Sample records for zcosmos redshift survey

  1. zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Lilly, S. J.; Le Fèvre, O.; Renzini, A.; Zamorani, G.; Scodeggio, M.; Contini, T.; Carollo, C. M.; Hasinger, G.; Kneib, J.-P.; Iovino, A.; Le Brun, V.; Maier, C.; Mainieri, V.; Mignoli, M.; Silverman, J.; Tasca, L. A. M.; Bolzonella, M.; Bongiorno, A.; Bottini, D.; Capak, P.; Caputi, K.; Cimatti, A.; Cucciati, O.; Daddi, E.; Feldmann, R.; Franzetti, P.; Garilli, B.; Guzzo, L.; Ilbert, O.; Kampczyk, P.; Kovac, K.,; Lamareille, F.; Leauthaud, A.; Le Borgne, J.-F.; McCracken, H. J.; Marinoni, C.; Pello, R.; Ricciardelli, E.; Scarlata, C.; Vergani, D.; Sanders, D. B.; Schinnerer, E.; Scoville, N.; Taniguchi, Y.; Arnouts, S.; Aussel, H.; Bardelli, S.; Brusa, M.; Cappi, A.; Ciliegi, P.; Finoguenov, A.; Foucaud, S.; Franceschini, A.; Halliday, C.; Impey, C.; Knobel, C.; Koekemoer, A.; Kurk, J.; Maccagni, D.; Maddox, S.; Marano, B.; Marconi, G.; Meneux, B.; Mobasher, B.; Moreau, C.; Peacock, J. A.; Porciani, C.; Pozzetti, L.; Scaramella, R.; Schiminovich, D.; Shopbell, P.; Smail, I.; Thompson, D.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Zucca, E.

    2007-09-01

    zCOSMOS is a large-redshift survey that is being undertaken in the COSMOS field using 600 hr of observation with the VIMOS spectrograph on the 8 m VLT. The survey is designed to characterize the environments of COSMOS galaxies from the 100 kpc scales of galaxy groups up to the 100 Mpc scale of the cosmic web and to produce diagnostic information on galaxies and active galactic nuclei. The zCOSMOS survey consists of two parts: (1) zCOSMOS-bright, a magnitude-limited I-band IAB<22.5 sample of about 20,000 galaxies with 0.1survey parameters at z~0.7 are designed to be directly comparable to those of the 2dFGRS at z~0.1 and (2) zCOSMOS-deep, a survey of approximately 10,000 galaxies selected through color-selection criteria to have 1.4survey design and the construction of the target catalogs and briefly outlines the observational program and the data pipeline. In the first observing season, spectra of 1303 zCOSMOS-bright targets and 977 zCOSMOS-deep targets have been obtained. These are briefly analyzed to demonstrate the characteristics that may be expected from zCOSMOS, and particularly zCOSMOS-bright, when it is finally completed between 2008 and 2009. The power of combining spectroscopic and photometric redshifts is demonstrated, especially in correctly identifying the emission line in single-line spectra and in determining which of the less reliable spectroscopic redshifts are correct and which are incorrect. These techniques bring the overall success rate in the zCOSMOS-bright so far to almost 90% and to above 97% in the 0.5redshift range. Our zCOSMOS-deep spectra demonstrate the power of our selection techniques to isolate high-redshift galaxies at 1.4redshifts using ultraviolet absorption lines. Based on observations undertaken at the European Southern Observatory (ESO) Very Large Telescope

  2. Extreme emission-line galaxies out to z ~ 1 in zCOSMOS. I. Sample and characterization of global properties

    NASA Astrophysics Data System (ADS)

    Amorín, R.; Pérez-Montero, E.; Contini, T.; Vílchez, J. M.; Bolzonella, M.; Tasca, L. A. M.; Lamareille, F.; Zamorani, G.; Maier, C.; Carollo, C. M.; Kneib, J.-P.; Le Fèvre, O.; Lilly, S.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Bardelli, S.; Bongiorno, A.; Caputi, K.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovač, K.; Le Borgne, J.-F.; Le Brun, V.; Mignoli, M.; Pellò, R.; Peng, Y.; Presotto, V.; Ricciardelli, E.; Silverman, J. D.; Tanaka, M.; Tresse, L.; Vergani, D.; Zucca, E.

    2015-06-01

    Context. The study of large and representative samples of low-metallicity star-forming galaxies at different cosmic epochs is of great interest to the detailed understanding of the assembly history and evolution of low-mass galaxies. Aims: We present a thorough characterization of a large sample of 183 extreme emission-line galaxies (EELGs) at redshift 0.11 ≤ z ≤ 0.93 selected from the 20k zCOSMOS bright survey because of their unusually large emission line equivalent widths. Methods: We use multiwavelength COSMOS photometry, HST-ACS I-band imaging, and optical zCOSMOS spectroscopy to derive the main global properties of star-forming EELGs, such as sizes, stellar masses, star formation rates (SFR), and reliable oxygen abundances using both "direct" and "strong-line" methods. Results: The EELGs are extremely compact (r50 ~ 1.3 kpc), low-mass (M∗ ~ 107-1010 M⊙) galaxies forming stars at unusually high specific star formation rates (sSFR ≡ SFR/M⋆ up to 10-7 yr-1) compared to main sequence star-forming galaxies of the same stellar mass and redshift. At rest-frame UV wavelengths, the EELGs are luminous and show high surface brightness and include strong Lyα emitters, as revealed by GALEX spectroscopy. We show that zCOSMOS EELGs are high-ionization, low-metallicity systems, with median 12+log (O/H) = 8.16 ± 0.21 (0.2 Z⊙) including a handful of extremely metal-deficient (<0.1 Z⊙) EELGs. While ~80% of the EELGs show non-axisymmetric morphologies, including clumpy and cometary or tadpole galaxies, we find that ~29% of them show additional low-surface-brightness features, which strongly suggests recent or ongoing interactions. As star-forming dwarfs in the local Universe, EELGs are most often found in relative isolation. While only very few EELGs belong to compact groups, almost one third of them are found in spectroscopically confirmed loose pairs or triplets. Conclusions: The zCOSMOS EELGs are galaxies caught in a transient and probably early period of

  3. Redshift surveys

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.; Huchra, J. P.

    1991-01-01

    Present-day understanding of the large-scale galaxy distribution is reviewed. The statistics of the CfA redshift survey are briefly discussed. The need for deeper surveys to clarify the issues raised by recent studies of large-scale galactic distribution is addressed.

  4. Clustering in the SDSS Redshift Survey

    NASA Astrophysics Data System (ADS)

    Zehavi, I.; Blanton, M. R.; Frieman, J. A.; Weinberg, D. H.; SDSS Collaboration

    2002-05-01

    We present measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our current sample consists of roughly 80,000 galaxies with redshifts in the range 0.02 < z < 0.2, covering about 1200 square degrees. We measure the clustering in redshift space and in real space. The two-dimensional correlation function ξ (rp,π ) shows clear signatures of redshift distortions, both the small-scale ``fingers-of-God'' effect and the large-scale compression. The inferred real-space correlation function is well described by a power law. The SDSS is especially suitable for investigating the dependence of clustering on galaxy properties, due to the wealth of information in the photometric survey. We focus on the dependence of clustering on color and on luminosity.

  5. Clustering redshift distributions for the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Helsby, Jennifer

    Accurate determination of photometric redshifts and their errors is critical for large scale structure and weak lensing studies for constraining cosmology from deep, wide imaging surveys. Current photometric redshift methods suffer from bias and scatter due to incomplete training sets. Exploiting the clustering between a sample of galaxies for which we have spectroscopic redshifts and a sample of galaxies for which the redshifts are unknown can allow us to reconstruct the true redshift distribution of the unknown sample. Here we use this method in both simulations and early data from the Dark Energy Survey (DES) to determine the true redshift distributions of galaxies in photometric redshift bins. We find that cross-correlating with the spectroscopic samples currently used for training provides a useful test of photometric redshifts and provides reliable estimates of the true redshift distribution in a photometric redshift bin. We discuss the use of the cross-correlation method in validating template- or learning-based approaches to redshift estimation and its future use in Stage IV surveys.

  6. The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

    NASA Technical Reports Server (NTRS)

    Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc; Faber, S. M.; Coil, Alison L; Guhathakurta, Puraga; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Dutton, Aaron A.; hide

    2013-01-01

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z approx. 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude MB = -20 at z approx. 1 via approx.90 nights of observation on the Keck telescope. The survey covers an area of 2.8 Sq. deg divided into four separate fields observed to a limiting apparent magnitude of R(sub AB) = 24.1. Objects with z approx. < 0.7 are readily identifiable using BRI photometry and rejected in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted approx. 2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z approx. 1.45, where the [O ii] 3727 Ang. doublet lies in the infrared. The DEIMOS 1200 line mm(exp -1) grating used for the survey delivers high spectral resolution (R approx. 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other

  7. Measuring our Universe from Galaxy Redshift Surveys.

    PubMed

    Lahav, Ofer; Suto, Yasushi

    2004-01-01

    Galaxy redshift surveys have achieved significant progress over the last couple of decades. Those surveys tell us in the most straightforward way what our local Universe looks like. While the galaxy distribution traces the bright side of the Universe, detailed quantitative analyses of the data have even revealed the dark side of the Universe dominated by non-baryonic dark matter as well as more mysterious dark energy (or Einstein's cosmological constant). We describe several methodologies of using galaxy redshift surveys as cosmological probes, and then summarize the recent results from the existing surveys. Finally we present our views on the future of redshift surveys in the era of precision cosmology.

  8. A faint field-galaxy redshift survey in quasar fields

    NASA Technical Reports Server (NTRS)

    Yee, Howard K. C.; Ellingson, Erica

    1993-01-01

    Quasars serve as excellent markers for the identification of high-redshift galaxies and galaxy clusters. In past surveys, nearly 20 clusters of Abell richness class 1 or richer associated with quasars in the redshift range 0.2 less than z less than 0.8 were identified. In order to study these galaxy clusters in detail, a major redshift survey of faint galaxies in these fields using the CFHT LAMA/MARLIN multi-object spectroscopy system was carried out. An equally important product in such a survey is the redshifts of the field galaxies not associated with the quasars. Some preliminary results on field galaxies from an interim set of data from our redshift survey in quasar fields are presented.

  9. Redshift Survey Strategies

    NASA Astrophysics Data System (ADS)

    Jones, A. W.; Bland-Hawthorn, J.; Kaiser, N.

    1994-12-01

    In the first half of 1995, the Anglo-Australian Observatory is due to commission a wide field (2.1(deg) ), 400-fiber, double spectrograph system (2dF) at the f/3.3 prime focus of the AAT 3.9m bi-national facility. The instrument should be able to measure ~ 4000 galaxy redshifts (assuming a magnitude limit of b_J ~\\ 20) in a single dark night and is therefore ideally suited to studies of large-scale structure. We have carried out simple 3D numerical simulations to judge the relative merits of sparse surveys and contiguous surveys. We generate a survey volume and fill it randomly with particles according to a selection function which mimics a magnitude-limited survey at b_J = 19.7. Each of the particles is perturbed by a gaussian random field according to the dimensionless power spectrum k(3) P(k) / 2pi (2) determined by Feldman, Kaiser & Peacock (1994) from the IRAS QDOT survey. We introduce some redshift-space distortion as described by Kaiser (1987), a `thermal' component measured from pairwise velocities (Davis & Peebles 1983), and `fingers of god' due to rich clusters at random density enhancements. Our particular concern is to understand how the window function W(2(k)) of the survey geometry compromises the accuracy of statistical measures [e.g., P(k), xi (r), xi (r_sigma ,r_pi )] commonly used in the study of large-scale structure. We also examine the reliability of various tools (e.g. genus) for describing the topological structure within a contiguous region of the survey.

  10. MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masters, Daniel; Steinhardt, Charles; Faisst, Andreas

    2015-11-01

    Calibrating the photometric redshifts of ≳10{sup 9} galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selectedmore » to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where—in galaxy color space—redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color–redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.« less

  11. Redshifts in the Southern Abell Redshift Survey Clusters. I. The Data

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Quintana, H.; Infante, L.; Lambas, D. G.; Muriel, H.

    2005-11-01

    The Southern Abell Redshift Survey (SARS) contains 39 clusters of galaxies with redshifts in the range 0.0redshift depth of z¯=0.0845. SARS covers the region 0deg<δ<-65deg, α<5h,α>21h (while avoiding the LMC and SMC), with |b|>40°. Cluster locations were chosen from the Abell and Abell-Corwin-Olowin catalogs, while galaxy positions were selected from the Automatic Plate Measuring Facility galaxy catalog with extinction-corrected magnitudes in the range 15<=bJ<19. SARS used the Las Campanas 2.5 m du Pont telescope, observing either 65 or 128 objects concurrently over a 1.5 deg2 field. New redshifts for 3440 galaxies are reported in the fields of these 39 clusters of galaxies.

  12. Photometric redshifts for the CFHTLS T0004 deep and wide fields

    NASA Astrophysics Data System (ADS)

    Coupon, J.; Ilbert, O.; Kilbinger, M.; McCracken, H. J.; Mellier, Y.; Arnouts, S.; Bertin, E.; Hudelot, P.; Schultheis, M.; Le Fèvre, O.; Le Brun, V.; Guzzo, L.; Bardelli, S.; Zucca, E.; Bolzonella, M.; Garilli, B.; Zamorani, G.; Zanichelli, A.; Tresse, L.; Aussel, H.

    2009-06-01

    Aims: We compute photometric redshifts in the fourth public release of the Canada-France-Hawaii Telescope Legacy Survey. This unique multi-colour catalogue comprises u^*, g', r', i', z' photometry in four deep fields of 1 deg2 each and 35 deg2 distributed over three wide fields. Methods: We used a template-fitting method to compute photometric redshifts calibrated with a large catalogue of 16 983 high-quality spectroscopic redshifts from the VVDS-F02, VVDS-F22, DEEP2, and the zCOSMOS surveys. The method includes correction of systematic offsets, template adaptation, and the use of priors. We also separated stars from galaxies using both size and colour information. Results: Comparing with galaxy spectroscopic redshifts, we find a photometric redshift dispersion, σΔ z/(1+z_s), of 0.028-0.30 and an outlier rate, |Δ z| ≥ 0.15× (1+z_s), of 3-4% in the deep field at i'_AB < 24. In the wide fields, we find a dispersion of 0.037-0.039 and an outlier rate of 3-4% at i'_AB < 22.5. Beyond i'_AB = 22.5 in the wide fields the number of outliers rises from 5% to 10% at i'_AB < 23 and i'_AB < 24, respectively. For the wide sample the systematic redshift bias stays below 1% to i'_AB < 22.5, whereas we find no significant bias in the deep fields. We investigated the effect of tile-to-tile photometric variations and demonstrated that the accuracy of our photometric redshifts is reduced by at most 21%. Application of our star-galaxy classifier reduced the contamination by stars in our catalogues from 60% to 8% at i'_AB < 22.5 in our field with the highest stellar density while keeping a complete galaxy sample. Our CFHTLS T0004 photometric redshifts are distributed to the community. Our release includes 592891 (i'_AB < 22.5) and 244701 (i'_AB < 24) reliable galaxy photometric redshifts in the wide and deep fields, respectively. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is

  13. Catastrophic photometric redshift errors: Weak-lensing survey requirements

    DOE PAGES

    Bernstein, Gary; Huterer, Dragan

    2010-01-11

    We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number N spec of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of N spec is ~10 6 we findmore » that using only the photometric redshifts with z ≤ 2.5 leads to a drastic reduction in N spec to ~ 30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the z s – z p distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~ 10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. In conclusion, the cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.« less

  14. SHELS: A complete galaxy redshift survey with R ≤ 20.6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, Margaret J.; Hwang, Ho Seong; Fabricant, Daniel G.

    2014-08-01

    The SHELS (Smithsonian Hectospec Lensing Survey) is a complete redshift survey covering two well-separated fields (F1 and F2) of the Deep Lens Survey to a limiting R = 20.6. Here we describe the redshift survey of the F2 field (R.A.{sub 2000} = 09{sup h}19{sup m}32.4 and decl.{sub 2000} = +30°00'00''). The survey includes 16,294 new redshifts measured with the Hectospec on the MMT. The resulting survey of the 4 deg{sup 2} F2 field is 95% complete to R = 20.6, currently the densest survey to this magnitude limit. The median survey redshift is z = 0.3; the survey provides a viewmore » of structure in the range 0.1 ≲ z ≲ 0.6. An animation displays the large-scale structure in the survey region. We provide a redshift, spectral index D {sub n}4000, and stellar mass for each galaxy in the survey. We also provide a metallicity for each galaxy in the range 0.2« less

  15. The SAMI Galaxy Survey: the cluster redshift survey, target selection and cluster properties

    NASA Astrophysics Data System (ADS)

    Owers, M. S.; Allen, J. T.; Baldry, I.; Bryant, J. J.; Cecil, G. N.; Cortese, L.; Croom, S. M.; Driver, S. P.; Fogarty, L. M. R.; Green, A. W.; Helmich, E.; de Jong, J. T. A.; Kuijken, K.; Mahajan, S.; McFarland, J.; Pracy, M. B.; Robotham, A. G. S.; Sikkema, G.; Sweet, S.; Taylor, E. N.; Verdoes Kleijn, G.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Colless, M.; Couch, W. J.; Davies, R. L.; Drinkwater, M. J.; Goodwin, M.; Hopkins, A. M.; Konstantopoulos, I. S.; Foster, C.; Lawrence, J. S.; Lorente, N. P. F.; Medling, A. M.; Metcalfe, N.; Richards, S. N.; van de Sande, J.; Scott, N.; Shanks, T.; Sharp, R.; Thomas, A. D.; Tonini, C.

    2017-06-01

    We describe the selection of galaxies targeted in eight low-redshift clusters (APMCC0917, A168, A4038, EDCC442, A3880, A2399, A119 and A85; 0.029 < z < 0.058) as part of the Sydney-AAO Multi-Object Integral field spectrograph Galaxy Survey (SAMI-GS). We have conducted a redshift survey of these clusters using the AAOmega multi-object spectrograph on the 3.9-m Anglo-Australian Telescope. The redshift survey is used to determine cluster membership and to characterize the dynamical properties of the clusters. In combination with existing data, the survey resulted in 21 257 reliable redshift measurements and 2899 confirmed cluster member galaxies. Our redshift catalogue has a high spectroscopic completeness (˜94 per cent) for rpetro ≤ 19.4 and cluster-centric distances R < 2R200. We use the confirmed cluster member positions and redshifts to determine cluster velocity dispersion, R200, virial and caustic masses, as well as cluster structure. The clusters have virial masses 14.25 ≤ log(M200/M⊙) ≤ 15.19. The cluster sample exhibits a range of dynamical states, from relatively relaxed-appearing systems, to clusters with strong indications of merger-related substructure. Aperture- and point spread function matched photometry are derived from Sloan Digital Sky Survey and VLT Survey Telescope/ATLAS imaging and used to estimate stellar masses. These estimates, in combination with the redshifts, are used to define the input target catalogue for the cluster portion of the SAMI-GS. The primary SAMI-GS cluster targets have R

  16. Photometric Redshifts with the LSST: Evaluating Survey Observing Strategies

    NASA Astrophysics Data System (ADS)

    Graham, Melissa L.; Connolly, Andrew J.; Ivezić, Željko; Schmidt, Samuel J.; Jones, R. Lynne; Jurić, Mario; Daniel, Scott F.; Yoachim, Peter

    2018-01-01

    In this paper we present and characterize a nearest-neighbors color-matching photometric redshift estimator that features a direct relationship between the precision and accuracy of the input magnitudes and the output photometric redshifts. This aspect makes our estimator an ideal tool for evaluating the impact of changes to LSST survey parameters that affect the measurement errors of the photometry, which is the main motivation of our work (i.e., it is not intended to provide the “best” photometric redshifts for LSST data). We show how the photometric redshifts will improve with time over the 10 year LSST survey and confirm that the nominal distribution of visits per filter provides the most accurate photo-z results. The LSST survey strategy naturally produces observations over a range of airmass, which offers the opportunity of using an SED- and z-dependent atmospheric affect on the observed photometry as a color-independent redshift indicator. We show that measuring this airmass effect and including it as a prior has the potential to improve the photometric redshifts and can ameliorate extreme outliers, but that it will only be adequately measured for the brightest galaxies, which limits its overall impact on LSST photometric redshifts. We furthermore demonstrate how this airmass effect can induce a bias in the photo-z results, and caution against survey strategies that prioritize high-airmass observations for the purpose of improving this prior. Ultimately, we intend for this work to serve as a guide for the expectations and preparations of the LSST science community with regard to the minimum quality of photo-z as the survey progresses.

  17. correlcalc: Two-point correlation function from redshift surveys

    NASA Astrophysics Data System (ADS)

    Rohin, Yeluripati

    2017-11-01

    correlcalc calculates two-point correlation function (2pCF) of galaxies/quasars using redshift surveys. It can be used for any assumed geometry or Cosmology model. Using BallTree algorithms to reduce the computational effort for large datasets, it is a parallelised code suitable for running on clusters as well as personal computers. It takes redshift (z), Right Ascension (RA) and Declination (DEC) data of galaxies and random catalogs as inputs in form of ascii or fits files. If random catalog is not provided, it generates one of desired size based on the input redshift distribution and mangle polygon file (in .ply format) describing the survey geometry. It also calculates different realisations of (3D) anisotropic 2pCF. Optionally it makes healpix maps of the survey providing visualization.

  18. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Measuring non-linear galaxy bias at z ~ 0.8

    NASA Astrophysics Data System (ADS)

    Di Porto, C.; Branchini, E.; Bel, J.; Marulli, F.; Bolzonella, M.; Cucciati, O.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Marinoni, C.; Moscardini, L.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Cappi, A.; Coupon, J.; Davidzon, I.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; McCracken, H. J.; Paioro, L.; Polletta, M.; Pollo, A.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Marchetti, A.; Martizzi, D.; Mellier, Y.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Viel, M.; Wolk, M.; Zamorani, G.

    2016-10-01

    Aims: We use the first release of the VImos Public Extragalactic Redshift Survey of galaxies (VIPERS) of ~50 000 objects to measure the biasing relation between galaxies and mass in the redshift range z = [ 0.5,1.1 ]. Methods: We estimate the 1-point distribution function [PDF] of VIPERS galaxies from counts in cells and, assuming a model for the mass PDF, we infer their mean bias relation. The reconstruction of the bias relation is performed through a novel method that accounts for Poisson noise, redshift distortions, inhomogeneous sky coverage. and other selection effects. With this procedure we constrain galaxy bias and its deviations from linearity down to scales as small as 4 h-1 Mpc and out to z = 1.1. Results: We detect small (up to 2%) but statistically significant (up to 3σ) deviations from linear bias. The mean biasing function is close to linear in regions above the mean density. The mean slope of the biasing relation is a proxy to the linear bias parameter. This slope increases with luminosity, which is in agreement with results of previous analyses. We detect a strong bias evolution only for z> 0.9, which is in agreement with some, but not all, previous studies. We also detect a significant increase of the bias with the scale, from 4 to 8 h-1 Mpc , now seen for the first time out to z = 1. The amplitude of non-linearity depends on redshift, luminosity, and scale, but no clear trend is detected. Owing to the large cosmic volume probed by VIPERS, we find that the mismatch between the previous estimates of bias at z ~ 1 from zCOSMOS and VVDS-Deep galaxy samples is fully accounted for by cosmic variance. Conclusions: The results of our work confirm the importance of going beyond the over-simplistic linear bias hypothesis showing that non-linearities can be accurately measured through the applications of the appropriate statistical tools to existing datasets like VIPERS. Based on observations collected at the European Southern Observatory, Paranal, Chile

  19. Optimizing baryon acoustic oscillation surveys - II. Curvature, redshifts and external data sets

    NASA Astrophysics Data System (ADS)

    Parkinson, David; Kunz, Martin; Liddle, Andrew R.; Bassett, Bruce A.; Nichol, Robert C.; Vardanyan, Mihran

    2010-02-01

    We extend our study of the optimization of large baryon acoustic oscillation (BAO) surveys to return the best constraints on the dark energy, building on Paper I of this series by Parkinson et al. The survey galaxies are assumed to be pre-selected active, star-forming galaxies observed by their line emission with a constant number density across the redshift bin. Star-forming galaxies have a redshift desert in the region 1.6 < z < 2, and so this redshift range was excluded from the analysis. We use the Seo & Eisenstein fitting formula for the accuracies of the BAO measurements, using only the information for the oscillatory part of the power spectrum as distance and expansion rate rulers. We go beyond our earlier analysis by examining the effect of including curvature on the optimal survey configuration and updating the expected `prior' constraints from Planck and the Sloan Digital Sky Survey. We once again find that the optimal survey strategy involves minimizing the exposure time and maximizing the survey area (within the instrumental constraints), and that all time should be spent observing in the low-redshift range (z < 1.6) rather than beyond the redshift desert, z > 2. We find that, when assuming a flat universe, the optimal survey makes measurements in the redshift range 0.1 < z < 0.7, but that including curvature as a nuisance parameter requires us to push the maximum redshift to 1.35, to remove the degeneracy between curvature and evolving dark energy. The inclusion of expected other data sets (such as WiggleZ, the Baryon Oscillation Spectroscopic Survey and a stage III Type Ia supernova survey) removes the necessity of measurements below redshift 0.9, and pushes the maximum redshift up to 1.5. We discuss considerations in determining the best survey strategy in light of uncertainty in the true underlying cosmological model.

  20. Designing a space-based galaxy redshift survey to probe dark energy

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Percival, Will; Cimatti, Andrea; Mukherjee, Pia; Guzzo, Luigi; Baugh, Carlton M.; Carbone, Carmelita; Franzetti, Paolo; Garilli, Bianca; Geach, James E.; Lacey, Cedric G.; Majerotto, Elisabetta; Orsi, Alvaro; Rosati, Piero; Samushia, Lado; Zamorani, Giovanni

    2010-12-01

    A space-based galaxy redshift survey would have enormous power in constraining dark energy and testing general relativity, provided that its parameters are suitably optimized. We study viable space-based galaxy redshift surveys, exploring the dependence of the Dark Energy Task Force (DETF) figure-of-merit (FoM) on redshift accuracy, redshift range, survey area, target selection and forecast method. Fitting formulae are provided for convenience. We also consider the dependence on the information used: the full galaxy power spectrum P(k), P(k) marginalized over its shape, or just the Baryon Acoustic Oscillations (BAO). We find that the inclusion of growth rate information (extracted using redshift space distortion and galaxy clustering amplitude measurements) leads to a factor of ~3 improvement in the FoM, assuming general relativity is not modified. This inclusion partially compensates for the loss of information when only the BAO are used to give geometrical constraints, rather than using the full P(k) as a standard ruler. We find that a space-based galaxy redshift survey covering ~20000deg2 over with σz/(1 + z) <= 0.001 exploits a redshift range that is only easily accessible from space, extends to sufficiently low redshifts to allow both a vast 3D map of the universe using a single tracer population, and overlaps with ground-based surveys to enable robust modelling of systematic effects. We argue that these parameters are close to their optimal values given current instrumental and practical constraints.

  1. VizieR Online Data Catalog: hCOSMOS: Hectospec survey of galaxies in COSMOS (Damjanov+, 2018)

    NASA Astrophysics Data System (ADS)

    Damjanov, I.; Zahid, H. J.; Geller, M. J.; Fabricant, D. G.; Hwang, Ho S.

    2018-03-01

    We target galaxies with r-band magnitudes 17.77redshift in the zCOSMOS (Lilly+ 2007, J/ApJS/172/70 ; 2009, J/ApJS/184/218) catalog and 1701 redshifts are completely new. For the galaxies that overlap with zCOSMOS, the Hectospec spectra yield a redshift with a smaller error along with broader wavelength coverage. (1 data file).

  2. THE PRISM MULTI-OBJECT SURVEY (PRIMUS). II. DATA REDUCTION AND REDSHIFT FITTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cool, Richard J.; Moustakas, John; Blanton, Michael R.

    2013-04-20

    The PRIsm MUlti-object Survey (PRIMUS) is a spectroscopic galaxy redshift survey to z {approx} 1 completed with a low-dispersion prism and slitmasks allowing for simultaneous observations of {approx}2500 objects over 0.18 deg{sup 2}. The final PRIMUS catalog includes {approx}130,000 robust redshifts over 9.1 deg{sup 2}. In this paper, we summarize the PRIMUS observational strategy and present the data reduction details used to measure redshifts, redshift precision, and survey completeness. The survey motivation, observational techniques, fields, target selection, slitmask design, and observations are presented in Coil et al. Comparisons to existing higher-resolution spectroscopic measurements show a typical precision of {sigma}{sub z}/(1more » + z) = 0.005. PRIMUS, both in area and number of redshifts, is the largest faint galaxy redshift survey completed to date and is allowing for precise measurements of the relationship between active galactic nuclei and their hosts, the effects of environment on galaxy evolution, and the build up of galactic systems over the latter half of cosmic history.« less

  3. Large-scale fluctuations in the number density of galaxies in independent surveys of deep fields

    NASA Astrophysics Data System (ADS)

    Shirokov, S. I.; Lovyagin, N. Yu.; Baryshev, Yu. V.; Gorokhov, V. L.

    2016-06-01

    New arguments supporting the reality of large-scale fluctuations in the density of the visible matter in deep galaxy surveys are presented. A statistical analysis of the radial distributions of galaxies in the COSMOS and HDF-N deep fields is presented. Independent spectral and photometric surveys exist for each field, carried out in different wavelength ranges and using different observing methods. Catalogs of photometric redshifts in the optical (COSMOS-Zphot) and infrared (UltraVISTA) were used for the COSMOS field in the redshift interval 0.1 < z < 3.5, as well as the zCOSMOS (10kZ) spectroscopic survey and the XMM-COSMOS and ALHAMBRA-F4 photometric redshift surveys. The HDFN-Zphot and ALHAMBRA-F5 catalogs of photometric redshifts were used for the HDF-N field. The Pearson correlation coefficient for the fluctuations in the numbers of galaxies obtained for independent surveys of the same deep field reaches R = 0.70 ± 0.16. The presence of this positive correlation supports the reality of fluctuations in the density of visible matter with sizes of up to 1000 Mpc and amplitudes of up to 20% at redshifts z ~ 2. The absence of correlations between the fluctuations in different fields (the correlation coefficient between COSMOS and HDF-N is R = -0.20 ± 0.31) testifies to the independence of structures visible in different directions on the celestial sphere. This also indicates an absence of any influence from universal systematic errors (such as "spectral voids"), which could imitate the detection of correlated structures.

  4. The luminosity function for the CfA redshift survey slices

    NASA Technical Reports Server (NTRS)

    De Lapparent, Valerie; Geller, Margaret J.; Huchra, John P.

    1989-01-01

    The luminosity function for two complete slices of the extension of the CfA redshift survey is calculated. The nonparametric technique of Lynden-Bell (1971) and Turner (1979) is used to determine the shape for the luminosity function of the 12 deg slice of the redshift survey. The amplitude of the luminosity function is determined, taking large-scale inhomogeneities into account. The effects of the Malmquist bias on a magnitude-limited redshift survey are examined, showing that the random errors in the magnitudes for the 12 deg slice affect both the determination of the luminosity function and the spatial density constrast of large scale structures.

  5. Spectral Confusion for Cosmological Surveys of Redshifted C II Emission

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Dwek, E.; Moseley, S. H.

    2015-01-01

    Far-infrared cooling lines are ubiquitous features in the spectra of star-forming galaxies. Surveys of redshifted fine-structure lines provide a promising new tool to study structure formation and galactic evolution at redshifts including the epoch of reionization as well as the peak of star formation. Unlike neutral hydrogen surveys, where the 21 cm line is the only bright line, surveys of redshifted fine-structure lines suffer from confusion generated by line broadening, spectral overlap of different lines, and the crowding of sources with redshift. We use simulations to investigate the resulting spectral confusion and derive observing parameters to minimize these effects in pencilbeam surveys of redshifted far-IR line emission. We generate simulated spectra of the 17 brightest far-IR lines in galaxies, covering the 150-1300 µm wavelength region corresponding to redshifts 0 < z < 7, and develop a simple iterative algorithm that successfully identifies the 158 µm [C II] line and other lines. Although the [C II] line is a principal coolant for the interstellar medium, the assumption that the brightest observed lines in a given line of sight are always [C II] lines is a poor approximation to the simulated spectra once other lines are included. Blind line identification requires detection of fainter companion lines from the same host galaxies, driving survey sensitivity requirements. The observations require moderate spectral resolution 700 < R < 4000 with angular resolution between 20? and 10', sufficiently narrow to minimize confusion yet sufficiently large to include a statistically meaningful number of sources.

  6. Present and Future Redshift Surveys: ORS, DOGS and 2dF

    NASA Astrophysics Data System (ADS)

    Lahav, O.

    Three galaxy redshifts surveys and their analyses are discussed. (i) The recently completed Optical Redshift Survey (ORS) includes galaxies larger than 1.9 arcmin and/or brighter than $14.5^m$. It provides redshifts for $\\sim 8300 $ galaxies at Galactic latitude $|b|>20^o$. A new analysis of the survey explores the existence and extent of the Supergalactic Plane (SGP). Its orientation is found to be in good agreement with the standard SGP coordinates, and suggests that the SGP is at least as large as the survey (16000 km/sec in diameter). (ii) The Dwingeloo Obscured Galaxy Survey is aimed at finding galaxies hidden behind the Milky-Way using a blind search in 21 cm. The discovery of Dwingeloo1 illustrates that the survey will allow us to systematically survey the region $30^o < l < 200^o$ out to 4000 km/sec. (iii) The Anglo-Australian 2-degree-Field (2dF) survey will yield 250,000 redshifts for APM-selected galaxies brighter than $19.5^m$ to map the large scale structure on scales larger than $\\sim 30 \\Mpc$. To study morphological segregation and biasing the spectra will be classified using Artificial Neural Networks.

  7. On the derivation of selection functions from redshift survey data

    NASA Technical Reports Server (NTRS)

    Strauss, Michael A.; Yahil, Amos; Davis, Marc

    1991-01-01

    A previously unrecognized effect is described in the derivation of luminosity functions and selection functions from existing redshift survey data, due to binning of quoted magnitudes and diameters. Corrections are made for this effect in the Center for Astrophysics (CfA) and Southern Sky (SSRS) Redshift Surveys. The correction makes subtle but systematic changes in the derived density fields of the CfA survey, especially within 2000 km/s of the Local Group. The effect on the density field of the SSRS survey is negligible.

  8. A Photometric redshift galaxy catalog from the Red-Sequence Cluster Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Bau-Ching; /Taiwan, Natl. Central U. /Taipei, Inst. Astron. Astrophys.; Yee, H.K.C.

    2005-02-01

    The Red-Sequence Cluster Survey (RCS) provides a large and deep photometric catalog of galaxies in the z' and R{sub c} bands for 90 square degrees of sky, and supplemental V and B data have been obtained for 33.6 deg{sup 2}. They compile a photometric redshift catalog from these 4-band data by utilizing the empirical quadratic polynomial photometric redshift fitting technique in combination with CNOC2 and GOODS/HDF-N redshift data. The training set includes 4924 spectral redshifts. The resulting catalog contains more than one million galaxies with photometric redshifts < 1.5 and R{sub c} < 24, giving an rms scatter {delta}({Delta}z) redshift range 0.2 < z < 0.5 and {sigma}({Delta}z) < 0.11 for galaxies at 0.0 < z < 1.5. They describe the empirical quadratic polynomial photometric redshift fitting technique which they use to determine the relation between red-shift and photometry. A kd-tree algorithm is used to divide up the sample to improve the accuracy of the catalog. They also present a method for estimating the photometric redshift error for individual galaxies. They show that the redshift distribution of the sample is in excellent agreement with smaller and much deeper photometric and spectroscopic redshift surveys.« less

  9. The mass-metallicity and fundamental metallicity relations at z > 2 using very large telescope and Subaru near-infrared spectroscopy of zCOSMOS galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, C.; Ziegler, B. L.; Lilly, S. J.

    2014-09-01

    In the local universe, there is good evidence that, at a given stellar mass M, the gas-phase metallicity Z is anti-correlated with the star formation rate (SFR) of the galaxies. It has also been claimed that the resulting Z(M, SFR) relation is invariant with redshift—the so-called 'fundamental metallicity relation' (FMR). Given a number of difficulties in determining metallicities, especially at higher redshifts, the form of the Z(M, SFR) relation and whether it is really independent of redshift is still very controversial. To explore this issue at z > 2, we used VLT-SINFONI and Subaru-MOIRCS near-infrared spectroscopy of 20 zCOSMOS-deep galaxiesmore » at 2.1 < z < 2.5 to measure the strengths of up to five emission lines: [O II] λ3727, Hβ, [O III] λ5007, Hα, and [N II] λ6584. This near-infrared spectroscopy enables us to derive O/H metallicities, and also SFRs from extinction corrected Hα measurements. We find that the mass-metallicity relation (MZR) of these star-forming galaxies at z ≈ 2.3 is lower than the local Sloan Digital Sky Survey (SDSS) MZR by a factor of three to five, a larger change than found by Erb et al. using [N II]/Hα-based metallicities from stacked spectra. We discuss how the different selections of the samples and metallicity calibrations used may be responsible for this discrepancy. The galaxies show direct evidence that the SFR is still a second parameter in the MZR at these redshifts. However, determining whether the Z(M, SFR) relation is invariant with epoch depends on the choice of extrapolation used from local samples, because z > 2 galaxies of a given mass have much higher SFRs than the local SDSS galaxies. We find that the zCOSMOS galaxies are consistent with a non-evolving FMR if we use the physically motivated formulation of the Z(M, SFR) relation from Lilly et al., but not if we use the empirical formulation of Mannucci et al.« less

  10. The Durham/UKST Galaxy Redshift Survey - VII. Redshift-space distortions in the power spectrum

    NASA Astrophysics Data System (ADS)

    Outram, P. J.; Hoyle, Fiona; Shanks, T.

    2001-03-01

    We investigate the effect of redshift-space distortions in the power spectrum parallel and perpendicular to the line of sight of the observer, PS(k∥,k⊥), using the optically selected Durham/UKST Galaxy Redshift Survey. On small, non-linear scales anisotropy in the power spectrum is dominated by the galaxy velocity dispersion; the `Finger of God' effect. On larger, linear scales coherent peculiar velocities caused by the infall of galaxies into overdense regions are the main cause of anisotropy. According to gravitational instability theory these distortions depend only on the density and bias parameters via β~Ωm0.6b. Geometrical distortions also occur if the wrong cosmology is assumed, although these would be relatively small given the low redshift of the survey. To quantify these effects, we assume the real-space power spectrum of the APM Galaxy Survey, and fit a simple model for the redshift-space and geometrical distortions. Assuming a flat Ωm=1 universe, we find values for the one-dimensional pairwise velocity dispersion of σp=410+/-170kms-1, and β=0.38+/-0.17. An open Ωm=0.3, and a flat Ωm=0.3, ΩΛ=0.7 universe yield σp=420kms-1, β=0.40, and σp=440kms-1, β=0.45, respectively, with comparable errors. These results are consistent with estimates using the two-point galaxy correlation function, ξ(σ,π), and favour either a low-density universe with Ωm~0.3 if galaxies trace the underlying mass distribution, or a bias factor of b~2.5 if Ωm=1.

  11. A blind green bank telescope millimeter-wave survey for redshifted molecular absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanekar, N.; Gupta, A.; Carilli, C. L.

    2014-02-10

    We present the methodology for 'blind' millimeter-wave surveys for redshifted molecular absorption in the CO/HCO{sup +} rotational lines. The frequency range 30-50 GHz appears optimal for such surveys, providing sensitivity to absorbers at z ≳ 0.85. It is critical that the survey is 'blind', i.e., based on a radio-selected sample, including sources without known redshifts. We also report results from the first large survey of this kind, using the Q-band receiver on the Green Bank Telescope (GBT) to search for molecular absorption toward 36 sources, 3 without known redshifts, over the frequency range 39.6-49.5 GHz. The GBT survey has amore » total redshift path of Δz ≈ 24, mostly at 0.81 < z < 1.91, and a sensitivity sufficient to detect equivalent H{sub 2} column densities ≳ 3 × 10{sup 21} cm{sup –2} in absorption at 5σ significance (using CO-to-H{sub 2} and HCO{sup +}-to-H{sub 2} conversion factors of the Milky Way). The survey yielded no confirmed detections of molecular absorption, yielding the 2σ upper limit n(z = 1.2) < 0.15 on the redshift number density of molecular gas at column densities N(H{sub 2}) ≳ 3 × 10{sup 21} cm{sup –2}.« less

  12. Galaxy clustering with photometric surveys using PDF redshift information

    DOE PAGES

    Asorey, J.; Carrasco Kind, M.; Sevilla-Noarbe, I.; ...

    2016-03-28

    Here, photometric surveys produce large-area maps of the galaxy distribution, but with less accurate redshift information than is obtained from spectroscopic methods. Modern photometric redshift (photo-z) algorithms use galaxy magnitudes, or colors, that are obtained through multi-band imaging to produce a probability density function (PDF) for each galaxy in the map. We used simulated data to study the effect of using different photo-z estimators to assign galaxies to redshift bins in order to compare their effects on angular clustering and galaxy bias measurements. We found that if we use the entire PDF, rather than a single-point (mean or mode) estimate, the deviations are less biased, especially when using narrow redshift bins. When the redshift bin widths aremore » $$\\Delta z=0.1$$, the use of the entire PDF reduces the typical measurement bias from 5%, when using single point estimates, to 3%.« less

  13. A redshift survey of IRAS galaxies

    NASA Astrophysics Data System (ADS)

    Smith, Beverly J.; Kleinmann, S. G.; Huchra, J. P.; Low, F. J.

    1987-05-01

    Results are presented from a redshift survey of all 72 galaxies detected by IRAS in Band 3 at flux levels equal to or greater then 2 Jy. The luminosity function at the high luminosity end is proportional to L-2, however, a flattening was observed at the low luminosity end indicating that a single power law is not a good description of the entire luminosity function. Only three galaxies in the sample have emission line spectra indicative of AGN's, suggesting that, at least in nearby galaxies, unobscured nuclear activity is not a strong contributor to the far infrared flux. Comparisons between the selected IRAS galaxies and an optically complete sample taken from the CfA redshift survey show that they are more narrowly distributed than those optically selected, in the sence that the IRAS sample includes few galaxies of low absolute blue luminosity. It was also found that the space distributions of the two samples differ: the density enhancement or IRAS galaxies is only approx. 1/3 that of the optically selected galaxies in the core of the Coma cluster.

  14. The ESO Slice Project (ESP) galaxy redshift survey. VII. The redshift and real-space correlation functions

    NASA Astrophysics Data System (ADS)

    Guzzo, L.; Bartlett, J. G.; Cappi, A.; Maurogordato, S.; Zucca, E.; Zamorani, G.; Balkowski, C.; Blanchard, A.; Cayatte, V.; Chincarini, G.; Collins, C. A.; Maccagni, D.; MacGillivray, H.; Merighi, R.; Mignoli, M.; Proust, D.; Ramella, M.; Scaramella, R.; Stirpe, G. M.; Vettolani, G.

    2000-03-01

    We present analyses of the two-point correlation properties of the ESO Slice Project (ESP) galaxy redshift survey, both in redshift and real space. From the redshift-space correlation function $xi (r) i(s) we are able to trace positive clustering out to separations as large as 50 h^{-1} Mpc, after which xi (r) i(s) smoothly breaks down, crossing the zero value between 60 and 80 h^{-1} Mpc. This is best seen from the whole magnitude-limited redshift catalogue, using the J_3 miniμm-variance weighting estimator. xi (r) i(s) is reasonably well described by a shallow power law with \\gamma\\sim 1.5 between 3 and 50 h^{-1} Mpc, while on smaller scales (0.2-2 h^{-1} Mpc) it has a shallower slope (\\gamma\\sim 1). This flattening is shown to be mostly due to the redshift-space damping produced by virialized structures, and is less evident when volume-limited samples of the survey are analysed. We examine the full effect of redshift-space distortions by computing the two-dimensional correlation function xi (r) i(r_p,\\pi) , from which we project out the real-space xi (r) i(r) below 10 h^{-1} Mpc. This function is well described by a power-law model (r/r_o)^{-\\gamma}, with r_o=4.15^{+0.20}_{-0.21} h^{-1} Mpc and \\gamma=1.67^{+0.07}_{-0.09} for the whole magnitude-limited catalogue. Comparison to other redshift surveys shows a consistent picture in which galaxy clustering remains positive out to separations of 50 h^{-1} Mpc or larger, in substantial agreement with the results obtained from angular surveys like the APM and EDSGC. Also the shape of the two-point correlation function is remarkably unanimous among these data sets, in all cases requiring more power on scales larger than 5 h^{-1} Mpc (a `shoulder'), with respect to a simple extrapolation of the canonical xi (r) i(r) =(r/5)^{-1.8}. The analysis of xi (r) i(s) for volume-limited subsamples with different luminosity shows evidence of luminosity segregation only for the most luminous sample with Mb_J <= -20.5. For

  15. The TexOx-1000 redshift survey of radio sources I: the TOOT00 region

    NASA Astrophysics Data System (ADS)

    Vardoulaki, Eleni; Rawlings, Steve; Hill, Gary J.; Mauch, Tom; Inskip, Katherine J.; Riley, Julia; Brand, Kate; Croft, Steve; Willott, Chris J.

    2010-01-01

    We present optical spectroscopy, near-infrared (mostly K-band) and radio (151-MHz and 1.4-GHz) imaging of the first complete region (TOOT00) of the TexOx-1000 (TOOT) redshift survey of radio sources. The 0.0015-sr (~5 deg2) TOOT00 region is selected from pointed observations of the Cambridge Low-Frequency Survey Telescope at 151 MHz at a flux density limit of ~=100 mJy, approximately five times fainter than the 7C Redshift Survey (7CRS), and contains 47 radio sources. We have obtained 40 spectroscopic redshifts (~85 per cent completeness). Adding redshifts estimated for the seven other cases yields a median redshift zmed ~ 1.25. We find a significant population of objects with Fanaroff-Riley type I (FRI) like radio structures at radio luminosities above both the low-redshift FRI/II break and the break in the radio luminosity function. The redshift distribution and subpopulations of TOOT00 are broadly consistent with extrapolations from the 7CRS/6CE/3CRR data sets underlying the SKADS Simulated Skies Semi-Empirical Extragalactic Data base, S3-SEX.

  16. On the recovery of the local group motion from galaxy redshift surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nusser, Adi; Davis, Marc; Branchini, Enzo, E-mail: adi@physics.technion.ac.il, E-mail: mdavis@berkeley.edu, E-mail: branchin@fis.uniroma3.it

    2014-06-20

    There is an ∼150 km s{sup –1} discrepancy between the measured motion of the Local Group (LG) of galaxies with respect to the cosmic microwave background and the linear theory prediction based on the gravitational force field of the large-scale structure in full-sky redshift surveys. We perform a variety of tests which show that the LG motion cannot be recovered to better than 150-200 km s{sup –1} in amplitude and within ≈10° in direction. The tests rely on catalogs of mock galaxies identified in the Millennium simulation using semi-analytic galaxy formation models. We compare these results to the K{sub s}more » = 11.75 Two-Mass Galaxy Redshift Survey, which provides the deepest and most complete all-sky spatial distribution of galaxies with spectroscopic redshifts available thus far. In our analysis, we use a new concise relation for deriving the LG motion and bulk flow from the true distribution of galaxies in redshift space. Our results show that the main source of uncertainty is the small effective depth of surveys like the Two-Mass Redshift Survey (2MRS), which prevents a proper sampling of the large-scale structure beyond ∼100 h {sup –1} Mpc. Deeper redshift surveys are needed to reach the 'convergence scale' of ≈250 h {sup –1} Mpc in a ΛCDM universe. Deeper surveys would also mitigate the impact of the 'Kaiser rocket' which, in a survey like 2MRS, remains a significant source of uncertainty. Thanks to the quiet and moderate density environment of the LG, purely dynamical uncertainties of the linear predictions are subdominant at the level of ∼90 km s{sup –1}. Finally, we show that deviations from linear galaxy biasing and shot noise errors provide a minor contribution to the total error budget.« less

  17. THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES FROM THE SPT SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strandet, M. L.; Weiss, A.; Vieira, J. D.

    2016-05-10

    We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4 mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3 mm spectral scans between 84 and 114 GHz for 15 galaxies and targeted ALMA 1 mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [C i], [N ii], H{sub 2}O and NH{sub 3}. We further present Atacama Pathfinder Experiment [C ii] and CO mid- J observations for seven sources for which only a singlemore » line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new millimeter/submillimeter line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redshift surveys of high- z DSFGs. The median of the redshift distribution is z = 3.9 ± 0.4, and the highest-redshift source in our sample is at z = 5.8. We discuss how the selection of our sources affects the redshift distribution, focusing on source brightness, selection wavelength, and strong gravitational lensing. We correct for the effect of gravitational lensing and find the redshift distribution for 1.4 mm selected sources with a median redshift of z = 3.1 ± 0.3. Comparing to redshift distributions selected at shorter wavelengths from the literature, we show that selection wavelength affects the shape of the redshift distribution.« less

  18. The Redshift Distribution of Dusty Star-forming Galaxies from the SPT Survey

    NASA Astrophysics Data System (ADS)

    Strandet, M. L.; Weiss, A.; Vieira, J. D.; de Breuck, C.; Aguirre, J. E.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Bradford, C. M.; Carlstrom, J. E.; Chapman, S. C.; Crawford, T. M.; Everett, W.; Fassnacht, C. D.; Furstenau, R. M.; Gonzalez, A. H.; Greve, T. R.; Gullberg, B.; Hezaveh, Y.; Kamenetzky, J. R.; Litke, K.; Ma, J.; Malkan, M.; Marrone, D. P.; Menten, K. M.; Murphy, E. J.; Nadolski, A.; Rotermund, K. M.; Spilker, J. S.; Stark, A. A.; Welikala, N.

    2016-05-01

    We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4 mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3 mm spectral scans between 84 and 114 GHz for 15 galaxies and targeted ALMA 1 mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [C I], [N II], H2O and NH3. We further present Atacama Pathfinder Experiment [C II] and CO mid-J observations for seven sources for which only a single line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new millimeter/submillimeter line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redshift surveys of high-z DSFGs. The median of the redshift distribution is z = 3.9 ± 0.4, and the highest-redshift source in our sample is at z = 5.8. We discuss how the selection of our sources affects the redshift distribution, focusing on source brightness, selection wavelength, and strong gravitational lensing. We correct for the effect of gravitational lensing and find the redshift distribution for 1.4 mm selected sources with a median redshift of z = 3.1 ± 0.3. Comparing to redshift distributions selected at shorter wavelengths from the literature, we show that selection wavelength affects the shape of the redshift distribution.

  19. An Open-Source Galaxy Redshift Survey Simulator for next-generation Large Scale Structure Surveys

    NASA Astrophysics Data System (ADS)

    Seijak, Uros

    Galaxy redshift surveys produce three-dimensional maps of the galaxy distribution. On large scales these maps trace the underlying matter fluctuations in a relatively simple manner, so that the properties of the primordial fluctuations along with the overall expansion history and growth of perturbations can be extracted. The BAO standard ruler method to measure the expansion history of the universe using galaxy redshift surveys is thought to be robust to observational artifacts and understood theoretically with high precision. These same surveys can offer a host of additional information, including a measurement of the growth rate of large scale structure through redshift space distortions, the possibility of measuring the sum of neutrino masses, tighter constraints on the expansion history through the Alcock-Paczynski effect, and constraints on the scale-dependence and non-Gaussianity of the primordial fluctuations. Extracting this broadband clustering information hinges on both our ability to minimize and subtract observational systematics to the observed galaxy power spectrum, and our ability to model the broadband behavior of the observed galaxy power spectrum with exquisite precision. Rapid development on both fronts is required to capitalize on WFIRST's data set. We propose to develop an open-source computational toolbox that will propel development in both areas by connecting large scale structure modeling and instrument and survey modeling with the statistical inference process. We will use the proposed simulator to both tailor perturbation theory and fully non-linear models of the broadband clustering of WFIRST galaxies and discover novel observables in the non-linear regime that are robust to observational systematics and able to distinguish between a wide range of spatial and dynamic biasing models for the WFIRST galaxy redshift survey sources. We have demonstrated the utility of this approach in a pilot study of the SDSS-III BOSS galaxies, in which we

  20. THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.

    2011-01-20

    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z {approx}> 1.4, indicating thatmore » the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z {approx}> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.« less

  1. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masters, Daniel C.; Stern, Daniel K.; Rhodes, Jason D.

    A key goal of the Stage IV dark energy experiments Euclid , LSST, and WFIRST is to measure the growth of structure with cosmic time from weak lensing analysis over large regions of the sky. Weak lensing cosmology will be challenging: in addition to highly accurate galaxy shape measurements, statistically robust and accurate photometric redshift (photo- z ) estimates for billions of faint galaxies will be needed in order to reconstruct the three-dimensional matter distribution. Here we present an overview of and initial results from the Complete Calibration of the Color–Redshift Relation (C3R2) survey, which is designed specifically to calibratemore » the empirical galaxy color–redshift relation to the Euclid depth. These redshifts will also be important for the calibrations of LSST and WFIRST . The C3R2 survey is obtaining multiplexed observations with Keck (DEIMOS, LRIS, and MOSFIRE), the Gran Telescopio Canarias (GTC; OSIRIS), and the Very Large Telescope (VLT; FORS2 and KMOS) of a targeted sample of galaxies that are most important for the redshift calibration. We focus spectroscopic efforts on undersampled regions of galaxy color space identified in previous work in order to minimize the number of spectroscopic redshifts needed to map the color–redshift relation to the required accuracy. We present the C3R2 survey strategy and initial results, including the 1283 high-confidence redshifts obtained in the 2016A semester and released as Data Release 1.« less

  2. The kinematic dipole in galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Maartens, Roy; Clarkson, Chris; Chen, Song

    2018-01-01

    In the concordance model of the Universe, the matter distribution—as observed in galaxy number counts or the intensity of line emission (such as the 21cm line of neutral hydrogen) —should have a kinematic dipole due to the Sun's motion relative to the CMB rest-frame. This dipole should be aligned with the kinematic dipole in the CMB temperature. Accurate measurement of the direction of the matter dipole will become possible with future galaxy surveys, and this will be a critical test of the foundations of the concordance model. The amplitude of the matter dipole is also a potential cosmological probe. We derive formulas for the amplitude of the kinematic dipole in galaxy redshift and intensity mapping surveys, taking into account the Doppler, aberration and other relativistic effects. The amplitude of the matter dipole can be significantly larger than that of the CMB dipole. Its redshift dependence encodes information on the evolution of the Universe and on the tracers, and we discuss possible ways to determine the amplitude.

  3. The CfA redshift survey - Data for the NGP + 30 zone

    NASA Technical Reports Server (NTRS)

    Huchra, John P.; Geller, Margaret J.; De Lapparent, Valerie; Corwin, Harold G., Jr.

    1990-01-01

    Redshifts and morphological types are presented for a complete sample of 1093 galaxies with m(pg) less than or equal to 15.5 mag in a 6-deg-wide strip crossing the north Galactic pole. Also presented are redshifts for an additional 92 fainter galaxies in the same strip. Outside of the core of the Coma Cluster, both early- and late-type galaxies trace essentially the same structures in redshift space. Thinner slices illustrate the small velocity dispersion perpendicular to the surfaces in the survey.

  4. The luminosity function for different morphological types in the CfA Redshift Survey

    NASA Technical Reports Server (NTRS)

    Marzke, Ronald O.; Geller, Margaret J.; Huchra, John P.; Corwin, Harold G., Jr.

    1994-01-01

    We derive the luminosity function for different morphological types in the original CfA Redshift Survey (CfA1) and in the first two slices of the CfA Redshift Survey Extension (CfA2). CfA1 is a complete sample containing 2397 galaxies distributed over 2.7 steradians with m(sub z) less than or equal 14.5. The first two complete slices of CfA2 contain 1862 galaxies distributed over 0.42 steradians with m(sub z)=15.5. The shapes of the E-S0 and spiral luminosity functions (LF) are indistinguishable. We do not confirm the steeply decreasing faint end in the E-S0 luminosity function found by Loveday et al. for an independent sample in the southern hemisphere. We demonstrate that incomplete classification in deep redshift surveys can lead to underestimates of the faint end of the elliptical luminosity function and could be partially responsible for the difference between the CfA survey and other local field surveys. The faint end of the LF for the Magellanic spirals and irregulars is very steep. The Sm-Im luminosity function is well fit by a Schechter function with M*=-18.79, alpha=-1.87, and phi*=0.6x10(exp -3) for M(sub z) less than or equal to -13. These galaxies are largely responsible for the excess at the faint end of the general CfA luminosity function. The abundance of intrinsically faint, blue galaxies nearby affects the interpretation of deep number counts. The dwarf population increases the expected counts at B=25 in a no-evolution, q(sub 0)=0.05 model by a factor of two over standard no-evolution estimates. These dwarfs change the expected median redshift in deep redshift surveys by less than 10 percent . Thus the steep Sm-Im LF may contribute to the reconciliation of deep number counts with deep redshift surveys.

  5. AGN Populations in Large-volume X-Ray Surveys: Photometric Redshifts and Population Types Found in the Stripe 82X Survey

    NASA Astrophysics Data System (ADS)

    Ananna, Tonima Tasnin; Salvato, Mara; LaMassa, Stephanie; Urry, C. Megan; Cappelluti, Nico; Cardamone, Carolin; Civano, Francesca; Farrah, Duncan; Gilfanov, Marat; Glikman, Eilat; Hamilton, Mark; Kirkpatrick, Allison; Lanzuisi, Giorgio; Marchesi, Stefano; Merloni, Andrea; Nandra, Kirpal; Natarajan, Priyamvada; Richards, Gordon T.; Timlin, John

    2017-11-01

    Multiwavelength surveys covering large sky volumes are necessary to obtain an accurate census of rare objects such as high-luminosity and/or high-redshift active galactic nuclei (AGNs). Stripe 82X is a 31.3 X-ray survey with Chandra and XMM-Newton observations overlapping the legacy Sloan Digital Sky Survey Stripe 82 field, which has a rich investment of multiwavelength coverage from the ultraviolet to the radio. The wide-area nature of this survey presents new challenges for photometric redshifts for AGNs compared to previous work on narrow-deep fields because it probes different populations of objects that need to be identified and represented in the library of templates. Here we present an updated X-ray plus multiwavelength matched catalog, including Spitzer counterparts, and estimated photometric redshifts for 5961 (96% of a total of 6181) X-ray sources that have a normalized median absolute deviation, σnmad=0.06, and an outlier fraction, η = 13.7%. The populations found in this survey and the template libraries used for photometric redshifts provide important guiding principles for upcoming large-area surveys such as eROSITA and 3XMM (in X-ray) and the Large Synoptic Survey Telescope (optical).

  6. CFHTLenS and RCSLenS: testing photometric redshift distributions using angular cross-correlations with spectroscopic galaxy surveys

    NASA Astrophysics Data System (ADS)

    Choi, A.; Heymans, C.; Blake, C.; Hildebrandt, H.; Duncan, C. A. J.; Erben, T.; Nakajima, R.; Van Waerbeke, L.; Viola, M.

    2016-12-01

    We determine the accuracy of galaxy redshift distributions as estimated from photometric redshift probability distributions p(z). Our method utilizes measurements of the angular cross-correlation between photometric galaxies and an overlapping sample of galaxies with spectroscopic redshifts. We describe the redshift leakage from a galaxy photometric redshift bin j into a spectroscopic redshift bin I using the sum of the p(z) for the galaxies residing in bin j. We can then predict the angular cross-correlation between photometric and spectroscopic galaxies due to intrinsic galaxy clustering when I ≠ j as a function of the measured angular cross-correlation when I = j. We also account for enhanced clustering arising from lensing magnification using a halo model. The comparison of this prediction with the measured signal provides a consistency check on the validity of using the summed p(z) to determine galaxy redshift distributions in cosmological analyses, as advocated by the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We present an analysis of the photometric redshifts measured by CFHTLenS, which overlaps the Baryon Oscillation Spectroscopic Survey (BOSS). We also analyse the Red-sequence Cluster Lensing Survey, which overlaps both BOSS and the WiggleZ Dark Energy Survey. We find that the summed p(z) from both surveys are generally biased with respect to the true underlying distributions. If unaccounted for, this bias would lead to errors in cosmological parameter estimation from CFHTLenS by less than ˜4 per cent. For photometric redshift bins which spatially overlap in 3D with our spectroscopic sample, we determine redshift bias corrections which can be used in future cosmological analyses that rely on accurate galaxy redshift distributions.

  7. Photometric redshifts in the SWIRE Survey

    NASA Astrophysics Data System (ADS)

    Rowan-Robinson, Michael; Babbedge, Tom; Oliver, Seb; Trichas, Markos; Berta, Stefano; Lonsdale, Carol; Smith, Gene; Shupe, David; Surace, Jason; Arnouts, Stephane; Ilbert, Olivier; Le Févre, Olivier; Afonso-Luis, Alejandro; Perez-Fournon, Ismael; Hatziminaoglou, Evanthia; Polletta, Mari; Farrah, Duncan; Vaccari, Mattia

    2008-05-01

    We present the SWIRE Photometric Redshift Catalogue 1025119 redshifts of unprecedented reliability and of accuracy comparable with or better than previous work. Our methodology is based on fixed galaxy and quasi-stellar object templates applied to data at 0.36-4.5 μm, and on a set of four infrared emission templates fitted to infrared excess data at 3.6-170 μm. The galaxy templates are initially empirical, but are given greater physical validity by fitting star formation histories to them, which also allows us to estimate stellar masses. The code involves two passes through the data, to try to optimize recognition of active galactic nucleus (AGN) dust tori. A few carefully justified priors are used and are the key to supression of outliers. Extinction, AV, is allowed as a free parameter. The full reduced χ2ν (z) distribution is given for each source, so the full error distribution can be used, and aliases investigated. We use a set of 5982 spectroscopic redshifts, taken from the literature and from our own spectroscopic surveys, to analyse the performance of our method as a function of the number of photometric bands used in the solution and the reduced χ2ν. For seven photometric bands (5 optical + 3.6, 4.5 μm), the rms value of (zphot - zspec)/(1 + zspec) is 3.5 per cent, and the percentage of catastrophic outliers [defined as >15 per cent error in (1 + z)], is ~1 per cent. These rms values are comparable with the best achieved in other studies, and the outlier fraction is significantly better. The inclusion of the 3.6- and 4.5-μm IRAC bands is crucial in supression of outliers. We discuss the redshift distributions at 3.6 and 24 μm. In individual fields, structure in the redshift distribution corresponds to clusters which can be seen in the spectroscopic redshift distribution, so the photometric redshifts are a powerful tool for large-scale structure studies. 10 per cent of sources in the SWIRE photometric redshift catalogue have z > 2, and 4 per cent

  8. Dark Energy Survey Year 1 Results: Cross-Correlation Redshifts in the DES -- Calibration of the Weak Lensing Source Redshift Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, C.; et al.

    We present the calibration of the Dark Energy Survey Year 1 (DES Y1) weak lensing source galaxy redshift distributions from clustering measurements. By cross-correlating the positions of source galaxies with luminous red galaxies selected by the redMaGiC algorithm we measure the redshift distributions of the source galaxies as placed into different tomographic bins. These measurements constrain any such shifts to an accuracy ofmore » $$\\sim0.02$$ and can be computed even when the clustering measurements do not span the full redshift range. The highest-redshift source bin is not constrained by the clustering measurements because of the minimal redshift overlap with the redMaGiC galaxies. We compare our constraints with those obtained from $$\\texttt{COSMOS}$$ 30-band photometry and find that our two very different methods produce consistent constraints.« less

  9. Photometric redshift analysis in the Dark Energy Survey Science Verification data

    NASA Astrophysics Data System (ADS)

    Sánchez, C.; Carrasco Kind, M.; Lin, H.; Miquel, R.; Abdalla, F. B.; Amara, A.; Banerji, M.; Bonnett, C.; Brunner, R.; Capozzi, D.; Carnero, A.; Castander, F. J.; da Costa, L. A. N.; Cunha, C.; Fausti, A.; Gerdes, D.; Greisel, N.; Gschwend, J.; Hartley, W.; Jouvel, S.; Lahav, O.; Lima, M.; Maia, M. A. G.; Martí, P.; Ogando, R. L. C.; Ostrovski, F.; Pellegrini, P.; Rau, M. M.; Sadeh, I.; Seitz, S.; Sevilla-Noarbe, I.; Sypniewski, A.; de Vicente, J.; Abbot, T.; Allam, S. S.; Atlee, D.; Bernstein, G.; Bernstein, J. P.; Buckley-Geer, E.; Burke, D.; Childress, M. J.; Davis, T.; DePoy, D. L.; Dey, A.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A.; Fernández, E.; Finley, D.; Flaugher, B.; Frieman, J.; Gaztanaga, E.; Glazebrook, K.; Honscheid, K.; Kim, A.; Kuehn, K.; Kuropatkin, N.; Lidman, C.; Makler, M.; Marshall, J. L.; Nichol, R. C.; Roodman, A.; Sánchez, E.; Santiago, B. X.; Sako, M.; Scalzo, R.; Smith, R. C.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, D. L.; Uddin, S. A.; Valdés, F.; Walker, A.; Yuan, F.; Zuntz, J.

    2014-12-01

    We present results from a study of the photometric redshift performance of the Dark Energy Survey (DES), using the early data from a Science Verification period of observations in late 2012 and early 2013 that provided science-quality images for almost 200 sq. deg. at the nominal depth of the survey. We assess the photometric redshift (photo-z) performance using about 15 000 galaxies with spectroscopic redshifts available from other surveys. These galaxies are used, in different configurations, as a calibration sample, and photo-z's are obtained and studied using most of the existing photo-z codes. A weighting method in a multidimensional colour-magnitude space is applied to the spectroscopic sample in order to evaluate the photo-z performance with sets that mimic the full DES photometric sample, which is on average significantly deeper than the calibration sample due to the limited depth of spectroscopic surveys. Empirical photo-z methods using, for instance, artificial neural networks or random forests, yield the best performance in the tests, achieving core photo-z resolutions σ68 ˜ 0.08. Moreover, the results from most of the codes, including template-fitting methods, comfortably meet the DES requirements on photo-z performance, therefore, providing an excellent precedent for future DES data sets.

  10. The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution

    NASA Technical Reports Server (NTRS)

    Perley, D. A.; Kruhler, T.; Schulze, S.; Postigo, A. De Ugarte; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.; Ellis, R.; hide

    2016-01-01

    We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (SHOALS), a multi-observatory high redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust obscured, and at most 2% originate from z > 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z approx. 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z approx. 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts.

  11. Leveraging 3D-HST Grism Redshifts to Quantify Photometric Redshift Performance

    NASA Astrophysics Data System (ADS)

    Bezanson, Rachel; Wake, David A.; Brammer, Gabriel B.; van Dokkum, Pieter G.; Franx, Marijn; Labbé, Ivo; Leja, Joel; Momcheva, Ivelina G.; Nelson, Erica J.; Quadri, Ryan F.; Skelton, Rosalind E.; Weiner, Benjamin J.; Whitaker, Katherine E.

    2016-05-01

    We present a study of photometric redshift accuracy in the 3D-HST photometric catalogs, using 3D-HST grism redshifts to quantify and dissect trends in redshift accuracy for galaxies brighter than JH IR > 24 with an unprecedented and representative high-redshift galaxy sample. We find an average scatter of 0.0197 ± 0.0003(1 + z) in the Skelton et al. photometric redshifts. Photometric redshift accuracy decreases with magnitude and redshift, but does not vary monotonically with color or stellar mass. The 1σ scatter lies between 0.01 and 0.03 (1 + z) for galaxies of all masses and colors below z < 2.5 (for JH IR < 24), with the exception of a population of very red (U - V > 2), dusty star-forming galaxies for which the scatter increases to ˜0.1 (1 + z). We find that photometric redshifts depend significantly on galaxy size; the largest galaxies at fixed magnitude have photo-zs with up to ˜30% more scatter and ˜5 times the outlier rate. Although the overall photometric redshift accuracy for quiescent galaxies is better than that for star-forming galaxies, scatter depends more strongly on magnitude and redshift than on galaxy type. We verify these trends using the redshift distributions of close pairs and extend the analysis to fainter objects, where photometric redshift errors further increase to ˜0.046 (1 + z) at {H}F160W=26. We demonstrate that photometric redshift accuracy is strongly filter dependent and quantify the contribution of multiple filter combinations. We evaluate the widths of redshift probability distribution functions and find that error estimates are underestimated by a factor of ˜1.1-1.6, but that uniformly broadening the distribution does not adequately account for fitting outliers. Finally, we suggest possible applications of these data in planning for current and future surveys and simulate photometric redshift performance in the Large Synoptic Survey Telescope, Dark Energy Survey (DES), and combined DES and Vista Hemisphere surveys.

  12. High Redshift QSOs in the UKIDSS Large Area Survey

    NASA Astrophysics Data System (ADS)

    Venemans, B. P.

    2007-12-01

    In this proceeding, I will present the first results on our ongoing search for z⪆6 quasars in the UKIDSS Large Area Survey (LAS). The unique infrared sky coverage of the LAS combined with SDSS i and z observations allows us to efficiently search for high redshift quasars with minimal contamination from foreground objects, e.g. galactic cool stars. Analysis of 106 deg^2 of sky from UKIDSS Data Release 1 (DR1) has resulted in the discovery of ULAS J020332.38+001229.2, a luminous (J_{AB}=20.0, M_{1450}=-26.2) quasar at z=5.86. The quasar is not present in the SDSS DR5 catalogue and the continuum spectral index of α=-1.4 (F_{ν}∝ν^{α}) is redder than a composite of SDSS quasars at similar redshifts (α=-0.5). Although it is difficult to draw any strong conclusions regarding the space density of quasars from one object, the discovery of this quasar in ˜100 deg^2 in a complete sample within our selection criteria down to a median depth of Y_{AB}=20.4 (7σ) is consistent with existing SDSS results. Finally, I will present the expected number density of high redshift z>6.5 quasars using future infrared surveys with VISTA.

  13. Combining weak-lensing tomography and spectroscopic redshift surveys

    DOE PAGES

    Cai, Yan -Chuan; Bernstein, Gary

    2012-05-11

    Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the samemore » sky area. For sky coverage f sky = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin –2 are measured in the lensing survey and all halos with M > M min = 10 13h –1M ⊙ have spectra. For the gravitational growth parameter parameter γ (f = Ω γ m), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 10 13.5 (10 14) h –1 M ⊙. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 10 13 -10 14 h –1 M ⊙, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is uncertain by > 0.5%.« less

  14. Quantifying the abundance of faint, low-redshift satellite galaxies in the COSMOS survey

    NASA Astrophysics Data System (ADS)

    Xi, ChengYu; Taylor, James E.; Massey, Richard J.; Rhodes, Jason; Koekemoer, Anton; Salvato, Mara

    2018-06-01

    Faint dwarf satellite galaxies are important as tracers of small-scale structure, but remain poorly characterized outside the Local Group, due to the difficulty of identifying them consistently at larger distances. We review a recently proposed method for estimating the average satellite population around a given sample of nearby bright galaxies, using a combination of size and magnitude cuts (to select low-redshift dwarf galaxies preferentially) and clustering measurements (to estimate the fraction of true satellites in the cut sample). We test this method using the high-precision photometric redshift catalog of the COSMOS survey, exploring the effect of specific cuts on the clustering signal. The most effective of the size-magnitude cuts considered recover the clustering signal around low-redshift primaries (z < 0.15) with about two-thirds of the signal and 80% of the signal-to-noise ratio obtainable using the full COSMOS photometric redshifts. These cuts are also fairly efficient, with more than one third of the selected objects being clustered satellites. We conclude that structural selection represents a useful tool in characterizing dwarf populations to fainter magnitudes and/or over larger areas than are feasible with spectroscopic surveys. In reviewing the low-redshift content of the COSMOS field, we also note the existence of several dozen objects that appear resolved or partially resolved in the HST imaging, and are confirmed to be local (at distances of ˜250 Mpc or less) by their photometric or spectroscopic redshifts. This underlines the potential for future space-based surveys to reveal local populations of intrinsically faint galaxies through imaging alone.

  15. Photometric redshifts for the next generation of deep radio continuum surveys - I. Template fitting

    NASA Astrophysics Data System (ADS)

    Duncan, Kenneth J.; Brown, Michael J. I.; Williams, Wendy L.; Best, Philip N.; Buat, Veronique; Burgarella, Denis; Jarvis, Matt J.; Małek, Katarzyna; Oliver, S. J.; Röttgering, Huub J. A.; Smith, Daniel J. B.

    2018-01-01

    We present a study of photometric redshift performance for galaxies and active galactic nuclei detected in deep radio continuum surveys. Using two multiwavelength data sets, over the NOAO Deep Wide Field Survey Boötes and COSMOS fields, we assess photometric redshift (photo-z) performance for a sample of ∼4500 radio continuum sources with spectroscopic redshifts relative to those of ∼63 000 non-radio-detected sources in the same fields. We investigate the performance of three photometric redshift template sets as a function of redshift, radio luminosity and infrared/X-ray properties. We find that no single template library is able to provide the best performance across all subsets of the radio-detected population, with variation in the optimum template set both between subsets and between fields. Through a hierarchical Bayesian combination of the photo-z estimates from all three template sets, we are able to produce a consensus photo-z estimate that equals or improves upon the performance of any individual template set.

  16. A redshift survey of IRAS galaxies. VII - The infrared and redshift data for the 1.936 Jansky sample

    NASA Technical Reports Server (NTRS)

    Strauss, Michael A.; Huchra, John P.; Davis, Marc; Yahil, Amos; Fisher, Karl B.; Tonry, John

    1992-01-01

    We present the data for a redshift survey of galaxies selected from the database of the Infrared Astronomical Satellite (IRAS). The sample is flux limited to 1.936 Jy at 60 microns and covers 11.01 sr of the sky. It consists of 5014 objects, of which 2658 are galaxies. The remaining 2356 sources are listed in a separate table with identifications. Redshift data are also given for 212 IRAS galaxies which are not part of the complete sample, but were measured in conjunction with this project.

  17. Redshifts for 2410 Galaxies in the Century Survey Region

    NASA Astrophysics Data System (ADS)

    Wegner, Gary; Thorstensen, John R.; Kurtz, Michael J.; Brown, Warren R.; Fabricant, Daniel G.; Geller, Margaret J.; Huchra, John P.; Marzke, Ronald O.; Sakai, Shoko

    2001-12-01

    The Century Survey strip covers 102 deg2 within the limits 8h5<=α<=16h5, 29.0d<=δ<=30.0d, equinox B1950.0. The strip passes through the Corona Borealis supercluster and the outer region of the Coma cluster. Within the Century Survey region, we have measured 2410 redshifts that constitute four overlapping complete redshift surveys: (1) 1728 galaxies with Kron-Cousins Rph<=16.13 covering the entire strip, (2) 507 galaxies with Rph<=16.4 in right ascension range 8h32m<=α<=10 h45m, equinox B1950.0, (3) 1251 galaxies with absorption- and K-corrected RCCDc<=16.2 (where ``c'' indicates ``corrected'') covering the right ascension range 8h5<=α<=13h5, equinox B1950.0, and (4) 1255 galaxies with absorption- and K-corrected VCCDc<=16.7 also covering the right ascension range 8h5<=α<=13h5, equinox B1950.0. All these redshift samples are more than 98% complete to the specified magnitude limit. We derived samples 1 and 2 from scans of the POSS1 red (E) plates calibrated with CCD photometry. We derived samples 3 and 4 from deep V and R CCD images covering the entire region. We include coarse morphological types for all the galaxies in sample 1. The distribution of (V-R)CCD for each type corresponds appropriately with the classification. Work reported here is based partly on observations obtained at the Michigan-Dartmouth-MIT Observatory.

  18. The Center for Astrophysics Redshift Survey - Recent results

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.; Huchra, John P.

    1989-01-01

    Six strips of the CfA redshift survey extension are now complete. The data continue to support a picture in which galaxies are on thin sheets which nearly surround vast low-density voids. The largest structures are comparable with the extent of the survey. Voids like the one in Bootes are a common feature of the large-scale distribution of galaxies. The issue of fair samples of the galaxy distribution is discussed, examining statistical measures of the galaxy distribution including the two-point correlation functions.

  19. Photometric redshift analysis in the Dark Energy Survey Science Verification data

    DOE PAGES

    Sanchez, C.; Carrasco Kind, M.; Lin, H.; ...

    2014-10-09

    In this study, we present results from a study of the photometric redshift performance of the Dark Energy Survey (DES), using the early data from a Science Verification period of observations in late 2012 and early 2013 that provided science-quality images for almost 200 sq. deg. at the nominal depth of the survey. We assess the photometric redshift (photo-z) performance using about 15 000 galaxies with spectroscopic redshifts available from other surveys. These galaxies are used, in different configurations, as a calibration sample, and photo-z's are obtained and studied using most of the existing photo-z codes. A weighting method inmore » a multidimensional colour–magnitude space is applied to the spectroscopic sample in order to evaluate the photo-z performance with sets that mimic the full DES photometric sample, which is on average significantly deeper than the calibration sample due to the limited depth of spectroscopic surveys. In addition, empirical photo-z methods using, for instance, artificial neural networks or random forests, yield the best performance in the tests, achieving core photo-z resolutions σ68 ~ 0.08. Moreover, the results from most of the codes, including template-fitting methods, comfortably meet the DES requirements on photo-z performance, therefore, providing an excellent precedent for future DES data sets.« less

  20. Spectroscopic CCD surveys for quasars at large redshift. 3: The Palomar Transit Grism Survey catalog

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1994-01-01

    This paper reports the initial results of the Palomar Transit Grism Survey (PTGS). The PTGS was designed to produce a sample of z greater than 2.7 quasars that were identified by well-defined selection criteria. The survey consists of six narrow (approximately equal to 8.5 min wide) strips of sky; the total effective area is 61.47 sq deg. Low-resolution slitless spectra, covering the wavelength range from 4400 to 7500 A, were obtained for approximately 600 000 objects. The wavelength- and flux-calibrated spectra were searched for emission lines with an automatic software algorithm. A total to 1655 emission features in the grism data satisfied our signal-to-noise ratio and equivalent width selection criteria; subsequent slit spectroscopy of the candidates confirmed the existence of 1052 lines (928 different objects). Six groups of emission lines were detected in the survey: Lyman alpha + N V, C IV, C III1, Mg II, H Beta + (O III), and H alpha + (S II). More than two-thirds of the candidates are low-redshift (z less than 0.45) emission-line galaxies; ninety objects are high-redshift quasars (z greater than 2.7) detected via their Lyman alpha + N V emission lines. The survey contains three previously unknown quasars brighter than 17th magnitude; all three have redshifts of approximately equal to 1.3. In this paper we present the observational properties of the survey, the algorithms used to select the emission-line candidates, and the catalog of emission-line objects.

  1. The Herschel Multi-Tiered Extragalactic Survey: SPIRE-mm Photometric Redshifts

    NASA Technical Reports Server (NTRS)

    Roseboom, I. G.; Ivison, R. J.; Greve, T. R.; Amblard, A.; Arumugam, V.; Auld, R.; Aussel, H.; Bethermin, M.; Blain, A.; Block, J.; hide

    2012-01-01

    We investigate the potential of submm-mm and submm-mm-radio photometric redshifts using a sample of mm-selected sources as seen at 250, 350 and 500 micron by the SPIRE instrument on Herschel. From a sample of 63 previously identified mm sources with reliable radio identifications in the Great Observatories Origins Deep Survey North and Lockman Hole North fields, 46 (73 per cent) are found to have detections in at least one SPIRE band. We explore the observed submm/mm color evolution with redshift, finding that the colors of mm sources are adequately described by a modified blackbody with constant optical depth Tau = (Nu/nu(sub 0))(exp Beta), where Beta = +1.8 and nu(sub 0) = c/100 micron. We find a tight correlation between dust temperature and IR luminosity. Using a single model of the dust temperature and IR luminosity relation, we derive photometric redshift estimates for the 46 SPIRE-detected mm sources. Testing against the 22 sources with known spectroscopic or good quality optical/near-IR photometric redshifts, we find submm/mm photometric redshifts offer a redshift accuracy of (absolute value of Delta sub (z))/(1 + z) = 0.16 (absolute value of Delta sub (z)) = 0.51). Including constraints from the radio-far-IR correlation, the accuracy is improved to (absolute value of Delta sub (z))/(1 + z) = 0.14 (((absolute value of Delta sub (z))) = 0.45). We estimate the redshift distribution of mm-selected sources finding a significant excess at Z > 3 when compared to approx 8S0 micron selected samples.

  2. Dark Energy Survey Year 1 results: cross-correlation redshifts - methods and systematics characterization

    NASA Astrophysics Data System (ADS)

    Gatti, M.; Vielzeuf, P.; Davis, C.; Cawthon, R.; Rau, M. M.; DeRose, J.; De Vicente, J.; Alarcon, A.; Rozo, E.; Gaztanaga, E.; Hoyle, B.; Miquel, R.; Bernstein, G. M.; Bonnett, C.; Carnero Rosell, A.; Castander, F. J.; Chang, C.; da Costa, L. N.; Gruen, D.; Gschwend, J.; Hartley, W. G.; Lin, H.; MacCrann, N.; Maia, M. A. G.; Ogando, R. L. C.; Roodman, A.; Sevilla-Noarbe, I.; Troxel, M. A.; Wechsler, R. H.; Asorey, J.; Davis, T. M.; Glazebrook, K.; Hinton, S. R.; Lewis, G.; Lidman, C.; Macaulay, E.; Möller, A.; O'Neill, C. R.; Sommer, N. E.; Uddin, S. A.; Yuan, F.; Zhang, B.; Abbott, T. M. C.; Allam, S.; Annis, J.; Bechtol, K.; Brooks, D.; Burke, D. L.; Carollo, D.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; DePoy, D. L.; Desai, S.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Hoormann, J. K.; Jain, B.; James, D. J.; Jarvis, M.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Li, T. S.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Reil, K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sheldon, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, B. E.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Wester, W.; Wolf, R. C.

    2018-06-01

    We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing source galaxies from the Dark Energy Survey Year 1 sample with redMaGiC galaxies (luminous red galaxies with secure photometric redshifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We apply the method to two photo-z codes run in our simulated data: Bayesian Photometric Redshift and Directional Neighbourhood Fitting. We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering versus photo-zs. The systematic uncertainty in the mean redshift bias of the source galaxy sample is Δz ≲ 0.02, though the precise value depends on the redshift bin under consideration. We discuss possible ways to mitigate the impact of our dominant systematics in future analyses.

  3. High redshift galaxies in the ALHAMBRA survey . I. Selection method and number counts based on redshift PDFs

    NASA Astrophysics Data System (ADS)

    Viironen, K.; Marín-Franch, A.; López-Sanjuan, C.; Varela, J.; Chaves-Montero, J.; Cristóbal-Hornillos, D.; Molino, A.; Fernández-Soto, A.; Vilella-Rojo, G.; Ascaso, B.; Cenarro, A. J.; Cerviño, M.; Cepa, J.; Ederoclite, A.; Márquez, I.; Masegosa, J.; Moles, M.; Oteo, I.; Pović, M.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Castander, J. F.; Del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Perea, J.; Prada, F.; Quintana, J. M.

    2015-04-01

    Context. Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so-called dropout technique or Ly-α selection. However, the availability of multifilter data now allows the dropout selections to be replaced by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. Aims: Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing to the study of the brightest, least frequent, high redshift galaxies. Methods: The methodology is based on redshift probability distribution functions (zPDFs). It is shown how a clean galaxy sample can be obtained by selecting the galaxies with high integrated probability of being within a given redshift interval. However, reaching both a complete and clean sample with this method is challenging. Hence, a method to derive statistical properties by summing the zPDFs of all the galaxies in the redshift bin of interest is introduced. Results: Using this methodology we derive the galaxy rest frame UV number counts in five redshift bins centred at z = 2.5,3.0,3.5,4.0, and 4.5, being complete up to the limiting magnitude at mUV(AB) = 24, where mUV refers to the first ALHAMBRA filter redwards of the Ly-α line. With the wide field ALHAMBRA data we especially contribute to the study of the brightest ends of these counts, accurately sampling the surface densities down to mUV(AB) = 21-22. Conclusions: We show that using the zPDFs it is easy to select a very clean sample of high redshift galaxies. We also show that it is better to do statistical analysis of the properties of galaxies using a probabilistic approach, which takes into account both the incompleteness and contamination issues in a

  4. A new method to search for high-redshift clusters using photometric redshifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castignani, G.; Celotti, A.; Chiaberge, M.

    2014-09-10

    We describe a new method (Poisson probability method, PPM) to search for high-redshift galaxy clusters and groups by using photometric redshift information and galaxy number counts. The method relies on Poisson statistics and is primarily introduced to search for megaparsec-scale environments around a specific beacon. The PPM is tailored to both the properties of the FR I radio galaxies in the Chiaberge et al. sample, which are selected within the COSMOS survey, and to the specific data set used. We test the efficiency of our method of searching for cluster candidates against simulations. Two different approaches are adopted. (1) Wemore » use two z ∼ 1 X-ray detected cluster candidates found in the COSMOS survey and we shift them to higher redshift up to z = 2. We find that the PPM detects the cluster candidates up to z = 1.5, and it correctly estimates both the redshift and size of the two clusters. (2) We simulate spherically symmetric clusters of different size and richness, and we locate them at different redshifts (i.e., z = 1.0, 1.5, and 2.0) in the COSMOS field. We find that the PPM detects the simulated clusters within the considered redshift range with a statistical 1σ redshift accuracy of ∼0.05. The PPM is an efficient alternative method for high-redshift cluster searches that may also be applied to both present and future wide field surveys such as SDSS Stripe 82, LSST, and Euclid. Accurate photometric redshifts and a survey depth similar or better than that of COSMOS (e.g., I < 25) are required.« less

  5. Probabilistic Selection of High-redshift Quasars with Subaru/Hyper Suprime-Cam Survey

    NASA Astrophysics Data System (ADS)

    Onoue, Masafusa

    High-redshift quasars are an important probe of the distant Universe. They enable observational studies of the early growth of supermassive blackholes, cosmic reionization, chemical enrichment of host galaxies, and so on. Through pioneering optical and near-infrared wide-area surveys such as the SDSS and the VIKING Survey, about one hundred quasars have been found at z > 6 (e.g., Fan et al. (2006b), Venemans et al. (2013)). However, its current small sample size and the fact that most of them are the most luminous (M 1450 <~ -24) population in this epoch prevents one from constraining statistics on high-redshift quasars, namely quasar luminosity function (QLF), and redshift evolution of IGM neutral fraction. Thus, discovery of large number of z > 6 quasars, especially low-luminous or z > 7 quasars, is highly desired for further understanding of the early universe. We are now starting a new ground-breaking survey of high-redshift (z > 6) quasars using the exquisite imaging data provided by the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) Survey. Thanks to its extremely wide coverage and its high sensitivity thorough five optical bands (1,400 deg2 to the depth of r ~ 26 in HSC-Wide layer), it is one of the most powerful contemporary surveys that makes it possible for us to increase the number of z > 6 quasars by almost an order of magnitude, i.e., 300 at z ~ 6 and 50 at z ~ 7, based on the current estimate of the QLF at z > 6 by Willott et al. (2010b). One of the biggest challenges in z > 6 quasar candidate selection is contamination of Galactic brown dwarfs, which have the same point-like appearance as and similarly red colors to the quasars. To overcome this issue and maximize the selection efficiency, we apply a double-layered approach to the HSC survey products, namely combination of two probabilistic selections: SED-fitting and Bayesian selection. In particular, we have developed a template SED fitting method optimized to high-redshift quasars

  6. Empirical Modeling of the Redshift Evolution of the [{\\rm{N}}\\,{\\rm{II}}]/Hα Ratio for Galaxy Redshift Surveys

    NASA Astrophysics Data System (ADS)

    Faisst, Andreas L.; Masters, Daniel; Wang, Yun; Merson, Alexander; Capak, Peter; Malhotra, Sangeeta; Rhoads, James E.

    2018-03-01

    We present an empirical parameterization of the [N II]/Hα flux ratio as a function of stellar mass and redshift valid at 0 < z < 2.7 and 8.5< {log}(M/{M}ȯ )< 11.0. This description can (i) easily be applied to simulations for modeling [N II]λ6584 line emission, (ii) deblend [N II] and Hα in current low-resolution grism and narrow-band observations to derive intrinsic Hα fluxes, and (iii) reliably forecast the number counts of Hα emission-line galaxies for future surveys, such as those planned for Euclid and the Wide Field Infrared Survey Telescope (WFIRST). Our model combines the evolution of the locus on the Baldwin, Phillips & Terlevich (BPT) diagram measured in spectroscopic data out to z ∼ 2.5 with the strong dependence of [N II]/Hα on stellar mass and [O III]/Hβ observed in local galaxy samples. We find large variations in the [N II]/Hα flux ratio at a fixed redshift due to its dependency on stellar mass; hence, the assumption of a constant [N II] flux contamination fraction can lead to a significant under- or overestimate of Hα luminosities. Specifically, measurements of the intrinsic Hα luminosity function derived from current low-resolution grism spectroscopy assuming a constant 29% contamination of [N II] can be overestimated by factors of ∼8 at {log}(L)> 43.0 for galaxies at redshifts z ∼ 1.5. This has implications for the prediction of Hα emitters for Euclid and WFIRST. We also study the impact of blended Hα and [N II] on the accuracy of measured spectroscopic redshifts.

  7. The Complete Calibration of the Color-Redshift Relation (C3R2) survey for Euclid

    NASA Astrophysics Data System (ADS)

    Cohen, Judith; Masters, Daniel; C3R2 Team

    2018-06-01

    The complete calibration of the color-redshift relation (C3R2) survey is a multi-institution, mutli-instrument survey with the Keck telescopes that aims to map out the empirical galaxy color-redshift relation in preparation for the Stage IV dark energy missions Euclid and WFIRST. A key challenge for weak lensing cosmology with these missions will be measuring highly accurate redshift distributions for billions of faint galaxies using only broad-band photometric observations. Well-calibrated photometric redshifts will thus be critical to their success. C3R2 uses an innovative technique that maps the color distribution of galaxies in the high-dimensional color space (u-g, ..., J-H) expected for Euclid and WFIRST, allowng us to focus spectroscopic effort on those regions of galaxy color space which are currently unexplored. C3R2 is a joint effort involving all of the Keck partners, with 44.5 nights allocated thus far. DR1 is published (Masters, Stern, Cohen et al, ApJ, 841, 111), and DR2, with > 3000 new redshifts, will be submitted in mid 2018.

  8. Dark Energy Survey Year 1 Results: Cross-Correlation Redshifts - Methods and Systematics Characterization

    DOE PAGES

    Gatti, M.

    2018-02-22

    We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing (WL) source galaxies from the Dark Energy Survey Year 1 (DES Y1) sample with redMaGiC galaxies (luminous red galaxies with secure photometric red- shifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We also apply the method to three photo-z codes run in our simulated data: Bayesian Photometric Redshift (BPZ), Directional Neighborhoodmore » Fitting (DNF), and Random Forest-based photo-z (RF). We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering vs photo-z's. The systematic uncertainty in the mean redshift bias of the source galaxy sample is z ≲ 0.02, though the precise value depends on the redshift bin under consideration. Here, we discuss possible ways to mitigate the impact of our dominant systematics in future analyses.« less

  9. Dark Energy Survey Year 1 Results: Cross-Correlation Redshifts - Methods and Systematics Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatti, M.

    We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing (WL) source galaxies from the Dark Energy Survey Year 1 (DES Y1) sample with redMaGiC galaxies (luminous red galaxies with secure photometric red- shifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We also apply the method to three photo-z codes run in our simulated data: Bayesian Photometric Redshift (BPZ), Directional Neighborhoodmore » Fitting (DNF), and Random Forest-based photo-z (RF). We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering vs photo-z's. The systematic uncertainty in the mean redshift bias of the source galaxy sample is z ≲ 0.02, though the precise value depends on the redshift bin under consideration. Here, we discuss possible ways to mitigate the impact of our dominant systematics in future analyses.« less

  10. A faint galaxy redshift survey behind massive clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, Brenda Louise

    1999-05-01

    This thesis is concerned with the gravitational lensing effect by massive galaxy clusters. We have explored a new technique for measuring galaxy masses and for detecting high-z galaxies by their optical colors. A redshift survey has been obtained at the Keck for a magnitude limited sample of objects (I<23) behind three clusters, A1689, A2390, and A2218 within a radius of 0.5M pc. For each cluster we see both a clear trend of increasing flux and redshift towards the center. This behavior is the result of image magnifications, such that at fixed redshift one sees further down the luminosity function. Themore » gradient of this magnification is, unlike measurements of image distortion, sensitive to the mass profile, and found to depart strongly from a pure isothermal halo. We have found that V RI color selection can be used effectively as a discriminant for finding high-z galaxies behind clusters and present five 4.1 < z < 5.1 spectra which are of very high quality due to their high mean magnification of ~20, showing strong, visibly-saturated interstellar metal lines in some cases. We have also investigated the radio ring lens PKS 1830-211, locating the source and multiple images and detected molecular absorption at mm wavelengths. Broad molecular absorption of width 1/40kms is found toward the southwest component only, where surprisingly it does not reach the base of the continuum, which implies incomplete coverage of the SW component by molecular gas, despite the small projected size of the source, less than 1/8h pc at the absorption redshift.« less

  11. the-wizz: clustering redshift estimation for everyone

    NASA Astrophysics Data System (ADS)

    Morrison, C. B.; Hildebrandt, H.; Schmidt, S. J.; Baldry, I. K.; Bilicki, M.; Choi, A.; Erben, T.; Schneider, P.

    2017-05-01

    We present the-wizz, an open source and user-friendly software for estimating the redshift distributions of photometric galaxies with unknown redshifts by spatially cross-correlating them against a reference sample with known redshifts. The main benefit of the-wizz is in separating the angular pair finding and correlation estimation from the computation of the output clustering redshifts allowing anyone to create a clustering redshift for their sample without the intervention of an 'expert'. It allows the end user of a given survey to select any subsample of photometric galaxies with unknown redshifts, match this sample's catalogue indices into a value-added data file and produce a clustering redshift estimation for this sample in a fraction of the time it would take to run all the angular correlations needed to produce a clustering redshift. We show results with this software using photometric data from the Kilo-Degree Survey (KiDS) and spectroscopic redshifts from the Galaxy and Mass Assembly survey and the Sloan Digital Sky Survey. The results we present for KiDS are consistent with the redshift distributions used in a recent cosmic shear analysis from the survey. We also present results using a hybrid machine learning-clustering redshift analysis that enables the estimation of clustering redshifts for individual galaxies. the-wizz can be downloaded at http://github.com/morriscb/The-wiZZ/.

  12. Three-dimensional Identification and Reconstruction of Galaxy Systems within Flux-limited Redshift Surveys

    NASA Astrophysics Data System (ADS)

    Marinoni, Christian; Davis, Marc; Newman, Jeffrey A.; Coil, Alison L.

    2002-11-01

    We have developed a new geometrical method for identifying and reconstructing a homogeneous and highly complete set of galaxy groups within flux-limited redshift surveys. Our method combines information from the three-dimensional Voronoi diagram and its dual, the Delaunay triangulation, to obtain group and cluster catalogs that are remarkably robust over wide ranges in redshift and degree of density enhancement. As free by-products, this Voronoi-Delaunay method (VDM) provides a nonparametric measurement of the galaxy density around each object observed and a quantitative measure of the distribution of cosmological voids in the survey volume. In this paper, we describe the VDM algorithm in detail and test its effectiveness using a family of mock catalogs that simulate the Deep Extragalactic Evolutionary Probe (DEEP2) Redshift Survey, which should present at least as much challenge to cluster reconstruction methods as any other near-future survey that is capable of resolving their velocity dispersions. Using these mock DEEP2 catalogs, we demonstrate that the VDM algorithm can be used to identify a homogeneous set of groups in a magnitude-limited sample throughout the survey redshift window 0.7redshift space environment for systems with line-of-sight velocity dispersion σlos greater than ~200 km s-1. By applying the sampling rate and the instrument-imposed target selection biases expected for DEEP2, we show that even in a worst-case scenario our VDM method can construct a homogeneous sample of systems that reproduces major properties of the ``real'' cluster parent population down to ~200 km s-1 for systems with at least five members (and down to ~400 km s-1 for clusters as a whole). In a Λ cold dark matter cosmology, that limit translates into an identification rate of ~270 systems per square degree with 0.7

  13. Will kinematic Sunyaev-Zel'dovich measurements enhance the science return from galaxy redshift surveys?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiyama, Naonori S.; Okumura, Teppei; Spergel, David N., E-mail: nao.s.sugiyama@gmail.com, E-mail: tokumura@asiaa.sinica.edu.tw, E-mail: dns@astro.princeton.edu

    2017-01-01

    Yes. Future CMB experiments such as Advanced ACTPol and CMB-S4 should achieve measurements with S/N of > 0.1 for the typical host halo of galaxies in redshift surveys. These measurements will provide complementary measurements of the growth rate of large scale structure f and the expansion rate of the Universe H to galaxy clustering measurements. This paper emphasizes that there is significant information in the anisotropy of the relative pairwise kSZ measurements. We expand the relative pairwise kSZ power spectrum in Legendre polynomials and consider up to its octopole. Assuming that the noise in the filtered maps is uncorrelated betweenmore » the positions of galaxies in the survey, we derive a simple analytic form for the power spectrum covariance of the relative pairwise kSZ temperature in redshift space. While many previous studies have assumed optimistically that the optical depth of the galaxies τ{sub T} in the survey is known, we marginalize over τ{sub T}, to compute constraints on the growth rate f and the expansion rate H . For realistic survey parameters, we find that combining kSZ and galaxy redshift survey data reduces the marginalized 1-σ errors on H and f to ∼50-70% compared to the galaxy-only analysis.« less

  14. Will kinematic Sunyaev-Zel'dovich measurements enhance the science return from galaxy redshift surveys?

    NASA Astrophysics Data System (ADS)

    Sugiyama, Naonori S.; Okumura, Teppei; Spergel, David N.

    2017-01-01

    Yes. Future CMB experiments such as Advanced ACTPol and CMB-S4 should achieve measurements with S/N of > 0.1 for the typical host halo of galaxies in redshift surveys. These measurements will provide complementary measurements of the growth rate of large scale structure f and the expansion rate of the Universe H to galaxy clustering measurements. This paper emphasizes that there is significant information in the anisotropy of the relative pairwise kSZ measurements. We expand the relative pairwise kSZ power spectrum in Legendre polynomials and consider up to its octopole. Assuming that the noise in the filtered maps is uncorrelated between the positions of galaxies in the survey, we derive a simple analytic form for the power spectrum covariance of the relative pairwise kSZ temperature in redshift space. While many previous studies have assumed optimistically that the optical depth of the galaxies τT in the survey is known, we marginalize over τT, to compute constraints on the growth rate f and the expansion rate H. For realistic survey parameters, we find that combining kSZ and galaxy redshift survey data reduces the marginalized 1-σ errors on H and f to ~50-70% compared to the galaxy-only analysis.

  15. The VIMOS Public Extragalactic Redshift Survey (VIPERS) . Galaxy clustering and redshift-space distortions at z ≃ 0.8 in the first data release

    NASA Astrophysics Data System (ADS)

    de la Torre, S.; Guzzo, L.; Peacock, J. A.; Branchini, E.; Iovino, A.; Granett, B. R.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bolzonella, M.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Moscardini, L.; Paioro, L.; Percival, W. J.; Polletta, M.; Pollo, A.; Schlagenhaufer, H.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Monaco, P.; Nichol, R. C.; Phleps, S.; Wolk, M.; Zamorani, G.

    2013-09-01

    We present the general real- and redshift-space clustering properties of galaxies as measured in the first data release of the VIPERS survey. VIPERS is a large redshift survey designed to probe in detail the distant Universe and its large-scale structure at 0.5 < z < 1.2. We describe in this analysis the global properties of the sample and discuss the survey completeness and associated corrections. This sample allows us to measure the galaxy clustering with an unprecedented accuracy at these redshifts. From the redshift-space distortions observed in the galaxy clustering pattern we provide a first measurement of the growth rate of structure at z = 0.8: fσ8 = 0.47 ± 0.08. This is completely consistent with the predictions of standard cosmological models based on Einstein gravity, although this measurement alone does not discriminate between different gravity models. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programmes 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://www.vipers.inaf.it/

  16. Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies

    NASA Astrophysics Data System (ADS)

    Hoyle, B.; Gruen, D.; Bernstein, G. M.; Rau, M. M.; De Vicente, J.; Hartley, W. G.; Gaztanaga, E.; DeRose, J.; Troxel, M. A.; Davis, C.; Alarcon, A.; MacCrann, N.; Prat, J.; Sánchez, C.; Sheldon, E.; Wechsler, R. H.; Asorey, J.; Becker, M. R.; Bonnett, C.; Carnero Rosell, A.; Carollo, D.; Carrasco Kind, M.; Castander, F. J.; Cawthon, R.; Chang, C.; Childress, M.; Davis, T. M.; Drlica-Wagner, A.; Gatti, M.; Glazebrook, K.; Gschwend, J.; Hinton, S. R.; Hoormann, J. K.; Kim, A. G.; King, A.; Kuehn, K.; Lewis, G.; Lidman, C.; Lin, H.; Macaulay, E.; Maia, M. A. G.; Martini, P.; Mudd, D.; Möller, A.; Nichol, R. C.; Ogando, R. L. C.; Rollins, R. P.; Roodman, A.; Ross, A. J.; Rozo, E.; Rykoff, E. S.; Samuroff, S.; Sevilla-Noarbe, I.; Sharp, R.; Sommer, N. E.; Tucker, B. E.; Uddin, S. A.; Varga, T. N.; Vielzeuf, P.; Yuan, F.; Zhang, B.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Busha, M. T.; Capozzi, D.; Carretero, J.; Crocce, M.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jarvis, M.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Kirk, D.; Krause, E.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Nord, B.; O'Neill, C. R.; Plazas, A. A.; Romer, A. K.; Sako, M.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Wester, W.; Wolf, R. C.; Yanny, B.; Zuntz, J.

    2018-07-01

    We describe the derivation and validation of redshift distribution estimates and their uncertainties for the populations of galaxies used as weak-lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z ≈ 0.2 and ≈1.3, and to produce initial estimates of the lensing-weighted redshift distributions n^i_PZ(z)∝ dn^i/dz for members of bin i. Accurate determination of cosmological parameters depends critically on knowledge of ni, but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts n^i(z)=n^i_PZ(z-Δ z^i) to correct the mean redshift of ni(z) for biases in n^i_PZ. The Δzi are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the Cosmic Evolution Survey (COSMOS) field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the Δzi of the three lowest redshift bins are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15 < z < 0.9. This paper details the BPZ and COSMOS procedures, and demonstrates that the cosmological inference is insensitive to details of the ni(z) beyond the choice of Δzi. The clustering and COSMOS validation methods produce consistent estimates of Δzi in the bins where both can be applied, with combined uncertainties of σ_{Δ z^i}=0.015, 0.013, 0.011, and 0.022 in the four bins. Repeating the photo-z procedure instead using the Directional Neighbourhood Fitting algorithm, or using the ni(z) estimated from the matched sample in COSMOS, yields no discernible difference in cosmological inferences.

  17. VLA observations of unidentified Leiden-Berkeley Deep-Survey sources - Luminosity and redshift dependence of spectral properties

    NASA Technical Reports Server (NTRS)

    Kapahi, Vijay K.; Kulkarni, Vasant K.

    1990-01-01

    VLA observations of a complete subset of the Leiden-Berkeley Deep Survey sources that have S(1.4 GHz) greater than 10 mJy and are not optically identified down to F=22 mag are reported. By comparing the spectral and structural properties of the sources with samples from the literature, an attempt was made to disentangle the luminosity and redshift dependence of the spectral indices of extended emission in radio galaxies and of the incidence of compact steep-spectrum sources. It is found that the fraction of compact sources among those with a steep spectrum is related primarily to redshift, being much larger at high redshifts for sources of similar radio luminosity. Only a weak and marginally significant dependence of spectral indices of the extended sources on luminosity and redshift is found in samples selected at 1.4 and 2.7 GHz. It is pointed out that the much stronger correlation of spectral indices with luminosity may be arising partly from spectral curvature, and partly due to the preferential inclusion of very steep-spectrum sources from high redshift in low-frequency surveys.

  18. Designing future dark energy space missions. II. Photometric redshift of space weak lensing optimized surveys

    NASA Astrophysics Data System (ADS)

    Jouvel, S.; Kneib, J.-P.; Bernstein, G.; Ilbert, O.; Jelinsky, P.; Milliard, B.; Ealet, A.; Schimd, C.; Dahlen, T.; Arnouts, S.

    2011-08-01

    Context. With the discovery of the accelerated expansion of the universe, different observational probes have been proposed to investigate the presence of dark energy, including possible modifications to the gravitation laws by accurately measuring the expansion of the Universe and the growth of structures. We need to optimize the return from future dark energy surveys to obtain the best results from these probes. Aims: A high precision weak-lensing analysis requires not an only accurate measurement of galaxy shapes but also a precise and unbiased measurement of galaxy redshifts. The survey strategy has to be defined following both the photometric redshift and shape measurement accuracy. Methods: We define the key properties of the weak-lensing instrument and compute the effective PSF and the overall throughput and sensitivities. We then investigate the impact of the pixel scale on the sampling of the effective PSF, and place upper limits on the pixel scale. We then define the survey strategy computing the survey area including in particular both the Galactic absorption and Zodiacal light variation accross the sky. Using the Le Phare photometric redshift code and realistic galaxy mock catalog, we investigate the properties of different filter-sets and the importance of the u-band photometry quality to optimize the photometric redshift and the dark energy figure of merit (FoM). Results: Using the predicted photometric redshift quality, simple shape measurement requirements, and a proper sky model, we explore what could be an optimal weak-lensing dark energy mission based on FoM calculation. We find that we can derive the most accurate the photometric redshifts for the bulk of the faint galaxy population when filters have a resolution ℛ ~ 3.2. We show that an optimal mission would survey the sky through eight filters using two cameras (visible and near infrared). Assuming a five-year mission duration, a mirror size of 1.5 m and a 0.5 deg2 FOV with a visible pixel

  19. Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyle, B.; Gruen, D.; Bernstein, G. M.

    We describe the derivation and validation of redshift distribution estimates and their uncertainties for the galaxies used as weak lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z=0.2 and 1.3, and to produce initial estimates of the lensing-weighted redshift distributionsmore » $$n^i_{PZ}(z)$$ for bin i. Accurate determination of cosmological parameters depends critically on knowledge of $n^i$ but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts $$n^i(z)=n^i_{PZ}(z-\\Delta z^i)$$ to correct the mean redshift of $n^i(z)$ for biases in $$n^i_{\\rm PZ}$$. The $$\\Delta z^i$$ are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the COSMOS field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the $$\\Delta z^i$$ are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15« less

  20. Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies

    DOE PAGES

    Hoyle, B.; Gruen, D.; Bernstein, G. M.; ...

    2018-04-18

    We describe the derivation and validation of redshift distribution estimates and their uncertainties for the galaxies used as weak lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z=0.2 and 1.3, and to produce initial estimates of the lensing-weighted redshift distributionsmore » $$n^i_{PZ}(z)$$ for bin i. Accurate determination of cosmological parameters depends critically on knowledge of $n^i$ but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts $$n^i(z)=n^i_{PZ}(z-\\Delta z^i)$$ to correct the mean redshift of $n^i(z)$ for biases in $$n^i_{\\rm PZ}$$. The $$\\Delta z^i$$ are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the COSMOS field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the $$\\Delta z^i$$ are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15« less

  1. Dark Energy Survey Year 1 Results: Redshift distributions of the weak lensing source galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyle, B.; et al.

    2017-08-04

    We describe the derivation and validation of redshift distribution estimates and their uncertainties for the galaxies used as weak lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z=0.2 and 1.3, and to produce initial estimates of the lensing-weighted redshift distributionsmore » $$n^i_{PZ}(z)$$ for bin i. Accurate determination of cosmological parameters depends critically on knowledge of $n^i$ but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts $$n^i(z)=n^i_{PZ}(z-\\Delta z^i)$$ to correct the mean redshift of $n^i(z)$ for biases in $$n^i_{\\rm PZ}$$. The $$\\Delta z^i$$ are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the COSMOS field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the $$\\Delta z^i$$ are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15« less

  2. The MUSE Hubble Ultra Deep Field Survey. II. Spectroscopic redshifts and comparisons to color selections of high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Inami, H.; Bacon, R.; Brinchmann, J.; Richard, J.; Contini, T.; Conseil, S.; Hamer, S.; Akhlaghi, M.; Bouché, N.; Clément, B.; Desprez, G.; Drake, A. B.; Hashimoto, T.; Leclercq, F.; Maseda, M.; Michel-Dansac, L.; Paalvast, M.; Tresse, L.; Ventou, E.; Kollatschny, W.; Boogaard, L. A.; Finley, H.; Marino, R. A.; Schaye, J.; Wisotzki, L.

    2017-11-01

    We have conducted a two-layered spectroscopic survey (1' × 1' ultra deep and 3' × 3' deep regions) in the Hubble Ultra Deep Field (HUDF) with the Multi Unit Spectroscopic Explorer (MUSE). The combination of a large field of view, high sensitivity, and wide wavelength coverage provides an order of magnitude improvement in spectroscopically confirmed redshifts in the HUDF; i.e., 1206 secure spectroscopic redshifts for Hubble Space Telescope (HST) continuum selected objects, which corresponds to 15% of the total (7904). The redshift distribution extends well beyond z> 3 and to HST/F775W magnitudes as faint as ≈ 30 mag (AB, 1σ). In addition, 132 secure redshifts were obtained for sources with no HST counterparts that were discovered in the MUSE data cubes by a blind search for emission-line features. In total, we present 1338 high quality redshifts, which is a factor of eight increase compared with the previously known spectroscopic redshifts in the same field. We assessed redshifts mainly with the spectral features [O II] at z< 1.5 (473 objects) and Lyα at 2.9 redshifts to test continuum color selection (dropout) diagrams of high-z galaxies. The selection condition for F336W dropouts successfully captures ≈ 80% of the targeted z 2.7 galaxies. However, for higher redshift selections (F435W, F606W, and F775W dropouts), the success rates decrease to ≈ 20-40%. We empirically redefine the selection boundaries to make an attempt to improve them to ≈ 60%. The revised boundaries allow bluer colors that capture Lyα emitters with high Lyα equivalent widths falling in the broadbands used for the color-color selection. Along with this paper, we release the redshift and line flux catalog. Based on observations made with

  3. THE MICRO-ARCSECOND SCINTILLATION-INDUCED VARIABILITY (MASIV) SURVEY. III. OPTICAL IDENTIFICATIONS AND NEW REDSHIFTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pursimo, Tapio; Ojha, Roopesh; Jauncey, David L.

    2013-04-10

    Intraday variability (IDV) of the radio emission from active galactic nuclei is now known to be predominantly due to interstellar scintillation (ISS). The MASIV (The Micro-Arcsecond Scintillation-Induced Variability) survey of 443 flat spectrum sources revealed that the IDV is related to the radio flux density and redshift. A study of the physical properties of these sources has been severely handicapped by the absence of reliable redshift measurements for many of these objects. This paper presents 79 new redshifts and a critical evaluation of 233 redshifts obtained from the literature. We classify spectroscopic identifications based on emission line properties, finding thatmore » 78% of the sources have broad emission lines and are mainly FSRQs. About 16% are weak lined objects, chiefly BL Lacs, and the remaining 6% are narrow line objects. The gross properties (redshift, spectroscopic class) of the MASIV sample are similar to those of other blazar surveys. However, the extreme compactness implied by ISS favors FSRQs and BL Lacs in the MASIV sample as these are the most compact object classes. We confirm that the level of IDV depends on the 5 GHz flux density for all optical spectral types. We find that BL Lac objects tend to be more variable than broad line quasars. The level of ISS decreases substantially above a redshift of about two. The decrease is found to be generally consistent with ISS expected for beamed emission from a jet that is limited to a fixed maximum brightness temperature in the source rest frame.« less

  4. The Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey III. Optical Identifications and New Redshifts

    NASA Technical Reports Server (NTRS)

    Pursimo, Tapio; Ojha, Roopesh; Jauncey, David L.; Rickett, Barney J.; Dutka, Michael S.; Koay, Jun Yi; Lovell, James E. J.; Bignall, Hayley E.; Kedziora-Chudczer, Lucyna; Macquart, Jean-Pierre

    2013-01-01

    Intraday variability (IDV) of the radio emission from active galactic nuclei is now known to be predominantly due to interstellar scintillation (ISS). The MASIV (The Microarcsecond Scintillation Induced Variability) survey of 443 at spectrum sources revealed that the IDV is related to the radio flux density and redshift. A study of the physical properties of these sources has been severely handicapped by the absence of reliable redshift measurements for many of these objects. This paper presents 79 new redshifts and a critical evaluation of 233 redshifts obtained from the literature. We classify spectroscopic identifications based on emission line properties, finding that 78% of the sources have broad emission lines and are mainly FSRQs. About 16% are weak lined objects, chiefly BL Lacs, and the remaining 6% are narrow line objects. The gross properties (redshift, spectroscopic class) of the MASIV sample are similar to those of other blazar surveys. However, the extreme compactness implied by ISS favors FSRQs and BL Lacs in the MASIV sample as these are the most compact object classes. We confirm that the level of IDV depends on the 5 GHz flux density for all optical spectral types. We find that BL Lac objects tend to be more variable than broad line quasars. The level of ISS decreases substantially above a redshift of about two. The decrease is found to be generally consistent with ISS expected for beamed emission from a jet that is limited to a fixed maximum brightness temperature in the source rest frame.

  5. The 2-degree Field Lensing Survey: photometric redshifts from a large new training sample to r < 19.5

    NASA Astrophysics Data System (ADS)

    Wolf, C.; Johnson, A. S.; Bilicki, M.; Blake, C.; Amon, A.; Erben, T.; Glazebrook, K.; Heymans, C.; Hildebrandt, H.; Joudaki, S.; Klaes, D.; Kuijken, K.; Lidman, C.; Marin, F.; Parkinson, D.; Poole, G.

    2017-04-01

    We present a new training set for estimating empirical photometric redshifts of galaxies, which was created as part of the 2-degree Field Lensing Survey project. This training set is located in a ˜700 deg2 area of the Kilo-Degree-Survey South field and is randomly selected and nearly complete at r < 19.5. We investigate the photometric redshift performance obtained with ugriz photometry from VST-ATLAS and W1/W2 from WISE, based on several empirical and template methods. The best redshift errors are obtained with kernel-density estimation (KDE), as are the lowest biases, which are consistent with zero within statistical noise. The 68th percentiles of the redshift scatter for magnitude-limited samples at r < (15.5, 17.5, 19.5) are (0.014, 0.017, 0.028). In this magnitude range, there are no known ambiguities in the colour-redshift map, consistent with a small rate of redshift outliers. In the fainter regime, the KDE method produces p(z) estimates per galaxy that represent unbiased and accurate redshift frequency expectations. The p(z) sum over any subsample is consistent with the true redshift frequency plus Poisson noise. Further improvements in redshift precision at r < 20 would mostly be expected from filter sets with narrower passbands to increase the sensitivity of colours to small changes in redshift.

  6. Detecting the highest redshift (z > 8) quasi-stellar objects in a wide, near-infrared slitless spectroscopic survey

    NASA Astrophysics Data System (ADS)

    Roche, Nathan; Franzetti, Paolo; Garilli, Bianca; Zamorani, Giovanni; Cimatti, Andrea; Rossetti, Emanuel

    2012-02-01

    We investigate the prospects of extending observations of high-redshift quasi-stellar objects (QSOs) from the current z˜ 7 to z > 8 by means of a very wide-area near-infrared slitless spectroscopic survey, considering as an example the planned survey with the European Space Agency's Euclid telescope (scheduled for a 2019 launch). For any QSOs at z > 8.06, the strong Lyman α line will enter the wavelength range of the Euclid Near-Infrared Spectometer and Imaging Photometer (NISP). We perform a detailed simulation of near infrared spectrometer and imaging photometer (Euclid) NISP slitless spectroscopy (with the parameters of the wide survey) in an artificial field containing QSO spectra at all redshifts up to z= 12 and to a faint limit H= 22.5. QSO spectra are represented with a template based on a Sloan Digital Sky Survey composite spectrum, with the added effects of absorption from neutral hydrogen in the intergalactic medium. The spectra extracted from the simulation are analysed with an automated redshift finder, and a detection rate estimated as a function of H magnitude and redshift (defined as the proportion of spectra with both correct redshift measurements and classifications). We show that, as expected, spectroscopic identification of QSOs would reach deeper limits for the redshift ranges where either ? (0.67 < z < 2.05) or Lyman α (z > 8.06) is visible. Furthermore, if photometrically selected z > 8 spectra can be re-examined and refitted to minimize the effects of spectral contamination, the QSO detection rate in the Lyman α window will be increased by an estimated ˜60 per cent and will then be better here than at any other redshift, with an effective limit H≃ 21.5. With an extrapolated rate of QSO evolution, we predict that the Euclid wide (15 000 ?) spectroscopic survey will identify and measure spectroscopic redshifts for a total of 20-35 QSOs at z > 8.06 (reduced slightly to 19-33 if we apply a small correction for missed weak-lined QSOs

  7. Void statistics of the CfA redshift survey

    NASA Astrophysics Data System (ADS)

    Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.

    1991-11-01

    Clustering properties of two samples from the CfA redshift survey, each containing about 2500 galaxies, are studied. A comparison of the velocity distributions via a K-S test reveals structure on scales comparable with the extent of the survey. The void probability function (VPF) is employed for these samples to examine the structure and to test for scaling relations in the galaxy distribution. The galaxy correlation function is calculated via moments of galaxy counts. The shape and amplitude of the correlation function roughly agree with previous determinations. The VPFs for distance-limited samples of the CfA survey do not match the scaling relation predicted by the hierarchical clustering models. On scales not greater than 10/h Mpc, the VPFs for these samples roughly follow the hierarchical pattern. A variant of the VPF which uses nearly all the data in magnitude-limited samples is introduced; it accounts for the variation of the sampling density with velocity in a magnitude-limited survey.

  8. Void statistics of the CfA redshift survey

    NASA Technical Reports Server (NTRS)

    Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.

    1991-01-01

    Clustering properties of two samples from the CfA redshift survey, each containing about 2500 galaxies, are studied. A comparison of the velocity distributions via a K-S test reveals structure on scales comparable with the extent of the survey. The void probability function (VPF) is employed for these samples to examine the structure and to test for scaling relations in the galaxy distribution. The galaxy correlation function is calculated via moments of galaxy counts. The shape and amplitude of the correlation function roughly agree with previous determinations. The VPFs for distance-limited samples of the CfA survey do not match the scaling relation predicted by the hierarchical clustering models. On scales not greater than 10/h Mpc, the VPFs for these samples roughly follow the hierarchical pattern. A variant of the VPF which uses nearly all the data in magnitude-limited samples is introduced; it accounts for the variation of the sampling density with velocity in a magnitude-limited survey.

  9. A New Survey for Low-Redshift Damped Lyman-Alpha Lines in QSO MgII Systems

    NASA Astrophysics Data System (ADS)

    Rao, Sandhya

    2000-07-01

    Studies have shown that most of the observable neutral gas mass in the Universe resides in QSO damped LyAlpha {DLA} systems. However, at low redshift {z<1.65}, DLA can only be found by searching in the UV with HST. Such searches are crucial since z<1.65 corresponds to 3/4 of the age of the Universe. The identification of significant numbers of low- redshift DLA systems is imperative if we ever hope to effectively study this cosmologically massive component of neutral gas. To this end, we recently reported on the results of our initial HST survey to study low-redshift DLA absorbers in QSO MgII systems. We discovered 14 DLA systems and had a success rate of 14%. Now, based on these results and our improved understanding of the selection criteria for successful DLA searches, we propose a new survey for low-redshift DLA lines in QSO MgII systems. With our new revised selection criteria, we can empirically show that our success rate would be 35%. Specifically, we propose to observe the LyAlpha line of 55 MgII systems. We estimate that we will discover 19 new DLA systems with redshift z<1.65. Finding these systems will facilitate the type of research that can be done with DLA systems. By boot-strapping from the MgII statistics, we will be able to further improve the determination of the low- redshift statistical properties of DLA {their incidence and cosmological mass density} and open up new opportunities for studies at low redshift.

  10. Angular power spectrum of galaxies in the 2MASS Redshift Survey

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Benoit-Lévy, Aurélien; Komatsu, Eiichiro

    2018-02-01

    We present the measurement and interpretation of the angular power spectrum of nearby galaxies in the 2MASS Redshift Survey catalogue with spectroscopic redshifts up to z ≈ 0.1. We detect the angular power spectrum up to a multipole of ℓ ≈ 1000. We find that the measured power spectrum is dominated by galaxies living inside nearby galaxy clusters and groups. We use the halo occupation distribution (HOD) formalism to model the power spectrum, obtaining a fit with reasonable parameters. These HOD parameters are in agreement with the 2MASS galaxy distribution we measure towards the known nearby galaxy clusters, confirming validity of our analysis.

  11. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Star formation history of passive red galaxies

    NASA Astrophysics Data System (ADS)

    Siudek, M.; Małek, K.; Scodeggio, M.; Garilli, B.; Pollo, A.; Haines, C. P.; Fritz, A.; Bolzonella, M.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; De Lucia, G.; Davidzon, I.; Franzetti, P.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Marchetti, A.; Marulli, F.; Polletta, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; Ilbert, O.; Gargiulo, A.; Moscardini, L.; Takeuchi, T. T.; Zamorani, G.

    2017-01-01

    Aims: We trace the evolution and the star formation history of passive red galaxies, using a subset of the VIMOS Public Extragalactic Redshift Survey (VIPERS). The detailed spectral analysis of stellar populations of intermediate-redshift passive red galaxies allows the build up of their stellar content to be followed over the last 8 billion years. Methods: We extracted a sample of passive red galaxies in the redshift range 0.4 survey. The sample was selected using an evolving cut in the rest-frame U-V color distribution and additional cuts that ensured high quality. The spectra of passive red galaxies were stacked in narrow bins of stellar mass and redshift. We use the stacked spectra to measure the 4000 Å break (D4000) and the Hδ Lick index (HδA) with high precision. These spectral features are used as indicators of the star formation history of passive red galaxies. We compare the results with a grid of synthetic spectra to constrain the star formation epochs of these galaxies. We characterize the formation redshift-stellar mass relation for intermediate-redshift passive red galaxies. Results: We find that at z 1 stellar populations in low-mass passive red galaxies are younger than in high-mass passive red galaxies, similar to what is observed at the present epoch. Over the full analyzed redshift range 0.4 < z < 1.0 and stellar mass range 10 < log (Mstar/M⊙) < 12, the D4000 index increases with redshift, while HδA gets lower. This implies that the stellar populations are getting older with increasing stellar mass. Comparison to the spectra of passive red galaxies in the SDSS survey (z 0.2) shows that the shape of the relations of D4000 and HδA with stellar mass has not changed significantly with redshift. Assuming a single burst formation, this implies that high-mass passive red galaxies formed their stars at zform 1.7, while low-mass galaxies formed their main stellar populations

  12. GALAXY ZOO MORPHOLOGY AND PHOTOMETRIC REDSHIFTS IN THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Way, M. J.

    It has recently been demonstrated that one can accurately derive galaxy morphology from particular primary and secondary isophotal shape estimates in the Sloan Digital Sky Survey (SDSS) imaging catalog. This was accomplished by applying Machine Learning techniques to the Galaxy Zoo morphology catalog. Using the broad bandpass photometry of the SDSS in combination with precise knowledge of galaxy morphology should help in estimating more accurate photometric redshifts for galaxies. Using the Galaxy Zoo separation for spirals and ellipticals in combination with SDSS photometry we attempt to calculate photometric redshifts. In the best case we find that the root-mean-square error formore » luminous red galaxies classified as ellipticals is as low as 0.0118. Given these promising results we believe better photometric redshift estimates for all galaxies in the SDSS ({approx}350 million) will be feasible if researchers can also leverage their derived morphologies via Machine Learning. These initial results look to be promising for those interested in estimating weak lensing, baryonic acoustic oscillation, and other fields dependent upon accurate photometric redshifts.« less

  13. Beyond the plane-parallel approximation for redshift surveys

    NASA Astrophysics Data System (ADS)

    Castorina, Emanuele; White, Martin

    2018-06-01

    Redshift -space distortions privilege the location of the observer in cosmological redshift surveys, breaking the translational symmetry of the underlying theory. This violation of statistical homogeneity has consequences for the modelling of clustering observables, leading to what are frequently called `wide-angle effects'. We study these effects analytically, computing their signature in the clustering of the multipoles in configuration and Fourier space. We take into account both physical wide-angle contributions as well as the terms generated by the galaxy selection function. Similar considerations also affect the way power spectrum estimators are constructed. We quantify in an analytical way the biases that enter and clarify the relation between what we measure and the underlying theoretical modelling. The presence of an angular window function is also discussed. Motivated by this analysis, we present new estimators for the three dimensional Cartesian power spectrum and bispectrum multipoles written in terms of spherical Fourier-Bessel coefficients. We show how the latter have several interesting properties, allowing in particular a clear separation between angular and radial modes.

  14. Groups of galaxies in the Center for Astrophysics redshift survey

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Huchra, John P.

    1989-01-01

    By applying the Huchra and Geller (1982) objective group identification algorithm to the Center for Astrophysics' redshift survey, a catalog of 128 groups with three or more members is extracted, and 92 of these are used as a statistical sample. A comparison of the distribution of group centers with the distribution of all galaxies in the survey indicates qualitatively that groups trace the large-scale structure of the region. The physical properties of groups may be related to the details of large-scale structure, and it is concluded that differences among group catalogs may be due to the properties of large-scale structures and their location relative to the survey limits.

  15. VLA observations of unidentified Leiden-Berkeley Deep-Survey sources - Luminosity and redshift dependence of spectral properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapahi, V.K.; Kulkarni, V.K.

    1990-05-01

    VLA observations of a complete subset of the Leiden-Berkeley Deep Survey sources that have S(1.4 GHz) greater than 10 mJy and are not optically identified down to F=22 mag are reported. By comparing the spectral and structural properties of the sources with samples from the literature, an attempt was made to disentangle the luminosity and redshift dependence of the spectral indices of extended emission in radio galaxies and of the incidence of compact steep-spectrum sources. It is found that the fraction of compact sources among those with a steep spectrum is related primarily to redshift, being much larger at highmore » redshifts for sources of similar radio luminosity. Only a weak and marginally significant dependence of spectral indices of the extended sources on luminosity and redshift is found in samples selected at 1.4 and 2.7 GHz. It is pointed out that the much stronger correlation of spectral indices with luminosity may be arising partly from spectral curvature, and partly due to the preferential inclusion of very steep-spectrum sources from high redshift in low-frequency surveys. 54 refs.« less

  16. The VIMOS Public Extragalactic Redshift Survey (VIPERS). The matter density and baryon fraction from the galaxy power spectrum at redshift 0.6 < z < 1.1

    NASA Astrophysics Data System (ADS)

    Rota, S.; Granett, B. R.; Bel, J.; Guzzo, L.; Peacock, J. A.; Wilson, M. J.; Pezzotta, A.; de la Torre, S.; Garilli, B.; Bolzonella, M.; Scodeggio, M.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Percival, W. J.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Branchini, E.; Coupon, J.; De Lucia, G.; Ilbert, O.; Moscardini, L.; Moutard, T.

    2017-05-01

    We use the final catalogue of the VIMOS Public Extragalactic Redshift Survey (VIPERS) to measure the power spectrum of the galaxy distribution at high redshift, presenting results that extend beyond z = 1 for the first time. We apply a fast Fourier transform technique to four independent subvolumes comprising a total of 51 728 galaxies at 0.6 < z < 1.1 (out of the nearly 90 000 included in the whole survey). We concentrate here on the shape of the direction-averaged power spectrum in redshift space, explaining the level of modelling of redshift-space anisotropies and the anisotropic survey window function that are needed to deduce this in a robust fashion. We then use covariance matrices derived from a large ensemble of mock datasets in order to fit the spectral data. The results are well matched by a standard ΛCDM model, with density parameter ΩM h = 0.227+0.063-0.050 and baryon fraction fB=ΩB/ΩM=0.220+0.058-0.072. These inferences from the high-z galaxy distribution are consistent with results from local galaxy surveys, and also with the cosmic microwave background. Thus the ΛCDM model gives a good match to cosmic structure at all redshifts currently accessible to observational study. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programmes 182.A-0886 and partly under programme 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://www.vipers.inaf.it/

  17. Calibrating photometric redshifts of luminous red galaxies

    DOE PAGES

    Padmanabhan, Nikhil; Budavari, Tamas; Schlegel, David J.; ...

    2005-05-01

    We discuss the construction of a photometric redshift catalogue of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS), emphasizing the principal steps necessary for constructing such a catalogue: (i) photometrically selecting the sample, (ii) measuring photometric redshifts and their error distributions, and (iii) estimating the true redshift distribution. We compare two photometric redshift algorithms for these data and find that they give comparable results. Calibrating against the SDSS and SDSS–2dF (Two Degree Field) spectroscopic surveys, we find that the photometric redshift accuracy is σ~ 0.03 for redshifts less than 0.55 and worsens at higher redshift (~ 0.06more » for z < 0.7). These errors are caused by photometric scatter, as well as systematic errors in the templates, filter curves and photometric zero-points. We also parametrize the photometric redshift error distribution with a sum of Gaussians and use this model to deconvolve the errors from the measured photometric redshift distribution to estimate the true redshift distribution. We pay special attention to the stability of this deconvolution, regularizing the method with a prior on the smoothness of the true redshift distribution. The methods that we develop are applicable to general photometric redshift surveys.« less

  18. The Carnegie-Spitzer-IMACS Redshift Survey of Galaxy Evolution since z = 1.5. I. Description and Methodology

    NASA Astrophysics Data System (ADS)

    Kelson, Daniel D.; Williams, Rik J.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.; Mulchaey, John S.; Villanueva, Edward V.; Crane, Jeffrey D.; Quadri, Ryan F.

    2014-03-01

    We describe the Carnegie-Spitzer-IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on Magellan-Baade. By defining a flux-limited sample of galaxies in Spitzer Infrared Array Camera 3.6 μm imaging of SWIRE fields, the CSI Survey efficiently traces the stellar mass of average galaxies to z ~ 1.5. This first paper provides an overview of the survey selection, observations, processing of the photometry and spectrophotometry. We also describe the processing of the data: new methods of fitting synthetic templates of spectral energy distributions are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded high-quality redshifts for 43,347 galaxies in our first 5.3 deg2 of the SWIRE XMM-LSS field. We use three different approaches to estimate our redshift errors and find robust agreement. Over the full range of 3.6 μm fluxes of our selection, we find typical redshift uncertainties of σ z /(1 + z) <~ 0.015. In comparisons with previously published spectroscopic redshifts we find scatters of σ z /(1 + z) = 0.011 for galaxies at 0.7 <= z <= 0.9, and σ z /(1 + z) = 0.014 for galaxies at 0.9 <= z <= 1.2. For galaxies brighter and fainter than i = 23 mag, we find σ z /(1 + z) = 0.008 and σ z /(1 + z) = 0.022, respectively. Notably, our low-dispersion spectroscopy and analysis yields comparable redshift uncertainties and success rates for both red and blue galaxies, largely eliminating color-based systematics that can seriously bias observed dependencies of galaxy evolution on environment. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  19. VizieR Online Data Catalog: The Canada-France Redshift Survey (CFRS) (Lilly+, 1995)

    NASA Astrophysics Data System (ADS)

    Lilly, S. J.; Le Fevre, O.; Crampton, D.; Hammer, F.; Tresse, L.

    2001-11-01

    The Canada-France Redshift Survey (CFRS) is a collaboration between astronomers in Canada and France: Simon Lilly (University of Toronto), Olivier Le Fevre and Francois Hammer (Observatoire de Paris Meudon), David Crampton (Dominion Astrophysical Observatory, Victoria), Laurence Tresse (Cambridge University), and David Schade and Dan Hudon (University of Toronto). The survey is based primarily on observations with the 3.6m Canada-France-Hawaii Telescope (CFHT) on Mauna Kea, Hawaii. The CFRS consists of spectra of over 1000 faint objects selected to have 17.5 < I(AB) < 22.5 in five regions of sky. The survey is providing the first systematic study of normal galaxies at redshifts z > 0.5, corresponding to look-back times of greater than 50% of the age of the Universe. Observations of CFRS galaxies have also been made with the Hubble Space Telescope and the survey will form the basis of future studies with a number of other ground-based and space facilities. We have written a lay-persons guide to the CFRS and the main scientific results that are emerging from it. (1 data file).

  20. Spectrophotometric Redshifts in the Faint Infrared Grism Survey: Finding Overdensities of Faint Galaxies

    NASA Astrophysics Data System (ADS)

    Pharo, John; Malhotra, Sangeeta; Rhoads, James; Ryan, Russell; Tilvi, Vithal; Pirzkal, Norbert; Finkelstein, Steven; Windhorst, Rogier; Grogin, Norman; Koekemoer, Anton; Zheng, Zhenya; Hathi, Nimish; Kim, Keunho; Joshi, Bhavin; Yang, Huan; Christensen, Lise; Cimatti, Andrea; Gardner, Jonathan P.; Zakamska, Nadia; Ferreras, Ignacio; Hibon, Pascale; Pasquali, Anna

    2018-04-01

    We improve the accuracy of photometric redshifts by including low-resolution spectral data from the G102 grism on the Hubble Space Telescope (HST), which assists in redshift determination by further constraining the shape of the broadband spectral energy distribution (SED) and identifying spectral features. The photometry used in the redshift fits includes near-infrared photometry from FIGS+CANDELS, as well as optical data from ground-based surveys and HST ACS, and mid-IR data from Spitzer. We calculated the redshifts through the comparison of measured photometry with template galaxy models, using the EAZY photometric redshift code. For objects with F105W < 26.5 AB mag with a redshift range of 0 < z < 6, we find a typical error of Δz = 0.03 ∗ (1 + z) for the purely photometric redshifts; with the addition of FIGS spectra, these become Δz = 0.02 ∗ (1 + z), an improvement of 50%. Addition of grism data also reduces the outlier rate from 8% to 7% across all fields. With the more accurate spectrophotometric redshifts (SPZs), we searched the FIGS fields for galaxy overdensities. We identified 24 overdensities across the four fields. The strongest overdensity, matching a spectroscopically identified cluster at z = 0.85, has 28 potential member galaxies, of which eight have previous spectroscopic confirmation, and features a corresponding X-ray signal. Another corresponding to a cluster at z = 1.84 has 22 members, 18 of which are spectroscopically confirmed. Additionally, we find four overdensities that are detected at an equal or higher significance in at least one metric to the two confirmed clusters.

  1. Photometric Redshifts for the Large-Area Stripe 82X Multiwavelength Survey

    NASA Astrophysics Data System (ADS)

    Tasnim Ananna, Tonima; Salvato, Mara; Urry, C. Megan; LaMassa, Stephanie M.; STRIPE 82X

    2016-06-01

    The Stripe 82X survey currently includes 6000 X-ray sources in 31.3 square degrees of XMM-Newton and Chandra X-ray coverage, most of which are AGN. Using a maximum-likelihood approach, we identified optical and infrared counterparts in the SDSS, VHS K-band and WISE W1-band catalogs. 1200 objects which had different best associations in different catalogs were checked by eye. Our most recent paper provided the multiwavelength catalogs for this sample. More than 1000 counterparts have spectroscopic redshifts, either from SDSS spectroscopy or our own follow-up program. Using the extensive multiwavelength data in this field, we provide photometric redshift estimates for most of the remaining sources, which are 80-90% accurate according to the training set. Our sample has a large number of candidates that are very faint in optical and bright in IR. We expect a large fraction of these objects to be the obscured AGN sample we need to complete the census on black hole growth at a range of redshifts.

  2. Cosmology with photometric weak lensing surveys: Constraints with redshift tomography of convergence peaks and moments

    NASA Astrophysics Data System (ADS)

    Petri, Andrea; May, Morgan; Haiman, Zoltán

    2016-09-01

    Weak gravitational lensing is becoming a mature technique for constraining cosmological parameters, and future surveys will be able to constrain the dark energy equation of state w . When analyzing galaxy surveys, redshift information has proven to be a valuable addition to angular shear correlations. We forecast parameter constraints on the triplet (Ωm,w ,σ8) for a LSST-like photometric galaxy survey, using tomography of the shear-shear power spectrum, convergence peak counts and higher convergence moments. We find that redshift tomography with the power spectrum reduces the area of the 1 σ confidence interval in (Ωm,w ) space by a factor of 8 with respect to the case of the single highest redshift bin. We also find that adding non-Gaussian information from the peak counts and higher-order moments of the convergence field and its spatial derivatives further reduces the constrained area in (Ωm,w ) by factors of 3 and 4, respectively. When we add cosmic microwave background parameter priors from Planck to our analysis, tomography improves power spectrum constraints by a factor of 3. Adding moments yields an improvement by an additional factor of 2, and adding both moments and peaks improves by almost a factor of 3 over power spectrum tomography alone. We evaluate the effect of uncorrected systematic photometric redshift errors on the parameter constraints. We find that different statistics lead to different bias directions in parameter space, suggesting the possibility of eliminating this bias via self-calibration.

  3. Cosmological constraints with clustering-based redshifts

    NASA Astrophysics Data System (ADS)

    Kovetz, Ely D.; Raccanelli, Alvise; Rahman, Mubdi

    2017-07-01

    We demonstrate that observations lacking reliable redshift information, such as photometric and radio continuum surveys, can produce robust measurements of cosmological parameters when empowered by clustering-based redshift estimation. This method infers the redshift distribution based on the spatial clustering of sources, using cross-correlation with a reference data set with known redshifts. Applying this method to the existing Sloan Digital Sky Survey (SDSS) photometric galaxies, and projecting to future radio continuum surveys, we show that sources can be efficiently divided into several redshift bins, increasing their ability to constrain cosmological parameters. We forecast constraints on the dark-energy equation of state and on local non-Gaussianity parameters. We explore several pertinent issues, including the trade-off between including more sources and minimizing the overlap between bins, the shot-noise limitations on binning and the predicted performance of the method at high redshifts, and most importantly pay special attention to possible degeneracies with the galaxy bias. Remarkably, we find that once this technique is implemented, constraints on dynamical dark energy from the SDSS imaging catalogue can be competitive with, or better than, those from the spectroscopic BOSS survey and even future planned experiments. Further, constraints on primordial non-Gaussianity from future large-sky radio-continuum surveys can outperform those from the Planck cosmic microwave background experiment and rival those from future spectroscopic galaxy surveys. The application of this method thus holds tremendous promise for cosmology.

  4. Dark Energy Survey Year 1 Results: Calibration of redMaGiC Redshift Distributions in DES and SDSS from Cross-Correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cawthon, R.; et al.

    We present calibrations of the redshift distributions of redMaGiC galaxies in the Dark Energy Survey Year 1 (DES Y1) and Sloan Digital Sky Survey (SDSS) DR8 data. These results determine the priors of the redshift distribution of redMaGiC galaxies, which were used for galaxy clustering measurements and as lenses for galaxy-galaxy lensing measurements in DES Y1 cosmological analyses. We empirically determine the bias in redMaGiC photometric redshift estimates using angular cross-correlations with Baryon Oscillation Spectroscopic Survey (BOSS) galaxies. For DES, we calibrate a single parameter redshift bias in three photometric redshift bins:more » $$z \\in[0.15,0.3]$$, [0.3,0.45], and [0.45,0.6]. Our best fit results in each bin give photometric redshift biases of $$|\\Delta z|<0.01$$. To further test the redMaGiC algorithm, we apply our calibration procedure to SDSS redMaGiC galaxies, where the statistical precision of the cross-correlation measurement is much higher due to a greater overlap with BOSS galaxies. For SDSS, we also find best fit results of $$|\\Delta z|<0.01$$. We compare our results to other analyses of redMaGiC photometric redshifts.« less

  5. SIX MORE QUASARS AT REDSHIFT 6 DISCOVERED BY THE CANADA-FRANCE HIGH-z QUASAR SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willott, Chris J.; Crampton, David; Hutchings, John B.

    2009-03-15

    We present imaging and spectroscopic observations for six quasars at z {>=} 5.9 discovered by the Canada-France High-z Quasar Survey (CFHQS). The CFHQS contains subsurveys with a range of flux and area combinations to sample a wide range of quasar luminosities at z {approx} 6. The new quasars have luminosities 10-75 times lower than the most luminous Sloan Digital Sky Survey quasars at this redshift. The least luminous quasar, CFHQS J0216-0455 at z = 6.01, has absolute magnitude M {sub 1450} = -22.21, well below the likely break in the luminosity function. This quasar is not detected in a deepmore » XMM-Newton survey showing that optical selection is still a very efficient tool for finding high-redshift quasars.« less

  6. Measures of large-scale structure in the CfA redshift survey slices

    NASA Technical Reports Server (NTRS)

    De Lapparent, Valerie; Geller, Margaret J.; Huchra, John P.

    1991-01-01

    Variations of the counts-in-cells with cell size are used here to define two statistical measures of large-scale clustering in three 6 deg slices of the CfA redshift survey. A percolation criterion is used to estimate the filling factor which measures the fraction of the total volume in the survey occupied by the large-scale structures. For the full 18 deg slice of the CfA redshift survey, f is about 0.25 + or - 0.05. After removing groups with more than five members from two of the slices, variations of the counts in occupied cells with cell size have a power-law behavior with a slope beta about 2.2 on scales from 1-10/h Mpc. Application of both this statistic and the percolation analysis to simulations suggests that a network of two-dimensional structures is a better description of the geometry of the clustering in the CfA slices than a network of one-dimensional structures. Counts-in-cells are also used to estimate at 0.3 galaxy h-squared/Mpc the average galaxy surface density in sheets like the Great Wall.

  7. ALLSMOG, the APEX Low-redshift Legacy Survey for MOlecular Gas

    NASA Astrophysics Data System (ADS)

    Bothwell, M.; Cicone, C.; Wagg, J.; De Breuck, C..

    2017-09-01

    We report the completion of the APEX Low-redshift Legacy Survey for MOlecular Gas (ALLSMOG), an ESO Large Programme, carried out with the Atacama Pathfinder EXperiment (APEX) between 2013 and 2016. With a total of 327 hours of APEX observing time, we observed the 12CO(2-1) line in 88 nearby low-mass star-forming galaxies. We briefly outline the ALLSMOG goals and design, and describe a few science highlights that have emerged from the survey so far. We outline future work that will ensure that the ALLSMOG dataset continues to provide scientific value in the coming years. ALLSMOG was designed to be a reference legacy survey and as such all reduced data products are publicly available through the ESO Science Archive Phase 3 interface.

  8. Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data

    NASA Astrophysics Data System (ADS)

    Zehavi, Idit; Blanton, Michael R.; Frieman, Joshua A.; Weinberg, David H.; Mo, Houjun J.; Strauss, Michael A.; Anderson, Scott F.; Annis, James; Bahcall, Neta A.; Bernardi, Mariangela; Briggs, John W.; Brinkmann, Jon; Burles, Scott; Carey, Larry; Castander, Francisco J.; Connolly, Andrew J.; Csabai, Istvan; Dalcanton, Julianne J.; Dodelson, Scott; Doi, Mamoru; Eisenstein, Daniel; Evans, Michael L.; Finkbeiner, Douglas P.; Friedman, Scott; Fukugita, Masataka; Gunn, James E.; Hennessy, Greg S.; Hindsley, Robert B.; Ivezić, Željko; Kent, Stephen; Knapp, Gillian R.; Kron, Richard; Kunszt, Peter; Lamb, Donald Q.; Leger, R. French; Long, Daniel C.; Loveday, Jon; Lupton, Robert H.; McKay, Timothy; Meiksin, Avery; Merrelli, Aronne; Munn, Jeffrey A.; Narayanan, Vijay; Newcomb, Matt; Nichol, Robert C.; Owen, Russell; Peoples, John; Pope, Adrian; Rockosi, Constance M.; Schlegel, David; Schneider, Donald P.; Scoccimarro, Roman; Sheth, Ravi K.; Siegmund, Walter; Smee, Stephen; Snir, Yehuda; Stebbins, Albert; Stoughton, Christopher; SubbaRao, Mark; Szalay, Alexander S.; Szapudi, Istvan; Tegmark, Max; Tucker, Douglas L.; Uomoto, Alan; Vanden Berk, Dan; Vogeley, Michael S.; Waddell, Patrick; Yanny, Brian; York, Donald G.

    2002-05-01

    We present the first measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our sample consists of 29,300 galaxies with redshifts 5700kms-1<=cz<=39,000kms-1, distributed in several long but narrow (2.5d-5°) segments, covering 690 deg2. For the full, flux-limited sample, the redshift-space correlation length is approximately 8 h-1 Mpc. The two-dimensional correlation function ξ(rp,π) shows clear signatures of both the small-scale, ``fingers-of-God'' distortion caused by velocity dispersions in collapsed objects and the large-scale compression caused by coherent flows, though the latter cannot be measured with high precision in the present sample. The inferred real-space correlation function is well described by a power law, ξ(r)=(r/6.1+/-0.2h-1Mpc)-1.75+/-0.03, for 0.1h-1Mpc<=r<=16h-1Mpc. The galaxy pairwise velocity dispersion is σ12~600+/-100kms-1 for projected separations 0.15h-1Mpc<=rp<=5h-1Mpc. When we divide the sample by color, the red galaxies exhibit a stronger and steeper real-space correlation function and a higher pairwise velocity dispersion than do the blue galaxies. The relative behavior of subsamples defined by high/low profile concentration or high/low surface brightness is qualitatively similar to that of the red/blue subsamples. Our most striking result is a clear measurement of scale-independent luminosity bias at r<~10h-1Mpc: subsamples with absolute magnitude ranges centered on M*-1.5, M*, and M*+1.5 have real-space correlation functions that are parallel power laws of slope ~-1.8 with correlation lengths of approximately 7.4, 6.3, and 4.7 h-1 Mpc, respectively.

  9. Recovering a redshift-extended varying speed of light signal from galaxy surveys

    NASA Astrophysics Data System (ADS)

    Salzano, Vincenzo

    2017-04-01

    We investigate a new method to recover (if any) a possible varying speed of light (VSL) signal from cosmological data. It comes as an upgrade by Salzano, Dąbrowski, and Lazkoz [Phys. Rev. Lett.114, 101304 (2015), 10.1103/PhysRevLett.114.101304; Phys. Rev. D 93, 063521 (2016), 10.1103/PhysRevD.93.063521], where it was argued that such a signal could be detected at a single redshift location only. Here, we show how it is possible to extract information on a VSL signal on an extended redshift range. We use mock cosmological data from future galaxy surveys (BOSS, DESI, WFirst-2.4 and SKA): the sound horizon at decoupling imprinted in the clustering of galaxies (baryon acoustic oscillations) as an angular diameter distance, and the expansion rate derived from those galaxies recognized as cosmic chronometers. We find that, given the forecast sensitivities of such surveys, a ˜1 % VSL signal can be detected at 3 σ confidence level in the redshift interval z ∈[0. ,1.55 ]. Smaller signals (˜0.1 % ) will be hardly detected (even if some lower possibility for a 1 σ detection is still possible). Finally, we discuss the degeneration between a VSL signal and a non-null spatial curvature; we show that, given present bounds on curvature, any signal, if detected, can be attributed to a VSL signal with a very high confidence. On the other hand, our method turns out to be useful even in the classical scenario of a constant speed of light: in this case, the signal we reconstruct can be totally ascribed to spatial curvature and, thus, we might have a method to detect a 0.01-order curvature in the same redshift range with a very high confidence.

  10. An AzTEC 1.1mm survey of the GOODS-N field - II. Multiwavelength identifications and redshift distribution

    NASA Astrophysics Data System (ADS)

    Chapin, Edward L.; Pope, Alexandra; Scott, Douglas; Aretxaga, Itziar; Austermann, Jason E.; Chary, Ranga-Ram; Coppin, Kristen; Halpern, Mark; Hughes, David H.; Lowenthal, James D.; Morrison, Glenn E.; Perera, Thushara A.; Scott, Kimberly S.; Wilson, Grant W.; Yun, Min S.

    2009-10-01

    We present results from a multiwavelength study of 29 sources (false detection probabilities <5 per cent) from a survey of the Great Observatories Origins Deep Survey-North (GOODS-N) field at 1.1mm using the Astronomical Thermal Emission Camera (AzTEC). Comparing with existing 850μm Submillimetre Common-User Bolometer Array (SCUBA) studies in the field, we examine differences in the source populations selected at the two wavelengths. The AzTEC observations uniformly cover the entire survey field to a 1σ depth of ~1mJy. Searching deep 1.4GHz Very Large Array (VLA) and Spitzer 3-24μm catalogues, we identify robust counterparts for 21 1.1mm sources, and tentative associations for the remaining objects. The redshift distribution of AzTEC sources is inferred from available spectroscopic and photometric redshifts. We find a median redshift of z = 2.7, somewhat higher than z = 2.0 for 850μm selected sources in the same field, and our lowest redshift identification lies at a spectroscopic redshift z = 1.1460. We measure the 850μm to 1.1mm colour of our sources and do not find evidence for `850μm dropouts', which can be explained by the low signal-to-noise ratio of the observations. We also combine these observed colours with spectroscopic redshifts to derive the range of dust temperatures T, and dust emissivity indices β for the sample, concluding that existing estimates T ~ 30K and β ~ 1.75 are consistent with these new data.

  11. The Large Area KX Quasar Survey: Photometric Redshift Selection and the Complete Quasar Catalogue

    NASA Astrophysics Data System (ADS)

    Maddox, Natasha; Hewett, P. C.; Peroux, C.

    2013-01-01

    We have completed a large area, ˜600 square degree, spectroscopic survey for luminous quasars flux-limited in the K-band. The survey utilises the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) in regions of sky within the Sloan Digital Sky Survey (SDSS) footprint. We exploit the K-band excess (KX) of all quasars with respect to Galactic stars in combination with a custom-built photometric redshift/classification scheme to identify quasar candidates for spectroscopic follow-up observations. The survey is complete to K≤16.6, and includes >3200 known quasars from the SDSS, with more than 250 additional confirmed quasars from the KX-selection which eluded the SDSS quasar selection algorithm. The selection is >95% complete with respect to known SDSS quasars and >95% efficient, largely independent of redshift and magnitude. The KX-selected quasars will provide new constraints on the fraction of luminous quasars reddened by dust with E(B-V)≤0.5 mag. Several projects utilizing the KX quasars are ongoing, including a spectroscopic campaign searching for dusty quasar intervening absorption systems. The KX survey is a well-defined sample of quasars useful for investigating the properties of luminous quasars with intermediate levels of dust extinction either within their host galaxies or due to intervening absorption systems.

  12. The QDOT all-sky IRAS galaxy redshift survey

    NASA Astrophysics Data System (ADS)

    Lawrence, A.; Rowan-Robinson, M.; Ellis, R. S.; Frenk, C. S.; Efstathiou, G.; Kaiser, N.; Saunders, W.; Parry, I. R.; Xiaoyang, Xia; Crawford, J.

    1999-10-01

    We describe the construction of the QDOT survey, which is publicly available from an anonymous FTP account. The catalogue consists of infrared properties and redshifts of an all-sky sample of 2387 IRAS galaxies brighter than the IRAS PSC 60-μm completeness limit (S_60>0.6Jy), sparsely sampled at a rate of one-in-six. At |b|>10 deg, after removing a small number of Galactic sources, the redshift completeness is better than 98per cent (2086/2127). New redshifts for 1401 IRAS sources were obtained to complete the catalogue; the measurement and reduction of these are described, and the new redshifts tabulated here. We also tabulate all sources at |b|>10 deg with no redshift so far, and sources with conflicting alternative redshifts either from our own work, or from published velocities. A list of 95 ultraluminous galaxies (i.e. with L_60μm>10^12 L_solar) is also provided. Of these, ~20per cent are AGN of some kind; the broad-line objects typically show strong Feii emission. Since the publication of the first QDOT papers, there have been several hundred velocity changes: some velocities are new, some QDOT velocities have been replaced by more accurate values, and some errors have been corrected. We also present a new analysis of the accuracy and linearity of IRAS 60-μm fluxes. We find that the flux uncertainties are well described by a combination of 0.05-Jy fixed size uncertainty and 8per cent fractional uncertainty. This is not enough to cause the large Malmquist-type errors in the rate of evolution postulated by Fisher et al. We do, however, find marginal evidence for non-linearity in the PSC 60-μm flux scale, in the sense that faint sources may have fluxes overestimated by about 5per cent compared with bright sources. We update some of the previous scientific analyses to assess the changes. The main new results are as follows. (1) The luminosity function is very well determined overall but is uncertain by a factor of several at the very highest luminosities (L

  13. Redshifts for fainter galaxies in the first CfA survey slice. II

    NASA Technical Reports Server (NTRS)

    Wegner, Gary; Thorstensen, John R.; Kurtz, Michael J.; Geller, Margaret J.; Huchra, John P.

    1990-01-01

    Redshifts were measured for 96 galaxies in right ascension alpha between 8h and 17h declination delta between 30 and 31 deg, and with m(Zwicky) in the range 15.6-15.7. These correspond to 94 of the 96 entries in the Zwicky-Nilson merged catalog. The declination range delta between 29 deg and 31 deg is now complete to m(Zwicky) = 15.7. The structures in the first 6-deg-wide slice of the Center for Astrophysics redshift survey slice (delta between 26.5 and 32.5 deg are clearly defined in the 2-deg-wide slightly deeper sample; the fainter galaxies trace the structures defined by the brighter ones.

  14. Cosmology with photometric weak lensing surveys: Constraints with redshift tomography of convergence peaks and moments

    DOE PAGES

    Petri, Andrea; May, Morgan; Haiman, Zoltán

    2016-09-30

    Weak gravitational lensing is becoming a mature technique for constraining cosmological parameters, and future surveys will be able to constrain the dark energy equation of state w. When analyzing galaxy surveys, redshift information has proven to be a valuable addition to angular shear correlations. We forecast parameter constraints on the triplet (Ω m,w,σ 8) for a LSST-like photometric galaxy survey, using tomography of the shear-shear power spectrum, convergence peak counts and higher convergence moments. Here we find that redshift tomography with the power spectrum reduces the area of the 1σ confidence interval in (Ω m,w) space by a factor ofmore » 8 with respect to the case of the single highest redshift bin. We also find that adding non-Gaussian information from the peak counts and higher-order moments of the convergence field and its spatial derivatives further reduces the constrained area in (Ω m,w) by factors of 3 and 4, respectively. When we add cosmic microwave background parameter priors from Planck to our analysis, tomography improves power spectrum constraints by a factor of 3. Adding moments yields an improvement by an additional factor of 2, and adding both moments and peaks improves by almost a factor of 3 over power spectrum tomography alone. We evaluate the effect of uncorrected systematic photometric redshift errors on the parameter constraints. In conclusion, we find that different statistics lead to different bias directions in parameter space, suggesting the possibility of eliminating this bias via self-calibration.« less

  15. A deep redshift survey of field galaxies. Comments on the reality of the Butcher-Oemler effect

    NASA Technical Reports Server (NTRS)

    Koo, David C.; Kron, Richard G.

    1987-01-01

    A spectroscopic survey of over 400 field galaxies has been completed in three fields for which we have deep UBVI photographic photometry. The galaxies typically range from B=20 to 22 and possess redshifts z from 0.1 to 0.5 that are often quite spiky in distribution. Little, if any, luminosity evolution is observed up to redshifts z approx 0.5. By such redshifts, however, an unexpectedly large fraction of luminous galaxies has very blue intrinsic colors that suggest extensive star formation; in contrast, the reddest galaxies still have colors that match those of present-day ellipticals.

  16. The power spectrum of galaxies in the 2dF 100k redshift survey

    NASA Astrophysics Data System (ADS)

    Tegmark, Max; Hamilton, Andrew J. S.; Xu, Yongzhong

    2002-10-01

    We compute the real-space power spectrum and the redshift-space distortions of galaxies in the 2dF 100k galaxy redshift survey using pseudo-Karhunen-Loève eigenmodes and the stochastic bias formalism. Our results agree well with those published by the 2dFGRS team, and have the added advantage of producing easy-to-interpret uncorrelated minimum-variance measurements of the galaxy-galaxy, galaxy-velocity and velocity-velocity power spectra in 27 k-bands, with narrow and well-behaved window functions in the range 0.01 h Mpc-1 < k < 0.8 h Mpc-1. We find no significant detection of baryonic wiggles, although our results are consistent with a standard flat ΩΛ= 0.7`concordance' model and previous tantalizing hints of baryonic oscillations. We measure the galaxy-matter correlation coefficient r > 0.4 and the redshift-distortion parameter β= 0.49 +/- 0.16 for r= 1 (β= 0.47 +/- 0.16 without finger-of-god compression). Since this is an apparent-magnitude limited sample, luminosity-dependent bias may cause a slight red-tilt in the power spectrum. A battery of systematic error tests indicate that the survey is not only impressive in size, but also unusually clean, free of systematic errors at the level to which our tests are sensitive. Our measurements and window functions are available at http://www.hep.upenn.edu/~max/2df.html together with the survey mask, radial selection function and uniform subsample of the survey that we have constructed.

  17. Large-scale tidal effect on redshift-space power spectrum in a finite-volume survey

    NASA Astrophysics Data System (ADS)

    Akitsu, Kazuyuki; Takada, Masahiro; Li, Yin

    2017-04-01

    Long-wavelength matter inhomogeneities contain cleaner information on the nature of primordial perturbations as well as the physics of the early Universe. The large-scale coherent overdensity and tidal force, not directly observable for a finite-volume galaxy survey, are both related to the Hessian of large-scale gravitational potential and therefore are of equal importance. We show that the coherent tidal force causes a homogeneous anisotropic distortion of the observed distribution of galaxies in all three directions, perpendicular and parallel to the line-of-sight direction. This effect mimics the redshift-space distortion signal of galaxy peculiar velocities, as well as a distortion by the Alcock-Paczynski effect. We quantify its impact on the redshift-space power spectrum to the leading order, and discuss its importance for ongoing and upcoming galaxy surveys.

  18. Unbiased estimates of galaxy scaling relations from photometric redshift surveys

    NASA Astrophysics Data System (ADS)

    Rossi, Graziano; Sheth, Ravi K.

    2008-06-01

    Many physical properties of galaxies correlate with one another, and these correlations are often used to constrain galaxy formation models. Such correlations include the colour-magnitude relation, the luminosity-size relation, the fundamental plane, etc. However, the transformation from observable (e.g. angular size, apparent brightness) to physical quantity (physical size, luminosity) is often distance dependent. Noise in the distance estimate will lead to biased estimates of these correlations, thus compromising the ability of photometric redshift surveys to constrain galaxy formation models. We describe two methods which can remove this bias. One is a generalization of the Vmax method, and the other is a maximum-likelihood approach. We illustrate their effectiveness by studying the size-luminosity relation in a mock catalogue, although both methods can be applied to other scaling relations as well. We show that if one simply uses photometric redshifts one obtains a biased relation; our methods correct for this bias and recover the true relation.

  19. Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification

    NASA Astrophysics Data System (ADS)

    Howell, D. A.; Sullivan, M.; Perrett, K.; Bronder, T. J.; Hook, I. M.; Astier, P.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R. G.; Fabbro, S.; Fouchez, D.; Guy, J.; Lafoux, H.; Neill, J. D.; Pain, R.; Palanque-Delabrouille, N.; Pritchet, C. J.; Regnault, N.; Rich, J.; Taillet, R.; Knop, R.; McMahon, R. G.; Perlmutter, S.; Walton, N. A.

    2005-12-01

    We present new techniques for improving the efficiency of supernova (SN) classification at high redshift using 64 candidates observed at Gemini North and South during the first year of the Supernova Legacy Survey (SNLS). The SNLS is an ongoing 5 year project with the goal of measuring the equation of state of dark energy by discovering and following over 700 high-redshift SNe Ia using data from the Canada-France-Hawaii Telescope Legacy Survey. We achieve an improvement in the SN Ia spectroscopic confirmation rate: at Gemini 71% of candidates are now confirmed as SNe Ia, compared to 54% using the methods of previous surveys. This is despite the comparatively high redshift of this sample, in which the median SN Ia redshift is z=0.81 (0.155<=z<=1.01). These improvements were realized because we use the unprecedented color coverage and light curve sampling of the SNLS to predict whether a candidate is a SN Ia and to estimate its redshift, before obtaining a spectrum, using a new technique called the ``SN photo-z.'' In addition, we have improved techniques for galaxy subtraction and SN template χ2 fitting, allowing us to identify candidates even when they are only 15% as bright as the host galaxy. The largest impediment to SN identification is found to be host galaxy contamination of the spectrum-when the SN was at least as bright as the underlying host galaxy the target was identified more than 90% of the time. However, even SNe in bright host galaxies can be easily identified in good seeing conditions. When the image quality was better than 0.55", the candidate was identified 88% of the time. Over the 5 year course of the survey, using the selection techniques presented here, we will be able to add ~170 more confirmed SNe Ia than would be possible using previous methods. APC, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France. DSM/DAPNIA, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France.

  20. The Observations of Redshift Evolution in Large Scale Environments (ORELSE) Survey

    NASA Astrophysics Data System (ADS)

    Squires, Gordon K.; Lubin, L. M.; Gal, R. R.

    2007-05-01

    We present the motivation, design, and latest results from the Observations of Redshift Evolution in Large Scale Environments (ORELSE) Survey, a systematic search for structure on scales greater than 10 Mpc around 20 known galaxy clusters at z > 0.6. When complete, the survey will cover nearly 5 square degrees, all targeted at high-density regions, making it complementary and comparable to field surveys such as DEEP2, GOODS, and COSMOS. For the survey, we are using the Large Format Camera on the Palomar 5-m and SuPRIME-Cam on the Subaru 8-m to obtain optical/near-infrared imaging of an approximately 30 arcmin region around previously studied high-redshift clusters. Colors are used to identify likely member galaxies which are targeted for follow-up spectroscopy with the DEep Imaging Multi-Object Spectrograph on the Keck 10-m. This technique has been used to identify successfully the Cl 1604 supercluster at z = 0.9, a large scale structure containing at least eight clusters (Gal & Lubin 2004; Gal, Lubin & Squires 2005). We present the most recent structures to be photometrically and spectroscopically confirmed through this program, discuss the properties of the member galaxies as a function of environment, and describe our planned multi-wavelength (radio, mid-IR, and X-ray) observations of these systems. The goal of this survey is to identify and examine a statistical sample of large scale structures during an active period in the assembly history of the most massive clusters. With such a sample, we can begin to constrain large scale cluster dynamics and determine the effect of the larger environment on galaxy evolution.

  1. The SPT+Herschel+ALMA+Spitzer Legacy Survey: The stellar content of high redshift strongly lensed systems

    NASA Astrophysics Data System (ADS)

    Vieira, Joaquin; Ashby, Matt; Carlstrom, John; Chapman, Scott; DeBreuck, Carlos; Fassnacht, Chris; Gonzalez, Anthony; Phadke, Kedar; Marrone, Dan; Malkan, Matt; Reuter, Cassie; Rotermund, Kaja; Spilker, Justin; Weiss, Axel

    2018-05-01

    The South Pole Telescope (SPT) has systematically identified 90 high-redshift strongly gravitationally lensed submillimeter galaxies (SMGs) in a 2500 square-degree cosmological survey of the millimeter (mm) sky. These sources are selected by their extreme mm flux, which is largely independent of redshift and lensing configuration. We are undertaking a comprehensive and systematic followup campaign to use these "cosmic magnifying glasses" to study the infrared background in unprecedented detail, inform the condition of the interstellar medium in starburst galaxies at high redshift, and place limits on dark matter substructure. Here we ask for 115.4 hours of deep Spitzer/IRAC imaging to complete our survey of 90 systems to a uniform depth of 30min integrations at 3.6um and 60min at 4.5um. In our sample of 90 systems, 16 have already been fully observed, 30 have been partially observed, and 44 have not been observed at all. Our immediate goals are to: 1) constrain the specific star formation rates of the background high-redshift submillimeter galaxies by combining these Spitzer observations with our APEX, Herschel, and ALMA data, 2) robustly determine the stellar masses and mass-to-light ratios of all the foreground lensing galaxies in the sample by combining these observations with our VLT and Gemini data, the Dark Energy Survey, and ALMA; and 3) provide complete, deep, and uniform NIR coverage of our entire sample of lensed systems to characterize the environments of high redshift SMGs, maximize the discovery potential for additional spectacular and rare sources, and prepare for JWST. This program will provide the cornerstone data set for two PhD theses: Kedar Phadke at Illinois will lead the analysis of stellar masses for the background SMGs, and Kaja Rotermund at Dalhousie will lead the analysis of stellar masses for the foreground lenses.

  2. Cosmological Distortions in Redshift Space

    NASA Astrophysics Data System (ADS)

    Ryden, Barbara S.

    1995-05-01

    The long-sought value of q_0, the deceleration parameter, remains elusive. One method of finding q_0 is to measure the distortions of large scale structure in redshift space. If the Hubble constant changes with time, then the mapping between redshift space and real space is nonlinear, even in the absence of peculiar motions. When q_0 > -1, structures in redshift space will be distorted along the line of sight; the distortion is proportional to (1 + q_0 ) z in the limit that the redshift z is small. The cosmological distortions at z <= 0.2 can be found by measuring the shapes of voids in redshift surveys of galaxies (such as the upcoming Sloane Digital Sky Survey). The cosmological distortions are masked to some extent by the distortions caused by small-scale peculiar velocities; it is difficult to measure the shape of a void when the fingers of God are poking into it. The cosmological distortions at z ~ 1 can be found by measuring the correlation function of quasars as a function of redshift and of angle relative to the line of sight. Finding q_0 by measuring distortions in redshift space, like the classical methods of determining q_0, is simple and elegant in principle but complicated and messy in practice.

  3. Galaxy groups in the low-redshift Universe

    NASA Astrophysics Data System (ADS)

    Lim, S. H.; Mo, H. J.; Lu, Yi; Wang, Huiyuan; Yang, Xiaohu

    2017-09-01

    We apply a halo-based group finder to four large redshift surveys, the 2MRS (Two Micron All-Sky Redshift Survey), 6dFGS (Six-degree Field Galaxy Survey), SDSS (Sloan Digital Sky Survey) and 2dFGRS (Two-degree Field Galaxy Redshift Survey), to construct group catalogues in the low-redshift Universe. The group finder is based on that of Yang et al. but with an improved halo mass assignment so that it can be applied uniformly to various redshift surveys of galaxies. Halo masses are assigned to groups according to proxies based on the stellar mass/luminosity of member galaxies. The performances of the group finder in grouping galaxies according to common haloes and in halo mass assignments are tested using realistic mock samples constructed from hydrodynamical simulations and empirical models of galaxy occupation in dark matter haloes. Our group finder finds ∼94 per cent of the correct true member galaxies for 90-95 per cent of the groups in the mock samples; the halo masses assigned by the group finder are un-biased with respect to the true halo masses, and have a typical uncertainty of ∼0.2 dex. The properties of group catalogues constructed from the observational samples are described and compared with other similar catalogues in the literature.

  4. THE TEAM KECK REDSHIFT SURVEY 2: MOSFIRE SPECTROSCOPY OF THE GOODS-NORTH FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wirth, Gregory D.; Kassis, Marc; Lyke, Jim

    We present the Team Keck Redshift Survey 2 (TKRS2), a near-infrared spectral observing program targeting selected galaxies within the CANDELS subsection of the GOODS-North Field. The TKRS2 program exploits the unique capabilities of the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE), which entered service on the Keck I telescope in 2012 and contributes substantially to the study of galaxy spectral features at redshifts inaccessible to optical spectrographs. The TKRS2 project targets 97 galaxies drawn from samples that include z ≈ 2 emission-line galaxies with features observable in the JHK bands as well as lower-redshift targets with features in the Y band.more » We present a detailed measurement of MOSFIRE’s sensitivity as a function of wavelength, including the effects of telluric features across the YJHK filters. The largest utility of our survey is in providing rest-frame-optical emission lines for z > 1 galaxies, and we demonstrate that the ratios of strong, optical emission lines of z ≈ 2 galaxies suggest the presence of either higher N/O abundances than are found in z ≈ 0 galaxies or low-metallicity gas ionized by an active galactic nucleus. We have released all TKRS2 data products into the public domain to allow researchers access to representative raw and reduced MOSFIRE spectra.« less

  5. The VIMOS Public Extragalactic Redshift Survey (VIPERS): Science Highlights and Final Data Release

    NASA Astrophysics Data System (ADS)

    Guzzo, L.; Vipers Team

    2017-06-01

    The VIMOS Public Extragalactic Redshift Survey (VIPERS) released its final set of nearly 90 000 galaxy redshifts in November 2016, together with a series of science papers that range from the detailed evolution of galaxies over the past 8 Gyr to the growth rate and the power spectrum of cosmological structures measured at about half the Hubble time. These are the results of a map of the distribution of galaxies and their properties which is unprecedented in its combination of large volume and detailed sampling at 0.5 < z < 1.2. In this article, the survey design and data properties are briefly summarised and an overview of the key scientific results published so far is provided. The VIPERS data, obtained within the framework of an ESO Large Programme over the equivalent of just under 55 nights at the Very Large Telescope, will remain the largest legacy of the VIMOS spectrograph and its still unsurpassed ability to reach target densities close to 10000 spectra per square degree.

  6. Deconstructing the neutrino mass constraint from galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Boyle, Aoife; Komatsu, Eiichiro

    2018-03-01

    The total mass of neutrinos can be constrained in a number of ways using galaxy redshift surveys. Massive neutrinos modify the expansion rate of the Universe, which can be measured using baryon acoustic oscillations (BAOs) or the Alcock-Paczynski (AP) test. Massive neutrinos also change the structure growth rate and the amplitude of the matter power spectrum, which can be measured using redshift-space distortions (RSD). We use the Fisher matrix formalism to disentangle these information sources, to provide projected neutrino mass constraints from each of these probes alone and to determine how sensitive each is to the assumed cosmological model. We isolate the distinctive effect of neutrino free-streaming on the matter power spectrum and structure growth rate as a signal unique to massive neutrinos that can provide the most robust constraints, which are relatively insensitive to extensions to the cosmological model beyond ΛCDM . We also provide forecasted constraints using all of the information contained in the observed galaxy power spectrum combined, and show that these maximally optimistic constraints are primarily limited by the accuracy to which the optical depth of the cosmic microwave background, τ, is known.

  7. Dark Energy Survey Year 1 Results: Redshift distributions of the weak lensing source galaxies

    NASA Astrophysics Data System (ADS)

    Hoyle, B.; Gruen, D.; Bernstein, G. M.; Rau, M. M.; De Vicente, J.; Hartley, W. G.; Gaztanaga, E.; DeRose, J.; Troxel, M. A.; Davis, C.; Alarcon, A.; MacCrann, N.; Prat, J.; Sánchez, C.; Sheldon, E.; Wechsler, R. H.; Asorey, J.; Becker, M. R.; Bonnett, C.; Carnero Rosell, A.; Carollo, D.; Carrasco Kind, M.; Castander, F. J.; Cawthon, R.; Chang, C.; Childress, M.; Davis, T. M.; Drlica-Wagner, A.; Gatti, M.; Glazebrook, K.; Gschwend, J.; Hinton, S. R.; Hoormann, J. K.; Kim, A. G.; King, A.; Kuehn, K.; Lewis, G.; Lidman, C.; Lin, H.; Macaulay, E.; Maia, M. A. G.; Martini, P.; Mudd, D.; Möller, A.; Nichol, R. C.; Ogando, R. L. C.; Rollins, R. P.; Roodman, A.; Ross, A. J.; Rozo, E.; Rykoff, E. S.; Samuroff, S.; Sevilla-Noarbe, I.; Sharp, R.; Sommer, N. E.; Tucker, B. E.; Uddin, S. A.; Varga, T. N.; Vielzeuf, P.; Yuan, F.; Zhang, B.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Busha, M. T.; Capozzi, D.; Carretero, J.; Crocce, M.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jarvis, M.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Kirk, D.; Krause, E.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Nord, B.; O'Neill, C. R.; Plazas, A. A.; Romer, A. K.; Sako, M.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Wester, W.; Wolf, R. C.; Yanny, B.; Zuntz, J.; DES Collaboration

    2018-04-01

    We describe the derivation and validation of redshift distribution estimates and their uncertainties for the populations of galaxies used as weak lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z ≈ 0.2 and ≈1.3, and to produce initial estimates of the lensing-weighted redshift distributions n^i_PZ(z)∝ dn^i/dz for members of bin i. Accurate determination of cosmological parameters depends critically on knowledge of ni but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts n^i(z)=n^i_PZ(z-Δ z^i) to correct the mean redshift of ni(z) for biases in n^i_PZ. The Δzi are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the COSMOS field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the Δzi of the three lowest redshift bins are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15 < z < 0.9. This paper details the BPZ and COSMOS procedures, and demonstrates that the cosmological inference is insensitive to details of the ni(z) beyond the choice of Δzi. The clustering and COSMOS validation methods produce consistent estimates of Δzi in the bins where both can be applied, with combined uncertainties of σ _{Δ z^i}=0.015, 0.013, 0.011, and 0.022 in the four bins. Repeating the photo-z proceedure instead using the Directional Neighborhood Fitting (DNF) algorithm, or using the ni(z) estimated from the matched sample in COSMOS, yields no discernible difference in cosmological inferences.

  8. A Chandra Survey of high-redshift (0.7 < z < 0.8) clusters selected in the 100 deg^2 SPT-Pol Deep Field

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2016-09-01

    We propose to observe a complete sample of 10 galaxy clusters at 1e14 < M500 < 5e14 and 0.7 < z < 0.8. These systems were selected from the 100 deg^2 deep field of the SPT-Pol SZ survey. This survey are has significant complementary data, including uniform depth ATCA, Herschel, Spitzer, and DES imaging, enabling a wide variety of astrophysical and cosmological studies. This sample complements the successful SPT-XVP survey, which has a broad redshift range and a narrow mass range, by including clusters over a narrow redshift range and broad mass range. These systems are such low mass and high redshift that they will not be detected in the eRosita all-sky survey.

  9. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: BIASES IN z  > 1.46 REDSHIFTS DUE TO QUASAR DIVERSITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denney, K. D.; Peterson, B. M.; Horne, Keith

    We use the coadded spectra of 32 epochs of Sloan Digital Sky Survey (SDSS) Reverberation Mapping Project observations of 482 quasars with z  > 1.46 to highlight systematic biases in the SDSS- and Baryon Oscillation Spectroscopic Survey (BOSS)-pipeline redshifts due to the natural diversity of quasar properties. We investigate the characteristics of this bias by comparing the BOSS-pipeline redshifts to an estimate from the centroid of He ii λ 1640. He ii has a low equivalent width but is often well-defined in high-S/N spectra, does not suffer from self-absorption, and has a narrow component which, when present (the case for aboutmore » half of our sources), produces a redshift estimate that, on average, is consistent with that determined from [O ii] to within the He ii and [O ii] centroid measurement uncertainties. The large redshift differences of ∼1000 km s{sup −1}, on average, between the BOSS-pipeline and He ii-centroid redshifts, suggest there are significant biases in a portion of BOSS quasar redshift measurements. Adopting the He ii-based redshifts shows that C iv does not exhibit a ubiquitous blueshift for all quasars, given the precision probed by our measurements. Instead, we find a distribution of C iv-centroid blueshifts across our sample, with a dynamic range that (i) is wider than that previously reported for this line, and (ii) spans C iv centroids from those consistent with the systemic redshift to those with significant blueshifts of thousands of kilometers per second. These results have significant implications for measurement and use of high-redshift quasar properties and redshifts, and studies based thereon.« less

  10. The many flavours of photometric redshifts

    NASA Astrophysics Data System (ADS)

    Salvato, Mara; Ilbert, Olivier; Hoyle, Ben

    2018-06-01

    Since more than 70 years ago, the colours of galaxies derived from flux measurements at different wavelengths have been used to estimate their cosmological distances. Such distance measurements, called photometric redshifts, are necessary for many scientific projects, ranging from investigations of the formation and evolution of galaxies and active galactic nuclei to precision cosmology. The primary benefit of photometric redshifts is that distance estimates can be obtained relatively cheaply for all sources detected in photometric images. The drawback is that these cheap estimates have low precision compared with resource-expensive spectroscopic ones. The methodology for estimating redshifts has been through several revolutions in recent decades, triggered by increasingly stringent requirements on the photometric redshift accuracy. Here, we review the various techniques for obtaining photometric redshifts, from template-fitting to machine learning and hybrid schemes. We also describe state-of-the-art results on current extragalactic samples and explain how survey strategy choices affect redshift accuracy. We close with a description of the photometric redshift efforts planned for upcoming wide-field surveys, which will collect data on billions of galaxies, aiming to investigate, among other matters, the stellar mass assembly and the nature of dark energy.

  11. The mean density and two-point correlation function for the CfA redshift survey slices

    NASA Technical Reports Server (NTRS)

    De Lapparent, Valerie; Geller, Margaret J.; Huchra, John P.

    1988-01-01

    The effect of large-scale inhomogeneities on the determination of the mean number density and the two-point spatial correlation function were investigated for two complete slices of the extension of the Center for Astrophysics (CfA) redshift survey (de Lapparent et al., 1986). It was found that the mean galaxy number density for the two strips is uncertain by 25 percent, more so than previously estimated. The large uncertainty in the mean density introduces substantial uncertainty in the determination of the two-point correlation function, particularly at large scale; thus, for the 12-deg slice of the CfA redshift survey, the amplitude of the correlation function at intermediate scales is uncertain by a factor of 2. The large uncertainties in the correlation functions might reflect the lack of a fair sample.

  12. Cooperative photometric redshift estimation

    NASA Astrophysics Data System (ADS)

    Cavuoti, S.; Tortora, C.; Brescia, M.; Longo, G.; Radovich, M.; Napolitano, N. R.; Amaro, V.; Vellucci, C.

    2017-06-01

    In the modern galaxy surveys photometric redshifts play a central role in a broad range of studies, from gravitational lensing and dark matter distribution to galaxy evolution. Using a dataset of ~ 25,000 galaxies from the second data release of the Kilo Degree Survey (KiDS) we obtain photometric redshifts with five different methods: (i) Random forest, (ii) Multi Layer Perceptron with Quasi Newton Algorithm, (iii) Multi Layer Perceptron with an optimization network based on the Levenberg-Marquardt learning rule, (iv) the Bayesian Photometric Redshift model (or BPZ) and (v) a classical SED template fitting procedure (Le Phare). We show how SED fitting techniques could provide useful information on the galaxy spectral type which can be used to improve the capability of machine learning methods constraining systematic errors and reduce the occurrence of catastrophic outliers. We use such classification to train specialized regression estimators, by demonstrating that such hybrid approach, involving SED fitting and machine learning in a single collaborative framework, is capable to improve the overall prediction accuracy of photometric redshifts.

  13. The Subaru FMOS galaxy redshift survey (FastSound). V. Intrinsic alignments of emission-line galaxies at z ˜ 1.4

    NASA Astrophysics Data System (ADS)

    Tonegawa, Motonari; Okumura, Teppei; Totani, Tomonori; Dalton, Gavin; Glazebrook, Karl; Yabe, Kiyoto

    2018-06-01

    Intrinsic alignments (IA), the coherent alignment of intrinsic galaxy orientations, can be a source of a systematic error of weak lensing surveys. The redshift evolution of IA also contains information about the physics of galaxy formation and evolution. This paper presents the first measurement of IA at high redshift, z ˜ 1.4, using the spectroscopic catalog of blue star-forming galaxies of the FastSound redshift survey, with the galaxy shape information from the Canada-Hawaii-France telescope lensing survey. The IA signal is consistent with zero with power-law amplitudes fitted to the projected correlation functions for density-shape and shape-shape correlation components, Aδ+ = -0.0071 ± 0.1340 and A++ = -0.0505 ± 0.0848, respectively. These results are consistent with those obtained from blue galaxies at lower redshifts (e.g., A _{δ +}=0.0035_{-0.0389}^{+0.0387} and A_{++}=0.0045_{-0.0168}^{+0.0166} at z = 0.51 from the WiggleZ survey). The upper limit of the constrained IA amplitude corresponds to a few percent contamination to the weak-lensing shear power spectrum, resulting in systematic uncertainties on the cosmological parameter estimations by -0.052 < Δσ8 < 0.039 and -0.039 < ΔΩm < 0.030.

  14. The Subaru FMOS galaxy redshift survey (FastSound). V. Intrinsic alignments of emission-line galaxies at z ˜ 1.4

    NASA Astrophysics Data System (ADS)

    Tonegawa, Motonari; Okumura, Teppei; Totani, Tomonori; Dalton, Gavin; Glazebrook, Karl; Yabe, Kiyoto

    2018-04-01

    Intrinsic alignments (IA), the coherent alignment of intrinsic galaxy orientations, can be a source of a systematic error of weak lensing surveys. The redshift evolution of IA also contains information about the physics of galaxy formation and evolution. This paper presents the first measurement of IA at high redshift, z ˜ 1.4, using the spectroscopic catalog of blue star-forming galaxies of the FastSound redshift survey, with the galaxy shape information from the Canada-Hawaii-France telescope lensing survey. The IA signal is consistent with zero with power-law amplitudes fitted to the projected correlation functions for density-shape and shape-shape correlation components, Aδ+ = -0.0071 ± 0.1340 and A++ = -0.0505 ± 0.0848, respectively. These results are consistent with those obtained from blue galaxies at lower redshifts (e.g., A _{δ +}=0.0035_{-0.0389}^{+0.0387} and A_{++}=0.0045_{-0.0168}^{+0.0166} at z = 0.51 from the WiggleZ survey). The upper limit of the constrained IA amplitude corresponds to a few percent contamination to the weak-lensing shear power spectrum, resulting in systematic uncertainties on the cosmological parameter estimations by -0.052 < Δσ8 < 0.039 and -0.039 < ΔΩm < 0.030.

  15. Large-scale clustering of galaxies in the CfA Redshift Survey

    NASA Technical Reports Server (NTRS)

    Vogeley, Michael S.; Park, Changbom; Geller, Margaret J.; Huchra, John P.

    1992-01-01

    The power spectrum of the galaxy distribution in the Center for Astrophysics Redshift Survey (de Lapparent et al., 1986; Geller and Huchra, 1989; and Huchra et al., 1992) is measured up to wavelengths of 200/h Mpc. Results are compared with several cosmological simulations with Gaussian initial conditions. It is shown that the power spectrum of the standard CDM model is inconsistent with the observed power spectrum at the 99 percent confidence level.

  16. The DEEP2 Galaxy Redshift Survey: The Voronoi-Delaunay Method Catalog of Galaxy Groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerke, Brian F.; /UC, Berkeley; Newman, Jeffrey A.

    2012-02-14

    We use the first 25% of the DEEP2 Galaxy Redshift Survey spectroscopic data to identify groups and clusters of galaxies in redshift space. The data set contains 8370 galaxies with confirmed redshifts in the range 0.7 {<=} z {<=} 1.4, over one square degree on the sky. Groups are identified using an algorithm (the Voronoi-Delaunay Method) that has been shown to accurately reproduce the statistics of groups in simulated DEEP2-like samples. We optimize this algorithm for the DEEP2 survey by applying it to realistic mock galaxy catalogs and assessing the results using a stringent set of criteria for measuring group-findingmore » success, which we develop and describe in detail here. We find in particular that the group-finder can successfully identify {approx}78% of real groups and that {approx}79% of the galaxies that are true members of groups can be identified as such. Conversely, we estimate that {approx}55% of the groups we find can be definitively identified with real groups and that {approx}46% of the galaxies we place into groups are interloper field galaxies. Most importantly, we find that it is possible to measure the distribution of groups in redshift and velocity dispersion, n({sigma}, z), to an accuracy limited by cosmic variance, for dispersions greater than 350 km s{sup -1}. We anticipate that such measurements will allow strong constraints to be placed on the equation of state of the dark energy in the future. Finally, we present the first DEEP2 group catalog, which assigns 32% of the galaxies to 899 distinct groups with two or more members, 153 of which have velocity dispersions above 350 km s{sup -1}. We provide locations, redshifts and properties for this high-dispersion subsample. This catalog represents the largest sample to date of spectroscopically detected groups at z {approx} 1.« less

  17. The Las Campanas Infrared Survey - II. Photometric redshifts, comparison with models and clustering evolution

    NASA Astrophysics Data System (ADS)

    Firth, A. E.; Somerville, R. S.; McMahon, R. G.; Lahav, O.; Ellis, R. S.; Sabbey, C. N.; McCarthy, P. J.; Chen, H.-W.; Marzke, R. O.; Wilson, J.; Abraham, R. G.; Beckett, M. G.; Carlberg, R. G.; Lewis, J. R.; Mackay, C. D.; Murphy, D. C.; Oemler, A. E.; Persson, S. E.

    2002-05-01

    The Las Campanas Infrared (LCIR) Survey, using the Cambridge Infra-Red Survey Instrument (CIRSI), reaches H ~21 over nearly 1deg2 . In this paper we present results from 744arcmin2 centred on the Hubble Deep Field South for which UBVRI optical data are publicly available. Making conservative magnitude cuts to ensure spatial uniformity, we detect 3177 galaxies to H =20.0 in 744arcmin2 and a further 842 to H =20.5 in a deeper subregion of 407arcmin2 . We compare the observed optical-infrared (IR) colour distributions with the predictions of semi-analytic hierarchical models and find reasonable agreement. We also determine photometric redshifts, finding a median redshift of ~0.55. We compare the redshift distributions N (z ) of E, Sbc, Scd and Im spectral types with models, showing that the observations are inconsistent with simple passive-evolution models while semi-analytic models provide a reasonable fit to the total N (z ) but underestimate the number of z ~1 red spectral types relative to bluer spectral types. We also present N (z ) for samples of extremely red objects (EROs) defined by optical-IR colours. We find that EROs with R -H >4 and H <20.5 have a median redshift z m ~1 while redder colour cuts have slightly higher z m . In the magnitude range 194 comprise ~18 per cent of the observed galaxy population, while in semi-analytic models they contribute only ~4 per cent. We also determine the angular correlation function w (θ ) for magnitude, colour, spectral type and photometric redshift-selected subsamples of the data and use the photometric redshift distributions to derive the spatial clustering statistic ξ (r ) as a function of spectral type and redshift out to z ~1.2. Parametrizing ξ (r ) by ξ (r c ,z )=[r c /r *(z )]-1.8 , where r c is in comoving coordinates, we find that r *(z ) increases by a factor of 1.5-2 from z =0 to z ~1.2. We interpret this as a selection effect - the galaxies selected at z ~1.2 are

  18. Stochastic Order Redshift Technique (SORT): a simple, efficient and robust method to improve cosmological redshift measurements

    NASA Astrophysics Data System (ADS)

    Tejos, Nicolas; Rodríguez-Puebla, Aldo; Primack, Joel R.

    2018-01-01

    We present a simple, efficient and robust approach to improve cosmological redshift measurements. The method is based on the presence of a reference sample for which a precise redshift number distribution (dN/dz) can be obtained for different pencil-beam-like sub-volumes within the original survey. For each sub-volume we then impose that: (i) the redshift number distribution of the uncertain redshift measurements matches the reference dN/dz corrected by their selection functions and (ii) the rank order in redshift of the original ensemble of uncertain measurements is preserved. The latter step is motivated by the fact that random variables drawn from Gaussian probability density functions (PDFs) of different means and arbitrarily large standard deviations satisfy stochastic ordering. We then repeat this simple algorithm for multiple arbitrary pencil-beam-like overlapping sub-volumes; in this manner, each uncertain measurement has multiple (non-independent) 'recovered' redshifts which can be used to estimate a new redshift PDF. We refer to this method as the Stochastic Order Redshift Technique (SORT). We have used a state-of-the-art N-body simulation to test the performance of SORT under simple assumptions and found that it can improve the quality of cosmological redshifts in a robust and efficient manner. Particularly, SORT redshifts (zsort) are able to recover the distinctive features of the so-called 'cosmic web' and can provide unbiased measurement of the two-point correlation function on scales ≳4 h-1Mpc. Given its simplicity, we envision that a method like SORT can be incorporated into more sophisticated algorithms aimed to exploit the full potential of large extragalactic photometric surveys.

  19. See Change: the Supernova Sample from the Supernova Cosmology Project High Redshift Cluster Supernova Survey

    NASA Astrophysics Data System (ADS)

    Hayden, Brian; Perlmutter, Saul; Boone, Kyle; Nordin, Jakob; Rubin, David; Lidman, Chris; Deustua, Susana E.; Fruchter, Andrew S.; Aldering, Greg Scott; Brodwin, Mark; Cunha, Carlos E.; Eisenhardt, Peter R.; Gonzalez, Anthony H.; Jee, James; Hildebrandt, Hendrik; Hoekstra, Henk; Santos, Joana; Stanford, S. Adam; Stern, Daniel; Fassbender, Rene; Richard, Johan; Rosati, Piero; Wechsler, Risa H.; Muzzin, Adam; Willis, Jon; Boehringer, Hans; Gladders, Michael; Goobar, Ariel; Amanullah, Rahman; Hook, Isobel; Huterer, Dragan; Huang, Xiaosheng; Kim, Alex G.; Kowalski, Marek; Linder, Eric; Pain, Reynald; Saunders, Clare; Suzuki, Nao; Barbary, Kyle H.; Rykoff, Eli S.; Meyers, Joshua; Spadafora, Anthony L.; Sofiatti, Caroline; Wilson, Gillian; Rozo, Eduardo; Hilton, Matt; Ruiz-Lapuente, Pilar; Luther, Kyle; Yen, Mike; Fagrelius, Parker; Dixon, Samantha; Williams, Steven

    2017-01-01

    The Supernova Cosmology Project has finished executing a large (174 orbits, cycles 22-23) Hubble Space Telescope program, which has measured ~30 type Ia Supernovae above z~1 in the highest-redshift, most massive galaxy clusters known to date. Our SN Ia sample closely matches our pre-survey predictions; this sample will improve the constraint by a factor of 3 on the Dark Energy equation of state above z~1, allowing an unprecedented probe of Dark Energy time variation. When combined with the improved cluster mass calibration from gravitational lensing provided by the deep WFC3-IR observations of the clusters, See Change will triple the Dark Energy Task Force Figure of Merit. With the primary observing campaign completed, we present the preliminary supernova sample and our path forward to the supernova cosmology results. We also compare the number of SNe Ia discovered in each cluster with our pre-survey expectations based on cluster mass and SFR estimates. Our extensive HST and ground-based campaign has already produced unique results; we have confirmed several of the highest redshift cluster members known to date, confirmed the redshift of one of the most massive galaxy clusters at z~1.2 expected across the entire sky, and characterized one of the most extreme starburst environments yet known in a z~1.7 cluster. We have also discovered a lensed SN Ia at z=2.22 magnified by a factor of ~2.7, which is the highest spectroscopic redshift SN Ia currently known.

  20. Evolution of the real-space correlation function from next generation cluster surveys. Recovering the real-space correlation function from photometric redshifts

    NASA Astrophysics Data System (ADS)

    Sridhar, Srivatsan; Maurogordato, Sophie; Benoist, Christophe; Cappi, Alberto; Marulli, Federico

    2017-04-01

    Context. The next generation of galaxy surveys will provide cluster catalogues probing an unprecedented range of scales, redshifts, and masses with large statistics. Their analysis should therefore enable us to probe the spatial distribution of clusters with high accuracy and derive tighter constraints on the cosmological parameters and the dark energy equation of state. However, for the majority of these surveys, redshifts of individual galaxies will be mostly estimated by multiband photometry which implies non-negligible errors in redshift resulting in potential difficulties in recovering the real-space clustering. Aims: We investigate to which accuracy it is possible to recover the real-space two-point correlation function of galaxy clusters from cluster catalogues based on photometric redshifts, and test our ability to detect and measure the redshift and mass evolution of the correlation length r0 and of the bias parameter b(M,z) as a function of the uncertainty on the cluster redshift estimate. Methods: We calculate the correlation function for cluster sub-samples covering various mass and redshift bins selected from a 500 deg2 light-cone limited to H < 24. In order to simulate the distribution of clusters in photometric redshift space, we assign to each cluster a redshift randomly extracted from a Gaussian distribution having a mean equal to the cluster cosmological redshift and a dispersion equal to σz. The dispersion is varied in the range σ(z=0)=\\frac{σz{1+z_c} = 0.005,0.010,0.030} and 0.050, in order to cover the typical values expected in forthcoming surveys. The correlation function in real-space is then computed through estimation and deprojection of wp(rp). Four mass ranges (from Mhalo > 2 × 1013h-1M⊙ to Mhalo > 2 × 1014h-1M⊙) and six redshift slices covering the redshift range [0, 2] are investigated, first using cosmological redshifts and then for the four photometric redshift configurations. Results: From the analysis of the light-cone in

  1. High-redshift Post-starburst Galaxies from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Pattarakijwanich, Petchara

    Post-starburst galaxies are a rare class of galaxy that show the spectral signature of recent, but not ongoing, star-formation activity, and are thought to have their star formation suddenly quenched within the one billion years preceding the observations. In other words, these are galaxies in the transitional stage between blue, star-forming galaxies and red, quiescent galaxies, and therefore hold important information regarding our understanding of galaxy evolution. This class of objects can be used to study the mechanisms responsible for star-formation quenching, which is an important unsettled question in galaxy evolution. In this thesis, we study this class of galaxies through a number of different approaches. First of all, we systematically selected a large, statistical sample of post-starburst galaxies from the spectroscopic dataset of the Sloan Digital Sky Survey (SDSS). This sample contains 13219 objects in total, with redshifts ranging from local universe to z ˜ 1.3 and median redshift zmedian = 0.59. This is currently the largest sample of post-starburst galaxies available in the literature. Using this sample, we calculated the luminosity functions for a number of redshift bins. A rapid downsizing redshift evolution of the luminosity function is observed, whereby the number density of post-starburst galaxies at fixed luminosity is larger at higher redshift. From the luminosity functions, we calculated the amount of star-formation quenching accounted for in post-starburst galaxies, and compared to the amount required by the global decline of star-formation rate of the universe. We found that only a small fraction (˜ 0.2%) of all star-formation quenching in the universe goes through the post-starburst galaxy channel, at least for the luminous sources in our sample. We also searched the SDSS spectroscopic database the post-starburst quasars, which are an even more special class of objects that show both a post-starburst stellar population and AGN activity

  2. The KMOS Redshift One Spectroscopic Survey (KROSS): the origin of disc turbulence in z ≈ 1 star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Johnson, H. L.; Harrison, C. M.; Swinbank, A. M.; Tiley, A. L.; Stott, J. P.; Bower, R. G.; Smail, Ian; Bunker, A. J.; Sobral, D.; Turner, O. J.; Best, P.; Bureau, M.; Cirasuolo, M.; Jarvis, M. J.; Magdis, G.; Sharples, R. M.; Bland-Hawthorn, J.; Catinella, B.; Cortese, L.; Croom, S. M.; Federrath, C.; Glazebrook, K.; Sweet, S. M.; Bryant, J. J.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J. S.; Medling, A. M.; Owers, M. S.; Richards, S.

    2018-03-01

    We analyse the velocity dispersion properties of 472 z ˜ 0.9 star-forming galaxies observed as part of the KMOS Redshift One Spectroscopic Survey (KROSS). The majority of this sample is rotationally dominated (83 ± 5 per cent with vC/σ0 > 1) but also dynamically hot and highly turbulent. After correcting for beam smearing effects, the median intrinsic velocity dispersion for the final sample is σ0 = 43.2 ± 0.8 km s-1 with a rotational velocity to dispersion ratio of vC/σ0 = 2.6 ± 0.1. To explore the relationship between velocity dispersion, stellar mass, star formation rate, and redshift, we combine KROSS with data from the SAMI survey (z ˜ 0.05) and an intermediate redshift MUSE sample (z ˜ 0.5). Whilst there is, at most, a weak trend between velocity dispersion and stellar mass, at fixed mass there is a strong increase with redshift. At all redshifts, galaxies appear to follow the same weak trend of increasing velocity dispersion with star formation rate. Our results are consistent with an evolution of galaxy dynamics driven by discs that are more gas rich, and increasingly gravitationally unstable, as a function of increasing redshift. Finally, we test two analytic models that predict turbulence is driven by either gravitational instabilities or stellar feedback. Both provide an adequate description of the data, and further observations are required to rule out either model.

  3. The VIMOS Ultra Deep Survey first data release: Spectra and spectroscopic redshifts of 698 objects up to zspec 6 in CANDELS

    NASA Astrophysics Data System (ADS)

    Tasca, L. A. M.; Le Fèvre, O.; Ribeiro, B.; Thomas, R.; Moreau, C.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pentericci, L.; Schaerer, D.; Vanzella, E.; Zamorani, G.; Zucca, E.; Amorin, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Pforr, J.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Guaita, L.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2017-04-01

    This paper describes the first data release (DR1) of the VIMOS Ultra Deep Survey (VUDS). The VUDS-DR1 is the release of all low-resolution spectroscopic data obtained in 276.9 arcmin2 of the CANDELS-COSMOS and CANDELS-ECDFS survey areas, including accurate spectroscopic redshifts zspec and individual spectra obtained with VIMOS on the ESO-VLT. A total of 698 objects have a measured redshift, with 677 galaxies, two type-I AGN, and a small number of 19 contaminating stars. The targets of the spectroscopic survey are selected primarily on the basis of their photometric redshifts to ensure a broad population coverage. About 500 galaxies have zspec > 2, 48of which have zspec > 4; the highest reliable redshifts reach beyond zspec = 6. This data set approximately doubles the number of galaxies with spectroscopic redshifts at z > 3 in these fields. We discuss the general properties of the VUDS-DR1 sample in terms of the spectroscopic redshift distribution, the distribution of Lyman-α equivalent widths, and physical properties including stellar masses M⋆ and star formation rates derived from spectral energy distribution fitting with the knowledge of zspec. We highlight the properties of the most massive star-forming galaxies, noting the wide range in spectral properties, with Lyman-α in emission or in absorption, and in imaging properties with compact, multi-component, or pair morphologies. We present the catalogue database and data products. All VUDS-DR1 data are publicly available and can be retrieved from a dedicated query-based database. Future VUDS data releases will follow this VUDS-DR1 to give access to the spectra and associated measurement of 8000 objects in the full 1 square degree of the VUDS survey. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791. http://cesam.lam.fr/vuds

  4. Using cross correlations to calibrate lensing source redshift distributions: Improving cosmological constraints from upcoming weak lensing surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Putter, Roland; Doré, Olivier; Das, Sudeep

    2014-01-10

    Cross correlations between the galaxy number density in a lensing source sample and that in an overlapping spectroscopic sample can in principle be used to calibrate the lensing source redshift distribution. In this paper, we study in detail to what extent this cross-correlation method can mitigate the loss of cosmological information in upcoming weak lensing surveys (combined with a cosmic microwave background prior) due to lack of knowledge of the source distribution. We consider a scenario where photometric redshifts are available and find that, unless the photometric redshift distribution p(z {sub ph}|z) is calibrated very accurately a priori (bias andmore » scatter known to ∼0.002 for, e.g., EUCLID), the additional constraint on p(z {sub ph}|z) from the cross-correlation technique to a large extent restores the cosmological information originally lost due to the uncertainty in dn/dz(z). Considering only the gain in photo-z accuracy and not the additional cosmological information, enhancements of the dark energy figure of merit of up to a factor of four (40) can be achieved for a SuMIRe-like (EUCLID-like) combination of lensing and redshift surveys, where SuMIRe stands for Subaru Measurement of Images and Redshifts). However, the success of the method is strongly sensitive to our knowledge of the galaxy bias evolution in the source sample and we find that a percent level bias prior is needed to optimize the gains from the cross-correlation method (i.e., to approach the cosmology constraints attainable if the bias was known exactly).« less

  5. Redshifts for a sample of fainter galaxies in the first CfA survey slice

    NASA Technical Reports Server (NTRS)

    Thorstensen, J. R.; Wegner, G. A.; Hamwey, R.; Boley, F.; Geller, M. J.

    1989-01-01

    Redshifts were measured for 93 of the 94 galaxies in the Zwicky-Nilson merged catalog with the value of m(B/01) between 15.5 and 15.7 and with right ascension alpha between 8(h) and 17(h) and declination delta between 29 and 30 deg. This region is within the one covered by the first slice of the CfA (Center for Astrophysics) survey. The galaxies reinforce features already visible in the earlier survey.

  6. Dusty Quasars at High Redshifts

    NASA Astrophysics Data System (ADS)

    Weedman, Daniel; Sargsyan, Lusine

    2016-09-01

    A population of quasars at z ˜ 2 is determined based on dust luminosities νL ν (7.8 μm) that includes unobscured, partially obscured, and obscured quasars. Quasars are classified by the ratio νL ν (0.25 μm)/νL ν (7.8 μm) = UV/IR, assumed to measure obscuration of UV luminosity by the dust that produces IR luminosity. Quasar counts at rest-frame 7.8 μm are determined for quasars in the Boötes field of the NOAO Deep Wide Field Survey using 24 μm sources with optical redshifts from the AGN and Galaxy Evolution Survey (AGES) or infrared redshifts from the Spitzer Infrared Spectrograph. Spectral energy distributions are extended to far-infrared wavelengths using observations from the Herschel Space Observatory Spectral and Photometric Imaging Receiver (SPIRE), and new SPIRE photometry is presented for 77 high-redshift quasars from the Sloan Digital Sky Survey. It is found that unobscured and obscured quasars have similar space densities at rest-frame 7.8 μm, but the ratio L ν (100 μm)/L ν (7.8 μm) is about three times higher for obscured quasars than for unobscured, so that far-infrared or submillimeter quasar detections are dominated by obscured quasars. We find that only ˜5% of high-redshift submillimeter sources are quasars and that existing 850 μm surveys or 2 mm surveys should already have detected sources at z ˜ 10 if quasar and starburst luminosity functions remain the same from z = 2 until z = 10.

  7. A Spectroscopic Survey of Redshift 1.4<~z<~3.0 Galaxies in the GOODS-North Field: Survey Description, Catalogs, and Properties

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen A.; Steidel, Charles C.; Erb, Dawn K.; Shapley, Alice E.; Pettini, Max

    2006-12-01

    We present the results of a spectroscopic survey with LRIS-B on Keck of more than 280 star-forming galaxies and AGNs at redshifts 1.4<~z<~3.0 in the GOODS-N field. Candidates are selected by their UnGR colors using the ``BM/BX'' criteria to target redshift 1.4<~z<~2.5 galaxies and the LBG criteria to target redshift z~3 galaxies; combined these samples account for ~25%-30% of the R and Ks band counts to R=25.5 and Ks(AB)=24.4, respectively. The 212 BM/BX galaxies and 74 LBGs constitute the largest spectroscopic sample of galaxies at z>1.4 in GOODS-N. Extensive multiwavelength data allow us to investigate the stellar populations, stellar masses, bolometric luminosities (Lbol), and extinction of z~2 galaxies. Deep Chandra and Spitzer data indicate that the sample includes galaxies with a wide range in Lbol (~=1010 to >1012 Lsolar) and 4 orders of magnitude in dust obscuration (Lbol/LUV). The sample includes galaxies with a large dynamic range in evolutionary state, from very young galaxies (ages ~=50 Myr) with small stellar masses (M*~=109 Msolar) to evolved galaxies with stellar masses comparable to the most massive galaxies at these redshifts (M*>1011 Msolar). Spitzer data indicate that the optical sample includes some fraction of the obscured AGN population at high redshifts: at least 3 of 11 AGNs in the z>1.4 sample are undetected in the deep X-ray data but exhibit power-law SEDs longward of ~2 μm (rest frame) indicative of obscured AGNs. The results of our survey indicate that rest-frame UV selection and spectroscopy presently constitute the most timewise efficient method of culling large samples of high-redshift galaxies with a wide range in intrinsic properties, and the data presented here will add significantly to the multiwavelength legacy of GOODS. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by

  8. The LABOCA/ACT Survey of Clusters at All Redshifts: Multiwavelength Analysis of Background Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Aguirre, Paula; Lindner, Robert R.; Baker, Andrew J.; Bond, J. Richard; Dünner, Rolando; Galaz, Gaspar; Gallardo, Patricio; Hilton, Matt; Hughes, John P.; Infante, Leopoldo; Lima, Marcos; Menten, Karl M.; Sievers, Jonathan; Weiss, Axel; Wollack, Edward J.

    2018-03-01

    We present a multiwavelength analysis of 48 submillimeter galaxies (SMGs) detected in the Large APEX Bolometer Camera/Atacama Cosmology Telescope (ACT) Survey of Clusters at All Redshifts, LASCAR, which acquired new 870 μm and Australia Telescope Compact Array 2.1 GHz observations of 10 galaxy clusters detected through their Sunyaev–Zel’dovich effect (SZE) signal by the ACT. Far-infrared observations were also conducted with the Photodetector Array Camera and Spectrometer (100/160 μm) and SPIRE (250/350/500 μm) instruments on Herschel for sample subsets of five and six clusters. LASCAR 870 μm maps were reduced using a multiscale iterative pipeline that removes the SZE increment signal, yielding point-source sensitivities of σ ∼ 2 mJy beam‑1. We detect in total 49 sources at the 4σ level and conduct a detailed multiwavelength analysis considering our new radio and far-IR observations plus existing near-IR and optical data. One source is identified as a foreground galaxy, 28 SMGs are matched to single radio sources, four have double radio counterparts, and 16 are undetected at 2.1 GHz but tentatively associated in some cases to near-IR/optical sources. We estimate photometric redshifts for 34 sources with secure (25) and tentative (9) matches at different wavelengths, obtaining a median z={2.8}-1.7+2.1. Compared to previous results for single-dish surveys, our redshift distribution has a comparatively larger fraction of sources at z > 3, and the high-redshift tail is more extended. This is consistent with millimeter spectroscopic confirmation of a growing number of high-z SMGs and relevant for testing of cosmological models. Analytical lens modeling is applied to estimate magnification factors for 42 SMGs at clustercentric radii >1.‧2 with the demagnified flux densities and source-plane areas, we obtain integral number counts that agree with previous submillimeter surveys.

  9. Accurate Emission Line Diagnostics at High Redshift

    NASA Astrophysics Data System (ADS)

    Jones, Tucker

    2017-08-01

    How do the physical conditions of high redshift galaxies differ from those seen locally? Spectroscopic surveys have invested hundreds of nights of 8- and 10-meter telescope time as well as hundreds of Hubble orbits to study evolution in the galaxy population at redshifts z 0.5-4 using rest-frame optical strong emission line diagnostics. These surveys reveal evolution in the gas excitation with redshift but the physical cause is not yet understood. Consequently there are large systematic errors in derived quantities such as metallicity.We have used direct measurements of gas density, temperature, and metallicity in a unique sample at z=0.8 to determine reliable diagnostics for high redshift galaxies. Our measurements suggest that offsets in emission line ratios at high redshift are primarily caused by high N/O abundance ratios. However, our ground-based data cannot rule out other interpretations. Spatially resolved Hubble grism spectra are needed to distinguish between the remaining plausible causes such as active nuclei, shocks, diffuse ionized gas emission, and HII regions with escaping ionizing flux. Identifying the physical origin of evolving excitation will allow us to build the necessary foundation for accurate measurements of metallicity and other properties of high redshift galaxies. Only then can we expoit the wealth of data from current surveys and near-future JWST spectroscopy to understand how galaxies evolve over time.

  10. Automated reliability assessment for spectroscopic redshift measurements

    NASA Astrophysics Data System (ADS)

    Jamal, S.; Le Brun, V.; Le Fèvre, O.; Vibert, D.; Schmitt, A.; Surace, C.; Copin, Y.; Garilli, B.; Moresco, M.; Pozzetti, L.

    2018-03-01

    Context. Future large-scale surveys, such as the ESA Euclid mission, will produce a large set of galaxy redshifts (≥106) that will require fully automated data-processing pipelines to analyze the data, extract crucial information and ensure that all requirements are met. A fundamental element in these pipelines is to associate to each galaxy redshift measurement a quality, or reliability, estimate. Aim. In this work, we introduce a new approach to automate the spectroscopic redshift reliability assessment based on machine learning (ML) and characteristics of the redshift probability density function. Methods: We propose to rephrase the spectroscopic redshift estimation into a Bayesian framework, in order to incorporate all sources of information and uncertainties related to the redshift estimation process and produce a redshift posterior probability density function (PDF). To automate the assessment of a reliability flag, we exploit key features in the redshift posterior PDF and machine learning algorithms. Results: As a working example, public data from the VIMOS VLT Deep Survey is exploited to present and test this new methodology. We first tried to reproduce the existing reliability flags using supervised classification in order to describe different types of redshift PDFs, but due to the subjective definition of these flags (classification accuracy 58%), we soon opted for a new homogeneous partitioning of the data into distinct clusters via unsupervised classification. After assessing the accuracy of the new clusters via resubstitution and test predictions (classification accuracy 98%), we projected unlabeled data from preliminary mock simulations for the Euclid space mission into this mapping to predict their redshift reliability labels. Conclusions: Through the development of a methodology in which a system can build its own experience to assess the quality of a parameter, we are able to set a preliminary basis of an automated reliability assessment for

  11. Accurate spectroscopic redshift of the multiply lensed quasar PSOJ0147 from the Pan-STARRS survey

    NASA Astrophysics Data System (ADS)

    Lee, C.-H.

    2017-09-01

    Context. The gravitational lensing time delay method provides a one-step determination of the Hubble constant (H0) with an uncertainty level on par with the cosmic distance ladder method. However, to further investigate the nature of the dark energy, a H0 estimate down to 1% level is greatly needed. This requires dozens of strongly lensed quasars that are yet to be delivered by ongoing and forthcoming all-sky surveys. Aims: In this work we aim to determine the spectroscopic redshift of PSOJ0147, the first strongly lensed quasar candidate found in the Pan-STARRS survey. The main goal of our work is to derive an accurate redshift estimate of the background quasar for cosmography. Methods: To obtain timely spectroscopically follow-up, we took advantage of the fast-track service programme that is carried out by the Nordic Optical Telescope. Using a grism covering 3200-9600 Å, we identified prominent emission line features, such as Lyα, N V, O I, C II, Si IV, C IV, and [C III] in the spectra of the background quasar of the PSOJ0147 lens system. This enables us to determine accurately the redshift of the background quasar. Results: The spectrum of the background quasar exhibits prominent absorption features bluewards of the strong emission lines, such as Lyα, N V, and C IV. These blue absorption lines indicate that the background source is a broad absorption line (BAL) quasar. Unfortunately, the BAL features hamper an accurate determination of redshift using the above-mentioned strong emission lines. Nevertheless, we are able to determine a redshift of 2.341 ± 0.001 from three of the four lensed quasar images with the clean forbidden line [C III]. In addition, we also derive a maximum outflow velocity of 9800 km s-1 with the broad absorption features bluewards of the C IV emission line. This value of maximum outflow velocity is in good agreement with other BAL quasars.

  12. Large Scale Structure Studies: Final Results from a Rich Cluster Redshift Survey

    NASA Astrophysics Data System (ADS)

    Slinglend, K.; Batuski, D.; Haase, S.; Hill, J.

    1995-12-01

    The results from the COBE satellite show the existence of structure on scales on the order of 10% or more of the horizon scale of the universe. Rich clusters of galaxies from the Abell-ACO catalogs show evidence of structure on scales of 100 Mpc and hold the promise of confirming structure on the scale of the COBE result. Unfortunately, until now, redshift information has been unavailable for a large percentage of these clusters, so present knowledge of their three dimensional distribution has quite large uncertainties. Our approach in this effort has been to use the MX multifiber spectrometer on the Steward 2.3m to measure redshifts of at least ten galaxies in each of 88 Abell cluster fields with richness class R>= 1 and mag10 <= 16.8 (estimated z<= 0.12) and zero or one measured redshifts. This work has resulted in a deeper, 95% complete and more reliable sample of 3-D positions of rich clusters. The primary intent of this survey has been to constrain theoretical models for the formation of the structure we see in the universe today through 2-pt. spatial correlation function and other analyses of the large scale structures traced by these clusters. In addition, we have obtained enough redshifts per cluster to greatly improve the quality and size of the sample of reliable cluster velocity dispersions available for use in other studies of cluster properties. This new data has also allowed the construction of an updated and more reliable supercluster candidate catalog. Our efforts have resulted in effectively doubling the volume traced by these clusters. Presented here is the resulting 2-pt. spatial correlation function, as well as density plots and several other figures quantifying the large scale structure from this much deeper and complete sample. Also, with 10 or more redshifts in most of our cluster fields, we have investigated the extent of projection effects within the Abell catalog in an effort to quantify and understand how this may effect the Abell sample.

  13. Biasing and High-Order Statistics from the Southern-Sky Redshift Survey

    NASA Astrophysics Data System (ADS)

    Benoist, C.; Cappi, A.; da Costa, L. N.; Maurogordato, S.; Bouchet, F. R.; Schaeffer, R.

    1999-04-01

    We analyze different volume-limited samples extracted from the Southern-Sky Redshift Survey (SSRS2), using counts-in-cells to compute the count probability distribution function (CPDF). From the CPDF we derive volume-averaged correlation functions to fourth order and the normalized skewness and kurtosis S3=ξ3¯/ξ¯22 and S4=ξ4¯/ξ¯32. We find that the data satisfies the hierarchical relations in the range 0.3<~ξ2¯<~10. In this range we find S3 to be scale independent, with a value of ~1.8, in good agreement with the values measured from other optical redshift surveys probing different volumes, but significantly smaller than that inferred from the Automatic Plate Measuring Facility (APM) angular catalog. In addition, the measured values of S3 do not show a significant dependence on the luminosity of the galaxies considered. This result is supported by several tests of systematic errors that could affect our measures and estimates of the cosmic variance determined from mock catalogs extracted from N-body simulations. This result is in marked contrast to what would be expected from the strong dependence of the two-point correlation function on luminosity in the framework of a linear biasing model. We discuss the implications of our results and compare them to some recent models of the galaxy distribution that address the problem of bias.

  14. The Herschel Multi-Tiered Extragalactic Survey: SPIRE-mm Photometric Redshifts

    NASA Technical Reports Server (NTRS)

    Roseboom, I. G.; Ivison, R. J.; Greve, T. R.; Amblard, A.; Arumugam, V.; Auld, R.; Aussel, H.; Bethermin, M.; Blain, A.; Bock, J.; hide

    2011-01-01

    We investigate the potential of submm-mm and submm-mm-radio photometric red-shifts using a sample of mm-selected sources as seen at 250, 350 and 500 micrometers by the SPIRE instrument on Herschel. From a sample of 63 previously identified mm-sources with reliable radio identifications in the GOODS-N and Lockman Hole North fields 46 (73 per cent) are found to have detections in at least one SPIRE band. We explore the observed submm/mm colour evolution with redshift, finding that the colours of mm-sources are adequately described by a modified blackbody with constant optical depth Tau = (nu/nu(0))beta where beta = +1.8 and nu(0) = c/100 micrometers. We find a tight correlation between dust temperature and IR luminosity. Using a single model of the dust temperature and IR luminosity relation we derive photometric redshift estimates for the 46 SPIRE detected mm-sources. Testing against the 22 sources with known spectroscopic, or good quality optical/near-IR photometric, redshifts we find submm/mm photometric redshifts offer a redshift accuracy of |delta z|/(1+z) = 0.16 (less than |delta z| greater than = 0.51). Including constraints from the radio-far IR correlation the accuracy is improved to |delta z|/(1 + z) = 0.15 (less than |delta z| greater than = 0.45). We estimate the redshift distribution of mm-selected sources finding a significant excess at z greater than 3 when compared to 850 micrometer selected samples.

  15. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel’dovich Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrabback, T.; Applegate, D.; Dietrich, J. P.

    Here we present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (z median = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev–Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass–observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration–mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass–temperature scaling relation ln (E(z)M 500c/10 14 M ⊙) = A + 1.5ln (kT/7.2 keV) to A=1.81more » $$+0.24\\atop{-0.14}$$(stat.)±0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c 200c=5.6$$+3.7\\atop{-1.8}$$.« less

  16. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel’dovich Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrabback, T.; Applegate, D.; Dietrich, J. P.

    We present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (z(median) = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in Vmore » - I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration-mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass-temperature scaling relation ln (E(z) M-500c/10(14)M(circle dot)) = A + 1.5ln (kT/7.2 keV) to A = 1.81(-0.14)(+0.24)(stat.)+/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c(200c) = 5.6(-1.8)(+3.7).« less

  17. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel’dovich Survey

    DOE PAGES

    Schrabback, T.; Applegate, D.; Dietrich, J. P.; ...

    2017-10-14

    Here we present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (z median = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev–Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass–observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration–mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass–temperature scaling relation ln (E(z)M 500c/10 14 M ⊙) = A + 1.5ln (kT/7.2 keV) to A=1.81more » $$+0.24\\atop{-0.14}$$(stat.)±0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c 200c=5.6$$+3.7\\atop{-1.8}$$.« less

  18. Cluster mass calibration at high redshift: HST weak lensing analysis of 13 distant galaxy clusters from the South Pole Telescope Sunyaev-Zel'dovich Survey

    NASA Astrophysics Data System (ADS)

    Schrabback, T.; Applegate, D.; Dietrich, J. P.; Hoekstra, H.; Bocquet, S.; Gonzalez, A. H.; von der Linden, A.; McDonald, M.; Morrison, C. B.; Raihan, S. F.; Allen, S. W.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Chiu, I.; Desai, S.; Foley, R. J.; de Haan, T.; High, F. W.; Hilbert, S.; Mantz, A. B.; Massey, R.; Mohr, J.; Reichardt, C. L.; Saro, A.; Simon, P.; Stern, C.; Stubbs, C. W.; Zenteno, A.

    2018-02-01

    We present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (zmedian = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V - I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration-mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass-temperature scaling relation ln (E(z)M500c/1014 M⊙) = A + 1.5ln (kT/7.2 keV) to A=1.81^{+0.24}_{-0.14}(stat.) {± } 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.

  19. Supernova Cosmology Inference with Probabilistic Photometric Redshifts (SCIPPR)

    NASA Astrophysics Data System (ADS)

    Peters, Christina; Malz, Alex; Hlozek, Renée

    2018-01-01

    The Bayesian Estimation Applied to Multiple Species (BEAMS) framework employs probabilistic supernova type classifications to do photometric SN cosmology. This work extends BEAMS to replace high-confidence spectroscopic redshifts with photometric redshift probability density functions, a capability that will be essential in the era the Large Synoptic Survey Telescope and other next-generation photometric surveys where it will not be possible to perform spectroscopic follow up on every SN. We present the Supernova Cosmology Inference with Probabilistic Photometric Redshifts (SCIPPR) Bayesian hierarchical model for constraining the cosmological parameters from photometric lightcurves and host galaxy photometry, which includes selection effects and is extensible to uncertainty in the redshift-dependent supernova type proportions. We create a pair of realistic mock catalogs of joint posteriors over supernova type, redshift, and distance modulus informed by photometric supernova lightcurves and over redshift from simulated host galaxy photometry. We perform inference under our model to obtain a joint posterior probability distribution over the cosmological parameters and compare our results with other methods, namely: a spectroscopic subset, a subset of high probability photometrically classified supernovae, and reducing the photometric redshift probability to a single measurement and error bar.

  20. The AzTEC/SMA Interferometric Imaging Survey of Submillimeter-selected High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Younger, Joshua D.; Fazio, Giovanni G.; Huang, Jia-Sheng; Yun, Min S.; Wilson, Grant W.; Ashby, Matthew L. N.; Gurwell, Mark A.; Peck, Alison B.; Petitpas, Glen R.; Wilner, David J.; Hughes, David H.; Aretxaga, Itziar; Kim, Sungeun; Scott, Kimberly S.; Austermann, Jason; Perera, Thushara; Lowenthal, James D.

    2009-10-01

    We present results from a continuing interferometric survey of high-redshift submillimeter galaxies (SMGs) with the Submillimeter Array, including high-resolution (beam size ~2 arcsec) imaging of eight additional AzTEC 1.1 mm selected sources in the COSMOS field, for which we obtain six reliable (peak signal-to-noise ratio (S/N) >5 or peak S/N >4 with multiwavelength counterparts within the beam) and two moderate significance (peak S/N >4) detections. When combined with previous detections, this yields an unbiased sample of millimeter-selected SMGs with complete interferometric follow up. With this sample in hand, we (1) empirically confirm the radio-submillimeter association, (2) examine the submillimeter morphology—including the nature of SMGs with multiple radio counterparts and constraints on the physical scale of the far infrared—of the sample, and (3) find additional evidence for a population of extremely luminous, radio-dim SMGs that peaks at higher redshift than previous, radio-selected samples. In particular, the presence of such a population of high-redshift sources has important consequences for models of galaxy formation—which struggle to account for such objects even under liberal assumptions—and dust production models given the limited time since the big bang.

  1. THE AzTEC/SMA INTERFEROMETRIC IMAGING SURVEY OF SUBMILLIMETER-SELECTED HIGH-REDSHIFT GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younger, Joshua D.; Fazio, Giovanni G.; Huang Jiasheng

    We present results from a continuing interferometric survey of high-redshift submillimeter galaxies (SMGs) with the Submillimeter Array, including high-resolution (beam size approx2 arcsec) imaging of eight additional AzTEC 1.1 mm selected sources in the COSMOS field, for which we obtain six reliable (peak signal-to-noise ratio (S/N) >5 or peak S/N >4 with multiwavelength counterparts within the beam) and two moderate significance (peak S/N >4) detections. When combined with previous detections, this yields an unbiased sample of millimeter-selected SMGs with complete interferometric follow up. With this sample in hand, we (1) empirically confirm the radio-submillimeter association, (2) examine the submillimeter morphology-includingmore » the nature of SMGs with multiple radio counterparts and constraints on the physical scale of the far infrared-of the sample, and (3) find additional evidence for a population of extremely luminous, radio-dim SMGs that peaks at higher redshift than previous, radio-selected samples. In particular, the presence of such a population of high-redshift sources has important consequences for models of galaxy formation-which struggle to account for such objects even under liberal assumptions-and dust production models given the limited time since the big bang.« less

  2. Hα Equivalent Widths from the 3D-HST survey: evolution with redshift and dependence on stellar mass†

    NASA Astrophysics Data System (ADS)

    Fumagalli, Mattia; Patel, Shannon G.; Franx, Marijn; Brammer, Gabriel; van Dokkum, Pieter; da Cunha, Elisabete; Kriek, Mariska; Lundgren, Britt; Momcheva, Ivelina; Rix, Hans-Walter; Schmidt, Kasper B.; Skelton, Rosalind E.; Whitaker, Katherine E.; Labbe, Ivo; Nelson, Erica

    2013-07-01

    We investigate the evolution of the Hα equivalent width, EW(Hα), with redshift and its dependence on stellar mass, using the first data from the 3D-HST survey, a large spectroscopic Treasury program with the HST-WFC3. Combining our Hα measurements of 854 galaxies at 0.8surveys at lower and higher redshift, we can consistently determine the evolution of the EW(Hα) distribution from z=0 to z=2.2. We find that at all masses the characteristic EW(Hα) is decreasing towards the present epoch, and that at each redshift the EW(Hα) is lower for high-mass galaxies. We find EW(Hα) ~ (1+z)1.8 with little mass dependence. Qualitatively, this measurement is a model-independent confirmation of the evolution of star forming galaxies with redshift. A quantitative conversion of EW(Hα) to sSFR (specific star-formation rate) is model dependent, because of differential reddening corrections between the continuum and the Balmer lines. The observed EW(Hα) can be reproduced with the characteristic evolutionary history for galaxies, whose star formation rises with cosmic time to z ~ 2.5 and then decreases to z = 0. This implies that EW(Hα) rises to 400 Å at z = 8. The sSFR evolves faster than EW(Hα), as the mass-to-light ratio also evolves with redshift. We find that the sSFR evolves as (1+z)3.2, nearly independent of mass, consistent with previous reddening insensitive estimates. We confirm previous results that the observed slope of the sSFR-z relation is steeper than the one predicted by models, but models and observations agree in finding little mass dependence.

  3. A Model-independent Photometric Redshift Estimator for Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Wang, Yun

    2007-01-01

    The use of Type Ia supernovae (SNe Ia) as cosmological standard candles is fundamental in modern observational cosmology. In this Letter, we derive a simple empirical photometric redshift estimator for SNe Ia using a training set of SNe Ia with multiband (griz) light curves and spectroscopic redshifts obtained by the Supernova Legacy Survey (SNLS). This estimator is analytical and model-independent it does not use spectral templates. We use all the available SNe Ia from SNLS with near-maximum photometry in griz (a total of 40 SNe Ia) to train and test our photometric redshift estimator. The difference between the estimated redshifts zphot and the spectroscopic redshifts zspec, (zphot-zspec)/(1+zspec), has rms dispersions of 0.031 for 20 SNe Ia used in the training set, and 0.050 for 20 SNe Ia not used in the training set. The dispersion is of the same order of magnitude as the flux uncertainties at peak brightness for the SNe Ia. There are no outliers. This photometric redshift estimator should significantly enhance the ability of observers to accurately target high-redshift SNe Ia for spectroscopy in ongoing surveys. It will also dramatically boost the cosmological impact of very large future supernova surveys, such as those planned for the Advanced Liquid-mirror Probe for Astrophysics, Cosmology, and Asteroids (ALPACA) and the Large Synoptic Survey Telescope (LSST).

  4. An ALMA Survey of Submillimeter Galaxies in the Extended Chandra Deep Field South: Spectroscopic Redshifts

    NASA Astrophysics Data System (ADS)

    Danielson, A. L. R.; Swinbank, A. M.; Smail, Ian; Simpson, J. M.; Casey, C. M.; Chapman, S. C.; da Cunha, E.; Hodge, J. A.; Walter, F.; Wardlow, J. L.; Alexander, D. M.; Brandt, W. N.; de Breuck, C.; Coppin, K. E. K.; Dannerbauer, H.; Dickinson, M.; Edge, A. C.; Gawiser, E.; Ivison, R. J.; Karim, A.; Kovacs, A.; Lutz, D.; Menten, K.; Schinnerer, E.; Weiß, A.; van der Werf, P.

    2017-05-01

    We present spectroscopic redshifts of {\\text{}}{S}870μ {{m}} ≳ 2 mJy submillimeter galaxies (SMGs), which have been identified from the ALMA follow-up observations of 870 μm detected sources in the Extended Chandra Deep Field South (the ALMA-LESS survey). We derive spectroscopic redshifts for 52 SMGs, with a median of z = 2.4 ± 0.1. However, the distribution features a high-redshift tail, with ˜23% of the SMGs at z≥slant 3. Spectral diagnostics suggest that the SMGs are young starbursts, and the velocity offsets between the nebular emission and UV ISM absorption lines suggest that many are driving winds, with velocity offsets of up to 2000 km s-1. Using the spectroscopic redshifts and the extensive UV-to-radio photometry in this field, we produce optimized spectral energy distributions (SEDs) using Magphys, and use the SEDs to infer a median stellar mass of {M}\\star = (6 ± 1)× 1010 M {}⊙ for our SMGs with spectroscopic redshift. By combining these stellar masses with the star formation rates (measured from the far-infrared SEDs), we show that SMGs (on average) lie a factor of ˜5 above the so-called “main sequence” at z˜ 2. We provide this library of 52 template fits with robust and uniquely well-sampled SEDs as a resource for future studies of SMGs, and also release the spectroscopic catalog of ˜2000 (mostly infrared-selected) galaxies targeted as part of the spectroscopic campaign.

  5. The quasar luminosity function at redshift 4 with the Hyper Suprime-Cam Wide Survey

    NASA Astrophysics Data System (ADS)

    Akiyama, Masayuki; He, Wanqiu; Ikeda, Hiroyuki; Niida, Mana; Nagao, Tohru; Bosch, James; Coupon, Jean; Enoki, Motohiro; Imanishi, Masatoshi; Kashikawa, Nobunari; Kawaguchi, Toshihiro; Komiyama, Yutaka; Lee, Chien-Hsiu; Matsuoka, Yoshiki; Miyazaki, Satoshi; Nishizawa, Atsushi J.; Oguri, Masamune; Ono, Yoshiaki; Onoue, Masafusa; Ouchi, Masami; Schulze, Andreas; Silverman, John D.; Tanaka, Manobu M.; Tanaka, Masayuki; Terashima, Yuichi; Toba, Yoshiki; Ueda, Yoshihiro

    2018-01-01

    We present the luminosity function of z ˜ 4 quasars based on the Hyper Suprime-Cam Subaru Strategic Program Wide layer imaging data in the g, r, i, z, and y bands covering 339.8 deg2. From stellar objects, 1666 z ˜ 4 quasar candidates are selected via the g-dropout selection down to i = 24.0 mag. Their photometric redshifts cover the redshift range between 3.6 and 4.3, with an average of 3.9. In combination with the quasar sample from the Sloan Digital Sky Survey in the same redshift range, a quasar luminosity function covering the wide luminosity range of M1450 = -22 to -29 mag is constructed. The quasar luminosity function is well described by a double power-law model with a knee at M1450 = -25.36 ± 0.13 mag and a flat faint-end slope with a power-law index of -1.30 ± 0.05. The knee and faint-end slope show no clear evidence of redshift evolution from those seen at z ˜ 2. The flat slope implies that the UV luminosity density of the quasar population is dominated by the quasars around the knee, and does not support the steeper faint-end slope at higher redshifts reported at z > 5. If we convert the M1450 luminosity function to the hard X-ray 2-10 keV luminosity function using the relation between the UV and X-ray luminosity of quasars and its scatter, the number density of UV-selected quasars matches well with that of the X-ray-selected active galactic nuclei (AGNs) above the knee of the luminosity function. Below the knee, the UV-selected quasars show a deficiency compared to the hard X-ray luminosity function. The deficiency can be explained by the lack of obscured AGNs among the UV-selected quasars.

  6. An HST/COS Survey of the Low-redshift Intergalactic Medium. I. Survey, Methodology, and Overall Results

    NASA Astrophysics Data System (ADS)

    Danforth, Charles W.; Keeney, Brian A.; Tilton, Evan M.; Shull, J. Michael; Stocke, John T.; Stevans, Matthew; Pieri, Matthew M.; Savage, Blair D.; France, Kevin; Syphers, David; Smith, Britton D.; Green, James C.; Froning, Cynthia; Penton, Steven V.; Osterman, Steven N.

    2016-02-01

    We use high-quality, medium-resolution Hubble Space Telescope/Cosmic Origins Spectrograph (HST/COS) observations of 82 UV-bright active galactic nuclei (AGNs) at redshifts zAGN < 0.85 to construct the largest survey of the low-redshift intergalactic medium (IGM) to date: 5138 individual extragalactic absorption lines in H I and 25 different metal-ion species grouped into 2611 distinct redshift systems at zabs < 0.75 covering total redshift pathlengths ΔzH I = 21.7 and ΔzO VI = 14.5. Our semi-automated line-finding and measurement technique renders the catalog as objectively defined as possible. The cumulative column density distribution of H I systems can be parametrized d{ N }(\\gt N)/{dz} = {C}14{(N/{10}14{{cm}}-2)}-(β -1), with C14 = 25 ± 1 and β = 1.65 ± 0.02. This distribution is seen to evolve both in amplitude, {C}14\\propto {(1+z)}2.3+/- 0.1, and slope β(z) = 1.75-0.31 z for z ≤ 0.47. We observe metal lines in 418 systems, and find that the fraction of IGM absorbers detected in metals is strongly dependent on {N}{{H}{{I}}}. The distribution of O VI absorbers appears to evolve in the same sense as the Lyα forest. We calculate contributions to Ωb from different components of the low-z IGM and determine the Lyα decrement as a function of redshift. IGM absorbers are analyzed via a two-point correlation function in velocity space. We find substantial clustering of H I absorbers on scales of Δv = 50-300 km s-1 with no significant clustering at Δv ≳ 1000 km s-1. Splitting the sample into strong and weak absorbers, we see that most of the clustering occurs in strong, NH I ≳ 1013.5 cm-2, metal-bearing IGM systems. The full catalog of absorption lines and fully reduced spectra is available via the Mikulski Archive for Space Telescopes (MAST) as a high-level science product at http://archive.stsci.edu/prepds/igm/. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science

  7. The Redshift Completeness of Local Galaxy Catalogs

    NASA Astrophysics Data System (ADS)

    Kulkarni, S. R.; Perley, D. A.; Miller, A. A.

    2018-06-01

    There is considerable interest in understanding the demographics of galaxies within the local universe (defined, for our purposes, as the volume within a radius of 200 Mpc or z ≤ 0.05). In this pilot paper, using supernovae (SNe) as signposts to galaxies, we investigate the redshift completeness of catalogs of nearby galaxies. In particular, type Ia SNe are bright and are good tracers of the bulk of the galaxy population, as they arise in both old and young stellar populations. Our input sample consists of SNe with redshift ≤0.05, discovered by the flux-limited ASAS-SN survey. We define the redshift completeness fraction (RCF) as the number of SN host galaxies with known redshift prior to SN discovery, determined, in this case, via the NASA Extragalactic Database, divided by the total number of newly discovered SNe. Using SNe Ia, we find {RCF}=78{+/- }76% (90% confidence interval) for z < 0.03. We examine the distribution of host galaxies with and without cataloged redshifts as a function of absolute magnitude and redshift, and, unsurprisingly, find that higher-z and fainter hosts are less likely to have a known redshift prior to the detection of the SN. However, surprisingly, some {L}* galaxies are also missing. We conclude with thoughts on the future improvement of RCF measurements that will be made possible from large SN samples resulting from ongoing and especially upcoming time-domain surveys.

  8. The XXL Survey XIV. AAOmega Redshifts for the Southern XXL Field

    NASA Astrophysics Data System (ADS)

    Lidman, C.; Ardila, F.; Owers, M.; Adami, C.; Chiappetti, L.; Civano, F.; Elyiv, A.; Finet, F.; Fotopoulou, S.; Goulding, A.; Koulouridis, E.; Melnyk, O.; Menanteau, F.; Pacaud, F.; Pierre, M.; Plionis, M.; Surdej, J.; Sadibekova, T.

    2016-01-01

    We present a catalogue containing the redshifts of 3 660 X-ray selected targets in the XXL southern field. The redshifts were obtained with the AAOmega spectrograph and 2dF fibre positioner on the Anglo-Australian Telescope. The catalogue contains 1 515 broad line AGN, 528 stars, and redshifts for 41 out of the 49 brightest X-ray selected clusters in the XXL southern field.

  9. Testing the accuracy of clustering redshifts with simulations

    NASA Astrophysics Data System (ADS)

    Scottez, V.; Benoit-Lévy, A.; Coupon, J.; Ilbert, O.; Mellier, Y.

    2018-03-01

    We explore the accuracy of clustering-based redshift inference within the MICE2 simulation. This method uses the spatial clustering of galaxies between a spectroscopic reference sample and an unknown sample. This study give an estimate of the reachable accuracy of this method. First, we discuss the requirements for the number objects in the two samples, confirming that this method does not require a representative spectroscopic sample for calibration. In the context of next generation of cosmological surveys, we estimated that the density of the Quasi Stellar Objects in BOSS allows us to reach 0.2 per cent accuracy in the mean redshift. Secondly, we estimate individual redshifts for galaxies in the densest regions of colour space ( ˜ 30 per cent of the galaxies) without using the photometric redshifts procedure. The advantage of this procedure is threefold. It allows: (i) the use of cluster-zs for any field in astronomy, (ii) the possibility to combine photo-zs and cluster-zs to get an improved redshift estimation, (iii) the use of cluster-z to define tomographic bins for weak lensing. Finally, we explore this last option and build five cluster-z selected tomographic bins from redshift 0.2 to 1. We found a bias on the mean redshift estimate of 0.002 per bin. We conclude that cluster-z could be used as a primary redshift estimator by next generation of cosmological surveys.

  10. Galaxy And Mass Assembly (GAMA): AUTOZ spectral redshift measurements, confidence and errors

    NASA Astrophysics Data System (ADS)

    Baldry, I. K.; Alpaslan, M.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Cluver, M. E.; Croom, S. M.; Davies, L. J. M.; Driver, S. P.; Gunawardhana, M. L. P.; Holwerda, B. W.; Hopkins, A. M.; Kelvin, L. S.; Liske, J.; López-Sánchez, Á. R.; Loveday, J.; Norberg, P.; Peacock, J.; Robotham, A. S. G.; Taylor, E. N.

    2014-07-01

    The Galaxy And Mass Assembly (GAMA) survey has obtained spectra of over 230 000 targets using the Anglo-Australian Telescope. To homogenize the redshift measurements and improve the reliability, a fully automatic redshift code was developed (AUTOZ). The measurements were made using a cross-correlation method for both the absorption- and the emission-line spectra. Large deviations in the high-pass-filtered spectra are partially clipped in order to be robust against uncorrected artefacts and to reduce the weight given to single-line matches. A single figure of merit (FOM) was developed that puts all template matches on to a similar confidence scale. The redshift confidence as a function of the FOM was fitted with a tanh function using a maximum likelihood method applied to repeat observations of targets. The method could be adapted to provide robust automatic redshifts for other large galaxy redshift surveys. For the GAMA survey, there was a substantial improvement in the reliability of assigned redshifts and in the lowering of redshift uncertainties with a median velocity uncertainty of 33 km s-1.

  11. The VIMOS Public Extragalactic Redshift Survey (VIPERS). The coevolution of galaxy morphology and colour to z 1

    NASA Astrophysics Data System (ADS)

    Krywult, J.; Tasca, L. A. M.; Pollo, A.; Vergani, D.; Bolzonella, M.; Davidzon, I.; Iovino, A.; Gargiulo, A.; Haines, C. P.; Scodeggio, M.; Guzzo, L.; Zamorani, G.; Garilli, B.; Granett, B. R.; de la Torre, S.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Franzetti, P.; Fritz, A.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Tojeiro, R.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; Coupon, J.; De Lucia, G.; Ilbert, O.; McCracken, H. J.; Moscardini, L.; Takeuchi, T. T.

    2017-02-01

    Context. The study of the separation of galaxy types into different classes that share the same characteristics, and of the evolution of the specific parameters used in the classification are fundamental for understanding galaxy evolution. Aims: We explore the evolution of the statistical distribution of galaxy morphological properties and colours combining high-quality imaging data from the CFHT Legacy Survey with the large number of redshifts and extended photometry from the VIPERS survey. Methods: Galaxy structural parameters were combined with absolute magnitudes, colours and redshifts in order to trace evolution in a multi-parameter space. Using a new method we analysed the combination of colours and structural parameters of early- and late-type galaxies in luminosity-redshift space. Results: We find that both the rest-frame colour distributions in the (U-B) vs. (B-V) plane and the Sérsic index distributions are well fitted by a sum of two Gaussians, with a remarkable consistency of red-spheroidal and blue-disky galaxy populations, over the explored redshift (0.5 < z < 1) and luminosity (-1.5 < B-B∗ < 1.0) ranges. The combination of the rest-frame colour and Sérsic index as a function of redshift and luminosity allows us to present the structure of both galaxy types and their evolution. We find that early-type galaxies display only a slow change in their concentrations after z = 1. Their high concentrations were already established at z 1 and depend much more strongly on their luminosity than redshift. In contrast, late-type galaxies clearly become more concentrated with cosmic time with only little evolution in colour, which remains dependent mainly on their luminosity. Conclusions: The combination of rest-frame colours and Sérsic index as a function of redshift and luminosity leads to a precise statistical description of the structure of galaxies and their evolution. Additionally, the proposed method provides a robust way to split galaxies into early

  12. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Gravity test from the combination of redshift-space distortions and galaxy-galaxy lensing at 0.5 < z < 1.2

    NASA Astrophysics Data System (ADS)

    de la Torre, S.; Jullo, E.; Giocoli, C.; Pezzotta, A.; Bel, J.; Granett, B. R.; Guzzo, L.; Garilli, B.; Scodeggio, M.; Bolzonella, M.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Branchini, E.; Coupon, J.; De Lucia, G.; Ilbert, O.; Moutard, T.; Moscardini, L.; Peacock, J. A.; Metcalf, R. B.; Prada, F.; Yepes, G.

    2017-12-01

    We carry out a joint analysis of redshift-space distortions and galaxy-galaxy lensing, with the aim of measuring the growth rate of structure; this is a key quantity for understanding the nature of gravity on cosmological scales and late-time cosmic acceleration. We make use of the final VIPERS redshift survey dataset, which maps a portion of the Universe at a redshift of z ≃ 0.8, and the lensing data from the CFHTLenS survey over the same area of the sky. We build a consistent theoretical model that combines non-linear galaxy biasing and redshift-space distortion models, and confront it with observations. The two probes are combined in a Bayesian maximum likelihood analysis to determine the growth rate of structure at two redshifts z = 0.6 and z = 0.86. We obtain measurements of fσ8(0.6) = 0.48 ± 0.12 and fσ8(0.86) = 0.48 ± 0.10. The additional galaxy-galaxy lensing constraint alleviates galaxy bias and σ8 degeneracies, providing direct measurements of f and σ8: [f(0.6),σ8(0.6)] = [0.93 ± 0.22,0.52 ± 0.06] and [f(0.86),σ8(0.86)] = [0.99 ± 0.19,0.48 ± 0.04]. These measurements are statistically consistent with a Universe where the gravitational interactions can be described by General Relativity, although they are not yet accurate enough to rule out some commonly considered alternatives. Finally, as a complementary test we measure the gravitational slip parameter, EG, for the first time at z > 0.6. We find values of E̅G(0.6) = 0.16±0.09 and E̅G(0.86) = 0.09±0.07, when EG is averaged over scales above 3 h-1 Mpc. We find that our EG measurements exhibit slightly lower values than expected for standard relativistic gravity in a ΛCDM background, although the results are consistent within 1-2σ. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programmes 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT

  13. Hα Equivalent Widths from the 3D-HST Survey: Evolution with Redshift and Dependence on Stellar Mass

    NASA Astrophysics Data System (ADS)

    Fumagalli, Mattia; Patel, Shannon G.; Franx, Marijn; Brammer, Gabriel; van Dokkum, Pieter; da Cunha, Elisabete; Kriek, Mariska; Lundgren, Britt; Momcheva, Ivelina; Rix, Hans-Walter; Schmidt, Kasper B.; Skelton, Rosalind E.; Whitaker, Katherine E.; Labbe, Ivo; Nelson, Erica

    2012-10-01

    We investigate the evolution of the Hα equivalent width, EW(Hα), with redshift and its dependence on stellar mass, using the first data from the 3D-HST survey, a large spectroscopic Treasury program with the Hubble Space Telescope Wide Field Camera 3. Combining our Hα measurements of 854 galaxies at 0.8 < z < 1.5 with those of ground-based surveys at lower and higher redshift, we can consistently determine the evolution of the EW(Hα) distribution from z = 0 to z = 2.2. We find that at all masses the characteristic EW(Hα) is decreasing toward the present epoch, and that at each redshift the EW(Hα) is lower for high-mass galaxies. We find EW(Hα) ~(1 + z)1.8 with little mass dependence. Qualitatively, this measurement is a model-independent confirmation of the evolution of star-forming galaxies with redshift. A quantitative conversion of EW(Hα) to specific star formation rate (sSFR) is model dependent because of differential reddening corrections between the continuum and the Balmer lines. The observed EW(Hα) can be reproduced with the characteristic evolutionary history for galaxies, whose star formation rises with cosmic time to z ~ 2.5 and then decreases to z = 0. This implies that EW(Hα) rises to 400 Å at z = 8. The sSFR evolves faster than EW(Hα), as the mass-to-light ratio also evolves with redshift. We find that the sSFR evolves as (1 + z)3.2, nearly independent of mass, consistent with previous reddening insensitive estimates. We confirm previous results that the observed slope of the sSFR-z relation is steeper than the one predicted by models, but models and observations agree in finding little mass dependence. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 12177, 12328.

  14. MARZ: Manual and automatic redshifting software

    NASA Astrophysics Data System (ADS)

    Hinton, S. R.; Davis, Tamara M.; Lidman, C.; Glazebrook, K.; Lewis, G. F.

    2016-04-01

    The Australian Dark Energy Survey (OzDES) is a 100-night spectroscopic survey underway on the Anglo-Australian Telescope using the fibre-fed 2-degree-field (2dF) spectrograph. We have developed a new redshifting application MARZ with greater usability, flexibility, and the capacity to analyse a wider range of object types than the RUNZ software package previously used for redshifting spectra from 2dF. MARZ is an open-source, client-based, Javascript web-application which provides an intuitive interface and powerful automatic matching capabilities on spectra generated from the AAOmega spectrograph to produce high quality spectroscopic redshift measurements. The software can be run interactively or via the command line, and is easily adaptable to other instruments and pipelines if conforming to the current FITS file standard is not possible. Behind the scenes, a modified version of the AUTOZ cross-correlation algorithm is used to match input spectra against a variety of stellar and galaxy templates, and automatic matching performance for OzDES spectra has increased from 54% (RUNZ) to 91% (MARZ). Spectra not matched correctly by the automatic algorithm can be easily redshifted manually by cycling automatic results, manual template comparison, or marking spectral features.

  15. Probabilistic Photometric Redshifts in the Era of Petascale Astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrasco Kind, Matias

    2014-01-01

    With the growth of large photometric surveys, accurately estimating photometric redshifts, preferably as a probability density function (PDF), and fully understanding the implicit systematic uncertainties in this process has become increasingly important. These surveys are expected to obtain images of billions of distinct galaxies. As a result, storing and analyzing all of these photometric redshift PDFs will be non-trivial, and this challenge becomes even more severe if a survey plans to compute and store multiple different PDFs. In this thesis, we have developed an end-to-end framework that will compute accurate and robust photometric redshift PDFs for massive data sets bymore » using two new, state-of-the-art machine learning techniques that are based on a random forest and a random atlas, respectively. By using data from several photometric surveys, we demonstrate the applicability of these new techniques, and we demonstrate that our new approach is among the best techniques currently available. We also show how different techniques can be combined by using novel Bayesian techniques to improve the photometric redshift precision to unprecedented levels while also presenting new approaches to better identify outliers. In addition, our framework provides supplementary information regarding the data being analyzed, including unbiased estimates of the accuracy of the technique without resorting to a validation data set, identification of poor photometric redshift areas within the parameter space occupied by the spectroscopic training data, and a quantification of the relative importance of the variables used during the estimation process. Furthermore, we present a new approach to represent and store photometric redshift PDFs by using a sparse representation with outstanding compression and reconstruction capabilities. We also demonstrate how this framework can also be directly incorporated into cosmological analyses. The new techniques presented in this thesis are

  16. The LAMOST Complete Spectroscopic Survey of Pointing Area (LaCoSSPAr) in the Southern Galactic Cap. I. The Spectroscopic Redshift Catalog

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Wu, Hong; Yang, Fan; Lam, Man I.; Cao, Tian-Wen; Wu, Chao-Jian; Zhao, Pin-Song; Zhang, Tian-Meng; Zhou, Zhi-Min; Wu, Xue-Bing; Zhang, Yan-Xia; Shao, Zheng-Yi; Jing, Yi-Peng; Shen, Shi-Yin; Zhu, Yi-Nan; Du, Wei; Lei, Feng-Jie; He, Min; Jin, Jun-Jie; Shi, Jian-Rong; Zhang, Wei; Wang, Jian-Ling; Wu, Yu-Zhong; Zhang, Hao-Tong; Luo, A.-Li; Yuan, Hai-Long; Bai, Zhong-Rui; Kong, Xu; Gu, Qiu-Sheng; Zhou, Xu; Ma, Jun; Hu, Zou; Nie, Jun-Dan; Wang, Jia-Li; Zhang, Yong; Hou, Yong-Hui; Zhao, Yong-Heng

    2018-01-01

    We present a spectroscopic redshift catalog from the LAMOST Complete Spectroscopic Survey of Pointing Area (LaCoSSPAr) in the Southern Galactic Cap (SGC), which is designed to observe all sources (Galactic and extragalactic) by using repeating observations with a limiting magnitude of r=18.1 {mag} in two 20 {\\deg }2 fields. The project is mainly focusing on the completeness of LAMOST ExtraGAlactic Surveys (LEGAS) in the SGC, the deficiencies of source selection methods, and the basic performance parameters of the LAMOST telescope. In both fields, more than 95% of galaxies have been observed. A post-processing has been applied to the LAMOST 1D spectrum to remove the majority of remaining sky background residuals. More than 10,000 spectra have been visually inspected to measure the redshift by using combinations of different emission/absorption features with an uncertainty of {σ }z/(1+z)< 0.001. In total, 1528 redshifts (623 absorption and 905 emission line galaxies) in Field A and 1570 redshifts (569 absorption and 1001 emission line galaxies) in Field B have been measured. The results show that it is possible to derive redshift from low S/N galaxies with our post-processing and visual inspection. Our analysis also indicates that up to one-fourth of the input targets for a typical extragalactic spectroscopic survey might be unreliable. The multi-wavelength data analysis shows that the majority of mid-infrared-detected absorption (91.3%) and emission line galaxies (93.3%) can be well separated by an empirical criterion of W2-W3=2.4. Meanwhile, a fainter sequence paralleled to the main population of galaxies has been witnessed both in M r /W2-W3 and M */W2-W3 diagrams, which could be the population of luminous dwarf galaxies but contaminated by the edge-on/highly inclined galaxies (∼ 30 % ).

  17. Clustering of High-Redshift Quasars

    NASA Astrophysics Data System (ADS)

    Timlin, John D., III

    In this work, we investigate the clustering of faint quasars in the early Universe and use the clustering strength to gain a better understanding of quasar feedback mechanisms and the growth of central supermassive black holes at early times in the history of the Universe. It has long been understood (e.g., Hopkins et al. 2007a) that the clustering of distant quasars can be used as a probe of different feedback models; however, until now, there was no sample of faint, high-redshift quasars with sufficient density to accurately measure the clustering strength. Therefore we conducted a new survey to increase the number density of these objects. Here, we describe the Spitzer -IRAC Equatorial Survey (SpIES) which is a moderately deep, large-area Spitzer survey which was designed to discover faint, high-redshift (2.9 ≤ z ≤ 5.1) quasars. SpIES spans 115 deg 2 in the equatorial "Stripe 82" region of the Sloan Digital Sky Survey (SDSS) and probes to 5sigma depths of 6.13 microJy (21.93 AB magnitude) and 5.75 microJy (22.0 AB magnitude) at 3.6 and 4.5 microns. At these depths, SpIES is able to observe faint quasars, and we show that SpIES recovers 94% of the high-redshift (z ≥ 3.5), spectroscopically-confirmed quasars that lie within its footprint. SpIES is also ideally located on Stripe 82 for two reasons: It surrounds existing infrared data from the Spitzer-HETDEX Exploratory Large-area (SHELA) survey which increases the area of infrared coverage, and there is a wide range of multi-wavelength, multi-epoch ancillary data on Stripe 82 which we can use together to select high-redshift quasar candidates. To photometrically identify quasar candidates, we combined the optical data from the Sloan Digital Sky Survey and the infrared data from SpIES and SHELA and employed three machine learning algorithms. These algorithms were trained on the optical/infrared colors of known, high-redshift quasars. Using this method, we generate a sample of 1378 objects that are both faint

  18. Galaxy luminosity function: evolution at high redshift

    NASA Astrophysics Data System (ADS)

    Martinet, N.; Durret, F.; Guennou, L.; Adami, C.

    2014-12-01

    There are some disagreements about the abundance of faint galaxies in high redshift clusters. DAFT/FADA (Dark energy American French Team) is a medium redshift (0.4survey of massive galaxy clusters ideal to tackle these problems. We present cluster galaxy luminosity functions (GLFs) based on photometric redshifts for 30 clusters in B, V, R and I restframe bands. We show that completeness is a key parameter to understand the different observed behaviors when fitting the GLFs. We also investigate the evolution of GLFs with redshift for red and blue galaxy populations separately. We find a drop of the faint end of red GLFs which is more important at higher redshift while the blue GLF faint end remains flat in our redshift range. These results can be interpreted in terms of galaxy quenching. Faint blue galaxies transform into red ones which enrich the red sequence from high to low redshifts in clusters while some blue galaxies are still accreted from the environment, compensating for this evolution so that the global GLF does not seem to evolve.

  19. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Full spectroscopic data and auxiliary information release (PDR-2)

    NASA Astrophysics Data System (ADS)

    Scodeggio, M.; Guzzo, L.; Garilli, B.; Granett, B. R.; Bolzonella, M.; de la Torre, S.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marchetti, A.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Bel, J.; Branchini, E.; De Lucia, G.; Ilbert, O.; McCracken, H. J.; Moutard, T.; Peacock, J. A.; Zamorani, G.; Burden, A.; Fumana, M.; Jullo, E.; Marinoni, C.; Mellier, Y.; Moscardini, L.; Percival, W. J.

    2018-01-01

    We present the full public data release (PDR-2) of the VIMOS Public Extragalactic Redshift Survey (VIPERS), performed at the ESO VLT. We release redshifts, spectra, CFHTLS magnitudes and ancillary information (as masks and weights) for a complete sample of 86 775 galaxies (plus 4732 other objects, including stars and serendipitous galaxies); we also include their full photometrically-selected parent catalogue. The sample is magnitude limited to iAB ≤ 22.5, with an additional colour-colour pre-selection devised as to exclude galaxies at z < 0.5. This practically doubles the effective sampling of the VIMOS spectrograph over the range 0.5 < z < 1.2 (reaching 47% on average), yielding a final median local galaxy density close to 5 × 10-3h3 Mpc-3. The total area spanned by the final data set is ≃ 23.5 deg2, corresponding to 288 VIMOS fields with marginal overlaps, split over two regions within the CFHTLS-Wide W1 and W4 equatorial fields (at RA ≃ 2 and ≃ 22 h, respectively). Spectra were observed at a resolution R = 220, covering a wavelength range 5500-9500 Å. Data reduction and redshift measurements were performed through a fully automated pipeline; all redshift determinations were then visually validated and assigned a quality flag. Measurements with a quality flag ≥ 2 are shown to have a confidence level of 96% or larger and make up 88% of all measured galaxy redshifts (76 552 out of 86 775), constituting the VIPERS prime catalogue for statistical investigations. For this sample the rms redshift error, estimated using repeated measurements of about 3000 galaxies, is found to be σz = 0.00054(1 + z). All data are available at http://vipers.inaf.it and on the ESO Archive. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programmes 182.A-0886 and partly 070.A-9007. Also based on observations obtained with

  20. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Molecular Gas Reservoirs in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Decarli, Roberto; Walter, Fabian; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Elbaz, David; Riechers, Dominik; Smail, Ian; Swinbank, Mark; Weiss, Axel; Bacon, Roland; Bauer, Franz; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Gónzalez-López, Jorge; Inami, Hanae; Ivison, Rob; Hodge, Jacqueline; Karim, Alex; Magnelli, Benjamin; Ota, Kazuaki; Popping, Gergö; Rix, Hans-Walter; Sargent, Mark; van der Wel, Arjen; van der Werf, Paul

    2016-12-01

    We study the molecular gas properties of high-z galaxies observed in the ALMA Spectroscopic Survey (ASPECS) that targets an ˜1 arcmin2 region in the Hubble Ultra Deep Field (UDF), a blind survey of CO emission (tracing molecular gas) in the 3 and 1 mm bands. Of a total of 1302 galaxies in the field, 56 have spectroscopic redshifts and correspondingly well-defined physical properties. Among these, 11 have infrared luminosities {L}{IR}\\gt {10}11 {L}⊙ , I.e., a detection in CO emission was expected. Out of these, 7 are detected at various significance in CO, and 4 are undetected in CO emission. In the CO-detected sources, we find CO excitation conditions that are lower than those typically found in starburst/sub-mm galaxy/QSO environments. We use the CO luminosities (including limits for non-detections) to derive molecular gas masses. We discuss our findings in the context of previous molecular gas observations at high redshift (star formation law, gas depletion times, gas fractions): the CO-detected galaxies in the UDF tend to reside on the low-{L}{IR} envelope of the scatter in the {L}{IR}{--}{L}{CO}\\prime relation, but exceptions exist. For the CO-detected sources, we find an average depletion time of ˜1 Gyr, with significant scatter. The average molecular-to-stellar mass ratio ({M}{{H}2}/M *) is consistent with earlier measurements of main-sequence galaxies at these redshifts, and again shows large variations among sources. In some cases, we also measure dust continuum emission. On average, the dust-based estimates of the molecular gas are a factor ˜2-5× smaller than those based on CO. When we account for detections as well as non-detections, we find large diversity in the molecular gas properties of the high-redshift galaxies covered by ASPECS.

  1. Comparing Low-Redshift Compact Dwarf Starbursts in the RESOLVE Survey with High-Redshift Blue Nuggets

    NASA Astrophysics Data System (ADS)

    Palumbo, Michael Louis; Kannappan, Sheila; Snyder, Elaine; Eckert, Kathleen; Norman, Dara; Fraga, Luciano; Quint, Bruno; Amram, Philippe; Mendes de Oliveira, Claudia; RESOLVE Team

    2018-01-01

    We identify and characterize a population of compact dwarf starburst galaxies in the RESOLVE survey, a volume-limited census of galaxies in the local universe, to probe the possibility that these galaxies are related to “blue nuggets,” a class of intensely star-forming and compact galaxies previously identified at high redshift. Blue nuggets are thought to form as the result of intense compaction events that drive fresh gas to their centers. They are expected to display prolate morphology and rotation along their minor axes. We report IFU observations of three of our compact dwarf starburst galaxies, from which we construct high-resolution velocity fields, examining the evidence for minor axis or otherwise misaligned rotation. We find multiple cases of double nuclei in our sample, which may be indicative of a merger origin as in some blue nugget formation scenarios. We compare the masses, radii, gas-to-stellar mass ratios, star formation rates, stellar surface mass densities, and environmental contexts of our sample to expectations for blue nuggets.

  2. Cosmological baryonic and matter densities from 600000 SDSS luminous red galaxies with photometric redshifts

    NASA Astrophysics Data System (ADS)

    Blake, Chris; Collister, Adrian; Bridle, Sarah; Lahav, Ofer

    2007-02-01

    We analyse MegaZ-LRG, a photometric-redshift catalogue of luminous red galaxies (LRGs) based on the imaging data of the Sloan Digital Sky Survey (SDSS) 4th Data Release. MegaZ-LRG, presented in a companion paper, contains >106 photometric redshifts derived with ANNZ, an artificial neural network method, constrained by a spectroscopic subsample of ~13000 galaxies obtained by the 2dF-SDSS LRG and Quasar (2SLAQ) survey. The catalogue spans the redshift range 0.4 < z < 0.7 with an rms redshift error σz ~ 0.03(1 + z), covering 5914 deg2 to map out a total cosmic volume 2.5h-3Gpc3. In this study we use the most reliable 600000 photometric redshifts to measure the large-scale structure using two methods: (1) a spherical harmonic analysis in redshift slices, and (2) a direct re-construction of the spatial clustering pattern using Fourier techniques. We present the first cosmological parameter fits to galaxy angular power spectra from a photometric-redshift survey. Combining the redshift slices with appropriate covariances, we determine best-fitting values for the matter density Ωm and baryon density Ωb of Ωmh = 0.195 +/- 0.023 and Ωb/Ωm = 0.16 +/- 0.036 (with the Hubble parameter h = 0.75 and scalar index of primordial fluctuations nscalar = 1 held fixed). These results are in agreement with and independent of the latest studies of the cosmic microwave background radiation, and their precision is comparable to analyses of contemporary spectroscopic-redshift surveys. We perform an extensive series of tests which conclude that our power spectrum measurements are robust against potential systematic photometric errors in the catalogue. We conclude that photometric-redshift surveys are competitive with spectroscopic surveys for measuring cosmological parameters in the simplest `vanilla' models. Future deep imaging surveys have great potential for further improvement, provided that systematic errors can be controlled.

  3. Photometric redshift estimation via deep learning. Generalized and pre-classification-less, image based, fully probabilistic redshifts

    NASA Astrophysics Data System (ADS)

    D'Isanto, A.; Polsterer, K. L.

    2018-01-01

    Context. The need to analyze the available large synoptic multi-band surveys drives the development of new data-analysis methods. Photometric redshift estimation is one field of application where such new methods improved the results, substantially. Up to now, the vast majority of applied redshift estimation methods have utilized photometric features. Aims: We aim to develop a method to derive probabilistic photometric redshift directly from multi-band imaging data, rendering pre-classification of objects and feature extraction obsolete. Methods: A modified version of a deep convolutional network was combined with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) were applied as performance criteria. We have adopted a feature based random forest and a plain mixture density network to compare performances on experiments with data from SDSS (DR9). Results: We show that the proposed method is able to predict redshift PDFs independently from the type of source, for example galaxies, quasars or stars. Thereby the prediction performance is better than both presented reference methods and is comparable to results from the literature. Conclusions: The presented method is extremely general and allows us to solve of any kind of probabilistic regression problems based on imaging data, for example estimating metallicity or star formation rate of galaxies. This kind of methodology is tremendously important for the next generation of surveys.

  4. Predicting the Redshift 2 H-Alpha Luminosity Function Using [OIII] Emission Line Galaxies

    NASA Technical Reports Server (NTRS)

    Mehta, Vihang; Scarlata, Claudia; Colbert, James W.; Dai, Y. S.; Dressler, Alan; Henry, Alaina; Malkan, Matt; Rafelski, Marc; Siana, Brian; Teplitz, Harry I.; hide

    2015-01-01

    Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure Baryonic Acoustic Oscillations (BAOs) in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the WFC3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of H-alpha emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8 - 1.65 micrometers wavelength range and allowing the detection of H-alpha emitters up to z approximately equal to 1.5 and [OIII] emitters to z approximately equal to 2.3. We derive the H-alpha-[OIII] bivariate line luminosity function for WISP galaxies at z approximately equal to 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurement, and demonstrate how it can be used to derive the H-alpha luminosity function from exclusively fitting [OIII] data. Using the z approximately equal to 2 [OIII] line luminosity function, and assuming that the relation between H-alpha and [OIII] luminosity does not change significantly over the redshift range, we predict the H-alpha number counts at z approximately equal to 2 - the upper end of the redshift range of interest for the future surveys. For the redshift range 0.7 less than z less than 2, we expect approximately 3000 galaxies per sq deg for a flux limit of 3 x 10(exp -16) ergs per sec per sq cm (the proposed depth of Euclid galaxy redshift survey) and approximately 20,000 galaxies per sq deg for a flux limit of approximately 10(exp -16) ergs per sec per sq cm (the baseline depth of WFIRST galaxy redshift survey).

  5. The VIMOS Public Extragalactic Redshift Survey. Measuring the growth rate of structure around cosmic voids

    NASA Astrophysics Data System (ADS)

    Hawken, A. J.; Granett, B. R.; Iovino, A.; Guzzo, L.; Peacock, J. A.; de la Torre, S.; Garilli, B.; Bolzonella, M.; Scodeggio, M.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Davidzon, I.; Fritz, A.; Franzetti, P.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; De Lucia, G.; Ilbert, O.; Moscardini, L.; Percival, W. J.

    2017-11-01

    We aim to develop a novel methodology for measuring thegrowth rate of structure around cosmic voids. We identified voids in the completed VIMOS Public Extragalactic Redshift Survey (VIPERS), using an algorithm based on searching for empty spheres. We measured the cross-correlation between the centres of voids and the complete galaxy catalogue. The cross-correlation function exhibits a clear anisotropy in both VIPERS fields (W1 and W4), which is characteristic of linear redshift space distortions. By measuring the projected cross-correlation and then de-projecting it we are able to estimate the un-distorted cross-correlation function. We propose that given a sufficiently well-measured cross-correlation function one should be able to measure the linear growth rate of structure by applying a simple linear Gaussian streaming model for the redshift space distortions (RSD). Our study of voids in 306 mock galaxy catalogues mimicking the VIPERS fields suggests that VIPERS is capable of measuring β, the ratio of the linear growth rate to the bias, with an error of around 25%. Applying our method to the VIPERS data, we find a value for the redshift space distortion parameter, β = 0.423-0.108+0.104 which, given the bias of the galaxy population we use, gives a linear growth rate of f σ8 = 0.296-0.078+0.075 at z = 0.727. These results are consistent with values observed in parallel VIPERS analyses that use standard techniques. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in

  6. Improving Photometric Redshifts for Hyper Suprime-Cam

    NASA Astrophysics Data System (ADS)

    Speagle, Josh S.; Leauthaud, Alexie; Eisenstein, Daniel; Bundy, Kevin; Capak, Peter L.; Leistedt, Boris; Masters, Daniel C.; Mortlock, Daniel; Peiris, Hiranya; HSC Photo-z Team; HSC Weak Lensing Team

    2017-01-01

    Deriving accurate photometric redshift (photo-z) probability distribution functions (PDFs) are crucial science components for current and upcoming large-scale surveys. We outline how rigorous Bayesian inference and machine learning can be combined to quickly derive joint photo-z PDFs to individual galaxies and their parent populations. Using the first 170 deg^2 of data from the ongoing Hyper Suprime-Cam survey, we demonstrate our method is able to generate accurate predictions and reliable credible intervals over ~370k high-quality redshifts. We then use galaxy-galaxy lensing to empirically validate our predicted photo-z's over ~14M objects, finding a robust signal.

  7. RECONSTRUCTING REDSHIFT DISTRIBUTIONS WITH CROSS-CORRELATIONS: TESTS AND AN OPTIMIZED RECIPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Daniel J.; Newman, Jeffrey A., E-mail: djm70@pitt.ed, E-mail: janewman@pitt.ed

    2010-09-20

    Many of the cosmological tests to be performed by planned dark energy experiments will require extremely well-characterized photometric redshift measurements. Current estimates for cosmic shear are that the true mean redshift of the objects in each photo-z bin must be known to better than 0.002(1 + z), and the width of the bin must be known to {approx}0.003(1 + z) if errors in cosmological measurements are not to be degraded significantly. A conventional approach is to calibrate these photometric redshifts with large sets of spectroscopic redshifts. However, at the depths probed by Stage III surveys (such as DES), let alonemore » Stage IV (LSST, JDEM, and Euclid), existing large redshift samples have all been highly (25%-60%) incomplete, with a strong dependence of success rate on both redshift and galaxy properties. A powerful alternative approach is to exploit the clustering of galaxies to perform photometric redshift calibrations. Measuring the two-point angular cross-correlation between objects in some photometric redshift bin and objects with known spectroscopic redshift, as a function of the spectroscopic z, allows the true redshift distribution of a photometric sample to be reconstructed in detail, even if it includes objects too faint for spectroscopy or if spectroscopic samples are highly incomplete. We test this technique using mock DEEP2 Galaxy Redshift survey light cones constructed from the Millennium Simulation semi-analytic galaxy catalogs. From this realistic test, which incorporates the effects of galaxy bias evolution and cosmic variance, we find that the true redshift distribution of a photometric sample can, in fact, be determined accurately with cross-correlation techniques. We also compare the empirical error in the reconstruction of redshift distributions to previous analytic predictions, finding that additional components must be included in error budgets to match the simulation results. This extra error contribution is small for surveys

  8. How Accurately Can We Measure Galaxy Environment at High Redshift Using Only Photometric Redshifts?

    NASA Astrophysics Data System (ADS)

    Florez, Jonathan; Jogee, Shardha; Sherman, Sydney; Papovich, Casey J.; Finkelstein, Steven L.; Stevans, Matthew L.; Kawinwanichakij, Lalitwadee; Ciardullo, Robin; Gronwall, Caryl; SHELA/HETDEX

    2017-06-01

    We use a powerful synergy of six deep photometric surveys (Herschel SPIRE, Spitzer IRAC, NEWFIRM K-band, DECam ugriz, and XMM X-ray) and a future optical spectroscopic survey (HETDEX) in the Stripe 82 field to study galaxy evolution during the 1.9 < z < 3.5 epoch when cosmic star formation and black hole activity peaked, and protoclusters began to collapse. With an area of 24 sq. degrees, a sample size of ~ 0.8 million galaxies complete in stellar mass above M* ~ 10^10 solar masses, and a comoving volume of ~ 0.45 Gpc^3, our study will allow us to make significant advancements in understanding the connection between galaxies and their respective dark matter components. In this poster, we characterize how robustly we can measure environment using only our photometric redshifts. We compare both local and large-scale measures of environment (e.g., projected two-point correlation function, projected nearest neighbor densities, and galaxy counts within some projected aperture) at different photometric redshifts to cosmological simulations in order to quantify the uncertainty in our estimates of environment. We also explore how robustly one can recover the variation of galaxy properties with environment, when using only photometric redshifts. In the era of large photometric surveys, this work has broad implications for studies addressing the impact of environment on galaxy evolution at early cosmic epochs. We acknowledge support from NSF grants AST-1614798, AST-1413652 and NSF GRFP grant DGE-1610403.

  9. Perturbed redshifts from N -body simulations

    NASA Astrophysics Data System (ADS)

    Adamek, Julian

    2018-01-01

    In order to keep pace with the increasing data quality of astronomical surveys the observed source redshift has to be modeled beyond the well-known Doppler contribution. In this article I want to examine the gauge issue that is often glossed over when one assigns a perturbed redshift to simulated data generated with a Newtonian N -body code. A careful analysis reveals the presence of a correction term that has so far been neglected. It is roughly proportional to the observed length scale divided by the Hubble scale and therefore suppressed inside the horizon. However, on gigaparsec scales it can be comparable to the gravitational redshift and hence amounts to an important relativistic effect.

  10. A Public Ks -selected Catalog in the COSMOS/ULTRAVISTA Field: Photometry, Photometric Redshifts, and Stellar Population Parameters

    NASA Astrophysics Data System (ADS)

    Muzzin, Adam; Marchesini, Danilo; Stefanon, Mauro; Franx, Marijn; Milvang-Jensen, Bo; Dunlop, James S.; Fynbo, J. P. U.; Brammer, Gabriel; Labbé, Ivo; van Dokkum, Pieter

    2013-05-01

    We present a catalog covering 1.62 deg2 of the COSMOS/UltraVISTA field with point-spread function (PSF) matched photometry in 30 photometric bands. The catalog covers the wavelength range 0.15-24 μm including the available GALEX, Subaru, Canada-France-Hawaii Telescope, VISTA, and Spitzer data. Catalog sources have been selected from the DR1 UltraVISTA Ks band imaging that reaches a depth of K s, tot = 23.4 AB (90% completeness). The PSF-matched catalog is generated using position-dependent PSFs ensuring accurate colors across the entire field. Also included is a catalog of photometric redshifts (z phot) for all galaxies computed with the EAZY code. Comparison with spectroscopy from the zCOSMOS 10k bright sample shows that up to z ~ 1.5 the z phot are accurate to Δz/(1 + z) = 0.013, with a catastrophic outlier fraction of only 1.6%. The z phot also show good agreement with the z phot from the NEWFIRM Medium Band Survey out to z ~ 3. A catalog of stellar masses and stellar population parameters for galaxies determined using the FAST spectral energy distribution fitting code is provided for all galaxies. Also included are rest-frame U - V and V - J colors, L 2800 and L IR. The UVJ color-color diagram confirms that the galaxy bi-modality is well-established out to z ~ 2. Star-forming galaxies also obey a star-forming "main sequence" out to z ~ 2.5, and this sequence evolves in a manner consistent with previous measurements. The COSMOS/UltraVISTA Ks -selected catalog covers a unique parameter space in both depth, area, and multi-wavelength coverage and promises to be a useful tool for studying the growth of the galaxy population out to z ~ 3-4. .

  11. A wide-field survey for high-redshift quasars

    NASA Astrophysics Data System (ADS)

    Kakazu, Yuko K. M.

    2008-02-01

    The present thesis reports the results from the Hawaii Quasar and T dwarf survey (HQT survey), which is a wide-field optical imaging survey conducted with Subaru/Suprime-Cam. The HQT survey was designed to search for low- luminosity quasars ( M 1450 < -22.5) at high-redshift ( z > 5.7) as well as T dwarfs, both of which are selected by their very red optical I -- z ' colors. We developed a new color selection technique using a narrowband NB 816 filter in order to break a well-known color degeneracy between quasars and foreground M and L dwarfs. The follow-up Keck/DEIMOS spectroscopy and near-IR imaging with various instruments on Mauna Kea have demonstrated the effectiveness of our technique, and have successfully revealed six faint T dwarfs ( J < 20). These dwarfs are among the most distant spectroscopically known (60 - 170 pc) and they provide an indirect support for the high binary fraction at L/ T transition. The non-detection of z > 5.7 quasars in our survey is consistent with the present picture of the cosmic reionization in which quasars are negligible contributor to the cosmic reionization. With our survey area coverage (9.3 deg 2 ) and depths ( Z AB < 23.3), we were able to set strong constraints on the faint-end slope of the quasar luminosity function. Majority of our candidate quasars turned out to be strong emission line galaxies at z < 1, whose large equivalent widths and low metal contents suggest they are very young systems which have just undergone starbursts within a few Myrs. In order to systematically search for these Ultra-Strong Emission Line galaxies (USELs), we used narrowband selected samples from Hu's ultra-deep multiwavelength data. The followup Keck/DEIMOS spectra have revealed their high star formation density (5-10% of UV measurements at z = 0-1), which is a significant contribution at a epoch when cosmic star formation is in its peak. Many of the USELs show [OIII]l4363 auroral lines and about a dozen satisfy the criteria for e

  12. The VLT LBG Redshift Survey - III. The clustering and dynamics of Lyman-break galaxies at z ˜ 3

    NASA Astrophysics Data System (ADS)

    Bielby, R.; Hill, M. D.; Shanks, T.; Crighton, N. H. M.; Infante, L.; Bornancini, C. G.; Francke, H.; Héraudeau, P.; Lambas, D. G.; Metcalfe, N.; Minniti, D.; Padilla, N.; Theuns, T.; Tummuangpak, P.; Weilbacher, P.

    2013-03-01

    We present a catalogue of 2135 galaxy redshifts from the VLT LBG Redshift Survey (VLRS), a spectroscopic survey of z ≈ 3 galaxies in wide fields centred on background quasi-stellar objects. We have used deep optical imaging to select galaxies via the Lyman-break technique. Spectroscopy of the Lyman-break galaxies (LBGs) was then made using the Very Large Telescope (VLT) Visible Multi-Object Spectrograph (VIMOS) instrument, giving a mean redshift of z = 2.79. We analyse the clustering properties of the VLRS sample and also of the VLRS sample combined with the smaller area Keck-based survey of Steidel et al. From the semiprojected correlation function, wp(σ), for the VLRS and combined surveys, we find that the results are well fit with a single power-law model, with clustering scale lengths of r0 = 3.46 ± 0.41 and 3.83 ± 0.24 h-1 Mpc, respectively. We note that the corresponding combined ξ(r) slope is flatter than for local galaxies at γ = 1.5-1.6 rather than γ = 1.8. This flat slope is confirmed by the z-space correlation function, ξ(s), and in the range 10 < s < 100 h-1 Mpc the VLRS shows an ≈2.5σ excess over the Λ cold dark matter (ΛCDM) linear prediction. This excess may be consistent with recent evidence for non-Gaussianity in clustering results at z ≈ 1. We then analyse the LBG z-space distortions using the 2D correlation function, ξ(σ, π), finding for the combined sample a large-scale infall parameter of β = 0.38 ± 0.19 and a velocity dispersion of sqrt{< w_z^2rangle }=420^{+140}_{-160} km s^{-1}. Based on our measured β, we are able to determine the gravitational growth rate, finding a value of f(z = 3) = 0.99 ± 0.50 (or fσ8 = 0.26 ± 0.13), which is the highest redshift measurement of the growth rate via galaxy clustering and is consistent with ΛCDM. Finally, we constrain the mean halo mass for the LBG population, finding that the VLRS and combined sample suggest mean halo masses of log(MDM/M⊙) = 11.57 ± 0.15 and 11.73 ± 0

  13. Analytic halo approach to the bispectrum of galaxies in redshift space

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuhiro; Nan, Yue; Hikage, Chiaki

    2017-02-01

    We present an analytic formula for the galaxy bispectrum in redshift space on the basis of the halo approach description with the halo occupation distribution of central galaxies and satellite galaxies. This work is an extension of a previous work on the galaxy power spectrum, which illuminated the significant contribution of satellite galaxies to the higher multipole spectrum through the nonlinear redshift space distortions of their random motions. Behaviors of the multipoles of the bispectrum are compared with results of numerical simulations assuming a halo occupation distribution of the low-redshift (LOWZ) sample of the Sloan Digital Sky Survey (SDSS) III baryon oscillation spectroscopic survey (BOSS) survey. Also presented are analytic approximate formulas for the multipoles of the bispectrum, which is useful to understanding their characteristic properties. We demonstrate that the Fingers of God effect is quite important for the higher multipoles of the bispectrum in redshift space, depending on the halo occupation distribution parameters.

  14. Sky Mining - Application to Photomorphic Redshift Estimation

    NASA Astrophysics Data System (ADS)

    Nayak, Pragyansmita

    The field of astronomy has evolved from the ancient craft of observing the sky. In it's present form, astronomers explore the cosmos not just by observing through the tiny visible window used by our eyes, but also by exploiting the electromagnetic spectrum from radio waves to gamma rays. The domain is undoubtedly at the forefront of data-driven science. The data growth rate is expected to be around 50%--100% per year. This data explosion is attributed largely to the large-scale wide and deep surveys of the different regions of the sky at multiple wavelengths (both ground and space-based surveys). This dissertation describes the application of machine learning methods to the estimation of galaxy redshifts leveraging such a survey data. Galaxy is a large system of stars held together by mutual gravitation and isolated from similar systems by vast regions of space. Our view of the universe is closely tied to our understanding of galaxy formation. Thus, a better understanding of the relative location of the multitudes of galaxies is crucial. The position of each galaxy can be characterized using three coordinates. Right Ascension (ra) and Declination (dec) are the two coordinates that locate the galaxy in two dimensions on the plane of the sky. It is relatively straightforward to measure them. In contrast, fixing the third coordinate that is the galaxy's distance from the observer along the line of sight (redshift 'z') is considerably more challenging. "Spectroscopic redshift" method gives us accurate and precise measurements of z. However, it is extremely time-intensive and unusable for faint objects. Additionally, the rate at which objects are being identified via photometric surveys far exceeds the rate at which the spectroscopic redshift measurements can keep pace in determining their distance. As the surveys go deeper into the sky, the proportion of faint objects being identified also continues to increase. In order to tackle both these drawbacks increasing in

  15. The Number Density of Quiescent Compact Galaxies at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Damjanov, Ivana; Hwang, Ho Seong; Geller, Margaret J.; Chilingarian, Igor

    2014-09-01

    Massive compact systems at 0.2 < z < 0.6 are the missing link between the predominantly compact population of massive quiescent galaxies at high redshift and their analogs and relics in the local volume. The evolution in number density of these extreme objects over cosmic time is the crucial constraining factor for the models of massive galaxy assembly. We select a large sample of ~200 intermediate-redshift massive compacts from the Baryon Oscillation Spectroscopic Survey (BOSS) spectroscopy by identifying point-like Sloan Digital Sky Survey photometric sources with spectroscopic signatures of evolved redshifted galaxies. A subset of our targets have publicly available high-resolution ground-based images that we use to augment the dynamical and stellar population properties of these systems by their structural parameters. We confirm that all BOSS compact candidates are as compact as their high-redshift massive counterparts and less than half the size of similarly massive systems at z ~ 0. We use the completeness-corrected numbers of BOSS compacts to compute lower limits on their number densities in narrow redshift bins spanning the range of our sample. The abundance of extremely dense quiescent galaxies at 0.2 < z < 0.6 is in excellent agreement with the number densities of these systems at high redshift. Our lower limits support the models of massive galaxy assembly through a series of minor mergers over the redshift range 0 < z < 2.

  16. Self-calibration of photometric redshift scatter in weak-lensing surveys

    DOE PAGES

    Zhang, Pengjie; Pen, Ue -Li; Bernstein, Gary

    2010-06-11

    Photo-z errors, especially catastrophic errors, are a major uncertainty for precision weak lensing cosmology. We find that the shear-(galaxy number) density and density-density cross correlation measurements between photo-z bins, available from the same lensing surveys, contain valuable information for self-calibration of the scattering probabilities between the true-z and photo-z bins. The self-calibration technique we propose does not rely on cosmological priors nor parameterization of the photo-z probability distribution function, and preserves all of the cosmological information available from shear-shear measurement. We estimate the calibration accuracy through the Fisher matrix formalism. We find that, for advanced lensing surveys such as themore » planned stage IV surveys, the rate of photo-z outliers can be determined with statistical uncertainties of 0.01-1% for z < 2 galaxies. Among the several sources of calibration error that we identify and investigate, the galaxy distribution bias is likely the most dominant systematic error, whereby photo-z outliers have different redshift distributions and/or bias than non-outliers from the same bin. This bias affects all photo-z calibration techniques based on correlation measurements. As a result, galaxy bias variations of O(0.1) produce biases in photo-z outlier rates similar to the statistical errors of our method, so this galaxy distribution bias may bias the reconstructed scatters at several-σ level, but is unlikely to completely invalidate the self-calibration technique.« less

  17. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel'dovich Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrabback, T.; et al.

    We present an HST/ACS weak gravitational lensing analysis of 13 massive high-redshift (z_median=0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the sourcemore » redshift distribution is based on CANDELS data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the mass-concentration relation using simulations. In combination with temperature estimates from Chandra we constrain the normalisation of the mass-temperature scaling relation ln(E(z) M_500c/10^14 M_sun)=A+1.5 ln(kT/7.2keV) to A=1.81^{+0.24}_{-0.14}(stat.) +/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.« less

  18. Power spectrum precision for redshift space distortions

    NASA Astrophysics Data System (ADS)

    Linder, Eric V.; Samsing, Johan

    2013-02-01

    Redshift space distortions in galaxy clustering offer a promising technique for probing the growth rate of structure and testing dark energy properties and gravity. We consider the issue of to what accuracy they need to be modeled in order not to unduly bias cosmological conclusions. Fitting for nonlinear and redshift space corrections to the linear theory real space density power spectrum in bins in wavemode, we analyze both the effect of marginalizing over these corrections and of the bias due to not correcting them fully. While naively subpercent accuracy is required to avoid bias in the unmarginalized case, in the fitting approach the Kwan-Lewis-Linder reconstruction function for redshift space distortions is found to be accurately selfcalibrated with little degradation in dark energy and gravity parameter estimation for a next generation galaxy redshift survey such as BigBOSS.

  19. Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS

    DOE PAGES

    Jouvel, S.; Delubac, T.; Comparat, J.; ...

    2017-03-24

    We present the results of the first test plates of the extended Baryon Oscillation Spectroscopic Survey. This paper focuses on the emission line galaxies (ELG) population targetted from the Dark Energy Survey (DES) photometry. We analyse the success rate, efficiency, redshift distribution, and clustering properties of the targets. From the 9000 spectroscopic redshifts targetted, 4600 have been selected from the DES photometry. The total success rate for redshifts between 0.6 and 1.2 is 71\\% and 68\\% respectively for a bright and faint, on average more distant, samples including redshifts measured from a single strong emission line. We find a meanmore » redshift of 0.8 and 0.87, with 15 and 13\\% of unknown redshifts respectively for the bright and faint samples. In the redshift range 0.6« less

  20. Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouvel, S.; Delubac, T.; Comparat, J.

    We present the results of the first test plates of the extended Baryon Oscillation Spectroscopic Survey. This paper focuses on the emission line galaxies (ELG) population targetted from the Dark Energy Survey (DES) photometry. We analyse the success rate, efficiency, redshift distribution, and clustering properties of the targets. From the 9000 spectroscopic redshifts targetted, 4600 have been selected from the DES photometry. The total success rate for redshifts between 0.6 and 1.2 is 71\\% and 68\\% respectively for a bright and faint, on average more distant, samples including redshifts measured from a single strong emission line. We find a meanmore » redshift of 0.8 and 0.87, with 15 and 13\\% of unknown redshifts respectively for the bright and faint samples. In the redshift range 0.6« less

  1. Large-scale structure in the Southern Sky Redshift Survey

    NASA Technical Reports Server (NTRS)

    Park, Changbom; Gott, J. R., III; Da Costa, L. N.

    1992-01-01

    The power spectrum from the Southern Sky Redshift Survey and the CfA samples are measured in order to explore the amplitude of fluctuation in the galaxy density. At lambda of less than or equal to 30/h Mpc the observed power spectrum is quite consistent with the standard CDM model. At larger scales the data indicate an excess of power over the standard CDM model. The observed power spectrum from these optical galaxy samples is in good agreement with that drawn from the sparsely sampled IRAS galaxies. The shape of the power spectrum is also studied by examining the relation between the genus per unit volume and the smoothing length. It is found that, over Gaussian smoothing scales from 6 to 14/h Mpc, the power spectrum has a slope of about -1. The topology of the galaxy density field is studied by measuring the shift of the genus curve from the Gaussian case. Over all smoothing scales studied, the observed genus curves are consistent with a random phase distribution of the galaxy density field, as predicted by the inflationary scenarios.

  2. Rapid modelling of the redshift-space power spectrum multipoles for a masked density field

    NASA Astrophysics Data System (ADS)

    Wilson, M. J.; Peacock, J. A.; Taylor, A. N.; de la Torre, S.

    2017-01-01

    In this work, we reformulate the forward modelling of the redshift-space power spectrum multipole moments for a masked density field, as encountered in galaxy redshift surveys. Exploiting the symmetries of the redshift-space correlation function, we provide a masked-field generalization of the Hankel transform relation between the multipole moments in real and Fourier space. Using this result, we detail how a likelihood analysis requiring computation for a broad range of desired P(k) models may be executed 103-104 times faster than with other common approaches, together with significant gains in spectral resolution. We present a concrete application to the complex angular geometry of the VIMOS Public Extragalactic Redshift Survey PDR-1 release and discuss the validity of this technique for finite-angle surveys.

  3. VizieR Online Data Catalog: VANDELS High-Redshift Galaxy Evolution (McLure+, 2017)

    NASA Astrophysics Data System (ADS)

    McLure, R.; Pentericci, L.; Vandels Team

    2017-11-01

    This is the first data release (DR1) of the VANDELS survey, an ESO public spectroscopy survey targeting the high-redshift Universe. The VANDELS survey uses the VIMOS spectrograph on ESO's VLT to obtain ultra-deep, medium resolution, optical spectra of galaxies within the UKIDSS Ultra Deep Survey (UDS) and Chandra Deep Field South (CDFS) survey fields (0.2 sq. degree total area). Using robust photometric redshift pre-selection, VANDELS is targeting ~2100 galaxies in the redshift interval 1.0=3. In addition, VANDELS is targeting a substantial number of passive galaxies in the redshift interval 1.0survey is obtaining ultra-deep optical spectroscopy with the VIMOS MR grism and GG475 order-sorting filter, which covers the wavelength range 4800-10000Å at a dispersion of 2.5Å/pix and a spectral resolution of R~600. Each galaxy receives between a minimum of 20-hours and a maximum of 80-hours of on-source integration time. The fundamental aim of the survey is to provide the high signal-to-noise spectra necessary to measure key physical properties such as stellar population ages, metallicities and outflow velocities from detailed absorption-line studies. By targeting two extra-galactic survey fields with superb multi-wavelength imaging data, VANDELS is designed to produce a unique legacy dataset for exploring the physics underpinning high-redshift galaxy evolution. (2 data files).

  4. A study of ten quasars with redshifts greater than four

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1989-01-01

    Four quasars with redshifts greater than four were detected in a low-resolution CCD grism survey. CCD photometry and high S/N, moderate resolution spectra are presented for these quasars and the six other known quasars with redshifts above 4. The M sub B values of nine of the objects are between -27.5 and -25, with the tenth quasar having an M sub B value of -29. The emission lines and shapes of the continua of these ten quasars are similar to those of lower-redshift quasars. The results suggest that the C IV emission lines in high-redshift quasars may be weaker than those in lower-redshift quasars. The continua of all of the high-redshift quasars display strong depressions blueward of the Ly-alpha emission line.

  5. Two-dimensional Topology of the Two-Degree Field Galaxy Redshift Survey

    NASA Astrophysics Data System (ADS)

    Hoyle, Fiona; Vogeley, Michael S.; Gott, J. Richard, III

    2002-05-01

    We study the topology of the publicly available data released by the Two Degree Field Galaxy Redshift Survey team (2dF GRS). The 2dF GRS data contain over 100,000 galaxy redshifts with a magnitude limit of bJ=19.45 and is the largest such survey to date. The data lie over a wide range of right ascension (75° strips) but only within a narrow range of declination (10° and 15° strips). This allows measurements of the two-dimensional genus to be made. We find that the genus curves of the north Galactic pole (NGP) and south Galactic pole (SGP) are slightly different. The NGP displays a slight meatball shift topology, whereas the SGP displays a bubble-like topology. The current SGP data also have a slightly higher genus amplitude. In both cases, a slight excess of overdense regions is found over underdense regions. We assess the significance of these features using mock catalogs drawn from the Virgo Consortium's Hubble volume ΛCDM z=0 simulation. We find that differences between the NGP and SGP genus curves are only significant at the 1 σ level. The average genus curve of the 2dF GRS agrees well with that extracted from the ΛCDM mock catalogs. We also use the simulations to assess how the current incompleteness of the survey (the strips are not completely filled in) affects the measurement of the genus and find that we are not sensitive to the geometry; there are enough data in the current sample to trace the isolated high- and low-density regions. We compare the amplitude of the 2dF GRS genus curve to the amplitude of the genus curve of a Gaussian random field that we construct to have the same power spectrum as the 2dF GRS. In previous three-dimensional analyses, it was found that the genus curve of observed samples was lower than the Gaussian random field curve, presumably because of high-order correlations present in the data. However, we find that the 2dF GRS genus curve has an amplitude that is slightly higher than that of the power-spectrum-matched Gaussian

  6. A redshift survey of IRAS galaxies. V - The acceleration on the Local Group

    NASA Technical Reports Server (NTRS)

    Strauss, Michael A.; Yahil, Amos; Davis, Marc; Huchra, John P.; Fisher, Karl

    1992-01-01

    The acceleration on the Local Group is calculated based on a full-sky redshift survey of 5288 galaxies detected by IRAS. A formalism is developed to compute the distribution function of the IRAS acceleration for a given power spectrum of initial perturbations. The computed acceleration on the Local Group points 18-28 deg from the direction of the Local Group peculiar velocity vector. The data suggest that the CMB dipole is indeed due to the motion of the Local Group, that this motion is gravitationally induced, and that the distribution of IRAS galaxies on large scales is related to that of dark matter by a simple linear biasing model.

  7. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: anisotropic Baryon Acoustic Oscillations measurements in Fourier-space with optimal redshift weights

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Zhao, Gong-Bo; Wang, Yuting; Percival, Will J.; Ruggeri, Rossana; Zhu, Fangzhou; Tojeiro, Rita; Myers, Adam D.; Chuang, Chia-Hsun; Baumgarten, Falk; Zhao, Cheng; Gil-Marín, Héctor; Ross, Ashley J.; Burtin, Etienne; Zarrouk, Pauline; Bautista, Julian; Brinkmann, Jonathan; Dawson, Kyle; Brownstein, Joel R.; de la Macorra, Axel; Schneider, Donald P.; Shafieloo, Arman

    2018-06-01

    We present a measurement of the anisotropic and isotropic Baryon Acoustic Oscillations (BAO) from the extended Baryon Oscillation Spectroscopic Survey Data Release 14 quasar sample with optimal redshift weights. Applying the redshift weights improves the constraint on the BAO dilation parameter α(zeff) by 17 per cent. We reconstruct the evolution history of the BAO distance indicators in the redshift range of 0.8 < z < 2.2. This paper is part of a set that analyses the eBOSS DR14 quasar sample.

  8. A DATA-DRIVEN MODEL FOR SPECTRA: FINDING DOUBLE REDSHIFTS IN THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsalmantza, P.; Hogg, David W., E-mail: vivitsal@mpia.de

    2012-07-10

    We present a data-driven method-heteroscedastic matrix factorization, a kind of probabilistic factor analysis-for modeling or performing dimensionality reduction on observed spectra or other high-dimensional data with known but non-uniform observational uncertainties. The method uses an iterative inverse-variance-weighted least-squares minimization procedure to generate a best set of basis functions. The method is similar to principal components analysis (PCA), but with the substantial advantage that it uses measurement uncertainties in a responsible way and accounts naturally for poorly measured and missing data; it models the variance in the noise-deconvolved data space. A regularization can be applied, in the form of a smoothnessmore » prior (inspired by Gaussian processes) or a non-negative constraint, without making the method prohibitively slow. Because the method optimizes a justified scalar (related to the likelihood), the basis provides a better fit to the data in a probabilistic sense than any PCA basis. We test the method on Sloan Digital Sky Survey (SDSS) spectra, concentrating on spectra known to contain two redshift components: these are spectra of gravitational lens candidates and massive black hole binaries. We apply a hypothesis test to compare one-redshift and two-redshift models for these spectra, utilizing the data-driven model trained on a random subset of all SDSS spectra. This test confirms 129 of the 131 lens candidates in our sample and all of the known binary candidates, and turns up very few false positives.« less

  9. Data-driven, Interpretable Photometric Redshifts Trained on Heterogeneous and Unrepresentative Data

    NASA Astrophysics Data System (ADS)

    Leistedt, Boris; Hogg, David W.

    2017-03-01

    We present a new method for inferring photometric redshifts in deep galaxy and quasar surveys, based on a data-driven model of latent spectral energy distributions (SEDs) and a physical model of photometric fluxes as a function of redshift. This conceptually novel approach combines the advantages of both machine learning methods and template fitting methods by building template SEDs directly from the spectroscopic training data. This is made computationally tractable with Gaussian processes operating in flux-redshift space, encoding the physics of redshifts and the projection of galaxy SEDs onto photometric bandpasses. This method alleviates the need to acquire representative training data or to construct detailed galaxy SED models; it requires only that the photometric bandpasses and calibrations be known or have parameterized unknowns. The training data can consist of a combination of spectroscopic and deep many-band photometric data with reliable redshifts, which do not need to entirely spatially overlap with the target survey of interest or even involve the same photometric bands. We showcase the method on the I-magnitude-selected, spectroscopically confirmed galaxies in the COSMOS field. The model is trained on the deepest bands (from SUBARU and HST) and photometric redshifts are derived using the shallower SDSS optical bands only. We demonstrate that we obtain accurate redshift point estimates and probability distributions despite the training and target sets having very different redshift distributions, noise properties, and even photometric bands. Our model can also be used to predict missing photometric fluxes or to simulate populations of galaxies with realistic fluxes and redshifts, for example.

  10. The Carnegie Supernova Project: The Low-Redshift Survey

    NASA Astrophysics Data System (ADS)

    Hamuy, Mario; Folatelli, Gastón; Morrell, Nidia I.; Phillips, Mark M.; Suntzeff, Nicholas B.; Persson, S. E.; Roth, Miguel; Gonzalez, Sergio; Krzeminski, Wojtek; Contreras, Carlos; Freedman, Wendy L.; Murphy, D. C.; Madore, Barry F.; Wyatt, P.; Maza, José; Filippenko, Alexei V.; Li, Weidong; Pinto, P. A.

    2006-01-01

    Supernovae are essential to understanding the chemical evolution of the universe. Type Ia supernovae also provide the most powerful observational tool currently available for studying the expansion history of the universe and the nature of dark energy. Our basic knowledge of supernovae comes from the study of their photometric and spectroscopic properties. However, the presently available data sets of optical and near-infrared light curves of supernovae are rather small and/or heterogeneous, and employ photometric systems that are poorly characterized. Similarly, there are relatively few supernovae whose spectral evolution has been well sampled, both in wavelength and phase, with precise spectrophotometric observations. The low-redshift portion of the Carnegie Supernova Project (CSP) seeks to remedy this situation by providing photometry and spectrophotometry of a large sample of supernovae taken on telescope/filter/detector systems that are well understood and well characterized. During a 5 year program that began in 2004 September, we expect to obtain high-precision u'g'r'i'BVYJHKs light curves and optical spectrophotometry for about 250 supernovae of all types. In this paper we provide a detailed description of the CSP survey observing and data reduction methodology. In addition, we present preliminary photometry and spectra obtained for a few representative supernovae during the first observing campaign.

  11. Galaxy Groups in the 2Mass Redshift Survey

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Yang, Xiaohu; Shi, Feng; Mo, H. J.; Tweed, Dylan; Wang, Huiyuan; Zhang, Youcai; Li, Shijie; Lim, S. H.

    2016-11-01

    A galaxy group catalog is constructed from the 2MASS Redshift Survey (2MRS) with the use of a halo-based group finder. The halo mass associated with a group is estimated using a “GAP” method based on the luminosity of the central galaxy and its gap with other member galaxies. Tests using mock samples show that this method is reliable, particularly for poor systems containing only a few members. On average, 80% of all the groups have completeness \\gt 0.8, and about 65% of the groups have zero contamination. Halo masses are estimated with a typical uncertainty of ∼ 0.35 {dex}. The application of the group finder to the 2MRS gives 29,904 groups from a total of 43,246 galaxies at z≤slant 0.08, with 5286 groups having two or more members. Some basic properties of this group catalog is presented, and comparisons are made with other group catalogs in overlap regions. With a depth to z∼ 0.08 and uniformly covering about 91% of the whole sky, this group catalog provides a useful database to study galaxies in the local cosmic web, and to reconstruct the mass distribution in the local universe.

  12. Optical Identifications of High-Redshift Galaxy Clusters from the Planck Sunyaev-Zeldovich Survey

    NASA Astrophysics Data System (ADS)

    Burenin, R. A.; Bikmaev, I. F.; Khamitov, I. M.; Zaznobin, I. A.; Khorunzhev, G. A.; Eselevich, M. V.; Afanasiev, V. L.; Dodonov, S. N.; Rubiño-Martín, J.-A.; Aghanim, N.; Sunyaev, R. A.

    2018-05-01

    We present the results of optical identifications and spectroscopic redshift measurements for galaxy clusters from the second Planck catalogue of Sunyaev-Zeldovich sources (PSZ2) located at high redshifts, z ≈ 0.7-0.9. We used the data of optical observations with the Russian-Turkish 1.5-mtelescope (RTT-150), the Sayan Observatory 1.6-m telescope, the Calar Alto 3.5-m telescope, and the 6-m SAO RAS telescope (BTA). The spectroscopic redshift measurements were obtained for seven galaxy clusters, including one cluster, PSZ2 G126.57+51.61, from the cosmological sample of the PSZ2 catalogue. In the central regions of two clusters, PSZ2 G069.39+68.05 and PSZ2 G087.39-34.58, we detected arcs of strong gravitational lensing of background galaxies, one of which is at redshift z = 4.262. The data presented below roughly double the number of known galaxy clusters in the second Planck catalogue of Sunyaev-Zeldovich sources at high redshifts, z ≈ 0.8.

  13. An Analysis of Rich Cluster Redshift Survey Data for Large Scale Structure Studies

    NASA Astrophysics Data System (ADS)

    Slinglend, K.; Batuski, D.; Haase, S.; Hill, J.

    1994-12-01

    The results from the COBE satellite show the existence of structure on scales on the order of 10% or more of the horizon scale of the universe. Rich clusters of galaxies from Abell's catalog show evidence of structure on scales of 100 Mpc and may hold the promise of confirming structure on the scale of the COBE result. However, many Abell clusters have zero or only one measured redshift, so present knowledge of their three dimensional distribution has quite large uncertainties. The shortage of measured redshifts for these clusters may also mask a problem of projection effects corrupting the membership counts for the clusters. Our approach in this effort has been to use the MX multifiber spectrometer on the Steward 2.3m to measure redshifts of at least ten galaxies in each of 80 Abell cluster fields with richness class R>= 1 and mag10 <= 16.8 (estimated z<= 0.12) and zero or one measured redshifts. This work will result in a deeper, more complete (and reliable) sample of positions of rich clusters. Our primary intent for the sample is for two-point correlation and other studies of the large scale structure traced by these clusters in an effort to constrain theoretical models for structure formation. We are also obtaining enough redshifts per cluster so that a much better sample of reliable cluster velocity dispersions will be available for other studies of cluster properties. To date, we have collected such data for 64 clusters, and for most of them, we have seven or more cluster members with redshifts, allowing for reliable velocity dispersion calculations. Velocity histograms and stripe density plots for several interesting cluster fields are presented, along with summary tables of cluster redshift results. Also, with 10 or more redshifts in most of our cluster fields (30({') } square, just about an `Abell diameter' at z ~ 0.1) we have investigated the extent of projection effects within the Abell catalog in an effort to quantify and understand how this may effect

  14. Tracing Large Scale Structure with a Redshift Survey of Rich Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Batuski, D.; Slinglend, K.; Haase, S.; Hill, J. M.

    1993-12-01

    Rich clusters of galaxies from Abell's catalog show evidence of structure on scales of 100 Mpc and hold promise of confirming the existence of structure in the more immediate universe on scales corresponding to COBE results (i.e., on the order of 10% or more of the horizon size of the universe). However, most Abell clusters do not as yet have measured redshifts (or, in the case of most low redshift clusters, have only one or two galaxies measured), so present knowledge of their three dimensional distribution has quite large uncertainties. The shortage of measured redshifts for these clusters may also mask a problem of projection effects corrupting the membership counts for the clusters, perhaps even to the point of spurious identifications of some of the clusters themselves. Our approach in this effort has been to use the MX multifiber spectrometer to measure redshifts of at least ten galaxies in each of about 80 Abell cluster fields with richness class R>= 1 and mag10 <= 16.8. This work will result in a somewhat deeper, much more complete (and reliable) sample of positions of rich clusters. Our primary use for the sample is for two-point correlation and other studies of the large scale structure traced by these clusters. We are also obtaining enough redshifts per cluster so that a much better sample of reliable cluster velocity dispersions will be available for other studies of cluster properties. To date, we have collected such data for 40 clusters, and for most of them, we have seven or more cluster members with redshifts, allowing for reliable velocity dispersion calculations. Velocity histograms for several interesting cluster fields are presented, along with summary tables of cluster redshift results. Also, with 10 or more redshifts in most of our cluster fields (30({') } square, just about an `Abell diameter' at z ~ 0.1) we have investigated the extent of projection effects within the Abell catalog in an effort to quantify and understand how this may effect

  15. Cluster redshifts in five suspected superclusters

    NASA Technical Reports Server (NTRS)

    Ciardullo, R.; Ford, H.; Harms, R.

    1985-01-01

    Redshift surveys for rich superclusters were carried out in five regions of the sky containing surface-density enhancements of Abell clusters. While several superclusters are identified, projection effects dominate each field, and no system contains more than five rich clusters. Two systems are found to be especially interesting. The first, field 0136 10, is shown to contain a superposition of at least four distinct superclusters, with the richest system possessing a small velocity dispersion. The second system, 2206 - 22, though a region of exceedingly high Abell cluster surface density, appears to be a remarkable superposition of 23 rich clusters almost uniformly distributed in redshift space between 0.08 and 0.24. The new redshifts significantly increase the three-dimensional information available for the distance class 5 and 6 Abell clusters and allow the spatial correlation function around rich superclusters to be estimated.

  16. zCOSMOS - 10k-bright spectroscopic sample. The bimodality in the galaxy stellar mass function: exploring its evolution with redshift

    NASA Astrophysics Data System (ADS)

    Pozzetti, L.; Bolzonella, M.; Zucca, E.; Zamorani, G.; Lilly, S.; Renzini, A.; Moresco, M.; Mignoli, M.; Cassata, P.; Tasca, L.; Lamareille, F.; Maier, C.; Meneux, B.; Halliday, C.; Oesch, P.; Vergani, D.; Caputi, K.; Kovač, K.; Cimatti, A.; Cucciati, O.; Iovino, A.; Peng, Y.; Carollo, M.; Contini, T.; Kneib, J.-P.; Le Févre, O.; Mainieri, V.; Scodeggio, M.; Bardelli, S.; Bongiorno, A.; Coppa, G.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Kampczyk, P.; Knobel, C.; Le Borgne, J.-F.; Le Brun, V.; Pellò, R.; Perez Montero, E.; Ricciardelli, E.; Silverman, J. D.; Tanaka, M.; Tresse, L.; Abbas, U.; Bottini, D.; Cappi, A.; Guzzo, L.; Koekemoer, A. M.; Leauthaud, A.; Maccagni, D.; Marinoni, C.; McCracken, H. J.; Memeo, P.; Porciani, C.; Scaramella, R.; Scarlata, C.; Scoville, N.

    2010-11-01

    We present the galaxy stellar mass function (GSMF) to redshift z ≃ 1, based on the analysis of about 8500 galaxies with I < 22.5 (AB mag) over 1.4 deg2, which are part of the zCOSMOS-bright 10k spectroscopic sample. We investigate the total GSMF, as well as the contributions of early- and late-type galaxies (ETGs and LTGs, respectively), defined by different criteria (broad-band spectral energy distribution, morphology, spectral properties, or star formation activities). We unveil a galaxy bimodality in the global GSMF, whose shape is more accurately represented by 2 Schechter functions, one linked to the ETG and the other to the LTG populations. For the global population, we confirm a mass-dependent evolution (“mass-assembly downsizing”), i.e., galaxy number density increases with cosmic time by a factor of two between z = 1 and z = 0 for intermediate-to-low mass (log (ℳ/ℳ⊙) ~ 10.5) galaxies but less than 15% for log(ℳ/ℳ⊙) > 11. We find that the GSMF evolution at intermediate-to-low values of ℳ (log (ℳ/ℳ⊙) < 10.6) is mostly explained by the growth in stellar mass driven by smoothly decreasing star formation activities, despite the redder colours predicted in particular at low redshift. The low residual evolution is consistent, on average, with ~0.16 merger per galaxy per Gyr (of which fewer than 0.1 are major), with a hint of a decrease with cosmic time but not a clear dependence on the mass. From the analysis of different galaxy types, we find that ETGs, regardless of the classification method, increase in number density with cosmic time more rapidly with decreasing M, i.e., follow a top-down building history, with a median “building redshift” increasing with mass (z > 1 for log(ℳ/ℳ⊙) > 11), in contrast to hierarchical model predictions. For LTGs, we find that the number density of blue or spiral galaxies with log(ℳ/ℳ⊙) > 10 remains almost constant with cosmic time from z ~ 1. Instead, the most extreme population of star

  17. Bright Galaxies at Hubble’s Redshift Detection Frontier: Preliminary Results and Design from the Redshift z ~ 9-10 BoRG Pure-Parallel HST Survey

    NASA Astrophysics Data System (ADS)

    Calvi, V.; Trenti, M.; Stiavelli, M.; Oesch, P.; Bradley, L. D.; Schmidt, K. B.; Coe, D.; Brammer, G.; Bernard, S.; Bouwens, R. J.; Carrasco, D.; Carollo, C. M.; Holwerda, B. W.; MacKenty, J. W.; Mason, C. A.; Shull, J. M.; Treu, T.

    2016-02-01

    We present the first results and design from the redshift z ˜ 9-10 Brightest of the Reionizing Galaxies Hubble Space Telescope survey BoRG[z9-10], aimed at searching for intrinsically luminous unlensed galaxies during the first 700 Myr after the Big Bang. BoRG[z9-10] is the continuation of a multi-year pure-parallel near-IR and optical imaging campaign with the Wide Field Camera 3. The ongoing survey uses five filters, optimized for detecting the most distant objects and offering continuous wavelength coverage from λ = 0.35 μm to λ = 1.7 μm. We analyze the initial ˜130 arcmin2 of area over 28 independent lines of sight (˜25% of the total planned) to search for z\\gt 7 galaxies using a combination of Lyman-break and photometric redshift selections. From an effective comoving volume of (5-25) × 105 Mpc3 for magnitudes brighter than {m}{AB}=26.5{{{--}}}24.0 in the {H}{{160}}-band respectively, we find five galaxy candidates at z\\quad ˜ 8.3-10 detected at high confidence ({{S}}/{{N}}\\gt 8), including a source at z\\quad ˜ 8.4 with {m}{AB}=24.5 ({{S}}/{{N}} ˜ 22), which, if confirmed, would be the brightest galaxy identified at such early times (z\\gt 8). In addition, BoRG[z9-10] data yield four galaxies with 7.3≲ z≲ 8. These new Lyman-break galaxies with m≲ 26.5 are ideal targets for follow-up observations from ground and space-based observatories to help investigate the complex interplay between dark matter growth, galaxy assembly, and reionization.

  18. Constraining the CO intensity mapping power spectrum at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Hamsa

    2018-04-01

    We compile available constraints on the carbon monoxide (CO) 1-0 luminosity functions and abundances at redshifts 0-3. This is used to develop a data driven halo model for the evolution of the CO galaxy abundances and clustering across intermediate redshifts. It is found that the recent constraints from the CO Power Spectrum Survey (z ˜ 3; Keating et al. 2016), when combined with existing observations of local galaxies (z ˜ 0; Keres, Yun & Young 2003), lead to predictions that are consistent with the results of smaller surveys at intermediate redshifts (z ˜ 1-2). We provide convenient fitting forms for the evolution of the CO luminosity-halo mass relation, and estimates of the mean and uncertainties in the CO power spectrum in the context of future intensity mapping experiments.

  19. A Redshift Survey of IRAS Galaxies. II. Methods for Determining Self-consistent Velocity and Density Fields: Erratum

    NASA Astrophysics Data System (ADS)

    Yahil, Amos; Strauss, Michael A.; Davis, Marc; Huchra, John P.

    1991-11-01

    In the paper, "A Redshift Survey of IRAS Galaxies. II. Methods for Determining Self-consistent Velocity and Density Fields" by Amos Yahil, Michael A. Strauss, Marc Davis, and John P. Huchra (ApJ, 372,380 [1991]), Figures 14 and 15 were presented out of order, with their legends reversed. Thus, the figure at the bottom of page 391 is Figure 15, and should have the legend: "Fig. 15.-As in Fig. 13, for the method 3 results." The figure at the top of page 392 is Figure 14, and should have the legend: "Fig. 14.-Plot in Galactic coordinates of the quantity V_diff_ for galaxies within 3000 km s^-1^ of the LG. The symbol size is proportional to V_diff_ - 400 km s^-1^, which measures the deviation of the redshift- distance relation along the line of sight to that galaxy from pure Hubble flow."

  20. Improving photometric redshift estimation using GPZ: size information, post processing, and improved photometry

    NASA Astrophysics Data System (ADS)

    Gomes, Zahra; Jarvis, Matt J.; Almosallam, Ibrahim A.; Roberts, Stephen J.

    2018-03-01

    The next generation of large-scale imaging surveys (such as those conducted with the Large Synoptic Survey Telescope and Euclid) will require accurate photometric redshifts in order to optimally extract cosmological information. Gaussian Process for photometric redshift estimation (GPZ) is a promising new method that has been proven to provide efficient, accurate photometric redshift estimations with reliable variance predictions. In this paper, we investigate a number of methods for improving the photometric redshift estimations obtained using GPZ (but which are also applicable to others). We use spectroscopy from the Galaxy and Mass Assembly Data Release 2 with a limiting magnitude of r < 19.4 along with corresponding Sloan Digital Sky Survey visible (ugriz) photometry and the UKIRT Infrared Deep Sky Survey Large Area Survey near-IR (YJHK) photometry. We evaluate the effects of adding near-IR magnitudes and angular size as features for the training, validation, and testing of GPZ and find that these improve the accuracy of the results by ˜15-20 per cent. In addition, we explore a post-processing method of shifting the probability distributions of the estimated redshifts based on their Quantile-Quantile plots and find that it improves the bias by ˜40 per cent. Finally, we investigate the effects of using more precise photometry obtained from the Hyper Suprime-Cam Subaru Strategic Program Data Release 1 and find that it produces significant improvements in accuracy, similar to the effect of including additional features.

  1. Probabilistic selection of high-redshift quasars

    NASA Astrophysics Data System (ADS)

    Mortlock, Daniel J.; Patel, Mitesh; Warren, Stephen J.; Hewett, Paul C.; Venemans, Bram P.; McMahon, Richard G.; Simpson, Chris

    2012-01-01

    High-redshift quasars (HZQs) with redshifts of z ≳ 6 are so rare that any photometrically selected sample of sources with HZQ-like colours is likely to be dominated by Galactic stars and brown dwarfs scattered from the stellar locus. It is impractical to re-observe all such candidates, so an alternative approach was developed in which Bayesian model comparison techniques are used to calculate the probability that a candidate is a HZQ, Pq, by combining models of the quasar and star populations with the photometric measurements of the object. This method was motivated specifically by the large number of HZQ candidates identified by cross-matching the UKIRT (United Kingdom Infrared Telescope) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) to the Sloan Digital Sky Survey (SDSS): in the ? covered by the LAS in the UKIDSS Eighth Data Release (DR8) there are ˜9 × 103 real astronomical point sources with the measured colours of the target quasars, of which only ˜10 are expected to be HZQs. Applying Bayesian model comparison to the sample reveals that most sources with HZQ-like colours have Pq≲ 0.1 and can be confidently rejected without the need for any further observations. In the case of the UKIDSS DR8 LAS, there were just 107 candidates with Pq≥ 0.1; these objects were prioritized for re-observation by ranking according to Pq (and their likely redshift, which was also inferred from the photometric data). Most candidates were rejected after one or two (moderate-depth) photometric measurements by recalculating Pq using the new data. That left 12 confirmed HZQs, six of which were previously identified in the SDSS and six of which were new UKIDSS discoveries. The high efficiency of this Bayesian selection method suggests that it could usefully be extended to other HZQ surveys (e.g. searches by the Panoramic Survey Telescope And Rapid Response System, Pan-STARRS, or the Visible and Infrared Survey Telescope for Astronomy, VISTA) as well as to other

  2. Using Perturbative Least Action to Reconstruct Redshift-Space Distortions

    NASA Astrophysics Data System (ADS)

    Goldberg, David M.

    2001-05-01

    In this paper, we present a redshift-space reconstruction scheme that is analogous to and extends the perturbative least action (PLA) method described by Goldberg & Spergel. We first show that this scheme is effective in reconstructing even nonlinear observations. We then suggest that by varying the cosmology to minimize the quadrupole moment of a reconstructed density field, it may be possible to lower the error bars on the redshift distortion parameter, β, as well as to break the degeneracy between the linear bias parameter, b, and ΩM. Finally, we discuss how PLA might be applied to realistic redshift surveys.

  3. High redshift QSOs and the x ray background

    NASA Technical Reports Server (NTRS)

    Impey, Chris

    1993-01-01

    ROSAT pointed observations were made of 9 QSO's from the Large Bright Quasar Survey (LBQS). The LBQS is based on machine measurement of objective prism plates taken with the UK Schmidt Telescope. Software has been used to select QSO's by both color and by the presence of spectral features and continuum breaks. The probability of detection can be calculated as a function of magnitude, redshift and spectral features, and the completeness of the survey can be accurately estimated. Nine out of 1040 QSO's in the LBQS have z greater than 3. The observations will provide an important data point in the X-ray luminosity function of QSO's at high redshift. The QSO's with z greater than 3 span less than a magnitude in M(sub B), so can be combined as a homogeneous sample. This analysis is only possible with a sample drawn from a large and complete catalog such as the LBQS. Four of the 9 QSO's that were observed with the ROSAT PSPC for this proposal were detected, including one of the most luminous X-ray sources ever observed. The April 1992 version of the PROS DETECT package was used to reduce the data. The results have been used to search for evolution of the X-ray properties of QSO's in redshift. The 9 QSO's lie in the range -28.7 less than M(sub B) less than -27.8. When combined with data for 16 QSO's in a similar luminosity range at lower redshift correlations with luminosity and redshift can be separated out. The LBQS sample also yields a new constraint on the contribution of high redshift QSO's to the X-ray background. An initial requirement is knowledge of the X-ray properties (alpha(sub OX)) as a function of redshift. Integration over the evolving luminosity function of the LBQS then gives the QSO contribution to the source counts.

  4. STRESS: an intermediate redshift SN search

    NASA Astrophysics Data System (ADS)

    Botticella, Maria Teresa; Riello, Marco; Cappellaro, Enrico

    2007-08-01

    We present STRESS (Southern intermediate redshift ESO Supernova Search) a Supernova (SN) survey successfully carried out with ESO telescopes. This SN survey distinguishes itself by other ones for its main goals that are to obtain an estimate of both type Ia and core collapse SN rate and to link them with stellar populations. We detail the observing strategy and data sets collected during our survey and describe the analysis of data. Finally, we illustrate our preliminary results and progress report.

  5. Deriving photometric redshifts using fuzzy archetypes and self-organizing maps - II. Implementation

    NASA Astrophysics Data System (ADS)

    Speagle, Joshua S.; Eisenstein, Daniel J.

    2017-07-01

    With an eye towards the computational requirements of future large-scale surveys such as Euclid and Large Synoptic Survey Telescope (LSST) that will require photometric redshifts (photo-z's) for ≳ 109 objects, we investigate a variety of ways that 'fuzzy archetypes' can be used to improve photometric redshifts and explore their respective statistical interpretations. We characterize their relative performance using an idealized LSST ugrizY and Euclid YJH mock catalogue of 10 000 objects spanning z = 0-6 at Y = 24 mag. We find most schemes are able to robustly identify redshift probability distribution functions that are multimodal and/or poorly constrained. Once these objects are flagged and removed, the results are generally in good agreement with the strict accuracy requirements necessary to meet Euclid weak lensing goals for most redshifts between 0.8 ≲ z ≲ 2. These results demonstrate the statistical robustness and flexibility that can be gained by combining template-fitting and machine-learning methods and provide useful insights into how astronomers can further exploit the colour-redshift relation.

  6. zBEAMS: a unified solution for supernova cosmology with redshift uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Ethan; Lochner, Michelle; Bassett, Bruce A.

    Supernova cosmology without spectra will be an important component of future surveys such as LSST. This lack of supernova spectra results in uncertainty in the redshifts which, if ignored, leads to significantly biased estimates of cosmological parameters. Here we present a hierarchical Bayesian formalism— zBEAMS—that addresses this problem by marginalising over the unknown or uncertain supernova redshifts to produce unbiased cosmological estimates that are competitive with supernova data with spectroscopically confirmed redshifts. zBEAMS provides a unified treatment of both photometric redshifts and host galaxy misidentification (occurring due to chance galaxy alignments or faint hosts), effectively correcting the inevitable contamination inmore » the Hubble diagram. Like its predecessor BEAMS, our formalism also takes care of non-Ia supernova contamination by marginalising over the unknown supernova type. We illustrate this technique with simulations of supernovae with photometric redshifts and host galaxy misidentification. A novel feature of the photometric redshift case is the important role played by the redshift distribution of the supernovae.« less

  7. Cross-correlation redshift calibration without spectroscopic calibration samples in DES Science Verification Data

    NASA Astrophysics Data System (ADS)

    Davis, C.; Rozo, E.; Roodman, A.; Alarcon, A.; Cawthon, R.; Gatti, M.; Lin, H.; Miquel, R.; Rykoff, E. S.; Troxel, M. A.; Vielzeuf, P.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Doel, P.; Drlica-Wagner, A.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.

    2018-06-01

    Galaxy cross-correlations with high-fidelity redshift samples hold the potential to precisely calibrate systematic photometric redshift uncertainties arising from the unavailability of complete and representative training and validation samples of galaxies. However, application of this technique in the Dark Energy Survey (DES) is hampered by the relatively low number density, small area, and modest redshift overlap between photometric and spectroscopic samples. We propose instead using photometric catalogues with reliable photometric redshifts for photo-z calibration via cross-correlations. We verify the viability of our proposal using redMaPPer clusters from the Sloan Digital Sky Survey (SDSS) to successfully recover the redshift distribution of SDSS spectroscopic galaxies. We demonstrate how to combine photo-z with cross-correlation data to calibrate photometric redshift biases while marginalizing over possible clustering bias evolution in either the calibration or unknown photometric samples. We apply our method to DES Science Verification (DES SV) data in order to constrain the photometric redshift distribution of a galaxy sample selected for weak lensing studies, constraining the mean of the tomographic redshift distributions to a statistical uncertainty of Δz ˜ ±0.01. We forecast that our proposal can, in principle, control photometric redshift uncertainties in DES weak lensing experiments at a level near the intrinsic statistical noise of the experiment over the range of redshifts where redMaPPer clusters are available. Our results provide strong motivation to launch a programme to fully characterize the systematic errors from bias evolution and photo-z shapes in our calibration procedure.

  8. Cross-correlation redshift calibration without spectroscopic calibration samples in DES Science Verification Data

    DOE PAGES

    Davis, C.; Rozo, E.; Roodman, A.; ...

    2018-03-26

    Galaxy cross-correlations with high-fidelity redshift samples hold the potential to precisely calibrate systematic photometric redshift uncertainties arising from the unavailability of complete and representative training and validation samples of galaxies. However, application of this technique in the Dark Energy Survey (DES) is hampered by the relatively low number density, small area, and modest redshift overlap between photometric and spectroscopic samples. We propose instead using photometric catalogs with reliable photometric redshifts for photo-z calibration via cross-correlations. We verify the viability of our proposal using redMaPPer clusters from the Sloan Digital Sky Survey (SDSS) to successfully recover the redshift distribution of SDSS spectroscopic galaxies. We demonstrate how to combine photo-z with cross-correlation data to calibrate photometric redshift biases while marginalizing over possible clustering bias evolution in either the calibration or unknown photometric samples. We apply our method to DES Science Verification (DES SV) data in order to constrain the photometric redshift distribution of a galaxy sample selected for weak lensing studies, constraining the mean of the tomographic redshift distributions to a statistical uncertainty ofmore » $$\\Delta z \\sim \\pm 0.01$$. We forecast that our proposal can in principle control photometric redshift uncertainties in DES weak lensing experiments at a level near the intrinsic statistical noise of the experiment over the range of redshifts where redMaPPer clusters are available. Here, our results provide strong motivation to launch a program to fully characterize the systematic errors from bias evolution and photo-z shapes in our calibration procedure.« less

  9. Cross-correlation redshift calibration without spectroscopic calibration samples in DES Science Verification Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, C.; Rozo, E.; Roodman, A.

    Galaxy cross-correlations with high-fidelity redshift samples hold the potential to precisely calibrate systematic photometric redshift uncertainties arising from the unavailability of complete and representative training and validation samples of galaxies. However, application of this technique in the Dark Energy Survey (DES) is hampered by the relatively low number density, small area, and modest redshift overlap between photometric and spectroscopic samples. We propose instead using photometric catalogs with reliable photometric redshifts for photo-z calibration via cross-correlations. We verify the viability of our proposal using redMaPPer clusters from the Sloan Digital Sky Survey (SDSS) to successfully recover the redshift distribution of SDSS spectroscopic galaxies. We demonstrate how to combine photo-z with cross-correlation data to calibrate photometric redshift biases while marginalizing over possible clustering bias evolution in either the calibration or unknown photometric samples. We apply our method to DES Science Verification (DES SV) data in order to constrain the photometric redshift distribution of a galaxy sample selected for weak lensing studies, constraining the mean of the tomographic redshift distributions to a statistical uncertainty ofmore » $$\\Delta z \\sim \\pm 0.01$$. We forecast that our proposal can in principle control photometric redshift uncertainties in DES weak lensing experiments at a level near the intrinsic statistical noise of the experiment over the range of redshifts where redMaPPer clusters are available. Here, our results provide strong motivation to launch a program to fully characterize the systematic errors from bias evolution and photo-z shapes in our calibration procedure.« less

  10. Steep radio spectra in high-redshift radio galaxies

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.; Chen, Wan

    1991-01-01

    The generic spectrum of an optically thin synchrotron source steepens by 0.5 in spectral index from low frequencies to high whenever the source lifetime is greater than the energy-loss timescale for at least some of the radiating electrons. Three effects tend to decrease the frequency nu(b) of this spectral bend as the source redshift increases: (1) for fixed bend frequency nu* in the rest frame, nu(b) = nu*/(1 + z); (2) losses due to inverse Compton scattering the microwave background rise with redshift as (1 + z) exp 4, so that, for fixed residence time in the radiating region, the energy of the lowest energy electron that can cool falls rapidly with increasing redshift; and (3) if the magnetic field is proportional to the equipartition field and the emitting volume is fixed or slowly varying, flux-limited samples induce a selection effect favoring low nu* at high z because higher redshift sources require higher emissivity to be included in the sample, and hence have stronger implied fields and more rapid synchrotron losses. A combination of these effects may explain the trend observed in the 3CR sample for higher redshift radio galaxies to have steeper spectra, and the successful use of ultrasteep spectrum surveys to locate high-redshift galaxies.

  11. SPECTROSCOPY OF HIGH-REDSHIFT SUPERNOVAE FROM THE ESSENCE PROJECT: THE FIRST FOUR YEARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foley, R. J.; Chornock, R.; Silverman, J. M.

    We present the results of spectroscopic observations from the ESSENCE high-redshift supernova (SN) survey during its first four years of operation. This sample includes spectra of all SNe Ia whose light curves were presented by Miknaitis et al. and used in the cosmological analyses of Davis et al. and Wood-Vasey et al. The sample represents 273 hr of spectroscopic observations with 6.5-10 m class telescopes of objects detected and selected for spectroscopy by the ESSENCE team. We present 184 spectra of 156 objects. Combining this sample with that of Matheson et al., we have a total sample of 329 spectramore » of 274 objects. From this, we are able to spectroscopically classify 118 Type Ia SNe. As the survey has matured, the efficiency of classifying SNe Ia has remained constant while we have observed both higher-redshift SNe Ia and SNe Ia farther from maximum brightness. Examining the subsample of SNe Ia with host-galaxy redshifts shows that redshifts derived from only the SN Ia spectra are consistent with redshifts found from host-galaxy spectra. Moreover, the phases derived from only the SN Ia spectra are consistent with those derived from light-curve fits. By comparing our spectra to local templates, we find that the rate of objects similar to the overluminous SN 1991T and the underluminous SN 1991bg in our sample are consistent with that of the local sample. We do note, however, that we detect no object spectroscopically or photometrically similar to SN 1991bg. Although systematic effects could reduce the high-redshift rate we expect based on the low-redshift surveys, it is possible that SN 1991bg-like SNe Ia are less prevalent at high redshift.« less

  12. Morpho-z: improving photometric redshifts with galaxy morphology

    NASA Astrophysics Data System (ADS)

    Soo, John Y. H.; Moraes, Bruno; Joachimi, Benjamin; Hartley, William; Lahav, Ofer; Charbonnier, Aldée; Makler, Martín; Pereira, Maria E. S.; Comparat, Johan; Erben, Thomas; Leauthaud, Alexie; Shan, Huanyuan; Van Waerbeke, Ludovic

    2018-04-01

    We conduct a comprehensive study of the effects of incorporating galaxy morphology information in photometric redshift estimation. Using machine learning methods, we assess the changes in the scatter and outlier fraction of photometric redshifts when galaxy size, ellipticity, Sérsic index, and surface brightness are included in training on galaxy samples from the SDSS and the CFHT Stripe-82 Survey (CS82). We show that by adding galaxy morphological parameters to full ugriz photometry, only mild improvements are obtained, while the gains are substantial in cases where fewer passbands are available. For instance, the combination of grz photometry and morphological parameters almost fully recovers the metrics of 5-band photometric redshifts. We demonstrate that with morphology it is possible to determine useful redshift distribution N(z) of galaxy samples without any colour information. We also find that the inclusion of quasar redshifts and associated object sizes in training improves the quality of photometric redshift catalogues, compensating for the lack of a good star-galaxy separator. We further show that morphological information can mitigate biases and scatter due to bad photometry. As an application, we derive both point estimates and posterior distributions of redshifts for the official CS82 catalogue, training on morphology and SDSS Stripe-82 ugriz bands when available. Our redshifts yield a 68th percentile error of 0.058(1 + z), and a outlier fraction of 5.2 per cent. We further include a deep extension trained on morphology and single i-band CS82 photometry.

  13. A massive, quiescent galaxy at a redshift of 3.717.

    PubMed

    Glazebrook, Karl; Schreiber, Corentin; Labbé, Ivo; Nanayakkara, Themiya; Kacprzak, Glenn G; Oesch, Pascal A; Papovich, Casey; Spitler, Lee R; Straatman, Caroline M S; Tran, Kim-Vy H; Yuan, Tiantian

    2017-04-05

    Finding massive galaxies that stopped forming stars in the early Universe presents an observational challenge because their rest-frame ultraviolet emission is negligible and they can only be reliably identified by extremely deep near-infrared surveys. These surveys have revealed the presence of massive, quiescent early-type galaxies appearing as early as redshift z ≈ 2, an epoch three billion years after the Big Bang. Their age and formation processes have now been explained by an improved generation of galaxy-formation models, in which they form rapidly at z ≈ 3-4, consistent with the typical masses and ages derived from their observations. Deeper surveys have reported evidence for populations of massive, quiescent galaxies at even higher redshifts and earlier times, using coarsely sampled photometry. However, these early, massive, quiescent galaxies are not predicted by the latest generation of theoretical models. Here we report the spectroscopic confirmation of one such galaxy at redshift z = 3.717, with a stellar mass of 1.7 × 10 11 solar masses. We derive its age to be nearly half the age of the Universe at this redshift and the absorption line spectrum shows no current star formation. These observations demonstrate that the galaxy must have formed the majority of its stars quickly, within the first billion years of cosmic history in a short, extreme starburst. This ancestral starburst appears similar to those being found by submillimetre-wavelength surveys. The early formation of such massive systems implies that our picture of early galaxy assembly requires substantial revision.

  14. A massive, quiescent galaxy at a redshift of 3.717

    NASA Astrophysics Data System (ADS)

    Glazebrook, Karl; Schreiber, Corentin; Labbé, Ivo; Nanayakkara, Themiya; Kacprzak, Glenn G.; Oesch, Pascal A.; Papovich, Casey; Spitler, Lee R.; Straatman, Caroline M. S.; Tran, Kim-Vy H.; Yuan, Tiantian

    2017-04-01

    Finding massive galaxies that stopped forming stars in the early Universe presents an observational challenge because their rest-frame ultraviolet emission is negligible and they can only be reliably identified by extremely deep near-infrared surveys. These surveys have revealed the presence of massive, quiescent early-type galaxies appearing as early as redshift z ≈ 2, an epoch three billion years after the Big Bang. Their age and formation processes have now been explained by an improved generation of galaxy-formation models, in which they form rapidly at z ≈ 3-4, consistent with the typical masses and ages derived from their observations. Deeper surveys have reported evidence for populations of massive, quiescent galaxies at even higher redshifts and earlier times, using coarsely sampled photometry. However, these early, massive, quiescent galaxies are not predicted by the latest generation of theoretical models. Here we report the spectroscopic confirmation of one such galaxy at redshift z = 3.717, with a stellar mass of 1.7 × 1011 solar masses. We derive its age to be nearly half the age of the Universe at this redshift and the absorption line spectrum shows no current star formation. These observations demonstrate that the galaxy must have formed the majority of its stars quickly, within the first billion years of cosmic history in a short, extreme starburst. This ancestral starburst appears similar to those being found by submillimetre-wavelength surveys. The early formation of such massive systems implies that our picture of early galaxy assembly requires substantial revision.

  15. Photometric redshifts for the next generation of deep radio continuum surveys - II. Gaussian processes and hybrid estimates

    NASA Astrophysics Data System (ADS)

    Duncan, Kenneth J.; Jarvis, Matt J.; Brown, Michael J. I.; Röttgering, Huub J. A.

    2018-07-01

    Building on the first paper in this series (Duncan et al. 2018), we present a study investigating the performance of Gaussian process photometric redshift (photo-z) estimates for galaxies and active galactic nuclei (AGNs) detected in deep radio continuum surveys. A Gaussian process redshift code is used to produce photo-z estimates targeting specific subsets of both the AGN population - infrared (IR), X-ray, and optically selected AGNs - and the general galaxy population. The new estimates for the AGN population are found to perform significantly better at z > 1 than the template-based photo-z estimates presented in our previous study. Our new photo-z estimates are then combined with template estimates through hierarchical Bayesian combination to produce a hybrid consensus estimate that outperforms both of the individual methods across all source types. Photo-z estimates for radio sources that are X-ray sources or optical/IR AGNs are significantly improved in comparison to previous template-only estimates - with outlier fractions and robust scatter reduced by up to a factor of ˜4. The ability of our method to combine the strengths of the two input photo-z techniques and the large improvements we observe illustrate its potential for enabling future exploitation of deep radio continuum surveys for both the study of galaxy and black hole coevolution and for cosmological studies.

  16. MEASUREMENTS OF CO REDSHIFTS WITH Z-SPEC FOR LENSED SUBMILLIMETER GALAXIES DISCOVERED IN THE H-ATLAS SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupu, R. E.; Scott, K. S.; Aguirre, J. E.

    2012-10-01

    We present new observations from Z-Spec, a broadband 185-305 GHz spectrometer, of five submillimeter bright lensed sources selected from the Herschel-Astrophysical Terahertz Large Area Survey science demonstration phase catalog. We construct a redshift-finding algorithm using combinations of the signal to noise of all the lines falling in the Z-Spec bandpass to determine redshifts with high confidence, even in cases where the signal to noise in individual lines is low. We measure the dust continuum in all sources and secure CO redshifts for four out of five (z {approx} 1.5-3). In one source, SDP.17, we tentatively identify two independent redshifts andmore » a water line, confirmed at z = 2.308. Our sources have properties characteristic of dusty starburst galaxies, with magnification-corrected star formation rates of 10{sup 2-3} M{sub Sun} yr{sup -1}. Lower limits for the dust masses ({approx} a few 10{sup 8} M{sub Sun }) and spatial extents ({approx}1 kpc equivalent radius) are derived from the continuum spectral energy distributions, corresponding to dust temperatures between 54 and 69 K. In the local thermodynamic equilibrium (LTE) approximation, we derive relatively low CO excitation temperatures ({approx}< 100 K) and optical depths ({tau} {approx}< 1). Performing a non-LTE excitation analysis using RADEX, we find that the CO lines measured by Z-Spec (from J = 4 {yields} 3 to 10 {yields} 9, depending on the galaxy) localize the best solutions to either a high-temperature/low-density region or a low/temperature/high-density region near the LTE solution, with the optical depth varying accordingly. Observations of additional CO lines, CO(1-0) in particular, are needed to constrain the non-LTE models.« less

  17. The redshift-space neighborhoods of 36 loose groups. 2: Analysis

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Hurchra, John P.; Thorstensen, John R.

    1995-01-01

    We explore the kinematics of 36 rich RGH89 groups identified from the first two complete slices of the CfA redshift survey. These groups have more than five members identified by a friends-of-friends algorithm at a number density contrast delta rho/rho greater than or equal to 80. To examine the stability of the determination of the velocity dispersion for these systems, we compare results for the original 232 members with results for a larger redshift sample, including 334 fainter members in the redshift neighborhoods. On average, we double the number of group members in each system. The observed distribution of velocity dispersions is stable. In fact, the velocity dispersion based on the original members identified in the CfA redshift survey is a reliable predictor of the value for the enlarged sample in an individual group. The velocity dispersion is thus a stable physical parameter for discrimination among systems galaxies. A larger sample of groups, particularly one selected from a distance limited catalog, should provide an interesting constraint on models for the formation of large-scale structure. We take H(sub 0) = km/s/Mpc.

  18. Effective theory of dark energy at redshift survey scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleyzes, Jérôme; Mancarella, Michele; Vernizzi, Filippo

    2016-02-01

    We explore the phenomenological consequences of general late-time modifications of gravity in the quasi-static approximation, in the case where cold dark matter is non-minimally coupled to the gravitational sector. Assuming spectroscopic and photometric surveys with configuration parameters similar to those of the Euclid mission, we derive constraints on our effective description from three observables: the galaxy power spectrum in redshift space, tomographic weak-lensing shear power spectrum and the correlation spectrum between the integrated Sachs-Wolfe effect and the galaxy distribution. In particular, with ΛCDM as fiducial model and a specific choice for the time dependence of our effective functions, we performmore » a Fisher matrix analysis and find that the unmarginalized 68% CL errors on the parameters describing the modifications of gravity are of order σ∼10{sup −2}–10{sup −3}. We also consider two other fiducial models. A nonminimal coupling of CDM enhances the effects of modified gravity and reduces the above statistical errors accordingly. In all cases, we find that the parameters are highly degenerate, which prevents the inversion of the Fisher matrices. Some of these degeneracies can be broken by combining all three observational probes.« less

  19. Evaluating and improving the redshifts of z > 2.2 quasars

    NASA Astrophysics Data System (ADS)

    Mason, Michelle; Brotherton, Michael S.; Myers, Adam

    2017-08-01

    Quasar redshifts require the best possible precision and accuracy for a number of applications, such as setting the velocity scale for outflows as well as measuring small-scale quasar-quasar clustering. The most reliable redshift standard in luminous quasars is arguably the narrow [O III] λλ4959, 5007 emission line doublet in the rest-frame optical. We use previously published [O III] redshifts obtained using near-infrared spectra in a sample of 45 high-redshift (z > 2.2) quasars to evaluate redshift measurement techniques based on rest-frame ultraviolet spectra. At redshifts above z = 2.2, the Mg II λ2798 emission line is not available in observed-frame optical spectra and the most prominent unblended and unabsorbed spectral feature available is usually C IV λ1549. Peak and centroid measurements of the C IV profile are often blueshifted relative to the rest-frame of the quasar, which can significantly bias redshift determinations. We show that redshift determinations for these high-redshift quasars are significantly correlated with the emission-line properties of C IV (I.e. the equivalent width, or EW, and the full width at half-maximum, or FWHM) as well as the luminosity, which we take from the Sloan Digital Sky Survey Data Release 7. We demonstrate that empirical corrections based on multiple regression analyses yield significant improvements in both the precision and accuracy of the redshifts of the most distant quasars and are required to establish consistency with redshifts determined in more local quasars.

  20. 2dFLenS and KiDS: determining source redshift distributions with cross-correlations

    NASA Astrophysics Data System (ADS)

    Johnson, Andrew; Blake, Chris; Amon, Alexandra; Erben, Thomas; Glazebrook, Karl; Harnois-Deraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Joudaki, Shahab; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Marin, Felipe A.; McFarland, John; Morrison, Christopher B.; Parkinson, David; Poole, Gregory B.; Radovich, Mario; Wolf, Christian

    2017-03-01

    We develop a statistical estimator to infer the redshift probability distribution of a photometric sample of galaxies from its angular cross-correlation in redshift bins with an overlapping spectroscopic sample. This estimator is a minimum-variance weighted quadratic function of the data: a quadratic estimator. This extends and modifies the methodology presented by McQuinn & White. The derived source redshift distribution is degenerate with the source galaxy bias, which must be constrained via additional assumptions. We apply this estimator to constrain source galaxy redshift distributions in the Kilo-Degree imaging survey through cross-correlation with the spectroscopic 2-degree Field Lensing Survey, presenting results first as a binned step-wise distribution in the range z < 0.8, and then building a continuous distribution using a Gaussian process model. We demonstrate the robustness of our methodology using mock catalogues constructed from N-body simulations, and comparisons with other techniques for inferring the redshift distribution.

  1. Observing the high redshift Universe with Euclid

    NASA Astrophysics Data System (ADS)

    Laureijs, René; Euclid Collaboration

    2018-05-01

    Euclid enables the exploration of large sky areas with diffraction limited resolution in the optical and near-infrared, and is sensitive enough to detect targets at cosmological distances. This combination of capabilities gives Euclid a clear advantage over telescope facilities with larger apertures, both on ground and in space. The decision to mount in the NISP instrument one extra grism for the wavelength range 0.92-1.3 μm with a spectral resolution of R ~260 makes possible a rest-frame UV survey of the early Universe in the redshift range 6.5 < z < 9.7. Euclid's standard imaging with VIS in the 0.55-0.9 μm band and with NISP in the Y, J, H bands provide complementary photometry for further target identification and characterization. Euclid is a suitable facility to discover and map the spatial distribution of rare high-redshift targets and to collect statistically relevant samples, in particular of high redshift Lyα emitters and QSOs, which can be used as signposts of the cosmic structures. The Euclid surveys are also a starting point for deeper follow up observations of the individual high-z objects. We present the Euclid mission and discuss the detectability of high-z objects to probe the epoch of ionization.

  2. THE CANADA-FRANCE HIGH-z QUASAR SURVEY: NINE NEW QUASARS AND THE LUMINOSITY FUNCTION AT REDSHIFT 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willott, Chris J.; Crampton, David; Hutchings, John B.

    2010-03-15

    We present discovery imaging and spectroscopy for nine new z {approx} 6 quasars found in the Canada-France High-z Quasar Survey (CFHQS) bringing the total number of CFHQS quasars to 19. By combining the CFHQS with the more luminous Sloan Digital Sky Survey sample, we are able to derive the quasar luminosity function from a sample of 40 quasars at redshifts 5.74 < z < 6.42. Our binned luminosity function shows a slightly lower normalization and flatter slope than found in previous work. The binned data also suggest a break in the luminosity function at M {sub 1450} {approx} -25. Amore » double power-law maximum likelihood fit to the data is consistent with the binned results. The luminosity function is strongly constrained (1{sigma} uncertainty <0.1 dex) over the range -27.5 < M {sub 1450} < -24.7. The best-fit parameters are {phi}(M*{sub 1450}) = 1.14 x 10{sup -8} Mpc{sup -3} mag{sup -1}, break magnitude M*{sub 1450} = -25.13, and bright end slope {beta} = -2.81. However, the covariance between {beta} and M*{sub 1450} prevents strong constraints being placed on either parameter. For a break magnitude in the range -26 < M*{sub 1450} < -24, we find -3.8 < {beta} < -2.3 at 95% confidence. We calculate the z = 6 quasar intergalactic ionizing flux and show it is between 20 and 100 times lower than that necessary for reionization. Finally, we use the luminosity function to predict how many higher redshift quasars may be discovered in future near-IR imaging surveys.« less

  3. Galaxy Tagging: photometric redshift refinement and group richness enhancement

    NASA Astrophysics Data System (ADS)

    Kafle, P. R.; Robotham, A. S. G.; Driver, S. P.; Deeley, S.; Norberg, P.; Drinkwater, M. J.; Davies, L. J.

    2018-06-01

    We present a new scheme, galtag, for refining the photometric redshift measurements of faint galaxies by probabilistically tagging them to observed galaxy groups constructed from a brighter, magnitude-limited spectroscopy survey. First, this method is tested on the DESI light-cone data constructed on the GALFORM galaxy formation model to tests its validity. We then apply it to the photometric observations of galaxies in the Kilo-Degree Imaging Survey (KiDS) over a 1 deg2 region centred at 15h. This region contains Galaxy and Mass Assembly (GAMA) deep spectroscopic observations (i-band<22) and an accompanying group catalogue to r-band<19.8. We demonstrate that even with some trade-off in sample size, an order of magnitude improvement on the accuracy of photometric redshifts is achievable when using galtag. This approach provides both refined photometric redshift measurements and group richness enhancement. In combination these products will hugely improve the scientific potential of both photometric and spectroscopic datasets. The galtag software will be made publicly available at https://github.com/pkaf/galtag.git.

  4. Derivation of photometric redshifts for the 3XMM catalogue

    NASA Astrophysics Data System (ADS)

    Georgantopoulos, I.; Corral, A.; Mountrichas, G.; Ruiz, A.; Masoura, V.; Fotopoulou, S.; Watson, M.

    2017-10-01

    We present the results from our ESA Prodex project that aims to derive photometric redshifts for the 3XMM catalogue. The 3XMM DR-6 offers the largest X-ray survey, containing 470,000 unique sources over 1000 sq. degrees. We cross-correlate the X-ray positions with optical and near-IR catalogues using Bayesian statistics. The optical catalogue used so far is the SDSS while currently we are employing the recently released PANSTARRS catalogue. In the near IR we use the Viking, VHS, UKIDS surveys and also the WISE W1 and W2 filters. The estimation of photometric redshifts is based on the TPZ software. The training sample is based on X-ray selected samples with available SDSS spectroscopy. We present here the results for the 40,000 3XMM sources with available SDSS counterparts. Our analysis provides very reliable photometric redshifts with sigma(mad)=0.05 and a fraction of outliers of 8% for the optically extended sources. We discuss the wide range of applications that are feasible using this unprecedented resource.

  5. Photometric Redshift Calibration Strategy for WFIRST Cosmology

    NASA Astrophysics Data System (ADS)

    Hemmati, Shoubaneh; WFIRST, WFIRST-HLS-COSMOLOGY

    2018-01-01

    In order for WFIRST and other Stage IV Dark energy experiments (e.g. LSST, Euclid) to infer cosmological parameters not limited by systematic errors, accurate redshift measurements are needed. This accuracy can only be met using spectroscopic subsamples to calibrate the full sample. In this poster, we employ the machine leaning, SOM based spectroscopic sampling technique developed in Masters et al. 2015, using the empirical color-redshift relation among galaxies to find the minimum spectra required for the WFIRST weak lensing calibration. We use galaxies from the CANDELS survey to build the LSST+WFIRST lensing analog sample of ~36k objects and train the LSST+WFIRST SOM. We show that 26% of the WFIRST lensing sample consists of sources fainter than the Euclid depth in the optical, 91% of which live in color cells already occupied by brighter galaxies. We demonstrate the similarity between faint and bright galaxies as well as the feasibility of redshift measurements at different brightness levels. 4% of SOM cells are however only occupied by faint galaxies for which we recommend extra spectroscopy of ~200 new sources. Acquiring the spectra of these sources will enable the comprehensive calibration of the WFIRST color-redshift relation.

  6. Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing

    DOE PAGES

    Bonnett, C.; Troxel, M. A.; Hartley, W.; ...

    2016-08-30

    Here we present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods—annz2, bpz calibrated against BCC-Ufig simulations, skynet, and tpz—are analyzed. For training, calibration, and testing of these methods, we construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evaluated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-z’s. From the galaxies in the DES SV shear catalogue, which have meanmore » redshift 0.72±0.01 over the range 0.38 of approximately 3%. This shift is within the one sigma statistical errors on σ8 for the DES SV shear catalogue. We further study the potential impact of systematic differences on the critical surface density, Σ crit, finding levels of bias safely less than the statistical power of DES SV data. In conclusion, we recommend a final Gaussian prior for the photo-z bias in the mean of n(z) of width 0.05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis.« less

  7. Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnett, C.; Troxel, M. A.; Hartley, W.

    Here we present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods—annz2, bpz calibrated against BCC-Ufig simulations, skynet, and tpz—are analyzed. For training, calibration, and testing of these methods, we construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evaluated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-z’s. From the galaxies in the DES SV shear catalogue, which have meanmore » redshift 0.72±0.01 over the range 0.38 of approximately 3%. This shift is within the one sigma statistical errors on σ8 for the DES SV shear catalogue. We further study the potential impact of systematic differences on the critical surface density, Σ crit, finding levels of bias safely less than the statistical power of DES SV data. In conclusion, we recommend a final Gaussian prior for the photo-z bias in the mean of n(z) of width 0.05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis.« less

  8. Massive Structures of Galaxies at High Redshifts in the Great Observatories Origins Deep Survey Fields

    NASA Astrophysics Data System (ADS)

    Kang, Eugene; Im, Myungshin

    2015-02-01

    If the Universe is dominated by cold dark matter and dark energy as in the currently popular ΛCDM cosmology, it is expected that large scale structures form gradually, with galaxy clusters of mass M & 1014M? appearing at around 6 Gy rs after the Big Bang (z ? 1). Here, we report the discovery of 59 massive structures of galaxies with masses greater than a few times 1013M? at redshifts between z = 0.6 and 4.5 in the Great Observatories Origins Deep Survey fields. The massive structures are identified by running top-hat filters on the two dimensional spatial distribution of magnitude-limited samples of galaxies using a combination of spectroscopic and photometric redshifts. We analyze the Millennium simulation data in a similar way to the analysis of the observational data in order to test the ΛCDM cosmology. We find that there are too many massive structures (M > 7?1013M?) observed at z > 2 in comparison with the simulation predictions by a factor of a few, giving a probability of < 1/2500 of the observed data being consistent with the simulation. Our result suggests that massive structures have emerged early, but the reason for the discrepancy with the simulation is unclear. It could be due to the limitation of the simulation such as the lack of key, unrecognized ingredients (strong non-Gaussianity or other baryonic physics), or simply a difficulty in the halo mass estimation from observation, or a fundamental problem of the ΛCDM cosmology. On the other hand, the over-abundance of massive structures at high redshifts does not favor heavy neutrino mass of ? 0.3 eV or larger, as heavy neutrinos make the discrepancy between the observation and the simulation more pronounced by a factor of 3 or more.

  9. Dark Energy Survey Year 1 Results: Measurement of the Baryon Acoustic Oscillation scale in the distribution of galaxies to redshift 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, T.M.C.; et al.

    We present angular diameter distance measurements obtained by locating the BAO scale in the distribution of galaxies selected from the first year of Dark Energy Survey data. We consider a sample of over 1.3 million galaxies distributed over a footprint of 1318 degmore » $^2$ with $$0.6 < z_{\\rm photo} < 1$$ and a typical redshift uncertainty of $0.03(1+z)$. This sample was selected, as fully described in a companion paper, using a color/magnitude selection that optimizes trade-offs between number density and redshift uncertainty. We investigate the BAO signal in the projected clustering using three conventions, the angular separation, the co-moving transverse separation, and spherical harmonics. Further, we compare results obtained from template based and machine learning photometric redshift determinations. We use 1800 simulations that approximate our sample in order to produce covariance matrices and allow us to validate our distance scale measurement methodology. We measure the angular diameter distance, $$D_A$$, at the effective redshift of our sample divided by the true physical scale of the BAO feature, $$r_{\\rm d}$$. We obtain close to a 4 per cent distance measurement of $$D_A(z_{\\rm eff}=0.81)/r_{\\rm d} = 10.75\\pm 0.43 $$. These results are consistent with the flat $$\\Lambda$$CDM concordance cosmological model supported by numerous other recent experimental results.« less

  10. Topological analysis of the CfA redshift survey

    NASA Technical Reports Server (NTRS)

    Vogeley, Michael S.; Park, Changbom; Geller, Margaret J.; Huchra, John P.; Gott, J. Richard, III

    1994-01-01

    We study the topology of large-scale structure in the Center for Astrophysics Redshift Survey, which now includes approximately 12,000 galaxies with limiting magnitude m(sub B) is less than or equal to 15.5. The dense sampling and large volume of this survey allow us to compute the topology on smoothing scales from 6 to 20/h Mpc; we thus examine the topology of structure in both 'nonlinear' and 'linear' regimes. On smoothing scales less than or equal to 10/h Mpc this sample has 3 times the number of resolution elements of samples examined in previous studies. Isodensity surface of the smoothed galaxy density field demonstrate that coherent high-density structures and large voids dominate the galaxy distribution. We compute the genus-threshold density relation for isodensity surfaces of the CfA survey. To quantify phase correlation in these data, we compare the CfA genus with the genus of realizations of Gaussian random fields with the power spectrum measured for the CfA survey. On scales less than or equal to 10/h Mpc the observed genus amplitude is smaller than random phase (96% confidence level). This decrement reflects the degree of phase coherence in the observed galaxy distribution. In other words the genus amplitude on these scales is not good measure of the power spectrum slope. On scales greater than 10/h Mpc, where the galaxy distribution is rougly in the 'linear' regime, the genus ampitude is consistent with the random phase amplitude. The shape of the genus curve reflects the strong coherence in the observed structure; the observed genus curve appears broader than random phase (94% confidence level for smoothing scales less than or equal to 10/h Mpc) because the topolgoy is spongelike over a very large range of density threshold. This departre from random phase consistent with a distribution like a filamentary net of 'walls with holes.' On smoothing scales approaching approximately 20/h Mpc the shape of the CfA genus curve is consistent with random phase

  11. Infrared-faint radio sources are at high redshifts. Spectroscopic redshift determination of infrared-faint radio sources using the Very Large Telescope

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Sharp, R.; Spitler, L. R.; Parker, Q. A.

    2014-07-01

    Context. Infrared-faint radio sources (IFRS) are characterised by relatively high radio flux densities and associated faint or even absent infrared and optical counterparts. The resulting extremely high radio-to-infrared flux density ratios up to several thousands were previously known only for high-redshift radio galaxies (HzRGs), suggesting a link between the two classes of object. However, the optical and infrared faintness of IFRS makes their study difficult. Prior to this work, no redshift was known for any IFRS in the Australia Telescope Large Area Survey (ATLAS) fields which would help to put IFRS in the context of other classes of object, especially of HzRGs. Aims: This work aims at measuring the first redshifts of IFRS in the ATLAS fields. Furthermore, we test the hypothesis that IFRS are similar to HzRGs, that they are higher-redshift or dust-obscured versions of these massive galaxies. Methods: A sample of IFRS was spectroscopically observed using the Focal Reducer and Low Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT). The data were calibrated based on the Image Reduction and Analysis Facility (IRAF) and redshifts extracted from the final spectra, where possible. This information was then used to calculate rest-frame luminosities, and to perform the first spectral energy distribution modelling of IFRS based on redshifts. Results: We found redshifts of 1.84, 2.13, and 2.76, for three IFRS, confirming the suggested high-redshift character of this class of object. These redshifts and the resulting luminosities show IFRS to be similar to HzRGs, supporting our hypothesis. We found further evidence that fainter IFRS are at even higher redshifts. Conclusions: Considering the similarities between IFRS and HzRGs substantiated in this work, the detection of IFRS, which have a significantly higher sky density than HzRGs, increases the number of active galactic nuclei in the early universe and adds to the problems of explaining the formation of

  12. Populating dark matter haloes with galaxies: comparing the 2dFGRS with mock galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohu; Mo, H. J.; Jing, Y. P.; van den Bosch, Frank C.; Chu, YaoQuan

    2004-06-01

    In two recent papers, we developed a powerful technique to link the distribution of galaxies to that of dark matter haloes by considering halo occupation numbers as a function of galaxy luminosity and type. In this paper we use these distribution functions to populate dark matter haloes in high-resolution N-body simulations of the standard ΛCDM cosmology with Ωm= 0.3, ΩΛ= 0.7 and σ8= 0.9. Stacking simulation boxes of 100 h-1 Mpc and 300 h-1 Mpc with 5123 particles each we construct mock galaxy redshift surveys out to a redshift of z= 0.2 with a numerical resolution that guarantees completeness down to 0.01L*. We use these mock surveys to investigate various clustering statistics. The predicted two-dimensional correlation function ξ(rp, π) reveals clear signatures of redshift space distortions. The projected correlation functions for galaxies with different luminosities and types, derived from ξ(rp, π), match the observations well on scales larger than ~3 h-1 Mpc. On smaller scales, however, the model overpredicts the clustering power by about a factor two. Modelling the `finger-of-God' effect on small scales reveals that the standard ΛCDM model predicts pairwise velocity dispersions (PVD) that are ~400 km s-1 too high at projected pair separations of ~1 h-1 Mpc. A strong velocity bias in massive haloes, with bvel≡σgal/σdm~ 0.6 (where σgal and σdm are the velocity dispersions of galaxies and dark matter particles, respectively) can reduce the predicted PVD to the observed level, but does not help to resolve the overprediction of clustering power on small scales. Consistent results can be obtained within the standard ΛCDM model only when the average mass-to-light ratio of clusters is of the order of 1000 (M/L)solar in the B-band. Alternatively, as we show by a simple approximation, a ΛCDM model with σ8~= 0.75 may also reproduce the observational results. We discuss our results in light of the recent WMAP results and the constraints on σ8 obtained

  13. Photometric properties of intermediate-redshift Type Ia supernovae observed by the Sloan Digital Sky Survey-II Supernova Survey

    DOE PAGES

    Takanashi, N.; Doi, M.; Yasuda, N.; ...

    2016-12-06

    We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) havemore » a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.« less

  14. Photometric properties of intermediate-redshift Type Ia supernovae observed by the Sloan Digital Sky Survey-II Supernova Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takanashi, N.; Doi, M.; Yasuda, N.

    We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) havemore » a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.« less

  15. Close Companions to Two High-redshift Quasars

    NASA Astrophysics Data System (ADS)

    McGreer, Ian D.; Fan, Xiaohui; Strauss, Michael A.; Haiman, Zoltàn; Richards, Gordon T.; Jiang, Linhua; Bian, Fuyan; Schneider, Donald P.

    2014-10-01

    We report the serendipitous discoveries of companion galaxies to two high-redshift quasars. SDSS J025617.7+001904 is a z = 4.79 quasar included in our recent survey of faint quasars in the SDSS Stripe 82 region. The initial MMT slit spectroscopy shows excess Lyα emission extending well beyond the quasar's light profile. Further imaging and spectroscopy with LBT/MODS1 confirms the presence of a bright galaxy (i AB = 23.6) located 2'' (12 kpc projected) from the quasar with strong Lyα emission (EW0 ≈ 100 Å) at the redshift of the quasar, as well as faint continuum. The second quasar, CFHQS J005006.6+344522 (z = 6.25), is included in our recent HST SNAP survey of z ~ 6 quasars searching for evidence of gravitational lensing. Deep imaging with ACS and WFC3 confirms an optical dropout ~4.5 mag fainter than the quasar (Y AB = 25) at a separation of 0.''9. The red i 775 - Y 105 color of the galaxy and its proximity to the quasar (5 kpc projected if at the quasar redshift) strongly favor an association with the quasar. Although it is much fainter than the quasar, it is remarkably bright when compared to field galaxies at this redshift, while showing no evidence for lensing. Both systems may represent late-stage mergers of two massive galaxies, with the observed light for one dominated by powerful ongoing star formation and for the other by rapid black hole growth. Observations of close companions are rare; if major mergers are primarily responsible for high-redshift quasar fueling then the phase when progenitor galaxies can be observed as bright companions is relatively short. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #12184 and #12493. Observations were also made with the LBT and MMT.

  16. Relativistic redshifts in quasar broad lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremaine, Scott; Shen, Yue; Liu, Xin

    2014-10-10

    The broad emission lines commonly seen in quasar spectra have velocity widths of a few percent of the speed of light, so special- and general-relativistic effects have a significant influence on the line profile. We have determined the redshift of the broad Hβ line in the quasar rest frame (determined from the core component of the [O III] line) for over 20,000 quasars from the Sloan Digital Sky Survey Data Release 7 quasar catalog. The mean redshift as a function of line width is approximately consistent with the relativistic redshift that is expected if the line originates in a randomlymore » oriented Keplerian disk that is obscured when the inclination of the disk to the line of sight exceeds ∼30°-45°, consistent with simple active galactic nucleus unification schemes. This result also implies that the net line-of-sight inflow/outflow velocities in the broad-line region are much less than the Keplerian velocity when averaged over a large sample of quasars with a given line width.« less

  17. Predicting the High Redshift Galaxy Population for JWST

    NASA Astrophysics Data System (ADS)

    Flynn, Zoey; Benson, Andrew

    2017-01-01

    The James Webb Space Telescope will be launched in Oct 2018 with the goal of observing galaxies in the redshift range of z = 10 - 15. As redshift increases, the age of the Universe decreases, allowing us to study objects formed only a few hundred million years after the Big Bang. This will provide a valuable opportunity to test and improve current galaxy formation theory by comparing predictions for mass, luminosity, and number density to the observed data. We have made testable predictions with the semi-analytical galaxy formation model Galacticus. The code uses Markov Chain Monte Carlo methods to determine viable sets of model parameters that match current astronomical data. The resulting constrained model was then set to match the specifications of the JWST Ultra Deep Field Imaging Survey. Predictions utilizing up to 100 viable parameter sets were calculated, allowing us to assess the uncertainty in current theoretical expectations. We predict that the planned UDF will be able to observe a significant number of objects past redshift z > 9 but nothing at redshift z > 11. In order to detect these faint objects at redshifts z = 11-15 we need to increase exposure time by at least a factor of 1.66.

  18. VizieR Online Data Catalog: Team Keck Redshift Survey 2 (TKRS2) (Wirth+, 2015)

    NASA Astrophysics Data System (ADS)

    Wirth, G. D.; Trump, J. R.; Barro, G.; Guo, Y.; Koo, D. C.; Liu, F.; Kassis, M.; Lyke, J.; Rizzi, L.; Campbell, R.; Goodrich, R. W.; Faber, S. M.

    2016-04-01

    We present the Team Keck Redshift Survey 2 (TKRS2), a spectroscopic survey of 97 distant galaxies exploiting the capabilities of the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE) on the Keck I telescope at the W. M. Keck Observatory. MOSFIRE features a 2048*2048 pixel HAWAII-2RG HgCdTe detector array from Teledyne Imaging Sensors that couples high quantum efficiency with low noise and low dark current. The operating range of 0.97-2.41μm covers the YJHK infrared passbands, with wavelength coverage of 0.97-1.12μm in Y, 1.15-1.35μm in J, 1.47-1.80μm in H, and 1.95-2.40μm in K. The resolving power for the default slit width of 0.7" is R=3380 in Y, 3310 in J, 3660 in H, and 3620 in K, corresponding to full-width-half-maximum (FWHM) spectral resolutions of 3.1Å in Y, 3.7Å in J, 4.4Å in H, and 6.0Å in K. Our survey targets the south-central region of the GOODS-North survey field (Giavalisco et al. 2004, cat. II/261). We employed MOSFIRE to acquire spectra in the GOODS-North field over a series of partial nights spanning the period from 2012 November to 2013 May. We present the results of our survey in Table3 and on the website (http://arcoiris.ucsc.edu/TKRS2/) devoted to the survey. (1 data file).

  19. Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnett, C.; Troxel, M. A.; Hartley, W.

    We present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods { annz2, bpz calibrated against BCC-U fig simulations, skynet, and tpz { are analysed. For training, calibration, and testing of these methods, we also construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evalu-ated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-zs. From the galaxies in the DES SVmore » shear catalogue, which have mean redshift 0.72 ±0.01 over the range 0:3 < z < 1:3, we construct three tomographic bins with means of z = {0.45; 0.67,1.00g}. These bins each have systematic uncertainties δ z ≲ 0.05 in the mean of the fiducial skynet photo-z n(z). We propagate the errors in the redshift distributions through to their impact on cosmological parameters estimated with cosmic shear, and find that they cause shifts in the value of σ 8 of approx. 3%. This shift is within the one sigma statistical errors on σ8 for the DES SV shear catalog. We also found that further study of the potential impact of systematic differences on the critical surface density, Σ crit, contained levels of bias safely less than the statistical power of DES SV data. We recommend a final Gaussian prior for the photo-z bias in the mean of n(z) of width 0:05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis.« less

  20. The two-point correlation function for groups of galaxies in the Center for Astrophysics redshift survey

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Huchra, John P.

    1990-01-01

    The large-scale distribution of groups of galaxies selected from complete slices of the CfA redshift survey extension is examined. The survey is used to reexamine the contribution of group members to the galaxy correlation function. The relationship between the correlation function for groups and those calculated for rich clusters is discussed, and the results for groups are examined as an extension of the relation between correlation function amplitude and richness. The group correlation function indicates that groups and individual galaxies are equivalent tracers of the large-scale matter distribution. The distribution of group centers is equivalent to random sampling of the galaxy distribution. The amplitude of the correlation function for groups is consistent with an extrapolation of the amplitude-richness relation for clusters. The amplitude scaled by the mean intersystem separation is also consistent with results for richer clusters.

  1. The Clustering of High-Redshift (2.9 < z < 5.4) Quasars in SDSS Stripe 82

    NASA Astrophysics Data System (ADS)

    Timlin, John; Ross, Nicolas; Richards, Gordon; Myers, Adam; Bauer, Franz Erik; Lacy, Mark; Schneider, Donald; Wollack, Edward; Zakamska, Nadia

    2018-01-01

    We present the data from the Spitzer IRAC Equatorial Survey (SpIES) along with our first high-redshift (2.9survey covering ~100 square degrees of the Sloan Digital Sky Survey (SDSS) Stripe 82 (S82) field. The SpIES field is optimally located to overlap with the optical data from SDSS and to complement the area of the pre-existing Spitzer data from the Spitzer-HETDEX Exploratory Large-area (SHELA) survey, which adds ~20 square degrees of infrared coverage on S82. SpIES probes magnitudes significantly fainter than WISE; depth that is crucial to detect faint, high-redshift quasars. Using the infrared data from SpIES and SHELA, and the deep optical data from SDSS, we employ multi-dimensional empirical selection algorithms to identify high-redshift quasar candidates in this field. We then combine these candidates with spectroscopically confirmed high-redshift quasars and measure the angular correlation function. Using these results, we compute the linear bias to try to constrain quasar feedback models akin to those in Hopkins et al. 2007.

  2. N-body simulations of gravitational redshifts and other relativistic distortions of galaxy clustering

    NASA Astrophysics Data System (ADS)

    Zhu, Hongyu; Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Giusarma, Elena

    2017-10-01

    Large redshift surveys of galaxies and clusters are providing the first opportunities to search for distortions in the observed pattern of large-scale structure due to such effects as gravitational redshift. We focus on non-linear scales and apply a quasi-Newtonian approach using N-body simulations to predict the small asymmetries in the cross-correlation function of two galaxy different populations. Following recent work by Bonvin et al., Zhao and Peacock and Kaiser on galaxy clusters, we include effects which enter at the same order as gravitational redshift: the transverse Doppler effect, light-cone effects, relativistic beaming, luminosity distance perturbation and wide-angle effects. We find that all these effects cause asymmetries in the cross-correlation functions. Quantifying these asymmetries, we find that the total effect is dominated by the gravitational redshift and luminosity distance perturbation at small and large scales, respectively. By adding additional subresolution modelling of galaxy structure to the large-scale structure information, we find that the signal is significantly increased, indicating that structure on the smallest scales is important and should be included. We report on comparison of our simulation results with measurements from the SDSS/BOSS galaxy redshift survey in a companion paper.

  3. Galaxies and large scale structure at high redshifts

    PubMed Central

    Steidel, Charles C.

    1998-01-01

    It is now straightforward to assemble large samples of very high redshift (z ∼ 3) field galaxies selected by their pronounced spectral discontinuity at the rest frame Lyman limit of hydrogen (at 912 Å). This makes possible both statistical analyses of the properties of the galaxies and the first direct glimpse of the progression of the growth of their large-scale distribution at such an early epoch. Here I present a summary of the progress made in these areas to date and some preliminary results of and future plans for a targeted redshift survey at z = 2.7–3.4. Also discussed is how the same discovery method may be used to obtain a “census” of star formation in the high redshift Universe, and the current implications for the history of galaxy formation as a function of cosmic epoch. PMID:9419319

  4. Twenty-Three High-Redshift Supernovae from the Institute for Astronomy Deep Survey: Doubling the Supernova Sample at z > 0.7

    NASA Astrophysics Data System (ADS)

    Barris, Brian J.; Tonry, John L.; Blondin, Stéphane; Challis, Peter; Chornock, Ryan; Clocchiatti, Alejandro; Filippenko, Alexei V.; Garnavich, Peter; Holland, Stephen T.; Jha, Saurabh; Kirshner, Robert P.; Krisciunas, Kevin; Leibundgut, Bruno; Li, Weidong; Matheson, Thomas; Miknaitis, Gajus; Riess, Adam G.; Schmidt, Brian P.; Smith, R. Chris; Sollerman, Jesper; Spyromilio, Jason; Stubbs, Christopher W.; Suntzeff, Nicholas B.; Aussel, Hervé; Chambers, K. C.; Connelley, M. S.; Donovan, D.; Henry, J. Patrick; Kaiser, Nick; Liu, Michael C.; Martín, Eduardo L.; Wainscoat, Richard J.

    2004-02-01

    We present photometric and spectroscopic observations of 23 high-redshift supernovae (SNe) spanning a range of z=0.34-1.03, nine of which are unambiguously classified as Type Ia. These SNe were discovered during the IfA Deep Survey, which began in 2001 September and observed a total of 2.5 deg2 to a depth of approximately m~25-26 in RIZ over 9-17 visits, typically every 1-3 weeks for nearly 5 months, with additional observations continuing until 2002 April. We give a brief description of the survey motivations, observational strategy, and reduction process. This sample of 23 high-redshift SNe includes 15 at z>=0.7, doubling the published number of objects at these redshifts, and indicates that the evidence for acceleration of the universe is not due to a systematic effect proportional to redshift. In combination with the recent compilation of Tonry et al. (2003), we calculate cosmological parameter density contours that are consistent with the flat universe indicated by the cosmic microwave background (Spergel et al. 2003). Adopting the constraint that Ωtotal=1.0, we obtain best-fit values of (Ωm,ΩΛ)=(0.33,0.67) using 22 SNe from this survey augmented by the literature compilation. We show that using the empty-beam model for gravitational lensing does not eliminate the need for ΩΛ>0. Experience from this survey indicates great potential for similar large-scale surveys while also revealing the limitations of performing surveys for z>1 SNe from the ground. CFHT: Based in part on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. CTIO: Based in part on observations taken at the Cerro Tololo Inter-American Observatory. Keck: Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership

  5. Understanding redshift space distortions in density-weighted peculiar velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiyama, Naonori S.; Okumura, Teppei; Spergel, David N., E-mail: nao.s.sugiyama@gmail.com, E-mail: teppei.oku@gmail.com, E-mail: dns@astro.princeton.edu

    2016-07-01

    Observations of the kinetic Sunyaev-Zel'dovich (kSZ) effect measure the density-weighted velocity field, a potentially powerful cosmological probe. This paper presents an analytical method to predict the power spectrum and two-point correlation function of the density-weighted velocity in redshift space, the direct observables in kSZ surveys. We show a simple relation between the density power spectrum and the density-weighted velocity power spectrum that holds for both dark matter and halos. Using this relation, we can then extend familiar perturbation expansion techniques to the kSZ power spectrum. One of the most important features of density-weighted velocity statistics in redshift space is themore » change in sign of the cross-correlation between the density and density-weighted velocity at mildly small scales due to nonlinear redshift space distortions. Our model can explain this characteristic feature without any free parameters. As a result, our results can precisely predict the non-linear behavior of the density-weighted velocity field in redshift space up to ∼ 30 h {sup -1} Mpc for dark matter particles at the redshifts of z =0.0, 0.5, and 1.0.« less

  6. Omega from the anisotropy of the redshift correlation function

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.

    1993-01-01

    Peculiar velocities distort the correlation function of galaxies observed in redshift space. In the large scale, linear regime, the distortion takes a characteristic quadrupole plus hexadecapole form, with the amplitude of the distortion depending on the cosmological density parameter omega. Preliminary measurements are reported here of the harmonics of the correlation function in the CfA, SSRS, and IRAS 2 Jansky redshift surveys. The observed behavior of the harmonics agrees qualitatively with the predictions of linear theory on large scales in every survey. However, real anisotropy in the galaxy distribution induces large fluctuations in samples which do not yet probe a sufficiently fair volume of the Universe. In the CfA 14.5 sample in particular, the Great Wall induces a large negative quadrupole, which taken at face value implies an unrealistically large omega 20. The IRAS 2 Jy survey, which covers a substantially larger volume than the optical surveys and is less affected by fingers-of-god, yields a more reliable and believable value, omega = 0.5 sup +.5 sub -.25.

  7. THE PRISM MULTI-OBJECT SURVEY (PRIMUS). I. SURVEY OVERVIEW AND CHARACTERISTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coil, Alison L.; Moustakas, John; Aird, James

    2011-11-01

    We present the PRIsm MUlti-object Survey (PRIMUS), a spectroscopic faint galaxy redshift survey to z {approx} 1. PRIMUS uses a low-dispersion prism and slitmasks to observe {approx}2500 objects at once in a 0.18 deg{sup 2} field of view, using the Inamori Magellan Areal Camera and Spectrograph camera on the Magellan I Baade 6.5 m telescope at Las Campanas Observatory. PRIMUS covers a total of 9.1 deg{sup 2} of sky to a depth of i{sub AB} {approx} 23.5 in seven different deep, multi-wavelength fields that have coverage from the Galaxy Evolution Explorer, Spitzer, and either XMM or Chandra, as well asmore » multiple-band optical and near-IR coverage. PRIMUS includes {approx}130,000 robust redshifts of unique objects with a redshift precision of {sigma}{sub z}/(1 + z) {approx} 0.005. The redshift distribution peaks at z {approx} 0.6 and extends to z = 1.2 for galaxies and z = 5 for broad-line active galactic nuclei. The motivation, observational techniques, fields, target selection, slitmask design, and observations are presented here, with a brief summary of the redshift precision; a forthcoming paper presents the data reduction, redshift fitting, redshift confidence, and survey completeness. PRIMUS is the largest faint galaxy survey undertaken to date. The high targeting fraction ({approx}80%) and large survey size will allow for precise measures of galaxy properties and large-scale structure to z {approx} 1.« less

  8. Galaxy power-spectrum responses and redshift-space super-sample effect

    NASA Astrophysics Data System (ADS)

    Li, Yin; Schmittfull, Marcel; Seljak, Uroš

    2018-02-01

    As a major source of cosmological information, galaxy clustering is susceptible to long-wavelength density and tidal fluctuations. These long modes modulate the growth and expansion rate of local structures, shifting them in both amplitude and scale. These effects are often named the growth and dilation effects, respectively. In particular the dilation shifts the baryon acoustic oscillation (BAO) peak and breaks the assumption of the Alcock-Paczynski (AP) test. This cannot be removed with reconstruction techniques because the effect originates from long modes outside the survey. In redshift space, the long modes generate a large-scale radial peculiar velocity that affects the redshift-space distortion (RSD) signal. We compute the redshift-space response functions of the galaxy power spectrum to long density and tidal modes at leading order in perturbation theory, including both the growth and dilation terms. We validate these response functions against measurements from simulated galaxy mock catalogs. As one application, long density and tidal modes beyond the scale of a survey correlate various observables leading to an excess error known as the super-sample covariance, and thus weaken their constraining power. We quantify the super-sample effect on BAO, AP, and RSD measurements, and study its impact on current and future surveys.

  9. The Hubble Space Telescope Cluster Supernova Survey. II. The Type la Supernova rate in high-redshift galaxy clusters

    DOE PAGES

    Barbary, K.; Aldering, G.; Amanullah, R.; ...

    2011-12-28

    Here we report a measurement of the Type Ia supernova (SN Ia) rate in galaxy clusters at 0.9 < z < 1.46 from the Hubble Space Telescope Cluster Supernova Survey. This is the first cluster SN Ia rate measurement with detected z > 0.9 SNe. Finding 8 ± 1 cluster SNe Ia, we determine an SN Ia rate of 0.50 +0.23 -0.19 (stat) +0.10 -0.09 (sys) h 2 70 SNuB (SNuB ≡ 10 -12 SNe L -1 ⊙,B yr -1). In units of stellar mass, this translates to 0.36 + 0.16 -0.13 (stat) +0.07 -0.06 (sys) h 2 70 SNuMmore » (SNuM ≡ 10 -12 SNe M –1 ⊙ yr –1). This represents a factor of ≈ 5 ± 2 increase over measurements of the cluster rate at z < 0.2. We parameterize the late-time SN Ia delay time distribution (DTD) with a power law: Ψ(t)∝t s . Under the approximation of a single-burst cluster formation redshift of zf = 3, our rate measurement in combination with lower-redshift cluster SN Ia rates constrains s = –1.41 +0.47 –0.40, consistent with measurements of the DTD in the field. This measurement is generally consistent with expectations for the "double degenerate" scenario and inconsistent with some models for the "single degenerate" scenario predicting a steeper DTD at large delay times. We check for environmental dependence and the influence of younger stellar populations by calculating the rate specifically in cluster red-sequence galaxies and in morphologically early-type galaxies, finding results similar to the full cluster rate. Finally, the upper limit of one hostless cluster SN Ia detected in the survey implies that the fraction of stars in the intra-cluster medium is less than 0.47 (95% confidence), consistent with measurements at lower redshifts.« less

  10. The 3D-HST Survey: Hubble Space Telescope WFC3/G141 Grism Spectra, Redshifts, and Emission Line Measurements for ~ 100,000 Galaxies

    NASA Astrophysics Data System (ADS)

    Momcheva, Ivelina G.; Brammer, Gabriel B.; van Dokkum, Pieter G.; Skelton, Rosalind E.; Whitaker, Katherine E.; Nelson, Erica J.; Fumagalli, Mattia; Maseda, Michael V.; Leja, Joel; Franx, Marijn; Rix, Hans-Walter; Bezanson, Rachel; Da Cunha, Elisabete; Dickey, Claire; Förster Schreiber, Natascha M.; Illingworth, Garth; Kriek, Mariska; Labbé, Ivo; Ulf Lange, Johannes; Lundgren, Britt F.; Magee, Daniel; Marchesini, Danilo; Oesch, Pascal; Pacifici, Camilla; Patel, Shannon G.; Price, Sedona; Tal, Tomer; Wake, David A.; van der Wel, Arjen; Wuyts, Stijn

    2016-08-01

    We present reduced data and data products from the 3D-HST survey, a 248-orbit HST Treasury program. The survey obtained WFC3 G141 grism spectroscopy in four of the five CANDELS fields: AEGIS, COSMOS, GOODS-S, and UDS, along with WFC3 H 140 imaging, parallel ACS G800L spectroscopy, and parallel I 814 imaging. In a previous paper, we presented photometric catalogs in these four fields and in GOODS-N, the fifth CANDELS field. Here we describe and present the WFC3 G141 spectroscopic data, again augmented with data from GO-1600 in GOODS-N (PI: B. Weiner). We developed software to automatically and optimally extract interlaced two-dimensional (2D) and one-dimensional (1D) spectra for all objects in the Skelton et al. (2014) photometric catalogs. The 2D spectra and the multi-band photometry were fit simultaneously to determine redshifts and emission line strengths, taking the morphology of the galaxies explicitly into account. The resulting catalog has redshifts and line strengths (where available) for 22,548 unique objects down to {{JH}}{IR}≤slant 24 (79,609 unique objects down to {{JH}}{IR}≤slant 26). Of these, 5459 galaxies are at z\\gt 1.5 and 9621 are at 0.7\\lt z\\lt 1.5, where Hα falls in the G141 wavelength coverage. The typical redshift error for {{JH}}{IR}≤slant 24 galaxies is {σ }z≈ 0.003× (1+z), I.e., one native WFC3 pixel. The 3σ limit for emission line fluxes of point sources is 2.1× {10}-17 erg s-1 cm-2. All 2D and 1D spectra, as well as redshifts, line fluxes, and other derived parameters, are publicly available.18

  11. The GALEX Ultraviolet Virgo Cluster Survey (GUViCS). VII. Brightest cluster galaxy UV upturn and the FUV-NUV color up to redshift 0.35

    NASA Astrophysics Data System (ADS)

    Boissier, S.; Cucciati, O.; Boselli, A.; Mei, S.; Ferrarese, L.

    2018-03-01

    Context. At low redshift, early-type galaxies often exhibit a rising flux with decreasing wavelength in the 1000-2500 Å range, called "UV upturn". The origin of this phenomenon is debated, and its evolution with redshift is poorly constrained. The observed GALEX FUV-NUV color can be used to probe the UV upturn approximately to redshift 0.5. Aim. We provide constraints on the existence of the UV upturn up to redshift 0.4 in the brightest cluster galaxies (BCG) located behind the Virgo cluster, using data from the GUViCS survey. Methods: We estimate the GALEX far-UV (FUV) and near-UV (NUV) observed magnitudes for BCGs from the maxBCG catalog in the GUViCS fields. We increase the number of nonlocal galaxies identified as BCGs with GALEX photometry from a few tens of galaxies to 166 (64 when restricting this sample to relatively small error bars). We also estimate a central color within a 20 arcsec aperture. By using the r-band luminosity from the maxBCG catalog, we can separate blue FUV-NUV due to recent star formation and candidate upturn cases. We use Lick indices to verify their similarity to redshift 0 upturn cases. Results: We clearly detect a population of blue FUV-NUV BCGs in the redshift range 0.10-0.35, vastly improving the existing constraints at these epochs by increasing the number of galaxies studied, and by exploring a redshift range with no previous data (beyond 0.2), spanning one more Gyr in the past. These galaxies bring new constraints that can help distinguish between assumptions concerning the stellar populations causing the UV upturn phenomenon. The existence of a large number of UV upturns around redshift 0.25 favors the existence of a binary channel among the sources proposed in the literature. Tables 2-5 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A42

  12. Redshift Measurement and Spectral Classification for eBoss Galaxies with the Redmonster Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, Timothy A.; Bolton, Adam S.; Dawson, Kyle S.

    “Cosmological redshift surveys” are experiments conducted with astronomical telescopes, imagers, and spectrographs, which map the three-dimensional structure of the universe on the largest scales. These maps are delineated by the positions of galaxies, quasars, and intergalactic hydrogen clouds. When interpreted in the context of Einstein’s theory of gravity, these maps can be used to infer the nature of the contents of the universe, including the mysterious “dark energy” that is driving the expansion of the universe to accelerate. While the directional positions of galaxies and other objects can be measured directly in images of the sky, the third dimension ofmore » their position (i.e., their distance from the Earth and the Milky Way Galaxy) must be measured by spectrographs that distribute their light as a function of frequency, enabling a measurement of their cosmological Doppler shift (or “redshift”), which serves as an observable proxy for distance. The largest cosmological redshift surveys, such as the “eBOSS” experiment of the fourth Sloan Digital Sky Survey, collect spectroscopic data for hundreds of thousands to millions of galaxies. Future experiments such as the Dark Energy Spectroscopic Instrument will in turn collect tens of millions of spectra. To be feasible, redshift measurement methods in datasets of this scale must be made with automated software. This paper describes the algorithms, astrophysical templates, and implementation of a new redshift measurement software package that is optimized to run on large numbers of spectra with relatively low signal-to-noise ratio, typical of the most ambitious current and future cosmological redshift surveys. The software is demonstrated on spectroscopic data from the eBOSS survey, with performance that meets the scientific requirements of that experiment. The software is implemented in a general framework that will allow application to spectra from the DESI project in the future.« less

  13. Redshift Measurement and Spectral Classification for eBoss Galaxies with the Redmonster Software

    DOE PAGES

    Hutchinson, Timothy A.; Bolton, Adam S.; Dawson, Kyle S.; ...

    2016-12-02

    “Cosmological redshift surveys” are experiments conducted with astronomical telescopes, imagers, and spectrographs, which map the three-dimensional structure of the universe on the largest scales. These maps are delineated by the positions of galaxies, quasars, and intergalactic hydrogen clouds. When interpreted in the context of Einstein’s theory of gravity, these maps can be used to infer the nature of the contents of the universe, including the mysterious “dark energy” that is driving the expansion of the universe to accelerate. While the directional positions of galaxies and other objects can be measured directly in images of the sky, the third dimension ofmore » their position (i.e., their distance from the Earth and the Milky Way Galaxy) must be measured by spectrographs that distribute their light as a function of frequency, enabling a measurement of their cosmological Doppler shift (or “redshift”), which serves as an observable proxy for distance. The largest cosmological redshift surveys, such as the “eBOSS” experiment of the fourth Sloan Digital Sky Survey, collect spectroscopic data for hundreds of thousands to millions of galaxies. Future experiments such as the Dark Energy Spectroscopic Instrument will in turn collect tens of millions of spectra. To be feasible, redshift measurement methods in datasets of this scale must be made with automated software. This paper describes the algorithms, astrophysical templates, and implementation of a new redshift measurement software package that is optimized to run on large numbers of spectra with relatively low signal-to-noise ratio, typical of the most ambitious current and future cosmological redshift surveys. The software is demonstrated on spectroscopic data from the eBOSS survey, with performance that meets the scientific requirements of that experiment. The software is implemented in a general framework that will allow application to spectra from the DESI project in the future.« less

  14. The VIMOS Public Extragalactic Redshift Survey (VIPERS) . Luminosity and stellar mass dependence of galaxy clustering at 0.5 < z < 1.1

    NASA Astrophysics Data System (ADS)

    Marulli, F.; Bolzonella, M.; Branchini, E.; Davidzon, I.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Iovino, A.; Moscardini, L.; Pollo, A.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; McCracken, H. J.; Paioro, L.; Polletta, M.; Schlagenhaufer, H.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.; Zamorani, G.

    2013-09-01

    Aims: We investigate the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 0.5 < z < 1.1, using the first ~ 55 000 redshifts from the VIMOS Public Extragalactic Redshift Survey (VIPERS). Methods: We measured the redshift-space two-point correlation functions (2PCF), ξ(s) and ξ(rp,π) , and the projected correlation function, wp(rp), in samples covering different ranges of B-band absolute magnitudes and stellar masses. We considered both threshold and binned galaxy samples, with median B-band absolute magnitudes - 21.6 ≲ MB - 5log (h) ≲ - 19.5 and median stellar masses 9.8 ≲ log (M⋆ [h-2 M⊙]) ≲ 10.7. We assessed the real-space clustering in the data from the projected correlation function, which we model as a power law in the range 0.2 < rp [h-1 Mpc ] < 20. Finally, we estimated the galaxy bias as a function of luminosity, stellar mass, and redshift, assuming a flat Λ cold dark matter model to derive the dark matter 2PCF. Results: We provide the best-fit parameters of the power-law model assumed for the real-space 2PCF - the correlation length, r0, and the slope, γ - as well as the linear bias parameter, as a function of the B-band absolute magnitude, stellar mass, and redshift. We confirm and provide the tightest constraints on the dependence of clustering on luminosity at 0.5 < z < 1.1. We prove the complexity of comparing the clustering dependence on stellar mass from samples that are originally flux-limited and discuss the possible origin of the observed discrepancies. Overall, our measurements provide stronger constraints on galaxy formation models, which are now required to match, in addition to local observations, the clustering evolution measured by VIPERS galaxies between z = 0.5 and z = 1.1 for a broad range of luminosities and stellar masses. Based on observations collected at the European Southern Observatory, Paranal, Chile, under programmes 182.A-0886 (LP) at the Very Large Telescope, and also based on

  15. The redshift distribution of cosmological samples: a forward modeling approach

    NASA Astrophysics Data System (ADS)

    Herbel, Jörg; Kacprzak, Tomasz; Amara, Adam; Refregier, Alexandre; Bruderer, Claudio; Nicola, Andrina

    2017-08-01

    Determining the redshift distribution n(z) of galaxy samples is essential for several cosmological probes including weak lensing. For imaging surveys, this is usually done using photometric redshifts estimated on an object-by-object basis. We present a new approach for directly measuring the global n(z) of cosmological galaxy samples, including uncertainties, using forward modeling. Our method relies on image simulations produced using \\textsc{UFig} (Ultra Fast Image Generator) and on ABC (Approximate Bayesian Computation) within the MCCL (Monte-Carlo Control Loops) framework. The galaxy population is modeled using parametric forms for the luminosity functions, spectral energy distributions, sizes and radial profiles of both blue and red galaxies. We apply exactly the same analysis to the real data and to the simulated images, which also include instrumental and observational effects. By adjusting the parameters of the simulations, we derive a set of acceptable models that are statistically consistent with the data. We then apply the same cuts to the simulations that were used to construct the target galaxy sample in the real data. The redshifts of the galaxies in the resulting simulated samples yield a set of n(z) distributions for the acceptable models. We demonstrate the method by determining n(z) for a cosmic shear like galaxy sample from the 4-band Subaru Suprime-Cam data in the COSMOS field. We also complement this imaging data with a spectroscopic calibration sample from the VVDS survey. We compare our resulting posterior n(z) distributions to the one derived from photometric redshifts estimated using 36 photometric bands in COSMOS and find good agreement. This offers good prospects for applying our approach to current and future large imaging surveys.

  16. IDENTIFYING IONIZED REGIONS IN NOISY REDSHIFTED 21 cm DATA SETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malloy, Matthew; Lidz, Adam, E-mail: mattma@sas.upenn.edu

    One of the most promising approaches for studying reionization is to use the redshifted 21 cm line. Early generations of redshifted 21 cm surveys will not, however, have the sensitivity to make detailed maps of the reionization process, and will instead focus on statistical measurements. Here, we show that it may nonetheless be possible to directly identify ionized regions in upcoming data sets by applying suitable filters to the noisy data. The locations of prominent minima in the filtered data correspond well with the positions of ionized regions. In particular, we corrupt semi-numeric simulations of the redshifted 21 cm signalmore » during reionization with thermal noise at the level expected for a 500 antenna tile version of the Murchison Widefield Array (MWA), and mimic the degrading effects of foreground cleaning. Using a matched filter technique, we find that the MWA should be able to directly identify ionized regions despite the large thermal noise. In a plausible fiducial model in which {approx}20% of the volume of the universe is neutral at z {approx} 7, we find that a 500-tile MWA may directly identify as many as {approx}150 ionized regions in a 6 MHz portion of its survey volume and roughly determine the size of each of these regions. This may, in turn, allow interesting multi-wavelength follow-up observations, comparing galaxy properties inside and outside of ionized regions. We discuss how the optimal configuration of radio antenna tiles for detecting ionized regions with a matched filter technique differs from the optimal design for measuring power spectra. These considerations have potentially important implications for the design of future redshifted 21 cm surveys.« less

  17. A critical analysis of high-redshift, massive, galaxy clusters. Part I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyle, Ben; Jimenez, Raul; Verde, Licia

    2012-02-01

    We critically investigate current statistical tests applied to high redshift clusters of galaxies in order to test the standard cosmological model and describe their range of validity. We carefully compare a sample of high-redshift, massive, galaxy clusters with realistic Poisson sample simulations of the theoretical mass function, which include the effect of Eddington bias. We compare the observations and simulations using the following statistical tests: the distributions of ensemble and individual existence probabilities (in the > M, > z sense), the redshift distributions, and the 2d Kolmogorov-Smirnov test. Using seemingly rare clusters from Hoyle et al. (2011), and Jee etmore » al. (2011) and assuming the same survey geometry as in Jee et al. (2011, which is less conservative than Hoyle et al. 2011), we find that the ( > M, > z) existence probabilities of all clusters are fully consistent with ΛCDM. However assuming the same survey geometry, we use the 2d K-S test probability to show that the observed clusters are not consistent with being the least probable clusters from simulations at > 95% confidence, and are also not consistent with being a random selection of clusters, which may be caused by the non-trivial selection function and survey geometry. Tension can be removed if we examine only a X-ray selected sub sample, with simulations performed assuming a modified survey geometry.« less

  18. Intermediate-mass black holes in dwarf galaxies out to redshift ˜ 2.4 in the Chandra COSMOS Legacy Survey

    NASA Astrophysics Data System (ADS)

    Mezcua, M.; Civano, F.; Marchesi, S.; Suh, H.; Fabbiano, G.; Volonteri, M.

    2018-05-01

    We present a sample of 40 AGN in dwarf galaxies at redshifts z ≲ 2.4. The galaxies are drawn from the Chandra COSMOS-Legacy survey as having stellar masses 107 ≤ M* ≤ 3 × 109 M⊙. Most of the dwarf galaxies are star-forming. After removing the contribution from star formation to the X-ray emission, the AGN luminosities of the 40 dwarf galaxies are in the range L0.5-10keV ˜ 1039 - 1044 erg s-1. With 12 sources at z > 0.5, our sample constitutes the highest-redshift discovery of AGN in dwarf galaxies. The record-holder is cid_1192, at z = 2.39 and with L0.5-10keV ˜ 1044 erg s-1. One of the dwarf galaxies has M* = 6.6 × 107 M⊙ and is the least massive galaxy found so far to host an AGN. All the AGN are of type 2 and consistent with hosting intermediate-mass black holes (BHs) with masses ˜104 - 105 M⊙ and typical Eddington ratios >1%. We also study the evolution, corrected for completeness, of AGN fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies out to z = 0.7. We find that the AGN fraction for 109 < M* ≤ 3 × 109 M⊙ and LX ˜ 1041 - 1042 erg s-1 is ˜0.4% for z ≤ 0.3 and that it decreases with X-ray luminosity and decreasing stellar mass. Unlike massive galaxies, the AGN fraction seems to decrease with redshift, suggesting that AGN in dwarf galaxies evolve differently than those in high-mass galaxies. Mindful of potential caveats, the results seem to favor a direct collapse formation mechanism for the seed BHs in the early Universe.

  19. Cosmology with XMM galaxy clusters: the X-CLASS/GROND catalogue and photometric redshifts

    NASA Astrophysics Data System (ADS)

    Ridl, J.; Clerc, N.; Sadibekova, T.; Faccioli, L.; Pacaud, F.; Greiner, J.; Krühler, T.; Rau, A.; Salvato, M.; Menzel, M.-L.; Steinle, H.; Wiseman, P.; Nandra, K.; Sanders, J.

    2017-06-01

    The XMM Cluster Archive Super Survey (X-CLASS) is a serendipitously detected X-ray-selected sample of 845 galaxy clusters based on 2774 XMM archival observations and covering an approximately 90 deg2 spread across the high-Galactic latitude (|b| > 20°) sky. The primary goal of this survey is to produce a well-selected sample of galaxy clusters on which cosmological analyses can be performed. This paper presents the photometric redshift follow-up of a high signal-to-noise ratio subset of 265 of these clusters with declination δ < +20° with Gamma-Ray Burst Optical and Near-Infrared Detector (GROND), a 7-channel (grizJHK) simultaneous imager on the MPG 2.2-m telescope at the ESO La Silla Observatory. We use a newly developed technique based on the red sequence colour-redshift relation, enhanced with information coming from the X-ray detection to provide photometric redshifts for this sample. We determine photometric redshifts for 232 clusters, finding a median redshift of z = 0.39 with an accuracy of Δz = 0.02(1 + z) when compared to a sample of 76 spectroscopically confirmed clusters. We also compute X-ray luminosities for the entire sample and find a median bolometric luminosity of 7.2 × 1043 erg s-1 and a median temperature of 2.9 keV. We compare our results to those of the XMM-XCS and XMM-XXL surveys, finding good agreement in both samples. The X-CLASS catalogue is available online at http://xmm-lss.in2p3.fr:8080/l4sdb/.

  20. THE MULTIWAVELENGTH SURVEY BY YALE-CHILE (MUSYC): DEEP MEDIUM-BAND OPTICAL IMAGING AND HIGH-QUALITY 32-BAND PHOTOMETRIC REDSHIFTS IN THE ECDF-S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardamone, Carolin N.; Van Dokkum, Pieter G.; Urry, C. Megan

    2010-08-15

    We present deep optical 18-medium-band photometry from the Subaru telescope over the {approx}30' x 30' Extended Chandra Deep Field-South, as part of the Multiwavelength Survey by Yale-Chile (MUSYC). This field has a wealth of ground- and space-based ancillary data, and contains the GOODS-South field and the Hubble Ultra Deep Field. We combine the Subaru imaging with existing UBVRIzJHK and Spitzer IRAC images to create a uniform catalog. Detecting sources in the MUSYC 'BVR' image we find {approx}40,000 galaxies with R {sub AB} < 25.3, the median 5{sigma} limit of the 18 medium bands. Photometric redshifts are determined using the EAzYmore » code and compared to {approx}2000 spectroscopic redshifts in this field. The medium-band filters provide very accurate redshifts for the (bright) subset of galaxies with spectroscopic redshifts, particularly at 0.1 < z < 1.2 and at z {approx}> 3.5. For 0.1 < z < 1.2, we find a 1{sigma} scatter in {Delta}z/(1 + z) of 0.007, similar to results obtained with a similar filter set in the COSMOS field. As a demonstration of the data quality, we show that the red sequence and blue cloud can be cleanly identified in rest-frame color-magnitude diagrams at 0.1 < z < 1.2. We find that {approx}20% of the red sequence galaxies show evidence of dust emission at longer rest-frame wavelengths. The reduced images, photometric catalog, and photometric redshifts are provided through the public MUSYC Web site.« less

  1. The redshift-space neighborhoods of 36 loose groups of galaxies. 1: The data

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Hurchra, John P.; Thorstensen, John R.

    1995-01-01

    We have selected 36 loose groups of galaxies (RGH89) with at least five members, and with mean redshift average value of CZ is greater than 3200 km/s. These groups all lie within the first two slices of the CfA redshift survey 8(sup h) less than or equal to alpha less than or equal to 17(sup h) and 26.5 deg less than or equal to delta less than or equal to 38.5 deg). For each of these groups, we define the redshift-space neighborhood as a region centered on the group coordinates and delimited by a circle of projected radius R(sub cir) = 1.5/h Mpc on the sky, and by a velocity interval delta (sub cz) = 3000 km/s. Here we give the redshifts of 334 galaxies in these redshift-space neighborhoods. For completeness, we also give the redshifts of the 232 original members. These data include 199 new redshifts. We demonstrate that these samples of fainter galaxies significantly increase the number of members.

  2. The very high redshift component of the OTELO survey

    NASA Astrophysics Data System (ADS)

    Bongiovanni, A.; Ramón-Pérez, M.; Pérez García, A. M.; Cepa Nogué, J.; Cervino Saavedra, M.; OTELO Team

    2017-03-01

    Lyman-α emitters (LAEs) and Lyman-break galaxies (LBGs) stand out among the most used tools to study the galaxy formation in the early universe. Despite they constitute truly evolutionary probes of galaxy formation, evidence suggests that LAEs & LBGs correspond to different kinds of extragalactic sources regarding star formation modes, spatial distribution, gas and dust content, nuclear activity, etc., apart from the way they are detected. Such differences gain special significance near the reionization redshift. The OSIRIS Tunable Filter Emission-Line -OTELO- project is a very deep, 2D-spectroscopic (R ˜ 700) blind tomography, defined on a spectral window of 21 nm and centered on 915 nm, which aimsto obtains spectra of all emission line sources in the field, sampling unrelated cosmological volumes between z = 0.4 and 6 (see contributions of Cepa et al., Ramón-Pérez et al. and Nadolny et al. in this Meeting). Data from the OTELO's first pointing (Extended Groth Strip, EGS) and ancillary have been already gathered and reduced. Starting from a sample of 150+ candidates to z > 6 galaxies in the survey in a color diagnostic diagram, we have isolated 7 preliminary LAE candidates by hybrid SED fitting and emission line analysis, including considerations about possible interlopers (e.g. cool Galactic stars and z ˜ 1.3 post-starburst galaxies). A promising LAE candidate at z = 6.531 is shown in this contribution.

  3. Multipole analysis of redshift-space distortions around cosmic voids

    NASA Astrophysics Data System (ADS)

    Hamaus, Nico; Cousinou, Marie-Claude; Pisani, Alice; Aubert, Marie; Escoffier, Stéphanie; Weller, Jochen

    2017-07-01

    We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h-1Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β(bar z=0.32)=0.599+0.134-0.124 and β(bar z=0.54)=0.457+0.056-0.054, with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at bar z=0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15

  4. A PUBLIC K{sub s} -SELECTED CATALOG IN THE COSMOS/ULTRAVISTA FIELD: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR POPULATION PARAMETERS {sup ,}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzin, Adam; Franx, Marijn; Labbe, Ivo

    2013-05-01

    We present a catalog covering 1.62 deg{sup 2} of the COSMOS/UltraVISTA field with point-spread function (PSF) matched photometry in 30 photometric bands. The catalog covers the wavelength range 0.15-24 {mu}m including the available GALEX, Subaru, Canada-France-Hawaii Telescope, VISTA, and Spitzer data. Catalog sources have been selected from the DR1 UltraVISTA K{sub s} band imaging that reaches a depth of K {sub s,tot} = 23.4 AB (90% completeness). The PSF-matched catalog is generated using position-dependent PSFs ensuring accurate colors across the entire field. Also included is a catalog of photometric redshifts (z {sub phot}) for all galaxies computed with the EAZYmore » code. Comparison with spectroscopy from the zCOSMOS 10k bright sample shows that up to z {approx} 1.5 the z {sub phot} are accurate to {Delta}z/(1 + z) = 0.013, with a catastrophic outlier fraction of only 1.6%. The z {sub phot} also show good agreement with the z {sub phot} from the NEWFIRM Medium Band Survey out to z {approx} 3. A catalog of stellar masses and stellar population parameters for galaxies determined using the FAST spectral energy distribution fitting code is provided for all galaxies. Also included are rest-frame U - V and V - J colors, L {sub 2800} and L {sub IR}. The UVJ color-color diagram confirms that the galaxy bi-modality is well-established out to z {approx} 2. Star-forming galaxies also obey a star-forming 'main sequence' out to z {approx} 2.5, and this sequence evolves in a manner consistent with previous measurements. The COSMOS/UltraVISTA K{sub s} -selected catalog covers a unique parameter space in both depth, area, and multi-wavelength coverage and promises to be a useful tool for studying the growth of the galaxy population out to z {approx} 3-4.« less

  5. Mass calibration of galaxy clusters at redshift 0.1–1.0 using weak lensing in the Sloan Digital Sky Survey Stripe 82 co-add

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiesner, Matthew P.; Lin, Huan; Soares-Santos, Marcelle

    We present galaxy cluster mass–richness relations found in the Sloan Digital Sky Survey Stripe 82 co-add using clusters found using a Voronoi tessellation cluster finder. These relations were found using stacked weak lensing shear observed in a large sample of galaxy clusters. These mass–richness relations are presented for four redshift bins, 0.1 < z ≤ 0.4, 0.4 < z ≤ 0.7, 0.7 < z ≤ 1.0 and 0.1 < z ≤ 1.0. We describe the sample of galaxy clusters and explain how these clusters were found using a Voronoi tessellation cluster finder. We fit a Navarro-Frenk-White profile to the stackedmore » weak lensing shear signal in redshift and richness bins in order to measure virial mass (M 200). We describe several effects that can bias weak lensing measurements, including photometric redshift bias, the effect of the central BCG, halo miscentering, photometric redshift uncertainty and foreground galaxy contamination. We present mass–richness relations using richness measure N VT with each of these effects considered separately as well as considered altogether. We also examine redshift evolution of the mass–richness relation. As a result, we present measurements of the mass coefficient (M 200|20) and the power-law slope (α) for power-law fits to the mass and richness values in each of the redshift bins. We find values of the mass coefficient of 8.49 ± 0.526, 14.1 ± 1.78, 30.2 ± 8.74 and 9.23 ± 0.525 × 10 13 h –1 M ⊙ for each of the four redshift bins, respectively. As a result, we find values of the power-law slope of 0.905 ± 0.0585, 0.948 ± 0.100, 1.33 ± 0.260 and 0.883 ± 0.0500, respectively.« less

  6. Mass calibration of galaxy clusters at redshift 0.1–1.0 using weak lensing in the Sloan Digital Sky Survey Stripe 82 co-add

    DOE PAGES

    Wiesner, Matthew P.; Lin, Huan; Soares-Santos, Marcelle

    2015-07-08

    We present galaxy cluster mass–richness relations found in the Sloan Digital Sky Survey Stripe 82 co-add using clusters found using a Voronoi tessellation cluster finder. These relations were found using stacked weak lensing shear observed in a large sample of galaxy clusters. These mass–richness relations are presented for four redshift bins, 0.1 < z ≤ 0.4, 0.4 < z ≤ 0.7, 0.7 < z ≤ 1.0 and 0.1 < z ≤ 1.0. We describe the sample of galaxy clusters and explain how these clusters were found using a Voronoi tessellation cluster finder. We fit a Navarro-Frenk-White profile to the stackedmore » weak lensing shear signal in redshift and richness bins in order to measure virial mass (M 200). We describe several effects that can bias weak lensing measurements, including photometric redshift bias, the effect of the central BCG, halo miscentering, photometric redshift uncertainty and foreground galaxy contamination. We present mass–richness relations using richness measure N VT with each of these effects considered separately as well as considered altogether. We also examine redshift evolution of the mass–richness relation. As a result, we present measurements of the mass coefficient (M 200|20) and the power-law slope (α) for power-law fits to the mass and richness values in each of the redshift bins. We find values of the mass coefficient of 8.49 ± 0.526, 14.1 ± 1.78, 30.2 ± 8.74 and 9.23 ± 0.525 × 10 13 h –1 M ⊙ for each of the four redshift bins, respectively. As a result, we find values of the power-law slope of 0.905 ± 0.0585, 0.948 ± 0.100, 1.33 ± 0.260 and 0.883 ± 0.0500, respectively.« less

  7. The VIMOS Public Extragalactic Redshift Survey (VIPERS). The distinct build-up of dense and normal massive passive galaxies

    NASA Astrophysics Data System (ADS)

    Gargiulo, A.; Bolzonella, M.; Scodeggio, M.; Krywult, J.; De Lucia, G.; Guzzo, L.; Garilli, B.; Granett, B. R.; de la Torre, S.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Cappi, A.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Haines, C.; Hawken, A. J.; Iovino, A.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Moutard, T.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Zamorani, G.; Bel, J.; Branchini, E.; Coupon, J.; Ilbert, O.; Moscardini, L.; Peacock, J. A.

    2017-10-01

    We have used the final data from the VIPERS redshift survey to extract an unparalleled sample of more than 2000 massive ℳ≥1011 M⊙ passive galaxies (MPGs) at redshift 0.5≤z≤1.0, based on their NUVrK colours. This has enabled us to investigate how the population of these objects was built up over cosmic time. We find that the evolution of the number density depends on the galaxy mean surface stellar mass density, Σ. In particular, dense (Σ≥2000 M⊙ pc-2) MPGs show a constant comoving number density over this redshift range, whilst this increases by a factor of approximately four for the least dense objects, defined as having Σ < 1000 M⊙ pc-2. We estimated stellar ages for the MPG population both fitting the spectral energy distribution (SED) and through the D4000n index, obtaining results in good agreement. Our findings are consistent with passive ageing of the stellar content of dense MPGs. We show that at any redshift the less dense MPGs are younger than dense ones and that their stellar populations evolve at a slower rate than predicted by passive evolution. This points to a scenario in which the overall population of MPGs was built up over the cosmic time by continuous addition of less dense galaxies: on top of an initial population of dense objects that passively evolves, new, larger, and younger MPGs continuously join the population at later epochs. Finally, we demonstrate that the observed increase in the number density of MPGs is totally accounted for by the observed decrease in the number density of correspondingly massive star forming galaxies (I.e. all the non-passive ℳ≥1011 M⊙ objects). Such systems observed at z ≃ 1 in VIPERS, therefore, represent the most plausible progenitors of the subsequent emerging class of larger MPGs. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations

  8. A luminous quasar at a redshift of z = 7.085.

    PubMed

    Mortlock, Daniel J; Warren, Stephen J; Venemans, Bram P; Patel, Mitesh; Hewett, Paul C; McMahon, Richard G; Simpson, Chris; Theuns, Tom; Gonzáles-Solares, Eduardo A; Adamson, Andy; Dye, Simon; Hambly, Nigel C; Hirst, Paul; Irwin, Mike J; Kuiper, Ernst; Lawrence, Andy; Röttgering, Huub J A

    2011-06-29

    The intergalactic medium was not completely reionized until approximately a billion years after the Big Bang, as revealed by observations of quasars with redshifts of less than 6.5. It has been difficult to probe to higher redshifts, however, because quasars have historically been identified in optical surveys, which are insensitive to sources at redshifts exceeding 6.5. Here we report observations of a quasar (ULAS J112001.48+064124.3) at a redshift of 7.085, which is 0.77 billion years after the Big Bang. ULAS J1120+0641 has a luminosity of 6.3 × 10(13)L(⊙) and hosts a black hole with a mass of 2 × 10(9)M(⊙) (where L(⊙) and M(⊙) are the luminosity and mass of the Sun). The measured radius of the ionized near zone around ULAS J1120+0641 is 1.9 megaparsecs, a factor of three smaller than is typical for quasars at redshifts between 6.0 and 6.4. The near-zone transmission profile is consistent with a Lyα damping wing, suggesting that the neutral fraction of the intergalactic medium in front of ULAS J1120+0641 exceeded 0.1.

  9. Percolation galaxy groups and clusters in the sdss redshift survey: identification, catalogs, and the multiplicity function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlind, Andreas A.; Frieman, Joshua A.; Weinberg, David H.

    2006-01-01

    We identify galaxy groups and clusters in volume-limited samples of the SDSS redshift survey, using a redshift-space friends-of-friends algorithm. We optimize the friends-of-friends linking lengths to recover galaxy systems that occupy the same dark matter halos, using a set of mock catalogs created by populating halos of N-body simulations with galaxies. Extensive tests with these mock catalogs show that no combination of perpendicular and line-of-sight linking lengths is able to yield groups and clusters that simultaneously recover the true halo multiplicity function, projected size distribution, and velocity dispersion. We adopt a linking length combination that yields, for galaxy groups withmore » ten or more members: a group multiplicity function that is unbiased with respect to the true halo multiplicity function; an unbiased median relation between the multiplicities of groups and their associated halos; a spurious group fraction of less than {approx}1%; a halo completeness of more than {approx}97%; the correct projected size distribution as a function of multiplicity; and a velocity dispersion distribution that is {approx}20% too low at all multiplicities. These results hold over a range of mock catalogs that use different input recipes of populating halos with galaxies. We apply our group-finding algorithm to the SDSS data and obtain three group and cluster catalogs for three volume-limited samples that cover 3495.1 square degrees on the sky. We correct for incompleteness caused by fiber collisions and survey edges, and obtain measurements of the group multiplicity function, with errors calculated from realistic mock catalogs. These multiplicity function measurements provide a key constraint on the relation between galaxy populations and dark matter halos.« less

  10. VizieR Online Data Catalog: Redshift reliability flags (VVDS data) (Jamal+, 2018)

    NASA Astrophysics Data System (ADS)

    Jamal, S.; Le Brun, V.; Le Fevre, O.; Vibert, D.; Schmitt, A.; Surace, C.; Copin, Y.; Garilli, B.; Moresco, M.; Pozzetti, L.

    2017-09-01

    The VIMOS VLT Deep Survey (Le Fevre et al. 2013A&A...559A..14L) is a combination of 3 i-band magnitude limited surveys: Wide (17.5<=iAB<=22.5; 8.6deg2), Deep (17.5<=iAB<=24; 0.6deg2) and Ultra-Deep (23<=iAB<=24.75; 512arcmin2), that produced a total of 35526 spectroscopic galaxy redshifts between 0 and 6.7 (22434 in Wide, 12051 in Deep and 1041 in UDeep). We supplement spectra of the VIMOS VLT Deep Survey (VVDS) with newly-defined redshift reliability flags obtained from clustering (unsupervised classification in Machine Learning) a set of descriptors from individual zPDFs. In this paper, we exploit a set of 24519 spectra from the VVDS database. After computing zPDFs for each individual spectrum, a set of (8) descriptors of the zPDF are extracted to build a feature matrix X (dimension = 24519 rows, 8 columns). Then, we use a clustering (unsupervised algorithms in Machine Learning) algorithm to partition the feature space into distinct clusters (5 clusters: C1,C2,C3,C4,C5), each depicting a different level of confidence to associate with the measured redshift zMAP (Maximum-A-Posteriori estimate that corresponds to the maximum of the redshift PDF). The clustering results (C1,C2,C3,C4,C5) reported in the table are those used in the paper (Jamal et al, 2017) to present the new methodology of automating the zspec reliability assessment. In particular, we would like to point out that they were obtained from first tests conducted on the VVDS spectroscopic data (end of 2016). Therefore, the table does not depict immutable results (on-going improvements). Future updates of the VVDS redshift reliability flags can be expected. (1 data file).

  11. Definitive test of the Rh = ct universe using redshift drift

    NASA Astrophysics Data System (ADS)

    Melia, Fulvio

    2016-11-01

    The redshift drift of objects moving in the Hubble flow has been proposed as a powerful model-independent probe of the underlying cosmology. A measurement of the first- and second-order redshift derivatives appears to be well within the reach of upcoming surveys using as the Extremely Large Telescope high resolution spectrometer (ELT-HIRES) and the Square Kilometer Phase 2 Array (SKA). Here we show that an unambiguous prediction of the Rh = ct cosmology is zero drift at all redshifts, contrasting sharply with all other models in which the expansion rate is variable. For example, multiyear monitoring of sources at redshift z = 5 with the ELT-HIRES is expected to show a velocity shift Δv = -15 cm s-1 yr-1 due to the redshift drift in Planck ΛCDM, while Δv = 0 cm s-1 yr-1 in Rh = ct. With an anticipated ELT-HIRES measurement error of ±5 cm s-1 yr-1 after 5 yr, these upcoming redshift drift measurements might therefore be able to differentiate between Rh = ct and Planck ΛCDM at ˜3σ, assuming that any possible source evolution is well understood. Such a result would provide the strongest evidence yet in favour of the Rh = ct cosmology. With a 20-yr baseline, these observations could favour one of these models over the other at better than 5σ.

  12. Selection of High-Redshift QSOs using Subaru and CFHT Photometry

    NASA Astrophysics Data System (ADS)

    Jones, Victoria; White, Cameron; Hasinger, Guenther; Hu, Esther

    2018-01-01

    We present 31 high redshift (5.0 ≤ z ≤ 6.0) quasar candidates using photometry from the Subaru and Canada France Hawaii telescopes. These candidates were observed as part of the Hawaii EROsita Ecliptic Pole Survey (HEROES) of the North Ecliptic Pole in 2016 and again in 2017. The ongoing HEROES survey is gathering ground-based imaging data in preparation for the eROSITA X-Ray mission. For this selection, we utilized optical-near IR imaging data of a 36 square degree field in one narrowband and five broadband filters on Subaru’s Hyper Suprime-Cam (HSC). We also utilized less complete coverage of the field in the U and J bands from CFHT’s MegaCam and WIRCam respectively. Photometric redshifts were calculated using SED fitting techniques in comparison with stellar, quasar, and galaxy models. Selections were then made through extendedness cuts, color-color comparisons, and color-redshift plots. Follow-up spectroscopic observations of these candidates with the DEIMOS spectrograph on Keck and X-Ray observations with eROSITA in the coming years will allow for reliable classifications of our selected candidates.

  13. A cooperative approach among methods for photometric redshifts estimation: an application to KiDS data

    NASA Astrophysics Data System (ADS)

    Cavuoti, S.; Tortora, C.; Brescia, M.; Longo, G.; Radovich, M.; Napolitano, N. R.; Amaro, V.; Vellucci, C.; La Barbera, F.; Getman, F.; Grado, A.

    2017-04-01

    Photometric redshifts (photo-z) are fundamental in galaxy surveys to address different topics, from gravitational lensing and dark matter distribution to galaxy evolution. The Kilo Degree Survey (KiDS), I.e. the European Southern Observatory (ESO) public survey on the VLT Survey Telescope (VST), provides the unprecedented opportunity to exploit a large galaxy data set with an exceptional image quality and depth in the optical wavebands. Using a KiDS subset of about 25000 galaxies with measured spectroscopic redshifts, we have derived photo-z using (I) three different empirical methods based on supervised machine learning; (II) the Bayesian photometric redshift model (or BPZ); and (III) a classical spectral energy distribution (SED) template fitting procedure (LE PHARE). We confirm that, in the regions of the photometric parameter space properly sampled by the spectroscopic templates, machine learning methods provide better redshift estimates, with a lower scatter and a smaller fraction of outliers. SED fitting techniques, however, provide useful information on the galaxy spectral type, which can be effectively used to constrain systematic errors and to better characterize potential catastrophic outliers. Such classification is then used to specialize the training of regression machine learning models, by demonstrating that a hybrid approach, involving SED fitting and machine learning in a single collaborative framework, can be effectively used to improve the accuracy of photo-z estimates.

  14. The redshift distribution of cosmological samples: a forward modeling approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbel, Jörg; Kacprzak, Tomasz; Amara, Adam

    Determining the redshift distribution n ( z ) of galaxy samples is essential for several cosmological probes including weak lensing. For imaging surveys, this is usually done using photometric redshifts estimated on an object-by-object basis. We present a new approach for directly measuring the global n ( z ) of cosmological galaxy samples, including uncertainties, using forward modeling. Our method relies on image simulations produced using \\textsc(UFig) (Ultra Fast Image Generator) and on ABC (Approximate Bayesian Computation) within the MCCL (Monte-Carlo Control Loops) framework. The galaxy population is modeled using parametric forms for the luminosity functions, spectral energy distributions, sizesmore » and radial profiles of both blue and red galaxies. We apply exactly the same analysis to the real data and to the simulated images, which also include instrumental and observational effects. By adjusting the parameters of the simulations, we derive a set of acceptable models that are statistically consistent with the data. We then apply the same cuts to the simulations that were used to construct the target galaxy sample in the real data. The redshifts of the galaxies in the resulting simulated samples yield a set of n ( z ) distributions for the acceptable models. We demonstrate the method by determining n ( z ) for a cosmic shear like galaxy sample from the 4-band Subaru Suprime-Cam data in the COSMOS field. We also complement this imaging data with a spectroscopic calibration sample from the VVDS survey. We compare our resulting posterior n ( z ) distributions to the one derived from photometric redshifts estimated using 36 photometric bands in COSMOS and find good agreement. This offers good prospects for applying our approach to current and future large imaging surveys.« less

  15. Multipole analysis of redshift-space distortions around cosmic voids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamaus, Nico; Weller, Jochen; Cousinou, Marie-Claude

    We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h {sup −1}Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrainmore » the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β( z-bar =0.32)=0.599{sup +0.134}{sub −0.124} and β( z-bar =0.54)=0.457{sup +0.056}{sub −0.054}, with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at z-bar =0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15< z <0.33.« less

  16. The Discovery of a High-Redshift Quasar without Emission Lines from Sloan Digital Sky Survey Commissioning Data.

    PubMed

    Fan; Strauss; Gunn; Lupton; Carilli; Rupen; Schmidt; Moustakas; Davis; Annis; Bahcall; Brinkmann; Brunner; Csabai; Doi; Fukugita; Heckman; Hennessy; Hindsley; Ivezic; Knapp; Lamb; Munn; Pauls; Pier; Rockosi; Schneider; Szalay; Tucker; York

    1999-12-01

    We report observations of a luminous unresolved object at redshift z=4.62, with a featureless optical spectrum redward of the Lyalpha forest region, discovered from Sloan Digital Sky Survey commissioning data. The redshift is determined by the onset of the Lyalpha forest at lambda approximately 6800 Å and a Lyman limit system at lambda=5120 Å. A strong Lyalpha absorption system with weak metal absorption lines at z=4.58 is also identified in the spectrum. The object has a continuum absolute magnitude of -26.6 at 1450 Å in the rest frame (h0=0.5, q0=0.5) and therefore cannot be an ordinary galaxy. It shows no radio emission (the 3 sigma upper limit of its flux at 6 cm is 60 µJy), indicating a radio-to-optical flux ratio at least as small as that of the radio-weakest BL Lacertae objects known. It is also not linearly polarized to a 3 sigma upper limit of 4% in the observed I band. Therefore, it is either the most distant BL Lac object known to date, with very weak radio emission, or a new type of unbeamed quasar, whose broad emission line region is very weak or absent.

  17. THE STAR FORMATION HISTORY OF BCGs TO z = 1.8 FROM THE SpARCS/SWIRE SURVEY: EVIDENCE FOR SIGNIFICANT IN SITU STAR FORMATION AT HIGH REDSHIFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Tracy M. A.; Bonaventura, Nina; Muzzin, Adam

    2015-12-01

    We present the results of an MIPS-24 μm study of the brightest cluster galaxies (BCGs) of 535 high-redshift galaxy clusters. The clusters are drawn from the Spitzer Adaptation of the Red-Sequence Cluster Survey, which effectively provides a sample selected on total stellar mass, over 0.2 < z < 1.8 within the Spitzer Wide-Area Infrared Extragalactic (SWIRE) Survey fields. Twenty percent, or 106 clusters, have spectroscopically confirmed redshifts, and the rest have redshifts estimated from the color of their red sequence. A comparison with the public SWIRE images detects 125 individual BCGs at 24 μm ≳ 100 μJy, or 23%. Themore » luminosity-limited detection rate of BCGs in similar richness clusters (N{sub gal} > 12) increases rapidly with redshift. Above z ∼ 1, an average of ∼20% of the sample have 24 μm inferred infrared luminosities of L{sub IR} > 10{sup 12} L{sub ⊙}, while the fraction below z ∼ 1 exhibiting such luminosities is <1%. The Spitzer-IRAC colors indicate the bulk of the 24 μm detected population is predominantly powered by star formation, with only 7/125 galaxies lying within the color region inhabited by active galactic nuclei (AGNs). Simple arguments limit the star formation activity to several hundred million years and this may therefore be indicative of the timescale for AGN feedback to halt the star formation. Below redshift z ∼ 1, there is not enough star formation to significantly contribute to the overall stellar mass of the BCG population, and therefore BCG growth is likely dominated by dry mergers. Above z ∼ 1, however, the inferred star formation would double the stellar mass of the BCGs and is comparable to the mass assembly predicted by simulations through dry mergers. We cannot yet constrain the process driving the star formation for the overall sample, though a single object studied in detail is consistent with a gas-rich merger.« less

  18. Estimating Ω from Galaxy Redshifts: Linear Flow Distortions and Nonlinear Clustering

    NASA Astrophysics Data System (ADS)

    Bromley, B. C.; Warren, M. S.; Zurek, W. H.

    1997-02-01

    We propose a method to determine the cosmic mass density Ω from redshift-space distortions induced by large-scale flows in the presence of nonlinear clustering. Nonlinear structures in redshift space, such as fingers of God, can contaminate distortions from linear flows on scales as large as several times the small-scale pairwise velocity dispersion σv. Following Peacock & Dodds, we work in the Fourier domain and propose a model to describe the anisotropy in the redshift-space power spectrum; tests with high-resolution numerical data demonstrate that the model is robust for both mass and biased galaxy halos on translinear scales and above. On the basis of this model, we propose an estimator of the linear growth parameter β = Ω0.6/b, where b measures bias, derived from sampling functions that are tuned to eliminate distortions from nonlinear clustering. The measure is tested on the numerical data and found to recover the true value of β to within ~10%. An analysis of IRAS 1.2 Jy galaxies yields β=0.8+0.4-0.3 at a scale of 1000 km s-1, which is close to optimal given the shot noise and finite size of the survey. This measurement is consistent with dynamical estimates of β derived from both real-space and redshift-space information. The importance of the method presented here is that nonlinear clustering effects are removed to enable linear correlation anisotropy measurements on scales approaching the translinear regime. We discuss implications for analyses of forthcoming optical redshift surveys in which the dispersion is more than a factor of 2 greater than in the IRAS data.

  19. CANDELS/GOODS-S, CDFS, and ECDFS: photometric redshifts for normal and X-ray-detected galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Li-Ting; Salvato, Mara; Nandra, Kirpal

    2014-11-20

    We present photometric redshifts and associated probability distributions for all detected sources in the Extended Chandra Deep Field South (ECDFS). This work makes use of the most up-to-date data from the Cosmic Assembly Near-IR Deep Legacy Survey (CANDELS) and the Taiwan ECDFS Near-Infrared Survey (TENIS) in addition to other data. We also revisit multi-wavelength counterparts for published X-ray sources from the 4 Ms CDFS and 250 ks ECDFS surveys, finding reliable counterparts for 1207 out of 1259 sources (∼96%). Data used for photometric redshifts include intermediate-band photometry deblended using the TFIT method, which is used for the first time inmore » this work. Photometric redshifts for X-ray source counterparts are based on a new library of active galactic nuclei/galaxy hybrid templates appropriate for the faint X-ray population in the CDFS. Photometric redshift accuracy for normal galaxies is 0.010 and for X-ray sources is 0.014 and outlier fractions are 4% and 5.2%, respectively. The results within the CANDELS coverage area are even better, as demonstrated both by spectroscopic comparison and by galaxy-pair statistics. Intermediate-band photometry, even if shallow, is valuable when combined with deep broadband photometry. For best accuracy, templates must include emission lines.« less

  20. GAMMA-RAY BURST HOST GALAXY SURVEYS AT REDSHIFT z {approx}> 4: PROBES OF STAR FORMATION RATE AND COSMIC REIONIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trenti, Michele; Perna, Rosalba; Levesque, Emily M.

    2012-04-20

    Measuring the star formation rate (SFR) at high redshift is crucial for understanding cosmic reionization and galaxy formation. Two common complementary approaches are Lyman break galaxy (LBG) surveys for large samples and gamma-ray burst (GRB) observations for sensitivity to SFR in small galaxies. The z {approx}> 4 GRB-inferred SFR is higher than the LBG rate, but this difference is difficult to understand, as both methods rely on several modeling assumptions. Using a physically motivated galaxy luminosity function model, with star formation in dark matter halos with virial temperature T{sub vir} {approx}> 2 Multiplication-Sign 10{sup 4} K (M{sub DM} {approx}> 2more » Multiplication-Sign 10{sup 8} M{sub Sun }), we show that GRB- and LBG-derived SFRs are consistent if GRBs extend to faint galaxies (M{sub AB} {approx}< -11). To test star formation below the detection limit L{sub lim} {approx} 0.05L*{sub z=3} of LBG surveys, we propose to measure the fraction f{sub det}(L > L{sub lim}, z) of GRB hosts with L > L{sub lim}. This fraction quantifies the missing star formation fraction in LBG surveys, constraining the mass-suppression scale for galaxy formation, with weak dependence on modeling assumptions. Because f{sub det}(L > L{sub lim}, z) corresponds to the ratio of SFRs derived from LBG and GRB surveys, if these estimators are unbiased, measuring f{sub det}(L > L{sub lim}, z) also constrains the redshift evolution of the GRB production rate per unit mass of star formation. Our analysis predicts significant success for GRB host detections at z {approx} 5 with f{sub det}(L > L{sub lim}, z) {approx} 0.4, but rarer detections at z > 6. By analyzing the upper limits on host galaxy luminosities of six z > 5 GRBs from literature data, we infer that galaxies with M{sub AB} > -15 were present at z > 5 at 95% confidence, demonstrating the key role played by very faint galaxies during reionization.« less

  1. A search for moderate-redshift survivors from the population of luminous compact passive galaxies at high redshift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stockton, Alan; Shih, Hsin-Yi; Larson, Kirsten

    2014-01-10

    From a search of a ∼2400 deg{sup 2} region covered by both the Sloan Digital Sky Survey and UKIRT Infrared Deep Sky Survey databases, we have attempted to identify galaxies at z ∼ 0.5 that are consistent with their being essentially unmodified examples of the luminous passive compact galaxies found at z ∼ 2.5. After isolating good candidates via deeper imaging, we further refine the sample with Keck moderate-resolution spectroscopy and laser guide star adaptive-optics imaging. For four of the five galaxies that so far remain after passing through this sieve, we analyze plausible star-formation histories based on our spectramore » in order to identify galaxies that may have survived with little modification from the population formed at high redshift. We find two galaxies that are consistent with having formed ≳ 95% of their mass at z > 5. We attempt to estimate masses both from our stellar population determinations and from velocity dispersions. Given the high frequency of small axial ratios, both in our small sample and among samples found at high redshifts, we tentatively suggest that some of the more extreme examples of passive compact galaxies may have prolate morphologies.« less

  2. Bright compact bulges at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Sachdeva, Sonali; Saha, Kanak

    2018-07-01

    Studying bright (MB < -20), intermediate-redshift (0.4 < z< 1.0), disc-dominated (nB < 2.5) galaxies from Hubble Space Telescope/Advanced Camera for Surveys and Wide Field Camera 3 in Chandra Deep Field-South, in rest-frame B and I band, we found a new class of bulges that is brighter and more compact than ellipticals. We refer to them as `bright, compact bulges' (BCBs) - they resemble neither classical nor pseudo-bulges and constitute ˜12 per cent of the total bulge population at these redshifts. Examining free-bulge + disc decomposition sample and elliptical galaxy sample from Simard et al., we find that only ˜0.2 per cent of the bulges can be classified as BCBs in the local Universe. Bulge to total light ratio of disc galaxies with BCBs is (at ˜0.4) a factor of ˜2 and ˜4 larger than for those with classical and pseudo-bulges. BCBs are ˜2.5 and ˜6 times more massive than classical and pseudo-bulges. Although disc galaxies with BCBs host the most massive and dominant bulge type, their specific star formation rate is 1.5-2 times higher than other disc galaxies. This is contrary to the expectations that a massive compact bulge would lead to lower star formation rates. We speculate that our BCB host disc galaxies are descendant of massive, compact, and passive elliptical galaxies observed at higher redshifts. Those high-redshift ellipticals lack local counterparts and possibly evolved by acquiring a compact disc around them. The overall properties of BCBs support a picture of galaxy assembly in which younger discs are being accreted around massive pre-existing spheroids.

  3. Studying the Evolution of the Contamination of the Sunyaev-Zel'dovich effect due to High-redshift (sub-)mm Galaxies

    NASA Astrophysics Data System (ADS)

    Montana, Alfredo; Aretxaga, I.; Austermann, J.; Bock, J.; Chapin, E.; Gaztanaga, E.; Hughes, D.; Lowenthal, J.; Mauskopf, P.; Perera, T.; Scott, K.; Wilson, G.; Yun, M.

    2007-05-01

    We present simulations of the submillimetre/millimetre (sub-mm) sky to study the environment of luminous starburst galaxies, radio galaxies and AGN towards biased-regions (large-scale over-densities) in the high-redshift universe. Guided by recent results from AzTEC extragalactic surveys at 1.1mm, we describe the impact of this population of galaxies, that dominate the sub-mm extragalactic background, on the detectability of the Sunyaev-Zel'dovich effect (SZE) as a function of redshift. These results will be presented in the context of the next generation of wide-area surveys to identify high-redshift clusters via the SZE.

  4. The Rate of Core Collapse Supernovae to Redshift 2.5 from the CANDELS and CLASH Supernova Surveys

    NASA Astrophysics Data System (ADS)

    Strolger, Louis-Gregory; Dahlen, Tomas; Rodney, Steven A.; Graur, Or; Riess, Adam G.; McCully, Curtis; Ravindranath, Swara; Mobasher, Bahram; Shahady, A. Kristin

    2015-11-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey and Cluster Lensing And Supernova survey with Hubble multi-cycle treasury programs with the Hubble Space Telescope (HST) have provided new opportunities to probe the rate of core-collapse supernovae (CCSNe) at high redshift, now extending to z≈ 2.5. Here we use a sample of approximately 44 CCSNe to determine volumetric rates, RCC, in six redshift bins in the range 0.1\\lt z\\lt 2.5. Together with rates from our previous HST program, and rates from the literature, we trace a more complete history of {R}{CC}(z), with {R}{CC}=0.72+/- 0.06 yr-1 Mpc-3 10-4{h}703 at z\\lt 0.08, and increasing to {3.7}-1.6+3.1 yr-1 Mpc-3 10-4{h}703 to z≈ 2.0. The statistical precision in each bin is several factors better than than the systematic error, with significant contributions from host extinction, and average peak absolute magnitudes of the assumed luminosity functions for CCSN types. Assuming negligible time delays from stellar formation to explosion, we find these composite CCSN rates to be in excellent agreement with cosmic star formation rate density (SFRs) derived largely from dust-corrected rest-frame UV emission, with a scaling factor of k=0.0091+/- 0.0017 {M}⊙ -1, and inconsistent (to \\gt 95% confidence) with SFRs from IR luminous galaxies, or with SFR models that include simple evolution in the initial mass function over time. This scaling factor is expected if the fraction of the IMF contributing to CCSN progenitors is in the 8-50 M⊙ range. It is not supportive, however, of an upper mass limit for progenitors at \\lt 20 {M}⊙ .

  5. Evolution of star formation conditions from high-redshift to low-redshift

    NASA Astrophysics Data System (ADS)

    Shirazi, Maryam

    2015-08-01

    There are some hints indicating extreme interstellar medium (ISM) conditions at high redshift e.g., harder ionsing radiation fields and higher electron densities. By analysing the ionisation state of galaxies using their [OIII]5007/[OII]3727 line ratios we recently showed that star-forming galaxies at z~ 1. 5 -- 3. 5 have higher ionisation parameters and higher gas densities relative to that of local galaxies with similar global properties (Shirazi et al. 2014). This means the intrinsic properties e.g., the density of star forming regions at high redshift is different from what we observe in the local Universe. Based on the distribution of galaxies in the BPT diagram, it is proposed that the transition to nearby like conditions happen at 0. 8 < z < 1. 5 (Kewley et al 2013). However, we do not know how star-forming regions of the intermediate redshift galaxies are compared to that of high redshift galaxies that have higher gas fractions and are close to the peak of star formation activity in the Universe. We use the unique capability of the MUSE to indirectly trace the ISM conditions at those redshifts. We measure the spatially-resolved ionisation parameter using [OIII ]5007/ [O II]3727 ratio and we measure the spatially resolved gas density using the [OII] 3727,3729 doublet. We probe the spatial distributions of the ionisation parameter and gas density and search for systematic differences between high, intermediate and low redshift galaxies in terms of their global galaxy properties.

  6. Optical Variability and Classification of High Redshift (3.5 < z < 5.5) Quasars on SDSS Stripe 82

    NASA Astrophysics Data System (ADS)

    AlSayyad, Yusra; McGreer, Ian D.; Fan, Xiaohui; Connolly, Andrew J.; Ivezic, Zeljko; Becker, Andrew C.

    2015-01-01

    Recent studies have shown promise in combining optical colors with variability to efficiently select and estimate the redshifts of low- to mid-redshift quasars in upcoming ground-based time-domain surveys. We extend these studies to fainter and less abundant high-redshift quasars using light curves from 235 sq. deg. and 10 years of Stripe 82 imaging reprocessed with the prototype LSST data management stack. Sources are detected on the i-band co-adds (5σ: i ~ 24) but measured on the single-epoch (ugriz) images, generating complete and unbiased lightcurves for sources fainter than the single-epoch detection threshold. Using these forced photometry lightcurves, we explore optical variability characteristics of high redshift quasars and validate classification methods with particular attention to the low signal limit. In this low SNR limit, we quantify the degradation of the uncertainties and biases on variability parameters using simulated light curves. Completeness/efficiency and redshift accuracy are verified with new spectroscopic observations on the MMT and APO 3.5m. These preliminary results are part of a survey to measure the z~4 luminosity function for quasars (i < 23) on Stripe 82 and to validate purely photometric classification techniques for high redshift quasars in LSST.

  7. Galaxy Redshifts from Discrete Optimization of Correlation Functions

    NASA Astrophysics Data System (ADS)

    Lee, Benjamin C. G.; Budavári, Tamás; Basu, Amitabh; Rahman, Mubdi

    2016-12-01

    We propose a new method of constraining the redshifts of individual extragalactic sources based on celestial coordinates and their ensemble statistics. Techniques from integer linear programming (ILP) are utilized to optimize simultaneously for the angular two-point cross- and autocorrelation functions. Our novel formalism introduced here not only transforms the otherwise hopelessly expensive, brute-force combinatorial search into a linear system with integer constraints but also is readily implementable in off-the-shelf solvers. We adopt Gurobi, a commercial optimization solver, and use Python to build the cost function dynamically. The preliminary results on simulated data show potential for future applications to sky surveys by complementing and enhancing photometric redshift estimators. Our approach is the first application of ILP to astronomical analysis.

  8. The VIMOS Public Extragalactic Redshift Survey (VIPERS). The growth of structure at 0.5 < z < 1.2 from redshift-space distortions in the clustering of the PDR-2 final sample

    NASA Astrophysics Data System (ADS)

    Pezzotta, A.; de la Torre, S.; Bel, J.; Granett, B. R.; Guzzo, L.; Peacock, J. A.; Garilli, B.; Scodeggio, M.; Bolzonella, M.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Branchini, E.; Coupon, J.; De Lucia, G.; Koda, J.; Ilbert, O.; Mohammad, F.; Moutard, T.; Moscardini, L.

    2017-07-01

    We present measurements of the growth rate of cosmological structure from the modelling of the anisotropic galaxy clustering measured in the final data release of the VIPERS survey. The analysis is carried out in configuration space and based on measurements of the first two even multipole moments of the anisotropic galaxy auto-correlation function, in two redshift bins spanning the range 0.5 redshift-space distortions (RSD) and perform detailed tests of a variety of approaches against a set of realistic VIPERS-like mock realisations. This includes using novel fitting functions to describe the velocity divergence and density power spectra Pθθ and Pδθ that appear in RSD models. These tests show that we are able to measure the growth rate with negligible bias down to separations of 5 h-1 Mpc. Interestingly, the application to real data shows a weaker sensitivity to the details of non-linear RSD corrections compared to mock results. We obtain consistent values for the growth rate times the matter power spectrum normalisation parameter of fσ8 = 0.55 ± 0.12 and 0.40 ± 0.11 at effective redshifts of z = 0.6 and z = 0.86 respectively. These results are in agreement with standard cosmology predictions assuming Einstein gravity in a ΛCDM background. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National

  9. Lyman Break Analogs: Constraints on the Formation of Extreme Starbursts at Low and High Redshift

    NASA Technical Reports Server (NTRS)

    Goncalves, Thiago S.; Overzier, Roderik; Basu-Zych, Antara; Martin, D. Christopher

    2011-01-01

    Lyman Break Analogs (LBAs), characterized by high far-UV luminosities and surface brightnesses as detected by GALEX, are intensely star-forming galaxies in the low-redshift universe (z approximately equal to 0.2), with star formation rates reaching up to 50 times that of the Milky Way. These objects present metallicities, morphologies and other physical properties similar to higher redshift Lyman Break Galaxies (LBGs), motivating the detailed study of LBAs as local laboratories of this high-redshift galaxy population. We present results from our recent integral-field spectroscopy survey of LBAs with Keck/OSIRIS, which shows that these galaxies have the same nebular gas kinematic properties as high-redshift LBGs. We argue that such kinematic studies alone are not an appropriate diagnostic to rule out merger events as the trigger for the observed starburst. Comparison between the kinematic analysis and morphological indices from HST imaging illustrates the difficulties of properly identifying (minor or major) merger events, with no clear correlation between the results using either of the two methods. Artificial redshifting of our data indicates that this problem becomes even worse at high redshift due to surface brightness dimming and resolution loss. Whether mergers could generate the observed kinematic properties is strongly dependent on gas fractions in these galaxies. We present preliminary results of a CARMA survey for LBAs and discuss the implications of the inferred molecular gas masses for formation models.

  10. Photometric redshift requirements for lens galaxies in galaxy-galaxy lensing analyses

    NASA Astrophysics Data System (ADS)

    Nakajima, R.; Mandelbaum, R.; Seljak, U.; Cohn, J. D.; Reyes, R.; Cool, R.

    2012-03-01

    Weak gravitational lensing is a valuable probe of galaxy formation and cosmology. Here we quantify the effects of using photometric redshifts (photo-z) in galaxy-galaxy lensing, for both sources and lenses, both for the immediate goal of using galaxies with photo-z as lenses in the Sloan Digital Sky Survey (SDSS) and as a demonstration of methodology for large, upcoming weak lensing surveys that will by necessity be dominated by lens samples with photo-z. We calculate the bias in the lensing mass calibration as well as consequences for absolute magnitude (i.e. k-corrections) and stellar mass estimates for a large sample of SDSS Data Release 8 (DR8) galaxies. The redshifts are obtained with the template-based photo-z code ZEBRA on the SDSS DR8 ugriz photometry. We assemble and characterize the calibration samples (˜9000 spectroscopic redshifts from four surveys) to obtain photometric redshift errors and lensing biases corresponding to our full SDSS DR8 lens and source catalogues. Our tests of the calibration sample also highlight the impact of observing conditions in the imaging survey when the spectroscopic calibration covers a small fraction of its footprint; atypical imaging conditions in calibration fields can lead to incorrect conclusions regarding the photo-z of the full survey. For the SDSS DR8 catalogue, we find σΔz/(1+z)= 0.096 and 0.113 for the lens and source catalogues, with flux limits of r= 21 and 21.8, respectively. The photo-z bias and scatter is a function of photo-z and template types, which we exploit to apply photo-z quality cuts. By using photo-z rather than spectroscopy for lenses, dim blue galaxies and L* galaxies up to z˜ 0.4 can be used as lenses, thus expanding into unexplored areas of parameter space. We also explore the systematic uncertainty in the lensing signal calibration when using source photo-z, and both lens and source photo-z; given the size of existing training samples, we can constrain the lensing signal calibration (and

  11. High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.

    1996-01-01

    The report for this period includes three papers: 'Associated Absorption at Low and High Redshift'; 'Strong X-ray Absorption in a Broad Absorption Line Quasar: PHL5200'; and 'ASCA and ROSAT X-ray Spectra of High-Redshift Radio-Loud Quasars'. The first gives examples from both low and high redshift for combining information on absorbing material in active galactic nuclei from both x-ray and the UV. The second presents ASCA observations of the z = 1.98 prototype broad absorption line quasar (BALQSO): PHL 5200, detected with both the solid-state imaging spectrometers and the gas imaging spectometers. The third paper presents results on the x-ray properties of 9 high-redshift radio-loud quasars observed by ASCA and ROSAT, including ASCA observations of S5 0014+81 (z = 3.38) and S5 0836+71 (z = 2.17) and ROSAT observations of PKS 2126-158.

  12. THE XMM-NEWTON WIDE FIELD SURVEY IN THE COSMOS FIELD: REDSHIFT EVOLUTION OF AGN BIAS AND SUBDOMINANT ROLE OF MERGERS IN TRIGGERING MODERATE-LUMINOSITY AGNs AT REDSHIFTS UP TO 2.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allevato, V.; Hasinger, G.; Salvato, M.

    2011-08-01

    We present a study of the redshift evolution of the projected correlation function of 593 X-ray selected active galactic nuclei (AGNs) with I{sub AB} < 23 and spectroscopic redshifts z < 4, extracted from the 0.5-2 keV X-ray mosaic of the 2.13 deg{sup 2} XMM- Cosmic Evolution Survey (COSMOS). We introduce a method to estimate the average bias of the AGN sample and the mass of AGN hosting halos, solving the sample variance using the halo model and taking into account the growth of the structure over time. We find evidence of a redshift evolution of the bias factor formore » the total population of XMM-COSMOS AGNs from b-bar (z-bar =0.92)=2.30{+-}0.11 to b-bar (z-bar =1.94)=4.37{+-}0.27 with an average mass of the hosting dark matter (DM) halos log M{sub 0}(h{sup -1} M{sub sun}) {approx} 13.12 {+-} 0.12 that remains constant at all z < 2. Splitting our sample into broad optical line AGNs (BL), AGNs without broad optical lines (NL), and X-ray unobscured and obscured AGNs, we observe an increase of the bias with redshift in the range z-bar = 0.7-2.25 and z-bar = 0.6-1.5 which corresponds to a constant halo mass of log M{sub 0}(h{sup -1} M{sub sun}) {approx} 13.28 {+-} 0.07 and log M{sub 0}(h{sup -1} M{sub sun}) {approx} 13.00 {+-} 0.06 for BL/X-ray unobscured AGNs and NL/X-ray obscured AGNs, respectively. The theoretical models, which assume a quasar phase triggered by major mergers, cannot reproduce the high bias factors and DM halo masses found for X-ray selected BL AGNs with L{sub BOL} {approx} 2 x 10{sup 45} erg s{sup -1}. Our work extends up to z {approx} 2.2 the z {approx}< 1 statement that, for moderate-luminosity X-ray selected BL AGNs, the contribution from major mergers is outnumbered by other processes, possibly secular ones such as tidal disruptions or disk instabilities.« less

  13. A Practical Computational Method for the Anisotropic Redshift-Space 3-Point Correlation Function

    NASA Astrophysics Data System (ADS)

    Slepian, Zachary; Eisenstein, Daniel J.

    2018-04-01

    We present an algorithm enabling computation of the anisotropic redshift-space galaxy 3-point correlation function (3PCF) scaling as N2, with N the number of galaxies. Our previous work showed how to compute the isotropic 3PCF with this scaling by expanding the radially-binned density field around each galaxy in the survey into spherical harmonics and combining these coefficients to form multipole moments. The N2 scaling occurred because this approach never explicitly required the relative angle between a galaxy pair about the primary galaxy. Here we generalize this work, demonstrating that in the presence of azimuthally-symmetric anisotropy produced by redshift-space distortions (RSD) the 3PCF can be described by two triangle side lengths, two independent total angular momenta, and a spin. This basis for the anisotropic 3PCF allows its computation with negligible additional work over the isotropic 3PCF. We also present the covariance matrix of the anisotropic 3PCF measured in this basis. Our algorithm tracks the full 5-D redshift-space 3PCF, uses an accurate line of sight to each triplet, is exact in angle, and easily handles edge correction. It will enable use of the anisotropic large-scale 3PCF as a probe of RSD in current and upcoming large-scale redshift surveys.

  14. Optimized Clustering Estimators for BAO Measurements Accounting for Significant Redshift Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Ashley J.; Banik, Nilanjan; Avila, Santiago

    2017-05-15

    We determine an optimized clustering statistic to be used for galaxy samples with significant redshift uncertainty, such as those that rely on photometric redshifts. To do so, we study the BAO information content as a function of the orientation of galaxy clustering modes with respect to their angle to the line-of-sight (LOS). The clustering along the LOS, as observed in a redshift-space with significant redshift uncertainty, has contributions from clustering modes with a range of orientations with respect to the true LOS. For redshift uncertaintymore » $$\\sigma_z \\geq 0.02(1+z)$$ we find that while the BAO information is confined to transverse clustering modes in the true space, it is spread nearly evenly in the observed space. Thus, measuring clustering in terms of the projected separation (regardless of the LOS) is an efficient and nearly lossless compression of the signal for $$\\sigma_z \\geq 0.02(1+z)$$. For reduced redshift uncertainty, a more careful consideration is required. We then use more than 1700 realizations of galaxy simulations mimicking the Dark Energy Survey Year 1 sample to validate our analytic results and optimized analysis procedure. We find that using the correlation function binned in projected separation, we can achieve uncertainties that are within 10 per cent of of those predicted by Fisher matrix forecasts. We predict that DES Y1 should achieve a 5 per cent distance measurement using our optimized methods. We expect the results presented here to be important for any future BAO measurements made using photometric redshift data.« less

  15. Type-Ia Supernova Rates to Redshift 2.4 from Clash: The Cluster Lensing and Supernova Survey with Hubble

    NASA Technical Reports Server (NTRS)

    Graur, O.; Rodney, S. A.; Maoz, D.; Riess, A. G.; Jha, S. W.; Postman, M.; Dahlen, T.; Holoien, T. W.-S.; McCully, C.; Patel, B.; hide

    2014-01-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, approximately 13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z greater than 1.2.We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range z greater than 1.8 and less than 2.4. The results are consistent with the rates measured by the HST/ GOODS and Subaru Deep Field SN surveys.We model these results together with previous measurements at z less than 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of 1.00 (+0.06(0.09))/(-0.06(0.10)) (statistical) (+0.12/-0.08) (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at greater than 99% significance level.

  16. Type-Ia supernova rates to redshift 2.4 from clash: The cluster lensing and supernova survey with Hubble

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graur, O.; Rodney, S. A.; Riess, A. G.

    2014-03-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, ∼13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z > 1.2. We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit onmore » the SN Ia rate in the range 1.8 < z < 2.4. The results are consistent with the rates measured by the HST/GOODS and Subaru Deep Field SN surveys. We model these results together with previous measurements at z < 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of −1.00{sub −0.06(0.10)}{sup +0.06(0.09)} (statistical){sub −0.08}{sup +0.12} (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at >99% significance level.« less

  17. Luminosity and redshift dependence of the covering factor of active galactic nuclei viewed with WISE and Sloan digital sky survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toba, Y.; Matsuhara, H.; Oyabu, S.

    2014-06-10

    In this work, we investigate the dependence of the covering factor (CF) of active galactic nuclei (AGNs) on the mid-infrared (MIR) luminosity and the redshift. We constructed 12 and 22 μm luminosity functions (LFs) at 0.006 ≤z ≤ 0.3 using Wide-field Infrared Survey Explorer (WISE) data. Combining the WISE catalog with Sloan Digital Sky Survey (SDSS) spectroscopic data, we selected 223,982 galaxies at 12 μm and 25,721 galaxies at 22 μm for spectroscopic classification. We then identified 16,355 AGNs at 12 μm and 4683 AGNs at 22 μm by their optical emission lines and cataloged classifications in the SDSS. Followingmore » that, we estimated the CF as the fraction of Type 2 AGN in all AGNs whose MIR emissions are dominated by the active nucleus (not their host galaxies) based on their MIR colors. We found that the CF decreased with increasing MIR luminosity, regardless of the choice of Type 2 AGN classification criteria, and the CF did not change significantly with redshift for z ≤ 0.2. Furthermore, we carried out various tests to determine the influence of selection bias and confirmed that similar dependences exist, even when taking these uncertainties into account. The luminosity dependence of the CF can be explained by the receding torus model, but the 'modified' receding torus model gives a slightly better fit, as suggested by Simpson.« less

  18. Dusty Star Forming Galaxies and Supermassive Black Holes at High Redshifts: In- Situ Coevolution

    NASA Astrophysics Data System (ADS)

    Mancuso, Claudia

    2016-10-01

    We have exploited the continuity equation approach and the star-formation timescales derived from the observed 'main sequence' relation (Star Formation Rate vs Stellar Mass), to show that the observed high abundance of galaxies with stellar masses ≥ a few 10^10 M⊙ at redshift z ≥ 4 implies the existence of a galaxy population featuring large star formation rates (SFRs) ψ ≥ 10^2 M⊙ yr^-1 in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z ≤ 3 in the Far-InfraRed (FIR) band by the Herschel space observatory. We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z ∼10, elucidating that the number density at z ≤ 8 for SFRs ψ ≥ 30 M⊙ yr^-1 cannot be estimated relying on the UltraViolet (UV) luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from AzTEC-LABOCA, SCUBA-2 and ALMA-SPT surveys are already digging into it. We substantiate how an observational strategy based on a color preselection in the far-IR or (sub-)mm band with Herschel and SCUBA-2, supplemented by photometric data via on-source observations with ALMA, can allow to reconstruct the bright end of the SFR functions out to z ≤ 8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)mm observations by ALMA and NIKA2. The same could be done with radio observations by SKA and its precursors. In particular we have worked out predictions for the radio counts of star-forming galaxies down to nJy levels, along with redshift distributions down to the detection limits of the phase 1 Square Kilometer Array MID telescope (SKA1-MID) and of its precursors. To do that we

  19. TWO SNe Ia AT REDSHIFT ∼2: IMPROVED CLASSIFICATION AND REDSHIFT DETERMINATION WITH MEDIUM-BAND INFRARED IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodney, Steven A.; Riess, Adam G.; Jones, David O.

    2015-11-15

    We present two supernovae (SNe) discovered with the Hubble Space Telescope (HST) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, an HST multi-cycle treasury program. We classify both objects as SNe Ia and find redshifts of z = 1.80 ± 0.02 and 2.26{sup +0.02}{sub −0.10}, the latter of which is the highest redshift SN Ia yet seen. Using light curve fitting we determine luminosity distances and find that both objects are consistent with a standard ΛCDM cosmological model. These SNe were observed using the HST Wide Field Camera 3 infrared detector, with imaging in both wide- and medium-band filters.more » We demonstrate that the classification and redshift estimates are significantly improved by the inclusion of single-epoch medium-band observations. This medium-band imaging approximates a very low resolution spectrum (λ/Δλ ≲ 100) which can isolate broad spectral absorption features that differentiate SNe Ia from their most common core collapse cousins. This medium-band method is also insensitive to dust extinction and (unlike grism spectroscopy) it is not affected by contamination from the SN host galaxy or other nearby sources. As such, it can provide a more efficient—though less precise—alternative to IR spectroscopy for high-z SNe.« less

  20. High-redshift Luminous Red Galaxies clustering analysis in SDSS Stripe82

    NASA Astrophysics Data System (ADS)

    Nikoloudakis, N.

    2012-01-01

    We have measured the clustering of Luminous Red Galaxies in Stripe 82 using the angular correlation function. We have selected 130000 LRGs via colour cuts in R-I:I-K with the K band data coming from UKIDSS LAS. We have used the cross-correlation technique of Newman (2008) to establish the redshift distribution of the LRGs as a function of colour cut, cross-correlating the LRGs with SDSS QSOs, DEEP2 and VVDS galaxies. We also used the AUS LRG redshift survey to establish the n(z) at z<1. We then compare the w(theta) results to the results of Sawangwit et al (2010) from 3 samples of SDSS LRGs at lower redshift to measure the dependence of clustering on redshift and LRG luminosity. We have compared the results for luminosity-matched LRG samples with simple evolutionary models, such as those expected from long-lived, passive models for LRGs and for the HOD models of Wake et al (2009) and find that the long-lived model may be a poorer fit than at lower redshifts. We find some evidence for evolution in the LRG correlation function slope in that the 2-halo term appears to flatten in slope at z>1. We present arguments that this is not caused by systematics.

  1. Recovering the systemic redshift of galaxies from their Lyman alpha line profile

    NASA Astrophysics Data System (ADS)

    Verhamme, A.; Garel, T.; Ventou, E.; Contini, T.; Bouché, N.; Herenz, EC; Richard, J.; Bacon, R.; Schmidt, KB; Maseda, M.; Marino, RA; Brinchmann, J.; Cantalupo, S.; Caruana, J.; Clément, B.; Diener, C.; Drake, AB; Hashimoto, T.; Inami, H.; Kerutt, J.; Kollatschny, W.; Leclercq, F.; Patrício, V.; Schaye, J.; Wisotzki, L.; Zabl, J.

    2018-07-01

    The Lyman alpha (Ly α) line of Hydrogen is a prominent feature in the spectra of star-forming galaxies, usually redshifted by a few hundreds of km s-1 compared to the systemic redshift. This large offset hampers follow-up surveys, galaxy pair statistics, and correlations with quasar absorption lines when only Ly α is available. We propose diagnostics that can be used to recover the systemic redshift directly from the properties of the Ly α line profile. We use spectroscopic observations of Ly α emitters for which a precise measurement of the systemic redshift is available. Our sample contains 13 sources detected between z ≈ 3 and z ≈ 6 as part of various multi-unit spectroscopic explorer guaranteed time observations. We also include a compilation of spectroscopic Ly α data from the literature spanning a wide redshift range (z ≈ 0-8). First, restricting our analysis to double-peaked Ly α spectra, we find a tight correlation between the velocity offset of the red peak with respect to the systemic redshift, V_peak^red, and the separation of the peaks. Secondly, we find a correlation between V_peak^red and the full width at half-maximum of the Ly α line. Fitting formulas to estimate systemic redshifts of galaxies with an accuracy of ≤100 km s-1, when only the Ly α emission line is available, are given for the two methods.

  2. Recovering the systemic redshift of galaxies from their Lyman-alpha line profile

    NASA Astrophysics Data System (ADS)

    Verhamme, A.; Garel, T.; Ventou, E.; Contini, T.; Bouché, N.; Herenz, E. C.; Richard, J.; Bacon, R.; Schmidt, K. B.; Maseda, M.; Marino, R. A.; Brinchmann, J.; Cantalupo, S.; Caruana, J.; Clément, B.; Diener, C.; Drake, A. B.; Hashimoto, T.; Inami, H.; Kerutt, J.; Kollatschny, W.; Leclercq, F.; Patrício, V.; Schaye, J.; Wisotzki, L.; Zabl, J.

    2018-04-01

    The Lyman alpha (Lyα) line of Hydrogen is a prominent feature in the spectra of star-forming galaxies, usually redshifted by a few hundreds of km s-1 compared to the systemic redshift. This large offset hampers follow-up surveys, galaxy pair statistics and correlations with quasar absorption lines when only Lyα is available. We propose diagnostics that can be used to recover the systemic redshift directly from the properties of the Lyα line profile. We use spectroscopic observations of Lyman-Alpha Emitters (LAEs) for which a precise measurement of the systemic redshift is available. Our sample contains 13 sources detected between z ≈ 3 and z ≈ 6 as part of various Multi Unit Spectroscopic Explorer (MUSE) Guaranteed Time Observations (GTO). We also include a compilation of spectroscopic Lyα data from the literature spanning a wide redshift range (z ≈ 0 - 8). First, restricting our analysis to double-peaked Lyα spectra, we find a tight correlation between the velocity offset of the red peak with respect to the systemic redshift, V_peak^red, and the separation of the peaks. Secondly, we find a correlation between V_peak^red and the full width at half maximum of the Lyα line. Fitting formulas, to estimate systemic redshifts of galaxies with an accuracy of ≤100 km s-1 when only the Lyα emission line is available, are given for the two methods.

  3. DISSECTING PHOTOMETRIC REDSHIFT FOR ACTIVE GALACTIC NUCLEUS USING XMM- AND CHANDRA-COSMOS SAMPLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvato, M.; Hasinger, G.; Ilbert, O.

    2011-12-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library onmore » the bases of the source properties allowed us to reach an accuracy {sigma}{sub {Delta}z/(1+z{sub s{sub p{sub e{sub c)}}}}}{approx}0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg{sup 2} of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by {Delta}z > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H{sub AB} = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band.« less

  4. DISCOVERING BRIGHT QUASARS AT INTERMEDIATE REDSHIFTS BASED ON OPTICAL/NEAR-INFRARED COLORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xue-Bing; Zuo, Wenwen; Yang, Jinyi

    2013-10-01

    The identification of quasars at intermediate redshifts (2.2 < z < 3.5) has been inefficient in most previous quasar surveys since the optical colors of quasars are similar to those of stars. The near-IR K-band excess technique has been suggested to overcome this difficulty. Our recent study also proposed to use optical/near-IR colors for selecting z < 4 quasars. To verify the effectiveness of this method, we selected a list of 105 unidentified bright targets with i ≤ 18.5 from the quasar candidates of SDSS DR6 with both SDSS ugriz optical and UKIDSS YJHK near-IR photometric data, which satisfy ourmore » proposed Y – K/g – z criterion and have photometric redshifts between 2.2 and 3.5 estimated from the nine-band SDSS-UKIDSS data. We observed 43 targets with the BFOSC instrument on the 2.16 m optical telescope at Xinglong station of the National Astronomical Observatory of China in the spring of 2012. We spectroscopically identified 36 targets as quasars with redshifts between 2.1 and 3.4. The high success rate of discovering these quasars in the SDSS spectroscopic surveyed area further demonstrates the robustness of both the Y – K/g – z selection criterion and the photometric redshift estimation technique. We also used the above criterion to investigate the possible stellar contamination rate among the quasar candidates of SDSS DR6, and found that the rate is much higher when selecting 3 < z < 3.5 quasar candidates than when selecting lower redshift candidates (z < 2.2). The significant improvement in the photometric redshift estimation when using the nine-band SDSS-UKIDSS data over the five-band SDSS data is demonstrated and a catalog of 7727 unidentified quasar candidates in SDSS DR6 selected with optical/near-IR colors and having photometric redshifts between 2.2 and 3.5 is provided. We also tested the Y – K/g – z selection criterion with the recently released SDSS-III/DR9 quasar catalog and found that 96.2% of 17,999 DR9 quasars with UKIDSS Y

  5. A SURVEY OF METAL LINES AT HIGH-REDSHIFT. I. SDSS ABSORPTION LINE STUDIES- THE METHODOLOGY AND FIRST SEARCH RESULTS FOR O VI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, S.; Mathur, S.; Pieri, M.

    2010-09-15

    We report the results of a systematic search for signatures of metal lines in quasar spectra of the Sloan Digital Sky Survey (SDSS) data release 3 (DR3), focusing on finding intervening absorbers via detection of their O VI doublet. Here, we present the search algorithm and criteria for distinguishing candidates from spurious Ly{alpha} forest lines. In addition, we compare our findings with simulations of the Ly{alpha} forest in order to estimate the detectability of O VI doublets over various redshift intervals. We have obtained a sample of 1756 O VI doublet candidates with rest-frame equivalent width (EW) {>=}0.05 A inmore » 855 active galactic nuclei spectra (out of 3702 objects with redshifts in the accessible range for O VI detection). This sample is further subdivided into three groups according to the likelihood of being real and the potential for follow-up observation of the candidate. The group with the cleanest and most secure candidates is comprised of 145 candidates. Sixty-nine of these reside at a velocity separation {>=}5000 km s{sup -1} from the QSO and can therefore be classified tentatively as intervening absorbers. Most of these absorbers have not been picked up by earlier, automated QSO absorption line detection algorithms. This sample increases the number of known O VI absorbers at redshifts beyond z{sub abs{>=}} 2.7 substantially.« less

  6. A Survey of Metal Lines at High-redshift. I. SDSS Absorption Line Studies—the Methodology and First Search Results for O VI

    NASA Astrophysics Data System (ADS)

    Frank, S.; Mathur, S.; Pieri, M.; York, D. G.

    2010-09-01

    We report the results of a systematic search for signatures of metal lines in quasar spectra of the Sloan Digital Sky Survey (SDSS) data release 3 (DR3), focusing on finding intervening absorbers via detection of their O VI doublet. Here, we present the search algorithm and criteria for distinguishing candidates from spurious Lyα forest lines. In addition, we compare our findings with simulations of the Lyα forest in order to estimate the detectability of O VI doublets over various redshift intervals. We have obtained a sample of 1756 O VI doublet candidates with rest-frame equivalent width (EW) >=0.05 Å in 855 active galactic nuclei spectra (out of 3702 objects with redshifts in the accessible range for O VI detection). This sample is further subdivided into three groups according to the likelihood of being real and the potential for follow-up observation of the candidate. The group with the cleanest and most secure candidates is comprised of 145 candidates. Sixty-nine of these reside at a velocity separation >=5000 km s-1 from the QSO and can therefore be classified tentatively as intervening absorbers. Most of these absorbers have not been picked up by earlier, automated QSO absorption line detection algorithms. This sample increases the number of known O VI absorbers at redshifts beyond z abs>= 2.7 substantially.

  7. Surface Brightness Test and Plasma Redshift

    NASA Astrophysics Data System (ADS)

    Brynjolfsson, Ari

    2006-03-01

    The plasma redshift of photons in a hot sparse plasma follows from basic axioms of physics. It has no adjustable parameters (arXiv:astro-ph/0406437). Both the distance-redshift relation and the magnitude-redshift relation for supernovae and galaxies are well-defined functions of the average electron densities in intergalactic space. We have previously shown that the predictions of the magnitude-redshift relation in plasma- redshift cosmology match well the observed relations for the type Ia supernovae (SNe). No adjustable parameters such as the time variable ``dark energy'' and ``dark matter'' are needed. We have also shown that plasma redshift cosmology predicts well the intensity and black body spectrum of the cosmic microwave background (CMB). Plasma redshift explains also the spectrum below and above the 2.73 K black body CMB, and the X-ray background. In the following, we will show that the good observations and analyses of the relation between surface brightness and redshift for galaxies, as determined by Allan Sandage and Lori M. Lubin in 2001, are well predicted by the plasma redshift. All these relations are inconsistent with cosmic time dilation and the contemporary big-bang cosmology.

  8. Galaxy redshift surveys with sparse sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Chi-Ting; Wullstein, Philipp; Komatsu, Eiichiro

    2013-12-01

    Survey observations of the three-dimensional locations of galaxies are a powerful approach to measure the distribution of matter in the universe, which can be used to learn about the nature of dark energy, physics of inflation, neutrino masses, etc. A competitive survey, however, requires a large volume (e.g., V{sub survey} ∼ 10Gpc{sup 3}) to be covered, and thus tends to be expensive. A ''sparse sampling'' method offers a more affordable solution to this problem: within a survey footprint covering a given survey volume, V{sub survey}, we observe only a fraction of the volume. The distribution of observed regions should bemore » chosen such that their separation is smaller than the length scale corresponding to the wavenumber of interest. Then one can recover the power spectrum of galaxies with precision expected for a survey covering a volume of V{sub survey} (rather than the volume of the sum of observed regions) with the number density of galaxies given by the total number of observed galaxies divided by V{sub survey} (rather than the number density of galaxies within an observed region). We find that regularly-spaced sampling yields an unbiased power spectrum with no window function effect, and deviations from regularly-spaced sampling, which are unavoidable in realistic surveys, introduce calculable window function effects and increase the uncertainties of the recovered power spectrum. On the other hand, we show that the two-point correlation function (pair counting) is not affected by sparse sampling. While we discuss the sparse sampling method within the context of the forthcoming Hobby-Eberly Telescope Dark Energy Experiment, the method is general and can be applied to other galaxy surveys.« less

  9. VizieR Online Data Catalog: Redshift survey of ALMA-identified SMGs in ECDFS (Danielson+, 2017)

    NASA Astrophysics Data System (ADS)

    Danielson, A. L. R.; Swinbank, A. M.; Smail, I.; Simpson, J. M.; Casey, C. M.; Chapman, S. C.; da Cunha, E.; Hodge, J. A.; Walter, F.; Wardlow, J. L.; Alexander, D. M.; Brandt, W. N.; De Breuck, C.; Coppin, K. E. K.; Dannerbauer, H.; Dickinson, M.; Edge, A. C.; Gawiser, E.; Ivison, R. J.; Karim, A.; Kovacs, A.; Lutz, D.; Menten, K.; Schinnerer, E.; Weiss, A.; van der Werf, P.

    2017-11-01

    The 870um LESS survey (Weiss+ 2009, J/ApJ/707/1201) was undertaken using the LABOCA camera on APEX, covering an area of 0.5°x0.5° centered on the ECDFS. Follow-up observations of the LESS sources were carried out with ALMA (Hodge+ 2013, J/ApJ/768/91). In summary, observations for each source were taken between 2011 October and November in the Cycle 0 Project #2011.1.00294.S. To search for spectroscopic redshifts, we initiated an observing campaign using the the FOcal Reducer and low dispersion Spectrograph (FORS2) and VIsible MultiObject Spectrograph (VIMOS) on VLT (program 183.A-0666), but to supplement these observations, we also obtained observations with XSHOOTER on VLT (program 090.A-0927(A) from 2012 December 7-10), the Gemini Near-Infrared Spectrograph (GNIRS; program GN-2012B-Q-90) and the Multi-Object Spectrometer for Infra-Red Exploration (MOSFIRE) on the Keck I telescope (2012B_H251M, 2013BU039M, and 2013BN114M), all of which cover the near-infrared. As part of a spectroscopic campaign targeting Herschel-selected galaxies in the ECDFS, ALESS submillimeter galaxies (SMGs) were included on DEep Imaging Multi-Object Spectrograph (DEIMOS) slit masks on Keck II (program 2012B_H251). In total, we observed 109 out of the 131 ALESS SMGs in the combined main and supp samples. Spectroscopic redshifts for two of our SMGs, ALESS61.1 and ALESS65.1, were determined from serendipitous detections of the [CII]λ158um line in the ALMA band. See section 2.7. (2 data files).

  10. The large bright quasar survey. 6: Quasar catalog and survey parameters

    NASA Astrophysics Data System (ADS)

    Hewett, Paul C.; Foltz, Craig B.; Chaffee, Frederic H.

    1995-04-01

    Positions, redshifts, and magnitudes for the 1055 quasars in the Large Bright Quasar Survey (LBQS) are presented in a single catalog. Celestial positions have been derived using the PPM catalog to provide an improved reference frame. J2000.0 coordinates are given together with improved b1950.0 positions. Redshifts calculated via cross correlation with a high signal-to-noise ratio composite quasar spectrum are included and the small number of typographic and redshift misidentifications in the discovery papers are corrected. Spectra of the 12 quasars added to the sample since the publication of the discovery papers are included. Discriptions of the plate material, magnitude calibration, quasar candidate selection procedures, and the identification spectroscopy are given. Calculation of the effective area of the survey for the 1055 quasars comprising the well-defined LBQS sample specified in detail. Number-redshift and number-magnitude relations for the quasars are derived and the strengths and limitastions of the LBSQ sample summarized. Comparison with existing surveys is made and a qualitative assessment of the effectiveness of the LBQS undertaken. Positions, magnitudes, and optical spectra of the eight objects (less than 1%) in the survey that remain unidentified are also presented.

  11. Discovery of Compact Quiescent Galaxies at Intermediate Redshifts in DEEP2

    NASA Astrophysics Data System (ADS)

    Blancato, Kirsten; Chilingarian, Igor; Damjanov, Ivana; Moran, Sean; Katkov, Ivan

    2015-01-01

    Compact quiescent galaxies in the redshift range 0.6 < z < 1.1 are the missing link needed to complete the evolutionary histories of these objects from the high redshift z ≥ 2 Universe to the local z ~ 0 Universe. We identify the first intermediate redshift compact quiescent galaxies by searching a sample of 1,089 objects in the DEEP2 Redshift Survey that have multi-band photometry, spectral fitting, and readily available structural parameters. We find 27 compact quiescent candidates between z = 0.6 and z = 1.1 where each candidate galaxy has archival Hubble Space Telescope (HST) imaging and is visually confirmed to be early-type. The candidates have half-light radii ranging from 0.83 < Re,c < 7.14 kpc (median Re,c = 1.77 kpc) and virial masses ranging from 2.2E10 < Mdyn < 5.6E11 Msun (median Mdyn = 7.7E10 Msun). Of our 27 compact quiescent candidates, 13 are truly compact with sizes at most half of the size of their z ~ 0 counterparts of the same mass. In addition to their structural properties bridging the gap between their high and low redshift counterparts, our sample of intermediate redshift quiescent galaxies span a large range of ages but is drawn from two distinct epochs of galaxy formation: formation at z > 2 which suggests these objects may be the relics of the observed high redshift compact galaxies and formation at z ≤ 2 which suggests there is an additional population of more recently formed massive compact galaxies. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  12. Optimized clustering estimators for BAO measurements accounting for significant redshift uncertainty

    NASA Astrophysics Data System (ADS)

    Ross, Ashley J.; Banik, Nilanjan; Avila, Santiago; Percival, Will J.; Dodelson, Scott; Garcia-Bellido, Juan; Crocce, Martin; Elvin-Poole, Jack; Giannantonio, Tommaso; Manera, Marc; Sevilla-Noarbe, Ignacio

    2017-12-01

    We determine an optimized clustering statistic to be used for galaxy samples with significant redshift uncertainty, such as those that rely on photometric redshifts. To do so, we study the baryon acoustic oscillation (BAO) information content as a function of the orientation of galaxy clustering modes with respect to their angle to the line of sight (LOS). The clustering along the LOS, as observed in a redshift-space with significant redshift uncertainty, has contributions from clustering modes with a range of orientations with respect to the true LOS. For redshift uncertainty σz ≥ 0.02(1 + z), we find that while the BAO information is confined to transverse clustering modes in the true space, it is spread nearly evenly in the observed space. Thus, measuring clustering in terms of the projected separation (regardless of the LOS) is an efficient and nearly lossless compression of the signal for σz ≥ 0.02(1 + z). For reduced redshift uncertainty, a more careful consideration is required. We then use more than 1700 realizations (combining two separate sets) of galaxy simulations mimicking the Dark Energy Survey Year 1 (DES Y1) sample to validate our analytic results and optimized analysis procedure. We find that using the correlation function binned in projected separation, we can achieve uncertainties that are within 10 per cent of those predicted by Fisher matrix forecasts. We predict that DES Y1 should achieve a 5 per cent distance measurement using our optimized methods. We expect the results presented here to be important for any future BAO measurements made using photometric redshift data.

  13. Likelihood reconstruction method of real-space density and velocity power spectra from a redshift galaxy survey

    NASA Astrophysics Data System (ADS)

    Tang, Jiayu; Kayo, Issha; Takada, Masahiro

    2011-09-01

    We develop a maximum likelihood based method of reconstructing the band powers of the density and velocity power spectra at each wavenumber bin from the measured clustering features of galaxies in redshift space, including marginalization over uncertainties inherent in the small-scale, non-linear redshift distortion, the Fingers-of-God (FoG) effect. The reconstruction can be done assuming that the density and velocity power spectra depend on the redshift-space power spectrum having different angular modulations of μ with μ2n (n= 0, 1, 2) and that the model FoG effect is given as a multiplicative function in the redshift-space spectrum. By using N-body simulations and the halo catalogues, we test our method by comparing the reconstructed power spectra with the spectra directly measured from the simulations. For the spectrum of μ0 or equivalently the density power spectrum Pδδ(k), our method recovers the amplitudes to an accuracy of a few per cent up to k≃ 0.3 h Mpc-1 for both dark matter and haloes. For the power spectrum of μ2, which is equivalent to the density-velocity power spectrum Pδθ(k) in the linear regime, our method can recover, within the statistical errors, the input power spectrum for dark matter up to k≃ 0.2 h Mpc-1 and at both redshifts z= 0 and 1, if the adequate FoG model being marginalized over is employed. However, for the halo spectrum that is least affected by the FoG effect, the reconstructed spectrum shows greater amplitudes than the spectrum Pδθ(k) inferred from the simulations over a range of wavenumbers 0.05 ≤k≤ 0.3 h Mpc-1. We argue that the disagreement may be ascribed to a non-linearity effect that arises from the cross-bispectra of density and velocity perturbations. Using the perturbation theory and assuming Einstein gravity as in simulations, we derive the non-linear correction term to the redshift-space spectrum, and find that the leading-order correction term is proportional to μ2 and increases the μ2-power

  14. Galaxy Merger Candidates in High-redshift Cluster Environments

    NASA Astrophysics Data System (ADS)

    Delahaye, A. G.; Webb, T. M. A.; Nantais, J.; DeGroot, A.; Wilson, G.; Muzzin, A.; Yee, H. K. C.; Foltz, R.; Noble, A. G.; Demarco, R.; Tudorica, A.; Cooper, M. C.; Lidman, C.; Perlmutter, S.; Hayden, B.; Boone, K.; Surace, J.

    2017-07-01

    We compile a sample of spectroscopically and photometrically selected cluster galaxies from four high-redshift galaxy clusters (1.59< z< 1.71) from the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS), and a comparison field sample selected from the UKIDSS Deep Survey. Using near-infrared imaging from the Hubble Space Telescope, we classify potential mergers involving massive ({M}* ≥slant 3× {10}10 {M}⊙ ) cluster members by eye, based on morphological properties such as tidal distortions, double nuclei, and projected near neighbors within 20 kpc. With a catalog of 23 spectroscopic and 32 photometric massive cluster members across the four clusters and 65 spectroscopic and 26 photometric comparable field galaxies, we find that after taking into account contamination from interlopers, {11.0}-5.6+7.0 % of the cluster members are involved in potential mergers, compared to {24.7}-4.6+5.3 % of the field galaxies. We see no evidence of merger enhancement in the central cluster environment with respect to the field, suggesting that galaxy-galaxy merging is not a stronger source of galaxy evolution in cluster environments compared to the field at these redshifts.

  15. Real- and redshift-space halo clustering in f(R) cosmologies

    NASA Astrophysics Data System (ADS)

    Arnalte-Mur, Pablo; Hellwing, Wojciech A.; Norberg, Peder

    2017-05-01

    We present two-point correlation function statistics of the mass and the haloes in the chameleon f(R) modified gravity scenario using a series of large-volume N-body simulations. Three distinct variations of f(R) are considered (F4, F5 and F6) and compared to a fiducial Λ cold dark matter (ΛCDM) model in the redshift range z ∈ [0, 1]. We find that the matter clustering is indistinguishable for all models except for F4, which shows a significantly steeper slope. The ratio of the redshift- to real-space correlation function at scales >20 h-1 Mpc agrees with the linear General Relativity (GR) Kaiser formula for the viable f(R) models considered. We consider three halo populations characterized by spatial abundances comparable to that of luminous red galaxies and galaxy clusters. The redshift-space halo correlation functions of F4 and F5 deviate significantly from ΛCDM at intermediate and high redshift, as the f(R) halo bias is smaller than or equal to that of the ΛCDM case. Finally, we introduce a new model-independent clustering statistic to distinguish f(R) from GR: the relative halo clustering ratio - R. The sampling required to adequately reduce the scatter in R will be available with the advent of the next-generation galaxy redshift surveys. This will foster a prospective avenue to obtain largely model-independent cosmological constraints on this class of modified gravity models.

  16. An automated algorithm for determining photometric redshifts of quasars

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Zhang, Yanxia; Zhao, Yongheng

    2010-07-01

    We employ k-nearest neighbor algorithm (KNN) for photometric redshift measurement of quasars with the Fifth Data Release (DR5) of the Sloan Digital Sky Survey (SDSS). KNN is an instance learning algorithm where the result of new instance query is predicted based on the closest training samples. The regressor do not use any model to fit and only based on memory. Given a query quasar, we find the known quasars or (training points) closest to the query point, whose redshift value is simply assigned to be the average of the values of its k nearest neighbors. Three kinds of different colors (PSF, Model or Fiber) and spectral redshifts are used as input parameters, separatively. The combination of the three kinds of colors is also taken as input. The experimental results indicate that the best input pattern is PSF + Model + Fiber colors in all experiments. With this pattern, 59.24%, 77.34% and 84.68% of photometric redshifts are obtained within ▵z < 0.1, 0.2 and 0.3, respectively. If only using one kind of colors as input, the model colors achieve the best performance. However, when using two kinds of colors, the best result is achieved by PSF + Fiber colors. In addition, nearest neighbor method (k = 1) shows its superiority compared to KNN (k ≠ 1) for the given sample.

  17. Morphology and Structure of High-redshift Massive Galaxies in the CANDELS Fields

    NASA Astrophysics Data System (ADS)

    Guan-wen, Fang; Ze-sen, Lin; Xu, Kong

    2018-01-01

    Using the multi-band photometric data of all five CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) fields and the near-infrared (F125W and F160W) high-resolution images of HST WFC3 (Hubble Space Telescope Wide Field Camera 3), a quantitative study of morphology and structure of mass-selected galaxies is presented. The sample includes 8002 galaxies with a redshift 1 < z < 3 and stellar mass M*> 1010M⊙. Based on the Convolutional Neural Network (ConvNet) criteria, we classify the sample galaxies into SPHeroids (SPH), Early-Type Disks (ETD), Late-Type Disks (LTD), and IRRegulars (IRR) in different redshift bins. The findings indicate that the galaxy morphology and structure evolve with redshift up to z ∼ 3, from irregular galaxies in the high-redshift universe to the formation of the Hubble sequence dominated by disks and spheroids. For the same redshift interval, the median values of effective radii (re) of different morphological types are in a descending order: IRR, LTD, ETD, and SPH. But for the Sérsic index (n), the order is reversed (SPH, ETD, LTD, and IRR). In the meantime, the evolution of galaxy size (re) with the redshift is explored for the galaxies of different morphological types, and it is confirmed that their size will enlarge with time. However, such a phenomenon is not found in the relations between the redshift (1 < z < 3) and the mean axis ratio (b/a), as well as the Sérsic index (n).

  18. Deep learning approach for classifying, detecting and predicting photometric redshifts of quasars in the Sloan Digital Sky Survey stripe 82

    NASA Astrophysics Data System (ADS)

    Pasquet-Itam, J.; Pasquet, J.

    2018-04-01

    We have applied a convolutional neural network (CNN) to classify and detect quasars in the Sloan Digital Sky Survey Stripe 82 and also to predict the photometric redshifts of quasars. The network takes the variability of objects into account by converting light curves into images. The width of the images, noted w, corresponds to the five magnitudes ugriz and the height of the images, noted h, represents the date of the observation. The CNN provides good results since its precision is 0.988 for a recall of 0.90, compared to a precision of 0.985 for the same recall with a random forest classifier. Moreover 175 new quasar candidates are found with the CNN considering a fixed recall of 0.97. The combination of probabilities given by the CNN and the random forest makes good performance even better with a precision of 0.99 for a recall of 0.90. For the redshift predictions, the CNN presents excellent results which are higher than those obtained with a feature extraction step and different classifiers (a K-nearest-neighbors, a support vector machine, a random forest and a Gaussian process classifier). Indeed, the accuracy of the CNN within |Δz| < 0.1 can reach 78.09%, within |Δz| < 0.2 reaches 86.15%, within |Δz| < 0.3 reaches 91.2% and the value of root mean square (rms) is 0.359. The performance of the KNN decreases for the three |Δz| regions, since within the accuracy of |Δz| < 0.1, |Δz| < 0.2, and |Δz| < 0.3 is 73.72%, 82.46%, and 90.09% respectively, and the value of rms amounts to 0.395. So the CNN successfully reduces the dispersion and the catastrophic redshifts of quasars. This new method is very promising for the future of big databases such as the Large Synoptic Survey Telescope. A table of the candidates is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A97

  19. Structure and substructure analysis of DAFT/FADA galaxy clusters in the [0.4–0.9] redshift range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guennou, L.; et al.

    2014-01-17

    Context. The DAFT/FADA survey is based on the study of ~90 rich(masses found in the literature >2 x 10^14 M_⊙)and moderately distant clusters (redshifts 0.4 < z < 0.9), all withHST imaging data available. This survey has two main objectives: to constrain dark energy(DE) using weak lensing tomography on galaxy clusters and to build a database (deepmulti-band imaging allowing photometric redshift estimates, spectroscopic data, X-raydata) of rich distant clusters to study their properties.

  20. Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taruya, Atsushi; Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568; Nishimichi, Takahiro

    2010-09-15

    We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopolemore » and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2%, and the growth-rate parameter by {approx}5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.« less

  1. GPZ: non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts

    NASA Astrophysics Data System (ADS)

    Almosallam, Ibrahim A.; Jarvis, Matt J.; Roberts, Stephen J.

    2016-10-01

    The next generation of cosmology experiments will be required to use photometric redshifts rather than spectroscopic redshifts. Obtaining accurate and well-characterized photometric redshift distributions is therefore critical for Euclid, the Large Synoptic Survey Telescope and the Square Kilometre Array. However, determining accurate variance predictions alongside single point estimates is crucial, as they can be used to optimize the sample of galaxies for the specific experiment (e.g. weak lensing, baryon acoustic oscillations, supernovae), trading off between completeness and reliability in the galaxy sample. The various sources of uncertainty in measurements of the photometry and redshifts put a lower bound on the accuracy that any model can hope to achieve. The intrinsic uncertainty associated with estimates is often non-uniform and input-dependent, commonly known in statistics as heteroscedastic noise. However, existing approaches are susceptible to outliers and do not take into account variance induced by non-uniform data density and in most cases require manual tuning of many parameters. In this paper, we present a Bayesian machine learning approach that jointly optimizes the model with respect to both the predictive mean and variance we refer to as Gaussian processes for photometric redshifts (GPZ). The predictive variance of the model takes into account both the variance due to data density and photometric noise. Using the Sloan Digital Sky Survey (SDSS) DR12 data, we show that our approach substantially outperforms other machine learning methods for photo-z estimation and their associated variance, such as TPZ and ANNZ2. We provide a MATLAB and PYTHON implementations that are available to download at https://github.com/OxfordML/GPz.

  2. Mass and Environment as Drivers of Galaxy Evolution in SDSS and zCOSMOS and the Origin of the Schechter Function

    NASA Astrophysics Data System (ADS)

    Peng, Ying-jie; Lilly, Simon J.; Kovač, Katarina; Bolzonella, Micol; Pozzetti, Lucia; Renzini, Alvio; Zamorani, Gianni; Ilbert, Olivier; Knobel, Christian; Iovino, Angela; Maier, Christian; Cucciati, Olga; Tasca, Lidia; Carollo, C. Marcella; Silverman, John; Kampczyk, Pawel; de Ravel, Loic; Sanders, David; Scoville, Nicholas; Contini, Thierry; Mainieri, Vincenzo; Scodeggio, Marco; Kneib, Jean-Paul; Le Fèvre, Olivier; Bardelli, Sandro; Bongiorno, Angela; Caputi, Karina; Coppa, Graziano; de la Torre, Sylvain; Franzetti, Paolo; Garilli, Bianca; Lamareille, Fabrice; Le Borgne, Jean-Francois; Le Brun, Vincent; Mignoli, Marco; Perez Montero, Enrique; Pello, Roser; Ricciardelli, Elena; Tanaka, Masayuki; Tresse, Laurence; Vergani, Daniela; Welikala, Niraj; Zucca, Elena; Oesch, Pascal; Abbas, Ummi; Barnes, Luke; Bordoloi, Rongmon; Bottini, Dario; Cappi, Alberto; Cassata, Paolo; Cimatti, Andrea; Fumana, Marco; Hasinger, Gunther; Koekemoer, Anton; Leauthaud, Alexei; Maccagni, Dario; Marinoni, Christian; McCracken, Henry; Memeo, Pierdomenico; Meneux, Baptiste; Nair, Preethi; Porciani, Cristiano; Presotto, Valentina; Scaramella, Roberto

    2010-09-01

    We explore the simple inter-relationships between mass, star formation rate, and environment in the SDSS, zCOSMOS, and other deep surveys. We take a purely empirical approach in identifying those features of galaxy evolution that are demanded by the data and then explore the analytic consequences of these. We show that the differential effects of mass and environment are completely separable to z ~ 1, leading to the idea of two distinct processes of "mass quenching" and "environment quenching." The effect of environment quenching, at fixed over-density, evidently does not change with epoch to z ~ 1 in zCOSMOS, suggesting that the environment quenching occurs as large-scale structure develops in the universe, probably through the cessation of star formation in 30%-70% of satellite galaxies. In contrast, mass quenching appears to be a more dynamic process, governed by a quenching rate. We show that the observed constancy of the Schechter M* and αs for star-forming galaxies demands that the quenching of galaxies around and above M* must follow a rate that is statistically proportional to their star formation rates (or closely mimic such a dependence). We then postulate that this simple mass-quenching law in fact holds over a much broader range of stellar mass (2 dex) and cosmic time. We show that the combination of these two quenching processes, plus some additional quenching due to merging naturally produces (1) a quasi-static single Schechter mass function for star-forming galaxies with an exponential cutoff at a value M* that is set uniquely by the constant of proportionality between the star formation and mass quenching rates and (2) a double Schechter function for passive galaxies with two components. The dominant component (at high masses) is produced by mass quenching and has exactly the same M* as the star-forming galaxies but a faint end slope that differs by Δαs ~ 1. The other component is produced by environment effects and has the same M* and αs as the

  3. A distortion of very-high-redshift galaxy number counts by gravitational lensing.

    PubMed

    Wyithe, J Stuart B; Yan, Haojing; Windhorst, Rogier A; Mao, Shude

    2011-01-13

    The observed number counts of high-redshift galaxy candidates have been used to build up a statistical description of star-forming activity at redshift z ≳ 7, when galaxies reionized the Universe. Standard models predict that a high incidence of gravitational lensing will probably distort measurements of flux and number of these earliest galaxies. The raw probability of this happening has been estimated to be ∼0.5 per cent (refs 11, 12), but can be larger owing to observational biases. Here we report that gravitational lensing is likely to dominate the observed properties of galaxies with redshifts of z ≳ 12, when the instrumental limiting magnitude is expected to be brighter than the characteristic magnitude of the galaxy sample. The number counts could be modified by an order of magnitude, with most galaxies being part of multiply imaged systems, located less than 1 arcsec from brighter foreground galaxies at z ≈ 2. This lens-induced association of high-redshift and foreground galaxies has perhaps already been observed among a sample of galaxy candidates identified at z ≈ 10.6. Future surveys will need to be designed to account for a significant gravitational lensing bias in high-redshift galaxy samples.

  4. The Abundance of Low-Luminosity Lyα Emitters at High Redshift

    NASA Astrophysics Data System (ADS)

    Santos, Michael R.; Ellis, Richard S.; Kneib, Jean-Paul; Richard, Johan; Kuijken, Konrad

    2004-05-01

    We derive the luminosity function of high-redshift Lyα-emitting sources from a deep, blind, spectroscopic survey that utilized strong-lensing magnification by intermediate-redshift clusters of galaxies. We observed carefully selected regions near nine clusters, consistent with magnification factors generally greater than 10 for the redshift range 4.5survey takes into account our varying intrinsic Lyα line sensitivity as a function of wavelength and sky position. By virtue of the strong magnification factor, we provide constraints on the Lyα luminosity function to unprecedented limits of 1040 ergs s -1, corresponding to a star formation rate of 0.01 Msolar yr-1. Our cumulative z~=5 Lyα luminosity function is consistent with a power-law form n(>L)~L-1 over 1041-1042.5 ergs s-1. When combined with the results of other surveys, limited at higher luminosities, our results suggest evidence for the suppression of star formation in low-mass halos, as predicted in popular models of galaxy formation. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  5. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: testing gravity with redshift space distortions using the power spectrum multipoles

    NASA Astrophysics Data System (ADS)

    Beutler, Florian; Saito, Shun; Seo, Hee-Jong; Brinkmann, Jon; Dawson, Kyle S.; Eisenstein, Daniel J.; Font-Ribera, Andreu; Ho, Shirley; McBride, Cameron K.; Montesano, Francesco; Percival, Will J.; Ross, Ashley J.; Ross, Nicholas P.; Samushia, Lado; Schlegel, David J.; Sánchez, Ariel G.; Tinker, Jeremy L.; Weaver, Benjamin A.

    2014-09-01

    We analyse the anisotropic clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS Data Release 11 (DR11) sample, which consists of 690 827 galaxies in the redshift range 0.43 < z < 0.7 and has a sky coverage of 8498 deg2. We perform our analysis in Fourier space using a power spectrum estimator suggested by Yamamoto et al. We measure the multipole power spectra in a self-consistent manner for the first time in the sense that we provide a proper way to treat the survey window function and the integral constraint, without the commonly used assumption of an isotropic power spectrum and without the need to split the survey into subregions. The main cosmological signals exploited in our analysis are the baryon acoustic oscillations and the signal of redshift space distortions, both of which are distorted by the Alcock-Paczynski effect. Together, these signals allow us to constrain the distance ratio DV(zeff)/rs(zd) = 13.89 ± 0.18, the Alcock-Paczynski parameter FAP(zeff) = 0.679 ± 0.031 and the growth rate of structure f (zeff)σ8(zeff) = 0.419 ± 0.044 at the effective redshift zeff = 0.57. We emphasize that our constraints are robust against possible systematic uncertainties. In order to ensure this, we perform a detailed systematics study against CMASS mock galaxy catalogues and N-body simulations. We find that such systematics will lead to 3.1 per cent uncertainty for fσ8 if we limit our fitting range to k = 0.01-0.20 h Mpc-1, where the statistical uncertainty is expected to be three times larger. We did not find significant systematic uncertainties for DV/rs or FAP. Combining our data set with Planck to test General Relativity (GR) through the simple γ-parametrization, where the growth rate is given by f(z) = Ω ^{γ }_m(z), reveals a ˜2σ tension between the data and the prediction by GR. The tension between our result and GR can be traced back to a tension in the clustering amplitude σ8 between CMASS and Planck.

  6. Search for X-ray jets from high redshift radio sources.

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel A.; Cheung, Teddy; Gobeille, Doug; Marshall, Herman L.; Migliori, Giulia; Siemiginowska, Aneta; Wardle, John F. C.; Worrall, Diana M.; Birkinshaw, Mark

    2018-06-01

    We are conducting a Chandra "snapshot" survey of 14 radio quasars at redshifts z>3. These are selected to have one sided, arc-sec scale structure, either a jet or lobe, and come from a complete, objectively-defined sample of sources with radio flux density > 70 mJy, and with a spectroscopic redshift from the SDSS. Our objectives are to find X-ray emitting jets, compare the X-ray and radio morphology, and detect X-ray emission arising from inverse Compton scattering of the cosmic microwave background even for those cases where the radio emission is no longer detectable. For this meeting, we expect 5 of the 14 sources to have been observed.

  7. Complete Calibration of the Color-Redshift Relation (C3R2): A Critical Foundation for Weak Lensing Cosmology with Euclid and WFIRST

    NASA Astrophysics Data System (ADS)

    Masters, Daniel C.; Stern, Daniel; Cohen, Judy; Capak, Peter

    2018-01-01

    A primary objective of both WFIRST and Euclid is to provide a 3D map of the distribution of matter across a significant fraction of the universe from the weak lensing shear field. Doing so will require accurate redshifts to the billions of galaxies that comprise the weak lensing samples of these surveys; achieving the required accuracy is a “tall pole” challenge for both missions. Here we present the ongoing Complete Calibration of the Color-Redshift Relation (C3R2) survey, designed specifically to calibrate the empirical galaxy color-redshift relation to Euclid depth. C3R2 is an ambitious Keck spectroscopy program, with a survey design based on a machine learning technique that allows us to optimally select the most important galaxies to sample the full range of galaxy colors. C3R2 is a multi-center program with time from all the primary Keck partners (Caltech, UC, Hawaii, and NASA), with a total of 34.5 Keck nights allocated to this project. Data Release 1, including 1283 high-confidence spectroscopic redshifts, is published as Masters, Stern, Cohen, Capak, et al. (2017), and we are currently completing Data Release 2, which will include >2000 additional high-confidence spectroscopic redshifts (Masters et al., in prep.). We will discuss current results and prospects for the survey going forward.

  8. PHOTOMETRIC REDSHIFTS OF SUBMILLIMETER GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakrabarti, Sukanya; Magnelli, Benjamin; Lutz, Dieter

    2013-08-20

    We use the photometric redshift method of Chakrabarti and McKee to infer photometric redshifts of submillimeter galaxies with far-IR (FIR) Herschel data obtained as part of the PACS Evolutionary Probe program. For the sample with spectroscopic redshifts, we demonstrate the validity of this method over a large range of redshifts (4 {approx}> z {approx}> 0.3) and luminosities, finding an average accuracy in (1 + z{sub phot})/(1 + z{sub spec}) of 10%. Thus, this method is more accurate than other FIR photometric redshift methods. This method is different from typical FIR photometric methods in deriving redshifts from the light-to-gas mass (L/M)more » ratio of infrared-bright galaxies inferred from the FIR spectral energy distribution, rather than dust temperatures. To assess the dependence of our photometric redshift method on the data in this sample, we contrast the average accuracy of our method when we use PACS data, versus SPIRE data, versus both PACS and SPIRE data. We also discuss potential selection effects that may affect the Herschel sample. Once the redshift is derived, we can determine physical properties of infrared-bright galaxies, including the temperature variation within the dust envelope, luminosity, mass, and surface density. We use data from the GOODS-S field to calculate the star formation rate density (SFRD) of submillimeter bright sources detected by AzTEC and PACS. The AzTEC-PACS sources, which have a threshold 850 {mu}m flux {approx}> 5 mJy, contribute 15% of the SFRD from all ultraluminous infrared galaxies (L{sub IR} {approx}> 10{sup 12} L{sub Sun }), and 3% of the total SFRD at z {approx} 2.« less

  9. Spectroscopic characterization of galaxy clusters in RCS-1: spectroscopic confirmation, redshift accuracy, and dynamical mass-richness relation

    NASA Astrophysics Data System (ADS)

    Gilbank, David G.; Barrientos, L. Felipe; Ellingson, Erica; Blindert, Kris; Yee, H. K. C.; Anguita, T.; Gladders, M. D.; Hall, P. B.; Hertling, G.; Infante, L.; Yan, R.; Carrasco, M.; Garcia-Vergara, Cristina; Dawson, K. S.; Lidman, C.; Morokuma, T.

    2018-05-01

    We present follow-up spectroscopic observations of galaxy clusters from the first Red-sequence Cluster Survey (RCS-1). This work focuses on two samples, a lower redshift sample of ˜30 clusters ranging in redshift from z ˜ 0.2-0.6 observed with multiobject spectroscopy (MOS) on 4-6.5-m class telescopes and a z ˜ 1 sample of ˜10 clusters 8-m class telescope observations. We examine the detection efficiency and redshift accuracy of the now widely used red-sequence technique for selecting clusters via overdensities of red-sequence galaxies. Using both these data and extended samples including previously published RCS-1 spectroscopy and spectroscopic redshifts from SDSS, we find that the red-sequence redshift using simple two-filter cluster photometric redshifts is accurate to σz ≈ 0.035(1 + z) in RCS-1. This accuracy can potentially be improved with better survey photometric calibration. For the lower redshift sample, ˜5 per cent of clusters show some (minor) contamination from secondary systems with the same red-sequence intruding into the measurement aperture of the original cluster. At z ˜ 1, the rate rises to ˜20 per cent. Approximately ten per cent of projections are expected to be serious, where the two components contribute significant numbers of their red-sequence galaxies to another cluster. Finally, we present a preliminary study of the mass-richness calibration using velocity dispersions to probe the dynamical masses of the clusters. We find a relation broadly consistent with that seen in the local universe from the WINGS sample at z ˜ 0.05.

  10. Impact of large-scale tides on cosmological distortions via redshift-space power spectrum

    NASA Astrophysics Data System (ADS)

    Akitsu, Kazuyuki; Takada, Masahiro

    2018-03-01

    Although large-scale perturbations beyond a finite-volume survey region are not direct observables, these affect measurements of clustering statistics of small-scale (subsurvey) perturbations in large-scale structure, compared with the ensemble average, via the mode-coupling effect. In this paper we show that a large-scale tide induced by scalar perturbations causes apparent anisotropic distortions in the redshift-space power spectrum of galaxies in a way depending on an alignment between the tide, wave vector of small-scale modes and line-of-sight direction. Using the perturbation theory of structure formation, we derive a response function of the redshift-space power spectrum to large-scale tide. We then investigate the impact of large-scale tide on estimation of cosmological distances and the redshift-space distortion parameter via the measured redshift-space power spectrum for a hypothetical large-volume survey, based on the Fisher matrix formalism. To do this, we treat the large-scale tide as a signal, rather than an additional source of the statistical errors, and show that a degradation in the parameter is restored if we can employ the prior on the rms amplitude expected for the standard cold dark matter (CDM) model. We also discuss whether the large-scale tide can be constrained at an accuracy better than the CDM prediction, if the effects up to a larger wave number in the nonlinear regime can be included.

  11. The Topology of Large-Scale Structure in the 1.2 Jy IRAS Redshift Survey

    NASA Astrophysics Data System (ADS)

    Protogeros, Zacharias A. M.; Weinberg, David H.

    1997-11-01

    We measure the topology (genus) of isodensity contour surfaces in volume-limited subsets of the 1.2 Jy IRAS redshift survey, for smoothing scales λ = 4, 7, and 12 h-1 Mpc. At 12 h-1 Mpc, the observed genus curve has a symmetric form similar to that predicted for a Gaussian random field. At the shorter smoothing lengths, the observed genus curve shows a modest shift in the direction of an isolated cluster or ``meatball'' topology. We use mock catalogs drawn from cosmological N-body simulations to investigate the systematic biases that affect topology measurements in samples of this size and to determine the full covariance matrix of the expected random errors. We incorporate the error correlations into our evaluations of theoretical models, obtaining both frequentist assessments of absolute goodness of fit and Bayesian assessments of models' relative likelihoods. We compare the observed topology of the 1.2 Jy survey to the predictions of dynamically evolved, unbiased, gravitational instability models that have Gaussian initial conditions. The model with an n = -1 power-law initial power spectrum achieves the best overall agreement with the data, though models with a low-density cold dark matter power spectrum and an n = 0 power-law spectrum are also consistent. The observed topology is inconsistent with an initially Gaussian model that has n = -2, and it is strongly inconsistent with a Voronoi foam model, which has a non-Gaussian, bubble topology.

  12. A quasar discovered at redshift 6.6 from Pan-STARRS1

    NASA Astrophysics Data System (ADS)

    Tang, Ji-Jia; Goto, Tomotsugu; Ohyama, Youichi; Chen, Wen-Ping; Walter, Fabian; Venemans, Bram; Chambers, Kenneth C.; Bañados, Eduardo; Decarli, Roberto; Fan, Xiaohui; Farina, Emanuele; Mazzucchelli, Chiara; Kaiser, Nick; Magnier, Eugene A.

    2017-04-01

    Luminous high-redshift quasars can be used to probe of the intergalactic medium in the early universe because their UV light is absorbed by the neutral hydrogen along the line of sight. They help us to measure the neutral hydrogen fraction of the high-z universe, shedding light on the end of reionization epoch. In this paper, we present a discovery of a new quasar (PSO J006.1240+39.2219) at redshift z = 6.61 ± 0.02 from Panoramic Survey Telescope & Rapid Response System 1. Including this quasar, there are nine quasars above z > 6.5 up to date. The estimated continuum brightness is M1450 = -25.96 ± 0.08. PSO J006.1240+39.2219 has a strong Ly α emission compared with typical low-redshift quasars, but the measured near-zone region size is RNZ = 3.2 ± 1.1 proper megaparsecs, which is consistent with other quasars at z ˜ 6.

  13. Cosmological Constraints from the Redshift Dependence of the Volume Effect Using the Galaxy 2-point Correlation Function across the Line of Sight

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Dong; Park, Changbom; Sabiu, Cristiano G.; Park, Hyunbae; Cheng, Cheng; Kim, Juhan; Hong, Sungwook E.

    2017-08-01

    We develop a methodology to use the redshift dependence of the galaxy 2-point correlation function (2pCF) across the line of sight, ξ ({r}\\perp ), as a probe of cosmological parameters. The positions of galaxies in comoving Cartesian space varies under different cosmological parameter choices, inducing a redshift-dependent scaling in the galaxy distribution. This geometrical distortion can be observed as a redshift-dependent rescaling in the measured ξ ({r}\\perp ). We test this methodology using a sample of 1.75 billion mock galaxies at redshifts 0, 0.5, 1, 1.5, and 2, drawn from the Horizon Run 4 N-body simulation. The shape of ξ ({r}\\perp ) can exhibit a significant redshift evolution when the galaxy sample is analyzed under a cosmology differing from the true, simulated one. Other contributions, including the gravitational growth of structure, galaxy bias, and the redshift space distortions, do not produce large redshift evolution in the shape. We show that one can make use of this geometrical distortion to constrain the values of cosmological parameters governing the expansion history of the universe. This method could be applicable to future large-scale structure surveys, especially photometric surveys such as DES and LSST, to derive tight cosmological constraints. This work is a continuation of our previous works as a strategy to constrain cosmological parameters using redshift-invariant physical quantities.

  14. AGES: THE AGN AND GALAXY EVOLUTION SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochanek, C. S.; Eisenstein, D. J.; Caldwell, N.

    2012-05-01

    The AGN and Galaxy Evolution Survey (AGES) is a redshift survey covering, in its standard fields, 7.7 deg{sup 2} of the Booetes field of the NOAO Deep Wide-Field Survey. The final sample consists of 23,745 redshifts. There are well-defined galaxy samples in 10 bands (the B{sub W} , R, I, J, K, IRAC 3.6, 4.5, 5.8, and 8.0 {mu}m, and MIPS 24 {mu}m bands) to a limiting magnitude of I < 20 mag for spectroscopy. For these galaxies, we obtained 18,163 redshifts from a sample of 35,200 galaxies, where random sparse sampling was used to define statistically complete sub-samples inmore » all 10 photometric bands. The median galaxy redshift is 0.31, and 90% of the redshifts are in the range 0.085 < z < 0.66. Active galactic nuclei (AGNs) were selected as radio, X-ray, IRAC mid-IR, and MIPS 24 {mu}m sources to fainter limiting magnitudes (I < 22.5 mag for point sources). Redshifts were obtained for 4764 quasars and galaxies with AGN signatures, with 2926, 1718, 605, 119, and 13 above redshifts of 0.5, 1, 2, 3, and 4, respectively. We detail all the AGES selection procedures and present the complete spectroscopic redshift catalogs and spectral energy distribution decompositions. Photometric redshift estimates are provided for all sources in the AGES samples.« less

  15. THE DEEP2 GALAXY REDSHIFT SURVEY: THE VORONOI-DELAUNAY METHOD CATALOG OF GALAXY GROUPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerke, Brian F.; Newman, Jeffrey A.; Davis, Marc

    2012-05-20

    We present a public catalog of galaxy groups constructed from the spectroscopic sample of galaxies in the fourth data release from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Galaxy Redshift Survey, including the Extended Groth Strip (EGS). The catalog contains 1165 groups with two or more members in the EGS over the redshift range 0 < z < 1.5 and 1295 groups at z > 0.6 in the rest of DEEP2. Twenty-five percent of EGS galaxies and fourteen percent of high-z DEEP2 galaxies are assigned to galaxy groups. The groups were detected using the Voronoi-Delaunay method (VDM) after it hasmore » been optimized on mock DEEP2 catalogs following similar methods to those employed in Gerke et al. In the optimization effort, we have taken particular care to ensure that the mock catalogs resemble the data as closely as possible, and we have fine-tuned our methods separately on mocks constructed for the EGS and the rest of DEEP2. We have also probed the effect of the assumed cosmology on our inferred group-finding efficiency by performing our optimization on three different mock catalogs with different background cosmologies, finding large differences in the group-finding success we can achieve for these different mocks. Using the mock catalog whose background cosmology is most consistent with current data, we estimate that the DEEP2 group catalog is 72% complete and 61% pure (74% and 67% for the EGS) and that the group finder correctly classifies 70% of galaxies that truly belong to groups, with an additional 46% of interloper galaxies contaminating the catalog (66% and 43% for the EGS). We also confirm that the VDM catalog reconstructs the abundance of galaxy groups with velocity dispersions above {approx}300 km s{sup -1} to an accuracy better than the sample variance, and this successful reconstruction is not strongly dependent on cosmology. This makes the DEEP2 group catalog a promising probe of the growth of cosmic structure that can potentially be used for

  16. Hierarchical Matching and Regression with Application to Photometric Redshift Estimation

    NASA Astrophysics Data System (ADS)

    Murtagh, Fionn

    2017-06-01

    This work emphasizes that heterogeneity, diversity, discontinuity, and discreteness in data is to be exploited in classification and regression problems. A global a priori model may not be desirable. For data analytics in cosmology, this is motivated by the variety of cosmological objects such as elliptical, spiral, active, and merging galaxies at a wide range of redshifts. Our aim is matching and similarity-based analytics that takes account of discrete relationships in the data. The information structure of the data is represented by a hierarchy or tree where the branch structure, rather than just the proximity, is important. The representation is related to p-adic number theory. The clustering or binning of the data values, related to the precision of the measurements, has a central role in this methodology. If used for regression, our approach is a method of cluster-wise regression, generalizing nearest neighbour regression. Both to exemplify this analytics approach, and to demonstrate computational benefits, we address the well-known photometric redshift or `photo-z' problem, seeking to match Sloan Digital Sky Survey (SDSS) spectroscopic and photometric redshifts.

  17. The 2-degree Field Lensing Survey: design and clustering measurements

    NASA Astrophysics Data System (ADS)

    Blake, Chris; Amon, Alexandra; Childress, Michael; Erben, Thomas; Glazebrook, Karl; Harnois-Deraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Hinton, Samuel R.; Janssens, Steven; Johnson, Andrew; Joudaki, Shahab; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Marin, Felipe A.; Parkinson, David; Poole, Gregory B.; Wolf, Christian

    2016-11-01

    We present the 2-degree Field Lensing Survey (2dFLenS), a new galaxy redshift survey performed at the Anglo-Australian Telescope. 2dFLenS is the first wide-area spectroscopic survey specifically targeting the area mapped by deep-imaging gravitational lensing fields, in this case the Kilo-Degree Survey. 2dFLenS obtained 70 079 redshifts in the range z < 0.9 over an area of 731 deg2, and is designed to extend the data sets available for testing gravitational physics and promote the development of relevant algorithms for joint imaging and spectroscopic analysis. The redshift sample consists first of 40 531 Luminous Red Galaxies (LRGs), which enable analyses of galaxy-galaxy lensing, redshift-space distortion, and the overlapping source redshift distribution by cross-correlation. An additional 28 269 redshifts form a magnitude-limited (r < 19.5) nearly complete subsample, allowing direct source classification and photometric-redshift calibration. In this paper, we describe the motivation, target selection, spectroscopic observations, and clustering analysis of 2dFLenS. We use power spectrum multipole measurements to fit the redshift-space distortion parameter of the LRG sample in two redshift ranges 0.15 < z < 0.43 and 0.43 < z < 0.7 as β = 0.49 ± 0.15 and β = 0.26 ± 0.09, respectively. These values are consistent with those obtained from LRGs in the Baryon Oscillation Spectroscopic Survey. 2dFLenS data products will be released via our website http://2dflens.swin.edu.au.

  18. Optical study of the DAFT/FADA galaxy cluster survey

    NASA Astrophysics Data System (ADS)

    Martinet, N.; Durret, F.; Clowe, D.; Adami, C.

    2013-11-01

    DAFT/FADA (Dark energy American French Team) is a large survey of ˜90 high redshift (0.42×10^{14} M_{⊙}) clusters with HST weak lensing oriented data, plus BVRIZJ 4m ground based follow up to compute photometric redshifts. The main goals of this survey are to constrain dark energy parameters using weak lensing tomography and to study a large homogeneous sample of high redshift massive clusters. We will briefly review the latest results of this optical survey, focusing on two ongoing works: the calculation of galaxy luminosity functions from photometric redshift catalogs and the weak lensing analysis of ground based data.

  19. [A method for obtaining redshifts of quasars based on wavelet multi-scaling feature matching].

    PubMed

    Liu, Zhong-Tian; Li, Xiang-Ru; Wu, Fu-Chao; Zhao, Yong-Heng

    2006-09-01

    The LAMOST project, the world's largest sky survey project being implemented in China, is expected to obtain 10(5) quasar spectra. The main objective of the present article is to explore methods that can be used to estimate the redshifts of quasar spectra from LAMOST. Firstly, the features of the broad emission lines are extracted from the quasar spectra to overcome the disadvantage of low signal-to-noise ratio. Then the redshifts of quasar spectra can be estimated by using the multi-scaling feature matching. The experiment with the 15, 715 quasars from the SDSS DR2 shows that the correct rate of redshift estimated by the method is 95.13% within an error range of 0. 02. This method was designed to obtain the redshifts of quasar spectra with relative flux and a low signal-to-noise ratio, which is applicable to the LAMOST data and helps to study quasars and the large-scale structure of the universe etc.

  20. High-Redshift Astrophysics Using Every Photon

    NASA Astrophysics Data System (ADS)

    Breysse, Patrick; Kovetz, Ely; Rahman, Mubdi; Kamionkowski, Marc

    2017-01-01

    Large galaxy surveys have dramatically improved our understanding of the complex processes which govern gas dynamics and star formation in the nearby universe. However, we know far less about the most distant galaxies, as existing high-redshift observations can only detect the very brightest sources. Intensity mapping surveys provide a promising tool to access this poorly-studied population. By observing emission lines with low angular resolution, these surveys can make use of every photon in a target line to study faint emitters which are inaccessible using traditional techniques. With upcoming carbon monoxide experiments in mind, I will demonstrate how an intensity map can be used to measure the luminosity function of a galaxy population, and in turn how these measurements will allow us to place robust constraints on the cosmic star formation history. I will then show how cross-correlating CO isotopologue lines will make it possible to study gas dynamics within the earliest galaxies in unprecedented detail.

  1. SDSS-IV eBOSS emission-line galaxy pilot survey

    DOE PAGES

    Comparat, J.; Delubac, T.; Jouvel, S.; ...

    2016-08-09

    The Sloan Digital Sky Survey IV extended Baryonic Oscillation Spectroscopic Survey (SDSS-IV/eBOSS) will observe 195,000 emission-line galaxies (ELGs) to measure the Baryonic Acoustic Oscillation standard ruler (BAO) at redshift 0.9. To test different ELG selection algorithms, 9,000 spectra were observed with the SDSS spectrograph as a pilot survey based on data from several imaging surveys. First, using visual inspection and redshift quality flags, we show that the automated spectroscopic redshifts assigned by the pipeline meet the quality requirements for a reliable BAO measurement. We also show the correlations between sky emission, signal-to-noise ratio in the emission lines, and redshift error.more » Then we provide a detailed description of each target selection algorithm we tested and compare them with the requirements of the eBOSS experiment. As a result, we provide reliable redshift distributions for the different target selection schemes we tested. Lastly, we determine an target selection algorithms that is best suited to be applied on DECam photometry because they fulfill the eBOSS survey efficiency requirements.« less

  2. Relativistic effects on galaxy redshift samples due to target selection

    NASA Astrophysics Data System (ADS)

    Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Zhu, Hongyu; Giusarma, Elena

    2017-10-01

    In a galaxy redshift survey, the objects to be targeted for spectra are selected from a photometrically observed sample. The observed magnitudes and colours of galaxies in this parent sample will be affected by their peculiar velocities, through relativistic Doppler and relativistic beaming effects. In this paper, we compute the resulting expected changes in galaxy photometry. The magnitudes of the relativistic effects are a function of redshift, stellar mass, galaxy velocity and velocity direction. We focus on the CMASS sample from the Sloan Digital Sky Survey (SDSS) and Baryon Oscillation Spectroscopic Survey (BOSS), which is selected on the basis of colour and magnitude. We find that 0.10 per cent of the sample (∼585 galaxies) has been scattered into the targeted region of colour-magnitude space by relativistic effects, and conversely 0.09 per cent of the sample (∼532 galaxies) has been scattered out. Observational consequences of these effects include an asymmetry in clustering statistics, which we explore in a companion paper. Here, we compute a set of weights that can be used to remove the effect of modulations introduced into the density field inferred from a galaxy sample. We conclude by investigating the possible effects of these relativistic modulation on large-scale clustering of the galaxy sample.

  3. Hubble Space Telescope studies of low-redshift Type Ia supernovae: evolution with redshift and ultraviolet spectral trends

    NASA Astrophysics Data System (ADS)

    Maguire, K.; Sullivan, M.; Ellis, R. S.; Nugent, P. E.; Howell, D. A.; Gal-Yam, A.; Cooke, J.; Mazzali, P.; Pan, Y.-C.; Dilday, B.; Thomas, R. C.; Arcavi, I.; Ben-Ami, S.; Bersier, D.; Bianco, F. B.; Fulton, B. J.; Hook, I.; Horesh, A.; Hsiao, E.; James, P. A.; Podsiadlowski, P.; Walker, E. S.; Yaron, O.; Kasliwal, M. M.; Laher, R. R.; Law, N. M.; Ofek, E. O.; Poznanski, D.; Surace, J.

    2012-11-01

    We present an analysis of the maximum light, near-ultraviolet (NUV; 2900 < λ < 5500 Å) spectra of 32 low-redshift (0.001 < z < 0.08) Type Ia supernovae (SNe Ia), obtained with the Hubble Space Telescope (HST) using the Space Telescope Imaging Spectrograph. We combine this spectroscopic sample with high-quality gri light curves obtained with robotic telescopes to measure SN Ia photometric parameters, such as stretch (light-curve width), optical colour and brightness (Hubble residual). By comparing our new data to a comparable sample of SNe Ia at intermediate redshift (0.4 < z < 0.9), we detect modest spectral evolution (3σ), in the sense that our mean low-redshift NUV spectrum has a depressed flux compared to its intermediate-redshift counterpart. We also see a strongly increased dispersion about the mean with decreasing wavelength, confirming the results of earlier surveys. We show that these trends are consistent with changes in metallicity as predicted by contemporary SN Ia spectral models. We also examine the properties of various NUV spectral diagnostics in the individual SN spectra. We find a general correlation between SN stretch and the velocity (or position) of many NUV spectral features. In particular, we observe that higher stretch SNe have larger Ca II H&K velocities, which also correlate with host galaxy stellar mass. This latter trend is probably driven by the well-established correlation between stretch and host galaxy stellar mass. We find no significant trends between UV spectral features and optical colour. Mean spectra constructed according to whether the SN has a positive or negative Hubble residual show very little difference at NUV wavelengths, indicating that the NUV evolution and variation we identify does not directly correlate with Hubble diagram residuals. Our work confirms and strengthens earlier conclusions regarding the complex behaviour of SNe Ia in the NUV spectral region, but suggests the correlations we find are more useful in

  4. Bayesian Redshift Classification of Emission-line Galaxies with Photometric Equivalent Widths

    NASA Astrophysics Data System (ADS)

    Leung, Andrew S.; Acquaviva, Viviana; Gawiser, Eric; Ciardullo, Robin; Komatsu, Eiichiro; Malz, A. I.; Zeimann, Gregory R.; Bridge, Joanna S.; Drory, Niv; Feldmeier, John J.; Finkelstein, Steven L.; Gebhardt, Karl; Gronwall, Caryl; Hagen, Alex; Hill, Gary J.; Schneider, Donald P.

    2017-07-01

    We present a Bayesian approach to the redshift classification of emission-line galaxies when only a single emission line is detected spectroscopically. We consider the case of surveys for high-redshift Lyα-emitting galaxies (LAEs), which have traditionally been classified via an inferred rest-frame equivalent width (EW {W}{Lyα }) greater than 20 Å. Our Bayesian method relies on known prior probabilities in measured emission-line luminosity functions and EW distributions for the galaxy populations, and returns the probability that an object in question is an LAE given the characteristics observed. This approach will be directly relevant for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), which seeks to classify ˜106 emission-line galaxies into LAEs and low-redshift [{{O}} {{II}}] emitters. For a simulated HETDEX catalog with realistic measurement noise, our Bayesian method recovers 86% of LAEs missed by the traditional {W}{Lyα } > 20 Å cutoff over 2 < z < 3, outperforming the EW cut in both contamination and incompleteness. This is due to the method’s ability to trade off between the two types of binary classification error by adjusting the stringency of the probability requirement for classifying an observed object as an LAE. In our simulations of HETDEX, this method reduces the uncertainty in cosmological distance measurements by 14% with respect to the EW cut, equivalent to recovering 29% more cosmological information. Rather than using binary object labels, this method enables the use of classification probabilities in large-scale structure analyses. It can be applied to narrowband emission-line surveys as well as upcoming large spectroscopic surveys including Euclid and WFIRST.

  5. A perturbative approach to the redshift space correlation function: beyond the Standard Model

    NASA Astrophysics Data System (ADS)

    Bose, Benjamin; Koyama, Kazuya

    2017-08-01

    We extend our previous redshift space power spectrum code to the redshift space correlation function. Here we focus on the Gaussian Streaming Model (GSM). Again, the code accommodates a wide range of modified gravity and dark energy models. For the non-linear real space correlation function used in the GSM we use the Fourier transform of the RegPT 1-loop matter power spectrum. We compare predictions of the GSM for a Vainshtein screened and Chameleon screened model as well as GR. These predictions are compared to the Fourier transform of the Taruya, Nishimichi and Saito (TNS) redshift space power spectrum model which is fit to N-body data. We find very good agreement between the Fourier transform of the TNS model and the GSM predictions, with <= 6% deviations in the first two correlation function multipoles for all models for redshift space separations in 50Mpch <= s <= 180Mpc/h. Excellent agreement is found in the differences between the modified gravity and GR multipole predictions for both approaches to the redshift space correlation function, highlighting their matched ability in picking up deviations from GR. We elucidate the timeliness of such non-standard templates at the dawn of stage-IV surveys and discuss necessary preparations and extensions needed for upcoming high quality data.

  6. The KMOS Redshift One Spectroscopic Survey (KROSS): dynamical properties, gas and dark matter fractions of typical z ˜ 1 star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Stott, John P.; Swinbank, A. M.; Johnson, Helen L.; Tiley, Alfie; Magdis, Georgios; Bower, Richard; Bunker, Andrew J.; Bureau, Martin; Harrison, Chris M.; Jarvis, Matt J.; Sharples, Ray; Smail, Ian; Sobral, David; Best, Philip; Cirasuolo, Michele

    2016-04-01

    The KMOS Redshift One Spectroscopic Survey (KROSS) is an ESO-guaranteed time survey of 795 typical star-forming galaxies in the redshift range z = 0.8-1.0 with the KMOS instrument on the Very Large Telescope. In this paper, we present resolved kinematics and star formation rates for 584 z ˜ 1 galaxies. This constitutes the largest near-infrared Integral Field Unit survey of galaxies at z ˜ 1 to date. We demonstrate the success of our selection criteria with 90 per cent of our targets found to be H α emitters, of which 81 per cent are spatially resolved. The fraction of the resolved KROSS sample with dynamics dominated by ordered rotation is found to be 83 ± 5 per cent. However, when compared with local samples these are turbulent discs with high gas to baryonic mass fractions, ˜35 per cent, and the majority are consistent with being marginally unstable (Toomre Q ˜ 1). There is no strong correlation between galaxy averaged velocity dispersion and the total star formation rate, suggesting that feedback from star formation is not the origin of the elevated turbulence. We postulate that it is the ubiquity of high (likely molecular) gas fractions and the associated gravitational instabilities that drive the elevated star formation rates in these typical z ˜ 1 galaxies, leading to the 10-fold enhanced star formation rate density. Finally, by comparing the gas masses obtained from inverting the star formation law with the dynamical and stellar masses, we infer an average dark matter to total mass fraction within 2.2re (9.5 kpc) of 65 ± 12 per cent, in agreement with the results from hydrodynamic simulations of galaxy formation.

  7. Extracting cosmological information from the angular power spectrum of the 2MASS Photometric Redshift catalogue

    NASA Astrophysics Data System (ADS)

    Balaguera-Antolínez, A.; Bilicki, M.; Branchini, E.; Postiglione, A.

    2018-05-01

    Using the almost all-sky 2MASS Photometric Redshift catalogue (2MPZ) we perform for the first time a tomographic analysis of galaxy angular clustering in the local Universe (z < 0.24). We estimate the angular auto- and cross-power spectra of 2MPZ galaxies in three photometric redshift bins, and use dedicated mock catalogues to assess their errors. We measure a subset of cosmological parameters, having fixed the others at their Planck values, namely the baryon fraction fb=0.14^{+0.09}_{-0.06}, the total matter density parameter Ωm = 0.30 ± 0.06, and the effective linear bias of 2MPZ galaxies beff, which grows from 1.1^{+0.3}_{-0.4} at = 0.05 up to 2.1^{+0.3}_{-0.5} at = 0.2, largely because of the flux-limited nature of the data set. The results obtained here for the local Universe agree with those derived with the same methodology at higher redshifts, and confirm the importance of the tomographic technique for next-generation photometric surveys such as Euclid or Large Synoptic Survey Telescope.

  8. The effect of photometric redshift uncertainties on galaxy clustering and baryonic acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Chaves-Montero, Jonás; Angulo, Raúl E.; Hernández-Monteagudo, Carlos

    2018-07-01

    In the upcoming era of high-precision galaxy surveys, it becomes necessary to understand the impact of redshift uncertainties on cosmological observables. In this paper we explore the effect of sub-percent photometric redshift errors (photo-z errors) on galaxy clustering and baryonic acoustic oscillations (BAOs). Using analytic expressions and results from 1000 N-body simulations, we show how photo-z errors modify the amplitude of moments of the 2D power spectrum, their variances, the amplitude of BAOs, and the cosmological information in them. We find that (a) photo-z errors suppress the clustering on small scales, increasing the relative importance of shot noise, and thus reducing the interval of scales available for BAO analyses; (b) photo-z errors decrease the smearing of BAOs due to non-linear redshift-space distortions (RSDs) by giving less weight to line-of-sight modes; and (c) photo-z errors (and small-scale RSD) induce a scale dependence on the information encoded in the BAO scale, and that reduces the constraining power on the Hubble parameter. Using these findings, we propose a template that extracts unbiased cosmological information from samples with photo-z errors with respect to cases without them. Finally, we provide analytic expressions to forecast the precision in measuring the BAO scale, showing that spectro-photometric surveys will measure the expansion history of the Universe with a precision competitive to that of spectroscopic surveys.

  9. The effect of photometric redshift uncertainties on galaxy clustering and baryonic acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Chaves-Montero, Jonás; Angulo, Raúl E.; Hernández-Monteagudo, Carlos

    2018-04-01

    In the upcoming era of high-precision galaxy surveys, it becomes necessary to understand the impact of redshift uncertainties on cosmological observables. In this paper we explore the effect of sub-percent photometric redshift errors (photo-z errors) on galaxy clustering and baryonic acoustic oscillations (BAO). Using analytic expressions and results from 1 000 N-body simulations, we show how photo-z errors modify the amplitude of moments of the 2D power spectrum, their variances, the amplitude of BAO, and the cosmological information in them. We find that: a) photo-z errors suppress the clustering on small scales, increasing the relative importance of shot noise, and thus reducing the interval of scales available for BAO analyses; b) photo-z errors decrease the smearing of BAO due to non-linear redshift-space distortions (RSD) by giving less weight to line-of-sight modes; and c) photo-z errors (and small-scale RSD) induce a scale dependence on the information encoded in the BAO scale, and that reduces the constraining power on the Hubble parameter. Using these findings, we propose a template that extracts unbiased cosmological information from samples with photo-z errors with respect to cases without them. Finally, we provide analytic expressions to forecast the precision in measuring the BAO scale, showing that spectro-photometric surveys will measure the expansion history of the Universe with a precision competitive to that of spectroscopic surveys.

  10. Degradation analysis in the estimation of photometric redshifts from non-representative training sets

    NASA Astrophysics Data System (ADS)

    Rivera, J. D.; Moraes, B.; Merson, A. I.; Jouvel, S.; Abdalla, F. B.; Abdalla, M. C. B.

    2018-07-01

    We perform an analysis of photometric redshifts estimated by using a non-representative training sets in magnitude space. We use the ANNz2 and GPz algorithms to estimate the photometric redshift both in simulations and in real data from the Sloan Digital Sky Survey (DR12). We show that for the representative case, the results obtained by using both algorithms have the same quality, using either magnitudes or colours as input. In order to reduce the errors when estimating the redshifts with a non-representative training set, we perform the training in colour space. We estimate the quality of our results by using a mock catalogue which is split samples cuts in the r band between 19.4 < r < 20.8. We obtain slightly better results with GPz on single point z-phot estimates in the complete training set case, however the photometric redshifts estimated with ANNz2 algorithm allows us to obtain mildly better results in deeper r-band cuts when estimating the full redshift distribution of the sample in the incomplete training set case. By using a cumulative distribution function and a Monte Carlo process, we manage to define a photometric estimator which fits well the spectroscopic distribution of galaxies in the mock testing set, but with a larger scatter. To complete this work, we perform an analysis of the impact on the detection of clusters via density of galaxies in a field by using the photometric redshifts obtained with a non-representative training set.

  11. A New Method to Separate Star-forming from AGN Galaxies at Intermediate Redshift: The Submillijansky Radio Population in the VLA-COSMOS Survey

    NASA Astrophysics Data System (ADS)

    Smolčić, V.; Schinnerer, E.; Scodeggio, M.; Franzetti, P.; Aussel, H.; Bondi, M.; Brusa, M.; Carilli, C. L.; Capak, P.; Charlot, S.; Ciliegi, P.; Ilbert, O.; Ivezić, Ž.; Jahnke, K.; McCracken, H. J.; Obrić, M.; Salvato, M.; Sanders, D. B.; Scoville, N.; Trump, J. R.; Tremonti, C.; Tasca, L.; Walcher, C. J.; Zamorani, G.

    2008-07-01

    We explore the properties of the submillijansky radio population at 20 cm by applying a newly developed optical color-based method to separate star-forming (SF) from active galactic nucleus (AGN) galaxies at intermediate redshifts (zlesssim 1.3). Although optical rest-frame colors are used, our separation method is shown to be efficient and not biased against dusty starburst galaxies. This classification method has been calibrated and tested on a local radio-selected optical sample. Given accurate multiband photometry and redshifts, it carries the potential to be generally applicable to any galaxy sample where SF and AGN galaxies are the two dominant populations. In order to quantify the properties of the submillijansky radio population, we have analyzed ~2,400 radio sources, detected at 20 cm in the VLA-COSMOS survey; 90% of these have submillijansky flux densities. We classify the objects into (1) star candidates, (2) quasi-stellar objects, (3) AGN, (4) SF, and (5) high-redshift (z > 1.3) galaxies. We find, for the composition of the submillijansky radio population, that SF galaxies are not the dominant population at submillijansky flux levels, as previously often assumed, but that they make up an approximately constant fraction of 30%-40% in the flux density range of ~50 μJy to 0.7 mJy. In summary, based on the entire VLA-COSMOS radio population at 20 cm, we find that the radio population at these flux densities is a mixture of roughly 30%-40% of SF and 50%-60% of AGN galaxies, with a minor contribution (~10%) of QSOs.

  12. Giving cosmic redshift drift a whirl

    NASA Astrophysics Data System (ADS)

    Kim, Alex G.; Linder, Eric V.; Edelstein, Jerry; Erskine, David

    2015-03-01

    Redshift drift provides a direct kinematic measurement of cosmic acceleration but it occurs with a characteristic time scale of a Hubble time. Thus redshift observations with a challenging precision of 10-9 require a 10 year time span to obtain a signal-to-noise of 1. We discuss theoretical and experimental approaches to address this challenge, potentially requiring less observer time and having greater immunity to common systematics. On the theoretical side we explore allowing the universe, rather than the observer, to provide long time spans; speculative methods include radial baryon acoustic oscillations, cosmic pulsars, and strongly lensed quasars. On the experimental side, we explore beating down the redshift precision using differential interferometric techniques, including externally dispersed interferometers and spatial heterodyne spectroscopy. Low-redshift emission line galaxies are identified as having high cosmology leverage and systematics control, with an 8 h exposure on a 10-m telescope (1000 h of exposure on a 40-m telescope) potentially capable of measuring the redshift of a galaxy to a precision of 10-8 (few ×10-10). Low-redshift redshift drift also has very strong complementarity with cosmic microwave background measurements, with the combination achieving a dark energy figure of merit of nearly 300 (1400) for 5% (1%) precision on drift.

  13. Results from the REFLEX Cluster Survey

    NASA Astrophysics Data System (ADS)

    Bohringer, H.; Guzzo, L.; Collins, C. A.; Neumann, D. M.; Schindler, S.; Schuecker, P.; Cruddace, R.; Chincarini, G.; de Grandi, S.; Edge, A. C.; MacGillivray, H. T.; Shaver, P.; Vettolani, G.; Voges, W.

    Based on the ROSAT All-Sky Survey we have conducted a large redshift survey as an ESO key programme to identify and secure redshifts for the X-ray brightest clusters found in the southern hemisphere. We present first results for a highly controlled sample for a flux limit of 3cdot 10^{-12} erg s^{-1} cm^{-2} (0.1 - 2.4 keV) comprising 475 clusters (87% with redshifts). The logN-logS function of the sample shows an almost perfect Euclidian slope and a preliminary X-ray luminosity function is presented.

  14. High Redshift Supernova Search

    Science.gov Websites

    ;on schedule." Before-and-after pictures (and Hubble Space Telescope picture) of a high-redshift High Redshift Supernova Search Home Page of the Supernova Cosmology Project This is the Lawrence Foretell Fate of the Universe." Pictures from the ground and from the Hubble Space Telescope: [PDF

  15. Why Do Compact Active Galactic Nuclei at High Redshift Twinkle Less?

    NASA Technical Reports Server (NTRS)

    Koay, J. Y.; Macquart, J.-P.; Bignall, H. E.; Reynolds, C.; Rickett, B. J.; Jauncey, D. L.; Pursimo, T.; Lovell, J. E. J.; Kedziora-Chudczer, L.; Ojha, R.

    2012-01-01

    The fraction of compact active galactic.nuclei (AGNs) that exhibit interstellar scintillation (ISS) at radio wavelengths, as well as their scintillation amplitudes, have been found to decrease significantly for sources at redshifts z approx greater than 2. This can be attributed to an increase in the angular sizes of the mu-as-scale cores or a decrease in the flux densities of the compact mu-as cores relative to that of the mas-scale components with increasing redshift, possibly arising from (1) the space-time curvature of an expanding Universe, (2) AGN evolution, (3) source selection biases, (4) scatter broadening in the ionized intergalactic medium (IGM), or (5) gravitational lensing. We examine the frequency scaling of this redshift dependence of ISS to determine its origin, using data from a dual-frequency survey of ISS of 128 sources at 0 approx < z approx < 4. We present a novel method of analysis which accounts for selection effects in the source sample. We determine that the redshift dependence of ISS is partially linked to the steepening of source spectral indices (alpha (sup 8.4, sub 4.9)) with redshift, caused either by selection biases or AGN evolution, coupled with weaker ISS in the alpha (sup 8.4, sub 4.9) < -0.4 sources. Selecting only the -0.4 < alpha (sup 8.4, sub 4.9) < 0.4 sources, we find that the redshift dependence of ISS is still significant, but is not significantly steeper than the expected (1 + z)(exp 0.5) scaling of source angular sizes due to cosmological expansion for a brightness temperature and flux-limited sample of sources. We find no significant evidence for scatter broadening in the IGM, ruling it out as the main cause of the redshift dependence of ISS. We obtain an upper limit to IGM scatter broadening of approx. < 110 mu-as at 4.9 GHz with 99% confidence for all lines of sight, and as low as approx. < 8 mu-as for sight-lines to the most compact, approx 10 mu-as sources.

  16. CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xingxing; Wang, Junxian; Shu, Xinwen

    2015-03-01

    We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y {sub 105}) and F125W (J {sub 125}), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-framemore » [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete.« less

  17. Galaxy clusters in the SDSS Stripe 82 based on photometric redshifts

    DOE PAGES

    Durret, F.; Adami, C.; Bertin, E.; ...

    2015-06-10

    Based on a recent photometric redshift galaxy catalogue, we have searched for galaxy clusters in the Stripe ~82 region of the Sloan Digital Sky Survey by applying the Adami & MAzure Cluster FInder (AMACFI). Extensive tests were made to fine-tune the AMACFI parameters and make the cluster detection as reliable as possible. The same method was applied to the Millennium simulation to estimate our detection efficiency and the approximate masses of the detected clusters. Considering all the cluster galaxies (i.e. within a 1 Mpc radius of the cluster to which they belong and with a photoz differing by less thanmore » 0.05 from that of the cluster), we stacked clusters in various redshift bins to derive colour-magnitude diagrams and galaxy luminosity functions (GLFs). For each galaxy with absolute magnitude brighter than -19.0 in the r band, we computed the disk and spheroid components by applying SExtractor, and by stacking clusters we determined how the disk-to-spheroid flux ratio varies with cluster redshift and mass. We also detected 3663 clusters in the redshift range 0.1513 and a few 10 14 solar masses. Furthermore, by stacking the cluster galaxies in various redshift bins, we find a clear red sequence in the (g'-r') versus r' colour-magnitude diagrams, and the GLFs are typical of clusters, though with a possible contamination from field galaxies. The morphological analysis of the cluster galaxies shows that the fraction of late-type to early-type galaxies shows an increase with redshift (particularly in high mass clusters) and a decrease with detection level, i.e. cluster mass. From the properties of the cluster galaxies, the majority of the candidate clusters detected here seem to be real clusters with typical cluster properties.« less

  18. Galaxy clusters in the SDSS Stripe 82 based on photometric redshifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durret, F.; Adami, C.; Bertin, E.

    Based on a recent photometric redshift galaxy catalogue, we have searched for galaxy clusters in the Stripe ~82 region of the Sloan Digital Sky Survey by applying the Adami & MAzure Cluster FInder (AMACFI). Extensive tests were made to fine-tune the AMACFI parameters and make the cluster detection as reliable as possible. The same method was applied to the Millennium simulation to estimate our detection efficiency and the approximate masses of the detected clusters. Considering all the cluster galaxies (i.e. within a 1 Mpc radius of the cluster to which they belong and with a photoz differing by less thanmore » 0.05 from that of the cluster), we stacked clusters in various redshift bins to derive colour-magnitude diagrams and galaxy luminosity functions (GLFs). For each galaxy with absolute magnitude brighter than -19.0 in the r band, we computed the disk and spheroid components by applying SExtractor, and by stacking clusters we determined how the disk-to-spheroid flux ratio varies with cluster redshift and mass. We also detected 3663 clusters in the redshift range 0.1513 and a few 10 14 solar masses. Furthermore, by stacking the cluster galaxies in various redshift bins, we find a clear red sequence in the (g'-r') versus r' colour-magnitude diagrams, and the GLFs are typical of clusters, though with a possible contamination from field galaxies. The morphological analysis of the cluster galaxies shows that the fraction of late-type to early-type galaxies shows an increase with redshift (particularly in high mass clusters) and a decrease with detection level, i.e. cluster mass. From the properties of the cluster galaxies, the majority of the candidate clusters detected here seem to be real clusters with typical cluster properties.« less

  19. Photometric redshift estimation based on data mining with PhotoRApToR

    NASA Astrophysics Data System (ADS)

    Cavuoti, S.; Brescia, M.; De Stefano, V.; Longo, G.

    2015-03-01

    Photometric redshifts (photo-z) are crucial to the scientific exploitation of modern panchromatic digital surveys. In this paper we present PhotoRApToR (Photometric Research Application To Redshift): a Java/C ++ based desktop application capable to solve non-linear regression and multi-variate classification problems, in particular specialized for photo-z estimation. It embeds a machine learning algorithm, namely a multi-layer neural network trained by the Quasi Newton learning rule, and special tools dedicated to pre- and post-processing data. PhotoRApToR has been successfully tested on several scientific cases. The application is available for free download from the DAME Program web site.

  20. High-Z Protocluster Survey by Subaru/HSC

    NASA Astrophysics Data System (ADS)

    Kashikawa, Nobunari

    2017-07-01

    We are now conducting a systematic survey for high-redshift (z > 3) protoclusters using the extremely wide imaging data produced by the Subaru/Hyper Suprime Cam. The goal of the HSC protocluster survey is to trace redshift evolution of cluster galaxies up to z 6 with very high number statistics (10 20 protoclusters per redshift bins at z> 2) as well as to see a possible variety of protoclusters ( 1000 protoclusters at z 4) at the same redshift. We applied an effective method to find significant overdense regions of g-dropout galaxies at z 4 based on a high surface number density. We have found 179 protocluster candidates with more than 4 overdensity significance over 121 deg2 of the initial HSC data release for the wide layer. I will report the current status of the survey and initial results.

  1. Deriving photometric redshifts using fuzzy archetypes and self-organizing maps - I. Methodology

    NASA Astrophysics Data System (ADS)

    Speagle, Joshua S.; Eisenstein, Daniel J.

    2017-07-01

    We propose a method to substantially increase the flexibility and power of template fitting-based photometric redshifts by transforming a large number of galaxy spectral templates into a corresponding collection of 'fuzzy archetypes' using a suitable set of perturbative priors designed to account for empirical variation in dust attenuation and emission-line strengths. To bypass widely separated degeneracies in parameter space (e.g. the redshift-reddening degeneracy), we train self-organizing maps (SOMs) on large 'model catalogues' generated from Monte Carlo sampling of our fuzzy archetypes to cluster the predicted observables in a topologically smooth fashion. Subsequent sampling over the SOM then allows full reconstruction of the relevant probability distribution functions (PDFs). This combined approach enables the multimodal exploration of known variation among galaxy spectral energy distributions with minimal modelling assumptions. We demonstrate the power of this approach to recover full redshift PDFs using discrete Markov chain Monte Carlo sampling methods combined with SOMs constructed from Large Synoptic Survey Telescope ugrizY and Euclid YJH mock photometry.

  2. Detecting Massive, High-Redshift Galaxy Clusters Using the Thermal Sunyaev-Zel'dovich Effect

    NASA Astrophysics Data System (ADS)

    Adams, Carson; Steinhardt, Charles L.; Loeb, Abraham; Karim, Alexander; Staguhn, Johannes; Erler, Jens; Capak, Peter L.

    2017-01-01

    We develop the thermal Sunyaev-Zel'dovich (SZ) effect as a direct astrophysical measure of the mass distribution of dark matter halos. The SZ effect increases with cosmological distance, a unique astronomical property, and is highly sensitive to halo mass. We find that this presents a powerful methodology for distinguishing between competing models of the halo mass function distribution, particularly in the high-redshift domain just a few hundred million years after the Big Bang. Recent surveys designed to probe this epoch of initial galaxy formation such as CANDELS and SPLASH report an over-abundance of highly massive halos as inferred from stellar ultraviolet (UV) luminosities and the stellar mass to halo mass ratio estimated from nearby galaxies. If these UV luminosity to halo mass relations hold to high-redshift, observations estimate several orders of magnitude more highly massive halos than predicted by hierarchical merging and the standard cosmological paradigm. Strong constraints on the masses of these galaxy clusters are essential to resolving the current tension between observation and theory. We conclude that detections of thermal SZ sources are plausible at high-redshift only for the halo masses inferred from observation. Therefore, future SZ surveys will provide a robust determination between theoretical and observational predictions.

  3. Type Ia Supernova Rate Measurements to Redshift 2.5 from Candles: Searching for Prompt Explosions in the Early Universe

    NASA Technical Reports Server (NTRS)

    Rodney, Steven A.; Riess, Adam G.; Strogler, Louis-Gregory; Dahlen, Tomas; Graur, Or; Casertano, Stefano; Dickinson, Mark E.; Ferguson, Henry C.; Garnavich, Peter; Cenko, Stephen Bradley

    2014-01-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope(HST) that surveyed a total area of approx. 0.25 deg(sup 2) with approx.900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z approx. 2.5. We classify approx. 24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z = 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only approx. 3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation (500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SN Ia fraction isfP0.530.09stat0.100.10sys0.26, consistent with a delay time distribution that follows a simplet1power law for all timest40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20 of all SN Ia explosions though further analysis and larger samples will be needed to examine that suggestion.

  4. Type Ia Supernova Rate Measurements to Redshift 2.5 from CANDELS: Searching for Prompt Explosions in the Early Universe

    NASA Astrophysics Data System (ADS)

    Rodney, Steven A.; Riess, Adam G.; Strolger, Louis-Gregory; Dahlen, Tomas; Graur, Or; Casertano, Stefano; Dickinson, Mark E.; Ferguson, Henry C.; Garnavich, Peter; Hayden, Brian; Jha, Saurabh W.; Jones, David O.; Kirshner, Robert P.; Koekemoer, Anton M.; McCully, Curtis; Mobasher, Bahram; Patel, Brandon; Weiner, Benjamin J.; Cenko, S. Bradley; Clubb, Kelsey I.; Cooper, Michael; Filippenko, Alexei V.; Frederiksen, Teddy F.; Hjorth, Jens; Leibundgut, Bruno; Matheson, Thomas; Nayyeri, Hooshang; Penner, Kyle; Trump, Jonathan; Silverman, Jeffrey M.; U, Vivian; Azalee Bostroem, K.; Challis, Peter; Rajan, Abhijith; Wolff, Schuyler; Faber, S. M.; Grogin, Norman A.; Kocevski, Dale

    2014-07-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope (HST) that surveyed a total area of ~0.25 deg2 with ~900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z ~ 2.5. We classify ~24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z = 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only ~3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation (<500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SN Ia fraction is f_{P}\\,{=}\\,0.53^{\\ \\,\\, +/- 0.09}_{stat0.10} {}^{\\ \\, +/- 0.10}_{sys 0.26}, consistent with a delay time distribution that follows a simple t -1 power law for all times t > 40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20% of all SN Ia explosions—though further analysis and larger samples will be needed to examine that suggestion.

  5. A unified framework for constructing, tuning and assessing photometric redshift density estimates in a selection bias setting

    NASA Astrophysics Data System (ADS)

    Freeman, P. E.; Izbicki, R.; Lee, A. B.

    2017-07-01

    Photometric redshift estimation is an indispensable tool of precision cosmology. One problem that plagues the use of this tool in the era of large-scale sky surveys is that the bright galaxies that are selected for spectroscopic observation do not have properties that match those of (far more numerous) dimmer galaxies; thus, ill-designed empirical methods that produce accurate and precise redshift estimates for the former generally will not produce good estimates for the latter. In this paper, we provide a principled framework for generating conditional density estimates (I.e. photometric redshift PDFs) that takes into account selection bias and the covariate shift that this bias induces. We base our approach on the assumption that the probability that astronomers label a galaxy (I.e. determine its spectroscopic redshift) depends only on its measured (photometric and perhaps other) properties x and not on its true redshift. With this assumption, we can explicitly write down risk functions that allow us to both tune and compare methods for estimating importance weights (I.e. the ratio of densities of unlabelled and labelled galaxies for different values of x) and conditional densities. We also provide a method for combining multiple conditional density estimates for the same galaxy into a single estimate with better properties. We apply our risk functions to an analysis of ≈106 galaxies, mostly observed by Sloan Digital Sky Survey, and demonstrate through multiple diagnostic tests that our method achieves good conditional density estimates for the unlabelled galaxies.

  6. The Vimos VLT deep survey. Global properties of 20,000 galaxies in the IAB < 22.5 WIDE survey

    NASA Astrophysics Data System (ADS)

    Garilli, B.; Le Fèvre, O.; Guzzo, L.; Maccagni, D.; Le Brun, V.; de la Torre, S.; Meneux, B.; Tresse, L.; Franzetti, P.; Zamorani, G.; Zanichelli, A.; Gregorini, L.; Vergani, D.; Bottini, D.; Scaramella, R.; Scodeggio, M.; Vettolani, G.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Cappi, A.; Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.; Gavignaud, I.; Ilbert, O.; Iovino, A.; Lamareille, F.; McCracken, H. J.; Marano, B.; Marinoni, C.; Mazure, A.; Merighi, R.; Paltani, S.; Pellò, R.; Pollo, A.; Pozzetti, L.; Radovich, M.; Zucca, E.; Blaizot, J.; Bongiorno, A.; Cucciati, O.; Mellier, Y.; Moreau, C.; Paioro, L.

    2008-08-01

    The VVDS-Wide survey has been designed to trace the large-scale distribution of galaxies at z ~ 1 on comoving scales reaching ~100~h-1 Mpc, while providing a good control of cosmic variance over areas as large as a few square degrees. This is achieved by measuring redshifts with VIMOS at the ESO VLT to a limiting magnitude IAB = 22.5, targeting four independent fields with sizes of up to 4 deg2 each. We discuss the survey strategy which covers 8.6 deg2 and present the general properties of the current redshift sample. This includes 32 734 spectra in the four regions, covering a total area of 6.1 deg2 with a sampling rate of 22 to 24%. This paper accompanies the public release of the first 18 143 redshifts of the VVDS-Wide survey from the 4 deg2 contiguous area of the F22 field at RA = 22^h. We have devised and tested an objective method to assess the quality of each spectrum, providing a compact figure-of-merit. This is particularly effective in the case of long-lasting spectroscopic surveys with varying observing conditions. Our figure of merit is a measure of the robustness of the redshift measurement and, most importantly, can be used to select galaxies with uniform high-quality spectra to carry out reliable measurements of spectral features. We also use the data available over the four independent regions to directly measure the variance in galaxy counts. We compare it with general predictions from the observed galaxy two-point correlation function at different redshifts and with that measured in mock galaxy surveys built from the Millennium simulation. The purely magnitude-limited VVDS Wide sample includes 19 977 galaxies, 304 type I AGNs, and 9913 stars. The redshift success rate is above 90% independent of magnitude. A cone diagram of the galaxy spatial distribution provides us with the current largest overview of large-scale structure up to z ~ 1, showing a rich texture of over- and under-dense regions. We give the mean N(z) distribution averaged over 6

  7. Testing the accuracy of redshift-space group-finding algorithms

    NASA Astrophysics Data System (ADS)

    Frederic, James J.

    1995-04-01

    Using simulated redshift surveys generated from a high-resolution N-body cosmological structure simulation, we study algorithms used to identify groups of galaxies in redshift space. Two algorithms are investigated; both are friends-of-friends schemes with variable linking lengths in the radial and transverse dimenisons. The chief difference between the algorithms is in the redshift linking length. The algorithm proposed by Huchra & Geller (1982) uses a generous linking length designed to find 'fingers of god,' while that of Nolthenius & White (1987) uses a smaller linking length to minimize contamination by projection. We find that neither of the algorithms studied is intrinsically superior to the other; rather, the ideal algorithm as well as the ideal algorithm parameters depends on the purpose for which groups are to be studied. The Huchra & Geller algorithm misses few real groups, at the cost of including some spurious groups and members, while the Nolthenius & White algorithm misses high velocity dispersion groups and members but is less likely to include interlopers in its group assignments. Adjusting the parameters of either algorithm results in a trade-off between group accuracy and completeness. In a companion paper we investigate the accuracy of virial mass estimates and clustering properties of groups identified using these algorithms.

  8. Relativistic corrections and non-Gaussianity in radio continuum surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maartens, Roy; Zhao, Gong-Bo; Bacon, David

    Forthcoming radio continuum surveys will cover large volumes of the observable Universe and will reach to high redshifts, making them potentially powerful probes of dark energy, modified gravity and non-Gaussianity. We consider the continuum surveys with LOFAR, WSRT and ASKAP, and examples of continuum surveys with the SKA. We extend recent work on these surveys by including redshift space distortions and lensing convergence in the radio source auto-correlation. In addition we compute the general relativistic (GR) corrections to the angular power spectrum. These GR corrections to the standard Newtonian analysis of the power spectrum become significant on scales near andmore » beyond the Hubble scale at each redshift. We find that the GR corrections are at most percent-level in LOFAR, WODAN and EMU surveys, but they can produce O(10%) changes for high enough sensitivity SKA continuum surveys. The signal is however dominated by cosmic variance, and multiple-tracer techniques will be needed to overcome this problem. The GR corrections are suppressed in continuum surveys because of the integration over redshift — we expect that GR corrections will be enhanced for future SKA HI surveys in which the source redshifts will be known. We also provide predictions for the angular power spectra in the case where the primordial perturbations have local non-Gaussianity. We find that non-Gaussianity dominates over GR corrections, and rises above cosmic variance when f{sub NL}∼>5 for SKA continuum surveys.« less

  9. The Infrared-Radio Correlation of Dusty Star Forming Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Lower, Sidney; Vieira, Joaquin Daniel; Jarugula, Sreevani

    2018-01-01

    Far-infrared (FIR) and radio continuum emission in galaxies are related by a common origin: massive stars and the processes triggered during their birth, lifetime, and death. FIR emission is produced by cool dust, heated by the absorption of UV emission from massive stars, which is then re-emitted in the FIR. Thermal free-free radiation emitted from HII regions dominates the spectral energy density (SED) of galaxies at roughly 30 GHz, while non-thermal synchrotron radiation dominates at lower frequencies. At low redshift, the infrared radio correlation (IRC, or qIR) holds as a tight empirical relation for many star forming galaxy types, but until recently, there has not been sensitive enough radio observations to extend this relation to higher redshifts. Many selection biases cloud the results of these analyses, leaving the evolution of the IRC with redshift ambiguous. In this poster, I present CIGALE fitted spectral energy distributions (SEDs) for 24 gravitationally-lensed sources selected in the mm-wave from the South Pole Telescope (SPT) survey. I fit the IRC from infrared and submillimeter fluxes obtained with Herschel, Atacama Pathfinder Experiment (APEX), and SPT and radio fluxes obtained with ATCA at 2.1, 5.5, 9, and 30 GHz. This sample of SPT sources has a spectroscopic redshift range of 2.1redshift of z=4. In this poster, I will present the results of this study and compare our results to various results in the literature.

  10. HIghZ: A search for HI absorption in high-redshift radio galaxies

    NASA Astrophysics Data System (ADS)

    Allison, J.; Callingham, J.; Sadler, E.; Wayth, R.; Curran, S.; Mahoney, E.

    2017-01-01

    We will use the unique low-frequency spectral capability of the MWA to carry out a pilot survey for neutral gas in the interstellar medium of the most distant (z>5) radio galaxies in the Universe. Through detection of the HI 21-cm line in absorption we aim to place stringent lower limits on the source redshift, confirming its location in the early Universe. Our sample makes use of the excellent wide-band spectral information available from the recently completed MWA GLEAM survey, from which we have selected a sample of ultra-steep peaked-spectrum radio sources that have a spectral turnover below 300 MHz. These sources should be ideal candidates for high-redshift compact radio galaxies since they have (a) spectral peaks that turnover below 1GHz and (b) very steep (alpha < -1.0) spectral indices that are consistent with the high density environments expected for radio galaxies in the early Universe. Using the MWA, we aim to verify this hypothesis through the detection of significant column densities of cold HI. This pathfinder project will provide important technical information that will inform future absorption surveys both with the MWA and, ultimately, the SKA-LOW telescope.

  11. “Direct” Gas-phase Metallicity in Local Analogs of High-redshift Galaxies: Empirical Metallicity Calibrations for High-redshift Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Kewley, Lisa J.; Dopita, Michael A.

    2018-06-01

    We study the direct gas-phase oxygen abundance using the well-detected auroral line [O III]λ4363 in the stacked spectra of a sample of local analogs of high-redshift galaxies. These local analogs share the same location as z ∼ 2 star-forming galaxies on the [O III]λ5007/Hβ versus [N II]λ6584/Hα Baldwin–Phillips–Terlevich diagram. This type of analog has the same ionized interstellar medium (ISM) properties as high-redshift galaxies. We establish empirical metallicity calibrations between the direct gas-phase oxygen abundances (7.8< 12+{log}({{O}}/{{H}})< 8.4) and the N2 (log([N II]λ6584/Hα))/O3N2 (log(([O III]λ5007/Hβ)/([N II]λ6584/Hα))) indices in our local analogs. We find significant systematic offsets between the metallicity calibrations for our local analogs of high-redshift galaxies and those derived from the local H II regions and a sample of local reference galaxies selected from the Sloan Digital Sky Survey (SDSS). The N2 and O3N2 metallicities will be underestimated by 0.05–0.1 dex relative to our calibration, if one simply applies the local metallicity calibration in previous studies to high-redshift galaxies. Local metallicity calibrations also cause discrepancies of metallicity measurements in high-redshift galaxies using the N2 and O3N2 indicators. In contrast, our new calibrations produce consistent metallicities between these two indicators. We also derive metallicity calibrations for R23 (log(([O III]λλ4959,5007+[O II]λλ3726,3729)/Hβ)), O32(log([O III]λλ4959,5007/[O II]λλ3726,3729)), {log}([O III]λ5007/Hβ), and log([Ne III]λ3869/[O II]λ3727) indices in our local analogs, which show significant offset compared to those in the SDSS reference galaxies. By comparing with MAPPINGS photoionization models, the different empirical metallicity calibration relations in the local analogs and the SDSS reference galaxies can be shown to be primarily due to the change of ionized ISM conditions. Assuming that temperature structure

  12. A perturbative approach to the redshift space correlation function: beyond the Standard Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, Benjamin; Koyama, Kazuya, E-mail: benjamin.bose@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk

    We extend our previous redshift space power spectrum code to the redshift space correlation function. Here we focus on the Gaussian Streaming Model (GSM). Again, the code accommodates a wide range of modified gravity and dark energy models. For the non-linear real space correlation function used in the GSM we use the Fourier transform of the RegPT 1-loop matter power spectrum. We compare predictions of the GSM for a Vainshtein screened and Chameleon screened model as well as GR. These predictions are compared to the Fourier transform of the Taruya, Nishimichi and Saito (TNS) redshift space power spectrum model whichmore » is fit to N-body data. We find very good agreement between the Fourier transform of the TNS model and the GSM predictions, with ≤ 6% deviations in the first two correlation function multipoles for all models for redshift space separations in 50Mpc h ≤ s ≤ 180Mpc/ h . Excellent agreement is found in the differences between the modified gravity and GR multipole predictions for both approaches to the redshift space correlation function, highlighting their matched ability in picking up deviations from GR. We elucidate the timeliness of such non-standard templates at the dawn of stage-IV surveys and discuss necessary preparations and extensions needed for upcoming high quality data.« less

  13. Investigating Supermassive Black Hole Spin at Different Redshift

    NASA Astrophysics Data System (ADS)

    Sinanan-Singh, Jasmine

    2018-01-01

    Supermassive black hole (SMBH) spin encodes vital information about the history of SMBH growth. High spins indicate a history of growth through large mass accretion events, which spin-up the black hole; Intermediate spins indicate a history of galactic mergers, which don't tend to systemcatically spin-up or spin-down black holes; low spins are attributed to successive, small accretion events with random orientations. Examining spin over different redshifts will help us understand the relative growth of SMBHs by mergers or accretion over cosmic time, an important part of understanding how SMBHs and their host galaxies co-evolved over time. To study spin, we compute the Fe K alpha emission line from the X-ray spectra of AGN sources in the Chandra-COSMOS Legacy Survey. We stack rest frame AGN spectra to improve the signal-to-noise ratio since the photon counts are low for individual spectra, and then average the spectra using an unwieghted mean. Our method is derived from Corral et al. (2008). We test our method on the two brightest sources in the COSMOS Survey and compute the rest frame average Fe K alpha emission line for different redshift bins. The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.

  14. High-redshift radio galaxies and divergence from the CMB dipole

    NASA Astrophysics Data System (ADS)

    Colin, Jacques; Mohayaee, Roya; Rameez, Mohamed; Sarkar, Subir

    2017-10-01

    Previous studies have found our velocity in the rest frame of radio galaxies at high redshift to be much larger than that inferred from the dipole anisotropy of the cosmic microwave background. We construct a full sky catalogue, NVSUMSS, by merging the NRAO VLA Sky Survey and the Sydney University Molonglo Sky Survey catalogues and removing local sources by various means including cross-correlating with the 2MASS Redshift Survey catalogue. We take into account both aberration and Doppler boost to deduce our velocity from the hemispheric number count asymmetry, as well as via a three-dimensional linear estimator. Both its magnitude and direction depend on cuts made to the catalogue, e.g. on the lowest source flux; however these effects are small. From the hemispheric number count asymmetry we obtain a velocity of 1729 ± 187 km s-1, I.e. about four times larger than that obtained from the cosmic microwave background dipole, but close in direction, towards RA=149° ± 2°, Dec. = -17° ± 12°. With the three-dimensional estimator, the derived velocity is 1355 ± 174 km s-1 towards RA = 141° ± 11°, Dec. = -9° ± 10°. We assess the statistical significance of these results by comparison with catalogues of random distributions, finding it to be 2.81σ (99.75 per cent confidence).

  15. Degradation analysis in the estimation of photometric redshifts from non-representative training sets

    NASA Astrophysics Data System (ADS)

    Rivera, J. D.; Moraes, B.; Merson, A. I.; Jouvel, S.; Abdalla, F. B.; Abdalla, M. C. B.

    2018-04-01

    We perform an analysis of photometric redshifts estimated by using a non-representative training sets in magnitude space. We use the ANNz2 and GPz algorithms to estimate the photometric redshift both in simulations as well as in real data from the Sloan Digital Sky Survey (DR12). We show that for the representative case, the results obtained by using both algorithms have the same quality, either using magnitudes or colours as input. In order to reduce the errors when estimating the redshifts with a non-representative training set, we perform the training in colour space. We estimate the quality of our results by using a mock catalogue which is split samples cuts in the r-band between 19.4 < r < 20.8. We obtain slightly better results with GPz on single point z-phot estimates in the complete training set case, however the photometric redshifts estimated with ANNz2 algorithm allows us to obtain mildly better results in deeper r-band cuts when estimating the full redshift distribution of the sample in the incomplete training set case. By using a cumulative distribution function and a Monte-Carlo process, we manage to define a photometric estimator which fits well the spectroscopic distribution of galaxies in the mock testing set, but with a larger scatter. To complete this work, we perform an analysis of the impact on the detection of clusters via density of galaxies in a field by using the photometric redshifts obtained with a non-representative training set.

  16. [Using neural networks based template matching method to obtain redshifts of normal galaxies].

    PubMed

    Xu, Xin; Luo, A-li; Wu, Fu-chao; Zhao, Yong-heng

    2005-06-01

    Galaxies can be divided into two classes: normal galaxy (NG) and active galaxy (AG). In order to determine NG redshifts, an automatic effective method is proposed in this paper, which consists of the following three main steps: (1) From the template of normal galaxy, the two sets of samples are simulated, one with the redshift of 0.0-0.3, the other of 0.3-0.5, then the PCA is used to extract the main components, and train samples are projected to the main component subspace to obtain characteristic spectra. (2) The characteristic spectra are used to train a Probabilistic Neural Network to obtain a Bayes classifier. (3) An unknown real NG spectrum is first inputted to this Bayes classifier to determine the possible range of redshift, then the template matching is invoked to locate the redshift value within the estimated range. Compared with the traditional template matching technique with an unconstrained range, our proposed method not only halves the computational load, but also increases the estimation accuracy. As a result, the proposed method is particularly useful for automatic spectrum processing produced from a large-scale sky survey project.

  17. Molecular Gas Contents and Scaling Relations for Massive, Passive Galaxies at Intermediate Redshifts from the LEGA-C Survey

    NASA Astrophysics Data System (ADS)

    Spilker, Justin; Bezanson, Rachel; Barišić, Ivana; Bell, Eric; Lagos, Claudia del P.; Maseda, Michael; Muzzin, Adam; Pacifici, Camilla; Sobral, David; Straatman, Caroline; van der Wel, Arjen; van Dokkum, Pieter; Weiner, Benjamin; Whitaker, Katherine; Williams, Christina C.; Wu, Po-Feng

    2018-06-01

    A decade of study has established that the molecular gas properties of star-forming galaxies follow coherent scaling relations out to z ∼ 3, suggesting remarkable regularity of the interplay between molecular gas, star formation, and stellar growth. Passive galaxies, however, are expected to be gas-poor and therefore faint, and thus little is known about molecular gas in passive galaxies beyond the local universe. Here we present deep Atacama Large Millimeter/submillimeter Array observations of CO(2–1) emission in eight massive (M star ∼ 1011 M ⊙) galaxies at z ∼ 0.7 selected to lie a factor of 3–10 below the star-forming sequence at this redshift, drawn from the Large Early Galaxy Astrophysics Census survey. We significantly detect half the sample, finding molecular gas fractions ≲0.1. We show that the molecular and stellar rotational axes are broadly consistent, arguing that the molecular gas was not accreted after the galaxies became quiescent. We find that scaling relations extrapolated from the star-forming population overpredict both the gas fraction and gas depletion time for passive objects, suggesting the existence of either a break or large increase in scatter in these relations at low specific star formation rate. Finally, we show that the gas fractions of the passive galaxies we have observed at intermediate redshifts are naturally consistent with evolution into local, massive early-type galaxies by continued low-level star formation, with no need for further gas accretion or dynamical stabilization of the gas reservoirs in the intervening 6 billion years.

  18. Studying the Ultraviolet Spectrum of the First Spectroscopically Confirmed Supernova at redshift two

    DOE PAGES

    Smith, M.

    2017-12-11

    Here, we present observations of DES16C2nm, the first spectroscopically confirmed hydrogen-free superluminous supernova (SLSN-I) at redshift z~2. DES16C2nm was discovered by the Dark Energy Survey (DES) Supernova Program, with follow-up photometric data from the Hubble Space Telescope, Gemini, and the European Southern Observatory Very Large Telescope supplementing the DES data. Spectroscopic observations confirm DES16C2nm to be at z=1.998, and spectroscopically similar to Gaia16apd (a SLSN-I at z=0.102), with a peak absolute magnitude of U=-22.26more » $$\\pm$$0.06. The high redshift of DES16C2nm provides a unique opportunity to study the ultraviolet (UV) properties of SLSNe-I. Combining DES16C2nm with ten similar events from the literature, we show that there exists a homogeneous class of SLSNe-I in the UV (~2500A), with peak luminosities in the (rest-frame) U band, and increasing absorption to shorter wavelengths. There is no evidence that the mean photometric and spectroscopic properties of SLSNe-I differ between low (z<1) and high redshift (z>1), but there is clear evidence of diversity in the spectrum at <2000A, possibly caused by the variations in temperature between events. No significant correlations are observed between spectral line velocities and photometric luminosity. Using these data, we estimate that SLSNe-I can be discovered to z=3.8 by DES. While SLSNe-I are typically identified from their blue observed colors at low redshift (z<1), we highlight that at z>2 these events appear optically red, peaking in the observer-frame z-band. Such characteristics are critical to identify these objects with future facilities such as the Large Synoptic Survey Telescope, Euclid, and the Wide-Field Infrared Survey Telescope, which should detect such SLSNe-I to z=3.5, 3.7, and 6.6, respectively.« less

  19. Studying the Ultraviolet Spectrum of the First Spectroscopically Confirmed Supernova at Redshift Two

    NASA Astrophysics Data System (ADS)

    Smith, M.; Sullivan, M.; Nichol, R. C.; Galbany, L.; D’Andrea, C. B.; Inserra, C.; Lidman, C.; Rest, A.; Schirmer, M.; Filippenko, A. V.; Zheng, W.; Cenko, S. Bradley; Angus, C. R.; Brown, P. J.; Davis, T. M.; Finley, D. A.; Foley, R. J.; González-Gaitán, S.; Gutiérrez, C. P.; Kessler, R.; Kuhlmann, S.; Marriner, J.; Möller, A.; Nugent, P. E.; Prajs, S.; Thomas, R.; Wolf, R.; Zenteno, A.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; da Costa, L. N.; Davis, C.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Johnson, M. W. G.; Kuehn, K.; Kuropatkin, N.; Li, T. S.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Martini, P.; Menanteau, F.; Miller, C. J.; Miquel, R.; Ogando, R. L. C.; Petravick, D.; Plazas, A. A.; Romer, A. K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Walker, A. R.; The DES Collaboration

    2018-02-01

    We present observations of DES16C2nm, the first spectroscopically confirmed hydrogen-free superluminous supernova (SLSN-I) at redshift z≈ 2. DES16C2nm was discovered by the Dark Energy Survey (DES) Supernova Program, with follow-up photometric data from the Hubble Space Telescope, Gemini, and the European Southern Observatory Very Large Telescope supplementing the DES data. Spectroscopic observations confirm DES16C2nm to be at z = 1.998, and spectroscopically similar to Gaia16apd (a SLSN-I at z = 0.102), with a peak absolute magnitude of U=-22.26+/- 0.06. The high redshift of DES16C2nm provides a unique opportunity to study the ultraviolet (UV) properties of SLSNe-I. Combining DES16C2nm with 10 similar events from the literature, we show that there exists a homogeneous class of SLSNe-I in the UV ({λ }{rest}≈ 2500 Å), with peak luminosities in the (rest-frame) U band, and increasing absorption to shorter wavelengths. There is no evidence that the mean photometric and spectroscopic properties of SLSNe-I differ between low (z< 1) and high redshift (z> 1), but there is clear evidence of diversity in the spectrum at {λ }{rest}< 2000 \\mathringA , possibly caused by the variations in temperature between events. No significant correlations are observed between spectral line velocities and photometric luminosity. Using these data, we estimate that SLSNe-I can be discovered to z = 3.8 by DES. While SLSNe-I are typically identified from their blue observed colors at low redshift (z< 1), we highlight that at z> 2 these events appear optically red, peaking in the observer-frame z-band. Such characteristics are critical to identify these objects with future facilities such as the Large Synoptic Survey Telescope, Euclid, and the Wide-field Infrared Survey Telescope, which should detect such SLSNe-I to z = 3.5, 3.7, and 6.6, respectively.

  20. Studying the Ultraviolet Spectrum of the First Spectroscopically Confirmed Supernova at redshift two

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.

    Here, we present observations of DES16C2nm, the first spectroscopically confirmed hydrogen-free superluminous supernova (SLSN-I) at redshift z~2. DES16C2nm was discovered by the Dark Energy Survey (DES) Supernova Program, with follow-up photometric data from the Hubble Space Telescope, Gemini, and the European Southern Observatory Very Large Telescope supplementing the DES data. Spectroscopic observations confirm DES16C2nm to be at z=1.998, and spectroscopically similar to Gaia16apd (a SLSN-I at z=0.102), with a peak absolute magnitude of U=-22.26more » $$\\pm$$0.06. The high redshift of DES16C2nm provides a unique opportunity to study the ultraviolet (UV) properties of SLSNe-I. Combining DES16C2nm with ten similar events from the literature, we show that there exists a homogeneous class of SLSNe-I in the UV (~2500A), with peak luminosities in the (rest-frame) U band, and increasing absorption to shorter wavelengths. There is no evidence that the mean photometric and spectroscopic properties of SLSNe-I differ between low (z<1) and high redshift (z>1), but there is clear evidence of diversity in the spectrum at <2000A, possibly caused by the variations in temperature between events. No significant correlations are observed between spectral line velocities and photometric luminosity. Using these data, we estimate that SLSNe-I can be discovered to z=3.8 by DES. While SLSNe-I are typically identified from their blue observed colors at low redshift (z<1), we highlight that at z>2 these events appear optically red, peaking in the observer-frame z-band. Such characteristics are critical to identify these objects with future facilities such as the Large Synoptic Survey Telescope, Euclid, and the Wide-Field Infrared Survey Telescope, which should detect such SLSNe-I to z=3.5, 3.7, and 6.6, respectively.« less

  1. Power spectrum, correlation function, and tests for luminosity bias in the CfA redshift survey

    NASA Astrophysics Data System (ADS)

    Park, Changbom; Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.

    1994-08-01

    We describe and apply a method for directly computing the power spectrum for the galaxy distribution in the extension of the Center for Astrophysics Redshift Survey. Tests show that our technique accurately reproduces the true power spectrum for k greater than 0.03 h Mpc-1. The dense sampling and large spatial coverage of this survey allow accurate measurement of the redshift-space power spectrum on scales from 5 to approximately 200 h-1 Mpc. The power spectrum has slope n approximately equal -2.1 on small scales (lambda less than or equal 25 h-1 Mpc) and n approximately -1.1 on scales 30 less than lambda less than 120 h-1 Mpc. On larger scales the power spectrum flattens somewhat, but we do not detect a turnover. Comparison with N-body simulations of cosmological models shows that an unbiased, open universe CDM model (OMEGA h = 0.2) and a nonzero cosmological constant (CDM) model (OMEGA h = 0.24, lambdazero = 0.6, b = 1.3) match the CfA power spectrum over the wavelength range we explore. The standard biased CDM model (OMEGA h = 0.5, b = 1.5) fails (99% significance level) because it has insufficient power on scales lambda greater than 30 h-1 Mpc. Biased CDM with a normalization that matches the Cosmic Microwave Background (CMB) anisotropy (OMEGA h = 0.5, b = 1.4, sigma8 (mass) = 1) has too much power on small scales to match the observed galaxy power spectrum. This model with b = 1 matches both Cosmic Background Explorer Satellite (COBE) and the small-scale power spect rum but has insufficient power on scales lambda approximately 100 h-1 Mpc. We derive a formula for the effect of small-scale peculiar velocities on the power spectrum and combine this formula with the linear-regime amplification described by Kaiser to compute an estimate of the real-space power spectrum. Two tests reveal luminosity bias in the galaxy distribution: First, the amplitude of the power spectrum is approximately 40% larger for the brightest 50% of galaxies in volume-limited samples that

  2. Power spectrum, correlation function, and tests for luminosity bias in the CfA redshift survey

    NASA Technical Reports Server (NTRS)

    Park, Changbom; Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.

    1994-01-01

    We describe and apply a method for directly computing the power spectrum for the galaxy distribution in the extension of the Center for Astrophysics Redshift Survey. Tests show that our technique accurately reproduces the true power spectrum for k greater than 0.03 h Mpc(exp -1). The dense sampling and large spatial coverage of this survey allow accurate measurement of the redshift-space power spectrum on scales from 5 to approximately 200 h(exp -1) Mpc. The power spectrum has slope n approximately equal -2.1 on small scales (lambda less than or equal 25 h(exp -1) Mpc) and n approximately -1.1 on scales 30 less than lambda less than 120 h(exp -1) Mpc. On larger scales the power spectrum flattens somewhat, but we do not detect a turnover. Comparison with N-body simulations of cosmological models shows that an unbiased, open universe CDM model (OMEGA h = 0.2) and a nonzero cosmological constant (CDM) model (OMEGA h = 0.24, lambda(sub zero) = 0.6, b = 1.3) match the CfA power spectrum over the wavelength range we explore. The standard biased CDM model (OMEGA h = 0.5, b = 1.5) fails (99% significance level) because it has insufficient power on scales lambda greater than 30 h(exp -1) Mpc. Biased CDM with a normalization that matches the Cosmic Microwave Background (CMB) anisotropy (OMEGA h = 0.5, b = 1.4, sigma(sub 8) (mass) = 1) has too much power on small scales to match the observed galaxy power spectrum. This model with b = 1 matches both Cosmic Background Explorer Satellite (COBE) and the small-scale power spect rum but has insufficient power on scales lambda approximately 100 h(exp -1) Mpc. We derive a formula for the effect of small-scale peculiar velocities on the power spectrum and combine this formula with the linear-regime amplification described by Kaiser to compute an estimate of the real-space power spectrum. Two tests reveal luminosity bias in the galaxy distribution: First, the amplitude of the pwer spectrum is approximately 40% larger for the brightest

  3. The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miknaitis, Gajus; Pignata, G.; Rest, A.

    We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the equation of state parameter of the dark energy. We present a method for optimizing the survey exposure times and cadence to maximize our sensitivity to the dark energy equation of state parameter w = P/{rho}c{sup 2} for a given fixed amount of telescope time. For our survey on the CTIO 4m telescope, measuring the luminosity distances and redshifts for supernovae at modest redshifts (z {approx} 0.5 {+-} 0.2) is optimal for determining w. We describe the data analysis pipeline based on usingmore » reliable and robust image subtraction to find supernovae automatically and in near real-time. Since making cosmological inferences with supernovae relies crucially on accurate measurement of their brightnesses, we describe our efforts to establish a thorough calibration of the CTIO 4m natural photometric system. In its first four years, ESSENCE has discovered and spectroscopically confirmed 102 type Ia SNe, at redshifts from 0.10 to 0.78, identified through an impartial, effective methodology for spectroscopic classification and redshift determination. We present the resulting light curves for the all type Ia supernovae found by ESSENCE and used in our measurement of w, presented in Wood-Vasey et al. (2007).« less

  4. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Environmental effects shaping the galaxy stellar mass function

    NASA Astrophysics Data System (ADS)

    Davidzon, I.; Cucciati, O.; Bolzonella, M.; De Lucia, G.; Zamorani, G.; Arnouts, S.; Moutard, T.; Ilbert, O.; Garilli, B.; Scodeggio, M.; Guzzo, L.; Abbas, U.; Adami, C.; Bel, J.; Bottini, D.; Branchini, E.; Cappi, A.; Coupon, J.; de la Torre, S.; Di Porto, C.; Fritz, A.; Franzetti, P.; Fumana, M.; Granett, B. R.; Guennou, L.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Mellier, Y.; Moscardini, L.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.

    2016-02-01

    We exploit the first public data release of VIPERS to investigate environmental effects in the evolution of galaxies between z ~ 0.5 and 0.9. The large number of spectroscopic redshifts (more than 50 000) over an area of about 10 deg2 provides a galaxy sample with high statistical power. The accurate redshift measurements (σz = 0.00047(1 + zspec)) allow us to robustly isolate galaxies living in the lowest and highest density environments (δ< 0.7 and δ> 4, respectively) as defined in terms of spatial 3D density contrast δ. We estimate the stellar mass function of galaxies residing in these two environments and constrain the high-mass end (ℳ ≳ 1011 ℳ⊙) with unprecedented precision. We find that the galaxy stellar mass function in the densest regions has a different shape than was measured at low densities, with an enhancement of massive galaxies and a hint of a flatter (less negative) slope at z< 0.8. We normalise each mass function to the comoving volume occupied by the corresponding environment and relate estimates from different redshift bins. We observe an evolution of the stellar mass function of VIPERS galaxies in high densities, while the low-density one is nearly constant. We compare these results to semi-analytical models and find consistent environmental signatures in the simulated stellar mass functions. We discuss how the halo mass function and fraction of central/satellite galaxies depend on the environments considered, making intrinsic and environmental properties of galaxies physically coupled, hence difficult to disentangle. The evolution of our low-density regions is described well by the formalism introduced by Peng et al. (2010, ApJ, 721, 193), and is consistent with the idea that galaxies become progressively passive because of internal physical processes. The same formalism could also describe the evolution of the mass function in the high density regions, but only if a significant contribution from dry mergers is considered. Based on

  5. The accelerated build-up of the red sequence in high-redshift galaxy clusters

    NASA Astrophysics Data System (ADS)

    Cerulo, P.; Couch, W. J.; Lidman, C.; Demarco, R.; Huertas-Company, M.; Mei, S.; Sánchez-Janssen, R.; Barrientos, L. F.; Muñoz, R. P.

    2016-04-01

    We analyse the evolution of the red sequence in a sample of galaxy clusters at redshifts 0.8 < z < 1.5 taken from the HAWK-I Cluster Survey (HCS). The comparison with the low-redshift (0.04 < z < 0.08) sample of the WIde-field Nearby Galaxy-cluster Survey (WINGS) and other literature results shows that the slope and intrinsic scatter of the cluster red sequence have undergone little evolution since z = 1.5. We find that the luminous-to-faint ratio and the slope of the faint end of the luminosity distribution of the HCS red sequence are consistent with those measured in WINGS, implying that there is no deficit of red galaxies at magnitudes fainter than M_V^{ast } at high redshifts. We find that the most massive HCS clusters host a population of bright red sequence galaxies at MV < -22.0 mag, which are not observed in low-mass clusters. Interestingly, we also note the presence of a population of very bright (MV < -23.0 mag) and massive (log (M*/M⊙) > 11.5) red sequence galaxies in the WINGS clusters, which do not include only the brightest cluster galaxies and which are not present in the HCS clusters, suggesting that they formed at epochs later than z = 0.8. The comparison with the luminosity distribution of a sample of passive red sequence galaxies drawn from the COSMOS/UltraVISTA field in the photometric redshift range 0.8 < zphot < 1.5 shows that the red sequence in clusters is more developed at the faint end, suggesting that halo mass plays an important role in setting the time-scales for the build-up of the red sequence.

  6. VIMOS Ultra-Deep Survey (VUDS): IGM transmission towards galaxies with 2.5 < z < 5.5 and the colour selection of high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Thomas, R.; Le Fèvre, O.; Le Brun, V.; Cassata, P.; Garilli, B.; Lemaux, B. C.; Maccagni, D.; Pentericci, L.; Tasca, L. A. M.; Zamorani, G.; Zucca, E.; Amorin, R.; Bardelli, S.; Cassarà, L.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Pforr, J.; Ribeiro, B.; Schaerer, D.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vanzella, E.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; Cuby, J. G.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2017-01-01

    The observed UV rest-frame spectra of distant galaxies are the result of their intrinsic emission combined with absorption along the line of sight produced by the inter-galactic medium (IGM). Here we analyse the evolution of the mean IGM transmission Tr(Lyα) and its dispersion along the line of sight for 2127 galaxies with 2.5 < z < 5.5 in the VIMOS Ultra Deep Survey (VUDS). We fitted model spectra combined with a range of IGM transmission to the galaxy spectra using the spectral fitting algorithm GOSSIP+. We used these fits to derive the mean IGM transmission towards each galaxy for several redshift slices from z = 2.5 to z = 5.5. We found that the mean IGM transmission defined as Tr(Lyα) = e- τ (with τ as the HI optical depth) is 79%, 69%, 59%, 55%, and 46% at redshifts 2.75, 3.22, 3.70, 4.23, and 4.77, respectively. We compared these results to measurements obtained from quasar lines of sight and found that the IGM transmission towards galaxies is in excellent agreement with quasar values up to redshift z 4. We found tentative evidence for a higher IGM transmission at z ≥ 4 compared to results from QSOs, but a degeneracy between dust extinction and IGM prevents us from firmly concluding whether the internal dust extinction for star-forming galaxies at z > 4 takes a mean value significantly in excess of E(B-V) > 0.15. Most importantly, we found a large dispersion of IGM transmission along the lines of sight towards distant galaxies with 68% of the distribution within 10 to 17% of the median value in δz = 0.5 bins, similar to what is found on the lines of sight towards QSOs. We demonstrate that taking this broad range of IGM transmission into account is important when selecting high-redshift galaxies based on their colour properties (e.g. LBG or photometric redshiftselection) because failing to do so causes a significant incompleteness in selecting high-redshift galaxy populations. We finally discuss the observed IGM properties and speculate that the broad

  7. Galaxy And Mass Assembly (GAMA): colour- and luminosity-dependent clustering from calibrated photometric redshifts

    NASA Astrophysics Data System (ADS)

    Christodoulou, L.; Eminian, C.; Loveday, J.; Norberg, P.; Baldry, I. K.; Hurley, P. D.; Driver, S. P.; Bamford, S. P.; Hopkins, A. M.; Liske, J.; Peacock, J. A.; Bland-Hawthorn, J.; Brough, S.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Robotham, A. S. G.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.

    2012-09-01

    We measure the two-point angular correlation function of a sample of 4289 223 galaxies with r < 19.4 mag from the Sloan Digital Sky Survey (SDSS) as a function of photometric redshift, absolute magnitude and colour down to Mr - 5 log h = -14 mag. Photometric redshifts are estimated from ugriz model magnitudes and two Petrosian radii using the artificial neural network package ANNz, taking advantage of the Galaxy And Mass Assembly (GAMA) spectroscopic sample as our training set. These photometric redshifts are then used to determine absolute magnitudes and colours. For all our samples, we estimate the underlying redshift and absolute magnitude distributions using Monte Carlo resampling. These redshift distributions are used in Limber's equation to obtain spatial correlation function parameters from power-law fits to the angular correlation function. We confirm an increase in clustering strength for sub-L* red galaxies compared with ˜L* red galaxies at small scales in all redshift bins, whereas for the blue population the correlation length is almost independent of luminosity for ˜L* galaxies and fainter. A linear relation between relative bias and log luminosity is found to hold down to luminosities L ˜ 0.03L*. We find that the redshift dependence of the bias of the L* population can be described by the passive evolution model of Tegmark & Peebles. A visual inspection of a random sample from our r < 19.4 sample of SDSS galaxies reveals that about 10 per cent are spurious, with a higher contamination rate towards very faint absolute magnitudes due to over-deblended nearby galaxies. We correct for this contamination in our clustering analysis.

  8. The Galaxy Count Correlation Function in Redshift Space Revisited

    NASA Astrophysics Data System (ADS)

    Campagne, J.-E.; Plaszczynski, S.; Neveu, J.

    2017-08-01

    In the near future, cosmology will enter the wide and deep galaxy survey era, enabling high-precision studies of the large-scale structure of the universe in three dimensions. To test cosmological models and determine their parameters accurately, it is necessary to use data with exact theoretical expectations expressed in observational parameter space (angles and redshift). The data-driven, galaxy number count fluctuations on redshift shells can be used to build correlation functions ξ (θ ,{z}1,{z}2) on and between shells to probe the baryonic acoustic oscillations and distance-redshift distortions, as well as gravitational lensing and other relativistic effects. To obtain a numerical estimation of ξ (θ ,{z}1,{z}2) from a cosmological model, it is typical to use either a closed form derived from a tripolar spherical expansion or to compute the power spectrum {C}{\\ell }({z}1,{z}2) and perform a Legendre polynomial {P}{\\ell }(\\cos θ ) expansion. Here, we present a new derivation of a ξ (θ ,{z}1,{z}2) closed form using the spherical harmonic expansion and proceeding to an infinite sum over multipoles thanks to an addition theorem. We demonstrate that this new expression is perfectly compatible with the existing closed forms but is simpler to establish and manipulate. We provide formulas for the leading density and redshift-space contributions, but also show how Doppler-like and lensing terms can be easily included in this formalism. We have implemented and made publicly available software for computing those correlations efficiently, without any Limber approximation, and validated this software with the CLASSgal code. It is available at https://gitlab.in2p3.fr/campagne/AngPow.

  9. Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Bauer, F. E.

    2014-10-01

    Recent years have seen tremendous progress in finding and charactering star-forming galaxies at high redshifts across the electromagnetic spectrum, giving us a more complete picture of how galaxies evolve, both in terms of their stellar and gas content, as well as the growth of their central supermassive black holes. A wealth of studies now demonstrate that star formation peaked at roughly half the age of the Universe and drops precariously as we look back to very early times, and that their central monsters apparently growth with them. At the highest-redshifts, we are pushing the boundaries via deep surveys at optical, X-ray, radio wavelengths, and more recently using gamma-ray bursts. I will review some of our accomplishments and failures. Telescope have enabled Lyman break galaxies to be robustly identified, but the UV luminosity function and star formation rate density of this population at z = 6 - 8 seems to be much lower than at z = 2 - 4. High escape fractions and a large contribution from faint galaxies below our current detection limits would be required for star-forming galaxies to reionize the Universe. We have also found that these galaxies have blue rest-frame UV colours, which might indicate lower dust extinction at z > 5. There has been some spectroscopic confirmation of these Lyman break galaxies through Lyman-α emission, but the fraction of galaxies where we see this line drops at z > 7, perhaps due to the onset of the Gunn-Peterson effect (where the IGM is opaque to Lyman-α).

  10. BL Lacertae Objects Beyond Redshift 1.3 - UV-to-NIR Photometry and Photometric Redshift for Fermi/LAT Blazars

    NASA Technical Reports Server (NTRS)

    Rau, A.; Schady, P.; Greiner, J.; Salvato, M.; Ajello, M.; Bottacini, E.; Gehrels, N.; Afonso, P. M. J.; Elliott, J.; Filgas, R.; hide

    2011-01-01

    Context. Observations of the gamma-ray sky with Fermi led to significant advances towards understanding blazars, the most extreme class of Active Galactic Nuclei. A large fraction of the population detected by Fermi is formed by BL Lacertae (BL Lac) objects, whose sample has always suffered from a severe redshift incompleteness due to the quasi-featureless optical spectra. Aims. Our goal is to provide a significant increase of the number of confirmed high-redshift BL Lac objects contained in the 2 LAC Fermi/LAT catalog. Methods. For 103 Fermi/LAT blazars, photometric redshifts using spectral energy distribution fitting have been obtained. The photometry includes 13 broad-band filters from the far ultraviolet to the near-IR observed with Swift/UVOT and the multi-channel imager GROND at the MPG/ESO 2.2m telescope. Data have been taken quasi-simultaneously and the remaining source-intrinsic variability has been corrected for. Results. We release the UV-to-near-IR 13-band photometry for all 103 sources and provide redshift constraints for 75 sources without previously known redshift. Out of those, eight have reliable photometric redshifts at z > or approx. 1.3, while for the other 67 sources we provide upper limits. Six of the former eight are BL Lac objects, which quadruples the sample of confirmed high-redshift BL Lac. This includes three sources with redshifts higher than the previous record for BL Lac, including CRATES J0402-2615, with the best-fit solution at z approx. = 1.9.

  11. Unveiling high redshift structures with Planck

    NASA Astrophysics Data System (ADS)

    Welikala, Niraj

    2012-07-01

    The Planck satellite, with its large wavelength coverage and all-sky survey, has a unique potential of systematically detecting the brightest and rarest submillimetre sources on the sky. We present an original method based on a combination of Planck and IRAS data which we use to select the most luminous submillimetre high-redshift (z>1-2) cold sources over the sky. The majority of these sources are either individual, strongly lensed galaxies, or represent the combined emission of several submillimetre galaxies within the large beam of Planck. The latter includes, in particular, rapidly growing galaxy groups and clusters. We demonstrate our selection method on the first 5 confirmations that include a newly discovered over-density of 5 submillimetre-bright sources which has been confirmed with Herschel/SPIRE observations and followed up with ground-based observations including VLT/XSHOOTER spectroscopy. Using Planck, we also unveil the nature of 107 high-redshift dusty, lensed submillimetre galaxies that have been previously observed over 940 square degrees by the South Pole Telescope (SPT). We stack these galaxies in the Planck maps, obtaining mean SEDs for both the bright (SPT flux F _{220 GHz} > 20 mJy) and faint (F _{220 GHz} < 20 mJy) galaxy populations. These SEDs and the derived mean redshifts suggest that the bright and faint sources belong to the same population of submillimetre galaxies. Stacking the lensed submillimetre galaxies in Planck also enables us to probe the z~1 environments around the foreground lenses and we obtain estimates of their clustering. Finally, we use the stacks to extrapolate SPT source counts to the Planck HFI frequencies, thereby estimating the contribution of the SPT sources at 220 GHz to the galaxy number counts at 353 and 545 GHz.

  12. The VIMOS Public Extragalactic Redshift Survey (VIPERS):. A quiescent formation of massive red-sequence galaxies over the past 9 Gyr

    NASA Astrophysics Data System (ADS)

    Fritz, A.; Scodeggio, M.; Ilbert, O.; Bolzonella, M.; Davidzon, I.; Coupon, J.; Garilli, B.; Guzzo, L.; Zamorani, G.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bottini, D.; Branchini, E.; Cappi, A.; Cucciati, O.; De Lucia, G.; de la Torre, S.; Franzetti, P.; Fumana, M.; Granett, B. R.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Paioro, L.; Polletta, M.; Pollo, A.; Schlagenhaufer, H.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Moscardini, L.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.

    2014-03-01

    We explore the evolution of the colour-magnitude relation (CMR) and luminosity function (LF) at 0.4 < z < 1.3 from the VIMOS Public Extragalactic Redshift Survey (VIPERS) using ~45 000 galaxies with precise spectroscopic redshifts down to i'AB < 22.5 over ~10.32 deg2 in two fields. From z = 0.5 to z = 1.3 the LF and CMR are well defined for different galaxy populations and M*B evolves by ~1.04(1.09) ± 0.06(0.10) mag for the total (red) galaxy sample. We compare different criteria for selecting early-type galaxies: (1) a fixed cut in rest-frame (U - V) colours, (2) an evolving cut in (U - V) colours, (3) a rest-frame (NUV - r') - (r' - K) colour selection, and (4) a spectral-energy-distribution classification. The completeness and contamination varies for the different methods and with redshift, but regardless of the method we measure a consistent evolution of the red-sequence (RS). Between 0.4 < z < 1.3 we find a moderate evolution of the RS intercept of Δ(U - V) = 0.28 ± 0.14 mag, favouring exponentially declining star formation (SF) histories with SF truncation at 1.7 ≤ z ≤ 2.3. Together with the rise in the number density of red galaxies by 0.64 dex since z = 1, this suggests a rapid build-up of massive galaxies (M⋆ > 1011 M⊙) and expeditious RS formation over a short period of ~1.5 Gyr starting before z = 1. This is supported by the detection of ongoing SF in early-type galaxies at 0.9 < z < 1.0, in contrast with the quiescent red stellar populations of early-type galaxies at 0.5 < z < 0.6. There is an increase in the observed CMR scatter with redshift, which is two times larger than observed in galaxy clusters and at variance with theoretical model predictions. We discuss possible physical mechanisms that support the observed evolution of the red galaxy population. Our findings point out that massive galaxies have experienced a sharp SF quenching at z ~ 1 with only limited additional merging. In contrast, less-massive galaxies experience a mix of SF

  13. LMT imaging of the Extended Groth Strip: a search for the high-redshift tail of the sub-mm galaxy population

    NASA Astrophysics Data System (ADS)

    Aretxaga, Itziar

    2015-08-01

    The combination of short and long-wavelength deep (sub-)mm surveys can effectively be used to identify high-redshift sub-millimeter galaxies (z>4). Having star formation rates in excess of 500 Msun/yr, these bright (sub-)mm sources have been identified with the progenitors of massive elliptical galaxies undergoing rapid growth. With this purpose in mind, we are surveying a 20 sq. arcmin field within the Extended Groth Strip with the 1.1mm AzTEC camera mounted at the Large Millimeter Telescope that overlaps with the deep 450/850um SCUBA-2 Cosmology Legacy Survey and the CANDELS deep NIR imaging. The improved beamsize of the LMT (8”) over previous surveys aids the identification of the most prominent optical/IR counterparts. We discuss the high-redshift candidates found.

  14. Revisiting the bulge-halo conspiracy - II. Towards explaining its puzzling dependence on redshift

    NASA Astrophysics Data System (ADS)

    Shankar, Francesco; Sonnenfeld, Alessandro; Grylls, Philip; Zanisi, Lorenzo; Nipoti, Carlo; Chae, Kyu-Hyun; Bernardi, Mariangela; Petrillo, Carlo Enrico; Huertas-Company, Marc; Mamon, Gary A.; Buchan, Stewart

    2018-04-01

    We carry out a systematic investigation of the total mass density profile of massive (log Mstar/M⊙ ˜ 11.5) early-type galaxies and its dependence on redshift, specifically in the range 0 ≲ z ≲ 1. We start from a large sample of Sloan Digital Sky Survey early-type galaxies with stellar masses and effective radii measured assuming two different profiles, de Vaucouleurs and Sérsic. We assign dark matter haloes to galaxies via abundance matching relations with standard ΛCDM profiles and concentrations. We then compute the total, mass-weighted density slope at the effective radius γ΄, and study its redshift dependence at fixed stellar mass. We find that a necessary condition to induce an increasingly flatter γ΄ at higher redshifts, as suggested by current strong lensing data, is to allow the intrinsic stellar profile of massive galaxies to be Sérsic and the input Sérsic index n to vary with redshift as n(z) ∝ (1 + z)δ, with δ ≲ -1. This conclusion holds irrespective of the input Mstar-Mhalo relation, the assumed stellar initial mass function (IMF), or even the chosen level of adiabatic contraction in the model. Secondary contributors to the observed redshift evolution of γ΄ may come from an increased contribution at higher redshifts of adiabatic contraction and/or bottom-light stellar IMFs. The strong lensing selection effects we have simulated seem not to contribute to this effect. A steadily increasing Sérsic index with cosmic time is supported by independent observations, though it is not yet clear whether cosmological hierarchical models (e.g. mergers) are capable of reproducing such a fast and sharp evolution.

  15. The kinematic component of the cosmological redshift

    NASA Astrophysics Data System (ADS)

    Chodorowski, Michał J.

    2011-05-01

    It is widely believed that the cosmological redshift is not a Doppler shift. However, Bunn & Hogg have recently pointed out that to solve this problem properly, one has to transport parallelly the velocity four-vector of a distant galaxy to the observer's position. Performing such a transport along the null geodesic of photons arriving from the galaxy, they found that the cosmological redshift is purely kinematic. Here we argue that one should rather transport the velocity four-vector along the geodesic connecting the points of intersection of the world-lines of the galaxy and the observer with the hypersurface of constant cosmic time. We find that the resulting relation between the transported velocity and the redshift of arriving photons is not given by a relativistic Doppler formula. Instead, for small redshifts it coincides with the well-known non-relativistic decomposition of the redshift into a Doppler (kinematic) component and a gravitational one. We perform such a decomposition for arbitrary large redshifts and derive a formula for the kinematic component of the cosmological redshift, valid for any Friedman-Lemaître-Robertson-Walker (FLRW) cosmology. In particular, in a universe with Ωm= 0.24 and ΩΛ= 0.76, a quasar at a redshift 6, at the time of emission of photons reaching us today had the recession velocity v= 0.997c. This can be contrasted with v= 0.96c, had the redshift been entirely kinematic. Thus, for recession velocities of such high-redshift sources, the effect of deceleration of the early Universe clearly prevails over the effect of its relatively recent acceleration. Last but not the least, we show that the so-called proper recession velocities of galaxies, commonly used in cosmology, are in fact radial components of the galaxies' four-velocity vectors. As such, they can indeed attain superluminal values, but should not be regarded as real velocities.

  16. The FourStar Galaxy Evolution Survey (ZFOURGE): Ultraviolet to Far-infrared Catalogs, Medium-bandwidth Photometric Redshifts with Improved Accuracy, Stellar Masses, and Confirmation of Quiescent Galaxies to z ˜ 3.5

    NASA Astrophysics Data System (ADS)

    Straatman, Caroline M. S.; Spitler, Lee R.; Quadri, Ryan F.; Labbé, Ivo; Glazebrook, Karl; Persson, S. Eric; Papovich, Casey; Tran, Kim-Vy H.; Brammer, Gabriel B.; Cowley, Michael; Tomczak, Adam; Nanayakkara, Themiya; Alcorn, Leo; Allen, Rebecca; Broussard, Adam; van Dokkum, Pieter; Forrest, Ben; van Houdt, Josha; Kacprzak, Glenn G.; Kawinwanichakij, Lalitwadee; Kelson, Daniel D.; Lee, Janice; McCarthy, Patrick J.; Mehrtens, Nicola; Monson, Andrew; Murphy, David; Rees, Glen; Tilvi, Vithal; Whitaker, Katherine E.

    2016-10-01

    The FourStar galaxy evolution survey (ZFOURGE) is a 45 night legacy program with the FourStar near-infrared camera on Magellan and one of the most sensitive surveys to date. ZFOURGE covers a total of 400 arcmin2 in cosmic fields CDFS, COSMOS and UDS, overlapping CANDELS. We present photometric catalogs comprising >70,000 galaxies, selected from ultradeep K s -band detection images (25.5-26.5 AB mag, 5σ, total), and >80% complete to K s < 25.3-25.9 AB. We use 5 near-IR medium-bandwidth filters (J 1, J 2, J 3, H s , H l ) as well as broad-band K s at 1.05-2.16 μm to 25-26 AB at a seeing of ˜0.″5. Each field has ancillary imaging in 26-40 filters at 0.3-8 μm. We derive photometric redshifts and stellar population properties. Comparing with spectroscopic redshifts indicates a photometric redshift uncertainty σ z = 0.010, 0.009, and 0.011 in CDFS, COSMOS, and UDS. As spectroscopic samples are often biased toward bright and blue sources, we also inspect the photometric redshift differences between close pairs of galaxies, finding σ z,pairs = 0.01-0.02 at 1 < z < 2.5. We quantify how σ z,pairs depends on redshift, magnitude, spectral energy distribution type, and the inclusion of FourStar medium bands. σ z,pairs is smallest for bright, blue star-forming samples, while red star-forming galaxies have the worst σ z,pairs. Including FourStar medium bands reduces σ z,pairs by 50% at 1.5 < z < 2.5. We calculate star formation rates (SFRs) based on ultraviolet and ultradeep far-IR Spitzer/MIPS and Herschel/PACS data. We derive rest-frame U - V and V - J colors, and illustrate how these correlate with specific SFR and dust emission to z = 3.5. We confirm the existence of quiescent galaxies at z ˜ 3, demonstrating their SFRs are suppressed by > ×15. This paper contains data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas observatory, Chile

  17. ULTRA STEEP SPECTRUM RADIO SOURCES IN THE LOCKMAN HOLE: SERVS IDENTIFICATIONS AND REDSHIFT DISTRIBUTION AT THE FAINTEST RADIO FLUXES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afonso, J.; Bizzocchi, L.; Grossi, M.

    2011-12-20

    Ultra steep spectrum (USS) radio sources have been successfully used to select powerful radio sources at high redshifts (z {approx}> 2). Typically restricted to large-sky surveys and relatively bright radio flux densities, it has gradually become possible to extend the USS search to sub-mJy levels, thanks to the recent appearance of sensitive low-frequency radio facilities. Here a first detailed analysis of the nature of the faintest USS sources is presented. By using Giant Metrewave Radio Telescope and Very Large Array radio observations of the Lockman Hole at 610 MHz and 1.4 GHz, a sample of 58 USS sources, with 610more » MHz integrated fluxes above 100 {mu}Jy, is assembled. Deep infrared data at 3.6 and 4.5 {mu}m from the Spitzer Extragalactic Representative Volume Survey (SERVS) are used to reliably identify counterparts for 48 (83%) of these sources, showing an average total magnitude of [3.6]{sub AB} = 19.8 mag. Spectroscopic redshifts for 14 USS sources, together with photometric redshift estimates, improved by the use of the deep SERVS data, for a further 19 objects, show redshifts ranging from z = 0.1 to z = 2.8, peaking at z {approx} 0.6 and tailing off at high redshifts. The remaining 25 USS sources, with no redshift estimate, include the faintest [3.6] magnitudes, with 10 sources undetected at 3.6 and 4.5 {mu}m (typically [3.6] {approx}> 22-23 mag from local measurements), which suggests the likely existence of higher redshifts among the sub-mJy USS population. The comparison with the Square Kilometre Array Design Studies Simulated Skies models indicates that Fanaroff-Riley type I radio sources and radio-quiet active galactic nuclei may constitute the bulk of the faintest USS population, and raises the possibility that the high efficiency of the USS technique for the selection of high-redshift sources remains even at the sub-mJy level.« less

  18. Photometric redshifts for weak lensing tomography from space: the role of optical and near infrared photometry

    NASA Astrophysics Data System (ADS)

    Abdalla, F. B.; Amara, A.; Capak, P.; Cypriano, E. S.; Lahav, O.; Rhodes, J.

    2008-07-01

    We study in detail the photometric redshift requirements needed for tomographic weak gravitational lensing in order to measure accurately the dark energy equation of state. In particular, we examine how ground-based photometry (u, g, r, i, z, y) can be complemented by space-based near-infrared (near-IR) photometry (J, H), e.g. onboard the planned DUNE satellite. Using realistic photometric redshift simulations and an artificial neural network photo-z method we evaluate the figure of merit for the dark energy parameters (w0, wa). We consider a DUNE-like broad optical filter supplemented with ground-based multiband optical data from surveys like the Dark Energy Survey, Pan-STARRS and LSST. We show that the dark energy figure of merit would be improved by a factor of 1.3-1.7 if IR filters are added onboard DUNE. Furthermore we show that with IR data catastrophic photo-z outliers can be removed effectively. There is an interplay between the choice of filters, the magnitude limits and the removal of outliers. We draw attention to the dependence of the results on the galaxy formation scenarios encoded into the mock galaxies, e.g. the galaxy reddening. For example, very deep u-band data could be as effective as the IR. We also find that about 105-106 spectroscopic redshifts are needed for calibration of the full survey.

  19. Constraining star formation through redshifted CO and CII emission in archival CMB data

    NASA Astrophysics Data System (ADS)

    Switzer, Eric

    LCDM is a strikingly successful paradigm to explain the CMB anisotropy and its evolution into observed galaxy clustering statistics. The formation and evolution of galaxies within this context is more complex and only partly characterized. Measurements of the average star formation and its precursors over cosmic time are required to connect theories of galaxy evolution to LCDM evolution. The fine structure transition in CII at 158 um traces star formation rates and the ISM radiation environment. Cold, molecular gas fuels star formation and is traced well by a ladder of CO emission lines. Catalogs of emission lines in individual galaxies have provided the most information about CII and CO to-date but are subject to selection effects. Intensity mapping is an alternative approach to measuring line emission. It surveys the sum of all line radiation as a function of redshift, and requires angular resolution to reach cosmologically interesting scales, but not to resolve individual sources. It directly measures moments of the luminosity function from all emitting objects. Intensity mapping of CII and CO can perform an unbiased census of stars and cold gas across cosmic time. We will use archival COBE-FIRAS and Planck data to bound or measure cosmologically redshifted CII and CO line emission through 1) the monopole spectrum, 2) cross-power between FIRAS/Planck and public galaxy survey catalogs from BOSS and the 2MASS redshift surveys, 3) auto-power of the FIRAS/Planck data itself. FIRAS is unique in its spectral range and all-sky coverage, provided by the space-borne FTS architecture. In addition to sensitivity to a particular emission line, intensity mapping is sensitive to all other contributions to surface brightness. We will remove CMB and foreground spatial and spectral templates using models from WMAP and Planck data. Interlopers and residual foregrounds additively bias the auto-power and monopole, but both can still be used to provide rigorous upper bounds. The

  20. SIS Mixer Design for a Broadband Millimeter Spectrometer Suitable for Rapid Line Surveys and Redshift Determinations

    NASA Technical Reports Server (NTRS)

    Rice, F.; Sumner, M.; Zmuidzinas, J.; Hu, R.; LeDuc, H.; Harris, A.; Miller, D.

    2004-01-01

    We present some detail of the waveguide probe and SIS mixer chip designs for a low-noise 180-300 GHz double- sideband receiver with an instantaneous RF bandwidth of 24 GHz. The receiver's single SIS junction is excited by a broadband, fixed-tuned waveguide probe on a silicon substrate. The IF output is coupled to a 6-18 GHz MMIC low- noise preamplifier. Following further amplification, the output is processed by an array of 4 GHz, 128-channel analog autocorrelation spectrometers (WASP 11). The single-sideband receiver noise temperature goal of 70 Kelvin will provide a prototype instrument capable of rapid line surveys and of relatively efficient carbon monoxide (CO) emission line searches of distant, dusty galaxies. The latter application's goal is to determine redshifts by measuring the frequencies of CO line emissions from the star-forming regions dominating the submillimeter brightness of these galaxies. Construction of the receiver has begun; lab testing should begin in the fall. Demonstration of the receiver on the Caltech Submillimeter Observatory (CSO) telescope should begin in spring 2003.

  1. Redshift Evolution of Non-Gaussianity in Cosmic Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Sullivan, James; Wiegand, Alexander; Eisenstein, Daniel

    2018-01-01

    We probe the higher-order galaxy clustering in the final data release (DR12) of the Sloan Digital Sky Survey using germ-grain Minkowski Functionals (MFs). Our data selection contains 979,430 BOSS galaxies from both the northern and southern galactic caps over the redshift range 0.2 - 0.6. We extract the higher-order parts of the MFs and find deviations from the case without higher order MFs with chi-squared values of order 1000 for 24 degrees of freedom across the entire data selection. We show the MFs to be sensitive to contributions up to the five-point correlation function across the entire data selection. We measure significant redshift evolution in the higher-order functionals for the first time, with a percentage growth between redshift bins of approximately 20 % in both galactic caps. This is a nearly a factor of 2 greater than similar growth in the two-point correlation function and will allow for tests of non-linear structure growth by comparing the three-point and higher-order parts to their expected theoretical values. The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.

  2. Non-Linear Cosmological Power Spectra in Real and Redshift Space

    NASA Technical Reports Server (NTRS)

    Taylor, A. N.; Hamilton, A. J. S.

    1996-01-01

    We present an expression for the non-linear evolution of the cosmological power spectrum based on Lagrangian trajectories. This is simplified using the Zel'dovich approximation to trace particle displacements, assuming Gaussian initial conditions. The model is found to exhibit the transfer of power from large to small scales expected in self-gravitating fields. Some exact solutions are found for power-law initial spectra. We have extended this analysis into red-shift space and found a solution for the non-linear, anisotropic redshift-space power spectrum in the limit of plane-parallel redshift distortions. The quadrupole-to-monopole ratio is calculated for the case of power-law initial spectra. We find that the shape of this ratio depends on the shape of the initial spectrum, but when scaled to linear theory depends only weakly on the redshift-space distortion parameter, beta. The point of zero-crossing of the quadrupole, kappa(sub o), is found to obey a simple scaling relation and we calculate this scale in the Zel'dovich approximation. This model is found to be in good agreement with a series of N-body simulations on scales down to the zero-crossing of the quadrupole, although the wavenumber at zero-crossing is underestimated. These results are applied to the quadrupole-to-monopole ratio found in the merged QDOT plus 1.2-Jy-IRAS redshift survey. Using a likelihood technique we have estimated that the distortion parameter is constrained to be beta greater than 0.5 at the 95 percent level. Our results are fairly insensitive to the local primordial spectral slope, but the likelihood analysis suggests n = -2 un the translinear regime. The zero-crossing scale of the quadrupole is k(sub 0) = 0.5 +/- 0.1 h Mpc(exp -1) and from this we infer that the amplitude of clustering is sigma(sub 8) = 0.7 +/- 0.05. We suggest that the success of this model is due to non-linear redshift-space effects arising from infall on to caustic and is not dominated by virialized cluster cores

  3. The Quest for Dusty Star-forming Galaxies at High Redshift z ≳ 4

    NASA Astrophysics Data System (ADS)

    Mancuso, C.; Lapi, A.; Shi, J.; Gonzalez-Nuevo, J.; Aversa, R.; Danese, L.

    2016-06-01

    We exploit the continuity equation approach and “main-sequence” star formation timescales to show that the observed high abundance of galaxies with stellar masses ≳ a few 1010 M ⊙ at redshift z ≳ 4 implies the existence of a galaxy population featuring large star formation rates (SFRs) ψ ≳ 102 M ⊙ yr-1 in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z ≲ 3 in the far-IR band by the Herschel Space Observatory. We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z ˜ 10, determining that the number density at z ≲ 8 for SFRs ψ ≳ 30 M ⊙ yr-1 cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from the AzTEC-LABOCA, SCUBA-2, and ALMA-SPT surveys are already addressing it. We demonstrate how an observational strategy based on color preselection in the far-IR or (sub-)millimeter band with Herschel and SCUBA-2, supplemented by photometric data from on-source observations with ALMA, can allow us to reconstruct the bright end of the SFR functions out to z ≲ 8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)millimeter observations by ALMA and NIKA2 and/or radio observations by SKA and its precursors.

  4. The VANDELS ESO spectroscopic survey

    NASA Astrophysics Data System (ADS)

    McLure, R. J.; Pentericci, L.; Cimatti, A.; Dunlop, J. S.; Elbaz, D.; Fontana, A.; Nandra, K.; Amorin, R.; Bolzonella, M.; Bongiorno, A.; Carnall, A. C.; Castellano, M.; Cirasuolo, M.; Cucciati, O.; Cullen, F.; De Barros, S.; Finkelstein, S. L.; Fontanot, F.; Franzetti, P.; Fumana, M.; Gargiulo, A.; Garilli, B.; Guaita, L.; Hartley, W. G.; Iovino, A.; Jarvis, M. J.; Juneau, S.; Karman, W.; Maccagni, D.; Marchi, F.; Mármol-Queraltó, E.; Pompei, E.; Pozzetti, L.; Scodeggio, M.; Sommariva, V.; Talia, M.; Almaini, O.; Balestra, I.; Bardelli, S.; Bell, E. F.; Bourne, N.; Bowler, R. A. A.; Brusa, M.; Buitrago, F.; Caputi, K. I.; Cassata, P.; Charlot, S.; Citro, A.; Cresci, G.; Cristiani, S.; Curtis-Lake, E.; Dickinson, M.; Fazio, G. G.; Ferguson, H. C.; Fiore, F.; Franco, M.; Fynbo, J. P. U.; Galametz, A.; Georgakakis, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Jung, I.; Kim, S.; Koekemoer, A. M.; Khusanova, Y.; Le Fèvre, O.; Lotz, J. M.; Mannucci, F.; Maltby, D. T.; Matsuoka, K.; McLeod, D. J.; Mendez-Hernandez, H.; Mendez-Abreu, J.; Mignoli, M.; Moresco, M.; Mortlock, A.; Nonino, M.; Pannella, M.; Papovich, C.; Popesso, P.; Rosario, D. P.; Salvato, M.; Santini, P.; Schaerer, D.; Schreiber, C.; Stark, D. P.; Tasca, L. A. M.; Thomas, R.; Treu, T.; Vanzella, E.; Wild, V.; Williams, C. C.; Zamorani, G.; Zucca, E.

    2018-05-01

    VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO's Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 < λ < 1.0 μm) spectroscopy of ≃2100 galaxies within the redshift interval 1.0 ≤ z ≤ 7.0, over a total area of ≃ 0.2 deg2 centred on the CANDELS UDS and CDFS fields. Based on accurate photometric redshift pre-selection, 85% of the galaxies targeted by VANDELS were selected to be at z ≥ 3. Exploiting the red sensitivity of the refurbished VIMOS spectrograph, the fundamental aim of the survey is to provide the high signal-to-noise ratio spectra necessary to measure key physical properties such as stellar population ages, masses, metallicities and outflow velocities from detailed absorption-line studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 < tint < 80 hours), the VANDELS survey targeted: a) bright star-forming galaxies at 2.4 ≤ z ≤ 5.5, b) massive quiescent galaxies at 1.0 ≤ z ≤ 2.5, c) fainter star-forming galaxies at 3.0 ≤ z ≤ 7.0 and d) X-ray/Spitzer-selected active galactic nuclei and Herschel-detected galaxies. By targeting two extragalactic survey fields with superb multi-wavelength imaging data, VANDELS will produce a unique legacy data set for exploring the physics underpinning high-redshift galaxy evolution. In this paper we provide an overview of the VANDELS survey designed to support the science exploitation of the first ESO public data release, focusing on the scientific motivation, survey design and target selection.

  5. The VIMOS Public Extragalactic Redshift Survey (VIPERS). The decline of cosmic star formation: quenching, mass, and environment connections

    NASA Astrophysics Data System (ADS)

    Cucciati, O.; Davidzon, I.; Bolzonella, M.; Granett, B. R.; De Lucia, G.; Branchini, E.; Zamorani, G.; Iovino, A.; Garilli, B.; Guzzo, L.; Scodeggio, M.; de la Torre, S.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Cappi, A.; Franzetti, P.; Fritz, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Moutard, T.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Bel, J.; Blaizot, J.; Coupon, J.; Hawken, A.; Ilbert, O.; Moscardini, L.; Peacock, J. A.; Gargiulo, A.

    2017-06-01

    We use the final data of the VIMOS Public Extragalactic Redshift Survey (VIPERS) to investigate the effect of the environment on the evolution of galaxies between z = 0.5 and z = 0.9. We characterise local environment in terms of the density contrast smoothed over a cylindrical kernel, the scale of which is defined by the distance to the fifth nearest neighbour. This is performed by using a volume-limited sub-sample of galaxies complete up to z = 0.9, but allows us to attach a value of local density to all galaxies in the full VIPERS magnitude-limited sample to I < 22.5. We use this information to estimate how the distribution of galaxy stellar masses depends on environment. More massive galaxies tend to reside in higher-density environments over the full redshift range explored. Defining star-forming and passive galaxies through their (NUV-r) vs. (r-K) colours, we then quantify the fraction of star-forming over passive galaxies, fap, as a function of environment at fixed stellar mass. fap is higher in low-density regions for galaxies with masses ranging from log (ℳ/ℳ⊙) = 10.38 (the lowest value explored) to at least log (ℳ/ℳ⊙) 11.3, although with decreasing significance going from lower to higher masses. This is the first time that environmental effects on high-mass galaxies are clearly detected at redshifts as high as z 0.9. We compared these results to VIPERS-like galaxy mock catalogues based on a widely used galaxy formation model. The model correctly reproduces fap in low-density environments, but underpredicts it at high densities. The discrepancy is particularly strong for the lowest-mass bins. We find that this discrepancy is driven by an excess of low-mass passive satellite galaxies in the model. In high-density regions, we obtain a better (although not perfect) agreement of the model fap with observations by studying the accretion history of these model galaxies (that is, the times when they become satellites), by assuming either that a non

  6. Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model

    NASA Astrophysics Data System (ADS)

    Okumura, Teppei; Hand, Nick; Seljak, Uroš; Vlah, Zvonimir; Desjacques, Vincent

    2015-11-01

    Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in which we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k2R2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. We adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the "CMASS" sample of the

  7. Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model

    DOE PAGES

    Okumura, Teppei; Hand, Nick; Seljak, Uros; ...

    2015-11-19

    Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in whichmore » we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k 2R 2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. Furthermore, we adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k 2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the

  8. Galaxy And Mass Assembly (GAMA): end of survey report and data release 2

    NASA Astrophysics Data System (ADS)

    Liske, J.; Baldry, I. K.; Driver, S. P.; Tuffs, R. J.; Alpaslan, M.; Andrae, E.; Brough, S.; Cluver, M. E.; Grootes, M. W.; Gunawardhana, M. L. P.; Kelvin, L. S.; Loveday, J.; Robotham, A. S. G.; Taylor, E. N.; Bamford, S. P.; Bland-Hawthorn, J.; Brown, M. J. I.; Drinkwater, M. J.; Hopkins, A. M.; Meyer, M. J.; Norberg, P.; Peacock, J. A.; Agius, N. K.; Andrews, S. K.; Bauer, A. E.; Ching, J. H. Y.; Colless, M.; Conselice, C. J.; Croom, S. M.; Davies, L. J. M.; De Propris, R.; Dunne, L.; Eardley, E. M.; Ellis, S.; Foster, C.; Frenk, C. S.; Häußler, B.; Holwerda, B. W.; Howlett, C.; Ibarra, H.; Jarvis, M. J.; Jones, D. H.; Kafle, P. R.; Lacey, C. G.; Lange, R.; Lara-López, M. A.; López-Sánchez, Á. R.; Maddox, S.; Madore, B. F.; McNaught-Roberts, T.; Moffett, A. J.; Nichol, R. C.; Owers, M. S.; Palamara, D.; Penny, S. J.; Phillipps, S.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Proctor, R.; Sadler, E. M.; Sansom, A. E.; Seibert, M.; Sharp, R.; Sutherland, W.; Vázquez-Mata, J. A.; van Kampen, E.; Wilkins, S. M.; Williams, R.; Wright, A. H.

    2015-09-01

    The Galaxy And Mass Assembly (GAMA) survey is one of the largest contemporary spectroscopic surveys of low redshift galaxies. Covering an area of ˜286 deg2 (split among five survey regions) down to a limiting magnitude of r < 19.8 mag, we have collected spectra and reliable redshifts for 238 000 objects using the AAOmega spectrograph on the Anglo-Australian Telescope. In addition, we have assembled imaging data from a number of independent surveys in order to generate photometry spanning the wavelength range 1 nm-1 m. Here, we report on the recently completed spectroscopic survey and present a series of diagnostics to assess its final state and the quality of the redshift data. We also describe a number of survey aspects and procedures, or updates thereof, including changes to the input catalogue, redshifting and re-redshifting, and the derivation of ultraviolet, optical and near-infrared photometry. Finally, we present the second public release of GAMA data. In this release, we provide input catalogue and targeting information, spectra, redshifts, ultraviolet, optical and near-infrared photometry, single-component Sérsic fits, stellar masses, Hα-derived star formation rates, environment information, and group properties for all galaxies with r < 19.0 mag in two of our survey regions, and for all galaxies with r < 19.4 mag in a third region (72 225 objects in total). The data base serving these data is available at http://www.gama-survey.org/.

  9. Type Ia supernova rate measurements to redshift 2.5 from CANDELS: Searching for prompt explosions in the early universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodney, Steven A.; Riess, Adam G.; Graur, Or

    2014-07-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope (HST) that surveyed a total area of ∼0.25 deg{sup 2} with ∼900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z ∼ 2.5. We classify ∼24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reachingmore » for the first time beyond z = 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only ∼3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation (<500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SN Ia fraction is f{sub P} = 0.53{sub stat0.10}{sup ±0.09}{sub sys0.26}{sup ±0.10}, consistent with a delay time distribution that follows a simple t {sup –1} power law for all times t > 40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20% of all SN Ia explosions—though further analysis and larger samples will be needed to examine that suggestion.« less

  10. Surveying Galaxy Evolution in the Far-Infrared: A Far-Infrared All-Sky Survey Concept

    NASA Technical Reports Server (NTRS)

    Benford, D. J.; Amato, M. J.; Dwek, E.; Freund, M. M.; Gardner, J. P.; Kashlinsky, A.; Leisawitz, D. T.; Mather, J. C.; Moseley, S. H.; Shafer, R. A.

    2004-01-01

    Half of the total luminosity in the Universe is emitted at rest wavelengths approximately 80-100 microns. At the highest known galaxy redshifts (z greater than or equal to 6) this energy is redshifted to approximately 600 microns. Quantifying the evolution of galaxies at these wavelengths is crucial to our understanding of the formation of structure in the Universe following the big bang. Surveying the whole sky will find the rare and unique objects, enabling follow-up observations. SIRCE, the Survey of Infrared Cosmic Evolution, is such a mission concept under study at NASA's Goddard Space Flight Center. A helium-cooled telescope with ultrasensitive detectors can image the whole sky to the confusion limit in 6 months. Multiple wavelength bands permit the extraction of photometric redshifts, while a large telescope yields a low confusion limit. We discuss the implications of such a survey for galaxy formation and evolution, large-scale structure, star formation, and the structure of interstellar dust.

  11. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: measurement of the growth rate of structure from the anisotropic correlation function between redshift 0.8 and 2.2

    NASA Astrophysics Data System (ADS)

    Zarrouk, Pauline; Burtin, Etienne; Gil-Marín, Héctor; Ross, Ashley J.; Tojeiro, Rita; Pâris, Isabelle; Dawson, Kyle S.; Myers, Adam D.; Percival, Will J.; Chuang, Chia-Hsun; Zhao, Gong-Bo; Bautista, Julian; Comparat, Johan; González-Pérez, Violeta; Habib, Salman; Heitmann, Katrin; Hou, Jiamin; Laurent, Pierre; Le Goff, Jean-Marc; Prada, Francisco; Rodríguez-Torres, Sergio A.; Rossi, Graziano; Ruggeri, Rossana; Sánchez, Ariel G.; Schneider, Donald P.; Tinker, Jeremy L.; Wang, Yuting; Yèche, Christophe; Baumgarten, Falk; Brownstein, Joel R.; de la Torre, Sylvain; du Mas des Bourboux, Hélion; Kneib, Jean-Paul; Mariappan, Vivek; Palanque-Delabrouille, Nathalie; Peacock, John; Petitjean, Patrick; Seo, Hee-Jong; Zhao, Cheng

    2018-06-01

    We present the clustering measurements of quasars in configuration space based on the Data Release 14 (DR14) of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey (eBOSS). This data set includes 148 659 quasars spread over the redshift range 0.8 ≤ z ≤ 2.2 and spanning 2112.9 deg2. We use the Convolution Lagrangian Perturbation Theory approach with a Gaussian Streaming model for the redshift space distortions of the correlation function and demonstrate its applicability for dark matter haloes hosting eBOSS quasar tracers. At the effective redshift zeff = 1.52, we measure the linear growth rate of structure fσ8(zeff) = 0.426 ± 0.077, the expansion rate H(z_eff)= 159^{+12}_{-13}(rs^fid/r_s) {{}km s}^{-1} Mpc^{-1}, and the angular diameter distance DA(z_eff)=1850^{+90}_{-115} (r_s/rs^fid) {}Mpc, where rs is the sound horizon at the end of the baryon drag epoch and rs^fid is its value in the fiducial cosmology. The quoted uncertainties include both systematic and statistical contributions. The results on the evolution of distances are consistent with the predictions of flat Λ-cold dark matter cosmology with Planck parameters, and the measurement of fσ8 extends the validity of General Relativity to higher redshifts (z > 1). This paper is released with companion papers using the same sample. The results on the cosmological parameters of the studies are found to be in very good agreement, providing clear evidence of the complementarity and of the robustness of the first full-shape clustering measurements with the eBOSS DR14 quasar sample.

  12. GLACiAR: GaLAxy survey Completeness AlgoRithm

    NASA Astrophysics Data System (ADS)

    Carrasco, Daniela; Trenti, Michele; Mutch, Simon; Oesch, Pascal

    2018-05-01

    GLACiAR (GaLAxy survey Completeness AlgoRithm) estimates the completeness and selection functions in galaxy surveys. Tailored for multiband imaging surveys aimed at searching for high-redshift galaxies through the Lyman Break technique, the code can nevertheless be applied broadly. GLACiAR generates artificial galaxies that follow Sérsic profiles with different indexes and with customizable size, redshift and spectral energy distribution properties, adds them to input images, and measures the recovery rate.

  13. Pixel-by-Pixel SED Fitting of Intermediate Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Cohen, Seth H.; Kim, Hwihyun; Petty, Sara M.; Farrah, Duncan

    2015-01-01

    We select intermediate redshift galaxies from the Hubble Space Telescope CANDELS and GOODS surveys to study their stellar populations on sub-kilo-parsec scales by fitting SED models on a pixel-by-pixel basis. Galaxies are chosen to have measured spectroscopic redshifts (z<1.5), to be bright (H_AB<21 mag), to be relatively face-on (b/a > 0.6), and have a minimum of ten individual resolution elements across the face of the galaxy, as defined by the broadest PSF (F160W-band) in the data. The sample contains ~200 galaxies with BViz(Y)JH band HST photometry. The main goal of the study is to better understand the effects of population blending when using a pixel-by-pixel SED fitting (pSED) approach. We outline our pSED fitting method which gives maps of stellar mass, age, star-formation rate, etc. Several examples of individual pSED-fit maps are presented in detail, as well as some preliminary results on the full sample. The pSED method is necessarily biased by the brightest population in a given pixel outshining the rest of the stars, and, therefore, we intend to study this apparent population blending in a set of artificially redshifted images of nearby galaxies, for which we have star-by-star measurements of their stellar populations. This local sample will be used to better interpret the measurements for the higher redshift galaxies.Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This archival research is associated with program #13241.

  14. The 6dF Galaxy Survey: First Data Release

    NASA Astrophysics Data System (ADS)

    Jones, H.; Saunders, W.; Colless, M.; Read, M.; Parker, Q.; Watson, F.; Campbell, L.

    2005-06-01

    The 6dF Galaxy Survey (6dFGS) is currently measuring the redshifts of around 170 000 galaxies and the peculiar velocities of a 15 000-member sub-sample. It will be the largest redshift survey of the local universe and more than an order of magnitude larger than any peculiar velocity survey to date. When complete, it will cover essentially the entire southern sky around a mean redshift of z = 0.05. Central to the survey is the Six-Degree Field (6dF) multi-fibre spectrograph, an instrument able to record 150 simultaneous spectra over the 5.7°-field of the UK Schmidt Telescope. Targets have been drawn from the 2MASS Extended Source Catalog (XSC) to include all galaxies brighter than Ktot = 12.75, supplemented by 2MASS and SuperCOSMOS galaxies that complete the sample to limits of (H, J, rF, bJ) = (13.05, 13.75, 15.6, 16.75). Here we describe the implementation of the survey and the procedures used to select sources and determine redshifts. We also describe early results utilising the First Data Release of ˜ 45 000 redshifts. There is an online database of 6dFGS data accessible from the 6dFGS web site (http://www.mso.anu.edu.au/6dFGS).

  15. New insights on the accuracy of photometric redshift measurements

    NASA Astrophysics Data System (ADS)

    Massarotti, M.; Iovino, A.; Buzzoni, A.; Valls-Gabaud, D.

    2001-12-01

    We use the deepest and most complete redshift catalog currently available (the Hubble Deep Field (HDF) North supplemented by new HDF South redshift data) to minimize residuals between photometric and spectroscopic redshift estimates. The good agreement at zspec < 1.5 shows that model libraries provide a good description of the galaxy population. At zspec >= 2.0, the systematic shift between photometric and spectroscopic redshifts decreases when the modeling of the absorption by the interstellar and intergalactic media is refined. As a result, in the entire redshift range z in [0, 6], residuals between photometric and spectroscopic redshifts are roughly halved. For objects fainter than the spectroscopic limit, the main source of uncertainty in photometric redshifts is related to photometric errors, and can be assessed with Monte Carlo simulations.

  16. The Dependence of Galactic Outflows on the Properties and Orientation of zCOSMOS Galaxies at z ~ 1

    NASA Astrophysics Data System (ADS)

    Bordoloi, R.; Lilly, S. J.; Hardmeier, E.; Contini, T.; Kneib, J.-P.; Le Fevre, O.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Zamorani, G.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Caputi, K.; Carollo, C. M.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Garilli, B.; Iovino, A.; Kampczyk, P.; Kovač, K.; Knobel, C.; Lamareille, F.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Mignoli, M.; Oesch, P.; Pello, R.; Peng, Y.; Perez Montero, E.; Presotto, V.; Silverman, J.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Zucca, E.; Cappi, A.; Cimatti, A.; Coppa, G.; Franzetti, P.; Koekemoer, A.; Moresco, M.; Nair, P.; Pozzetti, L.

    2014-10-01

    We present an analysis of cool outflowing gas around galaxies, traced by Mg II absorption lines in the coadded spectra of a sample of 486 zCOSMOS galaxies at 1 <= z <= 1.5. These galaxies span a range of stellar masses (9.45 <= log10[M */M ⊙] <= 10.7) and star formation rates (0.14 <= log10[SFR/M ⊙ yr-1] <= 2.35). We identify the cool outflowing component in the Mg II absorption and find that the equivalent width of the outflowing component increases with stellar mass. The outflow equivalent width also increases steadily with the increasing star formation rate of the galaxies. At similar stellar masses, the blue galaxies exhibit a significantly higher outflow equivalent width as compared to red galaxies. The outflow equivalent width shows strong correlation with the star formation surface density (ΣSFR) of the sample. For the disk galaxies, the outflow equivalent width is higher for the face-on systems as compared to the edge-on ones, indicating that for the disk galaxies, the outflowing gas is primarily bipolar in geometry. Galaxies typically exhibit outflow velocities ranging from -150 km s-1 ~-200 km s-1 and, on average, the face-on galaxies exhibit higher outflow velocity as compared to the edge-on ones. Galaxies with irregular morphologies exhibit outflow equivalent width as well as outflow velocities comparable to face on disk galaxies. These galaxies exhibit mass outflow rates >5-7 M ⊙ yr-1 and a mass loading factor ({ η = \\dot{M}out /SFR}) comparable to the star formation rates of the galaxies. Based on observations undertaken at the European Southern Observatory (ESO) Very Large Telescope (VLT) under Large Program 175.A-0839.

  17. Cluster cosmology with next-generation surveys.

    NASA Astrophysics Data System (ADS)

    Ascaso, B.

    2017-03-01

    The advent of next-generation surveys will provide a large number of cluster detections that will serve the basis for constraining cos mological parameters using cluster counts. The main two observational ingredients needed are the cluster selection function and the calibration of the mass-observable relation. In this talk, we present the methodology designed to obtain robust predictions of both ingredients based on realistic cosmological simulations mimicking the following next-generation surveys: J-PAS, LSST and Euclid. We display recent results on the selection functions for these mentioned surveys together with others coming from other next-generation surveys such as eROSITA, ACTpol and SPTpol. We notice that the optical and IR surveys will reach the lowest masses between 0.3redshift and SZ at higher redshifts. We also present results on the mass-observable relation calibrated from the simulations, obtaining similar scatter to other observational results limited to higher redshifts. Finally, we describe the technique that we are developing to perform a Fisher Matrix analysis to provide cosmological constraints for the considered next-generation surveys and introduce very preliminary results.

  18. Redshift evolution of the dynamical properties of massive galaxies from SDSS-III/BOSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beifiori, Alessandra; Saglia, Roberto P.; Bender, Ralf

    2014-07-10

    We study the redshift evolution of the dynamical properties of ∼180, 000 massive galaxies from SDSS-III/BOSS combined with a local early-type galaxy sample from SDSS-II in the redshift range 0.1 ≤ z ≤ 0.6. The typical stellar mass of this sample is M{sub *} ∼2 × 10{sup 11} M{sub ☉}. We analyze the evolution of the galaxy parameters effective radius, stellar velocity dispersion, and the dynamical to stellar mass ratio with redshift. As the effective radii of BOSS galaxies at these redshifts are not well resolved in the Sloan Digital Sky Survey (SDSS) imaging we calibrate the SDSS size measurementsmore » with Hubble Space Telescope/COSMOS photometry for a sub-sample of galaxies. We further apply a correction for progenitor bias to build a sample which consists of a coeval, passively evolving population. Systematic errors due to size correction and the calculation of dynamical mass are assessed through Monte Carlo simulations. At fixed stellar or dynamical mass, we find moderate evolution in galaxy size and stellar velocity dispersion, in agreement with previous studies. We show that this results in a decrease of the dynamical to stellar mass ratio with redshift at >2σ significance. By combining our sample with high-redshift literature data, we find that this evolution of the dynamical to stellar mass ratio continues beyond z ∼ 0.7 up to z > 2 as M{sub dyn}/M{sub *} ∼(1 + z){sup –0.30±0.12}, further strengthening the evidence for an increase of M{sub dyn}/M{sub *} with cosmic time. This result is in line with recent predictions from galaxy formation simulations based on minor merger driven mass growth, in which the dark matter fraction within the half-light radius increases with cosmic time.« less

  19. Smoothing the redshift distributions of random samples for the baryon acoustic oscillations: applications to the SDSS-III BOSS DR12 and QPM mock samples

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Jiang; Guo, Qi; Cai, Rong-Gen

    2017-12-01

    We investigate the impact of different redshift distributions of random samples on the baryon acoustic oscillations (BAO) measurements of D_V(z)r_d^fid/r_d from the two-point correlation functions of galaxies in the Data Release 12 of the Baryon Oscillation Spectroscopic Survey (BOSS). Big surveys, such as BOSS, usually assign redshifts to the random samples by randomly drawing values from the measured redshift distributions of the data, which would necessarily introduce fiducial signals of fluctuations into the random samples, weakening the signals of BAO, if the cosmic variance cannot be ignored. We propose a smooth function of redshift distribution that fits the data well to populate the random galaxy samples. The resulting cosmological parameters match the input parameters of the mock catalogue very well. The significance of BAO signals has been improved by 0.33σ for a low-redshift sample and by 0.03σ for a constant-stellar-mass sample, though the absolute values do not change significantly. Given the precision of the measurements of current cosmological parameters, it would be appreciated for the future improvements on the measurements of galaxy clustering.

  20. A Survey of Metal Lines at High Redshift. II. SDSS Absorption Line Studies—O VI Line Density, Space Density, and Gas Metallicity at z abs ~ 3.0

    NASA Astrophysics Data System (ADS)

    Frank, S.; Mathur, S.; Pieri, M.; York, D. G.

    2010-09-01

    We have analyzed a large data set of O VI absorber candidates found in the spectra of 3702 Sloan Digital Sky Survey (SDSS) quasars, focusing on a subsample of 387 active galactic nuclei sight lines with an average S/N >=5.0, allowing for the detection of absorbers above a rest-frame equivalent width limit of W r >= 0.19 Å for the O VI 1032 Å component. Accounting for random interlopers mimicking an O VI doublet, we derive for the first time a secure lower limit for the redshift number density ΔN/Δz for redshifts z abs >= 2.8. With extensive Monte Carlo simulations, we quantify the losses of absorbers due to blending with the ubiquitous Lyα forest lines and estimate the success rate of retrieving each individual candidate as a function of its redshift, the emission redshift of the quasar, the strength of the absorber, and the measured signal-to-noise ratio (S/N) of the spectrum by modeling typical Lyman forest spectra. These correction factors allow us to derive the "incompleteness and S/N-corrected" redshift number densities of O VI absorbers: ΔN O VI,c /Δzc (2.8 < z < 3.2) = 4.6 ± 0.3, ΔN O VI,c /Δzc (3.2 < z < 3.6) = 6.7 ± 0.8, and ΔN O VI,c /Δzc (3.6 < z < 4.0) = 8.4 ± 2.9. We can place a secure lower limit for the contribution of O VI to the closure mass density at the redshifts probed here: ΩO VI (2.8 < z < 3.2) >= 1.9 × 10-8 h -1. We show that the strong lines we probe account for over 65% of the mass in the O VI absorbers; the weak absorbers, while dominant in line number density, do not contribute significantly to the mass density. Making a conservative assumption about the ionization fraction, {O VI}/{O}, and adopting the Anders & Grevesse solar abundance values, we derive the mean metallicity of the gas probed in our search: ζ(2.8 < z < 3.2) >= 3.6 × 10-4 h, in good agreement with other studies. These results demonstrate that large spectroscopic data sets such as SDSS can play an important role in QSO absorption line studies, in spite of

  1. New solution to the problem of the tension between the high-redshift and low-redshift measurements of the Hubble constant

    NASA Astrophysics Data System (ADS)

    Bolejko, Krzysztof

    2018-01-01

    During my talk I will present results suggesting that the phenomenon of emerging spatial curvature could resolve the conflict between Planck's (high-redshift) and Riess et al. (low-redshift) measurements of the Hubble constant. The phenomenon of emerging spatial curvature is absent in the Standard Cosmological Model, which has a flat and fixed spatial curvature (small perturbations are considered in the Standard Cosmological Model but their global average vanishes, leading to spatial flatness at all times).In my talk I will show that with the nonlinear growth of cosmic structures the global average deviates from zero. As a result, the spatial curvature evolves from spatial flatness of the early universe to a negatively curved universe at the present day, with Omega_K ~ 0.1. Consequently, the present day expansion rate, as measured by the Hubble constant, is a few percent higher compared to the high-redshift constraints. This provides an explanation why there is a tension between high-redshift (Planck) and low-redshift (Riess et al.) measurements of the Hubble constant. In the presence of emerging spatial curvature these two measurements should in fact be different: high redshift measurements should be slightly lower than the Hubble constant inferred from the low-redshift data.The presentation will be based on the results described in arXiv:1707.01800 and arXiv:1708.09143 (which discuss the phenomenon of emerging spatial curvature) and on a paper that is still work in progress but is expected to be posted on arxiv by the AAS meeting (this paper uses mock low-redshift data to show that starting from the Planck's cosmological models (in the early universe) but with the emerging spatial curvature taken into account, the low-redshift Hubble constant should be 72.4 km/s/Mpc.

  2. Dusty Star-forming Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Su, Ting

    2017-02-01

    Star-forming galaxies, which convert large amounts of gas into stars at moderate or excessive rates, are a critical population for our understanding of galaxy evolution throughout the cosmic time. A small portion of the star-forming galaxies are defined as starburst galaxies because they have much greater star formation rates (a few hundred to a few thousand of solar masses per year), which are associate with high infrared luminosity. My thesis focuses on starburst galaxies in the intermediate/high redshift universe. In this study, I present various modeling methods of the infrared spectral energy distribution (SED) of starburst galaxies, including modified black-body models and empirical templates based on nearby galaxies. Then, I fit these models to two samples of sources to study galaxy properties and provide a comparison among different SED models. I present galaxy properties derived by the best-fit model -- a modified blackbody model with power-law temperature distribution. The first sample is nine candidate gravitationally-lensed dusty star-forming galaxies (DSFGs) selected at 218 GHz (1.4 mm) from the Atacama Cosmology Telescope (ACT) equatorial survey, with multi-wavelength detections. Among the brightest ACT sources, these represent the subset of the total ACT sample lying in Herschel SPIRE fields, and all nine of the 218 GHz detections were found to have bright Herschel counterparts. We find the sample has a higher redshift distribution (z=4.1+1.1-1.0) than "classical" starburst galaxies, as expected for 218 GHz selection, and an apparent total infrared luminosity of log10(uL_IR/L_sun) = 13.86+0.33-0.30, which suggests that they are either strongly lensed sources or unresolved collections of unlensed DSFGs. The effective apparent diameter of the sample is ud = 4.2+1.7-1.0 kpc, further evidence of strong lensing or multiplicity, since the typical diameter of dusty star-forming galaxies is 1.0-2.5 kpc. We emphasize that the effective apparent diameter

  3. The large area KX quasar catalogue - I. Analysis of the photometric redshift selection and the complete quasar catalogue

    NASA Astrophysics Data System (ADS)

    Maddox, Natasha; Hewett, Paul C.; Péroux, Céline; Nestor, Daniel B.; Wisotzki, Lutz

    2012-08-01

    The results of a large area, ˜600 deg2, K-band flux-limited spectroscopic survey for luminous quasars are presented. The survey utilizes the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) in regions of sky within the Sloan Digital Sky Survey (SDSS) footprint. The K-band excess (KX) of all quasars with respect to Galactic stars is exploited in combination with a photometric redshift/classification scheme to identify quasar candidates for spectroscopic follow-up observations. The data contained within this investigation will be able to provide new constraints on the fraction of luminous quasars reddened by dust with E(B - V) ≤ 0.5 mag. The spectroscopic sample is defined using the K-band, 14.0 ≤ K ≤ 16.6, and SDSS i-band limits of i = 19.5, 19.7 and 22.0 over sky areas of 287, 150 and 196 deg2, respectively. The survey includes >3200 known quasars from the SDSS and more than 250 additional confirmed quasars from the KX selection. A well-defined subsample of quasars in the redshift interval 1.0 ≤ z ≤ 3.5 includes 1152 objects from the SDSS and 172 additional KX-selected quasars. The quasar selection is >95 per cent complete with respect to known SDSS quasars and >95 per cent efficient, largely independent of redshift and i-band magnitude. The properties of the new KX-selected quasars confirm the known redshift-dependent effectiveness of the SDSS quasar selection and provide a sample of luminous quasars experiencing intermediate levels of extinction by dust. The catalogue represents an important step towards the assembly of a well-defined sample of luminous quasars that may be used to investigate the properties of quasars experiencing intermediate levels of dust extinction within their host galaxies or due intervening absorption line systems. †Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programme IDs 083.A0360 and 085.A0359.‡Based on observations collected at the Centro Astronómico Hispano

  4. OzDES multifibre spectroscopy for the Dark Energy Survey: 3-yr results and first data release

    NASA Astrophysics Data System (ADS)

    Childress, M. J.; Lidman, C.; Davis, T. M.; Tucker, B. E.; Asorey, J.; Yuan, F.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Banerji, M.; Benoit-Lévy, A.; Bernard, S. R.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carollo, D.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; da Costa, L. N.; D'Andrea, C. B.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Foley, R. J.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Glazebrook, K.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gupta, R. R.; Gutierrez, G.; Hinton, S. R.; Hoormann, J. K.; James, D. J.; Kessler, R.; Kim, A. G.; King, A. L.; Kovacs, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lagattuta, D. J.; Lewis, G. F.; Li, T. S.; Lima, M.; Lin, H.; Macaulay, E.; Maia, M. A. G.; Marriner, J.; March, M.; Marshall, J. L.; Martini, P.; McMahon, R. G.; Menanteau, F.; Miquel, R.; Moller, A.; Morganson, E.; Mould, J.; Mudd, D.; Muthukrishna, D.; Nichol, R. C.; Nord, B.; Ogando, R. L. C.; Ostrovski, F.; Parkinson, D.; Plazas, A. A.; Reed, S. L.; Reil, K.; Romer, A. K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Scolnic, D.; Sevilla-Noarbe, I.; Seymour, N.; Sharp, R.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Sommer, N. E.; Spinka, H.; Suchyta, E.; Sullivan, M.; Swanson, M. E. C.; Tarle, G.; Uddin, S. A.; Walker, A. R.; Wester, W.; Zhang, B. R.

    2017-11-01

    We present results for the first three years of OzDES, a six year programme to obtain redshifts for objects in the Dark Energy Survey (DES) supernova fields using the 2dF fibre positioner and AAOmega spectrograph on the Anglo-Australian Telescope. OzDES is a multi-object spectroscopic survey targeting multiple types of targets at multiple epochs over a multiyear baseline and is one of the first multi-object spectroscopic surveys to dynamically include transients into the target list soon after their discovery. At the end of three years, OzDES has spectroscopically confirmed almost 100 supernovae, and has measured redshifts for 17 000 objects, including the redshifts of 2566 supernova hosts. We examine how our ability to measure redshifts for targets of various types depends on signal-to-noise ratio (S/N), magnitude and exposure time, finding that our redshift success rate increases significantly at a S/N of 2-3 per 1-Å bin. We also find that the change in S/N with exposure time closely matches the Poisson limit for stacked exposures as long as 10 h. We use these results to predict the redshift yield of the full OzDES survey, as well as the potential yields of future surveys on other facilities such as (i.e. the 4-m Multi-Object Spectroscopic Telescope, the Subaru Prime Focus Spectrograph and the Maunakea Spectroscopic Explorer). This work marks the first OzDES data release, comprising 14 693 redshifts. OzDES is on target to obtain over 30 000 redshifts over the 6-yr duration of the survey, including a yield of approximately 5700 supernova host-galaxy redshifts.

  5. Deep Extragalactic X-Ray Surveys

    NASA Astrophysics Data System (ADS)

    Brandt, W. N.; Hasinger, G.

    2005-09-01

    Deep surveys of the cosmic X-ray background are reviewed in the context of observational progress enabled by the Chandra X-Ray Observatory and the X-Ray Multi-Mirror Mission-Newton. The sources found by deep surveys are described along with their redshift and luminosity distributions, and the effectiveness of such surveys at selecting active galactic nuclei (AGN) is assessed. Some key results from deep surveys are highlighted, including (a) measurements of AGN evolution and the growth of supermassive black holes, (b) constraints on the demography and physics of high-redshift AGN, (c) the X-ray AGN content of infrared and submillimeter galaxies, and (d) X-ray emission from distant starburst and normal galaxies. We also describe some outstanding problems and future prospects for deep extragalactic X-ray surveys.

  6. Mean Occupation Function of High-redshift Quasars from the Planck Cluster Catalog

    NASA Astrophysics Data System (ADS)

    Chakraborty, Priyanka; Chatterjee, Suchetana; Dutta, Alankar; Myers, Adam D.

    2018-06-01

    We characterize the distribution of quasars within dark matter halos using a direct measurement technique for the first time at redshifts as high as z ∼ 1. Using the Planck Sunyaev-Zeldovich (SZ) catalog for galaxy groups and the Sloan Digital Sky Survey (SDSS) DR12 quasar data set, we assign host clusters/groups to the quasars and make a measurement of the mean number of quasars within dark matter halos as a function of halo mass. We find that a simple power-law fit of {log}< N> =(2.11+/- 0.01) {log}(M)-(32.77+/- 0.11) can be used to model the quasar fraction in dark matter halos. This suggests that the quasar fraction increases monotonically as a function of halo mass even to redshifts as high as z ∼ 1.

  7. THE QUEST FOR DUSTY STAR-FORMING GALAXIES AT HIGH REDSHIFT z ≳ 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mancuso, C.; Lapi, A.; Shi, J.

    2016-06-01

    We exploit the continuity equation approach and “main-sequence” star formation timescales to show that the observed high abundance of galaxies with stellar masses ≳ a few 10{sup 10} M {sub ⊙} at redshift z ≳ 4 implies the existence of a galaxy population featuring large star formation rates (SFRs) ψ ≳ 10{sup 2} M {sub ⊙} yr{sup −1} in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z ≲ 3 in the far-IR band by the Herschel Space Observatory . We work out specific predictions for the evolution of the correspondingmore » stellar mass and SFR functions out to z ∼ 10, determining that the number density at z ≲ 8 for SFRs ψ ≳ 30 M {sub ⊙} yr{sup −1} cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from the AzTEC - LABOCA , SCUBA-2 , and ALMA - SPT surveys are already addressing it. We demonstrate how an observational strategy based on color preselection in the far-IR or (sub-)millimeter band with Herschel and SCUBA-2 , supplemented by photometric data from on-source observations with ALMA , can allow us to reconstruct the bright end of the SFR functions out to z ≲ 8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)millimeter observations by ALMA and NIKA2 and/or radio observations by SKA and its precursors.« less

  8. MC 2 : galaxy imaging and redshift analysis of the merging cluster Ciza J2242.8+5301

    DOE PAGES

    Dawson, William A.; Jee, M. James; Stroe, Andra; ...

    2015-05-28

    X-ray and radio observations of CIZA J2242.8+5301 suggest that it is a major cluster merger. Despite being well studied in the X-ray, and radio, little has been presented on the cluster structure and dynamics inferred from its galaxy population. We carried out a deep (i < 25) broad band imaging survey of the system with Subaru SuprimeCam (g & i bands) and the Canada France Hawaii Telescope (r band) as well as a comprehensive spectroscopic survey of the cluster area (505 redshifts) using Keck DEIMOS. We use this data to perform a comprehensive galaxy/redshift analysis of the system, which ismore » the first step to a proper understanding the geometry and dynamics of the merger, as well as using the merger to constrain self-interacting dark matter.« less

  9. Can Selforganizing Maps Accurately Predict Photometric Redshifts?

    NASA Technical Reports Server (NTRS)

    Way, Michael J.; Klose, Christian

    2012-01-01

    We present an unsupervised machine-learning approach that can be employed for estimating photometric redshifts. The proposed method is based on a vector quantization called the self-organizing-map (SOM) approach. A variety of photometrically derived input values were utilized from the Sloan Digital Sky Survey's main galaxy sample, luminous red galaxy, and quasar samples, along with the PHAT0 data set from the Photo-z Accuracy Testing project. Regression results obtained with this new approach were evaluated in terms of root-mean-square error (RMSE) to estimate the accuracy of the photometric redshift estimates. The results demonstrate competitive RMSE and outlier percentages when compared with several other popular approaches, such as artificial neural networks and Gaussian process regression. SOM RMSE results (using delta(z) = z(sub phot) - z(sub spec)) are 0.023 for the main galaxy sample, 0.027 for the luminous red galaxy sample, 0.418 for quasars, and 0.022 for PHAT0 synthetic data. The results demonstrate that there are nonunique solutions for estimating SOM RMSEs. Further research is needed in order to find more robust estimation techniques using SOMs, but the results herein are a positive indication of their capabilities when compared with other well-known methods

  10. Cosmic velocity-gravity relation in redshift space

    NASA Astrophysics Data System (ADS)

    Colombi, Stéphane; Chodorowski, Michał J.; Teyssier, Romain

    2007-02-01

    We propose a simple way to estimate the parameter β ~= Ω0.6/b from 3D galaxy surveys, where Ω is the non-relativistic matter-density parameter of the Universe and b is the bias between the galaxy distribution and the total matter distribution. Our method consists in measuring the relation between the cosmological velocity and gravity fields, and thus requires peculiar velocity measurements. The relation is measured directly in redshift space, so there is no need to reconstruct the density field in real space. In linear theory, the radial components of the gravity and velocity fields in redshift space are expected to be tightly correlated, with a slope given, in the distant observer approximation, by We test extensively this relation using controlled numerical experiments based on a cosmological N-body simulation. To perform the measurements, we propose a new and rather simple adaptive interpolation scheme to estimate the velocity and the gravity field on a grid. One of the most striking results is that non-linear effects, including `fingers of God', affect mainly the tails of the joint probability distribution function (PDF) of the velocity and gravity field: the 1-1.5 σ region around the maximum of the PDF is dominated by the linear theory regime, both in real and redshift space. This is understood explicitly by using the spherical collapse model as a proxy of non-linear dynamics. Applications of the method to real galaxy catalogues are discussed, including a preliminary investigation on homogeneous (volume-limited) `galaxy' samples extracted from the simulation with simple prescriptions based on halo and substructure identification, to quantify the effects of the bias between the galaxy distribution and the total matter distribution, as well as the effects of shot noise.

  11. The VANDELS ESO public spectroscopic survey

    NASA Astrophysics Data System (ADS)

    McLure, R. J.; Pentericci, L.; Cimatti, A.; Dunlop, J. S.; Elbaz, D.; Fontana, A.; Nandra, K.; Amorin, R.; Bolzonella, M.; Bongiorno, A.; Carnall, A. C.; Castellano, M.; Cirasuolo, M.; Cucciati, O.; Cullen, F.; De Barros, S.; Finkelstein, S. L.; Fontanot, F.; Franzetti, P.; Fumana, M.; Gargiulo, A.; Garilli, B.; Guaita, L.; Hartley, W. G.; Iovino, A.; Jarvis, M. J.; Juneau, S.; Karman, W.; Maccagni, D.; Marchi, F.; Mármol-Queraltó, E.; Pompei, E.; Pozzetti, L.; Scodeggio, M.; Sommariva, V.; Talia, M.; Almaini, O.; Balestra, I.; Bardelli, S.; Bell, E. F.; Bourne, N.; Bowler, R. A. A.; Brusa, M.; Buitrago, F.; Caputi, K. I.; Cassata, P.; Charlot, S.; Citro, A.; Cresci, G.; Cristiani, S.; Curtis-Lake, E.; Dickinson, M.; Fazio, G. G.; Ferguson, H. C.; Fiore, F.; Franco, M.; Fynbo, J. P. U.; Galametz, A.; Georgakakis, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Jung, I.; Kim, S.; Koekemoer, A. M.; Khusanova, Y.; Fèvre, O. Le; Lotz, J. M.; Mannucci, F.; Maltby, D. T.; Matsuoka, K.; McLeod, D. J.; Mendez-Hernandez, H.; Mendez-Abreu, J.; Mignoli, M.; Moresco, M.; Mortlock, A.; Nonino, M.; Pannella, M.; Papovich, C.; Popesso, P.; Rosario, D. P.; Salvato, M.; Santini, P.; Schaerer, D.; Schreiber, C.; Stark, D. P.; Tasca, L. A. M.; Thomas, R.; Treu, T.; Vanzella, E.; Wild, V.; Williams, C. C.; Zamorani, G.; Zucca, E.

    2018-05-01

    VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO's Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 < λ < 1.0 μm) spectroscopy of ≃2100 galaxies within the redshift interval 1.0 ≤ z ≤ 7.0, over a total area of ≃ 0.2 deg2 centred on the CANDELS UDS and CDFS fields. Based on accurate photometric redshift pre-selection, 85% of the galaxies targeted by VANDELS were selected to be at z ≥ 3. Exploiting the red sensitivity of the refurbished VIMOS spectrograph, the fundamental aim of the survey is to provide the high signal-to-noise ratio spectra necessary to measure key physical properties such as stellar population ages, masses, metallicities and outflow velocities from detailed absorption-line studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 < tint < 80 hours), the VANDELS survey targeted: a) bright star-forming galaxies at 2.4 ≤ z ≤ 5.5, b) massive quiescent galaxies at 1.0 ≤ z ≤ 2.5, c) fainter star-forming galaxies at 3.0 ≤ z ≤ 7.0 and d) X-ray/Spitzer-selected active galactic nuclei and Herschel-detected galaxies. By targeting two extragalactic survey fields with superb multi-wavelength imaging data, VANDELS will produce a unique legacy data set for exploring the physics underpinning high-redshift galaxy evolution. In this paper we provide an overview of the VANDELS survey designed to support the science exploitation of the first ESO public data release, focusing on the scientific motivation, survey design and target selection.

  12. HerMES: Redshift Evolution of the Cosmic Infrared Background from Herschel/SPIRE

    NASA Astrophysics Data System (ADS)

    Vieira, Joaquin; HerMES

    2013-01-01

    We report on the redshift evolution of the cosmic infrared background (CIB) at wavelengths of 70-1100 microns. Using data from the Herschel Multi-tiered Extragalactic Survey (HerMES) of the GOODS-N field, we statistically correlate fluctuations in the CIB with external catalogs. We use a deep Spitzer-MIPS 24 micron flux-limited catalog complete with redshifts and stack on MIPS 70 and 160 micron, Herschel-SPIRE 250, 350, and 500 micron, and JCMT-AzTEC 1100 micron maps. We measure the co-moving infrared luminosity density at 0.1redshifts. This is the first work to directly probe the luminosity density at z>4 and provides important constraints for models of galaxy formation and evolution.

  13. Large-Scale Structure Studies with the REFLEX Cluster Survey

    NASA Astrophysics Data System (ADS)

    Schuecker, P.; Bohringer, H.; Guzzo, L.; Collins, C.; Neumann, D. M.; Schindler, S.; Voges, W.

    1998-12-01

    First preliminary results of the ROSAT ESO Flux-Limited X-Ray (REFLEX) Cluster Survey are described. The survey covers 13,924 square degrees of the southern hemisphere. The present sample consists of about 470 rich clusters (1/3 non Abell/ACO clusters) with X-ray fluxes S >= 3.0 times 10^{-12} erg s^{-1} cm^{-2} (0.1-2.4 keV) and redshifts z <= 0.3. In contrast to other low-redshift surveys, the cumulative flux-number counts have an almost Euclidean slope. Comoving cluster number densities are found to be almost redshift-independent throughout the total survey volume. The X-ray luminosity function is well described by a Schechter function. The power spectrum of the number density fluctuations could be measured on scales up to 400 h^{-1} Mpc. A deeper survey with about 800 galaxy clusters in the same area is in progress.

  14. ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% atmore » redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.« less

  15. Accounting for Cosmic Variance in Studies of Gravitationally Lensed High-redshift Galaxies in the Hubble Frontier Field Clusters

    NASA Astrophysics Data System (ADS)

    Robertson, Brant E.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; Stark, Dan P.; McLeod, Derek

    2014-12-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ~35% at redshift z ~ 7 to >~ 65% at z ~ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.

  16. Far-Infrared Extragalactic Surveys: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Moseley, Samuel H., Jr.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    As much as one third of the luminosity of the local universe is emitted in the far infrared. In order to understand the history of energy release in the universe, it is crucial to characterize this rest-frame far-infrared contribution from the present back to the era of initial galaxy formation. Over the redshift range from 0 to 10, this energy is received in the 80 micrometers to 1 mm spectral region. In the 1980's the Infrared Astronomy Satellite (IRAS) all-sky survey provided the first comprehensive view of the far infrared emission from the local universe. The diffuse background measurements by Cosmic Background Explorer Satellite (COBE) have provided constraints on the integral contributions from the high redshift universe. In the past five years, submillimeter measurements made using the SCUBA instrument have revealed powerful high redshift sources. To develop a clear history of energy release in the universe, we need numbers and redshifts of representative populations of energetically important objects. The near future will bring the Space Infrared Telescope Facility Multiband Imaging Photometer (SIRTF)(MIPS) survey, which will cover about 100 square degrees at wavelengths out to 160 micrometers, providing a large sample of energetically important galaxies out to z of approx.3. In 2005, the Japanese IRIS survey will provide a 160 micrometers full sky survey, which will provide larger samples of the high z galaxy populations and will find intrinsically rare high luminosity objects. The SPIRE instrument on the FIRST facility will extend these surveys to longer wavelengths, providing a view of the universe at higher redshifts in three spectral bands. A concept for an all-sky submillimeter survey is under development, called the Survey of Infrared Cosmic Evolution (SIRCE). With a 2 m cryogenic telescope, it can map the entire sky to the confusion limit in the 100 to 500 micrometers range in six months. This survey will provide photometric redshifts, number

  17. Infrared-faint radio sources in the SERVS deep fields. Pinpointing AGNs at high redshift

    NASA Astrophysics Data System (ADS)

    Maini, A.; Prandoni, I.; Norris, R. P.; Spitler, L. R.; Mignano, A.; Lacy, M.; Morganti, R.

    2016-12-01

    Context. Infrared-faint radio sources (IFRS) represent an unexpected class of objects which are relatively bright at radio wavelength, but unusually faint at infrared (IR) and optical wavelengths. A recent and extensive campaign on the radio-brightest IFRSs (S1.4 GHz≳ 10 mJy) has provided evidence that most of them (if not all) contain an active galactic nuclei (AGN). Still uncertain is the nature of the radio-faintest IFRSs (S1.4 GHz≲ 1 mJy). Aims: The scope of this paper is to assess the nature of the radio-faintest IFRSs, testing their classification and improving the knowledge of their IR properties by making use of the most sensitive IR survey available so far: the Spitzer Extragalactic Representative Volume Survey (SERVS). We also explore how the criteria of IFRSs can be fine-tuned to pinpoint radio-loud AGNs at very high redshift (z > 4). Methods: We analysed a number of IFRS samples identified in SERVS fields, including a new sample (21 sources) extracted from the Lockman Hole. 3.6 and 4.5 μm IR counterparts of the 64 sources located in the SERVS fields were searched for and, when detected, their IR properties were studied. Results: We compared the radio/IR properties of the IR-detected IFRSs with those expected for a number of known classes of objects. We found that IR-detected IFRSs are mostly consistent with a mixture of high-redshift (z ≳ 3) radio-loud AGNs. The faintest ones (S1.4 GHz 100 μJy), however, could be also associated with nearer (z 2) dust-enshrouded star-burst galaxies. We also argue that, while IFRSs with radio-to-IR ratios >500 can very efficiently pinpoint radio-loud AGNs at redshift 2 < z < 4, lower radio-to-IR ratios ( 100-200) are expected for higher redshift radio-loud AGNs.

  18. Estimating photometric redshifts for X-ray sources in the X-ATLAS field using machine-learning techniques

    NASA Astrophysics Data System (ADS)

    Mountrichas, G.; Corral, A.; Masoura, V. A.; Georgantopoulos, I.; Ruiz, A.; Georgakakis, A.; Carrera, F. J.; Fotopoulou, S.

    2017-12-01

    We present photometric redshifts for 1031 X-ray sources in the X-ATLAS field using the machine-learning technique TPZ. X-ATLAS covers 7.1 deg2 observed with XMM-Newton within the Science Demonstration Phase of the H-ATLAS field, making it one of the largest contiguous areas of the sky with both XMM-Newton and Herschel coverage. All of the sources have available SDSS photometry, while 810 additionally have mid-IR and/or near-IR photometry. A spectroscopic sample of 5157 sources primarily in the XMM/XXL field, but also from several X-ray surveys and the SDSS DR13 redshift catalogue, was used to train the algorithm. Our analysis reveals that the algorithm performs best when the sources are split, based on their optical morphology, into point-like and extended sources. Optical photometry alone is not enough to estimate accurate photometric redshifts, but the results greatly improve when at least mid-IR photometry is added in the training process. In particular, our measurements show that the estimated photometric redshifts for the X-ray sources of the training sample have a normalized absolute median deviation, nmad ≈ 0.06, and a percentage of outliers, η = 10-14%, depending upon whether the sources are extended or point like. Our final catalogue contains photometric redshifts for 933 out of the 1031 X-ray sources with a median redshift of 0.9. The table of the photometric redshifts is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A39

  19. The redshift evolution of major merger triggering of luminous AGNs: a slight enhancement at z ˜ 2

    NASA Astrophysics Data System (ADS)

    Hewlett, Timothy; Villforth, Carolin; Wild, Vivienne; Mendez-Abreu, Jairo; Pawlik, Milena; Rowlands, Kate

    2017-09-01

    Active galactic nuclei (AGNs), particularly the most luminous AGNs, are commonly assumed to be triggered through major mergers; however, observational evidence for this scenario is mixed. To investigate any influence of galaxy mergers on AGN triggering and luminosities through cosmic time, we present a sample of 106 luminous X-ray-selected type 1 AGNs from the COSMOS survey. These AGNs occupy a large redshift range (0.5 < z < 2.2) and two orders of magnitude in X-ray luminosity (˜1043-1045 erg s-1). AGN hosts are carefully mass and redshift matched to 486 control galaxies. A novel technique for identifying and quantifying merger features in galaxies is developed, subtracting galfit galaxy models and quantifying the residuals. Comparison to visual classification confirms this measure reliably picks out disturbance features in galaxies. No enhancement of merger features with increasing AGN luminosity is found with this metric, or by visual inspection. We analyse the redshift evolution of AGNs associated with galaxy mergers and find no merger enhancement in lower redshift bins. Contrarily, in the highest redshift bin (z ˜ 2) AGNs are ˜4 times more likely to be in galaxies exhibiting evidence of morphological disturbance compared to control galaxies, at 99 per cent confidence level (˜2.4σ) from visual inspection. Since only ˜15 per cent of these AGNs are found to be in morphologically disturbed galaxies, it is implied that major mergers at high redshift make a noticeable but subdominant contribution to AGN fuelling. At low redshifts, other processes dominate and mergers become a less significant triggering mechanism.

  20. Non-negative Matrix Factorization for Self-calibration of Photometric Redshift Scatter in Weak-lensing Surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Le; Yu, Yu; Zhang, Pengjie, E-mail: lezhang@sjtu.edu.cn

    Photo- z error is one of the major sources of systematics degrading the accuracy of weak-lensing cosmological inferences. Zhang et al. proposed a self-calibration method combining galaxy–galaxy correlations and galaxy–shear correlations between different photo- z bins. Fisher matrix analysis shows that it can determine the rate of photo- z outliers at a level of 0.01%–1% merely using photometric data and do not rely on any prior knowledge. In this paper, we develop a new algorithm to implement this method by solving a constrained nonlinear optimization problem arising in the self-calibration process. Based on the techniques of fixed-point iteration and non-negativemore » matrix factorization, the proposed algorithm can efficiently and robustly reconstruct the scattering probabilities between the true- z and photo- z bins. The algorithm has been tested extensively by applying it to mock data from simulated stage IV weak-lensing projects. We find that the algorithm provides a successful recovery of the scatter rates at the level of 0.01%–1%, and the true mean redshifts of photo- z bins at the level of 0.001, which may satisfy the requirements in future lensing surveys.« less

  1. The XMM Large Scale Structure Survey

    NASA Astrophysics Data System (ADS)

    Pierre, Marguerite

    2005-10-01

    We propose to complete, by an additional 5 deg2, the XMM-LSS Survey region overlying the Spitzer/SWIRE field. This field already has CFHTLS and Integral coverage, and will encompass about 10 deg2. The resulting multi-wavelength medium-depth survey, which complements XMM and Chandra deep surveys, will provide a unique view of large-scale structure over a wide range of redshift, and will show active galaxies in the full range of environments. The complete coverage by optical and IR surveys provides high-quality photometric redshifts, so that cosmological results can quickly be extracted. In the spirit of a Legacy survey, we will make the raw X-ray data immediately public. Multi-band catalogues and images will also be made available on short time scales.

  2. Redshifts for Superliminal Candidates.II.

    NASA Astrophysics Data System (ADS)

    Vermeulen, R. C.; Taylor, G. B.; Readhead, A. C. S.; Browne, I. W. A.

    1996-03-01

    Spectra are presented for 24 compact extragalactic radio sources from complete samples being studied with VLBI. New emission line redshifts are given for 21 of the objects; in 7 of these we have also identified associated or intervening absorption line systems. In 1 other source there are absorption lines which provide a lower limit to the redshift. The remaining 2 objects have strong featureless spectra and are likely to be blazars.

  3. Beyond the plane-parallel and Newtonian approach: wide-angle redshift distortions and convergence in general relativity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertacca, Daniele; Maartens, Roy; Raccanelli, Alvise

    We extend previous analyses of wide-angle correlations in the galaxy power spectrum in redshift space to include all general relativistic effects. These general relativistic corrections to the standard approach become important on large scales and at high redshifts, and they lead to new terms in the wide-angle correlations. We show that in principle the new terms can produce corrections of nearly 10% on Gpc scales over the usual Newtonian approximation. General relativistic corrections will be important for future large-volume surveys such as SKA and Euclid, although the problem of cosmic variance will present a challenge in observing this.

  4. The DESI Experiment Part I: Science,Targeting, and Survey Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghamousa, Amir; et al.

    DESI (Dark Energy Spectroscopic Instrument) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations (BAO) and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar redshift survey. To trace the underlying dark matter distribution, spectroscopic targets will be selected in four classes from imaging data. We will measure luminous red galaxies up tomore » $z=1.0$. To probe the Universe out to even higher redshift, DESI will target bright [O II] emission line galaxies up to $z=1.7$. Quasars will be targeted both as direct tracers of the underlying dark matter distribution and, at higher redshifts ($ 2.1 < z < 3.5$), for the Ly-$$\\alpha$$ forest absorption features in their spectra, which will be used to trace the distribution of neutral hydrogen. When moonlight prevents efficient observations of the faint targets of the baseline survey, DESI will conduct a magnitude-limited Bright Galaxy Survey comprising approximately 10 million galaxies with a median $$z\\approx 0.2$$. In total, more than 30 million galaxy and quasar redshifts will be obtained to measure the BAO feature and determine the matter power spectrum, including redshift space distortions.« less

  5. Structure and substructure analysis of DAFT/FADA galaxy clusters in the [0.4-0.9] redshift range

    NASA Astrophysics Data System (ADS)

    Guennou, L.; Adami, C.; Durret, F.; Lima Neto, G. B.; Ulmer, M. P.; Clowe, D.; LeBrun, V.; Martinet, N.; Allam, S.; Annis, J.; Basa, S.; Benoist, C.; Biviano, A.; Cappi, A.; Cypriano, E. S.; Gavazzi, R.; Halliday, C.; Ilbert, O.; Jullo, E.; Just, D.; Limousin, M.; Márquez, I.; Mazure, A.; Murphy, K. J.; Plana, H.; Rostagni, F.; Russeil, D.; Schirmer, M.; Slezak, E.; Tucker, D.; Zaritsky, D.; Ziegler, B.

    2014-01-01

    Context. The DAFT/FADA survey is based on the study of ~90 rich (masses found in the literature >2 × 1014 M⊙) and moderately distant clusters (redshifts 0.4 < z < 0.9), all with HST imaging data available. This survey has two main objectives: to constrain dark energy (DE) using weak lensing tomography on galaxy clusters and to build a database (deep multi-band imaging allowing photometric redshift estimates, spectroscopic data, X-ray data) of rich distant clusters to study their properties. Aims: We analyse the structures of all the clusters in the DAFT/FADA survey for which XMM-Newton and/or a sufficient number of galaxy redshifts in the cluster range are available, with the aim of detecting substructures and evidence for merging events. These properties are discussed in the framework of standard cold dark matter (ΛCDM) cosmology. Methods: In X-rays, we analysed the XMM-Newton data available, fit a β-model, and subtracted it to identify residuals. We used Chandra data, when available, to identify point sources. In the optical, we applied a Serna & Gerbal (SG) analysis to clusters with at least 15 spectroscopic galaxy redshifts available in the cluster range. We discuss the substructure detection efficiencies of both methods. Results: XMM-Newton data were available for 32 clusters, for which we derive the X-ray luminosity and a global X-ray temperature for 25 of them. For 23 clusters we were able to fit the X-ray emissivity with a β-model and subtract it to detect substructures in the X-ray gas. A dynamical analysis based on the SG method was applied to the clusters having at least 15 spectroscopic galaxy redshifts in the cluster range: 18 X-ray clusters and 11 clusters with no X-ray data. The choice of a minimum number of 15 redshifts implies that only major substructures will be detected. Ten substructures were detected both in X-rays and by the SG method. Most of the substructures detected both in X-rays and with the SG method are probably at their first

  6. Gravitational redshift and asymmetric redshift-space distortions for stacked clusters

    NASA Astrophysics Data System (ADS)

    Cai, Yan-Chuan; Kaiser, Nick; Cole, Shaun; Frenk, Carlos

    2017-06-01

    We derive the expression for the observed redshift in the weak field limit in the observer's past light cone, including all relativistic terms up to second order in velocity. We then apply it to compute the cluster-galaxy cross-correlation functions (CGCF) using N-body simulations. The CGCF is asymmetric along the line of sight owing to the presence of the small second-order terms such as the gravitational redshift (GRedshift). We identify two systematics in the modelling of the GRedshift signal in stacked clusters. First, it is affected by the morphology of dark matter haloes and the large-scale cosmic-web. The non-spherical distribution of galaxies around the central halo and the presence of neighbouring clusters systematically reduce the GRedshift signal. This bias is approximately 20 per cent for Mmin ≃ 1014 M⊙ h-1, and is more than 50 per cent for haloes with Mmin ≃ 2 × 1013 M⊙ h-1 at r > 4 Mpc h-1. Secondly, the best-fitting GRedshift profiles as well as the profiles of all other relativistic terms are found to be significantly different in velocity space compared to their real space versions. We find that the relativistic Doppler redshift effect, like other second-order effects, is subdominant to the GRedshift signal. We discuss some subtleties relating to these effects in velocity space. We also find that the S/N of the GRedshift signal increases with decreasing halo mass.

  7. Overdensities of SMGs around WISE-selected, ultraluminous, high-redshift AGNs

    NASA Astrophysics Data System (ADS)

    Jones, Suzy F.; Blain, Andrew W.; Assef, Roberto J.; Eisenhardt, Peter; Lonsdale, Carol; Condon, James; Farrah, Duncan; Tsai, Chao-Wei; Bridge, Carrie; Wu, Jingwen; Wright, Edward L.; Jarrett, Tom

    2017-08-01

    We investigate extremely luminous dusty galaxies in the environments around Wide-field Infrared Survey Explorer (WISE)-selected hot dust-obscured galaxies (Hot DOGs) and WISE/radio-selected active galactic nuclei (AGNs) at average redshifts of z = 2.7 and 1.7, respectively. Previous observations have detected overdensities of companion submillimetre-selected sources around 10 Hot DOGs and 30 WISE/radio AGNs, with overdensities of ˜2-3 and ˜5-6, respectively. We find that the space densities in both samples to be overdense compared to normal star-forming galaxies and submillimetre galaxies (SMGs) in the Submillimetre Common-User Bolometer Array 2 (SCUBA-2) Cosmology Legacy Survey (S2CLS). Both samples of companion sources have consistent mid-infrared (mid-IR) colours and mid-IR to submm ratios as SMGs. The brighter population around WISE/radio AGNs could be responsible for the higher overdensity reported. We also find that the star formation rate densities are higher than the field, but consistent with clusters of dusty galaxies. WISE-selected AGNs appear to be good signposts for protoclusters at high redshift on arcmin scales. The results reported here provide an upper limit to the strength of angular clustering using the two-point correlation function. Monte Carlo simulations show no angular correlation, which could indicate protoclusters on scales larger than the SCUBA-2 1.5-arcmin scale maps.

  8. Obscured Black Hole Growth at High Redshift and High Luminosity

    NASA Astrophysics Data System (ADS)

    Urry, C. Megan

    We propose to complete the census of cosmic black hole growth by measuring luminous and/or distant quasars using Spitzer, Herschel, Chandra and XMM-Newton imaging in Stripe 82 the deepest Sloan Digital Sky Survey field, and now the premier legacy field among 100 deg2 survey areas. These extensive ancillary data offer unsurpassed sensitivity to accreting supermassive black holes in luminous quasars out to z 6, including obscured objects missed by optical/UV surveys. We address six science goals centered on the growth of supermassive black holes: 1) We will constrain the mass accreted in luminous quasars by determining the evolving luminosity function of high-luminosity X-ray-selected AGN, including obscured quasars, especially at high redshift, where previous surveys have limited statistics. 2) We will build a comprehensive multi-wavelength population synthesis model that describes cosmic black hole accretion across most of the history of the Universe, constrained by the wealth of data now available. This will be the first population synthesis model that is constrained at high luminosity and high redshift (courtesy of Stripe 82X). 3) We will characterize the spectral energy distributions (SEDs) of luminous X-ray selected quasars, including obscured ones. We will assess the dust content in the host galaxies and diagnose the relative contributions of black hole fueling and star formation, using Herschel data to probe the cold molecular gas from which stars form and comparing X-rays from accretion onto the central black hole. We will also use high-quality optical imaging to disentangle nuclear from host galaxy emission in a representative sub-sample of quasars. 4) Using Spitzer, Herschel, Chandra, XMM-Newton, and optical data, we will identify candidates for the most heavily obscured black holes, which we will follow up with ground-based IR spectroscopy using Keck and Palomar (to which Yale has guaranteed access). In this way we will recover obscured AGN missed by

  9. Redshift differences of galaxies in nearby groups

    NASA Technical Reports Server (NTRS)

    Harrison, E. R.

    1975-01-01

    It is reported that galaxies in nearby groups exhibit anomalous nonvelocity redshifts. In this discussion, (1) four classes of nearby groups of galacies are analyzed, and no significant nonvelocity redshift effect is found; and (2) it is pointed out that transverse velocities (i.e., velocities transverse to the line of sight of the main galaxy, or center of mass) contribute components to the redshift measurements of companion galaxies. The redshifts of galaxies in nearby groups of appreciable angular size are considerably affected by these velocity projection effects. The transverse velocity contributions average out in rich, isotropic groups, and also in large samples of irregular groups of low membership, as in the four classes referred to in (1), but can introduce apparent discrepancies in small samples (as studied by Arp) of nearby groups of low membership.

  10. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: structure growth rate measurement from the anisotropic quasar power spectrum in the redshift range 0.8 < z < 2.2

    NASA Astrophysics Data System (ADS)

    Gil-Marín, Héctor; Guy, Julien; Zarrouk, Pauline; Burtin, Etienne; Chuang, Chia-Hsun; Percival, Will J.; Ross, Ashley J.; Ruggeri, Rossana; Tojerio, Rita; Zhao, Gong-Bo; Wang, Yuting; Bautista, Julian; Hou, Jiamin; Sánchez, Ariel G.; Pâris, Isabelle; Baumgarten, Falk; Brownstein, Joel R.; Dawson, Kyle S.; Eftekharzadeh, Sarah; González-Pérez, Violeta; Habib, Salman; Heitmann, Katrin; Myers, Adam D.; Rossi, Graziano; Schneider, Donald P.; Seo, Hee-Jong; Tinker, Jeremy L.; Zhao, Cheng

    2018-06-01

    We analyse the clustering of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey Data Release 14 quasar sample (DR14Q). We measure the redshift space distortions using the power-spectrum monopole, quadrupole, and hexadecapole inferred from 148 659 quasars between redshifts 0.8 and 2.2, covering a total sky footprint of 2112.9 deg2. We constrain the logarithmic growth of structure times the amplitude of dark matter density fluctuations, fσ8, and the Alcock-Paczynski dilation scales that allow constraints to be placed on the angular diameter distance DA(z) and the Hubble H(z) parameter. At the effective redshift of zeff = 1.52, fσ8(zeff) = 0.420 ± 0.076, H(z_eff)=[162± 12] (r_s^fid/r_s) {km s}^{-1} Mpc^{-1}, and D_A(z_eff)=[1.85± 0.11]× 10^3 (r_s/r_s^fid) Mpc, where rs is the comoving sound horizon at the baryon drag epoch and the superscript `fid' stands for its fiducial value. The errors take into account the full error budget, including systematics and statistical contributions. These results are in full agreement with the current Λ-Cold Dark Matter cosmological model inferred from Planck measurements. Finally, we compare our measurements with other eBOSS companion papers and find excellent agreement, demonstrating the consistency and complementarity of the different methods used for analysing the data.

  11. On the formation redshift of Low-Mass Star-Forming Galaxies at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Gallego, Jesus; Rodriguez-Muñoz, Lucía; Pacifici, Camilla; Tresse, Laurence; Charlot, Stéphane; Gil de Paz, Armando; Barro, Guillermo; Gomez-Guijarro, Carlos; Villar, Víctor

    2015-08-01

    Dwarf galaxies play a key role in galaxy formation and evolution: (1) hierarchical models predict that low-mass systems merged to form massive galaxies (building block paradigm; Dekel & Silk 1986); (2) dwarf systems might have been responsible for the reionization of the Universe (Wyithe & Loeb 2006); (3) theoretical models are particularly sensitive to the density of low-mass systems at diferent redshifts (Mamon et al. 2011), being one of the key science cases for the future E-ELT (Evans et al. 2013). While the history of low-mass dark matter halos is relatively well understood, the formation history of dwarf galaxies is still poorly reproduced by the models due to the distinct evolution of baryonic and dark matter.We present constraints on the star formation histories (SFHs) of a sample of low-mass Star-Forming Galaxies (LMSFGs; 7.3 < log M∗/Mo < 8.0, at 0.3 < zspec < 0.9) selected by photometric stellar mass and apparent magnitude. The SFHs were obtained through the analysis of their spectral energy distributions using a novel approach (Pacifici et al. 2012) that (1) consistently combines photometric (HST and ground-based multi-broadband) and spectroscopic (equivalent widths of emission lines from VLT and GTC spectroscopy) data, and (2) uses physically motivated SFHs with non-uniform variations of the star formation rate (SFR) as a function of time.The median SFH of our LMSFGs appears to form 90% of the median stellar mass inferred for the sample in the ˜0.5-1.8 Gyr immediately preceding the observation. These results suggest a recent stellar mass assembly for dwarf SFGs, consistent with the cosmological downsizing trends. We find similar median SFH timescales for a slightly more massive secondary sample 8.0 < log M∗/Mo < 9.1).This is a pilot study for future surveys on dwarf galaxies at high redshift.

  12. Individual QSOs, Groups, & Clusters of High Redshift QSOs Associated with Low Redshift Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Burbidge, Geoffrey; Napier, W.

    2009-01-01

    Starting more than forty years ago it was found by Arp and others that many high redshift QSOs lie very close to comparatively nearby spiral galaxies. As time has gone on the implication of these results have been ignored. Implicitly they have been assumed to be accidental configurations. By now there are so many data, sometimes involving clusters of high z QSOs, that the data requires re-examination. We have done this using conservative statistical methods. We have concluded that the physical associations are real and thus it appears that QSOs are being ejected from spiral galaxies which often show other aspects of activity. Some examples of these phenomena will be described. Thus despite the fact that most investigators continue to use QSOs for cosmological investigations, the results are doomed to failure. Even more important the nature of the high redshifts of QSOs (but not the redshifts of normal galaxies) remains a puzzle yet to be solved.

  13. Spatial distribution of the gamma-ray bursts at very high redshift

    NASA Astrophysics Data System (ADS)

    Mészáros, Attila

    2018-05-01

    The author - with his collaborators - already in years 1995-96 have shown - purely from the analyses of the observations - that the gamma-ray bursts (GRBs) can be till redshift 20. Since that time several other statistical studies of the spatial distribution of GRBs were provided. Remarkable conclusions concerning the star-formation rate and the validity of the cosmological principle were obtained about the regions of the cosmic dawn. In this contribution these efforts are surveyed.

  14. A Moderate Redshift Supernova Search Program

    NASA Astrophysics Data System (ADS)

    Adams, M. T.; Wheeler, J. C.; Ward, M.; Wren, W. R.; Schmidt, B. P.

    1995-12-01

    We report on a recently initiated supernova (SN) search program using the McDonald Observatory 0.76m telescope and Prime Focus Camera (PFC). This SN search program takes advantage of the PFC's 42.6 x 42.6 arcmin FOV to survey moderate redshift Abell clusters in single Kron-Cousins R-band images. Our scientific goal is to discover and provide quality BVRI photometric follow-up, to R \\ +21, for a significant SNe sample at 0.03 < z < 0.15. These data will constrain SNe progenitor models and calibrate SN luminosity, color and light curve characteristics, as a function of host galaxy type, increasing our understanding of the utility of SNe as "calibrated candles" and cosmological model probes. The McDonald SNe provide an important link between the local discoveries of the LBL Automated Nearby SN Search (Pennypacker et al 1995, Aiguiblava NATO ASI Proceedings, in preparation), and the very distant SNe found by the LBL/UC Berkeley group (Perlmutter et al 1995, ApJ, 440, L41), and the High Redshift SN Search Team (Schmidt et al 1995, Aiguiblava NATO ASI Proceedings). The McDonald SN search program includes a sample of the Abell clusters used by Lauer and Postman (1994, ApJ, 425, 418) to analyze Local Group motion. SNe discovered in these clusters contribute to the resolution of the Local Group motion controversy. We present an overview of the McDonald Observatory supernova search program, and discuss recent results.

  15. Herschel-ATLAS: The Angular Correlation Function of Submillimetre Galaxies at High and Low Redshift

    NASA Technical Reports Server (NTRS)

    Maddox, S. J.; Dunne, L.; Rigby, E.; Eales, S.; Cooray, A.; Scott, D.; Peacock, J. A.; Negrello, M.; Smith, D. J. B.; Benford, D.; hide

    2010-01-01

    We present measurements of the angular correlation function of galaxies selected from the first field of the H-ATLAS survey. Careful removal of the background from galactic cirrus is essential, and currently dominates the uncertainty in our measurements. For our 250 micrometer-selected sample we detect no significant clustering, consistent with the expectation that the 250 pm-selected sources are mostly normal galaxies at z < or equal to 1. For our 350 micrometer and 500 micrometer-selected samples we detect relatively strong clustering with correlation amplitudes A of 0.2 and 1.2 at 1', but with relatively large uncertainties. For samples which preferentially select high redshift galaxies at z approx. 2-3 we detect significant strong clustering, leading to an estimate of r(0) approx. 7-11/h Mpc. The slope of our clustering measurements is very steep. delta approx. 2. The measurements are consistent with the idea that sub-mm sources consist of a low redshift population of normal galaxies and a high redshift population of highly clustered star-bursting galaxies.

  16. Compton thick active galactic nuclei in Chandra surveys

    NASA Astrophysics Data System (ADS)

    Brightman, Murray; Nandra, Kirpal; Salvato, Mara; Hsu, Li-Ting; Aird, James; Rangel, Cyprian

    2014-09-01

    We present the results from an X-ray spectral analysis of active galactic nuclei (AGN) in the ChandraDeep Field-South, All-wavelength Extended Groth-strip International Survey (AEGIS)-Deep X-ray survey (XD) and Chandra-Cosmic Evolution Surveys (COSMOS), focusing on the identification and characterization of the most heavily obscured, Compton thick (CT, NH > 1024 cm-2) sources. Our sample is comprised of 3184 X-ray selected extragalactic sources, which has a high rate of redshift completeness (96.6 per cent), and includes additional spectroscopic redshifts and improved photometric redshifts over previous studies. We use spectral models designed for heavily obscured AGN which self-consistently include all major spectral signatures of heavy absorption. We validate our spectral fitting method through simulations, identify CT sources not selected through this method using X-ray colours and take considerations for the constraints on NH given the low count nature of many of our sources. After these considerations, we identify a total of 100 CT AGN with best-fitting NH > 1024 cm-2 and NH constrained to be above 1023.5 cm-2 at 90 per cent confidence. These sources cover an intrinsic 2-10 keV X-ray luminosity range of 1042-3 × 1045 erg s-1 and a redshift range of z = 0.1-4. This sample will enable characterization of these heavily obscured AGN across cosmic time and to ascertain their cosmological significance. These survey fields are sites of extensive multiwavelength coverage, including near-infrared Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data and far-infrared Herschel data, enabling forthcoming investigations into the host properties of CT AGN. Furthermore, by using the torus models to test different covering factor scenarios, and by investigating the inclusion of the soft scattered emission, we find evidence that the covering factor of the obscuring material decreases with LX for all redshifts, consistent with the receding torus model

  17. The gravitational redshift of a optical vortex being different from that of an gravitational redshift plane of an electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Portnov, Yuriy A.

    2018-06-01

    A hypothesis put forward in late 20th century and subsequently substantiated experimentally posited the existence of optical vortices (twisted light). An optical vortex is an electromagnetic wave that in addition to energy and momentum characteristic of flat waves also possesses angular momentum. In recent years optical vortices have found wide-ranging applications in a number of branches including cosmology. The main hypothesis behind this paper implies that the magnitude of gravitational redshift for an optical vortex will differ from the magnitude of gravitational redshift for flat light waves. To facilitate description of optical vortices, we have developed the mathematical device of gravitational interaction in seven-dimensional time-space that we apply to the theory of electromagnetism. The resulting equations are then used for a comparison of gravitational redshift in optical vortices with that of normal electromagnetic waves. We show that rotating bodies creating weak gravitational fields result in a magnitude of gravitational redshift in optical vortices that differs from the magnitude of gravitational redshift in flat light waves. We conclude our paper with a numerical analysis of the feasibility of detecting the discrepancy in gravitational redshift between optical vortices and flat waves in the gravitational fields of the Earth and the Sun.

  18. Deep CFHT Y-band Imaging of VVDS-F22 Field. I. Data Products and Photometric Redshifts

    NASA Astrophysics Data System (ADS)

    Liu, Dezi; Yang, Jinyi; Yuan, Shuo; Wu, Xue-Bing; Fan, Zuhui; Shan, Huanyuan; Yan, Haojing; Zheng, Xianzhong

    2017-02-01

    We present our deep Y-band imaging data of a 2 square degree field within the F22 region of the VIMOS VLT Deep Survey. The observations were conducted using the WIRCam instrument mounted at the Canada-France-Hawaii Telescope (CFHT). The total on-sky time was 9 hr, distributed uniformly over 18 tiles. The scientific goals of the project are to select faint quasar candidates at redshift z> 2.2 and constrain the photometric redshifts for quasars and galaxies. In this paper, we present the observation and the image reduction, as well as the photometric redshifts that we derived by combining our Y-band data with the CFHTLenS {u}* g\\prime r\\prime I\\prime z\\prime optical data and UKIDSS DXS JHK near-infrared data. With the J-band image as a reference, a total of ˜80,000 galaxies are detected in the final mosaic down to a Y-band 5σ point-source limiting depth of 22.86 mag. Compared with the ˜3500 spectroscopic redshifts, our photometric redshifts for galaxies with z< 1.5 and I\\prime ≲ 24.0 mag have a small systematic offset of | {{Δ }}z| ≲ 0.2, 1σ scatter 0.03< {σ }{{Δ }z}< 0.06, and less than 4.0% of catastrophic failures. We also compare with the CFHTLenS photometric redshifts and find that ours are more reliable at z≳ 0.6 because of the inclusion of the near-infrared bands. In particular, including the Y-band data can improve the accuracy at z˜ 1.0{--}2.0 because the location of the 4000 Å break is better constrained. The Y-band images, the multiband photometry catalog, and the photometric redshifts are released at http://astro.pku.edu.cn/astro/data/DYI.html.

  19. Infrared/optical energy distributions of high redshifted quasars

    NASA Technical Reports Server (NTRS)

    Soifer, B. T.; Neugebauer, G.; Oke, J. B.; Matthews, K.; Lacy, J. H.

    1982-01-01

    Measurements at 1.2, 1.6 and 2.2 microns were combined with visual spectrophotometry of 21 quasars having redshifts z or = 2.66. The primary result is that the rest frame visual/ultraviolet continua of the high redshift quasars are well described by a sum of a power law continuum with slope of approximately -0.4 and a 3000 A bump. The rest frame visual/ultraviolet continua of these quasars are quite similar to that of 3C273, the archetype of low redshift quasars. There does not appear to be any visual/ultraviolet properties distinguishing high redshift quasars selected via visual or radio techniques.

  20. Cosmological constraints from multiple tracers in spectroscopic surveys

    NASA Astrophysics Data System (ADS)

    Alarcon, Alex; Eriksen, Martin; Gaztanaga, Enrique

    2018-01-01

    We use the Fisher matrix formalism to study the expansion and growth history of the Universe using galaxy clustering with 2D angular cross-correlation tomography in spectroscopic or high-resolution photometric redshift surveys. The radial information is contained in the cross-correlations between narrow redshift bins. We show how multiple tracers with redshift space distortions cancel sample variance and arbitrarily improve the constraints on the dark energy equation of state ω(z) and the growth parameter γ in the noiseless limit. The improvement for multiple tracers quickly increases with the bias difference between the tracers, up to a factor ∼4 in FoMγω. We model a magnitude limited survey with realistic density and bias using a conditional luminosity function, finding a factor 1.3-9.0 improvement in FoMγω - depending on global density - with a split in a halo mass proxy. Partly overlapping redshift bins improve the constraints in multiple tracer surveys a factor ∼1.3 in FoMγω. This finding also applies to photometric surveys, where the effect of using multiple tracers is magnified. We also show large improvement on the FoM with increasing density, which could be used as a trade-off to compensate some possible loss with radial resolution.

  1. Moderate resolution spectrophotometry of high redshift quasars

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1991-01-01

    A uniform set of photometry and high signal-to-noise moderate resolution spectroscopy of 33 quasars with redshifts larger than 3.1 is presented. The sample consists of 17 newly discovered quasars (two with redshifts in excess of 4.4) and 16 sources drawn from the literature. The objects in this sample have r magnitudes between 17.4 and 21.4; their luminosities range from -28.8 to -24.9. Three of the 33 objects are broad absorption line quasars. A number of possible high redshift damped Ly-alpha systems were found.

  2. The impact of galaxy formation on satellite kinematics and redshift-space distortions

    NASA Astrophysics Data System (ADS)

    Orsi, Álvaro A.; Angulo, Raúl E.

    2018-04-01

    Galaxy surveys aim to map the large-scale structure of the Universe and use redshift-space distortions to constrain deviations from general relativity and probe the existence of massive neutrinos. However, the amount of information that can be extracted is limited by the accuracy of theoretical models used to analyse the data. Here, by using the L-Galaxies semi-analytical model run over the Millennium-XXL N-body simulation, we assess the impact of galaxy formation on satellite kinematics and the theoretical modelling of redshift-space distortions. We show that different galaxy selection criteria lead to noticeable differences in the radial distributions and velocity structure of satellite galaxies. Specifically, whereas samples of stellar mass selected galaxies feature satellites that roughly follow the dark matter, emission line satellite galaxies are located preferentially in the outskirts of haloes and display net infall velocities. We demonstrate that capturing these differences is crucial for modelling the multipoles of the correlation function in redshift space, even on large scales. In particular, we show how modelling small-scale velocities with a single Gaussian distribution leads to a poor description of the measured clustering. In contrast, we propose a parametrization that is flexible enough to model the satellite kinematics and that leads to an accurate description of the correlation function down to sub-Mpc scales. We anticipate that our model will be a necessary ingredient in improved theoretical descriptions of redshift-space distortions, which together could result in significantly tighter cosmological constraints and a more optimal exploitation of future large data sets.

  3. Going beyond the Kaiser redshift-space distortion formula: A full general relativistic account of the effects and their detectability in galaxy clustering

    NASA Astrophysics Data System (ADS)

    Yoo, Jaiyul; Hamaus, Nico; Seljak, Uroš; Zaldarriaga, Matias

    2012-09-01

    Kaiser redshift-space distortion formula describes well the clustering of galaxies in redshift surveys on small scales, but there are numerous additional terms that arise on large scales. Some of these terms can be described using Newtonian dynamics and have been discussed in the literature, while the others require proper general relativistic description that was only recently developed. Accounting for these terms in galaxy clustering is the first step toward tests of general relativity on horizon scales. The effects can be classified as two terms that represent the velocity and the gravitational potential contributions. Their amplitude is determined by effects such as the volume and luminosity distance fluctuation effects and the time evolution of galaxy number density and Hubble parameter. We compare the Newtonian approximation often used in the redshift-space distortion literature to the fully general relativistic equation, and show that Newtonian approximation accounts for most of the terms contributing to velocity effect. We perform a Fisher matrix analysis of detectability of these terms and show that in a single tracer survey they are completely undetectable. To detect these terms one must resort to the recently developed methods to reduce sampling variance and shot noise. We show that in an all-sky galaxy redshift survey at low redshift the velocity term can be measured at a few sigma if one can utilize halos of mass M≥1012h-1M⊙ (this can increase to 10-σ or more in some more optimistic scenarios), while the gravitational potential term itself can only be marginally detected. We also demonstrate that the general relativistic effect is not degenerate with the primordial non-Gaussian signature in galaxy bias, and the ability to detect primordial non-Gaussianity is little compromised.

  4. High-redshift galaxy populations.

    PubMed

    Hu, Esther M; Cowie, Lennox L

    2006-04-27

    We now see many galaxies as they were only 800 million years after the Big Bang, and that limit may soon be exceeded when wide-field infrared detectors are widely available. Multi-wavelength studies show that there was relatively little star formation at very early times and that star formation was at its maximum at about half the age of the Universe. A small number of high-redshift objects have been found by targeting X-ray and radio sources and most recently, gamma-ray bursts. The gamma-ray burst sources may provide a way to reach even higher-redshift galaxies in the future, and to probe the first generation of stars.

  5. AN APPARENT REDSHIFT DEPENDENCE OF QUASAR CONTINUUM: IMPLICATION FOR COSMIC DUST EXTINCTION?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xiaoyi; Shen, Shiyin; Shao, Zhengyi

    We investigate the luminosity and redshift dependence of the quasar continuum by means of the composite spectrum using a large non-BAL radio-quiet quasar sample drawn from the Sloan Digital Sky Survey. Quasar continuum slopes in the UV-Opt band are measured at two different wavelength ranges, i.e., α{sub ν12} (1000 ∼ 2000 Å) and α{sub ν24} (2000 ∼ 4000 Å) derived from a power-law fitting. Generally, the UV spectra slope becomes harder (higher α{sub ν}) toward higher bolometric luminosity. On the other hand, when quasars are further grouped into luminosity bins, we find that both α{sub ν12} and α{sub ν24} show significant anti-correlationsmore » with redshift (i.e., the quasar continuum becomes redder toward higher redshift). We suggest that the cosmic dust extinction is very likely the cause of this observed α{sub ν} − z relation. We build a simple cosmic dust extinction model to quantify the observed reddening tendency and find an effective dust density nσ{sub v} ∼ 10{sup −5}h Mpc{sup −1} at z < 1.5. The other possibilities that could produce such a reddening effect have also been discussed.« less

  6. Quasars at the High Redshift Frontier

    NASA Astrophysics Data System (ADS)

    Bosman, Sarah E. I.

    2017-11-01

    In recent years the formation of primordial galaxies, cosmic metal enrichment, and hydrogen reionisation have been studied using both refined observations and powerful numerical simulations. High-redshift quasars have become a ubiquitous tool in the study of this era with more than 115 quasars now spectroscopically confirmed at z>6.0. In this thesis, I use spectra of high-redshift quasars to provide improved observational constraints through a mixture of existing and new techniques. I first investigate the claim of neutral gas around the most distant known quasar, ULASJ1120+0641(J1120), with a cosmological redshift of z=7.1. Its spectrum shows a relatively weak Lyman-α emission line, which has been interpreted as evidence of absorption by neutral gas. Attributing this to a Gunn-Peterson damping wing has led to claims that the intergalactic medium is at least 10% neutral at that redshift. However, these claims rely on a reconstruction of the unabsorbed quasar emission. Initial attempts using composite spectra of lower-redshift quasars mismatched the CIV emission line of J1120, a feature known to correlate with Lyman-α and which is strongly blueshifted in J1120. I attempt to establish whether this mismatch could explain the apparently weak Lyman-α emission line. I find that among a C IV-matched sample the Lyman-α line of J1120 is not anomalous. This raises doubts as to the interpretation of absorbed Lyman-α emission lines in the context of reionisation. I then use a high quality X-Shooter spectrum of the same z=7 quasar to measure the abundances of diffuse metals within one billion years of the Big Bang. I measure the occurrence rates of CIV, CII, SiII, FeII and MgII, producing the first measurement at z>6 for many of these ions. I find that the incidence of CIV systems is consistent with a continuing decline in the total mass density of highly ionized metals, a trend seen at lower redshifts. The ratio CII/CIV, however, seems to remain constant or increase with

  7. The WEAVE-LOFAR Survey

    NASA Astrophysics Data System (ADS)

    Smith, D. J. B.; Best, P. N.; Duncan, K. J.; Hatch, N. A.; Jarvis, M. J.; Röttgering, H. J. A.; Simpson, C. J.; Stott, J. P.; Cochrane, R. K.; Coppin, K. E.; Dannerbauer, H.; Davis, T. A.; Geach, J. E.; Hale, C. L.; Hardcastle, M. J.; Hatfield, P. W.; Houghton, R. C. W.; Maddox, N.; McGee, S. L.; Morabito, L.; Nisbet, D.; Pandey-Pommier, M.; Prandoni, I.; Saxena, A.; Shimwell, T. W.; Tarr, M.; van Bemmel, I.; Verma, A.; White, G. J.; Williams, W. L.

    2016-12-01

    In these proceedings we highlight the primary scientific goals and design of the WEAVE-LOFAR survey, which will use the new WEAVE spectrograph on the 4.2m William Herschel Telescope to provide the primary source of spectroscopic information for the LOFAR Surveys Key Science Project. Beginning in 2018, WEAVE-LOFAR will generate more than 10^6 R=5000 365-960nm spectra of low-frequency selected radio sources, across three tiers designed to efficiently sample the redshift-luminosity plane, and produce a data set of enormous legacy value. The radio frequency selection, combined with the high multiplex and throughput of the WEAVE spectrograph, make obtaining redshifts in this way very efficient, and we expect that the redshift success rate will approach 100 per cent at z < 1. This unprecedented spectroscopic sample - which will be complemented by an integral field component - will be transformational in key areas, including studying the star formation history of the Universe, the role of accretion and AGN-driven feedback, properties of the epoch of reionisation, cosmology, cluster haloes and relics, as well as the nature of radio galaxies and protoclusters. Each topic will be addressed in unprecedented detail, and with the most reliable source classifications and redshift information in existence.

  8. The Chajnantor Sub/Millimeter Survey Telescope

    NASA Astrophysics Data System (ADS)

    Golwala, Sunil

    2018-01-01

    We are developing the Chajnantor Sub/millimeter Survey Telescope, a project to build a 30-m telescope operating at wavelengths as short as 850 µm with 1 degree field of view for imaging and multi-object spectroscopic surveys. This project will provide massive new data sets for studying star formation at high redshift and in the local universe, feedback mechanisms in galaxy evolution, the structure of galaxy clusters, and the cosmological peculiar velocity field. We will highlight CSST's capabilities for studying galaxy evolution, where it will: trace the evolution of dusty, star-forming galaxies from high redshift to the z ≍ 1-3 epoch when they dominate the cosmic star formation rate; connect this population to the high-redshift rest-frame UV/optical galaxy population; use these dusty galaxies, the most biased overdensities, to guide ultra-deep followup at z > 3.5 and possibly z > 7; measure the brightness of important submm/FIR spectral lines like [CII]; search for molecular and atomic outflows; and do calorimetry of the CGM via the thermal SZ effect. We will describe the expected surveys addressing these science goals, the novel telescope design, and the planned survey instrumentation.

  9. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: First measurement of Baryon Acoustic Oscillations between redshift 0.8 and 2.2

    DOE PAGES

    Ata, Metin

    2017-06-20

    Here, we present measurements of the Baryon Acoustic Oscillation (BAO) scale in redshift-space using the clustering of quasars. We consider a sample of 147,000 quasars from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) distributed over 2044 square degrees with redshifts 0.8 < z < 2.2 and measure their spherically-averaged clustering in both configuration and Fourier space. Our observational dataset and the 1400 simulated realizations of the dataset allow us to detect a preference for BAO that is greater than 2.5σ . We determine the spherically averaged BAO distance to z = 1.52 to 4.4 per cent precision: D V (zmore » = 1:52) = 3855 170 (r d/r d,fid) Mpc. This is the first time the location of the BAO feature has been measured between redshifts 1 and 2. Our result is fully consistent with the prediction obtained by extrapolating the Planck flat CDM best-fit cosmology. All of our results are consistent with basic large-scale structure (LSS) theory, confirming quasars to be a reliable tracer of LSS, and provide a starting point for numerous cosmological tests to be performed with eBOSS quasar samples. We combine our result with previous, independent, BAO distance measurements to construct an updated BAO distance-ladder. Bu using these BAO data alone and marginalizing over the length of the standard ruler, we find Ω Λ > 0 at 6.5σ significance when testing a CDM model with free curvature.« less

  10. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: First measurement of Baryon Acoustic Oscillations between redshift 0.8 and 2.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ata, Metin

    Here, we present measurements of the Baryon Acoustic Oscillation (BAO) scale in redshift-space using the clustering of quasars. We consider a sample of 147,000 quasars from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) distributed over 2044 square degrees with redshifts 0.8 < z < 2.2 and measure their spherically-averaged clustering in both configuration and Fourier space. Our observational dataset and the 1400 simulated realizations of the dataset allow us to detect a preference for BAO that is greater than 2.5σ . We determine the spherically averaged BAO distance to z = 1.52 to 4.4 per cent precision: D V (zmore » = 1:52) = 3855 170 (r d/r d,fid) Mpc. This is the first time the location of the BAO feature has been measured between redshifts 1 and 2. Our result is fully consistent with the prediction obtained by extrapolating the Planck flat CDM best-fit cosmology. All of our results are consistent with basic large-scale structure (LSS) theory, confirming quasars to be a reliable tracer of LSS, and provide a starting point for numerous cosmological tests to be performed with eBOSS quasar samples. We combine our result with previous, independent, BAO distance measurements to construct an updated BAO distance-ladder. Bu using these BAO data alone and marginalizing over the length of the standard ruler, we find Ω Λ > 0 at 6.5σ significance when testing a CDM model with free curvature.« less

  11. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: first measurement of baryon acoustic oscillations between redshift 0.8 and 2.2

    NASA Astrophysics Data System (ADS)

    Ata, Metin; Baumgarten, Falk; Bautista, Julian; Beutler, Florian; Bizyaev, Dmitry; Blanton, Michael R.; Blazek, Jonathan A.; Bolton, Adam S.; Brinkmann, Jonathan; Brownstein, Joel R.; Burtin, Etienne; Chuang, Chia-Hsun; Comparat, Johan; Dawson, Kyle S.; de la Macorra, Axel; Du, Wei; du Mas des Bourboux, Hélion; Eisenstein, Daniel J.; Gil-Marín, Héctor; Grabowski, Katie; Guy, Julien; Hand, Nick; Ho, Shirley; Hutchinson, Timothy A.; Ivanov, Mikhail M.; Kitaura, Francisco-Shu; Kneib, Jean-Paul; Laurent, Pierre; Le Goff, Jean-Marc; McEwen, Joseph E.; Mueller, Eva-Maria; Myers, Adam D.; Newman, Jeffrey A.; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pâris, Isabelle; Pellejero-Ibanez, Marcos; Percival, Will J.; Petitjean, Patrick; Prada, Francisco; Prakash, Abhishek; Rodríguez-Torres, Sergio A.; Ross, Ashley J.; Rossi, Graziano; Ruggeri, Rossana; Sánchez, Ariel G.; Satpathy, Siddharth; Schlegel, David J.; Schneider, Donald P.; Seo, Hee-Jong; Slosar, Anže; Streblyanska, Alina; Tinker, Jeremy L.; Tojeiro, Rita; Vargas Magaña, Mariana; Vivek, M.; Wang, Yuting; Yèche, Christophe; Yu, Liang; Zarrouk, Pauline; Zhao, Cheng; Zhao, Gong-Bo; Zhu, Fangzhou

    2018-02-01

    We present measurements of the Baryon Acoustic Oscillation (BAO) scale in redshift-space using the clustering of quasars. We consider a sample of 147 000 quasars from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) distributed over 2044 square degrees with redshifts 0.8 < z < 2.2 and measure their spherically averaged clustering in both configuration and Fourier space. Our observational data set and the 1400 simulated realizations of the data set allow us to detect a preference for BAO that is greater than 2.8σ. We determine the spherically averaged BAO distance to z = 1.52 to 3.8 per cent precision: DV(z = 1.52) = 3843 ± 147(rd/rd, fid)Mpc. This is the first time the location of the BAO feature has been measured between redshifts 1 and 2. Our result is fully consistent with the prediction obtained by extrapolating the Planck flat ΛCDM best-fitting cosmology. All of our results are consistent with basic large-scale structure (LSS) theory, confirming quasars to be a reliable tracer of LSS, and provide a starting point for numerous cosmological tests to be performed with eBOSS quasar samples. We combine our result with previous, independent, BAO distance measurements to construct an updated BAO distance-ladder. Using these BAO data alone and marginalizing over the length of the standard ruler, we find ΩΛ > 0 at 6.6σ significance when testing a ΛCDM model with free curvature.

  12. Anomaly detection for machine learning redshifts applied to SDSS galaxies

    NASA Astrophysics Data System (ADS)

    Hoyle, Ben; Rau, Markus Michael; Paech, Kerstin; Bonnett, Christopher; Seitz, Stella; Weller, Jochen

    2015-10-01

    We present an analysis of anomaly detection for machine learning redshift estimation. Anomaly detection allows the removal of poor training examples, which can adversely influence redshift estimates. Anomalous training examples may be photometric galaxies with incorrect spectroscopic redshifts, or galaxies with one or more poorly measured photometric quantity. We select 2.5 million `clean' SDSS DR12 galaxies with reliable spectroscopic redshifts, and 6730 `anomalous' galaxies with spectroscopic redshift measurements which are flagged as unreliable. We contaminate the clean base galaxy sample with galaxies with unreliable redshifts and attempt to recover the contaminating galaxies using the Elliptical Envelope technique. We then train four machine learning architectures for redshift analysis on both the contaminated sample and on the preprocessed `anomaly-removed' sample and measure redshift statistics on a clean validation sample generated without any preprocessing. We find an improvement on all measured statistics of up to 80 per cent when training on the anomaly removed sample as compared with training on the contaminated sample for each of the machine learning routines explored. We further describe a method to estimate the contamination fraction of a base data sample.

  13. The Zeldovich approximation and wide-angle redshift-space distortions

    NASA Astrophysics Data System (ADS)

    Castorina, Emanuele; White, Martin

    2018-06-01

    The contribution of line-of-sight peculiar velocities to the observed redshift of objects breaks the translational symmetry of the underlying theory, modifying the predicted 2-point functions. These `wide angle effects' have mostly been studied using linear perturbation theory in the context of the multipoles of the correlation function and power spectrum . In this work we present the first calculation of wide angle terms in the Zeldovich approximation, which is known to be more accurate than linear theory on scales probed by the next generation of galaxy surveys. We present the exact result for dark matter and perturbatively biased tracers as well as the small angle expansion of the configuration- and Fourier-space two-point functions and the connection to the multi-frequency angular power spectrum. We compare different definitions of the line-of-sight direction and discuss how to translate between them. We show that wide angle terms can reach tens of percent of the total signal in a measurement at low redshift in some approximations, and that a generic feature of wide angle effects is to slightly shift the Baryon Acoustic Oscillation scale.

  14. Redshift distortions of galaxy correlation functions

    NASA Technical Reports Server (NTRS)

    Fry, J. N.; Gaztanaga, Enrique

    1994-01-01

    To examine how peculiar velocities can affect the two-, three-, and four-point redshift correlation functions, we evaluate volume-average correlations for configurations that emphasize and minimize redshift distortions for four different volume-limited samples from each of the CfA, SSRS, and IRAS redshift catalogs. We present the results as the correlation length r(sub 0) and power index gamma of the two-point correlations, bar-xi(sub 0) = (r(sub 0)/r)(exp gamma), and as the hierarchical amplitudes of the three- and four-point functions, S(sub 3) = bar-xi(sub 3)/bar-xi(exp 2)(sub 2) and S(sub 4) = bar-xi(sub 4)/bar-xi(exp 3)(sub 2). We find a characteristic distortion for bar-xi(sub 2), the slope gamma is flatter and the correlation length is larger in redshift space than in real space; that is, redshift distortions 'move' correlations from small to large scales. At the largest scales (up to 12 Mpc), the extra power in the redshift distribution is compatible with Omega(exp 4/7)/b approximately equal to 1. We estimate Omega(exp 4/7)/b to be 0.53 +/- 0.15, 1.10 +/- 0.16, and 0.84 +/- 0.45 for the CfA, SSRS, and IRAS catalogs. Higher order correlations bar-xi(sub 3) and bar-xi(sub 4) suffer similar redshift distortions but in such a way that, within the accuracy of our ananlysis, the normalized amplitudes S(sub 3) and S(sub 4) are insensitive to this effect. The hierarchical amplitudes S(sub 3) and S(sub 4) are constant as a function of scale between 1 and 12 Mpc and have similar values in all samples and catalogs, S(sub 3) approximately equal to 2 and S(sub 4) approximately equal to 6, despite the fact that bar-xi(sub 2), bar-xi(sub 3), and bar-xi(sub 4) differ from one sample to another by large factors (up to a factor of 4 in bar-xi(sub 2), 8 for bar-xi(sub 3), and 12 for bar-xi(sub 4)). The agreement between the independent estimations of S(sub 3) and S(sub 4) is remarkable given the different criteria in the selection of galaxies and also the difference in the

  15. Redshift drift in an inhomogeneous universe: averaging and the backreaction conjecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koksbang, S.M.; Hannestad, S., E-mail: koksbang@phys.au.dk, E-mail: sth@phys.au.dk

    2016-01-01

    An expression for the average redshift drift in a statistically homogeneous and isotropic dust universe is given. The expression takes the same form as the expression for the redshift drift in FLRW models. It is used for a proof-of-principle study of the effects of backreaction on redshift drift measurements by combining the expression with two-region models. The study shows that backreaction can lead to positive redshift drift at low redshifts, exemplifying that a positive redshift drift at low redshifts does not require dark energy. Moreover, the study illustrates that models without a dark energy component can have an average redshiftmore » drift observationally indistinguishable from that of the standard model according to the currently expected precision of ELT measurements. In an appendix, spherically symmetric solutions to Einstein's equations with inhomogeneous dark energy and matter are used to study deviations from the average redshift drift and effects of local voids.« less

  16. A catalog of galaxy morphology and photometric redshift

    NASA Astrophysics Data System (ADS)

    Paul, Nicholas; Shamir, Lior

    2018-01-01

    Morphology carries important information about the physical characteristics of a galaxy. Here we used machine learning to produce a catalog of ~3,000,000 SDSS galaxies classified by their broad morphology into spiral and elliptical galaxies. Comparison of the catalog to Galaxy Zooshows that the catalog contains a subset of 1.7*10^6 galaxies classified with the same level of consistency as the debiased “superclean” sub-sample. In addition to the morphology, we also computed the photometric redshifts of the galaxies. Several pattern recognition algorithms and variable selection strategies were tested, and the best accuracy of mean absolute error of ~0.0062 was achieved by using random forest with a combination of manually and automatically selected variables. The catalog shows that for redshift lower than 0.085 galaxies that visually look spiral become more prevalent as the redshift gets higher. For redshift greater than 0.085 galaxies thatvisually look elliptical become more prevalent. The catalog as well as the source code used to produce it is publicly available athttps://figshare.com/articles/Morphology_and_photometric_redshift_catalog/4833593 .

  17. The Foundation Supernova Survey: motivation, design, implementation, and first data release

    NASA Astrophysics Data System (ADS)

    Foley, Ryan J.; Scolnic, Daniel; Rest, Armin; Jha, S. W.; Pan, Y.-C.; Riess, A. G.; Challis, P.; Chambers, K. C.; Coulter, D. A.; Dettman, K. G.; Foley, M. M.; Fox, O. D.; Huber, M. E.; Jones, D. O.; Kilpatrick, C. D.; Kirshner, R. P.; Schultz, A. S. B.; Siebert, M. R.; Flewelling, H. A.; Gibson, B.; Magnier, E. A.; Miller, J. A.; Primak, N.; Smartt, S. J.; Smith, K. W.; Wainscoat, R. J.; Waters, C.; Willman, M.

    2018-03-01

    The Foundation Supernova Survey aims to provide a large, high-fidelity, homogeneous, and precisely calibrated low-redshift Type Ia supernova (SN Ia) sample for cosmology. The calibration of the current low-redshift SN sample is the largest component of systematic uncertainties for SN cosmology, and new data are necessary to make progress. We present the motivation, survey design, observation strategy, implementation, and first results for the Foundation Supernova Survey. We are using the Pan-STARRS telescope to obtain photometry for up to 800 SNe Ia at z ≲ 0.1. This strategy has several unique advantages: (1) the Pan-STARRS system is a superbly calibrated telescopic system, (2) Pan-STARRS has observed 3/4 of the sky in grizyP1 making future template observations unnecessary, (3) we have a well-tested data-reduction pipeline, and (4) we have observed ˜3000 high-redshift SNe Ia on this system. Here, we present our initial sample of 225 SN Ia grizP1 light curves, of which 180 pass all criteria for inclusion in a cosmological sample. The Foundation Supernova Survey already contains more cosmologically useful SNe Ia than all other published low-redshift SN Ia samples combined. We expect that the systematic uncertainties for the Foundation Supernova Sample will be two to three times smaller than other low-redshift samples. We find that our cosmologically useful sample has an intrinsic scatter of 0.111 mag, smaller than other low-redshift samples. We perform detailed simulations showing that simply replacing the current low-redshift SN Ia sample with an equally sized Foundation sample will improve the precision on the dark energy equation-of-state parameter by 35 per cent, and the dark energy figure of merit by 72 per cent.

  18. The ALHAMBRA survey: evolution of galaxy clustering since z ˜ 1

    NASA Astrophysics Data System (ADS)

    Arnalte-Mur, P.; Martínez, V. J.; Norberg, P.; Fernández-Soto, A.; Ascaso, B.; Merson, A. I.; Aguerri, J. A. L.; Castander, F. J.; Hurtado-Gil, L.; López-Sanjuan, C.; Molino, A.; Montero-Dorta, A. D.; Stefanon, M.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Cepa, J.; Cerviño, M.; Cristóbal-Hornillos, D.; del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Márquez, I.; Masegosa, J.; Moles, M.; Perea, J.; Pović, M.; Prada, F.; Quintana, J. M.

    2014-06-01

    We study the clustering of galaxies as function of luminosity and redshift in the range 0.35 < z < 1.25 using data from the Advanced Large Homogeneous Area Medium-Band Redshift Astronomical (ALHAMBRA) survey. The ALHAMBRA data used in this work cover 2.38 deg2 in seven independent fields, after applying a detailed angular selection mask, with accurate photometric redshifts, σz ≲ 0.014(1 + z), down to IAB < 24. Given the depth of the survey, we select samples in B-band luminosity down to Lth ≃ 0.16L* at z = 0.9. We measure the real-space clustering using the projected correlation function, accounting for photometric redshifts uncertainties. We infer the galaxy bias, and study its evolution with luminosity. We study the effect of sample variance, and confirm earlier results that the Cosmic Evolution Survey (COSMOS) and European Large Area ISO Survey North 1 (ELAIS-N1) fields are dominated by the presence of large structures. For the intermediate and bright samples, Lmed ≳ 0.6L*, we obtain a strong dependence of bias on luminosity, in agreement with previous results at similar redshift. We are able to extend this study to fainter luminosities, where we obtain an almost flat relation, similar to that observed at low redshift. Regarding the evolution of bias with redshift, our results suggest that the different galaxy populations studied reside in haloes covering a range in mass between log10[Mh/( h-1 M⊙)] ≳ 11.5 for samples with Lmed ≃ 0.3L* and log10[Mh/( h-1 M⊙)] ≳ 13.0 for samples with Lmed ≃ 2L*, with typical occupation numbers in the range of ˜1-3 galaxies per halo.

  19. Quasar probabilities and redshifts from WISE mid-IR through GALEX UV photometry

    NASA Astrophysics Data System (ADS)

    DiPompeo, M. A.; Bovy, J.; Myers, A. D.; Lang, D.

    2015-09-01

    Extreme deconvolution (XD) of broad-band photometric data can both separate stars from quasars and generate probability density functions for quasar redshifts, while incorporating flux uncertainties and missing data. Mid-infrared photometric colours are now widely used to identify hot dust intrinsic to quasars, and the release of all-sky WISE data has led to a dramatic increase in the number of IR-selected quasars. Using forced photometry on public WISE data at the locations of Sloan Digital Sky Survey (SDSS) point sources, we incorporate this all-sky data into the training of the XDQSOz models originally developed to select quasars from optical photometry. The combination of WISE and SDSS information is far more powerful than SDSS alone, particularly at z > 2. The use of SDSS+WISE photometry is comparable to the use of SDSS+ultraviolet+near-IR data. We release a new public catalogue of 5537 436 (total; 3874 639 weighted by probability) potential quasars with probability PQSO > 0.2. The catalogue includes redshift probabilities for all objects. We also release an updated version of the publicly available set of codes to calculate quasar and redshift probabilities for various combinations of data. Finally, we demonstrate that this method of selecting quasars using WISE data is both more complete and efficient than simple WISE colour-cuts, especially at high redshift. Our fits verify that above z ˜ 3 WISE colours become bluer than the standard cuts applied to select quasars. Currently, the analysis is limited to quasars with optical counterparts, and thus cannot be used to find highly obscured quasars that WISE colour-cuts identify in significant numbers.

  20. Intracluster light in clusters of galaxies at redshifts 0.4 < z < 0.8

    NASA Astrophysics Data System (ADS)

    Guennou, L.; Adami, C.; Da Rocha, C.; Durret, F.; Ulmer, M. P.; Allam, S.; Basa, S.; Benoist, C.; Biviano, A.; Clowe, D.; Gavazzi, R.; Halliday, C.; Ilbert, O.; Johnston, D.; Just, D.; Kron, R.; Kubo, J. M.; Le Brun, V.; Marshall, P.; Mazure, A.; Murphy, K. J.; Pereira, D. N. E.; Rabaça, C. R.; Rostagni, F.; Rudnick, G.; Russeil, D.; Schrabback, T.; Slezak, E.; Tucker, D.; Zaritsky, D.

    2012-01-01

    Context. The study of intracluster light (ICL) can help us to understand the mechanisms taking place in galaxy clusters, and to place constraints on the cluster formation history and physical properties. However, owing to the intrinsic faintness of ICL emission, most searches and detailed studies of ICL have been limited to redshifts z < 0.4. Aims: To help us extend our knowledge of ICL properties to higher redshifts and study the evolution of ICL with redshift, we search for ICL in a subsample of ten clusters detected by the ESO Distant Cluster Survey (EDisCS), at redshifts 0.4 < z < 0.8, that are also part of our DAFT/FADA Survey. Methods: We analyze the ICL by applying the OV WAV package, a wavelet-based technique, to deep HST ACS images in the F814W filter and to V-band VLT/FORS2 images of three clusters. Detection levels are assessed as a function of the diffuse light source surface brightness using simulations. Results: In the F814W filter images, we detect diffuse light sources in all the clusters, with typical sizes of a few tens of kpc (assuming that they are at the cluster redshifts). The ICL detected by stacking the ten F814W images shows an 8σ detection in the source center extending over a ~50 × 50 kpc2 area, with a total absolute magnitude of -21.6 in the F814W filter, equivalent to about two L∗ galaxies per cluster. We find a weak correlation between the total F814W absolute magnitude of the ICL and the cluster velocity dispersion and mass. There is no apparent correlation between the cluster mass-to-light ratio (M/L) and the amount of ICL, and no evidence of any preferential orientation in the ICL source distribution. We find no strong variation in the amount of ICL between z = 0 and z = 0.8. In addition, we find wavelet-detected compact objects (WDCOs) in the three clusters for which data in two bands are available; these objects are probably very faint compact galaxies that in some cases are members of the respective clusters and comparable to