Sample records for zea mays chloroplasts

  1. Chloroplasts in anther endothecium of Zea mays (Poaceae).

    PubMed

    Murphy, Katherine M; Egger, Rachel L; Walbot, Virginia

    2015-11-01

    Although anthers of Zea mays, Oryza sativa, and Arabidopsis thaliana have been studied intensively using genetic and biochemical analyses in the past 20 years, few updates to anther anatomical and ultrastructural descriptions have been reported. For example, no transmission electron microscopy (TEM) images of the premeiotic maize anther have been published. Here we report the presence of chloroplasts in maize anthers. TEM imaging, electron acceptor photosynthesis assay, in planta photon detection, microarray analysis, and light and fluorescence microscopy were used to investigate the presence of chloroplasts in the maize anther. Most cells of the maize subepidermal endothecium have starch-containing chloroplasts that do not conduct measurable photosynthesis in vitro. The maize anther contains chloroplasts in most subepidermal, endothecial cells. Although maize anthers receive sufficient light to photosynthesize in vivo and the maize anther transcribes >96% of photosynthesis-associated genes found in the maize leaf, no photosynthetic light reaction activity was detected in vitro. The endothecial cell layer should no longer be defined as a complete circle viewed transversely in anther lobes, because chloroplasts are observed only in cells directly beneath the epidermis and not those adjacent to the connective tissue. We propose that chloroplasts be a defining characteristic of differentiated endothecial cells and that nonsubepidermal endothecial cells that lack chloroplasts be defined as a separate cell type, the interendothecium. © 2015 Botanical Society of America.

  2. The short-term response of Arabidopsis thaliana (C3) and Zea mays (C4) chloroplasts to red and far red light.

    PubMed

    Zienkiewicz, Maksymilian; Drożak, Anna; Wasilewska, Wioleta; Bacławska, Ilona; Przedpełska-Wąsowicz, Ewa; Romanowska, Elżbieta

    2015-12-01

    Light quality has various effects on photochemistry and protein phosphorylation in Zea mays and Arabidopsis thaliana thylakoids due to different degrees of light penetration across leaves and redox status in chloroplasts. The effect of the spectral quality of light (red, R and far red, FR) on the function of thylakoid proteins in Zea mays and Arabidopsis thaliana was investigated. It was concluded that red light stimulates PSII activity in A. thaliana thylakoids and in maize bundle sheath (BS) thylakoids, but not in mesophyll (M) thylakoids. The light quality did not change PSI activity in M thylakoids of maize. FR used after a white light period increased PSI activity significantly in maize BS and only slightly in A. thaliana thylakoids. As shown by blue native (BN)-PAGE followed by SDS-PAGE, proteins were differently phosphorylated in the thylakoids, indicating their different functions. FR light increased dephosphorylation of LHCII proteins in A. thaliana thylakoids, whereas in maize, dephosphorylation did not occur at all. The rate of phosphorylation was higher in maize BS than in M thylakoids. D1 protein phosphorylation increased in maize and decreased in A. thaliana upon irradiation with both R and growth light (white light, W). Light variations did not change the level of proteins in thylakoids. Our data strongly suggest that response to light quality is a species-dependent phenomenon. We concluded that the maize chloroplasts were differently stimulated, probably due to different degrees of light penetration across the leaf and thereby the redox status in the chloroplasts. These acclimation changes induced by light quality are important in the regulation of chloroplast membrane flexibility and thus its function.

  3. Mutational effects of space flight on Zea mays seeds

    NASA Technical Reports Server (NTRS)

    Mei, M.; Qiu, Y.; He, Y.; Bucker, H.; Yang, C. H.

    1994-01-01

    The growth and development of more than 500 Zea mays seeds flown on Long Duration Exposure Facility (LDEF) were studied. Somatic mutations, including white-yellow stripes on leaves, dwarfing, change of leaf sheath color or seedling color were observed in plants developed from these seeds. When the frequency of white-yellow formation was used as the endpoint and compared with data from ground based studies, the dose to which maize seeds might be exposed during the flight was estimated to be equivalent to 635 cGy of gamma rays. Seeds from one particular holder gave a high mutation frequency and a wide mutation spectrum. White-yellow stripes on leaves were also found in some of the inbred progenies from plants displayed somatic mutation. Electron microscopy studies showed that the damage of chloroplast development in the white-yellow stripe on leaves was similar between seeds flown on LDEF and that irradiated by accelerated heavy ions on ground.

  4. Differential positioning of C(4) mesophyll and bundle sheath chloroplasts: recovery of chloroplast positioning requires the actomyosin system.

    PubMed

    Kobayashi, Hiroaki; Yamada, Masahiro; Taniguchi, Mitsutaka; Kawasaki, Michio; Sugiyama, Tatsuo; Miyake, Hiroshi

    2009-01-01

    In C(4) plants, bundle sheath (BS) chloroplasts are arranged in the centripetal position or in the centrifugal position, although mesophyll (M) chloroplasts are evenly distributed along cell membranes. To examine the molecular mechanism for the intracellular disposition of these chloroplasts, we observed the distribution of actin filaments in BS and M cells of the C(4) plants finger millet (Eleusine coracana) and maize (Zea mays) using immunofluorescence. Fine actin filaments encircled chloroplasts in both cell types, and an actin network was observed adjacent to plasma membranes. The intracellular disposition of both chloroplasts in finger millet was disrupted by centrifugal force but recovered within 2 h in the dark. Actin filaments remained associated with chloroplasts during recovery. We also examined the effects of inhibitors on the rearrangement of chloroplasts. Inhibitors of actin polymerization, myosin-based activities and cytosolic protein synthesis blocked migration of chloroplasts. In contrast, a microtubule-depolymerizing drug had no effect. These results show that C(4) plants possess a mechanism for keeping chloroplasts in the home position which is dependent on the actomyosin system and cytosolic protein synthesis but not tubulin or light.

  5. Localization of Carbamoylphosphate Synthetase and Aspartate Carbamoyltransferase in Chloroplasts

    PubMed Central

    Shibata, Hitoshi; Ochiai, Hideo; Sawa, Yoshihiro; Miyoshi, Shoji

    1986-01-01

    The localization of carbamoylphosphate synthetase (CPSase) and aspartate carbamoyltransferase (ACTase), the first two enzymes of the pyrimidine biosynthetic pathway, in chloroplasts was investigated. In dark-grown radish (Raphanus sativus) seedlings, light induced a prominent increase in CPSase activity, but had little effect on ACTase activity. Both enzymes were found in chloroplasts isolated from radish cotyledons and leaves of spinach (Spinacia oleracea), soybean (Glycine max), and corn (Zea mays). The higher activity of ACTase relative to CPSase is discussed in relation to the instability of carbamoylphosphate, the product of the CPSase, and to the control of pyrimidine synthesis. Based on these results, the function of CPSase and ACTase in chloroplasts is discussed. PMID:16664566

  6. Independent effects of leaf growth and light on the development of the plastid and its DNA content in Zea species.

    PubMed

    Zheng, Qi; Oldenburg, Delene J; Bendich, Arnold J

    2011-05-01

    In maize (Zea mays L.), chloroplast development progresses from the basal meristem to the mature leaf tip, and light is required for maturation to photosynthetic competence. During chloroplast greening, it was found that chloroplast DNA (cpDNA) is extensively degraded, falling to undetectable levels in many individual chloroplasts for three maize cultivars, as well as Zea mexicana (the ancestor of cultivated maize) and the perennial species Zea diploperennis. In dark-grown maize seedlings, the proplastid-to-etioplast transition is characterized by plastid enlargement, cpDNA replication, and the retention of high levels of cpDNA. When dark-grown seedlings are transferred to white light, the DNA content per plastid increases slightly during the first 4 h of illumination and then declines rapidly to a minimum at 24 h during the etioplast-to-chloroplast transition. Plastid autofluorescence (from chlorophyll) continues to increase as cpDNA declines, whereas plastid size remains constant. It is concluded that the increase in cpDNA that accompanies plastid enlargement is a consequence of cell and leaf growth, rather than illumination, whereas light stimulates photosynthetic capacity and cpDNA instability. When cpDNA from total tissue was monitored by blot hybridization and real-time quantitative PCR, no decline following transfer from dark to light was observed. The lack of agreement between DNA per plastid and cpDNA per cell may be attributed to nupts (nuclear sequences of plastid origin).

  7. Induced cytomictic diversity in maize (Zea mays L.) inbred.

    PubMed

    Rai, Prashant Kumar; Kumar, Girjesh; Tripathi, Avinash

    2010-01-01

    Mutation breeding has been used for improving oligogenic and polygenic characters, disease resistance and quantitative characters including yielding ability. The cytological stability of maize inbred lines is an important consideration in view of their extensive use in genetics and plant breeding research. Investigation in Zea mays L. confirms that the migration of chromosomes is a real event that cannot be misunderstood as an artifact produced by fixation or mechanical injuries. During present investigation, we found that out of six inbred lines of Zea mays L. viz. CM-135, CM-136, CM-137, CM-138, CM-142 and CM-213 at various treatment doses of gamma irradiations viz. 200, 400 and 600 Gy, some of the plants of inbred line CM- 138 at 200 Gy dose displayed characteristic cytoplasmic connections during all the stages of meiosis. Four plants from this treatment set were found to be engaged in a rare phenomenon reported as "Cytomixis". It elucidates that in inbred of Zea mays L., induced cytomixis through gamma rays treatment may be considered to be a possible source of production of aneuploid and polyploid gametes. This phenomenon may have several applications in Zea mays L. improvement in the sense of diversity and ever yield potential.

  8. Identification of two frataxin isoforms in Zea mays: Structural and functional studies.

    PubMed

    Buchensky, Celeste; Sánchez, Manuel; Carrillo, Martin; Palacios, Oscar; Capdevila, Mercè; Domínguez-Vera, Jose M; Busi, Maria V; Atrian, Sílvia; Pagani, Maria A; Gomez-Casati, Diego F

    2017-09-01

    Frataxin is a ubiquitous protein that plays a role in Fe-S cluster biosynthesis and iron and heme metabolism, although its molecular functions are not entirely clear. In non-photosynthetic eukaryotes, frataxin is encoded by a single gene, and the protein localizes to mitochondria. Here we report the presence of two functional frataxin isoforms in Zea mays, ZmFH-1 and ZmFH-2. We confirmed our previous findings regarding plant frataxins: both proteins have dual localization in mitochondria and chloroplasts. Physiological, biochemical and biophysical studies show some differences in the expression pattern, protection against oxidants and in the aggregation state of both isoforms, suggesting that the two frataxin homologs would play similar but not identical roles in plant cell metabolism. In addition, two specific features of plant frataxins were evidenced: their ability to form dimers and their tendency to undergo conformational change under oxygen exposure. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  9. Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency

    PubMed Central

    Chen, Juan; Wu, Fei-Hua; Shang, Yu-Ting; Wang, Wen-Hua; Hu, Wen-Jun; Simon, Martin; Liu, Xiang; Shangguan, Zhou-Ping; Zheng, Hai-Lei

    2015-01-01

    Hydrogen sulphide (H2S) is emerging as a potential molecule involved in physiological regulation in plants. However, whether H2S regulates iron-shortage responses in plants is largely unknown. Here, the role of H2S in modulating iron availability in maize (Zea mays L. cv Canner) seedlings grown in iron-deficient culture solution is reported. The main results are as follows: Firstly, NaHS, a donor of H2S, completely prevented leaf interveinal chlorosis in maize seedlings grown in iron-deficient culture solution. Secondly, electron micrographs of mesophyll cells from iron-deficient maize seedlings revealed plastids with few photosynthetic lamellae and rudimentary grana. On the contrary, mesophyll chloroplasts appeared completely developed in H2S-treated maize seedlings. Thirdly, H2S treatment increased iron accumulation in maize seedlings by changing the expression levels of iron homeostasis- and sulphur metabolism-related genes. Fourthly, phytosiderophore (PS) accumulation and secretion were enhanced by H2S treatment in seedlings grown in iron-deficient solution. Indeed, the gene expression of ferric-phytosiderophore transporter (ZmYS1) was specifically induced by iron deficiency in maize leaves and roots, whereas their abundance was decreased by NaHS treatment. Lastly, H2S significantly enhanced photosynthesis through promoting the protein expression of ribulose-1,5-bisphosphate carboxylase large subunit (RuBISCO LSU) and phosphoenolpyruvate carboxylase (PEPC) and the expression of genes encoding RuBISCO large subunit (RBCL), small subunit (RBCS), D1 protein (psbA), and PEPC in maize seedlings grown in iron-deficient solution. These results indicate that H2S is closely related to iron uptake, transport, and accumulation, and consequently increases chlorophyll biosynthesis, chloroplast development, and photosynthesis in plants. PMID:26208645

  10. Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency.

    PubMed

    Chen, Juan; Wu, Fei-Hua; Shang, Yu-Ting; Wang, Wen-Hua; Hu, Wen-Jun; Simon, Martin; Liu, Xiang; Shangguan, Zhou-Ping; Zheng, Hai-Lei

    2015-11-01

    Hydrogen sulphide (H2S) is emerging as a potential molecule involved in physiological regulation in plants. However, whether H2S regulates iron-shortage responses in plants is largely unknown. Here, the role of H2S in modulating iron availability in maize (Zea mays L. cv Canner) seedlings grown in iron-deficient culture solution is reported. The main results are as follows: Firstly, NaHS, a donor of H2S, completely prevented leaf interveinal chlorosis in maize seedlings grown in iron-deficient culture solution. Secondly, electron micrographs of mesophyll cells from iron-deficient maize seedlings revealed plastids with few photosynthetic lamellae and rudimentary grana. On the contrary, mesophyll chloroplasts appeared completely developed in H2S-treated maize seedlings. Thirdly, H2S treatment increased iron accumulation in maize seedlings by changing the expression levels of iron homeostasis- and sulphur metabolism-related genes. Fourthly, phytosiderophore (PS) accumulation and secretion were enhanced by H2S treatment in seedlings grown in iron-deficient solution. Indeed, the gene expression of ferric-phytosiderophore transporter (ZmYS1) was specifically induced by iron deficiency in maize leaves and roots, whereas their abundance was decreased by NaHS treatment. Lastly, H2S significantly enhanced photosynthesis through promoting the protein expression of ribulose-1,5-bisphosphate carboxylase large subunit (RuBISCO LSU) and phosphoenolpyruvate carboxylase (PEPC) and the expression of genes encoding RuBISCO large subunit (RBCL), small subunit (RBCS), D1 protein (psbA), and PEPC in maize seedlings grown in iron-deficient solution. These results indicate that H2S is closely related to iron uptake, transport, and accumulation, and consequently increases chlorophyll biosynthesis, chloroplast development, and photosynthesis in plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Purification and Properties of Mesophyll and Bundle Sheath Cell α-Glucan Phosphorylases from Zea mays L. 1

    PubMed Central

    Mateyka, Christian; Schnarrenberger, Claus

    1988-01-01

    Two major α-glucan phosphorylases (I and II) from leaves of the C4 plant corn (Zea mays L.) were previously shown to be compartmented in mesophyll and bundle sheath cells, respectively (C Mateyka, C Schnarrenberger 1984 Plant Sci Lett 36: 119-123). The two enzymes were separated by chromatography on DEAE-cellulose and purified to homogeneity by affinity chromatography on immobilized starch, according to published procedures, as developed for the cytosol and chloroplast phosphorylase from the C3 plant spinach. The two α-glucan phosphorylases have their pH optimum at pH 7. The specificity for polyglucans was similar for soluble starch and amylopectin, however, differed for glycogen (Km = 16 micrograms per milliliter for the mesophyll cell and 250 micrograms per milliliter for the bundle sheath cell phosphorylase). Maltose, maltotriose, and maltotetraose were not cleaved by either phosphorylase. If maltopentaose was used as substrate, the rate was about twice as high with the bundle sheath cell phosphorylase, than with the mesophyll cell phosphorylase. The phosphorylase I showed a molecular mass of 174 kilodaltons and the phosphorylase II of 195 kilodaltons for the native enzyme and of 87 and of 53 kilodaltons for the SDS-treated proteins, respectively. Specific antisera raised against mesophyll cell phosphorylase from corn leaves and against chloroplast phosphorylase from spinach leaves implied high similarity for the cytosol phosphorylase of the C3 plant spinach with mesophyll cell phosphorylase of the C4 plant corn and of chloroplast phosphorylase of spinach with the bundle sheath cell phosphorylase of corn. Images Fig. 2 Fig. 7 PMID:16665923

  12. Contributions of Zea mays subspecies mexicana haplotypes to modern maize.

    PubMed

    Yang, Ning; Xu, Xi-Wen; Wang, Rui-Ru; Peng, Wen-Lei; Cai, Lichun; Song, Jia-Ming; Li, Wenqiang; Luo, Xin; Niu, Luyao; Wang, Yuebin; Jin, Min; Chen, Lu; Luo, Jingyun; Deng, Min; Wang, Long; Pan, Qingchun; Liu, Feng; Jackson, David; Yang, Xiaohong; Chen, Ling-Ling; Yan, Jianbing

    2017-11-30

    Maize was domesticated from lowland teosinte (Zea mays ssp. parviglumis), but the contribution of highland teosinte (Zea mays ssp. mexicana, hereafter mexicana) to modern maize is not clear. Here, two genomes for Mo17 (a modern maize inbred) and mexicana are assembled using a meta-assembly strategy after sequencing of 10 lines derived from a maize-teosinte cross. Comparative analyses reveal a high level of diversity between Mo17, B73, and mexicana, including three Mb-size structural rearrangements. The maize spontaneous mutation rate is estimated to be 2.17 × 10 -8 ~3.87 × 10 -8 per site per generation with a nonrandom distribution across the genome. A higher deleterious mutation rate is observed in the pericentromeric regions, and might be caused by differences in recombination frequency. Over 10% of the maize genome shows evidence of introgression from the mexicana genome, suggesting that mexicana contributed to maize adaptation and improvement. Our data offer a rich resource for constructing the pan-genome of Zea mays and genetic improvement of modern maize varieties.

  13. [Effects of light intensities after anthesis on the photosynthetic characteristics and chloroplast ultrastructure in mesophyll cell of summer maize (Zea mays L. )].

    PubMed

    Gao, Jia; Cui, Hai Yan; Shi, Jian Guo; Dong, Shu Ting; Liu, Peng; Zhao, Bin; Zhang, Ji Wang

    2018-03-01

    We examined the changes of photosynthetic characteristics and chloroplast ultrastructure in mesophyll cell of summer maize in response to different light intensities in the field, with the summer maize hybrid Denghai 605 as experimental material. Two treatments of both shading (S) and increasing light (L) from flowering to physiological maturity stage were designed, with the ambient sunlight treatment as control (CK). Under shading treatment, poorly developed thylakoid structure, blurry lamellar structure, loose granum, large gap between slices and warping granum were the major characteristics in chloroplast. Meanwhile, photosynthetic rate (P n ), transpiration rate, stomatal conductance, chlorophyll content, and actual photo-chemical efficiency (Φ PSII ) decreased, whereas the maximal photochemical efficiency and non-photochemical quenching increased, which resulted in decreases in grain yield under shading treatment. However, a better development was observed in chloroplasts for L treatment, with the number of grana and lamellae increased and lamellae arranged compactly. In addition, P n and Φ PSII increased under L treatment, which increased grain yield. The chloroplast arrangement dispersed in mesophyll cells and chloroplast ultrastructure was destroyed after shading, and then chlorophyll synthesis per unit leaf area and photosynthetic capacity decreased. In contrast, the number of grana and lamellae increased and lamellae arranged compactly after increasing light, which are beneficial for corn yield.

  14. Functional Differentiation of Bundle Sheath and Mesophyll Maize Chloroplasts Determined by Comparative ProteomicsW⃞

    PubMed Central

    Majeran, Wojciech; Cai, Yang; Sun, Qi; van Wijk, Klaas J.

    2005-01-01

    Chloroplasts of maize (Zea mays) leaves differentiate into specific bundle sheath (BS) and mesophyll (M) types to accommodate C4 photosynthesis. Consequences for other plastid functions are not well understood but are addressed here through a quantitative comparative proteome analysis of purified M and BS chloroplast stroma. Three independent techniques were used, including cleavable stable isotope coded affinity tags. Enzymes involved in lipid biosynthesis, nitrogen import, and tetrapyrrole and isoprenoid biosynthesis are preferentially located in the M chloroplasts. By contrast, enzymes involved in starch synthesis and sulfur import preferentially accumulate in BS chloroplasts. The different soluble antioxidative systems, in particular peroxiredoxins, accumulate at higher levels in M chloroplasts. We also observed differential accumulation of proteins involved in expression of plastid-encoded proteins (e.g., EF-Tu, EF-G, and mRNA binding proteins) and thylakoid formation (VIPP1), whereas others were equally distributed. Enzymes related to the C4 shuttle, the carboxylation and regeneration phase of the Calvin cycle, and several regulators (e.g., CP12) distributed as expected. However, enzymes involved in triose phosphate reduction and triose phosphate isomerase are primarily located in the M chloroplasts, indicating that the M-localized triose phosphate shuttle should be viewed as part of the BS-localized Calvin cycle, rather than a parallel pathway. PMID:16243905

  15. Zea mays assays of chemical/radiation genotoxicity for the study of environmental mutagens.

    PubMed

    Grant, William F; Owens, Elizabeth T

    2006-09-01

    From a literature survey, 86 chemicals are tabulated that have been evaluated in 121 assays for their clastogenic effects in Zea mays. Eighty-one of the 86 chemicals are reported as giving a positive reaction (i.e. causing chromosome aberrations). Of these, 36 are reported positive with a dose response. In addition, 32 assays have been recorded for 7 types of radiation, all of which reacted positively. The results of 126 assays with 63 chemicals and 12 types of radiation tested for the inductions of gene mutations are tabulated, as well as 63 chemicals and/or radiation in combined treatments. Three studies reported positive results for mutations on Zea mays seed sent on space flights. The Zea mays (2n=20) assay is a very good plant bioassay for assessing chromosome damage both in mitosis and meiosis and for somatic mutations induced by chemicals and radiations. The carcinogenicity and Salmonella assays correlate in all cases. The maize bioassay has been shown to be as sensitive and as specific an assay as other plant genotoxicity assays, such as Hordeum vulgare, Vicia faba, Crepis capillaris, Pisum sativum, Lycopersicon esculentum and Allium cepa and should be considered in further studies in assessing clastogenicity. Tests using Zea mays can be made for a spectrum of mutant phenotypes of which many are identifiable in young seedlings.

  16. RNA-seq Analysis of Cold and Drought Responsive Transcriptomes of Zea mays ssp. mexicana L.

    PubMed

    Lu, Xiang; Zhou, Xuan; Cao, Yu; Zhou, Meixue; McNeil, David; Liang, Shan; Yang, Chengwei

    2017-01-01

    The annual Zea mays ssp. mexicana L. is a member of teosinte, a wild relative of the Zea mays spp. mays L. This subspecies has strong growth and regeneration ability, high tiller numbers, high protein and lysine content as well as resistance to many fungal diseases, and it can be effectively used in maize improvement. In this study, we reported a Zea mays ssp. mexicana L. transcriptome by merging data from untreated control (CK), cold (4°C) and drought (PEG2000, 20%) treated plant samples. A total of 251,145 transcripts (N50 = 1,269 bp) and 184,280 unigenes (N50 = 923 bp) were predicted, which code for homologs of near 47% of the published maize proteome. Under cold conditions, 2,232 and 817 genes were up-regulated and down-regulated, respectively, while fewer genes were up-regulated (532) and down-regulated (82) under drought stress, indicating that Zea mays ssp. mexicana L. is more sensitive to the applied cold rather than to the applied drought stresses. Functional enrichment analyses identified many common or specific biological processes and gene sets in response to drought and cold stresses. The ABA dependent pathway, trehalose synthetic pathway and the ICE1-CBF pathway were up-regulated by both stresses. GA associated genes have been shown to differentially regulate the responses to cold in close subspecies in Zea mays . These findings and the identified functional genes can provide useful clues for improving abiotic stress tolerance of maize.

  17. RNA-seq Analysis of Cold and Drought Responsive Transcriptomes of Zea mays ssp. mexicana L.

    PubMed Central

    Lu, Xiang; Zhou, Xuan; Cao, Yu; Zhou, Meixue; McNeil, David; Liang, Shan; Yang, Chengwei

    2017-01-01

    The annual Zea mays ssp. mexicana L. is a member of teosinte, a wild relative of the Zea mays spp. mays L. This subspecies has strong growth and regeneration ability, high tiller numbers, high protein and lysine content as well as resistance to many fungal diseases, and it can be effectively used in maize improvement. In this study, we reported a Zea mays ssp. mexicana L. transcriptome by merging data from untreated control (CK), cold (4°C) and drought (PEG2000, 20%) treated plant samples. A total of 251,145 transcripts (N50 = 1,269 bp) and 184,280 unigenes (N50 = 923 bp) were predicted, which code for homologs of near 47% of the published maize proteome. Under cold conditions, 2,232 and 817 genes were up-regulated and down-regulated, respectively, while fewer genes were up-regulated (532) and down-regulated (82) under drought stress, indicating that Zea mays ssp. mexicana L. is more sensitive to the applied cold rather than to the applied drought stresses. Functional enrichment analyses identified many common or specific biological processes and gene sets in response to drought and cold stresses. The ABA dependent pathway, trehalose synthetic pathway and the ICE1-CBF pathway were up-regulated by both stresses. GA associated genes have been shown to differentially regulate the responses to cold in close subspecies in Zea mays. These findings and the identified functional genes can provide useful clues for improving abiotic stress tolerance of maize. PMID:28223998

  18. The earliest archaeological maize (Zea mays L.) from highland Mexico: New accelerator mass spectrometry dates and their implications

    PubMed Central

    Piperno, D. R.; Flannery, K. V.

    2001-01-01

    Accelerator mass spectrometry age determinations of maize cobs (Zea mays L.) from Guilá Naquitz Cave in Oaxaca, Mexico, produced dates of 5,400 carbon-14 years before the present (about 6,250 calendar years ago), making those cobs the oldest in the Americas. Macrofossils and phytoliths characteristic of wild and domesticated Zea fruits are absent from older strata from the site, although Zea pollen has previously been identified from those levels. These results, together with the modern geographical distribution of wild Zea mays, suggest that the cultural practices that led to Zea domestication probably occurred elsewhere in Mexico. Guilá Naquitz Cave has now yielded the earliest macrofossil evidence for the domestication of two major American crop plants, squash (Cucurbita pepo) and maize. PMID:11172082

  19. The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications.

    PubMed

    Piperno, D R; Flannery, K V

    2001-02-13

    Accelerator mass spectrometry age determinations of maize cobs (Zea mays L.) from Guilá Naquitz Cave in Oaxaca, Mexico, produced dates of 5,400 carbon-14 years before the present (about 6,250 calendar years ago), making those cobs the oldest in the Americas. Macrofossils and phytoliths characteristic of wild and domesticated Zea fruits are absent from older strata from the site, although Zea pollen has previously been identified from those levels. These results, together with the modern geographical distribution of wild Zea mays, suggest that the cultural practices that led to Zea domestication probably occurred elsewhere in Mexico. Guilá Naquitz Cave has now yielded the earliest macrofossil evidence for the domestication of two major American crop plants, squash (Cucurbita pepo) and maize.

  20. A cellular study of teosinte Zea mays ssp. parviglumis (Poaceae) caryopsis development showing several processes conserved in maize

    USDA-ARS?s Scientific Manuscript database

    Although recent molecular studies elucidate the genetic background leading to changed morphology of maize female inflorescence and the structure of the caryopsis during the domestication of maize (Zea mays ssp. mays) from its wild progenitor teosinte (Zea mays ssp. parviglumis), the mechanisms under...

  1. Aldose Reductase Inhibitory Activity of Compounds from  Zea mays L.

    PubMed Central

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1–7) and 5 anthocyanins (compound 8–12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC50, 4.78 μM). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057

  2. Inducing gravitropic curvature of primary roots of Zea mays cv Ageotropic

    NASA Technical Reports Server (NTRS)

    Moore, R.; Evans, M. L.; Fondren, W. M.

    1990-01-01

    Primary roots of the mutant 'Ageotropic' cultivar of Zea mays are nonresponsive to gravity. Their root caps secrete little or no mucilage and touch the root only at the extreme apex. A gap separates the cap and root at the periphery of the cap. Applying mucilage from normal roots or substances with a consistency similar to that of mucilage to tips of mutant roots causes these roots to become strongly graviresponsive. Gravicurvature stops when these substances are removed. Caps of some mutants secrete small amounts of mucilage and are graviresponsive. These results indicate that (a) the lack of graviresponsiveness in the mutant results from disrupting the transport pathway between the cap and root, (b) movement of the growth-modifying signal from the cap to the root occurs via an apoplastic pathway, and (c) mucilage is necessary for normal communication between the root cap and root in Zea mays cv Ageotropic.

  3. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    NASA Technical Reports Server (NTRS)

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  4. Maize, tropical (Zea mays L.).

    PubMed

    Assem, Shireen K

    2015-01-01

    Maize (Zea mays L.) is the third most important food crop globally after wheat and rice. In sub-Saharan Africa, tropical maize has traditionally been the main staple of the diet; 95 % of the maize grown is consumed directly as human food and as an important source of income for the resource-poor rural population. The biotechnological approach to engineer biotic and abiotic traits implies the availability of an efficient plant transformation method. The production of genetically transformed plants depends both on the ability to integrate foreign genes into target cells and the efficiency with which plants are regenerated. Maize transformation and regeneration through immature embryo culture is the most efficient system to regenerate normal transgenic plants. However, this system is highly genotype dependent. Genotypes adapted to tropic areas are difficult to regenerate. Therefore, transformation methods used with model genotypes adapted to temperate areas are not necessarily efficient with tropical lines. Agrobacterium-mediated transformation is the method of choice since it has been first achieved in 1996. In this report, we describe a transformation method used successfully with several tropical maize lines. All the steps of transformation and regeneration are described in details. This protocol can be used with a wide variety of tropical lines. However, some modifications may be needed with recalcitrant lines.

  5. Antiplasmodial activity and cytotoxicity of ethanol extract of Zea mays root

    PubMed Central

    Okokon, Jude Efiom; Antia, Bassey Sunday; Azare, Bala Adamu; Okokon, Patience Jude

    2017-01-01

    Objective: Zea mays root decoction that has been traditionally used for the treatment of malaria by various tribes in Nigeria, was evaluated for antimalarial potential against malaria parasites using in vivo and in vitro models. Materials and Methods: The root extract of Zea mays was investigated for antimalarial activity against Plasmodium berghei in mice using rodent malaria models; suppressive, prophylactic and curative tests and in vitro antiplasmodial activity against chloroquine-sensitive (Pf 3D7) and resistant (Pf INDO) strains of Plasmodium falciparum using SYBR green assay method. Median lethal dose and cytotoxic activity against HeLa and HEKS cells were assessed and phytochemical screening was also carried out using standard procedures. Results: The LD50 value of root extract was found to be 474.34 mg/kg. The crude extract (45-135 mg/kg, p.o) showed significant (p<0.05-0.001) antimalarial activity against P. berghei infection in suppressive, prophylactic and curative tests with a prolonged survival time. The crude extract also showed moderate activity against both chloroquine-sensitive (Pf 3D7) and resistant (Pf INDO) strains of P. falciparum with an IC50 value of 71.62±3.38 μg/ml (for Pf 3D7) and 63.76±4.12 μg/ml (for Pf INDO). The crude extract was not cytotoxic to the two cell lines tested with TC50 of >100 μg/ml against both HeLa and HEKS cell lines. Conclusion: These results suggest that the root extract of Zea mays possesses antimalarial activity against both chloroquine-sensitive and resistant malaria and these data justify its use in ethnomedicine to treat malaria infections. PMID:28748174

  6. Antiplasmodial activity and cytotoxicity of ethanol extract of Zea mays root.

    PubMed

    Okokon, Jude Efiom; Antia, Bassey Sunday; Azare, Bala Adamu; Okokon, Patience Jude

    2017-01-01

    Zea mays root decoction that has been traditionally used for the treatment of malaria by various tribes in Nigeria, was evaluated for antimalarial potential against malaria parasites using in vivo and in vitro models. The root extract of Zea mays was investigated for antimalarial activity against Plasmodium berghei in mice using rodent malaria models; suppressive, prophylactic and curative tests and in vitro antiplasmodial activity against chloroquine-sensitive (Pf 3D7) and resistant (Pf INDO) strains of Plasmodium falciparum using SYBR green assay method. Median lethal dose and cytotoxic activity against HeLa and HEKS cells were assessed and phytochemical screening was also carried out using standard procedures. The LD 50 value of root extract was found to be 474.34 mg/kg. The crude extract (45-135 mg/kg, p.o) showed significant (p<0.05-0.001) antimalarial activity against P. berghei infection in suppressive, prophylactic and curative tests with a prolonged survival time. The crude extract also showed moderate activity against both chloroquine-sensitive (Pf 3D7) and resistant (Pf INDO) strains of P. falciparum with an IC 50 value of 71.62±3.38 μg/ml (for Pf 3D7) and 63.76±4.12 μg/ml (for Pf INDO). The crude extract was not cytotoxic to the two cell lines tested with TC 50 of >100 μg/ml against both HeLa and HEKS cell lines. These results suggest that the root extract of Zea mays possesses antimalarial activity against both chloroquine-sensitive and resistant malaria and these data justify its use in ethnomedicine to treat malaria infections.

  7. Gene evolutionary trajectories and GC patterns driven by recombination in Zea mays

    USDA-ARS?s Scientific Manuscript database

    Recombination occurring during meiosis is critical for creating genetic variation and plays an essential role in plant evolution. In addition to creating novel gene combinations, recombination can affect genome structure through altering GC patterns. In maize (Zea mays) and other grasses, another in...

  8. Influence of microgravity on cellular differentiation in root caps of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; Fondren, W. M.; McClelen, C. E.; Wang, C. L.

    1987-01-01

    We launched imbibed seeds of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on cellular differentiation in root caps. The influence of microgravity varied with different stages of cellular differentiation. Overall, microgravity tended to 1) increase relative volumes of hyaloplasm and lipid bodies, 2) decrease the relative volumes of plastids, mitochondria, dictyosomes, and the vacuome, and 3) exert no influence on the relative volume of nuclei in cells comprising the root cap. The reduced allocation of dictyosomal volume in peripheral cells of flight-grown seedlings correlated positively with their secretion of significantly less mucilage than peripheral cells of Earth-grown seedlings. These results indicate that 1) microgravity alters the patterns of cellular differentiation and structures of all cell types comprising the root cap, and 2) the influence of microgravity on cellular differentiation in root caps of Zea mays is organelle specific.

  9. Chromium accumulation potential of Zea mays grown under four different fertilizers.

    PubMed

    Dheeba, B; Sampathkumar, P; Kannan, K

    2014-12-01

    Chromium (Cr) contamination in soil is a growing concern in sustainable agriculture production and food safety. We performed pot experiment with chromium (30 mg/soil) to assess the accumulation potential of Zea mays and study the influence of four fertilizers, viz. Farm Yard Manure (FYM), NPK, Panchakavya (PK) and Vermicompost (VC) with respect to Cr accumulation. The oxidative stress and pigment (chlorophyll) levels were also examined. The results showed increased accumulation of chromium in both shoots and roots of Zea mays under FYM and NPK supply, and reduced with PK and VC. While the protein and pigment contents decreased in Cr treated plants, the fertilizers substantiated the loss to overcome the stress. Similarly, accumulation of Cr increased the levels of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) indicating the enhanced damage control activity. However, these levels were relatively low in plants supplemented with fertilizers. Our results confirm that the maize can play an effective role in bioremediation of soils polluted with chromium, particularly in supplementation with fertilizers such as farm yard manure and NPK.

  10. Chloroplast Movement May Impact Plant Phenotyping and Photochemistry Results

    NASA Astrophysics Data System (ADS)

    Malas, J.; Pleban, J. R.; Wang, D. R.; Riley, C.; Mackay, D. S.

    2017-12-01

    Investigating phenotypic responses of crop species across environmental conditions is vital to improving agricultural productivity. Crop production is closely linked with photosynthetic activity, which can be evaluated using parameters such as relative chlorophyll, SPAD, and variable chlorophyll fluorescence. Recently, a handheld device known as the MultispeQ emerged on the market as an open-source instrument that aims to provide high-output, high-quality field data at a low cost to the plant research community. MultispeQ takes measurements of both environmental conditions (light intensity, temperature, humidity, etc.) and photosynthetic parameters (relative chlorophyll, SPAD, photosystem II quantum efficiency (FII), and non-photochemical quenching (NPQ)). Data are automatically backed up and shared on the PhotosynQ network, which serves as a collaborative platform for researchers and professionals. Here, we used the instrument to quantify photosynthetic time-courses of two Brassica rapa genotypes in response to two contrasting nutrient management strategies (Control; High Nitrogen). Previous research found that chloroplast movement is one strategy plants use to optimize photosynthesis across varying light conditions. We were able to detect chloroplast movement throughout the day using the MultispeQ device. Our results support the idea that chloroplast movement serves both as an intrinsic feature of the circadian clock and as a light avoidance strategy. Under low light conditions (PAR 0-300) more light at the near-infrared and red regions was absorbed than under higher light conditions (PAR 500-800). In one genotype by treatment combination, absorbance at 730nm was around 60% at low light, versus only 30% at high light conditions. In light of our results that relative chlorophyll may change throughout a day, we suggest that it is important to take note of these effects when collecting photosynthesis efficiency data in order to avoid bias in measurements. We also

  11. RAPD and Internal Transcribed Spacer Sequence Analyses Reveal Zea nicaraguensis as a Section Luxuriantes Species Close to Zea luxurians

    PubMed Central

    Wang, Pei; Lu, Yanli; Zheng, Mingmin; Rong, Tingzhao; Tang, Qilin

    2011-01-01

    Genetic relationship of a newly discovered teosinte from Nicaragua, Zea nicaraguensis with waterlogging tolerance, was determined based on randomly amplified polymorphic DNA (RAPD) markers and the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA using 14 accessions from Zea species. RAPD analysis showed that a total of 5,303 fragments were produced by 136 random decamer primers, of which 84.86% bands were polymorphic. RAPD-based UPGMA analysis demonstrated that the genus Zea can be divided into section Luxuriantes including Zea diploperennis, Zea luxurians, Zea perennis and Zea nicaraguensis, and section Zea including Zea mays ssp. mexicana, Zea mays ssp. parviglumis, Zea mays ssp. huehuetenangensis and Zea mays ssp. mays. ITS sequence analysis showed the lengths of the entire ITS region of the 14 taxa in Zea varied from 597 to 605 bp. The average GC content was 67.8%. In addition to the insertion/deletions, 78 variable sites were recorded in the total ITS region with 47 in ITS1, 5 in 5.8S, and 26 in ITS2. Sequences of these taxa were analyzed with neighbor-joining (NJ) and maximum parsimony (MP) methods to construct the phylogenetic trees, selecting Tripsacum dactyloides L. as the outgroup. The phylogenetic relationships of Zea species inferred from the ITS sequences are highly concordant with the RAPD evidence that resolved two major subgenus clades. Both RAPD and ITS sequence analyses indicate that Zea nicaraguensis is more closely related to Zea luxurians than the other teosintes and cultivated maize, which should be regarded as a section Luxuriantes species. PMID:21525982

  12. Elevated carbon dioxide reduces emission of herbivore induced volatiles in Zea mays

    USDA-ARS?s Scientific Manuscript database

    Terpene volatiles produced by sweet corn (Zea mays) upon infestation with pests such as beet armyworm (Spodoptera exigua) function as part of an indirect defense mechanism by attracting parasitoid wasps; yet little is known about the impact of atmospheric changes on this form of plant defense. To in...

  13. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium.

    PubMed

    Hechmi, Nejla; Ben Aissa, Nadhira; Abdennaceur, Hassen; Jedidi, Naceur

    2013-01-01

    The ubiquitous coexistence of heavy metals and organic contaminants was increased in the polluted soil and phytoremediation as a remedial technology and management option is recommended to solve the problems of co-contamination. Growth of Zea mays L and pollutant removal ability may be influenced by interactions among mixed pollutants. Pot-culture experiments were conduced to investigate the single and interactive effect of cadmium (Cd) and pentachlorophenol (PCP) on growth of Zea mays L, PCP, and Cd removal from soil. Growth response of Zea mays L is considerably influenced by interaction of Cd and PCP, significantly declining with either Cd or PCP additions. The dissipation of PCP in soils was notably affected by interactions of Cd, PCP, and plant presence or absence. At the Pentachlorophenol in both planted and non-planted soil was greatly decreased at the end of the 10-week culture, accounting for 16-20% of initial extractable concentrations in non-planted soil and 9-14% in planted soil. With the increment of Cd level, residual pentachlorophenol in the planted soil tended to increase. The pentachlorophenol residual in the presence of high concentration of Cd was even higher in the planted soil than that in the non-planted soil.

  14. Antimalarial and antiplasmodial activity of husk extract and fractions of Zea mays.

    PubMed

    Okokon, Jude E; Antia, Bassey S; Mohanakrishnan, Dinesh; Sahal, Dinkar

    2017-12-01

    Zea mays L. (Poacae) husk decoctions are traditionally used in the treatment of malaria by various tribes in Nigeria. To assess the antimalarial and antiplasmodial potentials of the husk extract and fractions on malaria parasites using in vivo and in vitro models. The ethanol husk extract and fractions (187-748 mg/kg, p.o.) of Zea mays were investigated for antimalarial activity against Plasmodium berghei using rodent (mice) malaria models and in vitro activity against chloroquine sensitive (Pf 3D7) and resistant (Pf INDO) strains of Plasmodium falciparum using the SRBR green assay method. Median lethal dose and cytotoxic activities against HeLa and HEKS cells were also carried out. The GCMS analysis of the most active fraction was carried out. The husk extract (187-748 mg/kg, p.o.) with LD 50 of 1874.83 mg/kg was found to exert significant (p < 0.05-0.001) antimalarial activity against P. berghei infection in suppressive, prophylactive and curative tests. The crude extract and fractions also exerted prominent activity against both chloroquine sensitive (Pf 3D7) and resistant (Pf INDO) strains of P. falciparum with the ethyl acetate fraction exerting the highest activity with IC 50 values of 9.31 ± 0.46 μg/mL (Pf 3D7) and 3.69 ± 0.66 μg/mL (Pf INDO). The crude extract and fractions were not cytotoxic to the two cell lines tested with IC 50 values of >100 μg/mL against both HeLa and HEKS cell lines. These results suggest that the husk extract/fractions of Zea mays possesses antimalarial and antiplasmodial activities and these justify its use in ethnomedicine to treat malaria infections.

  15. Water deficit stress effects on corn (Zea mays, L.) root: shoot ratio

    USDA-ARS?s Scientific Manuscript database

    A study was conducted at Akron, CO, USA, on a Weld silt loam in 2004 to quantify the effects of water deficit stress on corn (Zea mays, L.) root and shoot biomass. Corn plants were grown under a range of soil bulk density and water conditions caused by previous tillage, crop rotation, and irrigation...

  16. Preventive effect of Zea mays L. (purple waxy corn) on experimental diabetic cataract.

    PubMed

    Thiraphatthanavong, Paphaphat; Wattanathorn, Jintanaporn; Muchimapura, Supaporn; Wipawee, Thukham-mee; Wannanon, Panakaporn; Terdthai, Tong-un; Suriharn, Bhalang; Lertrat, Kamol

    2014-01-01

    Recently, substances possessing antioxidant can prevent cataractogenesis of diabetic cataract. Therefore, this study was carried out to determine the anticataract effect of Zea mays L. (purple waxy corn), a flavonoids rich plant, in experimental diabetic cataract. Enucleated rat lenses were incubated in artificial aqueous humor containing 55 mM glucose with various concentrations of Zea mays L. (purple waxy corn) ranging between 2, 10, and 50 mg/mL at room temperature for 72 h. At the end of the incubation period, the evaluation of lens opacification, MDA level, and the activities of SOD, CAT, GPx, and AR in lens were performed. The results showed that both medium and high doses of extract decreased lens opacity together with the decreased MDA level. In addition, medium dose of extract increased GPx activity while the high dose decreased AR activity. No other significant changes were observed. The purple waxy corn seeds extract is the potential candidate to protect against diabetic cataract. The mechanism of action may occur via the decreased oxidative stress and the suppression of AR. However, further research in vivo is still essential.

  17. The homeologous Zea mays gigantea genes: characterization of expression and novel mutant alleles

    USDA-ARS?s Scientific Manuscript database

    The two homeologous Zea mays gigantea (gi) genes, gi1 and gi2, arose from the last genome duplication event in the maize lineage. Homologs of these genes in other species are required for correct circadian rhythms and proper regulation of growth and development. Here we characterized the expression ...

  18. Effects of plant density on the photosynthetic and chloroplast characteristics of maize under high-yielding conditions

    NASA Astrophysics Data System (ADS)

    Ren, Baizhao; Liu, Wei; Zhang, Jiwang; Dong, Shuting; Liu, Peng; Zhao, Bin

    2017-04-01

    Plant density has been recognized as a major factor determining the grain yield. The photosynthetic performance changes as the density increases. The main objective of this research was to evaluate responses of photosynthetic performance and chloroplast ultrastructure to planting densities in two summer maize ( Zea mays L.) hybrids Denghai661 (DH661) and Nongda108 (ND108). DH661 was planted at densities of 30,000, 45,000, 60,000, 75,000, 90,000, 105,000, 120,000, or 135,000 plants ha-1. ND108 was planted at densities of 30,000, 45,000, 60,000, 75,000, or 90,000 plants ha-1. Research variables included leaf area, grain yield, chlorophyll content, leaf gas exchange parameters, number of chloroplasts, and chloroplast ultrastructure. As plant density increased, chlorophyll a and b content significantly decreased; carotenoids initially decreased and then increased; the net photosynthetic rate during each growth period significantly decreased; the membrane structure of mesophyll cells was gradually damaged; the number of chloroplasts significantly decreased; the external form of chloroplasts shifted from long and oval to elliptical or circular; the number of grana significantly decreased, while the number of grana lamellae increased; grana gradually became hypogenetic and eventually dissolved; plot yield increased; and yield per plant significantly decreased. The yield per plant of DH661 at 135,000 plants ha-1 and that of ND108 at 90,000 plants ha-1 decreased by 65.8 and 42.5%, respectively, compared with those at 30,000 plants ha-1.

  19. Preventive Effect of Zea mays L. (Purple Waxy Corn) on Experimental Diabetic Cataract

    PubMed Central

    Thiraphatthanavong, Paphaphat; Wattanathorn, Jintanaporn; Muchimapura, Supaporn; Thukham-mee, Wipawee; Wannanon, Panakaporn; Tong-un, Terdthai; Suriharn, Bhalang; Lertrat, Kamol

    2014-01-01

    Recently, substances possessing antioxidant can prevent cataractogenesis of diabetic cataract. Therefore, this study was carried out to determine the anticataract effect of Zea mays L. (purple waxy corn), a flavonoids rich plant, in experimental diabetic cataract. Enucleated rat lenses were incubated in artificial aqueous humor containing 55 mM glucose with various concentrations of Zea mays L. (purple waxy corn) ranging between 2, 10, and 50 mg/mL at room temperature for 72 h. At the end of the incubation period, the evaluation of lens opacification, MDA level, and the activities of SOD, CAT, GPx, and AR in lens were performed. The results showed that both medium and high doses of extract decreased lens opacity together with the decreased MDA level. In addition, medium dose of extract increased GPx activity while the high dose decreased AR activity. No other significant changes were observed. The purple waxy corn seeds extract is the potential candidate to protect against diabetic cataract. The mechanism of action may occur via the decreased oxidative stress and the suppression of AR. However, further research in vivo is still essential. PMID:24527449

  20. Potassium fertilization mitigates the adverse effects of drought on selected Zea mays cultivars

    USDA-ARS?s Scientific Manuscript database

    In the present study, the role of potassium (K) in mitigating the adverse effects of drought stress (DS) on 2 maize (Zea mays L.) cultivars, ‘Shaandan 9’ (S9; drought-tolerant) and ‘Shaandan 911’ (S911; drought-sensitive), was assessed. K application increased dry matter (DM) across all growth stage...

  1. Influence of calcium phosphate nanoparticles, Piriformospora indica and Glomus mosseae on growth of Zea mays

    NASA Astrophysics Data System (ADS)

    Rane, Mansi; Bawskar, Manisha; Rathod, Dnyaneshwar; Nagaonkar, Dipali; Rai, Mahendra

    2015-12-01

    In this study, the arbuscular mycorrhizal fungus (G. mosseae) and endosymbiont (P. indica) colonized Zea mays were treated with calcium phosphate nanoparticles (CaPNPs) and evaluated for their plant growth promotion efficiency. It was observed that CaPNPs in combination with both G. mosseae and P. indica are more potent plant growth promoter than independent combinations of CaPNPs + G. mosseae, CaPNPs + P. indica or CaPNPs alone. The fluorimetric studies of treated plants revealed that CaPNPs alone and in combination with P. indica can enhance vitality of Zea mays by improving chlorophyll a content and performance index of treated plants. Hence, we conclude that CaPNPs exhibit synergistic growth promotion, root proliferation and vitality improvement properties along with endosymbiotic and arbuscular mycorrhizal fungi, which after further field trials can be developed as a cost-effective nanofertilizer with pronounced efficiency.

  2. Abscisic acid is not necessary for gravitropism in primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1990-01-01

    Primary roots of Zea mays L. cv. Tx 5855 treated with fluridone are strongly graviresponsive, but have undetectable levels of abscisic acid (ABA). Primary roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays are also graviresponsive despite having undetectable amounts of ABA. Graviresponsive roots of untreated and wild-type seedlings contain 286 to 317 ng ABA g-1 f. wt, respectively. These results indicate that ABA is not necessary for root gravicurvature.

  3. Analyses of charophyte chloroplast genomes help characterize the ancestral chloroplast genome of land plants.

    PubMed

    Civaň, Peter; Foster, Peter G; Embley, Martin T; Séneca, Ana; Cox, Cymon J

    2014-04-01

    Despite the significance of the relationships between embryophytes and their charophyte algal ancestors in deciphering the origin and evolutionary success of land plants, few chloroplast genomes of the charophyte algae have been reconstructed to date. Here, we present new data for three chloroplast genomes of the freshwater charophytes Klebsormidium flaccidum (Klebsormidiophyceae), Mesotaenium endlicherianum (Zygnematophyceae), and Roya anglica (Zygnematophyceae). The chloroplast genome of Klebsormidium has a quadripartite organization with exceptionally large inverted repeat (IR) regions and, uniquely among streptophytes, has lost the rrn5 and rrn4.5 genes from the ribosomal RNA (rRNA) gene cluster operon. The chloroplast genome of Roya differs from other zygnematophycean chloroplasts, including the newly sequenced Mesotaenium, by having a quadripartite structure that is typical of other streptophytes. On the basis of the improbability of the novel gain of IR regions, we infer that the quadripartite structure has likely been lost independently in at least three zygnematophycean lineages, although the absence of the usual rRNA operonic synteny in the IR regions of Roya may indicate their de novo origin. Significantly, all zygnematophycean chloroplast genomes have undergone substantial genomic rearrangement, which may be the result of ancient retroelement activity evidenced by the presence of integrase-like and reverse transcriptase-like elements in the Roya chloroplast genome. Our results corroborate the close phylogenetic relationship between Zygnematophyceae and land plants and identify 89 protein-coding genes and 22 introns present in the chloroplast genome at the time of the evolutionary transition of plants to land, all of which can be found in the chloroplast genomes of extant charophytes.

  4. Analyses of Charophyte Chloroplast Genomes Help Characterize the Ancestral Chloroplast Genome of Land Plants

    PubMed Central

    Civáň, Peter; Foster, Peter G.; Embley, Martin T.; Séneca, Ana; Cox, Cymon J.

    2014-01-01

    Despite the significance of the relationships between embryophytes and their charophyte algal ancestors in deciphering the origin and evolutionary success of land plants, few chloroplast genomes of the charophyte algae have been reconstructed to date. Here, we present new data for three chloroplast genomes of the freshwater charophytes Klebsormidium flaccidum (Klebsormidiophyceae), Mesotaenium endlicherianum (Zygnematophyceae), and Roya anglica (Zygnematophyceae). The chloroplast genome of Klebsormidium has a quadripartite organization with exceptionally large inverted repeat (IR) regions and, uniquely among streptophytes, has lost the rrn5 and rrn4.5 genes from the ribosomal RNA (rRNA) gene cluster operon. The chloroplast genome of Roya differs from other zygnematophycean chloroplasts, including the newly sequenced Mesotaenium, by having a quadripartite structure that is typical of other streptophytes. On the basis of the improbability of the novel gain of IR regions, we infer that the quadripartite structure has likely been lost independently in at least three zygnematophycean lineages, although the absence of the usual rRNA operonic synteny in the IR regions of Roya may indicate their de novo origin. Significantly, all zygnematophycean chloroplast genomes have undergone substantial genomic rearrangement, which may be the result of ancient retroelement activity evidenced by the presence of integrase-like and reverse transcriptase-like elements in the Roya chloroplast genome. Our results corroborate the close phylogenetic relationship between Zygnematophyceae and land plants and identify 89 protein-coding genes and 22 introns present in the chloroplast genome at the time of the evolutionary transition of plants to land, all of which can be found in the chloroplast genomes of extant charophytes. PMID:24682153

  5. Construction of the third-generation Zea mays haplotype map.

    PubMed

    Bukowski, Robert; Guo, Xiaosen; Lu, Yanli; Zou, Cheng; He, Bing; Rong, Zhengqin; Wang, Bo; Xu, Dawen; Yang, Bicheng; Xie, Chuanxiao; Fan, Longjiang; Gao, Shibin; Xu, Xun; Zhang, Gengyun; Li, Yingrui; Jiao, Yinping; Doebley, John F; Ross-Ibarra, Jeffrey; Lorant, Anne; Buffalo, Vince; Romay, M Cinta; Buckler, Edward S; Ware, Doreen; Lai, Jinsheng; Sun, Qi; Xu, Yunbi

    2018-04-01

    Characterization of genetic variations in maize has been challenging, mainly due to deterioration of collinearity between individual genomes in the species. An international consortium of maize research groups combined resources to develop the maize haplotype version 3 (HapMap 3), built from whole-genome sequencing data from 1218 maize lines, covering predomestication and domesticated Zea mays varieties across the world. A new computational pipeline was set up to process more than 12 trillion bp of sequencing data, and a set of population genetics filters was applied to identify more than 83 million variant sites. We identified polymorphisms in regions where collinearity is largely preserved in the maize species. However, the fact that the B73 genome used as the reference only represents a fraction of all haplotypes is still an important limiting factor.

  6. Analysis of transgenic wheat (Triticum aestivum L.) harboring a maize (Zea mays L.) gene for plastid EF-Tu: segregation pattern, expression and effects of the transgene.

    PubMed

    Fu, Jianming; Ristic, Zoran

    2010-06-01

    We previously reported that transgenic wheat (Triticum aestivum L.) carrying a maize (Zea mays L.) gene (Zmeftu1) for chloroplast protein synthesis elongation factor, EF-Tu, displays reduced thermal aggregation of leaf proteins, reduced injury to photosynthetic membranes (thylakoids), and enhanced rate of CO(2) fixation following exposure to heat stress (18 h at 45 degrees C) [Fu et al. in Plant Mol Biol 68:277-288, 2008]. In the current study, we investigated the segregation pattern and expression of the transgene Zmeftu1 and determined the grain yield of transgenic plants after exposure to a brief heat stress (18 h at 45 degrees C). We also assessed thermal aggregation of soluble leaf proteins in transgenic plants, testing the hypothesis that increased levels of EF-Tu will lead to a non-specific protection of leaf proteins against thermal aggregation. The transgenic wheat displayed a single-gene pattern of segregation of Zmeftu1. Zmeftu1 was expressed, and the transgenic plants synthesized and accumulated three anti-EF-Tu cross-reacting polypeptides of similar molecular mass but different pI, suggesting the possibility of posttranslational modification of this protein. The transgenic plants also showed better grain yield after exposure to heat stress compared with their non-transgenic counterparts. Soluble leaf proteins of various molecular masses displayed lower thermal aggregation in transgenic than in non-transgenic wheat. The results suggest that overexpression of chloroplast EF-Tu can be beneficial to wheat tolerance to heat stress. Moreover, the results also support the hypothesis that EF-Tu contributes to heat tolerance by acting as a molecular chaperone and protecting heat-labile proteins from thermal aggregation in a non-specific manner.

  7. Construction of the third-generation Zea mays haplotype map

    PubMed Central

    Bukowski, Robert; Guo, Xiaosen; Lu, Yanli; Zou, Cheng; He, Bing; Rong, Zhengqin; Wang, Bo; Xu, Dawen; Yang, Bicheng; Xie, Chuanxiao; Fan, Longjiang; Gao, Shibin; Xu, Xun; Zhang, Gengyun; Li, Yingrui; Jiao, Yinping; Doebley, John F; Ross-Ibarra, Jeffrey; Lorant, Anne; Buffalo, Vince; Romay, M Cinta; Buckler, Edward S; Ware, Doreen; Lai, Jinsheng; Sun, Qi

    2017-01-01

    Abstract Background Characterization of genetic variations in maize has been challenging, mainly due to deterioration of collinearity between individual genomes in the species. An international consortium of maize research groups combined resources to develop the maize haplotype version 3 (HapMap 3), built from whole-genome sequencing data from 1218 maize lines, covering predomestication and domesticated Zea mays varieties across the world. Results A new computational pipeline was set up to process more than 12 trillion bp of sequencing data, and a set of population genetics filters was applied to identify more than 83 million variant sites. Conclusions We identified polymorphisms in regions where collinearity is largely preserved in the maize species. However, the fact that the B73 genome used as the reference only represents a fraction of all haplotypes is still an important limiting factor. PMID:29300887

  8. Chloroplast Galactolipids: The Link Between Photosynthesis, Chloroplast Shape, Jasmonates, Phosphate Starvation and Freezing Tolerance.

    PubMed

    Li, Hsou-Min; Yu, Chun-Wei

    2018-06-01

    Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) together constitute approximately 80% of chloroplast lipids. Apart from facilitating the photosynthesis light reaction in the thylakoid membrane, these two lipids are important for maintaining chloroplast morphology and for plant survival under abiotic stresses such as phosphate starvation and freezing. Recently it was shown that severe growth retardation phenotypes of the DGDG-deficient mutant dgd1 were due to jasmonate overproduction, linking MGDG and DGDG homeostasis with phytohormone production and suggesting MGDG as a major substrate for jasmonate biosynthesis. Induction of jasmonate synthesis and jasmonic acid (JA) signaling was also observed under conditions of phosphate starvation. We hypothesize that when DGDG is recruited to substitute for phospholipids in extraplastidic membranes during phosphate deficiency, the altered MGDG to DGDG ratio in the chloroplast envelope triggers the conversion of galactolipids into jasmonates. The conversion may contribute to rebalancing the MGDG to DGDG ratio rapidly to maintain chloroplast shape, and jasmonate production can reduce the growth rate and enhance predator deterrence. We also hypothesize that other conditions, such as suppression of dgd1 phenotypes by trigalactosyldiacylglycerol (tgd) mutations, may all be linked to altered jasmonate production, indicating that caution should be exercised when interpreting phenotypes caused by conditions that may alter the MGDG to DGDG ratio at the chloroplast envelope.

  9. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays).

    PubMed

    Abiko, Tomomi; Kotula, Lukasz; Shiono, Katsuhiro; Malik, Al Imran; Colmer, Timothy David; Nakazono, Mikio

    2012-09-01

    Enhancement of oxygen transport from shoot to root tip by the formation of aerenchyma and also a barrier to radial oxygen loss (ROL) in roots is common in waterlogging-tolerant plants. Zea nicaraguensis (teosinte), a wild relative of maize (Zea mays ssp. mays), grows in waterlogged soils. We investigated the formation of aerenchyma and ROL barrier induction in roots of Z. nicaraguensis, in comparison with roots of maize (inbred line Mi29), in a pot soil system and in hydroponics. Furthermore, depositions of suberin in the exodermis/hypodermis and lignin in the epidermis of adventitious roots of Z. nicaraguensis and maize grown in aerated or stagnant deoxygenated nutrient solution were studied. Growth of maize was more adversely affected by low oxygen in the root zone (waterlogged soil or stagnant deoxygenated nutrient solution) compared with Z. nicaraguensis. In stagnant deoxygenated solution, Z. nicaraguensis was superior to maize in transporting oxygen from shoot base to root tip due to formation of larger aerenchyma and a stronger barrier to ROL in adventitious roots. The relationships between the ROL barrier formation and suberin and lignin depositions in roots are discussed. The ROL barrier, in addition to aerenchyma, would contribute to the waterlogging tolerance of Z. nicaraguensis. © 2012 Blackwell Publishing Ltd.

  10. Fine mapping of a quantitative resistance gene for gray leaf spot of maize (Zea mays L.) derived from teosinte (Z. mays ssp. parviglumis)

    USDA-ARS?s Scientific Manuscript database

    In previous work, using near isogenic line (NIL) populations in which segments of the tesosinte (Zea mays ssp. parviglumis) genome had been introgressed into the background of the maize line B73, we had identified a QTL on chromosome 8, here called Qgls8, for gray leaf spot resistance. We identified...

  11. Structure of the novel monomeric glyoxalase I from Zea mays

    PubMed Central

    Turra, Gino L.; Agostini, Romina B.; Fauguel, Carolina M.; Presello, Daniel A.; Andreo, Carlos S.; González, Javier M.; Campos-Bermudez, Valeria A.

    2015-01-01

    The glyoxalase system is ubiquitous among all forms of life owing to its central role in relieving the cell from the accumulation of methylglyoxal, a toxic metabolic byproduct. In higher plants, this system is upregulated under diverse metabolic stress conditions, such as in the defence response to infection by pathogenic microorganisms. Despite their proven fundamental role in metabolic stresses, plant glyoxalases have been poorly studied. In this work, glyoxalase I from Zea mays has been characterized both biochemically and structurally, thus reporting the first atomic model of a glyoxalase I available from plants. The results indicate that this enzyme comprises a single polypeptide with two structurally similar domains, giving rise to two lateral concavities, one of which harbours a functional nickel(II)-binding active site. The putative function of the remaining cryptic active site remains to be determined. PMID:26457425

  12. Structure of the novel monomeric glyoxalase I from Zea mays.

    PubMed

    Turra, Gino L; Agostini, Romina B; Fauguel, Carolina M; Presello, Daniel A; Andreo, Carlos S; González, Javier M; Campos-Bermudez, Valeria A

    2015-10-01

    The glyoxalase system is ubiquitous among all forms of life owing to its central role in relieving the cell from the accumulation of methylglyoxal, a toxic metabolic byproduct. In higher plants, this system is upregulated under diverse metabolic stress conditions, such as in the defence response to infection by pathogenic microorganisms. Despite their proven fundamental role in metabolic stresses, plant glyoxalases have been poorly studied. In this work, glyoxalase I from Zea mays has been characterized both biochemically and structurally, thus reporting the first atomic model of a glyoxalase I available from plants. The results indicate that this enzyme comprises a single polypeptide with two structurally similar domains, giving rise to two lateral concavities, one of which harbours a functional nickel(II)-binding active site. The putative function of the remaining cryptic active site remains to be determined.

  13. Phytotoxic Effects of Lanthanum Oxide Nanoparticles on Maize (Zea mays L.)

    NASA Astrophysics Data System (ADS)

    Liu, Yinglin; Xu, Lina; Dai, Yanhui

    2018-02-01

    The use of lanthanum oxide nanoparticles (La2O3 NPs) in life products have increased dramatically in the past decades, which are inevitable released into natural environment. In this study, we determined the phytotoxicity of La2O3 NPs to maize (Zea mays L.) grown in one-fourth strength Hoagland solution. After being exposed for two weeks, the biomass, roots length and the relative chlorophyll content were measured. La2O3 NPs had phytotoxicity to maize at 5 mg/L. La2O3 NPs decreased shoot biomass (≥10 mg/L), the root biomass and length (≥5 mg/L). Moreover, La2O3 NPs had adverse effects on the chlorophyll content (≥10 mg/L). The decreased chlorophyll content may reduce net photosynthetic rate. This research offers vital information about the phytotoxicity of La2O3 NPs.

  14. Identification of Teosinte (Zea mays ssp. parviglumis) alleles for resistance to southern leaf blight in near isogenic maize lines

    USDA-ARS?s Scientific Manuscript database

    Southern Leaf Blight [(SLB), causal agent Cochliobolus heterostrophus race O] is an important fungal disease of maize in the United States. Teosinte (Zea mays ssp. parviglumis), the wild progenitor of maize, offers a novel source of resistance alleles that may have been lost during domestication. T...

  15. Compounds formed by treatment of corn (Zea mays) with nitrous acid.

    PubMed

    Archer, M C; Hansen, T J; Tannenbaum, S R

    1980-01-01

    Nitrohexane has been identified as a major product formed following treatment of corn (Zea mays) with nitrous acid. Preliminary evidence suggests that another compound isolated from the nitrosated corn is an unsaturated nitrolic acid. As an aid to the analysis of N-nitro compounds, we have characterized the response of a chemiluminescence detector (Thermal Energy Analyzer) as a function of pyrolysis chamber temperature for several nitrosamines and for an aliphatic C-nitroso compound, an aromatic C-nitro compound, a nitramine and an alkyl nitrite. The response-temperature profiles are valuable in distinguishing among the various compounds and in optimizing the sensitivity of the detector for use in chromatography. Other tests, including photolysis and stability toward nitrite-scavenging reagents, further aid in distinguishing among the various compounds.

  16. Occultifur kilbournensis f.a. sp. nov., a new member of the Cystobasidiales associated with maize (Zea mays) cultivation

    USDA-ARS?s Scientific Manuscript database

    During a study of microorganisms associated with maize (Zea mays) cultivation, yeasts were isolated from overwintered stalks, cobs and surrounding soil, which were collected from an agricultural field in south-central Illinois, USA. Predominant among isolates were two species of Cryptococcus (Cr. fl...

  17. TOXICITY OF METHYL-TERT BYTYL ETHER (MTBE) TO PLANTS (AVENA SATIVA, ZEA MAYS, TRITICUM AESTIVUM, AND LACTUCA SATIVA)

    EPA Science Inventory

    Effects of Methyl tert-butyl ether (MTBE) on the germination of seeds and growth of the plant were studied in some laboratory experiments. Test plants were wild oat (Avena sative), sweet corn (Zea mays), wheat (Triticum aestivum), and lettuce (Lactuca sativa). Seed germination,...

  18. Nucleotide sequence of soybean chloroplast DNA regions which contain the psb A and trn H genes and cover the ends of the large single copy region and one end of the inverted repeats.

    PubMed

    Spielmann, A; Stutz, E

    1983-10-25

    The soybean chloroplast psb A gene (photosystem II thylakoid membrane protein of Mr 32 000, lysine-free) and the trn H gene (tRNAHisGUG), which both map in the large single copy region adjacent to one of the inverted repeat structures (IR1), have been sequenced including flanking regions. The psb A gene shows in its structural part 92% sequence homology with the corresponding genes of spinach and N. debneyi and contains also an open reading frame for 353 aminoacids. The aminoacid sequence of a potential primary translation product (calculated Mr, 38 904, no lysine) diverges from that of spinach and N. debneyi in only two positions in the C-terminal part. The trn H gene has the same polarity as the psb A gene and the coding region is located at the very end of the large single copy region. The deduced sequence of the soybean chloroplast tRNAHisGUG is identical with that of Zea mays chloroplasts. Both ends of the large single copy region were sequenced including a small segment of the adjacent IR1 and IR2.

  19. Movement of endogenous calcium in the elongating zone of graviresponding roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; Cameron, I. L.; Smith, N. K.

    1989-01-01

    Endogenous calcium (Ca) accumulates along the lower side of the elongating zone of horizontally oriented roots of Zea mays cv. Yellow Dent. This accumulation of Ca correlates positively with the onset of gravicurvature, and occurs in the cytoplasm, cell walls and mucilage of epidermal cells. Corresponding changes in endogenous Ca do not occur in cortical cells of the elongating zone of intact roots. These results indicate that the calcium asymmetries associated with root gravicurvature occur in the outermost layers of the root.

  20. REDUCED CHLOROPLAST COVERAGE genes from Arabidopsis thaliana help to establish the size of the chloroplast compartment

    DOE PAGES

    Larkin, Robert M.; Stefano, Giovanni; Ruckle, Michael E.; ...

    2016-02-09

    Eukaryotic cells require mechanisms to establish the proportion of cellular volume devoted to particular organelles. These mechanisms are poorly understood. From a screen for plastid-to-nucleus signaling mutants in Arabidopsis thaliana, we cloned a mutant allele of a gene that encodes a protein of unknown function that is homologous to two other Arabidopsis genes of unknown function and Arabidopsis. In contrast to FRIENDLY, these three homologs of FRIENDLY are found only in photosynthetic organisms. Based on these data, we proposed that FRIENDLY expanded into a small gene family to help regulate the energy metabolism of cells that contain both mitochondria andmore » chloroplasts. Indeed, we found that knocking out these genes caused a number of chloroplast phenotypes, including a reduction in the proportion of cellular volume devoted to chloroplasts to 50% of wild type. Thus, we refer to these genes as REDUCED CHLOROPLAST COVERAGE (REC). The size of the chloroplast compartment was reduced most in rec1 mutants. The REC1 protein accumulated in the cytosol and the nucleus. REC1 was excluded from the nucleus when plants were treated with amitrole, which inhibits cell expansion and chloroplast function. Finally, we conclude that REC1 is an extraplastidic protein that helps to establish the size of the chloroplast compartment, and that signals derived from cell expansion or chloroplasts may regulate REC1.« less

  1. Chloroplast Osmotic Adjustment and Water Stress Effects on Photosynthesis 1

    PubMed Central

    Gupta, Ashima Sen; Berkowitz, Gerald A.

    1988-01-01

    Previous studies have suggested that chloroplast stromal volume reduction may mediate the inhibition of photosynthesis under water stress. In this study, the effects of spinach (Spinacia oleracea, var `Winter Bloomsdale') plant water deficits on chloroplast photosynthetic capacity, solute concentrations in chloroplasts, and chloroplast volume were studied. In situ (gas exchange) and in vitro measurements indicated that chloroplast photosynthetic capacity was maintained during initial leaf water potential (Ψw) and relative water content (RWC) decline. During the latter part of the stress period, photosynthesis dropped precipitously. Chloroplast stromal volume apparently remained constant during the initial period of decline in RWC, but as leaf Ψw reached −1.2 megapascals, stromal volume began to decline. The apparent maintenance of stromal volume over the initial RWC decline during a stress cycle suggested that chloroplasts are capable of osmotic adjustment in response to leaf water deficits. This hypothesis was confirmed by measuring chloroplast solute levels, which increased during stress. The results of these experiments suggest that stromal volume reduction in situ may be associated with loss of photosynthetic capacity and that one mechanism of photosynthetic acclimation to low Ψw may involve stromal volume maintenance. PMID:16666266

  2. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays).

    PubMed

    Mano, Y; Omori, F

    2013-10-01

    Nicaraguan teosinte (Zea nicaraguensis), a species found in frequently flooded areas, provides useful germplasm for breeding flooding-tolerant maize (Z. mays subsp. mays). The objective of this study was to select flooding-tolerant lines using a library of introgression lines (ILs), each containing a chromosome segment from Z. nicaraguensis in the maize inbred line Mi29. To produce the ILs, a single F1 plant derived from a cross between maize Mi29 and Z. nicaraguensis was backcrossed to Mi29 three times, self-pollinated four times and genotyped using simple sequence repeat markers. Flooding tolerance was evaluated at the seedling stage under reducing soil conditions. By backcrossing and selfing, a series of 45 ILs were developed covering nearly the entire maize genome. Five flooding-tolerant lines were identified from among the ILs by evaluating leaf injury. Among these, line IL#18, containing a Z. nicaraguensis chromosome segment on the long arm of chromosome 4, showed the greatest tolerance to flooding, suggesting the presence of a major quantitative trait locus (QTL) in that region. The presence of the QTL was verified by examining flooding tolerance in a population segregating for the candidate region of chromosome 4. There was no significant relationship between the capacity to form constitutive aerenchyma and flooding tolerance in the ILs, indicating the presence of other factors related to flooding tolerance under reducing soil conditions. A flooding-tolerant genotype, IL#18, was identified; this genotype should be useful for maize breeding. In addition, because the chromosome segments of Z. nicaraguensis in the ILs cover nearly the entire genome and Z. nicaraguensis possesses several unique traits related to flooding tolerance, the ILs should be valuable material for additional QTL detection and the development of flooding-tolerant maize lines.

  3. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays)

    PubMed Central

    Mano, Y.; Omori, F.

    2013-01-01

    Background and Aims Nicaraguan teosinte (Zea nicaraguensis), a species found in frequently flooded areas, provides useful germplasm for breeding flooding-tolerant maize (Z. mays subsp. mays). The objective of this study was to select flooding-tolerant lines using a library of introgression lines (ILs), each containing a chromosome segment from Z. nicaraguensis in the maize inbred line Mi29. Methods To produce the ILs, a single F1 plant derived from a cross between maize Mi29 and Z. nicaraguensis was backcrossed to Mi29 three times, self-pollinated four times and genotyped using simple sequence repeat markers. Flooding tolerance was evaluated at the seedling stage under reducing soil conditions. Key Results By backcrossing and selfing, a series of 45 ILs were developed covering nearly the entire maize genome. Five flooding-tolerant lines were identified from among the ILs by evaluating leaf injury. Among these, line IL#18, containing a Z. nicaraguensis chromosome segment on the long arm of chromosome 4, showed the greatest tolerance to flooding, suggesting the presence of a major quantitative trait locus (QTL) in that region. The presence of the QTL was verified by examining flooding tolerance in a population segregating for the candidate region of chromosome 4. There was no significant relationship between the capacity to form constitutive aerenchyma and flooding tolerance in the ILs, indicating the presence of other factors related to flooding tolerance under reducing soil conditions. Conclusions A flooding-tolerant genotype, IL#18, was identified; this genotype should be useful for maize breeding. In addition, because the chromosome segments of Z. nicaraguensis in the ILs cover nearly the entire genome and Z. nicaraguensis possesses several unique traits related to flooding tolerance, the ILs should be valuable material for additional QTL detection and the development of flooding-tolerant maize lines. PMID:23877074

  4. Localization of lead accumulated by corn plants. [Zea mays L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malone, C.; Koeppe, D.E.; Miller, R.J.

    1974-01-01

    Light and electron microscopic studies of corn plants (Zea mays L.) exposed to Pb in hydroponic solution showed that the roots generally accumulated a surface Pb precipitate and slowly accumulated Pb crystals in the cell walls. The root surface precipitate formed without the apparent influence of any cell organelles. In contrast, Pb taken up by roots was concentrated in dicytosome vesicles. Dicytosome vesicles containing cell wall material fused with one another to encase the Pb deposit. This encased deposit which was surrounded by a membrane migrated toward the outside of the cell where the membrane surrounding the deposit then fusedmore » with the plasmalemma. The material surrounding the deposit then fused with the cell wall. The result of this process was a concentration of Pb deposits in the cell wall outside the plasmalemma. Similar deposits were observed in stems and leaves suggesting that Pb was transported and deposited in a similar manner.« less

  5. [Antimutagenic activity of Armoracia rusticana, Zea mays and Ficus carica plant extracts and their mixture].

    PubMed

    Agabeĭli, R A; Kasimova, T E

    2005-01-01

    Antimutagenic action of plant extracts of Armoracia rusticana, Ficus carica, Zea mays and their mixture on environmental xenobiotics has been investigated. The plant extracts and their mixture decreased the level of mutations induced by N-metil-N'-nitro-N-nitrozoguanidin (MNNG) in Vicia faba cells, chlorophyll mutations in Arabidopsis thaliana and NaF induced mutability in rat marrow cells. The studied plant extracts and their mixture demonstrate the ability to decrease the genotoxicity of environmental mutagens.

  6. Patterns of diversity and recombination along chromosome 1 of maize (Zea mays ssp. mays L.).

    PubMed Central

    Tenaillon, Maud I; Sawkins, Mark C; Anderson, Lorinda K; Stack, Stephen M; Doebley, John; Gaut, Brandon S

    2002-01-01

    We investigate the interplay between genetic diversity and recombination in maize (Zea mays ssp. mays). Genetic diversity was measured in three types of markers: single-nucleotide polymorphisms, indels, and microsatellites. All three were examined in a sample of previously published DNA sequences from 21 loci on maize chromosome 1. Small indels (1-5 bp) were numerous and far more common than large indels. Furthermore, large indels (>100 bp) were infrequent in the population sample, suggesting they are slightly deleterious. The 21 loci also contained 47 microsatellites, of which 33 were polymorphic. Diversity in SNPs, indels, and microsatellites was compared to two measures of recombination: C (=4Nc) estimated from DNA sequence data and R based on a quantitative recombination nodule map of maize synaptonemal complex 1. SNP diversity was correlated with C (r = 0.65; P = 0.007) but not with R (r = -0.10; P = 0.69). Given the lack of correlation between R and SNP diversity, the correlation between SNP diversity and C may be driven by demography. In contrast to SNP diversity, microsatellite diversity was correlated with R (r = 0.45; P = 0.004) but not C (r = -0.025; P = 0.55). The correlation could arise if recombination is mutagenic for microsatellites, or it may be consistent with background selection that is apparent only in this class of rapidly evolving markers. PMID:12454083

  7. Photosynthetic Characteristics and Chloroplast Ultrastructure of Summer Maize Response to Different Nitrogen Supplies

    PubMed Central

    Liu, Zheng; Gao, Jia; Gao, Fei; Liu, Peng; Zhao, Bin; Zhang, Jiwang

    2018-01-01

    Maize (Zea mays L.) is the important crop over the world. Nitrogen (N) as necessary element affects photosynthetic characteristics and grain yield of summer maize. In this study, N0 (0 kg N ha-1), N1 (129 kg N ha-1), N2 (185 kg N ha-1), and N3 (300 kg N ha-1) was conducted using hybrid ‘ZhengDan958’ at Dawenkou research field (36°11′N, 117°06′E, 178 m altitude) in the North China Plain to explore the effects of N rate on photosynthetic characteristics and chloroplast ultrastructure. Gas exchange parameters, chlorophyll fluorescence parameters, leaf area index (LAI), chlorophyll SPAD value, chloroplast ultrastructure, dry matter weight and grain yield were measured. At physiological maturity stage, dry matter weight and grain yield of N2 increased by 33–52% (P ≤ 0.05) and 6–32% (P ≤ 0.05), respectively, compared with other treatments. During the growing from silking (R1) to milk (R3) stage, LAI of N0 and N1 were 35–38% (P ≤ 0.05) and 9–23% (P ≤ 0.05) less than that of N2, respectively. Chlorophyll SPAD value of N0 and N1 were 13–22% (P ≤ 0.05) and 5–11% (P ≤ 0.05) lower than that of N2. There was no significant difference in LAI and chlorophyll SPAD value between N2 and N3 during the period from R1 to R3 (P > 0.05). The net photosynthetic rate (Pn), maximal quantum efficiency of PSII (Fv/Fm) and quantum efficiency of PSII (ΦPSII) were higher with the increase of N rate up to N2 (P ≤ 0.05), and those of N3 were significantly less than N2 (P ≤ 0.05). In compared with N2, the chloroplast configuration of N0 and N1 became elliptical, almost circular or irregular. The membrane of chloroplast and thylakoid resolved with growing stage, and the number of chloroplast per cell and lamellae per grana decreased under N0 and N1 treatment (P ≤ 0.05). Under N0 and N1 treatments, summer maize had more negative photosynthetic characteristics. The more number of osmium granule and vesicle and the larger gap between lamellae were shown in N3

  8. Photosynthetic Characteristics and Chloroplast Ultrastructure of Summer Maize Response to Different Nitrogen Supplies.

    PubMed

    Liu, Zheng; Gao, Jia; Gao, Fei; Liu, Peng; Zhao, Bin; Zhang, Jiwang

    2018-01-01

    Maize ( Zea mays L.) is the important crop over the world. Nitrogen (N) as necessary element affects photosynthetic characteristics and grain yield of summer maize. In this study, N0 (0 kg N ha -1 ), N1 (129 kg N ha -1 ), N2 (185 kg N ha -1 ), and N3 (300 kg N ha -1 ) was conducted using hybrid 'ZhengDan958' at Dawenkou research field (36°11'N, 117°06'E, 178 m altitude) in the North China Plain to explore the effects of N rate on photosynthetic characteristics and chloroplast ultrastructure. Gas exchange parameters, chlorophyll fluorescence parameters, leaf area index (LAI), chlorophyll SPAD value, chloroplast ultrastructure, dry matter weight and grain yield were measured. At physiological maturity stage, dry matter weight and grain yield of N2 increased by 33-52% ( P ≤ 0.05) and 6-32% ( P ≤ 0.05), respectively, compared with other treatments. During the growing from silking (R1) to milk (R3) stage, LAI of N0 and N1 were 35-38% ( P ≤ 0.05) and 9-23% ( P ≤ 0.05) less than that of N2, respectively. Chlorophyll SPAD value of N0 and N1 were 13-22% ( P ≤ 0.05) and 5-11% ( P ≤ 0.05) lower than that of N2. There was no significant difference in LAI and chlorophyll SPAD value between N2 and N3 during the period from R1 to R3 ( P > 0.05). The net photosynthetic rate ( P n ), maximal quantum efficiency of PSII ( F v / F m ) and quantum efficiency of PSII (Φ PSII ) were higher with the increase of N rate up to N2 ( P ≤ 0.05), and those of N3 were significantly less than N2 ( P ≤ 0.05). In compared with N2, the chloroplast configuration of N0 and N1 became elliptical, almost circular or irregular. The membrane of chloroplast and thylakoid resolved with growing stage, and the number of chloroplast per cell and lamellae per grana decreased under N0 and N1 treatment ( P ≤ 0.05). Under N0 and N1 treatments, summer maize had more negative photosynthetic characteristics. The more number of osmium granule and vesicle and the larger gap between lamellae were

  9. Promoting Student Inquiry Using "Zea Mays" (Corn) Cultivars for Hypothesis-Driven Experimentation in a Majors Introductory Biology Course

    ERIC Educational Resources Information Center

    Blair, Amy C.; Peters, Brenda J.; Bendixen, Conrad W.

    2014-01-01

    The AAAS Vision and Change report (2011) recommends incorporating student research experiences into the biology curriculum at the undergraduate level. This article describes, in detail, how "Zea mays" (corn) cultivars were used as a model for a hypothesis-driven short-term research project in an introductory biology course at a small…

  10. ent-Kaurane Diterpenoids with Neuroprotective Properties from Corn Silk ( Zea mays).

    PubMed

    Qi, Xiao-Li; Zhang, Ying-Ying; Zhao, Peng; Zhou, Le; Wang, Xiao-Bo; Huang, Xiao-Xiao; Lin, Bin; Song, Shao-Jiang

    2018-05-25

    Thirteen new ent-kaurane diterpenoids, stigmaydenes A-M (1-13), together with two known compounds (14, 15), were isolated from the crude extract of corn silk ( Zea mays). The structures of the compounds were confirmed by comprehensive spectroscopic analyses. The absolute configuration of compound 1 was defined by single-crystal X-ray diffraction. The absolute configurations of the compounds were also confirmed by comparison of experimental and calculated specific rotations. The compounds were evaluated for their neuroprotective effects against H 2 O 2 -induced SH-SY5Y cell injury, and compound 8 was active at 100 μM, as determined by flow cytometry (annexin V-FITC/PI staining) and Hoechst 33258 staining. The results suggested that compound 8 could protect neuronal cells from H 2 O 2 -induced injury by inhibiting apoptosis in SH-SY5Y cells.

  11. The effect of ethylene on root growth of Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Whalen, M. C.; Feldman, L. J.

    1988-01-01

    The control of primary root growth in Zea mays cv. Merit by ethylene was examined. At applied concentrations of ethylene equal to or greater than 0.1 microliter L-1, root elongation during 24 h was inhibited. The half-maximal response occurred at 0.6 microliter L-1 and the response saturated at 6 microliters L-1. Inhibition of elongation took place within 20 min. However, after ethylene was removed, elongation recovered to control values within 15 min. Root elongation was also inhibited by green light. The inhibition caused by a 24-h exposure to ethylene was restricted to the elongating region just behind the apex, with inhibition of cortical cell elongation being the primary contributor to the effect. Based on use of 2,5-norbornadiene, a gaseous competitive inhibitor of ethylene, it was concluded that endogenous ethylene normally inhibits root elongation.

  12. Movement of 14C-Labeled Assimilates into Kernels of Zea mays L

    PubMed Central

    Shannon, Jack C.; Dougherty, C. T.

    1972-01-01

    Invertases of the placento-chalazal and pedicel tissues are much more active than invertase from the pericarp of Zea mays L. kernels 12 to 40 days after pollination. Sucrose synthetase was not detected in the pedicel or placento-chalazal tissues. Sucrose content and percentage increased in the pedicel with advancing kernel age. Hexoses accounted for over half of the sugars extracted from the placento-chalazal tissues. These data are consistent with the hypothesis that sucrose translocated to the pedicel is hydrolyzed by acid invertase(s) prior to entry of sugar into the endosperm tissue. The placentochalazal tissue appears to be the primary site of sucrose inversion with the pedicel invertase contributing more or less to this process depending on kernel age. PMID:16657925

  13. Chloroplast in Plant-Virus Interaction

    PubMed Central

    Zhao, Jinping; Zhang, Xian; Hong, Yiguo; Liu, Yule

    2016-01-01

    In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction. PMID:27757106

  14. Antifungal-protein production in maize (Zea mays) suspension cultures.

    PubMed

    Perri, Fabio; Della Penna, Serena; Rufini, Francesca; Patamia, Maria; Bonito, Mariantonietta; Angiolella, Letizia; Vitali, Alberto

    2009-04-01

    The growing emergency due to the phenomenon of drug resistance to micro-organisms has pushed forward the search for new potential drug alternatives to those already in use. Plants represent a suitable source of new antifungal molecules, as they produce a series of defensive proteins. Among them are the PRPs (pathogenesis-related proteins), shown to be effective in vitro against human pathogens. An optimized and established cell-suspension culture of maize (Zea mays) was shown to constitutively secrete in the medium a series of PRPs comprising the antifungal protein zeamatin (P33679) with a final yield of approx. 3 mg/litre. The in-vitro-produced zeamatin possessed antifungal activity towards a clinical strain of the human pathogenic yeast Candida albicans, an activity comparable with the one reported for the same protein extracted from maize seeds. Along with zeamatin, other PRPs were expressed: a 9 kDa lipid-transfer protein, a 26 kDa xylanase inhibitor and a new antifungal protein, PR-5. A fast, two-step chromatographic procedure was set up allowing the complete purification of the proteins considered, making this cell line a valuable system for the production of potential antifungal agents in a reliable and easy way.

  15. A CRM domain protein functions dually in group I and group II intron splicing in land plant chloroplasts.

    PubMed

    Asakura, Yukari; Barkan, Alice

    2007-12-01

    The CRM domain is a recently recognized RNA binding domain found in three group II intron splicing factors in chloroplasts, in a bacterial protein that associates with ribosome precursors, and in a family of uncharacterized proteins in plants. To elucidate the functional repertoire of proteins with CRM domains, we studied CFM2 (for CRM Family Member 2), which harbors four CRM domains. RNA coimmunoprecipitation assays showed that CFM2 in maize (Zea mays) chloroplasts is associated with the group I intron in pre-trnL-UAA and group II introns in the ndhA and ycf3 pre-mRNAs. T-DNA insertions in the Arabidopsis thaliana ortholog condition a defective-seed phenotype (strong allele) or chlorophyll-deficient seedlings with impaired splicing of the trnL group I intron and the ndhA, ycf3-int1, and clpP-int2 group II introns (weak alleles). CFM2 and two previously described CRM proteins are bound simultaneously to the ndhA and ycf3-int1 introns and act in a nonredundant fashion to promote their splicing. With these findings, CRM domain proteins are implicated in the activities of three classes of catalytic RNA: group I introns, group II introns, and 23S rRNA.

  16. Use of Zea mays L. in phytoremediation of trichloroethylene.

    PubMed

    Moccia, Emanuele; Intiso, Adriano; Cicatelli, Angela; Proto, Antonio; Guarino, Francesco; Iannece, Patrizia; Castiglione, Stefano; Rossi, Federico

    2017-04-01

    Trichloroethylene (TCE) is a chlorinated aliphatic organic compound often detected as pollutant in soils and ground water. "Green technologies" based on phytoremediation were proven to be effective to reclaim organic pollutants (e.g. TCE) and heavy metals from different environmental matrices. In this work, we use Zea mays L. for the removal of high TCE concentrations from medium cultures. In particular, we investigated a sealed bioreactor where the growth medium was contaminated with an increasing amount of TCE, in the range 55-280 mg/L; the removal capability of the maize plants was assessed by means of GC-MS and LC-MS analyses. An accurate mass balance of the system revealed that the plants were able to remove and metabolise TCE with an efficiency up to 20 %, depending on the total amount of TCE delivered in the bioreactor. Morphometric data showed that the growth of Z. mays is not significantly affected by the presence of the pollutant up to a concentration of 280 mg/L, while plants show significant alterations at higher TCE concentrations until the growth is completely inhibited for [TCE] ≃ 2000 mg/L. Finally, the presence of several TCE metabolites, including dichloroacetic and trichloroacetic acids, was detected in the roots and in the aerial part of the plants, revealing that Z. mays follows the green liver metabolic model. These results encourage further studies for the employment of this plant species in phytoremediation processes of soils and waters contaminated by TCE and, potentially, by many other chlorinated solvents.

  17. Anti-inflammatory effects of Zea mays L. husk extracts.

    PubMed

    Roh, Kyung-Baeg; Kim, Hyoyoung; Shin, Seungwoo; Kim, Young-Soo; Lee, Jung-A; Kim, Mi Ok; Jung, Eunsun; Lee, Jongsung; Park, Deokhoon

    2016-08-19

    Zea mays L. (Z. mays) has been used for human consumption in the various forms of meal, cooking oil, thickener in sauces and puddings, sweetener in processed food and beverage products, bio-disel. However, especially, in case of husk extract of Z. mays, little is known about its anti-inflammatory effects. Therefore, in this study, the anti-inflammatory effects of Z. mays husk extract (ZMHE) and its mechanisms of action were investigated. The husks of Z. Mays were harvested in kangwondo, Korea. To assess the anti-inflammatory activities of ZMHE, we examined effects of ZMHE on nitric oxide (NO) production, and release of soluble intercellular adhesion molecule-1 (sICAM-1) and eotaxin-1. The expression level of inducible nitric oxide synthase (iNOS) gene was also determined by Western blot and luciferase reporter assays. To determine its mechanisms of action, a luciferase reporter assay for nuclear factor kappa B (NF-kB) and activator protein-1 (AP-1) was introduced. ZMHE inhibited lipopolysaccharide (LPS)-induced production of NO in RAW264.7 cells. In addition, expression of iNOS gene was reduced, as confirmed by Western blot and luciferase reporter assays. Effects of ZMHE on the AP-1 and NF-kB promoters were examined to elucidate the mechanism of its anti-inflammatory activity. Activation of AP-1 and NF-kB promoters induced by LPS was significantly reduced by ZMHE treatment. In addition, LPS-induced production of sICAM-1 and IL-4-induced production of eotaxin-1 were all reduced by ZMHE. Our results indicate that ZMHE has anti-inflammatory effects by downregulating the expression of iNOS gene and its downregulation is mediated by inhibiting NF-kB and AP-1 signaling.

  18. Zea mays Fe deficiency-related 4 (ZmFDR4) functions as an iron transporter in the plastids of monocots.

    PubMed

    Zhang, Xiu-Yue; Zhang, Xi; Zhang, Qi; Pan, Xiao-Xi; Yan, Luo-Chen; Ma, Xiao-Juan; Zhao, Wei-Zhong; Qi, Xiao-Ting; Yin, Li-Ping

    2017-04-01

    Iron (Fe)-homeostasis in the plastids is closely associated with Fe transport proteins that prevent Fe from occurring in its toxic free ionic forms. However, the number of known protein families related to Fe transport in the plastids (about five) and the function of iron in non-green plastids is limited. In the present study, we report the functional characterization of Zea mays Fe deficiency-related 4 (ZmFDR4), which was isolated from a differentially expressed clone of a cDNA library of Fe deficiency-induced maize roots. ZmFDR4 is homologous to the bacterial FliP superfamily, coexisted in both algae and terrestrial plants, and capable of restoring the normal growth of the yeast mutant fet3fet4, which possesses defective Fe uptake systems. ZmFDR4 mRNA is ubiquitous in maize and is inducible by iron deficiency in wheat. Transient expression of the 35S:ZmFDR4-eGFP fusion protein in rice protoplasts indicated that ZmFDR4 maybe localizes to the plastids envelope and thylakoid. In 35S:c-Myc-ZmFDR4 transgenic tobacco, immunohistochemistry and immunoblotting confirmed that ZmFDR4 is targeted to both the chloroplast envelope and thylakoid. Meanwhile, ultrastructure analysis indicates that ZmFDR4 promotes the density of plastids and accumulation of starch grains. Moreover, Bathophenanthroline disulfonate (BPDS) colorimetry and inductively coupled plasma mass spectrometry (ICP-MS) indicate that ZmFDR4 is related to Fe uptake by plastids and increases seed Fe content. Finally, 35S:c-Myc-ZmFDR4 transgenic tobacco show enhanced photosynthetic efficiency. Therefore, the results of the present study demonstrate that ZmFDR4 functions as an iron transporter in monocot plastids and provide insight into the process of Fe uptake by plastids. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  19. Ergot Alkaloid Biosynthesis in the Maize (Zea mays) Ergot Fungus Claviceps gigantea.

    PubMed

    Bragg, Paige E; Maust, Matthew D; Panaccione, Daniel G

    2017-12-13

    Biosynthesis of the dihydrogenated forms of ergot alkaloids is of interest because many of the ergot alkaloids used as pharmaceuticals may be derived from dihydrolysergic acid (DHLA) or its precursor dihydrolysergol. The maize (Zea mays) ergot pathogen Claviceps gigantea has been reported to produce dihydrolysergol, a hydroxylated derivative of the common ergot alkaloid festuclavine. We hypothesized expression of C. gigantea cloA in a festuclavine-accumulating mutant of the fungus Neosartorya fumigata would yield dihydrolysergol because the P450 monooxygenase CloA from other fungi performs similar oxidation reactions. We engineered such a strain, and high performance liquid chromatography and liquid chromatography-mass spectrometry analyses demonstrated the modified strain produced DHLA, the fully oxidized product of dihydrolysergol. Accumulation of high concentrations of DHLA in field-collected C. gigantea sclerotia and discovery of a mutation in the gene lpsA, downstream from DHLA formation, supported our finding that DHLA rather than dihydrolysergol is the end product of the C. gigantea pathway.

  20. Nucleotide sequence of soybean chloroplast DNA regions which contain the psb A and trn H genes and cover the ends of the large single copy region and one end of the inverted repeats.

    PubMed Central

    Spielmann, A; Stutz, E

    1983-01-01

    The soybean chloroplast psb A gene (photosystem II thylakoid membrane protein of Mr 32 000, lysine-free) and the trn H gene (tRNAHisGUG), which both map in the large single copy region adjacent to one of the inverted repeat structures (IR1), have been sequenced including flanking regions. The psb A gene shows in its structural part 92% sequence homology with the corresponding genes of spinach and N. debneyi and contains also an open reading frame for 353 aminoacids. The aminoacid sequence of a potential primary translation product (calculated Mr, 38 904, no lysine) diverges from that of spinach and N. debneyi in only two positions in the C-terminal part. The trn H gene has the same polarity as the psb A gene and the coding region is located at the very end of the large single copy region. The deduced sequence of the soybean chloroplast tRNAHisGUG is identical with that of Zea mays chloroplasts. Both ends of the large single copy region were sequenced including a small segment of the adjacent IR1 and IR2. PMID:6314279

  1. [Antimutagenic activity of plant extracts from Armoracia rusticana, Ficus carica and Zea mays and peroxidase in eukaryotic cells].

    PubMed

    Agabeĭli, R A; Kasimova, T E; Alekperov, U K

    2004-01-01

    Antimutagene activity and high efficiency of antimutagene action of plant extracts from horseradish roots (Armoracia rusticana), fig brunches (Ficus carica) and mays seedlings (Zea mays) and their ability to decrease the frequency of spontaneous and induced by gamma-rays chromosome aberrations in meristematic cells of Vicia faba and marrow cells of mice have been shown. Comparative assessment of genoprotective properties of peroxidase and the studied extracts has revealed higher efficiency of antimutagene action of peroxidase.

  2. Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes

    PubMed Central

    Saski, Christopher; Lee, Seung-Bum; Fjellheim, Siri; Guda, Chittibabu; Jansen, Robert K.; Luo, Hong; Tomkins, Jeffrey; Rognli, Odd Arne; Clarke, Jihong Liu

    2009-01-01

    Comparisons of complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera to six published grass chloroplast genomes reveal that gene content and order are similar but two microstructural changes have occurred. First, the expansion of the IR at the SSC/IRa boundary that duplicates a portion of the 5′ end of ndhH is restricted to the three genera of the subfamily Pooideae (Agrostis, Hordeum and Triticum). Second, a 6 bp deletion in ndhK is shared by Agrostis, Hordeum, Oryza and Triticum, and this event supports the sister relationship between the subfamilies Erhartoideae and Pooideae. Repeat analysis identified 19–37 direct and inverted repeats 30 bp or longer with a sequence identity of at least 90%. Seventeen of the 26 shared repeats are found in all the grass chloroplast genomes examined and are located in the same genes or intergenic spacer (IGS) regions. Examination of simple sequence repeats (SSRs) identified 16–21 potential polymorphic SSRs. Five IGS regions have 100% sequence identity among Zea mays, Saccharum officinarum and Sorghum bicolor, whereas no spacer regions were identical among Oryza sativa, Triticum aestivum, H. vulgare and A. stolonifera despite their close phylogenetic relationship. Alignment of EST sequences and DNA coding sequences identified six C–U conversions in both Sorghum bicolor and H. vulgare but only one in A. stolonifera. Phylogenetic trees based on DNA sequences of 61 protein-coding genes of 38 taxa using both maximum parsimony and likelihood methods provide moderate support for a sister relationship between the subfamilies Erhartoideae and Pooideae. PMID:17534593

  3. Root graviresponsiveness and columella cell structure in carotenoid-deficient seedlings of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.

    1985-01-01

    Root graviresponsiveness in normal and carotenoid-deficient mutant seedlings of Zea mays was not significantly different. Columella cells in roots of mutant seedlings were characterized by fewer, smaller, and a reduced relative volume of plastids as compared to columella cells of normal seedlings. Plastids in columella cells of mutant seedlings possessed reduced amounts of starch. Although approximately 10 per cent of the columella cells in mutant seedlings lacked starch, their plastids were located at the bottom of the cell. These results suggest that (i) carotenoids are not necessary for root gravitropism, (ii) graviresponsiveness is not necessarily proportional to the size, number, or relative volume of plastids in columella cells, and (iii) sedimentation of plastids in columella cells may not result directly from their increased density due to starch content. Plastids in columella cells of normal and mutant seedlings were associated with bands of microtubule-like structures, suggesting that these structures may be involved in 'positioning' plastids in the cell.

  4. Study of cell-differentiation and assembly of photosynthetic proteins during greening of etiolated Zea mays leaves using confocal fluorescence microspectroscopy at liquid-nitrogen temperature.

    PubMed

    Shibata, Yutaka; Katoh, Wataru; Tahara, Yukari

    2013-04-01

    Fluorescence microspectroscopy observations were used to study the processes of cell differentiation and assemblies of photosynthesis proteins in Zea mays leaves under the greening process. The observations were done at 78K by setting the sample in a cryostat to avoid any undesired progress of the greening process during the measurements. The lateral and axial spatial resolutions of the system were 0.64μm and 4.4μm, respectively. The study revealed the spatial distributions of protochlorophyllide (PChld) in both the 632-nm-emitting and 655-nm-emitting forms within etiolated Zea mays leaves. The sizes of the fluorescence spots attributed to the former were larger than those of the latter, validating the assignment of the former and latter to the prothylakoid and prolamellar bodies, respectively. In vivo microspectroscopy observations of mature Zea mays leaves confirmed the different photosystem II (PS I)/photosystem I (PS II) ratio between the bundle sheath (BS) and mesophyll (MS) cells, which is specific for C4-plants. The BS cells in Zea mays leaves 1h after the initiation of the greening process tended to show fluorescence spectra at shorter wavelength side (at around 679nm) than the MS cells (at around 682nm). The 679-nm-emitting chlorophyll-a form observed mainly in the BS cells was attributed to putative precursor complexes to PS I. The BS cells under 3-h greening showed higher relative intensities of the PS I fluorescence band at around 735nm, suggesting the reduced PS II amount in the BS cells in this greening stage. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Molecular Evolution and Expansion Analysis of the NAC Transcription Factor in Zea mays

    PubMed Central

    Fan, Kai; Wang, Ming; Miao, Ying; Ni, Mi; Bibi, Noreen; Yuan, Shuna; Li, Feng; Wang, Xuede

    2014-01-01

    NAC (NAM, ATAF1, 2 and CUC2) family is a plant-specific transcription factor and it controls various plant developmental processes. In the current study, 124 NAC members were identified in Zea mays and were phylogenetically clustered into 13 distinct subfamilies. The whole genome duplication (WGD), especially an additional WGD event, may lead to expanding ZmNAC members. Different subfamily has different expansion rate, and NAC subfamily preference was found during the expansion in maize. Moreover, the duplication events might occur after the divergence of the lineages of Z. mays and S. italica, and segmental duplication seemed to be the dominant pattern for the gene duplication in maize. Furthermore, the expansion of ZmNAC members may be also related to gain and loss of introns. Besides, the restriction of functional divergence was discovered after most of the gene duplication events. These results could provide novel insights into molecular evolution and expansion analysis of NAC family in maize, and advance the NAC researches in other plants, especially polyploid plants. PMID:25369196

  6. Close correspondence between the action spectra for the blue light responses of the guard cell and coleoptile chloroplasts, and the spectra for blue light-dependent stomatal opening and coleoptile phototropism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinones, M.A.; Lu, Zhenmin; Zeiger, E.

    1996-03-05

    Fluorescence spectroscopy was used to characterize blue light responses from chloroplasts of adaxial guard cells from Pima cotton (Gossypium barbadense) and coleoptile tips from corn (Zea mays). The chloroplast response to blue light was quantified by measurements of the blue light-induced enhancement of a red light-stimulated quenching of chlorophyll a fluorescence. In adaxial (upper) guard cells, low fluence rates of blue light applied under saturating fluence rates of red light enhanced the red light-stimulated fluorescence quenching by up to 50%. In contrast, added blue light did not alter the red light-stimulated quenching from abaxial (lower) guard cells. This response patternmore » paralleled the blue light sensitivity of stomatal opening in the two leaf surfaces. An action spectrum for the blue light-induced enhancement of the red light-stimulated quenching showed a major peak at 450 nm and two minor peaks at 420 and 470 nm. This spectrum matched closely an action spectrum for blue light-stimulated stomatal opening. Coleoptile chloroplasts also showed an enhancement by blue light of red light-stimulated quenching. The action spectrum of this response, showing a major peak at 450 nm, a minor peak at 470 nm, and a shoulder at 430 nm, closely matched an action spectrum for blue light-stimulated coleoptile phototropism. Both action spectra match the absorption spectrum of zeaxanthin, a chloroplastic carotenoid recently implicated in blue light photoreception of both guard cells and coleoptiles. The remarkable similarity between the action spectra for the blue light responses of guard cells and coleoptile chloroplasts and the spectra for blue light-stimulated stomatal opening and phototropism, coupled to the recently reported evidence on a role of zeaxanthin in blue light photoreception, indicates that the guard cell and coleoptile chloroplasts specialize in sensory transduction. 28 refs. 4 figs.« less

  7. Enhanced plastochromanol-8 accumulation during reiterated drought in maize (Zea mays L.).

    PubMed

    Fleta-Soriano, Eva; Munné-Bosch, Sergi

    2017-03-01

    Plastochromanol-8 (PC-8) belongs to the group of tocochromanols, and together with tocopherols and carotenoids, might help protect photosystem II from photoinhibition during environmental stresses. Here, we aimed to unravel the time course evolution of PC-8 together with that of vitamin E compounds, in maize (Zea mays L.) plants exposed to reiterated drought. Measurements were performed in plants grown in a greenhouse subjected to two consecutive cycles of drought-recovery. PC-8 contents, which accounted for more than 25% of tocochromanols in maize leaves, increased progressively in response to reiterated drought stress. PC-8 contents paralleled with those of vitamin E, particularly α-tocopherol. Profiling of the stress-related phytohormones (ABA, jasmonic acid and salicylic acid) was consistent with a role of ABA in the regulation of PC-8 and vitamin E biosynthesis during drought stress. Results also suggest that PC-8 may help tocopherols prevent damage to the photosynthetic apparatus. A better knowledge of the ABA-dependent regulation of PC-8 may help us manipulate the contents of this important antioxidant in crops. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system.

    PubMed

    Liang, Zhen; Zhang, Kang; Chen, Kunling; Gao, Caixia

    2014-02-20

    Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have emerged as powerful tools for genome editing in a variety of species. Here, we report, for the first time, targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. We designed five TALENs targeting 4 genes, namely ZmPDS, ZmIPK1A, ZmIPK, ZmMRP4, and obtained targeting efficiencies of up to 23.1% in protoplasts, and about 13.3% to 39.1% of the transgenic plants were somatic mutations. Also, we constructed two gRNAs targeting the ZmIPK gene in maize protoplasts, at frequencies of 16.4% and 19.1%, respectively. In addition, the CRISPR/Cas system induced targeted mutations in Z. mays protoplasts with efficiencies (13.1%) similar to those obtained with TALENs (9.1%). Our results show that both TALENs and the CRISPR/Cas system can be used for genome modification in maize. Copyright © 2013. Published by Elsevier Ltd.

  9. Female gametophyte development and double fertilization in Balsas teosinte, Zea mays subsp. parviglumis (Poaceae).

    PubMed

    Wu, Chi-Chih; Diggle, Pamela K; Friedman, William E

    2011-09-01

    Over the course of maize evolution, domestication played a major role in the structural transition of the vegetative and reproductive characteristics that distinguish it from its closest wild relative, Zea mays subsp. parviglumis (Balsas teosinte). Little is known, however, about impacts of the domestication process on the cellular features of the female gametophyte and the subsequent reproductive events after fertilization, even though they are essential components of plant sexual reproduction. In this study, we investigated the developmental and cellular features of the Balsas teosinte female gametophyte and early developing seed in order to unravel the key structural and evolutionary transitions of the reproductive process associated with the domestication of the ancestor of maize. Our results show that the female gametophyte of Balsas teosinte is a variation of the Polygonum type with proliferative antipodal cells and is similar to that of maize. The fertilization process of Balsas teosinte also is basically similar to domesticated maize. In contrast to maize, many events associated with the development of the embryo and endosperm appear to be initiated earlier in Balsas teosinte. Our study suggests that the pattern of female gametophyte development with antipodal proliferation is common among species and subspecies of Zea and evolved before maize domestication. In addition, we propose that the relatively longer duration of the free nuclear endosperm phase in maize is correlated with the development of a larger fruit (kernel or caryopsis) and with a bigger endosperm compared with Balsas teosinte.

  10. Response to gravity by Zea mays seedlings. I. Time course of the response

    NASA Technical Reports Server (NTRS)

    Bandurski, R. S.; Schulze, A.; Dayanandan, P.; Kaufman, P. B.

    1984-01-01

    Gravistimulation induces an asymmetric distribution of free indole-3-acetic acid (IAA) in the cortex-epidermis of the Zea mays L. cv 'Stowells Evergreen' mesocotyl within 15 minutes, the shortest time tested. IAA was measured by an isotope dilution method as the pentaflurobenzyl ester. The per cent IAA in the lower half of the mescotyl cortex was 56 to 57% at 15, 30, and 90 minutes after stimulus initiation. Curvature is detectable in the mescotyl within 3 minutes after beginning gravitropic stimulation. The rate of curvature of the mesocotyl increases during the first 60 minutes to maximum of about 30 degrees per hour. Thus, the growth asymmetry continues to increase for 45 minutes after hormone asymmetry is established. Free IAA occurs predominantly in the stele of the mesocotyl whereas esterified IAA is mainly in the mesocotyl cortex-epidermis. This compartmentation may permit determining in which tissue the hormone asymmetry arises. Current data suggest the asymmetry originated in the stele.

  11. Chloroplast and nuclear photorelocation movements

    PubMed Central

    WADA, Masamitsu

    2016-01-01

    Chloroplasts move toward weak light to increase photosynthetic efficiency, and migrate away from strong light to protect chloroplasts from photodamage and eventual cell death. These chloroplast behaviors were first observed more than 100 years ago, but the underlying mechanism has only recently been identified. Ideal plant materials, such as fern gametophytes for photobiological and cell biological approaches, and Arabidopsis thaliana for genetic analyses, have been used along with sophisticated methods, such as partial cell irradiation and time-lapse video recording under infrared light to study chloroplast movement. These studies have revealed precise chloroplast behavior, and identified photoreceptors, other relevant protein components, and novel actin filament structures required for chloroplast movement. In this review, our findings regarding chloroplast and nuclear movements are described. PMID:27840388

  12. The evolution of blue-greens and the origins of chloroplasts

    NASA Technical Reports Server (NTRS)

    Schwartz, R. M.; Dayhoff, M. O.

    1981-01-01

    All of the available molecular data support the theory that the chloroplasts of eukaryote cells were originally free-living blue-greens. Of great interest is what the relationships are between contemporary types of blue-greens and eukaryote chloroplasts and whether the chloroplasts of the various eukaryotes are the result of one or more than one symbiosis. By combining information from phylogenetic trees based on cytochrome c6 and 2Fe-2S ferredoxin sequences, it is shown that the chloroplasts of a number of eukaryote algae as well as the protist Euglena are polyphyletic; the chloroplasts of green algae and the higher plants may be the result of a single symbiosis.

  13. Acclimation improves salt stress tolerance in Zea mays plants.

    PubMed

    Pandolfi, Camilla; Azzarello, Elisa; Mancuso, Stefano; Shabala, Sergey

    2016-08-20

    Plants exposure to low level salinity activates an array of processes leading to an improvement of plant stress tolerance. Although the beneficial effect of acclimation was demonstrated in many herbaceous species, underlying mechanisms behind this phenomenon remain poorly understood. In the present study we have addressed this issue by investigating ionic mechanisms underlying the process of plant acclimation to salinity stress in Zea mays. Effect of acclimation were examined in two parallel sets of experiments: a growth experiment for agronomic assessments, sap analysis, stomatal conductance, chlorophyll content, and confocal laser scanning imaging; and a lab experiment for in vivo ion flux measurements from root tissues. Being exposed to salinity, acclimated plants (1) retain more K(+) but accumulate less Na(+) in roots; (2) have better vacuolar Na(+) sequestration ability in leaves and thus are capable of accumulating larger amounts of Na(+) in the shoot without having any detrimental effect on leaf photochemistry; and (3) rely more on Na(+) for osmotic adjustment in the shoot. At the same time, acclimation affect was not related in increased root Na(+) exclusion ability. It appears that even in a such salt-sensitive species as maize, Na(+) exclusion from uptake is of a much less importance compared with the efficient vacuolar Na(+) sequestration in the shoot. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Fungal and fumonisins contamination in Argentine maize (Zea mays L.) silo bags.

    PubMed

    Pacin, Ana M; Ciancio Bovier, Emilia; González, Héctor H L; Whitechurch, Elena M; Martínez, Elena J; Resnik, Silvia L

    2009-04-08

    Fumonisins in maize (Zea mays L.) grain silo bags in the conditions of three Argentine provinces were analyzed to determine how this kind of storage affects contamination and if differential storage durations or times of the year of silo bag closing and opening are factors that could modify it. Moisture content, water activity (a(w)), molds and yeasts present, and fumonisins were analyzed in 163 maize silo bags, at the moment of closing and later at opening. Storage durations ranged from 120 to 226 days. The analysis was centered on fumonisins since most samples were only contaminated with these toxins. Fumonisins, moisture content, and a(w) increased significantly, whereas mold propagules/g and yeasts CFU/g did not present significant differences between silo opening and closing. The date on which silo bags were closed and later opened, however, did affect the level of fumonisin contamination.

  15. Root cortical aerenchyma inhibits radial nutrient transport in maize (Zea mays).

    PubMed

    Hu, Bo; Henry, Amelia; Brown, Kathleen M; Lynch, Jonathan P

    2014-01-01

    Formation of root cortical aerenchyma (RCA) can be induced by nutrient deficiency. In species adapted to aerobic soil conditions, this response is adaptive by reducing root maintenance requirements, thereby permitting greater soil exploration. One trade-off of RCA formation may be reduced radial transport of nutrients due to reduction in living cortical tissue. To test this hypothesis, radial nutrient transport in intact roots of maize (Zea mays) was investigated in two radiolabelling experiments employing genotypes with contrasting RCA. In the first experiment, time-course dynamics of phosphate loading into the xylem were measured from excised nodal roots that varied in RCA formation. In the second experiment, uptake of phosphate, calcium and sulphate was measured in seminal roots of intact young plants in which variation in RCA was induced by treatments altering ethylene action or genetic differences. In each of three paired genotype comparisons, the rate of phosphate exudation of high-RCA genotypes was significantly less than that of low-RCA genotypes. In the second experiment, radial nutrient transport of phosphate and calcium was negatively correlated with the extent of RCA for some genotypes. The results support the hypothesis that RCA can reduce radial transport of some nutrients in some genotypes, which could be an important trade-off of this trait.

  16. Colonization of Corn, Zea mays, by the Entomopathogenic Fungus Beauveria bassiana†

    PubMed Central

    Wagner, Bruce L.; Lewis, Leslie C.

    2000-01-01

    Light and electron microscopy were used to describe the mode of penetration by the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin into corn, Zea mays L. After inoculation with a foliar spray of conidia, germinating hyphae grew randomly across the leaf surface. Often a germ tube formed from a conidium and elongated only a short distance before terminating its growth. Not all developing hyphae on the leaf surface penetrated the cuticle. However, when penetration did occur, the penetration site(s) was randomly located, indicating that B. bassiana does not require specific topographic signals at an appropriate entry site as do some phytopathogenic fungi. Long hyphal structures were observed to follow the leaf apoplast in any direction from the point of penetration. A few hyphae were observed within xylem elements. Because vascular bundles are interconnected throughout the corn plant, this may explain how B. bassiana travels within the plant and ultimately provides overall insecticidal protection. Virulency bioassays demonstrate that B. bassiana does not lose virulence toward the European corn borer, Ostrinia nubilalis (Hübner), once it colonizes corn. This endophytic relationship between an entomopathogenic fungus and a plant suggests possibilities for biological control, including the use of indigenous fungal inocula as insecticides. PMID:10919808

  17. Looking for a substituent of spinach (Spinacia oleracea) chloroplasts

    NASA Astrophysics Data System (ADS)

    Chang, Ying Ping; Yeoh, Loo Yew; Chee, Swee Yong; Lim, Tuck Meng

    2017-04-01

    Spinach's chloroplasts electron transport features are often adapted to build biofuel cells or biosensors for environment conservation. This approach may raise food security issues. The present study aimed to test on in vitro functional activity of chloroplasts from selected underutilized leaves of: Pandan (Pandanus amaryllifolius), oil palm (Elaeis guineensis) and water lettuce (Pistia stratiotes) in comparison with spinach (Spinacia oleracea). The leaves' electrical conductivity was measured to evaluate the initial cell permeability. We applied Hill's reaction to determine the photoreduction capacity of the chloroplasts. Initial electrical conductivity of leaves ranged from 11.5 to 18.5 µs/cm/g followed the order of water lettucechloroplasts. Chloroplasts of oil palm frond and water lettuce showed low photoreduction rate of 14 to 22%. On the other hand, the chloroplasts of both spinach and pandan leaves exerted an initial photoreduction rate which was above 90%. The photoreduction rate of these chloroplasts remained to above 60% even after 30 day-storage at -20°C. In comparison with spinach, pandan leaves' chloroplasts possessed similar in vitro functional activity and storage stability at 4°C and -20°C. This warrants further investigation on chloroplasts of pandan leaves for higher-value applications.

  18. Uronide Deposition Rates in the Primary Root of Zea mays1

    PubMed Central

    Silk, Wendy Kuhn; Walker, Robert C.; Labavitch, John

    1984-01-01

    The spatial distribution of the rate of deposition of uronic acids in the elongation zone of Zea mays L. Crow WF9 × Mo 17 was determined using the continuity equation with experimentally determined values for uronide density and growth velocity. In spatial terms, the uronide deposition rate has a maximum of 0.4 micrograms per millimeter per hour at s = 3.5 mm (i.e., at the location 3.5 mm from the root tip) and decreases to 0.1 mg mm−1 h−1 by s = 10 mm. In terms of a material tissue element, a tissue segment located initially from s = 2.0 to s = 2.1 mm has 0.14 μg of uronic acids and increases in both length and uronic acid content until it is 0.9 mm long and has 0.7 μg of uronide when its center is at s = 10 mm. Simulations of radioactive labeling experiments show that 15 min is the appropriate time scale for pulse determinations of deposition rate profiles in a rapidly growing corn root. PMID:16663488

  19. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  20. Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants.

    PubMed

    Hu, Xiuli; Jiang, Mingyi; Zhang, Jianhua; Zhang, Aying; Lin, Fan; Tan, Mingpu

    2007-01-01

    * Using pharmacological and biochemical approaches, the role of calmodulin (CaM) and the relationship between CaM and hydrogen peroxide (H(2)O(2)) in abscisic acid (ABA)-induced antioxidant defense in leaves of maize (Zea mays) plants were investigated. * Treatment with ABA or H(2)O(2) led to significant increases in the concentration of cytosolic Ca(2+) in the protoplasts of mesophyll cells and in the expression of the calmodulin 1 (CaM1) gene and the content of CaM in leaves of maize plants, and enhanced the expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes. The up-regulation of the antioxidant enzymes was almost completely blocked by pretreatments with two CaM antagonists. * Pretreatments with CaM antagonists almost completely inhibited ABA-induced H(2)O(2) production throughout ABA treatment, but pretreatment with an inhibitor or scavenger of reactive oxygen species (ROS) did not affect the initial increase in the contents of CaM induced by ABA. * Our results suggest that Ca(2+)-CaM is involved in ABA-induced antioxidant defense, and that cross-talk between Ca(2+)-CaM and H(2)O(2) plays a pivotal role in ABA signaling.

  1. Distribution of the glutamine synthetase isozyme GSp1 in maize (Zea mays).

    PubMed

    Muhitch, Michael J

    2003-06-01

    In maize (Zea mays L.), GSp1, the predominant GS isozyme of the developing kernel, is abundant in the pedicel and pericarp, but absent from the endosperm and embryo. Determinations of GSp1 tissue distribution in vegetative tissues have been limited thus far to root and leaves, where the isozyme is absent. However, the promoter from the gene encoding GSp1 has been shown to drive reporter gene expression not only in the maternal seed-associated tissues in transgenic maize plants, but also in the anthers, husks and pollen (Muhitch et al. 2002, Plant Sci 163: 865-872). Here we report chromatographic evidence that GSp1 resides in immature tassels, dehiscing anthers, kernel glumes, ear husks, cobs and stalks of maize plants, but not in mature, shedding pollen grains. RNA blot analysis confirmed these biochemical data. In stalks, GSp1 increased in the later stages of ear development, suggesting that it plays a role in nitrogen remobilization during grain fill.

  2. Occurrence and in Vivo Biosynthesis of Indole-3-Butyric Acid in Corn (Zea mays L.) 1

    PubMed Central

    Ludwig-Müller, Jutta; Epstein, Ephraim

    1991-01-01

    Indole-3-butyric acid (IBA) was identified as an endogenous compound in leaves and roots of maize (Zea mays L.) var Inrakorn by thin layer chromatography, high-performance liquid chromatography, and gas chromatography-mass spectrometry. Its presence was also confirmed in the variety Hazera 224. Indole-3-acetic acid (IAA) was metabolized to IBA in vivo by seedlings of the two maize varieties. The reaction product was identified by thin layer chromatography, high performance liquid chromatography, and gas chromatography-mass spectrometry after incubating the corn seedlings with [14C]IAA and [13C6]IAA. The in vivo conversion of IAA to IBA and the characteristics of IBA formation in two different maize varieties of Zea mays L. (Hazera 224 and Inrakorn) were investigated. IBA-forming activity was examined in the roots, leaves, and coleoptiles of both maize varieties. Whereas in the variety Hazera 224, IBA was formed mostly in the leaves, in the variety Inrakorn, IBA synthesis was detected in the roots as well as in the leaves. A time course study of IBA formation showed that maximum activity was reached in Inrakorn after 1 hour and in Hazera after 2 hours. The pH optimum for the uptake of IAA was 6.0, and that for IBA formation was 7.0. The Km value for IBA formation was 17 micromolar for Inrakorn and 25 micromolar for Hazera 224. The results are discussed with respect to the possible functions of IBA in the plant. ImagesFigure 5 PMID:16668464

  3. Nascent Transcription Affected by RNA Polymerase IV in Zea mays

    PubMed Central

    Erhard, Karl F.; Talbot, Joy-El R. B.; Deans, Natalie C.; McClish, Allison E.; Hollick, Jay B.

    2015-01-01

    All eukaryotes use three DNA-dependent RNA polymerases (RNAPs) to create cellular RNAs from DNA templates. Plants have additional RNAPs related to Pol II, but their evolutionary role(s) remain largely unknown. Zea mays (maize) RNA polymerase D1 (RPD1), the largest subunit of RNA polymerase IV (Pol IV), is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs), and transcriptional regulation of specific alleles. Here, we define the nascent transcriptomes of rpd1 mutant and wild-type (WT) seedlings using global run-on sequencing (GRO-seq) to identify the broader targets of RPD1-based regulation. Comparisons of WT and rpd1 mutant GRO-seq profiles indicate that Pol IV globally affects transcription at both transcriptional start sites and immediately downstream of polyadenylation addition sites. We found no evidence of divergent transcription from gene promoters as seen in mammalian GRO-seq profiles. Statistical comparisons identify genes and TEs whose transcription is affected by RPD1. Most examples of significant increases in genic antisense transcription appear to be initiated by 3ʹ-proximal long terminal repeat retrotransposons. These results indicate that maize Pol IV specifies Pol II-based transcriptional regulation for specific regions of the maize genome including genes having developmental significance. PMID:25653306

  4. Graviresponsiveness of surgically altered primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Maimon, E.; Moore, R.

    1991-01-01

    We examined the gravitropic responses of surgically altered primary roots of Zea mays to determine the route by which gravitropic inhibitors move from the root tip to the elongating zone. Horizontally oriented roots, from which a 1-mm-wide girdle of epidermis plus 2-10 layers of cortex were removed from the apex of the elongating zone, curve downward. However, curvature occurred only apical to the girdle. Filling the girdle with mucilage-like material transmits curvature beyond the girdle. Vertically oriented roots with a half-girdle' (i.e. the epidermis and 2-10 layers of the cortex removed from half of the circumference of the apex of the elongating zone) curve away from the girdle. Inserting the half-girdle at the base of the elongating zone induces curvature towards the girdle. Filling the half-circumference girdles with mucilage-like material reduced curvature significantly. Stripping the epidermis and outer 2-5 layers of cortex from the terminal 1.5 cm of one side of a primary root induces curvature towards the cut, irrespective of the root's orientation to gravity. This effect is not due to desiccation since treated roots submerged in water also curved towards their cut surface. Coating a root's cut surface with a mucilage-like substance minimizes curvature. These results suggest that the outer cell-layers of the root, especially the epidermis, play an important role in root gravicurvature, and the gravitropic signals emanating from the root tip can move apoplastically through mucilage.

  5. Open Field Study of Some Zea mays Hybrids, Lipid Compounds and Fumonisins Accumulation

    PubMed Central

    Giorni, Paola; Dall’Asta, Chiara; Reverberi, Massimo; Scala, Valeria; Ludovici, Matteo; Cirlini, Martina; Galaverna, Gianni; Fanelli, Corrado; Battilani, Paola

    2015-01-01

    Lipid molecules are increasingly recognized as signals exchanged by organisms interacting in pathogenic and/or symbiotic ways. Some classes of lipids actively determine the fate of the interactions. Host cuticle/cell wall/membrane components such as sphingolipids and oxylipins may contribute to determining the fate of host–pathogen interactions. In the present field study, we considered the relationship between specific sphingolipids and oxylipins of different hybrids of Zea mays and fumonisin by F. verticillioides, sampling ears at different growth stages from early dough to fully ripe. The amount of total and free fumonisin differed significantly between hybrids and increased significantly with maize ripening. Oxylipins and phytoceramides changed significantly within the hybrids and decreased with kernel maturation, starting from physiological maturity. Although the correlation between fumonisin accumulation and plant lipid profile is certain, the data collected so far cannot define a cause-effect relationship but open up new perspectives. Therefore, the question—“Does fumonisin alter plant lipidome or does plant lipidome modulate fumonisin accumulation?”—is still open. PMID:26378580

  6. Evidence for a Role for NAD(P)H Dehydrogenase in Concentration of CO2 in the Bundle Sheath Cell of Zea mays.

    PubMed

    Peterson, Richard B; Schultes, Neil P; McHale, Neil A; Zelitch, Israel

    2016-05-01

    Prior studies with Nicotiana and Arabidopsis described failed assembly of the chloroplastic NDH [NAD(P)H dehydrogenase] supercomplex by serial mutation of several subunit genes. We examined the properties of Zea mays leaves containing Mu and Ds insertions into nuclear gene exons encoding the critical o- and n-subunits of NDH, respectively. In vivo reduction of plastoquinone in the dark was sharply diminished in maize homozygous mutant compared to normal leaves but not to the extreme degree observed for the corresponding lesions in Arabidopsis. The net carbon assimilation rate (A) at high irradiance and saturating CO2 levels was reduced by one-half due to NDH mutation in maize although no genotypic effect was evident at very low CO2 levels. Simultaneous assessment of chlorophyll fluorescence and A in maize at low (2% by volume) and high (21%) O2 levels indicated the presence of a small, yet detectable, O2-dependent component of total linear photosynthetic electron transport in 21% O2 This O2-dependent component decreased with increasing CO2 level indicative of photorespiration. Photorespiration was generally elevated in maize mutant compared to normal leaves. Quantification of the proportion of total electron transport supporting photorespiration enabled estimation of the bundle sheath cell CO2 concentration (Cb) using a simple kinetic model of ribulose bisphosphate carboxylase/oxygenase function. The A versus Cb relationships overlapped for normal and mutant lines consistent with occurrence of strictly CO2-limited photosynthesis in the mutant bundle sheath cell. The results are discussed in terms of a previously reported CO2 concentration model [Laisk A, Edwards GE (2000) Photosynth Res 66: 199-224]. © 2016 American Society of Plant Biologists. All Rights Reserved.

  7. PDV2 has a dosage effect on chloroplast division in Arabidopsis.

    PubMed

    Chang, Ning; Sun, Qingqing; Li, Yiqiong; Mu, Yajuan; Hu, Jinglei; Feng, Yue; Liu, Xiaomin; Gao, Hongbo

    2017-03-01

    PDV2 has a dosage effect on chloroplast division in Arabidopsis thaliana , but this effect may vary in different plants. Chloroplasts have to be divided as plants grow to maintain an optimized number in the cell. Chloroplasts are divided by protein complexes across the double membranes from the stroma side to the cytosolic side. PDV2 is a chloroplast division protein on the chloroplast outer membrane. It recruits the dynamin-related GTPase ARC5 to the division site. The C-terminus of PDV2 and the C-terminus of ARC6 interact in the intermembrane space, which is important for the localization of PDV2. Previously, it was shown that overexpression of PDV2 can increase the division of chloroplasts in Arabidopsis and moss, so the authors concluded that PDV2 determines the rate of chloroplast division in land plants. PDV2 was also shown to inhibit the GTPase activity of ARC5 by in vitro experiment. These results look to be contradictory. Here, we identified a null allele of PDV2 in Arabidopsis and studied plants with different levels of PDV2. Our results suggested that the chloroplast division phenotype in Arabidopsis is sensitive to the level of PDV2, while this is not the case for ARC6. The level of PDV2 protein is reduced sharply in fast-growing leaves, while the level of ARC6 is not. The levels of PDV2 and ARC6 in several other plant species at different developmental stages were also investigated. The results indicated that their expression pattern varies in different species. Thus, PDV2 is an important positive factor of chloroplast division with an apparent dosage effect in Arabidopsis, but this effect for different chloroplast division proteins in different plants may vary.

  8. Enzymatic adaptations to arsenic-induced oxidative stress in Zea mays and genotoxic effect of arsenic in root tips of Vicia faba and Zea mays.

    PubMed

    Duquesnoy, Isabelle; Champeau, Gabrielle Marie; Evray, Germaine; Ledoigt, Gérard; Piquet-Pissaloux, Agnès

    2010-01-01

    Agronomic plant species may display physiological and biochemical responses to oxidative stress caused by heavy metals and metalloids. Zea mays plants were grown hydroponically for eight days at different concentrations of As (0, 134 and 668 μM) and at different pH (4, 7 and 9). Metabolic variations in response to As toxicity were measured using physiological parameters and antioxidant enzymatic activities. A significant decrease in SOD activity was observed in the leaves and roots of Z. mays with the majority of As treatments. As decreased G-POX activity less in leaves than in roots. An increase in the concentration of As increased APX activity in leaves and roots, except As(V) at pH 4 and pH 9 in the leaves and As(III) at pH 9 in the roots, when there was a significant decrease in APX activity at low As concentrations. After exposure to As(V), CAT activity was the same as in the control. As(III) led to an increase in CAT activity in leaves and to a decrease in roots. With increasing concentrations of As(III), CAT activity increased in both leaves and roots whatever the pH. To obtain more detailed knowledge on the effects of arsenate and arsenite exposure on Vicia faba and Z. mays, root meristems were also examined. Roots were fed hydroponically with 134, 334, 534 and 668 μM arsenate or arsenite and 4 × 10(-3)M of maleic hydrazide as positive control, at three different pH. Physiological parameters, the mitotic index and micronuclei frequencies were evaluated in root meristems. At all three pH, the highest As(V) and As(III) concentrations induced a substantial modification in root colour, increased root thickness with stiffening, and reduced root length. High concentrations also caused a significant decrease in the mitotic index, and micronucleus chromosomic aberrations were observed in the root meristems of both species. 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  9. Effects of growing conditions on purple corncob (Zea mays L.) anthocyanins.

    PubMed

    Jing, Pu; Noriega, Victor; Schwartz, Steven J; Giusti, M Mónica

    2007-10-17

    Purple corn ( Zea mays L.) has been used for centuries as a natural food colorant in South America and, more recently, in Asia and Europe. However, limited information is available on the factors affecting their anthocyanin concentration and profiles. In this study, 18 purple corn samples grown under different conditions in Peru were evaluated for quantitative and qualitative anthocyanin composition as well as total phenolics. High variability was observed on monomeric anthocyanin and phenolic contents with yields ranging from 290 to 1333 mg/100 g dry weight (DW) and from 950 to 3516 mg/100 g DW, respectively, while 30.5-47.1% of the total phenolics were anthocyanins. The major anthocyanins present were cyanidin-3-glucoside, pelargonidin-3-glucoside, peonidin-3-glucoside, cyanidin-3-maloylglucoside, pelargonidin-3-maloylglucoside, and peonidin-3-maloylglucoside, and 35.6-54.0% of the anthocyanins were acylated. Potassium sources/concentrations on the soil and seedling density did not significantly affect anthocyanin composition. The growing location affected anthocyanin levels and the percentage of anthocyanins to total phenolics ( p < 0.01) and should be taken into account when choosing a material for color production.

  10. Chelant-assisted phytoextraction and accumulation of Zn by Zea mays.

    PubMed

    Gheju, M; Stelescu, I

    2013-10-15

    Zea mays plants were exposed to soils with concentrations of Zn ranging from 64 to 1800 mg kg(-1) dw, and the efficiency of three selected chelating agents (trisodium citrate (CI), disodium oxalate (OX) and disodium dihydrogen ethylene-diamine-tetraacetate (EDTA)) in enhancing metal phytoextraction was compared. Zn concentration in plant tissues increased in conjunction with the metal concentration of the soil. EDTA was found to be the most efficient chelating amendment, increasing concentrations of Zn in shoots from 88 mg kg(-1) dw, at 64 mg kg(-1) dw soil, to 8026 mg kg(-1) dw at 1800 mg kg(-1) dw soil. The overall orders of BCFs and TFs which resulted from this study are: EDTA > H2O > OX > CI, and EDTANa2 > OX > CI > H2O, respectively. The more effective uptake of Zn by plants for the control treatment (distilled water only) than for CI and OX was attributed to the neutral or slightly alkaline pH of the two chelant irrigation solutions. Instead, EDTA had a favorable effect on Zn uptake from soil due to its additive chelating and acidifying properties. Among the three chelants, only EDTA significantly increased the Zn phytoextraction potential of Z. mays, while CI and OX induced a low metal uptake from soil by plants. Although Z. mays has a lower Zn accumulation capacity than the hyperaccumulator Thlaspi caerulescens, it could be considered as a potential phytoremediator of soils with elevated Zn concentrations, especially when metal pollution extends to depths greater than 20 cm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Elevated carbon dioxide reduces emission of herbivore-induced volatiles in Zea mays.

    PubMed

    Block, Anna; Vaughan, Martha M; Christensen, Shawn A; Alborn, Hans T; Tumlinson, James H

    2017-09-01

    Terpene volatiles produced by sweet corn (Zea mays) upon infestation with pests such as beet armyworm (Spodoptera exigua) function as part of an indirect defence mechanism by attracting parasitoid wasps; yet little is known about the impact of climate change on this form of plant defence. To investigate how a central component of climate change affects indirect defence, we measured herbivore-induced volatile emissions in plants grown under elevated carbon dioxide (CO 2 ). We found that S. exigua infested or elicitor-treated Z. mays grown at elevated CO 2 had decreased emission of its major sesquiterpene, (E)-β-caryophyllene and two homoterpenes, (3E)-4,8-dimethyl-1,3,7-nonatriene and (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene. In contrast, inside the leaves, elicitor-induced (E)-β-caryophyllene hyper-accumulated at elevated CO 2 , while levels of homoterpenes were unaffected. Furthermore, gene expression analysis revealed that the induction of terpene synthase genes following treatment was lower in plants grown at elevated CO 2 . Our data indicate that elevated CO 2 leads both to a repression of volatile synthesis at the transcriptional level and to limitation of volatile release through effects of CO 2 on stomatal conductance. These findings suggest that elevated CO 2 may alter the ability of Z. mays to utilize volatile terpenes to mediate indirect defenses. © 2017 John Wiley & Sons Ltd.

  12. Quantitative trait loci for maysin synthesis in maize (Zea mays L.) lines selected for high silk maysin content.

    PubMed

    Meyer, J D F; Snook, M E; Houchins, K E; Rector, B G; Widstrom, N W; McMullen, M D

    2007-06-01

    Maysin is a naturally occurring C-glycosyl flavone found in maize (Zea mays L.) silk tissue that confers resistance to corn earworm (Helicoverpa zea, Boddie). Recently, two new maize populations were derived for high silk maysin. The two populations were named the exotic populations of maize (EPM) and the southern inbreds of maize (SIM). Quantitative trait locus (QTL) analysis was employed to determine which loci were responsible for elevated maysin levels in inbred lines derived from the EPM and SIM populations. The candidate genes consistent with QTL position included the p (pericarp color), c2 (colorless2), whp1 (white pollen1) and in1 (intensifier1) loci. The role of these loci in controlling high maysin levels in silks was tested by expression analysis and use of the loci as genetic markers onto the QTL populations. These studies support p, c2 and whp1, but not in1, as loci controlling maysin. Through this study, we determined that the p locus regulates whp1 transcription and that increased maysin in these inbred lines was primarily due to alleles at both structural and regulatory loci promoting increased flux through the flavone pathway by increasing chalcone synthase activity.

  13. Ontogeny of the sheathing leaf base in maize (Zea mays).

    PubMed

    Johnston, Robyn; Leiboff, Samuel; Scanlon, Michael J

    2015-01-01

    Leaves develop from the shoot apical meristem (SAM) via recruitment of leaf founder cells. Unlike eudicots, most monocot leaves display parallel venation and sheathing bases wherein the margins overlap the stem. Here we utilized computed tomography (CT) imaging, localization of PIN-FORMED1 (PIN1) auxin transport proteins, and in situ hybridization of leaf developmental transcripts to analyze the ontogeny of monocot leaf morphology in maize (Zea mays). CT imaging of whole-mounted shoot apices illustrates the plastochron-specific stages during initiation of the basal sheath margins from the tubular disc of insertion (DOI). PIN1 localizations identify basipetal auxin transport in the SAM L1 layer at the site of leaf initiation, a process that continues reiteratively during later recruitment of lateral leaf domains. Refinement of these auxin transport domains results in multiple, parallel provascular strands within the initiating primordium. By contrast, auxin is transported from the L2 toward the L1 at the developing margins of the leaf sheath. Transcripts involved in organ boundary formation and dorsiventral patterning accumulate within the DOI, preceding the outgrowth of the overlapping margins of the sheathing leaf base. We suggest a model wherein sheathing bases and parallel veins are both patterned via the extended recruitment of lateral maize leaf domains from the SAM. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  14. The involvement of glucose-6-phosphatase in mucilage secretion by root cap cells of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.

    1985-01-01

    In order to determine the involvement of glucose-6-phosphatase in mucilage secretion by root cap cells, we have cytochemically localized the enzyme in columella and peripheral cells of root caps of Zea mays. Glucose-6-phosphatase is associated with the plasmalemma and cell wall of columella cells. As columella cells differentiate into peripheral cells and begin to produce and secrete mucilage, glucose-6-phosphatase staining intensifies and becomes associated with the mucilage and, to a lesser extent, the cell wall. Cells being sloughed from the cap are characterized by glucose-6-phosphatase staining being associated with the vacuole and plasmalemma. These changes in enzyme localization during cellular differentiation in root caps suggest that glucose-6-phosphatase is involved in the production and/or secretion of mucilage by peripheral cells of Z. mays.

  15. Transient foreign gene expression in chloroplasts of cultured tobacco cells after biolistic delivery of chloroplast vectors.

    PubMed Central

    Daniell, H; Vivekananda, J; Nielsen, B L; Ye, G N; Tewari, K K; Sanford, J C

    1990-01-01

    Expression of chloramphenicol acetyltransferase (cat) by suitable vectors in chloroplasts of cultured tobacco cells, delivered by high-velocity microprojectiles, is reported here. Several chloroplast expression vectors containing bacterial cat genes, placed under the control of either psbA promoter region from pea (pHD series) or rbcL promoter region from maize (pAC series) have been used in this study. In addition, chloroplast expression vectors containing replicon fragments from pea, tobacco, or maize chloroplast DNA have also been tested for efficiency and duration of cat expression in chloroplasts of tobacco cells. Cultured NT1 tobacco cells collected on filter papers were bombarded with tungsten particles coated with pUC118 (negative control), 35S-CAT (nuclear expression vector), pHD312 (repliconless chloroplast expression vector), and pHD407, pACp18, and pACp19 (chloroplast expression vectors with replicon). Sonic extracts of cells bombarded with pUC118 showed no detectable cat activity in the autoradiograms. Nuclear expression of cat reached two-thirds of the maximal 48 hr after bombardment and the maximal at 72 hr. Cells bombarded with chloroplast expression vectors showed a low level of expression until 48 hr of incubation. A dramatic increase in the expression of cat was observed 24 hr after the addition of fresh medium to cultured cells in samples bombarded with pHD407; the repliconless vector pHD312 showed about 50% of this maximal activity. The expression of nuclear cat and the repliconless chloroplast vector decreased after 72 hr, but a high level of chloroplast cat expression was maintained in cells bombarded with pHD407. Organelle-specific expression of cat in appropriate compartments was checked by introducing various plasmid constructions into tobacco protoplasts by electroporation. Although the nuclear expression vector 35S-CAT showed expression of cat, no activity was observed with any chloroplast vectors. Images PMID:2404285

  16. Transient foreign gene expression in chloroplasts of cultured tobacco cells after biolistic delivery of chloroplast vectors.

    PubMed

    Daniell, H; Vivekananda, J; Nielsen, B L; Ye, G N; Tewari, K K; Sanford, J C

    1990-01-01

    Expression of chloramphenicol acetyltransferase (cat) by suitable vectors in chloroplasts of cultured tobacco cells, delivered by high-velocity microprojectiles, is reported here. Several chloroplast expression vectors containing bacterial cat genes, placed under the control of either psbA promoter region from pea (pHD series) or rbcL promoter region from maize (pAC series) have been used in this study. In addition, chloroplast expression vectors containing replicon fragments from pea, tobacco, or maize chloroplast DNA have also been tested for efficiency and duration of cat expression in chloroplasts of tobacco cells. Cultured NT1 tobacco cells collected on filter papers were bombarded with tungsten particles coated with pUC118 (negative control), 35S-CAT (nuclear expression vector), pHD312 (repliconless chloroplast expression vector), and pHD407, pACp18, and pACp19 (chloroplast expression vectors with replicon). Sonic extracts of cells bombarded with pUC118 showed no detectable cat activity in the autoradiograms. Nuclear expression of cat reached two-thirds of the maximal 48 hr after bombardment and the maximal at 72 hr. Cells bombarded with chloroplast expression vectors showed a low level of expression until 48 hr of incubation. A dramatic increase in the expression of cat was observed 24 hr after the addition of fresh medium to cultured cells in samples bombarded with pHD407; the repliconless vector pHD312 showed about 50% of this maximal activity. The expression of nuclear cat and the repliconless chloroplast vector decreased after 72 hr, but a high level of chloroplast cat expression was maintained in cells bombarded with pHD407. Organelle-specific expression of cat in appropriate compartments was checked by introducing various plasmid constructions into tobacco protoplasts by electroporation. Although the nuclear expression vector 35S-CAT showed expression of cat, no activity was observed with any chloroplast vectors.

  17. Calcium-regulated in vivo protein phosphorylation in Zea mays L. root tips

    NASA Technical Reports Server (NTRS)

    Raghothama, K. G.; Reddy, A. S.; Friedmann, M.; Poovaiah, B. W.

    1987-01-01

    Calcium dependent protein phosphorylation was studied in corn (Zea mays L.) root tips. Prior to in vivo protein phosphorylation experiments, the effect of calcium, ethyleneglycol-bis-(beta-aminoethyl ether)-N-N' -tetraacetic acid (EGTA) and calcium ionophore (A-23187) on phosphorus uptake was studied. Calcium increased phosphorus uptake, whereas EGTA and A-23187 decreased it. Consequently, phosphorus concentration in the media was adjusted so as to attain similar uptake in different treatments. Phosphoproteins were analyzed by two-dimensional gel electrophoresis. Distinct changes in phosphorylation were observed following altered calcium levels. Calcium depletion in root tips with EGTA and A-23187 decreased protein phosphorylation. However, replenishment of calcium following EGTA and ionophore pretreatment enhanced phosphorylation of proteins. Preloading of the root tips with 32P in the presence of EGTA and A-23187 followed by a ten minute calcium treatment, resulted in increased phosphorylation indicating the involvement of calcium, calcium and calmodulin-dependent kinases. Calmodulin antagonist W-7 was effective in inhibiting calcium-promoted phosphorylation. These studies suggest a physiological role for calcium-dependent phosphorylation in calcium-mediated processes in plants.

  18. Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria.

    PubMed

    Moreira, Helena; Marques, Ana P G C; Franco, Albina R; Rangel, António O S S; Castro, Paula M L

    2014-01-01

    Zea mays (L.) is a crop widely cultivated throughout the world and can be considered suitable for phytomanagement due to its metal resistance and energetic value. In this study, the effect of two plant growth-promoting rhizobacteria, Ralstonia eutropha and Chryseobacterium humi, on growth and metal uptake of Z. mays plants in soils contaminated with up to 30 mg Cd kg(-1) was evaluated. Bacterial inoculation increased plant biomass up to 63% and led to a decrease of up to 81% in Cd shoot levels (4-88 mg Cd kg(-1)) and to an increase of up to 186% in accumulation in the roots (52-134 mg Cd kg(-1)). The rhizosphere community structure changed throughout the experiment and varied with different levels of Cd soil contamination, as revealed by molecular biology techniques. Z. mays plants inoculated with either of the tested strains may have potential application in a strategy of soil remediation, in particular short-term phytostabilization, coupled with biomass production for energy purposes.

  19. Induction of glutathione S-Transferase in Helicoverpa zea fed cashew flour.

    USDA-ARS?s Scientific Manuscript database

    H. zea and other insects have evolved strategies to counteract the plant protective proteins and defensive compounds they may encounter during feeding. We sought to take advantage of this phenomenon by identifying proteins upregulated in H. zea in response to the inclusion of cashew nut flour in th...

  20. Spatio-temporal diversification of the cell wall matrix materials in the developing stomatal complexes of Zea mays.

    PubMed

    Giannoutsou, E; Apostolakos, P; Galatis, B

    2016-11-01

    The matrix cell wall materials, in developing Zea mays stomatal complexes are asymmetrically distributed, a phenomenon appearing related to the local cell wall expansion and deformation, the establishment of cell polarity, and determination of the cell division plane. In cells of developing Zea mays stomatal complexes, definite cell wall regions expand determinately and become locally deformed. This differential cell wall behavior is obvious in the guard cell mother cells (GMCs) and the subsidiary cell mother cells (SMCs) that locally protrude towards the adjacent GMCs. The latter, emitting a morphogenetic stimulus, induce polarization/asymmetrical division in SMCs. Examination of immunolabeled specimens revealed that homogalacturonans (HGAs) with a high degree of de-esterification (2F4- and JIM5-HGA epitopes) and arabinogalactan proteins are selectively distributed in the extending and deformed cell wall regions, while their margins are enriched with rhamnogalacturonans (RGAs) containing highly branched arabinans (LM6-RGA epitope). In SMCs, the local cell wall matrix differentiation constitutes the first structural event, indicating the establishment of cell polarity. Moreover, in the premitotic GMCs and SMCs, non-esterified HGAs (2F4-HGA epitope) are preferentially localized in the cell wall areas outlining the cytoplasm where the preprophase band is formed. In these areas, the forthcoming cell plate fuses with the parent cell walls. These data suggest that the described heterogeneity in matrix cell wall materials is probably involved in: (a) local cell wall expansion and deformation, (b) the transduction of the inductive GMC stimulus, and (c) the determination of the division plane in GMCs and SMCs.

  1. The maize (Zea mays ssp. mays var. B73) genome encodes 33 members of the purple acid phosphatase family

    PubMed Central

    González-Muñoz, Eliécer; Avendaño-Vázquez, Aida-Odette; Montes, Ricardo A. Chávez; de Folter, Stefan; Andrés-Hernández, Liliana; Abreu-Goodger, Cei; Sawers, Ruairidh J. H.

    2015-01-01

    Purple acid phosphatases (PAPs) play an important role in plant phosphorus nutrition, both by liberating phosphorus from organic sources in the soil and by modulating distribution within the plant throughout growth and development. Furthermore, members of the PAP protein family have been implicated in a broader role in plant mineral homeostasis, stress responses and development. We have identified 33 candidate PAP encoding gene models in the maize (Zea mays ssp. mays var. B73) reference genome. The maize Pap family includes a clear single-copy ortholog of the Arabidopsis gene AtPAP26, shown previously to encode both major intracellular and secreted acid phosphatase activities. Certain groups of PAPs present in Arabidopsis, however, are absent in maize, while the maize family contains a number of expansions, including a distinct radiation not present in Arabidopsis. Analysis of RNA-sequencing based transcriptome data revealed accumulation of maize Pap transcripts in multiple plant tissues at multiple stages of development, and increased accumulation of specific transcripts under low phosphorus availability. These data suggest the maize PAP family as a whole to have broad significance throughout the plant life cycle, while highlighting potential functional specialization of individual family members. PMID:26042133

  2. A morphometric analysis of the redistribution of organelles in columella cells of horizontally-oriented roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1986-01-01

    In order to determine what structural changes in graviperceptive cells are associated with onset of root gravicurvature, the redistribution of organelles in columella cells of horizontally-oriented, graviresponding roots of Zea mays has been quantified. Root gravicurvature began by 15 min after reorientation, and did not involve significant changes in the (i) volume of individual columella cells or amyloplasts, (ii) relative volume of any cellular organelle, (iii) number of amyloplasts per columella cell, or (iv) surface area of cellular location of endoplasmic reticulum. Sedimentation of amyloplasts began within 1 to 2 min after reorientation, and was characterized by an intensely staining area of cytoplasm adjacent to the sedimenting amyloplasts. By 5 min after reorientation, amyloplasts were located in the lower distal corner of columella cells, and, by 15 min after reorientation, overlaid the entire length of the lower cell wall. No consistent contact between amyloplasts and any cellular structure was detected at any stage of gravicurvature. Centrally-located nuclei initially migrated upward in columella cells of horizontally-oriented roots, after which they moved to the proximal ends of the cells by 15 min after reorientation. No significant pattern of redistribution of vacuoles, mitochondria, dictyosomes, or hyaloplasm was detected that correlated with the onset of gravicurvature. These results indicate that amyloplasts and nuclei are the only organelles whose movements correlate positively with the onset of gravicurvature by primary roots of this cultivar of Zea mays.

  3. Final report of the safety assessment of cosmetic ingredients derived from Zea mays (corn).

    PubMed

    Andersen, F Alan; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W

    2011-05-01

    Many cosmetic ingredients are derived from Zea mays (corn). While safety test data were not available for most ingredients, similarities in preparation and the resulting similar composition allowed extrapolation of safety data to all listed ingredients. Animal studies included acute toxicity, ocular and dermal irritation studies, and dermal sensitization studies. Clinical studies included dermal irritation and sensitization. Case reports were available for the starch as used as a donning agent in medical gloves. Studies of many other endpoints, including reproductive and developmental toxicity, use corn oil as a vehicle control with no reported adverse effects at levels used in cosmetics. While industry should continue limiting ingredient impurities such as pesticide residues before blending into a cosmetic formulation, the CIR Expert Panel determined that corn-derived ingredients are safe for use in cosmetics in the practices of use and concentration described in the assessment.

  4. Oxidative damage and cell-programmed death induced in Zea mays L. by allelochemical stress.

    PubMed

    Ciniglia, Claudia; Mastrobuoni, Francesco; Scortichini, Marco; Petriccione, Milena

    2015-05-01

    The allelochemical stress on Zea mays was analyzed by using walnut husk washing waters (WHWW), a by-product of Juglans regia post-harvest process, which possesses strong allelopathic potential and phytotoxic effects. Oxidative damage and cell-programmed death were induced by WHWW in roots of maize seedlings. Treatment induced ROS burst, with excess of H2O2 content. Enzymatic activities of catalase were strongly increased during the first hours of exposure. The excess in malonildialdehyde following exposure to WHWW confirmed that oxidative stress severely damaged maize roots. Membrane alteration caused a decrease in NADPH oxidase activity along with DNA damage as confirmed by DNA laddering. The DNA instability was also assessed through sequence-related amplified polymorphism assay, thus suggesting the danger of walnut processing by-product and focusing the attention on the necessity of an efficient treatment of WHWW.

  5. Cytochemical localization of calcium in cap cells of primary roots of Zea mays L

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1985-01-01

    The cellular distribution of Ca in caps of primary roots of Zea mays was examined during the onset and early stages of gravicurvature to determine its possible role in root gravitropism. Staining becomes associated with the portion of the cell wall adjacent to the distal end of the cell after five minutes, and persists throughout the onset of gravicurvature. The outermost peripheral cells of roots oriented horizontally and vertically secrete Ca through plasmodesmata-like channels in their cell walls. Data suggest that Ca is not transported laterally through the columella tissue,but rather that the movement of Ca to the lower side of caps of horizontally-oriented roots is at least partially through and/or on the mucilage of the cap, and via an electrochemical gradient. An important role in root gravitropism is indicated for Ca secretion by peripheral cells.

  6. Mutational Dynamics of Aroid Chloroplast Genomes

    PubMed Central

    Ahmed, Ibrar; Biggs, Patrick J.; Matthews, Peter J.; Collins, Lesley J.; Hendy, Michael D.; Lockhart, Peter J.

    2012-01-01

    A characteristic feature of eukaryote and prokaryote genomes is the co-occurrence of nucleotide substitution and insertion/deletion (indel) mutations. Although similar observations have also been made for chloroplast DNA, genome-wide associations have not been reported. We determined the chloroplast genome sequences for two morphotypes of taro (Colocasia esculenta; family Araceae) and compared these with four publicly available aroid chloroplast genomes. Here, we report the extent of genome-wide association between direct and inverted repeats, indels, and substitutions in these aroid chloroplast genomes. We suggest that alternative but not mutually exclusive hypotheses explain the mutational dynamics of chloroplast genome evolution. PMID:23204304

  7. Chloroplast precursor proteins compete to form early import intermediates in isolated pea chloroplasts.

    PubMed

    Row, P E; Gray, J C

    2001-01-01

    In order to ascertain whether there is one site for the import of precursor proteins into chloroplasts or whether different precursor proteins are imported via different import machineries, chloroplasts were incubated with large quantities of the precursor of the 33 kDa subunit of the oxygen-evolving complex (pOE33) or the precursor of the light-harvesting chlorophyll a/b-binding protein (pLHCP) and tested for their ability to import a wide range of other chloroplast precursor proteins. Both pOE33 and pLHCP competed for import into chloroplasts with precursors of the stromally-targeted small subunit of Rubisco (pSSu), ferredoxin NADP(+) reductase (pFNR) and porphobilinogen deaminase; the thylakoid membrane proteins LHCP and the Rieske iron-sulphur protein (pRieske protein); ferrochelatase and the gamma subunit of the ATP synthase (which are both associated with the thylakoid membrane); the thylakoid lumenal protein plastocyanin and the phosphate translocator, an integral membrane protein of the inner envelope. The concentrations of pOE33 or pLHCP required to cause half-maximal inhibition of import ranged between 0.2 and 4.9 microM. These results indicate that all of these proteins are imported into the chloroplast by a common import machinery. Incubation of chloroplasts with pOE33 inhibited the formation of early import intermediates of pSSu, pFNR and pRieske protein.

  8. Determination of stress responses induced by aluminum in maize (Zea mays).

    PubMed

    Vardar, Filiz; Ismailoğlu, Işil; Inan, Deniz; Unal, Meral

    2011-06-01

    To assess the alternative responses to aluminum toxicity, maize (Zea mays L. cv Karadeniz yıldızı) roots were exposed to different concentrations of AlCl3 (150, 300 and 450 μM). Aluminum reduced the root elongation by 39.6% in 150 μM, 44.1% in 300 μM, 50.1% in 450 μM AlCl3 after 96 h period. To correlate the root elongation with the alternative stress responses including aluminum accumulation, lipid peroxidation, mitotic abnormalities, reduction of starch content, intracellular Ca2+ accumulation, callose formation, lignin deposition and peroxidase activity, cytochemical and biochemical tests were performed. The results indicated that aluminum accumulation and lipid peroxidation were observed more densely on the root cap and the outer cortex cells. In addition to morphological deformations, cytochemical analysis displayed cellular deformations. Furthermore, mitotic abnormalities were observed such as c-mitosis, micronuclei, bi- and trinucleated cells in aluminum treated root tips. Aluminum treatment induced starch reduction, callose formation, lignin accumulation and intracellular Ca2+ increase. Moreover, the peroxidase activity increased significantly by 3, 4.4 and 7.7 times higher than in that of control after 96 h, respectively. In conclusion, aluminum is significantly stressful in maize culminating in morphological and cellular alterations.

  9. Morphometric analysis of epidermal differentiation in primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; Smith, H. S.

    1990-01-01

    Epidermal differentiation in primary roots of Zea mays was divided into six cell types based on cellular shape and cytoplasmic appearance. These six cell types are: 1) apical protoderm, located at the tip of the root pole and characterized by periclinally flattened cells; 2) cuboidal protoderm, located approximately 230 microns from the root pole and characterized by cuboidal cells; 3) tabular epidermis, located approximately 450 microns from the root pole and characterized by anticlinally flattened cells; 4) cuboidal epidermis, located approximately 900 microns from the root pole and characterized by cuboidal cells having numerous small vacuoles; 5) vacuolate cuboidal epidermis, located approximately 1,500 microns from the root pole and characterized by cuboidal cells containing several large vacuoles; and 6) columnar epidermis, located approximately 2,200 microns from the root pole (i.e., at the beginning of the zone of elongation) and characterized by elongated cells. We also used stereology to quantify the cellular changes associated with epidermal differentiation. The quiescent center and the apical protoderm have significantly different ultrastructures. The relative volume of dictyosomes increases dramatically during the early stages of epidermal differentiation. This increase correlates inversely with the amount of coverage provided by the root cap and mucilage.

  10. Phytochemical screening, total phenolic content and phytotoxic activity of corn (Zea mays) extracts against some indicator species.

    PubMed

    Ahmed, Hiwa M

    2018-03-01

    Allelopathic effects of corn (Zea mays) extracts was studied, against seed germination and seedling growth of Phalaris minor, Helianthus annuus, Triticumaestivum, Sorghum halepense, Z. mays. Bioassay results showed that aqueous extracts of corn root and shoot, markedly affected seed germination, and other parameters compared with related controls. Preliminary phytochemical screening revealed the presence of various phytochemicals such as tannins, phlobatannins, flavonoids, terpenoids and alkaloids in both roots and shoot aqueous extracts. However, saponins were only present in the shoot aqueous extract, while in shoot ethanol extracts, only terpenoids and alkaloids were detected. Additionally, total polyphenolic (TPC) content in aqueous extracts of corn root and shoot, plus ethanol extracts of corn shoot were determined using an Ultraviolet-visible spectroscopy. Results revealed TPC content of the corn shoot aqueous extract showed the highest yield, compared to other extracts. These findings suggest that phytochemicals present in Z. mays extracts may contribute to allelopathy effect.

  11. Salmon silk genes contribute to the elucidation of the flavone pathway in maize (Zea mays L.).

    PubMed

    McMullen, M D; Kross, H; Snook, M E; Cortés-Cruz, M; Houchins, K E; Musket, T A; Coe, E H

    2004-01-01

    We utilized maize (Zea mays L.) lines expressing the salmon silk (sm) phenotype, quantitative trait locus analysis, and analytical chemistry of flavone compounds to establish the order of undefined steps in the synthesis of the flavone maysin in maize silks. In addition to the previously described sm1 gene, we identified a second sm locus, which we designate sm2, located on the long arm of maize chromosome 2. Our data indicate that the sm1 gene encodes or controls a glucose modification enzyme and sm2 encodes or controls a rhamnosyl transferase. The order of intermediates in the late steps of maysin synthesis was established as luteolin --> isoorientin --> rhamnosylisoorientin --> maysin. Copyright 2004 The American Genetic Association

  12. A gradient of endogenous calcium forms in mucilage of graviresponding roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; Fondren, W. M.

    1988-01-01

    Agar blocks that contacted the upper sides of tips of horizontally-oriented roots of Zea mays contain significantly less calcium (Ca) than blocks that contacted the lower sides of such roots. This gravity-induced gradient of Ca forms prior to the onset of gravicurvature, and does not form across tips of vertically-oriented roots or roots of agravitropic mutants. These results indicate that (1) Ca can be collected from mucilage of graviresponding roots, (2) gravity induces a downward movement of endogenous Ca in mucilage overlying the root tip, (3) this gravity-induced gradient of Ca does not form across tips of agravitropic roots, and (4) formation of a Ca gradient is not a consequence of gravicurvature. These results are consistent with gravity-induced movement of Ca being a trigger for subsequent redistribution of growth effectors (e.g. auxin) that induce differential growth and gravicurvature.

  13. Collection of gravitropic effectors from mucilage of electrotropically-stimulated roots of Zea mays L

    NASA Technical Reports Server (NTRS)

    Fondren, W. M.; Moore, R.

    1987-01-01

    We placed agar blocks adjacent to tips of electrotropically stimulated primary roots of Zea mays. Blocks placed adjacent to the anode-side of the roots for 3 h induced significant curvature when subsequently placed asymmetrically on tips of vertically-oriented roots. Curvature was always toward the side of the root unto which the agar block was placed. Agar blocks not contacting roots and blocks placed adjacent to the cathode-side of electrotropically stimulated roots did not induce significant curvature when placed asymmetrically on tips of vertically-oriented roots. Atomic absorption spectrophotometry indicated that blocks adjacent to the anode-side of electrotropically-stimulated roots contained significantly more calcium than (1) blocks not contacting roots, and (2) blocks contacting the cathode-side of roots. These results demonstrate the presence of a gradient of endogenous Ca in mucilage of electrotropically-stimulated roots (i.e. roots undergoing gravitropic-like curvature).

  14. Depth Profiles in Maize ( Zea mays L.) Seeds Studied by Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hernández-Aguilar, C.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Zepeda-Bautista, R.

    2015-06-01

    Photoacoustic spectroscopy (PAS) has been used to analyze agricultural seeds and can be applied to the study of seed depth profiles of these complex samples composed of different structures. The sample depth profile can be obtained through the photoacoustic (PA) signal, amplitude, and phase at different light modulation frequencies. The PA signal phase is more sensitive to changes of thermal properties in layered samples than the PA signal amplitude. Hence, the PA signal phase can also be used to characterize layers at different depths. Thus, the objective of the present study was to obtain the optical absorption spectra of maize seeds ( Zea mays L.) by means of PAS at different light modulation frequencies (17 Hz, 30 Hz, and 50 Hz) and comparing these spectra with the ones obtained from the phase-resolved method in order to separate the optical absorption spectra of seed pericarp and endosperm. The results suggest the possibility of using the phase-resolved method to obtain optical absorption spectra of different seed structures, at different depths, without damaging the seed. Thus, PAS could be a nondestructive method for characterization of agricultural seeds and thus improve quality control in the food industry.

  15. The demise of chloroplast DNA in Arabidopsis.

    PubMed

    Rowan, Beth A; Oldenburg, Delene J; Bendich, Arnold J

    2004-09-01

    Although it might be expected that chloroplast DNA (cpDNA) would be stably maintained in mature leaves, we report the surprising observation that cpDNA levels decline during plastid development in Arabidopsis thaliana (Col.) until most of the leaves contain little or no DNA long before the onset of senescence. We measured the cpDNA content in developing cotyledons, rosette leaves, and cauline leaves. The amount of cpDNA per chloroplast decreases as the chloroplasts develop, reaching undetectable levels in mature leaves. In young cauline leaves, most individual molecules of cpDNA are found in complex, branched forms. In expanded cauline leaves, cpDNA is present in smaller branched forms only at the base of the leaf and is virtually absent in the distal part of the leaf. We conclude that photosynthetic activity may persist long after the demise of the cpDNA. Copyright 2004 Springer-Verlag

  16. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    NASA Technical Reports Server (NTRS)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  17. Development of accelerated net nitrate uptake. [Zea mays L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacKown, C.T.; McClure, P.R.

    1988-05-01

    Upon initial nitrate exposure, net nitrate uptake rates in roots of a wide variety of plants accelerate within 6 to 8 hours to substantially greater rates. Effects of solution nitrate concentrations and short pulses of nitrate ({le}1 hour) upon nitrate-induced acceleration of nitrate uptake in maize (Zea mays L.) were determined. Root cultures of dark-grown seedlings, grown without nitrate, were exposed to 250 micromolar nitrate for 0.25 to 1 hour or to various solution nitrate concentration (10-250 micromolar) for 1 hour before returning them to a nitrate-free solution. Net nitrate uptake rates were assayed at various periods following nitrate exposuremore » and compared to rates of roots grown either in the absence of nitrate (CaSO{sub 4}-grown) or with continuous nitrate for at least 20 hours. Three hours after initial nitrate exposure, nitrate pulse treatments increased nitrate uptake rates three- to four-fold compared to the rates of CaSO{sub 4}-grown roots. When cycloheximide (5 micrograms per milliliter) was included during a 1-hour pulse with 250 micromolar nitrate, development of the accelerated nitrate uptake state was delayed. Otherwise, nitrate uptake rates reached maximum values within 6 hours before declining. Maximum rates, however, were significantly less than those of roots exposed continuously for 20, 32, or 44 hours. Pulsing for only 0.25 hour with 250 micromolar nitrate and for 1 hour with 10 micromolar caused acceleration of nitrate uptake, but the rates attained were either less than or not sustained for a duration comparable to those of roots pulsed for 1 hour with 250 micromolar nitrate. These results indicate that substantial development of nitrate-induced accelerated nitrate uptake state can be achieved by small endogenous accumulations of nitrate, which appear to moderate the activity or level of root nitrate uptake.« less

  18. The influence of gravity on the formation of amyloplasts in columella cells of Zea mays L

    NASA Technical Reports Server (NTRS)

    Moore, R.; Fondren, W. M.; Koon, E. C.; Wang, C. L.

    1986-01-01

    Columella (i.e., putative graviperceptive) cells of Zea mays seedlings grown in the microgravity of outer space allocate significantly less volume to putative statoliths (amyloplasts) than do columella cells of Earth-grown seedlings. Amyloplasts of flight-grown seedlings are significantly smaller than those of ground controls, as is the average volume of individual starch grains. Similarly, the relative volume of starch in amyloplasts in columella cells of flight-grown seedlings is significantly less than that of Earth-grown seedlings. Microgravity does not significantly alter the volume of columella cells, the average number of amyloplasts per columella cell, or the number of starch grains per amyloplast. These results are discussed relative to the influence of gravity on cellular and organellar structure.

  19. Chloroplast Phosphofructokinase

    PubMed Central

    Kelly, Grahame J.; Latzko, Erwin

    1977-01-01

    Chloroplast phosphofructokinase from spinach (Spinacia oleracea L.) was purified approximately 40-fold by a combination of fractionations with ammonium sulfate and acetone followed by chromatography on DEAE-Sephadex A-50. Positive cooperative kinetics was observed for the interaction between the enzyme and the substrate fructose 6-phosphate. The optimum pH shifted from 7.7 toward 7.0 as the fructose 6-phosphate concentration was taken below 0.5 mm. The second substrate was MgATP2− (Michaelis constant 30 μm). Free ATP inhibited the enzyme. Chloroplast phosphofructokinase was sensitive to inhibition by low concentration of phosphoenolpyruvate and glycolate 2-phosphate (especially at higher pH); these compounds inhibited in a positively cooperative fashion. Inhibitions by glycerate 2-phosphate (and probably glycerate 3-phosphate), citrate, and inorganic phosphate were also recorded; however, inorganic phosphate effectively relieved the inhibitions by phosphoenolpyruvate and glycolate 2-phosphate. These regulatory properties are considered to complement those of ADP-glucose pyrophosphorylase and fructosebisphosphatase in the regulation of chloroplast starch metabolism. PMID:16660079

  20. The evolutionary fate of the chloroplast and nuclear rps16 genes as revealed through the sequencing and comparative analyses of four novel legume chloroplast genomes from Lupinus

    PubMed Central

    Keller, J.; Rousseau-Gueutin, M.; Martin, G.E.; Morice, J.; Boutte, J.; Coissac, E.; Ourari, M.; Aïnouche, M.; Salmon, A.; Cabello-Hurtado, F.

    2017-01-01

    Abstract The Fabaceae family is considered as a model system for understanding chloroplast genome evolution due to the presence of extensive structural rearrangements, gene losses and localized hypermutable regions. Here, we provide sequences of four chloroplast genomes from the Lupinus genus, belonging to the underinvestigated Genistoid clade. Notably, we found in Lupinus species the functional loss of the essential rps16 gene, which was most likely replaced by the nuclear rps16 gene that encodes chloroplast and mitochondrion targeted RPS16 proteins. To study the evolutionary fate of the rps16 gene, we explored all available plant chloroplast, mitochondrial and nuclear genomes. Whereas no plant mitochondrial genomes carry an rps16 gene, many plants still have a functional nuclear and chloroplast rps16 gene. Ka/Ks ratios revealed that both chloroplast and nuclear rps16 copies were under purifying selection. However, due to the dual targeting of the nuclear rps16 gene product and the absence of a mitochondrial copy, the chloroplast gene may be lost. We also performed comparative analyses of lupine plastomes (SNPs, indels and repeat elements), identified the most variable regions and examined their phylogenetic utility. The markers identified here will help to reveal the evolutionary history of lupines, Genistoids and closely related clades. PMID:28338826

  1. Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects

    PubMed Central

    Kota, Madhuri; Daniell, Henry; Varma, Sam; Garczynski, Stephen F.; Gould, Fred; Moar, William J.

    1999-01-01

    Evolving levels of resistance in insects to the bioinsecticide Bacillus thuringiensis (Bt) can be dramatically reduced through the genetic engineering of chloroplasts in plants. When transgenic tobacco leaves expressing Cry2Aa2 protoxin in chloroplasts were fed to susceptible, Cry1A-resistant (20,000- to 40,000-fold) and Cry2Aa2-resistant (330- to 393-fold) tobacco budworm Heliothis virescens, cotton bollworm Helicoverpa zea, and the beet armyworm Spodoptera exigua, 100% mortality was observed against all insect species and strains. Cry2Aa2 was chosen for this study because of its toxicity to many economically important insect pests, relatively low levels of cross-resistance against Cry1A-resistant insects, and its expression as a protoxin instead of a toxin because of its relatively small size (65 kDa). Southern blot analysis confirmed stable integration of cry2Aa2 into all of the chloroplast genomes (5,000–10,000 copies per cell) of transgenic plants. Transformed tobacco leaves expressed Cry2Aa2 protoxin at levels between 2% and 3% of total soluble protein, 20- to 30-fold higher levels than current commercial nuclear transgenic plants. These results suggest that plants expressing high levels of a nonhomologous Bt protein should be able to overcome or at the very least, significantly delay, broad spectrum Bt-resistance development in the field. PMID:10051556

  2. Computer modeling of electron and proton transport in chloroplasts.

    PubMed

    Tikhonov, Alexander N; Vershubskii, Alexey V

    2014-07-01

    chloroplasts and lateral heterogeneity of lamellar system of thylakoids. The lateral profiles of pH in the thylakoid lumen and in the narrow gap between grana thylakoids have been calculated under different metabolic conditions. Analyzing topological aspects of diffusion-controlled stages of electron and proton transport in chloroplasts, we conclude that along with the NPQ mechanism of attenuation of PSII activity and deceleration of PQH2 oxidation by the cytochrome b6f complex caused by the lumen acidification, the intersystem electron transport may be down-regulated due to the light-induced alkalization of the narrow partition between adjacent thylakoids of grana. The computer models of electron and proton transport described in this article may be integrated as appropriate modules into a comprehensive model of oxygenic photosynthesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Some physical properties of teosinte (Zea mays subsp. parviglumis) pollen.

    PubMed

    Aylor, Donald E; Baltazar, Baltazar M; Schoper, John B

    2005-09-01

    In parts of the world where teosinte and maize are grown in close proximity, there is concern about gene flow between them. Pollen is the primary vehicle for gene flow. Quantifying the biophysical properties of pollen, such as its settling speed and dehydration rate, is important for evaluating outcrossing potential. These properties were measured for teosinte (Zea mays subsp. parviglumis) pollen. Pollen was found to have an average settling speed of 0.165 m s(-1), which agrees well with theoretical values based on the size of the pollen grains. The conductance of the pollen wall for water was derived from the time rate of change of pollen grain size and gave an average conductance of 3.42x10(-4) m s(-1). Water potential, psi, of teosinte pollen was determined at various values of relative water content (dry-weight basis), theta, by using a thermocouple psychrometer and by allowing samples of pollen to come to vapour equilibrium with various saturated salt solutions. Non-linear regression analysis of the data yielded psi (MPa) = -4.13 theta(-1.23) (r2=0.77). Results for conductance and psi were incorporated into a model equation for the rate of water loss from pollen grains, which yielded results that agreed well (r2=0.96) with observations of water loss from pollen grains in air. The data reported here are important building blocks in a model of teosinte pollen movement and should be helpful in establishing the main factors influencing the degree and the direction of pollination between teosinte populations and between maize and teosinte.

  4. Sugar Efflux from Maize (Zea mays L.) Pedicel Tissue 1

    PubMed Central

    Porter, Gregory A.; Knievel, Daniel P.; Shannon, Jack C.

    1985-01-01

    Sugar release from the pedicel tissue of maize (Zea mays L.) kernels was studied by removing the distal portion of the kernel and the lower endosperm, followed by replacement of the endosperm with an agar solute trap. Sugars were unloaded into the apoplast of the pedicel and accumulated in the agar trap while the ear remained attached to the maize plant. The kinetics of 14C-assimilate movement into treated versus intact kernels were comparable. The rate of unloading declined with time, but sugar efflux from the pedicel continued for at least 6 hours and in most experiments the unloading rates approximated those necessary to support normal kernel growth rates. The unloading process was challenged with a variety of buffers, inhibitors, and solutes in order to characterize sugar unloading from this tissue. Unloading was not affected by apoplastic pH or a variety of metabolic inhibitors. Although p-chloromercuribenzene sulfonic acid (PCMBS), a nonpenetrating sulfhydryl group reagent, did not affect sugar unloading, it effectively inhibited extracellular acid invertase. When the pedicel cups were pretreated with PCMBS, at least 60% of sugars unloaded from the pedicel could be identified as sucrose. Unloading was inhibited up to 70% by 10 millimolar CaCl2. Unloading was stimulated by 15 millimolar ethyleneglycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid which partially reversed the inhibitory effects of Ca2+. Based on these results, we suggest that passive efflux of sucrose occurs from the maize pedicel symplast followed by extracellular hydrolysis to hexoses. Images Fig. 1 Fig. 2 PMID:16664091

  5. Evaluation of zinc accumulation, allocation, and tolerance in Zea mays L. seedlings: implication for zinc phytoextraction.

    PubMed

    Bashmakov, Dmitry I; Lukatkin, Alexander S; Anjum, Naser A; Ahmad, Iqbal; Pereira, Eduarda

    2015-10-01

    This work investigated the accumulation, allocation, and impact of zinc (Zn; 1.0 μM-10 mM) in maize (Zea mays L.) seedlings under simulated laboratory conditions. Z. mays exhibited no significant change in its habitus (the physical characteristics of plants) up to 10-1000 μM of Zn (vs 5-10 mM Zn). Zn tolerance evaluation, based on the root test, indicated a high tolerance of Z. mays to both low and intermediate (or relatively high) concentrations of Zn, whereas this plant failed to tolerate 10 mM Zn and exhibited a 5-fold decrease in its Zn tolerance. Contingent to Zn treatment levels, Zn hampered the growth of axial organs and brought decreases in the leaf area, water regime, and biomass accumulation. Nevertheless, at elevated levels of Zn (10 mM), Zn(2+) was stored in the root cytoplasm and inhibited both axial organ growth and water regime. However, accumulation and allocation of Zn in Z. mays roots, studied herein employing X-ray fluorimeter and histochemical methods, were close to Zn accumulator plants. Overall, the study outcomes revealed Zn tolerance of Z. mays, and also implicate its potential role in Zn phytoextraction.

  6. Chloroplast redox homeostasis is essential for lateral root formation in Arabidopsis.

    PubMed

    Ferrández, Julia; González, Maricruz; Cejudo, Francisco Javier

    2012-09-01

    Redox regulation based on dithiol-disulphide interchange is an essential component of the control of chloroplast metabolism. In contrast to heterotrophic organisms, and non-photosynthetic plant tissues, chloroplast redox regulation relies on ferredoxin (Fd) reduced by the photosynthetic electron transport chain, thus being highly dependent on light. The finding of the NADPH-dependent thioredoxin reductase C (NTRC), a chloroplast-localized NTR with a joint thioredoxin domain, showed that NADPH is also used as source of reducing power for chloroplast redox homeostasis. Recently we have found that NTRC is also in plastids of non-photosynthetic tissues. Because these non-green plastids lack photochemical reactions, their redox homeostasis depends exclusively on NADPH produced from sugars and, thus, NTRC may play an essential role maintaining the redox homeostasis in these plastids. The fact that redox regulation occurs in any type of plastids raises the possibility that the functions of chloroplasts and non-green plastids, such as amyloplasts, are integrated to harmonize the growth of the different organs of the plant. To address this question, we generated Arabidopsis plants the redox homeostasis of which is recovered exclusively in chloroplasts, by leaf-specific expression of NTRC in the ntrc mutant, or exclusively in amyloplasts, by root-specific expression of NTRC. The analysis of these plants suggests that chloroplasts exert a pivotal role on plant growth, as expected because chloroplasts constitute the major source of nutrients and energy, derived from photosynthesis, for growth of heterotrophic tissues. However, NTRC deficiency causes impairment of auxin synthesis and lateral root formation. Interestingly, recovery of redox homeostasis of chloroplasts, but not of amyloplasts, was sufficient to restore wild type levels of lateral roots, showing the important signaling function of chloroplasts for the development of heterotrophic organs.

  7. The wheat chloroplastic proteome.

    PubMed

    Kamal, Abu Hena Mostafa; Cho, Kun; Choi, Jong-Soon; Bae, Kwang-Hee; Komatsu, Setsuko; Uozumi, Nobuyuki; Woo, Sun Hee

    2013-11-20

    With the availability of plant genome sequencing, analysis of plant proteins with mass spectrometry has become promising and admired. Determining the proteome of a cell is still a challenging assignment, which is convoluted by proteome dynamics and convolution. Chloroplast is fastidious curiosity for plant biologists due to their intricate biochemical pathways for indispensable metabolite functions. In this review, an overview on proteomic studies conducted in wheat with a special focus on subcellular proteomics of chloroplast, salt and water stress. In recent years, we and other groups have attempted to understand the photosynthesis in wheat and abiotic stress under salt imposed and water deficit during vegetative stage. Those studies provide interesting results leading to better understanding of the photosynthesis and identifying the stress-responsive proteins. Indeed, recent studies aimed at resolving the photosynthesis pathway in wheat. Proteomic analysis combining two complementary approaches such as 2-DE and shotgun methods couple to high through put mass spectrometry (LTQ-FTICR and MALDI-TOF/TOF) in order to better understand the responsible proteins in photosynthesis and abiotic stress (salt and water) in wheat chloroplast will be focused. In this review we discussed the identification of the most abundant protein in wheat chloroplast and stress-responsive under salt and water stress in chloroplast of wheat seedlings, thus providing the proteomic view of the events during the development of this seedling under stress conditions. Chloroplast is fastidious curiosity for plant biologists due to their intricate biochemical pathways for indispensable metabolite functions. An overview on proteomic studies conducted in wheat with a special focus on subcellular proteomics of chloroplast, salt and water stress. We have attempted to understand the photosynthesis in wheat and abiotic stress under salt imposed and water deficit during seedling stage. Those studies

  8. The Chloroplast Genome of Symplocarpus renifolius: A Comparison of Chloroplast Genome Structure in Araceae.

    PubMed

    Choi, Kyoung Su; Park, Kyu Tae; Park, SeonJoo

    2017-11-16

    Symplocarpus renifolius is a member of Araceae family that is extraordinarily diverse in appearance. Previous studies on chloroplast genomes in Araceae were focused on duckweeds (Lemnoideae) and root crops ( Colocasia , commonly known as taro). Here, we determined the chloroplast genome of Symplocarpus renifolius and compared the factors, such as genes and inverted repeat (IR) junctions and performed phylogenetic analysis using other Araceae species. The chloroplast genome of S. renifolius is 158,521 bp and includes 113 genes. A comparison among the Araceae chloroplast genomes showed that infA in Lemna , Spirodela , Wolffiella , Wolffia , Dieffenbachia and Colocasia has been lost or has become a pseudogene and has only been retained in Symplocarpus . In the Araceae chloroplast DNA (cpDNA), psbZ is retained. However, psbZ duplication occurred in Wolffia species and tandem repeats were noted around the duplication regions. A comparison of the IR junction in Araceae species revealed the presence of ycf1 and rps15 in the small single copy region, whereas duckweed species contained ycf1 and rps15 in the IR region. The phylogenetic analyses of the chloroplast genomes revealed that Symplocarpus are a basal group and are sister to the other Araceae species. Consequently, infA deletion or pseudogene events in Araceae occurred after the divergence of Symplocarpus and aquatic plants (duckweeds) in Araceae and duplication events of rps15 and ycf1 occurred in the IR region.

  9. The Chloroplast Genome of Symplocarpus renifolius: A Comparison of Chloroplast Genome Structure in Araceae

    PubMed Central

    Park, Kyu Tae

    2017-01-01

    Symplocarpus renifolius is a member of Araceae family that is extraordinarily diverse in appearance. Previous studies on chloroplast genomes in Araceae were focused on duckweeds (Lemnoideae) and root crops (Colocasia, commonly known as taro). Here, we determined the chloroplast genome of Symplocarpus renifolius and compared the factors, such as genes and inverted repeat (IR) junctions and performed phylogenetic analysis using other Araceae species. The chloroplast genome of S. renifolius is 158,521 bp and includes 113 genes. A comparison among the Araceae chloroplast genomes showed that infA in Lemna, Spirodela, Wolffiella, Wolffia, Dieffenbachia and Colocasia has been lost or has become a pseudogene and has only been retained in Symplocarpus. In the Araceae chloroplast DNA (cpDNA), psbZ is retained. However, psbZ duplication occurred in Wolffia species and tandem repeats were noted around the duplication regions. A comparison of the IR junction in Araceae species revealed the presence of ycf1 and rps15 in the small single copy region, whereas duckweed species contained ycf1 and rps15 in the IR region. The phylogenetic analyses of the chloroplast genomes revealed that Symplocarpus are a basal group and are sister to the other Araceae species. Consequently, infA deletion or pseudogene events in Araceae occurred after the divergence of Symplocarpus and aquatic plants (duckweeds) in Araceae and duplication events of rps15 and ycf1 occurred in the IR region. PMID:29144427

  10. Pb-Induced Avoidance-Like Chloroplast Movements in Fronds of Lemna trisulca L.

    PubMed Central

    Samardakiewicz, Sławomir; Krzeszowiec-Jeleń, Weronika; Bednarski, Waldemar; Jankowski, Artur; Suski, Szymon; Gabryś, Halina; Woźny, Adam

    2015-01-01

    Lead ions are particularly dangerous to the photosynthetic apparatus, but little is known about the effects of trace metals, including Pb, on regulation of chloroplast redistribution. In this study a new effect of lead on chloroplast distribution patterns and movements was demonstrated in mesophyll cells of a small-sized aquatic angiosperm Lemna trisulca L. (star duckweed). An analysis of confocal microscopy images of L. trisulca fronds treated with lead (15 μM Pb2+, 24 h) in darkness or in weak white light revealed an enhanced accumulation of chloroplasts in the profile position along the anticlinal cell walls, in comparison to untreated plants. The rearrangement of chloroplasts in their response to lead ions in darkness was similar to the avoidance response of chloroplasts in plants treated with strong white light. Transmission electron microscopy X-ray microanalysis showed that intracellular chloroplast arrangement was independent of the location of Pb deposits, suggesting that lead causes redistribution of chloroplasts, which looks like a light-induced avoidance response, but is not a real avoidance response to the metal. Furthermore, a similar redistribution of chloroplasts in L. trisulca cells in darkness was observed also under the influence of exogenously applied hydrogen peroxide (H2O2). In addition, we detected an enhanced accumulation of endogenous H2O2 after treatment of plants with lead. Interestingly, H2O2-specific scavenger catalase partly abolished the Pb-induced chloroplast response. These results suggest that H2O2 can be involved in the avoidance-like movement of chloroplasts induced by lead. Analysis of photometric measurements revealed also strong inhibition (but not complete) of blue-light-induced chloroplast movements by lead. This inhibition may result from disturbances in the actin cytoskeleton, as we observed fragmentation and disappearance of actin filaments around chloroplasts. Results of this study show that the mechanisms of the toxic

  11. Effects on the accumulation of calcium, magnesium, iron, manganese, copper and zinc of adding the two inorganic forms of selenium to solution cultures of Zea mays.

    PubMed

    Longchamp, M; Angeli, N; Castrec-Rouelle, M

    2016-01-01

    The addition of selenate or selenite to common fertilizers for crop production could be an effective way of producing selenium-rich food and feed. However, this would be feasible only if the increase in plant selenium (Se) content did not negatively influence the uptake of other essential elements. We therefore need to understand the interactions between Se and other major and trace elements during uptake by the plant. This study aimed to evaluate the influence of inorganic forms of Se on the accumulation of selected macronutrients (Ca and Mg) and micronutrients (Fe, Zn, Mn and Cu). Those essential elements are involved in the oxidative balance of cells. Zea mays seedlings were grown hydroponically in growth chambers in nutrient solutions to which we added 10, 50 or 1000 μg.L(-1) of selenate and/or selenite. Cation accumulation was significantly affected by the addition of 50 μg.L(-1) or 1000 μg.L(-1) Se, but not by the presence of 10 μg.L(-1) of Se in the nutrient solution. The highest concentration (1000 μg.L(-1)) of Se in the nutrient solution affected the accumulation of essential cations in Zea mays: selenate tended to increase the accumulation of Mg, Zn and Mn, whereas a selenate/selenite mixture tended to decrease the accumulation of Ca, Mg, Zn and Mn. Only Fe accumulation was unaffected by Se whatever its form or concentration. Selenium may also affect the distribution of cations on Zea mays. For example, levels of Mg and Zn translocation to the shoots were lower in the presence of selenite. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein

    NASA Technical Reports Server (NTRS)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis. Copyright 2000 Academic Press.

  13. Tobacco mosaic virus RNA enters chloroplasts in vivo

    PubMed Central

    Schoelz, James E.; Zaitlin, Milton

    1989-01-01

    Several lines of evidence are presented to allow us to conclude that tobacco mosaic virus (TMV) RNA enters the chloroplast in vivo. Chloroplasts were prepared from either directly inoculated or systemically infected leaves of tobacco plants inoculated with one of several strains of the virus and from uninfected control plants. Intact chloroplasts were isolated on Percoll gradients and treated with pancreatic RNase and thermolysin to destroy potential TMV virions and RNA on the outside or bound to their surfaces. Northern blot analysis of RNA extracted from these chloroplasts demonstrated that full-length TMV RNA was present within the chloroplasts prepared from both directly inoculated and systemically invaded leaves. Only genomic length, but not subgenomic length, RNA was found in the chloroplast extracts, indicating a selectivity of the transport of the viral RNA into the chloroplast. A temperature-sensitive TMV mutant (Ts 38), in which no virions are formed at 35°C, was used to demonstrate that at that restrictive temperature viral RNA is detected in the chloroplast, indicating that free viral RNA can enter the chloroplast rather than intact virions. To our knowledge, the transport of a foreign RNA species into chloroplasts has not been reported previously. Images PMID:16578844

  14. Biochemical characterization of a new maize (Zea mays L.) peptide growth factor.

    PubMed

    Rodríguez-López, Cesar David; Rodríguez-Romero, Adela; Aguilar, Raúl; de Jiménez, Estela Sánchez

    2011-01-01

    Coordination of cell growth and cell division is very important for living organisms in order for these to develop harmonically. The present research is concerned with the purification and characterization of a new peptide hormone, namely ZmIGF (Zea mays insulin-like growth factor), which regulates growth and cell division in maize tissues. ZmIGF is a peptide of 5.7 kDa, as determined by mass spectroscopy. It was isolated either from maize embryonic axes of 48-h germinated seeds or from embryogenic callus and purified through several chromatographic procedures to obtain a single peak as shown by Reverse Phase High-Performance Liquid Chromatography (RP-HPLC). This peptide exhibits a well defined α-helix structure by circular dichroism analysis, similar to that reported for Insulin or for Insulin-like growth factor (IGF-1). Further, ZmIGF seems to perform, in maize, a similar function to that reported for insulin or peptides from the IGF family in animals. Indeed, maize tissues stimulated either by ZmIGF or insulin showed to induce selective synthesis of ribosomal proteins as well as of DNA. Taken together, the previously mentioned data strongly suggest that plants contain a peptide hormone of the IGF family, highly conserved through evolution that regulates growth and development.

  15. The evolutionary fate of the chloroplast and nuclear rps16 genes as revealed through the sequencing and comparative analyses of four novel legume chloroplast genomes from Lupinus.

    PubMed

    Keller, J; Rousseau-Gueutin, M; Martin, G E; Morice, J; Boutte, J; Coissac, E; Ourari, M; Aïnouche, M; Salmon, A; Cabello-Hurtado, F; Aïnouche, A

    2017-08-01

    The Fabaceae family is considered as a model system for understanding chloroplast genome evolution due to the presence of extensive structural rearrangements, gene losses and localized hypermutable regions. Here, we provide sequences of four chloroplast genomes from the Lupinus genus, belonging to the underinvestigated Genistoid clade. Notably, we found in Lupinus species the functional loss of the essential rps16 gene, which was most likely replaced by the nuclear rps16 gene that encodes chloroplast and mitochondrion targeted RPS16 proteins. To study the evolutionary fate of the rps16 gene, we explored all available plant chloroplast, mitochondrial and nuclear genomes. Whereas no plant mitochondrial genomes carry an rps16 gene, many plants still have a functional nuclear and chloroplast rps16 gene. Ka/Ks ratios revealed that both chloroplast and nuclear rps16 copies were under purifying selection. However, due to the dual targeting of the nuclear rps16 gene product and the absence of a mitochondrial copy, the chloroplast gene may be lost. We also performed comparative analyses of lupine plastomes (SNPs, indels and repeat elements), identified the most variable regions and examined their phylogenetic utility. The markers identified here will help to reveal the evolutionary history of lupines, Genistoids and closely related clades. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  16. The Chloroplast Genome of Pellia endiviifolia: Gene Content, RNA-Editing Pattern, and the Origin of Chloroplast Editing

    PubMed Central

    Grosche, Christopher; Funk, Helena T.; Maier, Uwe G.; Zauner, Stefan

    2012-01-01

    RNA editing is a post-transcriptional process that can act upon transcripts from mitochondrial, nuclear, and chloroplast genomes. In chloroplasts, single-nucleotide conversions in mRNAs via RNA editing occur at different frequencies across the plant kingdom. These range from several hundred edited sites in some mosses and ferns to lower frequencies in seed plants and the complete lack of RNA editing in the liverwort Marchantia polymorpha. Here, we report the sequence and edited sites of the chloroplast genome from the liverwort Pellia endiviifolia. The type and frequency of chloroplast RNA editing display a pattern highly similar to that in seed plants. Analyses of the C to U conversions and the genomic context in which the editing sites are embedded provide evidence in favor of the hypothesis that chloroplast RNA editing evolved to compensate mutations in the first land plants. PMID:23221608

  17. Aphrodisiac Activity of the Aqueous Crude Extract of Purple Corn ( Zea mays) in Male Rats.

    PubMed

    Carro-Juárez, Miguel; Rodríguez-Santiago, Magdalena G; Franco, Miguel Angel; Hueletl-Soto, María Eugenia

    2017-10-01

    In the present study, the aphrodisiac properties of the purple corn ( Zea mays) in male rats were analyzed. The aqueous crude extract of purple corn (at 25, 50, and 75 mg/kg) was administered to ( a) copulating male rats and ( b) anesthetized and spinal cord transected male rats. Behavioral parameters of copulatory behavior and parameters of the genital motor pattern of ejaculation previous to its inhibition, under the influence of the purple corn extract, are described. Administration of the aqueous crude extract of purple corn significantly facilitates the arousal and execution of male rat sexual behavior without significant influences on the ambulatory behavior. In addition, purple corn extract elicit a significant increase in the number of discharges of the ejaculatory motor patterns and in the total number of genital motor patterns evoked in spinal rats. The present findings show that the aqueous crude extract of purple corn possesses aphrodisiac activity.

  18. Superoxide-responsive gene expression in Arabidopsis thaliana and Zea mays.

    PubMed

    Xu, Junhuan; Tran, Thu; Padilla Marcia, Carmen S; Braun, David M; Goggin, Fiona L

    2017-08-01

    Superoxide (O 2 - ) and other reactive oxygen species (ROS) are generated in response to numerous biotic and abiotic stresses. Different ROS have been reported to elicit different transcriptional responses in plants, and so ROS-responsive marker genes and promoter::reporter gene fusions have been proposed as indirect means of detecting ROS and discriminating among different species. However, further information about the specificity of transcriptional responses to O 2 - is needed in order to assess potential markers for this critical stress-responsive signaling molecule. Using qRT-PCR, the expression of 12 genes previously reported to be upregulated by O 2 - was measured in Arabidopsis thaliana plants exposed to elicitors of common stress-responsive ROS: methyl viologen (an inducer of O 2 - ), rose bengal (an inducer of singlet oxygen, 1 ΔO 2 ), and exogenous hydrogen peroxide (H 2 O 2 ). Surprisingly, Zinc-Finger Protein 12 (AtZAT12), which had previously been used as a reporter for H 2 O 2 , responded more strongly to O 2 - than to H 2 O 2 ; moreover, the expression of an AtZAT12 promoter-reporter fusion (AtZAT12::Luc) was enhanced by diethyldithiocarbamate, which inhibits dismutation of O 2 - to H 2 O 2 . These results suggest that AtZAT12 is transcriptionally upregulated in response to O 2 - , and that AtZAT12::Luc may be a useful biosensor for detecting O 2 - generation in vivo. In addition, transcripts encoding uncoupling proteins (AtUCPs) showed selectivity for O 2 - in Arabidopsis, and an AtUCP homolog upregulated by methyl viologen was also identified in maize (Zea mays L.), indicating that there are O 2 - -responsive members of this family in monocots. These results expand our limited knowledge of ROS-responsive gene expression in monocots, as well as O 2 - -selective responses in dicots. Copyright © 2017 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  19. Redox-shuttling between chloroplast and cytosol: integration of intra-chloroplast and extra-chloroplast metabolism.

    PubMed

    Taniguchi, Mitsutaka; Miyake, Hiroshi

    2012-06-01

    Reducing equivalents produced in the chloroplast are essential for many key cellular metabolic enzyme reactions. Two redox shuttle systems transfer reductant out of the chloroplast; these systems consist of metabolite transporters, coupled with stromal and cytosolic dehydrogenase isozymes. The transporters function in the redox shuttle and also operate as key enzymes in carbon/nitrogen metabolism. To maintain adequate levels of reductant and proper metabolic balance, the shuttle systems are finely controlled. Also, in the leaves of C(4) plants, cell-specific division of carbon and nitrogen assimilation includes cell-specific localization of the redox shuttle systems. The redox shuttle systems are tightly linked to cellular metabolic pathways and are essential for maintaining metabolic balance between energy and reducing equivalents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Development, survival and fitness performance of Helicoverpa zea (Lepidoptera: Noctuidae) in MON810 Bt field corn.

    PubMed

    Horner, T A; Dively, G P; Herbert, D A

    2003-06-01

    Helicoverpa zea (Boddie) development, survival, and feeding injury in MON810 transgenic ears of field corn (Zea mays L.) expressing Bacillus thuringiensis variety kurstaki (Bt) Cry1Ab endotoxins were compared with non-Bt ears at four geographic locations over two growing seasons. Expression of Cry1Ab endotoxin resulted in overall reductions in the percentage of damaged ears by 33% and in the amount of kernels consumed by 60%. Bt-induced effects varied significantly among locations, partly because of the overall level and timing of H. zea infestations, condition of silk tissue at the time of egg hatch, and the possible effects of plant stress. Larvae feeding on Bt ears produced scattered, discontinuous patches of partially consumed kernels, which were arranged more linearly than the compact feeding patterns in non-Bt ears. The feeding patterns suggest that larvae in Bt ears are moving about sampling kernels more frequently than larvae in non-Bt ears. Because not all kernels express the same level of endotoxin, the spatial heterogeneity of toxin distribution within Bt ears may provide an opportunity for development of behavioral responses in H. zea to avoid toxin. MON810 corn suppressed the establishment and development of H. zea to late instars by at least 75%. This level of control is considered a moderate dose, which may increase the risk of resistance development in areas where MON810 corn is widely adopted and H. zea overwinters successfully. Sublethal effects of MON810 corn resulted in prolonged larval and prepupal development, smaller pupae, and reduced fecundity of H. zea. The moderate dose effects and the spatial heterogeneity of toxin distribution among kernels could increase the additive genetic variance for both physiological and behavioral resistance in H. zea populations. Implications of localized population suppression are discussed.

  1. Intraear Compensation of Field Corn, Zea mays, from Simulated and Naturally Occurring Injury by Ear-Feeding Larvae.

    PubMed

    Steckel, S; Stewart, S D

    2015-06-01

    Ear-feeding larvae, such as corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), can be important insect pests of field corn, Zea mays L., by feeding on kernels. Recently introduced, stacked Bacillus thuringiensis (Bt) traits provide improved protection from ear-feeding larvae. Thus, our objective was to evaluate how injury to kernels in the ear tip might affect yield when this injury was inflicted at the blister and milk stages. In 2010, simulated corn earworm injury reduced total kernel weight (i.e., yield) at both the blister and milk stage. In 2011, injury to ear tips at the milk stage affected total kernel weight. No differences in total kernel weight were found in 2013, regardless of when or how much injury was inflicted. Our data suggested that kernels within the same ear could compensate for injury to ear tips by increasing in size, but this increase was not always statistically significant or sufficient to overcome high levels of kernel injury. For naturally occurring injury observed on multiple corn hybrids during 2011 and 2012, our analyses showed either no or a minimal relationship between number of kernels injured by ear-feeding larvae and the total number of kernels per ear, total kernel weight, or the size of individual kernels. The results indicate that intraear compensation for kernel injury to ear tips can occur under at least some conditions. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Genetic and cellular analysis of cross-incompatibility in Zea mays.

    PubMed

    Lu, Yongxian; Kermicle, Jerry L; Evans, Matthew M S

    2014-03-01

    Three genetic systems conferring cross-incompatibility have been described in Zea mays: Teosinte crossing barrier1-strong (Tcb1-s) found in teosinte, and Gametophyte factor1-strong (Ga1-s) and Ga2-s found in maize and teosinte. The reproductive barrier between maize and some weedy teosintes is controlled by the Tcb1-s locus. Multi-generation inheritance experiments on two independent Tcb1-s lineages show that the Tcb1-s barrier is unstable in some maize lines. Reciprocal crosses between Tcb1-s tester plants and three recombinants in the Tcb1-s mapping region demonstrate that the Tcb1-s haplotype contains separable male and female components. In vivo assays of the dynamics of pollen tube growth and pollen tube morphology during rejection of incompatible pollen in silks carrying the Tcb1-s, Ga1-s, or Ga2-s barriers showed that, in all three, pollen tube growth is slower than in compatible crosses at early stages and had ceased by 24 h after pollination. In all three crossing barrier systems, incompatible pollen tubes have clustered callose plugs in contrast to pollen tubes of compatible crosses. Incompatible pollen tubes growing in the Tcb1-s, Ga1-s, and Ga2-s silks have different morphologies: straight, curved, and kinked, respectively. The distinct morphologies suggest that these crossing barriers block incompatible pollen through different mechanisms. This study lays the foundation for cloning the Tcb1 genes and provides clues about the cellular mechanisms involved in pollen rejection in the Tcb1-s, Ga1-s, and Ga2-s crossing barriers.

  3. Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality.

    PubMed

    Albrecht, Verónica; Ingenfeld, Anke; Apel, Klaus

    2006-03-01

    During seedling development chloroplast formation marks the transition from heterotrophic to autotrophic growth. The development and activity of chloroplasts may differ in cotyledons that initially serve as a storage organ and true leaves whose primary function is photosynthesis. A genetic screen was used for the identification of genes that affect selectively chloroplast function in cotyledons of Arabidopsis thaliana. Several mutants exhibiting pale cotyledons and green true leaves were isolated and dubbed snowy cotyledon (sco). One of the mutants, sco1, was characterized in more detail. The mutated gene was identified using map-based cloning. The mutant contains a point mutation in a gene encoding the chloroplast elongation factor G, leading to an amino acid exchange within the predicted 70S ribosome-binding domain. The mutation results in a delay in the onset of germination. At this early developmental stage embryos still contain undifferentiated proplastids, whose proper function seems necessary for seed germination. In light-grown sco1 seedlings the greening of cotyledons is severely impaired, whereas the following true leaves develop normally as in wild-type plants. Despite this apparent similarity of chloroplast development in true leaves of mutant and wild-type plants various aspects of mature plant development are also affected by the sco1 mutation such as the onset of flowering, the growth rate, and seed production. The onset of senescence in the mutant and the wild-type plants occurs, however, at the same time, suggesting that in the mutant this particular developmental step does not seem to suffer from reduced protein translation efficiency in chloroplasts.

  4. Flow Cytometry of Spinach Chloroplasts 1

    PubMed Central

    Schröder, Wolfgang P.; Petit, Patrice X.

    1992-01-01

    Intact spinach (Spinacia oleracea) chloroplasts, thylakoid membranes, and inside-out or right-side-out thylakoid vesicles have been characterized by flow cytometry with respect to forward angle light scatter, right angle light scatter, and chlorophyll fluorescence. Analysis of intact chloroplasts with respect to forward light scatter and the chlorophyll fluorescence parameter revealed the presence of truly “intact” and “disrupted” chloroplasts. The forward light scatter parameter, normally considered to reflect object size, was instead found to reflect the particle density. One essential advantage of flow cytometry is that additional parameters such as Ricinus communis agglutinin (linked to fluorescein isothiocyanate) fluorescence can be determined through logical conditions placed on bit-maps, amounting to an analytical purification procedure. In the present case, chloroplast subpopulations with fully preserved envelopes, thylakoid membrane, and inside-out or right-side-out thylakoid membranes vesicles can be distinguished. Flow cytometry is also a useful tool to address the question of availability of glycosyl moities on the membrane surfaces if one keeps in mind that organelle-to-organelle interactions could be partially mediated through a recognition process. A high specific binding of R. communis agglutinin and peanut lectin to the chloroplast envelope was detected. This showed that galactose residues were exposed and accessible to specific lectins on the chloroplast surface. No exposed glucose, fucose, or mannose residues could be detected by the appropriate lectins. Ricin binding to the intact chloroplasts caused a strong aggregation. Disruption of these aggregates by resuspension or during passage in the flow cytometer induced partial breakage of the chloroplasts. Only minor binding of R. communis agglutinin and peanut lectin to the purified thylakoid membranes was detected; the binding was found to be low for both inside-out and right

  5. Fine mapping of a quantitative resistance gene for gray leaf spot of maize (Zea mays L.) derived from teosinte (Z. mays ssp. parviglumis).

    PubMed

    Zhang, Xinye; Yang, Qin; Rucker, Elizabeth; Thomason, Wade; Balint-Kurti, Peter

    2017-06-01

    In this study we mapped the QTL Qgls8 for gray leaf spot (GLS) resistance in maize to a ~130 kb region on chromosome 8 including five predicted genes. In previous work, using near isogenic line (NIL) populations in which segments of the teosinte (Zea mays ssp. parviglumis) genome had been introgressed into the background of the maize line B73, we had identified a QTL on chromosome 8, here called Qgls8, for gray leaf spot (GLS) resistance. We identified alternate teosinte alleles at this QTL, one conferring increased GLS resistance and one increased susceptibility relative to the B73 allele. Using segregating populations derived from NIL parents carrying these contrasting alleles, we were able to delimit the QTL region to a ~130 kb (based on the B73 genome) which encompassed five predicted genes.

  6. Multiplexed fragaria chloroplast genome sequencing

    Treesearch

    W. Njuguna; A. Liston; R. Cronn; N.V. Bassil

    2010-01-01

    A method to sequence multiple chloroplast genomes using ultra high throughput sequencing technologies was recently described. Complete chloroplast genome sequences can resolve phylogenetic relationships at low taxonomic levels and identify informative point mutations and indels. The objective of this research was to sequence multiple Fragaria...

  7. Chloroplast evolution, structure and functions

    PubMed Central

    Jensen, Poul Erik

    2014-01-01

    In this review, we consider a selection of recent advances in chloroplast biology. These include new findings concerning chloroplast evolution, such as the identification of Chlamydiae as a third partner in primary endosymbiosis, a second instance of primary endosymbiosis represented by the chromatophores found in amoebae of the genus Paulinella, and a new explanation for the longevity of captured chloroplasts (kleptoplasts) in sacoglossan sea slugs. The controversy surrounding the three-dimensional structure of grana, its recent resolution by tomographic analyses, and the role of the CURVATURE THYLAKOID1 (CURT1) proteins in supporting grana formation are also discussed. We also present an updated inventory of photosynthetic proteins and the factors involved in the assembly of thylakoid multiprotein complexes, and evaluate findings that reveal that cyclic electron flow involves NADPH dehydrogenase (NDH)- and PGRL1/PGR5-dependent pathways, both of which receive electrons from ferredoxin. Other topics covered in this review include new protein components of nucleoids, an updated inventory of the chloroplast proteome, new enzymes in chlorophyll biosynthesis and new candidate messengers in retrograde signaling. Finally, we discuss the first successful synthetic biology approaches that resulted in chloroplasts in which electrons from the photosynthetic light reactions are fed to enzymes derived from secondary metabolism. PMID:24991417

  8. Comparative effectiveness of metal ions in inducing curvature of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Hasenstein, K. H.; Evans, M. L.; Stinemetz, C. L.; Moore, R.; Fondren, W. M.; Koon, E. C.; Higby, M. A.; Smucker, A. J.

    1988-01-01

    We used five cultivars of Zea mays (Bear Hybrid WF9 * 38MS, B73 * Missouri 17, Yellow Dent, Merit, and Great Lakes Hybrid 422) to reinvestigate the specificity of metal ions for inducing root curvature. Of 17 cations tested, 6 (Al3+, Ba2+, Ca2+, Cd2+, Cu2+, Zn2+) induced curvature. Roots curved away from Al3+, Ba2+, and Cd2+. Roots curved away from low (0.1 millimolar) concentrations of Cu2+ but toward higher (1-5 millimolar) concentrations. Roots initially curved away from Zn2+ but the direction of the subsequent curvature was unpredictable. In most cases, roots of all cultivars curved towards calcium. However, in some tests there was no response to calcium or even (especially in the cultivars Merit and B73 * Missouri 17) substantial curvature away from calcium. The results indicate that the induction of root curvature is not specific for calcium. The results are discussed relative to the possible role of calmodulin as a mediator of ion-induced root curvature.

  9. Response of maize (Zea mays L. saccharata Sturt) to different concentration treatments of deltamethrin.

    PubMed

    Duran, Ragbet Ezgi; Kilic, Semra; Coskun, Yasemin

    2015-10-01

    The aim of this study was to investigate the effect of the deltamethrin pesticide on the biological properties of maize (Zea mays L. saccharata Sturt). Maize seeds were exposed to environmentally relevant dosages (0.01, 0.05, 0.1 and 0.5 ppm) of deltamethrin. On the 7th day of germination, morphological, anatomical and physiological responses were determined. All seedling growth characters were decreased with increasing deltamethrin levels. The most negative effect on the radicle length of maize was observed by the highest deltamethrin concentration with a 61% decrease (P <0.05). Both stomatal density and stomatal dimension reduction were caused by increasing concentrations of deltamethrin. Moreover, the pigments like chlorophyll a, chlorophyll b, total chlorophyll and caretonoids decreased with the increase in deltamethrin concentration. Conversely, anthocyanin and proline content increased in parallel with deltamethrin concentration. As a result, all morphological traits and pigments except for proline and anthocyanin were significantly reduced with an increase in pesticide concentration, compared to control (P <0.05). Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Cytochemical localization of calcium in cap cells of primary roots of Zea mays L

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1986-01-01

    The distribution of calcium (Ca) in caps of vertically- and horizontally-oriented roots of Zea mays was monitored to determine its possible role in root graviresponsiveness. A modification of the antimonate precipitation procedure was used to localize Ca in situ. In vertically-oriented roots, the presumed graviperceptive (i.e., columella) cells were characterized by minimal and symmetric staining of the plasmalemma and mitochondria. No precipitate was present in plasmodesmata or cell walls. Within 5 min after horizontal reorientation, staining was associated with the portion of the cell wall adjacent to the distal end of the cell. This asymmetric staining persisted throughout the onset of gravicurvature. No staining of lateral cell walls of columella cells was observed at any stage of gravicurvature, suggesting that a lateral flow of Ca through the columella tissue of horizontally-oriented roots does not occur. The outermost peripheral cells of roots oriented horizontally and vertically secrete Ca through plasmodesmata-like structures in their cell walls. These results are discussed relative to proposed roles of root-cap Ca in root gravicurvature.

  11. Effect of Soil Aging on the Phytoremediation Potential of Zea mays in Chromium and Benzo[a]Pyrene Contaminated Soils.

    PubMed

    Chigbo, Chibuike

    2015-06-01

    This study compared the phytoremediation potential of Zea mays in soil either aged or freshly amended with chromium (Cr) and benzo[a]pyrene (B[a]P). Z. mays showed increased shoot biomass in aged soils than in freshly spiked soils. The shoot biomass in contaminated soils increased by over 50% in aged soil when compared to freshly amended soils, and over 29% more Cr was accumulated in the shoot of Z. mays in aged soil than in freshly amended soil. Planting Z. mays in aged soil helped in the dissipation of more than 31% B[a]P than in freshly spiked soil, but in the absence of plants, there seemed to be no difference between the dissipation rates of B[a]P in freshly and aged co-contaminated soil. Z. mays seemed to enhance the simultaneous removal of Cr and B[a]P in aged soil than in freshly spiked soil and hence can be a good plant choice for phytoremediation of co-contaminated soils.

  12. Phylogenomic Analysis and Dynamic Evolution of Chloroplast Genomes in Salicaceae

    PubMed Central

    Huang, Yuan; Wang, Jun; Yang, Yongping; Fan, Chuanzhu; Chen, Jiahui

    2017-01-01

    Chloroplast genomes of plants are highly conserved in both gene order and gene content. Analysis of the whole chloroplast genome is known to provide much more informative DNA sites and thus generates high resolution for plant phylogenies. Here, we report the complete chloroplast genomes of three Salix species in family Salicaceae. Phylogeny of Salicaceae inferred from complete chloroplast genomes is generally consistent with previous studies but resolved with higher statistical support. Incongruences of phylogeny, however, are observed in genus Populus, which most likely results from homoplasy. By comparing three Salix chloroplast genomes with the published chloroplast genomes of other Salicaceae species, we demonstrate that the synteny and length of chloroplast genomes in Salicaceae are highly conserved but experienced dynamic evolution among species. We identify seven positively selected chloroplast genes in Salicaceae, which might be related to the adaptive evolution of Salicaceae species. Comparative chloroplast genome analysis within the family also indicates that some chloroplast genes are lost or became pseudogenes, infer that the chloroplast genes horizontally transferred to the nucleus genome. Based on the complete nucleus genome sequences from two Salicaceae species, we remarkably identify that the entire chloroplast genome is indeed transferred and integrated to the nucleus genome in the individual of the reference genome of P. trichocarpa at least once. This observation, along with presence of the large nuclear plastid DNA (NUPTs) and NUPTs-containing multiple chloroplast genes in their original order in the chloroplast genome, favors the DNA-mediated hypothesis of organelle to nucleus DNA transfer. Overall, the phylogenomic analysis using chloroplast complete genomes clearly elucidates the phylogeny of Salicaceae. The identification of positively selected chloroplast genes and dynamic chloroplast-to-nucleus gene transfers in Salicaceae provide

  13. Aphrodisiac Activity of the Aqueous Crude Extract of Purple Corn (Zea mays) in Male Rats

    PubMed Central

    Carro-Juárez, Miguel; Rodríguez-Santiago, Magdalena G.; Franco, Miguel Angel; Hueletl-Soto, María Eugenia

    2017-01-01

    In the present study, the aphrodisiac properties of the purple corn (Zea mays) in male rats were analyzed. The aqueous crude extract of purple corn (at 25, 50, and 75 mg/kg) was administered to (a) copulating male rats and (b) anesthetized and spinal cord transected male rats. Behavioral parameters of copulatory behavior and parameters of the genital motor pattern of ejaculation previous to its inhibition, under the influence of the purple corn extract, are described. Administration of the aqueous crude extract of purple corn significantly facilitates the arousal and execution of male rat sexual behavior without significant influences on the ambulatory behavior. In addition, purple corn extract elicit a significant increase in the number of discharges of the ejaculatory motor patterns and in the total number of genital motor patterns evoked in spinal rats. The present findings show that the aqueous crude extract of purple corn possesses aphrodisiac activity. PMID:28508664

  14. Development of flange and reticulate wall ingrowths in maize (Zea mays L.) endosperm transfer cells.

    PubMed

    Monjardino, Paulo; Rocha, Sara; Tavares, Ana C; Fernandes, Rui; Sampaio, Paula; Salema, Roberto; da Câmara Machado, Artur

    2013-04-01

    Maize (Zea mays L.) endosperm transfer cells are essential for kernel growth and development so they have a significant impact on grain yield. Although structural and ultrastructural studies have been published, little is known about the development of these cells, and prior to this study, there was a general consensus that they contain only flange ingrowths. We characterized the development of maize endosperm transfer cells by bright field microscopy, transmission electron microscopy, and confocal laser scanning microscopy. The most basal endosperm transfer cells (MBETC) have flange and reticulate ingrowths, whereas inner transfer cells only have flange ingrowths. Reticulate and flange ingrowths are mostly formed in different locations of the MBETC as early as 5 days after pollination, and they are distinguishable from each other at all stages of development. Ingrowth structure and ultrastructure and cellulose microfibril compaction and orientation patterns are discussed during transfer cell development. This study provides important insights into how both types of ingrowths are formed in maize endosperm transfer cells.

  15. Asymmetric distribution of glucose and indole-3-acetyl-myo-inositol in geostimulated Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Momonoki, Y. S.; Bandurski, R. S. (Principal Investigator)

    1988-01-01

    Indole-3-acetyl-myo-inositol occurs in both the kernel and vegetative shoot of germinating Zea mays seedlings. The effect of a gravitational stimulus on the transport of [3H]-5-indole-3-acetyl-myo-inositol and [U-14C]-D-glucose from the kernel to the seedling shoot was studied. Both labeled glucose and labeled indole-3-acetyl-myo-inositol become asymmetrically distributed in the mesocotyl cortex of the shoot with more radioactivity occurring in the bottom half of a horizontally placed seedling. Asymmetric distribution of [3H]indole-3-acetic acid, derived from the applied [3H]indole-3-acetyl-myo-inositol, occurred more rapidly than distribution of total 3H-radioactivity. These findings demonstrate that the gravitational stimulus can induce an asymmetric distribution of substances being transported from kernel to shoot. They also indicate that, in addition to the transport asymmetry, gravity affects the steady state amount of indole-3-acetic acid derived from indole-3-acetyl-myo-inositol.

  16. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    NASA Technical Reports Server (NTRS)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  17. Is chloroplast import of photosynthesis proteins facilitated by an actin-TOC-TIC-VIPP1 complex?

    PubMed

    Jouhet, Juliette; Gray, John C

    2009-10-01

    Actin filaments are major components of the cytoskeleton that interact with chloroplast envelope membranes to allow chloroplast positioning and movement, stromule mobility and gravitropism perception. We recently reported that Toc159, a component of the TOC complex of the chloroplast protein import apparatus, interacts directly with actin. The interaction of Toc159 and actin was identified by co-immunoprecipitation and co-sedimentation experiments with detergent-solubilised pea chloroplast envelope membranes. In addition, many of the components of the TOC-TIC protein import apparatus and VIPP1 (vesicle-inducing protein in plastids 1) were identified by mass spectroscopy in the material co-immunoprecipitated with antibodies to actin. Toc159 is the receptor for the import of photosynthesis proteins and VIPP1 is involved in thylakoid membrane formation by inducing vesicle formation from the chloroplast inner envelope membrane, suggesting we may have identified an actin-TOC-TIC-VIPP1 complex that may provide a means of channeling cytosolic preproteins to the thylakoid membrane. The interaction of Toc159 with actin may facilitate exchange between the putative soluble and membrane forms of Toc159 and promote the interaction of cytosolic preproteins with the TOC complex.

  18. Chloroplast genomes: diversity, evolution, and applications in genetic engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniell, Henry; Lin, Choun -Sea; Yu, Ming

    Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. Here, we also discuss the potential biotechnological applications of chloroplast genomes.

  19. Chloroplast genomes: diversity, evolution, and applications in genetic engineering

    DOE PAGES

    Daniell, Henry; Lin, Choun -Sea; Yu, Ming; ...

    2016-06-23

    Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. Here, we also discuss the potential biotechnological applications of chloroplast genomes.

  20. Degradation of fipronil by Stenotrophomonas acidaminiphila isolated from rhizospheric soil of Zea mays.

    PubMed

    Uniyal, Shivani; Paliwal, Rashmi; Sharma, R K; Rai, J P N

    2016-06-01

    Fipronil is a widely used insecticide in agriculture and can cause potential health hazards to non-target soil invertebrates and nearby aquatic systems. In the present study, a fipronil degrading bacterium was isolated from fipronil contaminated soil, i.e. rhizospheric zone of Zea mays. Morphological, biochemical and molecular characterization of strain indicated that it clearly belongs to Stenotrophomonas acidaminiphila (accession no. KJ396942). A three-factor Box-Behnken experimental design combined with response surface modeling was employed to predict the optimum conditions for fipronil degradation. The optimum pH, temperature and total inocula biomass for the degradation of fipronil were 7.5, 35 °C and 0.175 g L -1 , respectively. The bacterial strain was able to metabolize 25 mg L -1 fipronil with 86.14 % degradation in Dorn's broth medium under optimum conditions. Metabolites formed as a result of fipronil degradation were characterized with gas liquid chromatograph. A novel fipronil degradation pathway was proposed for S. acidaminiphila on the basis of metabolites formed. Non-sterilized soil inoculated with S. acidaminiphila was found to follow first order kinetics with a rate constant of 0.046 d -1 . Fipronil sulfone, sulfide and amide were formed as the metabolites and were degraded below the quantifiable limit after 90 days of time period. Given the high fipronil degradation observed in the present study, S. acidaminiphila may have potential for use in bioremediation of fipronil contaminated soils.

  1. Complete chloroplast genome sequences of Solanum commersonii and its application to chloroplast genotype in somatic hybrids with Solanum tuberosum.

    PubMed

    Cho, Kwang-Soo; Cheon, Kyeong-Sik; Hong, Su-Young; Cho, Ji-Hong; Im, Ju-Seong; Mekapogu, Manjulatha; Yu, Yei-Soo; Park, Tae-Ho

    2016-10-01

    Chloroplast genome of Solanum commersonii and S olanum tuberosum were completely sequenced, and Indel markers were successfully applied to distinguish chlorotypes demonstrating the chloroplast genome was randomly distributed during protoplast fusion. Somatic hybridization has been widely employed for the introgression of resistance to several diseases from wild Solanum species to overcome sexual barriers in potato breeding. Solanum commersonii is a major resource used as a parent line in somatic hybridization to improve bacterial wilt resistance in interspecies transfer to cultivated potato (S. tuberosum). Here, we sequenced the complete chloroplast genomes of Lz3.2 (S. commersonii) and S. tuberosum (PT56), which were used to develop fusion products, then compared them with those of five members of the Solanaceae family, S. tuberosum, Capsicum annum, S. lycopersicum, S. bulbocastanum and S. nigrum and Coffea arabica as an out-group. We then developed Indel markers for application in chloroplast genotyping. The complete chloroplast genome of Lz3.2 is composed of 155,525 bp, which is larger than the PT56 genome with 155,296 bp. Gene content, order and orientation of the S. commersonii chloroplast genome were highly conserved with those of other Solanaceae species, and the phylogenetic tree revealed that S. commersonii is located within the same node of S. tuberosum. However, sequence alignment revealed nine Indels between S. commersonii and S. tuberosum in their chloroplast genomes, allowing two Indel markers to be developed. The markers could distinguish the two species and were successfully applied to chloroplast genotyping (chlorotype) in somatic hybrids and their progenies. The results obtained in this study confirmed the random distribution of the chloroplast genome during protoplast fusion and its maternal inheritance and can be applied to select proper plastid genotypes in potato breeding program.

  2. [Vasodilator effect mediated by nitric oxide of the Zea mays L (andean purple corn) hydroalcoholic extract in aortic rings of rat].

    PubMed

    Moreno-Loaiza, Oscar; Paz-Aliaga, Azael

    2010-01-01

    To evaluate the vasodilator response of the hydroalcoholic extract of Zea mays L. (Andean purple corn) and to determine if this response is mediated by nitric oxide (NO). We obtained an extract by maceration for eight days of Andean purple corn cobs in 70% ethanol and subsequent concentration of the product. Thoracic aortic rings were evaluated in an isolated organ chamber, bathed with Krebs-Hensleit solution (KH), and vasomotor activity was recorded with an isometric tension transducer. Basal contraction was produced with 120 mM KCl and then, we proceeded to determinate the vasodilator effect of 3 doses of the extract: 0.1, 0.5, and 1.0 mg/mL. We used L-NG-Nitroarginin methyl ester (L-NAME) to verify that the vasodilation depends on nitric oxide sinteasa (NOs). Then we compared the inhibition of vascular contraction after incubation for 30 minutes, with purple corn extract and captopril 10-5 M. We observed a reduction in maximum contraction (100%) to 85.25 ± 2.60%, 77.76 ± 3.23%, and 73.3 ± 4.87% for doses of 0.1, 0.5 and 1,0 mg/mL respectively. The vasodilation was inhibited by prior incubation with L-NAME. Andean purple corn extract did not inhibit vascular contraction as captopril did (reduction to 75.27 ± 8.61%). The hydroalcoholic extract of Zea mays L produces NO dependent vasodilation.

  3. Purification and Characterization of Four β-Expansins (Zea m 1 Isoforms) from Maize Pollen1[w

    PubMed Central

    Li, Lian-Chao; Bedinger, Patricia A.; Volk, Carol; Jones, A. Daniel; Cosgrove, Daniel J.

    2003-01-01

    Four proteins with wall extension activity on grass cell walls were purified from maize (Zea mays) pollen by conventional column chromatography and high-performance liquid chromatography. Each is a basic glycoprotein (isoelectric point = 9.1–9.5) of approximately 28 kD and was identified by immunoblot analysis as an isoform of Zea m 1, the major group 1 allergen of maize pollen and member of the β-expansin family. Four distinctive cDNAs for Zea m 1 were identified by cDNA library screening and by GenBank analysis. One pair (GenBank accession nos. AY104999 and AY104125) was much closer in sequence to well-characterized allergens such as Lol p 1 and Phl p 1 from ryegrass (Lolium perenne) and Phleum pretense, whereas a second pair was much more divergent. The N-terminal sequence and mass spectrometry fingerprint of the most abundant isoform (Zea m 1d) matched that predicted for AY197353, whereas N-terminal sequences of the other isoforms matched or nearly matched AY104999 and AY104125. Highly purified Zea m 1d induced extension of a variety of grass walls but not dicot walls. Wall extension activity of Zea m 1d was biphasic with respect to protein concentration, had a broad pH optimum between 5 and 6, required more than 50 μg mL-1 for high activity, and led to cell wall breakage after only approximately 10% extension. These characteristics differ from those of α-expansins. Some of the distinctive properties of Zea m 1 may not be typical of β-expansins as a class but may relate to the specialized function of this β-expansin in pollen function. PMID:12913162

  4. Characterization of Zea mays endosperm C-24 sterol methyltransferase: one of two types of sterol methyltransferase in higher plants.

    PubMed

    Grebenok, R J; Galbraith, D W; Penna, D D

    1997-08-01

    We report the characterization of a higher-plant C-24 sterol methyltransferase by yeast complementation. A Zea mays endosperm expressed sequence tag (EST) was identified which, upon complete sequencing, showed 46% identity to the yeast C-24 methyltransferase gene (ERG6) and 75% and 37% amino acid identity to recently isolated higher-plant sterol methyltransferases from soybean and Arabidopsis, respectively. When placed under GALA regulation, the Z. mays cDNA functionally complemented the erg6 mutation, restoring ergosterol production and conferring resistance to cycloheximide. Complementation was both plasmid-dependent and galactose-inducible. The Z. mays cDNA clone contains an open reading frame encoding a 40 kDa protein containing motifs common to a large number of S-adenosyl-L-methionine methyltransferases (SMTs). Sequence comparisons and functional studies of the maize, soybean and Arabidopsis cDNAs indicates two types of C-24 SMTs exist in higher plants.

  5. Seamless editing of the chloroplast genome in plants.

    PubMed

    Martin Avila, Elena; Gisby, Martin F; Day, Anil

    2016-07-29

    Gene editing technologies enable the precise insertion of favourable mutations and performance enhancing trait genes into chromosomes whilst excluding all excess DNA from modified genomes. The technology gives rise to a new class of biotech crops which is likely to have widespread applications in agriculture. Despite progress in the nucleus, the seamless insertions of point mutations and non-selectable foreign genes into the organelle genomes of crops have not been described. The chloroplast genome is an attractive target to improve photosynthesis and crop performance. Current chloroplast genome engineering technologies for introducing point mutations into native chloroplast genes leave DNA scars, such as the target sites for recombination enzymes. Seamless editing methods to modify chloroplast genes need to address reversal of site-directed point mutations by template mediated repair with the vast excess of wild type chloroplast genomes that are present early in the transformation process. Using tobacco, we developed an efficient two-step method to edit a chloroplast gene by replacing the wild type sequence with a transient intermediate. This was resolved to the final edited gene by recombination between imperfect direct repeats. Six out of 11 transplastomic plants isolated contained the desired intermediate and at the second step this was resolved to the edited chloroplast gene in five of six plants tested. Maintenance of a single base deletion mutation in an imperfect direct repeat of the native chloroplast rbcL gene showed the limited influence of biased repair back to the wild type sequence. The deletion caused a frameshift, which replaced the five C-terminal amino acids of the Rubisco large subunit with 16 alternative residues resulting in a ~30-fold reduction in its accumulation. We monitored the process in vivo by engineering an overlapping gusA gene downstream of the edited rbcL gene. Translational coupling between the overlapping rbcL and gusA genes

  6. Callose deposition during gravitropism of Zea mays and Pisum sativum and its inhibition by 2-deoxy-D-glucose

    NASA Technical Reports Server (NTRS)

    Jaffe, M. J.; Leopold, A. C.

    1984-01-01

    In etiolated corn (Zea mays L.) and etiolated pea (Pisum sativum L.) seedlings, a gravitropic stimulation induces the deposition of callose. In the corn coleoptiles this occurs within 5 min of gravity stimulation, and prior to the beginning of curvature. Both gravitropic curvature and callose deposition reach their maxima by 12 h. Within the first 2 h more callose is deposited on the upper (concave) side, but after 2-3 h, this deposition pattern is reversed. An inhibitor of protein glycosylation, 2-deoxy-D-glucose (DDG), inhibits callose production and considerably retards gravitropic bending in both species of plants. Mannose can relieve the inhibition of gravitropic bending by DDG. The pea mutant "Ageotropum", which does not respond to gravity when etiolated, also fails to produce callose in response to a gravitic stimulus. These correlations indicate that callose deposition may be a biochemical component of gravitropism in plant shoots.

  7. Comparative analysis of complete chloroplast genome sequence and inversion variation in Lasthenia burkei (Madieae, Asteraceae).

    PubMed

    Walker, Joseph F; Zanis, Michael J; Emery, Nancy C

    2014-04-01

    Complete chloroplast genome studies can help resolve relationships among large, complex plant lineages such as Asteraceae. We present the first whole plastome from the Madieae tribe and compare its sequence variation to other chloroplast genomes in Asteraceae. We used high throughput sequencing to obtain the Lasthenia burkei chloroplast genome. We compared sequence structure and rates of molecular evolution in the small single copy (SSC), large single copy (LSC), and inverted repeat (IR) regions to those for eight Asteraceae accessions and one Solanaceae accession. The chloroplast sequence of L. burkei is 150 746 bp and contains 81 unique protein coding genes and 4 coding ribosomal RNA sequences. We identified three major inversions in the L. burkei chloroplast, all of which have been found in other Asteraceae lineages, and a previously unreported inversion in Lactuca sativa. Regions flanking inversions contained tRNA sequences, but did not have particularly high G + C content. Substitution rates varied among the SSC, LSC, and IR regions, and rates of evolution within each region varied among species. Some observed differences in rates of molecular evolution may be explained by the relative proportion of coding to noncoding sequence within regions. Rates of molecular evolution vary substantially within and among chloroplast genomes, and major inversion events may be promoted by the presence of tRNAs. Collectively, these results provide insight into different mechanisms that may promote intramolecular recombination and the inversion of large genomic regions in the plastome.

  8. Effect of a longitudinally applied voltage upon the growth of Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Desrosiers, M. F.; Bandurski, R. S.

    1988-01-01

    The electrical parameters that affect young seedling growth were investigated. Voltages ranging from 5 to 40 volts were applied longitudinally along the mesocotyl region of 4-day old Zea mays L. (cv Silver Queen) seedlings for periods of 3 or 4 hours. It was determined that: (a) making the tips of the seedlings electrically positive relative to the base strongly inhibited shoot growth at 5 volts, whereas the reverse polarity had no effect; (b) at higher voltages, making the tip of the seedlings negative caused less growth inhibition than the reverse polarity at each voltage level; (c) the higher the applied voltage the greater the degree of inhibition; and, (d) the more growth inhibition experienced by the plants the poorer, and slower, their recovery. Previous observations of a relationship between the amount of free indole-3-acetic acid in the mesocotyl cortex and the growth rate of the mesocotyl and of gravitropism-induced movement of labeled indole-3-acetic acid from the seed to the shoot lead to the prediction of a voltage-dependent gating of the movement of indole-3-acetic acid from the stele to the cortex. This provided the basis for attempting to alter the growth rate of seedlings by means of an applied voltage.

  9. Effect of a longitudinally applied voltage upon the growth of Zea mays seedlings.

    PubMed

    Desrosiers, M F; Bandurski, R S

    1988-01-01

    The electrical parameters that affect young seedling growth were investigated. Voltages ranging from 5 to 40 volts were applied longitudinally along the mesocotyl region of 4-day old Zea mays L. (cv Silver Queen) seedlings for periods of 3 or 4 hours. It was determined that: (a) making the tips of the seedlings electrically positive relative to the base strongly inhibited shoot growth at 5 volts, whereas the reverse polarity had no effect; (b) at higher voltages, making the tip of the seedlings negative caused less growth inhibition than the reverse polarity at each voltage level; (c) the higher the applied voltage the greater the degree of inhibition; and, (d) the more growth inhibition experienced by the plants the poorer, and slower, their recovery. Previous observations of a relationship between the amount of free indole-3-acetic acid in the mesocotyl cortex and the growth rate of the mesocotyl and of gravitropism-induced movement of labeled indole-3-acetic acid from the seed to the shoot lead to the prediction of a voltage-dependent gating of the movement of indole-3-acetic acid from the stele to the cortex. This provided the basis for attempting to alter the growth rate of seedlings by means of an applied voltage.

  10. The chloroplast ATP synthase features the characteristic redox regulation machinery.

    PubMed

    Hisabori, Toru; Sunamura, Ei-Ichiro; Kim, Yusung; Konno, Hiroki

    2013-11-20

    Regulation of the activity of the chloroplast ATP synthase is largely accomplished by the chloroplast thioredoxin system, the main redox regulation system in chloroplasts, which is directly coupled to the photosynthetic reaction. We review the current understanding of the redox regulation system of the chloroplast ATP synthase. The thioredoxin-targeted portion of the ATP synthase consists of two cysteines located on the central axis subunit γ. The redox state of these two cysteines is under the influence of chloroplast thioredoxin, which directly controls rotation during catalysis by inducing a conformational change in this subunit. The molecular mechanism of redox regulation of the chloroplast ATP synthase has recently been determined. Regulation of the activity of the chloroplast ATP synthase is critical in driving efficiency into the ATP synthesis reaction in chloroplasts. The molecular architecture of the chloroplast ATP synthase, which confers redox regulatory properties requires further investigation, in light of the molecular structure of the enzyme complex as well as the physiological significance of the regulation system.

  11. The complete chloroplast genome of Aconitum chiisanense Nakai (Ranunculaceae).

    PubMed

    Lim, Chae Eun; Kim, Goon-Bo; Baek, Seunghoon; Han, Su-Min; Yu, Hee-Ju; Mun, Jeong-Hwan

    2017-01-01

    We determined the complete chloroplast DNA sequence of Aconitum chiisanense Nakai, a rare Aconitum species endemic to Korea. The chloroplast genome is 155 934 bp in length and contains 4 rRNA, 30 tRNA, and 78 protein-coding genes. Phylogenetic analysis revealed that the chloroplast genome of A. chiisanense is closely related to that of A. barbatum var. puberulum. Sequence comparison with other Ranunculaceae chloroplasts identified a unique deletion in the rps16 gene of A. chiisanense chloroplast DNA that can serve as a molecular marker for species identification.

  12. [CONTENT OF OXIDATIVE STRESS MARKERS IN BLOOD PLASMA UNDER THE ACTION OF EXTRACTS OF GRATIOLA OFFICINALIS L., HELICHRYSUM ARENARIUM (L.) MOENCH, AND ANTHOCYANIN FORMS OF ZEA MAYS L].

    PubMed

    Durnova, N A; Afanas'eva, G A; Kurchatova, M N; Zaraeva, N V; Golikov, A G; Bucharskaya, A B; Golikov, A G; Bucharskaya, A B; Plastun, V O; Andreeva, N V

    2015-01-01

    The effect of aqueous solutions of dry ethanol extracts of Gratiola officinalis L., Helichrysum arenarium (L.) Moench, and anthocyanin forms of Zea mays L. on the dioxidin-induced lipid peroxidation in blood has been studied on rats. It is established that all these extracts are capable of reducing the amount of avera- ge-mass (AM) molecules and malonic dialdehyde (MDA) in rat blood plasma. The extract of Gratiola officinalis L. reduces the concentration of AM and MDA moleules by 43%. The extract of Helichrysum arenarium (L.) Moench reduces the concentration of AM molecules on the average by 18.66% (within 9.22 -34.81%) and MDA by 49.36% (within 34.12-79.75%). The Extract of anthocyanin forms of Zea mays L. does not reduce the concentration of AM mo- lecules, but reduces the amount of MDA in the blood of rats on average by 27.88% (within 21.58-37.82%) (p < 0.01).

  13. Dehydration stress memory genes of Zea mays; comparison with Arabidopsis thaliana

    PubMed Central

    2014-01-01

    Background Pre-exposing plants to diverse abiotic stresses may alter their physiological and transcriptional responses to a subsequent stress, suggesting a form of “stress memory”. Arabidopsis thaliana plants that have experienced multiple exposures to dehydration stress display transcriptional behavior suggesting “memory” from an earlier stress. Genes that respond to a first stress by up-regulating or down-regulating their transcription but in a subsequent stress provide a significantly different response define the ‘memory genes’ category. Genes responding similarly to each stress form the ‘non-memory’ category. It is unknown whether such memory responses exists in other Angiosperm lineages and whether memory is an evolutionarily conserved response to repeated dehydration stresses. Results Here, we determine the transcriptional responses of maize (Zea mays L.) plants that have experienced repeated exposures to dehydration stress in comparison with plants encountering the stress for the first time. Four distinct transcription memory response patterns similar to those displayed by A. thaliana were revealed. The most important contribution is the evidence that monocot and eudicot plants, two lineages that have diverged 140 to 200 M years ago, display similar abilities to ‘remember’ a dehydration stress and to modify their transcriptional responses, accordingly. The highly sensitive RNA-Seq analyses allowed to identify genes that function similarly in the two lineages, as well as genes that function in species-specific ways. Memory transcription patterns indicate that the transcriptional behavior of responding genes under repeated stresses is different from the behavior during an initial dehydration stress, suggesting that stress memory is a complex phenotype resulting from coordinated responses of multiple signaling pathways. Conclusions Structurally related genes displaying the same memory responses in the two species would suggest conservation

  14. Betaine synthesis in chenopods: localization in chloroplasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, A.D.; May A.M.; Grumet, R.

    1985-06-01

    Plants from several families (Chenopodiaceae, Gramineae, Compositae) accumulate betaine (glycine betaine) in response to salt or water stress via the pathway: choline betainal (betaine aldehyde) betaine. Betaine accumulation is probably a metabolic adaptation to stress. Intact protoplasts from leaves of spinach (Spinacia oleracea) oxidized ( UC)choline to betainal and betaine, as did protoplast lysates. Upon differential centrifugation, the ( UC)choline-oxidizing activity of lysates sedimented with chloroplasts. Chloroplasts purified from protoplast lysates by a Percoll cushion procedure retained strong ( UC)choline-oxidizing activity, although the proportion of the intermediate, ( UC)betainal, in the reaction products was usually higher than for protoplasts. Isolatedmore » chloroplasts also readily oxidized ( UC)betainal to betaine. Light increased the oxidation of both ( UC)choline and ( UC)betainal by isolated chloroplasts. Similar results were obtained with another chenopod (Beta vulgaris) but not with pea (Pisum sativum), a species that accumulates no betaine. The chloroplast site for betaine synthesis in chenopods contrasts with the mitochondrial site in mammals.« less

  15. Organelle DNA variation and systematic relationships in the genus Zea: Teosinte

    PubMed Central

    Timothy, D. H.; Levings, C. S.; Pring, D. R.; Conde, M. F.; Kermicle, J. L.

    1979-01-01

    Chloroplast and mitochondrial DNAs from six races of annual teosinte (Guatemala, Huehuetenango, Balsas, Central Plateau, Chalco, and Nobogame), perennial teosinte, and maize were compared and grouped by restriction endonuclease fragment analyses. Three groups of chloroplast DNAs were detected: (i) perennial teosinte and Guatemala; (ii) Balsas and Huehuetenango; and (iii) all other teosintes. Four groups of mitochondrial DNAs were separated: (i) perennial teosinte; (ii) Guatemala; (iii) Nobogame; and (iv) all other teosintes. Separation of the teosinte and maize organelle DNAs into five groups (Guatemala; perennial teosinte; Balsas and Huehuetenango; Central Plateau and Chalco; Nobogame and maize) approximated the biosystematic relationships of the taxa. It was suggested that the evolutions of the chloroplast and mitochondrial DNAs may be independent of each other, that variation of organelle DNA within a species complex of an organism may be the common condition, and that the DNAs of the organelle and nuclear systems evolve in reasonable harmony. Images PMID:16592708

  16. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.).

    PubMed

    Wang, Zhenyu; Xie, Xiaoyan; Zhao, Jian; Liu, Xiaoyun; Feng, Wenqiang; White, Jason C; Xing, Baoshan

    2012-04-17

    This work reports on the toxicity of CuO nanoparticles (NPs) to maize (Zea mays L.) and their transport and redistribution in the plant. CuO NPs (100 mg L(-1)) had no effect on germination, but inhibited the growth of maize seedlings; in comparison the dissolved Cu(2+) ions and CuO bulk particles had no obvious effect on maize growth. CuO NPs were present in xylem sap as examined by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), showing that CuO NPs were transported from roots to shoots via xylem. Split-root experiments and high-resolution TEM observation further showed that CuO NPs could translocate from shoots back to roots via phloem. During this translocation, CuO NPs could be reduced from Cu (II) to Cu (I). To our knowledge, this is the first report of root-shoot-root redistribution of CuO NPs within maize. The current study provides direct evidence for the bioaccumulation and biotransformation of CuO NPs (20-40 nm) in maize, which has significant implications on the potential risk of NPs and food safety.

  17. Evaluating Corn (Zea Mays L.) N Variability Via Remote Sensed Data

    NASA Technical Reports Server (NTRS)

    Sullivan, D. G.; Shaw, J. N.; Mask, P. L.; Rickman, D.; Luvall, J.; Wersinger, J. M.

    2003-01-01

    Transformations and losses of nitrogen (N) throughout the growing season can be costly. Methods in place to improve N management and facilitate split N applications during the growing season can be time consuming and logistically difficult. Remote sensing (RS) may be a method to rapidly assess temporal changes in crop N status and promote more efficient N management. This study was designed to evaluate the ability of three different RS platforms to predict N variability in corn (Zea mays L.) leaves during vegetative and early reproductive growth stages. Plots (15 x 15m) were established in the Coastal Plain (CP) and Appalachian Plateau (AP) physiographic regions each spring from 2000 to 2002 in a completely randomized design. Treatments consisted of four N rates (0, 56, 112, and 168 kg N/ha) applied as ammonium nitrate (NH4N03) replicated four time. Spectral measurements were acquired via spectroradiometer (lambda = 350 - 1050 nm), Airborne Terrestrial Applications Sensor (ATLAS) (lambda = 400 - 12,500 nm), and the IKONOS satellite (lambda = 450 - 900 nm). Spectroradiometer data were collected on a biweekly basis from V4 through R1. Due to the nature of - satellite and aircraft acquisitions, these data were acquired per availability. Chlorophyll meter (SPAD) and tissue N were collected as ancillary data along with each RS acquisition. Results showed vegetation indices derived from hand-held spectroradiometer measurements as early as V6-V8 were linearly related to yield and tissue N content. ATLAS data was correlated with tissue N at the AP site during the V6 stage (r2 = 0.66), but no significant relationships were observed at the CP site. No significant relationships were observed between plant N and IKONOS imagery. Using a combination of the greenness vegetation index (GNDVI) and the normalized difference vegetation index (NDVI), RS data acquired via ATLAS and the spectroradiometer could be used to evaluate tissue N variability and estimate corn yield variability

  18. Nematode suppression and growth stimulation in corn plants (Zea mays L.) irrigated with domestic effluent.

    PubMed

    Barros, Kenia Kelly; do Nascimento, Clístenes Williams Araújo; Florencio, Lourdinha

    2012-01-01

    Treated wastewater has great potential for agricultural use due to its concentrations of nutrients and organic matter, which are capable of improving soil characteristics. Additionally, effluents can induce suppression of plant diseases caused by soil pathogens. This study evaluates the effect of irrigation with effluent in a UASB reactor on maize (Zea mays L.) development and on suppression of the diseases caused by nematodes of the genus Meloidogyne. Twelve lysimeters of 1 m(3) each were arranged in a completely randomized design, with four treatments and three replicates. The following treatments were used: T1 (W+I), irrigation with water and infestation with nematodes; T2 (W+I+NPK), irrigation with water, infestation with nematodes and fertilization with nitrogen (N), phosphorus (P) and potassium (K); T3 (E+I), irrigation with effluent and infestation with nematodes; and T4 (E+I+P), irrigation with effluent, infestation with nematodes and fertilization with phosphorus. The plants irrigated with the effluent plus the phosphorus fertilizer had better growth and productivity and were more resistant to the disease symptoms caused by the nematodes. The suppression levels may have been due to the higher levels of Zn and NO(3)(-) found in the leaf tissue of the plants irrigated with the effluent and phosphorus fertilizer.

  19. The Chloroplast ATP Synthase Features the Characteristic Redox Regulation Machinery

    PubMed Central

    Sunamura, Ei-Ichiro; Kim, Yusung; Konno, Hiroki

    2013-01-01

    Abstract Significance: Regulation of the activity of the chloroplast ATP synthase is largely accomplished by the chloroplast thioredoxin system, the main redox regulation system in chloroplasts, which is directly coupled to the photosynthetic reaction. We review the current understanding of the redox regulation system of the chloroplast ATP synthase. Recent Advances: The thioredoxin-targeted portion of the ATP synthase consists of two cysteines located on the central axis subunit γ. The redox state of these two cysteines is under the influence of chloroplast thioredoxin, which directly controls rotation during catalysis by inducing a conformational change in this subunit. The molecular mechanism of redox regulation of the chloroplast ATP synthase has recently been determined. Critical Issues: Regulation of the activity of the chloroplast ATP synthase is critical in driving efficiency into the ATP synthesis reaction in chloroplasts. Future Directions: The molecular architecture of the chloroplast ATP synthase, which confers redox regulatory properties requires further investigation, in light of the molecular structure of the enzyme complex as well as the physiological significance of the regulation system. Antioxid. Redox Signal. 19, 1846–1854. PMID:23145525

  20. Characterization of phenylpropanoid pathway genes within European maize (Zea mays L.) inbreds

    PubMed Central

    Andersen, Jeppe Reitan; Zein, Imad; Wenzel, Gerhard; Darnhofer, Birte; Eder, Joachim; Ouzunova, Milena; Lübberstedt, Thomas

    2008-01-01

    Background Forage quality of maize is influenced by both the content and structure of lignins in the cell wall. Biosynthesis of monolignols, constituting the complex structure of lignins, is catalyzed by enzymes in the phenylpropanoid pathway. Results In the present study we have amplified partial genomic fragments of six putative phenylpropanoid pathway genes in a panel of elite European inbred lines of maize (Zea mays L.) contrasting in forage quality traits. Six loci, encoding C4H, 4CL1, 4CL2, C3H, F5H, and CAD, displayed different levels of nucleotide diversity and linkage disequilibrium (LD) possibly reflecting different levels of selection. Associations with forage quality traits were identified for several individual polymorphisms within the 4CL1, C3H, and F5H genomic fragments when controlling for both overall population structure and relative kinship. A 1-bp indel in 4CL1 was associated with in vitro digestibility of organic matter (IVDOM), a non-synonymous SNP in C3H was associated with IVDOM, and an intron SNP in F5H was associated with neutral detergent fiber. However, the C3H and F5H associations did not remain significant when controlling for multiple testing. Conclusion While the number of lines included in this study limit the power of the association analysis, our results imply that genetic variation for forage quality traits can be mined in phenylpropanoid pathway genes of elite breeding lines of maize. PMID:18173847

  1. Export of carbon from chloroplasts at night

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schleucher, J.; Vanderveer, P.J.; Sharkey, T.D.

    Hexose export from chloroplasts at night has been inferred in previous studies of mutant and transgenic plants. The authors have tested whether hexose export is the normal route of carbon export from chloroplasts at night. The authors used nuclear magnetic resonance to distinguish glucose (Glc) made from hexose export and Glc made from triose export. Glc synthesized in vitro from fructose-6-phosphate in the presence of deuterium-labeled water had deuterium incorporated at C-2, whereas synthesis from triose phosphates caused C-2 through C-5 to become deuterated. In both tomato (Lycopersicon esculentum L.) and bean (phaseolus vulgaris L.), Glc from sucrose made atmore » night in the presence of deuterium-enriched water was deuterated only in the C-2 position, indicating that >75% of carbon is exported as hexoses at night. In darkness the phosphate in the cytosol was 28 mM, whereas that in the chloroplasts was 5 mW, but hexose phosphates were 10-fold higher in the cytosol than in the chloroplasts. Therefore, hexose phosphates would not move out of chloroplasts without the input of energy. The authors conclude that most carbon leaves chloroplasts at night as Glc, maltose, or higher maltodextrins under normal conditions.« less

  2. Short-term effects of salt exposure on the maize chloroplast protein pattern.

    PubMed

    Zörb, Christian; Herbst, Ramona; Forreiter, Christoph; Schubert, Sven

    2009-09-01

    It is of fundamental importance to understand the physiological differences leading to salt resistance and to get access to the molecular mechanisms underlying this physiological response. The aim of this work was to investigate the effects of short-term salt exposure on the proteome of maize chloroplasts in the initial phase of salt stress (up to 4 h). It could be shown that sodium ions accumulate quickly and excessively in chloroplasts in the initial phase of moderate salt stress. A change in the chloroplast protein pattern was observed without a change in water potential of the leaves. 2-DE revealed that 12 salt-responsive chloroplast proteins increased while eight chloroplast proteins decreased. Some of the maize chloroplast proteins such as CF1e and a Ca(2+)-sensing receptor show a rather transient response for the first 4 h of salt exposure. The enhanced abundance of the ferredoxin NADPH reductase, the 23 kDa polypeptide of the photosystem II, and the FtsH-like protein might reflect mechanism to attenuate the detrimental effects of Na(+) on the photosynthetic machinery. The observed transient increase and subsequent decrease of selected proteins may exhibit a counterbalancing effect of target proteins in this context. Intriguingly, several subunits of the CF1-CF0 complex are unequally affected, whereas others do not respond at all.

  3. Genome-Wide Comparative In Silico Analysis of the RNA Helicase Gene Family in Zea mays and Glycine max: A Comparison with Arabidopsis and Oryza sativa

    PubMed Central

    Huang, Jinguang; Zheng, Chengchao

    2013-01-01

    RNA helicases are enzymes that are thought to unwind double-stranded RNA molecules in an energy-dependent fashion through the hydrolysis of NTP. RNA helicases are associated with all processes involving RNA molecules, including nuclear transcription, editing, splicing, ribosome biogenesis, RNA export, and organelle gene expression. The involvement of RNA helicase in response to stress and in plant growth and development has been reported previously. While their importance in Arabidopsis and Oryza sativa has been partially studied, the function of RNA helicase proteins is poorly understood in Zea mays and Glycine max. In this study, we identified a total of RNA helicase genes in Arabidopsis and other crop species genome by genome-wide comparative in silico analysis. We classified the RNA helicase genes into three subfamilies according to the structural features of the motif II region, such as DEAD-box, DEAH-box and DExD/H-box, and different species showed different patterns of alternative splicing. Secondly, chromosome location analysis showed that the RNA helicase protein genes were distributed across all chromosomes with different densities in the four species. Thirdly, phylogenetic tree analyses identified the relevant homologs of DEAD-box, DEAH-box and DExD/H-box RNA helicase proteins in each of the four species. Fourthly, microarray expression data showed that many of these predicted RNA helicase genes were expressed in different developmental stages and different tissues under normal growth conditions. Finally, real-time quantitative PCR analysis showed that the expression levels of 10 genes in Arabidopsis and 13 genes in Zea mays were in close agreement with the microarray expression data. To our knowledge, this is the first report of a comparative genome-wide analysis of the RNA helicase gene family in Arabidopsis, Oryza sativa, Zea mays and Glycine max. This study provides valuable information for understanding the classification and putative functions of

  4. Genome-wide comparative in silico analysis of the RNA helicase gene family in Zea mays and Glycine max: a comparison with Arabidopsis and Oryza sativa.

    PubMed

    Xu, Ruirui; Zhang, Shizhong; Huang, Jinguang; Zheng, Chengchao

    2013-01-01

    RNA helicases are enzymes that are thought to unwind double-stranded RNA molecules in an energy-dependent fashion through the hydrolysis of NTP. RNA helicases are associated with all processes involving RNA molecules, including nuclear transcription, editing, splicing, ribosome biogenesis, RNA export, and organelle gene expression. The involvement of RNA helicase in response to stress and in plant growth and development has been reported previously. While their importance in Arabidopsis and Oryza sativa has been partially studied, the function of RNA helicase proteins is poorly understood in Zea mays and Glycine max. In this study, we identified a total of RNA helicase genes in Arabidopsis and other crop species genome by genome-wide comparative in silico analysis. We classified the RNA helicase genes into three subfamilies according to the structural features of the motif II region, such as DEAD-box, DEAH-box and DExD/H-box, and different species showed different patterns of alternative splicing. Secondly, chromosome location analysis showed that the RNA helicase protein genes were distributed across all chromosomes with different densities in the four species. Thirdly, phylogenetic tree analyses identified the relevant homologs of DEAD-box, DEAH-box and DExD/H-box RNA helicase proteins in each of the four species. Fourthly, microarray expression data showed that many of these predicted RNA helicase genes were expressed in different developmental stages and different tissues under normal growth conditions. Finally, real-time quantitative PCR analysis showed that the expression levels of 10 genes in Arabidopsis and 13 genes in Zea mays were in close agreement with the microarray expression data. To our knowledge, this is the first report of a comparative genome-wide analysis of the RNA helicase gene family in Arabidopsis, Oryza sativa, Zea mays and Glycine max. This study provides valuable information for understanding the classification and putative functions of

  5. Maize (Zea mays L.) performance in organically amended mine site soils.

    PubMed

    Oladipo, Oluwatosin Gbemisola; Olayinka, Akinyemi; Awotoye, Olusegun Olufemi

    2016-10-01

    Organic amendments play an important role in the eco-friendly remediation of degraded mine site soils. This study investigated the quality (essential nutrients and heavy metal content) of maize grown on organically amended soils from three active mines in Nigeria. Soil samples were collected randomly at 0-15 cm depth, air-dried and sieved. Five kg of soil were amended with poultry manure and sawdust (poultry manure only, sawdust only, poultry manure-sawdust mixtures in 3:1, 2:1 and 1:1 ratios) at 10 g kg(-1). Maize (Zea mays L.) seeds were planted and watered for two consecutive periods of 8 weeks, with the control and treatment experiments set up in the screenhouse in quadruples. Harvested tissues were weighed, dried, ground and digested. Chemical properties were determined using standard methods while atomic absorption spectrophotometry was used to determine total metal concentrations (Ca, Mg, Fe, Zn, Pb, Cd and Cu). ANOVA was used to test for significant differences among treatment groups in the various parameters. Application of poultry manure-sawdust mixtures significantly (p < 0.05) enhanced tissue dry matter yield, as well as N, P, K, and Na contents while Zn, Cd, Cu and Pb were immobilized to approximately 50-100%. Treatment with sawdust alone reduced tissue nutrient content resulting in depressed plant yield while poultry manure only though enhanced crop yield, contained higher heavy metal contents. Soil amendments comprised of poultry manure-sawdust mixtures can be effective remediation strategy for mine site soils, as these organic materials help replenish soil nutrients, immobilize heavy metals, and enhance food productivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Optical Reflectance and Fluorescence for Detecting Nitrogen Needs in Zea mays L.

    NASA Technical Reports Server (NTRS)

    McMurtrey, J. E.; Middleton, E. M.; Corp. L. A.; Campbell, P. K. Entcheva; Butcher, L. M.; Daughtry, C. S. T.

    2003-01-01

    Nitrogen (N) status in field grown corn (Zea mays L.) was assessed using spectral techniques. Passive reflectance remote sensing and, both passive and active fluorescence sensing methods were investigated. Reflectance and fluorescence methods are reported to detect changes in the primary plant pigments (chlorophylls a and b; carotenoids) in higher plant species. As a general rule, foliar chlorophyll a (Chl a) and chlorophyll b (Chl b) usually exist in approx.3:l ratio. In plants under stress, Chl b content is affected before Chl a reductions occur. For reflectance, a version of the chlorophyll absorption in reflectance index (CARI) method was tested with narrow bands from the Airborne Imaging Spectroradiometer for Applications (ASIA). CARI minimizes the effects of soil background on the signal from green canopies. A modified CARI (MCARI) was used to track total Chl a levels in the red dip of the spectrum from the corn canopy. A second MCARI was used to track the auxiliary plant pigments (Chl b and the carotenoids) in the yellow/orange/red edge part of the reflectance spectrum. The difference between these two MCARI indices detected variations in N levels across the field plot canopies using ASIA data. At the leaf level, ratios of fluorescence emissions in the blue, green, red and far-red wavelengths sensed responses that were associated with the plant pigments, and were indicative of energy transfer in the photosynthetic process. N stressed corn stands could be distinguish from those with optimally applied N with fluorescence emission spectra obtained from individual corn leaves. Both reflectance and fluorescence methods are sensitive in detecting corn N needs and may be especially powerful in monitoring crop conditions if both types of information can be combined.

  7. Effects of Light and Temperature on the Association between Zea mays and Spirillum lipoferum1

    PubMed Central

    Albrecht, Stephan L.; Okon, Yaacov; Burris, Robert H.

    1977-01-01

    Zea mays was grown on a low N nutrient solution under 16 conditions of light and temperature in a crossed-gradient room in an attempt to determine whether or not variation in climatic conditions influences N2 fixation by the association between maize and Spirillum lipoferum. Temperatures were 28, 32, 36, and 40 C and 10 C lower at night; light intensities were 500, 1,250, 2,400, and 3,000 ft-c. Plants harvested after 94 days showed no significant benefit from association with S. lipoferum either in dry weight production or in total N content; variations in temperature and light had only a small influence on N2 fixation under the conditions tested. Measurements of total N, together with designated assumptions, indicated that less than the equivalent of 0.5 kilogram of N was fixed/hectare during the entire growing period by the maize-S. lipoferum association. Rates of C2H2 reduction by replicate root samples generally were low and variable and did not correlate with the measurements of total N. PMID:16660131

  8. Quantification of allantoin in various Zea mays L. hybrids by RP-HPLC with UV detection.

    PubMed

    Maksimović, Z; Malenović, A; Jancić, B; Kovacević, N

    2004-07-01

    A RP-HPLC method for quantification of allantoin in silk of fifteen maize hybrids (Zea mays L., Poaceae) was described. Following extraction of the plant material with an acetone-water (7:3, VN) mixture, filtration and dilution, the extracts were analyzed without previous chemical derivatization. Separation and quantification were achieved using an Alltech Econosil C18 column under isocratic conditions at 40 degrees C. The mobile phase flow (20% methanol--80% water with 5 mM sodium laurylsulfate added at pH 2.5, adjusted with 85% orthophosphoric acid; pH of water phase was finally adjusted at 6.0 by addition of triethylamine) was maintained at 1.0 mL/min. Column effluent was monitored at 235 nm. This simple procedure afforded efficient separation and quantification of allantoin in plant material, without interference of polyphenols or other plant constituents of medium to high polarity, or similar UV absorption. Our study revealed that the silk of all investigated maize hybrids could be considered relatively rich in allantoin, covering the concentration range between 215 and 289 mg per 100 g of dry plant material.

  9. Hydrolysis and reconjugation of gibberellin A20 glucosyl ester by seedlings of Zea mays L.

    PubMed Central

    Schneider, G; Jensen, E; Spray, C R; Phinney, B O

    1992-01-01

    The [6-2H]glucosyl ester of [17-13C,3H]gibberellin A20 (GA20) was injected into light-grown 14-day-old seedlings of normal, dwarf-1, and dwarf-5 maize (Zea mays L.). The plant material was extracted 24 h later, and the extracts were purified by solvent partitioning, column chromatography, and HPLC. 13C-labeled metabolites were identified from the purified extracts by full-scan gas chromatography/mass spectrometry and selected ion current monitoring in conjunction with Kovats retention indices. The metabolites, [13C]GA20, [13C]GA29, [13C]GA20-13-O-glucoside, and [13C]GA29-2-O-glucoside, were identified from normal, dwarf-1, and dwarf-5 seedlings. [13C]GA8 and [13C]GA8-2-O-glucoside were also identified from normal and dwarf-5 seedlings but not from dwarf-1 seedlings. The data provide definitive evidence for the endogenous hydrolysis by the seedlings of the introduced conjugate and its reconjugation to three glucosides. PMID:1518829

  10. Comparative Effectivness of Metal Ions in Inducing Curvature of Primary Roots of Zea mays1

    PubMed Central

    Hasenstein, Karl Heinz; Evans, Michael L.; Stinemetz, Charles L.; Moore, Randy; Fondren, W. Mark; Koon, E. Colin; Higby, Mary A.; Smucker, Alvin J. M.

    1988-01-01

    We used five cultivars of Zea mays (Bear Hybrid WF9 * 38MS, B73 * Missouri 17, Yellow Dent, Merit, and Great Lakes Hybrid 422) to reinvestigate the specificity of metal ions for inducing root curvature. Of 17 cations tested, 6 (Al3+, Ba2+, Ca2+, Cd2+, Cu2+, Zn2+) induced curvature. Roots curved away from Al3+, Ba2+, and Cd2+. Roots curved away from low (0.1 millimolar) concentrations of Cu2+ but toward higher (1-5 millimolar) concentrations. Roots initially curved away from Zn2+ but the direction of the subsequent curvature was unpredictable. In most cases, roots of all cultivars curved towards calcium. However, in some tests there was no response to calcium or even (especially in the cultivars Merit and B73 * Missouri 17) substantial curvature away from calcium. The results indicate that the induction of root curvature is not specific for calcium. The results are discussed relative to the possible role of calmodulin as a mediator of ion-induced root curvature. PMID:11538239

  11. Effects of As2O3 on DNA methylation, genomic instability, and LTR retrotransposon polymorphism in Zea mays.

    PubMed

    Erturk, Filiz Aygun; Aydin, Murat; Sigmaz, Burcu; Taspinar, M Sinan; Arslan, Esra; Agar, Guleray; Yagci, Semra

    2015-12-01

    Arsenic is a well-known toxic substance on the living organisms. However, limited efforts have been made to study its DNA methylation, genomic instability, and long terminal repeat (LTR) retrotransposon polymorphism causing properties in different crops. In the present study, effects of As2O3 (arsenic trioxide) on LTR retrotransposon polymorphism and DNA methylation as well as DNA damage in Zea mays seedlings were investigated. The results showed that all of arsenic doses caused a decreasing genomic template stability (GTS) and an increasing Random Amplified Polymorphic DNAs (RAPDs) profile changes (DNA damage). In addition, increasing DNA methylation and LTR retrotransposon polymorphism characterized a model to explain the epigenetically changes in the gene expression were also found. The results of this experiment have clearly shown that arsenic has epigenetic effect as well as its genotoxic effect. Especially, the increasing of polymorphism of some LTR retrotransposon under arsenic stress may be a part of the defense system against the stress.

  12. Isolation and Characterization of Fipronil Degrading Acinetobacter calcoaceticus and Acinetobacter oleivorans from Rhizospheric Zone of Zea mays.

    PubMed

    Uniyal, Shivani; Paliwal, Rashmi; Verma, Megha; Sharma, R K; Rai, J P N

    2016-06-01

    An enrichment culture technique was used for the isolation of bacteria capable of utilizing fipronil as a sole source of carbon and energy. Based on morphological, biochemical characteristics and phylogenetic analysis of 16S rRNA sequence, the bacterial strains were identified as Acinetobacter calcoaceticus and Acinetobacter oleivorans. Biodegradation experiments were conducted in loamy sand soil samples fortified with fipronil (50 µg kg(-1)) and inoculated with Acinetobacter sp. cells (45 × 10(7) CFU mL(-1)) for 90 days. Soil samples were periodically analyzed by gas liquid chromatography equipped with electron capture detector. Biodegradation of fipronil fitted well with the pseudo first-order kinetics, with rate constant value between 0.041 and 0.051 days(-1). In pot experiments, fipronil and its metabolites fipronil sulfide, fipronil sulfone and fipronil amide were found below quantifiable limit in soil and root, shoot and leaves of Zea mays. These results demonstrated that A. calcoaceticus and A. oleivorans may serve as promising strains in the bioremediation of fipronil-contaminated soils.

  13. DNA Gyrase Is Involved in Chloroplast Nucleoid Partitioning

    PubMed Central

    Cho, Hye Sun; Lee, Sang Sook; Kim, Kwang Dong; Hwang, Inhwan; Lim, Jong-Seok; Park, Youn-Il; Pai, Hyun-Sook

    2004-01-01

    DNA gyrase, which catalyzes topological transformation of DNA, plays an essential role in replication and transcription in prokaryotes. Virus-induced gene silencing of NbGyrA or NbGyrB, which putatively encode DNA gyrase subunits A and B, respectively, resulted in leaf yellowing phenotypes in Nicotiana benthamiana. NbGyrA and NbGyrB complemented the gyrA and gyrB temperature-sensitive mutations of Escherichia coli, respectively, which indicates that the plant and bacterial subunits are functionally similar. NbGyrA and NbGyrB were targeted to both chloroplasts and mitochondria, and depletion of these subunits affected both organelles by reducing chloroplast numbers and inducing morphological and physiological abnormalities in both organelles. Flow cytometry analysis revealed that the average DNA content in the affected chloroplasts and mitochondria was significantly higher than in the control organelles. Furthermore, 4′,6-diamidino-2-phenylindole staining revealed that the abnormal chloroplasts contained one or a few large nucleoids instead of multiple small nucleoids dispersed throughout the stroma. Pulse-field gel electrophoresis analyses of chloroplasts demonstrated that the sizes and/or structure of the DNA molecules in the abnormal chloroplast nucleoids are highly aberrant. Based on these results, we propose that DNA gyrase plays a critical role in chloroplast nucleoid partitioning by regulating DNA topology. PMID:15367714

  14. Zea mays, Stigma maydis prevents and extenuates acetaminophen-perturbed oxidative onslaughts in rat hepatocytes.

    PubMed

    Saheed, Sabiu; Frans Hendrik, O'Neill; Tom, Ashafa Anofi Omotayo

    2016-11-01

    Zea mays L. (Poaceae) Stigma maydis is an underutilized product of corn cultivation finding therapeutic applications in oxidative stress-related disorders. This study investigated its aqueous extract against acetaminophen (APAP)-perturbed oxidative insults in rat hepatocytes. Hepatotoxic rats were orally pre- and post-treated with the extract (at 200 and 400 mg/kg body weight) and vitamin C (200 mg/kg body weight), respectively, for 14 days. Liver function, antioxidative and histological analyses were thereafter evaluated. The APAP-induced marked (p < 0.05) increases in the activities of alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, gamma glutamyl transferase and the concentrations of bilirubin, oxidized glutathione, protein carbonyls, malondialdehyde, conjugated dienes, lipid hydroperoxides and fragmented DNA were dose-dependently extenuated in the extract-treated animals. The extract also significantly (p < 0.05) improved the reduced activities of superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase as well as total protein, albumin and glutathione concentrations in the hepatotoxic rats. These improvements may be attributed to the bioactive constituents as revealed by the gas chromatography-mass spectrometric chromatogram of the extract. The observed effects compared favourably with vitamin C and are informative of hepatoprotective and antioxidative attributes of the extract and were further supported by the histological analysis. The data from the present findings suggest that Stigma maydis aqueous extract is capable of preventing and ameliorating APAP-mediated oxidative hepatic damage via enhancement of antioxidant defence systems.

  15. Phytoremediation for co-contaminated soils of chromium and benzo[a]pyrene using Zea mays L.

    PubMed

    Chigbo, Chibuike; Batty, Lesley

    2014-02-01

    A greenhouse experiment was carried out to investigate the single effect of benzo[a]pyrene (B[a]P) or chromium (Cr) and the joint effect of Cr-B[a]P on the growth of Zea mays, its uptake and accumulation of Cr, and the dissipation of B[a]P over 60 days. Results showed that single or joint contamination of Cr and B[a]P did not affect the plant growth relative to control treatments. However, the occurrence of B[a]P had an enhancing effect on the accumulation and translocation of Cr. The accumulation of Cr in shoot of plant significantly increased by ≥ 79 % in 50 mg kg(-1) Cr-B[a]P (1, 5, and 10 mg kg(-1)) treatments and by ≥ 86 % in 100 mg kg(-1) Cr-B[a]P (1, 5, and 10 mg kg(-1)) treatments relative to control treatments. The presence of plants did not enhance the dissipation of B[a]P in lower (1and 5 mg kg(-1)) B[a]P contaminated soils; however, over 60 days of planting Z. mays seemed to enhance the dissipation of B[a]P by over 60 % in 10 mg kg(-1) single contaminated soil and by 28 to 41 % in 10 mg kg(-1)B[a]P co-contaminated soil. This suggests that Z. mays might be a useful plant for the remediation of Cr-B[a]P co-contaminated soil.

  16. Nonadditive protein accumulation patterns in Maize (Zea mays L.) hybrids during embryo development.

    PubMed

    Marcon, Caroline; Schützenmeister, André; Schütz, Wolfgang; Madlung, Johannes; Piepho, Hans-Peter; Hochholdinger, Frank

    2010-12-03

    Heterosis describes the superior performance of heterozygous F(1)-hybrid plants compared to their homozygous parental inbred lines. In the present study, heterosis was detected for length, weight, and the time point of seminal root primordia initiation in maize (Zea mays L.) embryos of the reciprocal F(1)-hybrids UH005xUH250 and UH250xUH005. A two-dimensional gel electrophoresis (2-DE) proteome survey of the most abundant proteins of the reciprocal hybrids and their parental inbred lines 25 and 35 days after pollination revealed that 141 of 597 detected proteins (24%) exhibited nonadditive accumulation in at least one hybrid. Approximately 44% of all nonadditively accumulated proteins displayed an expression pattern that was not distinguishable from the low parent value. Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) analyses and subsequent functional classification of the 141 proteins revealed that development, protein metabolism, redox-regulation, glycolysis, and amino acid metabolism were the most prominent functional classes among nonadditively accumulated proteins. In 35-day-old embryos of the hybrid UH250xUH005, a significant up-regulation of enzymes related to glucose metabolism which often exceeded the best parent values was observed. A comparison of nonadditive protein accumulation between rice and maize embryo data sets revealed a significant overlap of nonadditively accumulated proteins suggesting conserved organ- or tissue-specific regulatory mechanisms in monocots related to heterosis.

  17. Two Isoforms of Dihydroxyacetone Phosphate Reductase from the Chloroplasts of Dunaliella tertiolecta.

    PubMed

    Gee, R.; Goyal, A.; Byerrum, R. U.; Tolbert, N. E.

    1993-09-01

    Three isoforms of dihydroxyacetone phosphate reductase in extracts from Dunaliella tertiolecta have been separated by a diethylaminoethyl cellulose column chromatography with a shallow NaCl gradient. The chloroplasts contained the two major isoforms, and the third, minor form was in the cytosol. The isoforms are unstable in the absence of glycerol and they are cold labile, but they may be partially reactivated at 35[deg]C. The first chloroplast form to elute from the DEAE cellulose column was the major form when the cells were grown on high NaCl and it has been referred to as the form for glycerol production for osmoregulation or "osmoregulator form." The second form increased in specific activity when inorganic phosphate was increased in the growth media to stimulate growth, and it has been given the designation for the form for glyceride synthesis, "glyceride form." The osmoregulator form was stimulated by NaCl added to the enzyme assay, but not by reduced Escherichia coli thioredoxin. The glyceride form had properties similar to the enzyme in leaf chloroplast, such as inhibition by NaCl and by fatty acyl-coenzyme A derivatives and some stimulation by dithiothreitol, uridine diphosphate galactose, cyti-dine diphosphate dipalmatoyl diglyceride, and reduced E. coli thioredoxin. Thus, Dunaliella chloroplasts have a salt-stimulated osmoregulatory form of dihydroxyacetone phosphate reductase, which seems to have a role in glycerol production, and an isoform, which may be involved in glyceride synthesis and which has properties similar to the enzyme in chloroplasts of higher plants.

  18. Two Isoforms of Dihydroxyacetone Phosphate Reductase from the Chloroplasts of Dunaliella tertiolecta.

    PubMed Central

    Gee, R.; Goyal, A.; Byerrum, R. U.; Tolbert, N. E.

    1993-01-01

    Three isoforms of dihydroxyacetone phosphate reductase in extracts from Dunaliella tertiolecta have been separated by a diethylaminoethyl cellulose column chromatography with a shallow NaCl gradient. The chloroplasts contained the two major isoforms, and the third, minor form was in the cytosol. The isoforms are unstable in the absence of glycerol and they are cold labile, but they may be partially reactivated at 35[deg]C. The first chloroplast form to elute from the DEAE cellulose column was the major form when the cells were grown on high NaCl and it has been referred to as the form for glycerol production for osmoregulation or "osmoregulator form." The second form increased in specific activity when inorganic phosphate was increased in the growth media to stimulate growth, and it has been given the designation for the form for glyceride synthesis, "glyceride form." The osmoregulator form was stimulated by NaCl added to the enzyme assay, but not by reduced Escherichia coli thioredoxin. The glyceride form had properties similar to the enzyme in leaf chloroplast, such as inhibition by NaCl and by fatty acyl-coenzyme A derivatives and some stimulation by dithiothreitol, uridine diphosphate galactose, cyti-dine diphosphate dipalmatoyl diglyceride, and reduced E. coli thioredoxin. Thus, Dunaliella chloroplasts have a salt-stimulated osmoregulatory form of dihydroxyacetone phosphate reductase, which seems to have a role in glycerol production, and an isoform, which may be involved in glyceride synthesis and which has properties similar to the enzyme in chloroplasts of higher plants. PMID:12231930

  19. Influence of electrical fields and asymmetric application of mucilage on curvature of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Marcum, H.; Moore, R.

    1990-01-01

    Primary roots of Zea mays cv. Yellow Dent growing in an electric field curve towards the anode. Roots treated with EDTA and growing in electric field do not curve. When root cap mucilage is applied asymmetrically to tips of vertically-oriented roots, the roots curve toward the mucilage. Roots treated with EDTA curve toward the side receiving mucilage and toward blocks containing 10 mM CaCl2, but not toward "empty" agar blocks or the cut surfaces of severed root tips. These results suggest that 1) free calcium (Ca) is necessary for root electrotropism, 2) mucilage contains effector(s) that induce gravitropiclike curvature, and 3) mucilage can replace gravitropic effectors chelated by EDTA. These results are consistent with the hypothesis that the downward movement of gravitropic effectors to the lower sides of tips of horizontally-oriented roots occurs at least partially in the apoplast.

  20. The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: Insights into the architecture of ancestral chloroplast genomes

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    1999-01-01

    Green plants seem to form two sister lineages: Chlorophyta, comprising the green algal classes Prasinophyceae, Ulvophyceae, Trebouxiophyceae, and Chlorophyceae, and Streptophyta, comprising the Charophyceae and land plants. We have determined the complete chloroplast DNA (cpDNA) sequence (200,799 bp) of Nephroselmis olivacea, a member of the class (Prasinophyceae) thought to include descendants of the earliest-diverging green algae. The 127 genes identified in this genome represent the largest gene repertoire among the green algal and land plant cpDNAs completely sequenced to date. Of the Nephroselmis genes, 2 (ycf81 and ftsI, a gene involved in peptidoglycan synthesis) have not been identified in any previously investigated cpDNA; 5 genes [ftsW, rnE, ycf62, rnpB, and trnS(cga)] have been found only in cpDNAs of nongreen algae; and 10 others (ndh genes) have been described only in land plant cpDNAs. Nephroselmis and land plant cpDNAs share the same quadripartite structure—which is characterized by the presence of a large rRNA-encoding inverted repeat and two unequal single-copy regions—and very similar sets of genes in corresponding genomic regions. Given that our phylogenetic analyses place Nephroselmis within the Chlorophyta, these structural characteristics were most likely present in the cpDNA of the common ancestor of chlorophytes and streptophytes. Comparative analyses of chloroplast genomes indicate that the typical quadripartite architecture and gene-partitioning pattern of land plant cpDNAs are ancient features that may have been derived from the genome of the cyanobacterial progenitor of chloroplasts. Our phylogenetic data also offer insight into the chlorophyte ancestor of euglenophyte chloroplasts. PMID:10468594

  1. Effects and mechanism of acid rain on plant chloroplast ATP synthase.

    PubMed

    Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-09-01

    Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent.

  2. Mechanism of protein import across the chloroplast envelope.

    PubMed

    Chen, K; Chen, X; Schnell, D J

    2000-01-01

    The development and maintenance of chloroplasts relies on the contribution of protein subunits from both plastid and nuclear genomes. Most chloroplast proteins are encoded by nuclear genes and are post-translationally imported into the organelle across the double membrane of the chloroplast envelope. Protein import into the chloroplast consists of two essential elements: the specific recognition of the targeting signals (transit sequences) of cytoplasmic preproteins by receptors at the outer envelope membrane and the subsequent translocation of preproteins simultaneously across the double membrane of the envelope. These processes are mediated via the co-ordinate action of protein translocon complexes in the outer (Toc apparatus) and inner (Tic apparatus) envelope membranes.

  3. Bacillus ciccensis sp. nov., isolated from maize (Zea mays L.) seeds.

    PubMed

    Liu, Yang; Li, Nannan; Eom, Mi Kyung; Schumann, Peter; Zhang, Xin; Cao, Yanhua; Ge, Yuanyuan; Xiao, Ming; Zhao, Jiuran; Cheng, Chi; Kim, Song-Gun

    2017-11-01

    Two Gram-stain-positive bacterial strains, designated as 5L6 T and 6L6, isolated from seeds of hybrid maize (Zea mays L., Jingke 968) were investigated using a polyphasic taxonomic approach. The cells were aerobic, motile, endospore-forming and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates were recognized as a species of the genus Bacillus, to which the five closest neighbours are Bacillus solani FJAT-18043 T (99.8 % similarity), Bacillus horneckiae DSM 23495 T (97.7 %), Bacillus eiseniae A1-2 T (97.4 %), Bacillus kochii WCC 4582 T (97.1 %) and Bacillus purgationiresistens DS22 T (97.0 %). The DNA G+C content of strain 5L6 T was 37.4 mol%. Its polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant respiratory quinone was MK-7 and the major fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, iso-C14 : 0, anteiso-C17 : 0 and C16 : 1 ω7c alcohol. The cell-wall peptidoglycan contained ornithine, serine, aspartic acid, glutamic acid and alanine while diaminopimelic acid could not be detected. Strains 5L6 T and 6L6 were clearly distinguished from the type strains of related validly named species using phylogenetic analysis, DNA-DNA hybridization, fatty acid analysis, peptidoglycan analysis and comparison of a range of physiological and biochemical characteristics. The genotypic and phenotypic data show that strains 5L6 T and 6L6 represent a novel species of the genus Bacillus, for which the name Bacillusciccensis sp. nov. is proposed. The type strain is 5L6 T (=KCTC 33663 T =CICC 23855 T =DSM 104513 T ).

  4. Rate of dehydration of corn (Zea mays L.) pollen in the air.

    PubMed

    Aylor, Donald E

    2003-10-01

    The water content of corn (Zea mays L.) pollen directly affects its dispersal in the atmosphere through its effect on settling speed and viability. Therefore, the rate of water loss from pollen after being shed from the anther is an important component of a model to predict effective pollen transport distances in the atmosphere. The rate of water loss from corn pollen in air was determined using two methods: (1) by direct weighing of samples containing approximately 5 x 10(4) grains, and (2) by microscopic measurement of the change in size of individual grains. The conductance of the pollen wall to water loss was derived from the time rate of change of pollen mass or pollen grain size. The two methods gave average conductance values of 0.026 and 0.027 cm s-1, respectively. In other experiments, the water potential, psi, of corn pollen was determined at various values of relative water content (dry weight basis), either by using a thermocouple psychrometer or by allowing samples of pollen to come to vapour equilibrium with various saturated salt solutions. Non-linear regression analysis of the data yielded psi (MPa) = -3.218 theta(-1.35) (r2 = 0.94; for -298 < or = psi < or = -1 MPa). This result was incorporated into a model differential equation for the rate of water loss from pollen. The model agreed well (r2 approximately 0.98) with the observed time-course of the decrease of water content of pollen grains exposed to a range of temperature and humidity conditions.

  5. Expression profiling of selected glutathione transferase genes in Zea mays (L.) seedlings infested with cereal aphids.

    PubMed

    Sytykiewicz, Hubert; Chrzanowski, Grzegorz; Czerniewicz, Paweł; Sprawka, Iwona; Łukasik, Iwona; Goławska, Sylwia; Sempruch, Cezary

    2014-01-01

    The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2•-) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2•- was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2•- generation in comparison with the Tasty Sweet genotype.

  6. Chloroplast Biogenesis: Control of Plastid Development, Protein Import, Division and Inheritance

    PubMed Central

    Sakamoto, Wataru; Miyagishima, Shin-ya; Jarvis, Paul

    2008-01-01

    The chloroplast is a multi-copy cellular organelle that not only performs photosynthesis but also synthesizes amino acids, lipids and phytohormones. The plastid also responds to environmental stimuli such as gravitropism. Biogenesis of chloroplasts is initiated from proplastids in shoot meristems, and involves a series of important events. In the last decade, considerable progress has been made towards understanding various aspects of chloroplast biogenesis at the molecular level, via studies in model systems such as Arabidopsis. This review focuses on two important aspects of chloroplast biogenesis, synthesis/assembly and division/transmission. Chloroplasts originated through endosymbiosis from an ancestor of extant cyanobacteria, and thus contain their own genomes. DNA in chloroplasts is organized into complexes with proteins, and these are called nucleoids. The synthesis of chloroplast proteins is regulated at various steps. However, a majority of proteins are synthesized in the cytosol, and their proper import into chloroplast compartments is a prerequisite for chloroplast development. Fundamental aspects of plastid gene expression/regulation and chloroplast protein transport are described, together with recent proteome analyses of the organelle. Chloroplasts are not de novo synthesized, but instead are propagated from pre-existing plastids. In addition, plastids are transmitted from generation to generation with a unique mode of inheritance. Our current knowledge on the division machinery and the inheritance of plastids is described. PMID:22303235

  7. Redirecting the Cyanobacterial Bicarbonate Transporters BicA and SbtA to the Chloroplast Envelope: Soluble and Membrane Cargos Need Different Chloroplast Targeting Signals in Plants

    PubMed Central

    Rolland, Vivien; Badger, Murray R.; Price, G. Dean

    2016-01-01

    Most major crops used for human consumption are C3 plants, which yields are limited by photosynthetic inefficiency. To circumvent this, it has been proposed to implement the cyanobacterial CO2-concentrating mechanism (CCM), principally consisting of bicarbonate transporters and carboxysomes, into plant chloroplasts. As it is currently not possible to recover homoplasmic transplastomic monocots, foreign genes must be introduced in these plants via nuclear transformation. Consequently, it is paramount to ensure that resulting proteins reach the appropriate sub-cellular compartment, which for cyanobacterial transporters BicA and SbtA, is the chloroplast inner-envelope membrane (IEM). At present, targeting signals to redirect large transmembrane proteins from non-chloroplastic organisms to plant chloroplast envelopes are unknown. The goal of this study was to identify such signals, using agrobacteria-mediated transient expression and confocal microscopy to determine the sub-cellular localization of ∼37 GFP-tagged chimeras. Initially, fragments of chloroplast proteins known to target soluble cargos to the stroma were tested for their ability to redirect BicA, but they proved ineffective. Next, different N-terminal regions from Arabidopsis IEM transporters were tested. We demonstrated that the N-terminus of AtHP59, AtPLGG1 or AtNTT1 (92–115 amino acids), containing a cleavable chloroplast transit peptide (cTP) and a membrane protein leader (MPL), was sufficient to redirect BicA or SbtA to the chloroplast envelope. This constitutes the first evidence that nuclear-encoded transmembrane proteins from non-chloroplastic organisms can be targeted to the envelope of plant chloroplasts; a finding which represents an important advance in chloroplast engineering by opening up the door to further manipulation of the chloroplastic envelope. PMID:26973659

  8. Selection of inbred maize (Zea mays L.) progenies by topcrosses conducted in contrasting environments.

    PubMed

    Rodrigues, C S; Pacheco, C A P; Guedes, M L; Pinho, R G V; Castro, C R

    2016-09-23

    The aim of this study was to identify inbred progenies of S 0:1 maize (Zea mays L.) plants that were efficient at a low level of technology and responsive at a high level of technology through the use of topcrosses. Two contrasting environments were created using two levels of base fertilization and topdressing, so that the levels of nitrogen, phosphorus, and potassium were applied four times higher in one environment than in the other. We used S 0:1 progenies derived from commercial hybrids in topcrosses with two testers (an elite line from the flint heterotic group and an elite line from the dent heterotic group). The progenies and three controls were evaluated in an augmented block design in Nossa Senhora das Dores, SE, Brazil in the 2010 crop season. The average grain yield in the high-technological level was 21.44% greater than that in the low-technological level. There were no changes in progeny behavior in the two technological levels for grain yield. The testers did not differ in the average grain yield of the progenies at the two technological levels. Therefore, it is possible to select progenies derived from commercial hybrids that have an efficient response to fertilization.

  9. Cloning and Functional Characterization of the Maize (Zea mays L.) Carotenoid Epsilon Hydroxylase Gene

    PubMed Central

    Sheng, Yanmin; Wang, Yingdian; Capell, Teresa; Shi, Lianxuan; Ni, Xiuzhen; Sandmann, Gerhard; Christou, Paul; Zhu, Changfu

    2015-01-01

    The assignment of functions to genes in the carotenoid biosynthesis pathway is necessary to understand how the pathway is regulated and to obtain the basic information required for metabolic engineering. Few carotenoid ε-hydroxylases have been functionally characterized in plants although this would provide insight into the hydroxylation steps in the pathway. We therefore isolated mRNA from the endosperm of maize (Zea mays L., inbred line B73) and cloned a full-length cDNA encoding CYP97C19, a putative heme-containing carotenoid ε hydroxylase and member of the cytochrome P450 family. The corresponding CYP97C19 genomic locus on chromosome 1 was found to comprise a single-copy gene with nine introns. We expressed CYP97C19 cDNA under the control of the constitutive CaMV 35S promoter in the Arabidopsis thaliana lut1 knockout mutant, which lacks a functional CYP97C1 (LUT1) gene. The analysis of carotenoid levels and composition showed that lutein accumulated to high levels in the rosette leaves of the transgenic lines but not in the untransformed lut1 mutants. These results allowed the unambiguous functional annotation of maize CYP97C19 as an enzyme with strong zeinoxanthin ε-ring hydroxylation activity. PMID:26030746

  10. Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants.

    PubMed

    Islam, Faisal; Yasmeen, Tahira; Riaz, Muhammad; Arif, Muhammad Saleem; Ali, Shafaqat; Raza, Syed Hammad

    2014-12-01

    Plant-associated bacteria can have beneficial effects on the growth and health of their host. However, the role of plant growth promoting bacteria (PGPR), under metal stress, has not been widely investigated. The present study investigated the possible mandatory role of plant growth promoting rhizobacteria in protecting plants from zinc (Zn) toxicity. The exposure of maize plants to 50µM zinc inhibited biomass production, decreased chlorophyll, total soluble protein and strongly increased accumulation of Zn in both root and shoot. Similarly, Zn enhanced hydrogen peroxide, electrolyte leakage and lipid peroxidation as indicated by malondaldehyde accumulation. Pre-soaking with novel Zn tolerant bacterial strain Proteus mirabilis (ZK1) isolated zinc (Zn) contaminated soil, alleviated the negative effect of Zn on growth and led to a decrease in oxidative injuries caused by Zn. Furthermore, strain ZK1 significantly enhanced the activities of catalase, guaiacol peroxidase, superoxide dismutase and ascorbic acid but lowered the Proline accumulation in Zn stressed plants. The results suggested that the inoculation of Zea mays plants with P. mirabilis during an earlier growth period could be related to its plant growth promoting activities and avoidance of cumulative damage upon exposure to Zn, thus reducing the negative consequences of oxidative stress caused by heavy metal toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Effect of a Longitudinally Applied Voltage Upon the Growth of Zea mays Seedlings 1

    PubMed Central

    Desrosiers, Mark F.; Bandurski, Robert S.

    1988-01-01

    The electrical parameters that affect young seedling growth were investigated. Voltages ranging from 5 to 40 volts were applied longitudinally along the mesocotyl region of 4-day old Zea mays L. (cv Silver Queen) seedlings for periods of 3 or 4 hours. It was determined that: (a) making the tips of the seedlings electrically positive relative to the base strongly inhibited shoot growth at 5 volts, whereas the reverse polarity had no effect; (b) at higher voltages, making the tip of the seedlings negative caused less growth inhibition than the reverse polarity at each voltage level; (c) the higher the applied voltage the greater the degree of inhibition; and, (d) the more growth inhibition experienced by the plants the poorer, and slower, their recovery. Previous observations of a relationship between the amount of free indole-3-acetic acid in the mesocotyl cortex and the growth rate of the mesocotyl and of gravitropism-induced movement of labeled indole-3-acetic acid from the seed to the shoot lead to the prediction of a voltage-dependent gating of the movement of indole-3-acetic acid from the stele to the cortex. This provided the basis for attempting to alter the growth rate of seedlings by means of an applied voltage. Images Fig. 1 PMID:11537877

  12. Engineered Chloroplast Genome just got Smarter

    PubMed Central

    Jin, Shuangxia; Daniell, Henry

    2015-01-01

    Chloroplasts are known to sustain life on earth by providing food, fuel and oxygen through the process of photosynthesis. However, the chloroplast genome has also been smartly engineered to confer valuable agronomic traits and/or serve as bioreactors for production of industrial enzymes, biopharmaceuticals, bio-products or vaccines. The recent breakthrough in hyper-expression of biopharmaceuticals in edible leaves has facilitated the advancement to clinical studies by major pharmaceutical companies. This review critically evaluates progress in developing new tools to enhance or simplify expression of targeted genes in chloroplasts. These tools hold the promise to further the development of novel fuels and products, enhance the photosynthetic process, and increase our understanding of retrograde signaling and cellular processes. PMID:26440432

  13. Chloroplast-to-nucleus communication

    PubMed Central

    Chan, Kai Xun; Crisp, Peter Alexander; Estavillo, Gonzalo Martin

    2010-01-01

    In order for plant cells to function efficiently under different environmental conditions, chloroplastic processes have to be tightly regulated by the nucleus. It is widely believed that there is inter-organelle communication from the chloroplast to the nucleus, called retrograde signaling. Although some pathways of communication have been identified, the actual signals that move between the two cellular compartments are largely unknown. This review provides an overview of retrograde signaling including its importance to the cell, candidate signals, recent advances and current experimental systems. In addition, we highlight the potential of using drought stress as a model for studying retrograde signaling. PMID:21512326

  14. Combined Analysis of the Chloroplast Genome and Transcriptome of the Antarctic Vascular Plant Deschampsia antarctica Desv

    PubMed Central

    Lee, Jungeun; Kang, Yoonjee; Shin, Seung Chul; Park, Hyun; Lee, Hyoungseok

    2014-01-01

    Background Antarctic hairgrass (Deschampsia antarctica Desv.) is the only natural grass species in the maritime Antarctic. It has been researched as an important ecological marker and as an extremophile plant for studies on stress tolerance. Despite its importance, little genomic information is available for D. antarctica. Here, we report the complete chloroplast genome, transcriptome profiles of the coding/noncoding genes, and the posttranscriptional processing by RNA editing in the chloroplast system. Results The complete chloroplast genome of D. antarctica is 135,362 bp in length with a typical quadripartite structure, including the large (LSC: 79,881 bp) and small (SSC: 12,519 bp) single-copy regions, separated by a pair of identical inverted repeats (IR: 21,481 bp). It contains 114 unique genes, including 81 unique protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Sequence divergence analysis with other plastomes from the BEP clade of the grass family suggests a sister relationship between D. antarctica, Festuca arundinacea and Lolium perenne of the Poeae tribe, based on the whole plastome. In addition, we conducted high-resolution mapping of the chloroplast-derived transcripts. Thus, we created an expression profile for 81 protein-coding genes and identified ndhC, psbJ, rps19, psaJ, and psbA as the most highly expressed chloroplast genes. Small RNA-seq analysis identified 27 small noncoding RNAs of chloroplast origin that were preferentially located near the 5′- or 3′-ends of genes. We also found >30 RNA-editing sites in the D. antarctica chloroplast genome, with a dominance of C-to-U conversions. Conclusions We assembled and characterized the complete chloroplast genome sequence of D. antarctica and investigated the features of the plastid transcriptome. These data may contribute to a better understanding of the evolution of D. antarctica within the Poaceae family for use in molecular phylogenetic studies and may also help researchers understand the

  15. Combined analysis of the chloroplast genome and transcriptome of the Antarctic vascular plant Deschampsia antarctica Desv.

    PubMed

    Lee, Jungeun; Kang, Yoonjee; Shin, Seung Chul; Park, Hyun; Lee, Hyoungseok

    2014-01-01

    Antarctic hairgrass (Deschampsia antarctica Desv.) is the only natural grass species in the maritime Antarctic. It has been researched as an important ecological marker and as an extremophile plant for studies on stress tolerance. Despite its importance, little genomic information is available for D. antarctica. Here, we report the complete chloroplast genome, transcriptome profiles of the coding/noncoding genes, and the posttranscriptional processing by RNA editing in the chloroplast system. The complete chloroplast genome of D. antarctica is 135,362 bp in length with a typical quadripartite structure, including the large (LSC: 79,881 bp) and small (SSC: 12,519 bp) single-copy regions, separated by a pair of identical inverted repeats (IR: 21,481 bp). It contains 114 unique genes, including 81 unique protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Sequence divergence analysis with other plastomes from the BEP clade of the grass family suggests a sister relationship between D. antarctica, Festuca arundinacea and Lolium perenne of the Poeae tribe, based on the whole plastome. In addition, we conducted high-resolution mapping of the chloroplast-derived transcripts. Thus, we created an expression profile for 81 protein-coding genes and identified ndhC, psbJ, rps19, psaJ, and psbA as the most highly expressed chloroplast genes. Small RNA-seq analysis identified 27 small noncoding RNAs of chloroplast origin that were preferentially located near the 5'- or 3'-ends of genes. We also found >30 RNA-editing sites in the D. antarctica chloroplast genome, with a dominance of C-to-U conversions. We assembled and characterized the complete chloroplast genome sequence of D. antarctica and investigated the features of the plastid transcriptome. These data may contribute to a better understanding of the evolution of D. antarctica within the Poaceae family for use in molecular phylogenetic studies and may also help researchers understand the characteristics of the chloroplast

  16. Mesophyll cells of C4 plants have fewer chloroplasts than those of closely related C3 plants.

    PubMed

    Stata, Matt; Sage, Tammy L; Rennie, Troy D; Khoshravesh, Roxana; Sultmanis, Stefanie; Khaikin, Yannay; Ludwig, Martha; Sage, Rowan F

    2014-11-01

    The evolution of C(4) photosynthesis from C(3) ancestors eliminates ribulose bisphosphate carboxylation in the mesophyll (M) cell chloroplast while activating phosphoenolpyruvate (PEP) carboxylation in the cytosol. These changes may lead to fewer chloroplasts and different chloroplast positioning within M cells. To evaluate these possibilities, we compared chloroplast number, size and position in M cells of closely related C(3), C(3) -C(4) intermediate and C(4) species from 12 lineages of C(4) evolution. All C(3) species had more chloroplasts per M cell area than their C(4) relatives in high-light growth conditions. C(3) species also had higher chloroplast coverage of the M cell periphery than C(4) species, particularly opposite intercellular air spaces. In M cells from 10 of the 12 C(4) lineages, a greater fraction of the chloroplast envelope was pulled away from the plasmalemma in the C(4) species than their C(3) relatives. C(3) -C(4) intermediate species generally exhibited similar patterns as their C(3) relatives. We interpret these results to reflect adaptive shifts that facilitate efficient C(4) function by enhancing diffusive access to the site of primary carbon fixation in the cytosol. Fewer chloroplasts in C(4) M cells would also reduce shading of the bundle sheath chloroplasts, which also generate energy required by C(4) photosynthesis. © 2014 John Wiley & Sons Ltd.

  17. Integration of light and circadian signals that regulate chloroplast transcription by a nuclear-encoded sigma factor.

    PubMed

    Belbin, Fiona E; Noordally, Zeenat B; Wetherill, Sarah J; Atkins, Kelly A; Franklin, Keara A; Dodd, Antony N

    2017-01-01

    We investigated the signalling pathways that regulate chloroplast transcription in response to environmental signals. One mechanism controlling plastid transcription involves nuclear-encoded sigma subunits of plastid-encoded plastid RNA polymerase. Transcripts encoding the sigma factor SIG5 are regulated by light and the circadian clock. However, the extent to which a chloroplast target of SIG5 is regulated by light-induced changes in SIG5 expression is unknown. Moreover, the photoreceptor signalling pathways underlying the circadian regulation of chloroplast transcription by SIG5 are unidentified. We monitored the regulation of chloroplast transcription in photoreceptor and sigma factor mutants under controlled light regimes in Arabidopsis thaliana. We established that a chloroplast transcriptional response to light intensity was mediated by SIG5; a chloroplast transcriptional response to the relative proportions of red and far red light was regulated by SIG5 through phytochrome and photosynthetic signals; and the circadian regulation of chloroplast transcription by SIG5 was predominantly dependent on blue light and cryptochrome. Our experiments reveal the extensive integration of signals concerning the light environment by a single sigma factor to regulate chloroplast transcription. This may originate from an evolutionarily ancient mechanism that protects photosynthetic bacteria from high light stress, which subsequently became integrated with higher plant phototransduction networks. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  18. Influence of microgravity on root-cap regeneration and the structure of columella cells in Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.; Fondren, W. M.; Wang, C. L.

    1987-01-01

    We launched imbibed seeds and seedlings of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on 1) root-cap regeneration, and 2) the distribution of amyloplasts and endoplasmic reticulum (ER) in the putative statocytes (i.e., columella cells) of roots. Decapped roots grown on Earth completely regenerated their caps within 4.8 days after decapping, while those grown in microgravity did not regenerate caps. In Earth-grown seedlings, the ER was localized primarily along the periphery of columella cells, and amyloplasts sedimented in response to gravity to the lower sides of the cells. Seeds germinated on Earth and subsequently launched into outer space had a distribution of ER in columella cells similar to that of Earth-grown controls, but amyloplasts were distributed throughout the cells. Seeds germinated in outer space were characterized by the presence of spherical and ellipsoidal masses of ER and randomly distributed amyloplasts in their columella cells. These results indicate that 1) gravity is necessary for regeneration of the root cap, 2) columella cells can maintain their characteristic distribution of ER in microgravity only if they are exposed previously to gravity, and 3) gravity is necessary to distribute the ER in columella cells of this cultivar of Z. mays.

  19. Ammonia Assimilation in Zea mays L. Infected with a Vesicular-Arbuscular Mycorrhizal Fungus Glomus fasciculatum.

    PubMed

    Cliquet, J. B.; Stewart, G. R.

    1993-03-01

    To investigate nitrogen assimilation and translocation in Zea mays L. colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum (Thax. sensu Gerd.), we measured key enzyme activities, 15N incorporation into free amino acids, and 15N translocation from roots to shoots. Glutamine synthetase and nitrate reductase activities were increased in both roots and shoots compared with control plants, and glutamate dehydrogenase activity increased in roots only. In the presence of [15N]ammonium, glutamine amide was the most heavily labeled product. More label was incorporated into amino acids in VAM plants. The kinetics of 15N labeling and effects of methionine sulfoximine on distribution of 15N-labeled products were entirely consistent with the operation of the glutamate synthase cycle. No evidence was found for ammonium assimilation via glutamate dehydrogenase. 15N translocation from roots to shoots through the xylem was higher in VAM plants compared with control plants. These results establish that, in maize, VAM fungi increase ammonium assimilation, glutamine production, and xylem nitrogen translocation. Unlike some ectomycorrhizal fungi, VAM fungi do not appear to alter the pathway of ammonium assimilation in roots of their hosts.

  20. Determination of the genotoxic effects of Convolvulus arvensis extracts on corn (Zea mays L.) seeds.

    PubMed

    Sunar, Serap; Yildirim, Nalan; Aksakal, Ozkan; Agar, Guleray

    2013-06-01

    In this research, the methanolic extracts of Convolvulus arvensis were tested for genotoxic and inhibitor activity on the total soluble protein content and the genomic template stability against corn Zea mays L. seed. The methanol extracts of leaf, stem and root of C. arvensis were diluted to 50, 75 and 100 μl concentrations and applied to corn seed. The total soluble protein and genomic template stability results were compared with the control. The results showed that especially 100 μl extracts of diluted leaf, stem and root had a strong inhibitory activity on the genomic template stability. The changes occurred in random amplification of polymorphic DNA (RAPD) profiles of C. arvensis extract treatment included variation in band intensity, loss of bands and appearance of new bands compared with control. Also, the results obtained from this study revealed that the increase in the concentrations of C. arvensis extract increased the total soluble protein content in maize. The results suggested that RAPD analysis and total protein analysis could be applied as a suitable biomarker assay for the detection of genotoxic effects of plant allelochemicals.

  1. Overexpression of Arabidopsis Molybdenum Cofactor Sulfurase Gene Confers Drought Tolerance in Maize (Zea mays L.)

    PubMed Central

    Zhang, Jiachang; Xiao, Yitao; Yue, Yuesen; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-01-01

    Abscisic acid (ABA) is a key component of the signaling system that integrates plant adaptive responses to abiotic stress. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene (LOS5) in maize markedly enhanced the expression of ZmAO and aldehyde oxidase (AO) activity, leading to ABA accumulation and increased drought tolerance. Transgenic maize (Zea mays L.) exhibited the expected reductions in stomatal aperture, which led to decreased water loss and maintenance of higher relative water content (RWC) and leaf water potential. Also, transgenic maize subjected to drought treatment exhibited lower leaf wilting, electrolyte leakage, malondialdehyde (MDA) and H2O2 content, and higher activities of antioxidative enzymes and proline content compared to wild-type (WT) maize. Moreover, overexpression of LOS5 enhanced the expression of stress-regulated genes such as Rad 17, NCED1, CAT1, and ZmP5CS1 under drought stress conditions, and increased root system development and biomass yield after re-watering. The increased drought tolerance in transgenic plants was associated with ABA accumulation via activated AO and expression of stress-related gene via ABA induction, which sequentially induced a set of favorable stress-related physiological and biochemical responses. PMID:23326325

  2. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.).

    PubMed

    Lu, Yao; Li, Yajun; Zhang, Jiachang; Xiao, Yitao; Yue, Yuesen; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-01-01

    Abscisic acid (ABA) is a key component of the signaling system that integrates plant adaptive responses to abiotic stress. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene (LOS5) in maize markedly enhanced the expression of ZmAO and aldehyde oxidase (AO) activity, leading to ABA accumulation and increased drought tolerance. Transgenic maize (Zea mays L.) exhibited the expected reductions in stomatal aperture, which led to decreased water loss and maintenance of higher relative water content (RWC) and leaf water potential. Also, transgenic maize subjected to drought treatment exhibited lower leaf wilting, electrolyte leakage, malondialdehyde (MDA) and H(2)O(2) content, and higher activities of antioxidative enzymes and proline content compared to wild-type (WT) maize. Moreover, overexpression of LOS5 enhanced the expression of stress-regulated genes such as Rad 17, NCED1, CAT1, and ZmP5CS1 under drought stress conditions, and increased root system development and biomass yield after re-watering. The increased drought tolerance in transgenic plants was associated with ABA accumulation via activated AO and expression of stress-related gene via ABA induction, which sequentially induced a set of favorable stress-related physiological and biochemical responses.

  3. Chloroplast targeting of FtsHprotease is essential for chloroplast development and thylakoid stability at elevated temperatures in plants

    USDA-ARS?s Scientific Manuscript database

    AtFtsH11 is a chloroplast and mitochondria dual targeted metalloprotease, identified as essential for Arabidopsis plant to survive at moderate high temperatures at all developmental stages. Our study showed that FtsH11 plays critical roles in both the early stages of chloroplast biogenesis and main...

  4. Myo-inositol esters of indole-3-acetic acid are endogenous components of Zea mays L. shoot tissue

    NASA Technical Reports Server (NTRS)

    Chisnell, J. R.

    1984-01-01

    Indole-3-acetyl-myo-inositol esters have been demonstrated to be endogenous components of etiolated Zea mays shoots tissue. This was accomplished by comparison of the putative compounds with authentic, synthetic esters. The properties compared were liquid and gas-liquid chromatographic retention times and the 70-ev mass spectral fragmentation pattern of the pentaacetyl derivative. The amount of indole-3-acetyl-myo-inositol esters in the shoots was determined to be 74 nanomoles per kilogram fresh weight as measured by isotope dilution, accounting for 19% of the ester indole-3-acetic acid of the shoot. This work is the first characterization of an ester conjugate of indole-3-acetate acid from vegetative shoot tissue using multiple chromatographic properties and mass spectral identification. The kernel and the seedling shoot both contain indole-3-acetyl-myo-inositol esters, and these esters comprise approximately the same percentage of the total ester content of the kernel and of the shoot.

  5. Towards an understanding of wheat chloroplasts: a methodical investigation of thylakoid proteome.

    PubMed

    Kamal, Abu Hena Mostafa; Cho, Kun; Komatsu, Setsuko; Uozumi, Nobuyuki; Choi, Jong-Soon; Woo, Sun Hee

    2012-05-01

    We utilized Percoll density gradient centrifugation to isolate and fractionate chloroplasts of Korean winter wheat cultivar cv. Kumgang (Triticum aestivum L.). The resulting protein fractions were separated by one dimensional polyacrylamide gel electrophoresis (1D-PAGE) coupled with LTQ-FTICR mass spectrometry. This enabled us to detect and identify 767 unique proteins. Our findings represent the most comprehensive exploration of a proteome to date. Based on annotation information from the UniProtKB/Swiss-Prot database and our analyses via WoLF PSORT and PSORT, these proteins are localized in the chloroplast (607 proteins), chloroplast stroma (145), thylakoid membrane (342), lumens (163), and integral membranes (166). In all, 67% were confirmed as chloroplast thylakoid proteins. Although nearly complete protein coverage (89% proteins) has been accomplished for the key chloroplast pathways in wheat, such as for photosynthesis, many other proteins are involved in regulating carbon metabolism. The identified proteins were assigned to 103 functional categories according to a classification system developed by the iProClass database and provided through Protein Information Resources. Those functions include electron transport, energy, cellular organization and biogenesis, transport, stress responses, and other metabolic processes. Whereas most of these proteins are associated with known complexes and metabolic pathways, about 13% of the proteins have unknown functions. The chloroplast proteome contains many proteins that are localized to the thylakoids but as yet have no known function. We propose that some of these familiar proteins participate in the photosynthetic pathway. Thus, our new and comprehensive protein profile may provide clues for better understanding that photosynthetic process in wheat.

  6. Ferns, mosses and liverworts as model systems for light-mediated chloroplast movements.

    PubMed

    Suetsugu, Noriyuki; Higa, Takeshi; Wada, Masamitsu

    2017-11-01

    Light-induced chloroplast movement is found in most plant species, including algae and land plants. In land plants with multiple small chloroplasts, under weak light conditions, the chloroplasts move towards the light and accumulate on the periclinal cell walls to efficiently perceive light for photosynthesis (the accumulation response). Under strong light conditions, chloroplasts escape from light to avoid photodamage (the avoidance response). In most plant species, blue light induces chloroplast movement, and phototropin receptor kinases are the blue light receptors. Molecular mechanisms for photoreceptors, signal transduction and chloroplast motility systems are being studied using the model plant Arabidopsis thaliana. However, to further understand the molecular mechanisms and evolutionary history of chloroplast movement in green plants, analyses using other plant systems are required. Here, we review recent works on chloroplast movement in green algae, liverwort, mosses and ferns that provide new insights on chloroplast movement. © 2016 John Wiley & Sons Ltd.

  7. Chloroplast membrane alterations in triazine-resistant Amaranthus retroflexus biotypes

    PubMed Central

    Arntzen, Charles J.; Ditto, Cathy L.; Brewer, Philip E.

    1979-01-01

    The effectiveness of diuron, atrazine, procyazine, and cyanazine were compared in controlling growth of redroot pigweed (Amaranthus retroflexus L.) in hydroponic culture. A very marked differential inhibition response was observed for atrazine between resistant and susceptible biotypes. Procyazine and cyanazine exhibited less dramatic differential responses, whereas diuron was equally effective in controlling growth in both biotypes. Photosystem II activity of chloroplasts from both triazine-resistant and triazine-susceptible biotypes was inhibited by diuron but only the chloroplasts from triazine-susceptible biotypes were inhibited significantly by atrazine. The photochemical activity of chloroplasts from triazine-resistant biotypes was partially resistant to procyazine or cyanazine inhibition. The parallel lack of diuron differential effects, partial procyazine and cyanazine differential response, and very marked atrazine differential response in both whole plant and chloroplast assays indicates that the chloroplast is the site of selective herbicide tolerance in these triazine-resistant redroot pigweed biotypes. Photosystem II photochemical properties were characterized by analysis of chlorophyll fluorescence transients in the presence or absence of herbicides. Data with susceptible chloroplasts indicated that both diuron and atrazine inhibit electron flow very near the primary electron acceptor of photosystem II. Only diuron altered the fluorescence transient in resistant chloroplasts. In untreated preparations there were marked differences in the fast phases of the fluorescence increase in resistant vs. susceptible chloroplasts; these data are interpreted as showing that the resistant plastids have an alteration in the rate of reoxidation of the primary photosystem II electron acceptor. Electrophoretic analysis of chloroplast membrane proteins of the two biotypes showed small changes in the electrophoretic mobilities of two polypeptide species. The data

  8. Mollusc-algal chloroplast endosymbiosis. Photosynthesis, thylakoid protein maintenance, and chloroplast gene expression continue for many months in the absence of the algal nucleus.

    PubMed

    Green, B J; Li, W Y; Manhart, J R; Fox, T C; Summer, E J; Kennedy, R A; Pierce, S K; Rumpho, M E

    2000-09-01

    Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO(2) fixation for at least 9 months if provided with only light and a source of CO(2). Here we demonstrate that the sea slug symbiont chloroplasts maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes.

  9. Global RNA association with the transcriptionally active chromosome of chloroplasts.

    PubMed

    Lehniger, Marie-Kristin; Finster, Sabrina; Melonek, Joanna; Oetke, Svenja; Krupinska, Karin; Schmitz-Linneweber, Christian

    2017-10-01

    Processed chloroplast RNAs are co-enriched with preparations of the chloroplast transcriptionally active chromosome. Chloroplast genomes are organized as a polyploid DNA-protein structure called the nucleoid. Transcriptionally active chloroplast DNA together with tightly bound protein factors can be purified by gel filtration as a functional entity called the transcriptionally active chromosome (TAC). Previous proteomics analyses of nucleoids and of TACs demonstrated a considerable overlap in protein composition including RNA binding proteins. Therefore the RNA content of TAC preparations from Nicotiana tabacum was determined using whole genome tiling arrays. A large number of chloroplast RNAs was found to be associated with the TAC. The pattern of RNAs attached to the TAC consists of RNAs produced by different chloroplast RNA polymerases and differs from the pattern of RNA found in input controls. An analysis of RNA splicing and RNA editing of selected RNA species demonstrated that TAC-associated RNAs are processed to a similar extent as the RNA in input controls. Thus, TAC fractions contain a specific subset of the processed chloroplast transcriptome.

  10. Down-Regulation of ZmEXPB6 (Zea mays β-Expansin 6) Protein Is Correlated with Salt-mediated Growth Reduction in the Leaves of Z. mays L.

    PubMed Central

    Geilfus, Christoph-Martin; Ober, Dietrich; Eichacker, Lutz A.; Mühling, Karl Hermann; Zörb, Christian

    2015-01-01

    The salt-sensitive crop Zea mays L. shows a rapid leaf growth reduction upon NaCl stress. There is increasing evidence that salinity impairs the ability of the cell walls to expand, ultimately inhibiting growth. Wall-loosening is a prerequisite for cell wall expansion, a process that is under the control of cell wall-located expansin proteins. In this study the abundance of those proteins was analyzed against salt stress using gel-based two-dimensional proteomics and two-dimensional Western blotting. Results show that ZmEXPB6 (Z. mays β-expansin 6) protein is lacking in growth-inhibited leaves of salt-stressed maize. Of note, the exogenous application of heterologously expressed and metal-chelate-affinity chromatography-purified ZmEXPB6 on growth-reduced leaves that lack native ZmEXPB6 under NaCl stress partially restored leaf growth. In vitro assays on frozen-thawed leaf sections revealed that recombinant ZmEXPB6 acts on the capacity of the walls to extend. Our results identify expansins as a factor that partially restores leaf growth of maize in saline environments. PMID:25750129

  11. An Arabidopsis chloroplast-targeted Hsp101 homologue, APG6, has an essential role in chloroplast development as well as heat-stress response.

    PubMed

    Myouga, Fumiyoshi; Motohashi, Reiko; Kuromori, Takashi; Nagata, Noriko; Shinozaki, Kazuo

    2006-10-01

    Analysis of albino or pale-green (apg) mutants is important for identifying nuclear genes responsible for chloroplast development and pigment synthesis. We have identified 38 apg mutants by screening 11 000 Arabidopsis Ds-tagged lines. One mutant, apg6, contains a Ds insertion in a gene encoding APG6 (ClpB3), a homologue of the heat-shock protein Hsp101 (ClpB1). We isolated somatic revertants and identified two Ds-tagged and one T-DNA-tagged mutant alleles of apg6. All three alleles gave the same pale-green phenotype. These results suggest that APG6 is important for chloroplast development. The APG6 protein contains a transit peptide and is localized in chloroplasts. The plastids of apg6 pale-green cells were smaller than those of the wild type, and contained undeveloped thylakoid membranes. APG6 mRNA accumulated in response to heat shock in various organs, but not in response to other abiotic stresses. Under normal conditions, APG6 is constitutively expressed in the root tips, the organ boundary region, the reproductive tissues of mature plants where plastids exist as proplastids, and slightly in the stems and leaves. In addition, constitutive overexpression of APG6 in transgenic plants inhibited chloroplast development and resulted in a mild pale-green phenotype. The amounts of chloroplast proteins related to photosynthesis were markedly decreased in apg6 mutants. These results suggest that APG6 functions as a molecular chaperone involved in plastid differentiation mediating internal thylakoid membrane formation and conferring thermotolerance to chloroplasts during heat stress. The APG6 protein is not only involved in heat-stress response in chloroplasts, but is also essential for chloroplast development.

  12. Chloroplast heterogeneity and historical admixture within the genus Malus.

    PubMed

    Volk, Gayle M; Henk, Adam D; Baldo, Angela; Fazio, Gennaro; Chao, C Thomas; Richards, Christopher M

    2015-07-01

    • The genus Malus represents a unique and complex evolutionary context in which to study domestication. Several Malus species have provided novel alleles and traits to the cultivars. The extent of admixture among wild Malus species has not been well described, due in part to limited sampling of individuals within a taxon.• Four chloroplast regions (1681 bp total) were sequenced and aligned for 412 Malus individuals from 30 species. Phylogenetic relationships were reconstructed using maximum parsimony. The distribution of chloroplast haplotypes among species was examined using statistical parsimony, phylogenetic trees, and a median-joining network.• Chloroplast haplotypes are shared among species within Malus. Three major haplotype-sharing networks were identified. One includes species native to China, Western North America, as well as Malus domestica Borkh, and its four primary progenitor species: M. sieversii (Ledeb.) M. Roem., M. orientalis Uglitzk., M. sylvestris (L.) Mill., and M. prunifolia (Willd.) Borkh; another includes five Chinese Malus species, and a third includes the three Malus species native to Eastern North America.• Chloroplast haplotypes found in M. domestica belong to a single, highly admixed network. Haplotypes shared between the domesticated apple and its progenitors may reflect historical introgression or the retention of ancestral polymorphisms. Multiple individuals should be sampled within Malus species to reveal haplotype heterogeneity, if complex maternal contributions to named species are to be recognized. © 2015 Botanical Society of America, Inc.

  13. Characterization and Transposon Mutagenesis of the Maize (Zea mays) Pho1 Gene Family

    PubMed Central

    Salazar-Vidal, M. Nancy; Acosta-Segovia, Edith; Sánchez-León, Nidia; Ahern, Kevin R.; Brutnell, Thomas P.; Sawers, Ruairidh J. H.

    2016-01-01

    Phosphorus is an essential nutrient for all plants, but also one of the least mobile, and consequently least available, in the soil. Plants have evolved a series of molecular, metabolic and developmental adaptations to increase the acquisition of phosphorus and to maximize the efficiency of use within the plant. In Arabidopsis (Arabidopsis thaliana), the AtPHO1 protein regulates and facilitates the distribution of phosphorus. To investigate the role of PHO1 proteins in maize (Zea mays), the B73 reference genome was searched for homologous sequences, and four genes identified that were designated ZmPho1;1, ZmPho1;2a, ZmPho1;2b and ZmPho1;3. ZmPho1;2a and ZmPho1;2b are the most similar to AtPHO1, and represent candidate co-orthologs that we hypothesize to have been retained following whole genome duplication. Evidence was obtained for the production of natural anti-sense transcripts associated with both ZmPho1;2a and ZmPho1;2b, suggesting the possibility of regulatory crosstalk between paralogs. To characterize functional divergence between ZmPho1;2a and ZmPho1;2b, a program of transposon mutagenesis was initiated using the Ac/Ds system, and, here, we report the generation of novel alleles of ZmPho1;2a and ZmPho1;2b. PMID:27648940

  14. RNA-stabilization factors in chloroplasts of vascular plants.

    PubMed

    Manavski, Nikolay; Schmid, Lisa-Marie; Meurer, Jörg

    2018-04-13

    In contrast to the cyanobacterial ancestor, chloroplast gene expression is predominantly governed on the post-transcriptional level such as modifications of the RNA sequence, decay rates, exo- and endonucleolytic processing as well as translational events. The concerted function of numerous chloroplast RNA-binding proteins plays a fundamental and often essential role in all these processes but our understanding of their impact in regulation of RNA degradation is only at the beginning. Moreover, metabolic processes and post-translational modifications are thought to affect the function of RNA protectors. These protectors contain a variety of different RNA-recognition motifs, which often appear as multiple repeats. They are required for normal plant growth and development as well as diverse stress responses and acclimation processes. Interestingly, most of the protectors are plant specific which reflects a fast-evolving RNA metabolism in chloroplasts congruent with the diverging RNA targets. Here, we mainly focused on the characteristics of known chloroplast RNA-binding proteins that protect exonuclease-sensitive sites in chloroplasts of vascular plants. © 2018 The Author(s).

  15. Towards efficient photosynthesis: overexpression of Zea mays phosphoenolpyruvate carboxylase in Arabidopsis thaliana.

    PubMed

    Kandoi, Deepika; Mohanty, Sasmita; Govindjee; Tripathy, Baishnab C

    2016-12-01

    Plants with C4 photosynthesis are efficient in carbon assimilation and have an advantage over C3 photosynthesis. In C4 photosynthesis, the primary CO 2 fixation is catalyzed by phosphoenolpyruvate carboxylase (PEPC). Here, we show that overexpression of Zea mays PEPC cDNA, under the control of 35 S promoter, in Arabidopsis thaliana resulted in ~7-10 fold higher protein abundance and ~7-10 fold increase in PEPC activity in the transgenic lines than that in the vector control. We suggest that overexpression of PEPC played an anaplerotic role to increase the supply of 4-carbon carboxylic acids, which provided carbon skeletons for increased amino acid and protein synthesis. Higher protein content must have been responsible for increased metabolic processes including chlorophyll biosynthesis, photosynthesis, and respiration. Consequently, the PEPC-overexpressed transgenic plants had higher chlorophyll content, enhanced electron transport rate (ETR), lower non-photochemical quenching (NPQ) of chlorophyll a fluorescence, and a higher performance index (PI) than the vector control. Consistent with these observations, the rate of CO 2 assimilation, the starch content, and the dry weight of PEPC-overexpressed plants increased by 14-18 %, 10-18 %, and 6.5-16 %, respectively. Significantly, transgenics were tolerant to salt stress as they had increased ability to synthesize amino acids, including the osmolyte proline. NaCl (150 mM)-treated transgenic plants had higher variable to maximum Chl a fluorescence (F v /F m ) ratio, higher PI, higher ETR, and lower NPQ than the salt-treated vector controls. These results suggest that expression of C4 photosynthesis enzyme(s) in a C3 plant can improve its photosynthetic capacity with enhanced tolerance to salinity stress.

  16. β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.).

    PubMed

    Shaw, Arun K; Bhardwaj, Pardeep K; Ghosh, Supriya; Roy, Sankhajit; Saha, Suman; Sherpa, Ang R; Saha, Samir K; Hossain, Zahed

    2016-02-01

    The present study highlights the role of β-aminobutyric acid (BABA) in alleviating drought stress effects in maize (Zea mays L.). Chemical priming was imposed by pretreating 1-week-old plants with 600 μM BABA prior to applying drought stress. Specific activities of key antioxidant enzymes and metabolites (ascorbate and glutathione) levels of ascorbate-glutathione cycle were studied to unravel the priming-induced modulation of plant defense system. Furthermore, changes in endogenous ABA and JA concentrations as well as mRNA expressions of key genes involved in their respective biosynthesis pathways were monitored in BABA-primed (BABA+) and non-primed (BABA-) leaves of drought-challenged plants to better understand the mechanistic insights into the BABA-induced hormonal regulation of plant response to water-deficit stress. Accelerated stomatal closure, high relative water content, and less membrane damage were observed in BABA-primed leaves under water-deficit condition. Elevated APX and SOD activity in non-primed leaves found to be insufficient to scavenge all H2O2 and O2 (·-) resulting in oxidative burst as evident after histochemical staining with NBT and DAB. A higher proline accumulation in non-primed leaves also does not give much protection against drought stress. Increased GR activity supported with the enhanced mRNA and protein expressions might help the BABA-primed plants to maintain a high GSH pool essential for sustaining balanced redox status to counter drought-induced oxidative stress damages. Hormonal analysis suggests that in maize, BABA-potentiated drought tolerance is primarily mediated through JA-dependent pathway by the activation of antioxidant defense systems while ABA biosynthesis pathway also plays an important role in fine-tuning of drought stress response.

  17. Entire Photodamaged Chloroplasts Are Transported to the Central Vacuole by Autophagy[OPEN

    PubMed Central

    2017-01-01

    Turnover of dysfunctional organelles is vital to maintain homeostasis in eukaryotic cells. As photosynthetic organelles, plant chloroplasts can suffer sunlight-induced damage. However, the process for turnover of entire damaged chloroplasts remains unclear. Here, we demonstrate that autophagy is responsible for the elimination of sunlight-damaged, collapsed chloroplasts in Arabidopsis thaliana. We found that vacuolar transport of entire chloroplasts, termed chlorophagy, was induced by UV-B damage to the chloroplast apparatus. This transport did not occur in autophagy-defective atg mutants, which exhibited UV-B-sensitive phenotypes and accumulated collapsed chloroplasts. Use of a fluorescent protein marker of the autophagosomal membrane allowed us to image autophagosome-mediated transport of entire chloroplasts to the central vacuole. In contrast to sugar starvation, which preferentially induced distinct type of chloroplast-targeted autophagy that transports a part of stroma via the Rubisco-containing body (RCB) pathway, photooxidative damage induced chlorophagy without prior activation of RCB production. We further showed that chlorophagy is induced by chloroplast damage caused by either artificial visible light or natural sunlight. Thus, this report establishes that an autophagic process eliminates entire chloroplasts in response to light-induced damage. PMID:28123106

  18. Chloroplast parameters differ in wild type and transgenic poplars overexpressing gsh1 in the cytosol.

    PubMed

    Ivanova, L A; Ronzhina, D A; Ivanov, L A; Stroukova, L V; Peuke, A D; Rennenberg, H

    2009-07-01

    surface/volume ratio, both at the control and the contaminated site. Chloroplast number per cell did not differ between wild and transgenic poplars at the control site. Soil contamination led to suppression of chloroplast replication in wild-type plants. From these results, we assume that overexpressing the bacterial gsh1 gene in the cytosol interacts with processes in the chloroplast and that sequestration of heavy metal phytochelatin complexes into the vacuole may partially counteract this interaction in plants grown at heavy metal-contaminated field sites. Further experiments are required to test these assumptions.

  19. Effects of catalase on chloroplast arrangement in Opuntia streptacantha chlorenchyma cells under salt stress.

    PubMed

    Arias-Moreno, Diana Marcela; Jiménez-Bremont, Juan Francisco; Maruri-López, Israel; Delgado-Sánchez, Pablo

    2017-08-17

    In arid and semiarid regions, low precipitation rates lead to soil salinity problems, which may limit plant establishment, growth, and survival. Herein, we investigated the NaCl stress effect on chlorophyll fluorescence, photosynthetic-pigments, movement and chloroplasts ultrastructure in chlorenchyma cells of Opuntia streptacantha cladodes. Cladodes segments were exposed to salt stress at 0, 100, 200, and 300 mM NaCl for 8, 16, and 24 h. The results showed that salt stress reduced chlorophyll content, F v /F m , ΦPSII, and qP values. Under the highest salt stress treatments, the chloroplasts were densely clumped toward the cell center and thylakoid membranes were notably affected. We analyzed the effect of exogenous catalase in salt-stressed cladode segments during 8, 16, and 24 h. The catalase application to salt-stressed cladodes counteracted the NaCl adverse effects, increasing the chlorophyll fluorescence parameters, photosynthetic-pigments, and avoided chloroplast clustering. Our results indicate that salt stress triggered the chloroplast clumping and affected the photosynthesis in O. streptacantha chlorenchyma cells. The exogenous catalase reverted the H 2 O 2 accumulation and clustering of chloroplast, which led to an improvement of the photosynthetic efficiency. These data suggest that H 2 O 2 detoxification by catalase is important to protect the chloroplast, thus conserving the photosynthetic activity in O. streptacantha under stress.

  20. Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts

    DOE PAGES

    Woodson, Jesse D.; Joens, Matthew S.; Sinson, Andrew B.; ...

    2015-10-23

    Energy production by chloroplasts and mitochondria causes constant oxidative damage. A functioning photosynthetic cell requires quality-control mechanisms to turn over and degrade chloroplasts damaged by reactive oxygen species (ROS). Here in this study, we generated a conditionally lethal Arabidopsis mutant that accumulated excess protoporphyrin IX in the chloroplast and produced singlet oxygen. Damaged chloroplasts were subsequently ubiquitinated and selectively degraded. A genetic screen identified the plant U-box 4 (PUB4) E3 ubiquitin ligase as being necessary for this process. pub4-6 mutants had defects in stress adaptation and longevity. As a result, we have identified a signal that leads to the targetedmore » removal of ROS-overproducing chloroplasts.« less

  1. Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodson, Jesse D.; Joens, Matthew S.; Sinson, Andrew B.

    Energy production by chloroplasts and mitochondria causes constant oxidative damage. A functioning photosynthetic cell requires quality-control mechanisms to turn over and degrade chloroplasts damaged by reactive oxygen species (ROS). Here in this study, we generated a conditionally lethal Arabidopsis mutant that accumulated excess protoporphyrin IX in the chloroplast and produced singlet oxygen. Damaged chloroplasts were subsequently ubiquitinated and selectively degraded. A genetic screen identified the plant U-box 4 (PUB4) E3 ubiquitin ligase as being necessary for this process. pub4-6 mutants had defects in stress adaptation and longevity. As a result, we have identified a signal that leads to the targetedmore » removal of ROS-overproducing chloroplasts.« less

  2. Involvement of an antioxidant defense system in the adaptive response to cadmium in maize seedlings (Zea mays L.).

    PubMed

    Xu, Xianghua; Liu, Cuiying; Zhao, Xiaoyan; Li, Renying; Deng, Wenjing

    2014-11-01

    Chemical and biological analyses were used to investigate the growth response and antioxidant defense mechanism of maize seedlings (Zea mays L.) grown in soils with 0-100 mg kg(-1) Cd. Results showed that maize seedlings have strong abilities to accumulate and tolerate high concentrations of Cd. For soil with 50 mg kg(-1) Cd, the Cd contents in roots and shoots of maize seedlings are as large as 295.6 and 153.0 mg kg(-1) DW, respectively, without visible symptoms of toxicity. Lower soil Cd concentrations lead to a decrease in reduced glutathione (GSH) content in leaves of maize seedlings, whereas higher soil Cd concentrations resulted in an increase in the activities of superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase. Maize seedlings have strong capacities to adapt to low concentrations of Cd by consuming GSH and to develop an antioxidative enzyme system to defend against high-Cd stress.

  3. Expression Profiling of Selected Glutathione Transferase Genes in Zea mays (L.) Seedlings Infested with Cereal Aphids

    PubMed Central

    Sytykiewicz, Hubert; Chrzanowski, Grzegorz; Czerniewicz, Paweł; Sprawka, Iwona; Łukasik, Iwona; Goławska, Sylwia; Sempruch, Cezary

    2014-01-01

    The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2 •−) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2 •− was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2 •− generation in comparison with the Tasty Sweet genotype. PMID:25365518

  4. Transport and metabolism of indole-3-acetyl-myo-inositol-galactoside in seedlings of Zea mays

    NASA Technical Reports Server (NTRS)

    Komoszynski, M.; Bandurski, R. S.

    1986-01-01

    Indole-3-acetyl-myo-inositol galactoside labeled with 3H in the indole and 14C in the galactose moieties was applied to kernels of 5 day old germinating seedlings of Zea mays. Indole-3-acetyl-myo-inositol galactoside was not transported into either the shoot or root tissue as the intact molecule but was instead hydrolyzed to yield [3H]indole-3-acetyl-myo-inositol and [3H]indole-3-acetic acid which were then transported to the shoot with little radioactivity going to the root. With certain assumption concerning the equilibration of applied [3H]indole-3-acetyl-myo-inositol-[U-14C]galactose with the endogenous pool, it may be concluded that indole-3-acetyl-myo-inositol galactoside in the endosperm supplies about 2 picomoles per plant per hour of indole-3-acetyl-myo-inositol and 1 picomole per plant per hour of indole-3-acetic acid to the shoot and thus is comparable to indole-3-acetyl-myo-inositol as a source of indole-acetic acid for the shoot. Quantitative estimates of the amount of galactose in the kernels suggest that [3H]indole-3-acetyl-myo-inositol-[14C]galactose is hydrolyzed after the compound leaves the endosperm but before it reaches the shoot. In addition, [3H]indole-3-acetyl-myo-inositol-[14C]galactose supplies appreciable amounts of 14C to the shoot and both 14C and 3H to an uncharacterized insoluble fraction of the endosperm.

  5. An optimized transit peptide for effective targeting of diverse foreign proteins into chloroplasts in rice.

    PubMed

    Shen, Bo-Ran; Zhu, Cheng-Hua; Yao, Zhen; Cui, Li-Li; Zhang, Jian-Jun; Yang, Cheng-Wei; He, Zheng-Hui; Peng, Xin-Xiang

    2017-04-11

    Various chloroplast transit peptides (CTP) have been used to successfully target some foreign proteins into chloroplasts, but for other proteins these same CTPs have reduced localization efficiencies or fail completely. The underlying cause of the failures remains an open question, and more effective CTPs are needed. In this study, we initially observed that two E.coli enzymes, EcTSR and EcGCL, failed to be targeted into rice chloroplasts by the commonly-used rice rbcS transit peptide (rCTP) and were subsequently degraded. Further analyses revealed that the N-terminal unfolded region of cargo proteins is critical for their localization capability, and that a length of about 20 amino acids is required to attain the maximum localization efficiency. We considered that the unfolded region may alleviate the steric hindrance produced by the cargo protein, by functioning as a spacer to which cytosolic translocators can bind. Based on this inference, an optimized CTP, named RC2, was constructed. Analyses showed that RC2 can more effectively target diverse proteins, including EcTSR and EcGCL, into rice chloroplasts. Collectively, our results provide further insight into the mechanism of CTP-mediated chloroplastic localization, and more importantly, RC2 can be widely applied in future chloroplastic metabolic engineering, particularly for crop plants.

  6. Differential Expression of Superoxide Dismutase Genes in Aphid-Stressed Maize (Zea mays L.) Seedlings

    PubMed Central

    Sytykiewicz, Hubert

    2014-01-01

    The aim of this study was to compare the expression patterns of superoxide dismutase genes (sod2, sod3.4, sod9 and sodB) in seedling leaves of the Zea mays L. Tasty Sweet (susceptible) and Ambrozja (relatively resistant) cultivars infested with one of two hemipteran species, namely monophagous Sitobion avenae F. (grain aphid) or oligophagous Rhopalosiphum padi L. (bird cherry-oat aphid). Secondarily, aphid-elicited alternations in the antioxidative capacity towards DPPH (1,1-diphenyl-2-picrylhydrazyl) radical in insect-stressed plants were evaluated. Comprehensive comparison of expression profiles of the four sod genes showed that both insect species evoked significant upregulation of three genes sod2, sod3.4 and sod9). However, aphid infestation affected non-significant fluctuations in expression of sodB gene in seedlings of both maize genotypes. The highest levels of transcript accumulation occurred at 8 h (sod2 and sod3.4) or 24 h (sod9) post-infestation, and aphid-induced changes in the expression of sod genes were more dramatic in the Ambrozja cultivar than in the Tasty Sweet variety. Furthermore, bird cherry-oat aphid colonization had a more substantial impact on levels of DPPH radical scavenging activity in infested host seedlings than grain aphid colonization. Additionally, Ambrozja plants infested by either hemipteran species showed markedly lower antioxidative capacity compared with attacked Tasty Sweet plants. PMID:24722734

  7. Differential expression of superoxide dismutase genes in aphid-stressed maize (Zea mays L.) seedlings.

    PubMed

    Sytykiewicz, Hubert

    2014-01-01

    The aim of this study was to compare the expression patterns of superoxide dismutase genes (sod2, sod3.4, sod9 and sodB) in seedling leaves of the Zea mays L. Tasty Sweet (susceptible) and Ambrozja (relatively resistant) cultivars infested with one of two hemipteran species, namely monophagous Sitobion avenae F. (grain aphid) or oligophagous Rhopalosiphum padi L. (bird cherry-oat aphid). Secondarily, aphid-elicited alternations in the antioxidative capacity towards DPPH (1,1-diphenyl-2-picrylhydrazyl) radical in insect-stressed plants were evaluated. Comprehensive comparison of expression profiles of the four sod genes showed that both insect species evoked significant upregulation of three genes sod2, sod3.4 and sod9). However, aphid infestation affected non-significant fluctuations in expression of sodB gene in seedlings of both maize genotypes. The highest levels of transcript accumulation occurred at 8 h (sod2 and sod3.4) or 24 h (sod9) post-infestation, and aphid-induced changes in the expression of sod genes were more dramatic in the Ambrozja cultivar than in the Tasty Sweet variety. Furthermore, bird cherry-oat aphid colonization had a more substantial impact on levels of DPPH radical scavenging activity in infested host seedlings than grain aphid colonization. Additionally, Ambrozja plants infested by either hemipteran species showed markedly lower antioxidative capacity compared with attacked Tasty Sweet plants.

  8. Significance of diazotrophic plant growth-promoting Herbaspirillum sp. GW103 on phytoextraction of Pband Zn by Zea mays L.

    PubMed

    Praburaman, Loganathan; Park, Sung-Hee; Cho, Min; Lee, Kui-Jae; Ko, Jeong-Ae; Han, Sang-Sub; Lee, Sang-Hyun; Kamala-Kannan, Seralathan; Oh, Byung-Taek

    2017-01-01

    Microbe-assisted phytoremediation has been considered a promising measure for the remediation of heavy metal-polluted soil. The aim of this study was to assess the effect of diazotrophic plant growth-promoting Herbaspirillum sp. GW103 on growth and lead (Pb) and zinc (Zn) accumulation in Zea mays L. The strain GW103 exhibited plant growth-promoting traits such as indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylic deaminase. Treatment of Z. mays L. plants with GW103 significantly increased 19, 31, and 52% of plant biomass and 10, 50, and 126% of chlorophyll a contents in Pb, Zn, and Pb + Zn-amended soils, respectively. Similarly, the strain GW103 significantly increased Pb and Zn accumulation in shoots and roots of Z. mays L., which were 77 and 25% in Pb-amended soil, 42 and 73% in Zn-amended soil, and 27 and 84% in Pb + Zn-amended soil. Furthermore, addition of GW103 increased 8, 12, and 7% of total protein content, catalase, and superoxide dismutase levels, respectively, in Z. mays L. plants. The results pointed out that isolate GW103 could potentially reduce the phytotoxicity of metals and increase Pb and Zn accumulation in Z. mays L. plant.

  9. Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures

    PubMed Central

    Doyle, Siamsa M.; Diamond, Mark; McCabe, Paul F.

    2010-01-01

    Chloroplasts produce reactive oxygen species (ROS) during cellular stress. ROS are known to act as regulators of programmed cell death (PCD) in plant and animal cells, so it is possible that chloroplasts have a role in regulating PCD in green tissue. Arabidopsis thaliana cell suspension cultures are model systems in which to test this, as here it is shown that their cells contain well-developed, functional chloroplasts when grown in the light, but not when grown in the dark. Heat treatment at 55 °C induced apoptotic-like (AL)-PCD in the cultures, but light-grown cultures responded with significantly less AL-PCD than dark-grown cultures. Chloroplast-free light-grown cultures were established using norflurazon, spectinomycin, and lincomycin and these cultures responded to heat treatment with increased AL-PCD, demonstrating that chloroplasts affect AL-PCD induction in light-grown cultures. Antioxidant treatment of light-grown cultures also resulted in increased AL-PCD induction, suggesting that chloroplast-produced ROS may be involved in AL-PCD regulation. Cycloheximide treatment of light-grown cultures prolonged cell viability and attenuated AL-PCD induction; however, this effect was less pronounced in dark-grown cultures, and did not occur in antioxidant-treated light-grown cultures. This suggests that a complex interplay between light, chloroplasts, ROS, and nuclear protein synthesis occurs during plant AL-PCD. The results of this study highlight the importance of taking into account the time-point at which cells are observed and whether the cells are light-grown and chloroplast-containing or not, for any study on plant AL-PCD, as it appears that chloroplasts can play a significant role in AL-PCD regulation. PMID:19933317

  10. Two Effects of Electrical Fields on Chloroplasts 1

    PubMed Central

    Arnold, William A.; Azzi, Jim R.

    1977-01-01

    An electrical field across a suspension of Chenopodium chloroplasts stimulates the emission of delayed light during the time the field is on. This stimulation can be used to calculate the distance over which the electron moves in the untrapping process that gives the delayed light. An electrical field applied at the time of illumination gives a polarization to the suspension of chloroplasts that lasts for some seconds. This polarization is a new way to study delayed light and fluorescence from chloroplasts. Images PMID:16660112

  11. Arabidopsis VARIEGATED 3 encodes a chloroplast-targeted, zinc-finger protein required for chloroplast and palisade cell development.

    PubMed

    Naested, Henrik; Holm, Agnethe; Jenkins, Tom; Nielsen, H Bjørn; Harris, Cassandra A; Beale, Michael H; Andersen, Mathias; Mant, Alexandra; Scheller, Henrik; Camara, Bilal; Mattsson, Ole; Mundy, John

    2004-09-15

    The stable, recessive Arabidopsis variegated 3 (var3) mutant exhibits a variegated phenotype due to somatic areas lacking or containing developmentally retarded chloroplasts and greatly reduced numbers of palisade cells. The VAR3 gene, isolated by transposon tagging, encodes the 85.9 kDa VAR3 protein containing novel repeats and zinc fingers described as protein interaction domains. VAR3 interacts specifically in yeast and in vitro with NCED4, a putative polyene chain or carotenoid dioxygenase, and both VAR3 and NCED4 accumulate in the chloroplast stroma. Metabolic profiling demonstrates that pigment profiles are qualitatively similar in wild type and var3, although var3 accumulates lower levels of chlorophylls and carotenoids. These results indicate that VAR3 is a part of a protein complex required for normal chloroplast and palisade cell development.

  12. Insights from the complete chloroplast genome into the evolution of Sesamum indicum L.

    PubMed

    Zhang, Haiyang; Li, Chun; Miao, Hongmei; Xiong, Songjin

    2013-01-01

    Sesame (Sesamum indicum L.) is one of the oldest oilseed crops. In order to investigate the evolutionary characters according to the Sesame Genome Project, apart from sequencing its nuclear genome, we sequenced the complete chloroplast genome of S. indicum cv. Yuzhi 11 (white seeded) using Illumina and 454 sequencing. Comparisons of chloroplast genomes between S. indicum and the 18 other higher plants were then analyzed. The chloroplast genome of cv. Yuzhi 11 contains 153,338 bp and a total of 114 unique genes (KC569603). The number of chloroplast genes in sesame is the same as that in Nicotiana tabacum, Vitis vinifera and Platanus occidentalis. The variation in the length of the large single-copy (LSC) regions and inverted repeats (IR) in sesame compared to 18 other higher plant species was the main contributor to size variation in the cp genome in these species. The 77 functional chloroplast genes, except for ycf1 and ycf2, were highly conserved. The deletion of the cp ycf1 gene sequence in cp genomes may be due either to its transfer to the nuclear genome, as has occurred in sesame, or direct deletion, as has occurred in Panax ginseng and Cucumis sativus. The sesame ycf2 gene is only 5,721 bp in length and has lost about 1,179 bp. Nucleotides 1-585 of ycf2 when queried in BLAST had hits in the sesame draft genome. Five repeats (R10, R12, R13, R14 and R17) were unique to the sesame chloroplast genome. We also found that IR contraction/expansion in the cp genome alters its rate of evolution. Chloroplast genes and repeats display the signature of convergent evolution in sesame and other species. These findings provide a foundation for further investigation of cp genome evolution in Sesamum and other higher plants.

  13. Phylogenic study of Lemnoideae (duckweeds) through complete chloroplast genomes for eight accessions.

    PubMed

    Ding, Yanqiang; Fang, Yang; Guo, Ling; Li, Zhidan; He, Kaize; Zhao, Yun; Zhao, Hai

    2017-01-01

    Phylogenetic relationship within different genera of Lemnoideae, a kind of small aquatic monocotyledonous plants, was not well resolved, using either morphological characters or traditional markers. Given that rich genetic information in chloroplast genome makes them particularly useful for phylogenetic studies, we used chloroplast genomes to clarify the phylogeny within Lemnoideae. DNAs were sequenced with next-generation sequencing. The duckweeds chloroplast genomes were indirectly filtered from the total DNA data, or directly obtained from chloroplast DNA data. To test the reliability of assembling the chloroplast genome based on the filtration of the total DNA, two methods were used to assemble the chloroplast genome of Landoltia punctata strain ZH0202. A phylogenetic tree was built on the basis of the whole chloroplast genome sequences using MrBayes v.3.2.6 and PhyML 3.0. Eight complete duckweeds chloroplast genomes were assembled, with lengths ranging from 165,775 bp to 171,152 bp, and each contains 80 protein-coding sequences, four rRNAs, 30 tRNAs and two pseudogenes. The identity of L. punctata strain ZH0202 chloroplast genomes assembled through two methods was 100%, and their sequences and lengths were completely identical. The chloroplast genome comparison demonstrated that the differences in chloroplast genome sizes among the Lemnoideae primarily resulted from variation in non-coding regions, especially from repeat sequence variation. The phylogenetic analysis demonstrated that the different genera of Lemnoideae are derived from each other in the following order: Spirodela , Landoltia , Lemna , Wolffiella , and Wolffia . This study demonstrates potential of whole chloroplast genome DNA as an effective option for phylogenetic studies of Lemnoideae. It also showed the possibility of using chloroplast DNA data to elucidate those phylogenies which were not yet solved well by traditional methods even in plants other than duckweeds.

  14. Phylogenic study of Lemnoideae (duckweeds) through complete chloroplast genomes for eight accessions

    PubMed Central

    Ding, Yanqiang; Fang, Yang; Guo, Ling; Li, Zhidan; He, Kaize

    2017-01-01

    Background Phylogenetic relationship within different genera of Lemnoideae, a kind of small aquatic monocotyledonous plants, was not well resolved, using either morphological characters or traditional markers. Given that rich genetic information in chloroplast genome makes them particularly useful for phylogenetic studies, we used chloroplast genomes to clarify the phylogeny within Lemnoideae. Methods DNAs were sequenced with next-generation sequencing. The duckweeds chloroplast genomes were indirectly filtered from the total DNA data, or directly obtained from chloroplast DNA data. To test the reliability of assembling the chloroplast genome based on the filtration of the total DNA, two methods were used to assemble the chloroplast genome of Landoltia punctata strain ZH0202. A phylogenetic tree was built on the basis of the whole chloroplast genome sequences using MrBayes v.3.2.6 and PhyML 3.0. Results Eight complete duckweeds chloroplast genomes were assembled, with lengths ranging from 165,775 bp to 171,152 bp, and each contains 80 protein-coding sequences, four rRNAs, 30 tRNAs and two pseudogenes. The identity of L. punctata strain ZH0202 chloroplast genomes assembled through two methods was 100%, and their sequences and lengths were completely identical. The chloroplast genome comparison demonstrated that the differences in chloroplast genome sizes among the Lemnoideae primarily resulted from variation in non-coding regions, especially from repeat sequence variation. The phylogenetic analysis demonstrated that the different genera of Lemnoideae are derived from each other in the following order: Spirodela, Landoltia, Lemna, Wolffiella, and Wolffia. Discussion This study demonstrates potential of whole chloroplast genome DNA as an effective option for phylogenetic studies of Lemnoideae. It also showed the possibility of using chloroplast DNA data to elucidate those phylogenies which were not yet solved well by traditional methods even in plants other than

  15. Studies on the individual and combined diuretic effects of four Vietnamese traditional herbal remedies (Zea mays, Imperata cylindrica, Plantago major and Orthosiphon stamineus).

    PubMed

    Doan, D D; Nguyen, N H; Doan, H K; Nguyen, T L; Phan, T S; van Dau, N; Grabe, M; Johansson, R; Lindgren, G; Stjernström, N E

    1992-06-01

    Herbal remedies are widely used in Vietnam alongside modern drugs. We assessed the diuretic effect of four traditional Vietnamese herbal remedies from Zea mays, Imperata cylindrica, Plantago major and Orthosiphon stamineus, all claimed to produce an increase of diuresis. No influence was recorded for the 12- and 24-h urine output or on the sodium excretion for any of the drugs when tested under standardized conditions in a placebo controlled double-blind crossover model. The present study indicates the need for critical review of the present recommendations regarding therapy with plant materials in countries relying on empiric traditions.

  16. Zea mays Annexins Modulate Cytosolic Free Ca2+ and Generate a Ca2+-Permeable Conductance[W

    PubMed Central

    Laohavisit, Anuphon; Mortimer, Jennifer C.; Demidchik, Vadim; Coxon, Katy M.; Stancombe, Matthew A.; Macpherson, Neil; Brownlee, Colin; Hofmann, Andreas; Webb, Alex A.R.; Miedema, Henk; Battey, Nicholas H.; Davies, Julia M.

    2009-01-01

    Regulation of reactive oxygen species and cytosolic free calcium ([Ca2+]cyt) is central to plant function. Annexins are small proteins capable of Ca2+-dependent membrane binding or membrane insertion. They possess structural motifs that could support both peroxidase activity and calcium transport. Here, a Zea mays annexin preparation caused increases in [Ca2+]cyt when added to protoplasts of Arabidopsis thaliana roots expressing aequorin. The pharmacological profile was consistent with annexin activation (at the extracellular plasma membrane face) of Arabidopsis Ca2+-permeable nonselective cation channels. Secreted annexins could therefore modulate Ca2+ influx. As maize annexins occur in the cytosol and plasma membrane, they were incorporated at the intracellular face of lipid bilayers designed to mimic the plasma membrane. Here, they generated an instantaneously activating Ca2+-permeable conductance at mildly acidic pH that was sensitive to verapamil and Gd3+ and had a Ca2+-to-K+ permeability ratio of 0.36. These results suggest that cytosolic annexins create a Ca2+ influx pathway directly, particularly during stress responses involving acidosis. A maize annexin preparation also demonstrated in vitro peroxidase activity that appeared independent of heme association. In conclusion, this study has demonstrated that plant annexins create Ca2+-permeable transport pathways, regulate [Ca2+]cyt, and may function as peroxidases in vitro. PMID:19234085

  17. A two-dimensional microscale model of gas exchange during photosynthesis in maize (Zea mays L.) leaves.

    PubMed

    Retta, Moges; Ho, Quang Tri; Yin, Xinyou; Verboven, Pieter; Berghuijs, Herman N C; Struik, Paul C; Nicolaï, Bart M

    2016-05-01

    CO2 exchange in leaves of maize (Zea mays L.) was examined using a microscale model of combined gas diffusion and C4 photosynthesis kinetics at the leaf tissue level. Based on a generalized scheme of photosynthesis in NADP-malic enzyme type C4 plants, the model accounted for CO2 diffusion in a leaf tissue, CO2 hydration and assimilation in mesophyll cells, CO2 release from decarboxylation of C4 acids, CO2 fixation in bundle sheath cells and CO2 retro-diffusion from bundle sheath cells. The transport equations were solved over a realistic 2-D geometry of the Kranz anatomy obtained from light microscopy images. The predicted responses of photosynthesis rate to changes in ambient CO2 and irradiance compared well with those obtained from gas exchange measurements. A sensitivity analysis showed that the CO2 permeability of the mesophyll-bundle sheath and airspace-mesophyll interfaces strongly affected the rate of photosynthesis and bundle sheath conductance. Carbonic anhydrase influenced the rate of photosynthesis, especially at low intercellular CO2 levels. In addition, the suberin layer at the exposed surface of the bundle sheath cells was found beneficial in reducing the retro-diffusion. The model may serve as a tool to investigate CO2 diffusion further in relation to the Kranz anatomy in C4 plants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays.

    PubMed

    Bezrutczyk, Margaret; Hartwig, Thomas; Horschman, Marc; Char, Si Nian; Yang, Jinliang; Yang, Bing; Frommer, Wolf B; Sosso, Davide

    2018-04-01

    Crop yield depends on efficient allocation of sucrose from leaves to seeds. In Arabidopsis, phloem loading is mediated by a combination of SWEET sucrose effluxers and subsequent uptake by SUT1/SUC2 sucrose/H + symporters. ZmSUT1 is essential for carbon allocation in maize, but the relative contribution to apoplasmic phloem loading and retrieval of sucrose leaking from the translocation path is not known. Here we analysed the contribution of SWEETs to phloem loading in maize. We identified three leaf-expressed SWEET sucrose transporters as key components of apoplasmic phloem loading in Zea mays L. ZmSWEET13 paralogues (a, b, c) are among the most highly expressed genes in the leaf vasculature. Genome-edited triple knock-out mutants were severely stunted. Photosynthesis of mutants was impaired and leaves accumulated high levels of soluble sugars and starch. RNA-seq revealed profound transcriptional deregulation of genes associated with photosynthesis and carbohydrate metabolism. Genome-wide association study (GWAS) analyses may indicate that variability in ZmSWEET13s correlates with agronomical traits, especifically flowering time and leaf angle. This work provides support for cooperation of three ZmSWEET13s with ZmSUT1 in phloem loading in Z. mays. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  19. Three Groups of Transposable Elements with Contrasting Copy Number Dynamics and Host Responses in the Maize (Zea mays ssp. mays) Genome

    PubMed Central

    Diez, Concepcion M.; Meca, Esteban; Tenaillon, Maud I.; Gaut, Brandon S.

    2014-01-01

    Most angiosperm nuclear DNA is repetitive and derived from silenced transposable elements (TEs). TE silencing requires substantial resources from the plant host, including the production of small interfering RNAs (siRNAs). Thus, the interaction between TEs and siRNAs is a critical aspect of both the function and the evolution of plant genomes. Yet the co-evolutionary dynamics between these two entities remain poorly characterized. Here we studied the organization of TEs within the maize (Zea mays ssp mays) genome, documenting that TEs fall within three groups based on the class and copy numbers. These groups included DNA elements, low copy RNA elements and higher copy RNA elements. The three groups varied statistically in characteristics that included length, location, age, siRNA expression and 24∶22 nucleotide (nt) siRNA targeting ratios. In addition, the low copy retroelements encompassed a set of TEs that had previously been shown to decrease expression within a 24 nt siRNA biogenesis mutant (mop1). To investigate the evolutionary dynamics of the three groups, we estimated their abundance in two landraces, one with a genome similar in size to that of the maize reference and the other with a 30% larger genome. For all three accessions, we assessed TE abundance as well as 22 nt and 24 nt siRNA content within leaves. The high copy number retroelements are under targeted similarly by siRNAs among accessions, appear to be born of a rapid bust of activity, and may be currently transpositionally dead or limited. In contrast, the lower copy number group of retrolements are targeted more dynamically and have had a long and ongoing history of transposition in the maize genome. PMID:24743518

  20. [Systematically induced effects of Tetranychus cinnabarinus infestation on chemical defense in Zea mays inbred lines].

    PubMed

    Zhu, Yu-xi; Yang, Qun-fang; Huang, Yu-bi; Li, Qing

    2015-09-01

    In the present study, we investigated the systematically induced production of defense-related compounds, including DIMBOA, total phenol, trypsin inhibitors (TI) and chymotrypsin inhibitor (CI), by Tetranychus cinnabarinus infestation in Zea mays. The first leaves of two corn in-bred line seedlings, the mite-tolerant line ' H1014168' and the mite-sensitive line 'H1014591', were sucked by T. cinnabarinus adult female for seven days, and then the contents of DIMBOA, total phenol, TI and CI were measured in the second leaf and in the roots, respectively. Results showed that as compared to the unsucked control, all contents of DIMBOA, total phenol, TI and CI induced by T. cinnabarinus sucking were significantly higher in the second leaf of both inbred lines as well as in the roots of the mite-tolerant 'H1014168'. However, in the roots of 'H1014591', these defense compounds had different trends, where there was a higher induction of TI and a lower level of total phenol than that of the healthy control, while had almost no difference in DIMBOA and CI. These findings suggested that the infestation of T. cinnabarinus could systematically induce accumulation of defense-related compounds, and this effect was stronger in the mite-tolerant inbred line than in the mite-sensitive inbred line.

  1. Mollusc-Algal Chloroplast Endosymbiosis. Photosynthesis, Thylakoid Protein Maintenance, and Chloroplast Gene Expression Continue for Many Months in the Absence of the Algal Nucleus1

    PubMed Central

    Green, Brian J.; Li, Wei-Ye; Manhart, James R.; Fox, Theodore C.; Summer, Elizabeth J.; Kennedy, Robert A.; Pierce, Sidney K.; Rumpho, Mary E.

    2000-01-01

    Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO2 fixation for at least 9 months if provided with only light and a source of CO2. Here we demonstrate that the sea slug symbiont chloroplasts maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes. PMID:10982447

  2. Correlations between gravitropic curvature and auxin movement across gravistimulated roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Young, L. M.; Evans, M. L.; Hertel, R.

    1990-01-01

    We compared the kinetics of auxin redistribution across the caps of primary roots of 2-day-old maize (Zea mays, cv Merit) seedlings with the time course of gravitropic curvature. [3H] indoleacetic acid was applied to one side of the cap in an agar donor and radioactivity moving across the cap was collected in an agar receiver applied to the opposite side. Upon gravistimulation the roots first curved upward slightly, then returned to the horizontal and began curving downward, reaching a final angle of about 67 degrees. Movement of label across the caps of gravistimulated roots was asymmetric with preferential downward movement (ratio downward/upward = ca. 1.6, radioactivity collected during the 90 min following beginning of gravistimulation). There was a close correlation between the development of asymmetric auxin movement across the root cap and the rate of curvature, with both values increasing to a maximum and then declining as the roots approached the final angle of curvature. In roots preadapted to gravity (alternate brief stimulation on opposite flanks over a period of 1 hour) the initial phase of upward curvature was eliminated and downward bending began earlier than for controls. The correlation between asymmetric auxin movement and the kinetics of curvature also held in comparisons between control and preadapted roots. Both downward auxin transport asymmetry and downward curvature occurred earlier in preadapted roots than in controls. These findings are consistent with suggestions that the root cap is not only the site of perception but also the location of the initial redistribution of effectors that ultimately leads to curvature.

  3. The complete chloroplast genome of the Dendrobium strongylanthum (Orchidaceae: Epidendroideae).

    PubMed

    Li, Jing; Chen, Chen; Wang, Zhe-Zhi

    2016-07-01

    Complete chloroplast genome sequence is very useful for studying the phylogenetic and evolution of species. In this study, the complete chloroplast genome of Dendrobium strongylanthum was constructed from whole-genome Illumina sequencing data. The chloroplast genome is 153 058 bp in length with 37.6% GC content and consists of two inverted repeats (IRs) of 26 316 bp. The IR regions are separated by large single-copy region (LSC, 85 836 bp) and small single-copy (SSC, 14 590 bp) region. A total of 130 chloroplast genes were successfully annotated, including 84 protein coding genes, 38 tRNA genes, and eight rRNA genes. Phylogenetic analyses showed that the chloroplast genome of Dendrobium strongylanthum is related to that of the Dendrobium officinal.

  4. Growth and graviresponsiveness of primary roots of Zea mays seedlings deficient in abscisic acid and gibberellic acid

    NASA Technical Reports Server (NTRS)

    Moore, R.; Dickey, K.

    1985-01-01

    The objective of this research was to determine if gibberellic acid (GA) and/or abscisic acid (ABA) are necessary for graviresponsiveness by primary roots of Zea mays. To accomplish this objective we measured the growth and graviresponsiveness of primary roots of seedlings in which the synthesis of ABA and GA was inhibited collectively and individually by genetic and chemical means. Roots of seedlings treated with Fluridone (an inhibitor of ABA biosynthesis) and Ancymidol (an inhibitor of GA biosynthesis) were characterized by slower growth rates but not significantly different gravicultures as compared to untreated controls. Gravicurvatures of primary roots of d-5 mutants (having undetectable levels of GA) and vp-9 mutants (having undectable levels of ABA) were not significantly different from those of wild-type seedlings. Roots of seedlings in which the biosynthesis of ABA and GA was collectively inhibited were characterized by gravicurvatures not significantly different for those of controls. These results (1) indicate that drastic reductions in the amount of ABA and GA in Z. mays seedlings do not significantly alter root graviresponsiveness, (2) suggest that neither ABA nor GA is necessary for root gravicurvature, and (3) indicate that root gravicurvature is not necessarily proportional to root elongation.

  5. Purification of intact chloroplasts from marine plant Posidonia oceanica suitable for organelle proteomics.

    PubMed

    Piro, Amalia; Serra, Ilia Anna; Spadafora, Antonia; Cardilio, Monica; Bianco, Linda; Perrotta, Gaetano; Santos, Rui; Mazzuca, Silvia

    2015-12-01

    Posidonia oceanica is a marine angiosperm, or seagrass, adapted to grow to the underwater life from shallow waters to 50 m depth. This raises questions of how their photosynthesis adapted to the attenuation of light through the water column and leads to the assumption that biochemistry and metabolism of the chloroplast are the basis of adaptive capacity. In the present study, we described a protocol that was adapted from those optimized for terrestrial plants, to extract chloroplasts from as minimal tissue as possible. We obtained the best balance between tissue amount/intact chloroplasts yield using one leaf from one plant. After isopynic separations, the chloroplasts purity and integrity were evaluated by biochemical assay and using a proteomic approach. Chloroplast proteins were extracted from highly purified organelles and resolved by 1DE SDS-PAGE. Proteins were sequenced by nLC-ESI-IT-MS/MS of 1DE gel bands and identified against NCBInr green plant databases, Dr. Zompo database for seagrasses in a local customized dataset. The curated localization of proteins in sub-plastidial compartments (i.e. envelope, stroma and thylakoids) was retrieved in the AT_CHLORO database. This purification protocol and the validation of compartment markers may serve as basis for sub-cellular proteomics in P. oceanica and other seagrasses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Accumulation of Hydrocarbons by Maize (Zea mays L.) in Remediation of Soils Contaminated with Crude Oil.

    PubMed

    Liao, Changjun; Xu, Wending; Lu, Guining; Liang, Xujun; Guo, Chuling; Yang, Chen; Dang, Zhi

    2015-01-01

    This study has investigated the use of screened maize for remediation of soil contaminated with crude oil. Pots experiment was carried out for 60 days by transplanting maize seedlings into spiked soils. The results showed that certain amount of crude oil in soil (≤2 147 mg·kg(-1)) could enhance the production of shoot biomass of maize. Higher concentration (6 373 mg·kg(-1)) did not significantly inhibit the growth of plant maize (including shoot and root). Analysis of plant shoot by GC-MS showed that low molecular weight polycyclic aromatic hydrocarbons (PAHs) were detected in maize tissues, but PAHs concentration in the plant did not increase with higher concentration of crude oil in soil. The reduction of total petroleum hydrocarbon in planted soil was up to 52.21-72.84%, while that of the corresponding controls was only 25.85-34.22% in two months. In addition, data from physiological and biochemical indexes demonstrated a favorable adaptability of maize to crude oil pollution stress. This study suggested that the use of maize (Zea mays L.) was a good choice for remediation of soil contaminated with petroleum within a certain range of concentrations.

  7. Down-regulation of ZmEXPB6 (Zea mays β-expansin 6) protein is correlated with salt-mediated growth reduction in the leaves of Z. mays L.

    PubMed

    Geilfus, Christoph-Martin; Ober, Dietrich; Eichacker, Lutz A; Mühling, Karl Hermann; Zörb, Christian

    2015-05-01

    The salt-sensitive crop Zea mays L. shows a rapid leaf growth reduction upon NaCl stress. There is increasing evidence that salinity impairs the ability of the cell walls to expand, ultimately inhibiting growth. Wall-loosening is a prerequisite for cell wall expansion, a process that is under the control of cell wall-located expansin proteins. In this study the abundance of those proteins was analyzed against salt stress using gel-based two-dimensional proteomics and two-dimensional Western blotting. Results show that ZmEXPB6 (Z. mays β-expansin 6) protein is lacking in growth-inhibited leaves of salt-stressed maize. Of note, the exogenous application of heterologously expressed and metal-chelate-affinity chromatography-purified ZmEXPB6 on growth-reduced leaves that lack native ZmEXPB6 under NaCl stress partially restored leaf growth. In vitro assays on frozen-thawed leaf sections revealed that recombinant ZmEXPB6 acts on the capacity of the walls to extend. Our results identify expansins as a factor that partially restores leaf growth of maize in saline environments. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. The DCL gene of tomato is required for chloroplast development and palisade cell morphogenesis in leaves.

    PubMed

    Keddie, J S; Carroll, B; Jones, J D; Gruissem, W

    1996-08-15

    The defective chloroplasts and leaves-mutable (dcl-m) mutation of tomato was identified in a Ds mutagenesis screen. This unstable mutation affects both chloroplast development and palisade cell morphogenesis in leaves. Mutant plants are clonally variegated as a result of somatic excision of Ds and have albino leaves with green sectors. Leaf midribs and stems are light green with sectors of dark green tissue but fruit and petals are wild-type in appearance. Within dark green sectors of dcl-m leaves, palisade cells are normal, whereas in albino areas of dcl-m leaves, palisade cells do not expand to become their characteristic columnar shape. The development of chloroplasts from proplastids in albino areas is apparently blocked at an early stage. DCL was cloned using Ds as a tag and encodes a novel protein of approximately 25 kDa, containing a chloroplast transit peptide and an acidic alpha-helical region. DCL protein was imported into chloroplasts in vitro and processed to a mature form. Because of the ubiquitous expression of DCL and the proplastid-like appearance of dcl-affected plastids, the DCL protein may regulate a basic and universal function of the plastid. The novel dcl-m phenotype suggests that chloroplast development is required for correct palisade cell morphogenesis during leaf development.

  9. Epigenetic variation, inheritance, and parent-of-origin effects of cytosine methylation in maize (Zea mays).

    PubMed

    Lauria, Massimiliano; Piccinini, Sara; Pirona, Raul; Lund, Gertrud; Viotti, Angelo; Motto, Mario

    2014-03-01

    Pure epigenetic variation, or epigenetic variation that is independent of genetic context, may provide a mechanism for phenotypic variation in the absence of DNA mutations. To estimate the extent of pure epigenetic variation within and across generations and to identify the DNA regions targeted, a group of eight plants derived from a highly inbred line of maize (Zea mays) was analyzed by the methylation-sensitive amplified polymorphism (MSAP) technique. We found that cytosine methylation (mC) differences among individuals accounted for up to 7.4% of CCGG sites investigated by MSAP. Of the differentially methylated fragments (DMFs) identified in the S0 generation, ∼12% were meiotically inherited for at least six generations. We show that meiotically heritable mC variation was consistently generated for an average of 0.5% CCGG sites per generation and that it largely occurred somatically. We provide evidence that mC variation can be established and inherited in a parent-of-origin manner, given that the paternal lineage is more prone to both forward and reverse mC changes. The molecular characterization of selected DMFs revealed that the variation was largely determined by CG methylation changes that map within gene regions. The expression analysis of genes overlapping with DMFs did not reveal an obvious correlation between mC variation and transcription, reinforcing the idea that the primary function of gene-body methylation is not to control gene expression. Because this study focuses on epigenetic variation in field-grown plants, the data presented herein pertain to spontaneous epigenetic changes of the maize genome in a natural context.

  10. Epigenetic Variation, Inheritance, and Parent-of-Origin Effects of Cytosine Methylation in Maize (Zea mays)

    PubMed Central

    Lauria, Massimiliano; Piccinini, Sara; Pirona, Raul; Lund, Gertrud; Viotti, Angelo; Motto, Mario

    2014-01-01

    Pure epigenetic variation, or epigenetic variation that is independent of genetic context, may provide a mechanism for phenotypic variation in the absence of DNA mutations. To estimate the extent of pure epigenetic variation within and across generations and to identify the DNA regions targeted, a group of eight plants derived from a highly inbred line of maize (Zea mays) was analyzed by the methylation-sensitive amplified polymorphism (MSAP) technique. We found that cytosine methylation (mC) differences among individuals accounted for up to 7.4% of CCGG sites investigated by MSAP. Of the differentially methylated fragments (DMFs) identified in the S0 generation, ∼12% were meiotically inherited for at least six generations. We show that meiotically heritable mC variation was consistently generated for an average of 0.5% CCGG sites per generation and that it largely occurred somatically. We provide evidence that mC variation can be established and inherited in a parent-of-origin manner, given that the paternal lineage is more prone to both forward and reverse mC changes. The molecular characterization of selected DMFs revealed that the variation was largely determined by CG methylation changes that map within gene regions. The expression analysis of genes overlapping with DMFs did not reveal an obvious correlation between mC variation and transcription, reinforcing the idea that the primary function of gene-body methylation is not to control gene expression. Because this study focuses on epigenetic variation in field-grown plants, the data presented herein pertain to spontaneous epigenetic changes of the maize genome in a natural context. PMID:24374354

  11. A novel Zea mays ssp. mexicana L. MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Lu, Xiang; Yang, Lei; Yu, Mengyuan; Lai, Jianbin; Wang, Chao; McNeil, David; Zhou, Meixue; Yang, Chengwei

    2017-04-01

    The annual Zea mays ssp. mexicana L., a member of the teosinte group, is a close wild relative of maize and thus can be effectively used in maize improvement. In this study, an ICE-like gene, ZmmICE1, was isolated from a cDNA library of RNA-Seq from cold-treated seedling tissues of Zea mays ssp. mexicana L. The deduced protein of ZmmICE1 contains a highly conserved basic helix-loop-helix (bHLH) domain and C-terminal region of ICE-like proteins. The ZmmICE1 protein localizes to the nucleus and shows sumoylation when expressed in an Escherichia coli reconstitution system. In addition, yeast one hybrid assays indicated that ZmmICE1 has transactivation activities. Moreover, ectopic expression of ZmmICE1 in the Arabidopsis ice1-2 mutant increased freezing tolerance. The ZmmICE1 overexpressed plants showed lower electrolyte leakage (EL), reduced contents of malondialdehyde (MDA). The expression of downstream cold related genes of Arabidopsis C-repeat-binding factors (AtCBF1, AtCBF2 and AtCBF3), cold-responsive genes (AtCOR15A and AtCOR47), kinesin-1 member gene (AtKIN1) and responsive to desiccation gene (AtRD29A) was significantly induced when compared with wild type under low temperature treatment. Taken together, these results indicated that ZmmICE1 is the homolog of Arabidopsis inducer of CBF expression genes (AtICE1/2) and plays an important role in the regulation of freezing stress response. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Chloroplast Translation: Structural and Functional Organization, Operational Control, and Regulation[OPEN

    PubMed Central

    2018-01-01

    Chloroplast translation is essential for cellular viability and plant development. Its positioning at the intersection of organellar RNA and protein metabolism makes it a unique point for the regulation of gene expression in response to internal and external cues. Recently obtained high-resolution structures of plastid ribosomes, the development of approaches allowing genome-wide analyses of chloroplast translation (i.e., ribosome profiling), and the discovery of RNA binding proteins involved in the control of translational activity have greatly increased our understanding of the chloroplast translation process and its regulation. In this review, we provide an overview of the current knowledge of the chloroplast translation machinery, its structure, organization, and function. In addition, we summarize the techniques that are currently available to study chloroplast translation and describe how translational activity is controlled and which cis-elements and trans-factors are involved. Finally, we discuss how translational control contributes to the regulation of chloroplast gene expression in response to developmental, environmental, and physiological cues. We also illustrate the commonalities and the differences between the chloroplast and bacterial translation machineries and the mechanisms of protein biosynthesis in these two prokaryotic systems. PMID:29610211

  13. Late steps of egg cell differentiation are accelerated by pollination in Zea mays L.

    PubMed

    Mól, R; Idzikowska, K; Dumas, C; Matthys-Rochon, E

    2000-04-01

    Egg cells were analysed cytologically during the female receptivity period in maize (Zea mays L., line A 188). Three classes of egg cell were distinguished: type A--small, non-vacuolated cells with a central nucleus; type B--larger cells with small vacuoles surrounding the perinuclear cytoplasm located in the middle of the cell; type C--big cells with a large apical vacuole and the mid-basal perinuclear cytoplasm. The less-dense cytoplasm of the vacuolated egg cells usually contained numerous cup- or bell-shaped mitochondria. The three egg types appear to correspond to three late stages of egg cell differentiation. The frequencies of each of the three egg types were monitored in developing maize ears before and after pollination. In young ears, with the silks just extending out of the husks, small A-type cells were found in about 86% of ovules. Their frequency decreased to about 58% at the optimum silk length, remained unchanged in non-pollinated ears, and fell to 16% at the end of the female receptivity period. However, after pollination and before fertilisation the frequency of these cells decreased to about 33%, and the larger vacuolated egg cells (types B and C) prevailed. At various stages of the receptivity period, pollination accelerated changes in the egg population, increasing the number of ovules bearing larger, vacuolated egg cells. Experiments with silk removal demonstrated that putative pollination signals act immediately after pollen deposition and are not species-specific.

  14. Directly dated starch residues document early formative maize (Zea mays L.) in tropical Ecuador

    PubMed Central

    Zarrillo, Sonia; Pearsall, Deborah M.; Raymond, J. Scott; Tisdale, Mary Ann; Quon, Dugane J.

    2008-01-01

    The study of maize (Zea mays L.) domestication has advanced from questions of its origins to the study—and debate—of its dietary role and the timing of its dispersal from Mexico. Because the investigation of maize's spread is hampered by poor preservation of macrobotanical remains in the Neotropics, research has focused on microbotanical remains whose contexts are often dated by association, leading some to question the dates assigned. Furthermore, some scholars have argued that maize was not introduced to southwestern Ecuador until ≈4150–3850 calendar years before the present (cal B.P.), that it was used first and foremost as a fermented beverage in ceremonial contexts, and that it was not important in everyday subsistence, challenging previous studies based on maize starch and phytoliths. To further investigate these questions, we analyzed every-day cooking vessels, food-processing implements, and sediments for starch and phytoliths from an archaeological site in southwestern Ecuador constituting a small Early Formative village. Employing a new technique to recover starch granules from charred cooking-pot residues we show that maize was present, cultivated, and consumed here in domestic contexts by at least 5300–4950 cal B.P. Directly dating the residues by accelerator mass spectrometry (AMS) radiocarbon measurement, our results represent the earliest direct dates for maize in Early Formative Ecuadorian sites and provide further support that, once domesticated ≈9000 calendar years ago, maize spread rapidly from southwestern Mexico to northwestern South America. PMID:18362336

  15. Detection of Cell Wall Chemical Variation in Zea Mays Mutants Using Near-Infrared Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buyck, N.; Thomas, S.

    Corn stover is regarded as the prime candidate feedstock material for commercial biomass conversion in the United States. Variations in chemical composition of Zea mays cell walls can affect biomass conversion process yields and economics. Mutant lines were constructed by activating a Mu transposon system. The cell wall chemical composition of 48 mutant families was characterized using near-infrared (NIR) spectroscopy. NIR data were analyzed using a multivariate statistical analysis technique called Principal Component Analysis (PCA). PCA of the NIR data from 349 maize leaf samples reveals 57 individuals as outliers on one or more of six Principal Components (PCs) atmore » the 95% confidence interval. Of these, 19 individuals from 16 families are outliers on either PC3 (9% of the variation) or PC6 (1% of the variation), the two PCs that contain information about cell wall polymers. Those individuals for which altered cell wall chemistry is confirmed with wet chemical analysis will then be subjected to fermentation analysis to determine whether or not biomass conversion process kinetics, yields and/or economics are significantly affected. Those mutants that provide indications for a decrease in process cost will be pursued further to identify the gene(s) responsible for the observed changes in cell wall composition and associated changes in process economics. These genes will eventually be incorporated into maize breeding programs directed at the development of a truly dual use crop.« less

  16. The effect and fate of water-soluble carbon nanodots in maize (Zea mays L.).

    PubMed

    Chen, Jing; Dou, Runzhi; Yang, Zhongzhou; Wang, Xiaoping; Mao, Chuanbin; Gao, Xiang; Wang, Li

    2016-08-01

    In this study, the toxicity of water-soluble carbon nanodots (C-dots) to maize (Zea mays L.) and their uptake and transport in plants were investigated. After exposed in sand matrix amended with 0-2000 mg/L C-dots for 4 weeks, we found that the phytotoxicity of C-dots was concentration-dependent. C-dots at 250 and 500 mg/L showed no toxicity to maize. However, 1000 and 2000 mg/L C-dots significantly reduced the fresh weight of root by 57% and 68%, and decreased the shoot fresh weight by 38% and 72%, respectively. Moreover, in maize roots, the exposure of C-dots at 2000 mg/L significantly increased the H2O2 content and lipid peroxidation (6.5 and 1.65 times higher, respectively), as well as, the antioxidant enzymes activities, up to 2, 1.5, 1.9 and 1.9 times higher for catalase, ascorbate peroxidase, guaiacol peroxidase and superoxide dismutase, respectively. On the other hand, C-dots were observed in detached root-cap cells, cortex and vascular bundle of roots and mesophyll cells of leaves through fluorescence microscopy analysis, suggesting that C-dots were absorbed and translocated systemically in maize. Remarkably, a certain amount of C-dots were excreted out from leaf blade. To our knowledge, this is the first study combined phenotypic observation with physiologic responses and bioaccumulation and translocation analysis of C-dots to investigate their effect and fate in maize.

  17. Biparental chloroplast inheritance leads to rescue from cytonuclear incompatibility.

    PubMed

    Barnard-Kubow, Karen B; McCoy, Morgan A; Galloway, Laura F

    2017-02-01

    Although organelle inheritance is predominantly maternal across animals and plants, biparental chloroplast inheritance has arisen multiple times in the angiosperms. Biparental inheritance has the potential to impact the evolutionary dynamics of cytonuclear incompatibility, interactions between nuclear and organelle genomes that are proposed to be among the earliest types of genetic incompatibility to arise in speciation. We examine the interplay between biparental inheritance and cytonuclear incompatibility in Campanulastrum americanum, a plant species exhibiting both traits. We first determine patterns of chloroplast inheritance in genetically similar and divergent crosses, and then associate inheritance with hybrid survival across multiple generations. There is substantial biparental inheritance in C. americanum. The frequency of biparental inheritance is greater in divergent crosses and in the presence of cytonuclear incompatibility. Biparental inheritance helps to mitigate cytonuclear incompatibility, leading to increased fitness of F 1 hybrids and recovery in the F 2 generation. This study demonstrates the potential for biparental chloroplast inheritance to rescue cytonuclear compatibility, reducing cytonuclear incompatibility's contribution to reproductive isolation and potentially slowing speciation. The efficacy of rescue depended upon the strength of incompatibility, with a greater persistence of weak incompatibilities in later generations. These findings suggest that incompatible plastids may lead to selection for biparental inheritance. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  18. Arginine Decarboxylase Is Localized in Chloroplasts.

    PubMed Central

    Borrell, A.; Culianez-Macia, F. A.; Altabella, T.; Besford, R. T.; Flores, D.; Tiburcio, A. F.

    1995-01-01

    Plants, unlike animals, can use either ornithine decarboxylase or arginine decarboxylase (ADC) to produce the polyamine precursor putrescine. Lack of knowledge of the exact cellular and subcellular location of these enzymes has been one of the main obstacles to our understanding of the biological role of polyamines in plants. We have generated polyclonal antibodies to oat (Avena sativa L.) ADC to study the spatial distribution and subcellular localization of ADC protein in different oat tissues. By immunoblotting and immunocytochemistry, we show that ADC is organ specific. By cell fractionation and immunoblotting, we show that ADC is localized in chloroplasts associated with the thylakoid membrane. The results also show that increased levels of ADC protein are correlated with high levels of ADC activity and putrescine in osmotically stressed oat leaves. A model of compartmentalization for the arginine pathway and putrescine biosynthesis in active photosynthetic tissues has been proposed. In the context of endosymbiote-driven metabolic evolution in plants, the location of ADC in the chloroplast compartment may have major evolutionary significance, since it explains (a) why plants can use two alternative pathways for putrescine biosynthesis and (b) why animals do not possess ADC. PMID:12228631

  19. Degradation of some representative polycyclic aromatic hydrocarbons by the water-soluble protein extracts from Zea mays L. cv PR32-B10.

    PubMed

    Barone, Roberto; de Biasi, Margherita-Gabriella; Piccialli, Vincenzo; de Napoli, Lorenzo; Oliviero, Giorgia; Borbone, Nicola; Piccialli, Gennaro

    2016-10-01

    The ability of the water-soluble protein extracts from Zea mais L. cv. PR32-B10 to degrade some representative polycyclic aromatic hydrocarbons (PAHs), has been evaluated. Surface sterilized seeds of corn (Zea mais L. Pioneer cv. PR32-B10) were hydroponically cultivated in a growth chamber under no-stressful conditions. The water-soluble protein extracts isolated from maize tissues showed peroxidase, polyphenol oxidase and catalase activities. Incubation of the extracts with naphthalene, fluorene, phenanthrene and pyrene, led to formation of oxidized and/or degradation products. GC-MS and TLC monitoring of the processes showed that naphthalene, phenanthrene, fluorene and pyrene underwent 100%, 78%, 92% and 65% oxidative degradation, respectively, after 120 min. The chemical structure of the degradation products were determined by (1)H NMR and ESI-MS spectrometry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Mergers and acquisitions: malaria and the great chloroplast heist.

    PubMed

    McFadden, G I

    2000-01-01

    The origin of the relict chloroplast recently identified in malarial parasites has been mysterious. Several new papers suggest that the parasites obtained their chloroplasts in an ancient endosymbiotic event that also created some major algal groups.

  1. Nonomuraea zeae sp. nov., isolated from the rhizosphere of corn (Zea mays L.).

    PubMed

    Shen, Yue; Jia, Feiyu; Liu, Chongxi; Li, Jiansong; Guo, Siyu; Zhou, Shuyu; Wang, Xiangjing; Xiang, Wensheng

    2016-06-01

    A novel actinobacterium, designated strain NEAU-ND5T, was isolated from the rhizosphere of corn (Zea mays L.) collected in Heilongjiang Province, north-east China, and characterized using a polyphasic approach. 16S rRNA gene sequence analysis showed that strain NEAU-ND5T was a member of the genus Nonomuraea, with highest sequence similarities to Nonomuraea jabiensis A4036T (98.29 %), Nonomuraea rosea GW12687T (98.25 %), Nonomuraea candida HMC10T (98.22 %), Nonomuraea rhizophila YIM 67092T (98.04 %) and Nonomuraea kuesteri NRRL B-24325T (98.04 %). Similarities to other type strains of the genus Nonomuraea were lower than 98 %. Morphological and chemotaxonomic properties of strain NEAU-ND5T were also consistent with the description of the genus Nonomuraea. The cell wall contained meso-diaminopimelic acid and the whole-cell sugars were glucose, ribose and madurose. The phospholipid profile consisted of diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, hydroxy-phosphatidylmonomethylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The major menaquinones were MK-9(H4), MK-9(H2) and MK-9(H0). The predominant cellular fatty acids were iso-C16:0 and 10-methyl C17:0. A combination of DNA-DNA hybridization results and some phenotypic characteristics demonstrated that strain NEAU-ND5T was clearly distinguished from its closely related Nonomuraea species. Consequently, it is concluded that strain NEAU-ND5T represents a novel species of the genus Nonomuraea, for which the name Nonomuraea zeae sp. nov. is proposed. The type strain is NEAU-ND5T (=CGMCC 4.7280T=DSM 100528T).

  2. Chloroplast-cytoplasmic interrelations involved in chloroplast development in Chlamydomonas reinhardi y-1: effect of selective depletion of chloroplast translates

    PubMed Central

    1980-01-01

    Chlamydomonas reinhardi y-1 cells grown in the dark in the presence of chloramphenicol (CD cells) are depleted of photosynthetic membranes and 70S translates. These cells were found to be unable to synthesize chlorophyll in the light until chloroplast protein synthesis was resumed. On the other hand, CD cells acquired the capacity to partially green in the presence of cycloheximide. This greening was characterized by the development of photosynthetic activity, as demonstrated by light- dependent oxygen evolution of whole cells and by measurements of ribulose-1,5-bisphosphate carboxylase and fluorescence kinetics. The chlorophyll synthesized de novo during greening in the absence of 80S ribosomal activity was organized in chlorophyll-protein complexes, as ascertained by low-temperature fluorescence-emission spectra. The morphology of these cells appeared to be normal. A model has been proposed as a working hypothesis, which could account for the phenomena described above and previously reported data pertaining to chloroplast development. PMID:7419587

  3. Determination of genotoxic effects of boron and zinc on Zea mays using protein and random amplification of polymorphic DNA analyses.

    PubMed

    Erturk, Filiz Aygun; Nardemir, Gokce; Hilal, A Y; Arslan, Esra; Agar, Guleray

    2015-11-01

    In this research, we aimed to determine genotoxic effects of boron (B) and zinc (Zn) on Zea mays by using total soluble protein content and random amplification of polymorphic DNA (RAPD) analyses. For the RAPD analysis, 16 RAPD primers were found to produce unique polymorphic band profiles on treated maize seedlings. With increased Zn and B concentrations, increased polymorphism rate was observed, while genomic template stability and total soluble protein content decreased. The treatment with Zn was more effective than that of B groups on the levels of total proteins. The obtained results from this study revealed that the total soluble protein levels and RAPD profiles were performed as endpoints of genotoxicity and these analyses can offer useful biomarker assays for the evaluation of genotoxic effects on Zn and B polluted plants. © The Author(s) 2013.

  4. Mode of inheritance and evidence for cistron heterogeneity of chloroplast 16S ribosomal RNA genes in Nicotiana.

    PubMed

    Vacek, A T; Bourque, D P

    1980-09-01

    Oligonucleotide maps (fingerprints) of T1 RNase digests of 125I-labeled 16 S chloroplast rRNA of Nicotiana tabacum and N. gossei revealed the presence of T1 oligonucleotide fragment 100 in the 16 S rRNA of N. gossei while N. tabacum 16 S rRNA had a unique T1 oligonucleotide (fragment 101) as well as some fragment 100. From the positions in the fingerprints and from fingerprints of secondary enzymatic digestion of the fragments, we conclude that fragments 100 and 101 are similar in sequence and size, but fragment 100 probably contains an extra uracil residue. This difference is shown to be maternally inherited, thus confirming the location of 16 S chloroplast rRNA genes on chloroplast DNA and ruling out the possibility of genetically active chloroplast rRNA genes in the nucleus. The presence of both fragments 100 and 101 in N. tabacum may indicate sequence heterogeneity between the two cistrons for 16 S chloroplast rRNA. These results demonstrate the feasibility of determining the inheritance of organelle genes by genetic analysis of their primary transcripts.

  5. Differential antimicrobial activity of silver nanoparticles to bacteria Bacillus subtilis and Escherichia coli, and toxicity to crop plant Zea mays and beneficial B. subtilis-inoculated Z. mays

    NASA Astrophysics Data System (ADS)

    Doody, Michael A.; Wang, Dengjun; Bais, Harsh P.; Jin, Yan

    2016-10-01

    As silver nanoparticles (AgNPs) have become increasingly used in commercial antimicrobial agents and industrial and military products, concerns are increasing over their broad environmental and health impacts and risks because they are finding their way to the environment. This study was designed to quantify the antimicrobial activity of citrate-coated AgNPs (c-AgNPs; transmission electron microscope size of 44.9 ± 7.2 nm) to two species of bacteria, i.e., Gram-positive Bacillus subtilis and Gram-negative Escherichia coli, and toxicity to a major crop plant Zea mays and beneficial bacteria-inoculated plant (i.e., B. subtilis-inoculated Z. mays symbiont). Our results reveal that the exposure of c-AgNPs significantly inhibited bacteria growth and altered their growth kinetics. Z. mays experienced significant sublethal effects including reduced root length and biomass, and hyper-accumulation of Ag in roots. The beneficial interactions between B. subtilis and Z. mays were weakened as well because both species suffered sublethal effects. Potential mechanisms leading to the antimicrobial activity and toxicity of c-AgNPs to the bacteria, plant, and plant-bacteria symbiont examined in this study were discussed. Taken together, our findings advance the current knowledge of AgNPs antimicrobial property or toxicity to bacteria, crop plant, and beneficial plant-bacteria symbiotic interaction, which is a critical component for NPs environmental impact and risk assessment.

  6. Mergers and acquisitions: malaria and the great chloroplast heist

    PubMed Central

    McFadden, Geoffrey I

    2000-01-01

    The origin of the relict chloroplast recently identified in malarial parasites has been mysterious. Several new papers suggest that the parasites obtained their chloroplasts in an ancient endosymbiotic event that also created some major algal groups. PMID:11178253

  7. Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Qayyum, Muhammad Farooq; Ok, Yong Sik; Zia-Ur-Rehman, Muhammad; Abbas, Zaheer; Hannan, Fakhir

    2017-04-01

    Maize (Zea mays L.) has been widely adopted for phytomanagement of cadmium (Cd)-contaminated soils due to its high biomass production and Cd accumulation capacity. This paper reviewed the toxic effects of Cd and its management by maize plants. Maize could tolerate a certain level of Cd in soil while higher Cd stress can decrease seed germination, mineral nutrition, photosynthesis and growth/yields. Toxicity response of maize to Cd varies with cultivar/varieties, growth medium and stress duration/extent. Exogenous application of organic and inorganic amendments has been used for enhancing Cd tolerance of maize. The selection of Cd-tolerant maize cultivar, crop rotation, soil type, and exogenous application of microbes is a representative agronomic practice to enhance Cd tolerance in maize. Proper selection of cultivar and agronomic practices combined with amendments might be successful for the remediation of Cd-contaminated soils with maize. However, there might be the risk of food chain contamination by maize grains obtained from the Cd-contaminated soils. Thus, maize cultivation could be an option for the management of low- and medium-grade Cd-contaminated soils if grain yield is required. On the other hand, maize can be grown on Cd-polluted soils only if biomass is required for energy production purposes. Long-term field trials are required, including risks and benefit analysis for various management strategies aiming Cd phytomanagement with maize.

  8. Computational Study on Substrate Specificity of a Novel Cysteine Protease 1 Precursor from Zea mays

    PubMed Central

    Liu, Huimin; Chen, Liangcheng; Li, Quan; Zheng, Mingzhu; Liu, Jingsheng

    2014-01-01

    Cysteine protease 1 precursor from Zea mays (zmCP1) is classified as a member of the C1A family of peptidases (papain-like cysteine protease) in MEROPS (the Peptidase Database). The 3D structure and substrate specificity of the zmCP1 is still unknown. This study is the first one to build the 3D structure of zmCP1 by computer-assisted homology modeling. In order to determine the substrate specificity of zmCP1, docking study is used for rapid and convenient analysis of large populations of ligand–enzyme complexes. Docking results show that zmCP1 has preference for P1 position and P2 position for Arg and a large hydrophobic residue (such as Phe). Gly147, Gly191, Cys189, and Asp190 are predicted to function as active residues at the S1 subsite, and the S2 subsite contains Leu283, Leu193, Ala259, Met194, and Ala286. SIFt results indicate that Gly144, Arg268, Trp308, and Ser311 play important roles in substrate binding. Then Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA) method was used to explain the substrate specificity for P1 position of zmCp1. This study provides insights into the molecular basis of zmCP1 activity and substrate specificity. PMID:24921705

  9. Gut transcription in Helicoverpa zea is dynamically altered in response to baculovirus infection

    USDA-ARS?s Scientific Manuscript database

    The Helicoverpa zea transcriptome was analyzed 24 hours after H. zea larvae fed on artificial diet laced with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV). Significant differential regulation of 1,139 putative genes (P<0.05 T-test with Benjamini and Hochberg False Discovery Rate) was detect...

  10. Chloroplast overexpression of rice caffeic acid O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants.

    PubMed

    Choi, Geun-Hee; Lee, Hyoung Yool; Back, Kyoungwhan

    2017-08-01

    Recent analyses of the enzymatic features of various melatonin biosynthetic genes from bacteria, animals, and plants have led to the hypothesis that melatonin could be synthesized via the 5-methoxytryptamine (5-MT) pathway. 5-MT is known to be synthesized in vitro from serotonin by the enzymatic action of O-methyltransferases, including N-acetylserotonin methyltransferase (ASMT) and caffeic acid O-methyltransferase (COMT), leading to melatonin synthesis by the subsequent enzymatic reaction with serotonin N-acetyltransferase (SNAT). Here, we show that 5-MT was produced and served as a precursor for melatonin synthesis in plants. When rice seedlings were challenged with senescence treatment, 5-MT levels and melatonin production were increased in transgenic rice seedlings overexpressing the rice COMT in chloroplasts, while no such increases were observed in wild-type or transgenic seedlings overexpressing the rice COMT in the cytosol, suggesting a 5-MT transport limitation from the cytosol to chloroplasts. In contrast, cadmium treatment led to results different from those in senescence. The enhanced melatonin production was not observed in the chloroplast COMT lines relative over the cytosol COMT lines although 5-MT levels were equally induced in all genotypes upon cadmium treatment. The transgenic seedlings with enhanced melatonin in their chloroplasts exhibited improved seedling growth vs the wild type under continuous light conditions. This is the first report describing enhanced melatonin production in chloroplasts via the 5-MT pathway with the ectopic overexpression of COMT in chloroplasts in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Transcriptomic Profiling of the Maize (Zea mays L.) Leaf Response to Abiotic Stresses at the Seedling Stage.

    PubMed

    Li, Pengcheng; Cao, Wei; Fang, Huimin; Xu, Shuhui; Yin, Shuangyi; Zhang, Yingying; Lin, Dezhou; Wang, Jianan; Chen, Yufei; Xu, Chenwu; Yang, Zefeng

    2017-01-01

    Abiotic stresses, including drought, salinity, heat, and cold, negatively affect maize ( Zea mays L.) development and productivity. To elucidate the molecular mechanisms of resistance to abiotic stresses in maize, RNA-seq was used for global transcriptome profiling of B73 seedling leaves exposed to drought, salinity, heat, and cold stress. A total of 5,330 differentially expressed genes (DEGs) were detected in differential comparisons between the control and each stressed sample, with 1,661, 2,019, 2,346, and 1,841 DEGs being identified in comparisons of the control with salinity, drought, heat, and cold stress, respectively. Functional annotations of DEGs suggested that the stress response was mediated by pathways involving hormone metabolism and signaling, transcription factors (TFs), very-long-chain fatty acid biosynthesis and lipid signaling, among others. Of the obtained DEGs (5,330), 167 genes are common to these four abiotic stresses, including 10 up-regulated TFs (five ERFs, two NACs, one ARF, one MYB, and one HD-ZIP) and two down-regulated TFs (one b-ZIP and one MYB-related), which suggested that common mechanisms may be initiated in response to different abiotic stresses in maize. This study contributes to a better understanding of the molecular mechanisms of maize leaf responses to abiotic stresses and could be useful for developing maize cultivars resistant to abiotic stresses.

  12. Expression Patterns of Genes Involved in Ascorbate-Glutathione Cycle in Aphid-Infested Maize (Zea mays L.) Seedlings

    PubMed Central

    Sytykiewicz, Hubert

    2016-01-01

    Reduced forms of ascorbate (AsA) and glutathione (GSH) are among the most important non-enzymatic foliar antioxidants in maize (Zea mays L.). The survey was aimed to evaluate impact of bird cherry-oat aphid (Rhopalosiphum padi L.) or grain aphid (Sitobion avenae F.) herbivory on expression of genes related to ascorbate-glutathione (AsA-GSH) cycle in seedlings of six maize varieties (Ambrozja, Nana, Tasty Sweet, Touran, Waza, Złota Karłowa), differing in resistance to the cereal aphids. Relative expression of sixteen maize genes encoding isoenzymes of ascorbate peroxidase (APX1, APX2, APX3, APX4, APX5, APX6, APX7), monodehydroascorbate reductase (MDHAR1, MDHAR2, MDHAR3, MDHAR4), dehydroascorbate reductase (DHAR1, DHAR2, DHAR3) and glutathione reductase (GR1, GR2) was quantified. Furthermore, effect of hemipterans’ attack on activity of APX, MDHAR, DHAR and GR enzymes, and the content of reduced and oxidized ascorbate and glutathione in maize plants were assessed. Seedling leaves of more resistant Z. mays varieties responded higher elevations in abundance of target transcripts. In addition, earlier and stronger aphid-triggered changes in activity of APX, MDHAR, DHAR and GR enzymes, and greater modulations in amount of the analyzed antioxidative metabolites were detected in foliar tissues of highly resistant Ambrozja genotype in relation to susceptible Tasty Sweet plants. PMID:26907270

  13. Seed priming with KNO3 mediates biochemical processes to inhibit lead toxicity in maize (Zea mays L.).

    PubMed

    Nawaz, Fahim; Naeem, Muhammad; Akram, Asim; Ashraf, Muhammad Y; Ahmad, Khawaja S; Zulfiqar, Bilal; Sardar, Hasan; Shabbir, Rana N; Majeed, Sadia; Shehzad, Muhammad A; Anwar, Irfan

    2017-11-01

    Accumulation of lead (Pb) in agricultural soils has become a major factor for reduced crop yields and poses serious threats to humans consuming agricultural products. The present study investigated the effects of KNO 3 seed priming (0 and 0.5% KNO 3 ) on growth of maize (Zea mays L.) seedlings exposed to Pb toxicity (0, 1300 and 2550 mg kg -1 Pb). Pb exposure markedly reduced the growth of maize seedlings and resulted in higher Pb accumulation in roots than shoots. Pretreatment of seeds with KNO 3 significantly improved the germination percentage and increased physiological indices. A stimulating effect of KNO 3 seed priming was also observed on pigments (chlorophyll a, b, total chlorophyll and carotenoid contents) of Pb-stressed plants. Low translocation of Pb from roots to shoots caused an increased accumulation of total free amino acids and higher activities of catalase, peroxidase, superoxide dismutase and ascorbate peroxidase in roots as compared to shoot, which were further enhanced by exogenous KNO 3 supply to prevent Pb toxicity. Maize accumulates more Pb in roots than shoot at early growth stages. Priming of seeds with KNO 3 prevents Pb toxicity, which may be exploited to improve seedling establishment in crop species grown under Pb contaminated soils. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Expression Patterns of Genes Involved in Ascorbate-Glutathione Cycle in Aphid-Infested Maize (Zea mays L.) Seedlings.

    PubMed

    Sytykiewicz, Hubert

    2016-02-23

    Reduced forms of ascorbate (AsA) and glutathione (GSH) are among the most important non-enzymatic foliar antioxidants in maize (Zea mays L.). The survey was aimed to evaluate impact of bird cherry-oat aphid (Rhopalosiphum padi L.) or grain aphid (Sitobion avenae F.) herbivory on expression of genes related to ascorbate-glutathione (AsA-GSH) cycle in seedlings of six maize varieties (Ambrozja, Nana, Tasty Sweet, Touran, Waza, Złota Karłowa), differing in resistance to the cereal aphids. Relative expression of sixteen maize genes encoding isoenzymes of ascorbate peroxidase (APX1, APX2, APX3, APX4, APX5, APX6, APX7), monodehydroascorbate reductase (MDHAR1, MDHAR2, MDHAR3, MDHAR4), dehydroascorbate reductase (DHAR1, DHAR2, DHAR3) and glutathione reductase (GR1, GR2) was quantified. Furthermore, effect of hemipterans' attack on activity of APX, MDHAR, DHAR and GR enzymes, and the content of reduced and oxidized ascorbate and glutathione in maize plants were assessed. Seedling leaves of more resistant Z. mays varieties responded higher elevations in abundance of target transcripts. In addition, earlier and stronger aphid-triggered changes in activity of APX, MDHAR, DHAR and GR enzymes, and greater modulations in amount of the analyzed antioxidative metabolites were detected in foliar tissues of highly resistant Ambrozja genotype in relation to susceptible Tasty Sweet plants.

  15. Isolation of Intact Chloroplasts from Euglena gracilis by Zonal Centrifugation 1

    PubMed Central

    Vasconcelos, Aurea; Pollack, Marilyn; Mendiola, Leticia R.; Hoffmann, H.-P.; Brown, D. H.; Price, C. A.

    1971-01-01

    Chloroplasts were separated from Euglena gracilis by zonal centrifugation at low speed in density gradients of Ficoll or dextran. The chloroplasts were intact by the criteria of ultrastructure and their content of ribulose diphosphate carboxylase and soluble protein. The chloroplasts also contained ribosomes and ribosomal RNA uncontaminated by the corresponding cytoplasmic particles. Images PMID:16657599

  16. Influence of sub-lethal crude oil concentration on growth, water relations and photosynthetic capacity of maize (Zea mays L.) plants.

    PubMed

    Athar, Habib-Ur-Rehman; Ambreen, Sarah; Javed, Muhammad; Hina, Mehwish; Rasul, Sumaira; Zafar, Zafar Ullah; Manzoor, Hamid; Ogbaga, Chukwuma C; Afzal, Muhammad; Al-Qurainy, Fahad; Ashraf, Muhammad

    2016-09-01

    Maize tolerance potential to oil pollution was assessed by growing Zea mays in soil contaminated with varying levels of crude oil (0, 2.5 and 5.0 % v/w basis). Crude oil contamination reduced soil microflora which may be beneficial to plant growth. It was observed that oil pollution caused a remarkable decrease in biomass, leaf water potential, turgor potential, photosynthetic pigments, quantum yield of photosystem II (PSII) (Fv/Fm), net CO2 assimilation rate, leaf nitrogen and total free amino acids. Gas exchange characteristics suggested that reduction in photosynthetic rate was mainly due to metabolic limitations. Fast chlorophyll a kinetic analysis suggested that crude oil damaged PSII donor and acceptor sides and downregulated electron transport as well as PSI end electron acceptors thereby resulting in lower PSII efficiency in converting harvested light energy into biochemical energy. However, maize plants tried to acclimate to moderate level of oil pollution by increasing root diameter and root length relative to its shoot biomass, to uptake more water and mineral nutrients.

  17. Evidence for maize (Zea mays) in the Late Archaic (3000–1800 B.C.) in the Norte Chico region of Peru

    PubMed Central

    Haas, Jonathan; Creamer, Winifred; Huamán Mesía, Luis; Goldstein, David; Reinhard, Karl; Rodríguez, Cindy Vergel

    2013-01-01

    For more than 40 y, there has been an active discussion over the presence and economic importance of maize (Zea mays) during the Late Archaic period (3000–1800 B.C.) in ancient Peru. The evidence for Late Archaic maize has been limited, leading to the interpretation that it was present but used primarily for ceremonial purposes. Archaeological testing at a number of sites in the Norte Chico region of the north central coast provides a broad range of empirical data on the production, processing, and consumption of maize. New data drawn from coprolites, pollen records, and stone tool residues, combined with 126 radiocarbon dates, demonstrate that maize was widely grown, intensively processed, and constituted a primary component of the diet throughout the period from 3000 to 1800 B.C. PMID:23440194

  18. Nastic response of maize (Zea mays L.) coleoptiles during clinostat rotation.

    PubMed

    Nick, P; Schafer, E

    1989-08-01

    Rotation of unstimulated maize (Zea mays L.) seedlings on a horizontal clinostat is accompanied by a strong bending response of the coleoptiles towards the caryopsis, yielding curvatures exceding 100 degrees. The corresponding azimuthal distribution shows two peaks, each of which is displayed by 30 degrees from the symmetry axis connecting the shortest coleoptile and caryopsis cross sections. It is argued that this spatial pattern is not the result of two independent bending preferences, but caused by a one-peaked distribution encountering an obstacle in its central part and thus being split into the two subpeaks. The existence of one preferential direction justifies considering this response to be a nastic movement. Its time course consists of an early negative phase (coleoptiles bend away from the caryopsis) followed 2 h later by a long-lasting positive bending towards the caryopsis. In light-interaction experiments, fluence-response curves for different angles between blue light and the direction of the nastic response were measured. These experiments indicate that blue light interacts with the nastic response at two levels: (i) phototonic inhibition, and (ii) addition of nastic and phototropic curvatures. It is concluded that phototropic and phototonic transduction bifurcate before the formation of phototropic transverse polarity. The additivity of nastic and phototropic responses was followed at the population level. At the level of the individual seedling, one observes, in the case of phototropic induction opposing nastic movement, three distinct responses: either strong phototropism, or nastic bending, or an "avoidance" response which involves strong curvature perpendicular to the stimulation plane. With time the nastic bending becomes increasingly stable against opposing phototropic stimulation. This can be seen from a growing proportion of seedlings exhibiting nastic bending when light is applied at variable intervals after the onset of clinostat rotation

  19. Potentially toxic elements in foodcrops: Triticum aestivum L., Zea mays L.

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Fontana, Silvia; Squizzato, Stefania; Minello, Fabiola; Fornasier, Flavio; Wahsha, Mohammad

    2013-04-01

    Soil is the basis of the ecosystems and of our system of food production. Crops can uptake heavy metals and potentially toxic elements from the soil and store them in the roots or translocate them to the aerial parts. Excessive content of these elements in edible parts can produce toxic effects and, through the food chain and food consumption, result in a potential hazard for human health. In this study soils and plants (spring wheat, Triticum aestivum L. and maize, Zea mays L.) from a tannery district in North-East Italy were analyzed to determine pedological characters, soil microbial indicators and the content of some major and micro-nutrients and potentially toxic elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Ni, P, Pb, S, Zn, V). The soils of the area are moderately polluted; Cr is the most important inorganic contaminant, followed by Ni, Cu and V. Factor analysis evidenced that the contaminants are in part anthropogenic and in part geogenic. Major anthropogenic origin was detected for Cr, Ni (from industrial activities), Zn, Cu, Cd (from agriculture practices). Biological Absorption Coefficient (BAC) from soil to plant roots and Translocation factor (TF) within the plant were calculated; major nutrients (K, P, S) and some micronutrients (Cu, Zn, Mg, Mn) are easily absorbed and translocated, whilst other nutrients (Ca, Fe) and potentially toxic elements or micronutrients (Al, Cd, Cr, Ni, Pb, V) are not accumulated in the seeds of the two considered species. However, the two edible species proved differently able to absorb and translocate elements, and this suggests to consider separately every species as potential PHEs transporter to the food chain and to humans. Cr concentrations in seeds and other aerial parts (stem and leaves) of the examined plants are higher than the values found for the same species and for other cereals grown on unpolluted soils. Comparing the Cr levels in edible parts with recommended dietary intake, besides other possible Cr sources

  20. The TOC complex: preprotein gateway to the chloroplast.

    PubMed

    Andrès, Charles; Agne, Birgit; Kessler, Felix

    2010-06-01

    Photosynthetic eukaryotes strongly depend on chloroplast metabolic pathways. Most if not all involve nuclear encoded proteins. These are synthesized as cytosolic preproteins with N-terminal, cleavable targeting sequences (transit peptide). Preproteins are imported by a major pathway composed of two proteins complexes: TOC and TIC (Translocon of the Outer and Inner membranes of the Chloroplasts, respectively). These selectively recognize the preproteins and facilitate their transport across the chloroplast envelope. The TOC core complex consists of three types of components, each belonging to a small family: Toc34, Toc75 and Toc159. Toc34 and Toc159 isoforms represent a subfamily of the GTPase superfamily. The members of the Toc34 and Toc159 subfamily act as GTP-dependent receptors at the chloroplast surface and distinct members of each occur in defined, substrate-specific TOC complexes. Toc75, a member of the Omp85 family, is conserved from prokaryotes and functions as the unique protein-conducting channel at the outer membrane. In this review we will describe the current state of knowledge regarding the composition and function of the TOC complex.

  1. Optimization of anaerobic digestion of a mixture of Zea mays and Miscanthus sacchariflorus silages with various pig manure dosages.

    PubMed

    Bułkowska, K; Pokój, T; Klimiuk, E; Gusiatin, Z M

    2012-12-01

    Digestion of crop silage (Zea mays L. and Miscanthus sacchariflorus) with 0%, 7.5%, 12.5% and 25% pig manure as co-substrate was performed in continuous stirred-tank reactors, for a constant hydraulic retention time of 45 d and organic load rate of 2.1 g L(-1)d(-1). A matrix of correlations between biogas/methane production and parameters of anaerobic digestion was created in order to estimate process stability. The values of the correlation coefficients indicated that the most stable anaerobic digestion was achieved using 7.5% and 12.5% pig manure. In contrast, the positive correlation between ammonium and volatile fatty acids (r=0.8698, p<0.001) at 25% pig manure showed process instability. Compared to crop silage alone, pig manure favored the production of biogas and methane; the highest production rates were obtained with 12.5% pig manure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Effect of Cadmium Stress on Non-enzymatic Antioxidant and Nitric Oxide Levels in Two Varieties of Maize (Zea mays).

    PubMed

    Akinyemi, Ayodele Jacob; Faboya, Oluwabamise Lekan; Olayide, Israel; Faboya, Opeyemi Ayodeji; Ijabadeniyi, Tosin

    2017-06-01

    Cadmium (Cd) is one of the most toxic heavy metals that inhibit physiological processes of plants. Hence, the present study sought to investigate the effect of cadmium-contaminated seeds from two varieties of maize (Zea mays) on non-enzymatic antioxidant and nitric oxide levels. Seeds of yellow and white maize were exposed to different concentrations of Cd (0, 1, 3 and 5 ppm) for two weeks. The results from this study revealed that both varieties of maize bio-accumulate Cd in leaves in a dose-dependent manner. In addition, Cd exposure caused a significant (p < 0.05) decrease in total phenolic, GSH and nitric oxide (NO) levels at the highest concentration tested when compared with control. Therefore, the observed decrease in NO and endogenous antioxidant status by Cd treatment in maize plants could suggest some possible mechanism of action for Cd-induced oxidative stress and counteracting effect of the plants against Cd toxicity.

  3. Isolation and Characterization of Chloroplast DNA from the Duckweed Spirodela oligorrhiza

    PubMed Central

    van Ee, Jan H.; Veld, Willem A. Man In'T; Planta, Rudi J.

    1980-01-01

    Chloroplast DNA of the duckweed Spirodela oligorrhiza, isolated by CsCl gradient centrifugation, was characterized by its buoyant density, guanine + cytosine content, melting behavior, circularity, and contour length. In all these characteristics, chloroplast DNA of S. oligorrhiza is similar to the chloroplast genomes of other higher plants, except that it has a significantly larger size. Images PMID:16661479

  4. Influence Of Coal Combustion Flue Gas Desulfurization Waste On Element Uptake By Maize (Zea Mays L.)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ANNA, KNOX

    2005-01-10

    A greenhouse study was conducted to determine the effect of coal combustion flue gas desulfurization (FGD) waste from a coal combustion electric power facility on element uptake by maize (Zea mays L.). Unweathered FGD was applied to an Orangeburg Series (Typic Paleudult) soil with an initial soil pH salt of 4.90. The FGD was added at 0, 1, 2, 4, 6, 8, and 10 per cent by weight. The test plant, maize, was harvested after 6 weeks of growth. Within 56 days of the FGD application, all rates of FGD significantly increased pH in the soil and the soil leachatemore » above 6.0. The elemental concentration of the maize tissues indicated a characteristic elevation of B, Se, Mo, and As. However, no visual symptoms of toxicity of B or other elements in plants were observed. Increasing level of FGD caused a steady decline in dry weight, with the highest treatment producing plants which had approximately half the biomass of the control plants. Due to elevated concentrations of B and other elements and due to adverse yield effects measured on plants, unweathered FGD would not be a suitable amendment for 6-week old maize on this soil.« less

  5. Quantitative Trait Loci for Mercury Accumulation in Maize (Zea mays L.) Identified Using a RIL Population

    PubMed Central

    Zhang, Qinbin; Wang, Long; Zhang, Xiaoxiang; Song, Guiliang; Fu, Zhiyuan; Ding, Dong; Liu, Zonghua; Tang, Jihua

    2014-01-01

    To investigate the genetic mechanism of mercury accumulation in maize (Zea mays L.), a population of 194 recombinant inbred lines derived from an elite hybrid Yuyu 22, was used to identify quantitative trait loci (QTLs) for mercury accumulation at two locations. The results showed that the average Hg concentration in the different tissues of maize followed the order: leaves > bracts > stems > axis > kernels. Twenty-three QTLs for mercury accumulation in five tissues were detected on chromosomes 1, 4, 7, 8, 9 and 10, which explained 6.44% to 26.60% of the phenotype variance. The QTLs included five QTLs for Hg concentration in kernels, three QTLs for Hg concentration in the axis, six QTLs for Hg concentration in stems, four QTLs for Hg concentration in bracts and five QTLs for Hg concentration in leaves. Interestingly, three QTLs, qKHC9a, qKHC9b, and qBHC9 were in linkage with two QTLs for drought tolerance. In addition, qLHC1 was in linkage with two QTLs for arsenic accumulation. The study demonstrated the concentration of Hg in Hg-contaminated paddy soil could be reduced, and maize production maintained simultaneously by selecting and breeding maize Hg pollution-safe cultivars (PSCs). PMID:25210737

  6. [3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue

    NASA Technical Reports Server (NTRS)

    Hall, P. J.; Bandurski, R. S.

    1986-01-01

    [3H]Indole-3-acetyl-myo-inositol was hydrolyzed by buffered extracts of acetone powders prepared from 4 day shoots of dark grown Zea mays L. seedlings. The hydrolytic activity was proportional to the amount of extract added and was linear for up to 6 hours at 37 degrees C. Boiled or alcohol denatured extracts were inactive. Analysis of reaction mixtures by high performance liquid chromatography demonstrated that not all isomers of indole-3-acetyl-myo-inositol were hydrolyzed at the same rate. Buffered extracts of acetone powders were prepared from coleoptiles and mesocotyls. The rates of hydrolysis observed with coleoptile extracts were greater than those observed with mesocotyl extracts. Active extracts also catalyzed the hydrolysis of esterase substrates such as alpha-naphthyl acetate and the methyl esters of indoleacetic acid and naphthyleneacetic acid. Attempts to purify the indole-3-acetyl-myo-inositol hydrolyzing activity by chromatographic procedures resulted in only slight purification with large losses of activity. Chromatography over hydroxylapatite allowed separation of two enzymically active fractions, one of which catalyzed the hydrolysis of both indole-3-acetyl-myo-inositol and esterase substrates. With the other enzymic hydrolysis of esterase substrates was readily demonstrated, but no hydrolysis of indole-3-acetyl-myo-inositol was ever detected.

  7. A Network Approach of Gene Co-expression in the Zea mays/Aspergillus flavus Pathosystem to Map Host/Pathogen Interaction Pathways.

    PubMed

    Musungu, Bryan M; Bhatnagar, Deepak; Brown, Robert L; Payne, Gary A; OBrian, Greg; Fakhoury, Ahmad M; Geisler, Matt

    2016-01-01

    A gene co-expression network (GEN) was generated using a dual RNA-seq study with the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network revealed a high degree of connectivity in many of the previously recognized pathways in Z. mays such as jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flavus , a link between aflatoxin production and vesicular transport was identified within the network. There was significant interspecies correlation of expression between Z. mays and A. flavus for a subset of 104 Z. mays , and 1942 A. flavus genes. This resulted in an interspecies subnetwork enriched in multiple Z. mays genes involved in the production of ROS. In addition to the ROS from Z. mays , there was enrichment in the vesicular transport pathways and the aflatoxin pathway for A. flavus . Included in these genes, a key aflatoxin cluster regulator, AflS, was found to be co-regulated with multiple Z. mays ROS producing genes within the network, suggesting AflS may be monitoring host ROS levels. The entire GEN for both host and pathogen, and the subset of interspecies correlations, is presented as a tool for hypothesis generation and discovery for events in the early stages of fungal infection of Z. mays by A. flavus .

  8. A Network Approach of Gene Co-expression in the Zea mays/Aspergillus flavus Pathosystem to Map Host/Pathogen Interaction Pathways

    PubMed Central

    Musungu, Bryan M.; Bhatnagar, Deepak; Brown, Robert L.; Payne, Gary A.; OBrian, Greg; Fakhoury, Ahmad M.; Geisler, Matt

    2016-01-01

    A gene co-expression network (GEN) was generated using a dual RNA-seq study with the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network revealed a high degree of connectivity in many of the previously recognized pathways in Z. mays such as jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flavus, a link between aflatoxin production and vesicular transport was identified within the network. There was significant interspecies correlation of expression between Z. mays and A. flavus for a subset of 104 Z. mays, and 1942 A. flavus genes. This resulted in an interspecies subnetwork enriched in multiple Z. mays genes involved in the production of ROS. In addition to the ROS from Z. mays, there was enrichment in the vesicular transport pathways and the aflatoxin pathway for A. flavus. Included in these genes, a key aflatoxin cluster regulator, AflS, was found to be co-regulated with multiple Z. mays ROS producing genes within the network, suggesting AflS may be monitoring host ROS levels. The entire GEN for both host and pathogen, and the subset of interspecies correlations, is presented as a tool for hypothesis generation and discovery for events in the early stages of fungal infection of Z. mays by A. flavus. PMID:27917194

  9. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs.

    PubMed

    Yang, Jun-Bo; Li, De-Zhu; Li, Hong-Tao

    2014-09-01

    Chloroplast genomes supply indispensable information that helps improve the phylogenetic resolution and even as organelle-scale barcodes. Next-generation sequencing technologies have helped promote sequencing of complete chloroplast genomes, but compared with the number of angiosperms, relatively few chloroplast genomes have been sequenced. There are two major reasons for the paucity of completely sequenced chloroplast genomes: (i) massive amounts of fresh leaves are needed for chloroplast sequencing and (ii) there are considerable gaps in the sequenced chloroplast genomes of many plants because of the difficulty of isolating high-quality chloroplast DNA, preventing complete chloroplast genomes from being assembled. To overcome these obstacles, all known angiosperm chloroplast genomes available to date were analysed, and then we designed nine universal primer pairs corresponding to the highly conserved regions. Using these primers, angiosperm whole chloroplast genomes can be amplified using long-range PCR and sequenced using next-generation sequencing methods. The primers showed high universality, which was tested using 24 species representing major clades of angiosperms. To validate the functionality of the primers, eight species representing major groups of angiosperms, that is, early-diverging angiosperms, magnoliids, monocots, Saxifragales, fabids, malvids and asterids, were sequenced and assembled their complete chloroplast genomes. In our trials, only 100 mg of fresh leaves was used. The results show that the universal primer set provided an easy, effective and feasible approach for sequencing whole chloroplast genomes in angiosperms. The designed universal primer pairs provide a possibility to accelerate genome-scale data acquisition and will therefore magnify the phylogenetic resolution and species identification in angiosperms. © 2014 John Wiley & Sons Ltd.

  10. The effect of triazole induced photosynthetic pigments and biochemical constituents of Zea mays L. (Maize) under drought stress

    NASA Astrophysics Data System (ADS)

    Rajasekar, Mahalingam; Rabert, Gabriel Amalan; Manivannan, Paramasivam

    2016-06-01

    In this investigation, pot culture experiment was carried out to estimate the ameliorating effect of triazole compounds, namely Triadimefon (TDM), Tebuconazole (TBZ), and Propiconazole (PCZ) on drought stress, photosynthetic pigments, and biochemical constituents of Zea mays L. (Maize). From 30 days after sowing (DAS), the plants were subjected to 4 days interval drought (DID) stress and drought with TDM at 15 mg l-1, TBZ at 10 mg l-1, and PCZ at 15 mg l-1. Irrigation at 1-day interval was kept as control. Irrigation performed on alternative day. The plant samples were collected on 40, 50, and 60 DAS and separated into root, stem, and leaf for estimating the photosynthetic pigments and biochemical constituents. Drought and drought with triazole compounds treatment increased the biochemical glycine betaine content, whereas the protein and the pigments contents chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid, and anthocyanin decreased when compared to control. The triazole treatment mitigated the adverse effects of drought stress by increasing the biochemical potentials and paved the way to overcome drought stress in corn plant.

  11. Improved high-performance liquid chromatography (HPLC) method for qualitative and quantitative analysis of allantoin in Zea mays.

    PubMed

    Haghi, Ghasem; Arshi, Rohollah; Safaei, Alireza

    2008-02-27

    A high-performance liquid chromatography (HPLC) method for the qualitative and quantitative analysis of allantoin in silk and seed of Zea mays has been developed. Allantoin separation in crude extract was achieved using a C 18 column and phosphate buffer solution (pH 3.0) as a mobile phase at ambient temperature at a flow rate of 1.0 mL/min and detected at 210 nm. The results showed that the amount of allantoin in samples was between 14 and 271 mg/100 g of dry plant material. A comprehensive validation of the method including sensitivity, linearity, repeatability, and recovery was conducted. The calibration curve was linear over the range of 0.2-200 microg/mL with a correlation coefficient of r2>0.999. Limit of detection (LOD, S/N=3) and limit of quantification (LOQ) values of the allantoin were 0.05 and 0.2 microg/mL (1.0 and 4.0 ng) respectively. The relative standard deviation (RSD) value of the repeatability was reported within 1.2%. The average recovery of allantoin added to samples was 100.6% with RSD of 1.5%.

  12. Agrobacterium-mediated transformation of maize (Zea mays) with Cre-lox site specific recombination cassettes in BIBAC vectors.

    PubMed

    Vega, Juan M; Yu, Weichang; Han, Fangpu; Kato, Akio; Peters, Eric M; Zhang, Zhanyuan J; Birchler, James A

    2008-04-01

    The Cre/loxP site-specific recombination system has been applied in various plant species including maize (Zea mays) for marker gene removal, gene targeting, and functional genomics. A BIBAC vector system was adapted for maize transformation with a large fragment of genetic material including a herbicide resistance marker gene, a 30 kb yeast genomic fragment as a marker for fluorescence in situ hybridization (FISH), and a 35S-lox-cre recombination cassette. Seventy-five transgenic lines were generated from Agrobacterium-mediated transformation of a maize Hi II line with multiple B chromosomes. Eighty-four inserts have been localized among all 10 A chromosome pairs by FISH using the yeast DNA probe together with a karyotyping cocktail. No inserts were found on the B chromosomes; thus a bias against the B chromosomes by the Agrobacterium-mediated transformation was revealed. The expression of a cre gene was confirmed in 68 of the 75 transgenic lines by a reporter construct for cre/lox mediated recombination. The placement of the cre/lox site-specific recombination system in many locations in the maize genome will be valuable materials for gene targeting and chromosome engineering.

  13. Chloroplasts do not have a polarity for light-induced accumulation movement.

    PubMed

    Tsuboi, Hidenori; Yamashita, Hiroko; Wada, Masamitsu

    2009-01-01

    Chloroplast photorelocation movement in green plants is generally mediated by blue light. However, in cryptogam plants, including ferns, mosses, and algae, both red light and blue light are effective. Although the photoreceptors required for this phenomenon have been identified, the mechanisms underlying this movement response are not yet known. In order to analyze this response in more detail, chloroplast movement was induced in dark-adapted Adiantum capillus-veneris gametophyte cells by partial cell irradiation with a microbeam of red and/or blue light. In each case, chloroplasts were found to move toward the microbeam-irradiated area. A second microbeam was also applied to the cell at a separate location before the chloroplasts had reached the destination of the first microbeam. Under these conditions, chloroplasts were found to change their direction of movement without turning and move toward the second microbeam-irradiated area after a lag time of a few minutes. These findings indicate that chloroplasts can move in any direction and do not exhibit a polarity for chloroplast accumulation movement. This phenomenon was analyzed in detail in Adiantum and subsequently confirmed in Arabidopsis thaliana palisade cells. Interestingly, the lag time for direction change toward the second microbeam in Adiantum was longer in the red light than in the blue light. However, the reason for this discrepancy is not yet understood.

  14. Posttranslational Modification of Maize Chloroplast Pyruvate Orthophosphate Dikinase Reveals the Precise Regulatory Mechanism of Its Enzymatic Activity1[C][W][OPEN

    PubMed Central

    Chen, Yi-Bo; Lu, Tian-Cong; Wang, Hong-Xia; Shen, Jie; Bu, Tian-Tian; Chao, Qing; Gao, Zhi-Fang; Zhu, Xin-Guang; Wang, Yue-Feng; Wang, Bai-Chen

    2014-01-01

    In C4 plants, pyruvate orthophosphate dikinase (PPDK) activity is tightly dark/light regulated by reversible phosphorylation of an active-site threonine (Thr) residue; this process is catalyzed by PPDK regulatory protein (PDRP). Phosphorylation and dephosphorylation of PPDK lead to its inactivation and activation, respectively. Here, we show that light intensity rather than the light/dark transition regulates PPDK activity by modulating the reversible phosphorylation at Thr-527 (previously termed Thr-456) of PPDK in maize (Zea mays). The amount of PPDK (unphosphorylated) involved in C4 photosynthesis is indeed strictly controlled by light intensity, despite the high levels of PPDK protein that accumulate in mesophyll chloroplasts. In addition, we identified a transit peptide cleavage site, uncovered partial amino-terminal acetylation, and detected phosphorylation at four serine (Ser)/Thr residues, two of which were previously unknown in maize. In vitro experiments indicated that Thr-527 and Ser-528, but not Thr-309 and Ser-506, are targets of PDRP. Modeling suggests that the two hydrogen bonds between the highly conserved residues Ser-528 and glycine-525 are required for PDRP-mediated phosphorylation of the active-site Thr-527 of PPDK. Taken together, our results suggest that the regulation of maize plastid PPDK isoform (C4PPDK) activity is much more complex than previously reported. These diverse regulatory pathways may work alone or in combination to fine-tune C4PPDK activity in response to changes in lighting. PMID:24710069

  15. Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays

    PubMed Central

    Berg, Jeremy J.; Birchler, James A.; Grote, Mark N.; Lorant, Anne; Quezada, Juvenal

    2018-01-01

    While the vast majority of genome size variation in plants is due to differences in repetitive sequence, we know little about how selection acts on repeat content in natural populations. Here we investigate parallel changes in intraspecific genome size and repeat content of domesticated maize (Zea mays) landraces and their wild relative teosinte across altitudinal gradients in Mesoamerica and South America. We combine genotyping, low coverage whole-genome sequence data, and flow cytometry to test for evidence of selection on genome size and individual repeat abundance. We find that population structure alone cannot explain the observed variation, implying that clinal patterns of genome size are maintained by natural selection. Our modeling additionally provides evidence of selection on individual heterochromatic knob repeats, likely due to their large individual contribution to genome size. To better understand the phenotypes driving selection on genome size, we conducted a growth chamber experiment using a population of highland teosinte exhibiting extensive variation in genome size. We find weak support for a positive correlation between genome size and cell size, but stronger support for a negative correlation between genome size and the rate of cell production. Reanalyzing published data of cell counts in maize shoot apical meristems, we then identify a negative correlation between cell production rate and flowering time. Together, our data suggest a model in which variation in genome size is driven by natural selection on flowering time across altitudinal clines, connecting intraspecific variation in repetitive sequence to important differences in adaptive phenotypes. PMID:29746459

  16. Value of Neonicotinoid Insecticide Seed Treatments in Mid-South Corn (Zea mays) Production Systems.

    PubMed

    North, J H; Gore, J; Catchot, A L; Stewart, S D; Lorenz, G M; Musser, F R; Cook, D R; Kerns, D L; Leonard, B R; Dodds, D M

    2018-02-09

    Neonicotinoid seed treatments are one of several effective control options used in corn, Zea mays L., production in the Mid-South for early season insect pests. An analysis was performed on 91 insecticide seed treatment trials from Arkansas, Louisiana, Mississippi, and Tennessee to determine the value of neonicotinoids in corn production systems. The analysis compared neonicotinoid insecticide treated seed plus a fungicide to seed only with the same fungicide. When analyzed by state, corn yields were significantly higher when neonicotinoid seed treatments were used compared to fungicide only treated seed in Louisiana and Mississippi. Corn seed treated with neonicotinoid seed treatments yielded 111, 1,093, 416, and 140 kg/ha, higher than fungicide only treatments for Arkansas, Louisiana, Mississippi, and Tennessee, respectively. Across all states, neonicotinoid seed treatments resulted in a 700 kg/ha advantage compared to fungicide only treated corn seed. Net returns for corn treated with neonicotinoid seed treatment were $1,446/ha compared with $1,390/ha for fungicide only treated corn seed across the Mid-South. Economic returns for neonicotinoid seed treated corn were significantly greater than fungicide-only-treated corn seed in 8 out of 14 yr. When analyzed by state, economic returns for neonicotinoid seed treatments were significantly greater than fungicide-only-treated seed in Louisiana. In some areas, dependent on year, neonicotinoid seed treatments provide significant yield and economic benefits in Mid-South corn. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Nuclear, chloroplast, and mitochondrial data of a US cannabis DNA database.

    PubMed

    Houston, Rachel; Birck, Matthew; LaRue, Bobby; Hughes-Stamm, Sheree; Gangitano, David

    2018-05-01

    As Cannabis sativa (marijuana) is a controlled substance in many parts of the world, the ability to track biogeographical origin of cannabis could provide law enforcement with investigative leads regarding its trade and distribution. Population substructure and inbreeding may cause cannabis plants to become more genetically related. This genetic relatedness can be helpful for intelligence purposes. Analysis of autosomal, chloroplast, and mitochondrial DNA allows for not only prediction of biogeographical origin of a plant but also discrimination between individual plants. A previously validated, 13-autosomal STR multiplex was used to genotype 510 samples. Samples were analyzed from four different sites: 21 seizures at the US-Mexico border, Northeastern Brazil, hemp seeds purchased in the US, and the Araucania area of Chile. In addition, a previously reported multi-loci system was modified and optimized to genotype five chloroplast and two mitochondrial markers. For this purpose, two methods were designed: a homopolymeric STR pentaplex and a SNP triplex with one chloroplast (Cscp001) marker shared by both methods for quality control. For successful mitochondrial and chloroplast typing, a novel real-time PCR quantitation method was developed and validated to accurately estimate the quantity of the chloroplast DNA (cpDNA) using a synthetic DNA standard. Moreover, a sequenced allelic ladder was also designed for accurate genotyping of the homopolymeric STR pentaplex. For autosomal typing, 356 unique profiles were generated from the 425 samples that yielded full STR profiles and 25 identical genotypes within seizures were observed. Phylogenetic analysis and case-to-case pairwise comparisons of 21 seizures at the US-Mexico border, using the Fixation Index (F ST ) as genetic distance, revealed the genetic association of nine seizures that formed a reference population. For mitochondrial and chloroplast typing, subsampling was performed, and 134 samples were genotyped

  18. Expression of non-toxic mutant of Escherichia coli heat-labile enterotoxin in tobacco chloroplasts.

    PubMed

    Kang, Tae-Jin; Han, So-Chon; Kim, Mi-Young; Kim, Young-Sook; Yang, Moon-Sik

    2004-11-01

    Chloroplast transformation systems offer unique advantages in biotechnology, including high level of foreign gene expression, maternal inheritance, and polycistronic expression. We studied chloroplast expression of LTK63 (change Ser-->Lys at position 63 in the A subunit) which is the mutant of Escherichia coli heat-labile toxin. LTK63 is devoid of any toxic activity, but still retains its mucosal adjuvanticity. The LTK63 was cloned into chloroplast targeting vector and transformed to tobacco chloroplasts by particle bombardment. PCR and Southern blot analyses confirmed stable homologous recombination of the LTK63 gene into the chloroplast genome. The amount of LTK63 protein detected in tobacco chloroplasts was approximately 3.7% of the total soluble protein. The GM1-ganglioside binding assay confirmed that chloroplast-synthesized LTB of LTK63 binds to the intestinal membrane GM1-ganglioside receptor. Thus, the expression of LTK63 in chloroplasts provides a potential route toward the development of a plant-based edible vaccine for high expression system and environmentally friendly approach.

  19. The First Complete Chloroplast Genome Sequences in Actinidiaceae: Genome Structure and Comparative Analysis.

    PubMed

    Yao, Xiaohong; Tang, Ping; Li, Zuozhou; Li, Dawei; Liu, Yifei; Huang, Hongwen

    2015-01-01

    Actinidia chinensis is an important economic plant belonging to the basal lineage of the asterids. Availability of a complete Actinidia chloroplast genome sequence is crucial to understanding phylogenetic relationships among major lineages of angiosperms and facilitates kiwifruit genetic improvement. We report here the complete nucleotide sequences of the chloroplast genomes for Actinidia chinensis and A. chinensis var deliciosa obtained through de novo assembly of Illumina paired-end reads produced by total DNA sequencing. The total genome size ranges from 155,446 to 157,557 bp, with an inverted repeat (IR) of 24,013 to 24,391 bp, a large single copy region (LSC) of 87,984 to 88,337 bp and a small single copy region (SSC) of 20,332 to 20,336 bp. The genome encodes 113 different genes, including 79 unique protein-coding genes, 30 tRNA genes and 4 ribosomal RNA genes, with 16 duplicated in the inverted repeats, and a tRNA gene (trnfM-CAU) duplicated once in the LSC region. Comparisons of IR boundaries among four asterid species showed that IR/LSC borders were extended into the 5' portion of the psbA gene and IR contraction occurred in Actinidia. The clap gene has been lost from the chloroplast genome in Actinidia, and may have been transferred to the nucleus during chloroplast evolution. Twenty-seven polymorphic simple sequence repeat (SSR) loci were identified in the Actinidia chloroplast genome. Maximum parsimony analyses of a 72-gene, 16 taxa angiosperm dataset strongly support the placement of Actinidiaceae in Ericales within the basal asterids.

  20. Sonication-based isolation and enrichment of Chlorella protothecoides chloroplasts for illumina genome sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelova, Angelina; Park, Sang-Hycuk; Kyndt, John

    2013-09-01

    With the increasing world demand for biofuel, a number of oleaginous algal species are being considered as renewable sources of oil. Chlorella protothecoides Krüger synthesizes triacylglycerols (TAGs) as storage compounds that can be converted into renewable fuel utilizing an anabolic pathway that is poorly understood. The paucity of algal chloroplast genome sequences has been an important constraint to chloroplast transformation and for studying gene expression in TAGs pathways. In this study, the intact chloroplasts were released from algal cells using sonication followed by sucrose gradient centrifugation, resulting in a 2.36-fold enrichment of chloroplasts from C. protothecoides, based on qPCR analysis.more » The C. protothecoides chloroplast genome (cpDNA) was determined using the Illumina HiSeq 2000 sequencing platform and found to be 84,576 Kb in size (8.57 Kb) in size, with a GC content of 30.8 %. This is the first report of an optimized protocol that uses a sonication step, followed by sucrose gradient centrifugation, to release and enrich intact chloroplasts from a microalga (C. prototheocoides) of sufficient quality to permit chloroplast genome sequencing with high coverage, while minimizing nuclear genome contamination. The approach is expected to guide chloroplast isolation from other oleaginous algal species for a variety of uses that benefit from enrichment of chloroplasts, ranging from biochemical analysis to genomics studies.« less

  1. Unique localization of the plastid-specific ribosomal proteins in the chloroplast ribosome small subunit provides mechanistic insights into the chloroplastic translation

    PubMed Central

    Ahmed, Tofayel; Shi, Jian

    2017-01-01

    Abstract Chloroplastic translation is mediated by a bacterial-type 70S chloroplast ribosome. During the evolution, chloroplast ribosomes have acquired five plastid-specific ribosomal proteins or PSRPs (cS22, cS23, bTHXc, cL37 and cL38) which have been suggested to play important regulatory roles in translation. However, their exact locations on the chloroplast ribosome remain elusive due to lack of a high-resolution structure, hindering our progress to understand their possible roles. Here we present a cryo-EM structure of the 70S chloroplast ribosome from spinach resolved to 3.4 Å and focus our discussion mainly on the architecture of the 30S small subunit (SSU) which is resolved to 3.7 Å. cS22 localizes at the SSU foot where it seems to compensate for the deletions in 16S rRNA. The mRNA exit site is highly remodeled due to the presence of cS23 suggesting an alternative mode of translation initiation. bTHXc is positioned at the SSU head and appears to stabilize the intersubunit bridge B1b during thermal fluctuations. The translation factor plastid pY binds to the SSU on the intersubunit side and interacts with the conserved nucleotide bases involved in decoding. Most of the intersubunit bridges are conserved compared to the bacteria, except for a new bridge involving uL2c and bS6c. PMID:28582576

  2. Uncovering the Protein Lysine and Arginine Methylation Network in Arabidopsis Chloroplasts

    PubMed Central

    Mininno, Morgane; Brugière, Sabine; Gilgen, Annabelle; Ma, Sheng; Mazzoleni, Meryl; Gigarel, Océane; Martin-Laffon, Jacqueline; Ferro, Myriam; Ravanel, Stéphane

    2014-01-01

    Post-translational modification of proteins by the addition of methyl groups to the side chains of Lys and Arg residues is proposed to play important roles in many cellular processes. In plants, identification of non-histone methylproteins at a cellular or subcellular scale is still missing. To gain insights into the extent of this modification in chloroplasts we used a bioinformatics approach to identify protein methyltransferases targeted to plastids and set up a workflow to specifically identify Lys and Arg methylated proteins from proteomic data used to produce the Arabidopsis chloroplast proteome. With this approach we could identify 31 high-confidence Lys and Arg methylation sites from 23 chloroplastic proteins, of which only two were previously known to be methylated. These methylproteins are split between the stroma, thylakoids and envelope sub-compartments. They belong to essential metabolic processes, including photosynthesis, and to the chloroplast biogenesis and maintenance machinery (translation, protein import, division). Also, the in silico identification of nine protein methyltransferases that are known or predicted to be targeted to plastids provided a foundation to build the enzymes/substrates relationships that govern methylation in chloroplasts. Thereby, using in vitro methylation assays with chloroplast stroma as a source of methyltransferases we confirmed the methylation sites of two targets, plastid ribosomal protein L11 and the β-subunit of ATP synthase. Furthermore, a biochemical screening of recombinant chloroplastic protein Lys methyltransferases allowed us to identify the enzymes involved in the modification of these substrates. The present study provides a useful resource to build the methyltransferases/methylproteins network and to elucidate the role of protein methylation in chloroplast biology. PMID:24748391

  3. Cloning and Functional Analysis of Phosphoethanolamine Methyltransferase Promoter from Maize (Zea mays L.)

    PubMed Central

    Niu, Gai-Li; Gou, Wei; Han, Xiang-Long; Qin, Cheng; Zhang, Li-Xin; Ashraf, Muhammad

    2018-01-01

    Betaine, a non-toxic osmoprotectant, is believed to accumulate considerably in plants under stress conditions to maintain the osmotic pressure and promote a variety of processes involved in growth and development. Phosphoethanolamine N-methyltransferase (PEAMT), a key enzyme for betaine synthesis, is reported to be regulated by its upstream promoter. In the present investigation, by using the transgenic approach, a 1048 bp long promoter region of ZmPEAMT gene from Zea mays was cloned and functionally characterized in tobacco. Computational analysis affirmed the existence of abiotic stress responsive cis-elements like ABRE, MYC, HST, LST etc., as well as pathogen, wound and phytohormone responsive motifs. For transformation in tobacco, four 5′-deletion constructs of 826 bp (P2), 642 bp (P3), 428 bp (P4) and 245 bp (P5) were constructed from the 1048 bp (P1) promoter fragment. The transgenic plants generated through a single event exhibited a promising expression of GUS reporter protein in the leaf tissues of treated with salt, drought, oxidative and cold stress as well as control plants. The GUS expression level progressively reduced from P1 to P5 in the leaf tissues, whereas a maximal expression was observed with the P3 construct in the leaves of control plants. The expression of GUS was noted to be higher in the leaves of osmotically- or salt-treated transgenic plants than that in the untreated (control) plants. An effective expression of GUS in the transgenic plants manifests that this promoter can be employed for both stress-inducible and constitutive expression of gene(s). Due to this characteristic, this potential promoter can be effectively used for genetic engineering of several crops. PMID:29316727

  4. Protein targeting and integration signal for the chloroplastic outer envelope membrane.

    PubMed Central

    Li, H M; Chen, L J

    1996-01-01

    Most proteins in chloroplasts are encoded by the nuclear genome and synthesized in the cytosol. With the exception of most quter envelope membrane proteins, nuclear-encoded chloroplastic proteins are synthesized with N-terminal extensions that contain the chloroplast targeting information of these proteins. Most outer membrane proteins, however, are synthesized without extensions in the cytosol. Therefore, it is not clear where the chloroplastic outer membrane targeting information resides within these polypeptides. We have analyzed a chloroplastic outer membrane protein, OEP14 (outer envelope membrane protein of 14 kD, previously named OM14), and localized its outer membrane targeting and integration signal to the first 30 amino acids of the protein. This signal consists of a positively charged N-terminal portion followed by a hydrophobic core, bearing resemblance to the signal peptides of proteins targeted to the endoplasmic reticulum. However, a chimeric protein containing this signal fused to a passenger protein did not integrate into the endoplasmic reticulum membrane. Furthermore, membrane topology analysis indicated that the signal inserts into the chloroplastic outer membrane in an orientation opposite to that predicted by the "positive inside" rule. PMID:8953775

  5. Rust fungal effectors mimic host transit peptides to translocate into chloroplasts.

    PubMed

    Petre, Benjamin; Lorrain, Cécile; Saunders, Diane G O; Win, Joe; Sklenar, Jan; Duplessis, Sébastien; Kamoun, Sophien

    2016-04-01

    Parasite effector proteins target various host cell compartments to alter host processes and promote infection. How effectors cross membrane-rich interfaces to reach these compartments is a major question in effector biology. Growing evidence suggests that effectors use molecular mimicry to subvert host cell machinery for protein sorting. We recently identified chloroplast-targeted protein 1 (CTP1), a candidate effector from the poplar leaf rust fungus Melampsora larici-populina that carries a predicted transit peptide and accumulates in chloroplasts and mitochondria. Here, we show that the CTP1 transit peptide is necessary and sufficient for accumulation in the stroma of chloroplasts. CTP1 is part of a Melampsora-specific family of polymorphic secreted proteins. Two members of that family, CTP2 and CTP3, also translocate in chloroplasts in an N-terminal signal-dependent manner. CTP1, CTP2 and CTP3 are cleaved when they accumulate in chloroplasts, while they remain intact when they do not translocate into chloroplasts. Our findings reveal that fungi have evolved effector proteins that mimic plant-specific sorting signals to traffic within plant cells. © 2015 John Wiley & Sons Ltd.

  6. Analysis of Protein Interactions at Native Chloroplast Membranes by Ellipsometry

    PubMed Central

    Kriechbaumer, Verena; Nabok, Alexei; Mustafa, Mohd K.; Al-Ammar, Rukaiah; Tsargorodskaya, Anna; Smith, David P.; Abell, Ben M.

    2012-01-01

    Membrane bound receptors play vital roles in cell signaling, and are the target for many drugs, yet their interactions with ligands are difficult to study by conventional techniques due to the technical difficulty of monitoring these interactions in lipid environments. In particular, the ability to analyse the behaviour of membrane proteins in their native membrane environment is limited. Here, we have developed a quantitative approach to detect specific interactions between low-abundance chaperone receptors within native chloroplast membranes and their soluble chaperone partners. Langmuir-Schaefer film deposition was used to deposit native chloroplasts onto gold-coated glass slides, and interactions between the molecular chaperones Hsp70 and Hsp90 and their receptors in the chloroplast membranes were detected and quantified by total internal reflection ellipsometry (TIRE). We show that native chloroplast membranes deposited on gold-coated glass slides using Langmuir-Schaefer films retain functional receptors capable of binding chaperones with high specificity and affinity. Taking into account the low chaperone receptor abundance in native membranes, these binding properties are consistent with data generated using soluble forms of the chloroplast chaperone receptors, OEP61 and Toc64. Therefore, we conclude that chloroplasts have the capacity to selectively bind chaperones, consistent with the notion that chaperones play an important role in protein targeting to chloroplasts. Importantly, this method of monitoring by TIRE does not require any protein labelling. This novel combination of techniques should be applicable to a wide variety of membranes and membrane protein receptors, thus presenting the opportunity to quantify protein interactions involved in fundamental cellular processes, and to screen for drugs that target membrane proteins. PMID:22479632

  7. The chloroplast division mutant caa33 of Arabidopsis thaliana reveals a crucial impact of chloroplast homeostasis on stress acclimation and retrograde plastid-to-nucleus signaling

    PubMed Central

    Šimková, Klára; Kim, Chanhong; Gacek, Katarzyna; Baruah, Aiswarya; Laloi, Christophe; Apel, Klaus

    2011-01-01

    SUMMARY Retrograde plastid-to-nucleus signaling tightly controls and coordinates nuclear and plastid gene expression that is required for plastid biogenesis and chloroplast activities. As chloroplasts act as sensors of environmental changes, plastid-derived signaling also modulates stress responses of plants by transferring stress-related signals and altering nuclear gene expression. Various mutant screens have been undertaken to identify constituents of plastid signaling pathways. Almost all mutations identified in these screens have in common that they target plastid-specific but not extra-plastidic functions. They have been suggested to define either genuine constituents of retrograde signaling pathways or components required for the synthesis of plastid signals. Here we report the characterization of the caa33 (constitutive activator of AAA-ATPase) mutant, which reveals another way of how mutations that affect plastid functions may modulate retrograde plastid signaling. caa33 disturbs a plastid-specific function by impeding plastid division thereby perturbing plastid homeostasis. This results in pre-conditioning plants by activating the expression of stress genes, enhancing pathogen resistance and attenuating the plant’s capacity to respond to plastid signals. Our study reveals an intimate link between chloroplast activity and the plant’s susceptibility to stress and emphasizes the need to consider the possible impact of pre-conditioning on retrograde plastid-to-nucleus signaling. PMID:22014227

  8. Dissipation of the Proton Electrochemical Potential in Intact and Lysed Chloroplasts 1

    PubMed Central

    Nishio, John N.; Whitmarsh, John

    1991-01-01

    Effective ionophore:chlorophyll ratios were determined for various ionophores that decrease the electrical potential across thylakoid membranes in intact and hypo-osmotically lysed chloroplasts isolated from spinach (Spinacia oleracea). The efficacy of gramicidin D, valinomycin, carbonylcyanide m-chlorophenylhydrazone, and dicyclohexano-18-crown-6 in collapsing the electrical potential was determined spectrophotometrically by the decay half-time of the absorbance change at 518 nanometers induced by a saturating, single turnover flash. The results show that the effectiveness of the ionophores in collapsing the electrical potential in intact and lysed chloroplasts depends on the amount of ionophore-accessible membrane in the assay medium. Only gramicidin exhibited a significant difference in efficacy between intact and lysed chloroplasts. The ratio of gramicidin to chlorophyll required to collapse the electrical potential was more than 50 times higher in intact chloroplasts than in lysed chloroplasts. The efficacy of carbonylcyanide m-chlorophenylhydrazone was significantly reduced in the presence of bovine serum albumin. The other ionophores tested maintained their potency in the presence of bovine serum albumin. Valinomycin was the most effective ionophore tested for collapsing the electrical potential in intact chloroplasts, whereas gramicidin was the most potent ionophore in lysed chloroplasts. The significance of the ionophore:chlorophyll ratios required to collapse the electrical potential is discussed with regard to bioenergetic studies, especially those that examine the contribution of the transmembrane electrochemical potential to protein transport into chloroplasts. PMID:16668015

  9. Effects of citrate-coated silver nanoparticles on interactions between soil bacteria and the major crop plant Zea mays

    NASA Astrophysics Data System (ADS)

    Doody, Michael; Bais, Harsh; Jin, Yan

    2014-05-01

    The increasing use of silver nanoparticles (AgNPs) in commercial antimicrobial products presents an opportunity for increased environmental exposures. While the behavior of AgNPs in surface waters is becoming increasingly understood, little research has been conducted on the effects of these, or any nanoparticles, on soil-dwelling bacteria and major crop plants. Because of the importance of soil bacteria to the overall health of natural and agricultural soils, it is necessary to better understand how AgNPs interact with common bacterial species such as Bacillus subtilis and Escherichia coli. It is further necessary to quantify the effect of AgNPs on major crop plants, including Zea mays, a staple crop for much of the world. Finally, research is needed on how complex plant-microbe interactions that originate in the rhizosphere may be disrupted by AgNPs. Our preliminary data show highly statistically significant growth inhibition near 30% for both species of bacteria exposed to 1.0 mg L-1 citrate-coated AgNPs (c-AgNPs). Growth curves compiled from absorbance data show a similar dose-response for both species. Treatment with aqueous Ag as AgNO3 slightly inhibits E. coli (90 ± 5 %), but enhances growth of B. subtilis to 127 ± 23% of control. These results indicate that toxicity may be related to specific nano-scale properties of the c-AgNPs. On-going experiments measure potential growth inhibition, root development and morphology of Z. mays exposed to c-AgNPs, and resulting changes in plant-microbe interactions.

  10. Promotion of chloroplast proliferation upon enhanced post-mitotic cell expansion in leaves.

    PubMed

    Kawade, Kensuke; Horiguchi, Gorou; Ishikawa, Naoko; Hirai, Masami Yokota; Tsukaya, Hirokazu

    2013-09-28

    Leaves are determinate organs; hence, precise control of cell proliferation and post-mitotic cell expansion is essential for their growth. A defect in cell proliferation often triggers enhanced post-mitotic cell expansion in leaves. This phenomenon is referred to as 'compensation'. Several lines of evidence from studies on compensation have shown that cell proliferation and post-mitotic cell expansion are coordinately regulated during leaf development. Therefore, compensation has attracted much attention to the mechanisms for leaf growth. However, our understanding of compensation at the subcellular level remains limited because studies of compensation have focused mainly on cellular-level phenotypes. Proper leaf growth requires quantitative control of subcellular components in association with cellular-level changes. To gain insight into the subcellular aspect of compensation, we investigated the well-known relationship between cell area and chloroplast number per cell in compensation-exhibiting lines, and asked whether chloroplast proliferation is modulated in response to the induction of compensation. We first established a convenient and reliable method for observation of chloroplasts in situ. Using this method, we analyzed Arabidopsis thaliana mutants fugu5 and angustifolia3 (an3), and a transgenic line KIP-RELATED PROTEIN2 overexpressor (KRP2 OE), which are known to exhibit typical features of compensation. We here showed that chloroplast number per cell increased in the subepidermal palisade tissue of these lines. We analyzed tetraploidized wild type, fugu5, an3 and KRP2 OE, and found that cell area itself, but not nuclear ploidy, is a key parameter that determines the activity of chloroplast proliferation. In particular, in the case of an3, we uncovered that promotion of chloroplast proliferation depends on the enhanced post-mitotic cell expansion. The expression levels of chloroplast proliferation-related genes are similar to or lower than that in the wild

  11. Promotion of chloroplast proliferation upon enhanced post-mitotic cell expansion in leaves

    PubMed Central

    2013-01-01

    Background Leaves are determinate organs; hence, precise control of cell proliferation and post-mitotic cell expansion is essential for their growth. A defect in cell proliferation often triggers enhanced post-mitotic cell expansion in leaves. This phenomenon is referred to as ‘compensation’. Several lines of evidence from studies on compensation have shown that cell proliferation and post-mitotic cell expansion are coordinately regulated during leaf development. Therefore, compensation has attracted much attention to the mechanisms for leaf growth. However, our understanding of compensation at the subcellular level remains limited because studies of compensation have focused mainly on cellular-level phenotypes. Proper leaf growth requires quantitative control of subcellular components in association with cellular-level changes. To gain insight into the subcellular aspect of compensation, we investigated the well-known relationship between cell area and chloroplast number per cell in compensation-exhibiting lines, and asked whether chloroplast proliferation is modulated in response to the induction of compensation. Results We first established a convenient and reliable method for observation of chloroplasts in situ. Using this method, we analyzed Arabidopsis thaliana mutants fugu5 and angustifolia3 (an3), and a transgenic line KIP-RELATED PROTEIN2 overexpressor (KRP2 OE), which are known to exhibit typical features of compensation. We here showed that chloroplast number per cell increased in the subepidermal palisade tissue of these lines. We analyzed tetraploidized wild type, fugu5, an3 and KRP2 OE, and found that cell area itself, but not nuclear ploidy, is a key parameter that determines the activity of chloroplast proliferation. In particular, in the case of an3, we uncovered that promotion of chloroplast proliferation depends on the enhanced post-mitotic cell expansion. The expression levels of chloroplast proliferation-related genes are similar to or

  12. Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate.

    PubMed

    Longchamp, Mélanie; Castrec-Rouelle, Maryse; Biron, Philippe; Bariac, Thierry

    2015-09-01

    Quantification of selenium bioavailability from foods is a key challenge following the discovery of the antioxidant role of this micronutrient in human health. This study presents the uptake, accumulation and rate of metabolization in mature Zea mays plants grown in hydroponic solution supplemented with selenate or selenite. Selenium content was lower in plants supplemented with selenate and accumulated mainly in the leaves compared with selenite-treated plants where the selenium was retained in the roots. Selenite-treated grains accumulated more selenium. Selenate was metabolized less than selenite in whole plants, but in grains selenium was present exclusively as organic selenium compounds. For humans, the bioavailability of organic selenium was evaluated at 90% compared with only 50% for inorganic forms. Our results show that the potential for selenium bioavailability is increased with selenite treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Chloroplast avoidance movement is not functional in plants grown under strong sunlight.

    PubMed

    Higa, Takeshi; Wada, Masamitsu

    2016-04-01

    Chloroplast movement in nine climbing plant species was investigated. It is thought that chloroplasts generally escape from strong light to avoid photodamage but accumulate towards weak light to perform photosynthesis effectively. Unexpectedly, however, the leaves of climbing plants grown under strong sunlight showed very low or no chloroplast photorelocation responses to either weak or strong blue light when detected by red light transmittance through leaves. Direct observations of Cayratia japonica leaves, for example, revealed that the average number of chloroplasts in upper periclinal walls of palisade tissue cells was only 1.2 after weak blue-light irradiation and almost all of the chloroplasts remained at the anticlinal wall, the state of chloroplast avoidance response. The leaves grown under strong light have thin and columnar palisade tissue cells comparing with the leaves grown under low light. Depending on our analyses and our schematic model, the thinner cells in a unit leaf area have a wider total plasma membrane area, such that more chloroplasts can exist on the plasma membrane in the thinner cells than in the thicker cells in a unit leaf-area basis. The same strategy might be used in other plant leaves grown under direct sunlight. © 2015 John Wiley & Sons Ltd.

  14. Dated tribe-wide whole chloroplast genome phylogeny indicates recurrent hybridizations within Triticeae.

    PubMed

    Bernhardt, Nadine; Brassac, Jonathan; Kilian, Benjamin; Blattner, Frank R

    2017-06-16

    Triticeae, the tribe of wheat grasses, harbours the cereals barley, rye and wheat and their wild relatives. Although economically important, relationships within the tribe are still not understood. We analysed the phylogeny of chloroplast lineages among nearly all monogenomic Triticeae taxa and polyploid wheat species aiming at a deeper understanding of the tribe's evolution. We used on- and off-target reads of a target-enrichment experiment followed by Illumina sequencing. The read data was used to assemble the plastid locus ndhF for 194 individuals and the whole chloroplast genome for 183 individuals, representing 53 Triticeae species and 15 genera. We conducted Bayesian and multispecies coalescent analyses to infer relationships and estimate divergence times of the taxa. We present the most comprehensive dated Triticeae chloroplast phylogeny and review previous hypotheses in the framework of our results. Monophyly of Triticeae chloroplasts could not be confirmed, as either Bromus or Psathyrostachys captured a chloroplast from a lineage closely related to a Bromus-Triticeae ancestor. The most recent common ancestor of Triticeae occurred approximately between ten and 19 million years ago. The comparison of the chloroplast phylogeny with available nuclear data in several cases revealed incongruences indicating past hybridizations. Recent events of chloroplast capture were detected as individuals grouped apart from con-specific accessions in otherwise monopyhletic groups.

  15. Exogenous melatonin improves corn (Zea mays L.) embryo proteome in seeds subjected to chilling stress.

    PubMed

    Kołodziejczyk, Izabela; Dzitko, Katarzyna; Szewczyk, Rafał; Posmyk, Małgorzata M

    2016-04-01

    Melatonin (MEL; N-acetyl-5-methoxytryptamine) plays an important role in plant stress defense. Various plant species rich in this indoleamine have shown a higher capacity for stress tolerance. Moreover, it has great potential for plant biostimulation, is biodegradable and non-toxic for the environment. All this indicates that our concept of seed enrichment with exogenous MEL is justified. This work concerns the effects of corn (Zea mays L.) seed pre-sowing treatments supplemented with MEL. Non-treated seeds (nt), and those hydroprimed with water (H) or with MEL solutions 50 and 500 μM (HMel50, HMel500) were compared. Positive effects of seed priming are particularly apparent during germination under suboptimal conditions. The impact of MEL applied by priming on seed protein profiles during imbibition/germination at low temperature has not been investigated to date. In order to identify changes in the corn seed proteome after applying hydropriming techniques, purified protein extracts of chilling stressed seed embryos (14 days, 5°C) were separated by two-dimensional electrophoresis. Then proteome maps were graphically and statistically compared and selected protein spots were qualitatively analyzed using mass spectrometry techniques and identified. This study aimed to analyze the priming-induced changes in maize embryo proteome and at identifying priming-associated and MEL-associated proteins in maize seeds subjected to chilling. We attempt to explain how MEL expands plant capacity for stress tolerance. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Micromonospora zeae sp. nov., a novel endophytic actinomycete isolated from corn root (Zea mays L.).

    PubMed

    Shen, Yue; Zhang, Yuejing; Liu, Chongxi; Wang, Xiangjing; Zhao, Junwei; Jia, Feiyu; Yang, Lingyu; Yang, Deguang; Xiang, Wensheng

    2014-11-01

    A novel actinomycete, designated strain NEAU-gq9(T), was isolated from corn root (Zea mays L.) and characterized using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of the genus Micromonospora. On the basis of 16S rRNA gene sequence similarity studies, strain NEAU-gq9(T) was most closely related to Micromonospora zamorensis CR38(T) (99.3%), Micromonospora jinlongensis NEAU-GRX11(T) (99.2%), Micromonospora saelicesensis Lupac 09(T) (99.2%), Micromonospora chokoriensis 2-19(6)(T) (98.9%), Micromonospora coxensis 2-30-b(28)(T) (98.6%) and Micromonospora lupini Lupac 14N(T) (98.5%). Phylogenetic analysis based on the 16S rRNA gene and gyrB gene demonstrated that strain NEAU-gq9(T) is a member of the genus Micromonospora and supported the closest phylogenetic relationship to M. zamorensis CR38(T), M. jinlongensis NEAU-GRX11(T), M. saelicesensis Lupac 09(T), M. chokoriensis 2-19(6)(T) and M. lupini Lupac 14N(T). A combination of DNA-DNA hybridization, morphological and physiological characteristics indicated that the novel strain could be readily distinguished from the closest phylogenetic relatives. Therefore, it is proposed that strain NEAU-gq9(T) represents a novel species of the genus Micromonospora, for which the name Micromonospora zeae sp. nov. is proposed. The type strain is NEAU-gq9(T) (=CGMCC 4.7092(T)=DSM 45882(T)).

  17. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response.

    PubMed

    Kim, Hyuck-Soo; Kim, Kwon-Rae; Yang, Jae E; Ok, Yong Sik; Owens, Gary; Nehls, Thomas; Wessolek, Gerd; Kim, Kye-Hoon

    2016-01-01

    Reclaimed tidal land soil (RTLS) often contains high levels of soluble salts and exchangeable Na that can adversely affect plant growth. The current study examined the effect of biochar on the physicochemical properties of RTLS and subsequently the influence on plant growth performance. Rice hull derived biochar (BC) was applied to RTLS at three different rates (1%, 2%, and 5% (w/w)) and maize (Zea mays L.) subsequently cultivated for 6weeks. While maize was cultivated, 0.1% NaCl solution was supplied from the bottom of the pots to simulate the natural RTLS conditions. Biochar induced changes in soil properties were evaluated by the water stable aggregate (WSA) percentage, exchangeable sodium percentage (ESP), soil organic carbon contents, cation exchange capacity, and exchangeable cations. Plant response was measured by growth rate, nutrient contents, and antioxidant enzyme activity of ascorbate peroxidase (APX) and glutathione reductase (GR). Application of rice hull derived biochar increased the soil organic carbon content and the percentage of WSA by 36-69%, while decreasing the ESP. The highest dry weight maize yield was observed from soil which received 5% BC (w/w), which was attributed to increased stability of water-stable aggregates and elevated levels of phosphate in BC incorporated soils. Moreover, increased potassium, sourced from the BC, induced mitigation of Na uptake by maize and consequently, reduced the impact of salt stress as evidenced by overall declines in the antioxidant activities of APX and GR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Photoinduction of cyclosis-mediated interactions between distant chloroplasts.

    PubMed

    Bulychev, Alexander A; Komarova, Anna V

    2015-01-01

    Communications between chloroplasts and other organelles based on the exchange of metabolites, including redox active substances, are recognized as a part of intracellular regulation, chlororespiration, and defense against oxidative stress. Similar communications may operate between spatially distant chloroplasts in large cells where photosynthetic and respiratory activities are distributed unevenly under fluctuating patterned illumination. Microfluorometry of chlorophyll fluorescence in vivo in internodal cells of the alga Chara corallina revealed that a 30-s pulse of localized light induces a transient increase (~25%) in F' fluorescence of remote cell parts exposed to dim background light at a 1.5-mm distance on the downstream side from the illuminated spot in the plane of unilateral cytoplasmic streaming but has no effect on F' at equal distance on the upstream side. An abrupt arrest of cytoplasmic streaming for about 30s by triggering the action potential extended either the ascending or descending fronts of the F' fluorescence response, depending on the exact moment of streaming cessation. The response of F' fluorescence to localized illumination of a distant cell region was absent in dark-adapted internodes, when the localized light was applied within the first minute after switching on continuous background illumination of the whole cell, but it appeared in full after longer exposures to continuous background light. These results and the elimination of the F' response by methyl viologen known to redirect electron transport pathways beyond photosystem I indicate the importance of photosynthetic induction and the stromal redox state for long-distance communications of chloroplasts in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The complete chloroplast genome of common walnut (Juglans regia)

    Treesearch

    Yiheng ​Hu; Keith E. Woeste; Meng Dang; Tao Zhou; Xiaojia Feng; Guifang Zhao; Zhanlin Liu; Zhonghu Li; Peng Zhao

    2016-01-01

    Common walnut (Juglans regia L.) is cultivated in temperate regions worldwide for its wood and nuts. The complete chloroplast genome of J. regia was sequenced using the Illumina MiSeq platform. This is the first complete chloroplast sequence for the Juglandaceae, a family that includes numerous species of economic importance....

  20. Growth, cadmium uptake and accumulation of maize (Zea mays L.) under the effects of arbuscular mycorrhizal fungi.

    PubMed

    Liu, Lingzhi; Gong, Zongqiang; Zhang, Yulong; Li, Peijun

    2014-12-01

    The effects of three arbuscular mycorrhizal fungi isolates on Cd uptake and accumulation by maize (Zea mays L.) were investigated in a planted pot experiment. Plants were inoculated with Glomus intraradices, Glomus constrictum and Glomus mosseae at three different Cd concentrations. The results showed that root colonization increased with Cd addition during a 6-week growth period, however, the fungal density on roots decreased after 9-week growth in the treatments with G. constrictum and G. mosseae isolates. The percentage of mycorrhizal colonization by the three arbuscular mycorrhizal fungi isolates ranged from 22.7 to 72.3%. Arbuscular mycorrhizal fungi inoculations decreased maize biomass especially during the first 6-week growth before Cd addition, and this inhibitory effect was less significant with Cd addition and growth time. Cd concentrations and uptake in maize plants increased with arbuscular mycorrhizal fungi colonization at low Cd concentration (0.02 mM): nonetheless, it decreased at high Cd concentration (0.20 mM) after 6-week growth period. Inoculation with G. constrictum isolates enhanced the root Cd concentrations and uptake, but G. mosseae isolates showed the opposite results at high Cd concentration level after 9 week growth period, as compared to non-mycorrhizal plants. In conclusion, maize plants inoculated with arbuscular mycorrhizal fungi were less sensitive to Cd stress than uninoculated plants. G. constrictum isolates enhanced Cd phytostabilization and G. mosseae isolates reduced Cd uptake in maize (Z. mays L.).

  1. The influence of calcium and pH on growth in primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Hasenstein, K. H.; Evans, M. L.

    1988-01-01

    We investigated the interaction of Ca2+ and pH on root elongation in Zea mays L. cv. B73 x Missouri 17 and cv. Merit. Seedlings were raised to contain high levels of Ca2+ (HC, imbibed and raised in 10 mM CaCl2) or low levels of Ca2+ (LC, imbibed and raised in distilled water). In HC roots, lowering the pH (5 mM MES/Tris) from 6.5 to 4.5 resulted in strong, long-lasting growth promotion. Surprisingly, increasing the pH from 6.5 to 8.5 also resulted in strong growth promotion. In LC roots acidification of the medium (pH 6.5 to 4.5) resulted in transient growth stimulation followed by a gradual decline in the growth rate toward zero. Exposure of LC roots to high pH (pH shift from 6.5 to 8.5) also promoted growth. Addition of EGTA resulted in strong growth promotion in both LC and HC roots. The ability of EGTA to stimulate growth appeared not to be related to H+ release from EGTA upon Ca2+ chelation since, 1) LC roots showed a strong and prolonged response to EGTA, but only a transient response to acid pH, and 2) promotion of growth by EGTA was observed in strongly buffered solutions. We also examined the pH dependence of the release of 45Ca2+ from roots of 3-day-old seedlings grown from grains imbibed in 45Ca2+. Release of 45Ca2+ from the root into agar blocks placed on the root surface was greater the more acidic the pH of the blocks. The results indicate that Ca2+ may be necessary for the acid growth response in roots.

  2. Eukaryotic Hsp70 chaperones in the intermembrane space of chloroplasts.

    PubMed

    Bionda, Tihana; Gross, Lucia E; Becker, Thomas; Papasotiriou, Dimitrios G; Leisegang, Matthias S; Karas, Michael; Schleiff, Enrico

    2016-03-01

    Multiple eukaryotic Hsp70 typically localized in the cytoplasm are also distributed to the intermembrane space of chloroplasts and might thereby represent the missing link in energizing protein translocation. Protein translocation into organelles is a central cellular process that is tightly regulated. It depends on signals within the preprotein and on molecular machines catalyzing the process. Molecular chaperones participate in transport and translocation of preproteins into organelles to control folding and to provide energy for the individual steps. While most of the processes are explored and the components are identified, the transfer of preproteins into and across the intermembrane space of chloroplasts is not yet understood. The existence of an energy source in this compartment is discussed, because the required transit peptide length for successful translocation into chloroplasts is shorter than that found for mitochondria where energy is provided exclusively by matrix chaperones. Furthermore, a cytosolic-type Hsp70 homologue was proposed as component of the chloroplast translocon in the intermembrane space energizing the initial translocation. The molecular identity of such intermembrane space localized Hsp70 remained unknown, which led to a controversy concerning its existence. We identified multiple cytosolic Hsp70s by mass spectrometry on isolated, thermolysin-treated Medicago sativa chloroplasts. The localization of these Hsp70s of M. sativa or Arabidopsis thaliana in the intermembrane space was confirmed by a self-assembly GFP-based in vivo system. The localization of cytosolic Hsp70s in the stroma of chloroplasts or different mitochondrial compartments could not be observed. Similarly, we could not identify any cytosolic Hsp90 in the intermembrane space of chloroplast. With respect to our results we discuss the possible targeting and function of the Hsp70 found in the intermembrane space.

  3. A DIRECT LIGHT EFFECT ON MAINTAINING PHOTOSYNTHETIC ACTIVITY OF NITELLA CHLOROPLASTS

    PubMed Central

    Craig, I. W.; Gibor, A.

    1970-01-01

    The chloroplasts of internodal cells of Nitella are fixed to a stationary layer of cytoplasm whereas the nuclei and most of the cytoplasm stream along the longitudinal axis. Isolated internodal cells were maintained for several days with half the cell kept in the dark, the other half kept under continuous light. Photosynthetic activity of the cells was checked by placing the cell evenly illuminated in a 14CO2 atmosphere. Chloroplasts of the previously dark half of the cell were found to fix only half as much CO2 as the chloroplasts which were continuously illuminated. These results are discussed in relation to the possible direct effect of light on biosynthetic reactions of mature chloroplasts. PMID:5411077

  4. The Chloroplast atpA Gene Cluster in Chlamydomonas reinhardtii1

    PubMed Central

    Drapier, Dominique; Suzuki, Hideki; Levy, Haim; Rimbault, Blandine; Kindle, Karen L.; Stern, David B.; Wollman, Francis-André

    1998-01-01

    Most chloroplast genes in vascular plants are organized into polycistronic transcription units, which generate a complex pattern of mono-, di-, and polycistronic transcripts. In contrast, most Chlamydomonas reinhardtii chloroplast transcripts characterized to date have been monocistronic. This paper describes the atpA gene cluster in the C. reinhardtii chloroplast genome, which includes the atpA, psbI, cemA, and atpH genes, encoding the α-subunit of the coupling-factor-1 (CF1) ATP synthase, a small photosystem II polypeptide, a chloroplast envelope membrane protein, and subunit III of the CF0 ATP synthase, respectively. We show that promoters precede the atpA, psbI, and atpH genes, but not the cemA gene, and that cemA mRNA is present only as part of di-, tri-, or tetracistronic transcripts. Deletions introduced into the gene cluster reveal, first, that CF1-α can be translated from di- or polycistronic transcripts, and, second, that substantial reductions in mRNA quantity have minimal effects on protein synthesis rates. We suggest that posttranscriptional mRNA processing is common in C. reinhardtii chloroplasts, permitting the expression of multiple genes from a single promoter. PMID:9625716

  5. Chloroplast behaviour and interactions with other organelles in Arabidopsis thaliana pavement cells.

    PubMed

    Barton, Kiah A; Wozny, Michael R; Mathur, Neeta; Jaipargas, Erica-Ashley; Mathur, Jaideep

    2018-01-29

    Chloroplasts are a characteristic feature of green plants. Mesophyll cells possess the majority of chloroplasts and it is widely believed that, with the exception of guard cells, the epidermal layer in most higher plants does not contain chloroplasts. However, recent observations on Arabidopsis thaliana have shown a population of chloroplasts in pavement cells that are smaller than mesophyll chloroplasts and have a high stroma to grana ratio. Here, using stable transgenic lines expressing fluorescent proteins targeted to the plastid stroma, plasma membrane, endoplasmic reticulum, tonoplast, nucleus, mitochondria, peroxisomes, F-actin and microtubules, we characterize the spatiotemporal relationships between the pavement cell chloroplasts (PCCs) and their subcellular environment. Observations on the PCCs suggest a source-sink relationship between the epidermal and the mesophyll layers, and experiments with the Arabidopsis mutants glabra2 ( gl2 ) and immutans ( im ), which show altered epidermal plastid development, underscored their developmental plasticity. Our findings lay down the foundation for further investigations aimed at understanding the precise role and contributions of PCCs in plant interactions with the environment. © 2018. Published by The Company of Biologists Ltd.

  6. Identification of the triazine receptor protein as a chloroplast gene product

    PubMed Central

    Steinback, Katherine E.; McIntosh, Lee; Bogorad, Lawrence; Arntzen, Charles J.

    1981-01-01

    The triazine herbicides inhibit photosynthesis by blocking electron transport at the second stable electron acceptor of photosystem II. This electron transport component of chloroplast thylakoid membranes is a protein-plastoquinone complex termed “B.” The polypeptide that is believed to be a component of the B complex has recently been identified as a 32- to 34-kilo-dalton polypeptide by using a photoaffinity labeling probe, azido-[14C]atrazine. A 34-kilodalton polypeptide of pea chloroplasts rapidly incorporates [35S]methionine in vivo and is also a rapidly labeled product of chloroplast-directed protein synthesis. Trypsin treatment of membranes tagged with azido-[14C]atrazine, [35S]methionine in vivo, or [35S]methionine in isolated intact chloroplasts results in identical, sequential alterations of the 34-kilo-dalton polypeptide to species of 32, then 18 and 16 kilodaltons. From the identical pattern of susceptibility to trypsin we conclude that the rapidly synthesized 34-kilodalton polypeptide that is a product of chloroplast-directed protein synthesis is identical to the triazine herbicide-binding protein of photosystem II. Chloroplasts of both triazine-susceptible and triazine-resistant biotypes of Amaranthus hybridus synthesize the 34-kilodalton polypeptide, but that of the resistant biotype does not bind the herbicide. Images PMID:16593133

  7. Chloroplast microsatellite primers for cacao (Theobroma cacao) and other Malvaceae.

    PubMed

    Yang, Ji Y; Motilal, Lambert A; Dempewolf, Hannes; Maharaj, Kamaldeo; Cronk, Q C B

    2011-12-01

    Chloroplast microsatellites were developed in Theobroma cacao to examine the genetic diversity of cacao cultivars in Trinidad and Tobago. Nine polymorphic microsatellites were designed from the chloroplast genomes of two T. cacao accessions. These microsatellites were tested in 95 hybrid accessions from Trinidad and Tobago. An average of 2.9 alleles per locus was found. These chloroplast microsatellites, particularly the highly polymorphic pentameric repeat, were useful in assessing genetic variation in T. cacao. In addition, these markers should also prove to be useful for population genetic studies in other species of Malvaceae.

  8. Chloroplast genome resources and molecular markers differentiate rubber dandelion species from weedy relatives.

    PubMed

    Zhang, Yingxiao; Iaffaldano, Brian J; Zhuang, Xiaofeng; Cardina, John; Cornish, Katrina

    2017-02-02

    Rubber dandelion (Taraxacum kok-saghyz, TK) is being developed as a domestic source of natural rubber to meet increasing global demand. However, the domestication of TK is complicated by its colocation with two weedy dandelion species, Taraxacum brevicorniculatum (TB) and the common dandelion (Taraxacum officinale, TO). TB is often present as a seed contaminant within TK accessions, while TO is a pandemic weed, which may have the potential to hybridize with TK. To discriminate these species at the molecular level, and facilitate gene flow studies between the potential rubber crop, TK, and its weedy relatives, we generated genomic and marker resources for these three dandelion species. Complete chloroplast genome sequences of TK (151,338 bp), TO (151,299 bp), and TB (151,282 bp) were obtained using the Illumina GAII and MiSeq platforms. Chloroplast sequences were analyzed and annotated for all the three species. Phylogenetic analysis within Asteraceae showed that TK has a closer genetic distance to TB than to TO and Taraxacum species were most closely related to lettuce (Lactuca sativa). By sequencing multiple genotypes for each species and testing variants using gel-based methods, four chloroplast Single Nucleotide Polymorphism (SNP) variants were found to be fixed between TK and TO in large populations, and between TB and TO. Additionally, Expressed Sequence Tag (EST) resources developed for TO and TK permitted the identification of five nuclear species-specific SNP markers. The availability of chloroplast genomes of these three dandelion species, as well as chloroplast and nuclear molecular markers, will provide a powerful genetic resource for germplasm differentiation and purification, and the study of potential gene flow among Taraxacum species.

  9. Relationship between genetic parameters in maize (Zea mays) with seedling growth parameters under 40-100% soil moisture conditions.

    PubMed

    Muhammad, R W; Qayyum, A

    2013-10-18

    We estimated the association of genetic parameters with production characters in 64 maize (Zea mays) genotypes in a green house in soil with 40-100% moisture levels (percent of soil moisture capacity). To identify the major parameters that account for variation among the genotypes, we used single linkage cluster analysis and principle component analysis. Ten plant characters were measured. The first two, four, three, and again three components, with eigen values > 1 contributed 75.05, 80.11, 68.67, and 75.87% of the variability among the genotypes under the different moisture levels, i.e., 40, 60, 80, and 100%, respectively. Other principal components (3-10, 5-10, and 4-10) had eigen values less than 1. The highest estimates of heritability were found for root fresh weight, root volume (0.99), and shoot fresh weight (0.995) in 40% soil moisture. Values of genetic advance ranged from 23.4024 for SR at 40% soil moisture to 0.2538 for shoot dry weight in 60% soil moisture. The high magnitude of broad sense heritability provides evidence that these plant characters are under the control of additive genetic effects. This indicates that selection should lead to fast genetic improvement of the material. The superior agronomic types that we identified may be exploited for genetic potential to improve yield potential of the maize crop.

  10. Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals.

    PubMed

    Arbaoui, Sarra; Evlard, Aricia; Mhamdi, Mohamed El Wafi; Campanella, Bruno; Paul, Roger; Bettaieb, Taoufik

    2013-07-01

    The potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for accumulation of cadmium and zinc was investigated. Plants have been grown in lysimetres containing dredging sludge, a substratum naturally rich in trace metals. Biomass production was determined. Sludge and water percolating from lysimeters were analyzed by atomic absorption spectrometry. No visible symptoms of toxicity were observed during the three- month culture. Kenaf and corn tolerate trace metals content in sludge. Results showed that Zn and Cd were found in corn and kenaf shoots at different levels, 2.49 mg/kg of Cd and 82.5 mg/kg of Zn in kenaf shoots and 2.1 mg/kg of Cd and 10.19 mg/kg in corn shoots. Quantities of extracted trace metals showed that decontamination of Zn and Cd polluted substrates is possible by corn and kenaf crops. Tolerance and bioaccumulation factors indicated that both species could be used in phytoremediation.

  11. Costs of jasmonic acid induced defense in aboveground and belowground parts of corn (Zea mays L.).

    PubMed

    Feng, Yuanjiao; Wang, Jianwu; Luo, Shiming; Fan, Huizhi; Jin, Qiong

    2012-08-01

    Costs of jasmonic acid (JA) induced plant defense have gained increasing attention. In this study, JA was applied continuously to the aboveground (AG) or belowground (BG) parts, or AG plus BG parts of corn (Zea mays L.) to investigate whether JA exposure in one part of the plant would affect defense responses in another part, and whether or not JA induced defense would incur allocation costs. The results indicated that continuous JA application to AG parts systemically affected the quantities of defense chemicals in the roots, and vice versa. Quantities of DIMBOA and total amounts of phenolic compounds in leaves or roots generally increased 2 or 4 wk after the JA treatment to different plant parts. In the first 2 wk after application, the increase of defense chemicals in leaves and roots was accompanied by a significant decrease of root length, root surface area, and root biomass. Four weeks after the JA application, however, no such costs for the increase of defense chemicals in leaves and roots were detected. Instead, shoot biomass and root biomass increased. The results suggest that JA as a defense signal can be transferred from AG parts to BG parts of corn, and vice versa. Costs for induced defense elicited by continuous JA application were found in the early 2 wk, while distinct benefits were observed later, i.e., 4 wk after JA treatment.

  12. Spray particle drift mitigation using field corn (Zea mays L.) as a drift barrier.

    PubMed

    Vieira, Bruno C; Butts, Thomas R; Rodrigues, Andre O; Golus, Jeffrey A; Schroeder, Kasey; Kruger, Greg R

    2018-04-24

    Herbicide particle drift reduces application efficacy and can cause severe impacts on nearby vegetation depending on the herbicide mode-of-action, exposure level, and tolerance to the herbicide. A particle drift mitigation effort placing windbreaks or barriers on the field boundaries to reduce off-target movement of spray particles has been utilized in the past. The objective of this research was to evaluate the effectiveness of field corn (Zea mays L.) at different heights as a particle drift barrier. Applications with a non-air inclusion flat fan nozzle (ER11004) resulted in greater particle drift when compared to an air inclusion nozzle (TTI11004). Eight rows of corn were used as barriers (0.91, 1.22, and 1.98 m height) which reduced the particle drift for both nozzles, especially at shorter downwind distances. Applications with the ER11004 nozzle without corn barriers had 1% of the applied rate (D 99 ) predicted to deposit at 14.8 m downwind, whereas this distance was reduced (up to 7-fold) when applications were performed with corn barriers. The combination of corn drift barriers and nozzle selection (TTI11004) provided satisfactory particle drift reduction when the D 99 estimates were compared to applications with the ER11004 nozzle without corn barriers (up to 10-fold difference). The corn drift barriers were effective in reducing particle drift from applications with the ER11004 and the TTI11004 nozzles (Fine and Ultra Coarse spray classifications, respectively). The corn drift barrier had appropriate porosity and width as the airborne spray was captured within its canopy instead of deflecting up and over it. This article is protected by copyright. All rights reserved.

  13. Influence of s-Triazines on Some Enzymes of Carbohydrates and Nitrogen Metabolism in Leaves of Pea (Pisum sativum L.) and Sweet Corn (Zea mays L.)

    PubMed Central

    Wu, M. T.; Singh, B.; Salunkhe, D. K.

    1971-01-01

    Foliar applications of 2 milligrams per liter of 2-chloro-4,6-bis (ethylamino)-s-triazine, 2-methylmercapto-4-ethylamino-6-isobutylamino-s-triazine, and 2-methoxy-4-isopropylamino-6-butylamino-s-triazine caused increases in the activities of starch phosphorylase, pyruvate kinase, cytochrome oxidase, and glutamate dehydrogenase 5, 10, and 15 days after treatment in the leaves of 3-week-old seedlings of pea (Pisum sativum L.) and sweet corn (Zea mays L.). The results indicate that sublethal concentrations of s-triazine compounds affect the physiological and biochemical events in plants which favor more utilization of carbohydrates for nitrate reduction and synthesis of amino acids and proteins. PMID:16657830

  14. An Auxilin-Like J-Domain Protein, JAC1, Regulates Phototropin-Mediated Chloroplast Movement in Arabidopsis1[w

    PubMed Central

    Suetsugu, Noriyuki; Kagawa, Takatoshi; Wada, Masamitsu

    2005-01-01

    The ambient-light conditions mediate chloroplast relocation in plant cells. Under the low-light conditions, chloroplasts accumulate in the light (accumulation response), while under the high-light conditions, they avoid the light (avoidance response). In Arabidopsis (Arabidopsis thaliana), the accumulation response is mediated by two blue-light receptors, termed phototropins (phot1 and phot2) that act redundantly, and the avoidance response is mediated by phot2 alone. A mutant, J-domain protein required for chloroplast accumulation response 1 (jac1), lacks the accumulation response under weak blue light but shows a normal avoidance response under strong blue light. In dark-adapted wild-type cells, chloroplasts accumulate on the bottom of cells. Both the jac1 and phot2 mutants are defective in this chloroplast movement in darkness. Positional cloning of JAC1 reveals that this gene encodes a J-domain protein, resembling clathrin-uncoating factor auxilin at its C terminus. The amounts of JAC1 transcripts and JAC1 proteins are not regulated by light and by phototropins. A green fluorescent protein-JAC1 fusion protein showed a similar localization pattern to green fluorescent protein alone in a transient expression assay using Arabidopsis mesophyll cells and onion (Allium cepa) epidermal cells, suggesting that the JAC1 protein may be a soluble cytosolic protein. Together, these results suggest that JAC1 is an essential component of phototropin-mediated chloroplast movement. PMID:16113208

  15. Defining the role of the MADS-box gene, Zea agamous like1, in maize domestication

    USDA-ARS?s Scientific Manuscript database

    Genomic scans for genes that show the signature of past selection have been widely applied to a number of species and have identified a large number of selection candidate genes. In cultivated maize (Zea mays ssp. mays) selection scans have identified several hundred candidate domestication genes...

  16. Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants.

    PubMed

    Ahmad, Munir; Usman, Adel R A; Al-Faraj, Abdullah S; Ahmad, Mahtab; Sallam, Abdelazeem; Al-Wabel, Mohammad I

    2018-03-01

    Biochar (BC) was produced by pyrolyzing the date palm leaf waste at 600 °C and then loaded with phosphorus (P) via sorption process. Greenhouse pot experiment was conducted to investigate the application effects of BC and P-loaded biochar (BCP) on growth and availability of P and heavy metals to maize (Zea mays L.) plants grown in contaminated mining soil. The treatments consisted of BC and BCP (at application rates of 5, 10, 20, and 30 g kg -1 of soil), recommended NK and NPK, and a control (no amendment). Sorption experiment showed that Langmuir predicted maximum P sorption capacity of BC was 13.71 mg g -1 . Applying BCP increased the soil available P, while BC and BCP significantly decreased the soil labile heavy metals compared to control. Likewise, heavy metals in exchangeable and reducible fractions were transformed to more stable fraction with BC and BCP applications. The highest application rate of BCP (3%) was most effective treatment in enhancing plant growth parameters (shoot and root lengths and dry matter) and uptake of P and heavy metals by 2-3 folds. However, based on metal uptake and phytoextraction indices, total heavy metals extraction by maize plants was very small for practical application. It could be concluded that using P-loaded biochar as a soil additive may be considered a promising tool to immobilize heavy metals in contaminated mining areas, while positive effects on the biomass growth of plants may assist the stabilization of contaminated areas affected by wind and water erosion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Structure-Function Analysis of Chloroplast Proteins via Random Mutagenesis Using Error-Prone PCR.

    PubMed

    Dumas, Louis; Zito, Francesca; Auroy, Pascaline; Johnson, Xenie; Peltier, Gilles; Alric, Jean

    2018-06-01

    Site-directed mutagenesis of chloroplast genes was developed three decades ago and has greatly advanced the field of photosynthesis research. Here, we describe a new approach for generating random chloroplast gene mutants that combines error-prone polymerase chain reaction of a gene of interest with chloroplast complementation of the knockout Chlamydomonas reinhardtii mutant. As a proof of concept, we targeted a 300-bp sequence of the petD gene that encodes subunit IV of the thylakoid membrane-bound cytochrome b 6 f complex. By sequencing chloroplast transformants, we revealed 149 mutations in the 300-bp target petD sequence that resulted in 92 amino acid substitutions in the 100-residue target subunit IV sequence. Our results show that this method is suited to the study of highly hydrophobic, multisubunit, and chloroplast-encoded proteins containing cofactors such as hemes, iron-sulfur clusters, and chlorophyll pigments. Moreover, we show that mutant screening and sequencing can be used to study photosynthetic mechanisms or to probe the mutational robustness of chloroplast-encoded proteins, and we propose that this method is a valuable tool for the directed evolution of enzymes in the chloroplast. © 2018 American Society of Plant Biologists. All rights reserved.

  18. Detection of the Entomopathogenic Fungus Beauveria bassiana in the Rhizosphere of Wound-Stressed Zea mays Plants

    PubMed Central

    McKinnon, Aimee C.; Glare, Travis R.; Ridgway, Hayley J.; Mendoza-Mendoza, Artemio; Holyoake, Andrew; Godsoe, William K.; Bufford, Jennifer L.

    2018-01-01

    Entomopathogenic fungi from the genus Beauveria (Vuillemin) play an important role in controlling insect populations and have been increasingly utilized for the biological control of insect pests. Various studies have reported that Beauveria bassiana (Bals.), Vuill. also has the ability to colonize a broad range of plant hosts as endophytes without causing disease but while still maintaining the capacity to infect insects. Beauveria is often applied as an inundative spore application, but little research has considered how plant colonization may alter the ability to persist in the environment. The aim of this study was to investigate potential interactions between B. bassiana and Zea mays L. (maize) in the rhizosphere following inoculation, in order to understand the factors that may affect environmental persistence of the fungi. The hypothesis was that different isolates of B. bassiana have the ability to colonize maize roots and/or rhizosphere soil, resulting in effects to the plant microbiome. To test this hypothesis, a two-step nested PCR protocol was developed to find and amplify Beauveria in planta or in soil; based on the translation elongation factor 1-alpha (ef1α) gene. The nested protocol was also designed to enable Beauveria species differentiation by sequence analysis. The impact of three selected B. bassiana isolates applied topically to roots on the rhizosphere soil community structure and function were consequently assessed using denaturing gradient gel electrophoresis (DGGE) and MicroRespTM techniques. The microbial community structure and function were not significantly affected by the presence of the isolates, however, retention of the inocula in the rhizosphere at 30 days after inoculation was enhanced when plants were subjected to intensive wounding of foliage to crudely simulate herbivory. The plant defense response likely changed under wound stress resulting in the apparent recruitment of Beauveria in the rhizosphere, which may be an indirect

  19. An Ancient Bacterial Signaling Pathway Regulates Chloroplast Function to Influence Growth and Development in Arabidopsis.

    PubMed

    Sugliani, Matteo; Abdelkefi, Hela; Ke, Hang; Bouveret, Emmanuelle; Robaglia, Christophe; Caffarri, Stefano; Field, Ben

    2016-03-01

    The chloroplast originated from the endosymbiosis of an ancient photosynthetic bacterium by a eukaryotic cell. Remarkably, the chloroplast has retained elements of a bacterial stress response pathway that is mediated by the signaling nucleotides guanosine penta- and tetraphosphate (ppGpp). However, an understanding of the mechanism and outcomes of ppGpp signaling in the photosynthetic eukaryotes has remained elusive. Using the model plant Arabidopsis thaliana, we show that ppGpp is a potent regulator of chloroplast gene expression in vivo that directly reduces the quantity of chloroplast transcripts and chloroplast-encoded proteins. We then go on to demonstrate that the antagonistic functions of different plant RelA SpoT homologs together modulate ppGpp levels to regulate chloroplast function and show that they are required for optimal plant growth, chloroplast volume, and chloroplast breakdown during dark-induced and developmental senescence. Therefore, our results show that ppGpp signaling is not only linked to stress responses in plants but is also an important mediator of cooperation between the chloroplast and the nucleocytoplasmic compartment during plant growth and development. © 2016 American Society of Plant Biologists. All rights reserved.

  20. Recovery of maize (Zea mays L.) inbreds and hybrids from chilling stress of various duration: photosynthesis and antioxidant enzymes.

    PubMed

    Holá, Dana; Kocová, Marie; Rothová, Olga; Wilhelmová, Nad'a; Benesová, Monika

    2007-07-01

    The differences between two maize (Zea mays L.) inbred lines and their F1 hybrids in their response to chilling periods of various duration (1, 2, 3 or 4 weeks) and subsequent return to optimum temperatures were analysed by the measurement of the photosystem (PS) 1 and 2 activity, the photosynthetic pigments' content and the activity of antioxidant enzymes. The PS2 activity and the chlorophyll content decreased in plants subjected to 3 or 4 weeks of chilling, but not in those subjected to 1 or 2 weeks of chilling. This decrease was more pronounced in inbreds compared to their hybrids. The activity of superoxide dismutase did not much change with the increasing length of chilling period in the inbreds but decreased in the hybrids, the glutathione reductase activity increased in both types of genotypes but more in the inbred lines, while for ascorbate peroxidase and catalase the changes in parents-hybrids relationship did not show any specific trend. The PS1 activity and the carotenoids' content was not much affected.

  1. Leaching variations of heavy metals in chelator-assisted phytoextraction by Zea mays L. exposed to acid rainfall.

    PubMed

    Lu, Yayin; Luo, Dinggui; Liu, Lirong; Tan, Zicong; Lai, An; Liu, Guowei; Li, Junhui; Long, Jianyou; Huang, Xuexia; Chen, Yongheng

    2017-11-01

    Chelant-enhanced phytoextraction method has been put forward as an effective soil remediation method, whereas the heavy metal leaching could not be ignored. In this study, a cropping-leaching experiment, using soil columns, was applied to study the metal leaching variations during assisted phytoextraction of Cd- and Pb-polluted soils, using seedlings of Zea mays, applying three different chelators (EDTA, EDDS, and rhamnolipid), and artificial rainfall (acid rainfall or normal rainfall). It showed that artificial rainfall, especially artificial acid rain, after chelator application led to the increase of heavy metals in the leaching solution. EDTA increased both Cd and Pb concentrations in the leaching solution, obviously, whereas EDDS and rhamnolipid increased Cd concentration but not Pb. The amount of Cd and Pb decreased as the leaching solution increased, the patterns as well matched LRMs (linear regression models), with R-square (R 2 ) higher than 90 and 82% for Cd and Pb, respectively. The maximum cumulative Cd and Pb in the leaching solutions were 18.44 and 16.68%, respectively, which was amended by EDTA and acid rainwater (pH 4.5), and followed by EDDS (pH 4.5), EDDS (pH 6.5), rhamnolipid (0.5 g kg -1 soil, pH 4.5), and rhamnolipid (pH 6.5).

  2. Potassium Management for Improving Growth and Grain Yield of Maize (Zea mays L.) under Moisture Stress Condition

    PubMed Central

    Amanullah; Iqbal, Asif; Irfanullah; Hidayat, Zeeshan

    2016-01-01

    Potassium (K) fertilizer management is beneficial for improving growth, yield and yield components of field crops under moisture stress condition in semiarid climates. Field experiments were conducted to study the response of maize (Zea mays L., cv. Azam) to foliar and soil applied K during summer 2013 and 2014. The experiments were carried out at the Agronomy Research Farm of The University of Agriculture Peshawar, Northwest Pakistan under limited irrigation (moisture stress) condition. It was concluded from the results that application of foliar K at the rate of 1–3% and foliar Zn at the rate of 0.1–0.2% was more beneficial in terms of better growth, higher yield and yield components of maize under moisture stress condition. Early spray (vegetative stage) resulted in better growth and higher yield than late spray (reproductive stage). Soil K treated plots (rest) plots performed better than control (K not applied) in terms of improved growth, higher yield and yield components of maize crop. The results further demonstrated that increasing the rate of soil applied K up to 90 kg P ha−1 in two equal splits (50% each at sowing and knee height) improve growth and maize productivity under semiarid climates. PMID:27694964

  3. Potassium Management for Improving Growth and Grain Yield of Maize (Zea mays L.) under Moisture Stress Condition.

    PubMed

    Amanullah; Iqbal, Asif; Irfanullah; Hidayat, Zeeshan

    2016-10-03

    Potassium (K) fertilizer management is beneficial for improving growth, yield and yield components of field crops under moisture stress condition in semiarid climates. Field experiments were conducted to study the response of maize (Zea mays L., cv. Azam) to foliar and soil applied K during summer 2013 and 2014. The experiments were carried out at the Agronomy Research Farm of The University of Agriculture Peshawar, Northwest Pakistan under limited irrigation (moisture stress) condition. It was concluded from the results that application of foliar K at the rate of 1-3% and foliar Zn at the rate of 0.1-0.2% was more beneficial in terms of better growth, higher yield and yield components of maize under moisture stress condition. Early spray (vegetative stage) resulted in better growth and higher yield than late spray (reproductive stage). Soil K treated plots (rest) plots performed better than control (K not applied) in terms of improved growth, higher yield and yield components of maize crop. The results further demonstrated that increasing the rate of soil applied K up to 90 kg P ha -1 in two equal splits (50% each at sowing and knee height) improve growth and maize productivity under semiarid climates.

  4. Comparative impact of genetically modified and non modified maize (Zea mays L.) on succeeding crop and associated weed.

    PubMed

    Ibrahim, Muhammad; Ahmed, Naseer; Ullah, Faizan; Shinwari, Zabta Khan; Bano, Asghari

    2016-04-01

    This research work documents the comparative impact of genetically modified (GM) (insect resistance) and non modified maize (Zea mays L.) on growth and germination of succeeding crop wheat (Triticum aestivum L.) and associated weed (Avena fatua L.). The aqueous extracts of both the GM and non-GM maize exhibited higher phenolic content than that of methanolic extracts. Germination percentage and germination index of wheat was significantly decreased by GM methanolic extract (10%) as well as that of non-GM maize at 3% aqueous extract. Similarly germination percentage of weed (Avena fatua L.) was significantly reduced by application of 3% and 5% methanolic GM extracts. All extracts of GM maize showed non-significant effect on the number of roots, root length and shoot length per plant but 5% and 10% methanolic extracts of non-GM maize significantly increased the number of roots per plant of wheat seedling. Similarly, 10% methanolic extract of GM maize significantly increased the number of roots per plant of weed seedling. Methanolic extracts of GM and non-GM maize (3% and 5%) significantly decreased the protease activity in wheat as compared to untreated control. © The Author(s) 2013.

  5. Changes in the distribution of plastids and endoplasmic reticulum during cellular differentiation in root caps of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.

    1985-01-01

    In calyptrogen cells of Zea mays, proplastids are distributed randomly throughout the cell, and the endoplasmic reticulum (ER) is distributed parallel to the cell walls. The differentiation of calyptrogen cells into columella statocytes is characterized by the following sequential events: (1) formation of ER complexes at the distal and proximal ends of the cell, (2) differentiation of proplastids into amyloplasts, (3) sedimentation of amyloplasts onto the distal ER complex, (4) breakdown of the distal ER complex and sedimentation of amyloplasts to the bottom of the cell, and (5) formation of sheets of ER parallel to the longitudinal cell walls. Columella statocytes located in the centre of the cap each possess 4530 +/- 780 micrometers2 of ER surface area, an increase of 670 per cent over that of calyptrogen cells. The differentiation of peripheral cells correlates positively with (1) the ER becoming arranged in concentric sheets, (2) amyloplasts and ER becoming randomly distributed, and (3) a 280 per cent increase in ER surface area over that of columella statocytes. These results are discussed relative to graviperception and mucilage secretion, which are functions of columella and peripheral cells, respectively.

  6. Chloroplast and mitochondrial DNA are paternally inherited in Sequoia sempervirens D. Don Endl

    PubMed Central

    Neale, David B.; Marshall, Kimberly A.; Sederoff, Ronald R.

    1989-01-01

    Restriction fragment length polymorphisms in controlled crosses were used to infer the mode of inheritance of chloroplast DNA and mitochondrial DNA in coast redwood (Sequoia sempervirens D. Don Endl.). Chloroplast DNA was paternally inherited, as is true for all other conifers studied thus far. Surprisingly, a restriction fragment length polymorphism detected by a mitochondrial probe was paternally inherited as well. This polymorphism could not be detected in hybridizations with chloroplast probes covering the entire chloroplast genome, thus providing evidence that the mitochondrial probe had not hybridized to chloroplast DNA on the blot. We conclude that mitochondrial DNA is paternally inherited in coast redwood. To our knowledge, paternal inheritance of mitochondrial DNA in sexual crosses of a multicellular eukaryotic organism has not been previously reported. Images PMID:16594091

  7. Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads

    PubMed Central

    Jiang, Guo-Feng; Hinsinger, Damien Daniel; Strijk, Joeri Sergej

    2016-01-01

    Cycads are among the most threatened plant species. Increasing the availability of genomic information by adding whole chloroplast data is a fundamental step in supporting phylogenetic studies and conservation efforts. Here, we assemble a dataset encompassing three taxonomic levels in cycads, including ten genera, three species in the genus Cycas and two individuals of C. debaoensis. Repeated sequences, SSRs and variations of the chloroplast were analyzed at the intraspecific, interspecific and intergeneric scale, and using our sequence data, we reconstruct a phylogenomic tree for cycads. The chloroplast was 162,094 bp in length, with 133 genes annotated, including 87 protein-coding, 37 tRNA and 8 rRNA genes. We found 7 repeated sequences and 39 SSRs. Seven loci showed promising levels of variations for application in DNA-barcoding. The chloroplast phylogeny confirmed the division of Cycadales in two suborders, each of them being monophyletic, revealing a contradiction with the current family circumscription and its evolution. Finally, 10 intraspecific SNPs were found. Our results showed that despite the extremely restricted distribution range of C. debaoensis, using complete chloroplast data is useful not only in intraspecific studies, but also to improve our understanding of cycad evolution and in defining conservation strategies for this emblematic group. PMID:27558458

  8. Ion and metabolite transport in the chloroplast of algae: lessons from land plants.

    PubMed

    Marchand, Justine; Heydarizadeh, Parisa; Schoefs, Benoît; Spetea, Cornelia

    2018-06-01

    Chloroplasts are endosymbiotic organelles and play crucial roles in energy supply and metabolism of eukaryotic photosynthetic organisms (algae and land plants). They harbor channels and transporters in the envelope and thylakoid membranes, mediating the exchange of ions and metabolites with the cytosol and the chloroplast stroma and between the different chloroplast subcompartments. In secondarily evolved algae, three or four envelope membranes surround the chloroplast, making more complex the exchange of ions and metabolites. Despite the importance of transport proteins for the optimal functioning of the chloroplast in algae, and that many land plant homologues have been predicted, experimental evidence and molecular characterization are missing in most cases. Here, we provide an overview of the current knowledge about ion and metabolite transport in the chloroplast from algae. The main aspects reviewed are localization and activity of the transport proteins from algae and/or of homologues from other organisms including land plants. Most chloroplast transporters were identified in the green alga Chlamydomonas reinhardtii, reside in the envelope and participate in carbon acquisition and metabolism. Only a few identified algal transporters are located in the thylakoid membrane and play role in ion transport. The presence of genes for putative transporters in green algae, red algae, diatoms, glaucophytes and cryptophytes is discussed, and roles in the chloroplast are suggested. A deep knowledge in this field is required because algae represent a potential source of biomass and valuable metabolites for industry, medicine and agriculture.

  9. Effect of metal tolerant plant growth promoting bacteria on growth and metal accumulation in Zea mays plants grown in fly ash amended soil.

    PubMed

    Kumar, Kalpna V; Patra, D D

    2013-01-01

    The present study was undertaken to examine the effect of the application of fly ash (FA) into Garden soil (GS), with and without inoculation of plant growth promoting bacteria (PGPB), on the growth and metal uptake by Zea mays plants. Three FA tolerant PGPB strains, Pseudomonas sp. PS5, PS14, and Bacillus sp. BC29 were isolated from FA contaminated soils and assessed for their plant growth promoting features on the Z. mays plants. All three strains were also examined for their ability to solubilize phosphate and to produce Indole Acetic Acid (IAA), siderophores, and hydrogencynide acid (HCN) production. Although inoculation of all strains significantly enhanced the growth of plants at both the concentration of FA but maximum growth was observed in plants inoculated with BC29 and PS14 at low level (25%) of FA concentration. The experimental results explored the plant growth promoting features of selected strains which not only enhanced growth and biomass of plants but also protected them from toxicity of FA.

  10. Chloroplast Growth and Replication in Germinating Spinach Cotyledons following Massive γ-Irradiation of the Seed

    PubMed Central

    Rose, Ray; Possingham, John

    1976-01-01

    Spinach seeds (Spinacia oleracea L.) given massive doses of γ-irradiation (500 krad) germinate and form a seedling with two green cotyledons and a radicle, but develop no further. Irradiated cotyledons show no increase in cell number or total DNA over a 7-day period in the light, while in control cotyledons there is a small increase in cell number and large increases in total DNA and chloroplast number. The chloroplasts of irradiated cotyledons are delayed in their division, become greatly enlarged and contain large amounts of starch. The whole population of chloroplasts subsequently undergoes a wave of division. The daughter chloroplasts show normal thylakoid development, but have some abnormal structural features caused by the radiation stress. Information on the effect of X-irradiation, ultraviolet irradiation, and 5-fluorodeoxyuridine on chloroplast replication and on chloroplast and nuclear DNA synthesis was obtained from cultured spinach leaf discs. It appears that chloroplast replication is more resistant to ionizing radiation than cell division and can proceed in the absence of nuclear DNA synthesis and greatly reduced chloroplast DNA synthesis. Images PMID:16659421

  11. A chloroplast-targeted cabbage DEAD-box RNA helicase BrRH22 confers abiotic stress tolerance to transgenic Arabidopsis plants by affecting translation of chloroplast transcripts.

    PubMed

    Nawaz, Ghazala; Lee, Kwanuk; Park, Su Jung; Kim, Yeon-Ok; Kang, Hunseung

    2018-06-01

    Although the roles of many DEAD-box RNA helicases (RHs) have been determined in the nucleus as well as in cytoplasm during stress responses, the importance of chloroplast-targeted DEAD-box RHs in stress response remains largely unknown. In this study, we determined the function of BrRH22, a chloroplast-targeted DEAD-box RH in cabbage (Brassica rapa), in abiotic stress responses. The expression of BrRH22 was markedly increased by drought, heat, salt, or cold stress and by ABA treatment, but was largely decreased by UV stress. Expression of BrRH22 in Arabidopsis enhanced germination and plantlet growth under high salinity or drought stress. BrRH22-expressing plants displayed a higher cotyledon greening and better plantlet growth upon ABA treatment due to decreases in the levels of ABI3, ABI4, and ABI5. Further, BrRH22 affected translation of several chloroplast transcripts under stress. Notably, BrRH22 had RNA chaperone function. These results altogether suggest that chloroplast-transported BrRH22 contributes positively to the response of transgenic Arabidopsis to abiotic stress by affecting translation of chloroplast genes via its RNA chaperone activity. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability.

    PubMed

    Yoshida, Keisuke; Hisabori, Toru

    2016-07-05

    The thiol-based redox regulation system is believed to adjust chloroplast functions in response to changes in light environments. A redox cascade via the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway has been traditionally considered to serve as a transmitter of light signals to target enzymes. However, emerging data indicate that chloroplasts have a complex redox network composed of diverse redox-mediator proteins and target enzymes. Despite extensive research addressing this system, two fundamental questions are still unresolved: How are redox pathways orchestrated within chloroplasts, and why are chloroplasts endowed with a complicated redox network? In this report, we show that NADPH-Trx reductase C (NTRC) is a key redox-mediator protein responsible for regulatory functions distinct from those of the classically known FTR/Trx system. Target screening and subsequent biochemical assays indicated that NTRC and the Trx family differentially recognize their target proteins. In addition, we found that NTRC is an electron donor to Trx-z, which is a key regulator of gene expression in chloroplasts. We further demonstrate that cooperative control of chloroplast functions via the FTR/Trx and NTRC pathways is essential for plant viability. Arabidopsis double mutants impaired in FTR and NTRC expression displayed lethal phenotypes under autotrophic growth conditions. This severe growth phenotype was related to a drastic loss of photosynthetic performance. These combined results provide an expanded map of the chloroplast redox network and its biological functions.

  13. Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability

    PubMed Central

    Yoshida, Keisuke; Hisabori, Toru

    2016-01-01

    The thiol-based redox regulation system is believed to adjust chloroplast functions in response to changes in light environments. A redox cascade via the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway has been traditionally considered to serve as a transmitter of light signals to target enzymes. However, emerging data indicate that chloroplasts have a complex redox network composed of diverse redox-mediator proteins and target enzymes. Despite extensive research addressing this system, two fundamental questions are still unresolved: How are redox pathways orchestrated within chloroplasts, and why are chloroplasts endowed with a complicated redox network? In this report, we show that NADPH-Trx reductase C (NTRC) is a key redox-mediator protein responsible for regulatory functions distinct from those of the classically known FTR/Trx system. Target screening and subsequent biochemical assays indicated that NTRC and the Trx family differentially recognize their target proteins. In addition, we found that NTRC is an electron donor to Trx-z, which is a key regulator of gene expression in chloroplasts. We further demonstrate that cooperative control of chloroplast functions via the FTR/Trx and NTRC pathways is essential for plant viability. Arabidopsis double mutants impaired in FTR and NTRC expression displayed lethal phenotypes under autotrophic growth conditions. This severe growth phenotype was related to a drastic loss of photosynthetic performance. These combined results provide an expanded map of the chloroplast redox network and its biological functions. PMID:27335455

  14. Evolution of Chloroplast Transcript Processing in Plasmodium and Its Chromerid Algal Relatives

    PubMed Central

    Dorrell, Richard G.; Drew, James; Nisbet, R. Ellen R.; Howe, Christopher J.

    2014-01-01

    It is well understood that apicomplexan parasites, such as the malaria pathogen Plasmodium, are descended from free-living algae, and maintain a vestigial chloroplast that has secondarily lost all genes of photosynthetic function. Recently, two fully photosynthetic relatives of parasitic apicomplexans have been identified, the ‘chromerid’ algae Chromera velia and Vitrella brassicaformis, which retain photosynthesis genes within their chloroplasts. Elucidating the processes governing gene expression in chromerid chloroplasts might provide valuable insights into the origins of parasitism in the apicomplexans. We have characterised chloroplast transcript processing pathways in C. velia, V. brassicaformis and P. falciparum with a focus on the addition of an unusual, 3′ poly(U) tail. We demonstrate that poly(U) tails in chromerids are preferentially added to transcripts that encode proteins that are directly involved in photosynthetic electron transfer, over transcripts for proteins that are not involved in photosynthesis. To our knowledge, this represents the first chloroplast transcript processing pathway to be associated with a particular functional category of genes. In contrast, Plasmodium chloroplast transcripts are not polyuridylylated. We additionally present evidence that poly(U) tail addition in chromerids is involved in the alternative processing of polycistronic precursors covering multiple photosynthesis genes, and appears to be associated with high levels of transcript abundance. We propose that changes to the chloroplast transcript processing machinery were an important step in the loss of photosynthesis in ancestors of parasitic apicomplexans. PMID:24453981

  15. Growth and Deposition of Inorganic Nutrient Elements in Developing Leaves of Zea mays L. 1

    PubMed Central

    Meiri, Avraham; Silk, Wendy Kuhn; Läuchli, André

    1992-01-01

    Spatial distributions of growth and of the concentration of some inorganic nutrient elements were analyzed in developing leaves of maize (Zea mays L.). Growth was analyzed by pinprick experiments with numerical analysis to characterize fields of velocity and relative elemental elongation rate. Inductively coupled plasma and atomic emission spectroscopy were used to measure nutrients extracted from segments of leaf tissue collected by position. Leaves 7 and 8, both elongating 3 millimeters per hour had maximum relative elemental growth rates of 0.06 to 0.08 millimeters per hour with maximum rates 20 to 50 millimeters from the node and cessation of growth by 90 millimeters from the node. Spatial distribution of dry weight density revealed that the rate of biomass deposition was maximum in the most rapidly expanding region and continued beyond the elongation zone. The nutrient elements K, Cl, Ca, Mg, and P showed different distribution patterns of ion density (on a dry weight basis). K and Cl had minimal density in the leaf tips; K density was maximum in the growing region, whereas Cl density was maximum at the region of growth cessation. Ca, Mg, and P had relatively high densities at the base of the elongation zone near the node and also in the tip regions. Near the node, P and Mg densities were higher in the young, growing leaves, whereas Ca density near the node was higher in older leaves that had completed elongation. Deposition rates of all nutrients were greatest in the region of maximum elongation rate. PMID:16669027

  16. Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L.).

    PubMed

    Peng, Renyi; Bian, Zhiyuan; Zhou, Lina; Cheng, Wei; Hai, Na; Yang, Changquan; Yang, Tao; Wang, Xinyu; Wang, Chongying

    2016-11-01

    Our data present H 2 S in a new role, serving as a multi-faceted transducer to different response mechanisms during NO-induced acquisition of tolerance to flooding-induced hypoxia in maize seedling roots. Nitric oxide (NO), serving as a secondary messenger, modulates physiological processes in plants. Recently, hydrogen sulfide (H 2 S) has been demonstrated to have similar signaling functions. This study focused on the effects of treatment with H 2 S on NO-induced hypoxia tolerance in maize seedlings. The results showed that treatment with the NO donor sodium nitroprusside (SNP) enhanced survival rate of submerged maize roots through induced accumulation of endogenous H 2 S. The induced H 2 S then enhanced endogenous Ca 2+ levels as well as the Ca 2+ -dependent activity of alcohol dehydrogenase (ADH), improving the capacity for antioxidant defense and, ultimately, the hypoxia tolerance in maize seedlings. In addition, NO induced the activities of key enzymes in H 2 S biosynthesis, such as L-cysteine desulfhydrases (L-CDs), O-acetyl-L-serine (thiol)lyase (OAS-TL), and β-Cyanoalanine Synthase (CAS). SNP-induced hypoxia tolerance was enhanced by the application of NaHS, but was eliminated by the H 2 S-synthesis inhibitor hydroxylamine (HA) and the H 2 S-scavenger hypotaurine (HT). H 2 S concurrently enhanced the transcriptional levels of relative hypoxia-induced genes. Together, our findings indicated that H 2 S serves as a multi-faceted transducer that enhances the nitric oxide-induced hypoxia tolerance in maize (Zea mays L.).

  17. Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression

    PubMed Central

    Puthiyaveetil, Sujith; Allen, John F.

    2009-01-01

    Two-component signal transduction, consisting of sensor kinases and response regulators, is the predominant signalling mechanism in bacteria. This signalling system originated in prokaryotes and has spread throughout the eukaryotic domain of life through endosymbiotic, lateral gene transfer from the bacterial ancestors and early evolutionary precursors of eukaryotic, cytoplasmic, bioenergetic organelles—chloroplasts and mitochondria. Until recently, it was thought that two-component systems inherited from an ancestral cyanobacterial symbiont are no longer present in chloroplasts. Recent research now shows that two-component systems have survived in chloroplasts as products of both chloroplast and nuclear genes. Comparative genomic analysis of photosynthetic eukaryotes shows a lineage-specific distribution of chloroplast two-component systems. The components and the systems they comprise have homologues in extant cyanobacterial lineages, indicating their ancient cyanobacterial origin. Sequence and functional characteristics of chloroplast two-component systems point to their fundamental role in linking photosynthesis with gene expression. We propose that two-component systems provide a coupling between photosynthesis and gene expression that serves to retain genes in chloroplasts, thus providing the basis of cytoplasmic, non-Mendelian inheritance of plastid-associated characters. We discuss the role of this coupling in the chronobiology of cells and in the dialogue between nuclear and cytoplasmic genetic systems. PMID:19324807

  18. Low-molecular-weight (4.5S) ribonucleic acid in higher-plant chloroplast ribosomes.

    PubMed Central

    Whitfeld, P R; Leaver, C J; Bottomley, W; Atchison, B

    1978-01-01

    A species of RNA that migrates on 10% (w/v) polyacrylamide gels between 5S and 4S RNA was detected in spinach chloroplasts. This RNA (referred to as 4.5 S RNA) was present in amounts equimolar to the 5S RNA and its molecular weight was estimated to be approx. 33 000. Fractionation of the chloroplast components showed that the 4.5S RNA was associated with the 50 S ribosomal subunit and that it could be removed by washing the ribosomes with a buffer containing 0.01 M-EDTA and 0.5 M-KCl. It did not appear to be a cleavage product of the labile 23 S RNA of spinach chloroplast ribosomes. When 125I-labelled 4.5 S RNA was hybridized to fragments of spinach chloroplast DNA produced by SmaI restriction endonuclease, a single fragment (mol.wt. 1.15 times 10(6)) became labelled. The same DNA fragment also hybridized to chloroplast 5 S RNA and part of the 23 S RNA. It was concluded that the coding sequence for 4.5 S RNA was part of, or immediately adjacent to, the rRNA-gene region in chloroplast DNA . A comparable RNA species was observed in chloroplasts of tobacco and pea leaves. Images Fig. 8. PMID:743229

  19. Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression.

    PubMed

    Puthiyaveetil, Sujith; Allen, John F

    2009-06-22

    Two-component signal transduction, consisting of sensor kinases and response regulators, is the predominant signalling mechanism in bacteria. This signalling system originated in prokaryotes and has spread throughout the eukaryotic domain of life through endosymbiotic, lateral gene transfer from the bacterial ancestors and early evolutionary precursors of eukaryotic, cytoplasmic, bioenergetic organelles-chloroplasts and mitochondria. Until recently, it was thought that two-component systems inherited from an ancestral cyanobacterial symbiont are no longer present in chloroplasts. Recent research now shows that two-component systems have survived in chloroplasts as products of both chloroplast and nuclear genes. Comparative genomic analysis of photosynthetic eukaryotes shows a lineage-specific distribution of chloroplast two-component systems. The components and the systems they comprise have homologues in extant cyanobacterial lineages, indicating their ancient cyanobacterial origin. Sequence and functional characteristics of chloroplast two-component systems point to their fundamental role in linking photosynthesis with gene expression. We propose that two-component systems provide a coupling between photosynthesis and gene expression that serves to retain genes in chloroplasts, thus providing the basis of cytoplasmic, non-Mendelian inheritance of plastid-associated characters. We discuss the role of this coupling in the chronobiology of cells and in the dialogue between nuclear and cytoplasmic genetic systems.

  20. Chloroplastic responses of ponderosa pine (Pinus ponderosa) seedlings to ozone exposure.

    PubMed

    Anderson, Paul D; Palmer, Brent; Houpis, James L J; Smith, Mary K; Pushnik, James C

    2003-06-01

    Integrity of chloroplast membranes is essential to photosynthesis. Loss of thylakoid membrane integrity has been proposed as a consequence of ozone (O(3)) exposure and therefore may be a mechanistic basis for decreased photosynthetic rates commonly associated with ozone exposure. To investigate this hypothesis, Pinus ponderosa seedlings were exposed to ambient air or ozone concentrations maintained at 0.15 or 0.30 microliter l(-1) for 10 h day(-1) for 51 days during their second growing season. Over the course of the study, foliage samples were periodically collected for thylakoid membrane, chlorophyll and protein analyses. Additionally, gas-exchange measurements were made in conjunction with foliage sampling to verify that observed chloroplastic responses were associated with ozone-induced changes in photosynthesis. Needles exposed to elevated ozone exhibited decreases in chlorophyll a and b content. The decreases were dependent on the duration and intensity of ozone exposure. When based on equal amounts of chlorophyll, ozone-exposed sample tissue exhibited an increase in total protein. When based on equal amounts of protein, ozone-exposed samples exhibited an increase in 37 kDa proteins, possibly consisting of breakdown products, and a possible decrease in 68 kDa proteins, Rubisco small subunit. There was also a change in the ratio of Photosystem I protein complexes CPI and CPII that may have contributed to decreased photosynthesis. Net photosynthetic rates were decreased in the high ozone treatment suggesting that observed structural and biochemical changes in the chloroplast were associated with alterations of the photosynthetic process.

  1. Breakthrough in chloroplast genetic engineering of agronomically important crops

    PubMed Central

    Daniell, Henry; Kumar, Shashi; Dufourmantel, Nathalie

    2012-01-01

    Chloroplast genetic engineering offers several unique advantages, including high-level transgene expression, multi-gene engineering in a single transformation event and transgene containment by maternal inheritance, as well as a lack of gene silencing, position and pleiotropic effects and undesirable foreign DNA. More than 40 transgenes have been stably integrated and expressed using the tobacco chloroplast genome to confer desired agronomic traits or express high levels of vaccine antigens and biopharmaceuticals. Despite such significant progress, this technology has not been extended to major crops. However, highly efficient soybean, carrot and cotton plastid transformation has recently been accomplished through somatic embryogenesis using species-specific chloroplast vectors. This review focuses on recent exciting developments in this field and offers directions for further research and development. PMID:15866001

  2. An Ancient Bacterial Signaling Pathway Regulates Chloroplast Function to Influence Growth and Development in Arabidopsis[OPEN

    PubMed Central

    Sugliani, Matteo; Ke, Hang; Bouveret, Emmanuelle; Robaglia, Christophe; Caffarri, Stefano

    2016-01-01

    The chloroplast originated from the endosymbiosis of an ancient photosynthetic bacterium by a eukaryotic cell. Remarkably, the chloroplast has retained elements of a bacterial stress response pathway that is mediated by the signaling nucleotides guanosine penta- and tetraphosphate (ppGpp). However, an understanding of the mechanism and outcomes of ppGpp signaling in the photosynthetic eukaryotes has remained elusive. Using the model plant Arabidopsis thaliana, we show that ppGpp is a potent regulator of chloroplast gene expression in vivo that directly reduces the quantity of chloroplast transcripts and chloroplast-encoded proteins. We then go on to demonstrate that the antagonistic functions of different plant RelA SpoT homologs together modulate ppGpp levels to regulate chloroplast function and show that they are required for optimal plant growth, chloroplast volume, and chloroplast breakdown during dark-induced and developmental senescence. Therefore, our results show that ppGpp signaling is not only linked to stress responses in plants but is also an important mediator of cooperation between the chloroplast and the nucleocytoplasmic compartment during plant growth and development. PMID:26908759

  3. Polyglycine Acts as a Rejection Signal for Protein Transport at the Chloroplast Envelope.

    PubMed

    Endow, Joshua K; Rocha, Agostinho Gomes; Baldwin, Amy J; Roston, Rebecca L; Yamaguchi, Toshio; Kamikubo, Hironari; Inoue, Kentaro

    2016-01-01

    PolyGly is present in many proteins in various organisms. One example is found in a transmembrane β-barrel protein, translocon at the outer-envelope-membrane of chloroplasts 75 (Toc75). Toc75 requires its N-terminal extension (t75) for proper localization. t75 comprises signals for chloroplast import (n75) and envelope sorting (c75) in tandem. n75 and c75 are removed by stromal processing peptidase and plastidic type I signal peptidase 1, respectively. PolyGly is present within c75 and its deletion or substitution causes mistargeting of Toc75 to the stroma. Here we have examined the properties of polyGly-dependent protein targeting using two soluble passenger proteins, the mature portion of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (mSS) and enhanced green fluorescent protein (EGFP). Both t75-mSS and t75-EGFP were imported into isolated chloroplasts and their n75 removed. Resultant c75-mSS was associated with the envelope at the intermembrane space, whereas c75-EGFP was partially exposed outside the envelope. Deletion of polyGly or substitution of tri-Ala for the critical tri-Gly segment within polyGly caused each passenger to be targeted to the stroma. Transient expression of t75-EGFP in Nicotiana benthamiana resulted in accumulation of c75-EGFP exposed at the surface of the chloroplast, but the majority of the EGFP passenger was found free in the cytosol with most of its c75 attachment removed. Results of circular dichroism analyses suggest that polyGly within c75 may form an extended conformation, which is disrupted by tri-Ala substitution. These data suggest that polyGly is distinct from a canonical stop-transfer sequence and acts as a rejection signal at the chloroplast inner envelope.

  4. Polyglycine Acts as a Rejection Signal for Protein Transport at the Chloroplast Envelope

    DOE PAGES

    Endow, Joshua K.; Rocha, Agostinho Gomes; Baldwin, Amy J.; ...

    2016-12-09

    PolyGly is present in many proteins in various organisms. One example is found in a transmembrane β-barrel protein, translocon at the outer-envelope-membrane of chloroplasts 75 (Toc75). Toc75 requires its N-terminal extension (t75) for proper localization. t75 comprises signals for chloroplast import (n75) and envelope sorting (c75) in tandem. n75 and c75 are removed by stromal processing peptidase and plastidic type I signal peptidase 1, respectively. PolyGly is present within c75 and its deletion or substitution causes mistargeting of Toc75 to the stroma. Here in this study we have examined the properties of polyGly-dependent protein targeting using two soluble passenger proteins,more » the mature portion of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (mSS) and enhanced green fluorescent protein (EGFP). Both t75-mSS and t75-EGFP were imported into isolated chloroplasts and their n75 removed. Resultant c75-mSS was associated with the envelope at the intermembrane space, whereas c75-EGFP was partially exposed outside the envelope. Deletion of polyGly or substitution of tri-Ala for the critical tri-Gly segment within polyGly caused each passenger to be targeted to the stroma. Transient expression of t75-EGFP in Nicotiana benthamiana resulted in accumulation of c75-EGFP exposed at the surface of the chloroplast, but the majority of the EGFP passenger was found free in the cytosol with most of its c75 attachment removed. Results of circular dichroism analyses suggest that polyGly within c75 may form an extended conformation, which is disrupted by tri-Ala substitution. These data suggest that polyGly is distinct from a canonical stop-transfer sequence and acts as a rejection signal at the chloroplast inner envelope.« less

  5. Maternal inheritance of the chloroplast genome in Eucalyptus globulus and interspecific hybrids.

    PubMed

    Mckinnon, A E; Vaillancourt, R E; Tilyard, P A; Potts, B M

    2001-10-01

    The utility of chloroplast DNA (cpDNA) in Eucalyptus, either as a molecular marker for genetic studies or as a potential vehicle for genetic manipulation, is based on knowledge of its mode of inheritance. Chloroplast inheritance in angiosperms can vary among and within species, and anomalous inheritance has been reported in some interspecific-hybrid combinations. In Eucalyptus, abnormalities of pollen-tube growth occur in a number of interspecific-hybrid combinations, and this might increase the likelihood of anomalous chloroplast transmission. We used a rapid PCR technique to determine chloroplast heritability in 425 progeny of Eucalyptus, comprising 194 progeny of the premier pulpwood species E. globulus and 231 interspecific hybrids between E. globulus and E. nitens (F1, F2, and backcrosses). At this sampling intensity, no pollen-mediated transmission of cpDNA was found in any of the 40 families tested. The results are discussed with reference to chloroplast engineering and the use of cpDNA as a seed-specific marker in phylogeographic studies of Eucalyptus.

  6. Phytotoxic cyanamide affects maize (Zea mays) root growth and root tip function: from structure to gene expression.

    PubMed

    Soltys, Dorota; Rudzińska-Langwald, Anna; Kurek, Wojciech; Szajko, Katarzyna; Sliwinska, Elwira; Bogatek, Renata; Gniazdowska, Agnieszka

    2014-05-01

    Cyanamide (CA) is a phytotoxic compound produced by four Fabaceae species: hairy vetch, bird vetch, purple vetch and black locust. Its toxicity is due to complex activity that involves the modification of both cellular structures and physiological processes. To date, CA has been investigated mainly in dicot plants. The goal of this study was to investigate the effects of CA in the restriction of the root growth of maize (Zea mays), representing the monocot species. CA (3mM) reduced the number of border cells in the root tips of maize seedlings and degraded their protoplasts. However, CA did not induce any significant changes in the organelle structure of other root cells, apart from increased vacuolization. CA toxicity was also demonstrated by its effect on cell cycle activity, endoreduplication intensity, and modifications of cyclins CycA2, CycD2, and histone HisH3 gene expression. In contrast, the arrangement of microtubules was not altered by CA. Treatment of maize seedlings with CA did not completely arrest mitotic activity, although the frequency of dividing cells was reduced. Furthermore, prolonged CA treatment increased the proportion of endopolyploid cells in the root tip. Cytological malformations were accompanied by an induction of oxidative stress in root cells, which manifested as enhanced accumulation of H2O2. Exposure of maize seedlings to CA resulted in an increased concentration of auxin and stimulated ethylene emission. Taken together, these findings suggested that the inhibition of root growth by CA may be a consequence of stress-induced morphogenic responses. Copyright © 2014. Published by Elsevier GmbH.

  7. Auxin as an inducer of asymmetrical division generating the subsidiary cells in stomatal complexes of Zea mays.

    PubMed

    Livanos, Pantelis; Giannoutsou, Eleni; Apostolakos, Panagiotis; Galatis, Basil

    2015-01-01

    The data presented in this work revealed that in Zea mays the exogenously added auxins indole-3-acetic acid (IAA) and 1-napthaleneacetic acid (NAA), promoted the establishment of subsidiary cell mother cell (SMC) polarity and the subsequent subsidiary cell formation, while treatment with auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA) and 1-napthoxyacetic acid (NOA) specifically blocked SMC polarization and asymmetrical division. Furthermore, in young guard cell mother cells (GMCs) the PIN1 auxin efflux carriers were mainly localized in the transverse GMC faces, while in the advanced GMCs they appeared both in the transverse and the lateral ones adjacent to SMCs. Considering that phosphatidyl-inositol-3-kinase (PI3K) is an active component of auxin signal transduction and that phospholipid signaling contributes in the establishment of polarity, treatments with the specific inhibitor of the PI3K LY294002 were carried out. The presence of LY294002 suppressed polarization of SMCs and prevented their asymmetrical division, whereas combined treatment with exogenously added NAA and LY294002 restricted the promotional auxin influence on subsidiary cell formation. These findings support the view that auxin is involved in Z. mays subsidiary cell formation, probably functioning as inducer of the asymmetrical SMC division. Collectively, the results obtained from treatments with auxin transport inhibitors and the appearance of PIN1 proteins in the lateral GMC faces indicate a local transfer of auxin from GMCs to SMCs. Moreover, auxin signal transduction seems to be mediated by the catalytic function of PI3K.

  8. Auxin as an inducer of asymmetrical division generating the subsidiary cells in stomatal complexes of Zea mays

    PubMed Central

    Livanos, Pantelis; Giannoutsou, Eleni; Apostolakos, Panagiotis; Galatis, Basil

    2015-01-01

    The data presented in this work revealed that in Zea mays the exogenously added auxins indole-3-acetic acid (IAA) and 1-napthaleneacetic acid (NAA), promoted the establishment of subsidiary cell mother cell (SMC) polarity and the subsequent subsidiary cell formation, while treatment with auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA) and 1-napthoxyacetic acid (NOA) specifically blocked SMC polarization and asymmetrical division. Furthermore, in young guard cell mother cells (GMCs) the PIN1 auxin efflux carriers were mainly localized in the transverse GMC faces, while in the advanced GMCs they appeared both in the transverse and the lateral ones adjacent to SMCs. Considering that phosphatidyl-inositol-3-kinase (PI3K) is an active component of auxin signal transduction and that phospholipid signaling contributes in the establishment of polarity, treatments with the specific inhibitor of the PI3K LY294002 were carried out. The presence of LY294002 suppressed polarization of SMCs and prevented their asymmetrical division, whereas combined treatment with exogenously added NAA and LY294002 restricted the promotional auxin influence on subsidiary cell formation. These findings support the view that auxin is involved in Z. mays subsidiary cell formation, probably functioning as inducer of the asymmetrical SMC division. Collectively, the results obtained from treatments with auxin transport inhibitors and the appearance of PIN1 proteins in the lateral GMC faces indicate a local transfer of auxin from GMCs to SMCs. Moreover, auxin signal transduction seems to be mediated by the catalytic function of PI3K. PMID:25831267

  9. K+ Stimulation of ATPase Activity Associated with the Chloroplast Inner Envelope 1

    PubMed Central

    Wu, Weihua; Berkowitz, Gerald A.

    1992-01-01

    Studies were conducted to characterize ATPase activity associated with purified chloroplast inner envelope preparations from spinach (Spinacea oleracea L.) plants. Comparison of free Mg2+ and Mg·ATP complex effects on ATPase activity revealed that any Mg2+ stimulation of activity was likely a function of the use of the Mg·ATP complex as a substrate by the enzyme; free Mg2+ may be inhibitory. In contrast, a marked (one- to twofold) stimulation of ATPase activity was noted in the presence of K+. This stimulation had a pH optimum of approximately pH 8.0, the same pH optimum found for enzyme activity in the absence of K+. K+ stimulation of enzyme activity did not follow simple Michaelis-Menton kinetics. Rather, K+ effects were consistent with a negative cooperativity-type binding of the cation to the enzyme, with the Km increasing at increasing substrate. Of the total ATPase activity associated with the chloroplast inner envelope, the K+-stimulated component was most sensitive to the inhibitors oligomycin and vanadate. It was concluded that K+ effects on this chloroplast envelope ATPase were similar to this cation's effects on other transport ATPases (such as the plasmalemma H+-ATPase). Such ATPases are thought to be indirectly involved in active K+ uptake, which can be facilitated by ATPase-dependent generation of an electrical driving force. Thus, K+ effects on the chloroplast enzyme in vitro were found to be consistent with the hypothesized role of this envelope ATPase in facilitating active cation transport in vivo. ImagesFigure 3 PMID:16668922

  10. SChloro: directing Viridiplantae proteins to six chloroplastic sub-compartments.

    PubMed

    Savojardo, Castrense; Martelli, Pier Luigi; Fariselli, Piero; Casadio, Rita

    2017-02-01

    Chloroplasts are organelles found in plants and involved in several important cell processes. Similarly to other compartments in the cell, chloroplasts have an internal structure comprising several sub-compartments, where different proteins are targeted to perform their functions. Given the relation between protein function and localization, the availability of effective computational tools to predict protein sub-organelle localizations is crucial for large-scale functional studies. In this paper we present SChloro, a novel machine-learning approach to predict protein sub-chloroplastic localization, based on targeting signal detection and membrane protein information. The proposed approach performs multi-label predictions discriminating six chloroplastic sub-compartments that include inner membrane, outer membrane, stroma, thylakoid lumen, plastoglobule and thylakoid membrane. In comparative benchmarks, the proposed method outperforms current state-of-the-art methods in both single- and multi-compartment predictions, with an overall multi-label accuracy of 74%. The results demonstrate the relevance of the approach that is eligible as a good candidate for integration into more general large-scale annotation pipelines of protein subcellular localization. The method is available as web server at http://schloro.biocomp.unibo.it gigi@biocomp.unibo.it.

  11. "Zea"-Because It's There

    NASA Astrophysics Data System (ADS)

    Chamberlain, Eric

    1983-03-01

    The Subject is a long standing symbiotic relationship between Zea and the movies. As usual the impossible was required - to attain cinema release quality films with dramatic interpretation - at the same time using Hy-speed macro photographic techniques. The subject was not to be recognizable until the end of the film - some four minutes long. Zea is explosive, it reacts to heat and is extremely difficult to predict when it will explode, which left little time for the focus, stop down and shooting. Using a Hy-cam at 5,000 pictures per second - a 400 ft. roll of 7247 raw stock, left but a brief three seconds for synchronization. To add to the confusion, two co-directors, a cameraman, plus equipment, were jammed into a 2 x 2m space. To achieve reasonable resolution for theatrical showing, 400,000 foot/candles of light were needed. This was achieved. The film was edited and music from Vaughan Williams' "Fantasia" recorded at St. Martins-in-the-Fields, London was added. The result was sent to the Cannes Film Festival, where it was given the Jury Award.

  12. Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones.

    PubMed

    Li, Lijie; Gu, Wanrong; Li, Jing; Li, Congfeng; Xie, Tenglong; Qu, Danyang; Meng, Yao; Li, Caifeng; Wei, Shi

    2018-05-15

    Drought stress (DS) is a major environmental factor limiting plant growth and crop productivity worldwide. It has been established that exogenous spermidine (Spd) stimulates plant tolerance to DS. The effects of exogenous Spd on plant growth, photosynthetic performance, and chloroplast ultrastructure as well as changes in endogenous polyamines (PAs) and phytohormones were investigate in DS-resistant (Xianyu 335) and DS-sensitive (Fenghe 1) maize seedlings under well-watered and DS treatments. Exogenous Spd alleviated the stress-induced reduction in growth, photosynthetic pigment content, photosynthesis rate (P n ) and photochemical quenching (q P ) parameters, including the maximum photochemistry efficiency of photosystem II (PSII) (F v /F m ), PSII operating efficiency (ФPSII), and qP coefficient. Exogenous Spd further enhanced stress-induced elevation in non-photochemical quenching (NPQ) and the de-epoxidation state of the xanthophyll cycle (DEPS). Microscopic analysis revealed that seedlings displayed a more ordered arrangement of chloroplast ultrastructure upon Spd application during DS. Exogenous Spd increased the endogenous PA concentrations in the stressed plants. Additionally, exogenous Spd increased indoleacetic acid (IAA), zeatin riboside (ZR) and gibberellin A 3 (GA 3 ) and decreased salicylic acid (SA) and jasmonate (JA) concentrations under DS. These results indicate that exogenous Spd can alleviate the growth inhibition and damage to the structure and function of the photosynthetic apparatus caused by DS and that this alleviation may be associated with changes in endogenous PAs and phytohormones. This study contributes to advances in the knowledge of Spd-induced drought tolerance. Copyright © 2018. Published by Elsevier Masson SAS.

  13. AtPAP2 modulates the import of the small subunit of Rubisco into chloroplasts.

    PubMed

    Zhang, Renshan; Guan, Xiaoqian; Law, Yee-Song; Sun, Feng; Chen, Shuai; Wong, Kam Bo; Lim, Boon Leong

    2016-10-02

    Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2) is the only phosphatase that is dual-targeted to both chloroplasts and mitochondria. Like Toc33/34 of the TOC and Tom 20 of the TOM, AtPAP2 is anchored to the outer membranes of chloroplasts and mitochondria via a hydrophobic C-terminal motif. AtPAP2 on the mitochondria was previously shown to recognize the presequences of several nuclear-encoded mitochondrial proteins and modulate the import of pMORF3 into the mitochondria. Here we show that AtPAP2 binds to the small subunit of Rubisco (pSSU) and that chloroplast import experiments demonstrated that pSSU was imported less efficiently into pap2 chloroplasts than into wild-type chloroplasts. We propose that AtPAP2 is an outer membrane-bound phosphatase receptor that facilitates the import of selected proteins into chloroplasts.

  14. The Complete Chloroplast Genome of Banana (Musa acuminata, Zingiberales): Insight into Plastid Monocotyledon Evolution

    PubMed Central

    Martin, Guillaume; Baurens, Franc-Christophe; Cardi, Céline; Aury, Jean-Marc; D’Hont, Angélique

    2013-01-01

    Background Banana (genus Musa) is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-)specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. Methodology/Principal Findings The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp) and a Small Single Copy region (SSC, 10,768 bp) separated by Inverted Repeat regions (IRs, 35,433 bp). Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1) and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. Conclusion The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas. PMID:23840670

  15. The complete chloroplast genome of banana (Musa acuminata, Zingiberales): insight into plastid monocotyledon evolution.

    PubMed

    Martin, Guillaume; Baurens, Franc-Christophe; Cardi, Céline; Aury, Jean-Marc; D'Hont, Angélique

    2013-01-01

    Banana (genus Musa) is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-)specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp) and a Small Single Copy region (SSC, 10,768 bp) separated by Inverted Repeat regions (IRs, 35,433 bp). Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1) and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas.

  16. Calcium ion dependency of ethylene production in segments of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Hasenstein, K. H.; Evans, M. L.

    1986-01-01

    We investigated the effect of Ca2+ on ethylene production in 2-cm long apical segments from primary roots of corn (Zea mays L., B73 x Missouri 17) seedlings. The seedlings were raised under different conditions of Ca2+ availability. Low-Ca and high-Ca seedlings were raised by soaking the grains and watering the seedlings with distilled water or 10 mM CaCl2, respectively. Segments from high-Ca roots produced more than twice as much ethylene as segments from low-Ca roots. Indoleacetic acid (IAA; 1 micromole) enhanced ethylene production in segments from both low-Ca and high-Ca roots but auxin-induced promotion of ethylene production was consistently higher in segments from high-Ca roots. Addition of 1-aminocyclopropane-1-carboxylic acid (ACC) to root segments from low-Ca seedlings doubled total ethylene production and the rate of production remained fairly constant during a 24 h period of monitoring. In segments from high-Ca seedlings ACC also increased total ethylene production but most of the ethylene was produced within the first 6 h. The data suggest that Ca2+ enhances the conversion of ACC to ethylene. The terminal 2 mm of the root tip were found to be especially important to ethylene biosynthesis by apical segments and, experiments using 45Ca2+ as tracer indicated that the apical 2 mm of the root is the region of strongest Ca2+ accumulation. Other cations such as Mn2+, Mg2+, and K+ could largely substitute for Ca2+. The significance of these findings is discussed with respect to recent evidence for gravity-induced Ca2+ redistribution and its relationship to the establishment of asymmetric growth during gravitropic curvature.

  17. Zea mays iRS1563: A Comprehensive Genome-Scale Metabolic Reconstruction of Maize Metabolism

    PubMed Central

    Saha, Rajib; Suthers, Patrick F.; Maranas, Costas D.

    2011-01-01

    The scope and breadth of genome-scale metabolic reconstructions have continued to expand over the last decade. Herein, we introduce a genome-scale model for a plant with direct applications to food and bioenergy production (i.e., maize). Maize annotation is still underway, which introduces significant challenges in the association of metabolic functions to genes. The developed model is designed to meet rigorous standards on gene-protein-reaction (GPR) associations, elementally and charged balanced reactions and a biomass reaction abstracting the relative contribution of all biomass constituents. The metabolic network contains 1,563 genes and 1,825 metabolites involved in 1,985 reactions from primary and secondary maize metabolism. For approximately 42% of the reactions direct literature evidence for the participation of the reaction in maize was found. As many as 445 reactions and 369 metabolites are unique to the maize model compared to the AraGEM model for A. thaliana. 674 metabolites and 893 reactions are present in Zea mays iRS1563 that are not accounted for in maize C4GEM. All reactions are elementally and charged balanced and localized into six different compartments (i.e., cytoplasm, mitochondrion, plastid, peroxisome, vacuole and extracellular). GPR associations are also established based on the functional annotation information and homology prediction accounting for monofunctional, multifunctional and multimeric proteins, isozymes and protein complexes. We describe results from performing flux balance analysis under different physiological conditions, (i.e., photosynthesis, photorespiration and respiration) of a C4 plant and also explore model predictions against experimental observations for two naturally occurring mutants (i.e., bm1 and bm3). The developed model corresponds to the largest and more complete to-date effort at cataloguing metabolism for a plant species. PMID:21755001

  18. PIC1, an Ancient Permease in Arabidopsis Chloroplasts, Mediates Iron Transport[W

    PubMed Central

    Duy, Daniela; Wanner, Gerhard; Meda, Anderson R.; von Wirén, Nicolaus; Soll, Jürgen; Philippar, Katrin

    2007-01-01

    In chloroplasts, the transition metals iron and copper play an essential role in photosynthetic electron transport and act as cofactors for superoxide dismutases. Iron is essential for chlorophyll biosynthesis, and ferritin clusters in plastids store iron during germination, development, and iron stress. Thus, plastidic homeostasis of transition metals, in particular of iron, is crucial for chloroplast as well as plant development. However, very little is known about iron uptake by chloroplasts. Arabidopsis thaliana PERMEASE IN CHLOROPLASTS1 (PIC1), identified in a screen for metal transporters in plastids, contains four predicted α-helices, is targeted to the inner envelope, and displays homology with cyanobacterial permease-like proteins. Knockout mutants of PIC1 grew only heterotrophically and were characterized by a chlorotic and dwarfish phenotype reminiscent of iron-deficient plants. Ultrastructural analysis of plastids revealed severely impaired chloroplast development and a striking increase in ferritin clusters. Besides upregulation of ferritin, pic1 mutants showed differential regulation of genes and proteins related to iron stress or transport, photosynthesis, and Fe-S cluster biogenesis. Furthermore, PIC1 and its cyanobacterial homolog mediated iron accumulation in an iron uptake–defective yeast mutant. These observations suggest that PIC1 functions in iron transport across the inner envelope of chloroplasts and hence in cellular metal homeostasis. PMID:17337631

  19. Phosphatidylglycerol Synthesis in Spinach Chloroplasts: Characterization of the Newly Synthesized Molecule

    PubMed Central

    Sparace, Salvatore A.; Mudd, J. Brian

    1982-01-01

    Intact chloroplasts from spinach (Spinacia oleracea L., hybrid 424) readily incorporate [14C]glycerol-3-phosphate and [14C]acetate into diacylglycerol, monoacylglycerol, diacylglycrol, free fatty acids (only when acetate is the precursor), phosphatidic acid, phosphatidylcholine, and most notably phosphatidylglycerol. The fraction of phosphatidylglycerol synthesized is greatly increased by the presence of manganese chloride in the reaction mixture. Glycerol-3-phosphate-labeled phosphatidylglycerol is equally labeled in the two glycerol moieties of the molecule. Acetate-labeled phosphatidylglycerol is equally labeled in both acyl groups. Position one contains primarily oleate, linoleate and small amounts of palmitate. Position two contains primarily palmitate. No radioactive trans-Δ3-hexadecenoate was detected. The labeling patterns indicate that the radioactive phosphatidylglycerol is the product of de novo chloroplast lipid biosynthesis and furthermore, phosphatidylglycerol may be a substrate for fatty acid desaturation. Images Fig. 1 PMID:16662664

  20. Glucose respiration in the intact chloroplast of Chlamydomonas reinhardtii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Changguo Chen; Gibbs, M.

    1991-01-01

    Chloroplastic respiration was monitored by measuring {sup 14}CO{sub 2} from {sup 14}C glucose in the darkened Chlamydomonas reinhardtii F-60 chloroplast, The patterns of {sup 14}CO{sub 2} evolution from labeled glucose in the absence and presence of the inhibitors iodoacetamide, glycolate-2-phosphate, and phosphoenolypyruvate were those expected from the oxidative pentose phosphate cycle and glycolysis. The K{sub m} for glucose was 56 micromolar and for MgATP was 200 micromolar. Release of {sup 14}CO{sub 2} was inhibited by phloretin and inorganic phosphate. Comparing the inhibition of CO{sub 2} evolution generated by pH 7.5 with respect to pH 8.2 (optimum) in chloroplasts given C-1,more » C-2, and C-6 labeled glucose indicated that a suboptimum pH affects the recycling of the pentose phosphate intermediates to a greater extent than CO{sub 2} evolution from C-1 of glucose. Respiratory inhibition by pH 7.5 in the darkened chloroplast was alleviated by NH{sub 4}Cl and KCl (stromal alkalating agents), iodoacetamide (an inhibitor of glyceraldehyde 3-phosphate dehydrogenase), or phosphoenolypyruvate (an inhibitor of phosphofructokinase). It is concluded that the site which primarily mediates respiration in the darkened Chlamydomonas chloroplast is the fructose-1,6-bisphosphatase/phosphofructokinase junction. The respiratory pathways described here can account for the total oxidation of a hexose to Co{sub 2} and for interactions between carbohydrate metabolism and the oxyhydrogen reaction in algal cells adapted to a hydrogen metabolism.« less

  1. A High-Resolution Gene Map of the Chloroplast Genome of the Red Alga Porphyra purpurea.

    PubMed Central

    Reith, M; Munholland, J

    1993-01-01

    Extensive DNA sequencing of the chloroplast genome of the red alga Porphyra purpurea has resulted in the detection of more than 125 genes. Fifty-eight (approximately 46%) of these genes are not found on the chloroplast genomes of land plants. These include genes encoding 17 photosynthetic proteins, three tRNAs, and nine ribosomal proteins. In addition, nine genes encoding proteins related to biosynthetic functions, six genes encoding proteins involved in gene expression, and at least five genes encoding miscellaneous proteins are among those not known to be located on land plant chloroplast genomes. The increased coding capacity of the P. purpurea chloroplast genome, along with other characteristics such as the absence of introns and the conservation of ancestral operons, demonstrate the primitive nature of the P. purpurea chloroplast genome. In addition, evidence for a monophyletic origin of chloroplasts is suggested by the identification of two groups of genes that are clustered in chloroplast genomes but not in cyanobacteria. PMID:12271072

  2. Light-stimulated Production of a Chloroplast-localized System for Protein Synthesis in Euglena gracilis1

    PubMed Central

    Reger, Bonnie J.; Smillie, R. M.; Fuller, R. C.

    1972-01-01

    Chloroplasts and proplastids isolated respectively from autotrophic and dark-adapted cells of Euglena gracilis strain Z incorporated 14C-l-leucine into protein. In each case the incorporation was inhibited by chloramphenicol (50% inhibition at about 5 μg/ml for chloroplasts and 30 μg/ml for proplastids), but not appreciably by cycloheximide at concentrations up to 200 μg/ml. Chloroplasts from autotrophic cells incorporated leucine into protein at rates of about 10 pg leucine per mg RNA in one minute, but isolated proplastids were only 5 to 10% as active. When dark-adapted cells were illuminated there was little increase in the activity of the chloroplast fraction during the first 12 hr. Between 12 and 24 hr, when there was a rapid increase in the rate of synthesis of chlorophyll, the capacity of the chloroplast fraction for protein synthesis increased markedly. Suppression of the formation of a chloroplast-localized system for protein synthesis by treating the cells with chloramphenicol and the lack of such an effect with cycloheximide suggests that certain of the proteins which form part of a functional chloroplast system for protein synthesis are themselves synthesized within the chloroplasts. PMID:16658126

  3. A simple low-cost microcontroller-based photometric instrument for monitoring chloroplast movement.

    PubMed

    Berg, Robert; Königer, Martina; Schjeide, Brit-Maren; Dikmak, George; Kohler, Susan; Harris, Gary C

    2006-03-01

    A new microcontroller-based photometric instrument for monitoring blue light dependent changes in leaf transmission (chloroplast movement) was developed based on a modification of the double-beam technique developed by Walzcak and Gabrys [(1980) Photosynthetica 14: 65-72]. A blue and red bicolor light emitting diode (LED) provided both a variable intensity blue actinic light and a low intensity red measuring beam. A phototransistor detected the intensity of the transmitted measuring light. An inexpensive microcontroller independently and precisely controlled the light emission of the bicolor LED. A typical measurement event involved turning off the blue actinic light for 100 mus to create a narrow temporal window for turning on and measuring the transmittance of the red light. The microcontroller was programmed using LogoChip Logo (http://www.wellesley.edu/Physics/Rberg/logochip/) to record fluence rate response curves. Laser scanning confocal microscopy was utilized to correlate the changes in leaf transmission with intercellular chloroplast position. In the dark, the chloroplasts in the spongy mesophyll exhibited no evident asymmetries in their distribution, however, in the palisade layer the cell surface in contact with the overlying epidermis was devoid of chloroplasts. The low light dependent decrease in leaf transmittance in dark acclimated leaves was correlated with the movement of chloroplasts within the palisade layer into the regions previously devoid of chloroplasts. Changes in leaf transmittance were evident within one minute following the onset of illumination. Minimal leaf transmittance was correlated with chloroplasts having retreated from cell surfaces perpendicular to the incident light (avoidance reaction) in both spongy and palisade layers.

  4. ZEA-TDMA: design and system level implementation of a TDMA protocol for anonymous wireless networks

    NASA Astrophysics Data System (ADS)

    Banerjee, Debasmit; Dong, Bo; Biswas, Subir

    2013-05-01

    Wireless sensor network used in military applications may be deployed in hostile environments, where privacy and security is of primary concern. This can lead to the formation of a trust-based sub-network among mutually-trusting nodes. However, designing a TDMA MAC protocol is very challenging in situations where such multiple sub-networks coexist, since TDMA protocols require node identity information for slot assignments. This paper introduces a novel distributed TDMA MAC protocol, ZEA-TDMA (Zero Exposure Anonymous TDMA), for anonymous wireless networks. ZEA-TDMA achieves slot allocation with strict anonymity constraints, i.e. without nodes having to exchange any identity revealing information. By using just the relative time of arrival of packets and a novel technique of wireless collision-detection and resolution for fixed packetsizes, ZEA-TDMA is able to achieve MAC slot-allocation which is described as follows. Initially, a newly joined node listens to its one-hop neighborhood channel usage and creates a slot allocation table based on its own relative time, and finally, selects a slot that is collision free within its one-hop neighborhood. The selected slot can however cause hidden collisions with a two-hop neighbor of the node. These collisions are resolved by a common neighbor of the colliding nodes, which first detects the collision, and then resolve them using an interrupt packet. ZEA-TDMA provides the following features: a) it is a TDMA protocol ideally suited for highly secure or strictly anonymous environments b) it can be used in heterogeneous environments where devices use different packet structures c) it does not require network time-synchronization, and d) it is insensitive to channel errors. We have implemented ZEA-TDMA on the MICA2 hardware platform running TinyOS and evaluated the protocol functionality and performance on a MICA2 test-bed.

  5. Characterizing pathways by which gravitropic effectors could move from the root cap to the root of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.

    1989-01-01

    Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.

  6. Salt stress differentially affects growth-mediating β-expansins in resistant and sensitive maize (Zea mays L.).

    PubMed

    Geilfus, Christoph-Martin; Zörb, Christian; Mühling, Karl H

    2010-12-01

    Salinity mainly reduces shoot growth by the inhibition of cell division and elongation. Expansins loosen plant cell walls. Moreover, the expression of some isoforms is clearly correlated with growth. Effects of salinity on β-expansin transcripts protein abundance were recently reported for different crop species. This study provides a broad analysis of the impact of an 8-day 100mM NaCl stress treatment on the mRNA expression of different maize (Zea mays L.) β-Expansin isoforms using real-time quantitative RT-PCR. The composite β-expansin protein expression was analyzed by western blotting using an anti-peptide antibody raised against a conserved 15-amino-acid region shared by vegetatively expressed β-expansin isoforms. For the first time, changes in β-expansin transcript and protein abundance have been analyzed together with the salinity-induced inhibition of shoot growth. A salt-resistant and a salt-sensitive cultivar were compared in order to elucidate physiological changes. Genotypic differences in the relative concentration of six β-expansin transcripts together with differences in the abundance β-expansin protein are shown in response NaCl stress. In salt-sensitive Lector, reduced β-expansin protein expression was found to correlate positively with reduced shoot growth under stress. A down-regulation of ZmExpB2, ZmExpB6, and ZmExpB8 transcripts possibly contribute to this decrease in protein abundance. In contrast, the maintenance of shoot growth in salt-resistant SR03 might be related to an unaffected abundance of growth-mediating β-expansin proteins in the shoot. Our data suggest that the up-regulation of ZmExpB2, ZmExpB6, and ZmExpB8 may sustain the stable expression of β-expansin protein under conditions of salt stress. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  7. Complete Chloroplast Genome Sequences of Important Oilseed Crop Sesamum indicum L

    PubMed Central

    Yi, Dong-Keun; Kim, Ki-Joong

    2012-01-01

    Sesamum indicum is an important crop plant species for yielding oil. The complete chloroplast (cp) genome of S. indicum (GenBank acc no. JN637766) is 153,324 bp in length, and has a pair of inverted repeat (IR) regions consisting of 25,141 bp each. The lengths of the large single copy (LSC) and the small single copy (SSC) regions are 85,170 bp and 17,872 bp, respectively. Comparative cp DNA sequence analyses of S. indicum with other cp genomes reveal that the genome structure, gene order, gene and intron contents, AT contents, codon usage, and transcription units are similar to the typical angiosperm cp genomes. Nucleotide diversity of the IR region between Sesamum and three other cp genomes is much lower than that of the LSC and SSC regions in both the coding region and noncoding region. As a summary, the regional constraints strongly affect the sequence evolution of the cp genomes, while the functional constraints weakly affect the sequence evolution of cp genomes. Five short inversions associated with short palindromic sequences that form step-loop structures were observed in the chloroplast genome of S. indicum. Twenty-eight different simple sequence repeat loci have been detected in the chloroplast genome of S. indicum. Almost all of the SSR loci were composed of A or T, so this may also contribute to the A-T richness of the cp genome of S. indicum. Seven large repeated loci in the chloroplast genome of S. indicum were also identified and these loci are useful to developing S. indicum-specific cp genome vectors. The complete cp DNA sequences of S. indicum reported in this paper are prerequisite to modifying this important oilseed crop by cp genetic engineering techniques. PMID:22606240

  8. Fumonisin B(1)-nonproducing strains of Fusarium verticillioides cause maize (Zea mays) ear infection and ear rot.

    PubMed

    Desjardins, A E; Plattner, R D

    2000-11-01

    Fumonisins are polyketide mycotoxins produced by Fusarium verticillioides (synonym F. moniliforme), a major pathogen of maize (Zea mays) worldwide. Most field strains produce high levels of fumonisin B(1) (FB(1)) and low levels of the less-oxygenated homologues FB(2) and FB(3), but fumonisin B(1)-nonproducing field strains have been obtained by natural variation. To test the role of various fumonisins in pathogenesis on maize under field conditions, one strain producing FB(1), FB(2), and FB(3), one strain producing only FB(2), one strain producing only FB(3), and one fumonisin-nonproducing strain were applied to ears via the silk channel and on seeds at planting. Disease severity on the harvested ears was evaluated by visible symptoms and by weight percent symptomatic kernels. Fumonisin levels in kernels were determined by high-performance liquid chromatography. The presence of the applied FB(1)-nonproducing strains in kernels was determined by analysis of recovered strains for fumonisin production and other traits. All three FB(1)-nonproducing strains were able to infect ears following either silk-channel application or seed application at planting and were as effective as the FB(1)-producing strain in causing ear rot following silk-channel application. These results indicate that production of FB(1), FB(2), or FB(3) is not required for F. verticillioides to cause maize ear infection and ear rot.

  9. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. I. Partial purification and characterization of the enzyme from Zea mays

    NASA Technical Reports Server (NTRS)

    Leznicki, A. J.; Bandurski, R. S.

    1988-01-01

    The first enzyme-catalyzed reaction leading from indole-3-acetic acid (IAA) to the myo-inositol esters of IAA is the synthesis of indole-3-acetyl-1-O-beta-D-glucose from uridine-5'-diphosphoglucose (UDPG) and IAA. The reaction is catalyzed by the enzyme, UDPG-indol-3-ylacetyl glucosyl transferase (IAA-glucose-synthase). This work reports methods for the assay of the enzyme and for the extraction and partial purification of the enzyme from kernels of Zea mays sweet corn. The enzyme has an apparent molecular weight of 46,500 an isoelectric point of 5.5, and its pH optimum lies between 7.3 and 7.6. The enzyme is stable to storage at zero degrees but loses activity during column chromatographic procedures which can be restored only fractionally by addition of column eluates. The data suggest either multiple unknown cofactors or conformational changes leading to activity loss.

  10. The complete chloroplast genome of two Brassica species, Brassica nigra and B. Oleracea.

    PubMed

    Seol, Young-Joo; Kim, Kyunghee; Kang, Sang-Ho; Perumal, Sampath; Lee, Jonghoon; Kim, Chang-Kug

    2017-03-01

    The two Brassica species, Brassica nigra and Brassica oleracea, are important agronomic crops. The chloroplast genome sequences were generated by de novo assembly using whole genome next-generation sequences. The chloroplast genomes of B. nigra and B. oleracea were 153 633 bp and 153 366 bp in size, respectively, and showed conserved typical chloroplast structure. The both chloroplast genomes contained a total of 114 genes including 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Phylogenetic analysis revealed that B. oleracea is closely related to B. rapa and B. napus but B. nigra is more diverse than the neighbor species Raphanus sativus.

  11. The Unicellular Green Alga Chlamydomonas reinhardtii as an Experimental System to Study Chloroplast RNA Metabolism

    NASA Astrophysics Data System (ADS)

    Nickelsen, J.; Kück, U.

    Chloroplasts are typical organelles of photoautotrophic eukaryotic cells which drive a variety of functions, including photosynthesis. For many years the unicellular green alga Chlamydomonas reinhardtii has served as an experimental organism for studying photosynthetic processes. The recent development of molecular tools for this organism together with efficient methods of genetic analysis and the availability of many photosynthesis mutants has now made this alga a powerful model system for the analysis of chloroplast biogenesis. For example, techniques have been developed to transfer recombinant DNA into both the nuclear and the chloroplast genome. This allows both complementation tests and analyses of gene functions in vivo. Moreover, site-specific DNA recombinations in the chloroplast allow targeted gene disruption experiments which enable a "reverse genetics" to be performed. The potential of the algal system for the study of chloroplast biogenesis is illustrated in this review by the description of regulatory systems of gene expression involved in organelle biogenesis. One example concerns the regulation of trans-splicing of chloroplast mRNAs, a process which is controlled by both multiple nuclear- and chloroplast-encoded factors. The second example involves the stabilization of chloroplast mRNAs. The available data lead us predict distinct RNA elements, which interact with trans-acting factors to protect the RNA against nucleolytic attacks.

  12. Chloroplast Dynamics and Photosynthetic Efficiency: Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Maureen

    This project investigated the mechanism by which chloroplasts position themselves to maximize solar energy utilization, to enhance gas exchange, to minimize environmental stress, and to promote efficient exchange of metabolites with other compartments within the plant cell. Chloroplasts move within leaf cells to optimize light levels, moving toward levels of light useful for photosynthesis while moving away from excess light. Plastids sometimes extend their reach by sending out projections (stromules) that can connect anchor chloroplasts in position within the cell or provide close contacts with plasma membrane, mitochondria, peroxisomes, endoplasmic reticulum, and the nucleus. The intracellular location of chloroplasts inmore » relation to other organelles with which they share biosynthetic pathways, such as peroxisomes and mitochondria in photorespiration, affects metabolite flow. This work contributed to the knowledge of the mechanisms of organelle movement and anchoring in specific locations in plant cells and how proteins traffic within the cell. We identified two domains on 12 of the 13 Arabidopsis myosins that were similar to the vacuole-binding (V) domain characterized in yeast and to the DIL domain characterized in yeast and mouse as required for secretory vesicle or melanosome movement, respectively. Because all of the Arabidopsis regions with homology to the V domain contain the amino acid sequence PAL, we refer to this region as the Arabidopsis PAL domain. We have used the yeast Myo2p tail structural information to model the 12 myosin XI tail domains containing the homologous PAL and DIL domains. Eight YFP::DIL domain fusions labeled peroxisomes; none labeled mitochondria or chloroplasts. Six myosin XI Vacuole domains labeled mitochondria and seven labeled Golgi bodies. The Arabidopsis myosin XI-F PAL domain and the homologous myosin XI-F PAL domain from N. benthamiana labels chloroplasts and stromules in N. benthamiana leaves. Using an Arabidopsis

  13. Genome Sequences of Populus tremula Chloroplast and Mitochondrion: Implications for Holistic Poplar Breeding

    PubMed Central

    Mader, Malte; Le Paslier, Marie-Christine; Bounon, Rémi; Berard, Aurélie; Vettori, Cristina; Schroeder, Hilke; Leplé, Jean-Charles; Fladung, Matthias

    2016-01-01

    Complete Populus genome sequences are available for the nucleus (P. trichocarpa; section Tacamahaca) and for chloroplasts (seven species), but not for mitochondria. Here, we provide the complete genome sequences of the chloroplast and the mitochondrion for the clones P. tremula W52 and P. tremula x P. alba 717-1B4 (section Populus). The organization of the chloroplast genomes of both Populus clones is described. A phylogenetic tree constructed from all available complete chloroplast DNA sequences of Populus was not congruent with the assignment of the related species to different Populus sections. In total, 3,024 variable nucleotide positions were identified among all compared Populus chloroplast DNA sequences. The 5-prime part of the LSC from trnH to atpA showed the highest frequency of variations. The variable positions included 163 positions with SNPs allowing for differentiating the two clones with P. tremula chloroplast genomes (W52, 717-1B4) from the other seven Populus individuals. These potential P. tremula-specific SNPs were displayed as a whole-plastome barcode on the P. tremula W52 chloroplast DNA sequence. Three of these SNPs and one InDel in the trnH-psbA linker were successfully validated by Sanger sequencing in an extended set of Populus individuals. The complete mitochondrial genome sequence of P. tremula is the first in the family of Salicaceae. The mitochondrial genomes of the two clones are 783,442 bp (W52) and 783,513 bp (717-1B4) in size, structurally very similar and organized as single circles. DNA sequence regions with high similarity to the W52 chloroplast sequence account for about 2% of the W52 mitochondrial genome. The mean SNP frequency was found to be nearly six fold higher in the chloroplast than in the mitochondrial genome when comparing 717-1B4 with W52. The availability of the genomic information of all three DNA-containing cell organelles will allow a holistic approach in poplar molecular breeding in the future. PMID:26800039

  14. Choline oxidation by intact spinach chloroplasts. [Spinacia oleracea L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weigel, P.; Lerma, C.; Hanson, A.D.

    1988-01-01

    Plants synthesize betaine by a two-step oxidation of choline (choline ..-->.. betaine aldehyde ..-->.. betaine). Protoplast-derived chloroplasts of spinach (Spinacia oleracea L.) carry out both reactions, more rapidly in light than in darkness. We investigated the light-stimulated oxidation of choline, using spinach chloroplasts isolated directly from leaves. The rates of choline oxidation obtained (dark and light rates: 10-50 and 100-300 nanomoles per hour per milligram chlorophyll, respectively) were approximately 20-fold higher than for protoplast-derived chloroplasts. Betaine aldehyde was the main product. Choline oxidation in darkness and light was suppressed by hypoxia. Neither uncouplers not the Calvin cycle inhibitor glyceraldehyde greatlymore » affected choline oxidation in the light, and maximal choline oxidation was attained far below light saturation of CO/sub 2/ fixation. The light stimulation of choline oxidation was abolished by the PSII inhibitors DCMU and dibromothymoquinone, and was partially restored by adding reduced diaminodurene, an electron donor to PSI. Both methyl viologen and phenazine methosulfate prevented choline oxidation. Adding dihydroxyacetone phosphate, which can generate NADPH in organello, doubled the dark rate of choline oxidation. These results indicate that choline oxidation in chloroplasts requires oxygen, and reducing power generated from PSI. Enzymic reactions consistent with these requirements are discussed.« less

  15. Occultifur kilbournensis f.a. sp. nov., a new member of the Cystobasidiales associated with maize (Zea mays) cultivation.

    PubMed

    Kurtzman, Cletus P; Robnett, Christie J

    2015-05-01

    During a study of microorganisms associated with maize (Zea mays) cultivation, yeasts were isolated from overwintered stalks, cobs and surrounding soil, which were collected from an agricultural field in south-central Illinois, USA. Predominant among isolates were two species of Cryptococcus (Cr. flavescens, Cr. magnus) and a red yeast that D1/D2 LSU rRNA gene sequences revealed to be a new species of the basidiomycete yeast genus Occultifur. The species, which was not detected in the same field during the growing season, is described here as Occultifur kilbournensis (MycoBank number MB 811259; type strain NRRL Y-63695, CBS 13982, GenBank numbers, D1/D2 LSU rRNA gene, KP413160, ITS, KP413162; allotype strain NRRL Y-63699, CBS 13983). Mixture of the type and allotype strains resulted in formation of hyphae with clamp connections and a small number of apparent basidia following incubation on 5% malt extract agar at 15 °C for 2 months. In view of the uncertainty of the life cycle, the new species is being designated as forma asexualis. From analysis of D1/D2 and ITS nucleotide sequences, the new species is most closely related to Occultifur externus.

  16. Phosphorus and Compost Management Influence Maize (Zea mays) Productivity Under Semiarid Condition with and without Phosphate Solubilizing Bacteria.

    PubMed

    Amanullah; Khan, Adil

    2015-01-01

    Phosphorus (P) unavailability and lack of organic matter in the soils under semiarid climates are the two major constraints for low crop productivity. Field trial was conducted to study the effects of P levels, compost application times and seed inoculation with phosphate solubilizing bacteria (PSB) on the yield and yield components of maize (Zea mays L., cv. Azam). The experiment was conducted at the Agronomy Research Farm of The University of Agriculture Peshawar-Pakistan during summer 2014. The experiment was laid out in randomized complete block design with split plot arrangement using three replications. The two PSB levels [(1) inoculated seed with PSB (+) and (2) seed not inoculated with PSB (- or control)] and three compost application times (30, 15, and 0 days before sowing) combination (six treatments) were used as main plot factor, while four P levels (25, 50, 75, and 100 kg P ha(-1)) used as subplot factor. The results confirmed that compost applied at sowing time and P applied at the two higher rates (75 and 100 kg P ha(-1)) had significantly increased yield and yield components of maize under semiarid condition. Maize seed inoculated with PSB (+) had tremendously increased yield and yield components of maize over PSB-control plots (-) under semiarid condition.

  17. Phosphorus and Compost Management Influence Maize (Zea mays) Productivity Under Semiarid Condition with and without Phosphate Solubilizing Bacteria

    PubMed Central

    Amanullah

    2015-01-01

    Phosphorus (P) unavailability and lack of organic matter in the soils under semiarid climates are the two major constraints for low crop productivity. Field trial was conducted to study the effects of P levels, compost application times and seed inoculation with phosphate solubilizing bacteria (PSB) on the yield and yield components of maize (Zea mays L., cv. Azam). The experiment was conducted at the Agronomy Research Farm of The University of Agriculture Peshawar-Pakistan during summer 2014. The experiment was laid out in randomized complete block design with split plot arrangement using three replications. The two PSB levels [(1) inoculated seed with PSB (+) and (2) seed not inoculated with PSB (- or control)] and three compost application times (30, 15, and 0 days before sowing) combination (six treatments) were used as main plot factor, while four P levels (25, 50, 75, and 100 kg P ha-1) used as subplot factor. The results confirmed that compost applied at sowing time and P applied at the two higher rates (75 and 100 kg P ha-1) had significantly increased yield and yield components of maize under semiarid condition. Maize seed inoculated with PSB (+) had tremendously increased yield and yield components of maize over PSB-control plots (-) under semiarid condition. PMID:26697038

  18. Using in situ pore water concentrations to estimate the phytotoxicity of nicosulfuron in soils to corn (Zea mays L.).

    PubMed

    Liu, Kailin; Cao, Zhengya; Pan, Xiong; Yu, Yunlong

    2012-08-01

    The phytotoxicity of an herbicide in soil is typically dependent on the soil characteristics. To obtain a comparable value of the concentration that inhibits growth by 50% (IC50), 0.01 M CaCl(2) , excess pore water (EPW) and in situ pore water (IPW) were used to extract the bioavailable fraction of nicosulfuron from five different soils to estimate the nicosulfuron phytotoxicity to corn (Zea mays L.). The results indicated that the phytotoxicity of nicosulfuron in soils to corn depended on the soil type, and the IC50 values calculated based on the amended concentration of nicosulfuron ranged from 0.77 to 9.77 mg/kg among the five tested soils. The range of variation in IC50 values for nicosulfuron was smaller when the concentrations of nicosulfuron extracted with 0.01 M CaCl(2) and EPW were used instead of the amended concentration. No significant difference was observed among the IC50 values calculated from the IPW concentrations of nicosulfuron in the five tested soils, suggesting that the concentration of nicosulfuron in IPW could be used to estimate the phytotoxicity of residual nicosulfuron in soils. Copyright © 2012 SETAC.

  19. Effect of Microbial inoculation in combating the aluminium toxicity effect on growth of Zea mays.

    PubMed

    Arora, P; Singh, G; Tiwari, A

    2017-07-31

    The present study is aimed at improving the aluminium tolerance in maize crop employing the potential of microbial inoculants in conferring resistance to these toxicities via production of certain chelating compounds like siderophores, exopolysachharides and organic acids. Acid soils have now-a-days become one of the key factors for limiting growth of many agriculturally important crops. Aluminium  is one of the major elements present in acid soils and is mainly responsible for toxicity in the soil. This aluminium is rapidly soluble in soil water and hence absorbed by plant roots under conditions where soil pH is below 5. This toxicity leads to severe root growth inhibition, thereby limiting the production of maize crops. It was observed that use of microbial inoculums can be helpful in elimination of these toxic compounds and prevent the inhibition of root growth . It was found that the soils contaminated with aluminium toxicity decreased the root length of maize plant significantly by 65% but Bacillus and Burkholderia inoculation increased this root length significantly by 1.4- folds and 2- folds respectively thereby combating the effect of aluminium toxicity. Aluminium concentration was found maximum in roots of plants which were grown under aluminium stress condition. But this aluminium accumulation decreased ̴ 2-folds when Burkholderia was used as seed inoculants under aluminium stress conditions. Also, at 60mM aluminium accumulation, phosphorus solubilisation in roots was found to be increased upto 30% on Burkholderia inoculation. However, Bacillus inoculation didn't show any significant difference in either of the case. Thus, the inoculation of seeds with Burkholderia isolates could prove to be a boon in sequestering aluminium toxicity in Zea mays.

  20. A family of selfish minicircular chromosomes with jumbled chloroplast gene fragments from a dinoflagellate.

    PubMed

    Zhang, Z; Cavalier-Smith, T; Green, B R

    2001-08-01

    Chloroplast genes of several dinoflagellate species are located on unigenic DNA minicircular chromosomes. We have now completely sequenced five aberrant minicircular chromosomes from the dinoflagellate Heterocapsa triquetra. These probably nonfunctional DNA circles lack complete genes, with each being composed of several short fragments of two or three different chloroplast genes and a common conserved region with a tripartite 9G-9A-9G core like the putative replicon origin of functional single-gene circular chloroplast chromosomes. Their sequences imply that all five circles evolved by differential deletions and duplications from common ancestral circles bearing fragments of four genes: psbA, psbC, 16S rRNA, and 23S rRNA. It appears that recombination between separate unigenic chromosomes initially gave intermediate heterodimers, which were subsequently stabilized by deletions that included part or all of one putative replicon origin. We suggest that homologous recombination at the 9G-9A-9G core regions produced a psbA/psbC heterodimer which generated two distinct chimeric circles by differential deletions and duplications. A 23S/16S rRNA heterodimer more likely formed by illegitimate recombination between 16S and 23S rRNA genes. Homologous recombination between the 9G-9A-9G core regions of both heterodimers and additional differential deletions and duplications could then have yielded the other three circles. Near identity of the gene fragments and 9G-9A-9G cores, despite diverging adjacent regions, may be maintained by gene conversion. The conserved organization of the 9G-9A-9G cores alone favors the idea that they are replicon origins and suggests that they may enable the aberrant minicircles to parasitize the chloroplast's replication machinery as selfish circles.

  1. Mitochondrion-to-Chloroplast DNA Transfers and Intragenomic Proliferation of Chloroplast Group II Introns in Gloeotilopsis Green Algae (Ulotrichales, Ulvophyceae)

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2016-01-01

    Abstract To probe organelle genome evolution in the Ulvales/Ulotrichales clade, the newly sequenced chloroplast and mitochondrial genomes of Gloeotilopsis planctonica and Gloeotilopsis sarcinoidea (Ulotrichales) were compared with those of Pseudendoclonium akinetum (Ulotrichales) and of the few other green algae previously sampled in the Ulvophyceae. At 105,236 bp, the G. planctonica mitochondrial DNA (mtDNA) is the largest mitochondrial genome reported so far among chlorophytes, whereas the 221,431-bp G. planctonica and 262,888-bp G. sarcinoidea chloroplast DNAs (cpDNAs) are the largest chloroplast genomes analyzed among the Ulvophyceae. Gains of non-coding sequences largely account for the expansion of these genomes. Both Gloeotilopsis cpDNAs lack the inverted repeat (IR) typically found in green plants, indicating that two independent IR losses occurred in the Ulvales/Ulotrichales. Our comparison of the Pseudendoclonium and Gloeotilopsis cpDNAs offered clues regarding the mechanism of IR loss in the Ulotrichales, suggesting that internal sequences from the rDNA operon were differentially lost from the two original IR copies during this process. Our analyses also unveiled a number of genetic novelties. Short mtDNA fragments were discovered in two distinct regions of the G. sarcinoidea cpDNA, providing the first evidence for intracellular inter-organelle gene migration in green algae. We identified for the first time in green algal organelles, group II introns with LAGLIDADG ORFs as well as group II introns inserted into untranslated gene regions. We discovered many group II introns occupying sites not previously documented for the chloroplast genome and demonstrated that a number of them arose by intragenomic proliferation, most likely through retrohoming. PMID:27503298

  2. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis)

    USDA-ARS?s Scientific Manuscript database

    Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and ...

  3. Heterosis-associated proteome analyses of maize (Zea mays L.) seminal roots by quantitative label-free LC-MS.

    PubMed

    Marcon, Caroline; Lamkemeyer, Tobias; Malik, Waqas Ahmed; Ungrue, Denise; Piepho, Hans-Peter; Hochholdinger, Frank

    2013-11-20

    Heterosis is the superior performance of heterozygous F1-hybrid plants compared to their homozygous genetically distinct parents. Seminal roots are embryonic roots that play an important role during early maize (Zea mays L.) seedling development. In the present study the most abundant soluble proteins of 2-4cm seminal roots of the reciprocal maize F1-hybrids B73×Mo17 and Mo17×B73 and their parental inbred lines B73 and Mo17 were quantified by label-free LC-MS/MS. In total, 1918 proteins were detected by this shot-gun approach. Among those, 970 were represented by at least two peptides and were further analyzed. Eighty-five proteins displayed non-additive accumulation in at least one hybrid. The functional category protein metabolism was the most abundant class of non-additive proteins represented by 27 proteins. Within this category 16 of 17 non-additively accumulated ribosomal proteins showed high or above high parent expression in seminal roots. These results imply that an increased protein synthesis rate in hybrids might be related to the early manifestation of hybrid vigor in seminal roots. In the present study a shot-gun proteomics approach allowed for the identification of 1917 proteins and analysis of 970 seminal root proteins of maize that were represented by at least 2 peptides. The comparison of proteome complexity of reciprocal hybrids and their parental inbred lines indicates an increased protein synthesis rate in hybrids that may contribute to the early manifestation of heterosis in seminal roots. This article is part of a Special Issue entitled: Translational Plant Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Impacts of industrial waste resources on maize (Zea mays L.) growth, yield, nutrients uptake and soil properties.

    PubMed

    Singh, Satnam; Young, Li-Sen; Shen, Fo-Ting; Young, Chiu-Chung

    2014-10-01

    Discharging untreated highly acidic (pH<4.0), organic and nutrients rich monosodium glutamate wastewater (MW), and highly alkaline (pH>10.0) paper-mill wastewater (PW) causes environmental pollution. When acidity of MW neutralized (pH 6.5±0.1) with PW and lime (treatments represented as MW+PW and MW+Lime), then MW may be utilized as a potential source of nutrients and organic carbon for sustainable food production. Objectives of this study were to compare the effects of PW and lime neutralized MW and chemical fertilizers on maize (Zea mays L. cv. Snow Jean) plant growth, yield, nutrients uptake, soil organic matter and humic substances. The field experiment was carried out on maize using MW at 6000 L ha(-1). Impacts of the MW application on maize crop and soil properties were evaluated at different stages. At harvest, plant height, and plant N and K uptake were higher in MW treatment. Leaf area index at 60 days after sowing, plant dry matter accumulation at harvest, and kernels ear(-1) and 100-kernel weight were higher in MW+Lime treatment. Kernel N, P, K, Mn, Fe and Zn, and plant Zn uptake were highest in MW+Lime. Plant Fe uptake, and soil organic matter and humic substances were highest in MW+PW. The MW+PW and MW+Lime treatments exhibited comparable results with chemically fertilized treatment. The MW acidity neutralized with lime showed positive impacts on growth, yield and nutrients uptake; nevertheless, when MW pH neutralized with PW has an additional benefit on increase in soil organic matter and humic substances. Copyright © 2014. Published by Elsevier Ltd.

  5. Accumulation of 5-hydroxynorvaline in maize (Zea mays) leaves is induced by insect feeding and abiotic stress.

    PubMed

    Yan, Jian; Lipka, Alexander E; Schmelz, Eric A; Buckler, Edward S; Jander, Georg

    2015-02-01

    Plants produce a wide variety of defensive metabolites to protect themselves against herbivores and pathogens. Non-protein amino acids, which are present in many plant species, can have a defensive function through their mis-incorporation during protein synthesis and/or inhibition of biosynthetic pathways in primary metabolism. 5-Hydroxynorvaline was identified in a targeted search for previously unknown non-protein amino acids in the leaves of maize (Zea mays) inbred line B73. Accumulation of this compound increases during herbivory by aphids (Rhopalosiphum maidis, corn leaf aphid) and caterpillars (Spodoptera exigua, beet armyworm), as well as in response to treatment with the plant signalling molecules methyl jasmonate, salicylic acid and abscisic acid. In contrast, ethylene signalling reduced 5-hydroxynorvaline abundance. Drought stress induced 5-hydroxynorvaline accumulation to a higher level than insect feeding or treatment with defence signalling molecules. In field-grown plants, the 5-hydroxynorvaline concentration was highest in above-ground vegetative tissue, but it was also detectable in roots and dry seeds. When 5-hydroxynorvaline was added to aphid artificial diet at concentrations similar to those found in maize leaves and stems, R. maidis reproduction was reduced, indicating that this maize metabolite may have a defensive function. Among 27 tested maize inbred lines there was a greater than 10-fold range in the accumulation of foliar 5-hydroxynorvaline. Genetic mapping populations derived from a subset of these inbred lines were used to map quantitative trait loci for 5-hydroxynorvaline accumulation to maize chromosomes 5 and 7. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Verdant: automated annotation, alignment and phylogenetic analysis of whole chloroplast genomes.

    PubMed

    McKain, Michael R; Hartsock, Ryan H; Wohl, Molly M; Kellogg, Elizabeth A

    2017-01-01

    Chloroplast genomes are now produced in the hundreds for angiosperm phylogenetics projects, but current methods for annotation, alignment and tree estimation still require some manual intervention reducing throughput and increasing analysis time for large chloroplast systematics projects. Verdant is a web-based software suite and database built to take advantage a novel annotation program, annoBTD. Using annoBTD, Verdant provides accurate annotation of chloroplast genomes without manual intervention. Subsequent alignment and tree estimation can incorporate newly annotated and publically available plastomes and can accommodate a large number of taxa. Verdant sharply reduces the time required for analysis of assembled chloroplast genomes and removes the need for pipelines and software on personal hardware. Verdant is available at: http://verdant.iplantcollaborative.org/plastidDB/ It is implemented in PHP, Perl, MySQL, Javascript, HTML and CSS with all major browsers supported. mrmckain@gmail.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  7. Interaction of Chloroplasts with Inhibitors

    PubMed Central

    Ridley, Stuart M.

    1977-01-01

    A primary symptom of diuron (DCMU) phytotoxicity in plants is the destruction of chlorophyll. To study this process in vitro, chloroplasts from pea leaves (Pisum sativum L.) have been incubated in the light with DCMU for periods of up to 34 hours. The sequence of photodestruction of chlorophylls and carotenoids has been followed to try and establish the nature of the chloroplast protection mechanisms that are destroyed by DCMU. β-Carotene decays most rapidly, followed by chlorophyll a and xanthophylls which are destroyed in a constant ratio, followed finally by chlorophyll b. Bypassing the DCMU block in the electron transport system with an artificial electron donor provides complete protection against chlorophyll and carotenoid photodestruction. The same protection by this electron donor system is afforded to stroma-free lamellae from which soluble reductants have been removed so that NADPH formation, which has been proposed as an essential part of a protective xanthophyll cycle, is not possible. Both this and the simultaneous loss of chlorophyll a and xanthophylls tend to preclude the breakdown of a xanthophyll cycle from the possible protective mechanisms inhibited or destroyed by DCMU. Cofactors of cyclic electron transport also protect against DCMU-induced photodestruction of pigments. Their concentration dependence for this protection appears to reflect their various abilities to catalyze cyclic photophosphorylation. The extent to which the chlorophylls are destroyed in the major pigment-protein complexes from chloroplasts illuminated with and without DCMU has been measured. In the absence of DCMU, the light-harvesting chlorophyll a/b protein complex is destroyed most rapidly. In the presence of DCMU, the losses of chlorophyll a from the photosystem I P700-chlorophyll a protein and the chlorophyll a/b complex are about the same. Chlorophyll losses are matched by simultaneous losses of the protein moieties; spectral analyses show that the remaining

  8. Effect of Flooding on Starch Accumulation in Chloroplasts of Sunflower (Helianthus annuus L.) 1

    PubMed Central

    Wample, Robert L.; Davis, Ronald W.

    1983-01-01

    Chloroplasts in leaves of sunflower (Helianthus annuus L. cv hybrid 894) whose roots were flooded for 4 days showed an increase in the level of starch in chloroplasts when examined with the electron microscope. Starch determination showed significantly higher levels in leaves of flooded plants. Chloroplast and mitochondrial structure seemed otherwise normal. Images Fig. 1 Fig. 2 PMID:16663176

  9. The complete chloroplast genome sequence of Epipremnum aureum and its comparative analysis among eight Araceae species

    PubMed Central

    Han, Limin; Chen, Chen; Wang, Zhezhi

    2018-01-01

    Epipremnum aureum is an important foliage plant in the Araceae family. In this study, we have sequenced the complete chloroplast genome of E. aureum by using Illumina Hiseq sequencing platforms. This genome is a double-stranded circular DNA sequence of 164,831 bp that contains 35.8% GC. The two inverted repeats (IRa and IRb; 26,606 bp) are spaced by a small single-copy region (22,868 bp) and a large single-copy region (88,751 bp). The chloroplast genome has 131 (113 unique) functional genes, including 86 (79 unique) protein-coding genes, 37 (30 unique) tRNA genes, and eight (four unique) rRNA genes. Tandem repeats comprise the majority of the 43 long repetitive sequences. In addition, 111 simple sequence repeats are present, with mononucleotides being the most common type and di- and tetranucleotides being infrequent events. Positive selection pressure on rps12 in the E. aureum chloroplast has been demonstrated via synonymous and nonsynonymous substitution rates and selection pressure sites analyses. Ycf15 and infA are pseudogenes in this species. We constructed a Maximum Likelihood phylogenetic tree based on the complete chloroplast genomes of 38 species from 13 families. Those results strongly indicated that E. aureum is positioned as the sister of Colocasia esculenta within the Araceae family. This work may provide information for further study of the molecular phylogenetic relationships within Araceae, as well as molecular markers and breeding novel varieties by chloroplast genetic-transformation of E. aureum in particular. PMID:29529038

  10. Long-Term Empirical and Observational Evidence of Practical Helicoverpa zea Resistance to Cotton With Pyramided Bt Toxins.

    PubMed

    Reisig, Dominic D; Huseth, Anders S; Bacheler, Jack S; Aghaee, Mohammad-Amir; Braswell, Lewis; Burrack, Hannah J; Flanders, Kathy; Greene, Jeremy K; Herbert, D Ames; Jacobson, Alana; Paula-Moraes, Silvana V; Roberts, Phillip; Taylor, Sally V

    2018-04-16

    Evidence of practical resistance of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) to Bt cotton in the United States is debatable, supported with occasional reports of boll damage in the field. Our objective was to provide both empirical and long-term observational evidence of practical resistance by linking both in-season and end-of-season measurements of H. zea damage to pyramided Bt cotton bolls and to provide Cry1Ac diet-based bioassay data in support of these damage estimates. In-season boll damage from H. zea was highly correlated to end-of-season damaged bolls. Across North Carolina, Bt cotton fields with end-of-season bolls damaged by H. zea increased during 2016 compared to previous years. Elevated damage was coupled with an increase in field sprays targeting H. zea during 2016, but not related to an increase in H. zea abundance. Bioassay data indicated that there was a range of Cry1Ac susceptibility across the southeastern United States. Given the range of susceptibility to Cry1Ac across the southeastern United States, it is probable that resistant populations are common. Since H. zea is resistant to cotton expressing pyramided Cry toxins, the adoption of new cotton varieties expressing Vip3Aa will be rapid. Efforts should be made to delay resistance of H. zea to the Vip3Aa toxin to avoid foliar insecticide use.

  11. The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility.

    PubMed

    Rapp, Micah; Schein, Jessica; Hunt, Kevin A; Nalam, Vamsi; Mourad, George S; Schultes, Neil P

    2016-03-01

    The solute specificity profiles (transport and binding) for the nucleobase cation symporter 1 (NCS1) proteins, from the closely related C4 grasses Zea mays and Setaria viridis, differ from that of Arabidopsis thaliana and Chlamydomonas reinhardtii NCS1. Solute specificity profiles for NCS1 from Z. mays (ZmNCS1) and S. viridis (SvNCS1) were determined through heterologous complementation studies in NCS1-deficient Saccharomyces cerevisiae strains. The four Viridiplantae NCS1 proteins transport the purines adenine and guanine, but unlike the dicot and algal NCS1, grass NCS1 proteins fail to transport the pyrimidine uracil. Despite the high level of amino acid sequence similarity, ZmNCS1 and SvNCS1 display distinct solute transport and recognition profiles. SvNCS1 transports adenine, guanine, hypoxanthine, cytosine, and allantoin and competitively binds xanthine and uric acid. ZmNCS1 transports adenine, guanine, and cytosine and competitively binds, 5-fluorocytosine, hypoxanthine, xanthine, and uric acid. The differences in grass NCS1 profiles are due to a limited number of amino acid alterations. These amino acid residues do not correspond to amino acids essential for overall solute and cation binding or solute transport, as previously identified in bacterial and fungal NCS1, but rather may represent residues involved in subtle solute discrimination. The data presented here reveal that within Viridiplantae, NCS1 proteins transport a broad range of nucleobase compounds and that the solute specificity profile varies with species.

  12. Production and Characterization of Bacillus thuringiensis Cry1Ac-Resistant Cotton Bollworm Helicoverpa zea (Boddie)▿

    PubMed Central

    Anilkumar, Konasale J.; Rodrigo-Simón, Ana; Ferré, Juan; Pusztai-Carey, Marianne; Sivasupramaniam, Sakuntala; Moar, William J.

    2008-01-01

    Laboratory-selected Bacillus thuringiensis-resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea, a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance selection and monitoring. The resistance ratio (RR) for AR exceeded 100-fold after 11 generations and has been maintained at this level for nine generations. This is the first report of stable Cry1Ac resistance in H. zea. MR crashed after 11 generations, reaching only an RR of 12. AR was only partially cross-resistant to MVP II, suggesting that MVP II does not have the same Cry1Ac selection pressure as Cry1Ac toxin against H. zea and that proteases may be involved with resistance. AR was highly cross-resistant to Cry1Ab toxin but only slightly cross-resistant to Cry1Ab expressing corn leaf powder. AR was not cross-resistant to Cry2Aa2, Cry2Ab2-expressing corn leaf powder, Vip3A, and cypermethrin. Toxin-binding assays showed no significant differences, indicating that resistance was not linked to a reduction in binding. These results aid in understanding why this pest has not evolved B. thuringiensis resistance, and highlight the need to choose carefully the form of B. thuringiensis protein used in experiments. PMID:18024681

  13. Genome-wide identification, splicing, and expression analysis of the myosin gene family in maize (Zea mays)

    PubMed Central

    Wang, Guifeng; Zhong, Mingyu; Wang, Gang; Song, Rentao

    2014-01-01

    The actin-based myosin system is essential for the organization and dynamics of the endomembrane system and transport network in plant cells. Plants harbour two unique myosin groups, class VIII and class XI, and the latter is structurally and functionally analogous to the animal and fungal class V myosin. Little is known about myosins in grass, even though grass includes several agronomically important cereal crops. Here, we identified 14 myosin genes from the genome of maize (Zea mays). The relatively larger sizes of maize myosin genes are due to their much longer introns, which are abundant in transposable elements. Phylogenetic analysis indicated that maize myosin genes could be classified into class VIII and class XI, with three and 11 members, respectively. Apart from subgroup XI-F, the remaining subgroups were duplicated at least in one analysed lineage, and the duplication events occurred more extensively in Arabidopsis than in maize. Only two pairs of maize myosins were generated from segmental duplication. Expression analysis revealed that most maize myosin genes were expressed universally, whereas a few members (XI-1, -6, and -11) showed an anther-specific pattern, and many underwent extensive alternative splicing. We also found a short transcript at the O1 locus, which conceptually encoded a headless myosin that most likely functions at the transcriptional level rather than via a dominant-negative mechanism at the translational level. Together, these data provide significant insights into the evolutionary and functional characterization of maize myosin genes that could transfer to the identification and application of homologous myosins of other grasses. PMID:24363426

  14. Disruption of actin filaments in Zea mays by bisphenol A depends on their crosstalk with microtubules.

    PubMed

    Stavropoulou, Konstantina; Adamakis, Ioannis-Dimosthenis S; Panteris, Emmanuel; Arseni, Ermioni-Makedonia; Eleftheriou, Eleftherios P

    2018-03-01

    Bisphenol A (BPA) is a widespread environmental pollutant, reportedly harmful to living organisms. In plant cells, BPA was shown to disrupt microtubule (MT) arrays and perturb mitosis, but its effects on filamentous actin (F-actin) have not been explored. Here we studied the effects of BPA on actin filaments (AFs) in meristematic root tip and leaf cells of Zea mays, by fluorescent labeling and confocal microscopy. Considering the typical dynamic interaction between MTs and AFs, the effects on these two essential components of the plant cytoskeleton were correlated. It was found that BPA disorganized rapidly AFs in a concentration- and time-dependent manner. The fine filaments were first to be affected, followed by the subcortical bundles, resulting in rod- and ring-like conformations. The observed differences in sensitivity between protodermal and cortex cells were attributed to the deeper location of the latter. Depolymerization or stabilization of MTs by relevant drugs (oryzalin, taxol) revealed that AF susceptibility to BPA depends on MT integrity. Developing leaves required harder and longer treatment to be affected by BPA. Ontogenesis of stomatal complexes was highly disturbed, arrangement of AFs and MT arrays was disordered and accuracy of cell division sequence was deranged or completely arrested. The effect of BPA confirmed that subsidiary cell mother cell polarization is not mediated by F-actin patch neither of preprophase band organization. On the overall, it is concluded that AFs in plant cells constitute a subcellular target of BPA and their disruption depends on their crosstalk with MTs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. In vivo dynamic analysis of water refilling in embolized xylem vessels of intact Zea mays leaves

    PubMed Central

    Ryu, Jeongeun; Hwang, Bae Geun; Lee, Sang Joon

    2016-01-01

    Background and Aims The refilling of embolized xylem vessels under tension is a major issue in water transport among vascular plants. However, xylem embolism and refilling remain poorly understood because of technical limitations. Direct observation of embolism repair in intact plants is essential to understand the biophysical aspects of water refilling in embolized xylem vessels. This paper reports on details of the water refilling process in leaves of the intact herbaceous monocot plant Zea mays and its refilling kinetics obtained by a direct visualization technique. Methods A synchrotron X-ray micro-imaging technique was used to monitor water refilling in embolized xylem vessels of intact maize leaves. Xylem embolism was artificially induced by using a glass capillary; real-time images of water refilling dynamics were consecutively captured at a frame rate of 50 f.p.s. Key Results Water supply in the radial direction initiates droplet formation on the wall of embolized xylem vessels. Each droplet grows into a water column; this phenomenon shows translation motion or continuous increase in water column volume. In some instances, water columns merge and form one large water column. Water refilling in the radial direction causes rapid recovery from embolism in several minutes. The average water refilling velocity is approx. 1 μm s−1. Conclusions Non-destructive visualization of embolized xylem vessels demonstrates rapid water refilling and gas bubble removal as key elements of embolism repair in a herbaceous monocot species. The refilling kinetics provides new insights into the dynamic mechanism of water refilling phenomena. PMID:27539601

  16. Chloroplast chlB gene is required for light-independent chlorophyll accumulation in Chlamydomonas reinhardtii.

    PubMed

    Liu, X Q; Xu, H; Huang, C

    1993-10-01

    Light-independent chlorophyll synthesis occurs in some algae, lower plants, and gymnosperms, but not in angiosperms. We have identified a new chloroplast gene, chlB, that is required for the light-independent accumulation of chlorophyll in the green alga Chlamydomonas reinhardtii. The chlB gene was cloned, sequenced, and then disrupted by performing particle gun-mediated chloroplast transformation. The resulting homoplasmic mutant was unable to accumulate chlorophyll in the dark and thus exhibited a 'yellow-in-the-dark' phenotype. The chlB gene encodes a polypeptide of 688 amino acid residues, and is distinct from two previously characterized chloroplast genes (chlN and chlL) also required for light-independent chlorophyll accumulation in C. reinhardtii. Three unidentified open reading frames in chloroplast genomes of liverwort, black pine, and Chlamydomonas moewusii were also identified as chlB genes, based on their striking sequence similarities to the C. reinhardtii chlB gene. A chlB-like gene is absent in chloroplast genomes of tobacco and rice, consistent with the lack of light-independent chlorophyll synthesis in these plants. Polypeptides encoded by the chloroplast chlB genes also show significant sequence similarities with the bchB gene product of Rhodobacter capsulatus. Comparisons among the chloroplast chlB and the bacterial bchB gene products revealed five highly conserved sequence areas that are interspersed by four stretches of highly variable and probably insertional sequences.

  17. Inhibition of Helicoverpa zea (Lepidoptera: Noctuidae) Growth by Transgenic Corn Expressing Bt Toxins and Development of Resistance to Cry1Ab.

    PubMed

    Reisig, Dominic D; Reay-Jones, Francis P F

    2015-08-01

    Transgenic corn, Zea mays L., that expresses the Bacillus thuringiensis (Bt) toxin Cry1Ab is only moderately toxic to Helicoverpa zea (Boddie) and has been planted commercially since 1996. Growth and development of H. zea was monitored to determine potential changes in susceptibility to this toxin over time. Small plots of corn hybrids expressing Cry1F, Cry1F × Cry1Ab, Cry1Ab × Cry3Bb1, Cry1A.105 × Cry2Ab2 × Cry3Bb1, Cry1A.105 × Cry2Ab2, and Vip3Aa20 × Cry1Ab × mCry3A were planted in both 2012 and 2013 inNorth and South Carolina with paired non-Bt hybrids from the same genetic background. H. zea larvae were sampled on three time periods from ears and the following factors were measured: kernel area injured (cm(2)) by H. zea larvae, larval number per ear, larval weight, larval length, and larval head width. Pupae were sampled on a single time period and the following factors recorded: number per ear, weight, time to eclosion, and the number that eclosed. There was no reduction in larval weight, number of insect entering the pupal stadium, pupal weight, time to eclosion, and number of pupae able to successfully eclose to adulthood in the hybrid expressing Cry1Ab compared with a non-Bt paired hybrid. As Cry1Ab affected these in 1996, H. zea may be developing resistance to Cry1Ab in corn, although these results are not comprehensive, given the limited sampling period, size, and geography. We also found that the negative impacts on larval growth and development were greater in corn hybrids with pyramided traits compared with single traits. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Mitochondrion-to-Chloroplast DNA Transfers and Intragenomic Proliferation of Chloroplast Group II Introns in Gloeotilopsis Green Algae (Ulotrichales, Ulvophyceae).

    PubMed

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2016-09-19

    To probe organelle genome evolution in the Ulvales/Ulotrichales clade, the newly sequenced chloroplast and mitochondrial genomes of Gloeotilopsis planctonica and Gloeotilopsis sarcinoidea (Ulotrichales) were compared with those of Pseudendoclonium akinetum (Ulotrichales) and of the few other green algae previously sampled in the Ulvophyceae. At 105,236 bp, the G planctonica mitochondrial DNA (mtDNA) is the largest mitochondrial genome reported so far among chlorophytes, whereas the 221,431-bp G planctonica and 262,888-bp G sarcinoidea chloroplast DNAs (cpDNAs) are the largest chloroplast genomes analyzed among the Ulvophyceae. Gains of non-coding sequences largely account for the expansion of these genomes. Both Gloeotilopsis cpDNAs lack the inverted repeat (IR) typically found in green plants, indicating that two independent IR losses occurred in the Ulvales/Ulotrichales. Our comparison of the Pseudendoclonium and Gloeotilopsis cpDNAs offered clues regarding the mechanism of IR loss in the Ulotrichales, suggesting that internal sequences from the rDNA operon were differentially lost from the two original IR copies during this process. Our analyses also unveiled a number of genetic novelties. Short mtDNA fragments were discovered in two distinct regions of the G sarcinoidea cpDNA, providing the first evidence for intracellular inter-organelle gene migration in green algae. We identified for the first time in green algal organelles, group II introns with LAGLIDADG ORFs as well as group II introns inserted into untranslated gene regions. We discovered many group II introns occupying sites not previously documented for the chloroplast genome and demonstrated that a number of them arose by intragenomic proliferation, most likely through retrohoming. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Comparative chromatography of chloroplast pigment

    NASA Technical Reports Server (NTRS)

    Grandolfo, M.; Sherma, J.; Strain, H. H.

    1969-01-01

    Methods for isolation of low concentration pigments of the cocklebur species are described. The methods entail two step chromatography so that the different sorption properties of the various pigments in varying column parameters can be utilized. Columnar and thin layer methods are compared. Many conditions influence separability of the chloroplasts.

  20. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis).

    PubMed

    Zhou, Xiangjun; Fei, Zhangjun; Thannhauser, Theodore W; Li, Li

    2011-11-23

    Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and the regulatory control of chloroplast biogenesis and development remain to be elucidated. Green cauliflower mutant causes ectopic development of chloroplasts in the curd tissue of the plant, turning the otherwise white curd green. To investigate the transcriptional control of chloroplast development, we compared gene expression between green and white curds using the RNA-seq approach. Deep sequencing produced over 15 million reads with lengths of 86 base pairs from each cDNA library. A total of 7,155 genes were found to exhibit at least 3-fold changes in expression between green and white curds. These included light-regulated genes, genes encoding chloroplast constituents, and genes involved in chlorophyll biosynthesis. Moreover, we discovered that the cauliflower ELONGATED HYPOCOTYL5 (BoHY5) was expressed higher in green curds than white curds and that 2616 HY5-targeted genes, including 1600 up-regulated genes and 1016 down-regulated genes, were differently expressed in green in comparison to white curd tissue. All these 1600 up-regulated genes were HY5-targeted genes in the light. The genome-wide profiling of gene expression by RNA-seq in green curds led to the identification of large numbers of genes associated with chloroplast development, and suggested the role of regulatory genes in the high hierarchy of light signaling pathways in mediating the ectopic chloroplast development in the green curd cauliflower mutant.

  1. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis)

    PubMed Central

    2011-01-01

    Background Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and the regulatory control of chloroplast biogenesis and development remain to be elucidated. Results Green cauliflower mutant causes ectopic development of chloroplasts in the curd tissue of the plant, turning the otherwise white curd green. To investigate the transcriptional control of chloroplast development, we compared gene expression between green and white curds using the RNA-seq approach. Deep sequencing produced over 15 million reads with lengths of 86 base pairs from each cDNA library. A total of 7,155 genes were found to exhibit at least 3-fold changes in expression between green and white curds. These included light-regulated genes, genes encoding chloroplast constituents, and genes involved in chlorophyll biosynthesis. Moreover, we discovered that the cauliflower ELONGATED HYPOCOTYL5 (BoHY5) was expressed higher in green curds than white curds and that 2616 HY5-targeted genes, including 1600 up-regulated genes and 1016 down-regulated genes, were differently expressed in green in comparison to white curd tissue. All these 1600 up-regulated genes were HY5-targeted genes in the light. Conclusions The genome-wide profiling of gene expression by RNA-seq in green curds led to the identification of large numbers of genes associated with chloroplast development, and suggested the role of regulatory genes in the high hierarchy of light signaling pathways in mediating the ectopic chloroplast development in the green curd cauliflower mutant. PMID:22112144

  2. Unbiased estimation of chloroplast number in mesophyll cells: advantage of a genuine three-dimensional approach

    PubMed Central

    Kubínová, Zuzana

    2014-01-01

    Chloroplast number per cell is a frequently examined quantitative anatomical parameter, often estimated by counting chloroplast profiles in two-dimensional (2D) sections of mesophyll cells. However, a mesophyll cell is a three-dimensional (3D) structure and this has to be taken into account when quantifying its internal structure. We compared 2D and 3D approaches to chloroplast counting from different points of view: (i) in practical measurements of mesophyll cells of Norway spruce needles, (ii) in a 3D model of a mesophyll cell with chloroplasts, and (iii) using a theoretical analysis. We applied, for the first time, the stereological method of an optical disector based on counting chloroplasts in stacks of spruce needle optical cross-sections acquired by confocal laser-scanning microscopy. This estimate was compared with counting chloroplast profiles in 2D sections from the same stacks of sections. Comparing practical measurements of mesophyll cells, calculations performed in a 3D model of a cell with chloroplasts as well as a theoretical analysis showed that the 2D approach yielded biased results, while the underestimation could be up to 10-fold. We proved that the frequently used method for counting chloroplasts in a mesophyll cell by counting their profiles in 2D sections did not give correct results. We concluded that the present disector method can be efficiently used for unbiased estimation of chloroplast number per mesophyll cell. This should be the method of choice, especially in coniferous needles and leaves with mesophyll cells with lignified cell walls where maceration methods are difficult or impossible to use. PMID:24336344

  3. Zea mays Taxilin Protein Negatively Regulates Opaque-2 Transcriptional Activity by Causing a Change in Its Sub-Cellular Distribution

    PubMed Central

    Zhang, Nan; Qiao, Zhenyi; Liang, Zheng; Mei, Bing; Xu, Zhengkai; Song, Rentao

    2012-01-01

    Zea mays (maize) Opaque-2 (ZmO2) protein is an important bZIP transcription factor that regulates the expression of major storage proteins (22-kD zeins) and other important genes during maize seed development. ZmO2 is subject to functional regulation through protein-protein interactions. To unveil the potential regulatory network associated with ZmO2, a protein-protein interaction study was carried out using the truncated version of ZmO2 (O2-2) as bait in a yeast two-hybrid screen with a maize seed cDNA library. A protein with homology to Taxilin was found to have stable interaction with ZmO2 in yeast and was designated as ZmTaxilin. Sequence analysis indicated that ZmTaxilin has a long coiled-coil domain containing three conserved zipper motifs. Each of the three zipper motifs is individually able to interact with ZmO2 in yeast. A GST pull-down assay demonstrated the interaction between GST-fused ZmTaxilin and ZmO2 extracted from developing maize seeds. Using onion epidermal cells as in vivo assay system, we found that ZmTaxilin could change the sub-cellular distribution of ZmO2. We also demonstrated that this change significantly repressed the transcriptional activity of ZmO2 on the 22-kD zein promoter. Our study suggests that a Taxilin-mediated change in sub-cellular distribution of ZmO2 may have important functional consequences for ZmO2 activity. PMID:22937104

  4. Mesophyll conductance in Zea mays responds transiently to CO2 availability: implications for transpiration efficiency in C4 crops.

    PubMed

    Kolbe, Allison R; Cousins, Asaph B

    2018-03-01

    Mesophyll conductance (g m ) describes the movement of CO 2 from the intercellular air spaces below the stomata to the site of initial carboxylation in the mesophyll. In contrast with C 3 -g m , little is currently known about the intraspecific variation in C 4 -g m or its responsiveness to environmental stimuli. To address these questions, g m was measured on five maize (Zea mays) lines in response to CO 2 , employing three different estimates of g m . Each of the methods indicated a significant response of g m to CO 2 . Estimates of g m were similar between methods at ambient and higher CO 2 , but diverged significantly at low partial pressures of CO 2 . These differences are probably driven by incomplete chemical and isotopic equilibrium between CO 2 and bicarbonate under these conditions. Carbonic anhydrase and phosphoenolpyruvate carboxylase in vitro activity varied significantly despite similar values of g m and leaf anatomical traits. These results provide strong support for a CO 2 response of g m in Z. mays, and indicate that g m in maize is probably driven by anatomical constraints rather than by biochemical limitations. The CO 2 response of g m indicates a potential role for facilitated diffusion in C 4 -g m . These results also suggest that water-use efficiency could be enhanced in C 4 species by targeting g m . © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. Temperature-induced lipocalin (TIL) is translocated under salt stress and protects chloroplasts from ion toxicity.

    PubMed

    Abo-Ogiala, Atef; Carsjens, Caroline; Diekmann, Heike; Fayyaz, Payam; Herrfurth, Cornelia; Feussner, Ivo; Polle, Andrea

    2014-02-15

    Temperature-induced lipocalins (TIL) have been invoked in the defense from heat, cold and oxidative stress. Here we document a function of TIL for basal protection from salinity stress. Heterologous expression of TIL from the salt resistant poplar Populus euphratica did not rescue growth but prevented chlorophyll b destruction in salt-exposed Arabidopsis thaliana. The protein was localized to the plasma membrane but was re-translocated to the symplast under salt stress. The A. thaliana knock out and knock down lines Attil1-1 and Attil1-2 showed stronger stress symptoms and stronger chlorophyll b degradation than the wildtype (WT) under excess salinity. They accumulated more chloride and sodium in chloroplasts than the WT. Chloroplast chloride accumulation was found even in the absence of salt stress. Since lipocalins are known to bind regulatory fatty acids of channel proteins as well as iron, we suggest that the salt-induced trafficking of TIL may be required for protection of chloroplasts by affecting ion homeostasis. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. Long distance migration in Helicoverpa zea: What we know and need to know

    USDA-ARS?s Scientific Manuscript database

    This paper identifies knowledge and knowledge gaps in the areas of biology and ecology, and migratory flight of corn earworm, Helicoverpa zea (Boddie). The paper focuses on results from studies of H. zea population dynamics and migration in Texas during a period of substantial irrigated corn produc...

  7. Conflict amongst chloroplast DNA sequences obscures the phylogeny of a group of Asplenium ferns.

    PubMed

    Shepherd, Lara D; Holland, Barbara R; Perrie, Leon R

    2008-07-01

    A previous study of the relationships amongst three subgroups of the Austral Asplenium ferns found conflicting signal between the two chloroplast loci investigated. Because organelle genomes like those of chloroplasts and mitochondria are thought to be non-recombining, with a single evolutionary history, we sequenced four additional chloroplast loci with the expectation that this would resolve these relationships. Instead, the conflict was only magnified. Although tree-building analyses favoured one of the three possible trees, one of the alternative trees actually had one more supporting site (six versus five) and received greater support in spectral and neighbor-net analyses. Simulations suggested that chance alone was unlikely to produce strong support for two of the possible trees and none for the third. Likelihood permutation tests indicated that the concatenated chloroplast sequence data appeared to have experienced recombination. However, recombination between the chloroplast genomes of different species would be highly atypical, and corollary supporting observations, like chloroplast heteroplasmy, are lacking. Wider taxon sampling clarified the composition of the Austral group, but the conflicting signal meant analyses (e.g., morphological evolution, biogeographic) conditional on a well-supported phylogeny could not be performed.

  8. Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography

    PubMed Central

    Engel, Benjamin D; Schaffer, Miroslava; Kuhn Cuellar, Luis; Villa, Elizabeth; Plitzko, Jürgen M; Baumeister, Wolfgang

    2015-01-01

    Chloroplast function is orchestrated by the organelle's intricate architecture. By combining cryo-focused ion beam milling of vitreous Chlamydomonas cells with cryo-electron tomography, we acquired three-dimensional structures of the chloroplast in its native state within the cell. Chloroplast envelope inner membrane invaginations were frequently found in close association with thylakoid tips, and the tips of multiple thylakoid stacks converged at dynamic sites on the chloroplast envelope, implicating lipid transport in thylakoid biogenesis. Subtomogram averaging and nearest neighbor analysis revealed that RuBisCO complexes were hexagonally packed within the pyrenoid, with ∼15 nm between their centers. Thylakoid stacks and the pyrenoid were connected by cylindrical pyrenoid tubules, physically bridging the sites of light-dependent photosynthesis and light-independent carbon fixation. Multiple parallel minitubules were bundled within each pyrenoid tubule, possibly serving as conduits for the targeted one-dimensional diffusion of small molecules such as ATP and sugars between the chloroplast stroma and the pyrenoid matrix. DOI: http://dx.doi.org/10.7554/eLife.04889.001 PMID:25584625

  9. The complete chloroplast genomes of two Wisteria species, W. floribunda and W. sinensis (Fabaceae).

    PubMed

    Kim, Na-Rae; Kim, Kyunghee; Lee, Sang-Choon; Lee, Jung-Hoon; Cho, Seong-Hyun; Yu, Yeisoo; Kim, Young-Dong; Yang, Tae-Jin

    2016-11-01

    Wisteria floribunda and Wisteria sinensis are ornamental woody vines in the Fabaceae. The complete chloroplast genome sequences of the two species were generated by de novo assembly using whole genome next generation sequences. The chloroplast genomes of W. floribunda and W. sinensis were 130 960 bp and 130 561 bp long, respectively, and showed inverted repeat (IR)-lacking structures as those reported in IRLC in the Fabaceae. The chloroplast genomes of both species contained same number of protein-coding sequences (77), tRNA genes (30), and rRNA genes (4). The phylogenetic analysis with the reported chloroplast genomes confirmed close taxonomical relationship of W. floribunda and W. sinensis.

  10. Genome-Wide Identification and Characterization of microRNAs in Developing Grains of Zea mays L.

    PubMed

    Li, Dandan; Liu, Zongcai; Gao, Lei; Wang, Lifang; Gao, Meijuan; Jiao, Zhujin; Qiao, Huili; Yang, Jianwei; Chen, Min; Yao, Lunguang; Liu, Renyi; Kan, Yunchao

    2016-01-01

    The development and maturation of maize kernel involves meticulous and fine gene regulation at transcriptional and post-transcriptional levels, and miRNAs play important roles during this process. Although a number of miRNAs have been identified in maize seed, the ones involved in the early development of grains and in different lines of maize have not been well studied. Here, we profiled four small RNA libraries, each constructed from groups of immature grains of Zea mays inbred line Chang 7-2 collected 4-6, 7-9, 12-14, and 18-23 days after pollination (DAP). A total of 40 known (containing 111 unique miRNAs) and 162 novel (containing 196 unique miRNA candidates) miRNA families were identified. For conserved and novel miRNAs with over 100 total reads, 44% had higher accumulation before the 9th DAP, especially miR166 family members. 42% of miRNAs had highest accumulation during 12-14 DAP (which is the transition stage from embryogenesis to nutrient storage). Only 14% of miRNAs had higher expression 18-23 DAP. Prediction of potential targets of all miRNAs showed that 165 miRNA families had 377 target genes. For miR164 and miR166, we showed that the transcriptional levels of their target genes were significantly decreased when co-expressed with their cognate miRNA precursors in vivo. Further analysis shows miR159, miR164, miR166, miR171, miR390, miR399, and miR529 families have putative roles in the embryogenesis of maize grain development by participating in transcriptional regulation and morphogenesis, while miR167 and miR528 families participate in metabolism process and stress response during nutrient storage. Our study is the first to present an integrated dynamic expression pattern of miRNAs during maize kernel formation and maturation.

  11. Function of isoamylase-type starch debranching enzymes ISA1 and ISA2 in the Zea mays leaf.

    PubMed

    Lin, Qiaohui; Facon, Maud; Putaux, Jean-Luc; Dinges, Jason R; Wattebled, Fabrice; D'Hulst, Christophe; Hennen-Bierwagen, Tracie A; Myers, Alan M

    2013-12-01

    Conserved isoamylase-type starch debranching enzymes (ISAs), including the catalytic ISA1 and noncatalytic ISA2, are major starch biosynthesis determinants. Arabidopsis thaliana leaves require ISA1 and ISA2 for physiological function, whereas endosperm starch is near normal with only ISA1. ISA functions were characterized in maize (Zea mays) leaves to determine whether species-specific distinctions in ISA1 primary structure, or metabolic differences in tissues, are responsible for the differing ISA2 requirement. Genetic methods provided lines lacking ISA1 or ISA2. Biochemical analyses characterized ISA activities in mutant tissues. Starch content, granule morphology, and amylopectin fine structure were determined. Three ISA activity forms were observed in leaves, two ISA1/ISA2 heteromultimers and one ISA1 homomultimer. ISA1 homomultimer activity existed in mutants lacking ISA2. Mutants without ISA2 differed in leaf starch content, granule morphology, and amylopectin structure compared with nonmutants or lines lacking both ISA1 and ISA2. The data imply that both the ISA1 homomultimer and ISA1/ISA2 heteromultimer function in the maize leaf. The ISA1 homomultimer is present and functions in the maize leaf. Evolutionary divergence between monocots and dicots probably explains the ability of ISA1 to function as a homomultimer in maize leaves, in contrast to other species where the ISA1/ISA2 heteromultimer is the only active form. No claim to original US goverment works. New Phytologist © 2013 New Phytologist Trust.

  12. The locations and amounts of endogenous ions and elements in the cap and elongating zone of horizontally oriented roots of Zea mays L.: an electron-probe EDS study

    NASA Technical Reports Server (NTRS)

    Moore, R.; Cameron, I. L.; Hunter, K. E.; Olmos, D.; Smith, N. K.

    1987-01-01

    We used quantitative electron-probe energy-dispersive x-ray microanalysis to localize endogenous Na, Cl, K, P, S, Mg and Ca in cryofixed and freeze-dried cryosections of the cap (i.e. the putative site of graviperception) and elongating zone (i.e. site of gravicurvature) of horizontally oriented roots of Zea mays. Ca, Na, Cl, K and Mg accumulate along the lower side of caps of horizontally oriented roots. The most dramatic asymmetries of these ions occur in the apoplast, especially the mucilage. We could not detect any significant differences in the concentrations of these ions in the central cytoplasm of columella cells along the upper and lower sides of caps of horizontally-oriented roots. However, the increased amounts of Na, Cl, K and Mg in the longitudinal walls of columella cells along the lower side of the cap suggest that these ions may move down through the columella tissue of horizontally-oriented roots. Ca also accumulates (largely in the mucilage) along the lower side of the elongating zone of horizontally-oriented roots, while Na, P, Cl and K tend to accumulate along the upper side of the elongating zone. Of these ions, only K increases in concentration in the cytoplasm and longitudinal walls of cortical cells in the upper vs lower sides of the elongating zone. These results indicate that (1) gravity-induced asymmetries of ions differ significantly in the cap and elongating zone of graviresponding roots, (2) Ca accumulates along the lower side of the cap and elongating zone of graviresponding roots, (3) increased growth of the upper side of the elongating zone of horizontally-oriented roots correlates positively with increased amounts of K in the cytoplasm and longitudinal walls of cortical cells, and (4) the apoplast (especially the mucilage) may be an important component of the pathway via which ions move in graviresponding rots of Zea mays. These results are discussed relative to mechanisms for graviperception and gravicurvature of roots.

  13. Oxidation of indole-3-acetic acid and oxindole-3-acetic acid to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glucopyranoside in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S.

    1984-01-01

    Radiolabeled oxindole-3-acetic acid was metabolized by roots, shoots, and caryopses of dark grown Zea mays seedlings to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glycopyranoside with the simpler name of 7-hydroxyoxindole-3-acetic acid-glucoside. This compound was also formed from labeled indole-3-acetic acid supplied to intact seedlings and root segments. The glucoside of 7-hydroxyoxindole-3-acetic acid was also isolated as an endogenous compound in the caryopses and shoots of 4-day-old seedlings. It accumulates to a level of 4.8 nanomoles per plant in the kernel, more than 10 times the amount of oxindole-3-acetic acid. In the shoot it is present at levels comparable to that of oxindole-3-acetic acid and indole-3-acetic acid (62 picomoles per shoot). We conclude that 7-hydroxyoxindole-3-acetic acid-glucoside is a natural metabolite of indole-3-acetic acid in Z. mays seedlings. From the data presented in this paper and in previous work, we propose the following route as the principal catabolic pathway for indole-3-acetic acid in Zea seedlings: Indole-3-acetic acid --> Oxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid --> 7-Hydroxyoxindole-3-acetic acid-glucoside.

  14. Proliferation of maize (Zea mays L.) roots in response to localized supply of nitrate

    NASA Technical Reports Server (NTRS)

    Granato, T. C.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1989-01-01

    Maize (Zea mays L.) plants with two primary nodal root axes were grown for 8 d in flowing nutrient culture with each axis independently supplied with NO3-. Dry matter accumulation by roots was similar whether 1.0 mol m-3 NO3- was supplied to one or both axes. When NO3- was supplied to only one axis, however, accumulation of dry matter within the root system was significantly greater in the axis supplied with NO3-. The increased dry matter accumulation by the +N-treated axis was attributable entirely to increased density and growth of lateral branches and not to a difference in growth of the primary axis. Proliferation of lateral branches for the +N axis was associated with the capacity for in situ reduction and utilization of a portion of the absorbed NO3-, especially in the apical region where lateral primordia are initiated. Although reduced nitrogen was translocated to the -N axis, concentrations in the -N axis remained significantly lower than in the +N axis. The concentration of reduced nitrogen, as well as in vitro NO3- reductase activity, was greater in apical than in more basal regions of the +N axis. The enhanced proliferation of lateral branches in the +N axis was accompanied by an increase in total respiration rate of the axis. Part of the increased respiration was attributable to increased mass of roots. The specific respiration rate (micromoles CO2 evolved per hour per gram root dry weight) was also greater for the +N than for the -N axis. If respiration rate is taken as representative of sink demand, stimulation of initiation and growth of laterals by in situ utilization of a localized exogenous supply of NO3- establishes an increased sink demand through enhanced metabolic activity and the increased partitioning of assimilates to the +N axis responds to the difference in sink demand between +N and -N axes.

  15. Increase in Dry Weight and Total Nitrogen Content in Zea mays and Setaria italica Associated with Nitrogen-fixing Azospirillum spp. 1

    PubMed Central

    Cohen, Efraim; Okon, Yaacov; Kigel, Jaime; Nur, Israel; Henis, Yigal

    1980-01-01

    The association between nitrogen-fixing bacteria from the genus Azospirillum and the grasses Zea mays and Setaria italica was investigated in sterilized Leonard-jar assemblies. Nitrogen-fixing bacteria isolated from Cynodon dactylon roots in Israel and Azospirillum brasilense (Sp-7, Sp-80, and Cd) were examined. C2H2 reduction activity was detected in systems containing 0.0 to 0.08 but not in those containing 0.16 gram per liter NH4NO3. The organisms tested significantly increased plant dry weight (50-100%), total N content of leaves (50-100%) and C2H4 production (300-1000 nanomoles C2H4 per plant per hour). Highest C2H2 reduction activities were obtained above 30 C and with high light intensities. Significant increases in S. italica dry weight (DW) and nitrogen (N) content were observed in sand (DW = 80%, N = 150%), sandy loam soil (DW = 80%, N = 75%) and loess (DW = 37%, N = 25%). The results obtained in this work clearly demonstrate the potential benefit of inoculating grasses with Azospirillum. PMID:16661514

  16. Cadmium toxicity in Maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation.

    PubMed

    Anjum, Shakeel Ahmad; Tanveer, Mohsin; Hussain, Saddam; Bao, Mingchen; Wang, Longchang; Khan, Imran; Ullah, Ehsan; Tung, Shahbaz Atta; Samad, Rana Abdul; Shahzad, Babar

    2015-11-01

    Increased cadmium (Cd) accumulation in soils has led to tremendous environmental problems, with pronounced effects on agricultural productivity. Present study investigated the effects of Cd stress imposed at various concentrations (0, 75, 150, 225, 300, 375 μM) on antioxidant activities, reactive oxygen species (ROS), Cd accumulation, and productivity of two maize (Zea mays L.) cultivars viz., Run Nong 35 and Wan Dan 13. Considerable variations in Cd accumulation and in behavior of antioxidants and ROS were observed under Cd stress in both maize cultivars, and such variations governed by Cd were concentration dependent. Exposure of plant to Cd stress considerably increased Cd concentration in all plant parts particularly in roots. Wan Dan 13 accumulated relatively higher Cd in root, stem, and leaves than Run Nong 35; however, in seeds, Run Nong 35 recorded higher Cd accumulation. All the Cd toxicity levels starting from 75 μM enhanced H2O2 and MDA concentrations and triggered electrolyte leakage in leaves of both cultivars, and such an increment was more in Run Nong 35. The ROS were scavenged by the enhanced activities of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and glutathione peroxidase in response to Cd stress, and these antioxidant activities were higher in Wan Dan 13 compared with Run Nong 35 at all Cd toxicity levels. The grain yield of maize was considerably reduced particularly for Run Nong 35 under different Cd toxicity levels as compared with control. The Wan Dan 13 was better able to alleviate Cd-induced oxidative damage which was attributed to more Cd accumulation in roots and higher antioxidant activities in this cultivar, suggesting that manipulation of these antioxidants and enhancing Cd accumulation in roots may lead to improvement in Cd stress tolerance.

  17. Mutations Altering Chloroplast Ribosome Phenotype in Chlamydomonas, II. A New Mendelian Mutation*

    PubMed Central

    Boynton, John E.; Gillham, Nicholas W.; Burkholder, Barbara

    1970-01-01

    A new mutation of Chlamydomonas reinhardi, cr-1, is characterized. The mutation exhibits Mendelian inheritance and affects the sedimentation velocity and formation of intact chloroplast ribosomes. The mutant grows reasonably well when supplied with sodium acetate as a carbon source, but poorly when forced to grow photosynthetically using carbon dioxide. Since the mutant cr-1 accumulates large subunits of the chloroplast ribosome, we postulate that it is blocked in the formation of the small subunit. A tentative model explaining the behavior of the several mutants in Chlamydomonas now known to have altered chloroplast ribosomal phenotypes is presented. Images PMID:16591885

  18. Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis.

    PubMed

    Gotoh, Eiji; Suetsugu, Noriyuki; Higa, Takeshi; Matsushita, Tomonao; Tsukaya, Hirokazu; Wada, Masamitsu

    2018-01-24

    Leaf photosynthesis is regulated by multiple factors that help the plant to adapt to fluctuating light conditions. Leaves of sun-light-grown plants are thicker and contain more columnar palisade cells than those of shade-grown plants. Light-induced chloroplast movements are also essential for efficient leaf photosynthesis and facilitate efficient light utilization in leaf cells. Previous studies have demonstrated that leaves of most of the sun-grown plants exhibited no or very weak chloroplast movements and could accomplish efficient photosynthesis under strong light. To examine the relationship between palisade cell shape, chloroplast movement and distribution, and leaf photosynthesis, we used an Arabidopsis thaliana mutant, angustifolia (an), which has thick leaves that contain columnar palisade cells similar to those in the sun-grown plants. In the highly columnar cells of an mutant leaves, chloroplast movements were restricted. Nevertheless, under white light condition (at 120 µmol m -2 s -1 ), the an mutant plants showed higher chlorophyll content per unit leaf area and, thus, higher light absorption by the leaves than the wild type, which resulted in enhanced photosynthesis per unit leaf area. Our findings indicate that coordinated regulation of leaf cell shape and chloroplast movement according to the light conditions is pivotal for efficient leaf photosynthesis.

  19. Genetic manipulation of isoprene emissions in poplar plants remodels the chloroplast proteome.

    PubMed

    Velikova, Violeta; Ghirardo, Andrea; Vanzo, Elisa; Merl, Juliane; Hauck, Stefanie M; Schnitzler, Jörg-Peter

    2014-04-04

    Biogenic isoprene (2-methyl-1,3-butadiene) improves the integrity and functionality of thylakoid membranes and scavenges reactive oxygen species (ROS) in plant tissue under stress conditions. On the basis of available physiological studies, we hypothesized that the suppression of isoprene production in the poplar plant by genetic engineering would cause changes in the chloroplast protein pattern, which in turn would compensate for changes in chloroplast functionality and overall plant performance under abiotic stress. To test this hypothesis, we used a stable isotope-coded protein-labeling technique in conjunction with polyacrylamide gel electrophoresis and liquid chromatography tandem mass spectrometry. We analyzed quantitative and qualitative changes in the chloroplast proteome of isoprene-emitting and non isoprene-emitting poplars. Here we demonstrate that suppression of isoprene synthase by RNA interference resulted in decreased levels of chloroplast proteins involved in photosynthesis and increased levels of histones, ribosomal proteins, and proteins related to metabolism. Overall, our results show that the absence of isoprene triggers a rearrangement of the chloroplast protein profile to minimize the negative stress effects resulting from the absence of isoprene. The present data strongly support the idea that isoprene improves/stabilizes thylakoid membrane structure and interferes with the production of ROS.

  20. Translation efficiencies of synonymous codons are not always correlated with codon usage in tobacco chloroplasts.

    PubMed

    Nakamura, Masayuki; Sugiura, Masahiro

    2007-01-01

    Codon usage in chloroplasts is different from that in prokaryotic and eukaryotic nuclear genomes. However, no experimental approach has been made to analyse the translation efficiency of individual codons in chloroplasts. We devised an in vitro assay for translation efficiencies using synthetic mRNAs, and measured the translation efficiencies of five synonymous codon groups in tobacco chloroplasts. Among four alanine codons (GCN, where N is U, C, A or G), GCU was the most efficient for translation, whereas the chloroplast genome lacks tRNA genes corresponding to GCU. Phenylalanine and tyrosine are each encoded by two codons (UUU/C and UAU/C, respectively). Phenylalanine UUC and tyrosine UAC were translated more than twice as efficiently than UUU and UAU, respectively, contrary to their codon usage, whereas translation efficiencies of synonymous codons for alanine, aspartic acid and asparagine were parallel to their codon usage. These observations indicate that translation efficiencies of individual codons are not always correlated with codon usage in vitro in chloroplasts. This raises an important issue for foreign gene expression in chloroplasts.

  1. Reproduction of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) B biotype in maize fields (Zea mays L.) in Brazil.

    PubMed

    Quintela, Eliane D; Abreu, Aluana G; Lima, Julyana F Dos S; Mascarin, Gabriel M; Santos, Jardel B Dos; Brown, Judith K

    2016-11-01

    Bemisia tabaci (Genn.) (Hemiptera: Aleyrodidae) was observed to have completed its reproductive cycle from the egg to the adult on maize (Zea mays L.). Field and screenhouse studies were carried out to investigate the durability of this putative and unprecedented adaptation to a grass host. Analysis of the mitochondrial COI gene sequence identified the maize-associated B. tabaci as the exotic B biotype (major clade North Africa-Mediterranean-Middle East). Results showed that whiteflies migrated from soybean crops and successfully established in maize plants. Females exhibited a preference for oviposition primarily on the first and second leaves of maize, but were also able to colonise developing leaves. A high, natural infestation on maize (193.3 individuals, all developmental stages) was observed within a 7.1 cm 2 designated 'observation area'. Whiteflies collected from naturally infested maize leaves and allowed to oviposit on maize seedlings grown in a screenhouse developed from egg to adulthood in 28.6 ± 0.2 days. This is the first report of the B biotype completing its development on maize plants. This surprising anomaly indicates that the B biotype is capable of adapting to monocotyledonous host plants, and importantly, broadens the host range to include at least one species in the Poaceae. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.).

    PubMed

    Tian, Yu; Guan, Bo; Zhou, Daowei; Yu, Junbao; Li, Guangdi; Lou, Yujie

    2014-01-01

    A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.). Results indicated that the seeds primed by gibberellins (GA), NaCl, and polyethylene glycol (PEG) reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P < 0.05). The recommended prime reagents were GA at 10 mg/L, NaCl at 50 mM, and PEG at 15% on account of germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM), or PEG (15%) significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method.

  3. Studies on the growth and indole-3-acetic acid and abscisic acid content of Zea mays seedlings grown in microgravity

    NASA Technical Reports Server (NTRS)

    Schulze, A.; Jensen, P. J.; Desrosiers, M.; Buta, J. G.; Bandurski, R. S.

    1992-01-01

    Measurements were made of the fresh weight, dry weight, dry weight-fresh weight ratio, free and conjugated indole-3-acetic acid, and free and conjugated abscisic acid in seedlings of Zea mays grown in darkness in microgravity and on earth. Imbibition of the dry kernels was 17 h prior to launch. Growth was for 5 d at ambient orbiter temperature and at a chronic accelerational force of the order of 3 x 10(-5) times earth gravity. Weights and hormone content of the microgravity seedlings were, with minor exceptions, not statistically different from seedlings grown in normal gravity. The tissues of the shuttle-grown plants appeared normal and the seedlings differed only in the lack of orientation of roots and shoots. These findings, based upon 5 d of growth in microgravity, cannot be extrapolated to growth in microgravity for weeks, months, and years, as might occur on a space station. Nonetheless, it is encouraging, for prospects of bioregeneration of the atmosphere and food production in a space station, that no pronounced differences in the parameters measured were apparent during the 5 d of plant seedling growth in microgravity.

  4. Environmental materials for remediation of soils contaminated with lead and cadmium using maize (Zea mays L.) growth as a bioindicator.

    PubMed

    Shi, Yu; Huang, Zhanbin; Liu, Xiujie; Imran, Suheryani; Peng, Licheng; Dai, Rongji; Deng, Yulin

    2016-04-01

    Heavy metal pollution is a severe environmental problem. Remediation of contaminated soils can be accomplished using environmental materials that are low cost and environmentally friendly. We evaluated the individual and combination effects of humic acid (HA), super absorbent polymer (SAP), zeolite (ZE), and fly ash composites (FC) on immobilization of lead (Pb) and cadmium (Cd) in contaminated soils. We also investigated long-term practical approaches for remediation of heavy metal pollution in soil. The biochemical and morphological properties of maize (Zea mays L.) were selected as biomarkers to assess the effects of environmental materials on heavy metal immobilization. The results showed that addition of test materials to soil effectively reduced heavy metal accumulation in maize foliage, improving chlorophyll levels, plant growth, and antioxidant enzyme activity. The test materials reduced heavy metal injury to maize throughout the growth period. A synergistic effect from combinations of different materials on immobilization of Pb and Cd was determined based on the reduction of morphological and biochemical injuries to maize. The combination of zeolite and humic acid was especially effective. Treatment with a combination of HA + SAP + ZE + FC was superior for remediation of soils contaminated with high levels of Pb and Cd.

  5. Analysis of growth patterns during gravitropic curvature in roots of Zea mays by use of a computer-based video digitizer

    NASA Technical Reports Server (NTRS)

    Nelson, A. J.; Evans, M. L.

    1986-01-01

    A computer-based video digitizer system is described which allows automated tracking of markers placed on a plant surface. The system uses customized software to calculate relative growth rates at selected positions along the plant surface and to determine rates of gravitropic curvature based on the changing pattern of distribution of the surface markers. The system was used to study the time course of gravitropic curvature and changes in relative growth rate along the upper and lower surface of horizontally-oriented roots of maize (Zea mays L.). The growing region of the root was found to extend from about 1 mm behind the tip to approximately 6 mm behind the tip. In vertically-oriented roots the relative growth rate was maximal at about 2.5 mm behind the tip and declined smoothly on either side of the maximum. Curvature was initiated approximately 30 min after horizontal orientation with maximal (50 degrees) curvature being attained in 3 h. Analysis of surface extension patterns during the response indicated that curvature results from a reduction in growth rate along both the upper and lower surfaces with stronger reduction along the lower surface.

  6. Complete chloroplast genome of Trachelium caeruleum: extensiverearrangements are associated with repeats and tRNAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haberle, Rosemarie C.; Fourcade, Matthew L.; Boore, Jeffrey L.

    2006-01-09

    Chloroplast genome structure, gene order and content arehighly conserved in land plants. We sequenced the complete chloroplastgenome sequence of Trachelium caeruleum (Campanulaceae) a member of anangiosperm family known for highly rearranged chloroplast genomes. Thetotal genome size is 162,321 bp with an IR of 27,273 bp, LSC of 100,113bp and SSC of 7,661 bp. The genome encodes 115 unique genes, with 19duplicated in the IR, a tRNA (trnI-CAU) duplicated once in the LSC and aprotein coding gene (psbJ) duplicated twice, for a total of 137 genes.Four genes (ycf15, rpl23, infA and accD) are truncated and likelynonfunctional; three others (clpP, ycf1 andmore » ycf2) are so highly divergedthat they may now be pseudogenes. The most conspicuous feature of theTrachelium genome is the presence of eighteen internally unrearrangedblocks of genes that have been inverted or relocated within the genome,relative to the typical gene order of most angiosperm chloroplastgenomes. Recombination between repeats or tRNAs has been suggested as twomeans of chloroplast genome rearrangements. We compared the relativenumber of repeats in Trachelium to eight other angiosperm chloroplastgenomes, and evaluated the location of repeats and tRNAs in relation torearrangements. Trachelium has the highest number and largest repeats,which are concentrated near inversion endpoints or other rearrangements.tRNAs occur at many but not all inversion endpoints. There is likely nosingle mechanism responsible for the remarkable number of alterations inthis genome, but both repeats and tRNAs are clearly associated with theserearrangements. Land plant chloroplast genomes are highly conserved instructure, gene order and content. The chloroplast genomes of ferns, thegymnosperm Ginkgo, and most angiosperms are nearly collinear, reflectingthe gene order in lineages that diverged from lycopsids and the ancestralchloroplast gene order over 350 million years ago (Raubeson and Jansen,1992). Although earlier mapping

  7. Chloroplast-derived vaccine antigens and biopharmaceuticals: expression, folding, assembly and functionality.

    PubMed

    Chebolu, S; Daniell, H

    2009-01-01

    Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance, and multi-gene expression in a single transformation event. Oral delivery is facilitated by hyperexpression of vaccine antigens against cholera, tetanus, anthrax, plague, or canine parvovirus (4%-31% of total soluble protein, TSP) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato) as well as the availability of antibiotic free selectable markers or the ability to excise selectable marker genes. Hyperexpression of several therapeutic proteins, including human serum albumin (11.1% TSP), somatotropin (7% TSP), interferon-alpha (19% TSP), interferon-gamma (6% TSP), and antimicrobial peptide (21.5% TSP), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitates assembly of complex multisubunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLA cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Purification of human proinsulin has been achieved using novel purification strategies (inverse temperature transition property) that do not require expensive column chromatography techniques. Thus, transgenic chloroplasts are ideal bio-reactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner.

  8. Chloroplast-Derived Vaccine Antigens and Biopharmaceuticals: Expression, Folding, Assembly and Functionality

    PubMed Central

    Chebolu, S.; Daniell, H.

    2009-01-01

    Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance, and multi-gene expression in a single transformation event. Oral delivery is facilitated by hyperexpression of vaccine antigens against cholera, tetanus, anthrax, plague, or canine parvovirus (4%–31% of total soluble protein, TSP) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato) as well as the availability of antibiotic free selectable markers or the ability to excise selectable marker genes. Hyperexpression of several therapeutic proteins, including human serum albumin (11.1% TSP), somatotropin (7% TSP), interferon-alpha (19% TSP), interferon-gamma (6% TSP), and antimicrobial peptide (21.5% TSP), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitates assembly of complex multisubunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLA cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Purification of human proinsulin has been achieved using novel purification strategies (inverse temperature transition property) that do not require expensive column chromatography techniques. Thus, transgenic chloroplasts are ideal bioreactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner. PMID:19401820

  9. Characterization of ApB73, a virulence factor important for colonization of Zea mays by the smut Ustilago maydis

    PubMed Central

    Stirnberg, Alexandra

    2016-01-01

    Summary The biotrophic fungus Ustilago maydis, the causal agent of corn smut disease, uses numerous small secreted effector proteins to suppress plant defence responses and reshape the host metabolism. However, the role of specific effectors remains poorly understood. Here, we describe the identification of ApB73 (Apathogenic in B73), an as yet uncharacterized protein essential for the successful colonization of maize by U. maydis. We show that apB73 is transcriptionally induced during the biotrophic stages of the fungal life cycle. The deletion of the apB73 gene results in cultivar‐specific loss of gall formation in the host. The ApB73 protein is conserved among closely related smut fungi. However, using virulence assays, we show that only the orthologue of the maize‐infecting head smut Sporisorium reilianum can complement the mutant phenotype of U. maydis. Although microscopy shows that ApB73 is secreted into the biotrophic interface, it seems to remain associated with fungal cell wall components or the fungal plasma membrane. Taken together, the results show that ApB73 is a conserved and important virulence factor of U. maydis that localizes to the interface between the pathogen and its host Zea mays. PMID:27279632

  10. Light, genotype, and abscisic acid affect chloroplast positioning in guard cells of Arabidopsis thaliana leaves in distinct ways.

    PubMed

    Königer, Martina; Jessen, Brita; Yang, Rui; Sittler, Dorothea; Harris, Gary C

    2010-09-01

    The goal of this study was to investigate the effects of light intensity, genotype, and various chemical treatments on chloroplast movement in guard cells of Arabidopsis thaliana leaves. After treatment at various light intensities (dark, low, and high light), leaf discs were fixed with glutaraldehyde, and imaged using confocal laser microscopy. Each chloroplast was assigned a horizontal (close to pore, center, or epidermal side) and vertical (outer, middle, inner) position. White light had a distinct effect on chloroplast positioning, most notably under high light (HL) when chloroplasts on the upper leaf surface of wild-type (WT) moved from epidermal and center positions toward the pore. This was not the case for phot1-5/phot2-1 or phot2-1 plants, thus phototropins are essential for chloroplast positioning in guard cells. In npq1-2 mutants, fewer chloroplasts moved to the pore position under HL than in WT plants, indicating that white light can affect chloroplast positioning also in a zeaxanthin-dependent way. Cytochalasin B inhibited the movement of chloroplasts to the pore under HL, while oryzalin did not, supporting the idea that actin plays a role in the movement. The movement along actin cables is dependent on CHUP1 since chloroplast positioning in chup1 was significantly altered. Abscisic acid (ABA) caused most chloroplasts in WT and phot1-5/phot2-1 to be localized in the center, middle part of the guard cells irrespective of light treatment. This indicates that not only light but also water stress influences chloroplast positioning.

  11. Desaturation of oleoyl groups in envelope membranes from spinach chloroplasts.

    PubMed Central

    Schmidt, H; Heinz, E

    1990-01-01

    Envelope membranes isolated from chloroplasts of spinach (Spinacia oleracea) desaturate oleoyl groups in monogalactosyl diacylglycerol to linoleoyl groups. The desaturation requires NADPH in combination with ferredoxin and is not restricted to monogalactosyl diacylglycerol, since it is also observed in biosynthetic intermediates as, for example, in phosphatidic acid. This indicates a certain degree of unspecificity of the oleate desaturase in isolated envelope membranes. Lipid desaturation is another important function of chloroplast envelopes. PMID:11607123

  12. EMF radiations (1800 MHz)-inhibited early seedling growth of maize (Zea mays) involves alterations in starch and sucrose metabolism.

    PubMed

    Kumar, Arvind; Singh, Harminder Pal; Batish, Daizy R; Kaur, Shalinder; Kohli, Ravinder Kumar

    2016-07-01

    The present study investigated the impact of 1800-MHz electromagnetic field radiations (EMF-r), widely used in mobile communication, on the growth and activity of starch-, sucrose-, and phosphate-hydrolyzing enzymes in Zea mays seedlings. We exposed Z. mays to modulated continuous wave homogenous EMF-r at specific absorption rate (SAR) of 1.69±0.0 × 10(-1) W kg(-1) for ½, 1, 2, and 4 h. The analysis of seedlings after 7 days revealed that short-term exposure did not induce any significant change, while longer exposure of 4 h caused significant growth and biochemical alterations. There was a reduction in the root and coleoptile length with more pronounced effect on coleoptile growth (23 % reduction on 4-h exposure). The contents of photosynthetic pigments and total carbohydrates declined by 13 and 18 %, respectively, in 4-h exposure treatments compared to unexposed control. The activity of starch-hydrolyzing enzymes-α- and β-amylases-increased by ∼92 and 94 %, respectively, at an exposure duration of 4 h, over that in the control. In response to 4-h exposure treatment, the activity of sucrolytic enzymes-acid invertases and alkaline invertases-was increased by 88 and 266 %, whereas the specific activities of phosphohydrolytic enzymes (acid phosphatases and alkaline phosphatases) showed initial increase up to ≤2 h duration and then declined at >2 h exposure duration. The study concludes that EMF-r-inhibited seedling growth of Z. mays involves interference with starch and sucrose metabolism.

  13. The Effects of Temperature and Precipitation on the Yield of Zea Mays L. I the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Stooksbury, David Emory

    Three families of straightforward maize (Zea mays L.) yield/climate models using monthly temperature and precipitation terms are produced. One family of models uses USDA's Crop Reporting Districts (CRD) as its scale of aggregation. The other two families of models use three different district aggregates based on climate or yield patterns. The climate and yield districts are determined by using a two-stage cluster analysis. The CRD-based family of models perform as well as the climate and yield based models. All models explain between 80% and 90% of the variance in maize yield. The most important climate term affecting maize yield in the South is the daily maximum temperature at pollination time. The higher the maximum temperature, the lower the yield. Above normal minimum temperature during pollination increases yield in the Middle South. Weather that favors early planting and rapid vegetative growth increases yield. Ideal maize yield weather includes a dry period during planting followed by a warm period during vegetative growth. Moisture variables are important only during the planting and harvest periods when above normal precipitation delays field work and thereby reduces yield. The model results indicate that the dire predictions about the fate of Southern agriculture in a trace gas warmed world may not be true. This is due to the overwhelming influence of the daily maximum temperature on yield. An optimum aggregate for climate impact studies was not found. I postulate that this is due to the dynamic nature of the American maize production system. For most climate impact studies on a dynamic agricultural system, there does not need to be a concern about the model aggregation.

  14. Uptake and effects of a mixture of widely used therapeutic drugs in Eruca sativa L. and Zea mays L. plants.

    PubMed

    Marsoni, Milena; De Mattia, Fabrizio; Labra, Massimo; Bruno, Antonia; Bracale, Marcella; Vannini, Candida

    2014-10-01

    Pharmaceutically active compounds (PACs) are continuously dispersed into the environment due to human and veterinary use, giving rise to their potential accumulation in edible plants. In this study, Eruca sativa L. and Zea mays L. were selected to determine the potential uptake and accumulation of eight different PACs (Salbutamol, Atenolol, Lincomycin, Cyclophosphamide, Carbamazepine, Bezafibrate, Ofloxacin and Ranitidine) designed for human use. To mimic environmental conditions, the plants were grown in pots and irrigated with water spiked with a mixture of PACs at concentrations found in Italian wastewaters and rivers. Moreover, 10× and 100× concentrations of these pharmaceuticals were also tested. The presence of the pharmaceuticals was tested in the edible parts of the plants, namely leaves for E. sativa and grains for Z. mays. Quantification was performed by liquid chromatography mass spectroscopy (LC/MS/MS). In the grains of 100× treated Z. mays, only atenolol, lincomycin and carbamazepine were above the limit of detection (LOD). At the same concentration in E. sativa plants the uptake of all PACs was >LOD. Lincomycin and oflaxacin were above the limit of quantitation in all conditions tested in E. sativa. The results suggest that uptake of some pharmaceuticals from the soil may indeed be a potential transport route to plants and that these environmental pollutants can reach different edible parts of the selected crops. Measurements of the concentrations of these pharmaceuticals in plant materials were used to model potential adult human exposure to these compounds. The results indicate that under the current experimental conditions, crops exposed to the selected pharmaceutical mixture would not have any negative effects on human health. Moreover, no significant differences in the growth of E. sativa or Z. mays plants irrigated with PAC-spiked vs. non-spiked water were observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Identification and Characterization of a Chloroplast-Targeted Obg GTPase in Dendrobium officinale.

    PubMed

    Chen, Ji; Deng, Feng; Deng, Mengsheng; Han, Jincheng; Chen, Jianbin; Wang, Li; Yan, Shen; Tong, Kai; Liu, Fan; Tian, Mengliang

    2016-12-01

    Bacterial homologous chloroplast-targeted Obg GTPases (ObgCs) belong to the plant-typical Obg group, which is involved in diverse physiological processes during chloroplast development. However, the evolutionarily conserved function of ObgC in plants remains elusive and requires further investigation. In this study, we identified DoObgC from an epiphytic plant Dendrobium officinale and demonstrated the characteristics of DoObgC. Sequence analysis indicated that DoObgC is highly conserved with other plant ObgCs, which contain the chloroplast transit peptide (cTP), Obg fold, G domain, and OCT regions. The C terminus of DoObgC lacking the chloroplast-targeting cTP region, DoObgC Δ1-160 , showed strong similarity to ObgE and other bacterial Obgs. Overexpression of DoObgC Δ1-160 in Escherichia coli caused slow cell growth and an increased number of elongated cells. This phenotype was consistent with the phenotype of cells overexpressing ObgE. Furthermore, the expression of recombinant DoObgC Δ1-160 enhanced the cell persistence of E. coli to streptomycin. Results of transient expression assays revealed that DoObgC was localized to chloroplasts. Moreover, we demonstrated that DoObgC could rescue the embryotic lethal phenotype of the Arabidopsis obgc-t mutant, suggesting that DoObgC is a functional homolog to Arabidopsis AtObgC in D. officinale. Gene expression profiles showed that DoObgC was expressed in leaf-specific and light-dependent patterns and that DoObgC responded to wounding treatments. Our previous and present studies reveal that ObgC has an evolutionarily conserved role in ribosome biogenesis to adapt chloroplast development to the environment.

  16. Identification and suppression of the p-coumaroyl CoA:hydroxycinnamyl alcohol transferase in Zea mays L.

    PubMed Central

    Marita, Jane M; Hatfield, Ronald D; Rancour, David M; Frost, Kenneth E

    2014-01-01

    Grasses, such as Zea mays L. (maize), contain relatively high levels of p-coumarates (pCA) within their cell walls. Incorporation of pCA into cell walls is believed to be due to a hydroxycinnamyl transferase that couples pCA to monolignols. To understand the role of pCA in maize development, the p-coumaroyl CoA:hydroxycinnamyl alcohol transferase (pCAT) was isolated and purified from maize stems. Purified pCAT was subjected to partial trypsin digestion, and peptides were sequenced by tandem mass spectrometry. TBLASTN analysis of the acquired peptide sequences identified a single full-length maize cDNA clone encoding all the peptide sequences obtained from the purified enzyme. The cDNA clone was obtained and used to generate an RNAi construct for suppressing pCAT expression in maize. Here we describe the effects of suppression of pCAT in maize. Primary screening of transgenic maize seedling leaves using a new rapid analytical platform was used to identify plants with decreased amounts of pCA. Using this screening method, mature leaves from fully developed plants were analyzed, confirming reduced pCA levels throughout plant development. Complete analysis of isolated cell walls from mature transgenic stems and leaves revealed that lignin levels did not change, but pCA levels decreased and the lignin composition was altered. Transgenic plants with the lowest levels of pCA had decreased levels of syringyl units in the lignin. Thus, altering the levels of pCAT expression in maize leads to altered lignin composition, but does not appear to alter the total amount of lignin present in the cell walls. PMID:24654730

  17. Tic40, a membrane-anchored co-chaperone homolog in the chloroplast protein translocon

    PubMed Central

    Chou, Ming-Lun; Fitzpatrick, Lynda M.; Tu, Shuh-Long; Budziszewski, Gregory; Potter-Lewis, Sharon; Akita, Mitsuru; Levin, Joshua Z.; Keegstra, Kenneth; Li, Hsou-min

    2003-01-01

    The function of Tic40 during chloroplast protein import was investigated. Tic40 is an inner envelope membrane protein with a large hydrophilic domain located in the stroma. Arabidopsis null mutants of the atTic40 gene were very pale green and grew slowly but were not seedling lethal. Isolated mutant chloroplasts imported precursor proteins at a lower rate than wild-type chloroplasts. Mutant chloroplasts were normal in allowing binding of precursor proteins. However, during subsequent translocation across the inner membrane, fewer precursors were translocated and more precursors were released from the mutant chloroplasts. Cross-linking experiments demonstrated that Tic40 was part of the translocon complex and functioned at the same stage of import as Tic110 and Hsp93, a member of the Hsp100 family of molecular chaperones. Tertiary structure prediction and immunological studies indicated that the C-terminal portion of Tic40 contains a TPR domain followed by a domain with sequence similarity to co-chaperones Sti1p/Hop and Hip. We propose that Tic40 functions as a co-chaperone in the stromal chaperone complex that facilitates protein translocation across the inner membrane. PMID:12805212

  18. Stable chloroplast transformation of immature scutella and inflorescences in wheat (Triticum aestivum L.).

    PubMed

    Cui, Cuiju; Song, Fei; Tan, Yi; Zhou, Xuan; Zhao, Wen; Ma, Fengyun; Liu, Yunyi; Hussain, Javeed; Wang, Yuesheng; Yang, Guangxiao; He, Guangyuan

    2011-04-01

    Chloroplast transformation in wheat was achieved by bombardment of scutella from immature embryos and immature inflorescences, respectively. A wheat chloroplast site-specific expression vector, pBAGNRK, was constructed by placing an expression cassette containing neomycin phosphotransferase II (nptII) and green fluorescent protein (gfp) as selection and reporter genes, respectively, in the intergenic spacer between atpB and rbcL of wheat chloroplast genome. Integration of gfp gene in the plastome was identified by polymerase chain reaction (PCR) analysis and Southern blotting using gfp gene as a probe. Expression of GFP protein was examined by western blot. Three positive transformants were obtained and the Southern blot of partial fragment of atpB and rbcL (targeting site) probes verified that one of them was homoplasmic. Stable expression of GFP fluorescence was confirmed by confocal microscopy in the leaf tissues from T(1) progeny seedlings. PCR analysis of gfp gene also confirmed the inheritance of transgene in the T(1) progeny. These results strengthen the feasibility of wheat chloroplast transformation and also give a novel method for the introduction of important agronomic traits in wheat through chloroplast transformation.

  19. Dissection of the genetic architecture underlying the plant density response by mapping plant height-related traits in maize (Zea mays L.).

    PubMed

    Ku, Lixia; Zhang, Liangkun; Tian, Zhiqiang; Guo, Shulei; Su, Huihui; Ren, Zhenzhen; Wang, Zhiyong; Li, Guohui; Wang, Xiaobo; Zhu, Yuguang; Zhou, Jinlong; Chen, Yanhui

    2015-08-01

    Plant height is one of the most heritable traits in maize (Zea mays L.). Understanding the genetic control of plant height is important for elucidating the molecular mechanisms that regulate maize development. To investigate the genetic basis of the plant height response to density in maize, we evaluated the effects of two different plant densities (60,000 and 120,000 plant/hm(2)) on three plant height-related traits (plant height, ear height, and ear height-to-plant height ratio) using four sets of recombinant inbred line populations. The phenotypes observed under the two-plant density treatments indicated that high plant density increased the phenotypic performance values of the three measured traits. Twenty-three quantitative trait loci (QTLs) were detected under the two-plant density treatments, and five QTL clusters were located. Nine QTLs were detected under the low plant density treatment, and seven QTLs were detected under the high plant density treatment. Our results suggested that plant height may be controlled mainly by a common set of genes that could be influenced by additional genetic mechanisms when the plants were grown under high plant density. Fine mapping for genetic regions of the stable QTLs across different plant density environments may provide additional information about their different responses to density. The results presented here provide useful information for further research and will help to reveal the molecular mechanisms related to plant height in response to density.

  20. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines

    PubMed Central

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.; Williams, Daniel L.; Magee, Timothy D.; Kaeppler, Shawn M.; de Leon, Natalia; Hodge, David B.

    2015-01-01

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment. PMID:25871649