MTA3), a chromatin remodeling protein, is abundantly expressed inmore » the placental trophoblasts, but its function is unknown. In breast cancer, MTA3 has been shown to repress the expression of Snail and cell migration. However, whether MTA3 acts similarly in the trophoblast has not been investigated. In the present study, we examined the role of MTA3 in regulating the hCG β-subunit gene (gene name: CGB5) and Snail expression in the trophoblast cell line, BeWo, as well as its relevance to the high hCG expression levels seen in preeclampsia. First, we investigated MTA3 expression in preeclamptic placenta as compared to normal control placenta via gene expression microarray and qRT-PCR and found that MTA3 was significantly down-regulated, whereas both CGB5 and Snail were up-regulated in preeclamptic placenta. Secondly, we knocked down MTA3 gene in trophoblast cell line BeWo and found Snail and hCG were both up-regulated, suggesting that MTA3 represses Snail and hCG gene expression in trophoblasts. Next, we cloned the CGB5 and Snail promoters into the pGL3-basic vector individually and found that silencing of MTA3 by siRNA resulted in an increase of both CGB5 and Snail promoter activities. To confirm that this MTA3 inhibition is a direct effect, we performed a chromatin immune-precipitation (ChIP) assay and found that MTA

  10. Gene cloning and enzymatic characterization of an alkali-tolerant endo-1,4-β-mannanase from Rhizomucor miehei.

    PubMed

    Katrolia, Priti; Yan, Qiaojuan; Zhang, Pan; Zhou, Peng; Yang, Shaoqing; Jiang, Zhengqiang

    2013-01-16

    An endo-1,4-β-mannanase gene (RmMan5A) was cloned from the thermophilic fungus Rhizomucor miehei for the first time and expressed in Escherichia coli . The gene had an open reading frame of 1330 bp encoding 378 amino acids and contained four introns. It displayed the highest amino acid sequence identity (42%) with the endo-1,4-β-mannanases from glycoside hydrolase family 5. The purified enzyme was a monomer of 43 kDa. RmMan5A displayed maximum activity at 55 °C and an optimal pH of 7.0. It was thermostable up to 55 °C and alkali-tolerant, displaying excellent stability over a broad pH range of 4.0-10.0, when incubated for 30 min without substrate. The enzyme displayed the highest specificity for locust bean gum (K(m) = 3.78 mg mL⁻¹), followed by guar gum (K(m) = 7.75 mg mL⁻¹) and konjac powder (K(m) = 22.7 mg mL⁻¹). RmMan5A hydrolyzed locust bean gum and konjac powder yielding mannobiose, mannotriose, and a mixture of various mannose-linked oligosaccharides. It was confirmed to be a true endo-acting β-1,4-mannanase, which showed requirement of four mannose residues for hydrolysis, and was also capable of catalyzing transglycosylation reactions. These properties make RmMan5A highly useful in the food/feed, paper and pulp, and detergent industries.

  11. 14-3-3 Proteins Modulate the ETS Transcription Factor ETV1 in Prostate Cancer

    PubMed Central

    Oh, Sangphil; Shin, Sook; Lightfoot, Stan A.; Janknecht, Ralf

    2013-01-01

    Overexpression of the ETS-related transcription factor ETV1 can initiate neoplastic transformation of the prostate. ETV1 activity is highly regulated by phosphorylation, but the underlying mechanisms are unknown. Here we report that all 14-3-3 proteins, with the exception of the tumor suppressor 14-3-3σ, can bind to ETV1 in a condition manner dictated by its prominent phosphorylation site S216. All non-σ 14-3-3 proteins synergized with ETV1 to activate transcription of its target genes MMP-1 and MMP-7, which regulate extracellular matrix in the prostate tumor microenvironment. S216 mutation or 14-3-3τ downregulation was sufficient to reduce ETV1 protein levels in prostate cancer cells, indicating that non-σ 14-3-3 proteins protect ETV1 from degradation. Notably, S216 mutation also decreased ETV1-dependent migration and invasion in benign prostate cells. Downregulation of 14-3-3τ reduced prostate cancer cell invasion and growth in the same manner as ETV1 attenuation. Lastly, we showed that 14-3-3τ and 14-3-3ε were overexpressed in human prostate tumors. Taken together, our results demonstrated that non-σ 14-3-3 proteins are important modulators of ETV1 function that promote prostate tumorigenesis. PMID:23774214

  12. Canine candidate genes for dilated cardiomyopathy: annotation of and polymorphic markers for 14 genes

    PubMed Central

    Wiersma, Anje C; Leegwater, Peter AJ; van Oost, Bernard A; Ollier, William E; Dukes-McEwan, Joanna

    2007-01-01

    Background Dilated cardiomyopathy is a myocardial disease occurring in humans and domestic animals and is characterized by dilatation of the left ventricle, reduced systolic function and increased sphericity of the left ventricle. Dilated cardiomyopathy has been observed in several, mostly large and giant, dog breeds, such as the Dobermann and the Great Dane. A number of genes have been identified, which are associated with dilated cardiomyopathy in the human, mouse and hamster. These genes mainly encode structural proteins of the cardiac myocyte. Results We present the annotation of, and marker development for, 14 of these genes of the dog genome, i.e. α-cardiac actin, caveolin 1, cysteine-rich protein 3, desmin, lamin A/C, LIM-domain binding factor 3, myosin heavy polypeptide 7, phospholamban, sarcoglycan δ, titin cap, α-tropomyosin, troponin I, troponin T and vinculin. A total of 33 Single Nucleotide Polymorphisms were identified for these canine genes and 11 polymorphic microsatellite repeats were developed. Conclusion The presented polymorphisms provide a tool to investigate the role of the corresponding genes in canine Dilated Cardiomyopathy by linkage analysis or association studies. PMID:17949487

  13. 14 CFR Appendix H to Part 141 - Ground Instructor Certification Course

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Ground Instructor Certification Course H Appendix H to Part 141 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...—Advanced. (c) Ground Instructor—Instrument. 2. Aeronautical knowledge training. (a) Each approved course...

  14. 14 CFR Appendix H to Part 141 - Ground Instructor Certification Course

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Ground Instructor Certification Course H Appendix H to Part 141 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...—Advanced. (c) Ground Instructor—Instrument. 2. Aeronautical knowledge training. (a) Each approved course...

  15. Clinical significance of hTERC gene amplification detection by FISH in the screening of cervical lesions.

    PubMed

    Zhang, Yuan; Wang, Xiaobei; Ma, Ling; Wang, Zehua; Hu, Lihua

    2009-06-01

    This study evaluated the clinical significance of hTERC gene amplification detection by fluorescence in situ hybridization (FISH) in the screening of cervical lesions. Cervical specimens of 50 high risk patients were detected by thin liquid-based cytology. The patients whose cytological results were classified as ASCUS or above were subjected to the subsequent colposcopic biopsies. Slides prepared from these 50 cervical specimens were analyzed for hTERC gene amplification using interphase FISH with the two-color hTERC probe. The results of the cytological analysis and those of subsequent biopsies, when available, were compared with the FISH-detected hTERC abnormalities. It was found that the positive rates of hTERC gene amplification in NILM, ASCUS, LSIL, HSIL, and SCC groups were 0.00, 28.57%, 57.14%, 100%, and 100%, respectively. The positive rates of hTERC gene amplification in HSIL and SCC groups were significantly higher than those in NILM, ASCUS and LSIL groups (all P<0.05). The mean percentages of cells with hTERC gene amplification in NILM, ASCUS, LSIL, HSIL, and SCC groups were 0.00, 10.50%, 36.00%, 79.00%, and 96.50%, respectively. Patients with HSIL or SCC cytological diagnoses had significantly higher mean percentages of cells with hTERC gene amplification than did patients with NILM, ASCUS or LSIL cytological diagnoses (all P<0.05). It was concluded that two-color interphase FISH could detect hTERC gene amplification to accurately distinguish HSIL and ISIL of cervical cells. It may be an adjunct to cytology screening, especially high-risk patients.

  16. Multi site polyadenylation and transcriptional response to stress of a vacuolar type H+-ATPase subunit A gene in Arabidopsis thaliana

    PubMed Central

    Magnotta, Scot M; Gogarten, Johann Peter

    2002-01-01

    Background Vacuolar type H+-ATPases play a critical role in the maintenance of vacuolar homeostasis in plant cells. V-ATPases are also involved in plants' defense against environmental stress. This research examined the expression and regulation of the catalytic subunit of the vacuolar type H+-ATPase in Arabidopsis thaliana and the effect of environmental stress on multiple transcripts generated by this gene. Results Evidence suggests that subunit A of the vacuolar type H+-ATPase is encoded by a single gene in Arabidopsis thaliana. Genome blot analysis showed no indication of a second subunit A gene being present. The single gene identified was shown by whole RNA blot analysis to be transcribed in all organs of the plant. Subunit A was shown by sequencing the 3' end of multiple cDNA clones to exhibit multi site polyadenylation. Four different poly (A) tail attachment sites were revealed. Experiments were performed to determine the response of transcript levels for subunit A to environmental stress. A PCR based strategy was devised to amplify the four different transcripts from the subunit A gene. Conclusions Amplification of cDNA generated from seedlings exposed to cold, salt stress, and etiolation showed that transcript levels for subunit A of the vacuolar type H+-ATPase in Arabidopsis were responsive to stress conditions. Cold and salt stress resulted in a 2–4 fold increase in all four subunit A transcripts evaluated. Etiolation resulted in a slight increase in transcript levels. All four transcripts appeared to behave identically with respect to stress conditions tested with no significant differential regulation. PMID:11985780

  17. Genetic association of sequence variation in exon 3 of the swine leukocyte antigen-DQA gene with piglet diarrhea in Large White, Landrace, and Duroc piglets.

    PubMed

    Yang, Q L; Huang, X Y; Kong, J J; Zhao, S G; Liu, L X; Gun, S B

    2016-08-19

    Piglet diarrhea is one of the primary factors that affects the benefits of the swine industry. Recent studies have shown that exon 2 of the swine leukocyte antigen-DQA gene is associated with piglet resistance to diarrhea; however, the contributions of additional exon coding regions of this gene remain unclear. Here, we detected and sequenced variants in the exon 3 region and examined their associations with diarrhea infection in 425 suckling piglets using the polymerase chain reaction-single-strand conformational polymorphism and sequencing analysis. The results revealed that exon 3 of the swine leukocyte antigen-DQA gene is highly polymorphic and pivotal to both diarrhea susceptibility and resistance in piglets. We identified 14 genotypes (AA, AB, BB, BC, CC, EE, EF, BE, BF, CF, DD, DH, GG, and GF) and eight alleles (A-H) that were generated by 14 nucleotide variants, eight of which were novel, and three nucleotide deletions. Statistical analyses revealed that the genotypes AB and EF were associated with resistance to diarrheal disease (P < 0.05), and the genotype DD may contribute to diarrhea susceptibility but was unique to Large White pigs (P > 0.05). These results elucidate the genetic and immunological background to piglet diarrhea, and provide useful information for resistance breeding programs.

  18. Modulation of 14-3-3 protein interactions with target polypeptides by physical and metabolic effectors.

    PubMed

    Athwal, G S; Lombardo, C R; Huber, J L; Masters, S C; Fu, H; Huber, S C

    2000-04-01

    The proteins commonly referred to as 14-3-3s have recently come to prominence in the study of protein:protein interactions, having been shown to act as allosteric or steric regulators and possibly scaffolds. The binding of 14-3-3 proteins to the regulatory phosphorylation site of nitrate reductase (NR) was studied in real-time by surface plasmon resonance, using primarily an immobilized synthetic phosphopeptide based on spinach NR-Ser543. Both plant and yeast 14-3-3 proteins were shown to bind the immobilized peptide ligand in a Mg2+-stimulated manner. Stimulation resulted from a reduction in KD and an increase in steady-state binding level (Req). As shown previously for plant 14-3-3s, fluorescent probes also indicated that yeast BMH2 interacted directly with cations, which bind and affect surface hydrophobicity. Binding of 14-3-3s to the phosphopeptide ligand occurred in the absence of divalent cations when the pH was reduced below neutral, and the basis for enhanced binding was a reduction in K(D). At pH 7.5 (+Mg2+), AMP inhibited binding of plant 14-3-3s to the NR based peptide ligand. The binding of AMP to 14-3-3s was directly demonstrated by equilibrium dialysis (plant), and from the observation that recombinant plant 14-3-3s have a low, but detectable, AMP phosphatase activity.

  19. Identification of Biomarker Genes To Predict Biodegradation of 1,4-Dioxane

    PubMed Central

    Gedalanga, Phillip B.; Pornwongthong, Peerapong; Mora, Rebecca; Chiang, Sheau-Yun Dora; Baldwin, Brett; Ogles, Dora

    2014-01-01

    Bacterial multicomponent monooxygenase gene targets in Pseudonocardia dioxanivorans CB1190 were evaluated for their use as biomarkers to identify the potential for 1,4-dioxane biodegradation in pure cultures and environmental samples. Our studies using laboratory pure cultures and industrial activated sludge samples suggest that the presence of genes associated with dioxane monooxygenase, propane monooxygenase, alcohol dehydrogenase, and aldehyde dehydrogenase are promising indicators of 1,4-dioxane biotransformation; however, gene abundance was insufficient to predict actual biodegradation. A time course gene expression analysis of dioxane and propane monooxygenases in Pseudonocardia dioxanivorans CB1190 and mixed communities in wastewater samples revealed important associations with the rates of 1,4-dioxane removal. In addition, transcripts of alcohol dehydrogenase and aldehyde dehydrogenase genes were upregulated during biodegradation, although only the aldehyde dehydrogenase was significantly correlated with 1,4-dioxane concentrations. Expression of the propane monooxygenase demonstrated a time-dependent relationship with 1,4-dioxane biodegradation in P. dioxanivorans CB1190, with increased expression occurring after over 50% of the 1,4-dioxane had been removed. While the fraction of P. dioxanivorans CB1190-like bacteria among the total bacterial population significantly increased with decrease in 1,4-dioxane concentrations in wastewater treatment samples undergoing active biodegradation, the abundance and expression of monooxygenase-based biomarkers were better predictors of 1,4-dioxane degradation than taxonomic 16S rRNA genes. This study illustrates that specific bacterial monooxygenase and dehydrogenase gene targets together can serve as effective biomarkers for 1,4-dioxane biodegradation in the environment. PMID:24632253

  20. Functional analysis of Paracoccidioides brasiliensis 14-3-3 adhesin expressed in Saccharomyces cerevisiae.

    PubMed

    Assato, Patricia Akemi; da Silva, Julhiany de Fátima; de Oliveira, Haroldo Cesar; Marcos, Caroline Maria; Rossi, Danuza; Valentini, Sandro Roberto; Mendes-Giannini, Maria José Soares; Zanelli, Cleslei Fernando; Fusco-Almeida, Ana Marisa

    2015-11-04

    14-3-3 proteins comprise a family of eukaryotic multifunctional proteins involved in several cellular processes. The Pb14-3-3 of Paracoccidioides brasiliensis seems to play an important role in the Paracoccidioides-host interaction. Paracoccidioides brasiliensis is an etiological agent of paracoccidioidomycosis, which is a systemic mycosis that is endemic in Latin America. In the initial steps of the infection, Paracoccidioides spp. synthetizes adhesins that allow it to adhere and invade host cells. Therefore, the aim of this work was to perform a functional analysis of Pb14-3-3 using Saccharomyces cerevisiae as a model. The functional analysis of Pb14-3-3 was performed in S. cerevisiae, and it was found that Pb14-3-3 partially complemented S. cerevisiae proteins Bmh1p and Bmh2p, which are recognized as two yeast 14-3-3 homologues. When we evaluated the adhesion profile of S. cerevisiae transformants, Pb14-3-3 acted as an adhesin in S. cerevisiae; however, Bmh1p did not show this function. The influence of Pb14-3-3 in S. cerevisiae ergosterol pathway was also evaluated and our results showed that Pb14-3-3 up-regulates genes involved in ergosterol biosynthesis. Our data showed that Pb14-3-3 was able to partially complement Bmh1p and Bmh2p proteins in S. cerevisiae; however, we suggest that Pb14-3-3 has a differential role as an adhesin. In addition, Pb-14-3-3 may be involved in Paracoccidioides spp. ergosterol biosynthesis which makes it an interest as a therapeutic target.

  1. Maintenance of human adipose derived stem cell (hASC) differentiation capabilities using a 3D culture.

    PubMed

    Lin, Ching-Yu; Huang, Chi-Hui; Wu, Yuan-Kun; Cheng, Nai-Chen; Yu, Jiashing

    2014-07-01

    In this study, 3D culture system for human adipose-derived stem cell (hASC) using a BioLevitator as the bioreactor for microcarrier-based cultures was established. During the culturing period, hASCs preferred to grow in crevices between microcarriers and a high viability was maintained even when reaching confluency. Adipogenic or osteogenic differential medium was used to induce hASCs and differential potentials of these cells were compared between 2D and 3D environments via RT-PCR and staining quantifications. CEBP/α gene expression was significant higher in 3D condition at day 21 (P < 0.05). Staining quantification indicates that cells cultured in 3D condition have significant better differentiation potential from day 14 to 21 for both adipogenic and osteogenic lineages (P < 0.01).

  2. Ab initio chemical kinetics for SiH3 reactions with Si(x)H2x+2 (x = 1-4).

    PubMed

    Raghunath, P; Lin, M C

    2010-12-30

    Gas-phase kinetics and mechanisms of SiH(3) reactions with SiH(4), Si(2)H(6), Si(3)H(8), and Si(4)H(10), processes of relevance to a-Si thin-film deposition, have been investigated by ab initio molecular orbital and transition-state theory (TST) calculations. Geometric parameters of all the species involved in the title reactions were optimized by density functional theory at the B3LYP and BH&HLYP levels with the 6-311++G(3df,2p) basis set. The potential energy surface of each reaction was refined at the CCSD(T)/6-311++G(3df,2p) level of theory. The results show that the most favorable low energy pathways in the SiH(3) reactions with these silanes occur by H abstraction, leading to the formation of SiH(4) + Si(x)H(2x+1) (silanyl) radicals. For both Si(3)H(8) and n-Si(4)H(10) reactions, the lowest energy barrier channels take place by secondary Si-H abstraction, yielding SiH(4) + s-Si(3)H(7) and SiH(4) + s-Si(4)H(9), respectively. In the i-Si(4)H(10) reaction, tertiary Si-H abstraction has the lowest barrier producing SiH(4) + t-Si(4)H(9). In addition, direct SiH(3)-for-X substitution reactions forming Si(2)H(6) + X (X = H or silanyls) can also occur, but with significantly higher reaction barriers. A comparison of the SiH(3) reactions with the analogous CH(3) reactions with alkanes has been made. The rate constants for low-energy product channels have been calculated for the temperature range 300-2500 K by TST with Eckart tunneling corrections. These results, together with predicted heats of formation of various silanyl radicals and Si(4)H(10) isomers, have been tabulated for modeling of a-Si:H film growth by chemical vapor deposition.

  3. A role for Tn6029 in the evolution of the complex antibiotic resistance gene loci in genomic island 3 in enteroaggregative hemorrhagic Escherichia coli O104:H4.

    PubMed

    Roy Chowdhury, Piklu; Charles, Ian G; Djordjevic, Steven P

    2015-01-01

    In enteroaggregative hemorrhagic Escherichia coli (EAHEC) O104 the complex antibiotic resistance gene loci (CRL) found in the region of divergence 1 (RD1) within E. coli genomic island 3 (GI3) contains blaTEM-1, strAB, sul2, tet(A)A, and dfrA7 genes encoding resistance to ampicillin, streptomycin, sulfamethoxazole, tetracycline and trimethoprim respectively. The precise arrangement of antibiotic resistance genes and the role of mobile elements that drove the evolutionary events and created the CRL have not been investigated. We used a combination of bioinformatics and iterative BLASTn searches to determine the micro-evolutionary events that likely led to the formation of the CRL in GI3 using the closed genome sequences of EAHEC O104:H4 strains 2011C-3493 and 2009EL-2050 and high quality draft genomes of EAHEC E. coli O104:H4 isolates from sporadic cases not associated with the initial outbreak. Our analyses indicate that the CRL in GI3 evolved from a progenitor structure that contained an In2-derived class 1 integron in a Tn21/Tn1721 hybrid backbone. Within the hybrid backbone, a Tn6029-family transposon, identified here as Tn6029C abuts the sul1 gene in the 3'-Conserved Segment (-CS) of a class 1 integron generating a unique molecular signature that has only previously been observed in pASL01a, a small plasmid found in commensal E. coli in West Africa. From this common progenitor, independent IS26-mediated events created two novel transposons identified here as Tn6029D and Tn6222 in 2011C-3493 and 2009EL-2050 respectively. Analysis of RD1 within GI3 reveals IS26 has played a crucial role in the assembly of regions within the CRL.

  4. Generation of Five Human Lactoferrin Transgenic Cloned Goats Using Fibroblast Cells and Their Methylation Status of Putative Differential Methylation Regions of IGF2R and H19 Imprinted Genes

    PubMed Central

    Sun, Yanyan; Zhang, Yanli; Wang, Ziyu; Song, Yang; Wang, Feng

    2013-01-01

    Background Somatic cell nuclear transfer (SCNT) is a promising technique to produce transgenic cloned mammalian, including transgenic goats which may produce Human Lactoferrin (hLF). However, success percentage of SCNT is low, because of gestational and neonatal failure of transgenic embryos. According to the studies on cattle and mice, DNA methylation of some imprinted genes, which plays a vital role in the reprogramming of embryo in NT maybe an underlying mechanism. Methodology/Principal Findings Fibroblast cells were derived from the ear of a two-month-old goat. The vector expressing hLF was constructed and transfected into fibroblasts. G418 selection, EGFP expression, PCR, and cell cycle distribution were applied sequentially to select transgenic cells clones. After NT and embryo transfer, five transgenic cloned goats were obtained from 240 cloned transgenic embryos. These transgenic goats were identified by 8 microsatellites genotyping and southern blot. Of the five transgenic goats, 3 were lived after birth, while 2 were dead during gestation. We compared differential methylation regions (DMR) pattern of two paternally imprinted genes (H19 and IGF2R) of the ear tissues from the lived transgenic goats, dead transgenic goats, and control goats from natural reproduction. Hyper-methylation pattern appeared in cloned aborted goats, while methylation status was relatively normal in cloned lived goats compared with normal goats. Conclusions/Significance In this study, we generated five hLF transgenic cloned goats by SCNT. This is the first time the DNA methylation of lived and dead transgenic cloned goats was compared. The results demonstrated that the methylation status of DMRs of H19 and IGF2R were different in lived and dead transgenic goats and therefore this may be potentially used to assess the reprogramming status of transgenic cloned goats. Understanding the pattern of gene imprinting may be useful to improve cloning techniques in future. PMID:24204972

  5. Shaken not stirred: a facile synthesis of 1,4-bis(furo[2,3-d]-pyrimidine-2,4(1H,3H)-dione-5-yl)benzenes by one-pot reaction of isocyanides, N,N'-dimethylbarbituric acid, and terephthaldialdehyde.

    PubMed

    Teimouri, Mohammad Bagher; Bazhrang, Reihaneh

    2006-07-15

    A simple and efficient synthesis of 1,4-bis(furo[2,3-d]pyrimidine-2,4(1H,3H)-dione-5-yl)benzene derivatives was achieved via a one-pot three-component reaction of isocyanides, N,N'-dimethylbarbituric acid, and terephthaldialdehyde in DMF at room temperature for 30 min. These improved reaction conditions allow the preparation of highly substituted furopyrimidinones in high yields and purity under mild reaction conditions.

  6. Epigenomic analysis in a cell-based model reveals the roles of H3K9me3 in breast cancer transformation.

    PubMed

    Li, Qing-Lan; Lei, Pin-Ji; Zhao, Quan-Yi; Li, Lianyun; Wei, Gang; Wu, Min

    2017-08-01

    Epigenetic marks are critical regulators of chromatin and gene activity. Their roles in normal physiology and disease states, including cancer development, still remain elusive. Herein, the epigenomic change of H3K9me3, as well as its potential impacts on gene activity and genome stability, was investigated in an in vitro breast cancer transformation model. The global H3K9me3 level was studied with western blotting. The distribution of H3K9me3 on chromatin and gene expression was studied with ChIP-Seq and RNA-Seq, respectively. The global H3K9me3 level decreases during transformation and its distribution on chromatin is reprogrammed. By combining with TCGA data, we identified 67 candidate oncogenes, among which five genes are totally novel. Our analysis further links H3K9me3 with transposon activity, and suggests H3K9me3 reduction increases the cell's sensitivity to DNA damage reagents. H3K9me3 reduction is possibly related with breast cancer transformation by regulating gene expression and chromatin stability during transformation.

  7. Co-expression of the transcription factors CEH-14 and TTX-1 regulates AFD neuron-specific genes gcy-8 and gcy-18 in C. elegans.

    PubMed

    Kagoshima, Hiroshi; Kohara, Yuji

    2015-03-15

    A wide variety of cells are generated by the expression of characteristic sets of genes, primarily those regulated by cell-specific transcription. To elucidate the mechanism regulating cell-specific gene expression in a highly specialized cell, AFD thermosensory neuron in Caenorhabditis elegans, we analyzed the promoter sequences of guanylyl cyclase genes, gcy-8 and gcy-18, exclusively expressed in AFD. In this study, we showed that AFD-specific expression of gcy-8 and gcy-18 requires the co-expression of homeodomain proteins, CEH-14/LHX3 and TTX-1/OTX1. We observed that mutation of ttx-1 or ceh-14 caused a reduction in the expression of gcy-8 and gcy-18 and that the expression was completely lost in double mutants. This synergy effect was also observed with other AFD marker genes, such as ntc-1, nlp-21and cng-3. Electrophoretic mobility shift assays revealed direct interaction of CEH-14 and TTX-1 proteins with gcy-8 and gcy-18 promoters in vitro. The binding sites of CEH-14 and TTX-1 proteins were confirmed to be essential for AFD-specific expression of gcy-8 and gcy-18 in vivo. We also demonstrated that forced expression of CEH-14 and TTX-1 in AWB chemosensory neurons induced ectopic expression of gcy-8 and gcy-18 reporters in this neuron. Finally, we showed that the regulation of gcy-8 and gcy-18 expression by ceh-14 and ttx-1 is evolutionally conserved in five Caenorhabditis species. Taken together, ceh-14 and ttx-1 expression determines the fate of AFD as terminal selector genes at the final step of cell specification. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Recurrent Loss of APOBEC3H Activity during Primate Evolution.

    PubMed

    Garcia, Erin I; Emerman, Michael

    2018-06-20

    Genes in the APOBEC3 family encode cytidine deaminases that provide a barrier against viral infection and retrotransposition. Of all APOBEC3 genes in humans, APOBEC3H ( A3H ) is the most polymorphic: some haplotypes encode stable and active A3H proteins, while others are unstable and poorly antiviral. Such variation in human A3H affects interactions with the lentiviral antagonist Vif, which counteracts A3H via proteasomal degradation. In order to broaden our understanding of A3H-Vif interactions, as well as its evolution in Old World monkeys, we characterized A3H variation within four African green monkey (AGM) subspecies. We found that A3H is highly polymorphic in AGMs and has lost antiviral activity in multiple Old World monkeys. This loss of function was partially related to protein expression levels but was also influenced by amino acid mutations in the N-terminus. Moreover, we demonstrate that the evolution of A3H in the primate lineages leading to AGMs was not driven by Vif. Our work suggests that activity of A3H is evolutionarily dynamic and may have a negative effect on host fitness, resulting in its recurrent loss in primates. IMPORTANCE Adaptation of viruses to their hosts is critical for transmission of viruses between different species. Previous studies had identified changes in a protein from the APOBEC3 family that influenced species-specificity of simian immunodeficiency viruses (SIVs) in African green monkeys. We studied the evolution of a related protein in the same system, APOBEC3H, which has experienced a loss of function in humans. This evolutionary approach revealed that recurrent loss of APOBEC3H activity has taken place during primate evolution suggesting that APOBEC3H places a fitness cost on hosts. The variability of APOBEC3H activity between different primates highlights the differential selective pressures on the APOBEC3 gene family. Copyright © 2018 American Society for Microbiology.

  9. The Prognostic Value of 14-3-3 Isoforms in Vulvar Squamous Cell Carcinoma Cases: 14-3-3β and ε Are Independent Prognostic Factors for These Tumors

    PubMed Central

    Wang, Zhihui; Nesland, Jahn M.; Suo, Zhenhe; Trope, Claes G.; Holm, Ruth

    2011-01-01

    Background The 14-3-3 family is comprised of highly conserved proteins that are functionally important in the maintenance of homeostasis. Their involvement with the cell cycle, their association with proto-oncogenes and oncogenes, and their abnormal expression in various tumors has linked this family of proteins to the etiology of human cancer. Mounting evidence now indicates that 14-3-3σ is a cancer suppressor gene but the roles of the other 14-3-3 isoforms and their interactions in tumorigenesis have not yet been elucidated. In our current study, we examined the expression of 14-3-3β, γ, ε, ζ, η and τ in a large series of vulvar squamous cell carcinomas to evaluate any clinical significance. Methods Tumor biopsies from 298 vulvar carcinomas were examined by immunohistochemistry for the expression of 14-3-3β, γ, ε, ζ, η and τ. Statistical analyses were employed to validate any associations between the expression of any 14-3-3 isoform and clinicopathologic variables for this disease. Results High cytoplasmic levels of 14-3-3β, γ, ζ, ε and η were observed in 79%, 58%, 50%, 86% and 54% of the vulvar carcinomas analyzed, respectively, whereas a low nuclear expression of 14-3-3τ was present in 80% of these cases. The elevated cytoplasmic expression of 14-3-3β, γ, ε, ζ and η was further found to be associated with advanced disease and aggressive features of these cancers. The overexpression of cytoplasmic 14-3-3β and ε significantly correlated with a poor disease-specific survival by univariate analysis (P = 0.007 and P = 0.04, respectively). The independent prognostic significance of these factors was confirmed by multivariate analysis (P = 0.007 and P = 0.009, respectively). Conclusions We reveal for the first time that the 14-3-3β, γ, ε, ζ, η and τ isoforms may be involved in the progression of vulvar carcinomas. Furthermore, our analyses show that high cytoplasmic levels of 14-3-3β and ε independently correlate with

  10. Characterization of 14-3-3 isoforms expressed in the Echinococcus granulosus pathogenic larval stage.

    PubMed

    Teichmann, Aline; Vargas, Daiani M; Monteiro, Karina M; Meneghetti, Bruna V; Dutra, Cristine S; Paredes, Rodolfo; Galanti, Norbel; Zaha, Arnaldo; Ferreira, Henrique B

    2015-04-03

    The 14-3-3 protein family of eukaryotic regulators was studied in Echinococcus granulosus, the causative agent of cystic hydatid disease. These proteins mediate important cellular processes in eukaryotes and are expected to play important roles in parasite biology. Six isoforms of E. granulosus 14-3-3 genes and proteins (Eg14-3-3.1-6) were analyzed, and their phylogenetic relationships were established with bona fide 14-3-3 orthologous proteins from eukaryotic species. Eg14-3-3 isoforms with previous evidence of expression (Eg14-3-3.1-4) in E. granulosus pathogenic larval stage (metacestode) were cloned, and recombinant proteins were used for functional studies. These protein isoforms were detected in different components of E. granulosus metacestode, including interface components with the host. The roles that are played by Eg14-3-3 proteins in parasite biology were inferred from the repertoires of interacting proteins with each isoform, as assessed by gel overlay, cross-linking, and affinity chromatography assays. A total of 95 Eg14-3-3 protein ligands were identified by mass spectrometry. Eg14-3-3 isoforms have shared partners (44 proteins), indicating some overlapping functions; however, they also bind exclusive partners (51 proteins), suggesting Eg14-3-3 functional specialization. These ligand repertoires indicate the involvement of Eg14-3-3 proteins in multiple biochemical pathways in the E. granulosus metacestode and note some degree of isoform specialization.

  11. Potent, nonsteroidal selective androgen receptor modulators (SARMs) based on 8H-[1,4]oxazino[2,3-f]quinolin-8-ones.

    PubMed

    Higuchi, Robert I; Thompson, Anthony W; Chen, Jyun-Hung; Caferro, Thomas R; Cummings, Marquis L; Deckhut, Charlotte P; Adams, Mark E; Tegley, Christopher M; Edwards, James P; López, Francisco J; Kallel, E Adam; Karanewsky, Donald S; Schrader, William T; Marschke, Keith B; Zhi, Lin

    2007-10-01

    A series of androgen receptor modulators based on 8H-[1,4]oxazino[2,3-f]quinolin-8-ones was synthesized and evaluated in an androgen receptor transcriptional activation assay. The most potent analogues from the series exhibited single-digit nanomolar potency in vitro. Compound 18h demonstrated full efficacy in the maintenance of muscle weight, at 10 mg/kg, with reduced activity in prostate weight in an in vivo model of androgen action.

  12. 14 CFR 25.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Chemical oxygen generators. 25.1450 Section... oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen generator must be designed...

  13. 14 CFR 25.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Chemical oxygen generators. 25.1450 Section... oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen generator must be designed...

  14. 14 CFR 25.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Chemical oxygen generators. 25.1450 Section... oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen generator must be designed...

  15. Acetylation of hMOF Modulates H4K16ac to Regulate DNA Repair Genes in Response to Oxidative Stress.

    PubMed

    Zhong, Jianing; Ji, Liying; Chen, Huiqian; Li, Xianfeng; Zhang, Jian'an; Wang, Xingxing; Wu, Weilin; Xu, Ying; Huang, Fei; Cai, Wanshi; Sun, Zhong Sheng

    2017-01-01

    Oxidative stress is considered to be a key risk state for a variety of human diseases. In response to oxidative stress, the regulation of transcriptional expression of DNA repair genes would be important to DNA repair and genomic stability. However, the overall pattern of transcriptional expression of DNA repair genes and the underlying molecular response mechanism to oxidative stress remain unclear. Here, by employing colorectal cancer cell lines following exposure to hydrogen peroxide, we generated expression profiles of DNA repair genes via RNA-seq and identified gene subsets that are induced or repressed following oxidative stress exposure. RRBS-seq analyses further indicated that transcriptional regulation of most of the DNA repair genes that were induced or repressed is independent of their DNA methylation status. Our analyses also indicate that hydrogen peroxide induces deacetylase SIRT1 which decreases chromatin affinity and the activity of histone acetyltransferase hMOF toward H4K16ac and results in decreased transcriptional expression of DNA repair genes. Taken together, our findings provide a potential mechanism by which oxidative stress suppresses DNA repair genes which is independent of the DNA methylation status of their promoters.

  16. Phylogenetic and nucleotide sequence analysis of influenza A (H1N1) HA and NA genes of strains isolated from Saudi Arabia.

    PubMed

    Al-Qahtani, Ahmed Ali; Mubin, Muhammad; Dela Cruz, Damian M; Althawadi, Sahar Isa; Ul Rehman, Muhammad Shah Nawaz; Bohol, Marie Fe F; Al-Ahdal, Mohammed N

    2017-01-30

    In early 2009, a novel influenza A (H1N1) virus appeared in Mexico and rapidly disseminated worldwide. Little is known about the phylogeny and evolutionary dynamics of the H1N1 strain found in Saudi Arabia. Nucleotide sequencing and bioinformatics analyses were used to study molecular variation between the virus isolates. In this report, 72 hemagglutinin (HA) and 45 neuraminidase (NA) H1N1 virus gene sequences, isolated in 2009 from various regions of Saudi Arabia, were analyzed. Genetic characterization indicated that viruses from two different clades, 6 and 7, were circulating in the region, with clade 7, the most widely circulating H1N1 clade globally in 2009, being predominant. Sequence analysis of the HA and NA genes revealed a high degree of sequence identity with the corresponding genes from viruses circulating in the South East Asia region and with the A/California/7/2009 strain. New mutations in the HA gene of pandemic H1N1 (pH1N1) viruses, that could alter viral fitness, were identified. Relaxed-clock and Bayesian Skyline Plot analyses, based on the isolates used in this study and closely related globally representative strains, indicated marginally higher substitution rates than the type strain (5.14×10-3 and 4.18×10-3 substitutions/nucleotide/year in the HA and NA genes, respectively). The Saudi isolates were antigenically homogeneous and closely related to the prototype vaccine strain A/California/7/2009. The antigenic site of the HA gene had acquired novel mutations in some isolates, making continued monitoring of these viruses vital for the identification of potentially highly virulent and drug resistant variants.

  17. PLANT HOMOLOGOUS TO PARAFIBROMIN is a component of the PAF1 complex and assists in regulating expression of genes within H3K27ME3-enriched chromatin.

    PubMed

    Park, Sunchung; Oh, Sookyung; Ek-Ramos, Julissa; van Nocker, Steven

    2010-06-01

    The human Paf1 complex (Paf1C) subunit Parafibromin assists in mediating output from the Wingless/Int signaling pathway, and dysfunction of the encoding gene HRPT2 conditions specific cancer-related disease phenotypes. Here, we characterize the organismal and molecular roles of PLANT HOMOLOGOUS TO PARAFIBROMIN (PHP), the Arabidopsis (Arabidopsis thaliana) homolog of Parafibromin. PHP resides in an approximately 670-kD protein complex in nuclear extracts, and physically interacts with other known Paf1C-related proteins in vivo. In striking contrast to the developmental pleiotropy conferred by mutation in other plant Paf1C component genes in Arabidopsis, loss of PHP specifically conditioned accelerated phase transition from vegetative growth to flowering and resulted in misregulation of a very limited subset of genes that included the flowering repressor FLOWERING LOCUS C. Those genes targeted by PHP were distinguished from the bulk of Arabidopsis genes and other plant Paf1C targets by strong enrichment for trimethylation of lysine-27 on histone H3 (H3K27me3) within chromatin. These findings suggest that PHP is a component of a plant Paf1C protein in Arabidopsis, but has a more specialized role in modulating expression of a subset of Paf1C targets.

  18. [Immunogenicity of chimeric gene vaccine Mtb8.4/hIL12].

    PubMed

    Li, Hui; Li, Rong; Zhong, Sen; Luo, Yue-bei; Ren, Hong; Deng, Cun-liang

    2006-09-01

    To construct chimeric gene vaccine Mtb8.4/hIL-12, express it in COS-7 cells and study its immunogenicity. Chimeric gene Mtb8.4/hIL-12 was amplified by PCR and cloned into the eukaryotic vector pCI-neo to construct the recombinant plasmid pCI-neo-Mtb8.4/hIL12. After the recombinant plasmid was identified by restriction enzyme digestion analysis, PCR and DNA sequencing, COS-7 cells were transfected with pCI-neo-Mtb8.4/hIL12 through cationic liposome. 48 hours later, the expression of mRNA was detected by RT-PCR and the level of hIL-12 in culture supernatant and cell lysates were detected by Western blot. C57BL/6N mice were vaccinated with chimeric gene vaccine Mtb8.4/hIL-12 three times at the interval of 3 weeks each time. Four weeks after the final inoculation, three mice were sacrificed to assess the cytotoxicity of CTLs and response to cytokine. The recombinant plasmid pCI-neo-Mtb8.4/hIL12 was constructed successfully. After COS-7 cells were transfected with pCI-neo-Mtb8.4/hIL12, chimeric gene Mtb8.4/hIL12 was expressed in COS-7 cells. The chimeric gene vaccine could induce strong antigen-specific immune response. With the increase of IFN-gamma and IL-2 secretion and the decrease of IL-4 secretion, the cytotoxicity of specific CTLs was heightened. Recombinant plasmid pCI-neo-Mtb8.4/hIL12 has been successfully constructed and expressed in COS-7 cells. The constructed chimeric gene vaccine Mtb8.4/hIL12 is of strong immunogenicity and can obviously induce the cytotoxicity of CTLs.

  19. Oxidation of 2,6-di-tert-butyl-4-methylphenol. The structure of C14H22O3

    USGS Publications Warehouse

    Yohe, G.R.; Dunbar, J.E.; Lansford, M.W.; Pedrotti, R.L.; Scheidt, F.M.; Lee, F.G.H.; Smith, E.C.

    1959-01-01

    The acidic compound C14H22O3, previously reported without assignment of structure as an oxidation product of 2,6-di-tert-butyl-4-methylphenol, is now believed to be DL-trans-5,6-di-tert-butyl-2-hydroxy-1,4-diketo-2-cyclohexene (I). Chemical properties are described and infrared spectra are presented in support of this structure. This structure is of interest in relation to the problem of the existence of o-di-tert-alkylbenzene derivatives. The relatively easy racemization of optically active I suggests that its completely enolized form, 5,6-di-tert-butyl-1,2,4-trihydroxybenzene, is capable of transitory existence.

  20. The replication of Bangladeshi H9N2 avian influenza viruses carrying genes from H7N3 in mammals

    PubMed Central

    Shanmuganatham, Karthik K; Jones, Jeremy C; Marathe, Bindumadhav M; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Turner, Jasmine; Rabiul Alam, S M; Kamrul Hasan, M; Akhtar, Sharmin; Seiler, Patrick; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2016-01-01

    H9N2 avian influenza viruses are continuously monitored by the World Health Organization because they are endemic; they continually reassort with H5N1, H7N9 and H10N8 viruses; and they periodically cause human infections. We characterized H9N2 influenza viruses carrying internal genes from highly pathogenic H7N3 viruses, which were isolated from chickens or quail from live-bird markets in Bangladesh between 2010 and 2013. All of the H9N2 viruses used in this study carried mammalian host-specific mutations. We studied their replication kinetics in normal human bronchoepithelial cells and swine tracheal and lung explants, which exhibit many features of the mammalian airway epithelium and serve as a mammalian host model. All H9N2 viruses replicated to moderate-to-high titers in the normal human bronchoepithelial cells and swine lung explants, but replication was limited in the swine tracheal explants. In Balb/c mice, the H9N2 viruses were nonlethal, replicated to moderately high titers and the infection was confined to the lungs. In the ferret model of human influenza infection and transmission, H9N2 viruses possessing the Q226L substitution in hemagglutinin replicated well without clinical signs and spread via direct contact but not by aerosol. None of the H9N2 viruses tested were resistant to the neuraminidase inhibitors. Our study shows that the Bangladeshi H9N2 viruses have the potential to infect humans and highlights the importance of monitoring and characterizing this influenza subtype to better understand the potential risk these viruses pose to humans. PMID:27094903

  1. The replication of Bangladeshi H9N2 avian influenza viruses carrying genes from H7N3 in mammals.

    PubMed

    Shanmuganatham, Karthik K; Jones, Jeremy C; Marathe, Bindumadhav M; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Turner, Jasmine; Rabiul Alam, S M; Kamrul Hasan, M; Akhtar, Sharmin; Seiler, Patrick; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2016-04-20

    H9N2 avian influenza viruses are continuously monitored by the World Health Organization because they are endemic; they continually reassort with H5N1, H7N9 and H10N8 viruses; and they periodically cause human infections. We characterized H9N2 influenza viruses carrying internal genes from highly pathogenic H7N3 viruses, which were isolated from chickens or quail from live-bird markets in Bangladesh between 2010 and 2013. All of the H9N2 viruses used in this study carried mammalian host-specific mutations. We studied their replication kinetics in normal human bronchoepithelial cells and swine tracheal and lung explants, which exhibit many features of the mammalian airway epithelium and serve as a mammalian host model. All H9N2 viruses replicated to moderate-to-high titers in the normal human bronchoepithelial cells and swine lung explants, but replication was limited in the swine tracheal explants. In Balb/c mice, the H9N2 viruses were nonlethal, replicated to moderately high titers and the infection was confined to the lungs. In the ferret model of human influenza infection and transmission, H9N2 viruses possessing the Q226L substitution in hemagglutinin replicated well without clinical signs and spread via direct contact but not by aerosol. None of the H9N2 viruses tested were resistant to the neuraminidase inhibitors. Our study shows that the Bangladeshi H9N2 viruses have the potential to infect humans and highlights the importance of monitoring and characterizing this influenza subtype to better understand the potential risk these viruses pose to humans.

  2. Analysis of 14-3-3 Family Member Function in Xenopus Embryos by Microinjection of Antisense Morpholino Oligos

    NASA Astrophysics Data System (ADS)

    Lau, Jeffrey M. C.; Muslin, Anthony J.

    The 14-3-3 intracellular phosphoserine/threonine-binding proteins are adapter molecules that regulate signal transduction, cell cycle, nutrient sensing, apoptotic, and cytoskeletal pathways. There are seven 14-3-3 family members, encoded by separate genes, in vertebrate organisms. To evaluate the role of individual 14-3-3 proteins in vertebrate embryonic development, we utilized an antisense morpholino oligo microinjection technique in Xenopus laevis embryos. By use of this method, we showed that embryos lacking specific 14-3-3 proteins displayed unique phenotypic abnormalities. Specifically, embryos lacking 14-3-3 τ exhibited gastrulation and axial patterning defects, but embryos lacking 14-3-3 γ exhibited eye defects without other abnormalities, and embryos lacking 14-3-3 ζ appeared completely normal. These and other results demonstrate the power and specificity of the morpholino antisense oligo microinjection technique.

  3. 4-(4-Bromo-phen-yl)-1-(2,6-difluoro-benz-yl)-3-(3,4,5-trimeth-oxy-phen-yl)-1H-1,2,4-triazole-5(4H)-thione.

    PubMed

    Fun, Hoong-Kun; Ooi, Chin Wei; Chandrakantha, B; Isloor, Arun M; Shetty, Prakash

    2012-01-01

    In the title compound, C(24)H(20)BrF(2)N(3)O(3)S, the triazole ring (r.m.s. deviation = 0.0107 Å) makes dihedral angles of 28.18 (14), 63.76 (14) and 77.01 (18)°, respectively, with the trimeth-oxy-, bromo-, and difluoro-substituted benzene rings. The C atoms of the meta meth-oxy groups are roughly coplanar with their ring [displacements = -0.289 (4) and 0.083 (7) Å], whereas the C atom of the para group is displaced [1.117 (3) Å]. In the crystal, inversion dimers linked by two pairs of C-H⋯O hydrogen bonds occur. The ring motif of the two hydrogen bonds to their symmetry-generated O-atom acceptors is R(2) (2)(8).

  4. Generation of novel resistance genes using mutation and targeted gene editing.

    PubMed

    Gal-On, Amit; Fuchs, Marc; Gray, Stewart

    2017-10-01

    Classical breeding for virus resistance is a lengthy process and is restricted by the availability of resistance genes. Precise genome editing is a 'dream technology' to improve plants for virus resistance and these tools have opened new and very promising ways to generate virus resistant plants by disrupting host susceptibility genes, or by increasing the expression of viral resistance genes. However, precise targets must be identified and their roles understood to minimize potential negative effects on the plant. Nonetheless, the opportunities for genome editing are expanding, as are the technologies to generate effective and broad-spectrum resistance against plant viruses. Here we provide insights into recent progress related to gene targets and gene editing technologies. Published by Elsevier B.V.

  5. 14 CFR 25.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Chemical oxygen generators. 25.1450 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1450 Chemical oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a...

  6. 14 CFR 25.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Chemical oxygen generators. 25.1450 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1450 Chemical oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a...

  7. Roles of putative sodium-hydrogen antiporter (SHA) genes in S. coelicolor A3(2) culture with pH variation.

    PubMed

    Kim, Yoon Jung; Moon, Myung Hee; Lee, Jae Sun; Hong, Soon-Kwang; Chang, Yong Keun

    2011-09-01

    Culture pH change has some important roles in signal transduction and secondary metabolism. We have already reported that acidic pH shock enhanced actinorhodin production in Streptomyces coelicolor. Among many potential governing factors on pH variation, the putative Na(+)/H(+) antiporter (sha) genes in S. coelicolor have been investigated in this study to elucidate the association of the sha on pH variation and secondary metabolism. Through the transcriptional analysis and overexpression experiments on 8 sha genes, we observed that most of the sha expressions were promoted by pH shock, and in the opposite way the pH changes and actinorhodin production were enhanced by the overexpression of each sha. We also confirmed that sha8 especially has a main role in maintaining cell viability and pH homeostasis through Na(+) extrusion, in salt effect experiment under the alkaline medium condition by deleting sha8. Moreover, this gene was observed to have a function of pH recovery after pH variation such as the pH shock, being able to cause the sporulation. However, actinorhodin production was not induced by the only pH recovery. The sha8 gene could confer on the host cell the ability to recover pH to the neutral level after pH variation like a pH drop. Sporulation was closely associated with this pH recovery caused by the action of sha8, whereas actinorhodin production was not due to such pH variation patterns alone.

  8. Association rate constants for reactions between resonance-stabilized radicals: C 3H 3 + C 3H 3, C 3H 3 + C 3H 5, and C 3H 5 + C 3H 5

    DOE PAGES

    Georgievskii, Yuri; Miller, James A.; Klippenstein, Stephen J.

    2007-05-18

    Reactions between resonance-stabilized radicals play an important role in combustion chemistry. The theoretical prediction of rate coefficients and product distributions for such reactions is complicated by the fact that the initial complex-formation steps and some dissociation steps are barrierless. In this work, direct variable reaction coordinate transition state theory (VRC-TST) is used to predict accurately the association rate constants for the self and cross reactions of propargyl and allyl radicals. For each reaction, a set of multifaceted dividing surfaces is used to account for the multiple possible addition channels. Because of their resonant nature the geometric relaxation of the radicalsmore » is important. Here, the effect of this relaxation is explicitly calculated with the UB3LYP/cc-pvdz method for each mutual orientation encountered in the configurational integrals over the transition state dividing surfaces. The final energies are obtained from CASPT2/cc-pvdz calculations with all π-orbitals in the active space. Evaluations along the minimum energy path suggest that basis set corrections are negligible. The VRC-TST approach was also used to calculate the association rate constant and the corresponding number of states for the C 6H 5 + H → C 6H 6 exit channel of the C 3H 3 + C 3H 3 reaction, which is also barrierless. For this reaction, the interaction energies were evaluated with the CASPT2(2e,2o)/cc-pvdz method and a 1-D correction is included on the basis of CAS+1+2+QC/aug-cc-pvtz calculations for the CH 3 + H reference system. For the C 3H 3 + C 3H 3 reaction, the VRC-TST results for the energy and angular momentum resolved numbers of states in the entrance channels and in the C 6H 5 + H exit channel are incorporated in a master equation simulation to determine the temperature and pressure dependence of the phenomenological rate coefficients. The rate constants for the C 3H 3 + C 3H 3 and C 3H 5 + C 3H 5 self-reactions compare favorably

  9. Enhanced H3K4me3 modifications are involved in the transactivation of DNA damage responsive genes in workers exposed to low-level benzene.

    PubMed

    Li, Jie; Xing, Xiumei; Zhang, Xinjie; Liang, Boxuan; He, Zhini; Gao, Chen; Wang, Shan; Wang, Fangping; Zhang, Haiyan; Zeng, Shan; Fan, Junling; Chen, Liping; Zhang, Zhengbao; Zhang, Bo; Liu, Caixia; Wang, Qing; Lin, Weiwei; Dong, Guanghui; Tang, Huanwen; Chen, Wen; Xiao, Yongmei; Li, Daochuan

    2018-03-01

    In this study, we explore whether altered global histone modifications respond to low-level benzene exposure as well as their association with the hematotoxicity. We recruited 147 low-level benzene-exposed workers and 122 control workers from a petrochemical factory in Maoming City, Guangdong Province, China. The internal exposure marker level, urinary S-phenylmercapturic acid (SPMA), in benzene-exposed workers was 1.81-fold higher than that of the controls (P < 0.001). ELISA method was established to examine the specific histone modifications in human peripheral blood lymphocytes (PBLCs) of workers. A decrease in the counts of white blood cells (WBC), neutrophils, lymphocytes, and monocytes appeared in the benzene-exposed group (all P < 0.05) compared to the control group. Global trimethylated histone 3 lysine 4 (H3K4me3) modification was enhanced in the benzene-exposed group (P < 0.05) and was positively associated with the concentration of urinary SPMA (β = 0.103, P = 0.045) and the extent of DNA damage (% Tail DNA: β = 0.181, P = 0.022), but was negatively associated with the leukocyte count (WBC: β = -0.038, P = 0.023). The in vitro study revealed that H3K4me3 mark was enriched in the promoters of several DNA damage responsive (DDR) genes including CRY1, ERCC2, and TP53 in primary human lymphocytes treated with hydroquinone. Particularly, H3K4me3 modification was positively correlated with the expression of CRY1 in the PBLCs of benzene-exposed workers. These observations indicate that H3K4me3 modification might mediate the transcriptional regulation of DDR genes in response to low-dose benzene exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Protein Arginine Methyltransferase 7 Regulates Cellular Response to DNA Damage by Methylating Promoter Histones H2A and H4 of the Polymerase δ Catalytic Subunit Gene, POLD1*

    PubMed Central

    Karkhanis, Vrajesh; Wang, Li; Tae, Sookil; Hu, Yu-Jie; Imbalzano, Anthony N.; Sif, Saïd

    2012-01-01

    Covalent modification of histones by protein arginine methyltransferases (PRMTs) impacts genome organization and gene expression. In this report, we show that PRMT7 interacts with the BRG1-based hSWI/SNF chromatin remodeling complex and specifically methylates histone H2A Arg-3 (H2AR3) and histone H4 Arg-3 (H4R3). To elucidate the biological function of PRMT7, we knocked down its expression in NIH 3T3 cells and analyzed global gene expression. Our findings show that PRMT7 negatively regulates expression of genes involved in DNA repair, including ALKBH5, APEX2, POLD1, and POLD2. Chromatin immunoprecipitation (ChIP) revealed that PRMT7 and dimethylated H2AR3 and H4R3 are enriched at target DNA repair genes in parental cells, whereas PRMT7 knockdown caused a significant decrease in PRMT7 recruitment and H2AR3/H4R3 methylation. Decreased PRMT7 expression also resulted in derepression of target DNA repair genes and enhanced cell resistance to DNA-damaging agents. Furthermore, we show that BRG1 co-localizes with PRMT7 on target promoters and that expression of a catalytically inactive form of BRG1 results in derepression of PRMT7 target DNA repair genes. Remarkably, reducing expression of individual PRMT7 target DNA repair genes showed that only the catalytic subunit of DNA polymerase, POLD1, was able to resensitize PRMT7 knock-down cells to DNA-damaging agents. These results provide evidence for the important role played by PRMT7 in epigenetic regulation of DNA repair genes and cellular response to DNA damage. PMID:22761421

  11. Protein arginine methyltransferase 7 regulates cellular response to DNA damage by methylating promoter histones H2A and H4 of the polymerase δ catalytic subunit gene, POLD1.

    PubMed

    Karkhanis, Vrajesh; Wang, Li; Tae, Sookil; Hu, Yu-Jie; Imbalzano, Anthony N; Sif, Saïd

    2012-08-24

    Covalent modification of histones by protein arginine methyltransferases (PRMTs) impacts genome organization and gene expression. In this report, we show that PRMT7 interacts with the BRG1-based hSWI/SNF chromatin remodeling complex and specifically methylates histone H2A Arg-3 (H2AR3) and histone H4 Arg-3 (H4R3). To elucidate the biological function of PRMT7, we knocked down its expression in NIH 3T3 cells and analyzed global gene expression. Our findings show that PRMT7 negatively regulates expression of genes involved in DNA repair, including ALKBH5, APEX2, POLD1, and POLD2. Chromatin immunoprecipitation (ChIP) revealed that PRMT7 and dimethylated H2AR3 and H4R3 are enriched at target DNA repair genes in parental cells, whereas PRMT7 knockdown caused a significant decrease in PRMT7 recruitment and H2AR3/H4R3 methylation. Decreased PRMT7 expression also resulted in derepression of target DNA repair genes and enhanced cell resistance to DNA-damaging agents. Furthermore, we show that BRG1 co-localizes with PRMT7 on target promoters and that expression of a catalytically inactive form of BRG1 results in derepression of PRMT7 target DNA repair genes. Remarkably, reducing expression of individual PRMT7 target DNA repair genes showed that only the catalytic subunit of DNA polymerase, POLD1, was able to resensitize PRMT7 knock-down cells to DNA-damaging agents. These results provide evidence for the important role played by PRMT7 in epigenetic regulation of DNA repair genes and cellular response to DNA damage.

  12. Efficient nuclear export of p65-IkappaBalpha complexes requires 14-3-3 proteins.

    PubMed

    Aguilera, Cristina; Fernández-Majada, Vanessa; Inglés-Esteve, Julia; Rodilla, Verónica; Bigas, Anna; Espinosa, Lluís

    2006-09-01

    IkappaB are responsible for maintaining p65 in the cytoplasm under non-stimulating conditions and promoting the active export of p65 from the nucleus following NFkappaB activation to terminate the signal. We now show that 14-3-3 proteins regulate the NFkappaB signaling pathway by physically interacting with p65 and IkappaBalpha proteins. We identify two functional 14-3-3 binding domains in the p65 protein involving residues 38-44 and 278-283, and map the interaction region of IkappaBalpha in residues 60-65. Mutation of these 14-3-3 binding domains in p65 or IkappaBalpha results in a predominantly nuclear distribution of both proteins. TNFalpha treatment promotes recruitment of 14-3-3 and IkappaBalpha to NFkappaB-dependent promoters and enhances the binding of 14-3-3 to p65. Disrupting 14-3-3 activity by transfection with a dominant-negative 14-3-3 leads to the accumulation of nuclear p65-IkappaBalpha complexes and the constitutive association of p65 with the chromatin. In this situation, NFkappaB-dependent genes become unresponsive to TNFalpha stimulation. Together our results indicate that 14-3-3 proteins facilitate the nuclear export of IkappaBalpha-p65 complexes and are required for the appropriate regulation of NFkappaB signaling.

  13. Scaffold Functions of 14-3-3 Adaptors in B Cell Immunoglobulin Class Switch DNA Recombination

    PubMed Central

    White, Clayton A.; Li, Guideng; Pone, Egest J.; Xu, Zhenming; Casali, Paolo

    2013-01-01

    Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID) expression and AID targeting to switch (S) regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5′-AGCT-3′ repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S–S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit) and PKA-RIα (regulatory inhibitory subunit) and uracil DNA glycosylase (Ung). 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180–198) or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR). 14-3-3 adaptors colocalized with AID and replication protein A (RPA) in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr), an accessory protein of human immunodeficiency virus type-1 (HIV-1), which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR. PMID:24282540

  14. The composition of Saturn's atmosphere at northern temperate latitudes from Voyager IRIS spectra - NH3, PH3, C2H2, C2H6, CH3D, CH4, and the Saturnian D/H isotopic ratio

    NASA Technical Reports Server (NTRS)

    Courtin, R.; Gautier, D.; Marten, A.; Bezard, B.; Hanel, R.

    1984-01-01

    The vertical distributions and mixing ratios of minor constituents in the northern hemisphere of Saturn are investigated. Results are obtained for NH3, PH3, C2H2, C2H6, CH3D, and CH4; the D/H ratio is obtained from the CH4 and CH3D abundances. The NH3 mixing ratio in the upper atmosphere is found to be compatible with the saturated partial pressure. The inferred PH3/H2 ratio of 1.4 + or - 0.8 x 10 to the -6th is higher than the value derived from the solar P/H ratio. The stratospheric C2H2/H2 and C2H6/H2 ratios are, respectively, 2.1 + or - 1.4 x 10 to the -7th and 3.0 + or - 1.1 x 10 to the -6th; the latter decreases sharply below the 20-50 mbar level. The results for CH3D/H2 and CH4/H2 imply an enrichment of Saturn's upper atmosphere in carbon by a factor of at least three over the solar abundance. The interpretation of two NH3 lines in the five-micron window suggests a NH3/H2 ratio at the two bar level below the solar value.

  15. UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity.

    PubMed

    Wang, Chaochen; Lee, Ji-Eun; Cho, Young-Wook; Xiao, Ying; Jin, Qihuang; Liu, Chengyu; Ge, Kai

    2012-09-18

    To investigate the role of histone H3K27 demethylase UTX in embryonic stem (ES) cell differentiation, we have generated UTX knockout (KO) and enzyme-dead knock-in male ES cells. Deletion of the X-chromosome-encoded UTX gene in male ES cells markedly decreases expression of the paralogous UTY gene encoded by Y chromosome, but has no effect on global H3K27me3 level, Hox gene expression, or ES cell self-renewal. However, UTX KO cells show severe defects in mesoderm differentiation and induction of Brachyury, a transcription factor essential for mesoderm development. Surprisingly, UTX regulates mesoderm differentiation and Brachyury expression independent of its enzymatic activity. UTY, which lacks detectable demethylase activity, compensates for the loss of UTX in regulating Brachyury expression. UTX and UTY bind directly to Brachyury promoter and are required for Wnt/β-catenin signaling-induced Brachyury expression in ES cells. Interestingly, male UTX KO embryos express normal levels of UTY and survive until birth. In contrast, female UTX KO mice, which lack the UTY gene, show embryonic lethality before embryonic day 11.5. Female UTX KO embryos show severe defects in both Brachyury expression and embryonic development of mesoderm-derived posterior notochord, cardiac, and hematopoietic tissues. These results indicate that UTX controls mesoderm differentiation and Brachyury expression independent of H3K27 demethylase activity, and suggest that UTX and UTY are functionally redundant in ES cell differentiation and early embryonic development.

  16. Protective immunity against Eimeria maxima induced by vaccines of Em14-3-3 antigen.

    PubMed

    Liu, Tingqi; Huang, Jingwei; Ehsan, Muhammad; Wang, Shuai; Fei, Hong; Zhou, Zhouyang; Song, Xiaokai; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2018-04-15

    Eimeria maxima 14-3-3 (Em14-3-3) open reading frame (ORF) which consisted of 861 bp encoding a protein of 286 amino acids was successfully amplified and sequenced. Subsequently, the Em14-3-3 ORF was subcloned into pET-32a (+) and pVAX1, respectively. RT-PCR and immunoblot analyses confirmed that the target gene was successfully transcribed and expressed in vivo. Immunofluorescence analysis showed that Em14-3-3 was expressed in both the sporozoites and merozoites. The animal experiments demonstrated that both rEm14-3-3 and pVAX1-14-3-3 could clearly alleviate jejunum lesions and body weight loss. The Em14-3-3 vaccines could increase oocyst decrease ratio, as well as produce an anticoccidial index of more than 165. The percentages of CD4 + in both the Em14-3-3 immunized groups were much higher, when compared with those of PBS, pET32a (+), and pVAX1 controls (P < 0.05). Similarly, the anti-Em14-3-3 antibody titers of both rEm14-3-3 and pVAX1-14-3-3 immunized groups showed higher levels compared with those of PBS, pET32a (+), and pVAX1 controls (P < 0.05). The IFN-γ and tumor growth factor-β (TGF-β) levels showed significant increments in the rEm14-3-3 and pVAX1-14-3-3 immunized groups, when compared with those in the negative controls (P < 0.05). These results demonstrated that Em14-3-3 could be used as a promising antigen candidate for developing vaccines against E. maxima. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Swine influenza virus vaccine serologic cross-reactivity to contemporary US swine H3N2 and efficacy in pigs infected with an H3N2 similar to 2011-2012 H3N2v.

    PubMed

    Kitikoon, Pravina; Gauger, Phillip C; Anderson, Tavis K; Culhane, Marie R; Swenson, Sabrina; Loving, Crystal L; Perez, Daniel R; Vincent, Amy L

    2013-12-01

    Swine influenza A virus (IAV) reassortment with 2009 H1N1 pandemic (H1N1pdm09) virus has been documented, and new genotypes and subclusters of H3N2 have since expanded in the US swine population. An H3N2 variant (H3N2v) virus with the H1N1pdm09 matrix gene and the remaining genes of swine triple reassortant H3N2 caused outbreaks at agricultural fairs in 2011-2012. To assess commercial swine IAV vaccines' efficacy against H3N2 viruses, including those similar to H3N2v, antisera to three vaccines were tested by hemagglutinin inhibition (HI) assay against contemporary H3N2. Vaccine 1, with high HI cross-reactivity, was further investigated for efficacy against H3N2 virus infection in pigs with or without maternally derived antibodies (MDA). In addition, efficacy of a vaccine derived from whole inactivated virus (WIV) was compared with live attenuated influenza virus (LAIV) against H3N2. Hemagglutinin inhibition cross-reactivity demonstrated that contemporary swine H3N2 viruses have drifted from viruses in current swine IAV vaccines. The vaccine with the highest level of HI cross-reactivity significantly protected pigs without MDA. However, the presence of MDA at vaccination blocked vaccine efficacy. The performance of WIV and LAIV was comparable in the absence of MDA. Swine IAV in the United States is complex and dynamic. Vaccination to minimize virus shedding can help limit transmission of virus among pigs and people. However, vaccines must be updated. A critical review of the use of WIV in sows is required in the context of the current IAV ecology and vaccine application in pigs with MDA. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  18. Repression of Middle Sporulation Genes in Saccharomyces cerevisiae by the Sum1-Rfm1-Hst1 Complex Is Maintained by Set1 and H3K4 Methylation

    PubMed Central

    Jaiswal, Deepika; Jezek, Meagan; Quijote, Jeremiah; Lum, Joanna; Choi, Grace; Kulkarni, Rushmie; Park, DoHwan; Green, Erin M.

    2017-01-01

    The conserved yeast histone methyltransferase Set1 targets H3 lysine 4 (H3K4) for mono, di, and trimethylation and is linked to active transcription due to the euchromatic distribution of these methyl marks and the recruitment of Set1 during transcription. However, loss of Set1 results in increased expression of multiple classes of genes, including genes adjacent to telomeres and middle sporulation genes, which are repressed under normal growth conditions because they function in meiotic progression and spore formation. The mechanisms underlying Set1-mediated gene repression are varied, and still unclear in some cases, although repression has been linked to both direct and indirect action of Set1, associated with noncoding transcription, and is often dependent on the H3K4me2 mark. We show that Set1, and particularly the H3K4me2 mark, are implicated in repression of a subset of middle sporulation genes during vegetative growth. In the absence of Set1, there is loss of the DNA-binding transcriptional regulator Sum1 and the associated histone deacetylase Hst1 from chromatin in a locus-specific manner. This is linked to increased H4K5ac at these loci and aberrant middle gene expression. These data indicate that, in addition to DNA sequence, histone modification status also contributes to proper localization of Sum1. Our results also show that the role for Set1 in middle gene expression control diverges as cells receive signals to undergo meiosis. Overall, this work dissects an unexplored role for Set1 in gene-specific repression, and provides important insights into a new mechanism associated with the control of gene expression linked to meiotic differentiation. PMID:29066473

  19. 14 CFR 23.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Chemical oxygen generators. 23.1450 Section... Equipment § 23.1450 Chemical oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen...

  20. 14 CFR 23.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Chemical oxygen generators. 23.1450 Section... Equipment § 23.1450 Chemical oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen...

  1. 14 CFR 23.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Chemical oxygen generators. 23.1450 Section... Equipment § 23.1450 Chemical oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen...

  2. 14 CFR 23.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Chemical oxygen generators. 23.1450 Section... Equipment § 23.1450 Chemical oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen...

  3. 14 CFR 23.1450 - Chemical oxygen generators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Chemical oxygen generators. 23.1450 Section... Equipment § 23.1450 Chemical oxygen generators. (a) For the purpose of this section, a chemical oxygen generator is defined as a device which produces oxygen by chemical reaction. (b) Each chemical oxygen...

  4. Entry of (/sup 3/H)water and (1,2-/sup 14/C)polyethylene glycol 4000 into normal and cystic fibrosis salivary mucus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukie, B.E.

    1983-03-01

    This investigation was performed to compare the entry of (/sup 3/H)water and (/sup 14/C)PEG into samples of salivary mucus from patients with CF and normal subjects. A solution containing both radioisotopes was added to samples and salivary mucus and mixed, and entry of each into mucus was determined by their dilution in the supernatant at 1, 2, 4, and 24 hr. (/sup 3/H)water rapidly entered and equilibrated with the water content of both normal and CF mucus. (/sup 14/C)PEG entered mucus more slowly than (/sup 3/H)water and by 24 hr had entered at a ratio of only 0.794 +/- 0.108more » and 0.766 +/- 0.039 of the water space accessible to (/sup 3/H)water in normal and CF mucus, respectively. The mechanisms responsible for the partial exclusion of the large polyethylene glycol molecule were not explored but may reflect restriction of access to a portion of mucus water. Thus water entry and solute exclusion, both determinants of permeability, were unaltered in CF mucus, which fact provides evidence against the presence of a generalized defect of mucus permeability in this disease. The techniques developed for this study may be adaptable to the study of the permeability properties of mucus from other sources and other gels.« less

  5. Entry of (/sup 3/H)water and (1,2-/sup 14/C)polyethylene glycol 4000 into normal and cystic fibrosis salivary mucus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukie, B.E.

    1983-03-01

    This investigation was performed to compare the entry of (/sup 3/H)water and (/sup 14/C)PEG into samples of salivary mucus from patients with CF and normal subjects. A solution containing both radioisotopes was added to samples of salivary mucus and mixed, and entry of each into mucus was determined by their dilution in the supernatant at 1, 2, 4, and 24 hr. (/sup 3/H)water rapidly entered and equilibrated with the water content of both normal and CF mucus. (/sup 14/C)PEG entered mucus more slowly than (/sup 3/H)water and by 24 hr had entered at a ratio of only 0.794 +/- 0.108more » and 0.766 +/- 0.039 of the water space accessible to (/sup 3/H)water in normal and CF mucus, respectively. The mechanisms responsible for the partial exclusion of the large polyethylene glycol molecule were not explored but may reflect steric restriction of access to a portion of mucus water. Thus water entry and solute exclusion, both determinants of permeability, were unaltered in CF mucus, which fact provides evidence against the presence of a generalized defect of mucus permeability in this disease. The techniques developed for this study may be adaptable to the study of the permeability properties of mucus from other sources and other gels.« less

  6. Gene expression responses of HeLa cells to chemical species generated by an atmospheric plasma flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoyama, Mayo, E-mail: yokoyama@plasma.ifs.tohoku.ac.jp; Johkura, Kohei, E-mail: kohei@shinshu-u.ac.jp; Sato, Takehiko, E-mail: sato@ifs.tohoku.ac.jp

    2014-08-08

    Highlights: • Response of HeLa cells to a plasma-irradiated medium was revealed by DNA microarray. • Gene expression pattern was basically different from that in a H{sub 2}O{sub 2}-added medium. • Prominently up-/down-regulated genes were partly shared by the two media. • Gene ontology analysis showed both similar and different responses in the two media. • Candidate genes involved in response to ROS were detected in each medium. - Abstract: Plasma irradiation generates many factors able to affect the cellular condition, and this feature has been studied for its application in the field of medicine. We previously reported that hydrogenmore » peroxide (H{sub 2}O{sub 2}) was the major cause of HeLa cell death among the chemical species generated by high level irradiation of a culture medium by atmospheric plasma. To assess the effect of plasma-induced factors on the response of live cells, HeLa cells were exposed to a medium irradiated by a non-lethal plasma flow level, and their gene expression was broadly analyzed by DNA microarray in comparison with that in a corresponding concentration of 51 μM H{sub 2}O{sub 2}. As a result, though the cell viability was sufficiently maintained at more than 90% in both cases, the plasma-medium had a greater impact on it than the H{sub 2}O{sub 2}-medium. Hierarchical clustering analysis revealed fundamentally different cellular responses between these two media. A larger population of genes was upregulated in the plasma-medium, whereas genes were downregulated in the H{sub 2}O{sub 2}-medium. However, a part of the genes that showed prominent differential expression was shared by them, including an immediate early gene ID2. In gene ontology analysis of upregulated genes, the plasma-medium showed more diverse ontologies than the H{sub 2}O{sub 2}-medium, whereas ontologies such as “response to stimulus” were common, and several genes corresponded to “response to reactive oxygen species.” Genes of AP-1 proteins, e

  7. Contemporary avian influenza A virus subtype H1, H6, H7, H10, and H15 hemagglutinin genes encode a mammalian virulence factor similar to the 1918 pandemic virus H1 hemagglutinin.

    PubMed

    Qi, Li; Pujanauski, Lindsey M; Davis, A Sally; Schwartzman, Louis M; Chertow, Daniel S; Baxter, David; Scherler, Kelsey; Hartshorn, Kevan L; Slemons, Richard D; Walters, Kathie-Anne; Kash, John C; Taubenberger, Jeffery K

    2014-11-18

    Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 virus. Here, isogenic chimeric avian influenza viruses were constructed on an avian influenza virus backbone, differing only by hemagglutinin subtype expressed. Viruses expressing the avian H1, H6, H7, H10, and H15 subtypes were pathogenic in mice and cytopathic in normal human bronchial epithelial cells, in contrast to H2-, H3-, H5-, H9-, H11-, H13-, H14-, and H16-expressing viruses. Mouse pathogenicity was associated with pulmonary macrophage and neutrophil recruitment. These data suggest that avian influenza virus hemagglutinins H1, H6, H7, H10, and H15 contain inherent mammalian virulence factors and likely share a key virulence property of the 1918 virus. Consequently, zoonotic infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals. Influenza viruses from birds can cause outbreaks in humans and may contribute to the development of pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its main surface protein, an H1 subtype hemagglutinin, was identified as a key mammalian virulence factor. In a previous study, a 1918 virus expressing an avian H1 gene was as virulent in mice as the reconstructed 1918 virus. Here, a set of avian influenza viruses was constructed, differing only by hemagglutinin subtype. Viruses with the avian H1, H6, H7, H10, and H15 subtypes caused severe disease in mice and damaged human lung cells. Consequently, infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals, and therefore surveillance for human infections

  8. Molecular turnover, the H3.3 dilemma and organismal aging (hypothesis)

    PubMed Central

    Saade, Evelyne; Pirozhkova, Iryna; Aimbetov, Rakhan; Lipinski, Marc; Ogryzko, Vasily

    2015-01-01

    The H3.3 histone variant has been a subject of increasing interest in the field of chromatin studies due to its two distinguishing features. First, its incorporation into chromatin is replication independent unlike the replication-coupled deposition of its canonical counterparts H3.1/2. Second, H3.3 has been consistently associated with an active state of chromatin. In accordance, this histone variant should be expected to be causally involved in the regulation of gene expression, or more generally, its incorporation should have downstream consequences for the structure and function of chromatin. This, however, leads to an apparent paradox: In cells that slowly replicate in the organism, H3.3 will accumulate with time, opening the way to aberrant effects on heterochromatin. Here, we review the indications that H3.3 is expected both to be incorporated in the heterochromatin of slowly replicating cells and to retain its functional downstream effects. Implications for organismal aging are discussed. PMID:25720734

  9. Effects of Sn Addition on the Microstructures and Mechanical Properties of Mg-6Zn-3Cu- xSn Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Shen, Jun; Sang, Jia-Xin; Li, Yang; He, Pei-Pei

    2015-08-01

    In this paper, Mg-6Zn-3Cu- xSn (ZC63- xSn) magnesium alloys with different Sn contents (0, 1, 2, 4 wt pct) were fabricated and subjected to different heat treatments. The microstructures and mechanical properties of the obtained ZC63- xSn samples were investigated by optical microscopy, X-ray diffraction, scanning electron microscopy, Vickers hardness testing, and tensile testing. It was found that the As-cast Mg-6Zn-3Cu (ZC63) magnesium alloy mainly contained α-Mg grains and Mg(Zn,Cu) particles. Sn dissolved in α-Mg grains when Sn content was below 2 wt pct while Mg2Sn phase forms in the case of Sn content was above 4 wt pct. Addition of Sn refined both α-Mg grains and Mg(Zn,Cu) particles, and increased the volume fraction of Mg(Zn,Cu) particles. Compared with the Sn-free alloy, the microhardness of Sn-containing alloys increased greatly and that of As-extrude ZC63-4Sn sample achieved the highest value. The strength of ZC63 magnesium alloy was significantly enhanced because of Sn addition, which was attributed to grain refinement strengthening, solid solution strengthening, and precipitation strengthening. Furthermore, the ultimate yield stress, yield strength, and elongation of ZC63- xSn magnesium alloys were increased owing to the deceasing grain size induced by extrusion process.

  10. Partial heterologous protection by low pathogenic H9N2 virus against natural H9N2-PB1 gene reassortant highly pathogenic H5N1 virus in chickens.

    PubMed

    Dash, Sandeep Kumar; Kumar, Manoj; Kataria, Jag Mohan; Nagarajan, Shanmugasundaram; Tosh, Chakradhar; Murugkar, Harshad V; Kulkarni, Diwakar D

    2016-06-01

    Low pathogenic avian influenza H9N2 and highly pathogenic avian influenza H5N1 viruses continue to co-circulate in chickens. Prior infection with low pathogenic avian influenza can modulate the outcome of H5N1 infection. In India, low pathogenic H9N2 and highly pathogenic H5N1 avian influenza viruses are co-circulating in poultry. Herein, by using chickens with prior infection of A/chicken/India/04TI05/2012 (H9N2) virus we explored the outcome of infection with H5N1 virus A/turkey/India/10CA03/2012 natural PB1 gene reassortant from H9N2. Four groups (E1-E4) of SPF chickens (n = 6) prior inoculated with 10(6) EID50 of H9N2 virus were challenged with 10(6) EID50 of H5N1 natural reassortant (PB1-H9N2) virus at days 1 (group E1); 3 (group E2); 7 (group E3) and 14 (group E4) post H9N2 inoculation. The survival percentage in groups E1-E4 was 0, 100, 66.6 and 50%, respectively. Virus shedding periods for groups E1-E4 were 3, 4, 7 and 9 days, respectively post H5N1 challenge. Birds of group E1 and E2 were shedding both H9N2 and H5N1 viruses and mean viral RNA copy number was higher in oropharyngeal swabs than cloacal swabs. In group, E3 and E4 birds excreted only H5N1 virus and mean viral RNA copy number was higher in most cloacal swabs than oral swabs. These results indicate that prior infection with H9N2 virus could protect from lethal challenge of reassortant H5N1 virus as early as with three days prior H9N2 inoculation and protection decreased in groups E3 and E4 as time elapsed. However, prior infection with H9N2 did not prevent infection with H5N1 virus and birds continue to excrete virus in oropharyngeal and cloacal swabs. Amino acid substitution K368E was found in HA gene of excreted H5N1 virus of group E3. Hence, concurrent infection can also cause emergence of viruses with mutations leading to virus evolution. The results of this study are important for the surveillance and epidemiological data analysis where both H9N2 and H5N1 viruses are co

  11. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression.

    PubMed

    Zhang, Xun; Gejman, Roger; Mahta, Ali; Zhong, Ying; Rice, Kimberley A; Zhou, Yunli; Cheunsuchon, Pornsuk; Louis, David N; Klibanski, Anne

    2010-03-15

    Meningiomas are common tumors, representing 15% to 25% of all central nervous system tumors. NF2 gene inactivation on chromosome 22 has been shown as an early event in tumorigenesis; however, few factors underlying tumor growth and progression have been identified. The chromosomal abnormalities of 14q32 are often associated with meningioma pathogenesis and progression; therefore, it has been proposed that an as yet unidentified tumor suppressor is present at this locus. Maternally expressed gene 3 (MEG3) is an imprinted gene located at 14q32 which encodes a noncoding RNA with an antiproliferative function. We found that MEG3 mRNA is highly expressed in normal arachnoidal cells. However, MEG3 is not expressed in the majority of human meningiomas or the human meningioma cell lines IOMM-Lee and CH157-MN. There is a strong association between loss of MEG3 expression and tumor grade. Allelic loss at the MEG3 locus is also observed in meningiomas, with increasing prevalence in higher grade tumors. In addition, there is an increase in CpG methylation within the promoter and the imprinting control region of MEG3 gene in meningiomas. Functionally, MEG3 suppresses DNA synthesis in both IOMM-Lee and CH157-MN cells by approximately 60% in bromodeoxyuridine incorporation assays. Colony-forming efficiency assays show that MEG3 inhibits colony formation in CH157-MN cells by approximately 80%. Furthermore, MEG3 stimulates p53-mediated transactivation in these cell lines. Therefore, these data are consistent with the hypothesis that MEG3, which encodes a noncoding RNA, may be a tumor suppressor gene at chromosome 14q32 involved in meningioma progression via a novel mechanism.

  12. H2-Producing Bacterial Community during Rice Straw Decomposition in Paddy Field Soil: Estimation by an Analysis of [FeFe]-Hydrogenase Gene Transcripts.

    PubMed

    Baba, Ryuko; Asakawa, Susumu; Watanabe, Takeshi

    2016-09-29

    The transcription patterns of [FeFe]-hydrogenase genes (hydA), which encode the enzymes responsible for H2 production, were investigated during rice straw decomposition in paddy soil using molecular biological techniques. Paddy soil amended with and without rice straw was incubated under anoxic conditions. RNA was extracted from the soil, and three clone libraries of hydA were constructed using RNAs obtained from samples in the initial phase of rice straw decomposition (day 1 with rice straw), methanogenic phase of rice straw decomposition (day 14 with rice straw), and under a non-amended condition (day 14 without rice straw). hydA genes related to Proteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, and Thermotogae were mainly transcribed in paddy soil samples; however, their proportions markedly differed among the libraries. Deltaproteobacteria-related hydA genes were predominantly transcribed on day 1 with rice straw, while various types of hydA genes related to several phyla were transcribed on day 14 with rice straw. Although the diversity of transcribed hydA was significantly higher in the library on day 14 with rice straw than the other two libraries, the composition of hydA transcripts in the library was similar to that in the library on day 14 without rice straw. These results indicate that the composition of active H2 producers and/or H2 metabolic patterns dynamically change during rice straw decomposition in paddy soil.

  13. Reassortment between Avian H5N1 and human influenza viruses is mainly restricted to the matrix and neuraminidase gene segments.

    PubMed

    Schrauwen, Eefje J A; Bestebroer, Theo M; Rimmelzwaan, Guus F; Osterhaus, Albert D M E; Fouchier, Ron A M; Herfst, Sander

    2013-01-01

    Highly pathogenic avian influenza H5N1 viruses have devastated the poultry industry in many countries of the eastern hemisphere. Occasionally H5N1 viruses cross the species barrier and infect humans, sometimes with a severe clinical outcome. When this happens, there is a chance of reassortment between H5N1 and human influenza viruses. To assess the potential of H5N1 viruses to reassort with contemporary human influenza viruses (H1N1, H3N2 and pandemic H1N1), we used an in vitro selection method to generate reassortant viruses, that contained the H5 hemagglutinin gene, and that have a replication advantage in vitro. We found that the neuraminidase and matrix gene segments of human influenza viruses were preferentially selected by H5 viruses. However, these H5 reassortant viruses did not show a marked increase in replication in MDCK cells and human bronchial epithelial cells. In ferrets, inoculation with a mixture of H5N1-pandemic H1N1 reassortant viruses resulted in outgrowth of reassortant H5 viruses that had incorporated the neuraminidase and matrix gene segment of pandemic 2009 H1N1. This virus was not transmitted via aerosols or respiratory droplets to naïve recipient ferrets. Altogether, these data emphasize the potential of avian H5N1 viruses to reassort with contemporary human influenza viruses. The neuraminidase and matrix gene segments of human influenza viruses showed the highest genetic compatibility with HPAI H5N1 virus.

  14. Cleanup Verification Package for the 118-H-6:2, 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils; the 118-H-6:3, 105-H Reactor Fuel Storage Basin and Underlying Soils; The 118-H-6:3 Fuel Storage Basin Deep Zone Side Slope Soils; the 100-H-9, 100-H-10, and 100-H-13 French Drains; the 100-H-11 and 100-H-12 Expansion Box French Drains; and the 100-H-14 and 100-H-31 Surface Contamination Zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. J. Appel

    2006-06-29

    This cleanup verification package documents completion of removal actions for the 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils (subsite 118-H-6:2); 105-H Reactor Fuel Storage Basin and Underlying Soils (118-H-6:3); and Fuel Storage Basin Deep Zone Side Slope Soils. This CVP also documents remedial actions for the following seven additional waste sties: French Drain C (100-H-9), French Drain D (100-H-10), Expansion Box French Drain E (100-H-11), Expansion Box French Drain F (100-H-12), French Drain G (100-H-13), Surface Contamination Zone H (100-H-14), and the Polychlorinated Biphenyl Surface Contamination Zone (100-H-31).

  15. H2A.Z Acidic Patch Couples Chromatin Dynamics to Regulation of Gene Expression Programs during ESC Differentiation

    PubMed Central

    Subramanian, Vidya; Mazumder, Aprotim; Surface, Lauren E.; Butty, Vincent L.; Fields, Paul A.; Alwan, Allison; Torrey, Lillian; Thai, Kevin K.; Levine, Stuart S.; Bathe, Mark; Boyer, Laurie A.

    2013-01-01

    The histone H2A variant H2A.Z is essential for embryonic development and for proper control of developmental gene expression programs in embryonic stem cells (ESCs). Divergent regions of amino acid sequence of H2A.Z likely determine its functional specialization compared to core histone H2A. For example, H2A.Z contains three divergent residues in the essential C-terminal acidic patch that reside on the surface of the histone octamer as an uninterrupted acidic patch domain; however, we know little about how these residues contribute to chromatin structure and function. Here, we show that the divergent amino acids Gly92, Asp97, and Ser98 in the H2A.Z C-terminal acidic patch (H2A.ZAP3) are critical for lineage commitment during ESC differentiation. H2A.Z is enriched at most H3K4me3 promoters in ESCs including poised, bivalent promoters that harbor both activating and repressive marks, H3K4me3 and H3K27me3 respectively. We found that while H2A.ZAP3 interacted with its deposition complex and displayed a highly similar distribution pattern compared to wild-type H2A.Z, its enrichment levels were reduced at target promoters. Further analysis revealed that H2A.ZAP3 was less tightly associated with chromatin, suggesting that the mutant is more dynamic. Notably, bivalent genes in H2A.ZAP3 ESCs displayed significant changes in expression compared to active genes. Moreover, bivalent genes in H2A.ZAP3 ESCs gained H3.3, a variant associated with higher nucleosome turnover, compared to wild-type H2A.Z. We next performed single cell imaging to measure H2A.Z dynamics. We found that H2A.ZAP3 displayed higher mobility in chromatin compared to wild-type H2A.Z by fluorescent recovery after photobleaching (FRAP). Moreover, ESCs treated with the transcriptional inhibitor flavopiridol resulted in a decrease in the H2A.ZAP3 mobile fraction and an increase in its occupancy at target genes indicating that the mutant can be properly incorporated into chromatin. Collectively, our work suggests

  16. Engineering low-cadmium rice through stress-inducible expression of OXS3-family member genes.

    PubMed

    Wang, Changhu; Guo, Weili; Cai, Xingzhe; Li, Ruyu; Ow, David W

    2018-04-21

    Cadmium (Cd) as a carcinogen poses a great threat to food security and public health through plant-derived foods such as rice, the staple for nearly half of the world's population. We have previously reported that overexpression of truncated gene fragments derived from the rice genes OsO3L2 and OsO3L3 could reduce Cd accumulation in transgenic rice. However, we did not test the full length genes due to prior work in Arabidopsis where overexpression of these genes caused seedling lethality. Here, we report on limiting the overexpression of OsO3L2 and OsO3L3 through the use of the stress- inducible promoter RD29B. However, despite generating 625 putative transformants, only 7 lines survived as T1 seedlings and only 1 line of each overexpressed OsO3L2 or OsO3L3-produced T2 progeny. The T2 homozygotes from these 2 lines showed the same effect of reducing accumulation of Cd in root and shoot as well as in T3 grain. As importantly, the concentrations of essential metals copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) were unaffected. Analysis of the expression profile suggested that low Cd accumulation may be due to high expression of OsO3L2 and OsO3L3 in the root tip region. Cellular localization of OsO3L2 and OsO3L3 indicate that they are histone H2A interacting nuclear proteins in vascular cells and especially in the root tip region. It is possible that interaction with histone H2A modifies chromatin to regulate downstream gene expression. Copyright © 2018. Published by Elsevier B.V.

  17. Comparative pathology of pigs infected with Korean H1N1, H1N2, or H3N2 swine influenza A viruses.

    PubMed

    Lyoo, Kwang-Soo; Kim, Jeong-Ki; Jung, Kwonil; Kang, Bo-Kyu; Song, Daesub

    2014-09-24

    The predominant subtypes of swine influenza A virus (SIV) in Korea swine population are H1N1, H1N2, and H3N2. The viruses are genetically close to the classical U.S. H1N1 and triple-reassortant H1N2 and H3N2 viruses, respectively. Comparative pathogenesis caused by Korean H1N1, H1N2, and H3N2 SIV was evaluated in this study. The H3N2 infected pigs had severe scores of gross and histopathological lesions at post-inoculation days (PID) 2, and this then progressively decreased. Both the H1N1 and H1N2 infected pigs lacked gross lesions at PID 2, but they showed moderate to severe pneumonia on PID 4, 7 and 14. The pigs infected with H1N1 had significant scores of gross and histopathological lesions when compared with the other pigs infected with H1N2, H3N2, and mock at PID 14. Mean SIV antigen-positive scores were rarely detected for pigs infected with H1N2 and H3N2 from PID 7, whereas a significantly increased amount of viral antigens were found in the bronchioles and alveolar epithelium of the H1N1infected pigs at PID 14. We demonstrated that Korean SIV subtypes had different pulmonary pathologic patterns. The Korean H3N2 rapidly induced acute lung lesions such as broncho-interstitial pneumonia, while the Korean H1N1 showed longer course of infection as compared to other strains.

  18. 14-3-3η Autoantibodies: Diagnostic Use in Early Rheumatoid Arthritis.

    PubMed

    Maksymowych, Walter P; Boire, Gilles; van Schaardenburg, Dirkjan; Wichuk, Stephanie; Turk, Samina; Boers, Maarten; Siminovitch, Katherine A; Bykerk, Vivian; Keystone, Ed; Tak, Paul Peter; van Kuijk, Arno W; Landewé, Robert; van der Heijde, Desiree; Murphy, Mairead; Marotta, Anthony

    2015-09-01

    To describe the expression and diagnostic use of 14-3-3η autoantibodies in early rheumatoid arthritis (RA). 14-3-3η autoantibody levels were measured using an electrochemiluminescent multiplexed assay in 500 subjects (114 disease-modifying antirheumatic drug-naive patients with early RA, 135 with established RA, 55 healthy, 70 autoimmune, and 126 other non-RA arthropathy controls). 14-3-3η protein levels were determined in an earlier analysis. Two-tailed Student t tests and Mann-Whitney U tests compared differences among groups. Receiver-operator characteristic (ROC) curves were generated and diagnostic performance was estimated by area under the curve (AUC), as well as specificity, sensitivity, and likelihood ratios (LR) for optimal cutoffs. Median serum 14-3-3η autoantibody concentrations were significantly higher (p < 0.0001) in patients with early RA (525 U/ml) when compared with healthy controls (235 U/ml), disease controls (274 U/ml), autoimmune disease controls (274 U/ml), patients with osteoarthritis (259 U/ml), and all controls (265 U/ml). ROC curve analysis comparing early RA with healthy controls demonstrated a significant (p < 0.0001) AUC of 0.90 (95% CI 0.85-0.95). At an optimal cutoff of ≥ 380 U/ml, the ROC curve yielded a sensitivity of 73%, a specificity of 91%, and a positive LR of 8.0. Adding 14-3-3η autoantibodies to 14-3-3η protein positivity enhanced the identification of patients with early RA from 59% to 90%; addition of 14-3-3η autoantibodies to anticitrullinated protein antibodies (ACPA) and/or rheumatoid factor (RF) increased identification from 72% to 92%. Seventy-two percent of RF- and ACPA-seronegative patients were positive for 14-3-3η autoantibodies. 14-3-3η autoantibodies, alone and in combination with the 14-3-3η protein, RF, and/or ACPA identified most patients with early RA.

  19. ChIP-seq and ChIP-exo profiling of Pol II, H2A.Z, and H3K4me3 in human K562 cells.

    PubMed

    Mchaourab, Zenab F; Perreault, Andrea A; Venters, Bryan J

    2018-03-06

    The human K562 chronic myeloid leukemia cell line has long served as an experimental paradigm for functional genomic studies. To systematically and functionally annotate the human genome, the ENCODE consortium generated hundreds of functional genomic data sets, such as chromatin immunoprecipitation coupled to sequencing (ChIP-seq). While ChIP-seq analyses have provided tremendous insights into gene regulation, spatiotemporal insights were limited by a resolution of several hundred base pairs. ChIP-exonuclease (ChIP-exo) is a refined version of ChIP-seq that overcomes this limitation by providing higher precision mapping of protein-DNA interactions. To study the interplay of transcription initiation and chromatin, we profiled the genome-wide locations for RNA polymerase II (Pol II), the histone variant H2A.Z, and the histone modification H3K4me3 using ChIP-seq and ChIP-exo. In this Data Descriptor, we present detailed information on parallel experimental design, data generation, quality control analysis, and data validation. We discuss how these data lay the foundation for future analysis to understand the relationship between the occupancy of Pol II and nucleosome positions at near base pair resolution.

  20. Aberrant DNA methylation associated with silencing BNIP3 gene expression in haematopoietic tumours

    PubMed Central

    Murai, M; Toyota, M; Satoh, A; Suzuki, H; Akino, K; Mita, H; Sasaki, Y; Ishida, T; Shen, L; Garcia-Manero, G; Issa, J-P J; Hinoda, Y; Tokino, T; Imai, K

    2005-01-01

    Hypoxia is a key factor contributing to the progression of human neoplasias and to the development of resistance to chemotherapy. BNIP3 is a proapoptotic member of the Bcl-2 protein family involved in hypoxia-induced cell death. We evaluated the expression and methylation status of BNIP3 gene to better understand the role of epigenetic alteration of its expression in haematopoietic tumours. Methylation of the region around the BNIP3 transcription start site was detected in four acute lymphocytic leukaemia, one multiple myeloma and one Burkitt lymphoma cell lines, and was closely associated with silencing the gene. That expression of BNIP3 was restored by treatment with 5-aza2′-deoxycytidine (5-aza-dC), a methyltransferase inhibitor, which confirmed the gene to be epigenetically inactivated by methylation. Notably, re-expression of BNIP3 using 5-aza2-dC also restored hypoxia-mediated cell death in methylated cell lines. Acetylation of histone H3 in the 5′ region of the gene, which was assessed using chromatin immunoprecipitation assays, correlated directly with gene expression and inversely with DNA methylation. Among primary tumours, methylation of BNIP3 was detected in five of 34 (15%) acute lymphocytic leukaemias, six of 35 (17%) acute myelogenous leukaemias and three of 14 (21%) multiple myelomas. These results suggest that aberrant DNA methylation of the 5′ CpG island and histone deacetylation play key roles in silencing BNIP3 expression in haematopoietic tumours. PMID:15756280

  1. The t(9;14)(p13;q32) chromosomal translocation associated with lymphoplasmacytoid lymphoma involves the PAX-5 gene.

    PubMed

    Iida, S; Rao, P H; Nallasivam, P; Hibshoosh, H; Butler, M; Louie, D C; Dyomin, V; Ohno, H; Chaganti, R S; Dalla-Favera, R

    1996-12-01

    The t(9;14)(p13;q32) translocation is associated with approximately 50% of lymphoplasmacytoid lymphoma (LPL), a subtype of B-cell non-Hodgkin's lymphoma (NHL). We cloned the chromosomal breakpoint of der (14) from an LPL case (1052) and showed that it involved a junction between 9p13 and the switch micro region of the Ig heavy chain locus (IgH) on 14q32. Using a YAC contig spanning 1.5 megabase (Mb), we determined that the 9p13 breakpoint in one case (1052) mapped within a 270-kb restriction fragment containing two previously reported 9p breakpoints associated with a alpha-heavy chain disease case (MAL) and KI-1 positive diffuse large cell lymphoma (DLCL) cell line (KIS-1). The same fragment also contained the PAX-5 gene which encodes a B-cell specific transcription factor involved in the control of B-cell proliferation and differentiation. The breakpoints of KIS-1 and 1052 were mapped within the 5' noncoding region of PAX-5, while the 9p13 breakpoint of MAL mapped 230 to 270 kb upstream to PAX-5. In all three cases, the translocation caused the juxtaposition of the PAX-5 gene to the IgH locus in the opposite direction of transcription. When compared with six other DLCL cell lines lacking t(9;14)(p13;q32), the KIS-1 cell line showed an 11-fold overexpression of PAX-5 mRNA and a significantly reduced expression of the p53 gene, which is normally regulated by PAX-5. Moreover, metaphase and interphase fluorescence in situ hybridization (FISH) analysis using a YAC clone spanning 1 Mb including the PAX-5 as a probe identified chromosomal translocations in 5 of 7 cases carrying 9p13 translocations. These findings suggest that the PAX-5 gene is the target of the t(9;14) in LPL whereby its expression may be deregulated by juxtaposition to IgH regulatory elements, thus contributing to lymphomagenesis.

  2. Large-Scale Gene-Centric Analysis Identifies Novel Variants for Coronary Artery Disease

    PubMed Central

    2011-01-01

    Coronary artery disease (CAD) has a significant genetic contribution that is incompletely characterized. To complement genome-wide association (GWA) studies, we conducted a large and systematic candidate gene study of CAD susceptibility, including analysis of many uncommon and functional variants. We examined 49,094 genetic variants in ∼2,100 genes of cardiovascular relevance, using a customised gene array in 15,596 CAD cases and 34,992 controls (11,202 cases and 30,733 controls of European descent; 4,394 cases and 4,259 controls of South Asian origin). We attempted to replicate putative novel associations in an additional 17,121 CAD cases and 40,473 controls. Potential mechanisms through which the novel variants could affect CAD risk were explored through association tests with vascular risk factors and gene expression. We confirmed associations of several previously known CAD susceptibility loci (eg, 9p21.3:p<10−33; LPA:p<10−19; 1p13.3:p<10−17) as well as three recently discovered loci (COL4A1/COL4A2, ZC3HC1, CYP17A1:p<5×10−7). However, we found essentially null results for most previously suggested CAD candidate genes. In our replication study of 24 promising common variants, we identified novel associations of variants in or near LIPA, IL5, TRIB1, and ABCG5/ABCG8, with per-allele odds ratios for CAD risk with each of the novel variants ranging from 1.06–1.09. Associations with variants at LIPA, TRIB1, and ABCG5/ABCG8 were supported by gene expression data or effects on lipid levels. Apart from the previously reported variants in LPA, none of the other ∼4,500 low frequency and functional variants showed a strong effect. Associations in South Asians did not differ appreciably from those in Europeans, except for 9p21.3 (per-allele odds ratio: 1.14 versus 1.27 respectively; P for heterogeneity = 0.003). This large-scale gene-centric analysis has identified several novel genes for CAD that relate to diverse biochemical and cellular functions and

  3. Large-scale gene-centric analysis identifies novel variants for coronary artery disease.

    PubMed

    2011-09-01

    Coronary artery disease (CAD) has a significant genetic contribution that is incompletely characterized. To complement genome-wide association (GWA) studies, we conducted a large and systematic candidate gene study of CAD susceptibility, including analysis of many uncommon and functional variants. We examined 49,094 genetic variants in ∼2,100 genes of cardiovascular relevance, using a customised gene array in 15,596 CAD cases and 34,992 controls (11,202 cases and 30,733 controls of European descent; 4,394 cases and 4,259 controls of South Asian origin). We attempted to replicate putative novel associations in an additional 17,121 CAD cases and 40,473 controls. Potential mechanisms through which the novel variants could affect CAD risk were explored through association tests with vascular risk factors and gene expression. We confirmed associations of several previously known CAD susceptibility loci (eg, 9p21.3:p<10(-33); LPA:p<10(-19); 1p13.3:p<10(-17)) as well as three recently discovered loci (COL4A1/COL4A2, ZC3HC1, CYP17A1:p<5×10(-7)). However, we found essentially null results for most previously suggested CAD candidate genes. In our replication study of 24 promising common variants, we identified novel associations of variants in or near LIPA, IL5, TRIB1, and ABCG5/ABCG8, with per-allele odds ratios for CAD risk with each of the novel variants ranging from 1.06-1.09. Associations with variants at LIPA, TRIB1, and ABCG5/ABCG8 were supported by gene expression data or effects on lipid levels. Apart from the previously reported variants in LPA, none of the other ∼4,500 low frequency and functional variants showed a strong effect. Associations in South Asians did not differ appreciably from those in Europeans, except for 9p21.3 (per-allele odds ratio: 1.14 versus 1.27 respectively; P for heterogeneity = 0.003). This large-scale gene-centric analysis has identified several novel genes for CAD that relate to diverse biochemical and cellular functions and

  4. nm23-H1 gene driven by hTERT promoter induces inhibition of invasive phenotype and metastasis of lung cancer xenograft in mice.

    PubMed

    Fan, Yu; Yao, Yibing; Li, Lu; Wu, Zhihao; Xu, Feng; Hou, Mei; Wu, Heng; Shen, Yali; Wan, Haisu; Zhou, Qinghua

    2013-02-01

    Lung cancer is the leading cause of cancer death in both men and women worldwide. Tumor metastasis is an essential aspect of lung cancer progression and patient death. The nm23-H1 gene has been extensively investigated as a metastasis suppressor gene. Our previous studies have revealed: that a significant relationship exists between the low-level expression nm23-H1 in primary non-small cell lung cancer (NSCLC) with increased metastasis and a poor prognosis; that L9981-nm23-H1 cells (a nm23-H1 transfactant cell) exhibited lower cell proliferation rates, more G0/G1 phase growth, and an increase in apoptosis with a dramatic decrease in the tumor cells' ability to invade than L9981 cells did; and that L9981- nm23-H1 cells also demonstrated a significantly reduced lymph node and distant metastatic capacity in vivo than L9981 cells did in nude mice. In this study, we construct a plasmid containing the nm23-H1 gene, which was driven by the human telomerase reverse transcriptase (hTERT) promoter. We evaluated the anti-invasion and anti-metastatic effects of pGL3-hTP-nm23 on L9981, a human large cell lung cancer cell line with nm23-H1 negative expression, by transwell assay in vitro and bioluminescence in nude mice models. The toxicity of pGL3-hTP-nm23 and its effects on tumor growth were evaluated in nude mice models after gene therapy. The cell cycles, apoptosis, and proliferation of the nm23-H1 transfactant were also detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT assay) and flow cytometry (FCM). The results showed that the hTERT-promoter dramatically drives nm23-H1 gene expression, and induces inhibition of cell growth and migration in L9981-luc cells and MRC-5 cells in vitro. nm23-H1 also significantly inhibited the tumorigenesis and distant metastasis of L9981-luc cell in vivo. Moreover, no obvious side effect was detected in normal mouse tissues after intratumoral injection of the vector. The treatment of the nm23-H1 gene driven by h

  5. Phylogenetic Analysis and Pathogenicity Assessment of Two Strains of Avian Influenza Virus Subtype H9N2 Isolated from Migratory Birds: High Homology of Internal Genes with Human H10N8 Virus.

    PubMed

    Ye, Ge; Liang, Chai Hong; Hua, Deng Guo; Song, Lei Yong; Xiang, Yang Guo; Guang, Chen; Lan, Chen Hua; Ping, Hua Yu

    2016-01-01

    Two human-infecting avian influenza viruses (AIVs), H7N9 and H10N8, have emerged in China, which further indicate that the H9N2 subtype of AIVs, as an internal gene donor, may have an important role in the generation of new viruses with cross-species transmissibility and pathogenicity. H9N2 viruses that contain such internal genes widely exist in poultry but are rarely reported in migratory birds. In this study, two strains of the H9N2 virus were isolated from fecal samples of migratory birds in 2014: one strain from Caizi Lake in Anhui Province and one from Chen Lake in Hubei Province of China. Nucleotide sequence analysis revealed high homology of all six internal genes of these two strains with the internal genes of the human H10N8 virus in Jiangxi Province, as well as with the human H7N9 virus. Phylogenetic analysis indicated a possible origin of these two strains from poultry in South China. Both of the two viruses tested could replicated in respiratory organs of infective mice without adaption, by both strains of the H9N2 AIVs from wild birds, suggesting their potential capacity for directly infecting mammals. Our findings indicate the existence of H9N2 viruses that contain internal genes highly homologous with human H10N8 or H7N9 viruses. Wild birds can contribute to the spread of the H9N2 virus that contains the "harmful" internal gene complex, leading to gene rearrangement with other influenza viruses and to the generation of new pathogenic viruses. Therefore, strengthening AIV surveillance in wild birds can promote an understanding of the presence and prevalence of viruses and provide scientific evidence for the prevention and control of AIVs and human-infecting AIVs.

  6. Novel DNA variants and mutation frequencies of hMLH1 and hMSH2 genes in colorectal cancer in the Northeast China population.

    PubMed

    Hu, Fulan; Li, Dandan; Wang, Yibaina; Yao, Xiaoping; Zhang, Wencui; Liang, Jing; Lin, Chunqing; Ren, Jiaojiao; Zhu, Lin; Wu, Zhiwei; Li, Shuying; Li, Ye; Zhao, Xiaojuan; Cui, Binbin; Dong, Xinshu; Tian, Suli; Zhao, Yashuang

    2013-01-01

    Research on hMLH1 and hMSH2 mutations tend to focus on Lynch syndrome (LS) and LS-like colorectal cancer (CRC). No studies to date have assessed the role of hMLH1 and hMSH2 genes in mass sporadic CRC (without preselection by MSI or early age of onset). We aimed to identify novel hMLH1 and hMSH2 DNA variants, to determine the mutation frequencies and sites in both sporadic and LS CRC and their relationships with clinicopathological characteristics of CRC in Northeast of China. 452 sporadic and 21 LS CRC patients were screened for germline and somatic mutations in hMLH1 and hMSH2 genes with PCR-SSCP sequencing. We identified 11 hMLH1 and seven hMSH2 DNA variants in our study cohort. Six of them were novel: four in hMLH1 gene (IVS8-16 A>T, c.644 GAT>GTT, c.1529 CAG>CGG and c.1831 ATT>TTT) and two in hMSH2 gene (-39 C>T, insertion AACAACA at c.1127 and deletion AAG at c.1129). In sporadic CRC, germline and somatic mutation frequencies of hMLH1/hMSH2 gene were 15.59% and 17.54%, respectively (p = 0.52). Germline mutations present in hMLH1 and hMSH2 genes were 5.28% and 10.78%, respectively (p<0.01). Somatic mutations in hMLH1 and hMSH2 genes were 6.73% and 11.70%, respectively (p = 0.02). In LS CRC, both germline and somatic mutation frequencies of hMLH1/hMSH2 gene were 28.57%. The most prevalent germline mutation site in hMSH2 gene was c.1168 CTT>TTT (3.90%), a polymorphism. Somatic mutation frequency of hMLH1/hMSH2 gene was significantly different in proximal, distal colon and rectal cancer (p = 0.03). Our findings elucidate the mutation spectrum and frequency of hMLH1 and hMSH2 genes in sporadic and LS CRC, and their relationships with clinicopathological characteristics of CRC.

  7. Defects in Histone H3.3 Phosphorylation and ATRX Recruitment to Misaligned Chromosomes during Mitosis Contribute to the Development of Pediatric Glioblastomas

    DTIC Science & Technology

    2015-09-01

    somatic mutations leading to single amino acid substitutions in four genes : the p53 tumor suppressor, the histone variant H3.3, ATRX, and DAXX. As...pending minor revision. The second major impact of our work is the discovery that mutations in the H3.3 gene (K27M and G34R) – found to be driver...heterozygous mutations in this region of the H3.3 gene are particularly dangerous, and provides insights into how they drive cancer progression. b

  8. Efficient production by sperm-mediated gene transfer of human decay accelerating factor (hDAF) transgenic pigs for xenotransplantation

    PubMed Central

    Lavitrano, Marialuisa; Bacci, Maria Laura; Forni, Monica; Lazzereschi, Davide; Di Stefano, Carla; Fioretti, Daniela; Giancotti, Paola; Marfé, Gabriella; Pucci, Loredana; Renzi, Luigina; Wang, Hongjun; Stoppacciaro, Antonella; Stassi, Giorgio; Sargiacomo, Massimo; Sinibaldi, Paola; Turchi, Valeria; Giovannoni, Roberto; Della Casa, Giacinto; Seren, Eraldo; Rossi, Giancarlo

    2002-01-01

    A large number of hDAF transgenic pigs to be used for xenotransplantation research were generated by using sperm-mediated gene transfer (SMGT). The efficiency of transgenesis obtained with SMGT was much greater than with any other method. In the experiments reported, up to 80% of pigs had the transgene integrated into the genome. Most of the pigs carrying the hDAF gene transcribed it in a stable manner (64%). The great majority of pigs that transcribed the gene expressed the protein (83%). The hDAF gene was transmitted to progeny. Expression was stable and found in caveolae as it is in human cells. The expressed gene was functional based on in vitro experiments performed on peripheral blood mononuclear cells. These results show that our SMGT approach to transgenesis provides an efficient procedure for studies involving large animal models. PMID:12393815

  9. Three-dimensional (3D) printing of mouse primary hepatocytes to generate 3D hepatic structure.

    PubMed

    Kim, Yohan; Kang, Kyojin; Jeong, Jaemin; Paik, Seung Sam; Kim, Ji Sook; Park, Su A; Kim, Wan Doo; Park, Jisun; Choi, Dongho

    2017-02-01

    The major problem in producing artificial livers is that primary hepatocytes cannot be cultured for many days. Recently, 3-dimensional (3D) printing technology draws attention and this technology regarded as a useful tool for current cell biology. By using the 3D bio-printing, these problems can be resolved. To generate 3D bio-printed structures (25 mm × 25 mm), cells-alginate constructs were fabricated by 3D bio-printing system. Mouse primary hepatocytes were isolated from the livers of 6-8 weeks old mice by a 2-step collagenase method. Samples of 4 × 10 7 hepatocytes with 80%-90% viability were printed with 3% alginate solution, and cultured with well-defined culture medium for primary hepatocytes. To confirm functional ability of hepatocytes cultured on 3D alginate scaffold, we conducted quantitative real-time polymerase chain reaction and immunofluorescence with hepatic marker genes. Isolated primary hepatocytes were printed with alginate. The 3D printed hepatocytes remained alive for 14 days. Gene expression levels of Albumin , HNF-4α and Foxa3 were gradually increased in the 3D structures. Immunofluorescence analysis showed that the primary hepatocytes produced hepatic-specific proteins over the same period of time. Our research indicates that 3D bio-printing technique can be used for long-term culture of primary hepatocytes. It can therefore be used for drug screening and as a potential method of producing artificial livers.

  10. Dominant suppressor mutation bypasses the sphingolipid requirement for growth of Saccharomyces cells at low pH: role of the CWP2 gene.

    PubMed

    Skrzypek, M; Lester, R L; Spielmann, P; Zingg, N; Shelling, J; Dickson, R C

    2000-11-01

    Strains of Saccharomyces cerevisiae termed sphingolipid compensatory (SLC) do not grow at low pH when the cells lack sphingolipids. To begin to understand why sphingolipids are required for growth at low pH, we isolated derivatives of SLC strains, termed low pH resistant (LprR), carrying the LPR suppressor gene that allows growth at pH 4.1 when cells lack sphingolipids. Suppression is due to mutation of a single nuclear gene. The LPR suppressor gene functions, at least in part, by enhancing the ability of cells lacking sphingolipids to generate a net efflux of protons in suspension fluid with a pH range of 4.0-6.0. The LPR suppressor gene also enables cells lacking sphingolipids to maintain their intracellular pH near neutrality when the pH of the suspension fluid is low, unlike cells lacking the suppressor gene, which cannot maintain their intracellular pH in the face of a low external pH. These results demonstrate that some functions(s) of sphingolipids necessary for growth at low pH can be bypassed by a suppressor mutation. Attempts to clone the LPR suppressor gene were not successful, but they led to the isolation of the CWP2 gene, which encodes a major mannoprotein component of the outer cell wall. It was isolated because an increased copy number has the unusual property of increasing the frequency at which LprR strains arise. As we show here, part of the reason for this effect is that the CWP2 gene is essential for generating a net efflux of protons and for controlling intracellular pH in LprR strains that lack sphingolipids. These results suggest new cellular functions for the Cwp2 protein.

  11. Reassortant H5N1 avian influenza viruses containing PA or NP gene from an H9N2 virus significantly increase the pathogenicity in mice.

    PubMed

    Hao, Xiaoli; Hu, Jiao; Wang, Jiongjiong; Xu, Jing; Cheng, Hao; Xu, Yunpeng; Li, Qunhui; He, Dongchang; Liu, Xiaowen; Wang, Xiaoquan; Gu, Min; Hu, Shunlin; Xu, Xiulong; Liu, Huimou; Chen, Sujuan; Peng, Daxin; Liu, Xiufan

    2016-08-30

    Reassortment between different influenza viruses is a crucial way to generate novel influenza viruses with unpredictable virulence and transmissibility, which may threaten the public health. As currently in China, avian influenza viruses (AIVs) of H9N2 and H5N1 subtypes are endemic in poultry in many areas, while they are prone to reassort with each other naturally. In order to evaluate the risk of the reassortment to public health, A/Goose/Jiangsu/k0403/2010 [GS/10(H5N1)] virus was used as a backbone to generate a series of reassortants, each contained a single internal gene derived from the predominant S genotype of the A/Chicken/Jiangsu/WJ57/2012 [WJ/57(H9N2)]. We next assessed the biological characteristics of these assortments, including pathogenicity, replication efficiency and polymerase activity. We found that the parental WJ/57(H9N2) and GS/10(H5N1) viruses displayed high genetic compatibility. Notably, the H5N1 reassortants containing the PA or NP gene from WJ/57(H9N2) virus significantly increased virulence and replication ability in mice, as well as markedly enhanced polymerase activity. Our results indicate that the endemicity of H9N2 and H5N1 in domestic poultry greatly increases the possibility of generating new viruses by reassortment that may pose a great threat to poultry industry and public health. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Cloning and characterization of the major histone H2A genes completes the cloning and sequencing of known histone genes of Tetrahymena thermophila.

    PubMed Central

    Liu, X; Gorovsky, M A

    1996-01-01

    A truncated cDNA clone encoding Tetrahymena thermophila histone H2A2 was isolated using synthetic degenerate oligonucleotide probes derived from H2A protein sequences of Tetrahymena pyriformis. The cDNA clone was used as a homologous probe to isolate a truncated genomic clone encoding H2A1. The remaining regions of the genes for H2A1 (HTA1) and H2A2 (HTA2) were then isolated using inverse PCR on circularized genomic DNA fragments. These partial clones were assembled into intact HTA1 and HTA2 clones. Nucleotide sequences of the two genes were highly homologous within the coding region but not in the noncoding regions. Comparison of the deduced amino acid sequences with protein sequences of T. pyriformis H2As showed only two and three differences respectively, in a total of 137 amino acids for H2A1, and 132 amino acids for H2A2, indicating the two genes arose before the divergence of these two species. The HTA2 gene contains a TAA triplet within the coding region, encoding a glutamine residue. In contrast with the T. thermophila HHO and HTA3 genes, no introns were identified within the two genes. The 5'- and 3'-ends of the histone H2A mRNAs; were determined by RNase protection and by PCR mapping using RACE and RLM-RACE methods. Both genes encode polyadenylated mRNAs and are highly expressed in vegetatively growing cells but only weakly expressed in starved cultures. With the inclusion of these two genes, T. thermophila is the first organism whose entire complement of known core and linker histones, including replication-dependent and basal variants, has been cloned and sequenced. PMID:8760889

  13. Molecular characterization of two rare human G8P[14] rotavirus strains, detected in Italy in 2012.

    PubMed

    Delogu, Roberto; Ianiro, Giovanni; Morea, Anna; Chironna, Maria; Fiore, Lucia; Ruggeri, Franco M

    2016-10-01

    Since 2007, the Italian Rotavirus Surveillance Program (RotaNet-Italy) has monitored the diversity and distribution of genotypes identified in children hospitalized with rotavirus acute gastroenteritis. We report the genomic characterization of two rare human G8P[14] rotavirus strains, identified in two children hospitalized with acute gastroenteritis in the southern Italian region of Apulia during rotavirus strain surveillance in 2012. Both strains showed a G8-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3 genomic constellation (DS-1-like genomic background). Phylogenetic analysis of each genome segment revealed a mixed configuration of genes of animal and zoonotic human origin, indicating that genetic reassortment events generated these unusual human strains. Eight out of 11 genes (VP1, VP2, VP3, VP6, VP7, NSP3, NSP4 and NSP5) of the Italian G8P[14] strains exhibited close identity with a Spanish sheep strain, whereas the remaining genes (VP4, NSP1 and NSP2) were more closely related to human strains. The amino acid sequences of the antigenic regions of outer capsid proteins VP4 and VP7 were compared with vaccine and field strains, showing high conservation between the amino acid sequences of Apulia G8P[14] strains and human and animal strains bearing G8 and/or P[14] proteins, and revealing many substitutions with respect to the RotaTeq™ and Rotarix™ vaccine strains. Conversely, the amino acid analysis of the four antigenic sites of VP6 revealed a high degree of conservation between the two Apulia strains and the human and animal strains analyzed. These results reinforce the potential role of interspecies transmission and reassortment in generating novel rotavirus strains that might not be fully contrasted by current vaccines. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Common regions of deletion in chromosome regions 3p12 and 3p14.2 in primary clear cell renal carcinomas.

    PubMed

    Lubinski, J; Hadaczek, P; Podolski, J; Toloczko, A; Sikorski, A; McCue, P; Druck, T; Huebner, K

    1994-07-15

    Nearly all clear cell renal cell carcinomas (RCCs) exhibit loss of alleles on the short arm of chromosome 3. Loss and mutation at the von Hippel-Lindau (VHL) gene at 3p25 probably occurs in most RCCs and, since the VHL gene was recently cloned, data on VHL involvement in RCCs is accumulating. However, the region 3p14-p12, a region that contains the familial RCC-associated t(3;8)(p14.2;q24) chromosome translocation and the small cell lung carcinoma-associated homozygous deletion at 3p13-12, has also been reported to exhibit allele loss in a large fraction of RCCs. In order to focus future studies on potential suppressor genes in the 3p14-p12 region, we have studied allele loss in 30 RCCs with 9 polymorphic simple sequence repeat markers spanning 3p21.1-p12. Partial losses in the 3p21-p12 region were observed, allowing determination of common regions of loss of heterozygosity overlap in 15 RCCs. Results suggested that most RCCs exhibit loss in a region which brackets the t(3;8) familial chromosome translocation at 3p14.2, and some show additional deletions within the U2020 small cell lung carcinoma deletion at 3p12.

  15. Pathogenicity and Transmission in Pigs of the Novel A(H3N2)v Influenza Virus Isolated from Humans and Characterization of Swine H3N2 Viruses Isolated in 2010-2011

    PubMed Central

    Kitikoon, Pravina; Gauger, Phillip C.; Schlink, Sarah N.; Bayles, Darrell O.; Gramer, Marie R.; Darnell, Daniel; Webby, Richard J.; Lager, Kelly M.; Swenson, Sabrina L.; Klimov, Alexander

    2012-01-01

    Swine influenza virus (SIV) H3N2 with triple reassorted internal genes (TRIG) has been enzootic in Unites States since 1998. Transmission of the 2009 pandemic H1N1 (pH1N1) virus to pigs in the United States was followed by reassortment with endemic SIV, resulting in reassorted viruses that include novel H3N2 genotypes (rH3N2p). Between July and December 2011, 12 cases of human infections with swine-lineage H3N2 viruses containing the pandemic matrix (pM) gene [A(H3N2)v] were detected. Whole-genome analysis of H3N2 viruses isolated from pigs from 2009 to 2011 sequenced in this study and other available H3N2 sequences showed six different rH3N2p genotypes present in the U.S. swine population since 2009. The presence of the pM gene was a common feature among all rH3N2p genotypes, but no specific genotype appeared to predominate in the swine population. We compared the pathogenic, transmission, genetic, and antigenic properties of a human A(H3N2)v isolate and two swine H3N2 isolates, H3N2-TRIG and rH3N2p. Our in vivo study detected no increased virulence in A(H3N2)v or rH3N2p viruses compared to endemic H3N2-TRIG virus. Antibodies to cluster IV H3N2-TRIG and rH3N2p viruses had reduced cross-reactivity to A(H3N2)v compared to other cluster IV H3N2-TRIG and rH3N2p viruses. Genetic analysis of the hemagglutinin gene indicated that although rH3N2p and A(H3N2)v are related to cluster IV of H3N2-TRIG, some recent rH3N2p isolates appeared to be forming a separate cluster along with the human isolates of A(H3N2)v. Continued monitoring of these H3N2 viruses is necessary to evaluate the evolution and potential loss of population immunity in swine and humans. PMID:22491461

  16. Pathogenicity and transmission in pigs of the novel A(H3N2)v influenza virus isolated from humans and characterization of swine H3N2 viruses isolated in 2010-2011.

    PubMed

    Kitikoon, Pravina; Vincent, Amy L; Gauger, Phillip C; Schlink, Sarah N; Bayles, Darrell O; Gramer, Marie R; Darnell, Daniel; Webby, Richard J; Lager, Kelly M; Swenson, Sabrina L; Klimov, Alexander

    2012-06-01

    Swine influenza virus (SIV) H3N2 with triple reassorted internal genes (TRIG) has been enzootic in Unites States since 1998. Transmission of the 2009 pandemic H1N1 (pH1N1) virus to pigs in the United States was followed by reassortment with endemic SIV, resulting in reassorted viruses that include novel H3N2 genotypes (rH3N2p). Between July and December 2011, 12 cases of human infections with swine-lineage H3N2 viruses containing the pandemic matrix (pM) gene [A(H3N2)v] were detected. Whole-genome analysis of H3N2 viruses isolated from pigs from 2009 to 2011 sequenced in this study and other available H3N2 sequences showed six different rH3N2p genotypes present in the U.S. swine population since 2009. The presence of the pM gene was a common feature among all rH3N2p genotypes, but no specific genotype appeared to predominate in the swine population. We compared the pathogenic, transmission, genetic, and antigenic properties of a human A(H3N2)v isolate and two swine H3N2 isolates, H3N2-TRIG and rH3N2p. Our in vivo study detected no increased virulence in A(H3N2)v or rH3N2p viruses compared to endemic H3N2-TRIG virus. Antibodies to cluster IV H3N2-TRIG and rH3N2p viruses had reduced cross-reactivity to A(H3N2)v compared to other cluster IV H3N2-TRIG and rH3N2p viruses. Genetic analysis of the hemagglutinin gene indicated that although rH3N2p and A(H3N2)v are related to cluster IV of H3N2-TRIG, some recent rH3N2p isolates appeared to be forming a separate cluster along with the human isolates of A(H3N2)v. Continued monitoring of these H3N2 viruses is necessary to evaluate the evolution and potential loss of population immunity in swine and humans.

  17. Quantitative analysis of ChIP-seq data uncovers dynamic and sustained H3K4me3 and H3K27me3 modulation in cancer cells under hypoxia.

    PubMed

    Adriaens, Michiel E; Prickaerts, Peggy; Chan-Seng-Yue, Michelle; van den Beucken, Twan; Dahlmans, Vivian E H; Eijssen, Lars M; Beck, Timothy; Wouters, Bradly G; Voncken, Jan Willem; Evelo, Chris T A

    2016-01-01

    A comprehensive assessment of the epigenetic dynamics in cancer cells is the key to understanding the molecular mechanisms underlying cancer and to improving cancer diagnostics, prognostics and treatment. By combining genome-wide ChIP-seq epigenomics and microarray transcriptomics, we studied the effects of oxygen deprivation and subsequent reoxygenation on histone 3 trimethylation of lysine 4 (H3K4me3) and lysine 27 (H3K27me3) in a breast cancer cell line, serving as a model for abnormal oxygenation in solid tumors. A priori, epigenetic markings and gene expression levels not only are expected to vary greatly between hypoxic and normoxic conditions, but also display a large degree of heterogeneity across the cell population. Where traditionally ChIP-seq data are often treated as dichotomous data, the model and experiment here necessitate a quantitative, data-driven analysis of both datasets. We first identified genomic regions with sustained epigenetic markings, which provided a sample-specific reference enabling quantitative ChIP-seq data analysis. Sustained H3K27me3 marking was located around centromeres and intergenic regions, while sustained H3K4me3 marking is associated with genes involved in RNA binding, translation and protein transport and localization. Dynamic marking with both H3K4me3 and H3K27me3 (hypoxia-induced bivalency) was found in CpG-rich regions at loci encoding factors that control developmental processes, congruent with observations in embryonic stem cells. In silico -identified epigenetically sustained and dynamic genomic regions were confirmed through ChIP-PCR in vitro, and obtained results are corroborated by published data and current insights regarding epigenetic regulation.

  18. Molecular turnover, the H3.3 dilemma and organismal aging (hypothesis).

    PubMed

    Saade, Evelyne; Pirozhkova, Iryna; Aimbetov, Rakhan; Lipinski, Marc; Ogryzko, Vasily

    2015-06-01

    The H3.3 histone variant has been a subject of increasing interest in the field of chromatin studies due to its two distinguishing features. First, its incorporation into chromatin is replication independent unlike the replication-coupled deposition of its canonical counterparts H3.1/2. Second, H3.3 has been consistently associated with an active state of chromatin. In accordance, this histone variant should be expected to be causally involved in the regulation of gene expression, or more generally, its incorporation should have downstream consequences for the structure and function of chromatin. This, however, leads to an apparent paradox: In cells that slowly replicate in the organism, H3.3 will accumulate with time, opening the way to aberrant effects on heterochromatin. Here, we review the indications that H3.3 is expected both to be incorporated in the heterochromatin of slowly replicating cells and to retain its functional downstream effects. Implications for organismal aging are discussed. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. MiR-21 plays an Important Role in Radiation Induced Carcinogenesis in BALB/c Mice by Directly Targeting the Tumor Suppressor Gene Big-h3

    PubMed Central

    Liu, Cong; Li, Bailong; Cheng, Ying; Lin, Jing; Hao, Jun; Zhang, Shuyu; Mitchel, R.E.J.; Sun, Ding; Ni, Jin; Zhao, Luqian; Gao, Fu; Cai, Jianming

    2011-01-01

    Dysregulation of certain microRNAs (miRNAs) in cancer can promote tumorigenesis, metastasis and invasion. However, the functions and targets of only a few mammalian miRNAs are known. In particular, the miRNAs that participates in radiation induced carcinogenesis and the miRNAs that target the tumor suppressor gene Big-h3 remain undefined. Here in this study, using a radiation induced thymic lymphoma model in BALB/c mice, we found that the tumor suppressor gene Big-h3 is down-regulated and miR-21 is up-regulated in radiation induced thymic lymphoma tissue samples. We also found inverse correlations between Big-h3 protein and miR-21 expression level among different tissue samples. Furthermore, our data indicated that miR-21 could directly target Big-h3 in a 3′UTR dependent manner. Finally, we found that miR-21 could be induced by TGFβ, and miR-21 has both positive and negative effects in regulating TGFβ signaling. We conclude that miR-21 participates in radiation induced carcinogenesis and it regulates TGFβ signaling. PMID:21494432

  20. 14 CFR Appendix H to Part 417 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false [Reserved] H Appendix H to Part 417 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Appendix H to Part 417 [Reserved] ...

  1. Characterisation of a rare, reassortant human G10P[14] rotavirus strain detected in Honduras

    PubMed Central

    Quaye, Osbourne; Roy, Sunando; Rungsrisuriyachai, Kunchala; Esona, Mathew D; Xu, Ziqian; Tam, Ka Ian; Banegas, Dina J Castro; Rey-Benito, Gloria; Bowen, Michael D

    2018-01-01

    BACKGROUND Although first detected in animals, the rare rotavirus strain G10P[14] has been sporadically detected in humans in Slovenia, Thailand, United Kingdom and Australia among other countries. Earlier studies suggest that the strains found in humans resulted from interspecies transmission and reassortment between human and bovine rotavirus strains. OBJECTIVES In this study, a G10P[14] rotavirus genotype detected in a human stool sample in Honduras during the 2010-2011 rotavirus season, from an unvaccinated 30-month old boy who reported at the hospital with severe diarrhea and vomiting, was characterised to determine the possible evolutionary origin of the rare strain. METHODS For the sample detected as G10P[14], 10% suspension was prepared and used for RNA extraction and sequence independent amplification. The amplicons were sequenced by next-generation sequencing using the Illumina MiSeq 150 paired end method. The sequence reads were analysed using CLC Genomics Workbench 6.0 and phylogenetic trees were constructed using PhyML version 3.0. FINDINGS The next generation sequencing and phylogenetic analyses of the 11-segmented genome of the G10P[14] strain allowed classification as G10-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3. Six of the genes (VP1, VP2, VP3, VP6, NSP2 and NSP4) were DS-1-like. NSP1 and NSP5 were AU-1-like and NSP3 was T6, which suggests that multiple reassortment events occurred in the evolution of the strain. The phylogenetic analyses and genetic distance calculations showed that the VP7, VP4, VP6, VP1, VP3, NSP1, NSP3 and NSP4 genes clustered predominantly with bovine strains. NSP2 and VP2 genes were most closely related to simian and human strains, respectively, and NSP5 was most closely related to a rhesus strain. MAIN CONCLUSIONS The genetic characterisation of the G10P[14] strain from Honduras suggests that its genome resulted from multiple reassortment events which were possibly mediated through interspecies transmissions. PMID:29211103

  2. Characterisation of a rare, reassortant human G10P[14] rotavirus strain detected in Honduras.

    PubMed

    Quaye, Osbourne; Roy, Sunando; Rungsrisuriyachai, Kunchala; Esona, Mathew D; Xu, Ziqian; Tam, Ka Ian; Banegas, Dina J Castro; Rey-Benito, Gloria; Bowen, Michael D

    2018-01-01

    Although first detected in animals, the rare rotavirus strain G10P[14] has been sporadically detected in humans in Slovenia, Thailand, United Kingdom and Australia among other countries. Earlier studies suggest that the strains found in humans resulted from interspecies transmission and reassortment between human and bovine rotavirus strains. In this study, a G10P[14] rotavirus genotype detected in a human stool sample in Honduras during the 2010-2011 rotavirus season, from an unvaccinated 30-month old boy who reported at the hospital with severe diarrhea and vomiting, was characterised to determine the possible evolutionary origin of the rare strain. For the sample detected as G10P[14], 10% suspension was prepared and used for RNA extraction and sequence independent amplification. The amplicons were sequenced by next-generation sequencing using the Illumina MiSeq 150 paired end method. The sequence reads were analysed using CLC Genomics Workbench 6.0 and phylogenetic trees were constructed using PhyML version 3.0. The next generation sequencing and phylogenetic analyses of the 11-segmented genome of the G10P[14] strain allowed classification as G10-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3. Six of the genes (VP1, VP2, VP3, VP6, NSP2 and NSP4) were DS-1-like. NSP1 and NSP5 were AU-1-like and NSP3 was T6, which suggests that multiple reassortment events occurred in the evolution of the strain. The phylogenetic analyses and genetic distance calculations showed that the VP7, VP4, VP6, VP1, VP3, NSP1, NSP3 and NSP4 genes clustered predominantly with bovine strains. NSP2 and VP2 genes were most closely related to simian and human strains, respectively, and NSP5 was most closely related to a rhesus strain. The genetic characterisation of the G10P[14] strain from Honduras suggests that its genome resulted from multiple reassortment events which were possibly mediated through interspecies transmissions.

  3. Exon resequencing of H3K9 methyltransferase complex genes, EHMT1, EHTM2 and WIZ, in Japanese autism subjects.

    PubMed

    Balan, Shabeesh; Iwayama, Yoshimi; Maekawa, Motoko; Toyota, Tomoko; Ohnishi, Tetsuo; Toyoshima, Manabu; Shimamoto, Chie; Esaki, Kayoko; Yamada, Kazuo; Iwata, Yasuhide; Suzuki, Katsuaki; Ide, Masayuki; Ota, Motonori; Fukuchi, Satoshi; Tsujii, Masatsugu; Mori, Norio; Shinkai, Yoichi; Yoshikawa, Takeo

    2014-01-01

    Histone H3 methylation at lysine 9 (H3K9) is a conserved epigenetic signal, mediating heterochromatin formation by trimethylation, and transcriptional silencing by dimethylation. Defective GLP (Ehmt1) and G9a (Ehmt2) histone lysine methyltransferases, involved in mono and dimethylation of H3K9, confer autistic phenotypes and behavioral abnormalities in animal models. Moreover, EHMT1 loss of function results in Kleefstra syndrome, characterized by severe intellectual disability, developmental delays and psychiatric disorders. We examined the possible role of histone methyltransferases in the etiology of autism spectrum disorders (ASD) and suggest that rare functional variants in these genes that regulate H3K9 methylation may be associated with ASD. Since G9a-GLP-Wiz forms a heteromeric methyltransferase complex, all the protein-coding regions and exon/intron boundaries of EHMT1, EHMT2 and WIZ were sequenced in Japanese ASD subjects. The detected variants were prioritized based on novelty and functionality. The expression levels of these genes were tested in blood cells and postmortem brain samples from ASD and control subjects. Expression of EHMT1 and EHMT2 isoforms were determined by digital PCR. We identified six nonsynonymous variants: three in EHMT1, two in EHMT2 and one in WIZ. Two variants, the EHMT1 ankyrin repeat domain (Lys968Arg) and EHMT2 SET domain (Thr961Ile) variants were present exclusively in cases, but showed no statistically significant association with ASD. The EHMT2 transcript expression was significantly elevated in the peripheral blood cells of ASD when compared with control samples; but not for EHMT1 and WIZ. Gene expression levels of EHMT1, EHMT2 and WIZ in Brodmann area (BA) 9, BA21, BA40 and the dorsal raphe nucleus (DoRN) regions from postmortem brain samples showed no significant changes between ASD and control subjects. Nor did expression levels of EHMT1 and EHMT2 isoforms in the prefrontal cortex differ significantly between ASD and

  4. Dynamics of H3K27me3 methylation and demethylation in plant development

    PubMed Central

    Gan, Eng-Seng; Xu, Yifeng; Ito, Toshiro

    2015-01-01

    Epigenetic regulation controls multiple aspects of the plant development. The N-terminal tail of histone can be differently modified to regulate various chromatin activities. One of them, the trimethylation of histone H3 lysine 27 (H3K27me3) confers a repressive chromatin state with gene silencing. H3K27me3 is dynamically deposited and removed throughout development. While components of the H3K27me3 writer, Polycomb repressive complex 2 (PRC2), have been reported for almost 2 decades, it is only recently that JUMONJI (JMJ) proteins are reported as H3K27me3 demethylases, affirming the dynamic nature of histone modifications. This review highlights recent progress in plant epigenetic research, focusing on the H3K27me3 demethylases. PMID:26313233

  5. Preparation of paper scintillator for detecting 3H contaminant.

    PubMed

    Miyoshi, Hirokazu; Ikeda, Toshiji

    2013-09-01

    Liquid scintillator (LS)-encapsulated silica was prepared by the sol-gel method and then was added dropwise onto a wipe paper to form a paper scintillator. First, the efficiencies of wipe were determined for both the paper scintillator and the wipe paper using a liquid scintillation counter (LSC). The efficiencies of wipe using the paper scintillator and the wipe paper were 88 and 36 %, respectively. The detection efficiencies were 5.5 % for the paper scintillator, 46 % for the wipe paper using an LS and 0.08 % for the (3)H/(14)C survey meter, respectively, compared with that of a melt-on scintillator of 47 %. Second, an (3)H contaminant on the paper scintillator was successfully detected using a photomultiplier without an LSC or an (3)H/(14)C survey meter. Finally, the paper scintillator was able to detect beta rays of the (3)H contaminant easily without an LS.

  6. Generation of transgenic chickens expressing the human erythropoietin (hEPO) gene in an oviduct-specific manner: Production of transgenic chicken eggs containing human erythropoietin in egg whites

    PubMed Central

    Kim, Dohyang; Nam, Yu Hwa; Cui, Xiang-Shun; Kim, Nam-Hyung

    2018-01-01

    The transgenic chicken has been considered as a prospective bioreactor for large-scale production of costly pharmaceutical proteins. In the present study, we report successful generation of transgenic hens that lay eggs containing a high concentration of human erythropoietin (hEPO) in the ovalbumin. Using a feline immunodeficiency virus (FIV)-based pseudotyped lentivirus vector enveloped with G glycoproteins of the vesicular stomatitis virus, the replication-defective vector virus carrying the hEPO gene under the control of the chicken ovalbumin promoter was microinjected to the subgerminal cavity of freshly laid chicken eggs (stage X). Stable germline transmission of the hEPO transgene to the G1 progeny, which were non-mosaic and hemizygous for the hEPO gene under the ovalbumin promoter, was confirmed by mating of a G0 rooster with non-transgenic hens. Quantitative analysis of hEPO in the egg whites and in the blood samples taken from G1 transgenic chickens showed 4,810 ~ 6,600 IU/ml (40.1 ~ 55.0 μg/ml) and almost no detectable concentration, respectively, indicating tightly regulated oviduct-specific expression of the hEPO transgene. In terms of biological activity, there was no difference between the recombinant hEPO contained in the transgenic egg white and the commercially available counterpart, in vitro. We suggest that these results imply an important step toward efficient production of human cytokines from a transgenic animal bioreactor. PMID:29847554

  7. Genome-Wide Profiling of Histone Modifications (H3K9me2 and H4K12ac) and Gene Expression in Rust (Uromyces appendiculatus) Inoculated Common Bean (Phaseolus vulgaris L.).

    PubMed

    Ayyappan, Vasudevan; Kalavacharla, Venu; Thimmapuram, Jyothi; Bhide, Ketaki P; Sripathi, Venkateswara R; Smolinski, Tomasz G; Manoharan, Muthusamy; Thurston, Yaqoob; Todd, Antonette; Kingham, Bruce

    2015-01-01

    Histone modifications such as methylation and acetylation play a significant role in controlling gene expression in unstressed and stressed plants. Genome-wide analysis of such stress-responsive modifications and genes in non-model crops is limited. We report the genome-wide profiling of histone methylation (H3K9me2) and acetylation (H4K12ac) in common bean (Phaseolus vulgaris L.) under rust (Uromyces appendiculatus) stress using two high-throughput approaches, chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq). ChIP-Seq analysis revealed 1,235 and 556 histone methylation and acetylation responsive genes from common bean leaves treated with the rust pathogen at 0, 12 and 84 hour-after-inoculation (hai), while RNA-Seq analysis identified 145 and 1,763 genes differentially expressed between mock-inoculated and inoculated plants. The combined ChIP-Seq and RNA-Seq analyses identified some key defense responsive genes (calmodulin, cytochrome p450, chitinase, DNA Pol II, and LRR) and transcription factors (WRKY, bZIP, MYB, HSFB3, GRAS, NAC, and NMRA) in bean-rust interaction. Differential methylation and acetylation affected a large proportion of stress-responsive genes including resistant (R) proteins, detoxifying enzymes, and genes involved in ion flux and cell death. The genes identified were functionally classified using Gene Ontology (GO) and EuKaryotic Orthologous Groups (KOGs). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified a putative pathway with ten key genes involved in plant-pathogen interactions. This first report of an integrated analysis of histone modifications and gene expression involved in the bean-rust interaction as reported here provides a comprehensive resource for other epigenomic regulation studies in non-model species under stress.

  8. Genome-Wide Profiling of Histone Modifications (H3K9me2 and H4K12ac) and Gene Expression in Rust (Uromyces appendiculatus) Inoculated Common Bean (Phaseolus vulgaris L.)

    PubMed Central

    Thimmapuram, Jyothi; Bhide, Ketaki P.; Sripathi, Venkateswara R.; Smolinski, Tomasz G.; Manoharan, Muthusamy; Thurston, Yaqoob; Todd, Antonette; Kingham, Bruce

    2015-01-01

    Histone modifications such as methylation and acetylation play a significant role in controlling gene expression in unstressed and stressed plants. Genome-wide analysis of such stress-responsive modifications and genes in non-model crops is limited. We report the genome-wide profiling of histone methylation (H3K9me2) and acetylation (H4K12ac) in common bean (Phaseolus vulgaris L.) under rust (Uromyces appendiculatus) stress using two high-throughput approaches, chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq). ChIP-Seq analysis revealed 1,235 and 556 histone methylation and acetylation responsive genes from common bean leaves treated with the rust pathogen at 0, 12 and 84 hour-after-inoculation (hai), while RNA-Seq analysis identified 145 and 1,763 genes differentially expressed between mock-inoculated and inoculated plants. The combined ChIP-Seq and RNA-Seq analyses identified some key defense responsive genes (calmodulin, cytochrome p450, chitinase, DNA Pol II, and LRR) and transcription factors (WRKY, bZIP, MYB, HSFB3, GRAS, NAC, and NMRA) in bean-rust interaction. Differential methylation and acetylation affected a large proportion of stress-responsive genes including resistant (R) proteins, detoxifying enzymes, and genes involved in ion flux and cell death. The genes identified were functionally classified using Gene Ontology (GO) and EuKaryotic Orthologous Groups (KOGs). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified a putative pathway with ten key genes involved in plant-pathogen interactions. This first report of an integrated analysis of histone modifications and gene expression involved in the bean-rust interaction as reported here provides a comprehensive resource for other epigenomic regulation studies in non-model species under stress. PMID:26167691

  9. Structural diversity of four coordination polymers based on 5-nitro-1,2,3-benzenetricarboxylic acid (H3nbta): Solvothermal syntheses, structural characterizations and properties

    NASA Astrophysics Data System (ADS)

    Shi, Chenjie; Wang, Zikai; Chen, Yifan; Zhang, Xiaoyu; Zhao, Yue; Tao, Yuehong; Wu, Hua

    2017-09-01

    Four 3D coordination compounds, named [Cd3(nbta)2(bix)2(H2O)2]·H2O (1), Zn3(nbta)2(biim)3 (2), Zn6(nbta)4(btd)5 (3) and [Co3(nbta)2(bid)(H2O)8]·4H2O (4) (bix=1,4-bis(imidazole-1-ylmethyl)benzene, biim=1,1‧-(1,4-butanediyl)bis(imidazole), btd=1,10-bis(1,2,4-triazol-1-yl)decane, bid=1,10-bis(imidazole-1-yl)decane), and H3nbta=5-nitro-1,2,3-benzenetricarboxylic acid), have been synthesized by solvothermal methods and structurally characterized by X-ray diffraction studies. In compound 1, every nbta3- anion connects four CdII ions to give a 2D layer, and the layers are pillared by bix ligands to generate a 3D framework with a Schläfli symbol of (3·4·63·7)(4·64·8)(43·63)(34·42·66·76·88·92). For compound 2, every nbta3- anion connects three ZnII ions to give a 2D layer structure, the 2D layers are further connected into a facinating 3D framework by biim ligands with (3,4)-connected (3·6·7)(3·5·62·7·8)(3·52·6·8·9)(5·6·8·10·112) topology. In compound 3, the nbta3- anions are connected by ZnII ions to generate a 2D layer, and the layers are bridged by btd ligands to build a fascinating 3D framework with (4·6·7·8·92)(4·6·8·92·10)(4·93·102)(4·6·8·9·102)(4·6·7·8·9·10)(4·6·7·8·102)(42·6·7·8·9) topology. In compound 4, the nbta3- aions are connected by CoII ions into a 2D layer, the 2D layers are linked by bid ligands to generate a 3D 103 topological framework. Furthermore, the IR spectra, TGA, PXRD, elemental analyses, the solid-state luminescence of compounds 1-3 have been studied.

  10. Herpes simplex virus type 1 gene UL14: phenotype of a null mutant and identification of the encoded protein.

    PubMed

    Cunningham, C; Davison, A J; MacLean, A R; Taus, N S; Baines, J D

    2000-01-01

    Herpes simplex virus type 1 (HSV-1) gene UL14 is located between divergently transcribed genes UL13 and UL15 and overlaps the promoters for both of these genes. UL14 also exhibits a substantial overlap of its coding region with that of UL13. It is one of the few HSV-1 genes for which a phenotype and protein product have not been described. Using mass spectrometric and immunological approaches, we demonstrated that the UL14 protein is a minor component of the virion tegument of 32 kDa which is expressed late in infection. In infected cells, the UL14 protein was detected in the nucleus at discrete sites within electron-dense nuclear bodies and in the cytoplasm initially in a diffuse distribution and then at discrete sites. Some of the UL14 protein was phosphorylated. A mutant with a 4-bp deletion in the central region of UL14 failed to produce the UL14 protein and generated small plaques. The mutant exhibited an extended growth cycle at low multiplicity of infection and appeared to be compromised in efficient transit of virus particles from the infected cell. In mice injected intracranially, the 50% lethal dose of the mutant was reduced more than 30,000-fold. Recovery of the mutant from the latently infected sacral ganglia of mice injected peripherally was significantly less than that of wild-type virus, suggesting a marked defect in the establishment of, or reactivation from, latent infection.

  11. Generation of CMAHKO/GTKO/shTNFRI-Fc/HO-1 quadruple gene modified pigs.

    PubMed

    Kim, Geon A; Lee, Eun Mi; Jin, Jun-Xue; Lee, Sanghoon; Taweechaipaisankul, Anukul; Hwang, Jong Ik; Alam, Zahid; Ahn, Curie; Lee, Byeong Chun

    2017-08-01

    As an alternative source of organs for transplantation into humans, attention has been directed to pigs due to their similarities in biological features and organ size. However, severe immune rejection has prevented successful xenotransplantation using pig organs and tissues. To overcome immune rejection, recently developed genetic engineering systems such as TALEN coupled with somatic cell nuclear transfer (SCNT) to make embryos could be used to produce pigs compatible with xenotransplantation. We used the TALEN system to target the non-Gal antigen cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) gene in pigs that is naturally deleted in humans. Gal-deleted cells expressing both soluble human tumor necrosis factor receptor I IgG 1 -Fc (shTNFRI-Fc) and human hemagglutinin -tagged-human heme oxygenase-1 (hHO-1) were transfected with a TALEN target for CMAH. Cells lacking CMAH were negatively selected using N-glyconeuraminic acid (Neu5Gc)/magnetic beads and the level of Neu5Gc expression of isolated cells were analyzed by FACS and DNA sequencing. Cloned embryos using 3 different genetically modified cell clones were respectively transferred into 3 recipients, with 55.6% (5/9) becoming pregnant and three cloned pigs were produced. Successful genetic disruption of the CMAH gene was confirmed by sequencing, showing lack of expression of CMAH in tail-derived fibroblasts of the cloned piglets. Besides decreased expression of Neu5Gc in piglets produced by SCNT, antibody-mediated complement-dependent cytotoxicity assays and natural antibody binding for examining immuno-reactivity of the quadruple gene modified pigs derived from endothelial cells and fibroblasts were reduced significantly compared to those of wild type animals. We conclude that by combining the TALEN system and transgenic cells, targeting of multiple genes could be useful for generating organs for xenotransplantation. We produced miniature pigs with quadruple modified genes CMAHKO/GTKO/shTNFRI-Fc/h

  12. Novel Fe3+-Based 1H MRI β-Galactosidase Reporter Molecules**

    PubMed Central

    Yu, Jian-Xin; Gulaka, Praveen K.; Liu, Li; Kodibagkar, Vikram D.; Mason, Ralph P.

    2012-01-01

    There is increasing interest in the development of reporter agents to reveal enzyme activity in vivo using small animal imaging. We have previously demonstrated the feasibility of detecting lacZ gene activity using the commercially available 3,4-cyclohexenoesculetin-β-D-galactopyranoside (S-Gal™) as a 1H MRI reporter. Specifically, β-galactosidase (β-gal) releases the aglycone, which forms an MR contrast-inducing paramagnetic precipitate in the presence of Fe3+. Contrast was primarily T2-weighted signal loss, but T1 effects were also observed. Since T1-contrast generally provides signal enhancement as opposed to loss, it appeared attractive to explore whether analogues could be generated with enhanced characteristics. We now report the design and successful synthesis of novel analogues together with characterization of 1H MRI contrast based on both T1 and T2 response to β-gal activity in vitro for the lead agent. PMID:23807909

  13. Effect of cerulenin on fatty acid composition and gene expression pattern of DHA-producing strain Colwellia psychrerythraea strain 34H.

    PubMed

    Wan, Xia; Peng, Yun-Feng; Zhou, Xue-Rong; Gong, Yang-Min; Huang, Feng-Hong; Moncalián, Gabriel

    2016-02-06

    Colwellia psychrerythraea 34H is a psychrophilic bacterium able to produce docosahexaenoic acid (DHA). Polyketide synthase pathway is assumed to be responsible for DHA production in marine bacteria. Five pfa genes from strain 34H were confirmed to be responsible for DHA formation by heterogeneous expression in Escherichia coli. The complexity of fatty acid profile of this strain was revealed by GC and GC-MS. Treatment of cells with cerulenin resulted in significantly reduced level of C16 monounsaturated fatty acid (C16:1(Δ9t), C16:1(Δ7)). In contrast, the amount of saturated fatty acids (C10:0, C12:0, C14:0), hydroxyl fatty acids (3-OH C10:0 and 3-OH C12:0), as well as C20:4ω3, C20:5ω3 and C22:6ω3 were increased. RNA sequencing (RNA-Seq) revealed the altered gene expression pattern when C. psychrerythraea cells were treated with cerulenin. Genes involved in polyketide synthase pathway and fatty acid biosynthesis pathway were not obviously affected by cerulenin treatment. In contrast, several genes involved in fatty acid degradation or β-oxidation pathway were dramatically reduced at the transcriptional level. Genes responsible for DHA formation in C. psychrerythraea was first cloned and characterized. We revealed the complexity of fatty acid profile in this DHA-producing strain. Cerulenin could substantially change the fatty acid composition by affecting the fatty acid degradation at transcriptional level. Acyl-CoA dehydrogenase gene family involved in the first step of β-oxidation pathway may be important to the selectivity of degraded fatty acids. In addition, inhibition of FabB protein by cerulenin may lead to the accumulation of malonyl-CoA, which is the substrate for DHA formation.

  14. Genome-Wide Association Identifies SLC2A9 and NLN Gene Regions as Associated with Entropion in Domestic Sheep

    PubMed Central

    Mousel, Michelle R.; Reynolds, James O.; White, Stephen N.

    2015-01-01

    Entropion is an inward rolling of the eyelid allowing contact between the eyelashes and cornea that may lead to blindness if not corrected. Although many mammalian species, including humans and dogs, are afflicted by congenital entropion, no specific genes or gene regions related to development of entropion have been reported in any mammalian species to date. Entropion in domestic sheep is known to have a genetic component therefore, we used domestic sheep as a model system to identify genomic regions containing genes associated with entropion. A genome-wide association was conducted with congenital entropion in 998 Columbia, Polypay, and Rambouillet sheep genotyped with 50,000 SNP markers. Prevalence of entropion was 6.01%, with all breeds represented. Logistic regression was performed in PLINK with additive allelic, recessive, dominant, and genotypic inheritance models. Two genome-wide significant (empirical P<0.05) SNP were identified, specifically markers in SLC2A9 (empirical P = 0.007; genotypic model) and near NLN (empirical P = 0.026; dominance model). Six additional genome-wide suggestive SNP (nominal P<1x10-5) were identified including markers in or near PIK3CB (P = 2.22x10-6; additive model), KCNB1 (P = 2.93x10-6; dominance model), ZC3H12C (P = 3.25x10-6; genotypic model), JPH1 (P = 4.68x20-6; genotypic model), and MYO3B (P = 5.74x10-6; recessive model). This is the first report of specific gene regions associated with congenital entropion in any mammalian species, to our knowledge. Further, none of these genes have previously been associated with any eyelid traits. These results represent the first genome-wide analysis of gene regions associated with entropion and provide target regions for the development of sheep genetic markers for marker-assisted selection. PMID:26098909

  15. Genome-Wide Association Identifies SLC2A9 and NLN Gene Regions as Associated with Entropion in Domestic Sheep.

    PubMed

    Mousel, Michelle R; Reynolds, James O; White, Stephen N

    2015-01-01

    Entropion is an inward rolling of the eyelid allowing contact between the eyelashes and cornea that may lead to blindness if not corrected. Although many mammalian species, including humans and dogs, are afflicted by congenital entropion, no specific genes or gene regions related to development of entropion have been reported in any mammalian species to date. Entropion in domestic sheep is known to have a genetic component therefore, we used domestic sheep as a model system to identify genomic regions containing genes associated with entropion. A genome-wide association was conducted with congenital entropion in 998 Columbia, Polypay, and Rambouillet sheep genotyped with 50,000 SNP markers. Prevalence of entropion was 6.01%, with all breeds represented. Logistic regression was performed in PLINK with additive allelic, recessive, dominant, and genotypic inheritance models. Two genome-wide significant (empirical P<0.05) SNP were identified, specifically markers in SLC2A9 (empirical P = 0.007; genotypic model) and near NLN (empirical P = 0.026; dominance model). Six additional genome-wide suggestive SNP (nominal P<1x10(-5)) were identified including markers in or near PIK3CB (P = 2.22x10(-6); additive model), KCNB1 (P = 2.93x10(-6); dominance model), ZC3H12C (P = 3.25x10(-6); genotypic model), JPH1 (P = 4.68x20(-6); genotypic model), and MYO3B (P = 5.74x10(-6); recessive model). This is the first report of specific gene regions associated with congenital entropion in any mammalian species, to our knowledge. Further, none of these genes have previously been associated with any eyelid traits. These results represent the first genome-wide analysis of gene regions associated with entropion and provide target regions for the development of sheep genetic markers for marker-assisted selection.

  16. Seasonal H3N2 and 2009 Pandemic H1N1 Influenza A Viruses Reassort Efficiently but Produce Attenuated Progeny

    PubMed Central

    Phipps, Kara L.; Marshall, Nicolle; Tao, Hui; Danzy, Shamika; Onuoha, Nina; Steel, John

    2017-01-01

    carries out multiple functions in coordination with other viral components and the machinery of the cell. When two IAVs coinfect a cell, they can exchange genes through reassortment. The resultant progeny viruses often suffer fitness defects due to suboptimal interactions among divergent viral components. The genetic diversity generated through reassortment can facilitate the emergence of novel outbreak strains. Thus, it is important to understand the efficiency of reassortment and the factors that limit its potential. The research described here offers new tools for studying reassortment between two strains of interest and applies those tools to viruses of the 2009 pandemic H1N1 and seasonal H3N2 lineages, which currently cocirculate in humans and therefore have the potential to give rise to novel epidemic strains. PMID:28637755

  17. Glucose turnover in kelp bass (Paralabrax sp. ): in vivo studies with (6-/sup 3/H,6-/sup 14/C)glucose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bever, K.; Chenoweth, M.; Dunn, A.

    1977-01-01

    (6-/sup 3/H,6-/sup 14/C)glucose was injected via an indwelling arterial cannula in free-swimming, fed, and fasted kelp bass to determine hepatic glucose production, peripheral glucose uptake, minimal glucose mass, mean transit time, and the percent of carbon recycling under the two different nutritional states. Mean plasma glucose levels remained unchanged in fed and fasted fish (48 +- 8 vs. 43 +- 8 mg/100 ml). During steady-state conditions, glucose replacement rates of fed and fasted fish determined with (6-/sup 3/H)glucose are similar (0.035 +- 0.006 vs. 0.025 +- 0.003 mg/min per 100 g) and do not differ from rates determined with (6-/supmore » 14/C)glucose (0.035 +- 0.005 vs. 0.026 +- 0.002). The minimal glucose masses and the mean transit times determined with both isotopes are also similar suggesting that plasma glucose levels and glucose turnover are maintained in fish fasted up to 40 days with no apparent increase in carbon recycling. Nonsteady-state isotope experiments suggest that these fish can alter rates of hepatic glucose production and peripheral uptake in response to hyper- and hypoglycemia.« less

  18. [Expression of isocitrate dehydrogenase 1 gene R132H and its diagnostic application in glioma].

    PubMed

    PIAO, Yue-shan; LU, De-hong; ZHANG, Xiao-juan; TANG, Guo-cai; YANG, Hong

    2011-03-01

    To investigate the immunohistochemical expression of isocitrate dehydrogenase 1 gene (IDH1) R132H in glioma and its diagnostic utility. Immunohistochemical study of IDH1R132H expression was performed on formalin-fixed paraffin-embedded tissue samples of 75 gliomas, including 33 cases of grade II, 20 cases of grade III and 22 cases of grade IV tumors. Six cases of pilocytic astrocytoma and 12 cases of gliosis were used as controls. Nineteen in 33 cases of grade II (57.6%), 8 in 20 cases of grade III (40.0%), 6 in 22 cases of grade IV (27.3%) showed positive cytoplasmic staining of IDH1R132H. Scattered invasive glioma cells at the tumor periphery also expressed IDH1R132H. Gliomas involving the frontal lobe showed more strong IDH1R132H staining. In contrast, none of the pilocytic astrocytomas and gliosis showed IDH1R132H staining. Moreover, the rate of p53 immunopositivities were 42.4% (14/33) in grade II, 65.0% (13/20) in grade III and 77.3% (17/22) in grade IV gliomas. There were no statistic correlations between expression of IDH1R132H and p53. IDH1R132H tends to express preferentially in low-grade gliomas, and it thus may serve as a valuable marker in distinguishing low grade gliomas from gliosis.

  19. Arsenite Stress Down-regulates Phosphorylation and 14-3-3 Binding of Leucine-rich Repeat Kinase 2 (LRRK2), Promoting Self-association and Cellular Redistribution*

    PubMed Central

    Mamais, Adamantios; Chia, Ruth; Beilina, Alexandra; Hauser, David N.; Hall, Christine; Lewis, Patrick A.; Cookson, Mark R.; Bandopadhyay, Rina

    2014-01-01

    Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are a common genetic cause of Parkinson disease, but the mechanisms whereby LRRK2 is regulated are unknown. Phosphorylation of LRRK2 at Ser910/Ser935 mediates interaction with 14-3-3. Pharmacological inhibition of its kinase activity abolishes Ser910/Ser935 phosphorylation and 14-3-3 binding, and this effect is also mimicked by pathogenic mutations. However, physiological situations where dephosphorylation occurs have not been defined. Here, we show that arsenite or H2O2-induced stresses promote loss of Ser910/Ser935 phosphorylation, which is reversed by phosphatase inhibition. Arsenite-induced dephosphorylation is accompanied by loss of 14-3-3 binding and is observed in wild type, G2019S, and kinase-dead D2017A LRRK2. Arsenite stress stimulates LRRK2 self-association and association with protein phosphatase 1α, decreases kinase activity and GTP binding in vitro, and induces translocation of LRRK2 to centrosomes. Our data indicate that signaling events induced by arsenite and oxidative stress may regulate LRRK2 function. PMID:24942733

  20. Generation and dietary modulation of anti-inflammatory electrophilic omega-3 fatty acid derivatives.

    PubMed

    Cipollina, Chiara; Salvatore, Sonia R; Muldoon, Matthew F; Freeman, Bruce A; Schopfer, Francisco J

    2014-01-01

    Dietary ω-3 polyunsaturated fatty acids (PUFAs) decrease cardiovascular risk via suppression of inflammation. The generation of electrophilic α,β-unsaturated ketone derivatives of the ω-3 PUFAs docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) in activated human macrophages is catalyzed by cyclooxygenase-2 (Cox-2). These derivatives are potent pleiotropic anti-inflammatory signaling mediators that act via mechanisms including the activation of Nrf2-dependent phase 2 gene expression and suppression of pro-inflammatory NF-κB-driven gene expression. Herein, the endogenous generation of ω-3 PUFAs electrophilic ketone derivatives and their hydroxy precursors was evaluated in human neutrophils. In addition, their dietary modulation was assessed through a randomized clinical trial. Endogenous generation of electrophilic omega-3 PUFAs and their hydroxy precursors was evaluated by mass spectrometry in neutrophils isolated from healthy subjects, both at baseline and upon stimulation with calcium ionophore. For the clinical trial, participants were healthy adults 30-55 years of age with a reported EPA+DHA consumption of ≤300 mg/day randomly assigned to parallel groups receiving daily oil capsule supplements for a period of 4 months containing either 1.4 g of EPA+DHA (active condition, n = 24) or identical appearing soybean oil (control condition, n = 21). Participants and laboratory technicians remained blinded to treatment assignments. 5-lypoxygenase-dependent endogenous generation of 7-oxo-DHA, 7-oxo-DPA and 5-oxo-EPA and their hydroxy precursors is reported in human neutrophils stimulated with calcium ionophore and phorbol 12-myristate 13-acetate (PMA). Dietary EPA+DHA supplementation significantly increased the formation of 7-oxo-DHA and 5-oxo-EPA, with no significant modulation of arachidonic acid (AA) metabolite levels. The endogenous detection of these electrophilic ω-3 fatty acid ketone derivatives supports the precept that the benefit of

  1. Comparison of 2010-2011 H3N2 influenza A viruses isolated from swine and the A(H3N2)v isolated from humans in 2011

    USDA-ARS?s Scientific Manuscript database

    In the end of 2011, 12 U.S. cases of humans infected with swine H3N2 virus containing the matrix gene from pandemic H1N1 2009 virus (H1N1pdm09) were detected and named A(H3N2)v. This study used a swine model to compare the pathogenic, transmission, genetic, and antigenic properties of a human A(H3N2...

  2. Dielectric properties and electrical conductivity of the hybrid organic-inorganic polyvanadates (H{sub 3}N(CH{sub 2}){sub 4}NH{sub 3})[V{sub 6}O{sub 14}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nefzi, H.; Sediri, F., E-mail: faouzi.sediri@ipeit.rnu.tn; Faculte des Sciences de Tunis, Universite Tunis El Manar, 2092 El Manar, BP 94 CEDEX 1068, Cite Rommana Tunis

    2012-06-15

    Plate-like crystals of the polyvanadate (H{sub 3}N(CH{sub 2}){sub 4}NH{sub 3})[V{sub 6}O{sub 14}] have been synthesized via an hydrothermal treatment. X-ray powder diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, electron spin resonance and complex impedance spectroscopy were used to analyze the hybrid material. The frequency dependence of AC conductivity at different temperatures indicates that the CBH model is the probable mechanism for the AC conduction behavior. The conductivity was measured by complex impedance spectroscopy which is equal to 31.10{sup -3} {Omega}{sup -1} m{sup -1} at 443 K. The Arrhenius diagram is not linear, it presents a rupture situated at 357more » K and the activation energies' average values are 0.22 eV and 0.14 eV, deduced from the Arrhenius relation. - Graphical abstract: At high temperature {epsilon} Double-Prime increases more rapidly which is due to the increasing conduction loss which rises with the increment in the DC conductivity. Highlights: Black-Right-Pointing-Pointer Rectangular plate-like crystals (H{sub 3}N(CH{sub 2}){sub 4}NH{sub 3})[V{sub 6}O{sub 14}] were synthesized. Black-Right-Pointing-Pointer frequency and temperature dependence of AC conductivity indicate CBH model. Black-Right-Pointing-Pointer The temperature dependence of DC conductivity exhibits two conduction mechanisms.« less

  3. Vitamin C induces specific demethylation of H3K9me2 in mouse embryonic stem cells via Kdm3a/b.

    PubMed

    Ebata, Kevin T; Mesh, Kathryn; Liu, Shichong; Bilenky, Misha; Fekete, Alexander; Acker, Michael G; Hirst, Martin; Garcia, Benjamin A; Ramalho-Santos, Miguel

    2017-01-01

    Histone methylation patterns regulate gene expression and are highly dynamic during development. The erasure of histone methylation is carried out by histone demethylase enzymes. We had previously shown that vitamin C enhances the activity of Tet enzymes in embryonic stem (ES) cells, leading to DNA demethylation and activation of germline genes. We report here that vitamin C induces a remarkably specific demethylation of histone H3 lysine 9 dimethylation (H3K9me2) in naïve ES cells. Vitamin C treatment reduces global levels of H3K9me2, but not other histone methylation marks analyzed, as measured by western blot, immunofluorescence and mass spectrometry. Vitamin C leads to widespread loss of H3K9me2 at large chromosomal domains as well as gene promoters and repeat elements. Vitamin C-induced loss of H3K9me2 occurs rapidly within 24 h and is reversible. Importantly, we found that the histone demethylases Kdm3a and Kdm3b are required for vitamin C-induced demethylation of H3K9me2. Moreover, we show that vitamin C-induced Kdm3a/b-mediated H3K9me2 demethylation and Tet-mediated DNA demethylation are independent processes at specific loci. Lastly, we document Kdm3a/b are partially required for the upregulation of germline genes by vitamin C. These results reveal a specific role for vitamin C in histone demethylation in ES cells and document that DNA methylation and H3K9me2 cooperate to silence germline genes in pluripotent cells.

  4. A Multiplexed Amplicon Approach for Detecting Gene Fusions by Next-Generation Sequencing.

    PubMed

    Beadling, Carol; Wald, Abigail I; Warrick, Andrea; Neff, Tanaya L; Zhong, Shan; Nikiforov, Yuri E; Corless, Christopher L; Nikiforova, Marina N

    2016-03-01

    Chromosomal rearrangements that result in oncogenic gene fusions are clinically important drivers of many cancer types. Rapid and sensitive methods are therefore needed to detect a broad range of gene fusions in clinical specimens that are often of limited quantity and quality. We describe a next-generation sequencing approach that uses a multiplex PCR-based amplicon panel to interrogate fusion transcripts that involve 19 driver genes and 94 partners implicated in solid tumors. The panel also includes control assays that evaluate the 3'/5' expression ratios of 12 oncogenic kinases, which might be used to infer gene fusion events when the partner is unknown or not included on the panel. There was good concordance between the solid tumor fusion gene panel and other methods, including fluorescence in situ hybridization, real-time PCR, Sanger sequencing, and other next-generation sequencing panels, because 40 specimens known to harbor gene fusions were correctly identified. No specific fusion reads were observed in 59 fusion-negative specimens. The 3'/5' expression ratio was informative for fusions that involved ALK, RET, and NTRK1 but not for BRAF or ROS1 fusions. However, among 37 ALK or RET fusion-negative specimens, four exhibited elevated 3'/5' expression ratios, indicating that fusions predicted solely by 3'/5' read ratios require confirmatory testing. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  5. The 7SK snRNP associates with the little elongation complex to promote snRNA gene expression.

    PubMed

    Egloff, Sylvain; Vitali, Patrice; Tellier, Michael; Raffel, Raoul; Murphy, Shona; Kiss, Tamás

    2017-04-03

    The 7SK small nuclear RNP (snRNP), composed of the 7SK small nuclear RNA (snRNA), MePCE, and Larp7, regulates the mRNA elongation capacity of RNA polymerase II (RNAPII) through controlling the nuclear activity of positive transcription elongation factor b (P-TEFb). Here, we demonstrate that the human 7SK snRNP also functions as a canonical transcription factor that, in collaboration with the little elongation complex (LEC) comprising ELL, Ice1, Ice2, and ZC3H8, promotes transcription of RNAPII-specific spliceosomal snRNA and small nucleolar RNA (snoRNA) genes. The 7SK snRNA specifically associates with a fraction of RNAPII hyperphosphorylated at Ser5 and Ser7, which is a hallmark of RNAPII engaged in snRNA synthesis. Chromatin immunoprecipitation (ChIP) and chromatin isolation by RNA purification (ChIRP) experiments revealed enrichments for all components of the 7SK snRNP on RNAPII-specific sn/snoRNA genes. Depletion of 7SK snRNA or Larp7 disrupts LEC integrity, inhibits RNAPII recruitment to RNAPII-specific sn/snoRNA genes, and reduces nascent snRNA and snoRNA synthesis. Thus, through controlling both mRNA elongation and sn/snoRNA synthesis, the 7SK snRNP is a key regulator of nuclear RNA production by RNAPII. © 2017 The Authors.

  6. Arsenic activates the expression of 3β-HSD in mouse Leydig cells through repression of histone H3K9 methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alamdar, Ambreen; Xi, Guochen

    Arsenic exposure has been associated with male reproductive dysfunction by disrupting steroidogenesis; however, the roles of epigenetic drivers, especially histone methylation in arsenic-induced steroidogenic toxicity remain not well documented. In this study, we investigated the role of histone H3 lysine 9 (H3K9) methylation in steroidogenesis disturbance in mouse Leydig cells (MLTC-1) due to arsenic exposure. Our results indicated that mRNA and protein expression levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) were both significantly up-regulated while the rest of key genes involved in steroidogenesis were down-regulated. Moreover, arsenic exposure significantly decreased the histone H3K9 di- and tri-methylation (H3K9me2/3) levels in MLTC-1 cells. Sincemore » H3K9 demethylation leads to gene activation, we further investigated whether the induction of 3β-HSD expression was ascribed to reduced H3K9 methylation. The results showed that H3K9me2/3 demethylase (JMJD2A) inhibitor, quercetin (Que) significantly attenuated the decrease of H3K9me2/3 and increase of 3β-HSD expression induced by arsenic. To further elucidate the mechanism for the activation of 3β-HSD, we determined the histone H3K9 methylation levels in Hsd3b gene promoter, which also showed significant decrease of H3K9me2/3 in the investigated region after arsenic exposure. Considering these results, we conclude that arsenic exposure induced 3β-HSD up-regulation by suppressing H3K9me2/3 status, which is suggested as a compensatory mechanism for steroidogenic disturbance in MLTC-1 cells. - Highlights: • Epigenetic mechanisms of arsenic-induced male reproductive toxicity remain unclear. • Arsenic disturbs the expression of key steroidogenic genes in MLTC-1 cells. • Histone H3K9 di- and tri-methylation was suppressed in arsenic-exposed cells. • Arsenic activates 3β-HSD expression through repression of histone H3K9 methylation.« less

  7. Beta-1,4-glucanase-like protein from the cyanobacterium Synechocystis PCC6803 is a beta-1,3-1,4-glucanase and functions in salt stress tolerance.

    PubMed

    Tamoi, Masahiro; Kurotaki, Hideki; Fukamizo, Tamo

    2007-07-01

    In the present study, we characterized the gene (Cyanobase accession number slr0897) designated Ssglc encoding a beta-1,4-glucanase-like protein (SsGlc) from Synechocystis PCC6803. The deduced amino acid sequence for Ssglc showed a high degree of similarity to sequences of GH (glycoside hydrolase) family 9 beta-1,4-glucanases (cellulases) from various sources. Surprisingly, the recombinant protein obtained from the Escherichia coli expression system was able to hydrolyse barley beta-glucan and lichenan (beta-1,3-1,4-glucan), but not cellulose (beta-1,4-glucan), curdlan (beta-1,3-glucan), or laminarin (beta-1,3-1,6-glucan). A 1H-NMR analysis of the enzymatic products revealed that the enzyme hydrolyses the beta-1,4-glycosidic linkage of barley beta-glucan through an inverting mechanism. The data indicated that SsGlc was a novel type of GH9 glucanase which could specifically hydrolyse the beta-1,3-1,4-linkage of glucan. The growth of mutant Synechocystis cells in which the Ssglc gene was disrupted by a kanamycin-resistance cartridge gene was almost the same as that of the wild-type cells under continuous light (40 micromol of photons/m2 per s), a 12 h light (40 micromol of photons/m2 per s)/12 h dark cycle, cold stress (4 degrees C), and high light stress (200 micromol of photons/m2 per s). However, under salt stress (300-450 mM NaCl), growth of the Ssglc-disrupted mutant cells was significantly inhibited as compared with that of the wild-type cells. The Ssglc-disrupted mutant cells showed a decreased rate of O2 consumption and NaHCO3-dependent O2 evolution as compared with the wild-type cells under salt stress. Under osmotic stress (100-400 mM sorbitol), there was no difference in growth between the wild-type and the Ssglc-disrupted mutant cells. These results suggest that SsGlc functions in salt stress tolerance in Synechocystis PCC6803.

  8. Characterization of a microdissection library from human chromosome region 3p14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardenheuer, W.; Szymanski, S.; Lux, A.

    1994-01-15

    Structural alterations in human chromosome region 3p14-p23 resulting in the inactivation of one or more tumor suppressor genes are thought to play a pathogenic role in small cell lung cancer, renal cell carcinoma, and other human neoplasms. To identify putative tumor suppressor genes, 428 recombinant clones from a microdissection library specific for human chromosome region 3p14 were isolated and characterized. Ninety-six of these (22.5%) were human single-copy DNA sequences, 57 of which were unique sequence clones. Forty-four of these were mapped to the microdissected region using a cell hybrid mapping panel. Within this mapping panel, four probes detected two newmore » chromosome breakpoints that were previously indistinguishable from the translocation breakpoint t(3;8) in 3p14.2 in hereditary renal cell carcinoma. One probe maps to the homozygously deleted region of the small cell lung cancer cell line U2020. In addition, microdissection clones have been shown to be suitable for isolation of yeast artificial chromosomes. 52 refs., 3 figs., 2 tabs.« less

  9. Probing hydrogen bonding in cocrystals and amorphous dispersions using (14)N-(1)H HMQC solid-state NMR.

    PubMed

    Tatton, Andrew S; Pham, Tran N; Vogt, Frederick G; Iuga, Dinu; Edwards, Andrew J; Brown, Steven P

    2013-03-04

    Cocrystals and amorphous solid dispersions have generated interest in the pharmaceutical industry as an alternative to more established solid delivery forms. The identification of intermolecular hydrogen bonding interactions in a nicotinamide palmitic acid cocrystal and a 50% w/w acetaminophen-polyvinylpyrrolidone solid dispersion are reported using advanced solid-state magic-angle spinning (MAS) NMR methods. The application of a novel (14)N-(1)H HMQC experiment, where coherence transfer is achieved via through-space couplings, is shown to identify specific hydrogen bonding motifs. Additionally, (1)H isotropic chemical shifts and (14)N electric field gradient (EFG) parameters, both accessible from (14)N-(1)H HMQC experiments, are shown to be sensitive to changes in hydrogen bonding geometry. Numerous indicators of molecular association are accessible from this experiment, including NH cross-peaks occurring from intermolecular hydrogen bonds and changes in proton chemical shifts or electric field gradient parameters. First-principles calculations using the GIPAW approach that yield accurate estimates of isotropic chemical shifts, and EFG parameters were used to assist in assignment. It is envisaged that (14)N-(1)H HMQC solid state NMR experiments could become a valuable screening technique of solid delivery forms in the pharmaceutical industry.

  10. prtH2, Not prtH, Is the Ubiquitous Cell Wall Proteinase Gene in Lactobacillus helveticus▿

    PubMed Central

    Genay, M.; Sadat, L.; Gagnaire, V.; Lortal, S.

    2009-01-01

    Lactobacillus helveticus strains possess an efficient proteolytic system that releases peptides which are essential for lactobacillus growth in various fermented dairy products and also affect textural properties or biological activities. Cell envelope proteinases (CEPs) are bacterial enzymes that hydrolyze milk proteins. In the case of L. helveticus, two CEPs with low percentages of amino acid identity have been described, i.e., PrtH and PrtH2. However, the distribution of the genes that encode CEPs still remains unclear, rendering it difficult to further control the formation of particular peptides. This study evaluated the diversity of genes that encode CEPs in a collection of strains of L. helveticus isolated from various biotopes, both in terms of the presence or absence of these genes and in terms of nucleotide sequence, and studied their transcription in dairy matrices. After defining three sets of primers for both the prtH and prtH2 genes, we studied the distribution of the genes by using PCR and Southern blotting experiments. The prtH2 gene was ubiquitous in the 29 strains of L. helveticus studied, whereas only 18 of them also exhibited the prtH gene. Sequencing of a 350-bp internal fragment of these genes revealed the existence of intraspecific diversity. Finally, expression of these two CEP-encoding genes was followed during the growth in dairy matrices of two strains, ITG LH77 and CNRZ32, which possess one and two CEP-encoding genes, respectively. Both genes were shown to be expressed by L. helveticus at each stage of growth in milk and at different stages of mini-Swiss-type cheese making and ripening. PMID:19286786

  11. Herba Cistanches stimulates cellular glutathione redox cycling by reactive oxygen species generated from mitochondrial respiration in H9c2 cardiomyocytes.

    PubMed

    Wong, Hoi Shan; Ko, Kam Ming

    2013-01-01

    Earlier findings demonstrated that pretreatment of Herba Cistanches [the dried whole plant of Cistanche deserticola Y.C. Ma (Orobanchaceae)], a "Yang-invigorating" Chinese tonic herb, stimulated the ATP-generation capacity (ATP-GC) in mitochondria isolated from rat heart ex vivo. The enhancement of mitochondrial ATP-GC by Herba Cistanches was associated with induction of glutathione antioxidant status and protection against ischemia/reperfusion (I/R) injury in rat hearts. This study investigated the relationship between enhancements in mitochondrial ATP-GC and glutathione antioxidant status in H9c2 cardiomyocytes using a semipurified fraction of Herba Cistanches (HCF1). HCF1 (10-300 ng/mL) was tested for its effects on mitochondrial ATP generation, glutathione antioxidant status and protection against oxidant injury in H9c2 cardiomyocytes and rat hearts. HCF1 at 30 ng/mL increased mitochondrial ATP-GC and ADP-stimulated state 3 respiration (by 50 and 100%, respectively) in H9c2 cardiomyocytes. The stimulation of mitochondrial respiration was associated with the induction of mitochondrial uncoupling (27%) and enhancement of cellular glutathione redox cycling as well as protection against hypoxia/reoxygenation (hypox/reoxy)-induced apoptosis (by 60%). While HCF1 treatment increased reactive oxygen species generation from mitochondrial respiration in H9c2 cardiomyocytes, pretreatment with antioxidants (DMTU) abrogated the HCF1-induced cellular responses and the associated cytoprotective effect. HCF1 pretreatment (1.14 and 3.41 mg/kg × 14) also protected against myocardial I/R injury in rats (by 13 and 32%), presumably mediated by the induction of glutathione antioxidant response. The long-term intake of HCF1 may offer a prospect for the prevention of ischemic heart disease.

  12. Epigenetic regulation of facultative heterochromatinisation in Planococcus citri via the Me(3)K9H3-HP1-Me(3)K20H4 pathway.

    PubMed

    Bongiorni, Silvia; Pasqualini, Barbara; Taranta, Monia; Singh, Prim B; Prantera, Giorgio

    2007-03-15

    Using RNA interference (RNAi) we have conducted a functional analysis of the HP1-like chromobox gene pchet2 during embryogenesis of the mealybug Planococcus citri. Knocking down pchet2 expression results in decondensation of the male-specific chromocenter that normally arises from the developmentally-regulated facultative heterochromatinisation of the paternal chromosome complement. Together with the disappearance of the chromocenter the staining levels of two associated histone modifications, tri-methylated lysine 9 of histone H3 [Me(3)K9H3] and tri-methylated lysine 20 of histone H4 [Me(3)K20H4], are reduced to undetectable levels. Embryos treated with double-stranded RNA (dsRNA) targeting pchet2 also exhibit chromosome abnormalities, such as aberrant chromosome condensation, and also the presence of metaphases that contain 'lagging' chromosomes. We conclude that PCHET2 regulates chromosome behavior during metaphase and is a crucial component of a Me(3)K9H3-HP1-Me(3)K20H4 pathway involved in the facultative heterochromatinisation of the (imprinted) paternal chromosome set.

  13. Novel groups and unique distribution of phage phoH genes in paddy waters in northeast China

    PubMed Central

    Wang, Xinzhen; Liu, Junjie; Yu, Zhenhua; Jin, Jian; Liu, Xiaobing; Wang, Guanghua

    2016-01-01

    Although bacteriophages are ubiquitous in various environments, their genetic diversity is primarily investigated in pelagic marine environments. Corresponding studies in terrestrial environments are few. In this study, we conducted the first survey of phage diversity in the paddy ecosystem by targeting a new viral biomarker gene, phoH. A total of 424 phoH sequences were obtained from four paddy waters generated from a pot experiment with different soils collected from open paddy fields in northeast China. The majority of phoH sequences in paddy waters were novel, with the highest identity of ≤70% with known phoH sequences. Four unique groups (Group α, Group β, Group γ and Group δ) and seven new subgroups (Group 2b, Group 3d, Group 3e, Group 6a, Group 6b, Group 6c and Group 6d) were formed exclusively with the clones from the paddy waters, suggesting novel phage phoH groups exist in the paddy ecosystem. Additionally, the distribution proportions of phoH clones in different groups varied among paddy water samples, suggesting the phage community in paddy fields is biogeographically distributed. Furthermore, non-metric multidimensional scaling analysis indicated that phage phoH assemblages in paddy waters were distinct from those in marine waters. PMID:27910929

  14. Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair.

    PubMed

    Qin, Song; Parthun, Mark R

    2002-12-01

    The modification of newly synthesized histones H3 and H4 by type B histone acetyltransferases has been proposed to play a role in the process of chromatin assembly. The type B histone acetyltransferase Hat1p and specific lysine residues in the histone H3 NH(2)-terminal tail (primarily lysine 14) are redundantly required for telomeric silencing. As many gene products, including other factors involved in chromatin assembly, have been found to participate in both telomeric silencing and DNA damage repair, we tested whether mutations in HAT1 and the histone H3 tail were also sensitive to DNA-damaging agents. Indeed, mutations both in specific lysine residues in the histone H3 tail and in HAT1 resulted in sensitivity to methyl methanesulfonate. The DNA damage sensitivity of the histone H3 and HAT1 mutants was specific for DNA double-strand breaks, as these mutants were sensitive to the induction of an exogenous restriction endonuclease, EcoRI, but not to UV irradiation. While histone H3 mutations had minor effects on nonhomologous end joining, the primary defect in the histone H3 and HAT1 mutants was in the recombinational repair of DNA double-strand breaks. Epistasis analysis indicates that the histone H3 and HAT1 mutants may influence DNA double-strand break repair through Asf1p-dependent chromatin assembly.

  15. Hormone-induced 14-3-3γ Adaptor Protein Regulates Steroidogenic Acute Regulatory Protein Activity and Steroid Biosynthesis in MA-10 Leydig Cells*

    PubMed Central

    Aghazadeh, Yasaman; Rone, Malena B.; Blonder, Josip; Ye, Xiaoying; Veenstra, Timothy D.; Hales, D. Buck; Culty, Martine; Papadopoulos, Vassilios

    2012-01-01

    Cholesterol is the sole precursor of steroid hormones in the body. The import of cholesterol to the inner mitochondrial membrane, the rate-limiting step in steroid biosynthesis, relies on the formation of a protein complex that assembles at the outer mitochondrial membrane called the transduceosome. The transduceosome contains several mitochondrial and cytosolic components, including the steroidogenic acute regulatory protein (STAR). Human chorionic gonadotropin (hCG) induces de novo synthesis of STAR, a process shown to parallel maximal steroid production. In the hCG-dependent steroidogenic MA-10 mouse Leydig cell line, the 14-3-3γ protein was identified in native mitochondrial complexes by mass spectrometry and immunoblotting, and its levels increased in response to hCG treatment. The 14-3-3 proteins bind and regulate the activity of many proteins, acting via target protein activation, modification and localization. In MA-10 cells, cAMP induces 14-3-3γ expression parallel to STAR expression. Silencing of 14-3-3γ expression potentiates hormone-induced steroidogenesis. Binding motifs of 14-3-3γ were identified in components of the transduceosome, including STAR. Immunoprecipitation studies demonstrate a hormone-dependent interaction between 14-3-3γ and STAR that coincides with reduced 14-3-3γ homodimerization. The binding site of 14-3-3γ on STAR was identified to be Ser-194 in the STAR-related sterol binding lipid transfer (START) domain, the site phosphorylated in response to hCG. Taken together, these results demonstrate that 14-3-3γ negatively regulates steroidogenesis by binding to Ser-194 of STAR, thus keeping STAR in an unfolded state, unable to induce maximal steroidogenesis. Over time 14-3-3γ homodimerizes and dissociates from STAR, allowing this protein to induce maximal mitochondrial steroid formation. PMID:22427666

  16. Structural organization and mutational analysis of the human uncoupling protein-2 (hUCP2) gene.

    PubMed

    Tu, N; Chen, H; Winnikes, U; Reinert, I; Marmann, G; Pirke, K M; Lentes, K U

    1999-01-01

    Uncoupling proteins (UCPs) are mitochondrial membrane transporters which are involved in dissipating the proton electrochemical gradient thereby releasing stored energy as heat. This implies a major role of UCPs in energy metabolism and thermogenesis which when deregulated are key risk factors for the development of obesity and other eating disorders. From the three different human UCPs identified so far by gene cloning both UCP2 and UCP3 were mapped in close proximity (75-150 kb) to regions of human chromosome 11 (11q13) that have been linked to obesity and hyperinsulinaemia. At the amino acid level hUCP2 has about 55% identity to hUCP1 while hUCP3 is 71% identical to hUCP2. In this study we have deduced the genomic structure of the human UCP2 gene by PCR and direct sequence analysis. The hUCP2 gene spans over 8.7 kb distributed on 8 exons. The localization of the exon/intron boundaries within the coding region matches precisely that of the hUCP1 gene and is almost conserved in the recently discovered hUCP3 gene as well. The high degree of homology at the nucleotide level and the conservation of the exon /intron boundaries among the three UCP genes suggests that they may have evolved from a common ancestor or are the result from gene duplication events. Mutational analysis of the hUCP2 gene in a cohort of 172 children (aged 7 - 13) of Caucasian origin revealed a polymorphism in exon 4 (C to T transition at position 164 of the cDNA resulting in the substitution of an alanine by a valine at codon 55) and an insertion polymorphism in exon 8. The insertion polymorphism consists of a 45 bp repeat located 150 bp downstream of the stop codon in the 3'-UTR. The allele frequencies were 0.63 and 0.37 for the alanine and valine encoded alleles, respectively, and 0.71 versus 0.29 for the insertion polymorphism. The allele frequencies of both polymorphisms were not significantly elevated in a subgroup of 25 children characterized by low Resting Metabolic Rates (RMR). So far a

  17. A homozygous Keap1-knockout human embryonic stem cell line generated using CRISPR/Cas9 mediates gene targeting.

    PubMed

    Kim, So-Jung; Habib, Omer; Kim, Jin-Soo; Han, Hyo-Won; Koo, Soo Kyung; Kim, Jung-Hyun

    2017-03-01

    Kelch-like ECH-associated protein 1 (keap1) is a cysteine-rich protein that interacts with transcription factor Nrf2 in a redox-sensitive manner, leading to the degradation of Nrf2 (Kim et al., 2014a). Disruption of Keap1 results in the induction of Nrf2-related signaling pathways involving the expression of a set of anti-oxidant and anti-inflammatory genes. We generated biallelic mutants of the Keap1 gene using a CRISPR-Cas9 genome editing method in the H9 human embryonic stem cell (hESC). The Keap1 homozygous-knockout H9 cell line retained normal morphology, gene expression, and in vivo differentiation potential. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  18. Indirect measurement of N-14 quadrupolar coupling for NH3 intercalated in potassium graphite

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Fronko, R. M.; Resing, H. A.

    1987-01-01

    A method for indirect measurement of the nuclear quadrupolar coupling was developed and applied to NH3 molecules in the graphite intercalation compound K(NH3)4.3C24, which has a layered structure with alternating carbon and intercalant layers. Three triplets were observed in the H-1 NMR spectra of the compound. The value of the N-14 quadrupolar coupling constant of NH3 (3.7 MHz), determined indirectly from the H-1 NMR spectra, was intermediate between the gas value of 4.1 MHz and the solid-state value of 3.2 MHz. The method was also used to deduce the (H-1)-(H-1) and (N-14)-(H-1) dipolar interactions, the H-1 chemical shifts, and the molecular orientations and motions of NH3.

  19. Epigenetic Profiling of H3K4Me3 Reveals Herbal Medicine Jinfukang-Induced Epigenetic Alteration Is Involved in Anti-Lung Cancer Activity.

    PubMed

    Lu, Jun; Zhang, Xiaoli; Shen, Tingting; Ma, Chao; Wu, Jun; Kong, Hualei; Tian, Jing; Shao, Zhifeng; Zhao, Xiaodong; Xu, Ling

    2016-01-01

    Traditional Chinese medicine Jinfukang (JFK) has been clinically used for treating lung cancer. To examine whether epigenetic modifications are involved in its anticancer activity, we performed a global profiling analysis of H3K4Me3, an epigenomic marker associated with active gene expression, in JFK-treated lung cancer cells. We identified 11,670 genes with significantly altered status of H3K4Me3 modification following JFK treatment (P < 0.05). Gene Ontology analysis indicates that these genes are involved in tumor-related pathways, including pathway in cancer, basal cell carcinoma, apoptosis, induction of programmed cell death, regulation of transcription (DNA-templated), intracellular signal transduction, and regulation of peptidase activity. In particular, we found that the levels of H3K4Me3 at the promoters of SUSD2, CCND2, BCL2A1, and TMEM158 are significantly altered in A549, NCI-H1975, NCI-H1650, and NCI-H2228 cells, when treated with JFK. Collectively, these findings provide the first evidence that the anticancer activity of JFK involves modulation of histone modification at many cancer-related gene loci.

  20. Epigenetic Profiling of H3K4Me3 Reveals Herbal Medicine Jinfukang-Induced Epigenetic Alteration Is Involved in Anti-Lung Cancer Activity

    PubMed Central

    Lu, Jun; Zhang, Xiaoli; Shen, Tingting; Ma, Chao; Wu, Jun; Kong, Hualei; Tian, Jing; Shao, Zhifeng; Zhao, Xiaodong; Xu, Ling

    2016-01-01

    Traditional Chinese medicine Jinfukang (JFK) has been clinically used for treating lung cancer. To examine whether epigenetic modifications are involved in its anticancer activity, we performed a global profiling analysis of H3K4Me3, an epigenomic marker associated with active gene expression, in JFK-treated lung cancer cells. We identified 11,670 genes with significantly altered status of H3K4Me3 modification following JFK treatment (P < 0.05). Gene Ontology analysis indicates that these genes are involved in tumor-related pathways, including pathway in cancer, basal cell carcinoma, apoptosis, induction of programmed cell death, regulation of transcription (DNA-templated), intracellular signal transduction, and regulation of peptidase activity. In particular, we found that the levels of H3K4Me3 at the promoters of SUSD2, CCND2, BCL2A1, and TMEM158 are significantly altered in A549, NCI-H1975, NCI-H1650, and NCI-H2228 cells, when treated with JFK. Collectively, these findings provide the first evidence that the anticancer activity of JFK involves modulation of histone modification at many cancer-related gene loci. PMID:27087825

  1. Treatment of industrial effluents by electrochemical generation of H2O2 using an RVC cathode in a parallel plate reactor.

    PubMed

    Bustos, Yaneth A; Rangel-Peraza, Jesús Gabriel; Rojas-Valencia, Ma Neftalí; Bandala, Erick R; Álvarez-Gallegos, Alberto; Vargas-Estrada, Laura

    2016-01-01

    Electrochemical techniques have been used for the discolouration of synthetic textile industrial wastewater by Fenton's process using a parallel plate reactor with a reticulated vitreous carbon (RVC) cathode. It has been shown that RVC is capable of electro-generating and activating H2O2 in the presence of Fe(2+) added as catalyst and using a stainless steel mesh as anode material. A catholyte comprising 0.05 M Na2SO4, 0.001 M FeSO4.7H2O, 0.01 M H2SO4 and fed with oxygen was used to activate H2O2.The anolyte contained only 0.8 M H2SO4. The operating experimental conditions were 170 mA (2.0 V < ΔECell < 3.0 V) to generate 5.3 mM H2O2. Synthetic effluents containing various concentrations (millimolar - mM) of three different dyes, Blue Basic 9 (BB9), Reactive Black 5 (RB5) and Acid Orange 7 (AO7), were evaluated for discolouration using the electro-assisted Fenton reaction. Water discolouration was measured by UV-VIS absorbance reduction. Dye removal by electrolysis was a function of time: 90% discolouration of 0.08, 0.04 and 0.02 mM BB9 was obtained at 14, 10 and 6 min, respectively. In the same way, 90% discolouration of 0.063, 0.031 and 0.016 mM RB5 was achieved at 90, 60 and 30 min, respectively. Finally, 90% discolouration of 0.14, 0.07 and 0.035 mM AO7 was achieved at 70, 40 and 20 min, respectively. The experimental results confirmed the effectiveness of electro-assisted Fenton reaction as a strong oxidizing process in water discolouration and the ability of RVC cathode to electro-generate and activate H2O2 in situ.

  2. Solvent-Dependent Delamination, Restacking, and Ferroelectric Behavior in a New Charge-Separated Layered Compound: [NH4 ][Ag3 (C9 H5 NO4 S)2 (C13 H14 N2 )2 ]⋅8 H2 O.

    PubMed

    Sushrutha, Sringeri Ramesh; Mohana, Shivanna; Pal, Somnath; Natarajan, Srinivasan

    2017-01-03

    A new anionic coordination polymer, [NH 4 ][Ag 3 (C 9 H 5 NO 4 S) 2 (C 13 H 14 N 2 ) 2 ]⋅8 H 2 O, with a two-dimensional structure, has been synthesized by a reaction between silver nitrate, 8-hydroxyquinoline-5-sulfonic acid (HQS), and 4,4'-trimethylene dipyridine (TMDP). The compound stabilizes in a noncentrosymmetric space group, and the lattice water molecules and the charge-compensating [NH 4 ] + group occupy the inter-lamellar spaces. The lattice water molecules can be fully removed and reinserted, which is accompanied by a crystalline-amorphous-crystalline transformation. This transformation resembles the collapse/delamination and restacking of the layers. To the best of our knowledge, this is the first observation of delamination and restacking in an inorganic coordination polymer that contains silver. The presence of a natural dipole (the anionic framework and cationic ammonium ions) along with the noncentrosymmetric space group gives rise to the room-temperature ferroelectric behavior of the compound. The ferroelectric behavior is also water-dependent and exhibits a ferroelectric-paraelectric transformation. The temperature-dependent dielectric measurements indicate that the ferroelectric/ paraelectric transformation occurs at 320 K. This transformation has also been investigated by using in-situ IR spectroscopy and PXRD studies. The second-harmonic generation (SHG) study indicated values that are comparable to some of the known SHG solids, such as potassium dihydrogen phosphate (KDP) and urea. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Phylogenetic Analysis of a Swine Influenza A(H3N2) Virus Isolated in Korea in 2012

    PubMed Central

    Park, Sehee; Lee, Sangmoo; Hwang, Min-Woong; Bae, Joon-Yong; Heo, Jun; Kim, Donghwan; Jang, Seok-Il; Kim, Kabsu; Park, Man-Seong

    2014-01-01

    Influenza A virus (IAV) can infect avian and mammalian species, including humans. The genome nature of IAVs may contribute to viral adaptation in different animal hosts, resulting in gene reassortment and the reproduction of variants with optimal fitness. As seen again in the 2009 swine-origin influenza A H1N1 pandemic, pigs are known to be susceptible to swine, avian, and human IAVs and can serve as a ‘mixing vessel’ for the generation of novel IAV variants. To this end, the emergence of swine influenza viruses must be kept under close surveillance. Herein, we report the isolation and phylogenetic study of a swine IAV, A/swine/Korea/PL01/2012 (swPL01, H3N2 subtype). After screening nasopharyngeal samples from pigs in the Gyeongsangnam-do region of Korea from December 2011 to May 2012, we isolated the swPL01 virus and sequenced its all of 8 genome segments (polymerase basic 2, PB2; polymerase basic 1, PB1; polymerase acidic, PA; hemagglutinin, HA; nucleocapsid protein, NP; neuraminidase, NA; matrix protein, M; and nonstructural protein, NS). The phylogenetic study, analyzed with reference strains registered in the National Center for Biotechnology Information (NCBI) database, indicated that the swPL01 virus was similar to the North American triple-reassortant swine strains and that the HA gene of the swPL01 virus was categorized into swine H3 cluster IV. The swPL01 virus had the M gene of the triple-reassortant swine H3N2 viruses, whereas that of other contemporary strains in Korea was transferred from the 2009 pandemic H1N1 virus. These data suggest the possibility that various swine H3N2 viruses may co-circulate in Korea, which underlines the importance of a sustained surveillance system against swine IAVs. PMID:24523938

  4. Involvement of conformational isomerism in the complexity of the crystal network of 1-(4-nitrophenyl)-1H-1,3-benzimidazole derivatives driven by C-H...A (A = NO2, Npy and π) and orthogonal Npy...NO2 and ONO...Csp2 interactions.

    PubMed

    García-Aranda, Mónica I; Gómez-Castro, Carlos Z; García-Báez, Efrén V; Gómez, Yolanda Gómez Y; Castrejón-Flores, José L; Padilla-Martínez, Itzia I

    2018-04-01

    A detailed structural analysis of the benzimidazole nitroarenes 1-(4-nitrophenyl)-1H-1,3-benzimidazole, C 13 H 9 N 3 O 2 , (I), 1-(4-nitrophenyl)-2-phenyl-1H-1,3-benzimidazole, C 19 H 13 N 3 O 2 , (II), and 2-(3-methylphenyl)-1-(4-nitrophenyl)-1H-1,3-benzimidazole, C 20 H 15 N 3 O 2 , (III), has been performed. They are nonplanar structures whose crystal arrangement is governed by Csp 2 -H...A (A = NO 2 , N py and π) hydrogen bonding. The inherent complexity of the supramolecular arrangements of compounds (I) (Z' = 2) and (II) (Z' = 4) into tapes, helices and sheets is the result of the additional participation of π-π NO2 and n-π* (n = O and N py ; π* = Csp 2 and N NO2 ) interactions that contribute to the stabilization of the equi-energetic conformations adopted by each of the independent molecules in the asymmetric unit. In contrast, compound (III) (Z' = 1) is self-paired, probably due to the effect of the steric demand of the methyl group on the crystal packing. Theoretical ab initio calculations confirmed that the presence of the arene ring at the benzimidazole 2-position increases the rotational barrier of the nitrobenzene ring and also supports the electrostatic nature of the orthogonal ONO...Csp 2 and N py ...NO 2 interactions.

  5. Nocturnal Light Exposure Alters Hepatic Pai-1 Expression by Stimulating the Adrenal Pathway in C3H Mice

    PubMed Central

    Aoshima, Yoshiki; Sakakibara, Hiroyuki; Suzuki, Taka-aki; Yamazaki, Shunsuke; Shimoi, Kayoko

    2014-01-01

    Recent studies have suggested the possibility that nocturnal light exposure affects many biological processes in rodents, especially the circadian rhythm, an endogenous oscillation of approximately 24 h. However, there is still insufficient information about the physiological effects of nocturnal light exposure. In this study, we examined the changes in gene expression and serum levels of plasminogen activator inhibitor-1 (PAI-1), a major component of the fibrinolytic system that shows typical circadian rhythmicity, in C3H/He mice. Zeitgeber time (ZT) was assessed with reference to the onset of light period (ZT0). Exposure to fluorescent light (70 lux) for 1 h in the dark period (ZT14) caused a significant increase in hepatic Pai-1 gene expression at ZT16. Serum PAI-1 levels also tended to increase, albeit not significantly. Expression levels of the typical clock genes Bmal1, Clock, and Per1 were significantly increased at ZT21, ZT16, and ZT18, respectively. Exposure to nocturnal light significantly increased plasma adrenalin levels. The effects of nocturnal light exposure on Pai-1 expression disappeared in adrenalectomized mice, although the changes in clock genes were still apparent. In conclusion, our results suggest that nocturnal light exposure, even for 1 h, alters hepatic Pai-1 gene expression by stimulating the adrenal pathway. Adrenalin secreted from the adrenal gland may be an important signaling mediator of the change in Pai-1 expression in response to nocturnal light exposure. PMID:25077763

  6. [Immobilization technology and mechanism of fly ash using H3PO4].

    PubMed

    Wang, Jun; Jiang, Jian-Guo; Sui, Ji-Chao; Yang, Shi-Jian

    2006-08-01

    Chemical composition and toxicity leaching characteristics of fly ash was analyzed. The experiment results show that many heavy metals were contained; leaching concentration of Pb is 67.03 mg/L, which exceeds the limit of identification standard for hazardous wastes. Effect of input mass of H3PO4 on immobilization of heavy metals and its long-term environmental stability was studied. The results show that when input 8% - 14% (H3PO4 mass/ fly ash mass) of H3PO4 sound immobilization effect can be achieved; 8% and 12% of H3PO4 will bring a satisfactory environmental stability of heavy metals, while more H3PO4 led to less buffer capacity to acid conditions. In fly ash treated by 12% H3PO4, a small quantity of crystal Cr2P2O7, ZnP2, Pb3P4O13, Pb3P2O7, NaZnPO4, NaPbP3O9, Ca2ZnSi2O7 can be detected by XRD; many independent fly ash particles and bar-shaped Pb5 (PO4)3Cl with a diameter of 0.3 - 0.5 microm were observed by SEM; concentrated heavy metal materials were not obtained by CHBr3 floatation. Conclusions can be drawn that, through neutralization reaction of H3PO4 with strongly alkaline fly ash, stabilization reaction conditions were improved, entrapped heavy metals were chemically activated and PO4(3-) needed in stabilization was produced. Activated heavy metals combined with PO4(3-) on surface of fly ash,generated phosphates existing as forms of solid solution in SiO2, CaCO3, CaSO4, KCl, NaCl.

  7. Radical-molecule reaction C3H+H2O: a mechanistic study.

    PubMed

    Dong, Hao; Ding, Yi-Hong; Sun, Chia-Chung

    2005-02-08

    Despite the importance of the C(3)H radical in both combustion and interstellar space, the reactions of C(3)H toward stable molecules have never been studied. In this paper, we report our detailed mechanistic study on the radical-molecule reaction C(3)H+H(2)O at the Becke's three parameter Lee-Yang-Parr-B3LYP6-311G(d,p) and coupled cluster with single, double, and triple excitations-CCSD(T)6-311G(2d,p) (single-point) levels. It is shown that the C(3)H+H(2)O reaction initially favors formation of the carbene-insertion intermediates HCCCHOH (1a,1b) rather than the direct H- or OH-abstraction process. Subsequently, the isomers (1a,1b) can undergo a direct H- extrusion to form the well-known product propynal HCCCHO (P(5)). Highly competitively, (1a,1b) can take the successive 1,4- and 1,2-H-shift interconversion to isomer H(2)CCCHO(2a,2b) and then to isomer H(2)CCHCO(3a,3b), which can finally take a direct C-C bond cleavage to give product C(2)H(3) and CO (P(1)). The other products are kinetically much less feasible. With the overall entrance barrier 10.6 kcal/mol, the title reaction can be important in postburning processes. Particularly, our calculations suggest that the title reaction may play a role in the formation of the intriguing interstellar molecule, propynal HCCCHO. The calculated results will also be useful for the analogous C(3)H reactions such as with ammonia and alkanes.

  8. Refinements in an Mg/MgH2/H2O-Based Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew; Huang, Yuhong

    2010-01-01

    Some refinements have been conceived for a proposed apparatus that would generate hydrogen (for use in a fuel cell) by means of chemical reactions among magnesium, magnesium hydride, and steam. The refinements lie in tailoring spatial and temporal distributions of steam and liquid water so as to obtain greater overall energy-storage or energy-generation efficiency than would otherwise be possible. A description of the prior art is prerequisite to a meaningful description of the present refinements. The hydrogen-generating apparatus in question is one of two versions of what was called the "advanced hydrogen generator" in "Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators" (NPO-43554), NASA Tech Briefs, Vol. 33, No. 1 (January 2009), page 52. To recapitulate: The apparatus would include a reactor vessel that would be initially charged with magnesium hydride. The apparatus would exploit two reactions: The endothermic decomposition reaction MgH2-->Mg + H2, which occurs at a temperature greater than or equal to 300 C, and The exothermic oxidation reaction MgH2 + H2O MgO + 2H2, which occurs at a temperature greater than or equal to 330 C.

  9. The Histone H3 Lysine 9 Methyltransferase DIM-5 Modifies Chromatin at frequency and Represses Light-Activated Gene Expression

    PubMed Central

    Ruesch, Catherine E.; Ramakrishnan, Mukund; Park, Jinhee; Li, Na; Chong, Hin S.; Zaman, Riasat; Joska, Tammy M.; Belden, William J.

    2014-01-01

    The transcriptional program controlling the circadian rhythm requires coordinated regulation of chromatin. Characterization of the chromodomain helicase DNA-binding enzyme CHD1 revealed DNA methylation in the promoter of the central clock gene frequency (frq) in Neurospora crassa. In this report, we show that the DNA methylation at frq is not only dependent on the DNA methyltransferase DIM-2 but also on the H3K9 methyltransferase DIM-5 and HP1. Histone H3 lysine 9 trimethylation (H3K9me3) occurs at frq and is most prominent 30 min after light-activated expression. Strains lacking dim-5 have an increase in light-induced transcription, and more White Collar-2 is found associated with the frq promoter. Consistent with the notion that DNA methylation assists in establishing the proper circadian phase, loss of H3K9 methylation results in a phase advance suggesting it delays the onset of frq expression. The dim-5 deletion strain displays an increase in circadian-regulated conidia formation on race tubes and there is a synthetic genetic interaction between dim-5 and ras-1bd. These results indicate DIM-5 has a regulatory role in muting circadian output. Overall, the data support a model where facultative heterochromatic at frq serves to establish the appropriate phase, mute the light response, and repress circadian output. PMID:25429045

  10. The histone H3 lysine 9 methyltransferase DIM-5 modifies chromatin at frequency and represses light-activated gene expression.

    PubMed

    Ruesch, Catherine E; Ramakrishnan, Mukund; Park, Jinhee; Li, Na; Chong, Hin S; Zaman, Riasat; Joska, Tammy M; Belden, William J

    2014-11-25

    The transcriptional program controlling the circadian rhythm requires coordinated regulation of chromatin. Characterization of the chromodomain helicase DNA-binding enzyme CHD1 revealed DNA methylation in the promoter of the central clock gene frequency (frq) in Neurospora crassa. In this report, we show that the DNA methylation at frq is not only dependent on the DNA methyltransferase DIM-2 but also on the H3K9 methyltransferase DIM-5 and HP1. Histone H3 lysine 9 trimethylation (H3K9me3) occurs at frq and is most prominent 30 min after light-activated expression. Strains lacking dim-5 have an increase in light-induced transcription, and more White Collar-2 is found associated with the frq promoter. Consistent with the notion that DNA methylation assists in establishing the proper circadian phase, loss of H3K9 methylation results in a phase advance suggesting it delays the onset of frq expression. The dim-5 deletion strain displays an increase in circadian-regulated conidia formation on race tubes and there is a synthetic genetic interaction between dim-5 and ras-1(bd). These results indicate DIM-5 has a regulatory role in muting circadian output. Overall, the data support a model where facultative heterochromatic at frq serves to establish the appropriate phase, mute the light response, and repress circadian output. Copyright © 2015 Ruesch et al.

  11. Arabidopsis COMPASS-Like Complexes Mediate Histone H3 Lysine-4 Trimethylation to Control Floral Transition and Plant Development

    PubMed Central

    Jiang, Danhua; Kong, Nicholas C.; Gu, Xiaofeng; Li, Zicong; He, Yuehui

    2011-01-01

    Histone H3 lysine-4 (H3K4) methylation is associated with transcribed genes in eukaryotes. In Drosophila and mammals, both di- and tri-methylation of H3K4 are associated with gene activation. In contrast to animals, in Arabidopsis H3K4 trimethylation, but not mono- or di-methylation of H3K4, has been implicated in transcriptional activation. H3K4 methylation is catalyzed by the H3K4 methyltransferase complexes known as COMPASS or COMPASS-like in yeast and mammals. Here, we report that Arabidopsis homologs of the COMPASS and COMPASS-like complex core components known as Ash2, RbBP5, and WDR5 in humans form a nuclear subcomplex during vegetative and reproductive development, which can associate with multiple putative H3K4 methyltransferases. Loss of function of ARABIDOPSIS Ash2 RELATIVE (ASH2R) causes a great decrease in genome-wide H3K4 trimethylation, but not in di- or mono-methylation. Knockdown of ASH2R or the RbBP5 homolog suppresses the expression of a crucial Arabidopsis floral repressor, FLOWERING LOCUS C (FLC), and FLC homologs resulting in accelerated floral transition. ASH2R binds to the chromatin of FLC and FLC homologs in vivo and is required for H3K4 trimethylation, but not for H3K4 dimethylation in these loci; overexpression of ASH2R causes elevated H3K4 trimethylation, but not H3K4 dimethylation, in its target genes FLC and FLC homologs, resulting in activation of these gene expression and consequent late flowering. These results strongly suggest that H3K4 trimethylation in FLC and its homologs can activate their expression, providing concrete evidence that H3K4 trimethylation accumulation can activate eukaryotic gene expression. Furthermore, our findings suggest that there are multiple COMPASS-like complexes in Arabidopsis and that these complexes deposit trimethyl but not di- or mono-methyl H3K4 in target genes to promote their expression, providing a molecular explanation for the observed coupling of H3K4 trimethylation (but not H3K4 dimethylation

  12. Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Liu, Xiangyong; Zhang, Xiaohua; Zhang, Zhaojie

    2014-10-10

    The molecular mechanism of acetic acid tolerance in yeast remains unclear despite of its importance for efficient cellulosic ethanol production. In this study, we examined the effects of histone H3/H4 point mutations on yeast acetic acid tolerance by comprehensively screening a histone H3/H4 mutant library. A total of 24 histone H3/H4 mutants (six acetic acid resistant and 18 sensitive) were identified. Compared to the wild-type strain, the histone acetic acid-resistant mutants exhibited improved ethanol fermentation performance under acetic acid stress. Genome-wide transcriptome analysis revealed that changes in the gene expression in the acetic acid-resistant mutants H3 K37A and H4 K16Q were mainly related to energy production, antioxidative stress. Our results provide novel insights into yeast acetic acid tolerance on the basis of histone, and suggest a novel approach to improve ethanol production by altering the histone H3/H4 sequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. 14. GENE PUMPING STATION CONTROL ROOM AS SEEN FROM MAIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. GENE PUMPING STATION CONTROL ROOM AS SEEN FROM MAIN STATION MANAGER'S CONTROL DESK. ELECTRICAL CONTROL INDICATORS AND CONTROLS FOR REGULATING ELECTRICITY INTO PLANT AS WELL AS SYNCHRONIZING STARTUP OF PUMPS. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA

  14. CATH-Gene3D: Generation of the Resource and Its Use in Obtaining Structural and Functional Annotations for Protein Sequences.

    PubMed

    Dawson, Natalie L; Sillitoe, Ian; Lees, Jonathan G; Lam, Su Datt; Orengo, Christine A

    2017-01-01

    This chapter describes the generation of the data in the CATH-Gene3D online resource and how it can be used to study protein domains and their evolutionary relationships. Methods will be presented for: comparing protein structures, recognizing homologs, predicting domain structures within protein sequences, and subclassifying superfamilies into functionally pure families, together with a guide on using the webpages.

  15. Newly emerging mutations in the matrix genes of the human influenza A(H1N1)pdm09 and A(H3N2) viruses reduce the detection sensitivity of real-time reverse transcription-PCR.

    PubMed

    Yang, Ji-Rong; Kuo, Chuan-Yi; Huang, Hsiang-Yi; Wu, Fu-Ting; Huang, Yi-Lung; Cheng, Chieh-Yu; Su, Yu-Ting; Chang, Feng-Yee; Wu, Ho-Sheng; Liu, Ming-Tsan

    2014-01-01

    New variants of the influenza A(H1N1)pdm09 and A(H3N2) viruses were detected in Taiwan between 2012 and 2013. Some of these variants were not detected in clinical specimens using a common real-time reverse transcription-PCR (RT-PCR) assay that targeted the conserved regions of the viral matrix (M) genes. An analysis of the M gene sequences of the new variants revealed that several newly emerging mutations were located in the regions where the primers or probes of the real-time RT-PCR assay bind; these included three mutations (G225A, T228C, and G238A) in the A(H1N1)pdm09 virus, as well as one mutation (C163T) in the A(H3N2) virus. These accumulated mismatch mutations, together with the previously identified C154T mutation of the A(H1N1)pdm09 virus and the C153T and G189T mutations of the A(H3N2) virus, result in a reduced detection sensitivity for the real-time RT-PCR assay. To overcome the loss of assay sensitivity due to mismatch mutations, we established a real-time RT-PCR assay using degenerate nucleotide bases in both the primers and probe and successfully increased the sensitivity of the assay to detect circulating variants of the human influenza A viruses. Our observations highlight the importance of the simultaneous use of different gene-targeting real-time RT-PCR assays for the clinical diagnosis of influenza.

  16. Maternally Expressed Gene 3, an imprinted non-coding RNA gene, is associated with meningioma pathogenesis and progression

    PubMed Central

    Zhang, Xun; Gejman, Roger; Mahta, Ali; Zhong, Ying; Rice, Kimberley A.; Zhou, Yunli; Cheunsuchon, Pornsuk; Louis, David N.; Klibanski, Anne

    2010-01-01

    Meningiomas are common tumors, representing 15-25% of all central nervous system tumors. NF2 gene inactivation on chromosome 22 has been shown as an early event in tumorigenesis; however, few factors underlying tumor growth and progression have been identified. Chromosomal abnormalities of 14q32 are often associated with meningioma pathogenesis and progression; therefore it has been proposed that an as yet unidentified tumor suppressor is present at this locus. MEG3 is an imprinted gene located at 14q32 that encodes a non-coding RNA with an anti-proliferative function. We found that MEG3 mRNA is highly expressed in normal arachnoidal cells. However, MEG3 is not expressed in the majority of human meningiomas or the human meningioma cell lines IOMM-Lee and CH157-MN. There is a strong association between loss of MEG3 expression and tumor grade. Allelic loss at the MEG3 locus is also observed in meningiomas, with increasing prevalence in higher grade tumors. In addition, there is an increase in CpG methylation within the promoter and the imprinting control region of MEG3 gene in meningiomas. Functionally, MEG3 suppresses DNA synthesis in both IOMM-Lee and CH157-MN cells by approximately 60% in BrdU incorporation assays. Colony-forming efficiency assays show that MEG3 inhibits colony formation in CH157-MN cells by approximately 80%. Furthermore, MEG3 stimulates p53-mediated transactivation in these cell lines. Therefore, these data are consistent with the hypothesis that MEG3, which encodes a non-coding RNA, may be a tumor suppressor gene at chromosome 14q32 involved in meningioma progression via a novel mechanism. PMID:20179190

  17. Transferrin-bearing polypropylenimine dendrimer for targeted gene delivery to the brain.

    PubMed

    Somani, Sukrut; Blatchford, David R; Millington, Owain; Stevenson, M Lynn; Dufès, Christine

    2014-08-28

    The possibility of using genes as medicines to treat brain diseases is currently limited by the lack of safe and efficacious delivery systems able to cross the blood-brain barrier, thus resulting in a failure to reach the brain after intravenous administration. On the basis that iron can effectively reach the brain by using transferrin receptors for crossing the blood-brain barrier, we propose to investigate if a transferrin-bearing generation 3-polypropylenimine dendrimer would allow the transport of plasmid DNA to the brain after intravenous administration. In vitro, the conjugation of transferrin to the polypropylenimine dendrimer increased the DNA uptake by bEnd.3 murine brain endothelioma cells overexpressing transferrin receptors, by about 1.4-fold and 2.3-fold compared to that observed with the non-targeted dendriplex and naked DNA. This DNA uptake appeared to be optimal following 2h incubation with the treatment. In vivo, the intravenous injection of transferrin-bearing dendriplex more than doubled the gene expression in the brain compared to the unmodified dendriplex, while decreasing the non-specific gene expression in the lung. Gene expression was at least 3-fold higher in the brain than in any tested peripheral organs and was at its highest 24h following the injection of the treatments. These results suggest that transferrin-bearing polypropylenimine dendrimer is a highly promising gene delivery system to the brain. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Nucleosome eviction along with H3K9ac deposition enhances Sox2 binding during human neuroectodermal commitment

    PubMed Central

    Du, Yanhua; Liu, Zhenping; Cao, Xinkai; Chen, Xiaolong; Chen, Zhenyu; Zhang, Xiaobai; Zhang, Xiaoqing; Jiang, Cizhong

    2017-01-01

    Neuroectoderm is an important neural precursor. However, chromatin remodeling and its epigenetic regulatory roles during the differentiation of human neuroectodermal cells (hNECs) from human embryonic stem cells (hESCs) remain largely unexplored. Here, we obtained hNECs through directed differentiation from hESCs, and determined chromatin states in the two cell types. Upon differentiation, H2A.Z-mediated nucleosome depletion leads to an open chromatin structure in promoters and upregulates expression of neuroectodermal genes. Increase in H3K9ac signals and decrease in H3K27me3 signals in promoters result in an active chromatin state and activate neuroectodermal genes. Conversely, decrease in H3K9ac signals and increase in H3K27me3 signals in promoters repress pluripotency genes. Moreover, H3K9ac signals facilitate the pluripotency factor Sox2 binding to target sites unique to hNECs. Knockdown of the acetyltransferase Kat2b erases H3K9ac signals, disrupts Sox2 binding, and fails the differentiation. Our results demonstrate a hierarchy of epigenetic regulation of gene expression during the differentiation of hNECs from hESCs through chromatin remodeling. PMID:28475175

  19. On-site SiH4 generator using hydrogen plasma generated in slit-type narrow gap

    NASA Astrophysics Data System (ADS)

    Takei, Norihisa; Shinoda, Fumiya; Kakiuchi, Hiroaki; Yasutake, Kiyoshi; Ohmi, Hiromasa

    2018-06-01

    We have been developing an on-site silane (SiH4) generator based on use of the chemical etching reaction between solid silicon (Si) and the high-density H atoms that are generated in high-pressure H2 plasma. In this study, we have developed a slit-type plasma source for high-efficiency SiH4 generation. High-density H2 plasma was generated in a narrow slit-type discharge gap using a 2.45 GHz microwave power supply. The plasma’s optical emission intensity distribution along the slit was measured and the resulting distribution was reflected by both the electric power distribution and the hydrogen gas flow. Because the Si etching rate strongly affects the SiH4 generation rate, the Si etching behavior was investigated with respect to variations in the experimental parameters. The weight etch rate increased monotonically with increasing input microwave power. However, the weight etch rate decreased with increasing H2 pressure and an increasing plasma gap. This reduction in the etch rate appears to be related to shrinkage of the plasma generation area because increased input power is required to maintain a constant plasma area with increasing H2 pressure and the increasing plasma gap. Additionally, the weight etch rate also increases with increasing H2 flow rate. The SiH4 generation rate of the slit-type plasma source was also evaluated using gas-phase Fourier transform infrared absorption spectroscopy and the material utilization efficiencies of both Si and the H2 gas for SiH4 gas formation were discussed. The main etch product was determined to be SiH4 and the developed plasma source achieved a SiH4 generation rate of 10 sccm (standard cubic centimeters per minute) at an input power of 900 W. In addition, the Si utilization efficiency exceeded 60%.

  20. A chimeric repressor of petunia PH4 R2R3-MYB family transcription factor generates margined flowers in torenia.

    PubMed

    Kasajima, Ichiro; Sasaki, Katsutomo

    2016-05-03

    The development of new phenotypes is key to the commercial development of the main floricultural species and cultivars. Important new phenotypes include features such as multiple-flowers, color variations, increased flower size, new petal shapes, variegation and distinctive petal margin colourations. Although their commercial use is not yet common, the transgenic technologies provide a potentially rapid means of generating interesting new phenotypes. In this report, we construct 5 vectors which we expected to change the color of the flower anthocyanins, from purple to blue, regulating vacuolar pH. When these constructs were transformed into purple torenia, we unexpectedly recovered some genotypes having slightly margined petals. These transgenic lines expressed a chimeric repressor of the petunia PhPH4 gene under the control of Cauliflower mosaic virus 35 S RNA promoter. PhPH4 is an R2R3-type MYB transcription factor. The transgenic lines lacked pigmentation in the petal margin cells both on the adaxial and abaxial surfaces. Expressions of Flavanone 3-hydroxylase (F3H), Flavonoid 3'-hydroxylase (F3'H) and Flavonoid 3'5'-hydroxylase (F3'5'H) genes were reduced in the margins of these transgenic lines, suggesting an inhibitory effect of PhPH4 repressor on anthocyanin synthesis.

  1. Unexpected formation of 1-[4-chloromethylphenyl]-5-[4-(methylsulfonyl)benzyl]-1H-tetrazole and 1-[4-chloromethylphenyl]-5-[4-(aminosulfonyl)phenyl]-1H-tetrazole: Crystal structure, bioassay screening and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Jawabrah Al-Hourani, Baker; Ali, Basem F.; Judeh, Zaher; El-Barghouthi, Musa I.; Al-Awaida, Wajdy; Snobar, Yasmin; El Soubani, Fatima; Matalka, Khalid; Wuest, Frank

    2018-07-01

    During the cyclization reaction of benzyl alcohol containing amides, using NaN3 and SiCl4, additional unique chlorination development was observed to yield the novel azoles 1-[4-chloromethylphenyl]-5-[4-(methylsulfonyl)benzyl]-1H-tetrazole (3a) and 1-[4-chloromethylphenyl]-5-[4-(aminosulfonyl)phenyl]-1H-tetrazole (3b). Control experiments showed that the SiCl4 or SiCl3N3 has the major role for such functional group transformation in such a clean reaction and quantitative yield. Their molecular structures have been ascertained using the X-ray crystallography technique in addition to the spectroscopic analyses. Both compounds 3a and 3b crystallize in the monoclinic space group P21/c. The cell parameters of azole 3a are a = 22.3827 (8), Å, b = 5.1602 (2) Å, c = 13.4994 (5) Å3, β = 95.2352 (14)°, V = 1552.67 (10) Å3, and Z = 4. While the cell parameters of azole 3b are a = 20.582 (2), Å, b = 5.8947 (7) Å, c = 13.0796 (16) Å3, β = 104.376 (4)°, V = 1537.2 (3) Å3, and Z = 4. The central tetrazole ring of both compounds is planar and bears (4-chloromethylphenyl) at position one (N-1) of the central moiety. However, the substituents 4-(methylsulfonyl)phenyl and 4-(aminosulfonyl)phenyl of azoles 3a and 3b, respectively, are attached to the C-5 of the same central unit. The phenyl rings at N-1, (C2sbnd C7) and C9sbnd C14 in (3a); (C2sbnd C7) and (C8sbnd C14) in (3b) are inclined compared to the tetrazole ring with dihedral angles of 21.74° and 83.94° in 3a and 25.85° and 65.13° in 3b. The two phenyl rings, at N-1 and C-5, are rotated against each other by 87.73° (in 3a) and 72.21° (in 3b). In the crystal, intermolecular interactions between molecules of 3a,b are dominated by Csbnd H⋯O and Csbnd H⋯N hydrogen bonds. Additional Cl…π interactions add extra supramolecularity. All intermolecular interaction motifs consolidate a three dimensional network lattice. The molecular docking studies were carried out to understand the interaction of

  2. 15-Deoxy-{delta}{sup 12,14}-prostaglandin J2 (15d-PGJ2) mediates repression of TNF-{alpha} by decreasing levels of acetylated histone H3 and H4 at its promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engdahl, Ryan; Monroy, M. Alexandra; Temple University School of Medicine, Department of Anatomy and Cell Biology, 3400 North Broad Street, Philadelphia, PA 19140

    2007-07-20

    Prostaglandin metabolite 15-Deoxy-{delta}{sup 12,14}-prostaglandin J2 (15d-PGJ2) is known to inhibit a number of pro-inflammatory cytokines as well as being a ligand for nuclear receptor PPAR{gamma}. We investigated the ability of 15d-PGJ2 to inhibit TNF-{alpha} gene expression through mechanisms that involve histone modification. Pretreatment with 15d-PGJ2 (10 {mu}M) inhibited LPS-stimulated TNF-{alpha} mRNA in THP-1 monocytes or PMA-differentiated cells to nearly basal levels. A specific PPAR{gamma} ligand, GW1929, failed to inhibit LPS-induced TNF-{alpha} mRNA expression nor did a PPAR{gamma} antagonist, GW9662, alter the repression of TNF-{alpha} mRNA in LPS-stimulated cells pretreated with 15d-PGJ2 suggesting a PPAR{gamma}-independent inhibition of TNF-{alpha} mRNA in THP-1more » cells. Transfection studies with a reporter construct and subsequent treatment with 15d-PGJ2 demonstrated a dose-dependent inhibition of the TNF-{alpha} promoter. Additional studies demonstrated that inhibition of histone deacetylases with trichostatin A (TSA) or overexpression of histone acetyltransferase CBP could overcome 15d-PGJ2-mediated repression of the TNF-{alpha} promoter, suggesting that an important mechanism whereby 15d-PGJ2 suppresses a cytokine is through factors that regulate histone modifications. To examine the endogenous TNF-{alpha} promoter, chromatin immunoprecipitations (ChIP) were performed. ChIP assays demonstrated that LPS stimulation induced an increase in histone H3 and H4 acetylation at the TNF-{alpha} promoter, which was reduced in cells pretreated with 15d-PGJ2. These results highlight the ability of acetylation and deacetylation factors to affect the TNF-{alpha} promoter and demonstrate that an additional important mechanism whereby 15d-PGJ2 mediates TNF-{alpha} transcriptional repression by altering levels of acetylated histone H3 and H4 at its promoter.« less

  3. Differential interaction and aggregation of 3-repeat and 4-repeat tau isoforms with 14-3-3{zeta} protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadik, Golam; Tanaka, Toshihisa, E-mail: tanaka@psy.med.osaka-u.ac.jp; Kato, Kiyoko

    2009-05-22

    Tau isoforms, 3-repeat (3R) and 4-repeat tau (4R), are differentially involved in neuronal development and in several tauopathies. 14-3-3 protein binds to tau and 14-3-3/tau association has been found both in the development and in tauopathies. To understand the role of 14-3-3 in the differential regulation of tau isoforms, we have performed studies on the interaction and aggregation of 3R-tau and 4R-tau, either phosphorylated or unphosphorylated, with 14-3-3{zeta}. We show by surface plasmon resonance studies that the interaction between unphosphorylated 3R-tau and 14-3-3{zeta} is {approx}3-folds higher than that between unphosphorylated 4R-tau and 14-3-3{zeta}. Phosphorylation of tau by protein kinase Amore » (PKA) increases the affinity of both 3R- and 4R-tau for 14-3-3{zeta} to a similar level. An in vitro aggregation assay employing both transmission electron microscopy and fluorescence spectroscopy revealed the aggregation of unphosphorylated 4R-tau to be significantly higher than that of unphosphorylated 3R-tau following the induction of 14-3-3{zeta}. The filaments formed from 3R- and 4R-tau were almost similar in morphology. In contrast, the aggregation of both 3R- and 4R-tau was reduced to a similar low level after phosphorylation with PKA. Taken together, these results suggest that 14-3-3{zeta} exhibits a similar role for tau isoforms after PKA-phosphorylation, but a differential role for unphosphorylated tau. The significant aggregation of 4R-tau by 14-3-3{zeta} suggests that 14-3-3 may act as an inducer in the generation of 4R-tau-predominant neurofibrillary tangles in tauopathies.« less

  4. Generation of a reassortant avian influenza virus H5N2 vaccine strain capable of protecting chickens against infection with Egyptian H5N1 and H9N2 viruses.

    PubMed

    Kandeil, Ahmed; Moatasim, Yassmin; Gomaa, Mokhtar R; Shehata, Mahmoud M; El-Shesheny, Rabeh; Barakat, Ahmed; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2016-01-04

    Avian influenza H5N1 viruses have been enzootic in Egyptian poultry since 2006. Avian influenza H9N2 viruses which have been circulating in Egyptian poultry since 2011 showed high replication rates in embryonated chicken eggs and mammalian cells. To investigate which gene segment was responsible for increasing replication, we constructed reassortant influenza viruses using the low pathogenic H1N1 PR8 virus as backbone and included individual genes from A/chicken/Egypt/S4456B/2011(H9N2) virus. Then, we invested this finding to improve a PR8-derived H5N1 influenza vaccine strain by incorporation of the NA segment of H9N2 virus instead of the NA of H5N1. The growth properties of this virus and several other forms of reassortant H5 viruses were compared. Finally, we tested the efficacy of this reassortant vaccine strain in chickens. We observed an increase in replication for a reassortant virus expressing the neuraminidase gene (N2) of H9N2 virus relative to that of either parental viruses or reassortant PR8 viruses expressing other genes. Then, we generated an H5N2 vaccine strain based on the H5 from an Egyptian H5N1 virus and the N2 from an Egyptian H9N2 virus on a PR8 backbone. This strain had better replication rates than an H5N2 reassortant strain on an H9N2 backbone and an H5N1 reassortant on a PR8 backbone. This virus was then used to develop a killed, oil-emulsion vaccine and tested for efficacy against H5N1 and H9N2 viruses in chickens. Results showed that this vaccine was immunogenic and reduced mortality and shedding. Our findings suggest that an inactivated PR8-derived H5N2 influenza vaccine is efficacious in poultry against H5N1 and H9N2 viruses and the vaccine seed replicates at a high rate thus improving vaccine production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Aberrant expression of the PHF14 gene in biliary tract cancer cells

    PubMed Central

    AKAZAWA, TAKAKO; YASUI, KOHICHIROH; GEN, YASUYUKI; YAMADA, NOBUHISA; TOMIE, AKIRA; DOHI, OSAMU; MITSUYOSHI, HIRONORI; YAGI, NOBUAKI; ITOH, YOSHITO; NAITO, YUJI; YOSHIKAWA, TOSHIKAZU

    2013-01-01

    DNA copy number aberrations in human biliary tract cancer (BTC) cell lines were investigated using a high-density oligonucleotide microarray. A novel homozygous deletion was detected at chromosomal region 7p21.3 in the OZ cell line. Further validation experiments using genomic PCR revealed a homozygous deletion of a single gene, plant homeodomain (PHD) finger protein 14 (PHF14). No PHF14 mRNA or protein expression was detected, thus demonstrating the absence of PHF14 expression in the OZ cell line. Although the PHD finger protein is considered to be involved in chromatin-mediated transcriptional regulation, little is known about the function of PHF14 in cancer. The present study observed that the knock down of PHF14 using small interfering RNA (siRNA) enhanced the growth of the BTC cells. These observations suggest that aberrant PHF14 expression may have a role in the tumorigenesis of BTC. PMID:23833654

  6. Spectral Analysis of 3-(Adamantan-1-yl)-4-Ethyl-1-[(4-Phenylpiperazin-1-yl) Methyl]-1 H-1,2,4-Triazole-5(4 H)-Thione

    NASA Astrophysics Data System (ADS)

    Mindarava, Y. L.; Shundalau, M. B.; Al-Wahaibi, L. H.; El-Emam, A. A.; Matsukovich, A. S.; Gaponenko, S. V.

    2018-05-01

    Vibrational IR (3200-650 cm-1) and Raman spectra (3200-150 cm-1) of adamantane-containing 3-(adamantan-1-yl)-4-ethyl-1-[(4-phenylpiperazin-1-yl)methyl]-1H-1,2,4-triazole-5(4H)-thione, which is promising for drug design, were examined. The UV/Vis spectrum (450-200 nm) of the compound in EtOH was measured. Full geometry optimization using density functional theory (DFT) in the B3LYP/cc-pVDZ approximation allowed the equilibrium configuration of the molecule to be determined and IR and Raman spectra to be calculated. Based on these, the experimental vibrational IR and Raman spectra were interpreted and the biological activity indices were predicted. The UV/Vis spectrum of the title compound was simulated at the time-dependent DFT/CAM-B3LYP/cc-pVDZ level with and without solvent effects and at the ab initio multi-reference perturbation theory XMCQDPT2 level. The UV/Vis spectrum that was simulated using the multi-reference XMCQDPT2 approximation agreed very successfully with the experimental data, in contrast to the single-reference DFT method. This was probably a consequence of intramolecular charge transfer.

  7. Spectral Analysis of 3-(Adamantan-1-yl)-4-Ethyl-1-[(4-Phenylpiperazin-1-yl) Methyl]-1H-1,2,4-Triazole-5(4H)-Thione

    NASA Astrophysics Data System (ADS)

    Mindarava, Y. L.; Shundalau, M. B.; Al-Wahaibi, L. H.; El-Emam, A. A.; Matsukovich, A. S.; Gaponenko, S. V.

    2018-05-01

    Vibrational IR (3200-650 cm-1) and Raman spectra (3200-150 cm-1) of adamantane-containing 3-(adamantan-1-yl)-4-ethyl-1-[(4-phenylpiperazin-1-yl)methyl]-1H-1,2,4-triazole-5(4H)-thione, which is promising for drug design, were examined. The UV/Vis spectrum (450-200 nm) of the compound in EtOH was measured. Full geometry optimization using density functional theory (DFT) in the B3LYP/cc-pVDZ approximation allowed the equilibrium configuration of the molecule to be determined and IR and Raman spectra to be calculated. Based on these, the experimental vibrational IR and Raman spectra were interpreted and the biological activity indices were predicted. The UV/Vis spectrum of the title compound was simulated at the time-dependent DFT/CAM-B3LYP/cc-pVDZ level with and without solvent effects and at the ab initio multi-reference perturbation theory XMCQDPT2 level. The UV/Vis spectrum that was simulated using the multi-reference XMCQDPT2 approximation agreed very successfully with the experimental data, in contrast to the single-reference DFT method. This was probably a consequence of intramolecular charge transfer.

  8. Multiple introductions of a reassortant H5N1 avian influenza virus of clade 2.3.2.1c with PB2 gene of H9N2 subtype into Indian poultry.

    PubMed

    Tosh, Chakradhar; Nagarajan, Shanmugasundaram; Kumar, Manoj; Murugkar, Harshad V; Venkatesh, Govindarajulu; Shukla, Shweta; Mishra, Amit; Mishra, Pranav; Agarwal, Sonam; Singh, Bharati; Dubey, Prashant; Tripathi, Sushil; Kulkarni, Diwakar D

    2016-09-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses are a threat to poultry in Asia, Europe, Africa and North America. Here, we report isolation and characterization of H5N1 viruses isolated from ducks and turkeys in Kerala, Chandigarh and Uttar Pradesh, India between November 2014 and March 2015. Genetic and phylogenetic analyses of haemagglutinin gene identified that the virus belonged to a new clade 2.3.2.1c which has not been detected earlier in Indian poultry. The virus possessed molecular signature for high pathogenicity to chickens, which was corroborated by intravenous pathogenicity index of 2.96. The virus was a reassortant which derives its PB2 gene from H9N2 virus isolated in China during 2007-2013. However, the neuraminidase and internal genes are of H5N1 subtype. Phylogenetic and network analysis revealed that after detection in China in 2013/2014, the virus moved to Europe, West Africa and other Asian countries including India. The analyses further indicated multiple introductions of H5N1 virus in Indian poultry and internal spread in Kerala. One of the outbreaks in ducks in Kerala is linked to the H5N1 virus isolated from wild birds in Dubai suggesting movement of virus probably through migration of wild birds. However, the outbreaks in ducks in Chandigarh and Uttar Pradesh were from an unknown source in Asia which also contributed gene pools to the outbreaks in Europe and West Africa. The widespread incidence of the novel H5N1 HPAI is similar to the spread of clade 2.2 ("Qinghai-like") virus in 2005, and should be monitored to avoid threat to animal and public health. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A demonstration of the H3 trimethylation ChIP-seq analysis of galline follicular mesenchymal cells and male germ cells.

    PubMed

    Chokeshaiusaha, Kaj; Puthier, Denis; Nguyen, Catherine; Sananmuang, Thanida

    2018-06-01

    Trimethylation of histone 3 (H3) at 4th lysine N-termini (H3K4me3) in gene promoter region was the universal marker of active genes specific to cell lineage. On the contrary, coexistence of trimethylation at 27th lysine (H3K27me3) in the same loci-the bivalent H3K4m3/H3K27me3 was known to suspend the gene transcription in germ cells, and could also be inherited to the developed stem cell. In galline species, throughout example of H3K4m3 and H3K27me3 ChIP-seq analysis was still not provided. We therefore designed and demonstrated such procedures using ChIP-seq and mRNA-seq data of chicken follicular mesenchymal cells and male germ cells. Analytical workflow was designed and provided in this study. ChIP-seq and RNA-seq datasets of follicular mesenchymal cells and male germ cells were acquired and properly preprocessed. Peak calling by Model-based analysis of ChIP-seq 2 was performed to identify H3K4m3 or H3K27me3 enriched regions (Fold-change≥2, FDR≤0.01) in gene promoter regions. Integrative genomics viewer was utilized for cellular retinoic acid binding protein 1 ( CRABP1 ), growth differentiation factor 10 ( GDF10 ), and gremlin 1 ( GREM1 ) gene explorations. The acquired results indicated that follicular mesenchymal cells and germ cells shared several unique gene promoter regions enriched with H3K4me3 (5,704 peaks) and also unique regions of bivalent H3K4m3/H3K27me3 shared between all cell types and germ cells (1,909 peaks). Subsequent observation of follicular mesenchyme-specific genes- CRABP1 , GDF10 , and GREM1 correctly revealed vigorous transcriptions of these genes in follicular mesenchymal cells. As expected, bivalent H3K4m3/H3K27me3 pattern was manifested in gene promoter regions of germ cells, and thus suspended their transcriptions. According the results, an example of chicken H3K4m3/H3K27me3 ChIP-seq data analysis was successfully demonstrated in this study. Hopefully, the provided methodology should hereby be useful for galline ChIP-seq data

  10. Hyperglycemia decreases expression of 14-3-3 proteins in an animal model of stroke.

    PubMed

    Jeon, Seong-Jun; Sung, Jin-Hee; Koh, Phil-Ok

    2016-07-28

    Diabetes is a severe metabolic disorder and a major risk factor for stroke. Stroke severity is worse in patients with diabetes compared to the non-diabetic population. The 14-3-3 proteins are a family of conserved acidic proteins that are ubiquitously expressed in cells and tissues. These proteins are involved in many cellular processes including metabolic pathways, signal transduction, protein trafficking, protein synthesis, and cell cycle control. This study investigated 14-3-3 proteins expression in the cerebral cortex of animals with diabetes, cerebral ischemic injury and a combination of both diabetes and cerebral ischemic injury. Diabetes was induced by intraperitoneal injection of streptozotocin (40mg/kg) in adult male rats. After 4 weeks of treatment, middle cerebral artery occlusion (MCAO) was performed for the induction of focal cerebral ischemia and cerebral cortex tissue was collected 24h after MCAO. We confirmed that diabetes increases infarct volume following MCAO compared to non-diabetic animals. In diabetic animals with MCAO injury, reduction of 14-3-3 β/α, 14-3-3 ζ/δ, 14-3-3 γ, and 14-3-3 ε isoforms was detected. The expression of these proteins was significantly decreased in diabetic animals with MCAO injury compared to diabetic-only and MCAO-only animals. Moreover, Western blot analysis ascertained the decreased expression of 14-3-3 family proteins in diabetic animals with MCAO injury, including β/α, ζ/δ, γ, ε, τ, and η isoforms. These results show the changes of 14-3-3 proteins expression in streptozotocin-induced diabetic animals with MCAO injury. Thus, these findings suggest that decreases in 14-3-3 proteins might be involved in the regulation of 14-3-3 proteins under the presence of diabetes following MCAO. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Single-step generation of rabbits carrying a targeted allele of the tyrosinase gene using CRISPR/Cas9.

    PubMed

    Honda, Arata; Hirose, Michiko; Sankai, Tadashi; Yasmin, Lubna; Yuzawa, Kazuaki; Honsho, Kimiko; Izu, Haruna; Iguchi, Atsushi; Ikawa, Masahito; Ogura, Atsuo

    2015-01-01

    Targeted genome editing of nonrodent mammalian species has provided the potential for highly accurate interventions into gene function in humans and the generation of useful animal models of human diseases. Here we show successful clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated (Cas)-mediated gene targeting via circular plasmid injection in rabbits. The rabbit tyrosinase gene (TYR) was effectively disrupted, and we confirmed germline transmission by pronuclear injection of a circular plasmid expressing humanized Cas9 (hCas9) and single-guide RNA. Direct injection into pronuclear stage zygotes was possible following an in vitro validation assay. Neither off-target mutagenesis nor hCas9 transgenesis was detected in any of the genetically targeted pups and embryos examined. Gene targeting with this rapid and simplified strategy will help accelerate the development of translational research using other nonrodent mammalian species.

  12. Single-step generation of rabbits carrying a targeted allele of the tyrosinase gene using CRISPR/Cas9

    PubMed Central

    Honda, Arata; Hirose, Michiko; Sankai, Tadashi; Yasmin, Lubna; Yuzawa, Kazuaki; Honsho, Kimiko; Izu, Haruna; Iguchi, Atsushi; Ikawa, Masahito; Ogura, Atsuo

    2014-01-01

    Targeted genome editing of nonrodent mammalian species has provided the potential for highly accurate interventions into gene function in humans and the generation of useful animal models of human diseases. Here we show successful clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated (Cas)-mediated gene targeting via circular plasmid injection in rabbits. The rabbit tyrosinase gene (TYR) was effectively disrupted, and we confirmed germline transmission by pronuclear injection of a circular plasmid expressing humanized Cas9 (hCas9) and single-guide RNA. Direct injection into pronuclear stage zygotes was possible following an in vitro validation assay. Neither off-target mutagenesis nor hCas9 transgenesis was detected in any of the genetically targeted pups and embryos examined. Gene targeting with this rapid and simplified strategy will help accelerate the development of translational research using other nonrodent mammalian species. PMID:25195632

  13. Histone H1 phosphorylation is associated with transcription by RNA polymerases I and II

    PubMed Central

    Zheng, Yupeng; John, Sam; Pesavento, James J.; Schultz-Norton, Jennifer R.; Schiltz, R. Louis; Baek, Sonjoon; Nardulli, Ann M.; Hager, Gordon L.; Kelleher, Neil L.

    2010-01-01

    Histone H1 phosphorylation affects chromatin condensation and function, but little is known about how specific phosphorylations impact the function of H1 variants in higher eukaryotes. In this study, we show that specific sites in H1.2 and H1.4 of human cells are phosphorylated only during mitosis or during both mitosis and interphase. Antisera generated to individual H1.2/H1.4 interphase phosphorylations reveal that they are distributed throughout nuclei and enriched in nucleoli. Moreover, interphase phosphorylated H1.4 is enriched at active 45S preribosomal RNA gene promoters and is rapidly induced at steroid hormone response elements by hormone treatment. Our results imply that site-specific interphase H1 phosphorylation facilitates transcription by RNA polymerases I and II and has an unanticipated function in ribosome biogenesis and control of cell growth. Differences in the numbers, structure, and locations of interphase phosphorylation sites may contribute to the functional diversity of H1 variants. PMID:20439994

  14. Glycation of H1 Histone by 3-Deoxyglucosone: Effects on Protein Structure and Generation of Different Advanced Glycation End Products

    PubMed Central

    Ashraf, Jalaluddin Mohammad; Rabbani, Gulam; Ahmad, Saheem; Hasan, Qambar; Khan, Rizwan Hasan; Alam, Khursheed; Choi, Inho

    2015-01-01

    Advanced glycation end products (AGEs) culminate from the non-enzymatic reaction between a free carbonyl group of a reducing sugar and free amino group of proteins. 3-deoxyglucosone (3-DG) is one of the dicarbonyl species that rapidly forms several protein-AGE complexes that are believed to be involved in the pathogenesis of several diseases, particularly diabetic complications. In this study, the generation of AGEs (Nε-carboxymethyl lysine and pentosidine) by 3-DG in H1 histone protein was characterized by evaluating extent of side chain modification (lysine and arginine) and formation of Amadori products as well as carbonyl contents using several physicochemical techniques. Results strongly suggested that 3-DG is a potent glycating agent that forms various intermediates and AGEs during glycation reactions and affects the secondary structure of the H1 protein. Structural changes and AGE formation may influence the function of H1 histone and compromise chromatin structures in cases of secondary diabetic complications. PMID:26121680

  15. A simple and economical route to generate functional hepatocyte-like cells from hESCs and their application in evaluating alcohol induced liver damage.

    PubMed

    Pal, Rajarshi; Mamidi, Murali Krishna; Das, Anjan Kumar; Gupta, Pawan Kumar; Bhonde, Ramesh

    2012-01-01

    The in vitro derived hepatocytes from human embryonic stem cells (hESC) is a promising tool to acquire improved knowledge of the cellular and molecular events underlying early human liver development under physiological and pathological conditions. Here we report a simple two-step protocol employing conditioned medium (CM) from human hepatocellular carcinoma cell line, HepG2 to generate functional hepatocyte-like cells from hESC. Immunocytochemistry, flow cytometry, quantitative RT-PCR, and biochemical analyses revealed that the endodermal progenitors appeared as pockets in culture, and the cascade of genes associated with the formation of definitive endoderm (HNF-3β, SOX-17, DLX-5, CXCR4) was consistent and in concurrence with the up-regulation of the markers for hepatic progenitors [alpha-feto protein (AFP), HNF-4α, CK-19, albumin, alpha-1-antitrypsin (AAT)], followed by maturation into functional hepatocytes [tyrosine transferase (TAT), tryptophan-2, 3-dioxygenase (TDO), glucose 6-phosphate (G6P), CYP3A4, CYP7A1]. We witnessed that the gene expression profile during this differentiation process recapitulated in vivo liver development demonstrating a gradual down-regulation of extra embryonic endodermal markers (SOX-7, HNF-1β, SNAIL-1, LAMININ-1, CDX2), and the generated hepatic cells performed multiple liver functions. Since prenatal alcohol exposure is known to provoke irreversible abnormalities in the fetal cells and developing tissues, we exposed in vitro generated hepatocytes to ethanol (EtOH) and found that EtOH treatment not only impairs the survival and proliferation, but also induces apoptosis and perturbs differentiation of progenitor cells into hepatocytes. This disruption was accompanied by alterations in the expression of genes and proteins involved in hepatogenesis. Our results provide new insights into the wider range of destruction caused by alcohol on the dynamic process of liver organogenesis. Copyright © 2011 Wiley Periodicals, Inc.

  16. Two mixed-ligand lanthanide–hydrazone complexes: [Pr(NCS)3(pbh)2]·H2O and [Nd(NCS)(NO3)(pbh)2(H2O)]NO3·2.33H2O [pbh is N′-(pyridin-2-ylmethylidene)benzo­hydrazide, C13H11N3O

    PubMed Central

    Paschalidis, Damianos G.; Harrison, William T. A.

    2016-01-01

    The gel-mediated syntheses and crystal structures of [N′-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O]tris(thiocyanato-κN)praseodymium(III) mono­hydrate, [Pr(NCS)3(C13H11N3O)2]·H2O, (I), and aqua(nitrato-κ2 O,O′)[N′-(pyri­din-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O](thiocyanato-κN)neo­dym­ium(III) nitrate 2.33-hydrate, [Nd(NCS)(NO3)(C13H11N3O)2(H2O)]NO3·2.33H2O, (II), are reported. The Pr3+ ion in (I) is coordinated by two N,N,O-tridentate N′-(pyridin-2-ylmethylidene)benzohydrazide (pbh) ligands and three N-bonded thio­cyanate ions to generate an irregular PrN7O2 coordination polyhedron. The Nd3+ ion in (II) is coordinated by two N,N,O-tridentate pbh ligands, an N-bonded thio­cyanate ion, a bidentate nitrate ion and a water mol­ecule to generate a distorted NdN5O5 bicapped square anti­prism. The crystal structures of (I) and (II) feature numerous hydrogen bonds, which lead to the formation of three-dimensional networks in each case. PMID:26958385

  17. Increased H3K9me3 drives dedifferentiated phenotype via KLF6 repression in liposarcoma

    PubMed Central

    Keung, Emily Z.; Akdemir, Kadir C.; Al Sannaa, Ghadah A.; Garnett, Jeannine; Lev, Dina; Torres, Keila E.; Lazar, Alexander J.; Rai, Kunal; Chin, Lynda

    2015-01-01

    Liposarcoma (LPS) can be divided into 4 different subtypes, of which well-differentiated LPS (WDLPS) and dedifferentiated LPS (DDLPS) are the most common. WDLPS is typically low grade, whereas DDLPS is high grade, aggressive, and carries a worse prognosis. WDLPS and DDLPS frequently co-occur in patients. However, it is not clear whether DDLPS arises independently from WDLPS, or whether epigenomic alterations underly the histopathological differences of these subtypes. Here, we profiled 9 epigenetic marks in tumor samples from 151 patients with LPS and showed elevated trimethylation of histone H3 at Lys9 (H3K9me3) levels in DDLPS tumors. Integrated ChIP-seq and gene expression analyses of patient-derived cell lines revealed that H3K9me3 mediates differential regulation of genes involved in cellular differentiation and migration. Among these, Kruppel-like factor 6 (KLF6) was reduced in DDLPS, with increased H3K9me3 at associated regulatory regions. Pharmacologic inhibition of H3K9me3 with chaetocin decreased DDLPS proliferation and increased expression of the adipogenesis-associated factors PPARγ, CEBPα, and CEBPβ, suggesting that increased H3K9me3 may mediate DDLPS-associated aggressiveness and dedifferentiation properties. KLF6 overexpression partially phenocopied chaetocin treatment in DDLPS cells and induced phenotypic changes that were consistent with adipocytic differentiation, suggesting that the effects of increased H3K9me3 may be mediated through KLF6. In conclusion, we provide evidence of an epigenetic basis for the transition between WDLPS and DDLPS. PMID:26193637

  18. Increased H3K9me3 drives dedifferentiated phenotype via KLF6 repression in liposarcoma.

    PubMed

    Keung, Emily Z; Akdemir, Kadir C; Al Sannaa, Ghadah A; Garnett, Jeannine; Lev, Dina; Torres, Keila E; Lazar, Alexander J; Rai, Kunal; Chin, Lynda

    2015-08-03

    Liposarcoma (LPS) can be divided into 4 different subtypes, of which well-differentiated LPS (WDLPS) and dedifferentiated LPS (DDLPS) are the most common. WDLPS is typically low grade, whereas DDLPS is high grade, aggressive, and carries a worse prognosis. WDLPS and DDLPS frequently co-occur in patients. However, it is not clear whether DDLPS arises independently from WDLPS, or whether epigenomic alterations underly the histopathological differences of these subtypes. Here, we profiled 9 epigenetic marks in tumor samples from 151 patients with LPS and showed elevated trimethylation of histone H3 at Lys9 (H3K9me3) levels in DDLPS tumors. Integrated ChIP-seq and gene expression analyses of patient-derived cell lines revealed that H3K9me3 mediates differential regulation of genes involved in cellular differentiation and migration. Among these, Kruppel-like factor 6 (KLF6) was reduced in DDLPS, with increased H3K9me3 at associated regulatory regions. Pharmacologic inhibition of H3K9me3 with chaetocin decreased DDLPS proliferation and increased expression of the adipogenesis-associated factors PPARγ, CEBPα, and CEBPβ, suggesting that increased H3K9me3 may mediate DDLPS-associated aggressiveness and dedifferentiation properties. KLF6 overexpression partially phenocopied chaetocin treatment in DDLPS cells and induced phenotypic changes that were consistent with adipocytic differentiation, suggesting that the effects of increased H3K9me3 may be mediated through KLF6. In conclusion, we provide evidence of an epigenetic basis for the transition between WDLPS and DDLPS.

  19. JMJD1A, H3K9me1, H3K9me2 and ADM expression as prognostic markers in oral and oropharyngeal squamous cell carcinoma.

    PubMed

    Maia, Lucas de Lima; Peterle, Gabriela Tonini; Dos Santos, Marcelo; Trivilin, Leonardo Oliveira; Mendes, Suzanny Oliveira; de Oliveira, Mayara Mota; Dos Santos, Joaquim Gasparini; Stur, Elaine; Agostini, Lidiane Pignaton; Couto, Cinthia Vidal Monteiro da Silva; Dalbó, Juliana; de Assis, Aricia Leone Evangelista Monteiro; Archanjo, Anderson Barros; Mercante, Ana Maria Da Cunha; Lopez, Rossana Veronica Mendoza; Nunes, Fábio Daumas; de Carvalho, Marcos Brasilino; Tajara, Eloiza Helena; Louro, Iúri Drumond; Álvares-da-Silva, Adriana Madeira

    2018-01-01

    Jumonji Domain-Containing 1A (JMJD1A) protein promotes demethylation of histones, especially at lysin-9 of di-methylated histone H3 (H3K9me2) or mono-methylated (H3K9me1). Increased levels of H3 histone methylation at lysin-9 (H3K9) is related to tumor suppressor gene silencing. JMJD1A gene target Adrenomeduline (ADM) has shown to promote cell growth and tumorigenesis. JMJD1A and ADM expression, as well as H3K9 methylation level have been related with development risk and prognosis of several tumor types. We aimed to evaluate JMJD1A, ADM, H3K9me1 and H3K9me2expression in paraffin-embedded tissue microarrays from 84 oral and oropharyngeal squamous cell carcinoma samples through immunohistochemistry analysis. Our results showed that nuclear JMJD1A expression was related to lymph node metastasis risk. In addition, JMJD1A cytoplasmic expression was an independent risk marker for advanced tumor stages. H3K9me1 cytoplasmic expression was associated with reduced disease-specific death risk. Furthermore, high H3K9me2 nuclear expression was associated with worse specific-disease and disease-free survival. Finally, high ADM cytoplasmic expression was an independent marker of lymph node metastasis risk. JMJD1A, H3K9me1/2 and ADM expression may be predictor markers of progression and prognosis in oral and oropharynx cancer patients, as well as putative therapeutic targets.

  20. JMJD1A, H3K9me1, H3K9me2 and ADM expression as prognostic markers in oral and oropharyngeal squamous cell carcinoma

    PubMed Central

    Peterle, Gabriela Tonini; dos Santos, Marcelo; Trivilin, Leonardo Oliveira; Mendes, Suzanny Oliveira; de Oliveira, Mayara Mota; dos Santos, Joaquim Gasparini; Stur, Elaine; Agostini, Lidiane Pignaton; Couto, Cinthia Vidal Monteiro da Silva; Dalbó, Juliana; de Assis, Aricia Leone Evangelista Monteiro; Archanjo, Anderson Barros; Mercante, Ana Maria Da Cunha; Lopez, Rossana Veronica Mendoza; Nunes, Fábio Daumas; de Carvalho, Marcos Brasilino; Tajara, Eloiza Helena; Louro, Iúri Drumond; Álvares-da-Silva, Adriana Madeira

    2018-01-01

    Aims Jumonji Domain-Containing 1A (JMJD1A) protein promotes demethylation of histones, especially at lysin-9 of di-methylated histone H3 (H3K9me2) or mono-methylated (H3K9me1). Increased levels of H3 histone methylation at lysin-9 (H3K9) is related to tumor suppressor gene silencing. JMJD1A gene target Adrenomeduline (ADM) has shown to promote cell growth and tumorigenesis. JMJD1A and ADM expression, as well as H3K9 methylation level have been related with development risk and prognosis of several tumor types. Methods and results We aimed to evaluate JMJD1A, ADM, H3K9me1 and H3K9me2expression in paraffin-embedded tissue microarrays from 84 oral and oropharyngeal squamous cell carcinoma samples through immunohistochemistry analysis. Our results showed that nuclear JMJD1A expression was related to lymph node metastasis risk. In addition, JMJD1A cytoplasmic expression was an independent risk marker for advanced tumor stages. H3K9me1 cytoplasmic expression was associated with reduced disease-specific death risk. Furthermore, high H3K9me2 nuclear expression was associated with worse specific-disease and disease-free survival. Finally, high ADM cytoplasmic expression was an independent marker of lymph node metastasis risk. Conclusion JMJD1A, H3K9me1/2 and ADM expression may be predictor markers of progression and prognosis in oral and oropharynx cancer patients, as well as putative therapeutic targets. PMID:29590186

  1. H3 Histone Tail Conformation within the Nucleosome and the Impact of K14 Acetylation Studied Using Enhanced Sampling Simulation

    PubMed Central

    Ikebe, Jinzen; Sakuraba, Shun; Kono, Hidetoshi

    2016-01-01

    Acetylation of lysine residues in histone tails is associated with gene transcription. Because histone tails are structurally flexible and intrinsically disordered, it is difficult to experimentally determine the tail conformations and the impact of acetylation. In this work, we performed simulations to sample H3 tail conformations with and without acetylation. The results show that irrespective of the presence or absence of the acetylation, the H3 tail remains in contact with the DNA and assumes an α-helix structure in some regions. Acetylation slightly weakened the interaction between the tail and DNA and enhanced α-helix formation, resulting in a more compact tail conformation. We inferred that this compaction induces unwrapping and exposure of the linker DNA, enabling DNA-binding proteins (e.g., transcription factors) to bind to their target sequences. In addition, our simulation also showed that acetylated lysine was more often exposed to the solvent, which is consistent with the fact that acetylation functions as a post-translational modification recognition site marker. PMID:26967163

  2. BGDB: a database of bivalent genes

    PubMed Central

    Li, Qingyan; Lian, Shuabin; Dai, Zhiming; Xiang, Qian; Dai, Xianhua

    2013-01-01

    Bivalent gene is a gene marked with both H3K4me3 and H3K27me3 epigenetic modification in the same area, and is proposed to play a pivotal role related to pluripotency in embryonic stem (ES) cells. Identification of these bivalent genes and understanding their functions are important for further research of lineage specification and embryo development. So far, lots of genome-wide histone modification data were generated in mouse and human ES cells. These valuable data make it possible to identify bivalent genes, but no comprehensive data repositories or analysis tools are available for bivalent genes currently. In this work, we develop BGDB, the database of bivalent genes. The database contains 6897 bivalent genes in human and mouse ES cells, which are manually collected from scientific literature. Each entry contains curated information, including genomic context, sequences, gene ontology and other relevant information. The web services of BGDB database were implemented with PHP + MySQL + JavaScript, and provide diverse query functions. Database URL: http://dailab.sysu.edu.cn/bgdb/ PMID:23894186

  3. BGDB: a database of bivalent genes.

    PubMed

    Li, Qingyan; Lian, Shuabin; Dai, Zhiming; Xiang, Qian; Dai, Xianhua

    2013-01-01

    Bivalent gene is a gene marked with both H3K4me3 and H3K27me3 epigenetic modification in the same area, and is proposed to play a pivotal role related to pluripotency in embryonic stem (ES) cells. Identification of these bivalent genes and understanding their functions are important for further research of lineage specification and embryo development. So far, lots of genome-wide histone modification data were generated in mouse and human ES cells. These valuable data make it possible to identify bivalent genes, but no comprehensive data repositories or analysis tools are available for bivalent genes currently. In this work, we develop BGDB, the database of bivalent genes. The database contains 6897 bivalent genes in human and mouse ES cells, which are manually collected from scientific literature. Each entry contains curated information, including genomic context, sequences, gene ontology and other relevant information. The web services of BGDB database were implemented with PHP + MySQL + JavaScript, and provide diverse query functions. Database URL: http://dailab.sysu.edu.cn/bgdb/

  4. Generating gene knockout rats by homologous recombination in embryonic stem cells

    PubMed Central

    Tong, Chang; Huang, Guanyi; Ashton, Charles; Li, Ping; Ying, Qi-Long

    2013-01-01

    We describe here a detailed protocol for generating gene knockout rats by homologous recombination in embryonic stem (ES) cells. This protocol comprises the following procedures: derivation and expansion of rat ES cells, construction of gene-targeting vectors, generation of gene-targeted rat ES cells and, finally, production of gene-targeted rats. The major differences between this protocol and the classical mouse gene-targeting protocol include ES cell culture methods, drug selection scheme, colony picking and screening strategies. This ES cell–based gene-targeting technique allows sophisticated genetic modifications to be performed in the rat, as many laboratories have been doing in the mouse for the past two decades. Recently we used this protocol to generate Tp53 (also known as p53) gene knockout rats. The entire process requires ~1 year to complete, from derivation of ES cells to generation of knockout rats. PMID:21637202

  5. Natural variation of H3K27me3 distribution between two Arabidopsis accessions and its association with flanking transposable elements

    PubMed Central

    2012-01-01

    Background Histone H3 lysine 27 tri-methylation and lysine 9 di-methylation are independent repressive chromatin modifications in Arabidopsis thaliana. H3K27me3 is established and maintained by Polycomb repressive complexes whereas H3K9me2 is catalyzed by SUVH histone methyltransferases. Both modifications can spread to flanking regions after initialization and were shown to be mutually exclusive in Arabidopsis. Results We analyzed the extent of natural variation of H3K27me3 in the two accessions Landsberg erecta (Ler) and Columbia (Col) and their F1 hybrids. The majority of H3K27me3 target genes in Col were unchanged in Ler and F1 hybrids. A small number of Ler-specific targets were detected and confirmed. Consistent with a cis-regulatory mechanism for establishing H3K27me3, differential targets showed allele-specific H3K27me3 in hybrids. Five Ler-specific targets showed the active mark H3K4me3 in Col and for this group, differential H3K27me3 enrichment accorded to expression variation. On the other hand, the majority of Ler-specific targets were not expressed in Col, Ler or 17 other accessions. Instead of H3K27me3, the antagonistic mark H3K9me2 and other heterochromatic features were observed at these loci in Col. These loci were frequently flanked by transposable elements, which were often missing in the Ler genome assembly. Conclusion There is little variation in H3K27me3 occupancy within the species, although H3K27me3 targets were previously shown as overrepresented among differentially expressed genes. The existing variation in H3K27me3 seems mostly explained by flanking polymorphic transposable elements. These could nucleate heterochromatin, which then spreads into neighboring H3K27me3 genes, thus converting them to H3K9me2 targets. PMID:23253144

  6. Histone variant H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos.

    PubMed

    Kong, Qingran; Banaszynski, Laura A; Geng, Fuqiang; Zhang, Xiaolei; Zhang, Jiaming; Zhang, Heng; O'Neill, Claire L; Yan, Peidong; Liu, Zhonghua; Shido, Koji; Palermo, Gianpiero D; Allis, C David; Rafii, Shahin; Rosenwaks, Zev; Wen, Duancheng

    2018-03-09

    Derepression of chromatin-mediated transcriptional repression of paternal and maternal genomes is considered the first major step that initiates zygotic gene expression after fertilization. The histone variant H3.3 is present in both male and female gametes and is thought to be important for remodeling the paternal and maternal genomes for activation during both fertilization and embryogenesis. However, the underlying mechanisms remain poorly understood. Using our H3.3B-HA-tagged mouse model, engineered to report H3.3 expression in live animals and to distinguish different sources of H3.3 protein in embryos, we show here that sperm-derived H3.3 (sH3.3) protein is removed from the sperm genome shortly after fertilization and extruded from the zygotes via the second polar bodies (PBII) during embryogenesis. We also found that the maternal H3.3 (mH3.3) protein is incorporated into the paternal genome as early as 2 h postfertilization and is detectable in the paternal genome until the morula stage. Knockdown of maternal H3.3 resulted in compromised embryonic development both of fertilized embryos and of androgenetic haploid embryos. Furthermore, we report that mH3.3 depletion in oocytes impairs both activation of the Oct4 pluripotency marker gene and global de novo transcription from the paternal genome important for early embryonic development. Our results suggest that H3.3-mediated paternal chromatin remodeling is essential for the development of preimplantation embryos and the activation of the paternal genome during embryogenesis. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. The Dynamics and Regulatory Mechanism of Pronuclear H3k9me2 Asymmetry in Mouse Zygotes

    PubMed Central

    Ma, Xue-Shan; Chao, Shi-Bin; Huang, Xian-Ju; Lin, Fei; Qin, Ling; Wang, Xu-Guang; Meng, Tie-Gang; Zhu, Cheng-Cheng; Schatten, Heide; Liu, Hong-Lin; Sun, Qing-Yuan

    2015-01-01

    H3K9 methylation is an important histone modification that is correlated with gene transcription repression. The asymmetric H3K9 dimethylation (H3K9me2) pattern between paternal and maternal genomes is generated soon after fertilization. In the present study, we carefully determined the dynamics of H3K9me2 changes in mouse zygotes, and investigated the regulatory mechanisms. The results indicated that histone methyltransferase G9a, but not GLP, was involved in the regulation of asymmetric H3K9me2, and G9a was the methyltransferase that induced the appearance of H3K9me2 in the male pronucleus of the zygote treated with cycloheximide. We found that there were two distinct mechanisms that regulate H3K9me2 in the male pronucleus. Before 8 h of in vitro fertilization (IVF), a mechanism exists that inhibits the association of G9a with the H3K9 sites. After 10 h of IVF the inhibition of G9a activity depends on yet unknown novel protein(s) synthesis. The two mechanisms of transfer take place between 8–10 h of IVF, and the novel protein failed to inhibit G9a activity in time, resulting in the appearance of a low level de novo H3K9me2 in the male pronucleus. PMID:26639638

  8. Histone H3.3 mutations drive paediatric glioblastoma through upregulation of MYCN

    PubMed Central

    Bjerke, Lynn; Mackay, Alan; Nandhabalan, Meera; Burford, Anna; Jury, Alexa; Popov, Sergey; Bax, Dorine A; Carvalho, Diana; Taylor, Kathryn R; Vinci, Maria; Bajrami, Ilirjana; McGonnell, Imelda M; Lord, Christopher J; Reis, Rui M; Hargrave, Darren; Ashworth, Alan; Workman, Paul; Jones, Chris

    2013-01-01

    Glioblastomas of children and young adults have a median survival of only 12-15months and are clinically and biologically distinct from histologically similar cancers in older adults1. They are defined by highly specific mutations in the gene encoding the histone H3.3 variant H3F3A2, occurring either at or close to key residues marked by methylation for regulation of transcription – K27 and G34. Here we show that the cerebral hemispheric-specific G34 mutation drives a distinct expression signature through differential genomic binding of the K36 trimethylation mark (H3K36me3). The transcriptional program induced recapitulates that of the developing forebrain, and involves numerous markers of stem cell maintenance, cell fate decisions and self-renewal. Critically, H3F3A G34 mutations cause profound upregulation of MYCN, a potent oncogene which is causative of glioblastomas when expressed in the correct developmental context. This driving aberration is selectively targetable in this patient population by inhibiting kinases responsible for stabilisation of the protein. PMID:23539269

  9. Inhalable Metal-Rich Air Particles and Histone H3K4 Dimethylation and H3K9 Acetylation in a Cross-sectional Study of Steel Workers

    PubMed Central

    Cantone, Laura; Nordio, Francesco; Hou, Lifang; Apostoli, Pietro; Bonzini, Matteo; Tarantini, Letizia; Angelici, Laura; Bollati, Valentina; Zanobetti, Antonella; Schwartz, Joel; Bertazzi, Pier A.

    2011-01-01

    Background: Epidemiology investigations have linked exposure to ambient and occupational air particulate matter (PM) with increased risk of lung cancer. PM contains carcinogenic and toxic metals, including arsenic and nickel, which have been shown in in vitro studies to induce histone modifications that activate gene expression by inducing open-chromatin states. Whether inhalation of metal components of PM induces histone modifications in human subjects is undetermined. Objectives: We investigated whether the metal components of PM determined activating histone modifications in 63 steel workers with well-characterized exposure to metal-rich PM. Methods: We determined histone 3 lysine 4 dimethylation (H3K4me2) and histone 3 lysine 9 acetylation (H3K9ac) on histones from blood leukocytes. Exposure to inhalable metal components (aluminum, manganese, nickel, zinc, arsenic, lead, iron) and to total PM was estimated for each study subject. Results: Both H3K4me2 and H3K9ac increased in association with years of employment in the plant (p-trend = 0.04 and 0.006, respectively). H3K4me2 increased in association with air levels of nickel [β = 0.16; 95% confidence interval (CI), 0.03–0.3], arsenic (β = 0.16; 95% CI, 0.02–0.3), and iron (β = 0.14; 95% CI, 0.01–0.26). H3K9ac showed nonsignificant positive associations with air levels of nickel (β = 0.24; 95% CI, –0.02 to 0.51), arsenic (β = 0.21; 95% CI, –0.06 to 0.48), and iron (β = 0.22; 95% CI, –0.03 to 0.47). Cumulative exposures to nickel and arsenic, defined as the product of years of employment by metal air levels, were positively correlated with both H3K4me2 (nickel: β = 0.16; 95% CI, 0.01–0.3; arsenic: β = 0.16; 95% CI, 0.03–0.29) and H3K9ac (nickel: β = 0.27; 95% CI, 0.01–0.54; arsenic: β = 0.28; 95% CI, 0.04–0.51). Conclusions: Our results indicate histone modifications as a novel epigenetic mechanism induced in human subjects by long-term exposure to inhalable nickel and arsenic. PMID

  10. Endo-(1,4)-β-Glucanase gene families in the grasses: temporal and spatial Co-transcription of orthologous genes1

    PubMed Central

    2012-01-01

    Background Endo-(1,4)-β-glucanase (cellulase) glycosyl hydrolase GH9 enzymes have been implicated in several aspects of cell wall metabolism in higher plants, including cellulose biosynthesis and degradation, modification of other wall polysaccharides that contain contiguous (1,4)-β-glucosyl residues, and wall loosening during cell elongation. Results The endo-(1,4)-β-glucanase gene families from barley (Hordeum vulgare), maize (Zea mays), sorghum (Sorghum bicolor), rice (Oryza sativa) and Brachypodium (Brachypodium distachyon) range in size from 23 to 29 members. Phylogenetic analyses show variations in clade structure between the grasses and Arabidopsis, and indicate differential gene loss and gain during evolution. Map positions and comparative studies of gene structures allow orthologous genes in the five species to be identified and synteny between the grasses is found to be high. It is also possible to differentiate between homoeologues resulting from ancient polyploidizations of the maize genome. Transcript analyses using microarray, massively parallel signature sequencing and quantitative PCR data for barley, rice and maize indicate that certain members of the endo-(1,4)-β-glucanase gene family are transcribed across a wide range of tissues, while others are specifically transcribed in particular tissues. There are strong correlations between transcript levels of several members of the endo-(1,4)-β-glucanase family and the data suggest that evolutionary conservation of transcription exists between orthologues across the grass family. There are also strong correlations between certain members of the endo-(1,4)-β-glucanase family and other genes known to be involved in cell wall loosening and cell expansion, such as expansins and xyloglucan endotransglycosylases. Conclusions The identification of these groups of genes will now allow us to test hypotheses regarding their functions and joint participation in wall synthesis, re-modelling and degradation

  11. Expansion of antimonato polyoxovanadates with transition metal complexes: (Co(N3C5H15)2)2[{Co(N3C5H15)2}V15Sb6O42(H2O)]·5H2O and (Ni(N3C5H15)2)2[{Ni(N3C5H15)2}V15Sb6O42(H2O)]·8H2O.

    PubMed

    Antonova, Elena; Näther, Christian; Kögerler, Paul; Bensch, Wolfgang

    2012-02-20

    Two new polyoxovanadates (Co(N(3)C(5)H(15))(2))(2)[{Co(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)]·5H(2)O (1) and (Ni(N(3)C(5)H(15))(2))(2)[{Ni(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)]·8H(2)O (2) (N(3)C(5)H(15) = N-(2-aminoethyl)-1,3-propanediamine) were synthesized under solvothermal conditions and structurally characterized. In both structures the [V(15)Sb(6)O(42)(H(2)O)](6-) shell displays the main structural motif, which is strongly related to the {V(18)O(42)} archetype cluster. Both compounds crystallize in the triclinic space group P1 with a = 14.3438(4), b = 16.6471(6), c = 18.9186(6) Å, α = 87.291(3)°, β = 83.340(3)°, γ = 78.890(3)°, and V = 4401.4(2) Å(3) (1) and a = 14.5697(13), b = 15.8523(16), c = 20.2411(18) Å, α = 86.702(11)°, β = 84.957(11)°, γ = 76.941(11)°, and V = 4533.0(7) Å(3) (2). In the structure of 1 the [V(15)Sb(6)O(42)(H(2)O)](6-) cluster anion is bound to a [Co(N(3)C(5)H(15))(2)](2+) complex via a terminal oxygen atom. In the Co(2+)-centered complex, one of the amine ligands coordinates in tridentate mode and the second one in bidentate mode to form a strongly distorted CoN(5)O octahedron. Similarly, in compound 2 an analogous NiN(5)O complex is joined to the [V(15)Sb(6)O(42)(H(2)O)](6-) anion via the same attachment mode. A remarkable difference between the two compounds is the orientation of the noncoordinated propylamine group leading to intermolecular Sb···O contacts in 1 and to Sb···N interactions in 2. In the solid-state lattices of 1 and 2, two additional [M(N(3)C(5)H(15))(2)](2+) complexes act as countercations and are located between the [{M(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)](4-) anions. Between the anions and cations strong N-H···O hydrogen bonds are observed. In both compounds the clusters are stacked along the b axis in an ABAB fashion with cations and water molecules occupying the space between the clusters. Magnetic characterization demonstrates that the Ni(2+) and Co(2+) cations do not

  12. Substrate-Induced Transcriptional Activation of the MoCel7C Cellulase Gene Is Associated with Methylation of Histone H3 at Lysine 4 in the Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    Vu, Ba Van; Pham, Kieu Thi Minh

    2013-01-01

    The mechanisms involved in substrate-dependent regulation of a Magnaporthe oryzae gene encoding a cellulase which we designate MoCel7C (MGG_14954) were investigated. The levels of MoCel7C transcript were dramatically increased more than 1,000-fold, 16 to 24 h after transfer to a medium containing 2% carboxymethylcellulose (CMC), while levels were very low or undetectable in conventional rich medium. Green fluorescent protein reporter assays showed that the MoCel7C promoter was activated by cello-oligosaccharides larger than a pentamer. CMC-induced activation of the MoCel7C promoter was suppressed by glucose and cellobiose. Chromatin immunoprecipitation assays revealed that histone H3 methylation on lysine 4 (H3K4) at the MoCel7C locus was associated with activation of the gene by CMC. Consistently, CMC-induced MoCel7C gene activation was drastically diminished in a knockout (KO) mutant of the MoSET1 gene, which encodes a histone lysine methyltransferase that catalyzes H3K4 methylation in M. oryzae. Interestingly, however, MoCel7C transcript levels under noninducing conditions were significantly increased in the MoSET1 KO mutant, suggesting that MoSET1 directly or indirectly plays a role in both activation and suppression of the MoCel7C gene in response to environmental signals. In addition, gene expression and silencing vectors using the MoCel7C promoter were constructed. PMID:23995923

  13. Analysis of the aac(3)-VIa gene encoding a novel 3-N-acetyltransferase.

    PubMed Central

    Rather, P N; Mann, P A; Mierzwa, R; Hare, R S; Miller, G H; Shaw, K J

    1993-01-01

    Biochemical analysis (G. A. Papanicolaou, R. S. Hare, R. Mierzwa, and G. H. Miller, abstr. 152, Program Abstr. 29th Intersci. Conf. Antimicrob. Agents Chemother., 1989) demonstrated the presence of a novel 3-N-acetyltransferase in Enterobacter cloacae 88020217. This organism was resistant to gentamicin, and the MIC of 2'-N-ethylnetilmicin for it was fourfold lower than that of 6'-N-ethylnetilmicin, a resistance pattern which suggested 2'-acetylating activity. However, high-pressure liquid chromatography analysis demonstrated that the enzyme acetylated sisomicin in the 3 position. We have cloned the structural gene for this enzyme from a large (> 70-kb) conjugative plasmid present in E. cloacae. Subcloning experiments have localized the aac(3)-VIa gene to a 2.1-kb Sau3A fragment. The deduced AAC(3)-VIa protein showed 48% amino acid identity to the AAC(3)-IIa protein and 39% identity to the AAC(3)-VII protein. Examination of the 5'-flanking sequences demonstrated that the aac(3)-VIa gene was located 167 bp downstream of the aadA1 gene and was present in an integron. In addition, the aac(3)-VIa gene is also downstream of a 59-base element often seen in an integron environment. Primer extension analysis has identified a promoter for the aac(3)-VIa gene downstream of both the aadA1 gene and a 59-base element. Images PMID:8257126

  14. Arsenic activates the expression of 3β-HSD in mouse Leydig cells through repression of histone H3K9 methylation.

    PubMed

    Alamdar, Ambreen; Xi, Guochen; Huang, Qingyu; Tian, Meiping; Eqani, Syed Ali Musstjab Akber Shah; Shen, Heqing

    2017-07-01

    Arsenic exposure has been associated with male reproductive dysfunction by disrupting steroidogenesis; however, the roles of epigenetic drivers, especially histone methylation in arsenic-induced steroidogenic toxicity remain not well documented. In this study, we investigated the role of histone H3 lysine 9 (H3K9) methylation in steroidogenesis disturbance in mouse Leydig cells (MLTC-1) due to arsenic exposure. Our results indicated that mRNA and protein expression levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) were both significantly up-regulated while the rest of key genes involved in steroidogenesis were down-regulated. Moreover, arsenic exposure significantly decreased the histone H3K9 di- and tri-methylation (H3K9me2/3) levels in MLTC-1 cells. Since H3K9 demethylation leads to gene activation, we further investigated whether the induction of 3β-HSD expression was ascribed to reduced H3K9 methylation. The results showed that H3K9me2/3 demethylase (JMJD2A) inhibitor, quercetin (Que) significantly attenuated the decrease of H3K9me2/3 and increase of 3β-HSD expression induced by arsenic. To further elucidate the mechanism for the activation of 3β-HSD, we determined the histone H3K9 methylation levels in Hsd3b gene promoter, which also showed significant decrease of H3K9me2/3 in the investigated region after arsenic exposure. Considering these results, we conclude that arsenic exposure induced 3β-HSD up-regulation by suppressing H3K9me2/3 status, which is suggested as a compensatory mechanism for steroidogenic disturbance in MLTC-1 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Metabolism of 14C-azoxystrobin in water at different pH.

    PubMed

    Singh, Neera; Singh, Shashi B; Mukerjee, Irani; Gupta, Suman; Gajbhiye, Vijay T; Sharma, Praveen K; Goel, Mayurika; Dureja, Prem

    2010-02-01

    Metabolism of (14)C-azoxystrobin was studied in water at pH 4, 7 and 9. The study suggested that volatilization losses of azoxystrobin were very low (3%) during 130 days of incubation. Only 2.5-4.2% of azoxystrobin was mineralised to CO(2) and pH of water did not have much effect on rate of mineralisation. The dissipation of azoxystrobin in water of all the three pHs followed first order kinetic with half-life values ranging from 143 to 158 d; degradation was the fastest at pH 9. Azoxystrobin acid, a major metabolite, was detected 4-7 day onwards and its concentration increased up to 130 days. The formation of azoxystrobin acid was more and faster under alkaline (pH 9) condition than neutral (pH 7) or acidic (pH 4) conditions.

  16. Genes Outside the Major Histocompatibility Complex Locus Are Linked to the Development of Thyroid Autoantibodies and Thyroiditis in NOD.H2h4 Mice

    PubMed Central

    Lesage, Sylvie; Collin, Roxanne; Banuelos, Bianca; Aliesky, Holly A.; Rapoport, Basil

    2017-01-01

    Thyroiditis and autoantibodies to thyroglobulin (TgAb) and thyroid peroxidase (TPOAb) develop spontaneously in NOD.H2h4 mice, a phenotype enhanced by dietary iodine. NOD.H2h4 mice were derived by introducing the major histocompatibility class (MHC) molecule I-Ak from B10.A(4R) mice to nonobese diabetic (NOD) mice. Apart from I-Ak, the genes responsible for the NOD.H2h4 phenotype are unknown. Extending serendipitous observations from crossing BALB/c to NOD.H2h4 mice, thyroid autoimmunity was investigated in both genders of the F1, F2, and the second-generation backcross of F1 to NOD.H2h4 (N2). Medium-density linkage analysis was performed on thyroid autoimmunity traits in F2 and N2 progeny. TgAb develop before TPOAb and were measured after 8 and 16 weeks of iodide exposure; TPOAb and thyroiditis were studied at 16 weeks. TgAb, TPOAb, and thyroiditis, absent in BALB/c and F1 mice, developed in most NOD.H2h4 and in more N2 than F2 progeny. No linkages were observed in F2 progeny, probably because of the small number of autoantibody-positive mice. In N2 progeny (equal numbers of males and females), a chromosome 17 locus is linked to thyroiditis and TgAb and is suggestively linked to TPOAb. This locus includes MHC region genes from B10.A(4R) mice (such as I-Ak and Tnf, the latter involved in thyrocyte apoptosis) and genes from NOD mice such as Satb1, which most likely plays a role in immune tolerance. In conclusion, MHC and non-MHC genes, encoded within the chromosome 17 locus from both B10.A(4R) and NOD strains, are most likely responsible for the Hashimoto disease–like phenotype of NOD.H2h4 mice. PMID:28323998

  17. Genes Outside the Major Histocompatibility Complex Locus Are Linked to the Development of Thyroid Autoantibodies and Thyroiditis in NOD.H2h4 Mice.

    PubMed

    McLachlan, Sandra M; Lesage, Sylvie; Collin, Roxanne; Banuelos, Bianca; Aliesky, Holly A; Rapoport, Basil

    2017-04-01

    Thyroiditis and autoantibodies to thyroglobulin (TgAb) and thyroid peroxidase (TPOAb) develop spontaneously in NOD.H2h4 mice, a phenotype enhanced by dietary iodine. NOD.H2h4 mice were derived by introducing the major histocompatibility class (MHC) molecule I-Ak from B10.A(4R) mice to nonobese diabetic (NOD) mice. Apart from I-Ak, the genes responsible for the NOD.H2h4 phenotype are unknown. Extending serendipitous observations from crossing BALB/c to NOD.H2h4 mice, thyroid autoimmunity was investigated in both genders of the F1, F2, and the second-generation backcross of F1 to NOD.H2h4 (N2). Medium-density linkage analysis was performed on thyroid autoimmunity traits in F2 and N2 progeny. TgAb develop before TPOAb and were measured after 8 and 16 weeks of iodide exposure; TPOAb and thyroiditis were studied at 16 weeks. TgAb, TPOAb, and thyroiditis, absent in BALB/c and F1 mice, developed in most NOD.H2h4 and in more N2 than F2 progeny. No linkages were observed in F2 progeny, probably because of the small number of autoantibody-positive mice. In N2 progeny (equal numbers of males and females), a chromosome 17 locus is linked to thyroiditis and TgAb and is suggestively linked to TPOAb. This locus includes MHC region genes from B10.A(4R) mice (such as I-Ak and Tnf, the latter involved in thyrocyte apoptosis) and genes from NOD mice such as Satb1, which most likely plays a role in immune tolerance. In conclusion, MHC and non-MHC genes, encoded within the chromosome 17 locus from both B10.A(4R) and NOD strains, are most likely responsible for the Hashimoto disease-like phenotype of NOD.H2h4 mice. Copyright © 2017 Endocrine Society.

  18. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Diagnostic surveillance program for H5/H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... antigen detection test. Memoranda of understanding or other means must be used to establish testing and...

  19. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Diagnostic surveillance program for H5/H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... antigen detection test. Memoranda of understanding or other means must be used to establish testing and...

  20. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Diagnostic surveillance program for H5/H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... antigen detection test. Memoranda of understanding or other means must be used to establish testing and...

  1. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Diagnostic surveillance program for H5/H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... antigen detection test. Memoranda of understanding or other means must be used to establish testing and...

  2. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Diagnostic surveillance program for H5/H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... antigen detection test. Memoranda of understanding or other means must be used to establish testing and...

  3. anticonvulsant and toxicity evaluation of newer 4H-benzo[1,4]oxazin-3-ones: The effect of two hydrogen bonding domains.

    PubMed

    Siddiqui, Nadeem; Ali, Ruhi; Arshad, M Faiz; Ahsan, Waquar; Ahmed, Sharique; Alam, M Shamsher

    2010-11-01

    A series of (Z)-2-(substituted aryl)-N-(3-oxo-4-(substituted carbamothioyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-7-yl) hydrazine carboxamides (6a-r) was synthesized using 2-amino-5-nitrophenol as a starting material. All the synthesized compounds possessed two hydrogen-bonding domains and their effect on the activity was studied thereof. The anticonvulsant activity was assessed by the maximal electroshock test (MES), subcutaneous pentylenetetrazole test (scPTZ) and intraperitoneal thiosemicarbazide test (ipTSC). Compounds (6b, 6h, 6i, and 6p) were found to be the most potent of the series as they showed 83-100% protection in the MES test. They also displayed considerable activity in the chemically induced seizure tests. Most of the tested compounds were devoid of the neurotoxic and hepatotoxic effects.

  4. Deletion Analysis of the Tumorous-Head (tuh–3) Gene in DROSOPHILA MELANOGASTER

    PubMed Central

    Kuhn, David T.; Woods, Daniel F.; Andrew, Deborah J.

    1981-01-01

    In the presence of the naturally occurring maternal-effect alleles tuh-1h or tuh-1g, the tuh-3 mutant gene can cause the tumorous-head trait or the sac-testis trait. The tuh-3 gene functions as a semidominant in the presence of the tuh-1h maternal effect. Eye-antennal structures are replaced by posterior abdominal tergites and genital structures. If tuh-1h is replaced by its naturally occurring allele tuh-1g, tuh-3 functions as a recessive hypomorph and the defect switches from anterior to posterior structures, with a male genital-disc defect appearing with variable penetrance. Function and regulation of tuh-3+ may better be understood in light of the cytological localization of tuh-3 either adjacent to or as part of the bithorax complex. The tuh-3+ gene product appears to be essential for normal development, at least in the posterior end of the embryo. PMID:6804305

  5. Association of H3K9me3 and H3K27me3 repressive histone marks with breast cancer subtypes in the Nurses' Health Study.

    PubMed

    Healey, Megan A; Hu, Rong; Beck, Andrew H; Collins, Laura C; Schnitt, Stuart J; Tamimi, Rulla M; Hazra, Aditi

    2014-10-01

    Repressive histone tail modifications have been associated with molecular breast cancer subtypes. We investigated whether histone 3 lysine 9 trimethylation (H3K9me3) and histone 3 lysine 27 trimethylation (H3K27me3) were associated with tumor features and subtypes while adjusting for prospectively collected reproductive and lifestyle breast cancer risk factors. We have tissue microarray data with immunohistochemical marker information on 804 incident cases of invasive breast cancer diagnosed from 1976-2000 in the Nurses' Health Study. Tissue microarray sections were stained for global H3K9me3 and H3K27me3, and scored into four categories. Multivariate odds ratios (OR) and 95 % confidence intervals (CI) were calculated using logistic regression models for tumor features and subtypes, adjusting for breast cancer risk factors. While there were no significant associations between H3K9me3 and tumor features, H3K27me3 was significantly associated with lower grade tumors compared to high grade tumors in the multivariate model (OR = 1.95, 95 % CI 1.35-2.81, p = 0.0004). H3K27me3 was suggestively associated with estrogen receptor-positive (ER+) tumors (OR = 1.47, 95 % CI 0.97-2.23, p = 0.07). In subtype analyses, H3K27me3 was positively associated with the luminal A subtype compared to all other subtypes (OR = 1.42, 95 % CI 1.14-1.77, p = 0.002), and was inversely associated with HER2-type (OR = 0.58, 95 % CI 0.37-0.91, p = 0.02) and basal-like breast cancer (OR = 0.52, 95 % CI 0.36-0.76, p = 0.0006). In the largest immunohistochemical examination of H3K9me3 and H3K27me3 in breast cancer, we found that H3K27me3 positivity, but not H3K9me3, was associated with lower grade tumors and the luminal A subtype after adjusting for reproductive and lifestyle breast cancer risk factors.

  6. Uptake of /sup 3/H-choline and synthesis of /sup 3/H-acetylcholine by human penile corpus cavernosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanco, R.; Saenz de Tejada, I.; Azadzoi, K.

    1986-03-05

    The neuroeffectors which relax penile smooth muscle and lead to erection are unknown; physiological studies of human corpus cavernosum, in vitro, have suggested a significant role of cholinergic neurotransmission. To further characterize the importance of cholinergic nerves, biopsies of human corpus cavernosum were obtained at the time of penile prosthesis implantation. Tissues were incubated in /sup 3/H-choline (10/sup -5/M, 80 Ci/mmol) in oxygenated physiological salt solution at 37/sup 0/C, pH 7.4 for 1 hour. Radiolabelled compounds were extracted with perchloric acid (0.4 M) and acetylcholine and choline were separated by HPLC; /sup 14/C-acetylcholine was used as internal standard. /sup 3/H-cholinemore » was accumulated by the tissues (20 +/- 1.9 fmol/mg), and /sup 3/H-acetylcholine was synthesized (4.0 +/- 1.1 fmol/mg). In control experiments, heating of the tissue blocked synthesis of /sup 3/H-acetylcholine. Inhibition of high affinity choline transport by hemicholinium-3 (10/sup -5/M) diminished tissue accumulation of /sup 3/H-choline and significantly reduced the synthesis of /sup 3/H-acetylcholine (0.5 +/ 0.2 fmol/mg, p < 0.05). These results provide direct evidence of neuronal accumulation of choline and enzymatic conversion to acetylcholine in human corpus cavernosum. Taken together with the physiological studies, it can be concluded that cholinergic neurotransmission in human corpus cavernosum plays a role in penile erection.« less

  7. A computational approach to candidate gene prioritization for X-linked mental retardation using annotation-based binary filtering and motif-based linear discriminatory analysis

    PubMed Central

    2011-01-01

    Background Several computational candidate gene selection and prioritization methods have recently been developed. These in silico selection and prioritization techniques are usually based on two central approaches - the examination of similarities to known disease genes and/or the evaluation of functional annotation of genes. Each of these approaches has its own caveats. Here we employ a previously described method of candidate gene prioritization based mainly on gene annotation, in accompaniment with a technique based on the evaluation of pertinent sequence motifs or signatures, in an attempt to refine the gene prioritization approach. We apply this approach to X-linked mental retardation (XLMR), a group of heterogeneous disorders for which some of the underlying genetics is known. Results The gene annotation-based binary filtering method yielded a ranked list of putative XLMR candidate genes with good plausibility of being associated with the development of mental retardation. In parallel, a motif finding approach based on linear discriminatory analysis (LDA) was employed to identify short sequence patterns that may discriminate XLMR from non-XLMR genes. High rates (>80%) of correct classification was achieved, suggesting that the identification of these motifs effectively captures genomic signals associated with XLMR vs. non-XLMR genes. The computational tools developed for the motif-based LDA is integrated into the freely available genomic analysis portal Galaxy (http://main.g2.bx.psu.edu/). Nine genes (APLN, ZC4H2, MAGED4, MAGED4B, RAP2C, FAM156A, FAM156B, TBL1X, and UXT) were highlighted as highly-ranked XLMR methods. Conclusions The combination of gene annotation information and sequence motif-orientated computational candidate gene prediction methods highlight an added benefit in generating a list of plausible candidate genes, as has been demonstrated for XLMR. Reviewers: This article was reviewed by Dr Barbara Bardoni (nominated by Prof Juergen Brosius

  8. Study on the generation technology of Li brocade pattern mutant genes based on the AI and Java technology

    NASA Astrophysics Data System (ADS)

    Zhou, Yuping; Zhang, Qi

    2018-04-01

    In the information environment, digital and information processing to Li brocade patterns reveals an important means of Li ethnic style and inheriting the national culture. Adobe Illustrator CS3 and Java language were used in the paper to make "variation" processing to Li brocade patterns, and generate "Li brocade pattern mutant genes". The generation of pattern mutant genes includes color mutation, shape mutation, adding and missing transform, and twisted transform, etc. Research shows that Li brocade pattern mutant genes can be generated by using the Adobe Illustrator CS3 and the image processing tools of Java language edit, etc.

  9. H3K9me3 Inhibition Improves Memory, Promotes Spine Formation, and Increases BDNF Levels in the Aged Hippocampus

    PubMed Central

    Prieto, G. Aleph; Petrosyan, Arpine; Loertscher, Brad M.; Dieskau, André P.; Overman, Larry E.; Cotman, Carl W.

    2016-01-01

    An increasing number of studies show that an altered epigenetic landscape may cause impairments in regulation of learning and memory-related genes within the aged hippocampus, eventually resulting in cognitive deficits in the aged brain. One such epigenetic repressive mark is trimethylation of H3K9 (H3K9me3), which is typically implicated in gene silencing. Here, we identify, for the first time, an essential role for H3K9me3 and its histone methyl transferase (SUV39H1) in mediating hippocampal memory functions. Pharmacological inhibition of SUV39H1 using a novel and selective inhibitor decreased levels of H3K9me3 in the hippocampus of aged mice, and improved performance in the objection location memory and fear conditioning tasks and in a complex spatial environment learning task. The inhibition of SUV39H1 induced an increase in spine density of thin and stubby but not mushroom spines in the hippocampus of aged animals and increased surface GluR1 levels in hippocampal synaptosomes, a key index of spine plasticity. Furthermore, there were changes at BDNF exon I gene promoter, in concert with overall BDNF levels in the hippocampus of drug-treated animals compared with control animals. Together, these data demonstrate that SUV39H1 inhibition and the concomitant H3K9me3 downregulation mediate gene transcription in the hippocampus and reverse age-dependent deficits in hippocampal memory. SIGNIFICANCE STATEMENT Cognitive decline is a debilitating condition associated with not only neurodegenerative diseases but also aging in general. However, effective treatments have been slow to emerge so far. In this study, we demonstrate that epigenetic regulation of key synaptic proteins may be an underlying, yet reversible, cause of this decline. Our findings suggest that histone 3 trimethylation is a probable target for pharmacological intervention that can counteract cognitive decline in the aging brain. Finally, we provide support to the hypothesis that, by manipulating the

  10. Limited phenotypic variation of hypocalcified amelogenesis imperfecta in a Danish five-generation family with a novel FAM83H nonsense mutation.

    PubMed

    Haubek, Dorte; Gjørup, Hans; Jensen, Lillian G; Juncker, Inger; Nyegaard, Mette; Børglum, Anders D; Poulsen, Sven; Hertz, Jens M

    2011-11-01

    BACKGROUND.  Autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI) is a disease with severe dental manifestations. OBJECTIVES.  The aims were by means of a genome-wide linkage scan to search for the gene underlying the ADHCAI phenotype in a Danish five-generation family and to study the phenotypic variation of the enamel in affected family members. RESULTS.  Significant linkage was found to a locus at chromosome 8q24.3 comprising the gene FAM83H identified to be responsible for ADHCAI in other families. Subsequent sequencing of FAM83H in affected family members revealed a novel nonsense mutation, p.Y302X. Limited phenotypic variation was found among affected family members with loss of translucency and discoloration of the enamel. Extensive posteruptive loss of enamel was found in all teeth of affected subjects. The tip of the cusps on the premolars and molars and a zone along the gingival margin seemed resistant to posteruptive loss of enamel. We have screened FAM83H in another five unrelated Danish patients with a phenotype of ADHCAI similar to that in the five-generation family, and identified a de novo FAM83H nonsense mutation, p.Q452X in one of these patients. CONCLUSION.  We have identified a FAM83H mutation in two of six unrelated families with ADHCAI and found limited phenotypic variation of the enamel in these patients. © 2011 The Authors. International Journal of Paediatric Dentistry © 2011 BSPD, IAPD and Blackwell Publishing Ltd.

  11. Comparative interactomics: analysis of arabidopsis 14-3-3 complexes reveals highly conserved 14-3-3 interactions between humans and plants.

    PubMed

    Paul, Anna-Lisa; Liu, Li; McClung, Scott; Laughner, Beth; Chen, Sixue; Ferl, Robert J

    2009-04-01

    As a first step in the broad characterization of plant 14-3-3 multiprotein complexes in vivo, stringent and specific antibody affinity purification was used to capture 14-3-3s together with their interacting proteins from extracts of Arabidopsis cell suspension cultures. Approximately 120 proteins were identified as potential in vivo 14-3-3 interacting proteins by mass spectrometry of the recovered complexes. Comparison of the proteins in this data set with the 14-3-3 interacting proteins from a similar study in human embryonic kidney cell cultures revealed eight interacting proteins that likely represent reasonably abundant, fundamental 14-3-3 interaction complexes that are highly conserved across all eukaryotes. The Arabidopsis 14-3-3 interaction data set was also compared to a yeast in vivo 14-3-3 interaction data set. Four 14-3-3 interacting proteins are conserved in yeast, humans, and Arabidopsis. Comparisons of the data sets based on biochemical function revealed many additional similarities in the human and Arabidopsis data sets that represent conserved functional interactions, while also leaving many proteins uniquely identified in either Arabidopsis or human cells. In particular, the Arabidopsis interaction data set is enriched for proteins involved in metabolism.

  12. Allelic variation in ApoC3, ApoA5 and LPL genes and first and second generation antipsychotic effects on serum lipids in patients with schizophrenia.

    PubMed

    Smith, R C; Segman, R H; Golcer-Dubner, T; Pavlov, V; Lerer, B

    2008-06-01

    Schizophrenic patients who are treated with antipsychotics, especially second generation antipsychotics, such as clozapine and olanzapine, manifest an increase in cholesterol and triglycerides as well as other changes associated with diabetes or the metabolic syndrome. Previous studies have shown that polymorphisms in several genes that regulate lipid metabolism can influence the levels of these lipids and response to drug treatment. We have investigated in an exploratory study whether polymorphisms in the apolipoprotein C-III (ApoC3), apolipoprotein A-V gene (ApoA5) and lipoprotein lipase genes influence differential lipid response to treatment with three second generation antipsychotics-olanzapine, clozapine and risperidone-or treatment with a first generation antipsychotic. A total of 189 patients with schizophrenia or schizoaffective disorder who were being treated with a single antipsychotic were studied in a cross-sectional study design in which fasting serum cholesterol and triglycerides and selected single-nucleotide polymorphosms (SNPs) in the three lipid metabolism genes were assessed. The treatment with antipsychotic monotherapy makes drug haplotype ascertainment less complex. Our analyses showed several nominally significant drug x gene and drug x haplotype interactions. The rarer C allele or the ApoA5_1131 (T/C) SNP was associated with higher cholesterol levels in patients treated with first generation antipsychotics and lower cholesterol levels in patients treated with olanzapine or clozapine. The rarer C allele of the ApoA5_SW19 (G/C) SNP was associated with higher cholesterol in risperidone-treated patients. An ApoA5 CG haplotype was associated with decreased cholesterol in olanzapine- or clozapine-treated patients and higher cholesterol in patients treated with first generation antipsychotics. The presence of the rarer T allele of the ApoC3_1100 (C/T) SNP or the presence of the ApoC3 TG haplotype was associated with decreased triglyceride levels in

  13. Structurally characterized 1,1,3,3-tetramethylguanidine solvated magnesium aryloxide complexes: [Mg(mu-OEt)(DBP)(H-TMG)]2, [Mg(mu-OBc)(DBP)(H-TMG)]2, [Mg(mu-TMBA)(DBP)(H-TMG)]2, [Mg(mu-DPP)(DBP)(H-TMG)]2, [Mg(BMP)2(H-TMG)2], [Mg(O-2,6-Ph2C6H3)2 (H-TMG)2].

    PubMed

    Monegan, Jessie D; Bunge, Scott D

    2009-04-06

    The synthesis and structural characterization of several 1,1,3,3-tetramethylguanidine (H-TMG) solvated magnesium aryloxide complexes are reported. Bu(2)Mg was successfully reacted with H-TMG, HOC(6)H(3)(CMe(3))(2)-2,6 (H-DBP), and either ethanol, a carboxylic acid, or diphenyl phosphate in a 1:1 ratio to yield the corresponding [Mg(mu-L)(DBP)(H-TMG)](2) where L = OCH(2)CH(3) (OEt, 1), O(2)CC(CH(3))(3) (OBc, 2), O(2)C(C(6)H(2)-2,4,6-(CH(3))(3)) (TMBA, 3), or O(2)P(OC(6)H(5))(2) (DPP, 4). Bu(2)Mg was also reacted with two equivalents of H-TMG and HOC(6)H(3)(CMe(3))-2-(CH(3))-6 (BMP) or HO-2,6-Ph(2)C(6)H(3) to yield [Mg(BMP)(2)(H-TMG)(2)] (5) and [Mg(O-2,6-Ph(2)C(6)H(3))(2)(H-TMG)(2)] (6). Compounds 1-6 were characterized by single-crystal X-ray diffraction. Polymerization of l- and rac-lactide with 1 was found to generate polylactide (PLA). A discussion concerning the relevance of compounds 2 - 4 to the structure of Mg-activated phosphatase enzymes is also provided. The bulk powders for all complexes were found to be in agreement with the crystal structures based on elemental analyses, FT-IR spectroscopy, and (1)H, (13)C and (31)P NMR studies.

  14. Follicular lymphomas with and without translocation t(14;18) differ in gene expression profiles and genetic alterations

    PubMed Central

    Leich, Ellen; Salaverria, Itziar; Bea, Silvia; Zettl, Andreas; Wright, George; Moreno, Victor; Gascoyne, Randy D.; Chan, Wing-Chung; Braziel, Rita M.; Rimsza, Lisa M.; Weisenburger, Dennis D.; Delabie, Jan; Jaffe, Elaine S.; Lister, Andrew; Fitzgibbon, Jude; Staudt, Louis M.; Hartmann, Elena M.; Mueller-Hermelink, Hans-Konrad; Campo, Elias; Ott, German

    2009-01-01

    Follicular lymphoma (FL) is genetically characterized by the presence of the t(14;18)(q32;q21) chromosomal translocation in approximately 90% of cases. In contrast to FL carrying the t(14;18), their t(14;18)-negative counterparts are less well studied about their immunohistochemical, genetic, molecular, and clinical features. Within a previously published series of 184 FLs grades 1 to 3A with available gene expression data, we identified 17 FLs lacking the t(14;18). Comparative genomic hybridization and high-resolution single nucleotide polymorphism (SNP) array profiling showed that gains/amplifications of the BCL2 gene locus in 18q were restricted to the t(14;18)-positive FL subgroup. A comparison of gene expression profiles showed an enrichment of germinal center B cell–associated signatures in t(14;18)-positive FL, whereas activated B cell–like, NFκB, proliferation, and bystander cell signatures were enriched in t(14;18)-negative FL. These findings were confirmed by immunohistochemistry in an independent validation series of 84 FLs, in which 32% of t(14;18)-negative FLs showed weak or absent CD10 expression and 91% an increased Ki67 proliferation rate. Although overall survival did not differ between FL with and without t(14;18), our findings suggest distinct molecular features of t(14;18)-negative FL. PMID:19471018

  15. Epigenetic signatures of autism: trimethylated H3K4 landscapes in prefrontal neurons.

    PubMed

    Shulha, Hennady P; Cheung, Iris; Whittle, Catheryne; Wang, Jie; Virgil, Daniel; Lin, Cong L; Guo, Yin; Lessard, Andree; Akbarian, Schahram; Weng, Zhiping

    2012-03-01

    Neuronal dysfunction in cerebral cortex and other brain regions could contribute to the cognitive and behavioral defects in autism. To characterize epigenetic signatures of autism in prefrontal cortex neurons. We performed fluorescence-activated sorting and separation of neuronal and nonneuronal nuclei from postmortem prefrontal cortex, digested the chromatin with micrococcal nuclease, and deeply sequenced the DNA from the mononucleosomes with trimethylated H3K4 (H3K4me3), a histone mark associated with transcriptional regulation. Approximately 15 billion base pairs of H3K4me3-enriched sequences were collected from 32 brains. Academic medical center. A total of 16 subjects diagnosed as having autism and 16 control subjects ranging in age from 0.5 to 70 years. Identification of genomic loci showing autism-associated H3K4me3 changes in prefrontal cortex neurons. Subjects with autism showed no evidence for generalized disruption of the developmentally regulated remodeling of the H3K4me3 landscape that defines normal prefrontal cortex neurons in early infancy. However, excess spreading of H3K4me3 from the transcription start sites into downstream gene bodies and upstream promoters was observed specifically in neuronal chromatin from 4 of 16 autism cases but not in controls. Variable subsets of autism cases exhibit altered H3K4me3 peaks at numerous genes regulating neuronal connectivity, social behaviors, and cognition, often in conjunction with altered expression of the corresponding transcripts. Autism-associated H3K4me3 peaks were significantly enriched in genes and loci implicated in neurodevelopmental diseases. Prefrontal cortex neurons from subjects with autism show changes in chromatin structures at hundreds of loci genome-wide, revealing considerable overlap between genetic and epigenetic risk maps of developmental brain disorders.

  16. Epstein-Barr virus-induced gene 3 (EBI3) polymorphisms and expression are associated with susceptibility to pulmonary tuberculosis.

    PubMed

    Zheng, Ruijuan; Liu, Haipeng; Song, Peng; Feng, Yonghong; Qin, Lianhua; Huang, Xiaochen; Chen, Jianxia; Yang, Hua; Liu, Zhonghua; Cui, Zhenglin; Hu, Zhongyi; Ge, Baoxue

    2015-07-01

    Tuberculosis (TB) remains a major global health problem and host genetic factors play a critical role in susceptibility and resistance to TB. The aim of this study was to identify novel candidate genes associated with TB susceptibility. We performed a population-based case-control study to genotype 13 tag SNPs spanning Epstein-Barr virus-induced gene 3 (EBI3), colony stimulating factor 2 (CSF2), IL-4, interferon beta 1 (IFNB1), chemokine (C-X-C motif) ligand 14 (CXCL14) and myeloid differentiation primary response gene 88 (Myd88) genes in 435 pulmonary TB patients and 375 health donors from China. We observed that EBI3 gene rs4740 polymorphism was associated with susceptibility to pulmonary tuberculosis (PTB) and the allele G was associated with a protective effect against PTB. Furthermore, EBI3 deficiency led to reduced bacterial burden and histopathological impairment in the lung of mice infected with Mycobacterium bovis BCG. Meanwhile, higher abundance of EBI3 was observed in the granuloma of PTB patients and in the lung tissue of BCG-infected mice. Of note, the expression of EBI3 in macrophages was remarkably induced by mycobacteria infection at both mRNA and protein level. In conclusion, EBI3 gene rs4740 polymorphism is closely associated with susceptibility to PTB and the elevation and enrichment of EBI3 in the lung which at least partially derived from macrophages may contribute to the exacerbation of mycobacterial infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Benzene-1,4-diol–5-(1H-imidazol-1-yl)pyrimidine (1/1)

    PubMed Central

    Jiang, Yan-Ke; Hou, Gui-Ge

    2011-01-01

    The asymmetric unit of title compound, C7H6N4·C6H6O2, contains one 5-(1H-imidazol-1-yl)pyrimidine mol­ecule and two half benzene-1,4-diol mol­ecules; the benzene-1,4-diol mol­ecules are located on individual inversion centers. In the pyrimidine mol­ecule, the imidazole ring is twisted with respect to the pyrimidine ring at a dihedral angle of 25.73 (7)°. In the crystal, O—H⋯N hydrogen bonds link the mol­ecules to form supra­molecular chains. π–π stacking is also observed in the crystal, the centroid–centroid distance between parallel imdazole rings being 3.5543 (16) Å. PMID:22220081

  18. Triple-reassortant influenza A virus with H3 of human seasonal origin, NA of swine origin, and internal A(H1N1) pandemic 2009 genes is established in Danish pigs.

    PubMed

    Krog, Jesper Schak; Hjulsager, Charlotte Kristiane; Larsen, Michael Albin; Larsen, Lars Erik

    2017-05-01

    This report describes a triple-reassortant influenza A virus with a HA that resembles H3 of human seasonal influenza from 2004 to 2005, N2 from influenza A virus already established in swine, and the internal gene cassette from A(H1N1)pdm09 has spread in Danish pig herds. The virus has been detected in several Danish pig herds during the last 2-3 years and may possess a challenge for human as well as animal health. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  19. The synthesis and the luminescence properties of Sr2Ga3La1-xDyxGe3O14

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Mu, Zhongfei; Yang, Lurong; Zhang, Shaoan; Zhu, Daoyun; Yang, Yibin; Luo, Dongxiang; Wu, Fugen

    2018-02-01

    A series of Sr2Ga3La1-xDyxGe3O14 (x = 0, 0.015, 0.03, 0.045, 0.06, 0.075, 0.09) phosphors were synthesized by high temperature solid state reactions. X-ray diffraction analysis proves that single-phase Sr2Ga3La1-xDyxGe3O14 (0 ≤ x ≤ 0.09) has been obtained. The particle size of these powders is in the range from 1 to 3 μm. The host Sr2Ga3LaGe3O14 emits blue white light under the excitation of 260 nm ultraviolet light. Dy3+ doped samples can be effectively excited with near ultraviolet light and exhibit two emission bands in the blue (4F9/2 → 6H15/2) and yellow regions (4F9/2 → 6H13/2), which can form white light. Present research indicates that Dy3+ doped Sr2Ga3LaGe3O14 have the potential to be a single-phase full-color emitting phosphor.

  20. β-1,4-Glucanase-like protein from the cyanobacterium Synechocystis PCC6803 is a β-1,3-1,4-glucanase and functions in salt stress tolerance

    PubMed Central

    Tamoi, Masahiro; Kurotaki, Hideki; Fukamizo, Tamo

    2007-01-01

    In the present study, we characterized the gene (Cyanobase accession number slr0897) designated Ssglc encoding a β-1,4-glucanase-like protein (SsGlc) from Synechocystis PCC6803. The deduced amino acid sequence for Ssglc showed a high degree of similarity to sequences of GH (glycoside hydrolase) family 9 β-1,4-glucanases (cellulases) from various sources. Surprisingly, the recombinant protein obtained from the Escherichia coli expression system was able to hydrolyse barley β-glucan and lichenan (β-1,3-1,4-glucan), but not cellulose (β-1,4-glucan), curdlan (β-1,3-glucan), or laminarin (β-1,3-1,6-glucan). A 1H-NMR analysis of the enzymatic products revealed that the enzyme hydrolyses the β-1,4-glycosidic linkage of barley β-glucan through an inverting mechanism. The data indicated that SsGlc was a novel type of GH9 glucanase which could specifically hydrolyse the β-1,3-1,4-linkage of glucan. The growth of mutant Synechocystis cells in which the Ssglc gene was disrupted by a kanamycin-resistance cartridge gene was almost the same as that of the wild-type cells under continuous light (40 μmol of photons/m2 per s), a 12 h light (40 μmol of photons/m2 per s)/12 h dark cycle, cold stress (4 °C), and high light stress (200 μmol of photons/m2 per s). However, under salt stress (300–450 mM NaCl), growth of the Ssglc-disrupted mutant cells was significantly inhibited as compared with that of the wild-type cells. The Ssglc-disrupted mutant cells showed a decreased rate of O2 consumption and NaHCO3-dependent O2 evolution as compared with the wild-type cells under salt stress. Under osmotic stress (100–400 mM sorbitol), there was no difference in growth between the wild-type and the Ssglc-disrupted mutant cells. These results suggest that SsGlc functions in salt stress tolerance in Synechocystis PCC6803. PMID:17331074