Sample records for zealand hydrothermal systems

  1. The hydrothermal evolution of the Kawerau geothermal system, New Zealand

    NASA Astrophysics Data System (ADS)

    Milicich, S. D.; Chambefort, I.; Wilson, C. J. N.; Charlier, B. L. A.; Tepley, F. J.

    2018-03-01

    Hydrothermal alteration zoning and processes provide insights into the evolution of heat source(s) and fluid compositions associated with geothermal systems. Traditional petrological techniques, combined with hydrothermal alteration studies, stable isotope analyses and geochronology can resolve the nature of the fluids involved in hydrothermal processes and their changes through time. We report here new findings along with previous unpublished works on alteration patterns, fluid inclusion measurements and stable isotope data to provide insights into the thermal and chemical evolution of the Kawerau geothermal system, New Zealand. These data indicate the presence of two hydrothermal events that can be coupled with chronological data. The earlier period of hydrothermal activity was initiated at 400 ka, with the heat driving the hydrothermal system inferred to be from the magmatic system that gave rise to rhyolite lavas and sills of the Caxton Formation. Isotopic data fingerprint fluids attributed to this event as meteoric, indicating that the magma primarily served as a heat source driving fluid circulation, and was not releasing magmatic fluids in sufficient quantity to affect the rock mineralogy and thus inferred fluid compositions. The modern Kawerau system was initiated at 16 ka with hydrothermal eruptions linked to shallow intrusion of magma at the onset of activity that gave rise to the Putauaki andesite cone. Likely associated with this later event was a pulse of magmatic CO2, resulting in large-scale deposition of hydrothermal calcite enriched in 18O. Meteoric water-dominated fluids subsequently overwhelmed the magmatic fluids associated with this 18O-rich signature, and both the fluid inclusion microthermometry and stable isotope data reflect a change to the present-day fluid chemistry of low salinity, meteoric-dominated waters.

  2. Whakaari (White Island volcano, New Zealand): Magma-hydrothermal laboratory

    NASA Astrophysics Data System (ADS)

    Lavallee, Yan; Heap, Michael J.; Reuschle, Thierry; Mayer, Klaus; Scheu, Bettina; Gilg, H. Albert; Kennedy, Ben M.; Letham-Brake, Mark; Jolly, Arthur; Dingwell, Donald B.

    2015-04-01

    Whakaari, active andesitic stratovolcano of the Taupo Volcanic Zone (New Zealand), hosts an open, highly reactive hydrothermal system in the amphitheatre of an earlier sector collapse. Its recent volcanic activity is primarily characterized by sequences of steam-driven (phreatic) and phreatomagmatic explosive eruptions, although a lava dome briefly extruded in 2012. The volcano provides a natural laboratory for the study of aggressive fluids on the permeability of the hydrothermal system, on phreatomagmatic volcanism as well as on the volcano edifice structural stability. Here, we present a holistic experimental dataset on the reservoir rocks properties (mineralogy, permeability, seismic velocity) and their response to changes in stress (strength, deformation mechanisms, fragmentation) and temperature (mineralogical breakdown). We show that the advance degree of alteration in the system, nearly replaced all the original rock-forming minerals. This alteration has produced generally weak rocks, which, when subjected to a differential stress, can undergo transition from a dilatant response (brittle) to a compactant response with a mere confining pressure of about 15-20 MPa (corresponding to depth of about 1 km). Thermal stressing experiments reveal that the alteration phases breakdown at 500 °C (alunite) and 700 °C (dehydrated alum and sulphur), generating much weakened skeletal rocks, deteriorated by a mass loss of 20 wt.%, resulting in an increase in porosity and permeability of about 15 vol.% and an order of magnitude, respectively. Novel thermal stressing tests at high-heating rates (<1000 K/min) suggest that the onset of this mineralogical debilitation is pushed to higher temperatures with heating rates, carrying implication for the stability of the reservoir rocks and explosions during magma movement at variable rates in the upper edifice. Rock strength imposes an important control on the stability of volcanic edifices and of the hydrothermal reservoir rocks

  3. Mass transfer processes in a post eruption hydrothermal system: Parameterisation of microgravity changes at Te Maari craters, New Zealand

    NASA Astrophysics Data System (ADS)

    Miller, Craig A.; Currenti, Gilda; Hamling, Ian; Williams-Jones, Glyn

    2018-05-01

    Fluid transfer and ground deformation at hydrothermal systems occur both as a precursor to, or as a result of, an eruption. Typically studies focus on pre-eruption changes to understand the likelihood of unrest leading to eruption; however, monitoring post-eruption changes is important for tracking the return of the system towards background activity. Here we describe processes occurring in a hydrothermal system following the 2012 eruption of Upper Te Maari crater on Mt Tongariro, New Zealand, from observations of microgravity change and deformation. Our aim is to assess the post-eruption recovery of the system, to provide a baseline for long-term monitoring. Residual microgravity anomalies of up to 92 ± 11 μGal per year are accompanied by up to 0.037 ± 0.01 m subsidence. We model microgravity changes using analytic solutions to determine the most likely geometry and source location. A multiobjective inversion tests whether the gravity change models are consistent with the observed deformation. We conclude that the source of subsidence is separate from the location of mass addition. From this unusual combination of observations, we develop a conceptual model of fluid transfer within a condensate layer, occurring in response to eruption-driven pressure changes. We find that depressurisation drives the evacuation of pore fluid, either exiting the system completely as vapour through newly created vents and fumaroles, or migrating to shallower levels where it accumulates in empty pore space, resulting in positive gravity changes. Evacuated pores then collapse, causing subsidence. In addition we find that significant mass addition occurs from influx of meteoric fluids through the fractured hydrothermal seal. Long-term combined microgravity and deformation monitoring will allow us to track the resealing and re-pressurisation of the hydrothermal system and assess what hazard it presents to thousands of hikers who annually traverse the volcano, within 2 km of the

  4. A multidisciplinary approach to quantify the permeability of the Whakaari/White Island volcanic hydrothermal system (Taupo Volcanic Zone, New Zealand)

    NASA Astrophysics Data System (ADS)

    Heap, Michael J.; Kennedy, Ben M.; Farquharson, Jamie I.; Ashworth, James; Mayer, Klaus; Letham-Brake, Mark; Reuschlé, Thierry; Gilg, H. Albert; Scheu, Bettina; Lavallée, Yan; Siratovich, Paul; Cole, Jim; Jolly, Arthur D.; Baud, Patrick; Dingwell, Donald B.

    2017-02-01

    Our multidisciplinary study aims to better understand the permeability of active volcanic hydrothermal systems, a vital prerequisite for modelling and understanding their behaviour and evolution. Whakaari/White Island volcano (an active stratovolcano at the north-eastern end of the Taupo Volcanic Zone of New Zealand) hosts a highly reactive hydrothermal system and represents an ideal natural laboratory to undertake such a study. We first gained an appreciation of the different lithologies at Whakaari and (where possible) their lateral and vertical extent through reconnaissance by land, sea, and air. The main crater, filled with tephra deposits, is shielded by a volcanic amphitheatre comprising interbedded lavas, lava breccias, and tuffs. We deployed field techniques to measure the permeability and density/porosity of (1) > 100 hand-sized sample blocks and (2) layered unlithified deposits in eight purpose-dug trenches. Our field measurements were then groundtruthed using traditional laboratory techniques on almost 150 samples. Our measurements highlight that the porosity of the materials at Whakaari varies from ∼ 0.01 to ∼ 0.7 and permeability varies by eight orders of magnitude (from ∼ 10-19 to ∼ 10-11 m2). The wide range in physical and hydraulic properties is the result of the numerous lithologies and their varied microstructures and alteration intensities, as exposed by a combination of macroscopic and microscopic (scanning electron microscopy) observations, quantitative mineralogical studies (X-ray powder diffraction), and mercury porosimetry. An understanding of the spatial distribution of lithology and alteration style/intensity is therefore important to decipher fluid flow within the Whakaari volcanic hydrothermal system. We align our field observations and porosity/permeability measurements to construct a schematic cross section of Whakaari that highlights the salient findings of our study. Taken together, the alteration typical of a volcanic

  5. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    and vein-fi lling; and (5) areal dimensions of many large hydrothermal explosion craters in Yellowstone are similar to those of its active geyser basins and thermal areas. For Yellowstone, our knowledge of hydrothermal craters and ejecta is generally limited to after the Yellowstone Plateau emerged from beneath a late Pleistocene icecap that was roughly a kilometer thick. Large hydrothermal explosions may have occurred earlier as indicated by multiple episodes of cementation and brecciation commonly observed in hydrothermal ejecta clasts. Critical components for large, explosive hydrothermal systems include a watersaturated system at or near boiling temperatures and an interconnected system of well-developed joints and fractures along which hydrothermal fluids flow. Active deformation of the Yellowstone caldera, active faulting and moderate local seismicity, high heat flow, rapid changes in climate, and regional stresses are factors that have strong infl uences on the type of hydrothermal system developed. Ascending hydrothermal fluids flow along fractures that have developed in response to active caldera deformation and along edges of low-permeability rhyolitic lava flows. Alteration of the area affected, self-sealing leading to development of a caprock for the hydrothermal system, and dissolution of silica-rich rocks are additional factors that may constrain the distribution and development of hydrothermal fields. A partial lowpermeability layer that acts as a cap to the hydrothermal system may produce some over-pressurization, thought to be small in most systems. Any abrupt drop in pressure initiates steam fl ashing and is rapidly transmitted through interconnected fractures that result in a series of multiple large-scale explosions contributing to the excavation of a larger explosion crater. Similarities between the size and dimensions of large hydrothermal explosion craters and thermal fields in Yellowstone may indicate that catastrophic events which result in l

  6. Experimental estimates of the energy budget of hydrothermal eruptions; application to 2012 Upper Te Maari eruption, New Zealand

    NASA Astrophysics Data System (ADS)

    Montanaro, Cristian; Scheu, Bettina; Cronin, Shane J.; Breard, Eric C. P.; Lube, Gert; Dingwell, Donald B.

    2016-10-01

    Sudden hydrothermal eruptions occur in many volcanic settings and may include high-energy explosive phases. Ballistics launched by such events, together with ash plumes and pyroclastic density currents, generate deadly proximal hazards. The violence of hydrothermal eruptions (or explosive power) depends on the energy available within the driving-fluids (gas or liquid), which also influences the explosive mechanisms, volumes, durations, and products of these eruptions. Experimental studies in addition to analytical modeling were used here to elucidate the fragmentation mechanism and aspects of energy balance within hydrothermal eruptions. We present results from a detailed study of recent event that occurred on the 6th of August 2012 at Upper Te Maari within the Tongariro volcanic complex (New Zealand). The eruption was triggered by a landslide from this area, which set off a rapid stepwise decompression of the hydrothermal system. Explosive blasts were directed both westward and eastward of the collapsed area, with a vertical ash plume sourced from an adjacent existing crater. All explosions ejected blocks on ballistic trajectories, hundreds of which impacted New Zealand's most popular hiking trail and a mountain lodge, 1.4 km from the explosion locus. We have employed rocks representative of the eruption source area to perform rapid decompression experiments under controlled laboratory conditions that mimic hydrothermal explosions under controlled laboratory conditions. An experimental apparatus for 34 by 70 mm cylindrical samples was built to reduce the influence of large lithic enclaves (up to 30 mm in diameter) within the rock. The experiments were conducted in a temperature range of 250 °C-300 °C and applied pressure between 4 MPa and 6.5 MPa, which span the range of expected conditions below the Te Maari crater. Within this range we tested rapid decompression of pre-saturated samples from both liquid-dominated conditions and the vapor-dominated field

  7. The Lassen hydrothermal system

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Bergfeld, Deborah; Clor, Laura; Evans, William C.

    2016-01-01

    The active Lassen hydrothermal system includes a central vapor-dominated zone or zones beneath the Lassen highlands underlain by ~240 °C high-chloride waters that discharge at lower elevations. It is the best-exposed and largest hydrothermal system in the Cascade Range, discharging 41 ± 10 kg/s of steam (~115 MW) and 23 ± 2 kg/s of high-chloride waters (~27 MW). The Lassen system accounts for a full 1/3 of the total high-temperature hydrothermal heat discharge in the U.S. Cascades (140/400 MW). Hydrothermal heat discharge of ~140 MW can be supported by crystallization and cooling of silicic magma at a rate of ~2400 km3/Ma, and the ongoing rates of heat and magmatic CO2 discharge are broadly consistent with a petrologic model for basalt-driven magmatic evolution. The clustering of observed seismicity at ~4–5 km depth may define zones of thermal cracking where the hydrothermal system mines heat from near-plastic rock. If so, the combined areal extent of the primary heat-transfer zones is ~5 km2, the average conductive heat flux over that area is >25 W/m2, and the conductive-boundary length <50 m. Observational records of hydrothermal discharge are likely too short to document long-term transients, whether they are intrinsic to the system or owe to various geologic events such as the eruption of Lassen Peak at 27 ka, deglaciation beginning ~18 ka, the eruptions of Chaos Crags at 1.1 ka, or the minor 1914–1917 eruption at the summit of Lassen Peak. However, there is a rich record of intermittent hydrothermal measurement over the past several decades and more-frequent measurement 2009–present. These data reveal sensitivity to climate and weather conditions, seasonal variability that owes to interaction with the shallow hydrologic system, and a transient 1.5- to twofold increase in high-chloride discharge in response to an earthquake swarm in mid-November 2014.

  8. Microbiology of ancient and modern hydrothermal systems.

    PubMed

    Reysenbach, A L; Cady, S L

    2001-02-01

    Hydrothermal systems have prevailed throughout geological history on earth, and ancient ARCHAEAN hydrothermal deposits could provide clues to understanding earth's earliest biosphere. Modern hydrothermal systems support a plethora of microorganisms and macroorganisms, and provide good comparisons for paleontological interpretation of ancient hydrothermal systems. However, all of the microfossils associated with ancient hydrothermal deposits reported to date are filamentous, and limited STABLE ISOTOPE analysis suggests that these microfossils were probably autotrophs. Therefore, the morphology and mode of carbon metabolism are attributes of microorganisms from modern hydrothermal systems that provide valuable information for interpreting the geological record using morphological and isotopic signatures.

  9. Chemical environments of submarine hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  10. Episodic formation of the world-class Waihi epithermal Au-Ag vein system, Hauraki Goldfield, New Zealand

    USGS Publications Warehouse

    Gasston, Erin; Mauk, Jeffrey L.; Cosca, Michael A.; Morgan, Leah; Hall, Chris M.

    2017-01-01

    The world-class Waihi vein system in New Zealand has produced more than 248,400 kg Au and 1.43 million kg Ag. New high-precision 40Ar/39Ar dates of adularia from different veins show that some veins formed at different times (6.15 Ma Martha vs. 5.83 and 5.85 Ma Empire and Welcome, respectively), even though they have similar mineralogy. The Martha vein formed over a period of approximately 150,000 years. The Moonlight vein, which has a different ore mineral assemblage, appears to have formed over a longer time interval that spanned formation of the Martha, Welcome, and Empire veins. These dates suggest that some veins in the Waihi vein system formed relatively quickly during only part of the lifetime of the hydrothermal system, whereas other veins may have formed over longer periods of time. However, the Au endowment of the Martha vein exceeds the Au endowment of the Moonlight vein, indicating that the total lifetime of the vein-forming hydrothermal system does not determine metal endowment.

  11. Dynamics of the Yellowstone hydrothermal system

    USGS Publications Warehouse

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  12. Fungal colonization of an Ordovician impact-induced hydrothermal system

    PubMed Central

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-01-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life. PMID:24336641

  13. Fungal colonization of an Ordovician impact-induced hydrothermal system

    NASA Astrophysics Data System (ADS)

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-12-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.

  14. Fungal colonization of an Ordovician impact-induced hydrothermal system.

    PubMed

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-12-16

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.

  15. Organic synthesis during fluid mixing in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Shock, Everett L.; Schulte, Mitchell D.

    1998-12-01

    Hydrothermal circulation can lead to fluid mixing on any planet with liquid water and a source of heat. Aqueous fluids with differing compositions, especially different oxidation states, are likely to be far from thermodynamic equilibrium when they mix, and provide a source of free energy that can drive organic synthesis from CO2 and H2, and/or supply a source of geochemical energy to chemolithoautotrophic organisms. Results are presented that quantify the potential for organic synthesis during unbuffered fluid mixing in present submarine hydrothermal systems, as well as hypothetical systems that may have existed on the early Earth and Mars. Dissolved hydrogen, present in submarine hydrothermal fluids owing to the high-temperature reduction of H2O as seawater reacts with oceanic crustal rocks, provides the reduction potential and the thermodynamic drive for organic synthesis from CO2 (or bicarbonate) as hydrothermal fluids mix with seawater. The potential for organic synthesis is a strong function of the H2 content of the hydrothermal fluid, which is, in turn, a function of the prevailing oxidation state controlled by the composition of the rock that hosts the hydrothermal system. Hydrothermal fluids with initial oxidation states at or below those set by the fayalite-magnetite-quartz mineral assemblage show the greatest potential for driving organic synthesis. These calculations show that it is thermodynamically possible for 100% of the carbon in the mixed fluid to be reduced to a mixture of carboxylic acids, alcohols, and ketones in the range 250-50°C as cold seawater mixes with the hydrothermal fluid. As the temperature drops, larger organic molecules are favored, which implies that fluid mixing could drive the geochemical equivalent of a metabolic system. This enormous reduction potential probably drives a large portion of the primary productivity around present seafloor hydrothermal vents and would have been present in hydrothermal systems on the early Earth

  16. Hydrothermal systems as environments for the emergence of life

    NASA Technical Reports Server (NTRS)

    Shock, E. L.

    1996-01-01

    Analysis of the chemical disequilibrium provided by the mixing of hydrothermal fluids and seawater in present-day systems indicates that organic synthesis from CO2 or carbonic acid is thermodynamically favoured in the conditions in which hyperthermophilic microorganisms are known to live. These organisms lower the Gibbs free energy of the chemical mixture by synthesizing many of the components of their cells. Primary productivity is enormous in hydrothermal systems because it depends only on catalysis of thermodynamically favourable, exergonic reactions. It follows that hydrothermal systems may be the most favourable environments for life on Earth. This fact makes hydrothermal systems logical candidates for the location of the emergence of life, a speculation that is supported by genetic evidence that modern hyperthermophilic organisms are closer to a common ancestor than any other forms of life. The presence of hydrothermal systems on the early Earth would correspond to the presence of liquid water. Evidence that hydrothermal systems existed early in the history of Mars raises the possibility that life may have emerged on Mars as well. Redox reactions between water and rock establish the potential for organic synthesis in and around hydrothermal systems. Therefore, the single most important parameter for modelling the geochemical emergence of life on the early Earth or Mars is the composition of the rock which hosts the hydrothermal system.

  17. An overview of New Zealand's trauma system.

    PubMed

    Paice, Rhondda

    2007-01-01

    Patterns of trauma and trauma systems in New Zealand are similar to those in Australia. Both countries have geographical considerations, terrain and distance, that can cause delay to definitive care. There are only 7 hospitals in New Zealand that currently manage major trauma patients, and consequently, trauma patients are often hospitalized some distance from their homes. The prehospital services are provided by one major provider throughout the country, with a high level of volunteers providing these services in the rural areas. New Zealand has a national no-fault accident insurance system, the Accident Compensation Corporation, which funds all trauma-related healthcare from the roadside to rehabilitation. This insurance system provides 24-hour no-fault personal injury insurance coverage. The Accident Compensation Corporation provides bulk funding to hospitals for resources to manage the care of trauma patients. Case managers are assigned for major trauma patients. This national system also has a rehabilitation focus. The actual funds are managed by the hospitals, and this allows hospital staff to provide optimum care for trauma patients. New Zealand works closely with Australia in the development of a national trauma registry, research, and education in trauma care for patients in Australasia (the islands of the southern Pacific Ocean, including Australia, New Zealand, and New Guinea).

  18. Volcanic ash leachate compositions and assessment of health and agricultural hazards from 2012 hydrothermal eruptions, Tongariro, New Zealand

    NASA Astrophysics Data System (ADS)

    Cronin, S. J.; Stewart, C.; Zernack, A. V.; Brenna, M.; Procter, J. N.; Pardo, N.; Christenson, B.; Wilson, T.; Stewart, R. B.; Irwin, M.

    2014-10-01

    After almost 80 years of quiescence, the upper Te Maari vent on Mt. Tongariro erupted suddenly at 2352 h (NZ time) on 6 August 2012. The short-lived hydrothermal eruption distributed a fine ash of minor volume (~ 5 × 105 m3) over 200 km from source. The threat of further eruptions prompted an investigation of the possible health and agricultural impacts of any future eruptions from this volcano, particularly since the most recent large-scale ash falls in New Zealand in 1995-1996 had generated significant agricultural problems, including livestock deaths. Deposited ash was sampled between 5 and 200 km from the volcano as soon as possible after the eruption. Two sub-lobes of ash were identified from different vent areas and displayed subtly different leaching properties. The first was an initial small lobe directed NNE, likely formed from drifting low-level clouds associated with the initial lateral explosive blast and surges. The main fall lobe, directed eastward, was sourced from a short-lived vertical plume that rose up to c. 8 km. Ash from the initial fall lobe had higher concentrations of F and Al, in single-step leaches as well as in the totals of three, sequential extractions. Further, the initial lobe showed a higher proportion of soluble F and Al extracted in the first leach, compared to totals. A linear relationship between concentrations of Al and F in single leaches from the 6 August eruption was highly significant (Pearson correlation coefficient r = 0.987 for 1:20 leaching ratios and r = 0.971 for 1:100), suggesting the presence of soluble alumino-fluoride complexes (AlFx+ 3 - x). An even more significant 1:1 ratio is displayed for the largest concentration leached ions of Ca and SO4, which correspond to the presence of crystalline gypsum throughout the newly excavated hydrothermal system. Although no fresh magma was erupted in this event, a shallow intrusion prior to the hydrothermal explosion apparently provided significant contents of volcanic gas

  19. Peptide synthesis in early earth hydrothermal systems

    USGS Publications Warehouse

    Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.

    2009-01-01

    We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.

  20. Hydrothermal mineralising systems as critical systems

    NASA Astrophysics Data System (ADS)

    Hobbs, Bruce

    2015-04-01

    Hydrothermal mineralising systems as critical systems. Bruce E Hobbs1,2, Alison Ord1 and Mark A. Munro1. 1. Centre for Exploration Targeting, The University of Western Australia, M006, 35 Stirling Highway, Crawley, WA 6009, Australia. 2. CSIRO Earth and Resource Engineering, Bentley, WA, Australia Hydrothermal mineralising systems are presented as large, open chemical reactors held far from equilibrium during their life-time by the influx of heat, fluid and dissolved chemical species. As such they are nonlinear dynamical systems and need to be analysed using the tools that have been developed for such systems. Hydrothermal systems undergo a number of transitions during their evolution and this paper focuses on methods for characterising these transitions in a quantitative manner and establishing whether they resemble first or second (critical) phase transitions or whether they have some other kind of nature. Critical phase transitions are characterised by long range correlations for some parameter characteristic of the system, power-law probability distributions so that there is no characteristic length scale and a high sensitivity to perturbations; as one approaches criticality, characteristic parameters for the system scale in a power law manner with distance from the critical point. The transitions undergone in mineralised hydrothermal systems are: (i) widespread, non-localised mineral alteration involving exothermic mineral reactions that produce hydrous silicate phases, carbonates and iron-oxides, (ii) strongly localised veining, brecciation and/or stock-work formation, (iii) a series of endothermic mineral reactions involving the formation of non-hydrous silicates, sulphides and metals such as gold, (iv) multiple repetitions of transitions (ii) and (iii). We have quantified aspects of these transitions in gold deposits from the Yilgarn craton of Western Australia using wavelet transforms. This technique is convenient and fast. It enables one to establish if

  1. Thermohydrodynamic model: Hydrothermal system, shallowly seated magma chamber

    NASA Astrophysics Data System (ADS)

    Kiryukhin, A. V.

    1985-02-01

    The results of numerical modeling of heat exchange in the Hawaiian geothermal reservoir demonstrate the possibility of appearance of a hydrothermal system over a magma chamber. This matter was investigated in hydrothermal system. The equations for the conservation of mass and energy are discussed. Two possible variants of interaction between the magma chamber and the hydrothermal system were computated stationary dry magma chamber and dry magma chamber changing volume in dependence on the discharge of magma and taking into account heat exchange with the surrounding rocks. It is shown that the thermal supplying of the hydrothermal system can be ensured by the extraction of heat from a magma chamber which lies at a depth of 3 km and is melted out due to receipt of 40 cubic km of basalt melt with a temperature of 1,300 C. The initial data correspond with computations made with the model to the temperature values in the geothermal reservoir and a natural heat transfer comparable with the actually observed values.

  2. The Biogeochemistry of Sulfur in Hydrothermal Systems

    NASA Technical Reports Server (NTRS)

    Schulte, Mitchell; Rogers, K. L.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The incorporation of sulfur into many biomolecules likely dates back to the development of the earliest metabolic strategies. Sulfur is common in enzymes and co-enzymes and is an indispensable structural component in many peptides and proteins. Early metabolism may have been heavily influenced by the abundance of sulfide minerals in hydrothermal systems. The incorporation of sulfur into many biomolecules likely dates back to the development of the earliest metabolic strategies. Sulfur is common in enzymes and co-enzymes and is an indispensable structural component in many peptides and proteins. Early metabolism may have been heavily influenced by the abundance of sulfide minerals in hydrothermal systems. Understanding how sulfur became prevalent in biochemical processes and many biomolecules requires knowledge of the reaction properties of sulfur-bearing compounds. We have previously estimated thermodynamic data for thiols, the simplest organic sulfur compounds, at elevated temperatures and pressures. If life began in hydrothermal environments, it is especially important to understand reactions at elevated temperatures among sulfur-bearing compounds and other organic molecules essential for the origin and persistence of life. Here we examine reactions that may have formed amino acids with thiols as reaction intermediates in hypothetical early Earth hydrothermal environments. (There are two amino acids, cysteine and methionine, that contain sulfur.) Our calculations suggest that significant amounts of some amino acids were produced in early Earth hydrothermal fluids, given reasonable concentrations H2, NH3, H2S and CO. For example, preliminary results indicate that glycine activities as high as 1 mmol can be reached in these systems at 100 C. Alanine formation from propanethiol is also a favorable reaction. On the other hand, the calculated equilibrium log activities of cysteine and serine from propanethiol are -21 and -19, respectively, at 100 C. These results

  3. Hydrothermal systems in small ocean planets.

    PubMed

    Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael

    2007-12-01

    We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1).

  4. Experimental calibration of Phreatic and Hydrothermal Explosions: A case study on Lake Okaro, New Zealand

    NASA Astrophysics Data System (ADS)

    Foote, L. C.; Scheu, B.; kennedy, B.; Gravley, D.; Dingwell, D. B.

    2011-12-01

    Phreatic and hydrothermal eruptions, the most common on earth, frequently lead to magmatic eruptions. They often occur with little or no warning, representing a significant hazard. These eruptions occur over a range of temperature and pressure, and within widely differing rock types. Additionally, these eruptions may be triggered by earthquakes or landslides . Regardless of the trigger, they occur when hydrothermal/supercritical fluid rapidly flashes to steam due either to a heating or a decompression. Despite the frequency of these eruptions, previous studies have largely been focused exclusively on either the physical characteristics of the eruptions or experimental modelling of the trigger processes, with very few combining the two. Here, a new experimental procedure has been developed to model phreatic fragmentation based on the shock-tube experiments of magmatic fragmentation introduced by Alidibirov & Dingwell (1996). This technique uses water-saturated samples, producing fragmentation from a combination of argon gas overpressure and steam flashing, within the vesicles. By integrating measurements of the physical characteristics such as porosity, permeability and mineralogy in the analysis of the results of these experiments a model of phreatic fragmentation is proposed, to aid in future hazard modelling. The phreatic explosion crater forming Lake Okaro, within the Taupo Volcanic Zone of New Zealand was used as a case study. The eruption was triggered within the Rangitaiki Ignimbrite, which served as the sample material for these experiments. In order to evaluate the effects of alteration, both original, unaltered material and hydrothermally altered samples were analysed. As fragmentation is driven by gas overpressure/steam expansion within vesicles, porosity plays a critical role. For these samples average porosity values are 24 and 40% respectively. Experimental conditions were chosen primarily to reflect the conditions of the study location but also to

  5. Hydrothermal systems and volcano geochemistry

    USGS Publications Warehouse

    Fournier, R.O.

    2007-01-01

    The upward intrusion of magma from deeper to shallower levels beneath volcanoes obviously plays an important role in their surface deformation. This chapter will examine less obvious roles that hydrothermal processes might play in volcanic deformation. Emphasis will be placed on the effect that the transition from brittle to plastic behavior of rocks is likely to have on magma degassing and hydrothermal processes, and on the likely chemical variations in brine and gas compositions that occur as a result of movement of aqueous-rich fluids from plastic into brittle rock at different depths. To a great extent, the model of hydrothermal processes in sub-volcanic systems that is presented here is inferential, based in part on information obtained from deep drilling for geothermal resources, and in part on the study of ore deposits that are thought to have formed in volcanic and shallow plutonic environments.

  6. Microbial processing of carbon in hydrothermal systems (Invited)

    NASA Astrophysics Data System (ADS)

    LaRowe, D.; Amend, J. P.

    2013-12-01

    Microorganisms are known to be active in hydrothermal systems. They catalyze reactions that consume and produce carbon compounds as a result of their efforts to gain energy, grow and replace biomass. However, the rates of these processes, as well as the size of the active component of microbial populations, are poorly constrained in hydrothermal environments. In order to better characterize biogeochemical processes in these settings, a quantitative relationship between rates of microbial catalysis, energy supply and demand and population size is presented. Within this formulation, rates of biomass change are determined as a function of the proportion of catabolic power that is converted into biomass - either new microorganisms or the replacement of existing cell components - and the amount of energy that is required to synthesize biomass. The constraints that hydrothermal conditions place on power supply and demand are explicitly taken into account. The chemical composition, including the concentrations of organic compounds, of diffuse and focused flow hydrothermal fluids, hydrothermally influenced sediment pore water and fluids from the oceanic lithosphere are used in conjunction with cell count data and the model described above to constrain the rates of microbial processes that influence the carbon cycle in the Juan de Fuca hydrothermal system.

  7. Thermodynamics of Strecker synthesis in hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Schulte, Mitchell; Shock, Everett

    1995-01-01

    Submarine hydrothermal systems on the early Earth may have been the sites from which life emerged. The potential for Strecker synthesis to produce biomolecules (amino and hydroxy acids) from starting compounds (ketones, aldehydes, HCN and ammonia) in such environments is evaluated quantitatively using thermodynamic data and parameters for the revised Helgeson-Kirkham-Flowers (HKF) equation of state. Although there is an overwhelming thermodynamic drive to form biomolecules by the Strecker synthesis at hydrothermal conditions, the availability and concentration of starting compounds limit the efficiency and productivity of Strecker reactions. Mechanisms for concentrating reactant compounds could help overcome this problem, but other mechanisms for production of biomolecules may have been required to produce the required compounds on the early Earth. Geochemical constraints imposed by hydrothermal systems provide important clues for determining the potential of these and other systems as sites for the emergence of life.

  8. Electrochemistry of Prebiotic Early Earth Hydrothermal Chimney Systems

    NASA Astrophysics Data System (ADS)

    Hermis, N.; Barge, L. M.; Chin, K. B.; LeBlanc, G.; Cameron, R.

    2017-12-01

    Hydrothermal chimneys are self-organizing chemical garden precipitates generated from geochemical disequilibria within sea-vent environments, and have been proposed as a possible setting for the emergence of life because they contain mineral catalysts and transect ambient pH / Eh / chemical gradients [1]. We simulated the growth of hydrothermal chimneys in early Earth vent systems by using different hydrothermal simulants such as sodium sulfide (optionally doped with organic molecules) which were injected into an early Earth ocean simulant containing dissolved ferrous iron, nickel, and bicarbonate [2]. Chimneys on the early Earth would have constituted flow-through reactors, likely containing Fe/Ni-sulfide catalysts that could have driven proto-metabolic electrochemical reactions. The electrochemical activity of the chimney system was characterized non-invasively by placing electrodes at different locations across the chimney wall and in the ocean to analyze the bulk properties of surface charge potential in the chimney / ocean / hydrothermal fluid system. We performed in-situ characterization of the chimney using electrochemical impedance spectroscopy (EIS) which allowed us to observe the changes in physio-chemical behavior of the system through electrical spectra of capacitance and impedance over a wide range of frequencies during the metal sulfide chimney growth. The electrochemical properties of hydrothermal chimneys in natural systems persist due to the disequilibria maintained between the ocean and hydrothermal fluid. When the injection in our experiment (analogous to fluid flow in a vent) stopped, we observed a corresponding decline in open circuit voltage across the chimney wall, though the impedance of the precipitate remained lor. Further work is needed to characterize the electrochemistry of simulated chimney systems by controlling response factors such as electrode geometry and environmental conditions, in order to simulate electrochemical reactions

  9. Controls on hydrothermal fluid flow within the Rotokawa geothermal field, New Zealand: insights from 3D geological models

    NASA Astrophysics Data System (ADS)

    Bardsley, C.; Sewell, S.; Cumming, W. B.; Minnick, M.; Rowland, J. V.; O'Brien, J.; Price, L.

    2012-12-01

    Identifying permeable zones is essential for economically viable exploration and development of conventional geothermal reservoirs with naturally high permeability. Except very close to boreholes, the resolution of geological and geophysical tools is at a much larger scale than the centimetre aperture of most geothermal fluid pathways important to production. A case study from the >250°C Rotokawa Geothermal Field, currently producing 175 MWe within the Taupo Volcanic Zone in New Zealand, illustrates how a 3D visualization of a subset of available data that are conceptually relevant at the scales of interest has enhanced the understanding of fluid flow within this system. Geoscience data sets including subsurface formation geometry and permeable zones in wells; the natural state temperature pattern deduced from wells and MT resistivity; microearthquakes (MEQ) induced by injection, and surface geology have been integrated with engineering data including production pressure responses and injection rates to constrain the location and general hydraulic properties of one of the most influential faults in the field. Stratigraphic offsets of >500 m, recorded in core and cuttings from wells drilled on either side of the field, confirm the presence of this fault, initially suspected based on a surface lineation of eight young (<22 ka) hydrothermal eruption craters. The 3D visualization of the MEQ occurrence pattern in space and time helps constrain the mechanism of the MEQs themselves and, importantly, the confinement of most of the MEQs to the eastern side of the fault closest to the injection wells. Hosted within the Mesozoic meta-sedimentary basement formation, this has provided an important conceptual constraint that explains the lack of injection fluid on the western side of this fault. Further to this, if this fault is acting as a barrier at the Mesozoic meta-sedimentary level today, this could imply a switch in the behaviour of this structure as it is inferred, based

  10. Numerical simulation of magmatic hydrothermal systems

    USGS Publications Warehouse

    Ingebritsen, S.E.; Geiger, S.; Hurwitz, S.; Driesner, T.

    2010-01-01

    The dynamic behavior of magmatic hydrothermal systems entails coupled and nonlinear multiphase flow, heat and solute transport, and deformation in highly heterogeneous media. Thus, quantitative analysis of these systems depends mainly on numerical solution of coupled partial differential equations and complementary equations of state (EOS). The past 2 decades have seen steady growth of computational power and the development of numerical models that have eliminated or minimized the need for various simplifying assumptions. Considerable heuristic insight has been gained from process-oriented numerical modeling. Recent modeling efforts employing relatively complete EOS and accurate transport calculations have revealed dynamic behavior that was damped by linearized, less accurate models, including fluid property control of hydrothermal plume temperatures and three-dimensional geometries. Other recent modeling results have further elucidated the controlling role of permeability structure and revealed the potential for significant hydrothermally driven deformation. Key areas for future reSearch include incorporation of accurate EOS for the complete H2O-NaCl-CO2 system, more realistic treatment of material heterogeneity in space and time, realistic description of large-scale relative permeability behavior, and intercode benchmarking comparisons. Copyright 2010 by the American Geophysical Union.

  11. Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Shock, Everett L.; McCollom, Thomas; Schulte, Mitchell D.

    1995-06-01

    Thermodynamic calculations provide the means to quantify the chemical disequilibrium inherent in the mixing of redeuced hydrothermal fluids with seawater. The chemical energy available for metabolic processes in these environments can be evaluated by taking into account the pressure and temperature dependence of the apparent standard Gibbs free energies of reactions in the S-H2-H2O system together with geochemical constraints on pH, activities of aqueous sulfur species and fugacities of H2 and/or O2. Using present-day mixing of hydrothermal fluids and seawater as a starting point, it is shown that each mole of H2S entering seawater from hydrothermal fluids represents about 200,000 calories of chemical energy for metabolic systems able to catalyze H2S oxidation. Extrapolating to the early Earth, which was likely to have had an atmosphere more reduced than at present, shows that this chemical energy may have been a factor of two or so less. Nevertheless, mixing of hydrothermal fluids with seawater would have been an abundant source of chemical energy, and an inevitable consequence of the presence of an ocean on an initially hot Earth. The amount of energy available was more than enough for organic synthesis from CO2 or CO, and/or polymer formation, indicating that the vicinity of hydrothermal systems at the sea floor was an ideal location for the emergence of the first chemolithoautotrophic metabolic systems.

  12. Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.; Mccollom, Thomas; Schulte, Mithell D.

    1995-01-01

    Thermodynamic calculations provide the means to quantify the chemical disequilibrium inherent in the mixing of reduced hydrothermal fluids with seawater. The chemical energy available for metabolic processes in these environments can be evaluated by taking into account the pressure and temperature dependence of the apparent standard Gibbs free energies of reactions in the S-H2-H2O system together with geochemical constraints on pH, activities of aqueous sulfur species and fugacities of H2 and/or O2. Using present-day mixing of hydrothermal fluids and seawater as a starting point, it is shown that each mole of H2S entering seawater from hydrothermal fluids represents about 200,000 calories of chemical energy for metabolic systems able to catalyze H2S oxidation. Extrapolating to the early Earth, which was likely to have had an atmosphere more reduced than at present, shows that this chemical energy may have been a factor of two or so less. Nevertheless, mixing of hydrothermal fluids with seawater would have been an abundant source of chemical energy, and an inevitable consequence of the presence of an ocean on an initially hot Earth. The amount of energy available was more than enough for organic synthesis from CO2 or CO, and/or polymer formation, indicating that the vicinity of hydrothermal systems at the sea floor was an ideal location for the emergence of the first chemolithoautotrophic metabolic systems.

  13. YELLOWSTONE MAGMATIC-HYDROTHERMAL SYSTEM, U. S. A.

    USGS Publications Warehouse

    Fournier, R.O.; Pitt, A.M.; ,

    1985-01-01

    At Yellowstone National Park, the deep permeability and fluid circulation are probably controlled and maintained by repeated brittle fracture of rocks in response to local and regional stress. Focal depths of earthquakes beneath the Yellowstone caldera suggest that the transition from brittle fracture to quasi-plastic flow takes place at about 3 to 4 km. The maximum temperature likely to be attained by the hydrothermal system is 350 to 450 degree C, the convective thermal output is about 5. 5 multiplied by 10**9 watts, and the minimum average thermal flux is about 1800 mW/m**2 throughout 2,500 km**2. The average thermal gradient between the heat source and the convecting hydrothermal system must be at least 700 to 1000 degree C/km. Crystallization and partial cooling of about 0. 082 km**3 of basalt or 0. 10 km**3 of rhyolite annually could furnish the heat discharged in the hot-spring system. The Yellowstone magmatic-hydrothermal system as a whole appears to be cooling down, in spite of a relatively large rate of inflation of the Yellowstone caldera.

  14. Characterization of Magma-Driven Hydrothermal Systems at Oceanic Spreading Centers

    NASA Astrophysics Data System (ADS)

    Farough, A.; Lowell, R. P.; Corrigan, R.

    2012-12-01

    Fluid circulation in high-temperature hydrothermal systems involves complex water-rock chemical reactions and phase separation. Numerical modeling of reactive transport in multi-component, multiphase systems is required to obtain a full understanding of the characteristics and evolution of hydrothermal vent systems. We use a single-pass parameterized model of high-temperature hydrothermal circulation at oceanic spreading centers constrained by observational parameters such as vent temperature, heat output, and vent field area, together with surface area and depth of the sub-axial magma chamber, to deduce fundamental hydrothermal parameters such as mass flow rate, bulk permeability, conductive boundary layer thickness at the base of the system, magma replenishment rate, and residence time in the discharge zone. All of these key subsurface characteristics are known for fewer than 10 sites out of 300 known hydrothermal systems. The principal limitations of this approach stem from the uncertainty in heat output and vent field area. For systems where data are available on partitioning of heat and chemical output between focused and diffuse flow, we determined the fraction of high-temperature vent fluid incorporated into diffuse flow using a two-limb single pass model. For EPR 9°50` N and ASHES, the diffuse flow temperatures calculated assuming conservative mixing are nearly equal to the observed temperatures indicating that approximately 80%-90% of the hydrothermal heat output occurs as high-temperature flow derived from magmatic heat even though most of the heat output appears as low-temperature diffuse discharge. For the Main Endeavour Field and Lucky Strike, diffuse flow fluids show significant conductive cooling and heating respectively. Finally, we calculate the transport of various geochemical constituents in focused and diffuse flow at the vent field scale and compare the results with estimates of geochemical transports from the Rainbow hydrothermal field where

  15. Chemical environments of submarine hydrothermal systems. [supporting abiogenetic theory

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    The paper synthesizes diverse information about the inorganic geochemistry of submarine hydrothermal systems, provides a description of the fundamental physical and chemical properties of these systems, and examines the implications of high-temperature, fluid-driven processes for organic synthesis. Emphasis is on a few general features, i.e., pressure, temperature, oxidation states, fluid composition, and mineral alteration, because these features will control whether organic synthesis can occur in hydrothermal systems.

  16. Organic matter in hydrothermal metal ores and hydrothermal fluids

    USGS Publications Warehouse

    Orem, W.H.; Spiker, E. C.; Kotra, R.K.

    1990-01-01

    Massive polymetallic sulfides are currently being deposited around active submarine hydrothermal vents associated with spreading centers. Chemoautolithotrophic bacteria are responsible for the high production of organic matter also associated with modern submarine hydrothermal activity. Thus, there is a significant potential for organic matter/metal interactions in these systems. We have studied modern and ancient hydrothermal metal ores and modern hydrothermal fluids in order to establish the amounts and origin of the organic matter associated with the metal ores. Twenty-six samples from modern and ancient hydrothermal systems were surveyed for their total organic C contents. Organic C values ranged from 0.01% to nearly 4.0% in these samples. Metal ores from modern and ancient sediment-covered hydrothermal systems had higher organic C values than those from modern and ancient hydrothermal systems lacking appreciable sedimentary cover. One massive pyrite sample from the Galapagos spreading center (3% organic C) had stable isotope values of -27.4% (??13C) and 2.1% (??15N), similar to those in benthic siphonophors from active vents and distinct from seep sea sedimentary organic matter. This result coupled with other analyses (e.g. 13C NMR, pyrolysis/GC, SEM) of this and other samples suggests that much of the organic matter may originate from chemoautolithotrophic bacteria at the vents. However, the organic matter in hydrothermal metal ores from sediment covered vents probably arises from complex sedimentary organic matter by hydrothermal pyrolysis. The dissolved organic C concentrations of hydrothermal fluids from one site (Juan de Fuca Ridge) were found to be the same as that of background seawater. This result may indicate that dissolved organic C is effectively scavenged from hydrothermal fluids by biological activity or by co-precipitation with metal ores. ?? 1990.

  17. Heat flux from magmatic hydrothermal systems related to availability of fluid recharge

    USGS Publications Warehouse

    Harvey, M. C.; Rowland, J.V.; Chiodini, G.; Rissmann, C.F.; Bloomberg, S.; Hernandez, P.A.; Mazot, A.; Viveiros, F.; Werner, Cynthia A.

    2015-01-01

    Magmatic hydrothermal systems are of increasing interest as a renewable energy source. Surface heat flux indicates system resource potential, and can be inferred from soil CO2 flux measurements and fumarole gas chemistry. Here we compile and reanalyze results from previous CO2 flux surveys worldwide to compare heat flux from a variety of magma-hydrothermal areas. We infer that availability of water to recharge magmatic hydrothermal systems is correlated with heat flux. Recharge availability is in turn governed by permeability, structure, lithology, rainfall, topography, and perhaps unsurprisingly, proximity to a large supply of water such as the ocean. The relationship between recharge and heat flux interpreted by this study is consistent with recent numerical modeling that relates hydrothermal system heat output to rainfall catchment area. This result highlights the importance of recharge as a consideration when evaluating hydrothermal systems for electricity generation, and the utility of CO2 flux as a resource evaluation tool.

  18. Anhydrite precipitation in seafloor hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Theissen-Krah, Sonja; Rüpke, Lars H.

    2016-04-01

    The composition and metal concentration of hydrothermal fluids venting at the seafloor is strongly temperature-dependent and fluids above 300°C are required to transport metals to the seafloor (Hannington et al. 2010). Ore-forming hydrothermal systems and high temperature vents in general are often associated with faults and fracture zones, i.e. zones of enhanced permeabilities that act as channels for the uprising hydrothermal fluid (Heinrich & Candela, 2014). Previous numerical models (Jupp and Schultz, 2000; Andersen et al. 2015) however have shown that high permeabilities tend to decrease fluid flow temperatures due to mixing with cold seawater and the resulting high fluid fluxes that lead to short residence times of the fluid near the heat source. A possible mechanism to reduce the permeability and thereby to focus high temperature fluid flow are mineral precipitation reactions that clog the pore space. Anhydrite for example precipitates from seawater if it is heated to temperatures above ~150°C or due to mixing of seawater with hydrothermal fluids that usually have high Calcium concentrations. We have implemented anhydrite reactions (precipitation and dissolution) in our finite element numerical models of hydrothermal circulation. The initial results show that the precipitation of anhydrite efficiently alters the permeability field, which affects the hydrothermal flow field as well as the resulting vent temperatures. C. Andersen et al. (2015), Fault geometry and permeability contrast control vent temperatures at the Logatchev 1 hydrothermal field, Mid-Atlantic Ridge, Geology, 43(1), 51-54. M. D. Hannington et al. (2010), Modern Sea-Floor Massive Sulfides and Base Metal Resources: Toward an Estimate of Global Sea-Floor Massive Sulfide Potential, in The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries, edited by R. J. Goldfarb, E. E. Marsh and T. Monecke, pp. 317-338, Society of Economic Geologists

  19. Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks

    DOEpatents

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2017-09-12

    A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.

  20. Mathematical Models of Seafloor Hydrothermal Systems Driven by Serpentinization of Peridotite

    NASA Astrophysics Data System (ADS)

    Lowell, R. P.; Rona, P. A.; Germanovich, L. N.

    2001-12-01

    Most seafloor hydrothermal systems are driven by heat transfer from subsurface magma bodies. At slow spreading ridges of the Atlantic and Indian oceans, however, magma supply is low; and tectonic activity brings mantle rocks to shallow depths in the crust. Then, the heat of formation released upon serpentinization of peridotite provides the energy source for hydrothermal circulation. This latter class of system has been relatively unstudied, but recent discoveries of peridotite-hosted hydrothermal systems along the Mid-Atlantic Ridge suggest that such systems may play an important role in geochemical cycling and biogeochemical processes. The likelihood that peridotite-hosted hydrothermal systems was more prevalent during the Archean further suggests that such systems may have played a role in the origin of life. We present the first mathematical models of seafloor hydrothermal systems driven by heat released upon serpentinization of peridotite. We assume seawater circulates through a major crack network in the host-peridotite and that cooling of the host-rock leads to the formation of microcracks through which the fluid infiltrates. Reaction of the fluid in microcracks with the host rock results in serpentinization and the heat released upon serpentinization is transported to the seafloor by the fluid circulating in the main crack network. The temperature and heat output of the resulting hydrothermal system is a function of the main network permeability and the rate at which the serpentinization reaction proceeds via diffusion and propagation of the microcracks. Although the temperature of such a system can be quite variable, vent temperatures between 10° C and 100° C are likely for typical crustal parameters.

  1. Hydrothermal systems on Mars: an assessment of present evidence

    NASA Technical Reports Server (NTRS)

    Farmer, J. D.

    1996-01-01

    Hydrothermal processes have been suggested to explain a number of observations for Mars, including D/H ratios of water extracted from Martian meteorites, as a means for removing CO2 from the Martian atmosphere and sequestering it in the crust as carbonates, and as a possible origin for iron oxide-rich spectral units on the floors of some rifted basins (chasmata). There are numerous examples of Martian channels formed by discharges of subsurface water near potential magmatic heat sources, and hydrothermal processes have also been proposed as a mechanism for aquifer recharge needed to sustain long term erosion of sapping channels. The following geological settings have been identified as targets for ancient hydrothermal systems on Mars: channels located along the margins of impact crater melt sheets and on the slopes of ancient volcanoes; chaotic and fretted terranes where shallow subsurface heat sources are thought to have interacted with ground ice; and the floors of calderas and rifted basins (e.g. chasmata). On Earth, such geological environments are often a locus for hydrothermal mineralization. But we presently lack the mineralogical information needed for a definitive evaluation of hypotheses. A preferred tool for identifying minerals by remote sensing methods on Earth is high spatial resolution, hyperspectral, near-infrared spectroscopy, a technique that has been extensively developed by mineral explorationists. Future efforts to explore Mars for ancient hydrothermal systems would benefit from the application of methods developed by the mining industry to look for similar deposits on Earth. But Earth-based exploration models must be adapted to account for the large differences in the climatic and geological history of Mars. For example, it is likely that the early surface environment of Mars was cool, perhaps consistently below freezing, with the shallow portions of hydrothermal systems being dominated by magma-cryosphere interactions. Given the smaller

  2. Hydrothermal systems on Mars: an assessment of present evidence.

    PubMed

    Farmer, J D

    1996-01-01

    Hydrothermal processes have been suggested to explain a number of observations for Mars, including D/H ratios of water extracted from Martian meteorites, as a means for removing CO2 from the Martian atmosphere and sequestering it in the crust as carbonates, and as a possible origin for iron oxide-rich spectral units on the floors of some rifted basins (chasmata). There are numerous examples of Martian channels formed by discharges of subsurface water near potential magmatic heat sources, and hydrothermal processes have also been proposed as a mechanism for aquifer recharge needed to sustain long term erosion of sapping channels. The following geological settings have been identified as targets for ancient hydrothermal systems on Mars: channels located along the margins of impact crater melt sheets and on the slopes of ancient volcanoes; chaotic and fretted terranes where shallow subsurface heat sources are thought to have interacted with ground ice; and the floors of calderas and rifted basins (e.g. chasmata). On Earth, such geological environments are often a locus for hydrothermal mineralization. But we presently lack the mineralogical information needed for a definitive evaluation of hypotheses. A preferred tool for identifying minerals by remote sensing methods on Earth is high spatial resolution, hyperspectral, near-infrared spectroscopy, a technique that has been extensively developed by mineral explorationists. Future efforts to explore Mars for ancient hydrothermal systems would benefit from the application of methods developed by the mining industry to look for similar deposits on Earth. But Earth-based exploration models must be adapted to account for the large differences in the climatic and geological history of Mars. For example, it is likely that the early surface environment of Mars was cool, perhaps consistently below freezing, with the shallow portions of hydrothermal systems being dominated by magma-cryosphere interactions. Given the smaller

  3. Porosity evolution in Icelandic hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Thien, B.; Kosakowski, G.; Kulik, D. A.

    2014-12-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced hydrothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems, grant number CRSII2_141843/1) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. These are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. These shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. Field observations suggest that active and fossil Icelandic hydrothermal systems are built from a superposition of completely altered and completely unaltered layers. With help of 1D and 2D reactive transport models (OpenGeoSys-GEM code), we investigate the reasons for this finding, by studying the mineralogical evolution of protoliths with different initial porosities at different temperatures and pressures, different leaching water composition and gas content, and different porosity geometries (i.e. porous medium versus fractured medium). From this study, we believe that the initial porosity of protoliths and volume changes due to their transformation into secondary minerals are key factors to explain the different alteration extents observed in field studies. We also discuss how precipitation and dissolution kinetics can influence the alteration time scales.

  4. Basin scale permeability and thermal evolution of a magmatic hydrothermal system

    NASA Astrophysics Data System (ADS)

    Taron, J.; Hickman, S. H.; Ingebritsen, S.; Williams, C.

    2013-12-01

    Large-scale hydrothermal systems are potentially valuable energy resources and are of general scientific interest due to extreme conditions of stress, temperature, and reactive chemistry that can act to modify crustal rheology and composition. With many proposed sites for Enhanced Geothermal Systems (EGS) located on the margins of large-scale hydrothermal systems, understanding the temporal evolution of these systems contributes to site selection, characterization and design of EGS. This understanding is also needed to address the long-term sustainability of EGS once they are created. Many important insights into heat and mass transfer within natural hydrothermal systems can be obtained through hydrothermal modeling assuming that stress and permeability structure do not evolve over time. However, this is not fully representative of natural systems, where the effects of thermo-elastic stress changes, chemical fluid-rock interactions, and rock failure on fluid flow and thermal evolution can be significant. The quantitative importance of an evolving permeability field within the overall behavior of a large-scale hydrothermal system is somewhat untested, and providing such a parametric understanding is one of the goals of this study. We explore the thermal evolution of a sedimentary basin hydrothermal system following the emplacement of a magma body. The Salton Sea geothermal field and its associated magmatic system in southern California is utilized as a general backdrop to define the initial state. Working within the general framework of the open-source scientific computing initiative OpenGeoSys (www.opengeosys.org), we introduce full treatment of thermodynamic properties at the extreme conditions following magma emplacement. This treatment utilizes a combination of standard Galerkin and control-volume finite elements to balance fluid mass, mechanical deformation, and thermal energy with consideration of local thermal non-equilibrium (LTNE) between fluids and solids

  5. Near-Seafloor Magnetic Exploration of Submarine Hydrothermal Systems in the Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Caratori Tontini, F.; de Ronde, C. E. J.; Tivey, M.; Kinsey, J. C.

    2014-12-01

    Magnetic data can provide important information about hydrothermal systems because hydrothermal alteration can drastically reduce the magnetization of the host volcanic rocks. Near-seafloor data (≤70 m altitude) are required to map hydrothermal systems in detail; Autonomous Underwater Vehicles (AUVs) are the ideal platform to provide this level of resolution. Here, we show the results of high-resolution magnetic surveys by the ABE and Sentry AUVs for selected submarine volcanoes of the Kermadec arc. 3-D magnetization models derived from the inversion of magnetic data, when combined with high resolution seafloor bathymetry derived from multibeam surveys, provide important constraints on the subseafloor geometry of hydrothermal upflow zones and the structural control on the development of seafloor hydrothermal vent sites as well as being a tool for the discovery of previously unknown hydrothermal sites. Significant differences exist between the magnetic expressions of hydrothermal sites at caldera volcanoes ("donut" pattern) and cones ("Swiss cheese" pattern), respectively. Subseafloor 3-D magnetization models also highlight structural differences between focused and diffuse vent sites.

  6. The hydrothermal exploration system on the 'Qianlong2' AUV

    NASA Astrophysics Data System (ADS)

    Tao, W.; Tao, C.; Jinhui, Z.; Cai, L.; Guoyin, Z.

    2016-12-01

    ABSTRACT: Qianlong2, is a fully Autonomous Underwater Vehicle (AUV) designed for submarine resources research, especially for polymetallic sulphides, and the survey depths of is up to 4500 m. Qianlong2 had successfully explored hydrothermal vent field on the Southwest Indian Ridge (SWIR), and collected conductance, temperature and depth (CTD), turbidity, and Oxidation-Reduction Potential (ORP) data. It also had mapped precise topography by high resolution side scan sonar (HRBSSS) during every dive; and obtained photographs of sulfide deposits during some dives. Here, we detailedly described the implementation of investigation, data administration, and fast mapping of hydrothermal exploration system by Qianlong2. Giving a description of how to remove the platform magnetic interference by using magnetic data during Qianlong2 spin. Based on comprehensive hydrochemical anomalies, we get a rapid method for finding the localization of hydrothermal vents. Taking one dive as an example, we systemically showed the process about how to analyse hydrothermal survey data and acquire the location results of hydrothermal vents. Considering that this method is effective and can be used in other deep-submergence assets such as human occupied vehicles (HOVs) and remotely operated vehicles (ROVs) during further studies. Finally, we discussed how to promote and optimize the installation and application of those sensors and how to improve Qianlong2's autonomy of investigation.

  7. Optimization of Large-Scale Daily Hydrothermal System Operations With Multiple Objectives

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Cheng, Chuntian; Shen, Jianjian; Cao, Rui; Yeh, William W.-G.

    2018-04-01

    This paper proposes a practical procedure for optimizing the daily operation of a large-scale hydrothermal system. The overall procedure optimizes a monthly model over a period of 1 year and a daily model over a period of up to 1 month. The outputs from the monthly model are used as inputs and boundary conditions for the daily model. The models iterate and update when new information becomes available. The monthly hydrothermal model uses nonlinear programing (NLP) to minimize fuel costs, while maximizing hydropower production. The daily model consists of a hydro model, a thermal model, and a combined hydrothermal model. The hydro model and thermal model generate the initial feasible solutions for the hydrothermal model. The two competing objectives considered in the daily hydrothermal model are minimizing fuel costs and minimizing thermal emissions. We use the constraint method to develop the trade-off curve (Pareto front) between these two objectives. We apply the proposed methodology on the Yunnan hydrothermal system in China. The system consists of 163 individual hydropower plants with an installed capacity of 48,477 MW and 11 individual thermal plants with an installed capacity of 12,400 MW. We use historical operational records to verify the correctness of the model and to test the robustness of the methodology. The results demonstrate the practicability and validity of the proposed procedure.

  8. Asymmetrical hydrothermal system below Merapi volcano imaged by geophysical data.

    NASA Astrophysics Data System (ADS)

    Byrdina, Svetlana; Friedel, Sven; Budi-Santoso, Agus; Suryanto, Wiwit; Suhari, Aldjarishy; Vandemeulebrouck, Jean; Rizal, Mohhamed H.; Grandis, Hendra

    2017-04-01

    A high-resolution image of the hydrothermal system of Merapi volcano is obtained using electrical resistivity tomography (ERT), self-potential, and CO2 flux mappings. The ERT inversions identify two distinct low-resistivity bodies, at the base of the south flank and in the summit area, that represent likely two parts of an interconnected hydrothermal system. In the summit area, the extension of the hydrothermal system is clearly limited by the main geological structures which are actual and ancient craters. A sharp resistivity contrast at ancient crater rim Pasar-Bubar separates a conductive hydrothermal system (20 - 50 Ωm) from the resistive andesite lava flows and pyroclastic deposits (2000 - 50 000 Ωm). High diffuse CO2 degassing (with a median value of 400g m -2 d -1) is observed in a narrow vicinity of the active crater rim and close to the Pasar-Bubar. The existence of preferential fluid circulation along this ancient crater rim is also evidenced by self-potential data. The total CO2 degassing across the accessible summit area with a surface of 1.4 · 10 5 m 2 is around 20 td -1. Before the 2010 eruption, Toutain et al. (2009) estimated a higher value of the total diffuse degassing from the summit area (about 200 - 230 td -1). This drop in the diffuse degassing can be related to the decrease in the magmatic activity, to the change of the summit morphology or to a combination of these factors. On the south flank of Merapi, the resistivity model shows spectacular stratification. While surficial recent andesite lava flows are characterized by resistivity exceeding 100 000 Ωm, resistivity as low as 10 Ωm has been encountered at a depth of 200 m at the base of the south flank and was interpreted as a presence of the hydrothermal system. We suggest that a sandwich-like structure of stratified pyroclastic deposits on the flanks of Merapi screen and separate the flow of hydrothermal fluids with the degassing occurring mostly through the fractured crater rims

  9. Aqueous geochemistry of the Thermopolis hydrothermal system, southern Bighorn Basin, Wyoming, U.S.A.

    DOE PAGES

    Kaszuba, John P.; Sims, Kenneth W.W.; Pluda, Allison R.

    2014-06-01

    The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and around the town of Thermopolis, Wyoming. It is the largest hydrothermal system in Wyoming outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells; published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone, simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline.

  10. New insights into the Kawah Ijen hydrothermal system from geophysical data

    USGS Publications Warehouse

    Caudron, Corentin; Mauri, G.; Williams-Jones, Glyn; Lecocq, Thomas; Syahbana, Devy Kamil; de Plaen, Raphael; Peiffer, Loic; Bernard, Alain; Saracco, Ginette

    2017-01-01

    Volcanoes with crater lakes and/or extensive hydrothermal systems pose significant challenges with respect to monitoring and forecasting eruptions, but they also provide new opportunities to enhance our understanding of magmatic–hydrothermal processes. Their lakes and hydrothermal systems serve as reservoirs for magmatic heat and fluid emissions, filtering and delaying the surface expressions of magmatic unrest and eruption, yet they also enable sampling and monitoring of geochemical tracers. Here, we describe the outcomes of a highly focused international experimental campaign and workshop carried out at Kawah Ijen volcano, Indonesia, in September 2014, designed to answer fundamental questions about how to improve monitoring and eruption forecasting at wet volcanoes.

  11. The potential hydrothermal systems unexplored in the Southwest Indian Ocean

    NASA Astrophysics Data System (ADS)

    Suo, Yanhui; Li, Sanzhong; Li, Xiyao; Zhang, Zhen; Ding, Dong

    2017-06-01

    Deep-sea hydrothermal vents possess complex ecosystems and abundant metallic mineral deposits valuable to human being. On-axial vents along tectonic plate boundaries have achieved prominent results and obtained huge resources, while nearly 90% of the global mid-ocean ridge and the majority of the off-axial vents buried by thick oceanic sediments within plates remain as relatively undiscovered domains. Based on previous detailed investigations, hydrothermal vents have been mapped along five sections along the Southwest Indian Ridge (SWIR) with different bathymetry, spreading rates, and gravity features, two at the western end (10°-16°E Section B and 16°-25°E Section C) and three at the eastern end (49°-52°E Section D, 52°-61°E Section E and 61°-70°E Section F). Hydrothermal vents along the Sections B, C, E and F with thin oceanic crust are hosted by ultramafic rocks under tectonic-controlled magmatic-starved settings, and hydrothermal vents along the Section D are associated with exceed magmatism. Limited coverage of investigations is provided along the 35°-47°E SWIR (between Marion and Indomed fracture zones) and a lot of research has been done around the Bouvet Island, while no hydrothermal vents has been reported. Analyzing bathymetry, gravity and geochemical data, magmatism settings are favourable for the occurrence of hydrothermal systems along these two sections. An off-axial hydrothermal system in the southern flank of the SWIR that exhibits ultra-thin oceanic crust associated with an oceanic continental transition is postulated to exist along the 100-Ma slow-spreading isochron in the Enderby Basin. A discrete, denser enriched or less depleted mantle beneath the Antarctic Plate is an alternative explanation for the large scale thin oceanic crust concentrated on the southern flank of the SWIR.

  12. Putative fossil life in a hydrothermal system of the Dellen impact structure, Sweden

    NASA Astrophysics Data System (ADS)

    Lindgren, Paula; Ivarsson, Magnus; Neubeck, Anna; Broman, Curt; Henkel, Herbert; Holm, Nils G.

    2010-07-01

    Impact-generated hydrothermal systems are commonly proposed as good candidates for hosting primitive life on early Earth and Mars. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is rarely reported in the literature. Here we present the occurrence of putative fossil microorganisms in a hydrothermal system of the 89 Ma Dellen impact structure, Sweden. We found the putative fossilized microorganisms hosted in a fine-grained matrix of hydrothermal alteration minerals set in interlinked fractures of an impact breccia. The putative fossils appear as semi-straight to twirled filaments, with a thickness of 1-2 μm, and a length between 10 and 100 μm. They have an internal structure with segmentation, and branching of filaments occurs frequently. Their composition varies between an outer and an inner layer of a filament, where the inner layer is more iron rich. Our results indicate that hydrothermal systems in impact craters could potentially be capable of supporting microbial life. This could have played an important role for the evolution of life on early Earth and Mars.

  13. Spatial and Temporal Changes to Water Chemistry and Heat Flux of the Lake Rotomahana Hydrothermal System

    NASA Astrophysics Data System (ADS)

    Stucker, V. K.; Tivey, M.; Lupton, J. E.; Walker, S. L.; Fornari, D. J.; de Ronde, C. E. J.

    2014-12-01

    Lake Rotomahana (North Island, New Zealand) is a crater lake with prominent hydrothermal venting. Water column studies were conducted in 2011 and 2014 to complement magnetic, seismic, bathymetric and heat flux surveys, respectively. Results from the heat flow survey indicate that Lake Rotomahana is getting warmer relative to historic measurements, with individual stations within the lake releasing heat in excess of 60 Watts/m2. Helium sources are found at the lake floor at depths of ~50 meters and ~100m. Helium concentrations below 50 m depth have increased with high statistical significance over the three years between surveys and represent some of the highest concentrations ever measured at 6x107 ccSTP/g with an end-member 3He/4He value of 7.1 Ra. Hydrothermal activity comprises a significant portion of the inputs to Lake Rotomahana, as evidenced by δD and δ18O values, as well as ratios of conservative elements such as boron and chloride. Waters collected from lakeshore hot springs show geographic differences in geothermal source temperature using a Na-K geothermometer, with inferred reservoir temperatures ranging from 200 to 230°C. Lake Rotomahana was in part the focus of the 1886 Tarawera eruption; our results show both pre-eruption hydrothermal sites and newly created post-eruption sites are active and should be monitored for continued changes.

  14. Sulfur Metabolizing Microbes Dominate Microbial Communities in Andesite-Hosted Shallow-Sea Hydrothermal Systems

    PubMed Central

    Zhang, Yao; Zhao, Zihao; Chen, Chen-Tung Arthur; Tang, Kai; Su, Jianqiang; Jiao, Nianzhi

    2012-01-01

    To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan’s coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH4) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH4 was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH4 concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan. PMID:22970260

  15. Sulfur metabolizing microbes dominate microbial communities in Andesite-hosted shallow-sea hydrothermal systems.

    PubMed

    Zhang, Yao; Zhao, Zihao; Chen, Chen-Tung Arthur; Tang, Kai; Su, Jianqiang; Jiao, Nianzhi

    2012-01-01

    To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4)) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4) was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4) concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan.

  16. Entropy production in a box: Analysis of instabilities in confined hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Börsing, N.; Wellmann, J. F.; Niederau, J.; Regenauer-Lieb, K.

    2017-09-01

    We evaluate if the concept of thermal entropy production can be used as a measure to characterize hydrothermal convection in a confined porous medium as a valuable, thermodynamically motivated addition to the standard Rayleigh number analysis. Entropy production has been used widely in the field of mechanical and chemical engineering as a way to characterize the thermodynamic state and irreversibility of an investigated system. Pioneering studies have since adapted these concepts to natural systems, and we apply this measure here to investigate the specific case of hydrothermal convection in a "box-shaped" confined porous medium, as a simplified analog for, e.g., hydrothermal convection in deep geothermal aquifers. We perform various detailed numerical experiments to assess the response of the convective system to changing boundary conditions or domain aspect ratios, and then determine the resulting entropy production for each experiment. In systems close to the critical Rayleigh number, we derive results that are in accordance to the analytically derived predictions. At higher Rayleigh numbers, however, we observe multiple possible convection modes, and the analysis of the integrated entropy production reveals distinct curves of entropy production that provide an insight into the hydrothermal behavior in the system, both for cases of homogeneous materials, as well as for heterogeneous spatial material distributions. We conclude that the average thermal entropy production characterizes the internal behavior of hydrothermal systems with a meaningful thermodynamic measure, and we expect that it can be useful for the investigation of convection systems in many similar hydrogeological and geophysical settings.

  17. Geophysical image of the hydrothermal system of Merapi volcano

    NASA Astrophysics Data System (ADS)

    Byrdina, S.; Friedel, S.; Vandemeulebrouck, J.; Budi-Santoso, A.; Suhari; Suryanto, W.; Rizal, M. H.; Winata, E.; Kusdaryanto

    2017-01-01

    We present an image of the hydrothermal system of Merapi volcano based on results from electrical resistivity tomography (ERT), self-potential, and CO2 flux mappings. The ERT models identify two distinct low-resistivity bodies interpreted as two parts of a probably interconnected hydrothermal system: at the base of the south flank and in the summit area. In the summit area, a sharp resistivity contrast at ancient crater rim Pasar-Bubar separates a conductive hydrothermal system (20-50 Ω m) from the resistive andesite lava flows and pyroclastic deposits (2000-50,000 Ω m). The existence of preferential fluid circulation along this ancient crater rim is also evidenced by self-potential data. The significative diffuse CO2 degassing (with a median value of 400 g m-2 d-1) is observed in a narrow vicinity of the active crater rim and close to the ancient rim of Pasar-Bubar. The total CO2 degassing across the accessible summital area with a surface of 1.4 ṡ 105 m2 is around 20 t d-1. Before the 2010 eruption, Toutain et al. (2009) estimated a higher value of the total diffuse degassing from the summit area (about 200-230 t d-1). This drop in the diffuse degassing from the summit area can be related to the decrease in the magmatic activity, to the change of the summit morphology, to the approximations used by Toutain et al. (2009), or, more likely, to a combination of these factors. On the south flank of Merapi, the resistivity model shows spectacular stratification. While surficial recent andesite lava flows are characterized by resistivity exceeding 100,000 Ω m, resistivity as low as 10 Ω m has been encountered at a depth of 200 m at the base of the south flank and was interpreted as a presence of the hydrothermal system. No evidence of the hydrothermal system is found on the basis of the north flank at the same depth. This asymmetry might be caused by the asymmetry of the heat supply source of Merapi whose activity is moving south or/and to the asymmetry in

  18. Abiotic Organic Chemistry in Hydrothermal Systems.

    NASA Astrophysics Data System (ADS)

    Simoneit, B. R.; Rushdi, A. I.

    2004-12-01

    Abiotic organic chemistry in hydrothermal systems is of interest to biologists, geochemists and oceanographers. This chemistry consists of thermal alteration of organic matter and minor prebiotic synthesis of organic compounds. Thermal alteration has been extensively documented to yield petroleum and heavy bitumen products from contemporary organic detritus. Carbon dioxide, carbon monoxide, ammonia and sulfur species have been used as precursors in prebiotic synthesis experiments to organic compounds. These inorganic species are common components of hot spring gases and marine hydrothermal systems. It is of interest to further test their reactivities in reductive aqueous thermolysis. We have synthesized organic compounds (lipids) in aqueous solutions of oxalic acid, and with carbon disulfide or ammonium bicarbonate at temperatures from 175-400° C. The synthetic lipids from oxalic acid solutions consisted of n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanones, n-alkenes and n-alkanes, typically to C30 with no carbon number preferences. The products from CS2 in acidic aqueous solutions yielded cyclic thioalkanes, alkyl polysulfides, and thioesters with other numerous minor compounds. The synthesis products from oxalic acid and ammonium bicarbonate solutions were homologous series of n-alkyl amides, n-alkyl amines, n-alkanes and n-alkanoic acids, also to C30 with no carbon number predominance. Condensation (dehydration) reactions also occur under elevated temperatures in aqueous medium as tested by model reactions to form amide, ester and nitrile bonds. It is concluded that the abiotic formation of aliphatic lipids, condensation products (amides, esters, nitriles, and CS2 derivatives (alkyl polysulfides, cyclic polysulfides) is possible under hydrothermal conditions and warrants further studies.

  19. Starting Conditions for Hydrothermal Systems Underneath Martian Craters: Hydrocode Modeling

    NASA Technical Reports Server (NTRS)

    Pierazzo, E.; Artemieva, N. A.; Ivanov, B. A.

    2004-01-01

    Mars is the most Earth-like of the Solar System s planets, and the first place to look for any sign of present or past extraterrestrial life. Its surface shows many features indicative of the presence of surface and sub-surface water, while impact cratering and volcanism have provided temporary and local surface heat sources throughout Mars geologic history. Impact craters are widely used ubiquitous indicators for the presence of sub-surface water or ice on Mars. In particular, the presence of significant amounts of ground ice or water would cause impact-induced hydrothermal alteration at Martian impact sites. The realization that hydrothermal systems are possible sites for the origin and early evolution of life on Earth has given rise to the hypothesis that hydrothermal systems may have had the same role on Mars. Rough estimates of the heat generated in impact events have been based on scaling relations, or thermal data based on terrestrial impacts on crystalline basements. Preliminary studies also suggest that melt sheets and target uplift are equally important heat sources for the development of a hydrothermal system, while its lifetime depends on the volume and cooling rate of the heat source, as well as the permeability of the host rocks. We present initial results of two-dimensional (2D) and three-dimensional (3D) simulations of impacts on Mars aimed at constraining the initial conditions for modeling the onset and evolution of a hydrothermal system on the red planet. Simulations of the early stages of impact cratering provide an estimate of the amount of shock melting and the pressure-temperature distribution in the target caused by various impacts on the Martian surface. Modeling of the late stage of crater collapse is necessary to characterize the final thermal state of the target, including crater uplift, and distribution of the heated target material (including the melt pool) and hot ejecta around the crater.

  20. Chemistry of a serpentinization-controlled hydrothermal system at the Lost City hydrothermal vent field

    NASA Astrophysics Data System (ADS)

    Ludwig, K. A.; Kelley, D. S.; Butterfield, D. A.; Nelson, B. K.; Karson, J. A.

    2003-12-01

    The Lost City Hydrothermal Field (LCHF), at 30° N near the Mid-Atlantic Ridge, is an off-axis, low temperature, high-pH, ultramafic-hosted vent system. Within the field, carbonate chimneys tower up to 60 m above the seafloor, making them the tallest vent structures known. The chemistry of the vent structures and fluids at the LCHF is controlled by reactions between seawater and ultramafic rocks beneath the Atlantis massif. Mixing of warm alkaline vent fluids with seawater causes precipitation of calcium carbonate and growth of the edifaces, which range from tall, graceful pinnacles to fragile flanges and colloform deposits. Geochemical and petrological analyses of the carbonate rocks reveal distinct differences between the active and extinct structures. Actively venting chimneys and flanges are extremely porous, friable formations composed predominantly of aragonite and brucite. These structures provide important niches for well-developed microbial communities that thrive on and within the chimney walls. Some of the active chimneys may also contain the mineral ikaite, an unstable, hydrated form of calcium carbonate. TIMS and ICP-MS analyses of the carbonate chimneys show that the most active chimneys have low Sr isotope values and that they are low in trace metals (e.g., Mn, Ti, Pb). Active structures emit high-pH, low-Mg fluids at 40-90° C. The fluids also have low Sr values, indicating circulation of hydrothermal solutions through the serpentinite bedrock beneath the field. In contrast to the active structures, extinct chimneys are less porous, are well lithified, and they are composed predominantly of calcite that yields Sr isotopes near seawater values. Prolonged lower temperature seawater-hydrothermal fluid interaction within the chimneys results in the conversion of aragonite to calcite and in the enrichment of some trace metals (e.g., Mn, Ti, Co, Zn). It also promotes the incorporation of foraminifera within the outer, cemented walls of the carbonate

  1. Spatial distribution of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems.

    PubMed

    Takai, Ken; Oida, Hanako; Suzuki, Yohey; Hirayama, Hisako; Nakagawa, Satoshi; Nunoura, Takuro; Inagaki, Fumio; Nealson, Kenneth H; Horikoshi, Koki

    2004-04-01

    Distribution profiles of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems were mapped with culture-independent molecular techniques. Planktonic samples were obtained from the waters surrounding two geographically and geologically distinct hydrothermal systems, and the abundance of marine crenarchaeota group I was examined by 16S ribosomal DNA clone analysis, quantitative PCR, and whole-cell fluorescence in situ hybridization. A much higher proportion of marine crenarchaeota group I within the microbial community was detected in deep-sea hydrothermal environments than in normal deep and surface seawaters. The highest proportion was always obtained from the ambient seawater adjacent to hydrothermal emissions and chimneys but not from the hydrothermal plumes. These profiles were markedly different from the profiles of epsilon-Proteobacteria, which are abundant in the low temperatures of deep-sea hydrothermal environments.

  2. Entropy Production in Convective Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Boersing, Nele; Wellmann, Florian; Niederau, Jan

    2016-04-01

    Exploring hydrothermal reservoirs requires reliable estimates of subsurface temperatures to delineate favorable locations of boreholes. It is therefore of fundamental and practical importance to understand the thermodynamic behavior of the system in order to predict its performance with numerical studies. To this end, the thermodynamic measure of entropy production is considered as a useful abstraction tool to characterize the convective state of a system since it accounts for dissipative heat processes and gives insight into the system's average behavior in a statistical sense. Solving the underlying conservation principles of a convective hydrothermal system is sensitive to initial conditions and boundary conditions which in turn are prone to uncertain knowledge in subsurface parameters. There exist multiple numerical solutions to the mathematical description of a convective system and the prediction becomes even more challenging as the vigor of convection increases. Thus, the variety of possible modes contained in such highly non-linear problems needs to be quantified. A synthetic study is carried out to simulate fluid flow and heat transfer in a finite porous layer heated from below. Various two-dimensional models are created such that their corresponding Rayleigh numbers lie in a range from the sub-critical linear to the supercritical non-linear regime, that is purely conductive to convection-dominated systems. Entropy production is found to describe the transient evolution of convective processes fairly well and can be used to identify thermodynamic equilibrium. Additionally, varying the aspect ratio for each Rayleigh number shows that the variety of realized convection modes increases with both larger aspect ratio and higher Rayleigh number. This phenomenon is also reflected by an enlarged spread of entropy production for the realized modes. Consequently, the Rayleigh number can be correlated to the magnitude of entropy production. In cases of moderate

  3. Reconstruction of Ancestral Hydrothermal Systems on Mount Rainier Using Hydrothermally Altered Rocks in Holocene Debris Flows and Tephras

    NASA Astrophysics Data System (ADS)

    John, D. A.; Breit, G. N.; Sisson, T. W.; Vallance, J. W.; Rye, R. O.

    2005-12-01

    geophysical data, as well as analog fossil hydrothermal systems in volcanoes elsewhere, constrain hydrothermal alteration geometry on the pre-Osceola-collapse edifice of Mount Rainier. Relatively narrow zones of acid magmatic-hydrothermal alteration in the central core of the volcano grade to more widely distributed smectite-pyrite alteration farther out on the upper flanks, capped by steam-heated alteration with a large component of alteration resulting from condensation of fumarolic vapor above the water table. Alteration was polygenetic in zones formed episodically, and was strongly controlled by fluxes of heat and magmatic fluid and by local permeability.

  4. Catalytic Diversity in Alkaline Hydrothermal Vent Systems on Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Cameron, Ryan D.; Barge, Laura; Chin, Keith B.; Doloboff, Ivria J.; Flores, Erika; Hammer, Arden C.; Sobron, Pablo; Russell, Michael J.; Kanik, Isik

    2016-10-01

    Hydrothermal systems formed by serpentinization can create moderate-temperature, alkaline systems and it is possible that this type of vent could exist on icy worlds such as Europa which have water-rock interfaces. It has been proposed that some prebiotic chemistry responsible for the emergence of life on Earth and possibly other wet and icy worlds could occur as a result ofredox potential and pH gradients in submarine alkaline hydrothermal vents (Russell et al., 2014). Hydrothermal chimneys formed in laboratory simulations of alkaline vents under early Earth conditions have precipitate membranes that contain minerals such as iron sulfides, which are hypothesized to catalyze reduction of CO2 (Yamaguchi et al. 2014, Roldan et al. 2014) leading to further organic synthesis. This CO2 reduction process may be affected by other trace components in the chimney, e.g. nickel or organic molecules. We have conducted experiments to investigate catalytic properties of iron and iron-nickel sulfides containing organic dopants in slightly acidic ocean simulants relevant to early Earth or possibly ocean worlds. We find that the electrochemical properties of the chimney as well as the morphology/chemistry of the precipitate are affected by the concentration and type of organics present. These results imply that synthesis of organics in water-rock systems on ocean worlds may lead to hydrothermal precipitates which can incorporate these organic into the mineral matrix and may affect the role of gradients in alkaline vent systems.Therefore, further understanding on the electroactive roles of various organic species within hydrothermal chimneys will have important implications for habitability as well as prebiotic chemistry. This work is funded by NASA Astrobiology Institute JPL Icy Worlds Team and a NAI Director's Discretionary Fund award.Yamaguchi A. et al. (2014) Electrochimica Acta, 141, 311-318.Russell, M. J. et al. (2014), Astrobiology, 14, 308-43.Roldan, A. (2014) Chem. Comm. 51

  5. Numerical Modeling of Multiphase Fluid Flow in Ore-Forming Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Weis, P.; Driesner, T.; Coumou, D.; Heinrich, C. A.

    2007-12-01

    Two coexisting fluid phases - a variably saline liquid and a vapor phase - are ubiquitous in ore-forming and other hydrothermal systems. Understanding the dynamics of phase separation and the distinct physical and chemical evolution of the two fluids probably plays a key role in generating different ore deposit types, e.g. porphyry type, high and low sulfidation Cu-Mo-Au deposits. To this end, processes within hydrothermal systems have been studied with a refined numerical model describing fluid flow in transient porous media (CSP~5.0). The model is formulated on a mass, energy and momentum conserving finite-element-finite-volume (FEFV) scheme and is capable of simulating multiphase flow of NaCl-H20 fluids. Fluid properties are computed from an improved equation of state (SOWAT~2.0). It covers conditions with temperatures of up to 1000 degrees~C, pressures of up to 500 MPa, and fluid salinities of 0~to 100%~NaCl. In particular, the new set-up allows for a more accurate description of fluid phase separation during boiling of hydrothermal fluids into a vapor and a brine phase. The geometric flexibility of the FEFV-meshes allows for investigations of a large variety of geological settings, ranging from ore-forming processes in magmatic hydrothermal system to the dynamics of black smokers at mid-ocean ridges. Simulations demonstrated that hydrothermal convection patterns above cooling plutons are primarily controlled by the system-scale permeability structure. In porphyry systems, high fluid pressures develop in a stock rising from the magma chamber which can lead to rock failure and, eventually, an increase in permeability due to hydrofracturing. Comparisons of the thermal evolution as inferred from modeling studies with data from fluid inclusion studies of the Pb-Zn deposits of Madan, Bulgaria are in a strikingly good agreement. This indicates that cross-comparisons of field observations, analytical data and numerical simulations will become a powerful tool towards a

  6. Internal structure and volcanic hazard potential of Mt Tongariro, New Zealand, from 3D gravity and magnetic models

    NASA Astrophysics Data System (ADS)

    Miller, Craig A.; Williams-Jones, Glyn

    2016-06-01

    A new 3D geophysical model of the Mt Tongariro Volcanic Massif (TgVM), New Zealand, provides a high resolution view of the volcano's internal structure and hydrothermal system, from which we derive implications for volcanic hazards. Geologically constrained 3D inversions of potential field data provides a greater level of insight into the volcanic structure than is possible from unconstrained models. A complex region of gravity highs and lows (± 6 mGal) is set within a broader, 20 mGal gravity low. A magnetic high (1300 nT) is associated with Mt Ngauruhoe, while a substantial, thick, demagnetised area occurs to the north, coincident with a gravity low and interpreted as representing the hydrothermal system. The hydrothermal system is constrained to the west by major faults, interpreted as an impermeable barrier to fluid migration and extends to basement depth. These faults are considered low probability areas for future eruption sites, as there is little to indicate they have acted as magmatic pathways. Where the hydrothermal system coincides with steep topographic slopes, an increased likelihood of landslides is present and the newly delineated hydrothermal system maps the area most likely to have phreatic eruptions. Such eruptions, while small on a global scale, are important hazards at the TgVM as it is a popular hiking area with hundreds of visitors per day in close proximity to eruption sites. The model shows that the volume of volcanic material erupted over the lifespan of the TgVM is five to six times greater than previous estimates, suggesting a higher rate of magma supply, in line with global rates of andesite production. We suggest that our model of physical property distribution can be used to provide constraints for other models of dynamic geophysical processes occurring at the TgVM.

  7. Volatile behavior and trace metal transport in the magmatic-geothermal system at Pūtauaki (Mt. Edgecumbe), New Zealand

    NASA Astrophysics Data System (ADS)

    Norling, B.; Rowe, M. C.; Chambefort, I.; Tepley, F. J.; Morrow, S.

    2016-05-01

    The present-day hydrothermal system beneath the Kawerau Geothermal Field, in the Taupo Volcanic Zone, New Zealand, is likely heated from the Pūtauaki (Mt. Edgecumbe) magma system. The aim of this work, as an analog for present day processes, is to identify whether or not earlier erupted Pūtauaki magmas show evidence for volatile exsolution. This may have led to the transfer of volatile components from the magmatic to hydrothermal systems. To accomplish this, minerals and melt inclusions from volcanic products were analyzed for abundances of volatile and ore-forming elements (S, Cl, Li, Cu, Sn, Mo, W, Sb, As, and Tl). The variations in abundance of these elements were used to assess magma evolution and volatile exsolution or fluxing in the magma system. Melt inclusions suggest the evolution of Pūtauaki andesite-dacite magmas is predominantly driven by crystallization processes resulting in rhyodacite-rhyolite glass compositions (although textural and geochemical evidence still indicate a role for magma mixing). Measured mineral-melt partition coefficients for trace metals of interest indicates that, with the exception of Tl in biotite, analyzed metals are all incompatible in Pūtauaki crystallization products. Excluding Li and Cu, other volatile and ore metals recorded in melt inclusions behave incompatibly, with concentrations increasing during evolution from rhyodacitic to rhyolitic melt compositions. Li and Cu appear to have increased mobility likely resulting from diffusive exchange post-crystallization, and may be related to late volatile fluxing. Although S and Cl concentrations decrease with melt evolution, no mineralogical evidence exists to indicate the exsolution and mobility of ore-forming metals from the magma at the time of crystallization. This observation cannot rule out the potential for post-crystallization volatile exsolution and ore-forming metal mobilization, which may only be recorded as diffusive re-equilibration of more rapidly diffusing

  8. Effect of Hydrothermal Alteration on Rock Properties in Active Geothermal Setting

    NASA Astrophysics Data System (ADS)

    Mikisek, P.; Bignall, G.; Sepulveda, F.; Sass, I.

    2012-04-01

    Hydrothermal alteration records the physical-chemical changes of rock and mineral phases caused by the interaction of hot fluids and wall rock, which can impact effective permeability, porosity, thermal parameters, rock strength and other rock properties. In this project, an experimental approach has been used to investigate the effects of hydrothermal alteration on rock properties. A rock property database of contrastingly altered rock types and intensities has been established. The database details horizontal and vertical permeability, porosity, density, thermal conductivity and thermal heat capacity for ~300 drill core samples from wells THM12, THM13, THM14, THM17, THM18, THM22 and TH18 in the Wairakei-Tauhara geothermal system (New Zealand), which has been compared with observed hydrothermal alteration type, rank and intensity obtained from XRD analysis and optical microscopy. Samples were selected from clay-altered tuff and intercalated siltstones of the Huka Falls Formation, which acts as a cap rock at Wairakei-Tauhara, and tuffaceous sandstones of the Waiora Formation, which is a primary reservoir-hosting unit for lateral and vertical fluid flows in the geothermal system. The Huka Falls Formation exhibits argillic-type alteration of varying intensity, while underlying Waiora Formations exhibits argillic- and propylithic-type alteration. We plan to use a tempered triaxial test cell at hydrothermal temperatures (up to 200°C) and pressures typical of geothermal conditions, to simulate hot (thermal) fluid percolation through the rock matrix of an inferred "reservoir". Compressibility data will be obtained under a range of operating (simulation reservoir) conditions, in a series of multiple week to month-long experiments that will monitor change in permeability and rock strength accompanying advancing hydrothermal alteration intensity caused by the hot brine interacting with the rock matrix. We suggest, our work will provide new baseline information concerning

  9. Dynamics of surges generated by hydrothermal blasts during the 6 August 2012 Te Maari eruption, Mt. Tongariro, New Zealand

    NASA Astrophysics Data System (ADS)

    Lube, Gert; Breard, Eric C. P.; Cronin, Shane J.; Procter, Jonathan N.; Brenna, Marco; Moebis, Anja; Pardo, Natalia; Stewart, Robert B.; Jolly, Arthur; Fournier, Nicolas

    2014-10-01

    The 6 August 2012 Te Maari eruption produced violent and widespread "cold" Pyroclastic Density Currents (PDCs) following unroofing of the pressurized hydrothermal system. Despite an erupted volume of only ~ 5 × 105 m3, and lacking any juvenile component, the 340,000 m3 of PDCs spread over an area of 6.1 km2 and had mobilities that were on the order of volcanic blasts or blast-like PDCs. This great mobility was due to strong lateral focussing of explosion energy, producing jets with initial velocities > 100 m/s. We present a type-stratigraphy for these hydrothermal-derived low-temperature PDCs that show a tripartite deposit sequence. Each of the deposit units dominates respectively three outward-gradational sedimentary facies, reflecting transitions in the propagating PDC transport and depositional mechanisms. The largest PDCs, directed west and east of the Upper Te Maari area were generated from outer-cone breccias and tuffs that were mostly highly hydrothermally altered. Landsliding and the geometry of the hydrothermal area led to the directed jetting. Initial particle-laden jets laid sheets, grading into lobes of proximal massive sand to gravel-rich facies dominated by unit A and extending up to 1 km from the vents. As the jets were collapsing, a vertically and longitudinally stratified PDC developed within the first few hundred metres from source. Exponential thinning and coarse-tail grading-dominated fining with radial distance of massive unit A resulted from fast deposition and progressive depletion of the most concentrated flow region behind the PDC head. Markedly slower tractional sedimentation from the passing PDC body and tail deposited the highly stratified and ripple-bedded fine-coarse ash of unit B. This formed distinctive dune fields of the medial dune-bedded ash-rich facies. Upwards in depositional sequences the waning of the current can be seen, by replacement of higher-energy bedforms to progressively lower ones. Downstream progressive waning and

  10. Fractures, Faults, and Hydrothermal Systems of Puna, Hawaii, and Montserrat, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Kenedi, Catherine Lewis

    The focus of this work is to use geologic and geophysical methods to better understand the faults and fracture systems at Puna, in southeastern Hawaii, and southern Montserrat, in the Lesser Antilles. The particular interest is understanding and locating the deep fracture networks that are necessary for fluid circulation in hydrothermal systems. The dissertation first presents a study in which identification of large scale faulting places Montserrat into a tectonic context. Then follow studies of Puna and Montserrat that focus on faults and fractures of the deep hydrothermal systems. The first chapter consists of the results of the SEA-CALIPSO experiment seismic reflection data, recorded on a 48 channel streamer with the active source as a 2600 in3 airgun. This chapter discusses volcaniclastic debris fans off the east coast of Montserrat and faults off the west coast. The work places Montserrat in a transtensional environment (influenced by oblique subduction) as well as in a complex local stress regime. One conclusion is that the stress regime is inconsistent with the larger arc due to the influence of local magmatism and stress. The second chapter is a seismic study of the Puna hydrothermal system (PHS) along the Kilauea Lower East Rift Zone. The PHS occurs at a left step in the rift, where a fracture network has been formed between fault segments. It is a productive geothermal field, extracting steam and reinjecting cooled, condensed fluids. A network of eight borehole seismometers recorded >6000 earthquakes. Most of the earthquakes are very small (< M.2), and shallow (1-3 km depth), likely the result of hydrothermal fluid reinjection. Deeper earthquakes occur along the rift as well as along the south-dipping fault plane that originates from the rift zone. Seismic methods applied to the PHS data set, after the initial recording, picking, and locating earthquakes, include a tomographic inversion of the P-wave first arrival data. This model indicates a high

  11. Coupled cycling of Fe and organic carbon in submarine hydrothermal systems: Modelling approach

    NASA Astrophysics Data System (ADS)

    Legendre, Louis; German, Christopher R.; Sander, Sylvia G.; Niquil, Nathalie

    2014-05-01

    It has been recently proposed that hydrothermal plumes may be a significant source of dissolved Fe to the oceans. In order to assess this proposal, we investigated the fate of dissolved Fe released from hydrothermal systems to the overlying ocean using an approach that combined modelling and field values. We based our work on a consensus conceptual model developed by members of SCOR-InterRidge Working Group 135. The model was both complex enough to capture the main processes of dissolved Fe released from hydrothermal systems and chemical transformation in the hydrothermal plume, and simple enough to be parameterized with existing field data. It included the following flows: Fe, water and heat in the high temperature vent fluids, in the fluids diffusing around the vent, and in the entrained seawater in the buoyant plume; Fe precipitation in polymetallic sulphides near the vent; transport of Fe in the non-buoyant plume, and both its precipitation in particles onto the sea bottom away from the vent and dissolution into deep-sea waters. In other words, there were three Fe input flows into the buoyant hydrothermal plume (vent-fluids; entrained diffuse flow; entrained seawater) and three Fe output flows (sedimentation from the buoyant plume as polymetallic sulfides; sedimentation from the non-buoyant plume in particulate form; export to the deep ocean in dissolved or nanoparticulate form). The output flows balanced the input flows. We transformed the conceptual model into equations, and parameterized these with field data. To do so, we assumed that all hydrothermal systems, globally, can be represented by the circumstances that prevail at the EPR 9°50'N hydrothermal field, although we knew this assumption not to be accurate. We nevertheless achieved, by following this approach, two important goals, i.e. we could assemble into a coherent framework, for the first time, several discrete data sets acquired independently over decades of field work, and we could obtain model

  12. Molybdenum isotope behaviour in groundwaters and terrestrial hydrothermal systems, Iceland

    NASA Astrophysics Data System (ADS)

    Neely, Rebecca A.; Gislason, Sigurdur R.; Ólafsson, Magnus; McCoy-West, Alex J.; Pearce, Christopher R.; Burton, Kevin W.

    2018-03-01

    Molybdenum (Mo) isotopes have proved useful in the reconstruction of paleoredox conditions. Their application generally relies upon a simplified model of ocean inputs in which rivers dominate Mo fluxes to the oceans and hydrothermal fluids are considered to be a minor contribution. To date, however, little attention has been paid to the extent of Mo isotope variation of hydrothermal waters, or to the potential effect of direct groundwater discharge to the oceans. Here we present Mo isotope data for two Icelandic groundwater systems (Mývatn and Þeistareykir) that are both influenced by hydrothermal processes. Relative to NIST 3134 = +0.25‰, the cold (<10 °C) groundwaters (δ98/95MoGROUNDWATER = -0.15‰ to +0.47‰; n = 13) show little, if any, fractionation from the host basalt (δ 98 / 95MoBASALT = +0.16‰ to -0.12‰) and are, on average, lighter than both global and Icelandic rivers. In contrast, waters that are hydrothermally influenced (>10 °C) possess isotopically heavy δ98/95MoHYDROTHERMAL values of +0.25‰ to +2.06‰ (n = 18) with the possibility that the high temperature endmembers are even heavier. Although the mechanisms driving this fractionation remain unresolved, the incongruent dissolution of the host basalt and both the dissolution and precipitation of sulfides are considered. Regardless of the processes driving these variations, the δ98Mo data presented in this study indicate that groundwater and hydrothermal waters have the potential to modify ocean budget calculations.

  13. Stratigraphy, Hydrothermal Alteration and Evolution of the Mangakino Geothermal System, Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Fagan, C. J.; Wilson, C. J.; Spinks, K. D.; Browne, P. R.; Simmons, S. F.

    2006-12-01

    A major part of the ca. 1.6 Myr history of the Taupo Volcanic Zone (TVZ) is represented by buried and hydrothermally altered rocks penetrated by geothermal exploration wells. The geothermal field at Mangakino is sited in the oldest TVZ caldera on the western edge of the TVZ. Four exploration wells into the field reveal a thick sequence of flat-lying ignimbrites. Basement Mesozoic greywacke metasediments were not reached by the deepest well, MA2 (3192 m), implying the presence of a thick caldera infill. Ignimbrites exposed at the surface nearby have distinct mineralogies and crystal contents, which enable correlation with down-hole lithologies. Five ignimbrites are identified in the wells: the 0.32 Ma Whakamaru, 0.93 Ma Marshall, 1.0 Ma Rocky Hill, 1.18 Ma Ahuroa and 1.25 Ma Ongatiti ignimbrites, two of which are >800m thick. The Whakamaru and Marshall units are separated by a thick sequence of lacustrine and volcaniclastic deposits related to infilling of the Mangakino caldera. The ignimbrite sequence is continuous between all wells, with no fault offset, and only well MA3 intersects two rhyolite intrusions at 1190 m and 1850 m that are thought to be feeder dikes to post-0.32 Ma rhyolite domes to the east of Mangakino. Alteration assemblages include epidote and wairakite in MA2 below 2200 m. Adularia occurs in MA2 and MA3 where it replaces, wholly or in part, primary andesine. Adularia is also locally replaced by illite, indicating a shift in hydrothermal conditions. Other minerals present are chlorite, quartz, calcite, titanite and pyrite. Secondary quartz and calcite veins are seen in thin section, with a first appearance in the lacustrine sediments at 550 m in both MA2 and MA3. Fluid inclusions in secondary calcite show high temperatures (300 and 315 °C) while inclusions in primary quartz show ca. 165 °C (the current temperature at the sampled depth), recording current conditions. The modern maximum temperature is 250 °C at 3000 m in MA2. Evidence for two

  14. Bacterial Diversity and Biogeochemistry of Two Marine Shallow-Water Hydrothermal Systems off Dominica (Lesser Antilles).

    PubMed

    Pop Ristova, Petra; Pichler, Thomas; Friedrich, Michael W; Bühring, Solveig I

    2017-01-01

    Shallow-water hydrothermal systems represent extreme environments with unique biogeochemistry and high biological productivity, at which autotrophic microorganisms use both light and chemical energy for the production of biomass. Microbial communities of these ecosystems are metabolically diverse and possess the capacity to transform a large range of chemical compounds. Yet, little is known about their diversity or factors shaping their structure or how they compare to coastal sediments not impacted by hydrothermalism. To this end, we have used automated ribosomal intergenic spacer analysis (ARISA) and high-throughput Illumina sequencing combined with porewater geochemical analysis to investigate microbial communities along geochemical gradients in two shallow-water hydrothermal systems off the island of Dominica (Lesser Antilles). At both sites, venting of hydrothermal fluids substantially altered the porewater geochemistry by enriching it with silica, iron and dissolved inorganic carbon, resulting in island-like habitats with distinct biogeochemistry. The magnitude of fluid flow and difference in sediment grain size, which impedes mixing of the fluids with seawater, were correlated with the observed differences in the porewater geochemistry between the two sites. Concomitantly, individual sites harbored microbial communities with a significantly different community structure. These differences could be statistically linked to variations in the porewater geochemistry and the hydrothermal fluids. The two shallow-water hydrothermal systems of Dominica harbored bacterial communities with high taxonomical and metabolic diversity, predominated by heterotrophic microorganisms associated with the Gammaproteobacterial genera Pseudomonas and Pseudoalteromonas , indicating the importance of heterotrophic processes. Overall, this study shows that shallow-water hydrothermal systems contribute substantially to the biogeochemical heterogeneity and bacterial diversity of coastal

  15. Bacterial Diversity and Biogeochemistry of Two Marine Shallow-Water Hydrothermal Systems off Dominica (Lesser Antilles)

    PubMed Central

    Pop Ristova, Petra; Pichler, Thomas; Friedrich, Michael W.; Bühring, Solveig I.

    2017-01-01

    Shallow-water hydrothermal systems represent extreme environments with unique biogeochemistry and high biological productivity, at which autotrophic microorganisms use both light and chemical energy for the production of biomass. Microbial communities of these ecosystems are metabolically diverse and possess the capacity to transform a large range of chemical compounds. Yet, little is known about their diversity or factors shaping their structure or how they compare to coastal sediments not impacted by hydrothermalism. To this end, we have used automated ribosomal intergenic spacer analysis (ARISA) and high-throughput Illumina sequencing combined with porewater geochemical analysis to investigate microbial communities along geochemical gradients in two shallow-water hydrothermal systems off the island of Dominica (Lesser Antilles). At both sites, venting of hydrothermal fluids substantially altered the porewater geochemistry by enriching it with silica, iron and dissolved inorganic carbon, resulting in island-like habitats with distinct biogeochemistry. The magnitude of fluid flow and difference in sediment grain size, which impedes mixing of the fluids with seawater, were correlated with the observed differences in the porewater geochemistry between the two sites. Concomitantly, individual sites harbored microbial communities with a significantly different community structure. These differences could be statistically linked to variations in the porewater geochemistry and the hydrothermal fluids. The two shallow-water hydrothermal systems of Dominica harbored bacterial communities with high taxonomical and metabolic diversity, predominated by heterotrophic microorganisms associated with the Gammaproteobacterial genera Pseudomonas and Pseudoalteromonas, indicating the importance of heterotrophic processes. Overall, this study shows that shallow-water hydrothermal systems contribute substantially to the biogeochemical heterogeneity and bacterial diversity of coastal

  16. Study of hydrothermal channels based on near-bottom magnetic prospecting: Application to Longqi hydrothermal area

    NASA Astrophysics Data System (ADS)

    Tao, W.; Tao, C.; Li, H.; Zhaocai, W.; Jinhui, Z.; Qinzhu, C.; Shili, L.

    2014-12-01

    Mid-ocean ridges, largely present far from the continental plates, are characterized by complex geological structures and numerous hydrothermal systems with complex controlling factors. Exploring seafloor sulfide resources for industrial and scientific applications is a challenge. With the advent of geophysical surveys for seabed investigation, near-bottom magnetic prospecting, which yields shallow geological structure, is an efficient method for investigating active and inactive hydrothermal fields and for researching the structure of hydrothermal systems (Tivey et al., 1993, 1996;German et al., 2008). We collected near-bottom magnetic data in the Longqi hydrothermal area, located in the southwest Indian ridge (49.6° E; Zhu et al., 2010; Tao et al., 2014), using the autonomous benthic explorer, an autonomous underwater vehicle, during the second leg of the Chinese cruise DY115-19 on board R/V DaYangYiHao. Based on the results of the intensity of the spatial differential vector method (Seaman et al., 1993), we outline the hydrothermal alternation zone. By building models, we subsequently infer a fault along the discovered hydrothermal vents; this fault line may be connected to a detachment fault (Zhao et al., 2013). In addition, we discuss the channels of the hydrothermal circulation system (Figure 1), and presume that heat was conducted to the sea subsurface by the detachment fault; the aqueous fluid that infiltrated the fault is heated and conveyed to the seafloor, promoting the circulation of the hydrothermal system.

  17. Stable isotopes in seafloor hydrothermal systems: Vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes

    USGS Publications Warehouse

    Shanks, Wayne C.

    2001-01-01

    The recognition of abundant and widespread hydrothermal activity and associated unique life-forms on the ocean floor is one of the great scientific discoveries of the latter half of the twentieth century. Studies of seafloor hydrothermal processes have led to revolutions in understanding fluid convection and the cooling of the ocean crust, the chemical and isotopic mass balance of the oceans, the origin of stratiform and statabound massive-sulfide ore-deposits, the origin of greenstones and serpentinites, and the potential importance of the subseafloor biosphere. Stable isotope geochemistry has been a critical and definitive tool from the very beginning of the modern era of seafloor exploration.

  18. Modelling of hydrothermal fluid flow and structural architecture in an extensional basin, Ngakuru Graben, Taupo Rift, New Zealand

    NASA Astrophysics Data System (ADS)

    Kissling, W. M.; Villamor, P.; Ellis, S. M.; Rae, A.

    2018-05-01

    Present-day geothermal activity on the margins of the Ngakuru graben and evidence of fossil hydrothermal activity in the central graben suggest that a graben-wide system of permeable intersecting faults acts as the principal conduit for fluid flow to the surface. We have developed numerical models of fluid and heat flow in a regional-scale 2-D cross-section of the Ngakuru Graben. The models incorporate simplified representations of two 'end-member' fault architectures (one symmetric at depth, the other highly asymmetric) which are consistent with the surface locations and dips of the Ngakuru graben faults. The models are used to explore controls on buoyancy-driven convective fluid flow which could explain the differences between the past and present hydrothermal systems associated with these faults. The models show that the surface flows from the faults are strongly controlled by the fault permeability, the fault system architecture and the location of the heat source with respect to the faults in the graben. In particular, fault intersections at depth allow exchange of fluid between faults, and the location of the heat source on the footwall of normal faults can facilitate upflow along those faults. These controls give rise to two distinct fluid flow regimes in the fault network. The first, a regular flow regime, is characterised by a nearly unchanging pattern of fluid flow vectors within the fault network as the fault permeability evolves. In the second, complex flow regime, the surface flows depend strongly on fault permeability, and can fluctuate in an erratic manner. The direction of flow within faults can reverse in both regimes as fault permeability changes. Both flow regimes provide insights into the differences between the present-day and fossil geothermal systems in the Ngakuru graben. Hydrothermal upflow along the Paeroa fault seems to have occurred, possibly continuously, for tens of thousands of years, while upflow in other faults in the graben has

  19. Soil CO2 emissions as a proxy for heat and mass flow assessment, Taupō Volcanic Zone, New Zealand

    USGS Publications Warehouse

    Bloomberg, S.; Werner, Cynthia A.; Rissmann, C.F.; Mazot, A.; Horton, Travis B.; Gravley, D; Kennedy, B.; Oze, C

    2014-01-01

    The quantification of heat and mass flow between deep reservoirs and the surface is important for understanding magmatic and hydrothermal systems. Here, we use high-resolution measurement of carbon dioxide flux (φCO2) and heat flow at the surface to characterize the mass (CO2 and steam) and heat released to the atmosphere from two magma-hydrothermal systems. Our soil gas and heat flow surveys at Rotokawa and White Island in the Taupō Volcanic Zone, New Zealand, include over 3000 direct measurements of φCO2 and soil temperature and 60 carbon isotopic values on soil gases. Carbon dioxide flux was separated into background and magmatic/hydrothermal populations based on the measured values and isotopic characterization. Total CO2 emission rates (ΣCO2) of 441 ± 84 t d−1 and 124 ± 18 t d−1were calculated for Rotokawa (2.9 km2) and for the crater floor at White Island (0.3 km2), respectively. The total CO2 emissions differ from previously published values by +386 t d−1 at Rotokawa and +25 t d−1 at White Island, demonstrating that earlier research underestimated emissions by 700% (Rotokawa) and 25% (White Island). These differences suggest that soil CO2 emissions facilitate more robust estimates of the thermal energy and mass flux in geothermal systems than traditional approaches. Combining the magmatic/hydrothermal-sourced CO2 emission (constrained using stable isotopes) with reservoir H2O:CO2mass ratios and the enthalpy of evaporation, the surface expression of thermal energy release for the Rotokawa hydrothermal system (226 MWt) is 10 times greater than the White Island crater floor (22.5 MWt).

  20. Crater Lake Controls on Volcano Stability: Insights From White Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Hamling, Ian J.

    2017-11-01

    Many volcanoes around the world host summit crater lakes but their influence on the overall stability of the edifice remains poorly understood. Here I use satellite radar data acquired by TerraSAR-X from early 2015 to July 2017 over White Island, New Zealand, to investigate the interaction of the crater lake and deformation of the surrounding edifice. An eruption in April 2016 was preceded by a period of uplift within the crater floor and drop in the lake level. Modeling of the uplift indicates a shallow source located at ˜100 m depth in the vicinity of the crater lake, likely coinciding with the shallow hydrothermal system. In addition to the drop in the lake level, stress changes induced by the inflation suggest that the pressurization of the shallow hydrothermal system helped promote failure along the edge of the crater lake which collapsed during the eruption. After the eruption, and almost complete removal of the crater lake, large areas of the crater wall and lake edge began moving downslope at rates approaching 400 mm/yr. The coincidence between the rapid increase in the displacement rates and removal of the crater lake suggests that the lake provides a physical control on the stability of the surrounding edifice.

  1. Vein networks in hydrothermal systems provide constraints for the monitoring of active volcanoes.

    PubMed

    Cucci, Luigi; Di Luccio, Francesca; Esposito, Alessandra; Ventura, Guido

    2017-03-10

    Vein networks affect the hydrothermal systems of many volcanoes, and variations in their arrangement may precede hydrothermal and volcanic eruptions. However, the long-term evolution of vein networks is often unknown because data are lacking. We analyze two gypsum-filled vein networks affecting the hydrothermal field of the active Lipari volcanic Island (Italy) to reconstruct the dynamics of the hydrothermal processes. The older network (E1) consists of sub-vertical, N-S striking veins; the younger network (E2) consists of veins without a preferred strike and dip. E2 veins have larger aperture/length, fracture density, dilatancy, and finite extension than E1. The fluid overpressure of E2 is larger than that of E1 veins, whereas the hydraulic conductance is lower. The larger number of fracture intersections in E2 slows down the fluid movement, and favors fluid interference effects and pressurization. Depths of the E1 and E2 hydrothermal sources are 0.8 km and 4.6 km, respectively. The decrease in the fluid flux, depth of the hydrothermal source, and the pressurization increase in E2 are likely associated to a magma reservoir. The decrease of fluid discharge in hydrothermal fields may reflect pressurization at depth potentially preceding hydrothermal explosions. This has significant implications for the long-term monitoring strategy of volcanoes.

  2. Resistivity structure and geochemistry of the Jigokudani Valley hydrothermal system, Mt. Tateyama, Japan

    NASA Astrophysics Data System (ADS)

    Seki, Kaori; Kanda, Wataru; Tanbo, Toshiya; Ohba, Takeshi; Ogawa, Yasuo; Takakura, Shinichi; Nogami, Kenji; Ushioda, Masashi; Suzuki, Atsushi; Saito, Zenshiro; Matsunaga, Yasuo

    2016-10-01

    This study clarifies the hydrothermal system of Jigokudani Valley near Mt. Tateyama volcano in Japan by using a combination of audio-frequency magnetotelluric (AMT) survey and hot-spring water analysis in order to assess the potential of future phreatic eruptions in the area. Repeated phreatic eruptions in the area about 40,000 years ago produced the current valley morphology, which is now an active solfatara field dotted with hot springs and fumaroles indicative of a well-developed hydrothermal system. The three-dimensional (3D) resistivity structure of the hydrothermal system was modeled by using the results of an AMT survey conducted at 25 locations across the valley in 2013-2014. The model suggests the presence of a near-surface highly conductive layer of < 50 m in thickness across the entire valley, which is interpreted as a cap rock layer. Immediately below the cap rock is a relatively resistive body interpreted as a gas reservoir. Field measurements of temperature, pH, and electrical conductivity (EC) were taken at various hot springs across the valley, and 12 samples of hot-spring waters were analyzed for major ion chemistry and H2O isotopic ratios. All hot-spring waters had low pH and could be categorized into three types on the basis of the Cl-/SO 42 - concentration ratio, with all falling largely on a mixing line between magmatic fluids and local meteoric water (LMW). The geochemical analysis suggests that the hydrothermal system includes a two-phase zone of vapor-liquid. A comparison of the resistivity structure and the geochemically inferred structure suggests that a hydrothermal reservoir is present at a depth of approximately 500 m, from which hot-spring water differentiates into the three observed types. The two-phase zone appears to be located immediately beneath the cap rock structure. These findings suggest that the hydrothermal system of Jigokudani Valley exhibits a number of factors that could trigger a future phreatic eruption.

  3. Geologic and hydrologic controls on the economic potential of hydrothermal systems associated with upper crustal plutons

    NASA Astrophysics Data System (ADS)

    Weis, Philipp; Driesner, Thomas; Scott, Samuel; Lecumberri-Sanchez, Pilar

    2016-04-01

    Heat and mass transport in hydrothermal systems associated with upper crustal magmatic intrusions can result in resources with large economic potential (Kesler, 1994). Active hydrothermal systems can form high-enthalpy geothermal reservoirs with the possibility for renewable energy production. Fossil continental or submarine hydrothermal systems may have formed ore deposits at variable crustal depths, which can be mined near today's surface with an economic profit. In both cases, only the right combination of first-order geologic and hydrologic controls may lead to the formation of a significant resource. To foster exploration for these hydrothermal georesources, we need to improve our understanding of subsurface fluxes of mass and energy by combining numerical process modelling, observations at both active and fossil systems, as well as knowledge of fluid and rock properties and their interactions in natural systems. The presentation will highlight the role of non-linear fluid properties, phase separation, salt precipitation, fluid mixing, permeability structure, hydraulic fracturing and the transition from brittle to ductile rock behavior as major geologic and hydrologic controls on the formation of high-enthalpy and supercritical geothermal resources (Scott et al., 2015), and magmatic-hydrothermal mineral resources, such as porphyry copper, massive sulfide and epithermal gold deposits (Lecumberri-Sanchez et al., 2015; Weis, 2015). References: Kesler, S. E., 1994: Mineral Resources, economics and the environment, New York, McMillan, 391. Lecumberri-Sanchez, P., Steele-MacInnis, M., Weis, P., Driesner, T., Bodnar, R.J. (2015): Salt precipitation in magmatic-hydrothermal systems associated with upper crustal plutons. Geology, v. 43, p. 1063-1066, doi:10.1130/G37163.1 Scott, S., Driesner, T., Weis, P. (2015): Geologic controls on supercritical geothermal resources above magmatic intrusions. Nature Communications, 6:7837 doi: 10.1038/ncomms8837 Weis, P. (2015): The

  4. Caldera unrest driven by CO2-induced drying of the deep hydrothermal system.

    PubMed

    Moretti, R; Troise, C; Sarno, F; De Natale, G

    2018-05-29

    Interpreting volcanic unrest is a highly challenging and non-unique problem at calderas, since large hydrothermal systems may either hide or amplify the dynamics of buried magma(s). Here we use the exceptional ground displacement and geochemical datasets from the actively degassing Campi Flegrei caldera (Southern Italy) to show that ambiguities disappear when the thermal evolution of the deep hydrothermal system is accurately tracked. By using temperatures from the CO 2 -CH 4 exchange of 13 C and thermodynamic analysis of gas ascending in the crust, we demonstrate that after the last 1982-84 crisis the deep hydrothermal system evolved through supercritical conditions under the continuous isenthalpic inflow of hot CO 2 -rich gases released from the deep (~8 km) magma reservoir of regional size. This resulted in the drying of the base of the hot hydrothermal system, no more buffered along the liquid-vapour equilibrium, and excludes any shallow arrival of new magma, whose abundant steam degassing due to decompression would have restored liquid-vapour equilibrium. The consequent CO 2 -infiltration and progressive heating of the surrounding deforming rock volume cause the build-up of pore pressure in aquifers, and generate the striking temporal symmetry that characterizes the ongoing uplift and the post-1984 subsidence, both originated by the same but reversed deformation mechanism.

  5. Functional Metagenomic Investigations of Microbial Communities in a Shallow-Sea Hydrothermal System

    PubMed Central

    Tang, Kai; Liu, Keshao; Jiao, Nianzhi; Zhang, Yao; Chen, Chen-Tung Arthur

    2013-01-01

    Little is known about the functional capability of microbial communities in shallow-sea hydrothermal systems (water depth of <200 m). This study analyzed two high-throughput pyrosequencing metagenomic datasets from the vent and the surface water in the shallow-sea hydrothermal system offshore NE Taiwan. This system exhibited distinct geochemical parameters. Metagenomic data revealed that the vent and the surface water were predominated by Epsilonproteobacteria (Nautiliales-like organisms) and Gammaproteobacteria ( Thiomicrospira -like organisms), respectively. A significant difference in microbial carbon fixation and sulfur metabolism was found between the vent and the surface water. The chemoautotrophic microorganisms in the vent and in the surface water might possess the reverse tricarboxylic acid cycle and the Calvin−Bassham−Benson cycle for carbon fixation in response to carbon dioxide highly enriched in the environment, which is possibly fueled by geochemical energy with sulfur and hydrogen. Comparative analyses of metagenomes showed that the shallow-sea metagenomes contained some genes similar to those present in other extreme environments. This study may serve as a basis for deeply understanding the genetic network and functional capability of the microbial members of shallow-sea hydrothermal systems. PMID:23940820

  6. Hydrothermal Venting at Hinepuia Submarine Volcano, Kermadec Arc: Understanding Magmatic-Hydrothermal Fluid Chemistry

    NASA Astrophysics Data System (ADS)

    Stucker, Valerie K.; Walker, Sharon L.; de Ronde, Cornel E. J.; Caratori Tontini, Fabio; Tsuchida, Shinji

    2017-10-01

    The Hinepuia volcanic center is made up of two distinct edifices aligned northwest to southeast, with an active cone complex in the SE. Hinepuia is one of several active volcanoes in the northern segment of the Kermadec arc. Regional magnetic data show no evidence for large-scale hydrothermal alteration at Hinepuia, yet plume data confirm present-day hydrothermal discharge, suggesting that the hydrothermal system may be too young to have altered the host rocks with respect to measurable changes in magnetic signal. Gravity data are consistent with crustal thinning and shallow mantle under the volcanic center. Following the discovery of hydrothermal plumes over Hinepuia, the submersible Shinkai 6500 was used to explore the SE cone and sample hydrothermal fluids. The chemistry of hydrothermal fluids from submarine arc and backarc volcanoes is typically dominated by water-rock interactions and/or magmatic degassing. Chemical analyses of vent fluids show that Hinepuia does not quite fit either traditional model. Moreover, the Hinepuia samples fall between those typically ascribed to both end-member fluid types when plotted on a K-Mg-SO4 ternary diagram. Due to evidence of strong degassing, abundant native sulfur deposition, and H2S presence, the vent sampled at Hinepuia is ultimately classified as a magmatic-hydrothermal system with a water-rock influence. This vent is releasing water vapor and magmatic volatiles with a notable lack of salinity due to subcritical boiling and phase separation. Magmatic-hydrothermal fluid chemistry appears to be controlled by a combination of gas flux, phase separation processes, and volcano evolution and/or distance from the magma source.

  7. Post-impact hydrothermal system geochemistry and mineralogy: Rochechouart impact structure, France.

    NASA Astrophysics Data System (ADS)

    Simpson, Sarah

    2014-05-01

    Hypervelocity impacts generate extreme temperatures and pressures in target rocks and may permanently alter them. The process of cratering is at the forefront of research involving the study of the evolution and origin of life, both on Mars and Earth, as conditions may be favourable for hydrothermal systems to form. Of the 170 known impact structures on Earth, over one-third are known to contain fossil hydrothermal systems [1]. The introduction of water to a system, when coupled with even small amounts of heat, has the potential to completely alter the target or host rock geochemistry. Often, the mineral assemblages produced in these environments are unique, and are useful indicators of post-impact conditions. The Rochechouart impact structure in South-Central France is dated to 201 ± 2 Ma into a primarily granitic target [2]. Much of the original morphological features have been eroded and very little of the allochthonous impactites remain. This has, however, allowed researchers to study the shock effects on the lower and central areas of the structure, as well as any subsequent hydrothermal activity. Previous work has focused on detailed classification of the target and autochthonous and allochthonous impactites [3, 4], identification of the projectile [5], and dating the structure using Ar-isotope techniques [2]. Authors have also noted geochemical evidence of K-metasomatism, which is pronounced throughout all lithologies as enrichment in K2O and depletion in CaO and Na2O [3, 4, 5]. This indicates a pervasive hydrothermal system, whose effects throughout the structure have yet to be studied in detail, particularly in those parts at and below the transient floor. The purpose of this study is to classify the mineralogical and geochemical effects of the hydrothermal system. Samples were collected via permission from the Réserve Naturelle de l'Astroblème de Rochechouart-Chassenon [6]. Sample selection was based on the presence of secondary mineralization in hand

  8. Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Wyering, L. D.; Villeneuve, M. C.; Wallis, I. C.; Siratovich, P. A.; Kennedy, B. M.; Gravley, D. M.; Cant, J. L.

    2014-11-01

    Mechanical characterization of hydrothermally altered rocks from geothermal reservoirs will lead to an improved understanding of rock mechanics in a geothermal environment. To characterize rock properties of the selected formations, we prepared samples from intact core for non-destructive (porosity, density and ultrasonic wave velocities) and destructive laboratory testing (uniaxial compressive strength). We characterised the hydrothermal alteration assemblage using optical mineralogy and existing petrography reports and showed that lithologies had a spread of secondary mineralisation that occurred across the smectite, argillic and propylitic alteration zones. The results from the three geothermal fields show a wide variety of physical rock properties. The testing results for the non-destructive testing shows that samples that originated from the shallow and low temperature section of the geothermal field had higher porosity (15 - 56%), lower density (1222 - 2114 kg/m3) and slower ultrasonic waves (1925 - 3512 m/s (vp) and 818 - 1980 m/s (vs)), than the samples from a deeper and higher temperature section of the field (1.5 - 20%, 2072 - 2837 kg/m3, 2639 - 4593 m/s (vp) and 1476 - 2752 m/s (vs), respectively). The shallow lithologies had uniaxial compressive strengths of 2 - 75 MPa, and the deep lithologies had strengths of 16 - 211 MPa. Typically samples of the same lithologies that originate from multiple wells across a field have variable rock properties because of the different alteration zones from which each sample originates. However, in addition to the alteration zones, the primary rock properties and burial depth of the samples also have an impact on the physical and mechanical properties of the rock. Where this data spread exists, we have been able to derive trends for this specific dataset and subsequently have gained an improved understanding of how hydrothermal alteration affects physical and mechanical properties.

  9. Volcano-hydrothermal system and activity of Sirung volcano (Pantar Island, Indonesia)

    NASA Astrophysics Data System (ADS)

    Caudron, Corentin; Bernard, Alain; Murphy, Sam; Inguaggiato, Salvatore; Gunawan, Hendra

    2018-05-01

    Sirung is a frequently active volcano located in the remote parts of Western Timor (Indonesia). Sirung has a crater with several hydrothermal features including a crater lake. We present a timeseries of satellite images of the lake and chemical and isotope data from the hyperacid hydrothermal system. The fluids sampled in the crater present the typical features of hyperacidic systems with high TDS, low pH and δ34SHSO4-δ34SS0 among the highest for such lakes. The cations concentrations are predominantly controlled by the precipitation of alunite, jarosite, silica phases, native sulfur and pyrite which dominate the shallow portions of the hydrothermal system. These minerals may control shallow sealing processes thought to trigger phreatic eruptions elsewhere. Sparse Mg/Cl and SO4/Cl ratios and lake parameters derived from satellite images suggest gradual increase in heat and gas flux, most likely SO2-rich, prior to the 2012 phreatic eruption. An acidic river was sampled 8 km far from the crater and is genetically linked with the fluids rising toward the active crater. This river would therefore be a relevant target for future remote monitoring purposes. Finally, several wells and springs largely exceeded the World Health Organization toxicity limits in total arsenic and fluoride.

  10. Exciting (and modulating) very-long-period seismic signals on White Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Neuberg, Jurgen; Jolly, Art

    2014-05-01

    Very-long-period seismic signals (VLP) on volcanoes can be used to fill the gap between classic seismology and deformation studies. In this contribution we reiterate the principal processing steps to retrieve from a velocity seismogram 3D ground displacement with tiny amplitudes far beyond the resolution of GPS. As a case study we use several seismic and infrasonic signals of volcanic events from White Island, New Zealand. We apply particle motion analysis and deformation modelling tools to the resulting displacement signals and exam the potential link between ground displacement and the modulation of harmonic tremor, in turn linked to a hydrothermal system. In this way we want to demonstrate the full potential of VLPs in monitoring and modelling of volcanic processes.

  11. The hydrothermal system of Long Valley Caldera, California

    USGS Publications Warehouse

    Sorey, M.L.; Lewis, Robert Edward; Olmsted, F.H.

    1978-01-01

    Long Valley caldera, an elliptical depression covering 450 km 2 on the eastern front of the Sierra Nevada in east-central California, contains a hot-water convection system with numerous hot springs and measured and estimated aquifer temperatures at depths of 180?C to 280?C. In this study we have synthesized the results of previous geologic, geophysical, geochemical, and hydrologic investigations of the Long Valley area to develop a generalized conceptual and mathematical model which describes the gross features of heat and fluid flow in the hydrothermal system. Cenozoic volcanism in the Long Valley region began about 3.2 m.y. (million years) ago and has continued intermittently until the present time. The major event that resulted in the formation of the Long Valley caldera took place about 0.7 m.y. ago with the eruption of 600 km 3 or more of Bishop Tuff of Pleistocene age, a rhyolitic ash flow, and subsequent collapse of the roof of the magma chamber along one or more steeply inclined ring fractures. Subsequent intracaldera volcanism and uplift of the west-central part of the caldera floor formed a subcircular resurgent dome about 10 km in diameter surrounded by a moat containing rhyolitic, rhyodacitic, and basaltic rocks ranging in age from 0.5 to 0.05 m.y. On the basis of gravity and seismic studies, we estimate an aver- age thickness of fill of 2.4 km above the precaldera granitic and metamorphic basement rocks. A continuous layer of densely welded Bishop Tuff overlies the basement rocks, with an average thickness of 1.4 km; the fill above the welded Bishop Tuff consists of intercalated volcanic flows and tuffs and fluvial and lacustrine deposits. Assuming the average grain density of the fill is between 2.45 and 2.65 g/cm 3 , we calculate the average bulk porosity of the total fill as from 0.11 to 0.21. Comparison of published values of porosity of the welded Bishop Tuff exposed southeast of the caldera with calculated values indicates average bulk porosity

  12. The Reform of New Zealand's University System: "After Neoliberalism"

    ERIC Educational Resources Information Center

    Shore, Cris

    2010-01-01

    This article explores the legacy of three decades of neoliberal reforms on New Zealand's university system. By tracing the different government policies during this period, it seeks to contribute to wider debates about the trajectory of contemporary universities in an age of globalisation. Since Lyotard's influential report on "The Postmodern…

  13. Relative Importance of Chemoautotrophy for Primary Production in a Light Exposed Marine Shallow Hydrothermal System.

    PubMed

    Gomez-Saez, Gonzalo V; Pop Ristova, Petra; Sievert, Stefan M; Elvert, Marcus; Hinrichs, Kai-Uwe; Bühring, Solveig I

    2017-01-01

    The unique geochemistry of marine shallow-water hydrothermal systems promotes the establishment of diverse microbial communities with a range of metabolic pathways. In contrast to deep-sea vents, shallow-water vents not only support chemosynthesis, but also phototrophic primary production due to the availability of light. However, comprehensive studies targeting the predominant biogeochemical processes are rare, and consequently a holistic understanding of the functioning of these ecosystems is currently lacking. To this end, we combined stable isotope probing of lipid biomarkers with an analysis of the bacterial communities to investigate if chemoautotrophy, in parallel to photoautotrophy, plays an important role in autotrophic carbon fixation and to identify the key players. The study was carried out at a marine shallow-water hydrothermal system located at 5 m water depth off Dominica Island (Lesser Antilles), characterized by up to 55°C warm hydrothermal fluids that contain high amounts of dissolved Fe 2+ . Analysis of the bacterial diversity revealed Anaerolineae of the Chloroflexi as the most abundant bacterial class. Furthermore, the presence of key players involved in iron cycling generally known from deep-sea hydrothermal vents (e.g., Zetaproteobacteria and Geothermobacter ), supported the importance of iron-driven redox processes in this hydrothermal system. Uptake of 13 C-bicarbonate into bacterial fatty acids under light and dark conditions revealed active photo- and chemoautotrophic communities, with chemoautotrophy accounting for up to 65% of the observed autotrophic carbon fixation. Relatively increased 13 C-incorporation in the dark allowed the classification of ai C 15:0 , C 15:0 , and i C 16:0 as potential lipid biomarkers for bacterial chemoautotrophy in this ecosystem. Highest total 13 C-incorporation into fatty acids took place at the sediment surface, but chemosynthesis was found to be active down to 8 cm sediment depth. In conclusion, this

  14. Relative Importance of Chemoautotrophy for Primary Production in a Light Exposed Marine Shallow Hydrothermal System

    PubMed Central

    Gomez-Saez, Gonzalo V.; Pop Ristova, Petra; Sievert, Stefan M.; Elvert, Marcus; Hinrichs, Kai-Uwe; Bühring, Solveig I.

    2017-01-01

    The unique geochemistry of marine shallow-water hydrothermal systems promotes the establishment of diverse microbial communities with a range of metabolic pathways. In contrast to deep-sea vents, shallow-water vents not only support chemosynthesis, but also phototrophic primary production due to the availability of light. However, comprehensive studies targeting the predominant biogeochemical processes are rare, and consequently a holistic understanding of the functioning of these ecosystems is currently lacking. To this end, we combined stable isotope probing of lipid biomarkers with an analysis of the bacterial communities to investigate if chemoautotrophy, in parallel to photoautotrophy, plays an important role in autotrophic carbon fixation and to identify the key players. The study was carried out at a marine shallow-water hydrothermal system located at 5 m water depth off Dominica Island (Lesser Antilles), characterized by up to 55°C warm hydrothermal fluids that contain high amounts of dissolved Fe2+. Analysis of the bacterial diversity revealed Anaerolineae of the Chloroflexi as the most abundant bacterial class. Furthermore, the presence of key players involved in iron cycling generally known from deep-sea hydrothermal vents (e.g., Zetaproteobacteria and Geothermobacter), supported the importance of iron-driven redox processes in this hydrothermal system. Uptake of 13C-bicarbonate into bacterial fatty acids under light and dark conditions revealed active photo- and chemoautotrophic communities, with chemoautotrophy accounting for up to 65% of the observed autotrophic carbon fixation. Relatively increased 13C-incorporation in the dark allowed the classification of aiC15:0, C15:0, and iC16:0 as potential lipid biomarkers for bacterial chemoautotrophy in this ecosystem. Highest total 13C-incorporation into fatty acids took place at the sediment surface, but chemosynthesis was found to be active down to 8 cm sediment depth. In conclusion, this study

  15. The hydrothermal system associated with the Kilauea East Rift Zone, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D.M.; Conrad, M.E.

    1997-12-31

    During the last twenty years drilling and fluid production on the Kilauea East Rift Zone (KERZ) has shown that an active hydrothermal system is associated with much of the rift. Well logging and fluid geochemistry indicate that reservoir temperatures exceed 360 C but are highly variable. Although neither well testing nor pressure decline data have clearly demonstrated the lateral limits of the reservoir, divergent fluid compositions over short distances suggest that the larger hydrothermal system is strongly compartmentalized across the rift zone. The chemical compositions of production fluids indicate that recharge is derived from ocean water and meteoric recharge andmore » isotopic data suggest that the latter may be derived from subsurface inflow from the flanks of Mauna Loa.« less

  16. The hydrothermal-convection systems of Kilauea: An historical perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, R.B.; Kauahikaua, J.P.

    1993-08-01

    Kilauea is one of only two basaltic volcanoes in the world where geothermal power has been produced commercially. Little is known about the origin, size and longevity of its hydrothermal-convection systems. The authors review the history of scientific studies aimed at understanding these systems and describe their commercial development. Geothermal energy is a controversial issue in Hawaii, partly because of hydrogen sulfide emissions and concerns about protection of rain forests.

  17. Building a Future-Oriented Science Education System in New Zealand: How Are We Doing?

    ERIC Educational Resources Information Center

    Gilbert, Jane; Bull, Ally

    2013-01-01

    This paper makes the case for deep and radical change to New Zealand's approach to science education. It discusses the implications of recent science education research and policy work, and argues New Zealand still has a long way to go to developing a future-oriented science education system. It explores what needs to change and contains…

  18. The interplay of evolved seawater and magmatic-hydrothermal fluids in the 3.24 Ga panorama volcanic-hosted massive sulfide hydrothermal system, North Pilbara Craton, Western Australia

    USGS Publications Warehouse

    Drieberg, Susan L.; Hagemann, Steffen G.; Huston, David L.; Landis, Gary; Ryan, Chris G.; Van Achterbergh, Esmé; Vennemann, Torsten

    2013-01-01

    The ~3240 Ma Panorama volcanic-hosted massive sulfide (VHMS) district is unusual for its high degree of exposure and low degree of postdepositional modification. In addition to typical seafloor VHMS deposits, this district contains greisen- and vein-hosted Mo-Cu-Zn-Sn mineral occurrences that are contemporaneous with VHMS orebodies and are hosted by the Strelley granite complex, which also drove VHMS circulation. Hence the Panorama district is a natural laboratory to investigate the role of magmatic-hydrothermal fluids in VHMS hydrothermal systems. Regional and proximal high-temperature alteration zones in volcanic rocks underlying the VHMS deposits are dominated by chlorite-quartz ± albite assemblages, with lesser low-temperature sericite-quartz ± K-feldspar assemblages. These assemblages are typical of VHMS hydrothermal systems. In contrast, the alteration assemblages associated with granite-hosted greisens and veins include quartz-topaz-muscovite-fluorite and quartz-muscovite (sericite)-chlorite-ankerite. These vein systems generally do not extend into the overlying volcanic pile. Fluid inclusion and stable isotope studies suggest that the greisens were produced by high-temperature (~590°C), high-salinity (38–56 wt % NaCl equiv) fluids with high densities (>1.3 g/cm3) and high δ18O (9.3 ± 0.6‰). These fluids are compatible with the measured characteristics of magmatic fluids evolved from the Strelley granite complex. In contrast, fluids in the volcanic pile (including the VHMS ore-forming fluids) were of lower temperature (90°–270°C), lower salinity (5.0–11.2 wt % NaCl equiv), with lower densities (0.88–1.01 g/cm3) and lower δ18O (−0.8 ± 2.6‰). These fluids are compatible with evolved Paleoarchean seawater. Fluids that formed the quartz-chalcopyrite-sphalerite-cassiterite veins, which are present within the granite complex near the contact with the volcanic pile, were intermediate in temperature and isotopic composition between the greisen

  19. Identifying bubble collapse in a hydrothermal system using hidden Markov models

    USGS Publications Warehouse

    Dawson, P.B.; Benitez, M.C.; Lowenstern, J. B.; Chouet, B.A.

    2012-01-01

    Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15Hz) seismic events observed at a temporary seismic station deployed in the basin in response to the increase in hydrothermal activity. The source of these seismic events is constrained to within ???100 m of the station, and produced ???3500-5500 events per hour with mean durations of ???0.35-0.45s. The seismic event rate, air temperature, hydrologic temperatures, and surficial water flow of the geyser basin exhibited a marked diurnal pattern that was closely associated with solar thermal radiance. We interpret the source of the seismicity to be due to the collapse of small steam bubbles in the hydrothermal system, with the rate of collapse being controlled by surficial temperatures and daytime evaporation rates. copyright 2012 by the American Geophysical Union.

  20. Identifying bubble collapse in a hydrothermal system using hiddden Markov models

    USGS Publications Warehouse

    Dawson, Phillip B.; Benitez, M.C.; Lowenstern, Jacob B.; Chouet, Bernard A.

    2012-01-01

    Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15 Hz) seismic events observed at a temporary seismic station deployed in the basin in response to the increase in hydrothermal activity. The source of these seismic events is constrained to within ~100 m of the station, and produced ~3500–5500 events per hour with mean durations of ~0.35–0.45 s. The seismic event rate, air temperature, hydrologic temperatures, and surficial water flow of the geyser basin exhibited a marked diurnal pattern that was closely associated with solar thermal radiance. We interpret the source of the seismicity to be due to the collapse of small steam bubbles in the hydrothermal system, with the rate of collapse being controlled by surficial temperatures and daytime evaporation rates.

  1. Origin of magnetic highs at ultramafic hosted hydrothermal systems: Insights from the Yokoniwa site of Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Fujii, Masakazu; Okino, Kyoko; Sato, Taichi; Sato, Hiroshi; Nakamura, Kentaro

    2016-05-01

    High-resolution vector magnetic measurements were performed on an inactive ultramafic-hosted hydrothermal vent field, called Yokoniwa Hydrothermal Field (YHF), using a deep-sea manned submersible Shinkai6500 and an autonomous underwater vehicle r2D4. The YHF has developed at a non-transform offset massif of the Central Indian Ridge. Dead chimneys were widely observed around the YHF along with a very weak venting of low-temperature fluids so that hydrothermal activity of the YHF was almost finished. The distribution of crustal magnetization from the magnetic anomaly revealed that the YHF is associated with enhanced magnetization, as seen at the ultramafic-hosted Rainbow and Ashadze-1 hydrothermal sites of the Mid-Atlantic Ridge. The results of rock magnetic analysis on seafloor rock samples (including basalt, dolerite, gabbro, serpentinized peridotite, and hydrothermal sulfide) showed that only highly serpentinized peridotite carries high magnetic susceptibility and that the natural remanent magnetization intensity can explain the high magnetization of Yokoniwa. These observations reflect abundant and strongly magnetized magnetite grains within the highly serpentinized peridotite. Comparisons with the Rainbow and Ashadze-1 suggest that in ultramafic-hosted hydrothermal systems, strongly magnetized magnetite and pyrrhotite form during the progression of hydrothermal alteration of peridotite. After the completion of serpentinization and production of hydrogen, pyrrhotites convert into pyrite or nonmagnetic iron sulfides, which considerably reduces their levels of magnetization. Our results revealed origins of the magnetic high and the development of subsurface chemical processes in ultramafic-hosted hydrothermal systems. Furthermore, the results highlight the use of near-seafloor magnetic field measurements as a powerful tool for detecting and characterizing seafloor hydrothermal systems.

  2. The potential for prebiotic synthesis in hydrothermal systems. [Abstract only

    NASA Technical Reports Server (NTRS)

    Ferris, James P.

    1994-01-01

    Contemporary hydrothermal systems provide a reducing environment where organic compounds are formed and may react to generate the molecules used in the first living systems. The organic compounds percolate through mineral assemblages at a variety of temperatures so the proposed synthetic reactions are driven by heat and catalyzed by minerals (Ferris, 1992). Some examples of potential prebiotic reactions are discussed.

  3. Helium and carbon gas geochemistry of pore fluids from the sediment-rich hydrothermal system in Escanaba Trough

    USGS Publications Warehouse

    Ishibashi, J.-I.; Sato, M.; Sano, Y.; Wakita, H.; Gamo, T.; Shanks, Wayne C.

    2002-01-01

    Ocean Drilling Program (ODP) Leg 169, which was conducted in 1996 provided an opportunity to study the gas geochemistry in the deeper part of the sediment-rich hydrothermal system in Escanaba Trough. Gas void samples obtained from the core liner were analyzed and their results were compared with analytical data of vent fluid samples collected by a submersible dive program in 1988. The gas geochemistry of the pore fluids consisted mostly of a hydrothermal component and was basically the same as that of the vent fluids. The He isotope ratios (R/RA = 5.6-6.6) indicated a significant mantle He contribution and the C isotopic compositions of the hydrocarbons [??13C(CH4) = -43???, ??13C(C2H6) = -20???] were characterized as a thermogenic origin caused by hydrothermal activity. On the other hand, the pore fluids in sedimentary layers away from the hydrothermal fields showed profiles which reflected lateral migration of the hydrothermal hydrocarbons and abundant biogenic CH4. Helium and C isotope systematics were shown to represent a hydrothermal component and useful as indicators for their distribution beneath the seafloor. Similarities in He and hydrocarbon signatures to that of the Escanaba Trough hydrothermal system were found in some terrestrial natural gases, which suggested that seafloor hydrothermal activity in sediment-rich environments would be one of the possible petroleum hydrocarbon generation scenarios in unconventional geological settings. ?? 2002 Elsevier Science Ltd. All rights reserved.

  4. Fracture distribution and porosity in a fault-bound hydrothermal system (Grimsel Pass, Swiss Alps)

    NASA Astrophysics Data System (ADS)

    Egli, Daniel; Küng, Sulamith; Baumann, Rahel; Berger, Alfons; Baron, Ludovic; Herwegh, Marco

    2017-04-01

    The spatial distribution, orientation and continuity of brittle and ductile structures strongly control fluid pathways in a rock mass by joining existing pores and creating new pore space (fractures, joints) but can also act as seals to fluid flow (e.g. ductile shear zones, clay-rich fault gouges). In long-lived hydrothermal systems, permeability and the related fluid flow paths are therefore dynamic in space and time. Understanding the evolution and behaviour of naturally porous and permeable rock masses is critical for the successful exploration and sustainable exploitation of hydrothermal systems and can advance methods for planning and implementation of enhanced geothermal systems. This study focuses on an active fault-bound hydrothermal system in the crystalline basement of the Aar Massif (hydrothermal field Grimsel Pass, Swiss Alps) that has been exhumed from few kilometres depth and which documents at least 3 Ma of hydrothermal activity. The explored rock unit of the Aar massif is part of the External Crystalline Massifs that hosts a multitude of thermal springs on its southern border in the Swiss Rhône valley and furthermore represents the exhumed equivalent of potentially exploitable geothermal reservoirs in the deep crystalline subsurface of the northern Alpine foreland basin. This study combines structural data collected from a 125 m long drillhole across the hydrothermal zone, the corresponding drill core and surface mapping. Different methods are applied to estimate the porosity and the structural evolution with regard to porosity, permeability and fracture distribution. Analyses are carried out from the micrometre to decametre scale with main focus on the flow path evolution with time. This includes a large variety of porosity-types including fracture-porosity with up to cm-sized aperture down to grain-scale porosity. Main rock types are granitoid host rocks, mylonites, paleo-breccia and recent breccias. The porosity of the host rock as well as the

  5. The Origin of Carbon-Bearing Volatiles in a Continental Hydrothermal System in the Great Basin: Water Chemistry and Isotope Characterizations

    NASA Technical Reports Server (NTRS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.; Romanek, Christopher; Datta, Saugata; Darnell, Mike

    2012-01-01

    Hydrothermal systems on Earth are active centers in the crust where organic molecules can be synthesized biotically or abiotically under a wide range of physical and chemical conditions [1-3]. Not only are volatile species (CO, CO2, H2, and hydrocarbons) a reflection of deep-seated hydrothermal alteration processes, but they also form an important component of biological systems. Studying carbon-bearing fluids from hydrothermal systems is of specific importance to understanding (bio-)geochemical processes within these systems. With recent detection of methane in the martian atmosphere [4-7] and the possibility of its hydrothermal origin [8, 9], understanding the formation mechanisms of methane may provide constraints on the history of the martian aqueous environments and climate.

  6. Hydrothermal activity lowers trophic diversity in Antarctic hydrothermal sediments

    NASA Astrophysics Data System (ADS)

    Bell, James B.; Reid, William D. K.; Pearce, David A.; Glover, Adrian G.; Sweeting, Christopher J.; Newton, Jason; Woulds, Clare

    2017-12-01

    Hydrothermal sediments are those in which hydrothermal fluid is discharged through sediments and are one of the least studied deep-sea ecosystems. We present a combination of microbial and biochemical data to assess trophodynamics between and within hydrothermal and background areas of the Bransfield Strait (1050-1647 m of depth). Microbial composition, biomass, and fatty acid signatures varied widely between and within hydrothermally active and background sites, providing evidence of diverse metabolic activity. Several species had different feeding strategies and trophic positions between hydrothermally active and inactive areas, and the stable isotope values of consumers were not consistent with feeding morphology. Niche area and the diversity of microbial fatty acids was lowest at the most hydrothermally active site, reflecting trends in species diversity. Faunal uptake of chemosynthetically produced organics was relatively limited but was detected at both hydrothermal and non-hydrothermal sites, potentially suggesting that hydrothermal activity can affect trophodynamics over a much wider area than previously thought.

  7. Hydrogen, Oxygen and Silicon Isotope Systematics of Groundwater-Magma Interaction in Icelandic Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Kleine, B. I.; Stefansson, A.; Halldorsson, S. A.; Martin, W.; Barnes, J.; Jónasson, K.; Franzson, H.

    2016-12-01

    Magma often encounters groundwater (meteoric or seawater derived) when intruded into the crust. Magma-groundwater interactions result in the formation of hydrothermal fluids which can lead to contact metamorphism and elemental transport in the country rock. In fact, magma-hydrothermal fluid interaction (rather than magma-magmatic fluid interaction) may lead to classic contact metamorphic reactions. In order to explore the importance of hydrothermal fluid during contact metamorphism we use stable isotopes (δD, δ18O, δ30Si) from both active and extinct magma chambers and hydrothermal systems from across Iceland. Quartz grains from various hydrothermal systems, from crustal xenoliths from the Askja central volcano and from the Hafnarfjall pluton, as well as quartz grains associated with low-T zeolites were analysed for δ18O and δ30Si in-situ using SIMS. Whole rock material of these samples was analysed for δD values using a TCEA coupled to an IRMS. Our results indicate that low-T quartz (<150°C) are dominated by negative δ30Si values whereas positive δ30Si values prevail in quartz precipitated at higher T (>300°C). Combining the results from the analyses of δ18O and δD allows further division of samples into (i) seawater and/or rock dominated and (ii) meteoric water dominated hydrothermal systems. In order to isolate the effects of fluid-rock interaction, fluid source and formation temperature at the magma-groundwater contact, δD, δ18O and δ30Si values of rocks and fluids were modeled using the PHREEQC software. Comparison of analytical and model results shows that the isotopic compositions are influenced by multiple processes. In some cases, groundwater penetrates the contact zone and causes alteration at >400°C by groundwater-magma heat interaction. Other cases document "baked" contact zones without groundwater. Our analyses and modeling demonstrates that groundwater flow and permeability are crucial in setting the style of contact metamorphism

  8. Detection of Abiotic Methane in Terrestrial Continental Hydrothermal Systems: Implications for Methane on Mars

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Niles, Paul B.; Gibson, Everett K., Jr.; Romanek, Christopher S.; Zhang, Chuanlun L.; Bissada, Kadry K.

    2008-01-01

    The recent detection of methane in the Martian atmosphere and the possibility that its origin could be attributed to biological activity, have highlighted the importance of understanding the mechanisms of methane formation and its usefulness as a biomarker. Much debate has centered on the source of the methane in hydrothermal fluids, whether it is formed biologically by microorganisms, diagenetically through the decomposition of sedimentary organic matter, or inorganically via reduction of CO2 at high temperatures. Ongoing research has now shown that much of the methane present in sea-floor hydrothermal systems is probably formed through inorganic CO2 reduction processes at very high temperatures (greater than 400 C). Experimental results have indicated that methane might form inorganically at temperatures lower still, however these results remain controversial. Currently, methane in continental hydrothermal systems is thought to be formed mainly through the breakdown of sedimentary organic matter and carbon isotope equilibrium between CO2 and CH4 is thought to be rarely present if at all. Based on isotopic measurements of CO2 and CH4 in two continental hydrothermal systems, we suggest that carbon isotope equilibration exists at temperatures as low as 155 C. This would indicate that methane is forming through abiotic CO2 reduction at lower temperatures than previously thought and could bolster arguments for an abiotic origin of the methane detected in the martian atmosphere.

  9. Identification and activity of acetate-assimilating bacteria in diffuse fluids venting from two deep-sea hydrothermal systems.

    PubMed

    Winkel, Matthias; Pjevac, Petra; Kleiner, Manuel; Littmann, Sten; Meyerdierks, Anke; Amann, Rudolf; Mußmann, Marc

    2014-12-01

    Diffuse hydrothermal fluids often contain organic compounds such as hydrocarbons, lipids, and organic acids. Microorganisms consuming these compounds at hydrothermal sites are so far only known from cultivation-dependent studies. To identify potential heterotrophs without prior cultivation, we combined microbial community analysis with short-term incubations using (13)C-labeled acetate at two distinct hydrothermal systems. We followed cell growth and assimilation of (13)C into single cells by nanoSIMS combined with fluorescence in situ hybridization (FISH). In 55 °C-fluids from the Menez Gwen hydrothermal system/Mid-Atlantic Ridge, a novel epsilonproteobacterial group accounted for nearly all assimilation of acetate, representing the first aerobic acetate-consuming member of the Nautiliales. In contrast, Gammaproteobacteria dominated the (13) C-acetate assimilation in incubations of 37 °C-fluids from the back-arc hydrothermal system in the Manus Basin/Papua New Guinea. Here, 16S rRNA gene sequences were mostly related to mesophilic Marinobacter, reflecting the high content of seawater in these fluids. The rapid growth of microorganisms upon acetate addition suggests that acetate consumers in diffuse fluids are copiotrophic opportunists, which quickly exploit their energy sources, whenever available under the spatially and temporally highly fluctuating conditions. Our data provide first insights into the heterotrophic microbial community, catalyzing an under-investigated part of microbial carbon cycling at hydrothermal vents. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Microbial community structure across fluid gradients in the Juan de Fuca Ridge hydrothermal system.

    PubMed

    Anderson, Rika E; Beltrán, Mónica Torres; Hallam, Steven J; Baross, John A

    2013-02-01

    Physical and chemical gradients are dominant factors in shaping hydrothermal vent microbial ecology, where archaeal and bacterial habitats encompass a range between hot, reduced hydrothermal fluid and cold, oxidized seawater. To determine the impact of these fluid gradients on microbial communities inhabiting these systems, we surveyed bacterial and archaeal community structure among and between hydrothermal plumes, diffuse flow fluids, and background seawater in several hydrothermal vent sites on the Juan de Fuca Ridge using 16S rRNA gene diversity screening (clone libraries and terminal restriction length polymorphisms) and quantitative polymerase chain reaction methods. Community structure was similar between hydrothermal plumes and background seawater, where a number of taxa usually associated with low-oxygen zones were observed, whereas high-temperature diffuse fluids exhibited a distinct phylogenetic profile. SUP05 and Arctic96BD-19 sulfur-oxidizing bacteria were prevalent in all three mixing regimes where they exhibited overlapping but not identical abundance patterns. Taken together, these results indicate conserved patterns of redox-driven niche partitioning between hydrothermal mixing regimes and microbial communities associated with sinking particles and oxygen-deficient waters. Moreover, the prevalence of SUP05 and Arctic96BD-19 in plume and diffuse flow fluids indicates a more cosmopolitan role for these groups in the ecology and biogeochemistry of the dark ocean. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. [Chemical Potentials of Hydrothermal Systems and Formation of Coupled Modular Metabolic Pathways].

    PubMed

    Marakushev, S A; Belonogova, O V

    2015-01-01

    According to Gibbs J.W. the number of independent components is the least number of those chemical constituents, by combining which the compositions of all possible phases in the system can be obtained, and at the first stages of development of the primary metabolism of the three-component system C-H-O different hydrocarbons and molecular hydrogen were used as an energy source for, it. In the Archean hydrothermal conditions under the action of the phosphorus chemical potential the C-H-O system was transformed into a four-component system C-H-O-P setting up a gluconeogenic system, which became the basis of power supply for a protometabolism, and formation of a new cycle of CO2 fixation (reductive pentose phosphate pathway). It is shown that parageneses (association) of certain substances permitted the modular constructions of the central metabolism of the system C-H-O-P and the formed modules appear in association with each other in certain physicochemical hydrothermal conditions. Malate, oxaloacetate, pyruvate and phosphoenolpyruvate exhibit a turnstile-like mechanism of switching reaction directions.

  12. Large‐displacement, hydrothermal frictional properties of DFDP‐1 fault rocks, Alpine Fault, New Zealand: Implications for deep rupture propagation

    PubMed Central

    Boulton, C.; Toy, V. G.; Townend, J.; Sutherland, R.

    2016-01-01

    Abstract The Alpine Fault, New Zealand, is a major plate‐bounding fault that accommodates 65–75% of the total relative motion between the Australian and Pacific plates. Here we present data on the hydrothermal frictional properties of Alpine Fault rocks that surround the principal slip zones (PSZ) of the Alpine Fault and those comprising the PSZ itself. The samples were retrieved from relatively shallow depths during phase 1 of the Deep Fault Drilling Project (DFDP‐1) at Gaunt Creek. Simulated fault gouges were sheared at temperatures of 25, 150, 300, 450, and 600°C in order to determine the friction coefficient as well as the velocity dependence of friction. Friction remains more or less constant with changes in temperature, but a transition from velocity‐strengthening behavior to velocity‐weakening behavior occurs at a temperature of T = 150°C. The transition depends on the absolute value of sliding velocity as well as temperature, with the velocity‐weakening region restricted to higher velocity for higher temperatures. Friction was substantially lower for low‐velocity shearing (V < 0.3 µm/s) at 600°C, but no transition to normal stress independence was observed. In the framework of rate‐and‐state friction, earthquake nucleation is most likely at an intermediate temperature of T = 300°C. The velocity‐strengthening nature of the Alpine Fault rocks at higher temperatures may pose a barrier for rupture propagation to deeper levels, limiting the possible depth extent of large earthquakes. Our results highlight the importance of strain rate in controlling frictional behavior under conditions spanning the classical brittle‐plastic transition for quartzofeldspathic compositions. PMID:27610290

  13. Microbial Community in the Hydrothermal System at Southern Mariana Trough

    NASA Astrophysics Data System (ADS)

    Kato, S.; Itahashi, S.; Kakegawa, T.; Utsumi, M.; Maruyama, A.; Ishibashi, J.; Marumo, K.; Urabe, T.; Yamagishi, A.

    2004-12-01

    There is unique ecosystem around deep-sea hydrothermal area. Living organisms are supported by chemical free energy provided by the hydrothermal water. The ecosystem is expected to be similar to those in early stage of life history on the earth, when photosynthetic organisms have not emerged. In this study, we have analyzed the microbial diversity in the hydrothermal area at southern Mariana trough. In the "Archaean Park Project" supported by special Coordination Fund, four holes were bored and cased by titanium pipes near hydrothermal vents in the southern Mariana trough in 2004. Hydrothermal fluids were collected from these cased holes and natural vents in this area. Microbial cells were collected by filtering the hydrothermal fluid in situ or in the mother sip. Filters were stored at -80C and used for DNA extraction. Chimneys at this area was also collected and stored at -80C. The filters and chimney samples were crushed and DNA was extracted. DNA samples were used for amplification of 16S rDNA fragments by PCR using archaea specific primers and universal primers. The PCR fragments were cloned and sequenced. These PCR clones of different samples will be compared. We will extend our knowledge about microbiological diversity at Southern Mariana trough to compare the results obtained at other area.

  14. Lithium isotopic systematics of submarine vent fluids from arc and back-arc hydrothermal systems in the western Pacific

    NASA Astrophysics Data System (ADS)

    Araoka, Daisuke; Nishio, Yoshiro; Gamo, Toshitaka; Yamaoka, Kyoko; Kawahata, Hodaka

    2016-10-01

    The Li concentration and isotopic composition (δ7Li) in submarine vent fluids are important for oceanic Li budget and potentially useful for investigating hydrothermal systems deep under the seafloor because hydrothermal vent fluids are highly enriched in Li relative to seawater. Although Li isotopic geochemistry has been studied at mid-ocean-ridge (MOR) hydrothermal sites, in arc and back-arc settings Li isotopic composition has not been systematically investigated. Here we determined the δ7Li and 87Sr/86Sr values of 11 end-member fluids from 5 arc and back-arc hydrothermal systems in the western Pacific and examined Li behavior during high-temperature water-rock interactions in different geological settings. In sediment-starved hydrothermal systems (Manus Basin, Izu-Bonin Arc, Mariana Trough, and North Fiji Basin), the Li concentrations (0.23-1.30 mmol/kg) and δ7Li values (+4.3‰ to +7.2‰) of the end-member fluids are explained mainly by dissolution-precipitation model during high-temperature seawater-rock interactions at steady state. Low Li concentrations are attributable to temperature-related apportioning of Li in rock into the fluid phase and phase separation process. Small variation in Li among MOR sites is probably caused by low-temperature alteration process by diffusive hydrothermal fluids under the seafloor. In contrast, the highest Li concentrations (3.40-5.98 mmol/kg) and lowest δ7Li values (+1.6‰ to +2.4‰) of end-member fluids from the Okinawa Trough demonstrate that the Li is predominantly derived from marine sediments. The variation of Li in sediment-hosted sites can be explained by the differences in degree of hydrothermal fluid-sediment interactions associated with the thickness of the marine sediment overlying these hydrothermal sites.

  15. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems.

    PubMed

    McCollom, Thomas M

    2007-12-01

    Numerical models are employed to investigate sources of chemical energy for autotrophic microbial metabolism that develop during mixing of oxidized seawater with strongly reduced fluids discharged from ultramafic-hosted hydrothermal systems on the seafloor. Hydrothermal fluids in these systems are highly enriched in H(2) and CH(4) as a result of alteration of ultramafic rocks (serpentinization) in the subsurface. Based on the availability of chemical energy sources, inferences are made about the likely metabolic diversity, relative abundance, and spatial distribution of microorganisms within ultramafic-hosted systems. Metabolic reactions involving H(2) and CH(4), particularly hydrogen oxidation, methanotrophy, sulfate reduction, and methanogenesis, represent the predominant sources of chemical energy during fluid mixing. Owing to chemical gradients that develop from fluid mixing, aerobic metabolisms are likely to predominate in low-temperature environments (<20-30 degrees C), while anaerobes will dominate higher-temperature environments. Overall, aerobic metabolic reactions can supply up to approximately 7 kJ of energy per kilogram of hydrothermal fluid, while anaerobic metabolic reactions can supply about 1 kJ, which is sufficient to support a maximum of approximately 120 mg (dry weight) of primary biomass production by aerobic organisms and approximately 20-30 mg biomass by anaerobes. The results indicate that ultramafic-hosted systems are capable of supplying about twice as much chemical energy as analogous deep-sea hydrothermal systems hosted in basaltic rocks.

  16. Hydrothermal Processes

    NASA Astrophysics Data System (ADS)

    German, C. R.; von Damm, K. L.

    2003-12-01

    What is Hydrothermal Circulation?Hydrothermal circulation occurs when seawater percolates downward through fractured ocean crust along the volcanic mid-ocean ridge (MOR) system. The seawater is first heated and then undergoes chemical modification through reaction with the host rock as it continues downward, reaching maximum temperatures that can exceed 400 °C. At these temperatures the fluids become extremely buoyant and rise rapidly back to the seafloor where they are expelled into the overlying water column. Seafloor hydrothermal circulation plays a significant role in the cycling of energy and mass between the solid earth and the oceans; the first identification of submarine hydrothermal venting and their accompanying chemosynthetically based communities in the late 1970s remains one of the most exciting discoveries in modern science. The existence of some form of hydrothermal circulation had been predicted almost as soon as the significance of ridges themselves was first recognized, with the emergence of plate tectonic theory. Magma wells up from the Earth's interior along "spreading centers" or "MORs" to produce fresh ocean crust at a rate of ˜20 km3 yr-1, forming new seafloor at a rate of ˜3.3 km2 yr-1 (Parsons, 1981; White et al., 1992). The young oceanic lithosphere formed in this way cools as it moves away from the ridge crest. Although much of this cooling occurs by upward conduction of heat through the lithosphere, early heat-flow studies quickly established that a significant proportion of the total heat flux must also occur via some additional convective process (Figure 1), i.e., through circulation of cold seawater within the upper ocean crust (Anderson and Silbeck, 1981). (2K)Figure 1. Oceanic heat flow versus age of ocean crust. Data from the Pacific, Atlantic, and Indian oceans, averaged over 2 Ma intervals (circles) depart from the theoretical cooling curve (solid line) indicating convective cooling of young ocean crust by circulating seawater

  17. Investigating Volcanic-Hydrothermal Systems in Dominica, Lesser Antilles: Temporal Changes in the Chemical Composition of Hydrothermal Fluids for Volcanic Monitoring Using Geothermometers

    NASA Astrophysics Data System (ADS)

    Onyeali, M. M. C.; Joseph, E. P.; Frey, H. M.

    2017-12-01

    Dominica has an abundance of volcanic activity, with nine potentially active volcanoes, many of which have highly active volcanic-hydrothermal systems. The waters are predominantly acid-sulphate in character (SO4=100-4200 mg/L, pH≤4), and likely formed because of dilution of acidic gases in near surface oxygenated groundwater. The waters are of primarily meteoric origin, but are likely affected by evaporation effects at/near the surface, with δ18O ranging from -1.75 to 10.67‰, and δD from -6.1 to 14.5‰. With updated water chemistry and isotopic data from five hydrothermal areas (Boiling Lake, Valley of Desolation, Sulphur Springs, Wotten Waven, Cold Soufriere) for the period 2014 to 2017, we will re-evaluate the characteristics of these systems, which were last reported in 2011. We will present updated reservoir temperatures using a variety of geothermometers and provide insight into water-rock interactions taking place in the reservoirs. Recent changes in chemistry of the waters have indicated that while the origin of the hydrothermal systems are still dominantly meteoric (δ18O = -3 to 8‰ and δD = -5 to 18‰), surface evaporation effects and variable amounts of mixing with shallow ground waters play an important role. Fumaroles appear to reflect a deeper source contribution as compared to thermal waters with differences in acidity, temperature, TDS, δ18O, and δD observed. The general composition of the waters for most of the hydrothermal systems studied indicate no significant changes, with the exception of the Boiling Lake, which experienced a draining event in November 2016 which lasted for 6 weeks. Decreases in temperature, pH, Na, K, and Cl were seen post draining, while SO4 remained relatively low (66 ppm), but showed a small increase. The chemistry of the Boiling Lake appears to show significant changes in response to changes in the groundwater system. Changes in the groundwater system at the lake observed during the 2004/2005 draining, which

  18. Ca isotope fractionation and Sr/Ca partitioning associated with anhydrite formation at mid-ocean ridge hydrothermal systems: An experimental approach

    NASA Astrophysics Data System (ADS)

    Syverson, D. D.; Scheuermann, P.; Pester, N. J.; Higgins, J. A.; Seyfried, W. E., Jr.

    2016-12-01

    The elemental and isotopic mass balance of Ca and Sr between seawater and basalt at mid-ocean ridge (MOR) hydrothermal systems is an integrated reflection of the various physiochemical processes, which induce chemical exchange, in the subseafloor. Specifically, the processes of anhydrite precipitation and recrystallization are recognized to be important controls on governing the Ca and Sr elemental and isotope compositions of high temperature vent fluids, however, few experimental data exist to constrain these geochemical effects. Thus, to better understand the associated Sr/Ca partitioning and Ca isotope fractionation and rate of exchange between anhydrite and dissolved constituents, anhydrite precipitation and recrystallization experiments were performed at 175, 250, and 350°C and 500 bar at chemical conditions indicative of active MOR hydrothermal systems. The experimental data suggest that upon entrainment of seawater into MOR hydrothermal systems, anhydrite will precipitate rapidly and discriminate against the heavy isotopes of Ca (Δ44/40Ca(Anh-Fluid) = -0.68 - -0.25 ‰), whereas Sr/Ca partitioning depends on the saturation state of the evolving hydrothermal fluid with respect to anhydrite at each PTX (KD(Anh-Fluid) = 1.24 - 0.55). Coupling experimental constraints with the temperature gradient inferred for high temperature MOR hydrothermal systems in the oceanic crust, data suggest that the Ca isotope and Sr elemental composition of anhydrite formed near the seafloor will be influenced by disequilibrium effects, while, at higher temperatures further into the oceanic crust, anhydrite will be representative of equilibrium Sr/Ca partitioning and Ca isotope fractionation conditions. These experimental observations are consistent with analyzed Sr/Ca and Ca isotope compositions of anhydrites and vent fluids sampled from modern MOR hydrothermal systems1,2 and can be used to further constrain the geochemical effects of hydrothermal circulation in the oceanic crust

  19. Back-Projection Imaging of extended, diffuse seismic sources in volcanic and hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Kelly, C. L.; Lawrence, J. F.; Beroza, G. C.

    2017-12-01

    Volcanic and hydrothermal systems exhibit a wide range of seismicity that is directly linked to fluid and volatile activity in the subsurface and that can be indicative of imminent hazardous activity. Seismograms recorded near volcanic and hydrothermal systems typically contain "noisy" records, but in fact, these complex signals are generated by many overlapping low-magnitude displacements and pressure changes at depth. Unfortunately, excluding times of high-magnitude eruptive activity that typically occur infrequently relative to the length of a system's entire eruption cycle, these signals often have very low signal-to-noise ratios and are difficult to identify and study using established seismic analysis techniques (i.e. phase-picking, template matching). Arrays of short-period and broadband seismic sensors are proven tools for monitoring short- and long-term changes in volcanic and hydrothermal systems. Time-reversal techniques (i.e. back-projection) that are improved by additional seismic observations have been successfully applied to locating volcano-seismic sources recorded by dense sensor arrays. We present results from a new computationally efficient back-projection method that allows us to image the evolution of extended, diffuse sources of volcanic and hydrothermal seismicity. We correlate short time-window seismograms from receiver-pairs to find coherent signals and propagate them back in time to potential source locations in a 3D subsurface model. The strength of coherent seismic signal associated with any potential source-receiver-receiver geometry is equal to the correlation of the short time-windows of seismic records at appropriate time lags as determined by the velocity structure and ray paths. We stack (sum) all short time-window correlations from all receiver-pairs to determine the cumulative coherence of signals at each potential source location. Through stacking, coherent signals from extended and/or repeating sources of short-period energy

  20. Evidence of a modern deep water magmatic hydrothermal system in the Canary Basin (eastern central Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Medialdea, T.; Somoza, L.; González, F. J.; Vázquez, J. T.; de Ignacio, C.; Sumino, H.; Sánchez-Guillamón, O.; Orihashi, Y.; León, R.; Palomino, D.

    2017-08-01

    New seismic profiles, bathymetric data, and sediment-rock sampling document for the first time the discovery of hydrothermal vent complexes and volcanic cones at 4800-5200 m depth related to recent volcanic and intrusive activity in an unexplored area of the Canary Basin (Eastern Atlantic Ocean, 500 km west of the Canary Islands). A complex of sill intrusions is imaged on seismic profiles showing saucer-shaped, parallel, or inclined geometries. Three main types of structures are related to these intrusions. Type I consists of cone-shaped depressions developed above inclined sills interpreted as hydrothermal vents. Type II is the most abundant and is represented by isolated or clustered hydrothermal domes bounded by faults rooted at the tips of saucer-shaped sills. Domes are interpreted as seabed expressions of reservoirs of CH4 and CO2-rich fluids formed by degassing and contact metamorphism of organic-rich sediments around sill intrusions. Type III are hydrothermal-volcanic complexes originated above stratified or branched inclined sills connected by a chimney to the seabed volcanic edifice. Parallel sills sourced from the magmatic chimney formed also domes surrounding the volcanic cones. Core and dredges revealed that these volcanoes, which must be among the deepest in the world, are constituted by OIB-type, basanites with an outer ring of blue-green hydrothermal Al-rich smectite muds. Magmatic activity is dated, based on lava samples, at 0.78 ± 0.05 and 1.61 ± 0.09 Ma (K/Ar methods) and on tephra layers within cores at 25-237 ky. The Subvent hydrothermal-volcanic complex constitutes the first modern system reported in deep water oceanic basins related to intraplate hotspot activity.Plain Language SummarySubmarine volcanism and associated <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> are relevant processes for the evolution of the ocean basins, due their impact on the geochemistry of the oceans, their potential to form significant ore</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B13B0473R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B13B0473R"><span><span class="hlt">Hydrothermal</span> Reactivity of Amines</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robinson, K.; Shock, E.; Hartnett, H. E.; Williams, L. B.; Gould, I.</p> <p>2013-12-01</p> <p>The reactivity of aqueous amines depends on temperature, pH, and redox state [1], all of which are highly variable in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. Temperature and pH affect the ratio of protonated to unprotonated amines (R-NH2 + H+ = R-NH3+), which act as nucleophiles and electrophiles, respectively. We hypothesize that this dual nature can explain the pH dependence of reaction rates, and predict that rates will approach a maximum at pH = pKa where the ratio of protonated and unprotonated amines approaches one and the two compounds are poised to react with one another. Higher temperatures in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> allow for more rapid reaction rates, readily reversible reactions, and unique carbon-nitrogen chemistry in which water acts as a reagent in addition to being the solvent. In this study, aqueous benzylamine was used as a model compound to explore the reaction mechanisms, kinetics, and equilibria of amines under <span class="hlt">hydrothermal</span> conditions. Experiments were carried out in anoxic silica glass tubes at 250°C (Psat) using phosphate-buffered solutions to observe changes in reaction rates and product distributions as a function of pH. The rate of decomposition of benzylamine was much faster at pH 4 than at pH 9, consistent with the prediction that benzylamine acts as both nucleophile and an electrophile, and our estimate that the pKa of benzylamine is ~5 at 250°C and Psat. Accordingly, dibenzylamine is the primary product of the reaction of two benzylamine molecules, and this reaction is readily reversible under <span class="hlt">hydrothermal</span> conditions. Extremely acidic or basic pH can be used to suppress dibenzylamine production, which also suppresses the formation of all other major products, including toluene, benzyl alcohol, dibenzylimine, and tribenzylamine. This suggests that dibenzylamine is the lone primary product that then itself reacts as a precursor to produce the above compounds. Analog experiments performed with ring-substituted benzylamine derivatives and chiral</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997E%26PSL.153..239F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997E%26PSL.153..239F"><span>Tide-related variability of TAG <span class="hlt">hydrothermal</span> activity observed by deep-sea monitoring <span class="hlt">system</span> and OBSH</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fujioka, Kantaro; Kobayashi, Kazuo; Kato, Kazuhiro; Aoki, Misumi; Mitsuzawa, Kyohiko; Kinoshita, Masataka; Nishizawa, Azusa</p> <p>1997-12-01</p> <p><span class="hlt">Hydrothermal</span> activities were monitored by an ocean bottom seismometer with hydrophone (OBSH) and a composite measuring <span class="hlt">system</span> (Manatee) including CTD, current meter, transmission meter and cameras at a small depression on the TAG <span class="hlt">hydrothermal</span> mound in the Mid-Atlantic Ridge. Low-frequency pressure pulses detected by the hydrophone with semi-diurnal periodicity seem to correspond to cycles of <span class="hlt">hydrothermal</span> upflow from a small and short-lived smoker vent close to the observing site. The peaks of pressure pulses are synchronous with the maximum gradient of areal strain decrease due to tidal load release. Microearthquakes with very near epicenters occur sporadically and do not appear to be directly correlatable to <span class="hlt">hydrothermal</span> venting. Temporal variations in bottom water temperature also have semi-diurnal periodicity but are more complicated than the pressure events. Temperatures may be affected both by upwelling of hot water and by lateral flow of the bottom current changing its directions with ocean tide.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V51C0373S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V51C0373S"><span>Fluid geochemistry of Fault zone <span class="hlt">hydrothermal</span> <span class="hlt">system</span> in the Yidun-Litang area, eastern Tibetan Plateau geothermal belt</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shi, Z.; Wang, G.</p> <p>2017-12-01</p> <p>Understanding the geochemical and geothermal characteristic of the <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> provide useful information in appropriate evaluating the geothermal potential in this area. In this paper, we investigate the chemical and isotopic composition of thermal water in an underexploited geothermal belt, Yidun-Litang area, in eastern Tibetan Plateau geothermal belt. 24 hot springs from the Yidun and Litang area were collected and analyzed. The chemical facies of the hot springs are mainly Na-HCO3 type water. Water-rock interaction, cation exchange are the dominant hydrogeochemical processes in the <span class="hlt">hydrothermal</span> evolution. All the hot springs show long-time water-rock interaction and significant 18O shift occurred in the Yindun area. Tritium data indicate the long-time water-rock interaction time in the <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. According to the isotope and geochemical data, the <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> in Yidun and Litang area may share a common deep parent geothermal liquid but receive different sources of meteoric precipitation and undergone different geochemical processes. The Yidun area have relative high reservoir equilibrium temperature (up to 230 °C) while the reservoir temperature at Litang area is relative low (up to 128 °C).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920019807&hterms=modeling+reactions+chemical&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmodeling%2Breactions%2Bchemical','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920019807&hterms=modeling+reactions+chemical&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmodeling%2Breactions%2Bchemical"><span>Chemical reaction path modeling of <span class="hlt">hydrothermal</span> processes on Mars: Preliminary results</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Plumlee, Geoffrey S.; Ridley, W. Ian</p> <p>1992-01-01</p> <p><span class="hlt">Hydrothermal</span> processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of <span class="hlt">hydrothermally</span> altered impact melt sheets. In this model, impact-driven, vapor-dominated <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> <span class="hlt">hydrothermally</span> altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven <span class="hlt">hydrothermal</span> alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) <span class="hlt">hydrothermal</span> fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010020499&hterms=anticipation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Danticipation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010020499&hterms=anticipation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Danticipation"><span>Impact Crater <span class="hlt">Hydrothermal</span> Niches for Life on Mars: Question of Scale</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pope, K. O.; Ames, D. E.; Kieffer, S. W.; Ocampo, A. C.</p> <p>2000-01-01</p> <p>A major focus in the search for fossil life on Mars is on ancient <span class="hlt">hydrothermal</span> deposits. Nevertheless, remote sensing efforts have not found mineral assemblages characteristic of <span class="hlt">hydrothermal</span> activity. Future remote sensing work, including missions with higher spatial resolution, may detect localized <span class="hlt">hydrothermal</span> deposits, but it is possible that dust mantles will prohibit detection from orbit and lander missions will be required. In anticipation of such missions, it is critical to develop a strategy for selecting potential <span class="hlt">hydrothermal</span> sites on Mars. Such a strategy is being developed for volcanogenic <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>, and a similar strategy is needed for impact <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984ESRv...20....1R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984ESRv...20....1R"><span><span class="hlt">Hydrothermal</span> mineralization at seafloor spreading centers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rona, Peter A.</p> <p>1984-01-01</p> <p>The recent recognition that metallic mineral deposits are concentrated by <span class="hlt">hydrothermal</span> processes at seafloor spreading centers constitutes a scientific breakthrough that opens active sites at seafloor spreading centers as natural laboratories to investigate ore-forming processes of such economically useful deposits as massive sulfides in volcanogenic rocks on land, and that enhances the metallic mineral potential of oceanic crust covering two-thirds of the Earth both beneath ocean basins and exposed on land in ophiolite belts. This paper reviews our knowledge of processes of <span class="hlt">hydrothermal</span> mineralization and the occurrence and distribution of <span class="hlt">hydrothermal</span> mineral deposits at the global oceanic ridge-rift <span class="hlt">system</span>. Sub-seafloor <span class="hlt">hydrothermal</span> convection involving circulation of seawater through fractured rocks of oceanic crust driven by heat supplied by generation of new lithosphere is nearly ubiquitous at seafloor spreading centers. However, ore-forming <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> are extremely localized where conditions of anomalously high thermal gradients and permeability increase <span class="hlt">hydrothermal</span> activity from the ubiquitous low-intensity background level (⩽ 200°C) to high-intensity characterized by high temperatures ( > 200-c.400°C), and a rate and volume of flow sufficient to sustain chemical reactions that produce acid, reducing, metal-rich primary <span class="hlt">hydrothermal</span> solutions. A series of mineral phases with sulfides and oxides as high- and low-temperature end members, respectively, are precipitated along the upwelling limb and in the discharge zone of single-phase <span class="hlt">systems</span> as a function of increasing admixture of normal seawater. The occurrence of <span class="hlt">hydrothermal</span> mineral deposits is considered in terms of spatial and temporal frames of reference. Spatial frames of reference comprise structural features along-axis (linear sections that are the loci of seafloor spreading alternating with transform faults) and perpendicular to axis (axial zone of volcanic extrusion and marginal</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFMOS11A0338B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFMOS11A0338B"><span>The Third Dimension of an Active Back-arc <span class="hlt">Hydrothermal</span> <span class="hlt">System</span>: ODP Leg 193 at PACMANUS</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Binns, R.; Barriga, F.; Miller, D.</p> <p>2001-12-01</p> <p>This first sub-seafloor examination of an active <span class="hlt">hydrothermal</span> <span class="hlt">system</span> hosted by felsic volcanics, at a convergent margin, obtained drill core from a high-T "smoker" site (penetrated to sim200 mbsf) and a low-T site of diffuse venting (~400mbsf). We aimed to delineate the lateral and vertical variability in mineralisation and alteration patterns, so as to understand links between volcanological, structural and <span class="hlt">hydrothermal</span> phenomena and the sources of fluids, and to establish the nature and extent of microbial activity within the <span class="hlt">system</span>. Technological breakthroughs included deployment of a new hard-rock re-entry <span class="hlt">system</span>, and direct comparison in a hardrock environment of structural images obtained by wireline methods and logging-while-drilling. The PACMANUS <span class="hlt">hydrothermal</span> site, at the 1700m-deep crest of a 500m-high layered sequence of dacitic lavas, is notable for baritic massive sulfide chimneys rich in Cu, Zn, Au and Ag. Below an extensive cap 5-40m thick of fresh dacite-rhyodacite, we found unexpectedly pervasive <span class="hlt">hydrothermal</span> alteration of vesicular and flow-banded precursors, accompanied by variably intense fracturing and anhydrite-pyrite veining. Within what appears one major <span class="hlt">hydrothermal</span> event affecting the entire drilled sequence, there is much overprinting and repetition of distinctly allochemical argillaceous (illite-chlorite), acid-sulfate (pyrophyllite-anhydrite) and siliceous assemblages. The alteration profiles include a transition from metastable cristobalite to quartz at depth, and are similar under low-T and high-T vent sites but are vertically condensed in a manner suggesting higher thermal gradients beneath the latter. The altered rocks are surprisingly porous (average 25%). Retention of intergranular pore spaces and open vesicles at depth implies elevated <span class="hlt">hydrothermal</span> pressures, whereas evidence from fluid inclusions and <span class="hlt">hydrothermal</span> brecciation denotes local or sporadic phase separation. A maximum measured temperature of 313 degC measured 8 days</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H32F..01W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H32F..01W"><span>The Interplay Between Saline Fluid Flow and Dynamic Permeability in Magmatic-<span class="hlt">Hydrothermal</span> <span class="hlt">Systems</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weis, P.</p> <p>2014-12-01</p> <p>Magmatic-<span class="hlt">hydrothermal</span> ore deposits document the interplay between saline fluid flow and rock permeability. Numerical simulations of multi-phase flow of variably miscible, compressible H20-NaCl fluids in concert with a dynamic permeability model can reproduce characteristics of porphyry copper and epithermal gold <span class="hlt">systems</span>. This dynamic permeability model incorporates depth-dependent permeability profiles characteristic for tectonically active crust as well as pressure- and temperature-dependent relationships describing hydraulic fracturing and the transition from brittle to ductile rock behavior. In response to focused expulsion of magmatic fluids from a crystallizing upper crustal magma chamber, the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> self-organizes into a hydrological divide, separating an inner part dominated by ascending magmatic fluids under near-lithostatic pressures from a surrounding outer part dominated by convection of colder meteoric fluids under near-hydrostatic pressures. This hydrological divide also provides a mechanism to transport magmatic salt through the crust, and prevents the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> to become "clogged" by precipitation of solid halite due to depressurization of saline, high-temperature magmatic fluids. The same physical processes at similar permeability ranges, crustal depths and flow rates are relevant for a number of active <span class="hlt">systems</span>, including geothermal resources and excess degassing at volcanos. The simulations further suggest that the described mechanism can separate the base of free convection in high-enthalpy geothermal <span class="hlt">systems</span> from the magma chamber as a driving heat source by several kilometers in the vertical direction in tectonic settings with hydrous magmatism. This hydrology would be in contrast to settings with anhydrous magmatism, where the base of the geothermal <span class="hlt">systems</span> may be closer to the magma chamber.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994Tectp.237..155C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994Tectp.237..155C"><span>The North Tanganyika <span class="hlt">hydrothermal</span> fields, East African Rift <span class="hlt">system</span>: Their tectonic control and relationship to volcanism and rift segmentation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coussement, C.; Gente, P.; Rolet, J.; Tiercelin, J.-J.; Wafula, M.; Buku, S.</p> <p>1994-10-01</p> <p>The two branches of the East African Rift <span class="hlt">system</span> include numerous <span class="hlt">hydrothermal</span> fields, which are closely related to the present fault motion and to volcanic and seismic activity. In this study structural data from Pemba and Cape Banza <span class="hlt">hydrothermal</span> fields (western branch, North Tanganyika, Zaire) are discussed in terms of neotectonic phenomena. Different types of records, such as fieldwork (onshore and underwater) and LANDSAT and SPOT imagery, are used to explain structural controls on active and fossil <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> and their significance. The Pemba site is located at the intersection of 000-020°-trending normal faults belonging to the Uvira Border Fault <span class="hlt">System</span> and a 120-130°-trending transtensional fault zone and is an area of high seismicity, with events of relatively large magnitude ( Ms < 6.5). The Cape Banza site occurs at the northern end of the Ubawari Peninsula horst. It is bounded by two fault <span class="hlt">systems</span> trending 015° and is characterized seismically by events of small magnitude ( Ms < 4). The <span class="hlt">hydrothermal</span> area itself is tectonically controlled by structures striking 170-180° and 080°. The analysis of both <span class="hlt">hydrothermal</span> areas demonstrates the rejuvenation of older Proterozoic structures during Recent rift faulting and the location of the <span class="hlt">hydrothermal</span> activity at the junctions of submeridian and transverse faults. The fault motion is compatible with a regional direction of extension of 090-110°. The Cape Banza and Pemba <span class="hlt">hydrothermal</span> fields may testify to magma chambers existing below the junctions of the faults. They appear to form at structural nodes and may represent a future volcanic province. Together with the four surface volcanic provinces existing along the western branch, they possibly indicate an incipient rift segmentation related to 'valley-valley' or 'transverse fault-valley' junctions, contrasting with the spacing of the volcanoes measured in the eastern branch. These spacings appear to express the different elastic thicknesses between</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=auckland+AND+culture&pg=2&id=ED467126','ERIC'); return false;" href="https://eric.ed.gov/?q=auckland+AND+culture&pg=2&id=ED467126"><span>A Civilising Mission? Perceptions and Representations of the New <span class="hlt">Zealand</span> Native Schools <span class="hlt">System</span></span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Simon, Judith, Ed.; Smith, Linda Tuhiwai, Ed.</p> <p></p> <p>The Native Schools <span class="hlt">system</span> was a <span class="hlt">system</span> of village primary schools for Maori children operated by the New <span class="hlt">Zealand</span> state from 1867 to 1969. The official purpose of the <span class="hlt">system</span> was assimilation. Virtually all previous historical accounts of the Native Schools have been written by Pakeha (non-Maori, usually of European descent) and based on material…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27355164','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27355164"><span>Funding New <span class="hlt">Zealand</span>'s public healthcare <span class="hlt">system</span>: time for an honest appraisal and public debate.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Keene, Lyndon; Bagshaw, Philip; Nicholls, M Gary; Rosenberg, Bill; Frampton, Christopher M; Powell, Ian</p> <p>2016-05-27</p> <p>Successive New <span class="hlt">Zealand</span> governments have claimed that the cost of funding the country's public healthcare services is excessive and unsustainable. We contest that these claims are based on a misrepresentation of healthcare spending. Using data from the New <span class="hlt">Zealand</span> Treasury and the Organisation for Economic Cooperation and Development (OECD), we show how government spending as a whole is low compared with most other OECD countries and is falling as a proportion of GDP. New <span class="hlt">Zealand</span> has a modest level of health spending overall, but government health spending is also falling as a proportion of GDP. Together, the data indicate the New <span class="hlt">Zealand</span> Government can afford to spend more on healthcare. We identify compelling reasons why it should do so, including forecast growing health need, signs of increasing unmet need, and the fact that if health needs are not met the costs still have to be borne by the economy. The evidence further suggests it is economically and socially beneficial to meet health needs through a public health <span class="hlt">system</span>. An honest appraisal and public debate is needed to determine more appropriate levels of healthcare spending.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.H21B0809G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.H21B0809G"><span>High-resolution simulations of multi-phase flow in magmatic-<span class="hlt">hydrothermal</span> <span class="hlt">systems</span> with realistic fluid properties</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Geiger, S.; Driesner, T.; Matthai, S.; Heinrich, C.</p> <p>2002-12-01</p> <p>Realistic modelling of multi-phase fluid flow, energy and component transport in magmatic-<span class="hlt">hydrothermal</span> <span class="hlt">systems</span> is very challenging because hydrological properties of fluids and rocks vary over many orders of magnitude and the geometric complexities of such <span class="hlt">systems</span>. Furthermore, density dependent component transport and transient permeability variations due to P-T changes and fluid-rock interactions introduce additional difficulties. As a result, the governing equations for the hydrodynamics, energy and component transport, and thermodynamics in magmatic <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> are highly non-linear and strongly coupled. Essential requirements of a numerical formulation for such a <span class="hlt">system</span> are: (1) a treatment of the hydrodynamics that can accurately resolve complex geological structures and represent the highly variable fluid velocities herein, (2) a realistic thermodynamic representation of the fluid properties including the wide P-T-X range of liquid+vapour coexistence for the highly saline fluids, and (3) an accurate handling of the highly contrasting transport properties of the two fluids. We are combining higher order finite-element (FE) methods with total variation diminishing finite volume (TVDFV) methods to model the hydrodynamics and energy and component transport of magmatic <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. Combined FE and TVDFV methods are mass and shock preserving, yield great geometric flexibility in 2D and 3D [2]. Furthermore, efficient matrix solvers can be employed to model fluid flow in geologically realistic structures [5]. The governing equations are linearized by operator-splitting and solved sequentially using a Picard iteration scheme. We chose the <span class="hlt">system</span> water-NaCl as a realistic proxy for natural fluids occurring in magmatic-<span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. An in-depth evaluation of the available experimental and theoretical data led to a consistent and accurate set of formulations for the PVTXH relations that are valid from 0 to 800 C, 0 to 500 MPa, and 0 to 1 XNa</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25583117','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25583117"><span>Health economics and health policy: experiences from New <span class="hlt">Zealand</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cumming, Jacqueline</p> <p>2015-06-01</p> <p>Health economics has had a significant impact on the New <span class="hlt">Zealand</span> health <span class="hlt">system</span> over the past 30 years. In this paper, I set out a framework for thinking about health economics, give some historical background to New <span class="hlt">Zealand</span> and the New <span class="hlt">Zealand</span> health <span class="hlt">system</span>, and discuss examples of how health economics has influenced thinking about the organisation of the health sector and priority setting. I conclude the paper with overall observations about the role of health economics in health policy in New <span class="hlt">Zealand</span>, also identifying where health economics has not made the contribution it could and where further influence might be beneficial.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5773K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5773K"><span>Transformation of graphite by tectonic and <span class="hlt">hydrothermal</span> processes in an active plate boundary fault zone, Alpine Fault, New <span class="hlt">Zealand</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirilova, Matina; Toy, Virginia; Timms, Nicholas; Halfpenny, Angela; Menzies, Catriona; Craw, Dave; Rooney, Jeremy; Giorgetti, Carolina</p> <p>2017-04-01</p> <p>Graphite is a material with one of the lowest frictional strengths, with coefficient of friction of 0.1 and thus in natural fault zones it may act as a natural solid lubricant. Graphitization, or the transformation of organic matter (carbonaceous material, or CM) into crystalline graphite, is induced by compositional and structural changes during diagenesis and metamorphism. The supposed irreversible nature of this process has allowed the degree of graphite crystallinity to be calibrated as an indicator of the peak temperatures reached during progressive metamorphism. We examine processes of graphite emplacement and deformation in the Alpine Fault Zone, New <span class="hlt">Zealand</span>'s active continental tectonic plate boundary. Raman spectrometry indicates that graphite in the distal, amphibolite-facies Alpine Schist, which experienced peak metamorphic temperatures up to 640 ◦C, is highly crystalline and occurs mainly along grain boundaries within quartzo-feldspathic domains. The subsequent mylonitisation in the Alpine Fault Zone resulted in progressive reworking of CM under lower temperature conditions (500◦C-600◦C) in a structurally controlled environment, resulting in spatial clustering in lower-strain protomylonites, and further foliation-alignment in higher-strain mylonites. Subsequent brittle deformation of the mylonitised schists resulted in cataclasites that contain over three-fold increase in the abundance of graphite than mylonites. Furthermore, cataclasites contain graphite with two different habits: highly-crystalline, foliated forms that are inherited mylonitic graphite; and lower-crystallinity, less mature patches of finer-grained graphite. The observed graphite enrichment and the occurrence of poorly-organised graphite in the Alpine Fault cataclasites could result from: i) <span class="hlt">hydrothermal</span> precipitation from carbon-supersaturated fluids; and/or ii) mechanical degradation by structural disordering of mylonitic graphite combined with strain-induced graphite</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010044700&hterms=Xxxii&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DXxxii','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010044700&hterms=Xxxii&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DXxxii"><span>Availability of Heat to Drive <span class="hlt">Hydrothermal</span> <span class="hlt">Systems</span> in Large Martian Impact Craters</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thorsos, I. E.; Newsom, H. E.; Davies, A. G.</p> <p>2001-01-01</p> <p>The central uplift in large craters on Mars can provide a substantial source of heat, equivalent to heat produced by the impact melt sheet. The heat generated in large impacts could play a significant role in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> on Mars. Additional information is contained in the original extended abstract.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CoMP..173...40K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CoMP..173...40K"><span>Constraints on the source of Cu in a submarine magmatic-<span class="hlt">hydrothermal</span> <span class="hlt">system</span>, Brothers volcano, Kermadec island arc</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keith, Manuel; Haase, Karsten M.; Klemd, Reiner; Smith, Daniel J.; Schwarz-Schampera, Ulrich; Bach, Wolfgang</p> <p>2018-05-01</p> <p>Most magmatic-<span class="hlt">hydrothermal</span> Cu deposits are genetically linked to arc magmas. However, most continental or oceanic arc magmas are barren, and hence new methods have to be developed to distinguish between barren and mineralised arc <span class="hlt">systems</span>. Source composition, melting conditions, the timing of S saturation and an initial chalcophile element-enrichment represent important parameters that control the potential of a subduction setting to host an economically valuable deposit. Brothers volcano in the Kermadec island arc is one of the best-studied examples of arc-related submarine magmatic-<span class="hlt">hydrothermal</span> activity. This study, for the first time, compares the chemical and mineralogical composition of the Brothers seafloor massive sulphides and the associated dacitic to rhyolitic lavas that host the <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. Incompatible trace element ratios, such as La/Sm and Ce/Pb, indicate that the basaltic melts from L'Esperance volcano may represent a parental analogue to the more evolved Brothers lavas. Copper-rich magmatic sulphides (Cu > 2 wt%) identified in fresh volcanic glass and phenocryst phases, such as clinopyroxene, plagioclase and Fe-Ti oxide suggest that the surrounding lavas that host the Brothers <span class="hlt">hydrothermal</span> <span class="hlt">system</span> represent a potential Cu source for the sulphide ores at the seafloor. Thermodynamic calculations reveal that the Brothers melts reached volatile saturation during their evolution. Melt inclusion data and the occurrence of sulphides along vesicle margins indicate that an exsolving volatile phase extracted Cu from the silicate melt and probably contributed it to the overlying <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. Hence, the formation of the Cu-rich seafloor massive sulphides (up to 35.6 wt%) is probably due to the contribution of Cu from a bimodal source including wall rock leaching and magmatic degassing, in a mineralisation style that is hybrid between Cyprus-type volcanic-hosted massive sulphide and subaerial epithermal-porphyry deposits.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JVGR..192...57A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JVGR..192...57A"><span>Water-rock interaction in the magmatic-<span class="hlt">hydrothermal</span> <span class="hlt">system</span> of Nisyros Island (Greece)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ambrosio, Michele; Doveri, Marco; Fagioli, Maria Teresa; Marini, Luigi; Principe, Claudia; Raco, Brunella</p> <p>2010-04-01</p> <p>In this work, we investigated the water-rock interaction processes taking place in the <span class="hlt">hydrothermal</span> reservoir of Nisyros through both: (1) a review of the <span class="hlt">hydrothermal</span> mineralogy encountered in the deep geothermal borehole Nisyros-2; and (2) a comparison of the analytically-derived redox potentials and acidities of fumarolic-related liquids, with those controlled by redox buffers and pH buffers, involving <span class="hlt">hydrothermal</span> mineral phases. The propylitic zone met in the deep geothermal borehole Nisyros-2, from 950 to 1547 m (total depth), is characterised by abundant, well crystallised epidote, adularia, albite, quartz, pyrite, chlorite, and sericite-muscovite, accompanied by less abundant anhydrite, stilpnomelane, wairakite, garnet, tremolite and pyroxene. These <span class="hlt">hydrothermal</span> minerals were produced in a comparatively wide temperature range, from 230 to 300 °C, approximately. <span class="hlt">Hydrothermal</span> assemblages are well developed from 950 to 1360 m, whereas they are less developed below this depth, probably due to low permeability. Based on the RH values calculated for fumarolic gases and for the deep geothermal fluids of Nisyros-1 and Nisyros-2 wells, redox equilibrium with the (FeO)/(FeO 1.5) rock buffer appears to be closely attained throughout the <span class="hlt">hydrothermal</span> reservoir of Nisyros. This conclusion may be easily reconciled with the nearly ubiquitous occurrence of anhydrite and pyrite, since RH values controlled by coexistence of anhydrite and pyrite can be achieved by gas separation. The pH of the liquids feeding the fumarolic vents of Stephanos and Polybote Micros craters was computed, by means of the EQ3 code, based on the Cl- δD relationship which is constrained by the seawater-magmatic water mixing occurring at depth in the <span class="hlt">hydrothermal</span>-magmatic <span class="hlt">system</span> of Nisyros. The temperature dependence of analytically-derived pH values for the reservoir liquids feeding the fumarolic vents of Stephanos and Polybote Micros craters suggests that some unspecified pH buffer fixes the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70175410','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70175410"><span>Three-dimensional electrical resistivity model of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> in Long Valley Caldera, California, from magnetotellurics</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Peacock, Jared R.; Mangan, Margaret T.; McPhee, Darcy K.; Wannamaker, Phil E.</p> <p>2016-01-01</p> <p>Though shallow flow of <span class="hlt">hydrothermal</span> fluids in Long Valley Caldera, California, has been well studied, neither the <span class="hlt">hydrothermal</span> source reservoir nor heat source has been well characterized. Here a grid of magnetotelluric data were collected around the Long Valley volcanic <span class="hlt">system</span> and modeled in 3-D. The preferred electrical resistivity model suggests that the source reservoir is a narrow east-west elongated body 4 km below the west moat. The heat source could be a zone of 2–5% partial melt 8 km below Deer Mountain. Additionally, a collection of hypersaline fluids, not connected to the shallow <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, is found 3 km below the medial graben, which could originate from a zone of 5–10% partial melt 8 km below the south moat. Below Mammoth Mountain is a 3 km thick isolated body containing fluids and gases originating from an 8 km deep zone of 5–10% basaltic partial melt.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUSM.U33A..08K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUSM.U33A..08K"><span>Impact-generated <span class="hlt">Hydrothermal</span> Activity at the Chicxulub Crater</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kring, D. A.; Zurcher, L.; Abramov, O.</p> <p>2007-05-01</p> <p>Borehole samples recovered from PEMEX exploration boreholes and an ICDP scientific borehole indicate the Chicxulub impact event generated <span class="hlt">hydrothermal</span> alteration throughout a large volume of the Maya Block beneath the crater floor and extending across the bulk of the ~180 km diameter crater. The first indications of <span class="hlt">hydrothermal</span> alteration were observed in the crater discovery samples from the Yucatan-6 borehole and manifest itself in the form of anhydrite and quartz veins. Continuous core from the Yaxcopoil-1 borehole reveal a more complex and temporally extensive alteration sequence: following a brief period at high temperatures, impact- melt-bearing polymict breccias and a thin, underlying unit of impact melt were subjected to metasomatism, producing alkali feldspar, sphene, apatite, and magnetite. As the <span class="hlt">system</span> continued to cool, smectite-series phyllosilicates appeared. A saline solution was involved. Stable isotopes suggest the fluid was dominated by a basinal brine created mostly from existing groundwater of the Yucatan Peninsula, although contributions from down-welling water also occurred in some parts of the <span class="hlt">system</span>. Numerical modeling of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> suggests circulation occurred for 1.5 to 2.3 Myr, depending on the permeability of the <span class="hlt">system</span>. Our understanding of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, however, is still crude. Additional core recovery projects, particularly into the central melt sheet, are needed to better evaluate the extent and duration of <span class="hlt">hydrothermal</span> alteration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V21A4731T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V21A4731T"><span>A Blind <span class="hlt">Hydrothermal</span> <span class="hlt">System</span> in an Ocean Island Environment: Humu'ula Saddle, Hawaii Island</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomas, D. M.; Wallin, E.; Lautze, N. C.; Lienert, B. R.; Pierce, H. A.</p> <p>2014-12-01</p> <p>A recently drilled groundwater investigation borehole, drilled to a depth of 1760 m in the Humu'ula Saddle of Hawaii Island, encountered an unexpectedly high temperature gradient of more than 160 ̊C/km. Although prior MT surveys across the region identified conductive formations of modest extent in the region, there were few surface manifestations of geologic structures likely to host a geothermal <span class="hlt">system</span> and no evidence of an active, extensive <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. Cores recovered from the borehole showed the presence of intrusive formations and moderate <span class="hlt">hydrothermal</span> alteration at depth with progressive infilling of fractures and vesicles with depth and temperature. Independent modeling of gravity data (Flinders et al., 2013) suggests the presence of a broad intrusive complex within the region that is consistent with the borehole's confirmation of a high-elevation (~1400 m amsl) regional water table. A subsequent MT survey covering much of the western Saddle region has confirmed the presence of highly conductive conditions, consistent with thermal activity, to depths of 4 km and greater. Light stable isotope data for the borehole fluids indicate that the regional water table is derived from recharge from the upper elevations of Mauna Kea; major element chemistry indicates that formation temperatures exceed 200 ̊C. A conceptual model of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, along with isotopic and fluid chemistry of the thermal fluids will be presented.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018464','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018464"><span>Hydrogen isotope systematics of phase separation in submarine <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>: Experimental calibration and theoretical models</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Berndt, M.E.; Seal, R.R.; Shanks, Wayne C.; Seyfried, W.E.</p> <p>1996-01-01</p> <p>Hydrogen isotope fractionation factors were measured for coexisting brines and vapors formed by phase separation of NaCl/H2O fluids at temperatures ranging from 399-450??C and pressures from 277-397 bars. It was found that brines are depleted in D compared to coexisting vapors at all conditions studied. The magnitude of hydrogen isotope fractionation is dependent on the relative amounts of Cl in the two phases and can be empirically correlated to pressure using the following relationship: 1000 ln ??(vap-brine) = 2.54(??0.83) + 2.87(??0.69) x log (??P), where ??(vap-brine) is the fractionation factor and ??P is a pressure term representing distance from the critical curve in the NaCl/H2O <span class="hlt">system</span>. The effect of phase separation on hydrogen isotope distribution in subseafloor <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> depends on a number of factors, including whether phase separation is induced by heating at depth or by decompression of <span class="hlt">hydrothermal</span> fluids ascending to the seafloor. Phase separation in most subseafloor <span class="hlt">systems</span> appears to be a simple process driven by heating of seawater to conditions within the two-phase region, followed by segregation and entrainment of brine or vapor into a seawater dominated <span class="hlt">system</span>. Resulting vent fluids exhibit large ranges in Cl concentration with no measurable effect on ??D. Possible exceptions to this include <span class="hlt">hydrothermal</span> fluids venting at Axial and 9??N on the East Pacific Rise. High ??D values of low Cl fluids venting at Axial are consistent with phase separation taking place at relatively shallow levels in the oceanic crust while negative ??D values in some low Cl fluids venting at 9??N suggest involvement of a magmatic fluid component or phase separation of D-depleted brines derived during previous <span class="hlt">hydrothermal</span> activity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B11J0571L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B11J0571L"><span>Insight from Genomics on Biogeochemical Cycles in a Shallow-Sea <span class="hlt">Hydrothermal</span> <span class="hlt">System</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, G. S.; Amend, J.</p> <p>2015-12-01</p> <p>Shallow-sea <span class="hlt">hydrothermal</span> ecosystems are dynamic, high-energy <span class="hlt">systems</span> influenced by sunlight and geothermal activity. They provide accessible opportunities for investigating thermophilic microbial biogeochemical cycles. In this study, we report biogeochemical data from a shallow-sea <span class="hlt">hydrothermal</span> <span class="hlt">system</span> offshore Paleochori Bay, Milos, Greece, which is characterized by a central vent covered by white microbial mats with <span class="hlt">hydrothermally</span> influenced sediments extending into nearby sea grass area. Geochemical analysis and deep sequencing provide high-resolution information on the geochemical patterns, microbial diversity and metabolic potential in a two-meter transect. The venting fluid is elevated in temperature (~70oC), low in pH (~4), and enriched in reduced species. The geochemical pattern shows that the profile is affected by not only seawater dilution but also microbial regulation. The microbial community in the deepest section of vent core (10-12 cm) is largely dominated by thermophilic archaea, including a methanogen and a recently described Crenarcheon. Mid-core (6-8 cm), the microbial community in the venting area switches to the hydrogen utilizer Aquificae. Near the sediment-water interface, anaerobic Firmicutes and Actinobacteria dominate, both of which are commonly associated with subsurface and <span class="hlt">hydrothermal</span> sites. All other samples are dominated by diverse Proteobacteria. The sulfate profile is strongly correlated with the population size of delta- and episilon-proteobactia. The dramatic decrease in concentrations of As and Mn in pore fluids as a function of distance from the vent suggests that in addition to seawater dilution, microorganisms are likely transforming these and other ions through a combination of detoxification and catabolism. In addition, high concentrations of dissolved Fe are only measurable in the shallow sea grass area, suggesting that iron-transforming microorganisms are controlling Fe mobility, and promoting biomineralization. Taken</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSCT44A0211N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSCT44A0211N"><span><span class="hlt">Hydrothermal</span> <span class="hlt">systems</span> are a sink for dissolved black carbon in the deep ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niggemann, J.; Hawkes, J. A.; Rossel, P. E.; Stubbins, A.; Dittmar, T.</p> <p>2016-02-01</p> <p>Exposure to heat during fires on land or geothermal processes in Earth's crust induces modifications in the molecular structure of organic matter. The products of this thermogenesis are collectively termed black carbon. Dissolved black carbon (DBC) is a significant component of the oceanic dissolved organic carbon (DOC) pool. In the deep ocean, DBC accounts for 2% of DOC and has an apparent radiocarbon age of 18,000 years. Thus, DBC is much older than the bulk DOC pool, suggesting that DBC is highly refractory. Recently, it has been shown that recalcitrant deep-ocean DOC is efficiently removed during <span class="hlt">hydrothermal</span> circulation. Here, we hypothesize that <span class="hlt">hydrothermal</span> circulation is also a net sink for deep ocean DBC. We analyzed DBC in samples collected at different vent sites in the Atlantic, Pacific and Southern oceans. DBC was quantified in solid-phase extracts as benzenepolycarboxylic acids (BPCAs) following nitric acid digestion. Concentrations of DBC were much lower in <span class="hlt">hydrothermal</span> fluids than in surrounding deep ocean seawater, confirming that <span class="hlt">hydrothermal</span> circulation acts as a net sink for oceanic DBC. The relative contribution of DBC to bulk DOC did not change during <span class="hlt">hydrothermal</span> circulation, indicating that DBC is removed at similar rates as bulk DOC. The ratio of the oxidation products benzenehexacarboxylic acid (B6CA) to benzenepentacarboxylic acid (B5CA) was significantly higher in <span class="hlt">hydrothermally</span> altered samples compared to ratios typically found in the deep ocean, reflecting a higher degree of condensation of DBC molecules after <span class="hlt">hydrothermal</span> circulation. Our study identified <span class="hlt">hydrothermal</span> circulation as a quantitatively important sink for refractory DBC in the deep ocean. In contrast to photodegradation of DBC at the sea surface, which is more efficient for more condensed DBC, i.e. decreasing the B6CA/B5CA ratio, <span class="hlt">hydrothermal</span> processing increases the B6CA/B5CA ratio, introducing a characteristic <span class="hlt">hydrothermal</span> DBC signature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017098','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017098"><span><span class="hlt">Hydrothermal</span> alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil <span class="hlt">Hydrothermal</span> Field</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.</p> <p>1994-01-01</p> <p>The Galapagos Fossil <span class="hlt">Hydrothermal</span> Field is composed of altered oceanic crust and extinct <span class="hlt">hydrothermal</span> vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the <span class="hlt">hydrothermal</span> alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open <span class="hlt">system</span> behaviour under low fluid-rock ratio (< 10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. The precipitation of base-metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine <span class="hlt">hydrothermal</span> <span class="hlt">systems</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28867079','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28867079"><span>The New <span class="hlt">Zealand</span> Food Composition Database: A useful tool for assessing New <span class="hlt">Zealanders</span>' nutrient intake.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sivakumaran, Subathira; Huffman, Lee; Sivakumaran, Sivalingam</p> <p>2018-01-01</p> <p>A country-specific food composition databases is useful for assessing nutrient intake reliably in national nutrition surveys, research studies and clinical practice. The New <span class="hlt">Zealand</span> Food Composition Database (NZFCDB) programme seeks to maintain relevant and up-to-date food records that reflect the composition of foods commonly consumed in New <span class="hlt">Zealand</span> following Food Agricultural Organisation of the United Nations/International Network of Food Data <span class="hlt">Systems</span> (FAO/INFOODS) guidelines. Food composition data (FCD) of up to 87 core components for approximately 600 foods have been added to NZFCDB since 2010. These foods include those identified as providing key nutrients in a 2008/09 New <span class="hlt">Zealand</span> Adult Nutrition Survey. Nutrient data obtained by analysis of composite samples or are calculated from analytical data. Currently >2500 foods in 22 food groups are freely available in various NZFCDB output products on the website: www.foodcomposition.co.nz. NZFCDB is the main source of FCD for estimating nutrient intake in New <span class="hlt">Zealand</span> nutrition surveys. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BVol...79...82M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BVol...79...82M"><span>Phreatic activity and <span class="hlt">hydrothermal</span> alteration in the Valley of Desolation, Dominica, Lesser Antilles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mayer, Klaus; Scheu, Bettina; Yilmaz, Tim I.; Montanaro, Cristian; Albert Gilg, H.; Rott, Stefanie; Joseph, Erouscilla P.; Dingwell, Donald B.</p> <p>2017-12-01</p> <p> potential for pressurization in the subsurface and thus lead to phreatic eruptions. Rapid decompression experiments, together with ballistic trajectory calculations, constrain estimates of the conditions prior to the 1997 small-scale phreatic event in the VoD. The results presented here may serve as a contribution to the understanding of the hazard potential of ongoing <span class="hlt">hydrothermal</span> activity within the VoD. On a broader perspective, our results will help evaluate <span class="hlt">hydrothermal</span> activity in similar areas worldwide which might also have the potential for phreatic eruptions, for instance Poas (Costa Rica) or Tongariro and Waimangu (New <span class="hlt">Zealand</span>).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9825E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9825E"><span><span class="hlt">Hydrothermal</span> activity at slow-spreading ridges: variability and importance of magmatic controls</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Escartin, Javier</p> <p>2016-04-01</p> <p><span class="hlt">Hydrothermal</span> activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with <span class="hlt">hydrothermal</span> fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic <span class="hlt">systems</span>' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of <span class="hlt">hydrothermal</span> fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived <span class="hlt">hydrothermal</span> activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past <span class="hlt">hydrothermal</span> activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of <span class="hlt">hydrothermal</span> activity along the remaining of the ridge segment, suggests that long-lived <span class="hlt">hydrothermal</span> activity in these volcanic <span class="hlt">systems</span> is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, <span class="hlt">hydrothermal</span> outflow zones at the seafloor are systematically controlled by faults, indicating that <span class="hlt">hydrothermal</span> fluids in the shallow crust exploit permeable fault zones to circulate. While</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1110353F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1110353F"><span>The main factors controlling petrophysical alteration in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> of the Kuril-Kamchatka island arch</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frolova, J.; Ladygin, V.; Rychagov, S.; Shanina, V.; Blyumkina, M.</p> <p>2009-04-01</p> <p>This report is based on the results of petrophysical studies obtained on a number of <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> in the Kuril-Kamchatka island arc (Pauzhetsky, Mutnovsky, Koshelevsky, Essovsky, a volcano of Ebeko, Oceansky). Mineral composition and pore-space structure of primary rocks change intensively during <span class="hlt">hydrothermal</span> process, results in alteration of petrophysical properties - porosity, density, permeability, hygroscopy, sonic velocity, elastic modulus, mechanical properties, thermal and magnetic characteristics. Petrophysical alterations gradually lead to the change of the structure of <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, and its hydrodynamic and temperature regime. The tendency of petrophysical alteration can be different. In some cases rocks "improvement" is observed i.e. consolidation, hardening, decrease of porosity and permeability, removal of hygroscopy. In other cases rocks "deterioration" occurs, i.e. formation of secondary porosity and permeability, a decrease of density, strength, and elastic modulus, and occurrence of hygroscopic moisture. The classical example of cardinal petrophysical alteration is the transformation of hard basalts to plastic clays. The opposite example is the transformation of only slightly consolidates porous tuffs to hard and dense secondary quartzite. The character of petrophysical alteration depends on a number of factors including peculiarities of primary rocks, temperature, pressure and composition of thermal fluids, duration of fluid-rock interaction, and condition of fluid (steam, water, boiling water). The contribution of each factor to change of volcanic rocks properties is considered and analyzed in details. In particular, primary rocks controls speed, intensity and character of petrophysical alterations. Factors favorable for alteration are high porosity and permeability, micro crakes, weak cementation, glassy structure, basaltic composition. Kuril-Kamchatka region represents the volcanic island arch so host rocks in <span class="hlt">hydrothermal</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10181886','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10181886"><span>Management of health <span class="hlt">system</span> reform: a view of changes within New <span class="hlt">Zealand</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ritchie, D</p> <p>1998-08-01</p> <p>This paper reports on the context and process of health <span class="hlt">system</span> reform in New <span class="hlt">Zealand</span>. The study is based on interviews conducted with 31 managers from three Crown Health Enterprises (publicly funded hospital-based health care organizations). A number of countries with publicly funded health services (e.g., UK, Australia and New <span class="hlt">Zealand</span>) have sought to shift from the traditional 'passive' health management style (using transactional management skills to balance historically-based expenditure budgets) to 'active' transformational leadership styles that reflect a stronger 'private sector' orientation (requiring active management of resources--including a return on 'capital' investment, identification of costs and returns on 'product lines', 'marketing' a 'product mix', reducing non-core activities and overhead costs, and a closer relationship with 'shareholders', suppliers and customers/clients). Evidence of activities and processes associated with transformational leadership are identified. Success of the New <span class="hlt">Zealand</span> health reforms will be determined by the approach the new managers adopt to improve their organization's performance. Transformational leadership has been frequently linked to the successful implementation of significant organizational change in other settings (Kurz et al., 1988; Dunphy and Stace, 1990) but it is too early to assess whether this is applicable in a health care context.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MinDe..50..281S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MinDe..50..281S"><span>Mo isotope fractionation during <span class="hlt">hydrothermal</span> evolution of porphyry Cu <span class="hlt">systems</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shafiei, Behnam; Shamanian, GholamHossein; Mathur, Ryan; Mirnejad, Hassan</p> <p>2015-03-01</p> <p>We present Mo isotope compositions of molybdenite types from three successive stages of ore deposition in several porphyry copper deposits of the Kerman region, Iran. The data provide new insights into controlling processes on Mo isotope fractionation during the <span class="hlt">hydrothermal</span> evolution of porphyry <span class="hlt">systems</span>. The Mo isotope compositions of 27 molybdenite samples show wide variations in δ97Mo ranging from -0.37 to +0.92 ‰. The data reveal that molybdenites in the early and transitional stages of mineralization (preferentially 2H polytypes; δ97Mo mean = 0.35 ‰) have higher δ97Mo values than late stage (mainly 3R polytypes; δ97Mo mean = 0.02 ‰) molybdenites. This trend suggests that fractionation of Mo isotopes occurred in high-temperature stages of mineralization and that <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> generally evolve towards precipitation of molybdenite with lower δ97Mo values. Taking into account the genetic models proposed for porphyry Cu deposits along with the temperature-dependent fractionation of Mo isotope ratios, it is proposed that large variations of Mo isotopes in the early and the transitional stages of ore deposition could be controlled by the separation of the immiscible ore-forming fluid phases with different density, pH, and ƒO2 properties (i.e., brine and vapor). The fractionation of Mo isotopes during fluid boiling and Rayleigh distillation processes likely dominates the Mo isotope budget of the remaining ore-forming fluids for the late stage of mineralization. The lower δ97Mo values in the late stage of mineralization can be explained by depletion of the late ore-forming <span class="hlt">hydrothermal</span> solutions in 97Mo, as these fluids have moved to considerable distance from the source. Finally, the relationship observed between MoS2 polytypes (2H and 3R) and their Mo isotopic compositions can be explained by the molecular vibration theory, in which heavier isotopes are preferentially partitioned into denser primary 2H MoS2 crystals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016607','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016607"><span><span class="hlt">Hydrothermal</span> ore-forming processes in the light of studies in rock- buffered <span class="hlt">systems</span>: II. Some general geologic applications</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hemley, J.J.; Hunt, J.P.</p> <p>1992-01-01</p> <p>The experimental metal solubilities for rock-buffered <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> provide important insights into the acquisition, transport, and deposition of metals in real <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> that produced base metal ore deposits. Water-rock reactions that determine pH, together with total chloride and changes in temperature and fluid pressure, play significant roles in controlling the solubility of metals and determining where metals are fixed to form ore deposits. Deposition of metals in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> occurs where changes such as cooling, pH increase due to rock alteration, boiling, or fluid mixing cause the aqueous metal concentration to exceed saturation. Metal zoning results from deposition occurring at successive saturation surfaces. Zoning is not a reflection simply of relative solubility but of the manner of intersection of transport concentration paths with those surfaces. Saturation surfaces will tend to migrate outward and inward in prograde and retrograde time, respectively, controlled by either temperature or chemical variables. -from Authors</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013982','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013982"><span>Castro ring zone: a 4,500-km2 fossil <span class="hlt">hydrothermal</span> <span class="hlt">system</span> in the Challis volcanic field, central Idaho.</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Criss, R.E.; Ekren, E.B.; Hardyman, R.F.</p> <p>1984-01-01</p> <p>The largest fossil <span class="hlt">hydrothermal</span> <span class="hlt">system</span> occupying a 4500 km2 area in central Idaho is revealed by delta 18O studies. The remains of this meteoric-<span class="hlt">hydrothermal</span> <span class="hlt">system</span> are preserved within a sharply bounded, 15 km wide, 70-km-diameter annulus of low delta 18O rock (+2.0 to -8.8per mille) termed the Castro ring zone. The zone is centred on a less depleted (+4.5) core zone consisting of granitic rocks of the Castro pluton. This 700-km2 Eocene subvolcanic batholith has intruded, domed, and <span class="hlt">hydrothermally</span> metamorphosed a thick sequence of Challis Volcanics, the stratigraphically low rocks in the 2000-km2 Van Horn Peak and the 1000-km2 Thunder Mountain cauldron complexes being most strongly altered. Less extreme 18O depletions occur in the youngest major ash-flow sheets of these complexes, indicating a vertical 18O gradient. Water/rock ratios of geothermal <span class="hlt">systems</span> are surprisingly insensitive to the circulation scale.-L.-di H.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED197236.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED197236.pdf"><span>Selection of School Counsellors in New <span class="hlt">Zealand</span>.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Manthei, R. J.</p> <p></p> <p>This paper presents the views of the New <span class="hlt">Zealand</span> Counselling and Guidance Association regarding the need for changes in the <span class="hlt">system</span> of selecting individuals for training as school counselors in New <span class="hlt">Zealand</span>. A number of options are offered for improving the mechanics of selection, recommending selection criteria, and suggesting procedures for…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.8487B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.8487B"><span>Distribution, structure and temporal variability of <span class="hlt">hydrothermal</span> outflow at a slow-spreading <span class="hlt">hydrothermal</span> field from seafloor image mosaics.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barreyre, Thibaut; Escartin, Javier; Cannat, Mathilde; Garcia, Rafael; Science Party, Momar'08; Science Party, Bathyluck'09</p> <p>2010-05-01</p> <p>The Lucky Strike <span class="hlt">hydrothermal</span> site, located South of the Azores along the Mid-Atlantic Ridge, is one of the largest and best-known active <span class="hlt">hydrothermal</span> fields along the ridge <span class="hlt">system</span>. This site within the MoMAR area is also the target for the installation in 2010 of a pilot deep-sea observatory with direct telemetry to land, to be part of the European Seafloor Observatory Network (ESONET). The Lucky Strike <span class="hlt">hydrothermal</span> site has seen extensive high-resolution, near-bottom geophysical surveys in 1996 (Lustre'96), 2006 (Momareto06), 2008 (MOMAR08) and 2009 (Bathyluck09). Vertically acquired black-and-white electronic still camera images have been projected and georeferenced to obtain 3 image mosaics covering the zone of active venting, extending ~ 700x800 m2, and with full image resolution (~10 mm pixels). These data allow us to study how <span class="hlt">hydrothermal</span> outflow is structured, including the relationships between the zones of active high-temperature venting, areas of diffuse outflow, and the geological structure (nature of the substrate, faults and fissures, sediments, etc.). <span class="hlt">Hydrothermal</span> outflow is systematically associated with bacterial mats that are easily identified in the imagery, allowing us to study temporal variability at two different scales. Over the 13-year period we can potentially track changes in both the geometry and intensity of <span class="hlt">hydrothermal</span> activity throughout the <span class="hlt">system</span>; our preliminary study of the Eiffel Tower, White Castle and Mt Segur indicate that activity has been sustained in recent times, with small changes in the detailed geometry of the diffuse outflow and its intensity. At longer times scales (hundreds to 1000 years?) imagery also shows evidence of areas of venting that are no longer active, often associated with the active structures. In combination with the high-resolution bathymetry, the imagery data thus allow us to characterize the shallow structure of <span class="hlt">hydrothermal</span> outflow at depth, the structural and volcanic control, and ultimately</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1803b0011S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1803b0011S"><span><span class="hlt">Hydrothermal</span> pretreatment of palm oil empty fruit bunch</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simanungkalit, Sabar Pangihutan; Mansur, Dieni; Nurhakim, Boby; Agustin, Astrid; Rinaldi, Nino; Muryanto, Fitriady, Muhammad Ariffudin</p> <p>2017-01-01</p> <p><span class="hlt">Hydrothermal</span> pretreatment methods in 2nd generation bioethanol production more profitable to be developed, since the conventional pretreatment, by using acids or alkalis, is associated with the serious economic and environmental constraints. The current studies investigate <span class="hlt">hydrothermal</span> pretreatment of palm oil empty fruit bunch (EFB) in a batch tube reactor <span class="hlt">system</span> with temperature and time range from 160 to 240 C and 15 to 30 min, respectively. The EFB were grinded and separated into 3 different particles sizes i.e. 10 mesh, 18 mesh and 40 mesh, prior to <span class="hlt">hydrothermal</span> pretreatment. Solid yield and pH of the treated EFB slurries changed over treatment severities. The chemical composition of EFB was greatly affected by the <span class="hlt">hydrothermal</span> pretreatment especially hemicellulose which decreased at higher severity factor as determined by HPLC. Both partial removal of hemicellulose and migration of lignin during <span class="hlt">hydrothermal</span> pretreatment caused negatively affect for enzymatic hydrolysis. This studies provided important factors for maximizing <span class="hlt">hydrothermal</span> pretreatment of EFB.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033475','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033475"><span>Diffuse flow <span class="hlt">hydrothermal</span> manganese mineralization along the active Mariana and southern Izu-Bonin arc <span class="hlt">system</span>, western Pacific</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hein, J.R.; Schulz, M.S.; Dunham, R.E.; Stern, R.J.; Bloomer, S.H.</p> <p>2008-01-01</p> <p>Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc <span class="hlt">system</span>. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/<span class="hlt">hydrothermal</span> origin and <span class="hlt">hydrothermal</span> Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow <span class="hlt">systems</span> where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 ?? and 7 ?? manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of <span class="hlt">hydrothermal</span> fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a <span class="hlt">hydrothermal</span> origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean-8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of <span class="hlt">hydrothermal</span> Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JGRB..113.8S14H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JGRB..113.8S14H"><span>Diffuse flow <span class="hlt">hydrothermal</span> manganese mineralization along the active Mariana and southern Izu-Bonin arc <span class="hlt">system</span>, western Pacific</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hein, James R.; Schulz, Marjorie S.; Dunham, Rachel E.; Stern, Robert J.; Bloomer, Sherman H.</p> <p>2008-08-01</p> <p>Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc <span class="hlt">system</span>. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/<span class="hlt">hydrothermal</span> origin and <span class="hlt">hydrothermal</span> Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow <span class="hlt">systems</span> where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 Å and 7 Å manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of <span class="hlt">hydrothermal</span> fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a <span class="hlt">hydrothermal</span> origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean 8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of <span class="hlt">hydrothermal</span> Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeCoA.202..101J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeCoA.202..101J"><span>Environmental controls on biomineralization and Fe-mound formation in a low-temperature <span class="hlt">hydrothermal</span> <span class="hlt">system</span> at the Jan Mayen Vent Fields</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johannessen, Karen C.; Vander Roost, Jan; Dahle, Håkon; Dundas, Siv H.; Pedersen, Rolf B.; Thorseth, Ingunn H.</p> <p>2017-04-01</p> <p>Diffuse low-temperature <span class="hlt">hydrothermal</span> vents on the seafloor host neutrophilic microaerophilic Fe-oxidizing bacteria that utilize the Fe(II) supplied by <span class="hlt">hydrothermal</span> fluids and produce intricate twisted and branching extracellular stalks. The growth behavior of Fe-oxidizing bacteria in strongly opposing gradients of Fe(II) and O2 have been thoroughly investigated in laboratory settings to assess whether extracellular stalks and aligned biomineralized fabrics may serve as biosignatures of Fe-oxidizing bacteria and indications of palaeo-redox conditions in the rock record. However, the processes controlling the growth of biogenic Fe-oxyhydroxide deposits in natural, modern <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> are still not well constrained. In this study, we aimed to establish how variations in the texture of stratified <span class="hlt">hydrothermal</span> Fe-oxyhydroxide deposits are linked to the physicochemical conditions of the <span class="hlt">hydrothermal</span> environment. We conducted 16S rRNA gene analyses, microscopy and geochemical analyses of laminated siliceous Fe-mounds from the Jan Mayen Vent Fields at the Arctic Mid-Ocean Ridge. Chemical analyses of low- and high-temperature <span class="hlt">hydrothermal</span> fluids were performed to characterize the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> in which the Fe-deposits form. Our results reveal synchronous inter-laminar variations in texture and major and trace element geochemistry. The Fe-deposits are composed of alternating porous laminae of mineralized twisted stalks and branching tubes, Mn-rich horizons with abundant detrital sediment, domal internal cavities and thin P- and REE-enriched lamina characterized by networks of ≪1 μm wide fibers. Zetaproteobacteria constitute one third of the microbial community in the surface layer of actively forming mounds, indicating that microbial Fe-oxidation is contributing to mound accretion. We suggest that Mn-oxide precipitation and detrital sediment accumulation take place during periodically low <span class="hlt">hydrothermal</span> fluid discharge conditions. The elevated concentrations</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23431845','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23431845"><span>Ethics committees in New <span class="hlt">Zealand</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gillett, Grant; Douglass, Alison</p> <p>2012-12-01</p> <p>The ethical review of research in New <span class="hlt">Zealand</span> after the Cartwright Report of 1988 produced a major change in safeguards for and empowerment of participants in health care research. Several reforms since then have streamlined some processes but also seriously weakened some of the existing safeguards. The latest reforms, against the advice of various ethics bodies and the New <span class="hlt">Zealand</span> Law Society, further reduced and attenuated the role of ethics committees so that New <span class="hlt">Zealand</span> has moved from being a world leader in ethical review processes to there being serious doubt whether it is in conformity to international Conventions and codes. The latest round of reforms, seemingly driven by narrow economic aspirations, anecdote and innuendo, have occurred without any clear evidence of dysfunction in the <span class="hlt">system</span> nor any plans for the resourcing required to improve quality of ethical review or to audit the process. It is of serious concern both to ethicists and medical lawyers in New <span class="hlt">Zealand</span> that such hasty and poorly researched changes should have been made which threaten the hard-won gains of the Cartwright reforms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P23H..04K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P23H..04K"><span>Exploring the <span class="hlt">Hydrothermal</span> <span class="hlt">System</span> in the Chicxulub Crater and Implications for the Early Evolution of Life on Earth</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kring, D. A.; Schmieder, M.; Tikoo, S.; Riller, U. P.; Simpson, S. L.; Osinski, G.; Cockell, C. S.; Coolen, M.; Gulick, S. P. S.; Morgan, J. V.</p> <p>2017-12-01</p> <p>Impact cratering, particularly large basin-size craters with diameters >100 km, have the potential to generate vast subsurface <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. There were dozens of such impacts during the Hadean and early Archean, some of which vaporized seas for brief periods of time, during which the safest niches for early life may have been in those subsurface <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. The Chicxulub crater can serve as a proxy for those events. New IODP-ICDP core recovered by Expedition 364 reveals a high-temperature (>300 degree C) <span class="hlt">system</span> that may have persisted for more than 100,000 years. Of order 105 to 106 km3 of crust was structurally deformed, melted, and vaporized within about 10 minutes of the impact. The crust had to endure immense strain rates of 104/s to 106/s, up to 12 orders of magnitude greater than those associated with igneous and metamorphic processes. The outcome is a porous, permeable region that is a perfect host for <span class="hlt">hydrothermal</span> circulation across the entire diameter of the crater to depths up to 5 or 6 km. The target rocks at Chicxulub are composed of an 3 km-thick carbonate platform sequence over a crystalline basement composed of igneous granite, granodiorite, and a few other intrusive components, such as dolerite, and metamorphic assemblages composed, in part, of gneiss and mica schist. Post-impact <span class="hlt">hydrothermal</span> alteration includes Ca-Na- and K-metasomatism, pervasive hydration to produce layered silicates, and lower-temperature vug-filling zeolites as the <span class="hlt">system</span> cycled from high temperatures to low temperatures. While the extent of granitic crust on early Earth is still debated and, thus, the direct application of those mineral reactions to the Hadean and early Archean can be debated, the thermal evolution of the <span class="hlt">system</span> should be applicable to diverse crustal compositions. It is important to point out that pre-impact thermal conditions of Hadean and early Archean crust can affect the size of an impact basin and, in turn, the proportion of that basin</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.V34B..01P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.V34B..01P"><span>Drilling of Submarine Shallow-water <span class="hlt">Hydrothermal</span> <span class="hlt">Systems</span> in Volcanic Arcs of the Tyrrhenian Sea, Italy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petersen, S.; Augustin, N.; de Benedetti, A.; Esposito, A.; Gaertner, A.; Gemmell, B.; Gibson, H.; He, G.; Huegler, M.; Kleeberg, R.; Kuever, J.; Kummer, N. A.; Lackschewitz, K.; Lappe, F.; Monecke, T.; Perrin, K.; Peters, M.; Sharpe, R.; Simpson, K.; Smith, D.; Wan, B.</p> <p>2007-12-01</p> <p>Seafloor <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> related to volcanic arcs are known from several localities in the Tyrrhenian Sea in water depths ranging from 650 m (Palinuro Seamount) to less than 50 m (Panarea). At Palinuro Seamount 13 holes (<5m) were drilled using Rockdrill 1 of the British Geological Survey 1 into the heavily sediment-covered deposit recovering 11 m of semi-massive to massive sulfides. Maximum recovery within a single core was 4.8 m of massive sulfides/sulfates with abundant late native sulfur overprint. The deposit is open to all sides and to depth since all drill holes ended in mineralization. Metal enrichment at the top of the deposit is evident in some cores with polymetallic (Zn, Pb, Ag) sulfides overlying more massive and dense pyritic ore. The massive sulfide mineralization at Palinuro Seamount contains a number of unusual minerals, including enargite, tennantite, luzonite, and Ag-sulfosalts, that are not commonly encountered in mid-ocean ridge massive sulfides. In analogy to epithermal deposits forming on land, the occurrence of these minerals suggests a high sulfidation state of the <span class="hlt">hydrothermal</span> fluids during deposition implying that the mineralizing fluids were acidic and oxidizing rather than near-neutral and reducing as those forming typical base metal rich massive sulfides along mid-ocean ridges. Oxidizing conditions during sulfide deposition can probably be related to the presence of magmatic volatiles in the mineralizing fluids that may be derived from a degassing magma chamber. Elevated temperatures within sediment cores and TV-grab stations (up to 60°C) indicate present day <span class="hlt">hydrothermal</span> fluid flow. This is also indicated by the presence of small tube-worm bushes present on top the sediment. A number of drill holes were placed around the known phreatic gas-rich vents of Panarea and recovered intense clay-alteration in some holes as well as abundant massive anhydrite/gypsum with only trace sulfides along a structural depression suggesting the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DokES.477.1301R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DokES.477.1301R"><span>Specific mineral associations of <span class="hlt">hydrothermal</span> shale (South Kamchatka)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rychagov, S. N.; Sergeeva, A. V.; Chernov, M. S.</p> <p>2017-11-01</p> <p>The sequence of <span class="hlt">hydrothermal</span> shale from the East Pauzhet thermal field within the Pauzhet <span class="hlt">hydrothermal</span> <span class="hlt">system</span> (South Kamchatka) was studied in detail. It was established that the formation of shale resulted from argillization of an andesitic lava flow under the influence of an acidic sulfate vapor condensate. The horizons with radically different compositions and physical properties compared to those of the overlying homogeneous plastic shale were distinguished at the base of the sequence. These horizons are characterized by high (up to two orders of magnitude in comparison with average values in <span class="hlt">hydrothermal</span> shale) concentrations of F, P, Na, Mg, K, Ca, Sc, Ti, V, Cr, Cu, and Zn. We suggested a geological-geochemical model, according to which a deep metal-bearing chloride-hydrocarbonate solution infiltrated into the permeable zone formed at the root of the andesitic lava flow beneath plastic shale at a certain stage of evolution of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016LPICo1912.2083J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016LPICo1912.2083J"><span>Organic Biomarker Preservation in Silica-Rich <span class="hlt">Hydrothermal</span> <span class="hlt">Systems</span> with Implications to Mars</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jahnke, L. L.; Parenteau, M. N.; Farmer, J. D.</p> <p>2016-05-01</p> <p>Microbial community structure and preservation of organic matter in siliceous <span class="hlt">hydrothermal</span> environments is a critical issue given the discovery of <span class="hlt">hydrothermal</span> vents and silica on Mars. Here we discuss preservation of cyanobacterial biomarker lipid.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT........87N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT........87N"><span><span class="hlt">Hydrothermal</span> Habitats: Measurements of Bulk Microbial Elemental Composition, and Models of <span class="hlt">Hydrothermal</span> Influences on the Evolution of Dwarf Planets</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neveu, Marc Francois Laurent</p> <p></p> <p>Finding habitable worlds is a key driver of solar <span class="hlt">system</span> exploration. Many solar <span class="hlt">system</span> missions seek environments providing liquid water, energy, and nutrients, the three ingredients necessary to sustain life. Such environments include <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>, spatially-confined <span class="hlt">systems</span> where hot aqueous fluid circulates through rock by convection. I sought to characterize <span class="hlt">hydrothermal</span> microbial communities, collected in hot spring sediments and mats at Yellowstone National Park, USA, by measuring their bulk elemental composition. To do so, one must minimize the contribution of non-biological material to the samples analyzed. I demonstrate that this can be achieved using a separation method that takes advantage of the density contrast between cells and sediment and preserves cellular elemental contents. Using this method, I show that in spite of the tremendous physical, chemical, and taxonomic diversity of Yellowstone hot springs, the composition of microorganisms there is surprisingly ordinary. This suggests the existence of a stoichiometric envelope common to all life as we know it. Thus, future planetary investigations could use elemental fingerprints to assess the astrobiological potential of <span class="hlt">hydrothermal</span> settings beyond Earth. Indeed, <span class="hlt">hydrothermal</span> activity may be widespread in the solar <span class="hlt">system</span>. Most solar <span class="hlt">system</span> worlds larger than 200 km in radius are dwarf planets, likely composed of an icy, cometary mantle surrounding a rocky, chondritic core. I enhance a dwarf planet evolution code, including the effects of core fracturing and <span class="hlt">hydrothermal</span> circulation, to demonstrate that dwarf planets likely have undergone extensive water-rock interaction. This supports observations of aqueous products on their surfaces. I simulate the alteration of chondritic rock by pure water or cometary fluid to show that aqueous alteration feeds back on geophysical evolution: it modifies the fluid antifreeze content, affecting its persistence over geological timescales; and the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5069527','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5069527"><span>Impact of <span class="hlt">hydrothermalism</span> on the ocean iron cycle</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Resing, Joseph</p> <p>2016-01-01</p> <p>As the iron supplied from <span class="hlt">hydrothermalism</span> is ultimately ventilated in the iron-limited Southern Ocean, it plays an important role in the ocean biological carbon pump. We deploy a set of focused sensitivity experiments with a state of the art global model of the ocean to examine the processes that regulate the lifetime of <span class="hlt">hydrothermal</span> iron and the role of different ridge <span class="hlt">systems</span> in governing the <span class="hlt">hydrothermal</span> impact on the Southern Ocean biological carbon pump. Using GEOTRACES section data, we find that stabilization of <span class="hlt">hydrothermal</span> iron is important in some, but not all regions. The impact on the Southern Ocean biological carbon pump is dominated by poorly explored southern ridge <span class="hlt">systems</span>, highlighting the need for future exploration in this region. We find inter-basin differences in the isopycnal layer onto which <span class="hlt">hydrothermal</span> Fe is supplied between the Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better constrained to improve our understanding of how <span class="hlt">hydrothermalism</span> affects the ocean cycling of iron and carbon. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035256</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29035256','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29035256"><span>Impact of <span class="hlt">hydrothermalism</span> on the ocean iron cycle.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tagliabue, Alessandro; Resing, Joseph</p> <p>2016-11-28</p> <p>As the iron supplied from <span class="hlt">hydrothermalism</span> is ultimately ventilated in the iron-limited Southern Ocean, it plays an important role in the ocean biological carbon pump. We deploy a set of focused sensitivity experiments with a state of the art global model of the ocean to examine the processes that regulate the lifetime of <span class="hlt">hydrothermal</span> iron and the role of different ridge <span class="hlt">systems</span> in governing the <span class="hlt">hydrothermal</span> impact on the Southern Ocean biological carbon pump. Using GEOTRACES section data, we find that stabilization of <span class="hlt">hydrothermal</span> iron is important in some, but not all regions. The impact on the Southern Ocean biological carbon pump is dominated by poorly explored southern ridge <span class="hlt">systems</span>, highlighting the need for future exploration in this region. We find inter-basin differences in the isopycnal layer onto which <span class="hlt">hydrothermal</span> Fe is supplied between the Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better constrained to improve our understanding of how <span class="hlt">hydrothermalism</span> affects the ocean cycling of iron and carbon.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2016 The Author(s).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V24A..04F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V24A..04F"><span>Plumbing the depths of Yellowstone's <span class="hlt">hydrothermal</span> <span class="hlt">system</span> from helicopter magnetic and electromagnetic data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Finn, C.; Bedrosian, P.; Holbrook, W. S.; Auken, E.; Lowenstern, J. B.; Hurwitz, S.; Sims, K. W. W.; Carr, B.; Dickey, K.</p> <p>2017-12-01</p> <p>Although Yellowstone's iconic <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> and lava flows are well mapped at the surface, their groundwater flow <span class="hlt">systems</span> and thickness are almost completely unknown. In order to track the geophysical signatures of geysers, hot springs, mud pots, steam vents, <span class="hlt">hydrothermal</span> explosion craters and lava flows at depths to hundreds of meters, we collected helicopter electromagnetic and magnetic (HEM) data. The data cover significant portions of the caldera including a majority of the known thermal areas. HEM data constrain electrical resistivity which is sensitive to groundwater salinity and temperature, phase distribution (liquid-vapor), and clay formed during chemical alteration of rocks. The magnetic data are sensitive to variations in the magnetization of lava flows, faults and <span class="hlt">hydrothermal</span> alteration. The combination of electromagnetic and magnetic data is ideal for mapping zones of cold fresh water, hot saline water, steam, clay, and altered and unaltered rock. Preliminary inversion of the HEM data indicates very low resistivity directly beneath the northern part of Yellowstone Lake, intersecting with the lake bottom in close correspondence with mapped vents, fractures and <span class="hlt">hydrothermal</span> explosion craters and are also associated with magnetic lows. Coincident resistivity and magnetic lows unassociated with mapped alteration occur, for example, along the southeast edge of the Mallard Lake dome and along the northeastern edge of Sour Creek Dome, suggesting the presence of buried alteration. Low resistivities unassociated with magnetic lows may relate to hot and/or saline groundwater or thin (<50 m) layers of early lake sediments to which the magnetic data are insensitive. Resistivity and magnetic lows follow interpreted caldera boundaries in places, yet deviate in others. In the Norris-Mammoth Corridor, NNE-SSW trending linear resistivity and magnetic lows align with mapped faults. This pattern of coincident resistivity and magnetic lows may reflect fractures</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993CoMP..113..502G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993CoMP..113..502G"><span>Metabasalts from the Mid-Atlantic Ridge: new insights into <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> in slow-spreading crust</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gillis, Kathryn M.; Thompson, Geoffrey</p> <p>1993-12-01</p> <p>An extensive suite of <span class="hlt">hydrothermally</span> altered rocks were recovered by Alvin and dredging along the MARK [Mid-Atlantic Ridge, south of the Kane Fracture Zone (23 24°N)] where detachment faulting has provided a window into the crustal component of <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. Rocks of basaltic composition are altered to two assemblages with these characteristics: (i) type I: albitic plagioclase (An02 10)+mixed-layer smectite/chlorite or chlorite±actinolite±quartz±sphene, <10% of the clinopyroxene is altered, and there is no trace metal mobility; (ii) type II: plagioclase (An10 30)+amphibole (actinolite-magnesio-hornblende) +chlorite+sphene, >20% of the clinopyroxene is altered, and Cu and Zn are leached. The geochemical signature of these alteration types reflects the relative proportion and composition of secondary minerals, and the degree of alteration of primary phases, and does not show simple predictive relationships. Element mobilities indicate that both alteration types formed at low water/rock ratios. The MARK assemblages are typical of the greenschist and transition to the amphibolite facies, and represent two distinct, albeit overlapping, temperature regimes: type I-180 to 300°C and type II-250 to 450°C. By analogy with DSDP/ODP Hole 504B and many ophiolites, the MARK metabasalts were altered within the downwelling limb of a <span class="hlt">hydrothermal</span> cell and type I and II samples formed in the upper and lower portions of the sheeted like complex, respectively. Episodic magmatic and <span class="hlt">hydrothermal</span> events at slow-spreading ridges suggest that these observed mineral assemblages represent the cumulative effects of more than one <span class="hlt">hydrothermal</span> event. Groundmass and vein assemblages in the MARK metabasalts indicate either that alteration conditions did not change during successive <span class="hlt">hydrothermal</span> events or that these assemblages record only the highest temperature event. Lack of retrograde reactions or overprinting of lower temperature assemblages (e.g., zeolites) suggests that there</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014455','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014455"><span>Vapor-dominated zones within <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>: evolution and natural state</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ingebritsen, S.E.; Sorey, M.L.</p> <p>1988-01-01</p> <p>Three conceptual models illustrate the range of <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> in which vapor-dominated conditions are found. The first model (model I) represents a <span class="hlt">system</span> with an extensive near-vaporstatic vapor-dominated zone and limited liquid throughflow and is analogous to <span class="hlt">systems</span> such as The Geysers, California. Models II and III represent <span class="hlt">systems</span> with significant liquid throughflow and include steam-heated discharge features at higher elevations and high-chloride springs at lower elevations connected to and fed by a single circulation <span class="hlt">system</span> at depth. In model II, as in model I, the vapor-dominated zone has a near-vaporstatic vertical pressure gradient and is generally underpressured with respect to local hydrostatic pressure. The vapor-dominated zone in model III is quite different, in that phase separation takes place at pressures close to local hydrostatic and the overall pressure gradient is near hydrostatic. -from Authors</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P43B2882B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P43B2882B"><span>Simulating Electrochemistry of <span class="hlt">Hydrothermal</span> Vents on Enceladus and Other Ocean Worlds</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barge, L. M.; Krause, F. C.; Jones, J. P.; Billings, K.; Sobron, P.</p> <p>2017-12-01</p> <p>Gradients generated in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> provide a significant source of free energy for chemosynthetic life, and may play a role in present-day habitability on ocean worlds such as Enceladus that are thought to host <span class="hlt">hydrothermal</span> activity. <span class="hlt">Hydrothermal</span> vents are similar in some ways to typical fuel cell devices: redox/pH gradients between seawater and <span class="hlt">hydrothermal</span> fluid are analogous to the oxidant and fuel reservoirs; conductive natural mineral deposits are analogous to electrodes; and, in <span class="hlt">hydrothermal</span> chimneys, the porous chimney wall can function as a separator or ion-exchange membrane. Electrochemistry, founded on quantitative study of redox and other chemical disequilibria as well as the chemistry of interfaces, is uniquely suited to studying these <span class="hlt">systems</span>. We have performed electrochemical studies to better understand the catalytic potential of seafloor minerals and vent chimneys, using samples from a black smoker vent chimney as an initial demonstration. Fuel cell experiments with electrodes made from black smoker chimney material accurately simulated the redox reactions that occur in a geological setting with this particular catalyst. Similar methods with other geo-catalysts (natural or synthetic) could be utilized to test which redox reactions or metabolisms could be driven in other <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>, including putative vent <span class="hlt">systems</span> on other worlds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29527196','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29527196"><span>Cultivation-Independent and Cultivation-Dependent Analysis of Microbes in the Shallow-Sea <span class="hlt">Hydrothermal</span> <span class="hlt">System</span> Off Kueishantao Island, Taiwan: Unmasking Heterotrophic Bacterial Diversity and Functional Capacity.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tang, Kai; Zhang, Yao; Lin, Dan; Han, Yu; Chen, Chen-Tung A; Wang, Deli; Lin, Yu-Shih; Sun, Jia; Zheng, Qiang; Jiao, Nianzhi</p> <p>2018-01-01</p> <p>Shallow-sea <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> experience continuous fluctuations of physicochemical conditions due to seawater influx which generates variable habitats, affecting the phylogenetic composition and metabolic potential of microbial communities. Until recently, studies of submarine <span class="hlt">hydrothermal</span> communities have focused primarily on chemolithoautotrophic organisms, however, there have been limited studies on heterotrophic bacteria. Here, fluorescence in situ hybridization, high throughput 16S rRNA gene amplicon sequencing, and functional metagenomes were used to assess microbial communities from the shallow-sea <span class="hlt">hydrothermal</span> <span class="hlt">system</span> off Kueishantao Island, Taiwan. The results showed that the shallow-sea <span class="hlt">hydrothermal</span> <span class="hlt">system</span> harbored not only autotrophic bacteria but abundant heterotrophic bacteria. The potential for marker genes sulfur oxidation and carbon fixation were detected in the metagenome datasets, suggesting a role for sulfur and carbon cycling in the shallow-sea <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. Furthermore, the presence of diverse genes that encode transporters, glycoside hydrolases, and peptidase indicates the genetic potential for heterotrophic utilization of organic substrates. A total of 408 cultivable heterotrophic bacteria were isolated, in which the taxonomic families typically associated with oligotrophy, copiotrophy, and phototrophy were frequently found. The cultivation-independent and -dependent analyses performed herein show that Alphaproteobacteria and Gammaproteobacteria represent the dominant heterotrophs in the investigated shallow-sea <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. Genomic and physiological characterization of a novel strain P5 obtained in this study, belonging to the genus Rhodovulum within Alphaproteobacteria, provides an example of heterotrophic bacteria with major functional capacity presented in the metagenome datasets. Collectively, in addition to autotrophic bacteria, the shallow-sea <span class="hlt">hydrothermal</span> <span class="hlt">system</span> also harbors many heterotrophic bacteria with versatile</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5829616','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5829616"><span>Cultivation-Independent and Cultivation-Dependent Analysis of Microbes in the Shallow-Sea <span class="hlt">Hydrothermal</span> <span class="hlt">System</span> Off Kueishantao Island, Taiwan: Unmasking Heterotrophic Bacterial Diversity and Functional Capacity</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tang, Kai; Zhang, Yao; Lin, Dan; Han, Yu; Chen, Chen-Tung A.; Wang, Deli; Lin, Yu-Shih; Sun, Jia; Zheng, Qiang; Jiao, Nianzhi</p> <p>2018-01-01</p> <p>Shallow-sea <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> experience continuous fluctuations of physicochemical conditions due to seawater influx which generates variable habitats, affecting the phylogenetic composition and metabolic potential of microbial communities. Until recently, studies of submarine <span class="hlt">hydrothermal</span> communities have focused primarily on chemolithoautotrophic organisms, however, there have been limited studies on heterotrophic bacteria. Here, fluorescence in situ hybridization, high throughput 16S rRNA gene amplicon sequencing, and functional metagenomes were used to assess microbial communities from the shallow-sea <span class="hlt">hydrothermal</span> <span class="hlt">system</span> off Kueishantao Island, Taiwan. The results showed that the shallow-sea <span class="hlt">hydrothermal</span> <span class="hlt">system</span> harbored not only autotrophic bacteria but abundant heterotrophic bacteria. The potential for marker genes sulfur oxidation and carbon fixation were detected in the metagenome datasets, suggesting a role for sulfur and carbon cycling in the shallow-sea <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. Furthermore, the presence of diverse genes that encode transporters, glycoside hydrolases, and peptidase indicates the genetic potential for heterotrophic utilization of organic substrates. A total of 408 cultivable heterotrophic bacteria were isolated, in which the taxonomic families typically associated with oligotrophy, copiotrophy, and phototrophy were frequently found. The cultivation-independent and -dependent analyses performed herein show that Alphaproteobacteria and Gammaproteobacteria represent the dominant heterotrophs in the investigated shallow-sea <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. Genomic and physiological characterization of a novel strain P5 obtained in this study, belonging to the genus Rhodovulum within Alphaproteobacteria, provides an example of heterotrophic bacteria with major functional capacity presented in the metagenome datasets. Collectively, in addition to autotrophic bacteria, the shallow-sea <span class="hlt">hydrothermal</span> <span class="hlt">system</span> also harbors many heterotrophic bacteria with versatile</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR33B0475R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR33B0475R"><span>Fault-controlled development of shallow <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>: Structural and mineralogical insights from the Southern Andes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roquer, T.; Arancibia, G.; Rowland, J. V.; Iturrieta, P. C.; Morata, D.; Cembrano, J. M.</p> <p>2017-12-01</p> <p>Paleofluid-transporting <span class="hlt">systems</span> can be recognized as meshes of fracture-filled veins in eroded zones of extinct <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. Here we conducted meso-microstructural analysis and mechanical modeling from two exhumed exposures of the faults governing regional tectonics of the Southern Andes: the Liquiñe-Ofqui Fault <span class="hlt">System</span> (LOFS) and the Andean Transverse Faults (ATF). A total of 107 fractures in both exposures were analyzed. The ATF specific segment shows two tectonic solutions that can be modeled as Andersonian and non-Andersonian tectonic regimes: (1) shear (mode II/III) failure occurs at differential stresses > 28 MPa and fluid pressures < 40-80% lithostatic in the Andersonian regime; and (2) sporadic hybrid extensional + shear (modes I + II/III) failure occurs at differential stresses < 20 MPa and anomalously high fluid pressures > 85-98% lithostatic in the non-Andersonian regime. Additionally, the LOFS exposure cyclically fails in extension (mode I) or extension + shear (modes I + II/III) in the Andersonian regime, at differential stresses < 28 MPa and fluid pressures > 40-80% lithostatic. In areas of spatial interaction between ATF and LOFS, these conditions might favor: (1) the storage of overpressured fluids in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> associated with the ATF faults, and (2) continuous fluid flow through vertical conduits in the LOFS faults. These observations suggest that such intersections are highly probable locations for concentrated <span class="hlt">hydrothermal</span> activity, which must be taken into consideration for further geothermal exploration. ACKNOWLEDGEMENTS. PhD CONICYT grants, Centro de Excelencia en Geotermia de los Andes (CEGA-FONDAP/CONICYT Project #15090013), FONDECYT Project #1130030 and Project CONICYT REDES #140036.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017337','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017337"><span>Relations of ammonium minerals at several <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> in the western U.S.</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Krohn, M.D.; Kendall, C.; Evans, J.R.; Fries, T.L.</p> <p>1993-01-01</p> <p>Ammonium bound to silicate and sulfate minerals has recently been located at several major <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> in the western U.S. utilizing newly-discovered near-infrared spectral properties. Knowledge of the origin and mineralogic relations of ammonium minerals at known <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> is critical for the proper interpretation of remote sensing data and for testing of possible links to mineralization. Submicroscopic analysis of ammonium minerals from two mercury- and gold-bearing hot-springs deposits at Ivanhoe, Nevada and McLaughlin, California shows that the ammonium feldspar, buddingtonite, occurs as fine-grained euhedral crystals coating larger sulfide and quartz crystals. Ammonium feldspar seems to precipitate relatively late in the crystallization sequence and shows evidence for replacement of NH4+ by K+ or other monovalent cations. Some buddingtonite is observed in close association with mercury, but not with gold. Ammonioalunite is found in a variety of isolated crystal forms at both deposits. Nitrogen isotopic values for ammonium-bearing minerals show a 14??? range in composition, precluding assignment of a specific provenance to the nitrogen. The correlations of nitrogen isotopic values with depth and ammonium content suggest some loss of nitrogen in the oxidizing supergene environment, possibly as a metastable mineral. The high ammonium content in these <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>, the close association to mercury, and the small crystal size of the ammonium-bearing minerals all suggest that ammonium may be transported in a late-stage vapor phase or as an organic volatile. Such a process could lead to the formation of a non-carbonaceous organic aureole above a buried geothermal source. The discovery of a 10-km outcrop of ammonium minerals confirms that significant substitution of ammonium in minerals is possible over an extensive area and that remote sensing is a feasible means to detect such aureoles. ?? 1993.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMOS43A1599A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMOS43A1599A"><span>Development of Vertical Cable Seismic <span class="hlt">System</span> for <span class="hlt">Hydrothermal</span> Deposit Survey (2) - Feasibility Study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Mikada, H.; Takekawa, J.; Shimura, T.</p> <p>2010-12-01</p> <p>In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey <span class="hlt">system</span> development for <span class="hlt">Hydrothermal</span> deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for <span class="hlt">hydrothermal</span> deposit survey. . (1) VCS is an effective high-resolution 3D seismic survey within limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Various types of marine source are applicable with VCS such as sea-surface source (air gun, water gun etc.) , deep-towed or ocean bottom sources. (5) Autonomous recording <span class="hlt">system</span>. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN. in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. The result gives clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Uncertainty of the source/receiver poisons in water causes the serious problem of the imaging. We used several transducer/transponder to estimate these positions. The VCS seismic records themselves can also provide sensor position using the first break of each trace and we calibrate the positions. We are currently developing the autonomous recording VCS <span class="hlt">system</span> and planning the trial experiment in actual ocean to establish the way of deployment/recovery and the examine the position through the current flow in November, 2010. The second VCS survey will planned over the actual <span class="hlt">hydrothermal</span> deposit with deep-towed source in February, 2011.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMMR41B2635C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMMR41B2635C"><span>Effects of chemical alteration on fracture mechanical properties in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Callahan, O. A.; Eichhubl, P.; Olson, J. E.</p> <p>2015-12-01</p> <p>Fault and fracture networks often control the distribution of fluids and heat in <span class="hlt">hydrothermal</span> and epithermal <span class="hlt">systems</span>, and in related geothermal and mineral resources. Additional chemical influences on conduit evolution are well documented, with dissolution and precipitation of mineral species potentially changing the permeability of fault-facture networks. Less well understood are the impacts of chemical alteration on the mechanical properties governing fracture growth and fracture network geometry. We use double-torsion (DT) load relaxation tests under ambient air conditions to measure the mode-I fracture toughness (KIC) and subcritical fracture growth index (SCI) of variably altered rock samples obtained from outcrop in Dixie Valley, NV. Samples from southern Dixie Valley include 1) weakly altered granite, characterized by minor sericite in plagioclase, albitization and vacuolization of feldspars, and incomplete replacement of biotite with chlorite, and 2) granite from an area of locally intense propylitic alteration with chlorite-calcite-hematite-epidote assemblages. We also evaluated samples of completely silicified gabbro obtained from the Dixie Comstock epithermal gold deposit. In the weakly altered granite KIC and SCI are 1.3 ±0.2 MPam1/2 (n=8) and 59 ±25 (n=29), respectively. In the propylitic assemblage KIC is reduced to 0.6 ±0.1 MPam1/2 (n=11), and the SCI increased to 75 ±36 (n = 33). In both cases, the altered materials have lower fracture toughness and higher SCI than is reported for common geomechanical standards such as Westerly Granite (KIC ~1.7 MPam1/2; SCI ~48). Preliminary analysis of the silicified gabbro shows a significant increase in fracture toughness, 3.6 ±0.4 MPam1/2 (n=2), and SCI, 102 ±45 (n=19), compared to published values for gabbro (2.9 MPam1/2 and SCI = 32). These results suggest that mineralogical and textural changes associated with different alteration assemblages may result in spatially variable rates of fracture</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030295','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030295"><span>Tertiary tilting and dismemberment of the laramide arc and related <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>, Sierrita Mountain, Arizona</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stavast, W.J.A.; Butler, R.P.; Seedorff, E.; Barton, M.D.; Ferguson, C.A.</p> <p>2008-01-01</p> <p>Multiple lines of evidence, including new and published geologic mapping and paleomagnetic and geobarometric determinations, demonstrate that the rocks and large porphyry copper <span class="hlt">systems</span> of the Sierrita Mountains in southern Arizona were dismembered and tilted 50?? to 60?? to the south by Tertiary normal faulting. Repetition of geologic features and geobarometry indicate that the area is segmented into at least three major structural blocks, and the present surface corresponds to oblique sections through the Laramide plutonic-<span class="hlt">hydrothermal</span> complex, ranging in paleodepth from ???1 to ???12 km. These results add to an evolving view of a north-south extensional domain at high angles to much extension in the southern Basin and Range, contrast with earlier interpretations that the Laramide <span class="hlt">systems</span> are largely upright and dismembered by thrust faults, highlight the necessity of restoring Tertiary rotations before interpreting Laramide structural and <span class="hlt">hydrothermal</span> features, and add to the broader understanding of pluton emplacement and evolution of porphyry copper <span class="hlt">systems</span>. ?? 2008 Society of Economic Geologists, Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1615842B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1615842B"><span>Geochemistry driven trends in microbial diversity and function across a temperature transect of a shallow water <span class="hlt">hydrothermal</span> <span class="hlt">system</span> off Milos (Greece)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bühring, Solveig I.; Amend, Jan P.; Gómez Sáez, Gonzalo V.; Häusler, Stefan; Hinrichs, Kai-Uwe; Pichler, Thomas; Pop Ristova, Petra; Price, Roy E.; Santi, Ioulia; Sollich, Miriam</p> <p>2014-05-01</p> <p>The shallow water <span class="hlt">hydrothermal</span> vents off Milos Island, Greece, discharge hot, slightly acidic, reduced fluids into colder, slightly alkaline, oxygenated seawater. Gradients in temperature, pH, and geochemistry are established as the two fluids mix, leading to the formation of various microbial microniches. In contrast to deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>, the availability of sun light allows for a combination of photo- and chemotrophic carbon fixation. Despite the comparably easy accessibility of shallow water <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>, little is known about their microbial diversity and functioning. We present data from a shallow <span class="hlt">hydrothermal</span> <span class="hlt">system</span> off Milos Island, one of the most <span class="hlt">hydrothermally</span> active regions in the Mediterranean Sea. The physico-chemical changes from ambient seafloor to <span class="hlt">hydrothermal</span> area were investigated and documented by in situ microsensor profiling of temperature, pH, total reduced sulfur and dissolved oxygen alongside porewater geochemistry. The spatial microbial diversity was determined using a combination of gene- and lipid-based approaches, whereas microbial functioning was assessed by stable isotope probing experiments targeting lipid biomarkers. In situ microprofiles indicated an extreme environment with steep gradients, offering a variety of microniches for metabolically diverse microbial communities. We sampled a transect along a <span class="hlt">hydrothermal</span> patch, following an increase in sediment surface temperature from background to 90°C, including five sampling points up to 20 cm sediment depth. Investigation of the bacterial diversity using ARISA revealed differences in the community structure along the geochemical gradients, with the least similarity between the ambient and highly <span class="hlt">hydrothermally</span> impacted sites. Furthermore, using multivariate statistical analyses it was shown that variations in the community structure could be attributed to differences in the sediment geochemistry and especially the sulfide content, and only indirectly to shifts in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3617466','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3617466"><span>A messy reality: an analysis of New <span class="hlt">Zealand</span>'s elective surgery scoring <span class="hlt">system</span> via media sources, 200–2006</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Derrett, Sarah; Cousins, Kim; Gauld, Robin</p> <p>2013-01-01</p> <p>Waiting lists for elective procedures are a characteristic feature of tax-funded universal health <span class="hlt">systems</span>. New <span class="hlt">Zealand</span> has gained a reputation for its ‘booking system’ for waiting list management, introduced in the early-1990s. The New <span class="hlt">Zealand</span> <span class="hlt">system</span> uses criteria to ‘score’ and then ‘book’ qualifying patients for surgery. This article aims to (i) describe key issues focused on by the media, (ii) identify local strategies and (iii) present evidence of variation. Newspaper sources were searched (2000–2006). A total of 1199 booking <span class="hlt">system</span> stories were identified. Findings demonstrate, from a national <span class="hlt">system</span> perspective, the extraordinarily difficult nature of maintaining overall control and coordination. Equity and national consistency are affected when hospitals respond to local pressure by reducing access to elective treatment. Findings suggest that central government probably needs to be closely involved in local-level management and policy adjustments; that through the study period, the New <span class="hlt">Zealand</span> <span class="hlt">system</span> appears to have been largely out of the control of government; and that governments elsewhere may need to be cautious when considering developing similar <span class="hlt">systems</span>. Developing and implementing scoring and booking <span class="hlt">systems</span> may always be a ‘messy reality’ with unintended consequences and throwing regional differences in service management and access into stark relief. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22815091</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JVGR..352...38M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JVGR..352...38M"><span>Geochemical characterisation of Taal volcano-<span class="hlt">hydrothermal</span> <span class="hlt">system</span> and temporal evolution during continued phases of unrest (1991-2017)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maussen, Katharine; Villacorte, Edgardo; Rebadulla, Ryan R.; Maximo, Raymond Patrick; Debaille, Vinciane; Bornas, Ma. Antonia; Bernard, Alain</p> <p>2018-02-01</p> <p>Taal volcano (Luzon Island, Philippines) has last erupted in 1977 but has known some periods of increased activity, characterised by seismic swarms, ground deformation, increased carbon dioxide flux and in some cases temperature anomalies and the opening of fissures. We studied major, trace element and sulphur and strontium isotopic composition of Taal lake waters and hot springs over a period of 25 years to investigate the geochemical evolution of Taal volcano's <span class="hlt">hydrothermal</span> <span class="hlt">system</span> and its response to volcanic unrest. Long-term evolution of Main Crater Lake (MCL) composition shows a slow but consistent decrease of acidity, SO4, Mg, Fe and Al concentrations and a trend from light to heavy sulphate, consistent with a general decrease of volcanic gases dissolving in the <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. Na, K and Cl concentrations remain constant indicating a non-volcanic origin for these elements. Sulphate and strontium isotopic data suggest this neutral chloride-rich component represents input of geothermal water into Taal <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. A significant deviation from the long-term baseline can be seen in two samples from 1995. That year, pH dropped from 2.6 to 2.2, F, Si and Fe concentrations increased and Na, K and Cl concentrations decreased. Sulphate was depleted in 34S and temperature was 4 °C above baseline level at the time of sampling. We attribute these changes to the shallow intrusion of a degassing magma body during the unrest in 1991-1994. More recent unrest periods have not caused significant changes in the geochemistry of Taal <span class="hlt">hydrothermal</span> waters and are therefore unlikely to have been triggered by shallow magma intrusion. A more likely cause for these events is thus pressurisation of the <span class="hlt">hydrothermal</span> reservoir by increasing degassing from a stagnant magma reservoir. Our study indicates that new magmatic intrusions that might lead to the next eruption of Taal volcano are expected to change the geochemistry of MCL in the same way as in 1994-1995, with the most</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V21A4732C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V21A4732C"><span>The characteristics of <span class="hlt">hydrothermal</span> plumes observed in the Precious Stone Mountain <span class="hlt">hydrothermal</span> field, the Galapagos spreading center</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, S.; Tao, C.; Li, H.; Zhou, J.; Deng, X.; Tao, W.; Zhang, G.; Liu, W.; He, Y.</p> <p>2014-12-01</p> <p>The Precious Stone Mountain <span class="hlt">hydrothermal</span> field (PSMHF) is located on the southern rim of the Galapagos Microplate. It was found at the 3rd leg of the 2009 Chinese DY115-21 expedition on board R/V Dayangyihao. It is efficient to learn the distribution of <span class="hlt">hydrothermal</span> plumes and locate the <span class="hlt">hydrothermal</span> vents by detecting the anomalies of turbidity and temperature. Detecting seawater turbidity by MAPR based on deep-tow technology is established and improved during our cruises. We collected data recorded by MAPR and information from geological sampling, yielding the following results: (1)Strong <span class="hlt">hydrothermal</span> turbidity and temperature anomalies were recorded at 1.23°N, southeast and northwest of PSMHF. According to the CTD data on the mooring <span class="hlt">system</span>, significant temperature anomalies were observed over PSMHF at the depth of 1,470 m, with anomalies range from 0.2℃ to 0.4℃, which gave another evidence of the existence of <span class="hlt">hydrothermal</span> plume. (2)At 1.23°N (101.4802°W/1.2305°N), the nose-shaped particle plume was concentrated at a depth interval of 1,400-1,600 m, with 200 m thickness and an east-west diffusion range of 500 m. The maximum turbidity anomaly (0.045 △NTU) was recorded at the depth of 1,500 m, while the background anomaly was about 0.01△NTU. A distinct temperature anomaly was also detected at the seafloor near 1.23°N. Deep-tow camera showed the area was piled up by <span class="hlt">hydrothermal</span> sulfide sediments. (3) In the southeast (101.49°W/1.21°N), the thickness of <span class="hlt">hydrothermal</span> plume was 300 m and it was spreading laterally at a depth of 1,500-1,800 m, for a distance about 800 m. The maximum turbidity anomaly of nose-shaped plume is about 0.04 △NTU at the depth of 1,600 m. Distinct temperature anomaly was also detected in the northwest (101.515°W/1.235°N). (4) Terrain and bottom current were the main factors controlling the distribution of <span class="hlt">hydrothermal</span> plume. Different from the distribution of <span class="hlt">hydrothermal</span> plumes on the mid-ocean ridges, which was mostly</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMOS41B..02C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMOS41B..02C"><span>Seismic Reflection Imaging of the Heat Source of an Ultramafic-Hosted <span class="hlt">Hydrothermal</span> <span class="hlt">System</span> (Rainbow, Mid-Atlantic Ridge 36° 10-17'N)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Canales, J. P.; Dunn, R. A.; Sohn, R. A.; Horning, G.; Arai, R.; Paulatto, M.</p> <p>2015-12-01</p> <p>Most of our understanding of <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> and the nature of their heat sources comes from models and observations at fast and intermediate spreading ridges. In these settings, <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> are mainly located within the axial zone of a spreading segment, hosted in basaltic rock, and primarily driven by heat extracted from crystallization of crustal melt sills. In contrast, <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> at slow-spreading ridges like the Mid-Atlantic Ridge (MAR) show a great variety of venting styles and host-rock lithology, and are located in diverse tectonic settings like axial volcanic ridges, non-transform discontinuities (NTDs), the foot of ridge valley walls, and off-axis inside corner highs. Among MAR <span class="hlt">systems</span>, the Rainbow <span class="hlt">hydrothermal</span> field (RHF) stands out as an end-member of this diversity: an ultramafic-hosted <span class="hlt">system</span> emitting H2 and CH4-rich fluids at high temperatures and high flow rates, which suggests a magmatic heat source despite the lack of evidence for recent volcanism and its location within an NTD with presumably low magma budget. We present 2D multichannel seismic reflection images across the Rainbow massif from the NSF-funded MARINER multidisciplinary geophysical study that reveal, for the first time, the magmatic <span class="hlt">system</span> driving <span class="hlt">hydrothermal</span> circulation in an ultramafic setting. Data were acquired in 2013 onboard the RV M. Langseth with an 8-km-long hydrophone streamer. The images have been obtained from pre-stack depth migrations using a regional 3D P-wave velocity model from a coincident controlled-source seismic tomography experiment using ocean bottom seismometers. Our images show a complex magmatic <span class="hlt">system</span> centered beneath the RHF occupying an areal extent of ~3.7x6 km2, with partially molten sills ranging in depth between ~3.4 km and ~6.9 km below the seafloor. Our data also image high-amplitude dipping reflections within the massif coincident with strong lateral velocity gradients that may arise from detachment fault planes</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018LPICo2085.6022S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018LPICo2085.6022S"><span>Origin of Abiotic Methane in Submarine <span class="hlt">Hydrothermal</span> <span class="hlt">Systems</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seewald, J. S.; German, C. R.; Grozeva, N. G.; Klein, F.; McDermott, J. M.; Ono, S.; Reeves, E. P.; Wang, D. T.</p> <p>2018-05-01</p> <p>Results of recent investigations into the chemical and isotopic composition of actively venting submarine <span class="hlt">hydrothermal</span> fluids and volatile species trapped in fluid inclusions will be discussed in the context of processes responsible for abiotic CH4 formation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PApGe.168.1125P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PApGe.168.1125P"><span>Tsunami Forecasting and Monitoring in New <span class="hlt">Zealand</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Power, William; Gale, Nora</p> <p>2011-06-01</p> <p>New <span class="hlt">Zealand</span> is exposed to tsunami threats from several sources that vary significantly in their potential impact and travel time. One route for reducing the risk from these tsunami sources is to provide advance warning based on forecasting and monitoring of events in progress. In this paper the National Tsunami Warning <span class="hlt">System</span> framework, including the responsibilities of key organisations and the procedures that they follow in the event of a tsunami threatening New <span class="hlt">Zealand</span>, are summarised. A method for forecasting threat-levels based on tsunami models is presented, similar in many respects to that developed for Australia by Allen and Greenslade (Nat Hazards 46:35-52, 2008), and a simple <span class="hlt">system</span> for easy access to the threat-level forecasts using a clickable pdf file is presented. Once a tsunami enters or initiates within New <span class="hlt">Zealand</span> waters, its progress and evolution can be monitored in real-time using a newly established network of online tsunami gauge sensors placed at strategic locations around the New <span class="hlt">Zealand</span> coasts and offshore islands. Information from these gauges can be used to validate and revise forecasts, and assist in making the all-clear decision.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PalOc..23.1212S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PalOc..23.1212S"><span>Piston core record of Late Paleogene (31 Ma) to recent seafloor <span class="hlt">hydrothermal</span> activity in the Southwest Pacific Basin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stancin, Andrea M.; Gleason, James D.; Owen, Robert M.; Rea, David K.; Blum, Joel D.</p> <p>2008-03-01</p> <p>A large diameter piston core containing 8.35 m of metalliferous sediment has been recovered from a small abyssal valley in the remote Southwest Pacific Basin (31° 42.194'S, 143° 30° 331'W; 5082 m water depth), providing unique insight into <span class="hlt">hydrothermal</span> activity and eolian sedimentation there since the early Oligocene. A combination of fish-teeth Sr-isotope stratigraphy and INAA geochemical data reveals an exponentially decreasing <span class="hlt">hydrothermal</span> flux 31 Ma to the present. Although <span class="hlt">hydrothermal</span> sedimentation related to seafloor spreading explains this trend, a complex history of late Eocene/early Oligocene ridge jumps, propagating rifts and plate tectonic reorganization of South Pacific seafloor could have also played a role. A possible hiatus in deposition, as recorded by changes in core composition just below 2 m depth, is beyond the resolution of the fish teeth Sr isotope dating method employed here; however, the timing of this interval may be coincident with extinction of the Pacific-Farallon Ridge at ˜20 Ma. A low flux eolian component accumulating at this site shows an increase relative to the <span class="hlt">hydrothermal</span> component above 2 m depth, consistent with dust-generating continental sources far to the west (Australia/New <span class="hlt">Zealand</span>). This is the first long-term paleoceanographic record obtained from within the South Pacific "bare zone" (Rea et al., 2006), an anomalous region where Pacific seafloor has largely escaped sediment accumulation since the Late Cretaceous.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V51F0432K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V51F0432K"><span>Volcano-<span class="hlt">Hydrothermal</span> <span class="hlt">Systems</span> of the Kuril Island Arc (Russia): Geochemistry of the Thermal Waters and Gases.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kalacheva, E.; Taran, Y.; Voloshina, E.; Kotenko, T.; Tarasov, K.</p> <p>2017-12-01</p> <p>More than 30 active volcanoes with historical eruptions are known on 20 main islands composing the Kuril Arc. Eight islands - Paramushir, Shiashkotan, Rasshua, Ushishir, Ketoy, Urup, Iturup and Kunashir - are characterized by <span class="hlt">hydrothermal</span> activity, complementary to the fumarole activity in the craters and volcano slopes. At Paramushir, Shiashkotan, Iturup and Kunashir most of thermal manifestations are acidic to ultra-acidic hot springs associated with <span class="hlt">hydrothermal</span> aquifers inside volcano edifices. The most powerful of them is the ultra-acid <span class="hlt">hydrothermal</span> <span class="hlt">system</span> of Ebeko volcano (Paramushir island) with more than 80 t/day of the chloride output and pH of springs of 1.5. At the summit part of the Ebeko volcano there are 12 thermal fields with the total thermal area exceeding 1 km2. The measured temperatures of fumaroles are from 98º C to 500ºC. Another type of <span class="hlt">hydrothermal</span> activity are the wide spread coastal hot and neutral springs situated as a rule within the tide zone. Four groups of this type of thermal manifestation were found on the western shore of Shiashkotan island. It have Na-Ca-Cl-SO4 composition with temperatures 50-80°C and TDS 7-8 g/L. Coastal neutral springs were found also on Russhua, Uturup and Kunashir islands. Ushishir volcano-<span class="hlt">hydrothermal</span> <span class="hlt">system</span> in the middle of the arc is formed by the absorption of magmatic gases by seawater. In the crater of the Pallas cone (Ketoy island) there is a small Glazok lake with acid SO4 water and pH=2.4, TDS=2g/L, T=12oC. Ketoy volcano on the same island hosts a high temperature <span class="hlt">hydrothermal</span> <span class="hlt">system</span> with unusual boiling Ca-Na-SO4 neutral springs and steam vents. Mendeleev and Golovnin volcanoes on Kunashir Island are the southernmost of the Kuril arc. Mendeleev edifice is a centre of a large thermal area with many manifestations of different types including steam vents, acid springs and neutral coastal springs. In a 4.2x4 km wide caldera of Golovnin volcano there are two lakes with acid Cl-SO4 water and numerous</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V34A..04C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V34A..04C"><span>A seismological perspective of the shallow magma and <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> under Kilauea Caldera</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chouet, B. A.; Dawson, P. B.</p> <p>2011-12-01</p> <p> west and east branches of the east-trending dike with the north-striking dike provides a natural locus for strong localized elastic coupling of pressure and momentum changes induced by shallow degassing bursts. This juncture offers a ready explanation for the observed temporal stability of the VLP source location. Radial semblance analyses of VLP seismic energy in near real time, supplemented with spectral analyses and Hidden Markov Model (HMM) pattern recognition of degassing bursts provide valuable tools for monitoring the evolution of this active magmatic <span class="hlt">system</span> and its interaction with the perched <span class="hlt">hydrothermal</span> <span class="hlt">system</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JVGR..276..132G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JVGR..276..132G"><span>Asymmetrical structure, <span class="hlt">hydrothermal</span> <span class="hlt">system</span> and edifice stability: The case of Ubinas volcano, Peru, revealed by geophysical surveys</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gonzales, Katherine; Finizola, Anthony; Lénat, Jean-François; Macedo, Orlando; Ramos, Domingo; Thouret, Jean-Claude; Fournier, Nicolas; Cruz, Vicentina; Pistre, Karine</p> <p>2014-04-01</p> <p>Ubinas volcano, the historically most active volcano in Peru straddles a low-relief high plateau and the flank of a steep valley. A multidisciplinary geophysical study has been performed to investigate the internal structure and the fluids flow within the edifice. We conducted 10 self-potential (SP) radial (from summit to base) profiles, 15 audio magnetotelluric (AMT) soundings on the west flank and a detailed survey of SP and soil temperature measurements on the summit caldera floor. The typical “V” shape of the SP radial profiles has been interpreted as the result of a <span class="hlt">hydrothermal</span> zone superimposed on a hydrogeological zone in the upper parts of the edifice, and depicts a sub-circular SP positive anomaly, about 6 km in diameter. The latter is centred on the summit, and is characterised by a larger extension on the western flank located on the low-relief high plateau. The AMT resistivity model shows the presence of a conductive body beneath the summit at a depth comparable to that of the bottom of the inner south crater in the present-day caldera, where intense <span class="hlt">hydrothermal</span> manifestations occur. The lack of SP and temperature anomalies on the present caldera floor suggests a self-sealed <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, where the inner south crater acts as a pressure release valve. Although no resistivity data exists on the eastern flank, we presume, based on the asymmetry of the basement topography, and the amplitude of SP anomalies on the east flank, which are approximately five fold that on the west flank, that gravitational flow of <span class="hlt">hydrothermal</span> fluids may occur towards the deep valley of Ubinas. This hypothesis, supported by the presence of hot springs and faults on the eastern foot of the edifice, reinforces the idea that a large part of the southeast flank of the Ubinas volcano may be altered by <span class="hlt">hydrothermal</span> activity and will tend to be less stable. One of the major findings that stems from this study is that the slope of the basement on which a volcano has grown</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29231596','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29231596"><span>[Current situation of acupuncture in New <span class="hlt">Zealand</span>].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Xiaoji; Hu, Youping</p> <p>2017-04-12</p> <p>The beginning of TCM acupuncture in New <span class="hlt">Zealand</span> dates back to the middle of 19th century. After self-improvement for more than 100 years, TCM acupuncture has gained a considerable development. From the perspective of history and current situation, the development of acupuncture in New <span class="hlt">Zealand</span> was elaborated in this article; in addition, the sustainable development of acupuncture was discussed from the perspective of education and training. In New <span class="hlt">Zealand</span>, the TCM acupuncture and dry needling have played a dominant role in acupuncture treatments, which are practiced by TCM practitioners and physical therapists. The TCM acupuncture is widely applied in department of internal medicine, surgery, gynecology, and pediatrics, etc., while the dry needling is li-mited for traumatology and pain disorder. Therefore, including TCM acupuncture into the public medical and educational <span class="hlt">system</span> in New <span class="hlt">Zealand</span> should be an essential policy of Ministry of Health to provide welfare for the people.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=environmental+AND+assessment+AND+gis&id=EJ839091','ERIC'); return false;" href="https://eric.ed.gov/?q=environmental+AND+assessment+AND+gis&id=EJ839091"><span>GIS in New <span class="hlt">Zealand</span> Schools: Issues and Prospects</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Chalmers, Lex</p> <p>2006-01-01</p> <p>There are undoubtedly many parallels between Australia and New <span class="hlt">Zealand</span> in the history of geographic information <span class="hlt">system</span> (GIS) in schools. These parallels occur in the social, institutional, professional development, and curricula areas, and each of these topics is considered in this article. In New <span class="hlt">Zealand</span> at least, there is still a lot that needs…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS51E..05Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS51E..05Z"><span>Characteristics of <span class="hlt">Hydrothermal</span> Mineralization in Ultraslow Spreading Ridges</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, H.; Yang, Q.; Ji, F.; Dick, H. J.</p> <p>2014-12-01</p> <p><span class="hlt">Hydrothermal</span> activity is a major component of the processes that shape the composition and structure of the ocean crust, providing a major pathway for the exchange of heat and elements between the Earth's crust and oceans, and a locus for intense biological activity on the seafloor and underlying crust. In other hand, the structure and composition of <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> are the result of complex interactions between heat sources, fluids, wall rocks, tectonic controls and even biological processes. Ultraslow spreading ridges, including the Southwest Indian Ridge, the Gakkel Ridge, are most remarkable end member in plate-boundary structures (Dick et al., 2003), featured with extensive tectonic amagmatic spreading and frequent exposure of peridotite and gabbro. With intensive surveys in last decades, it is suggested that ultraslow ridges are several times more effective than faster-spreading ridges in sustaining <span class="hlt">hydrothermal</span> activities. This increased efficiency could attributed to deep mining of heat and even exothermic serpentinisation (Baker et al., 2004). Distinct from in faster spreading ridges, one characteristics of <span class="hlt">hydrothermal</span> mineralization on seafloor in ultraslow spreading ridges, including the active Dragon Flag <span class="hlt">hydrothermal</span> field at 49.6 degree of the Southwest Indian Ridge, is abundant and pervasive distribution of lower temperature precipitated minerals ( such as Fe-silica or silica, Mn (Fe) oxides, sepiolite, pyrite, marcasite etc. ) in <span class="hlt">hydrothermal</span> fields. Structures formed by lower temperature activities in active and dead <span class="hlt">hydrothermal</span> fields are also obviously. High temperature precipitated minerals such as chalcopyrite etc. are rare or very limited in <span class="hlt">hydrothermal</span> chimneys. Distribution of diverse low temperature <span class="hlt">hydrothermal</span> activities is consistence with the deep heating mechanisms and <span class="hlt">hydrothermal</span> circulations in the complex background of ultraslow spreading tectonics. Meanwhile, deeper and larger mineralization at certain locations along the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V24A..06R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V24A..06R"><span>Characterizing the dynamics of <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> with muon tomography: the case of La Soufrière de Guadeloupe</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosas-Carbajal, M.; Marteau, J.; Tramontini, M.; de Bremond d Ars, J.; Le Gonidec, Y.; Carlus, B.; Ianigro, J. C.; Deroussi, S.; Komorowski, J. C.; Gibert, D.</p> <p>2017-12-01</p> <p>Muon imaging has recently emerged as a powerful method to complement standard geophysical tools in the study of the Earth's subsurface. Muon measurements yield a radiography of the average density along the muon path, allowing to image large volumes of a geological body from a single observation point. Long-term measurements allow to infer density changes by tracking the associated variations in the muon flux. In the context of volcanic <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>, this approach helps to characterize zones of steam formation, condensation, water infiltration and storage. We present results of imaging the La Soufrière de Guadeloupe dome and shallow active <span class="hlt">hydrothermal</span> <span class="hlt">system</span> with a network of muon telescopes viewing the dome from different positions around its base. First, we jointly invert the muon radiographies of the different telescopes with gravity data to obtain a three-dimensional density model of the lava dome. The model reveals an extended low density region where the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> is most active. We then analyze the dynamics of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> from long-term measurements (more than 2 years of almost non-interrupted acquisition) with 5 simultaneous muon telescopes. We identify a periodicity of 1-2 months in the density increase/decrease in the most active zones below fumaroles and acid boiling ponds. Our simultaneous-muon telescope strategy provides constraints on the three-dimensional location of the density changes and an improved quantification of the associated mass flux changes. We compare the temporal trends acquired by the different muon telescopes to time-series of rainfall on the summit recharge area as well as to ground temperature profiles in the vicinity of thermal anomalies and high-discharge summit fumaroles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS53C1050D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS53C1050D"><span>Application of AUVs in the Exploration for and Characterization of Arc Volcano Seafloor <span class="hlt">Hydrothermal</span> <span class="hlt">Systems</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Ronde, C. E. J.; Walker, S. L.; Caratori Tontini, F.; Baker, E. T.; Embley, R. W.; Yoerger, D.</p> <p>2014-12-01</p> <p>The application of Autonomous Underwater Vehicles (AUVs) in the search for, and characterization of, seafloor <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> associated with arc volcanoes has provided important information at a scale relevant to the study of these <span class="hlt">systems</span>. That is, 1-2 m resolution bathymetric mapping of the seafloor, when combined with high-resolution magnetic and water column measurements, enables the discharge of <span class="hlt">hydrothermal</span> vent fluids to be coupled with geological and structural features, and inferred upflow zones. Optimum altitude for the AUVs is ~70 m ensuring high resolution coverage of the area, maximum exposure to <span class="hlt">hydrothermal</span> venting, and efficency of survey. The Brothers caldera and Clark cone volcanoes of the Kermadec arc have been surveyed by ABE and Sentry. At Brothers, bathymetric mapping shows complex features on the caldera walls including embayment's, ridges extending orthogonal to the walls and the location of a dominant ring fault. Water column measurements made by light scattering, temperature, ORP and pH sensors confirmed the location of the known vent fields on the NW caldera wall and atop the two cones, and discovered a new field on the West caldera wall. Evidence for diffuse discharge was also seen on the rim of the NW caldera wall; conversely, there was little evidence for discharge over an inferred ancient vent site on the SE caldera wall. Magnetic measurements show a strong correlation between the boundaries of vent fields determined by water column measurements and observed from manned submersible and towed camera surveys, and donut-shaped zones of magnetic 'lows' that are focused along ring faults. A magnetic low was also observed to cover the SE caldera site. Similar surveys over the NW edifice of Clark volcano also show a strong correlation between active <span class="hlt">hydrothermal</span> venting and magnetic lows. Here, the survey revealed a pattern resembling Swiss cheese of magnetic lows, indicating more widespread permeability. Moreover, the magnetic survey</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6579B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6579B"><span>Silicon isotopes fractionation in meteoric chemical weathering and <span class="hlt">hydrothermal</span> alteration <span class="hlt">systems</span> of volcanic rocks (Mayotte)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Basile-Doelsch, Isabelle; Puyraveau, Romain-Arnaud; Guihou, Abel; Haurine, Frederic; Deschamps, Pierre; rad, Setareh; Nehlig, Pierre</p> <p>2017-04-01</p> <p>Low temperature chemical weathering fractionates silicon (Si) isotopes while forming secondary silicates. The Si fractionation ranges of high temperature secondary phyllosilicates formed in <span class="hlt">hydrothermal</span> alteration environments have not been investigated to date. Several parameters, including temperature, reaction rates, pH, ionic concentrations in solution, precipitation/dissolution series or kinetic versus equilibrium regime are not the same in <span class="hlt">hydrothermal</span> alteration and surface weathering <span class="hlt">systems</span> and may lead to different fractionation factors. In this work, we analyzed Si isotopes in these two types of alteration conditions in two profiles sampled on the volcanic island of Mayotte. In both profiles, Si-bearing secondary mineral was kaolinite. Both profiles showed 30Si depletion as a function of the degree of alteration but each with a distinct pattern. In the meteoric weathering profile, from the bottom to the top, a gradual decrease of the δ30Si from parent rock (-0.29 ± 0.13 ‰) towards the most weathered product (-2.05 ± 0.13 ‰) was observed. In the <span class="hlt">hydrothermal</span> alteration profile, in which meteoric weathering was also superimposed at the top of the profile, an abrupt transition of the δ30Si was measured at the interface between parent-rock (-0.21 ± 0.11 ‰) and the altered products, with a minimum value of -3.06 ± 0.16 ‰˙ At the scale of Si-bearing secondary minerals, in the chemical weathering <span class="hlt">system</span>, a Δ30Sikaol-parentrock of -1.9 ‰ was observed, in agreement with results in the literature. A low temperature kinetic fractionation 30ɛ of -2.29 ‰ was calculated using a simple steady state model. However, an unexpected Δ30Sikaol-parentrock of -2.85 ‰ was measured in the <span class="hlt">hydrothermal</span> alteration site, pointing to possible mechanisms linked to dissolution/precipitation series and/or to ionic composition of the solution as the main controlling factors of fractionation in <span class="hlt">hydrothermal</span> conditions. At the scale of the profiles, both δ30Si</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006ASSL..335...63H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006ASSL..335...63H"><span>Astronomy in New <span class="hlt">Zealand</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hearnshaw, John B.</p> <p>2006-01-01</p> <p>Although New <span class="hlt">Zealand</span> is a young country, astronomy played a significant role in its early exploration and discovery during the three voyages of Cook from 1769. In the later 19th century several expeditions came to New <span class="hlt">Zealand</span> to observe the transits of Venus of 1874 and 1882 and New <span class="hlt">Zealand</span>'s rich history of prominent amateur astronomers dates from this time. The Royal Astronomical Society of New <span class="hlt">Zealand</span> (founded in 1920) has catered for the amateur community. Professional astronomy however had a slow start in New <span class="hlt">Zealand</span>. The Carter Observatory was founded in 1941. But it was not until astronomy was taken up by New <span class="hlt">Zealand</span>'s universities, notably by the University of Canterbury from 1963, that a firm basis for research in astronomy and astrophysics was established. Mt John University Observatory with its four optical telescopes (largest 1.8 m) is operated by the University of Canterbury and is the main base for observational astronomy in the country. However four other New <span class="hlt">Zealand</span> universities also have an interest in astronomical research at the present time. There is also considerable involvement in large international projects such as MOA, SALT, AMOR, IceCube and possibly SKA.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGP11A..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGP11A..01S"><span>The magnetic signature of ultramafic-hosted <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Szitkar, F.; Dyment, J.; Honsho, C.; Horen, H.; Fouquet, Y.</p> <p>2013-12-01</p> <p>While the magnetic response of basalt-hosted <span class="hlt">hydrothermal</span> sites is well known, that of ultramafic-hosted <span class="hlt">hydrothermal</span> sites (UMHS) remains poorly documented. Here we present the magnetic signature of three of the six UMHS investigated to date on the Mid-Atlantic Ridge, i.e. sites Rainbow, Ashadze (1 and 2), and Logachev. Two magnetic signatures are observed. Sites Rainbow and Ashadze 1 are both characterized by a positive reduced-to-the-pole magnetic anomaly, i.e. a positive magnetization contrast. Conversely, sites Ashadze 2 and Logachev do not exhibit any clear magnetic signature. Rock-magnetic measurements on samples from site Rainbow reveal a strong magnetization (~30 A/m adding induced and remanent contributions) borne by sulfide-impregnated serpentinites; the magnetic carrier being magnetite. This observation can be explained by three (non exclusive) processes: (1) higher temperature serpentinization at the site resulting in the formation of more abundant / more strongly magnetized magnetite; (2) the reducing <span class="hlt">hydrothermal</span> fluid protecting magnetite at the site from the oxidation which otherwise affects magnetite in contact with seawater; and (3) the formation of primary (<span class="hlt">hydrothermal</span>) magnetite. We apply a new inversion method developed by Honsho et al. (2012) to the high-resolution magnetic anomalies acquired 10 m above seafloor at sites Rainbow and Ashadze 1. This method uses the Akaike Bayesian Information Criterion (ABIC) and takes full advantage of the near-seafloor measurements, avoiding the upward-continuation (i.e. loss of resolution) of other inversion schemes. This inversion reveals a difference in the intensity of equivalent magnetization obtained assuming a 100 m thick magnetic layer, ~30 A/m at site Rainbow and only 8A/m at site Ashadze, suggesting a thinner or less magnetized source for the latter. <span class="hlt">Hydrothermal</span> sites at Ashadze 2 and Logachev are much smaller (of the order of 10 m) than the previous ones (several 100 m). These sites, known as</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V21A4737C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V21A4737C"><span>The Role of Siliceous <span class="hlt">Hydrothermal</span> Breccias in the Genesis of Volcanic Massive Sulphide Deposits - Ancient and Recent <span class="hlt">Systems</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Costa, I. A.; Barriga, F. J.; Fouquet, Y.</p> <p>2014-12-01</p> <p>Siliceous <span class="hlt">hydrothermal</span> breccias were sampled in two Mid-Atlantic Ridge active sites: Lucky Strike and Menez Gwen. These <span class="hlt">hydrothermal</span> fields are located in the border of the Azorean plateau, southwest of the Azores islands where the alteration processes affecting basaltic rocks are prominent (Costa et al., 2003). The <span class="hlt">hydrothermal</span> breccias are genetically related with the circulation of low temperature <span class="hlt">hydrothermal</span> fluids in diffuse vents. The groundmass of these breccias precipitates from the fluid and consolidates the clastic fragments mostly composed of basalt. The main sources are the surrounding volcanic hills. Breccias are found near <span class="hlt">hydrothermal</span> vents and may play an important role in the protection of subseafloor <span class="hlt">hydrothermal</span> deposits forming an impermeable cap due to the high content in siliceous material. The amorphous silica tends to precipitate when the fluid is conductively cooled as proposed by Fouquet et al. (1998) after Fournier (1983). The process evolves gradually from an initial stage where we have just the fragments and circulating seawater. The ascending <span class="hlt">hydrothermal</span> fluid mixes with seawater, which favours the precipitation of the sulphide components. Sealing of the initially loose fragments begins, the temperature rises below this crust, and the processes of mixing fluid circulation and conductive cooling are simultaneous. At this stage the fluid becomes oversaturated with respect to amorphous silica. This form of silica can precipitate in the open spaces of the porous sulphides and seal the <span class="hlt">system</span>. Normally this can happen at low temperatures. At this stage the <span class="hlt">hydrothermal</span> breccia is formed creating a progressively less permeable, eventually impermeable cap rock at the surface. Once the fluid is trapped under this impermeable layer, conductive cooling is enhanced and mixing with seawater is restricted, making the precipitation of amorphous silica more efficient. Since the first discovery and description of recent mineralized submarine</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14582511','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14582511"><span>A <span class="hlt">hydrothermal</span> <span class="hlt">system</span> associated with the Siljan impact structure, Sweden--implications for the search for fossil life on Mars.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hode, Tomas; von Dalwigk, Ilka; Broman, Curt</p> <p>2003-01-01</p> <p>The Siljan ring structure (368 +/- 1.1 Ma) is the largest known impact structure in Europe. It isa 65-km-wide, eroded, complex impact structure, displaying several structural units, including a central uplifted region surrounded by a ring-shaped depression. Associated with the impact crater are traces of a post-impact <span class="hlt">hydrothermal</span> <span class="hlt">system</span> indicated by precipitated and altered <span class="hlt">hydrothermal</span> mineral assemblages. Precipitated <span class="hlt">hydrothermal</span> minerals include quartz veins and breccia fillings associated with granitic rocks at the outer margin of the central uplift, and calcite, fluorite, galena, and sphalerite veins associated with Paleozoic carbonate rocks located outside the central uplift. Two-phase water/gas and oil/gas inclusions in calcite and fluorite display homogenization temperatures between 75 degrees C and 137 degrees C. With an estimated erosional unloading of approximately 1 km, the formation temperatures were probably not more than 10-15 degrees C higher. Fluid inclusion ice-melting temperatures indicate a very low salt content, reducing the probability that the mineralization was precipitated during the Caledonian Orogeny. Our findings suggest that large impacts induce low-temperature <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> that may be habitats for thermophilic organisms. Large impact structures on Mars may therefore be suitable targets in the search for fossil thermophilic organisms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004cosp...35.1931Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004cosp...35.1931Y"><span>Bacterial community under the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> on the Suiyo Seamount: A model for archean and exo-biota</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamagishi, A.</p> <p></p> <p>Microbial community in <span class="hlt">hydrothermal</span> area at seafloor has been analyzed by culture-independent methods. <span class="hlt">Hydrothermal</span> fluid from natural vents and vent chimneys have been analyzed by PCR (1-2). Hyperthermophilic microbes have been isolated from these environments (3-4). Though the analysis of these samples can provide the window to penetrate the microbial community under the seafloor, more direct analysis is desired for better understanding of the sub-seafloor microbial community In the ``Archaean Park Project'' supported by Special Coordination Fund, several holes were drilled and the holes were supported by casing pipes in the crater of the Suiyo seamount on the Izu-Bonin arc, West Pacific Ocean (about 1,400 m depth) in 2001 and 2002. <span class="hlt">Hydrothermal</span> fluids were sampled from cased holes. The fluids were filtered to collect the microbial cells. The DNA was extracted and used to amplify 16S rDNA fragments by PCR (polymerase chain reaction) using a bacteria and an archaea specific primer sets. The PCR fragments were cloned and sequenced. FISH analysis revealed from 6 x103 to 2.5 x 106 bactrerial cells/ml in these <span class="hlt">hydrothermal</span> fluids. PCR clone-analysis showed significant variation in bacterial sequences found in these samples. The species-patterns suggest that the contamination of ambient seawater to <span class="hlt">hydrothermal</span> fluid samples is negligible. Difference in the dominant species depending on the location was found, suggesting that the bacterial community at sub-sea floor is not monotonous but has gradual shift from the <span class="hlt">hydrothermal</span> center to peripheral area. The results suggest that there is chemo-autotrophic microbe-dependent biota under the <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. References 1) Takai et al. Genetics 152: 1285-1297 (1999) 2) Takai et al. Appl. Environ. Microbioi. 67: 3618-3629 (2001) 3) Summit et al. Proc. Natl. Acad. Sci. 98: 2158-2163 (2001) 4) Amend, J. P. and Shodk, E. L. FEMS Microbiol. Rev. 25: 175-243 (2002)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017161','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017161"><span>Mass transfer constraints on the chemical evolution of an active <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, Valles caldera, New Mexico</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>White, A.F.; Chuma, N.J.; Goff, F.</p> <p>1992-01-01</p> <p>Partial equilibrium conditions occur between fluids and secondary minerals in the Valles <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, contained principally in the Tertiary rhyolitic Bandelier Tuff. The mass transfer processes are governed by reactive phase compositions, surface areas, water-rock ratios, reaction rates, and fluid residence times. Experimental dissolution of the vitric phase of the tuff was congruent with respect to Cl in the solid and produced reaction rates which obeyed a general Arrhenius release rate between 250 and 300??C. The 18O differences between reacted and unreacted rock and fluids, and mass balances calculations involving Cl in the glass phase, produced comparable water-rock ratios of unity, confirming the importance of irreversible reaction of the vitric tuff. A fluid residence time of approximately 2 ?? 103 years, determined from fluid reservoir volume and discharge rates, is less than 0.2% of the total age of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> and denotes a geochemically and isotopically open <span class="hlt">system</span>. Mass transfer calculations generally replicated observed reservoir pH, Pco2, and PO2 conditions, cation concentrations, and the secondary mineral assemblage between 250 and 300??C. The only extraneous component required to maintain observed calcite saturation and high Pco2 pressures was carbon presumably derived from underlying Paleozoic limestones. Phase rule constraints indicate that Cl was the only incompatible aqueous component not controlled by mineral equilibrium. Concentrations of Cl in the reservoir directly reflect mass transport rates as evidenced by correlations between anomalously high Cl concentrations in the fluids and tuff in the Valles caldera relative to other <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> in rhyolitic rocks. ?? 1992.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035210','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035210"><span>Surface heat flow and CO2 emissions within the Ohaaki <span class="hlt">hydrothermal</span> field, Taupo Volcanic Zone, New <span class="hlt">Zealand</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rissmann, C.; Christenson, B.; Werner, C.; Leybourne, M.; Cole, J.; Gravley, D.</p> <p>2012-01-01</p> <p>Carbon dioxide emissions and heat flow have been determined from the Ohaaki <span class="hlt">hydrothermal</span> field, Taupo Volcanic Zone (TVZ), New <span class="hlt">Zealand</span> following 20a of production (116MW e). Soil CO2 degassing was quantified with 2663 CO2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (Wm -2) using published soil temperature heat flow functions. Both CO2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO 2 gas samples were also analysed for stable C isotopes. Following 20a of production, current CO2 emissions equated to 111??6.7T/d. Observed heat flow was 70??6.4MW, compared with a pre-production value of 122MW. This 52MW reduction in surface heat flow is due to production-induced drying up of all alkali-Cl outflows (61.5MW) and steam-heated pools (8.6MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali-Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18MW (from 25MW to 43.3??5MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20a of production, with an observed heat flow of 26.7??3MW and a CO 2 emission rate of 39??3T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali-Cl outflows once contributed significantly to the natural surface heat flow (~50%) they contributed little (<1%) to pre-production CO 2</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.V11F..08G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.V11F..08G"><span>On the Interaction of a Vigorous <span class="hlt">Hydrothermal</span> <span class="hlt">System</span> with an Active Magma Chamber: The Puna Magma Chamber, Kilauea East Rift, Hawaii</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gregory, R. T.; Marsh, B. D.; Teplow, W.; Fournelle, J.</p> <p>2009-12-01</p> <p>The extent of the interaction between <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> and active magma chambers has long been of fundamental interest to the development of ore deposits, cooling of magma chambers, and dehydration of the subducting lithosphere. As volatiles build up in the residual magma in the trailing edge of magmatic solidification fronts, is it possible that volatiles are transferred from the active magma to the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> and vice versa? Does the external fracture front associated with vigorous <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> sometimes propagate into the solidification front, facilitating volatile exchange? Or is the magma always sealed at temperatures above some critical level related to rock strength and overpressure? The degree of <span class="hlt">hydrothermal</span> interaction in igneous <span class="hlt">systems</span> is generally gauged in post mortem studies of δ18O and δD, where it has been assumed that a fracture front develops about the magma collapsing inward with cooling. H.P. Taylor and D. Norton's (1979; J. Petrol.)seminal work inferred that rocks are sealed with approach to the solidus and there is little to no direct interaction with external volatiles in the active magma. In active lava lakes a fracture front develops in response to thermal contraction of the newly formed rock once the temperature drops to ~950°C (Peck and Kinoshita,1976;USGS PP935A); rainfall driven <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> flash to steam near the 100 °C isotherm in the solidified lake and have little effect on the cooling history (Peck et al., 1977; AJS). Lava lakes are fully degassed magmas and until the recent discovery of the Puna Magma Chamber (Teplow et al., 2008; AGU) no active magma was known at sufficiently great pressure to contain original volatiles. During the course of routine drilling of an injection well at the Puna Geothermal Venture (PGV) well-field, Big Island, Hawaii, a 75-meter interval of diorite containing brown glass inclusions was penetrated at a depth of 2415 m, continued drilling to 2488 m encountered a melt</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B13B0476L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B13B0476L"><span>Microbial heterotrophy coupled to Fe-S-As cycling in a shallow-sea <span class="hlt">hydrothermal</span> <span class="hlt">system</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, G.; Amend, J.</p> <p>2013-12-01</p> <p>To date, there are only a few known heterotrophic arsenite oxidizers and arsenate reducers. They utilize organic compounds as their carbon source and/or as important electron donors in the transfer arsenic in high temperature environments. Arsenic in <span class="hlt">hydrothermal</span> vent <span class="hlt">systems</span> can be immobilized at low temperatures through (ad)sorption on iron oxide and other iron-bearing minerals. Interactions with sulfur species can also affect the redox state of arsenic species. A better understanding of microbially-catalyzed reactions involving carbon, arsenic, iron and sulfur would provide constraints on the mobility of arsenic in a wide variety of natural and engineered <span class="hlt">systems</span>. The aim of this study is to establish links between microbial distribution and in situ Fe-S-As cycling processes in a shallow-sea <span class="hlt">hydrothermal</span> vent <span class="hlt">system</span>. We investigated three shallow-sea <span class="hlt">hydrothermal</span> vents, Champagne Hot Spring (CHS), Soufriere Spring (SOU) and Portsmouth Spring (PM), located off the western coast of Dominica, Lesser Antilles. CHS and SOU are characterized by moderate temperatures (46oC and 55oC, respectively), and PM is substantially hotter (~90-111 oC). Two sediment cores (one close to and one far from the thermal source) were collected from CHS and from SOU. Porewaters in both background cores had low concentrations of arsenic (mostly As3+, to a lesser extent As5+, DMA, MMA) and ferrous iron. The arsenic concentrations (predominantly As3+) in the CHS high temperature core were 30-90 nM, tracking with dissolved iron. Similar to CHS, the arsenic concentration in the SOU high temperature core was dominated by As3+ and controlled by ferrous iron. However, the arsenic concentration at SOU is comparatively higher, up to 1.9 mM. At the hotter and deeper PM site, highly elevated arsenic levels (1-2.5 mM) were measured, values that are among the highest arsenic concentrations ever reported in a marine <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. Several autotrophic and heterotrophic media at two pHs (5.5 and 8</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS31C1418K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS31C1418K"><span>Water column imaging on <span class="hlt">hydrothermal</span> vent in Central Indian Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koh, J.; Park, Y.</p> <p>2017-12-01</p> <p>Water column imaging with Multibeam echosounder <span class="hlt">systems</span> (MBES) is recently becoming of increasing interest for oceanographic studies. Especially gas bubbles and hot water exposed from <span class="hlt">hydrothermal</span> vents make acoustic impedance anomalies in cold seawater, water column imaging is very useful for the researchers who want to detect some kinds of <span class="hlt">hydrothermal</span> activity. We conducted a <span class="hlt">hydrothermal</span> exploration program, called "INVENT17", using the MBES <span class="hlt">system</span>, KONGBERG EM122 (12kHz, 1°×1°), mounted on R/V ISABU and we deployed other equipments including video guided hydraulic grab, tow-yo CTD and general CTD with MAPR (Miniature Autonomous Plume Recorder) in 2017. First, to evaluate its capabilities of detection of <span class="hlt">hydrothermal</span> vent, the surveys using the MBES were conducted at the Solitaire Field, previously identified <span class="hlt">hydrothermal</span> area of the Central Indian Ridge. The bathymetric data obtained from MBES provided information about detailed morphology of seafloor, but we were not able to achieve the information from the water column imaging data. But the clue of existence of active <span class="hlt">hydrothermal</span> vent was detected through the values of ΔNTU, dEh/dt, and OPR gained from MAPR, the data means that the <span class="hlt">hydrothermal</span> activity affects 100m from the seafloor. It could be the reason that we can't find the <span class="hlt">hydrothermal</span> activity because the range resolution of water column imaging is pretty rough so that the size of 100m-scaled activity has low possibility to distinguish from seafloor. The other reason is there are no sufficient objects to cause strong scattering like as CO2 bubbles or droplets unlike in the mid-Okinawa Trough. And this suggests that can be a important standard to identify properties of <span class="hlt">hydrothermal</span> vent sites depending on the presence of scattering objects in water mass. To justify this, we should perform more chemical analysis of hot water emanating from <span class="hlt">hydrothermal</span> vent and collected several bottles of water sample to do that.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910728C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910728C"><span>Radon surveys and monitoring at active volcanoes: an open window on deep <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> and their dynamics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cigolini, Corrado; Laiolo, Marco; Coppola, Diego</p> <p>2017-04-01</p> <p>The behavior of fluids in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> is critical in volcano monitoring and geothermal prospecting. Analyzing the time series of radon emissions on active volcanoes is strategic for detecting and interpreting precursory signals of changes in volcanic activity, eventually leading to eruptions. Radon is a radioactive gas generated from the decay of U bearing rocks, soils and magmas. Although radon has been regarded as a potential precursor of earthquakes, radon anomalies appear to be better suited to forecast volcanic eruptions since we know where paroxysms may occur and we can follow the evolution of volcanic activity. Radon mapping at active volcanoes is also a reliable tool to assess diffuse and concentrated degassing as well as efficiently detecting earthquake-volcano interactions. Systematic radon monitoring has been shown to be a key factor for evaluating the rise of volcanic and <span class="hlt">hydrothermal</span> fluids. In fact, the decay properties of radon, the duration of radon anomalies together with sampling rates may be cross-checked with the chemistry of <span class="hlt">hydrothermal</span> fluids (and their transport properties) to constrain fluids ascent rates and to infer the permeability and porosity of rocks in sectors surrounding the active conduits. We hereby further discuss the data of radon surveys and monitoring at Somma-Vesuvius, Stromboli and La Soufrière (Guadeloupe, Lesser Antilles). The integrated analysis of seismic and geochemical data, including radon emissions, may be successfully used in testing temperature distributions and variations of porosity and permeability in volcanic <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> and can be used as a proxy to analyze geothermal reservoirs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED271868.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED271868.pdf"><span>Educational Policy Research in New <span class="hlt">Zealand</span>: Issues and Challenges.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Wagemaker, H.</p> <p></p> <p>As exemplified by New <span class="hlt">Zealand</span>, the nature of educational policy research is shaped by political and social factors that impinge upon the research environment. Following a description of the educational <span class="hlt">system</span> and research funding methods, this paper analyzes three areas that affect policy research in New <span class="hlt">Zealand</span> and addresses relevant social…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28131971','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28131971"><span>Relationship between enhanced dewaterability and structural properties of <span class="hlt">hydrothermal</span> sludge after <span class="hlt">hydrothermal</span> treatment of excess sludge.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Liping; Li, Aimin; Chang, Yuzhi</p> <p>2017-04-01</p> <p><span class="hlt">Hydrothermal</span> treatment is an effective method to enhance the deep dewaterability of excess sludge with low energy consumption. In this study, an insight into the relationship between enhanced dewaterability and structural properties of the produced <span class="hlt">hydrothermal</span> sludge was presented, aiming at better understanding the effect of <span class="hlt">hydrothermal</span> process on excess sludge dewatering performance. The results indicated that <span class="hlt">hydrothermal</span> effect induced the transformation of surface water to interstitial and free water by lowering the binding strength between adjacent water and solid particles and that free water became the main form for moisture existence in <span class="hlt">hydrothermal</span> sludge as temperature was higher than 180 °C. Increase in temperature of <span class="hlt">hydrothermal</span> treatment generated a significant size reduction of sludge flocs but treated sludge with a higher rigidity, which not only strengthened the network of <span class="hlt">hydrothermal</span> sludge but also destroyed the binding of EPS with water. <span class="hlt">Hydrothermal</span> process caused crevice and pore structures of excess sludge to disappear gradually, which was a main driving force of water removal as temperature was below 150 °C. With the temperature of <span class="hlt">hydrothermal</span> treatment exceeding 180 °C, the morphology of <span class="hlt">hydrothermal</span> sludge became rough which linked closely to the solid precipitation of condensation polymerization, and further became smooth at higher temperature (210 °C) due to the coal-like structures with higher aromaticities, indicating that <span class="hlt">hydrothermal</span> reaction pathways began to play a main role in enhanced dewaterability. <span class="hlt">Hydrothermal</span> treatment led to more alkyl and aromatic carbon, but lower O-alkyl, carboxyl and carbonyl carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013Icar..226..487S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013Icar..226..487S"><span>Alteration minerals in impact-generated <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> - Exploring host rock variability</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schwenzer, Susanne P.; Kring, David A.</p> <p>2013-09-01</p> <p>Impact-generated <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> have been previously linked to the alteration of Mars’ crust and the production of secondary mineral assemblages seen from orbit. The sensitivity of the resultant assemblages has not yet been evaluated as a function of precursor primary rock compositions. In this work, we use thermochemical modeling to explore the variety of minerals that could be produced by altering several known lithologies based on martian meteorite compositions. For a basaltic host rock lithology (Dhofar 378, Humphrey) the main alteration phases are feldspar, zeolite, pyroxene, chlorite, clay (nontronite, kaolinite), and hematite; for a lherzolithic host rock lithology (LEW 88516) the main alteration phases are amphibole, serpentine, chlorite, clay (nontronite, kaolinite), and hematite; and for an ultramafic host rock lithology (Chassigny) the main minerals are secondary olivine, serpentine, magnetite, quartz, and hematite. These assemblages and proportions of phases in each of those cases depend on W/R and temperature. Integrating geologic, hydrologic and alteration mineral evidence, we have developed a model to illustrate the distribution of alteration assemblages that occur in different levels of an impact structure. At the surface, hot, hydrous alteration affects the ejecta and melt sheet producing clay and chlorite. Deeper in the subsurface and depending on the permeability of the rock, a variety of minerals - smectite, chlorite, serpentine, amphiboles and hematite - are produced in a circulating <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. These modeled mineral distributions should assist with interpretation of orbital observations and help guide surface exploration by rovers and sample return assets.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/894722','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/894722"><span>Monroe, Utah, <span class="hlt">Hydrothermal</span> <span class="hlt">System</span>: Results from Drilling of Test Wells MC1 and MC2</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chapman, D.S.; Harrison, Roger</p> <p>1978-10-01</p> <p>Following detailed geological (Parry et al., 1976; Miller, 1976) and geophysical (Mase, Chapman, and Ward, 1978; Kilty, Mase, and Chapman, 1978) studies of the Monroe, Utah <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, a program of drilling two intermediate depth test wells was undertaken. The objectives of the test well drilling were three-fold: (1) to obtain structural information bearing on the poorly known dip of the Sevier Fault, (2) to obtain temperature information below the shallow depths (approximately 300 ft.) sampled in the first phase of exploration, and (3) to provide cased wells which could act as monitor wells during the production phase of themore » project. The test well drilling was seen to be vital to the selection of a site for a production well. This report describes the results from the drilling of the two test wells, designated MC1 and MC2, and offers interpretation of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> which may be used as a basis for selecting production wells.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100039623&hterms=importance+oxygen&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dimportance%2Boxygen','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100039623&hterms=importance+oxygen&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dimportance%2Boxygen"><span>Evaluating the Historical Importance of Impact Induced <span class="hlt">Hydrothermal</span> <span class="hlt">Systems</span> on Mars Using the Stable Isotopic Composition of Martian Water</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Niles, Paul B.</p> <p>2010-01-01</p> <p>The importance of impact events during the early history of Mars is obvious through a simple examination of the character of the martian surface. This ancient, heavily cratered terrain has been shown to be associated with extensive phyllosilicate deposits. This geologic link could suggest that the extensive phyllosilicate-forming alteration may have occurred during early martian history through impact-induced <span class="hlt">hydrothermal</span> alteration. However, examination of the oxygen isotopic composition of water on Mars suggests that the extensive phyllosilicate deposits were formed primarily through low temperature (<30 C) interactions, and that high temperature weathering in impact-induced <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> have not been a dominant process on Mars. The average oxygen isotopic composition of water on Earth is dictated by the nature of water-rock interactions. If these interactions occur at higher temperatures then the water will contain a higher proportion of 18O, while lower temperature interactions will result in water with a lower proportion of 18O. Water on Earth today contains a higher proportion of 18O because of plate tectonics and <span class="hlt">hydrothermal</span> interaction at mid-ocean ridges. The oxygen isotopic composition of water on early earth, however, may have been quite different, containing a smaller proportion of 18O suggesting much less <span class="hlt">hydrothermal</span> interaction. Because there are not yet any direct measurements of the oxygen isotopic composition of water on Mars, it needs to be inferred through examination of carbonates preserved in martian meteorites and the isotopic composition of atmospheric CO2. This can be done because the oxygen incorporated into carbonates and CO2 is easily exchanged with liquid water if it is present. Independently, both measurements provide an estimate for the (Sigma)18O of water on Mars to be near -16%. This composition is consistent with low temperature weathering of the silicate crust, and indicates that impact <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> did not play</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000086191&hterms=permeability+distribution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dpermeability%2Bdistribution','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000086191&hterms=permeability+distribution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dpermeability%2Bdistribution"><span>Magmatic Intrusions and a <span class="hlt">Hydrothermal</span> Origin for Fluvial Valleys on Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gulick, Virginia C</p> <p>1998-01-01</p> <p>Numerical models of Martian <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> demonstrate that <span class="hlt">systems</span> associated with magmatic intrusions greater than several hundred cubic kilometers can provide sufficient groundwater outflow to form the observed fluvial valleys, if subsurface permeability exceeds about 1.0 darcy. Groundwater outflow increases with increasing intrusion volume and subsurface permeability and is relatively insensitive to intrusion depth and subsurface porosity within the range considered here. <span class="hlt">Hydrothermally</span>-derived fluids can melt through 1 to 2 km thick ice-rich permafrost layers in several thousand years. <span class="hlt">Hydrothermal</span> <span class="hlt">systems</span> thus provide a viable alternative to rainfall for providing surface water for valley formation. This mechanism can form fluvial valleys not only during the postulated early warm, wet climatic epoch, but also during more recent epochs when atmospheric conditions did not favor atmospheric cycling of water. The clustered distribution of the valley networks on a given geologic surface or terrain unit of Mars may also be more compatible with localized, <span class="hlt">hydrothermally</span>-driven groundwater outflow than regional rainfall. <span class="hlt">Hydrothermal</span> centers on Mars may have provided appropriate environments for the initiation of life or final oases for the long-term persistence of life.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1281062','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1281062"><span><span class="hlt">System</span> and process for efficient separation of biocrudes and water in a <span class="hlt">hydrothermal</span> liquefaction <span class="hlt">system</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Oyler, James R.; Rotness, Jr, Leslie J.; Schmidt, Andrew J.; Zacher, Alan H.</p> <p>2016-08-02</p> <p>A <span class="hlt">system</span> and process are described for clean separation of biocrudes and water by-products from <span class="hlt">hydrothermal</span> liquefaction (HTL) product mixtures of organic and biomass-containing feedstocks at elevated temperatures and pressures. Inorganic compound solids are removed prior to separation of biocrude and water by-product fractions to minimize formation of emulsions that impede separation. Separation may be performed at higher temperatures that reduce heat loss and need to cool product mixtures to ambient. The present invention thus achieves separation efficiencies not achieved in conventional HTL processing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19705644','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19705644"><span>Liability for medical malpractice--recent New <span class="hlt">Zealand</span> developments.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sladden, Nicola; Graydon, Sarah</p> <p>2009-03-01</p> <p>Over the last 30 years in New <span class="hlt">Zealand</span>, civil liability for personal injury including "medical malpractice" has been most notable for its absence. The <span class="hlt">system</span> of accident compensation and the corresponding bar on personal injury claims has been an interesting contrast to the development of tort law claims for personal injury in other jurisdictions. The Health and Disability Commissioner was appointed in 1994 to protect and promote the rights of health and disability consumers as set out in the Code of Health and Disability Services Consumers' Rights. An important right in the Code, in terms of an equivalent to the common law duty to take reasonable care, is that patients have the right to services of an appropriate standard. Several case studies from the Commissioner's Office are used to illustrate New <span class="hlt">Zealand</span>'s unique medico-legal <span class="hlt">system</span> and demonstrate how the traditional common law obligation of reasonable care and skill is applied. From an international perspective, the most interesting aspect of liability for medical malpractice in New <span class="hlt">Zealand</span> is its relative absence - in a tortious sense anyway. This paper will give some general background on the New <span class="hlt">Zealand</span> legal landscape and discuss recent case studies of interest.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18163870','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18163870"><span>Temporal changes in fluid chemistry and energy profiles in the vulcano island <span class="hlt">hydrothermal</span> <span class="hlt">system</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rogers, Karyn L; Amend, Jan P; Gurrieri, Sergio</p> <p>2007-12-01</p> <p>In June 2003, the geochemical composition of geothermal fluids was determined at 9 sites in the Vulcano <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, including sediment seeps, geothermal wells, and submarine vents. Compositional data were combined with standard state reaction properties to determine the overall Gibbs free energy (DeltaG(r) ) for 120 potential lithotrophic and heterotrophic reactions. Lithotrophic reactions in the H-O-N-S-C-Fe <span class="hlt">system</span> were considered, and exergonic reactions yielded up to 120 kJ per mole of electrons transferred. The potential for heterotrophy was characterized by energy yields from the complete oxidation of 6 carboxylic acids- formic, acetic, propanoic, lactic, pyruvic, and succinic-with the following redox pairs: O(2)/H(2)O, SO(4) (2)/H(2)S, NO(3) ()/NH(4) (+), S(0)/H(2)S, and Fe(3)O(4)/Fe(2+). Heterotrophic reactions yielded 6-111 kJ/mol e(). Energy yields from both lithotrophic and heterotrophic reactions were highly dependent on the terminal electron acceptor (TEA); reactions with O(2) yielded the most energy, followed by those with NO(3) (), Fe(III), SO(4) (2), and S(0). When only reactions with complete TEA reduction were included, the exergonic lithotrophic reactions followed a similar electron tower. Spatial variability in DeltaG(r) was significant for iron redox reactions, owing largely to the wide range in Fe(2+) and H(+) concentrations. Energy yields were compared to those obtained for samples collected in June 2001. The temporal variations in geochemical composition and energy yields observed in the Vulcano <span class="hlt">hydrothermal</span> <span class="hlt">system</span> between 2001 and 2003 were moderate. The largest differences in DeltaG(r) over the 2 years were from iron redox reactions, due to temporal changes in the Fe(2+) and H(+) concentrations. The observed variations in fluid composition across the Vulcano <span class="hlt">hydrothermal</span> <span class="hlt">system</span> have the potential to influence not only microbial diversity but also the metabolic strategies of the resident microbial communities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JVGR..280..111M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JVGR..280..111M"><span>Geophysical and geochemical methods applied to investigate fissure-related <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> on the summit area of Mt. Etna volcano (Italy)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maucourant, Samuel; Giammanco, Salvatore; Greco, Filippo; Dorizon, Sophie; Del Negro, Ciro</p> <p>2014-06-01</p> <p>A multidisciplinary approach integrating self-potential, soil temperature, heat flux, CO2 efflux and gravity gradiometry signals was used to investigate a relatively small fissure-related <span class="hlt">hydrothermal</span> <span class="hlt">system</span> near the summit of Mt. Etna volcano (Italy). Measurements were performed through two different surveys carried out at the beginning and at the end of July 2009, right after the end of the long-lived 2008-2009 flank eruption and in coincidence with an increase in diffuse flank degassing related to a reactivation of the volcano, leading to the opening of a new summit vent (NSEC). The main goal was to use a multidisciplinary approach to the detection of hidden fractures in an area of evident near-surface <span class="hlt">hydrothermal</span> activity. Despite the different methodologies used and the different geometry of the sampling grid between the surveys, all parameters concurred in confirming that the study area is crossed by faults related with the main fracture <span class="hlt">systems</span> of the south flank of the volcano, where a continuous <span class="hlt">hydrothermal</span> circulation is established. Results also highlighted that <span class="hlt">hydrothermal</span> activity in this area changed both in space and in time. These changes were a clear response to variations in the magmatic <span class="hlt">system</span>, notably to migration of magma at various depth within the main feeder <span class="hlt">system</span> of the volcano. The results suggest that this specific area, initially chosen as the optimal test-site for the proposed approach, can be useful in order to get information on the potential reactivation of the summit craters of Mt. Etna.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V53A2590O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V53A2590O"><span>Seismic tremor and gravity measurements at Inferno Crater Lake, Waimangu Geothermal Field, New <span class="hlt">Zealand</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Brien, J. F.; Jolly, A. D.; Fournier, N.; Cole-Baker, J.; Hurst, T.; Roman, D. C.</p> <p>2011-12-01</p> <p>Volcanic crater lakes are often associated with active <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> that induce cyclic behavior in the lake's level, temperature, and chemistry. Inferno Crater Lake, located in the Waimangu geothermal field within the Taupo Volcanic Zone (TVZ) on the North Island of New <span class="hlt">Zealand</span> exhibits lake level fluctuations of >7m, and temperature fluctuations >40°C with a highly variable periodicity. Seismic and gravity monitoring of Inferno Lake was carried out from December, 2009 - March, 2010 and captured a full cycle of lake fluctuation. Results indicate that this cycle consisted of ~5 smaller fluctuations of ~3m in lake level followed by a larger fluctuation of ~7m. A broadband seismometer recorded strong seismic tremor in the hours leading up to each of the minor and major high stands in lake level. Spectral analysis of the tremor shows dominant frequencies in the range of ~10Hz and a fundamental harmonic frequency located in the 1Hz range. The 1Hz frequency band exhibits gliding spectral lines which increase in frequency at the end of each tremor period. Particle motion analysis of harmonic tremor waveforms indicate a ~100m upward migration of the source location from the onset of tremor until it ceases at the peak of each lake level high stand. Particle motions also indicate an azimuthal migration of the source by ~30° from the overflow outlet region of the lake toward the central vent location during the course of the tremor and lake level increase. Lake water temperature has a direct relationship with lake level and ranges between ~40°C - ~80°C. Gravity fluctuations were also continuously monitored using a Micro-g-LaCoste gPhone relative gravity meter with a 1Hz sampling rate and precision of 1 microgal. These data indicate a direct relationship between lake level and gravity showing a net increase of ~100 microgals between lake level low and high stands. A piezometer located beside the lake indicates an inflow of ground water into the subsoil during</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27588458','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27588458"><span>First report of <span class="hlt">systemic</span> toxoplasmosis in a New <span class="hlt">Zealand</span> sea lion (Phocarctos hookeri).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Roe, W D; Michael, S; Fyfe, J; Burrows, E; Hunter, S A; Howe, L</p> <p>2017-01-01</p> <p>A 1-year-old female New <span class="hlt">Zealand</span> sea lion (Phocarctos hookeri) was intermittently observed in the Otago region of New <span class="hlt">Zealand</span> over an 11-month period, always dragging her hind flippers. In December 2012 the sea lion was found dead, after a period of several days being observed to be harassed by male sea lions. At gross postmortem examination the sea lion was in moderate body condition with signs of recent bite wounds and bruising. The lungs were dark and poorly inflated. Histological findings included meningoencephalomyelitis, radiculomyelitis of the cauda equina, myocarditis and myositis. Toxoplasmosis gondii organisms were detected histologically and following immunohistochemistry in the brain, spinal cord, spinal nerves and pelvic muscles. Nested PCR analysis and sequencing confirmed the presence of T. gondii DNA in uterine and lung tissue. A variant type II T. gondii genotype was identified using multilocus PCR-restriction fragment length polymorphism analysis. <span class="hlt">Systemic</span> toxoplasmosis. Infection with T. gondii involving the spinal cord and nerves was the likely cause of the paresis observed in this sea lion before death. Ultimately, death was attributed to crushing and asphyxiation by a male sea lion, presumably predisposed by impaired mobility. Diagnosis of toxoplasmosis in a New <span class="hlt">Zealand</span> sea lion highlights the possibility that this disease could play a role in morbidity and mortality in this endangered species, particularly in the recently established mainland populations that are close to feline sources of T. gondii oocysts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.P33A1917S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.P33A1917S"><span>Experimental constraints on <span class="hlt">hydrothermal</span> activities in Enceladus</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sekine, Y.; Shibuya, T.; Suzuki, K.; Kuwatani, T.</p> <p>2012-12-01</p> <p>One of the most remarkable findings by the Cassini-Huygens mission is perhaps water-rich plumes erupting from the south-pole region of Enceladus [1]. Given such geological activity and the detection of sodium salts in the plume, the interior of Enceladus is highly likely to contain an interior ocean interacting with the rock core [2]. A primary question regarding astrobiology and planetary science is whether Enceladus has (or had) <span class="hlt">hydrothermal</span> activities in the interior ocean. Because N2 might be formed by thermal dissociation of primordial NH3 [3], the presence of N2 in the plume may be a possible indicator for the presence of <span class="hlt">hydrothermal</span> activities in Enceladus. However, the Cassini UVIS revealed that the plumes do not contain large amounts of N2 [4]. Although these observations may not support the presence of <span class="hlt">hydrothermal</span> activities, whether NH3 dissociation proceeds strongly depends on the kinetics of <span class="hlt">hydrothermal</span> reactions and interactions with the rock components, which remain largely unknown. Furthermore, the Cassini CDA recently showed that small amounts of SiO2 might have been included in the plume dusts [5]. Formation of amorphous SiO2 usually occurs when high-temperature and/or high-pH solution with high concentrations of dissolved SiO2 cools and/or is neutralized. Thus, the presence of SiO2 in the plume dusts may suggest the presence of a temperature and/or pH gradient in the ocean. However, no laboratory experiments have investigated what processes control pH and SiO2 concentrations in <span class="hlt">hydrothermal</span> fluids possibly existing in Enceladus. Here, we show the results of laboratory experiments simulating <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> on Enceladus. As the initial conditions, we used both aqueous solution of high concentrations (0.01-2%) of NH3 and NaHCO3 and powdered olivine as an analog for the rock components. Our experimental results show that formation of N2 from NH3 is kinetically and thermodynamically inhibited even under high temperature conditions (< 400</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JVGR..172..199L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JVGR..172..199L"><span>Developing effective warning <span class="hlt">systems</span>: Ongoing research at Ruapehu volcano, New <span class="hlt">Zealand</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leonard, Graham S.; Johnston, David M.; Paton, Douglas; Christianson, Amy; Becker, Julia; Keys, Harry</p> <p>2008-05-01</p> <p>PurposeThis paper examines the unique challenges to volcanic risk management associated with having a ski area on an active volcano. Using a series of simulated eruption/lahar events at Ruapehu volcano, New <span class="hlt">Zealand</span>, as a context, a model of risk management that integrates warning <span class="hlt">system</span> design and technology, risk perceptions and the human response is explored. Principal resultsDespite increases in the observed audibility and comprehension of the warning message, recall of public education content, and people's awareness of volcanic risk, a persistent minority of the public continued to demonstrate only moderate awareness of the correct actions to take during a warning and failed to respond effectively. A relationship between level of staff competence and correct public response allowed the level of public response to be used to identify residual risk and additional staff training needs. The quality of staff awareness, action and decision-making has emerged as a critical factor, from detailed staff and public interviews and from exercise observations. Staff actions are especially important for mobilising correct public response at Ruapehu ski areas due to the transient nature of the visitor population. Introduction of education material and staff training strategies that included the development of emergency decision-making competencies improved knowledge of correct actions, and increased the proportion of people moving out of harm's way during blind tests. Major conclusionsWarning effectiveness is a function of more than good hazard knowledge and the generation and notification of an early warning message. For warning <span class="hlt">systems</span> to be effective, these factors must be complemented by accurate knowledge of risk and risk management actions. By combining the Ruapehu findings with those of other warning <span class="hlt">system</span> studies in New <span class="hlt">Zealand</span>, and internationally, a practical five-step model for effective early warning <span class="hlt">systems</span> is discussed. These steps must be based upon sound and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1743754','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1743754"><span>Preventable in-hospital medical injury under the "no fault" <span class="hlt">system</span> in New <span class="hlt">Zealand</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Davis, P; Lay-Yee, R; Briant, R; Scott, A</p> <p>2003-01-01</p> <p>Objectives: To describe the pattern of preventable in-hospital medical injury under the "no fault" <span class="hlt">system</span> and to assess the level of serious preventable patient harm. Design: Cross sectional survey using a two stage retrospective assessment of medical records conducted by structured implicit review. Setting: General hospitals with over 100 beds providing acute care in New <span class="hlt">Zealand</span>. Participants: A sample of 6579 patients admitted in 1998 to 13 hospitals selected by stratified systematic list sample. Main outcome measures: Occurrence, preventability, and impact of adverse events. Results: Over 5% of admissions were associated with a preventable in-hospital event, of which nearly half had an element of <span class="hlt">systems</span> failure. The elderly, ethnic minority groups, and particular clinical areas were at higher risk. The chances of a patient experiencing a serious preventable adverse event subsequent to hospital admission were just under 1%, a figure close to published results from comparable studies under tort. On average, these events required an additional 4 weeks in hospital. <span class="hlt">System</span> related issues of protocol use and development, communication, and organisation, as well as requirements for consultation and education, were pre-eminent. Conclusions: The risk of serious preventable in-hospital medical injury for patients in New <span class="hlt">Zealand</span>, a well established "no fault" jurisdiction, is within the range reported in comparable investigations under tort. PMID:12897357</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA491636','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA491636"><span><span class="hlt">Hydrothermal</span> Processing of Base Camp Solid Wastes To Allow Onsite Recycling</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-09-01</p> <p>ER D C/ CE R L TR -0 8 -1 3 <span class="hlt">Hydrothermal</span> Processing of Base Camp Solid Wastes To Allow Onsite Recycling Gary L. Gerdes, Deborah...release; distribution is unlimited. ERDC/CERL TR-08-13 September 2008 <span class="hlt">Hydrothermal</span> Processing of Base Camp Solid Wastes To Allow Onsite Recycling...a technology to process domestic solid waste using a unique <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. The process was successfully demonstrated at Forts Benning and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031333','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031333"><span>A simulation of the <span class="hlt">hydrothermal</span> response to the Chesapeake Bay bolide impact</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sanford, W.E.</p> <p>2005-01-01</p> <p>Groundwater more saline than seawater has been discovered in the tsunami breccia of the Chesapeake Bay impact Crater. One hypothesis for the origin of this brine is that it may be a liquid residual following steam separation in a <span class="hlt">hydrothermal</span> <span class="hlt">system</span> that evolved following the impact. Initial scoping calculations have demonstrated that it is feasible such a residual brine could have remained in the crater for the 35 million years since impact. Numerical simulations have been conducted using the code <span class="hlt">HYDROTHERM</span> to test whether or not conditions were suitable in the millennia following the impact for the development of a steam phase in the <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. Hydraulic and thermal parameters were estimated for the bedrock underlying the crater and the tsunami breccia that fills the crater. Simulations at three different breccia permeabilities suggest that the type of <span class="hlt">hydrothermal</span> <span class="hlt">system</span> that might have developed would have been very sensitive to the permeability. A relatively low breccia permeability (1 ?? 10-16 m2) results in a <span class="hlt">system</span> partitioned into a shallow water phase and a deeper superheated steam phase. A moderate breccia permeability (1 ?? 10-15 m2 ) results in a <span class="hlt">system</span> with regionally extensive multiphase conditions. A relatively high breccia permeability (1 ?? 10-14 m2 ) results in a <span class="hlt">system</span> dominated by warm-water convection cells. The permeability of the crater breccia could have had any of these values at given depths and times during the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> evolution as the sediments compacted. The simulations were not able to take into account transient permeability conditions, or equations of state that account for the salt content of seawater. Results suggest, however, that it is likely that steam conditions existed at some time in the <span class="hlt">system</span> following impact, providing additional evidence that is consistent with a <span class="hlt">hydrothermal</span> origin for the crater brine. ?? Blackwell Publishing Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020059546','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020059546"><span>Thiols in <span class="hlt">Hydrothermal</span> Solution: Standard Partial Molal Properties and Their Role in the Organic Geochemistry of <span class="hlt">Hydrothermal</span> Environments</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schulte, Mitchell D.; Rogers, Karyn L.; DeVincenzi, D. (Technical Monitor)</p> <p>2001-01-01</p> <p>Modern seafloor <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> are locations where great varieties of geochemistry occur due to the enormous disequilibrium between vent fluids and seawater. The disequilibrium geochemistry has been hypothesized to include reactions to synthesize organic compounds. Despite the incomplete understanding of the carbon budget in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>, the organic geochemistry of these sites has received little attention. Experimental simulations of these environments, however, indicate that organic compounds may have difficulty forming in a purely aqueous environment. On the other hand, thiols, thioesters and disulfides have been implicated as reaction intermediates between CO or CO2 in experiments of carbon reduction in <span class="hlt">hydrothermal</span> environments, as well as in a variety of biological processes and other abiotic reactions. The reduction of CO2 to thesis, for example, is observed using the FeS-H2S/FeS2 couple to provide the reducing power. We have used recent advances in theoretical geochemistry to estimate the standard partial moral thermodynamic properties and parameters for the revised Helgeson-Kirkham-Flowers equation of state for aqueous straight-chain alkyl thesis. With these data and parameters we have evaluated the role that organic sulfur compounds may play as reaction intermediates during organic compound synthesis. We conclude that organic sulfur compounds may hold the key to the organic chemistry leading to the origin of life in <span class="hlt">hydrothermal</span> settings. These results may also explain the presence of sulfur in a number of biomolecules present in ancient thermophilic microorganisms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1861c0033B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1861c0033B"><span><span class="hlt">Hydrothermal</span> <span class="hlt">system</span> of the Papandayan Volcano from temperature, self-potential (SP) and geochemical measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Byrdina, Svetlana; Revil, André; Gunawan, Hendra; Saing, Ugan B.; Grandis, Hendra</p> <p>2017-07-01</p> <p>Papandayan volcano in West Java, Indonesia, is characterized by intense <span class="hlt">hydrothermal</span> activities manifested by numerous fumaroles at three craters or kawah, i.e. Mas, Manuk and Baru. The latter was created after November 2002 phreatic eruption. Since 2011, numerous volcano-tectonic B events are encountered and the volcano was set on alert status on several occasions. The purpose of the present study is to delineate the structure of the summital <span class="hlt">hydrothermal</span> <span class="hlt">system</span> from Self-Potential (SP), soil temperature and gas concentrations in the soil (CO2, SO2 and H2S) data. This combination of geophysical and geochemical methods allows identification of the weak permeable zones serving as preferential pathways for <span class="hlt">hydrothermal</span> circulation and potential candidates to future landslides or flank collapses. This study is an on-going collaborative research project and we plan to conduct electrical resistivity tomography (ERT) and also Induced-Polarization (IP) surveys. Additional data would allow the 3D imaging of the studied area. The IP parameters will be used to characterise and to quantify the degree of alteration of the volcanic rocks as has been shown very recently in the laboratory studies. There are also rocks and soil samples that will undergo laboratory analyses at ISTerre for IP and complex resistivity parameters at the sample scale that will help to interpret the survey results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015OLEB...45..377K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015OLEB...45..377K"><span>Energetics of Amino Acid Synthesis in Alkaline <span class="hlt">Hydrothermal</span> Environments</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kitadai, Norio</p> <p>2015-12-01</p> <p>Alkaline <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline <span class="hlt">hydrothermal</span> <span class="hlt">system</span> on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich <span class="hlt">hydrothermal</span> fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such <span class="hlt">systems</span>. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline <span class="hlt">hydrothermal</span> settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline <span class="hlt">hydrothermal</span> fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25796392','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25796392"><span>Energetics of Amino Acid Synthesis in Alkaline <span class="hlt">Hydrothermal</span> Environments.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kitadai, Norio</p> <p>2015-12-01</p> <p>Alkaline <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline <span class="hlt">hydrothermal</span> <span class="hlt">system</span> on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich <span class="hlt">hydrothermal</span> fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such <span class="hlt">systems</span>. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline <span class="hlt">hydrothermal</span> settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline <span class="hlt">hydrothermal</span> fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMOS21B..04B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMOS21B..04B"><span>On the fate of arsenic in the Menez Gwen <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, Mid-Atlantic Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Breuer, C.; Ruiz Chancho, M.; Pichler, T.</p> <p>2011-12-01</p> <p> chromatographic separation used in the present study. It was also observed that there was a strong T and pH dependence with arsenite, especially in the flash frozen samples. From this study it can be clearly stated that sample preservation is a critical point and further studies related with preservation of marine <span class="hlt">hydrothermal</span> vent fluids for arsenic speciation must be carried out. Although arsenic has been extensively investigated in marine organisms, there is still little information about the metabolism of this element in organisms habiting the deep see, with only one publication so far. Bathymodiolus azoricus has never been studied regarding arsenic speciation and the fact that it is exposed to arsenic concentrations higher than other marine organisms makes it very interesting from the metabolism point of view. The mussels collected near the vents were dissected in gill, muscle and digestive gland and analyzed for total and arsenic species. Results are discussed taking into account the exposure and possible metabolism paths taking place in deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040141979&hterms=lipids&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dlipids','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040141979&hterms=lipids&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dlipids"><span>Lipid synthesis under <span class="hlt">hydrothermal</span> conditions by Fischer-Tropsch-type reactions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McCollom, T. M.; Ritter, G.; Simoneit, B. R.</p> <p>1999-01-01</p> <p>Ever since their discovery in the late 1970's, mid-ocean-ridge <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> are postulated to have been sites where life could have originated or Mars and elsewhere as well). Because no modern-day terrestrial <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 degrees C for 2-3 days and produces lipid compounds ranging from C2 to > C35 which consist of n-alkanols, n-alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999OLEB...29..153M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999OLEB...29..153M"><span>Lipid Synthesis Under <span class="hlt">Hydrothermal</span> Conditions by Fischer- Tropsch-Type Reactions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCollom, Thomas M.; Ritter, Gilles; Simoneit, Bernd R. T.</p> <p>1999-03-01</p> <p>Ever since their discovery in the late 1970's, mid-ocean-ridge <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> are postulated to have been sites where life could have originated on Mars and elsewhere as well). Because no modern-day terrestrial <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 °C for 2-3 days and produces lipid compounds ranging from C2 to >C35 which consist of n-alkanols, n- alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10227201','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10227201"><span>Lipid synthesis under <span class="hlt">hydrothermal</span> conditions by Fischer-Tropsch-type reactions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McCollom, T M; Ritter, G; Simoneit, B R</p> <p>1999-03-01</p> <p>Ever since their discovery in the late 1970's, mid-ocean-ridge <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> are postulated to have been sites where life could have originated or Mars and elsewhere as well). Because no modern-day terrestrial <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 degrees C for 2-3 days and produces lipid compounds ranging from C2 to > C35 which consist of n-alkanols, n-alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1975/of75-525/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1975/of75-525/"><span>Physical factors determining the fraction of stored energy recoverable from <span class="hlt">hydrothermal</span> convection <span class="hlt">systems</span> and conduction-dominated areas</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nathenson, Manuel</p> <p>1975-01-01</p> <p>This report contains background analyses for the estimates of Nathenson and Muffler (1975) of geothermal resources in <span class="hlt">hydrothermal</span> convection <span class="hlt">systems</span> and conduction-dominated areas. The first section discusses heat and fluid recharge potential of geothermal reservoirs. The second section analyzes the physical factors that determine the fraction of stored energy obtainable at the surface from a geothermal reservoir. Conversion of heat to electricity and the use of geothermal energy for direct-heating applications are discussed in the last two sections. Nathenson, Manuel, and Muffler, L.J.P., 1975, Geothermal resources in <span class="hlt">hydrothermal</span> convection <span class="hlt">systems</span> and conduction dominated areas, in White, D.E., and Williams, D.L., eds., Assessment of the Geothermal Resources of the United States--1975: U.S. Geological Survey Circular 726, p. 104-121, available at http://pubs.er.usgs.gov/usgspubs/cir/cir726</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMEP54A..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMEP54A..01M"><span>Source-to-Sink <span class="hlt">System</span> Evolution as Recorded in Clastic Facies in Two New <span class="hlt">Zealand</span> Examples: the Bounty <span class="hlt">System</span> of South Island and the Waipaoa <span class="hlt">System</span> of North Island</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marsaglia, K. M.</p> <p>2010-12-01</p> <p>New <span class="hlt">Zealand</span> river sources and their submarine sinks are excellent examples for modeling source-to-sink <span class="hlt">systems</span>. In particular, the sand fractions of these <span class="hlt">systems</span> can be used as tracers to document links and/or disconnects between fluvial, shelf, slope, and bathyal components. Within any given <span class="hlt">system</span>, the ability to use sand as a tracer depends on the nature of the rocks exposed in source river drainage basins. In evolving <span class="hlt">systems</span>, the potential for erosional unroofing, change of outcrop lithology through time, can be important. Additionally, the ability of a given lithology to generate sediment of a certain size may also vary. For example in the New <span class="hlt">Zealand</span> examples, Cenozoic mudstones generate mostly mud but can liberate recycled sand grains (if present), as well as a smaller proportion of mudstone lithic fragments depending on degree of mudstone induration; schist generates copious sand and quartz-vein pebbles; and thin-bedded sandy turbidites can generate significant gravel, as well as mud and sand. Sediment production mode also comes into play with glacial processes (South Island) generating rock flour, as well as coarser debris. The major outcropping unit across both islands is a sedimentary to metasedimentary forearc succession, the Torlesse Terrane. It served as the protolith of the Otago schist (South Island) and the source of detritus for Cretaceous and Cenozoic sedimentary units on both islands. Local magmatism also supplied sand-sized material: intraplate (South Island) volcanism produced intrabasinal epiclastic debris and magmatic arc (North Island) volcanism produced extrabasinal pyroclastic debris. Various lithologies have characteristic detrital signatures. For example, in the Cenozoic units of the Waipaoa <span class="hlt">system</span>, Pliocene calcareous mudstone fragments are key lithic components in tracing sediment transport from source-to sink, whereas the major fingerprint of Otago schist input into the Bounty <span class="hlt">System</span> of South Island is mica. Critical to defining</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017404','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017404"><span>Geophysical characteristics of the <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> of Kilauea volcano, Hawaii</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kauahikaua, J.</p> <p>1993-01-01</p> <p>Clues to the overall structure of Kilauea volcano can be obtained from spatial studies of gravity, magnetic, and seismic velocity variations. The rift zones and summit are underlain by dense, magnetic, high P-wave-velocity rocks at depths of about 2 km less. The gravity and seismic velocity studies indicate that the rift structures are broad, extending farther to the north than to the south of the surface features. The magnetic data give more definition to the rift structures by allowing separation into a narrow, highly-magnetized, shallow zone and broad, flanking, magnetic lows. The patterns of gravity, magnetic variations, and seismicity document the southward migration of the upper cast rift zone. Regional, hydrologic features of Kilauea can be determined from resistivity and self-potential studies. High-level groundwater exists beneath Kilauea summit to elevations of +800 m within a triangular area bounded by the west edge of the upper southwest rift zone, the east edge of the upper east rift zone, and the Koa'c fault <span class="hlt">system</span>. High-level groundwater is present within the east rift zone beyond the triangular summit area. Self-potential mapping shows that areas of local heat produce local fluid circulation in the unconfined aquifer (water table). The dynamics of Kilauea eruptions are responsible for both the source of heat and the fracture permeability of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. Shallow seismicity and surface deformation indicate that magma is intruding and that fractures are forming beneath the rift zones and summit area. Magma supply estimates are used to calculate the rate of heat input to Kilauea's <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. Heat flows of 370-820 mW/m2 are calculated from deep wells within the lower east rift zone. The estimated heat input rate for Kilauea of 9 gigawatts (GW) is at least 25 times higher than the conductive heat loss as estimated from the heat flow in wells extrapolated over the area of the summit caldera and rift zones. Heat must be dissipated by</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3988086','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3988086"><span>Exopolysaccharides Isolated from <span class="hlt">Hydrothermal</span> Vent Bacteria Can Modulate the Complement <span class="hlt">System</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Courtois, Anthony; Berthou, Christian; Guézennec, Jean</p> <p>2014-01-01</p> <p>The complement <span class="hlt">system</span> is involved in the defence against bacterial infection, or in the elimination of tumour cells. However, disturbances in this <span class="hlt">system</span> contributes to the pathogenesis of various inflammatory diseases. The efficiency of therapeutic anti-tumour antibodies is enhanced when the complement <span class="hlt">system</span> is stimulated. In contrast, cancer cells are able to inhibit the complement <span class="hlt">system</span> and thus proliferate. Some marine molecules are currently being developed as new drugs for use in humans. Among them, known exopolyssacharides (EPSs) generally originate from fungi, but few studies have been performed on bacterial EPSs and even fewer on EPSs extracted from deep-sea <span class="hlt">hydrothermal</span> vent microbes. For use in humans, these high molecular weight EPSs must be depolymerised. Furthermore, the over-sulphation of EPSs can modify their biological activity. The aim of this study was to investigate the immunodulation of the complement <span class="hlt">system</span> by either native or over-sulphated low molecular weight EPSs isolated from vent bacteria in order to find pro or anti-activators of complement. PMID:24736648</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990032382&hterms=experimental+survey&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dexperimental%2Bsurvey','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990032382&hterms=experimental+survey&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dexperimental%2Bsurvey"><span>Experimental Investigation of Organic Synthesis in <span class="hlt">Hydrothermal</span> Environments</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shock, Everett L.</p> <p>1998-01-01</p> <p>Seafloor <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> may be the most likely locations on the early Earth for the emergence of life. Because of the disequilibrium inherent in such dynamic, mixing environments, abundant chemical energy would have been available for formation of the building blocks of life. In addition, theoretical studies suggest that organic compounds in these conditions would reach metastable states, due to kinetic barriers to the formation of stable equilibrium products (CO2 and methane). The speciation of organic carbon in metastable states is highly dependent on the oxidation state, pH, temperature, pressure and bulk composition of the <span class="hlt">system</span>. The goal of our research is to investigate the effects of a number external variables on the formation, transformation, and stability of organic compounds at <span class="hlt">hydrothermal</span> conditions. We have begun experimental work to attempt to control the oxidation state of simulated <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> by using buffers composed of mineral powders and gas mixtures. We are also beginning to test the stability of organic compounds under these conditions. The experiments are being performed using the <span class="hlt">hydrothermal</span> bomb apparatus at the U.S. Geological Survey in Menlo Park, CA and the supercritical water oxidizer (SCWO) at NASA Ames Research Center in Moffet Field, CA. The amino acids decomposed rapidly. Even after the approximately 15 minutes between addition of the amino acids and the first sampling, no amino acids were detected in the PPM <span class="hlt">system</span> by GC- MS, while in the FeFeO <span class="hlt">system</span> the amino acids were present at a level of less than 50% of original. Carboxylic acids, ammonia, and CO2 were the main products, along with some unidentified compounds. The ratios of carboxylic acids and concentrations of other products seem to have remained stable during the experiments, consistent with observations of other metastable <span class="hlt">systems</span> and theoretical predictions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMOS14A..03P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMOS14A..03P"><span>Vapor-Liquid Partitioning of Iron and Manganese in <span class="hlt">Hydrothermal</span> Fluids: An Experimental Investigation with Application to the Integrated Study of Basalt-hosted <span class="hlt">Hydrothermal</span> <span class="hlt">Systems</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pester, N. J.; Seyfried, W. E.</p> <p>2010-12-01</p> <p>The chemistry of deep-sea <span class="hlt">hydrothermal</span> vent fluids, expressed at the seafloor, reflects a complex history of physicochemical reactions. After three decades of field and experimental investigations, the processes of fluid-mineral equilibria that transform seawater into that of a typical “black smoker” are generally well described in the literature. Deep crustal fluids, when encountering a given heat source that ultimately drives <span class="hlt">hydrothermal</span> circulation, routinely intersect the two-phase boundary. This process results in the nearly ubiquitous observations of variable salinity in vent fluids and is often a secondary driver of circulation via the evolution of a more buoyant (i.e. less saline) phase. Phase separation in chemically complex fluids results in the partitioning of dissolved species between the two evolved phases that deviates from simple charge balance calculations and these effects become more prominent with increasing temperature and/or decreasing pressure along the two-phase envelope. This process of partitioning has not been extensively studied and the interplay between the effects of phase separation and fluid-mineral equilibrium are not well understood. Most basalt-hosted <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> appear to enter a steady state mode wherein fluids approach the heat source at depth and rise immediately once the two-phase boundary is met. Thus, venting fluids exhibit only modest deviations from seawater bulk salinity and the effects of partitioning are likely minor for all but the most volatile elements. Time series observations at integrated study sites, however, demonstrate dynamic changes in fluid chemistry following eruptions/magmatic events, including order of magnitude increases in gas concentrations and unexpectedly high Fe/Cl ratios. In this case, the time dependence of vapor-liquid partitioning relative to fluid-mineral equilibrium must be considered when attempting to interpret changes in subsurface reaction conditions. The two-phase region of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V53E..02P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V53E..02P"><span>Ca and Sr Isotope Sytematics in Mid-Ocean Ridge <span class="hlt">Hydrothermal</span> Fluids</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pester, N. J.; Syverson, D. D.; Higgins, J. A.; Seyfried, W. E., Jr.</p> <p>2016-12-01</p> <p>We report a comprehensive suite of Ca isotopic data (δ44/40Ca) from mid-ocean ridge <span class="hlt">hydrothermal</span> fluids, standardized relative to seawater. Samples were acquired from 7 different vent fields on the EPR, JdFR and MAR during expeditions between 1999 and 2014. All endmember <span class="hlt">hydrothermal</span> fluids (within analytical uncertainty) reflect an entirely MORB-dominated signal (-1.0 to -1.2 ‰). This rather uniform signal, despite variable fluid chemistries and a mixture of mafic to ultramafic host lithologies, is somewhat surprising given the noteworthy Ca concentrations in both the <span class="hlt">hydrothermal</span> fluids and precursor seawater. One explanation for this observation involves the change in anhydrite (CaSO4) saturation with increasing temperature, and the molal concentration ratio of [Mg]:[Ca]:[SO4] in modern seawater of 53:10:28. The near quantitative removal of seawater Mg to silicate alteration phases, favorable at all temperatures, is largely charge balanced by exchange for basaltic Ca, and this process alone can account for the majority of the rock dominated δ44/40Casw signal. That these values are equivalent to MORB, however, suggests a high proportion of this Mg-Ca exchange occurs after seawater Ca precipitates as anhydrite in lower temperature (recharge) regimes of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, aided by the low [Ca]/[SO4]. 87/86Sr ratios of <span class="hlt">hydrothermal</span> fluids exhibit a seawater signal of 20 to 30% and Sr is therefore not quantitatively removed during incipient anhydrite formation. Strontium mobility in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> is still poorly understood, but the offset between the Ca and Sr isotopic signatures is consistent with near-equilibrium partitioning of Sr into anhydrite observed in recent experiments. Such observations from modern MOR <span class="hlt">systems</span> place important constraints on the role of <span class="hlt">hydrothermal</span> fluxes in paleo-seawater evolution, such as feedbacks involving significant variability in [Mg]:[Ca]:[SO4] ratios of seawater suggested over much of the Phanerozoic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24638225','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24638225"><span>Food safety regulations in Australia and New <span class="hlt">Zealand</span> Food Standards.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ghosh, Dilip</p> <p>2014-08-01</p> <p>Citizens of Australia and New <span class="hlt">Zealand</span> recognise that food security is a major global issue. Food security also affects Australia and New <span class="hlt">Zealand</span>'s status as premier food exporting nations and the health and wellbeing of the Australasian population. Australia is uniquely positioned to help build a resilient food value chain and support programs aimed at addressing existing and emerging food security challenges. The Australian food governance <span class="hlt">system</span> is fragmented and less transparent, being largely in the hands of government and semi-governmental regulatory authorities. The high level of consumer trust in Australian food governance suggests that this may be habitual and taken for granted, arising from a lack of negative experiences of food safety. In New <span class="hlt">Zealand</span> the Ministry of Primary Industries regulates food safety issues. To improve trade and food safety, New <span class="hlt">Zealand</span> and Australia work together through Food Standards Australia New <span class="hlt">Zealand</span> (FSANZ) and other co-operative agreements. Although the potential risks to the food supply are dynamic and constantly changing, the demand, requirement and supply for providing safe food remains firm. The Australasian food industry will need to continually develop its <span class="hlt">system</span> that supports the food safety program with the help of scientific investigations that underpin the assurance of what is and is not safe. The incorporation of a comprehensive and validated food safety program is one of the total quality management <span class="hlt">systems</span> that will ensure that all areas of potential problems are being addressed by industry. © 2014 Society of Chemical Industry.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..346...40F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..346...40F"><span>Vapour discharges on Nevado del Ruiz during the recent activity: Clues on the composition of the deep <span class="hlt">hydrothermal</span> <span class="hlt">system</span> and its effects on thermal springs</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Federico, Cinzia; Inguaggiato, Salvatore; Chacón, Zoraida; Londoño, John Makario; Gil, Edwing; Alzate, Diego</p> <p>2017-10-01</p> <p>The Nevado del Ruiz volcano is considered one of the most active volcanoes in Colombia, which can potentially threaten approximately 600,000 inhabitants. The existence of a glacier and several streams channelling in some main rivers, flowing downslope, increases the risk for the population living on the flank of the volcano in case of unrest, because of the generation of lahars and mudflows. Indeed, during the November 1985 subplinian eruption, a lahar generated by the sudden melting of the glacier killed twenty thousand people in the town of Armero. Moreover, the involvement of the local <span class="hlt">hydrothermal</span> <span class="hlt">system</span> has produced in the past phreatic and phreatomagmatic activity, as occurred in 1989. Therefore, the physico-chemical conditions of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> as well as its contribution to the shallow thermal groundwater and freshwater in terms of enthalpy and chemicals require a close monitoring. The phase of unrest occurred since 2010 and culminated with an eruption in 2012, after several years of relative stability, still maintains a moderate alert, as required by the high seismicity and SO2 degassing. In October 2013, a sampling campaign has been performed on thermal springs and stream water, located at 2600-5000 m of elevation on the slope of Nevado del Ruiz, analyzed for water chemistry and stable isotopes. Some of these waters are typically steam-heated (low pH and high sulfate content) by the vapour probably separating from a zoned <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. By applying a model of steam-heating, based on mass and enthalpy balances, we have estimated the mass rate of <span class="hlt">hydrothermal</span> steam discharging in the different springs. The composition of the hottest thermal spring (Botero Londono) is probably representative of a marginal part of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, having a temperature of 250 °C and low salinity (Cl 1500 mg/l), which suggest, along with the retrieved isotope composition, a chiefly meteoric origin. The vapour discharged at the steam vent "Nereidas" (3600</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025047','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025047"><span>Coniform stromatolites from geothermal <span class="hlt">systems</span>, North Island, New <span class="hlt">Zealand</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jones, Brian; Renaut, Robin W.; Rosen, Michael R.; Ansdell, Kevin M.</p> <p>2002-01-01</p> <p>Coniform stromatolites are found in several sites in the Tokaanu and Whakarewarewa geothermal areas of North Island, New <span class="hlt">Zealand</span>. At Tokaanu, silicification of these stromatolites is taking place in Kirihoro, a shallow hot springfed pool. At Whakarewarewa, subfossil silicified coniform stromatolites are found on the floor of "Waikite Pool" on the discharge apron below Waikite Geyser, and in an old sinter succession at Te Anarata. The microbes in the coniform stromatolites from Tokaanu, Waikite Pool, and Te Anarata have been well preserved through rapid silicification. Nevertheless, subtle differences in the silicification style induced morphological variations that commonly mask or alter morphological features needed for identification of the microbes in terms of extant taxa. The coniform stromatolites in the New <span class="hlt">Zealand</span> hotspring pools are distinctive because (1) they are formed of upward tapering (i.e., conical) columns, (2) neighboring columns commonly are linked by vertical sheets or bridges, (3) internally, they are formed of alternating high- and low-porosity laminae that have a conical vertical profile, and (4) Phormidium form more than 90% of the biota. As such, they are comparable to modern coniform mats and stromatolites found in the geothermal <span class="hlt">systems</span> of Yellowstone National Park and ice-covered lakes in Antarctica. Formation of the coniform stromatolites is restricted to pools that are characterized by low current energy and a microflora that is dominated by Phormidium. These delicate and intricate stromatolites could not form in areas characterized by fast flowing water or a diverse microflora. Thus, it appears that the distribution of these distinctive stromatolites is controlled by biological constraints that are superimposed on environmental needs.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25332887','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25332887"><span>New <span class="hlt">Zealand</span> consumers' perceptions of private insurance for pharmaceuticals.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ragupathy, Rajan; Babar, Zaheer-Ud-Din; Mirza, Wasif; Daiya, Mitali; Chandra, Himesh; Yousif, Ali; Girn, Maninder</p> <p>2014-01-01</p> <p>Private insurance plays a minor role in paying for pharmaceuticals in New <span class="hlt">Zealand</span>, despite controversy about access through the public health <span class="hlt">system</span>. The present study examines New <span class="hlt">Zealand</span> consumers' perceptions of private insurance for pharmaceuticals. A self-administered questionnaire was completed by 433 consumers at thirty pharmacies. The questionnaire included 18 questions on demographics, insurance status, perceptions of private insurance for pharmaceuticals and confidence in the public health <span class="hlt">system</span>. Forty six percent of respondents had private health insurance. Respondents were more likely to have private health insurance as household income increased, and confidence in the public health <span class="hlt">system</span> decreased. (Over two thirds of respondents were either confident or very confident in the public health <span class="hlt">system</span>). Nineteen percent had private health insurance for pharmaceuticals, and the likelihood was not affected by household income or confidence in the public health <span class="hlt">system</span>. Sixty one percent believed private insurance for pharmaceuticals would increase availability and affordability of pharmaceuticals. However, just over half were willing to pay for private insurance for pharmaceuticals. Of these, over two thirds were only willing to pay $20 per year or less. New <span class="hlt">Zealand</span> pharmacy consumers' willingness to pay for private insurance for pharmaceuticals is very low.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V14A..02L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V14A..02L"><span>Geochemical Sources of Energy for Chemolithoautotrophic Metabolisms in Global <span class="hlt">Hydrothermal</span> Ecosystems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, G. S.; Amend, J.; LaRowe, D.</p> <p>2017-12-01</p> <p>Chemolithoautotrophic microorganisms are important primary producers in <span class="hlt">hydrothermal</span> environments. The potential catabolic energy sources that thermophilic chemolithoautotrophs can take advantage of can be quantified by combining analytical geochemical data and thermodynamic calculations. This approach explicitly considers how microbial communities are shaped by environmental conditions such as temperature, pressure, pH and the concentrations of electron donors and acceptors. In this study, we have calculated the Gibbs free energy available from 730 redox reactions in 30 terrestrial, shallow-sea, and deep-sea <span class="hlt">hydrothermal</span> venting <span class="hlt">systems</span> around the world (326 geochemical data sets) to better determine the relationship between microbial physiology and environment. The reactions with NO2-, O2, MnO2 and NO3- as terminal electron acceptors yield 5-20 kJ/mol e- more energy in terrestrial and shallow-sea <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> than in deep-sea <span class="hlt">hydrothermal</span> settings. However, reactions in which As5+, S0, FeS2 and SO42- as electron acceptors are more favorable by 5-30 kJ/mol e- in deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> than in the other two types of <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. The most exergonic reactions were predominantly NO2-, O2, MnO2 and NO3- reduction or Fe2+, pyrite, CO and CH4 oxidation. In contrast, reduction of N2, CO, and CO2 or oxidation of N2, Mn2+, and NO2-, though still often exergonic, yielded significantly less energy. Our results provide a comprehensive view of the distribution of energy supplies from redox reactions in high-temperature ecosystems on a global scale. Furthermore, the bioenergetic modeling carried out in this study can be used to test physiological predictions made from metagenomic and proteomic data sets, explore in situ biogeochemical interactions, predict possible but yet-to-be observed metabolisms and guide cultivation efforts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018270','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018270"><span>Emerald mineralization and metasomatism of amphibolite, khaltaro granitic pegmatite - <span class="hlt">Hydrothermal</span> vein <span class="hlt">system</span>, Haramosh Mountains, Northern Pakistan</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Laurs, B.M.; Dilles, J.H.; Snee, L.W.</p> <p>1996-01-01</p> <p> single fluid of magmatic origin with ??18OH2O = 8??? produced the pegmatite-vein <span class="hlt">system</span> and <span class="hlt">hydrothermal</span> alteration at temperatures between 550 and 400??C. The formation of emerald results from introduction of HF-rich magmatic-<span class="hlt">hydrothermal</span> fluids into the amphibolite, which caused hydrogen ion metasomatism and released Cr and Fe into the pegmatite-vein <span class="hlt">system</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6089857-energy-use-new-zealand-food-system','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6089857-energy-use-new-zealand-food-system"><span>Energy use in the New <span class="hlt">Zealand</span> food <span class="hlt">system</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Patterson, M.G.; Earle, M.D.</p> <p>1985-03-01</p> <p>The study covered the total energy requirements of the production, processing, wholesale distribution, retailing, shopping and household sectors of the food <span class="hlt">system</span> in New <span class="hlt">Zealand</span>. This included the direct energy requirements, and the indirect energy requirements in supplying materials, buildings and equipment. Data were collected from a wide range of literature sources, and converted into forms required for this research project. Also, data were collected in supplementary sample surveys at the wholesale distribution, retailing and shopping sectors. The details of these supplementary surveys are outlined in detailed survey reports fully referenced in the text. From these base data, the totalmore » energy requirements per unit product (MJ/kg) were estimated for a wide range of food chain steps. Some clear alternatives in terms of energy efficiency emerged from a comparison of these estimates. For example, it was found that it was most energy efficient to use dehydrated vegetables, followed by fresh vegetables, freeze dried vegetables, canned vegetables and then finally frozen vegetables.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70175367','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70175367"><span>Mihi Breccia: A stack of lacustrine sediments and subaqueous pyroclastic flows within the Taupo Volcanic Zone, New <span class="hlt">Zealand</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Downs, Drew</p> <p>2016-01-01</p> <p>The Taupo Volcanic Zone (TVZ), New <span class="hlt">Zealand</span>, encompasses a wide variety of arc-related strata, although most of its small-volume (non-caldera-forming) eruptions are poorly-exposed and extensively <span class="hlt">hydrothermally</span> altered. The Mihi Breccia is a stratigraphic sequence consisting of interbedded rhyolitic pyroclastic flows and lacustrine sediments with eruption ages of 281 ± 18 to at least 239 ± 6 ka (uncertainties at 2σ). In contrast to other small-volume rhyolitic eruptions within the TVZ, Mihi Breccia is relatively well-exposed within the Paeroa fault block, and contains minimal <span class="hlt">hydrothermal</span> alteration. Pyroclastic flow characteristics and textures including: 1) breadcrusted juvenile clasts, 2) lack of welding, 3) abundant ash-rich matrix, 4) lack of fiamme and eutaxitic textures, 5) lack of thermal oxidation colors, 6) lack of cooling joints, 7) exclusive lacustrine sediment lithic clasts, and 8) interbedding with lacustrine sediments, all indicating that Mihi Breccia strata originated in a paleo-lake <span class="hlt">system</span>. This ephemeral paleo-lake <span class="hlt">system</span> is inferred to have lasted for > 50 kyr (based on Mihi Breccia age constraints), and referred to as Huka Lake. Mihi Breccia pyroclastic flow juvenile clast geochemistry and petrography correspond with similar-aged (264 ± 8, 263 ± 10, and 247 ± 4 ka) intra-caldera rhyolite domes filling the Reporoa caldera (source of the 281 ± 81 Kaingaroa Formation ignimbrite). These exposed intra-caldera rhyolite domes (as well as geophysically inferred subsurface domes) are proposed to be source vents for the Mihi Breccia pyroclastic flows. Soft-sediment deformation associated with Mihi Breccia strata indicate either seismic shock, rapid sediment loading during pyroclastic flow emplacement, or both. Thus, the Mihi Breccia reflects a prolonged series of subaqueous rhyolite dome building and associated pyroclastic flows, accompanied by seismic activity, emplaced into a large paleo-lake <span class="hlt">system</span> within the TVZ.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JVGR..327..180D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JVGR..327..180D"><span>Mihi Breccia: A stack of lacustrine sediments and subaqueous pyroclastic flows within the Taupo Volcanic Zone, New <span class="hlt">Zealand</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Downs, Drew T.</p> <p>2016-11-01</p> <p>The Taupo Volcanic Zone (TVZ), New <span class="hlt">Zealand</span>, encompasses a wide variety of arc-related strata, although most of its small-volume (non-caldera-forming) eruptions are poorly-exposed and extensively <span class="hlt">hydrothermally</span> altered. The Mihi Breccia is a stratigraphic sequence consisting of interbedded rhyolitic pyroclastic flows and lacustrine sediments with eruption ages of 281 ± 18 to at least 239 ± 6 ka (uncertainties at 2σ). In contrast to other small-volume rhyolitic eruptions within the TVZ, Mihi Breccia is relatively well-exposed within the Paeroa fault block, and contains minimal <span class="hlt">hydrothermal</span> alteration. Pyroclastic flow characteristics and textures include: 1) prismatically jointed juvenile clasts, 2) lack of welding, 3) abundant ash-rich matrix, 4) lack of fiamme and eutaxitic textures, 5) lack of thermal oxidation colors, 6) lack of cooling joints, 7) exclusive lacustrine sediment lithic clasts, and 8) interbedding with lacustrine sediments, all indicating that Mihi Breccia strata originated in a paleo-lake <span class="hlt">system</span>. This ephemeral paleo-lake <span class="hlt">system</span> is inferred to have lasted for > 50 kyr (based on Mihi Breccia age constraints), and referred to as Huka Lake. Mihi Breccia pyroclastic flow juvenile clast geochemistry and petrography correspond with similar-aged (264 ± 8, 263 ± 10, and 247 ± 4 ka) intra-caldera rhyolite domes filling the Reporoa caldera (source of the 281 ka Kaingaroa Formation ignimbrite). These exposed intra-caldera rhyolite domes (as well as geophysically inferred subsurface domes) are proposed to be source vents for the Mihi Breccia pyroclastic flows. Soft-sediment deformation associated with Mihi Breccia strata indicates either seismic shock, rapid sediment loading during pyroclastic flow emplacement, or both. Thus, the Mihi Breccia reflects a prolonged series of subaqueous rhyolite dome building and associated pyroclastic flows, accompanied by seismic activity, emplaced into a large paleo-lake <span class="hlt">system</span> within the TVZ.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26324888','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26324888"><span>Fluid mixing and the deep biosphere of a fossil Lost City-type <span class="hlt">hydrothermal</span> <span class="hlt">system</span> at the Iberia Margin.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Klein, Frieder; Humphris, Susan E; Guo, Weifu; Schubotz, Florence; Schwarzenbach, Esther M; Orsi, William D</p> <p>2015-09-29</p> <p>Subseafloor mixing of reduced <span class="hlt">hydrothermal</span> fluids with seawater is believed to provide the energy and substrates needed to support deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., serpentinite). However, geosphere-biosphere interactions in serpentinite-hosted subseafloor mixing zones remain poorly constrained. Here we examine fossil microbial communities and fluid mixing processes in the subseafloor of a Cretaceous Lost City-type <span class="hlt">hydrothermal</span> <span class="hlt">system</span> at the magma-poor passive Iberia Margin (Ocean Drilling Program Leg 149, Hole 897D). Brucite-calcite mineral assemblages precipitated from mixed fluids ca. 65 m below the Cretaceous paleo-seafloor at temperatures of 31.7 ± 4.3 °C within steep chemical gradients between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing <span class="hlt">hydrothermal</span> fluid at moderate temperatures created conditions capable of supporting microbial activity. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon (up to 0.5 wt.% of the total carbon) but depleted in (13)C (δ(13)C(TOC) = -19.4‰). We detected a combination of bacterial diether lipid biomarkers, archaeol, and archaeal tetraethers analogous to those found in carbonate chimneys at the active Lost City <span class="hlt">hydrothermal</span> field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin, possibly before the onset of seafloor spreading. Lost City-type serpentinization <span class="hlt">systems</span> have been discovered at midocean ridges, in forearc settings of subduction zones, and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4593090','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4593090"><span>Fluid mixing and the deep biosphere of a fossil Lost City-type <span class="hlt">hydrothermal</span> <span class="hlt">system</span> at the Iberia Margin</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Klein, Frieder; Humphris, Susan E.; Guo, Weifu; Schubotz, Florence; Schwarzenbach, Esther M.; Orsi, William D.</p> <p>2015-01-01</p> <p>Subseafloor mixing of reduced <span class="hlt">hydrothermal</span> fluids with seawater is believed to provide the energy and substrates needed to support deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., serpentinite). However, geosphere-biosphere interactions in serpentinite-hosted subseafloor mixing zones remain poorly constrained. Here we examine fossil microbial communities and fluid mixing processes in the subseafloor of a Cretaceous Lost City-type <span class="hlt">hydrothermal</span> <span class="hlt">system</span> at the magma-poor passive Iberia Margin (Ocean Drilling Program Leg 149, Hole 897D). Brucite−calcite mineral assemblages precipitated from mixed fluids ca. 65 m below the Cretaceous paleo-seafloor at temperatures of 31.7 ± 4.3 °C within steep chemical gradients between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing <span class="hlt">hydrothermal</span> fluid at moderate temperatures created conditions capable of supporting microbial activity. Dense microbial colonies are fossilized in brucite−calcite veins that are strongly enriched in organic carbon (up to 0.5 wt.% of the total carbon) but depleted in 13C (δ13CTOC = −19.4‰). We detected a combination of bacterial diether lipid biomarkers, archaeol, and archaeal tetraethers analogous to those found in carbonate chimneys at the active Lost City <span class="hlt">hydrothermal</span> field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin, possibly before the onset of seafloor spreading. Lost City-type serpentinization <span class="hlt">systems</span> have been discovered at midocean ridges, in forearc settings of subduction zones, and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments. PMID:26324888</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990IREdu..36..219S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990IREdu..36..219S"><span>The indigenous and the imported: The New <span class="hlt">Zealand</span> school <span class="hlt">system</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Snook, Ivan</p> <p>1990-06-01</p> <p>New <span class="hlt">Zealand</span> (Aotearoa) was colonized from Britain and the colonizers imposed on the indigenous Maori people a foreign view of education. From then on tradition has vied with local adaptations to produce a school <span class="hlt">system</span> with substantial traces of the `Old Country' but with many local features. The curriculum for boys continued to dominate, with that for girls struggling to make itself felt. There has been constant debate about `basics' and `frills' though these terms have not been clearly defined. More recently there has been more serious consideration of the curriculum but this has been overtaken by a `market forces' view of schooling. A new administration <span class="hlt">system</span> comes into operation on 1st October 1989. The future is unclear but it is reasonable to hope that there will continue a dialectic which may one day produce a genuine synthesis suited to the multicultural nature of Aotearoa.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10138683','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10138683"><span>Decentralisation of general management within the New <span class="hlt">Zealand</span> health <span class="hlt">system</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Malcolm, L; Alp, B; Bryson, J</p> <p>1994-11-01</p> <p>The radical organisation changes implemented in the New <span class="hlt">Zealand</span> health <span class="hlt">system</span> in recent years are discussed and analysed in this study which is based upon a review of documents and interviews with general managers of area health boards. Service management, which involves the decentralisation of general management to programme or product groupings (medicine, child health etc) has been widely implemented in almost all boards completely replacing the traditional disciplinary hierarchies. It is also leading to a population-rather than an institutional-based <span class="hlt">system</span> of management. General managers report positively on the achievements of service management including greater accountability and commitment of clinical staff, innovation and team building, improved performance and service quality, the integration of hospital and community-based care and a customer rather than an occupational orientation. There is an increasing trend towards the recognition of primary health care as a key service entity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22014211','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22014211"><span>Health equity in the New <span class="hlt">Zealand</span> health care <span class="hlt">system</span>: a national survey.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sheridan, Nicolette F; Kenealy, Timothy W; Connolly, Martin J; Mahony, Faith; Barber, P Alan; Boyd, Mary Anne; Carswell, Peter; Clinton, Janet; Devlin, Gerard; Doughty, Robert; Dyall, Lorna; Kerse, Ngaire; Kolbe, John; Lawrenson, Ross; Moffitt, Allan</p> <p>2011-10-20</p> <p>In all countries people experience different social circumstances that result in avoidable differences in health. In New <span class="hlt">Zealand</span>, Māori, Pacific peoples, and those with lower socioeconomic status experience higher levels of chronic illness, which is the leading cause of mortality, morbidity and inequitable health outcomes. Whilst the health <span class="hlt">system</span> can enable a fairer distribution of good health, limited national data is available to measure health equity. Therefore, we sought to find out whether health services in New <span class="hlt">Zealand</span> were equitable by measuring the level of development of components of chronic care management <span class="hlt">systems</span> across district health boards. Variation in provision by geography, condition or ethnicity can be interpreted as inequitable. A national survey of district health boards (DHBs) was undertaken on macro approaches to chronic condition management with detail on cardiovascular disease, chronic obstructive pulmonary disease, congestive heart failure, stroke and diabetes. Additional data from expert informant interviews on program reach and the cultural needs of Māori and Pacific peoples was sought. Survey data were analyzed on dimensions of health equity relevant to strategic planning and program delivery. Results are presented as descriptive statistics and free text. Interviews were transcribed and NVivo 8 software supported a general inductive approach to identify common themes. Survey responses were received from the majority of DHBs (15/21), some PHOs (21/84) and 31 expert informants. Measuring, monitoring and targeting equity is not systematically undertaken. The Health Equity Assessment Tool is used in strategic planning but not in decisions about implementing or monitoring disease programs. Variable implementation of evidence-based practices in disease management and multiple funding streams made program implementation difficult. Equity for Māori is embedded in policy, this is not so for other ethnic groups or by geography. Populations</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70177135','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70177135"><span>Monitoring the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> in Long Valley caldera, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Farrar, C.D.; Sorey, M.L.</p> <p>1985-01-01</p> <p>An ongoing program to monitor the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> in Long Valley for changes caused by volcanic or tectonic processes has produced considerable data on the water chemistry and discharge of springs and fluid temperatures and pressures in wells. Chemical and isotopic data collected under this program have greatly expanded the knowledge of chemical variability both in space and time. Although no chemical or isotopic changes in hot spring waters can be attributed directly to volcanic or tectonic processes, changes in hot spring chemistry that have been recorded probably relate to interactions between and variations in the quantity of liquid and gas discharged. Stable carbon isotope data are consistent with a carbon source either perform the mantle or from metamorphosed carbonate rocks. Continuous and periodic measurements of hot spring discharge at several sites show significant co seismic and a seismic changes since 1980.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17..976M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17..976M"><span>The 2012-2014 eruptive cycle of Copahue Volcano, Southern Andes. Magmatic-<span class="hlt">Hydrothermal</span> <span class="hlt">system</span> interaction and manifestations.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morales, Sergio; Alarcón, Alex; Basualto, Daniel; Bengoa, Cintia; Bertín, Daniel; Cardona, Carlos; Córdova, Maria; Franco, Luis; Gil, Fernando; Hernandez, Erasmo; Lara, Luis; Lazo, Jonathan; Mardones, Cristian; Medina, Roxana; Peña, Paola; Quijada, Jonathan; San Martín, Juan; Valderrama, Oscar</p> <p>2015-04-01</p> <p>Copahue Volcano (COPV), in Southern Andes of Chile, is an andesitic-basaltic stratovolcano, which is located on the western margin of Caviahue Caldera. The COPV have a NE-trending fissure with 9 aligned vents, being El Agrio the main currently active vent, with ca. 400 m in diameter. The COPV is placed into an extensive <span class="hlt">hydrothermal</span> <span class="hlt">system</span> which has modulated its recent 2012-2014 eruptive activity, with small phreatic to phreatomagmatic eruptions and isolated weak strombolian episodes and formation of crater lakes inside the main crater. Since 2012, the Southern Andes Volcano Observatory (OVDAS) carried out the real-time monitoring with seismic broadband stations, GPS, infrasound sensors and webcams. In this work, we report pre, sin, and post-eruptive seismic activity of the last two main eruptions (Dec, 2012 and Oct, 2014) both with different seismic precursors and superficial activity, showing the second one a particularly appearance of seismic quiescence episodes preceding explosive activity, as an indicator of interaction between magmatic-<span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. The first episode, in late 2012, was characterized by a low frequency (0.3-0.4 Hz and 1.0-1.5 Hz) continuous tremor which increased gradually from background noise level amplitude to values of reduced displacement (DR), close to 50 cm2 at the peak of the eruption, reaching an eruptive column of ~1.5 km height. After few months of recording low energy seismicity, a sequence of low frequency, repetitive and low energy seismic events arose, with a frequency of occurrence up to 300 events/hour. Also, the VLP earthquakes were added to the record probably associated with magma intrusion into a deep magmatic chamber during all stages of eruptive process, joined to the record of VT seismicity during the same period, which is located throughout the Caviahue Caldera area. Both kind of seismic patterns were again recorded in October 2014, being the precursor of the new eruptive cycle at this time as well as the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010shcg.book..599B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010shcg.book..599B"><span><span class="hlt">Hydrothermal</span> Growth of Polyscale Crystals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Byrappa, Kullaiah</p> <p></p> <p>In this chapter, the importance of the <span class="hlt">hydrothermal</span> technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the <span class="hlt">hydrothermal</span> technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine <span class="hlt">hydrothermal</span> research, including the continuous production of nanosize crystals, are discussed. The latest trends in the <span class="hlt">hydrothermal</span> growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the <span class="hlt">hydrothermal</span> technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the <span class="hlt">hydrothermal</span> technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V13C3161S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V13C3161S"><span>Sub-glacial Origin of the Hot Springs Bay Valley <span class="hlt">hydrothermal</span> <span class="hlt">System</span>, Akutan, Alaska</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stelling, P. L.; Tobin, B.; Knapp, P.</p> <p>2015-12-01</p> <p>Exploration for geothermal energy in Hot Springs Bay Valley (HSBV) on Akutan Island, Alaska, has revealed a rich <span class="hlt">hydrothermal</span> history, including what appears to be a stage of peak activity during a significant glacial period. Alteration mineralogy observed in 754 m of drill core recovered from the outflow zone is dominated by chlorite and includes minor smectite clays, a suite of zeolite species and several moderately high-temperature <span class="hlt">hydrothermal</span> minerals (epidote/clinozoisite, prehnite, adularia and wairakite). The latter minerals each have minimum formation temperatures exceeding 200 oC, and fluid inclusion results in related calcite crystals indicate temperatures of formation to be as high as 275 oC, some 100 oC hotter than the modern boiling point with depth (BPD) curve at that depth (>62 m). In order to maintain liquid temperatures this high, the pressure during mineralization must have been substantially greater (~680 bar), a pressure change equivalent to erosion of ~280 m of rock (ρ=2.5 g/cm3). Although glacial erosion rates are too low (0.034 mm/yr; Bekele et al., 2003) for this amount of erosion to occur in a single glaciation, glacial melting and ablation are substantially more rapid (~100 mm/yr; Bekele et al., 2003; Person et al., 2012). Thus, a more probable scenario than pure erosion is that peak <span class="hlt">hydrothermal</span> conditions occurred during a large glacial event, with the added pressure from the overlying ice allowing the high temperature minerals to form closer to the ground surface. Subsequent melting of the ice eroded upper tributary valleys and upper levels of the originally smectite-rich alteration assemblage, explaining the paucity of swelling clays in the region. We present mineralogical, fluid inclusion and geochronologic evidence to support these conclusions, and discuss the general implications of sub-glacial <span class="hlt">hydrothermal</span> <span class="hlt">system</span> formation and geothermal resource potential. References: Bekele, E., Rostron, B. and Person, M. (2003) Fluid pressure</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMOS21A1474R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMOS21A1474R"><span>Seismological evidence for an along-axis <span class="hlt">hydrothermal</span> flow at the Lucky Strike <span class="hlt">hydrothermal</span> vents site</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rai, A.; Wang, H.; Singh, S. C.; Crawford, W. C.; Escartin, J.; Cannat, M.</p> <p>2010-12-01</p> <p><span class="hlt">Hydrothermal</span> circulation at ocean spreading centres plays fundamental role in crustal accretion process, heat extraction from the earth and helps to maintain very rich ecosystem in deep Ocean. Recently, it has been suggested that <span class="hlt">hydrothermal</span> circulation is mainly along the ridge axis at fast spreading centres above along axis melt lens (AMC). Using a combination of micro-earthquake and seismic reflection data, we show that the <span class="hlt">hydrothermal</span> circulation at the Lucky Strike segment of slow spreading Mid-Atlantic Ridge is also along axis in a narrow (~1 km) zone above a wide (2-3 km) AMC. We find that the seismicity mainly lies above the seismically imaged 3 km wide 7 km long melt lens at 3.2 km depth. We observe a vertical plume of seismicity above a weak AMC reflection just north of the <span class="hlt">hydrothermal</span> vent fields that initiates just above the AMC and continues to the seafloor. This zone is collocated with active rifting of the seafloor in the neo-volcanic zone. Beneath the <span class="hlt">hydrothermal</span> vents sites, where a strong melt lens is imaged, the seismicity initiates at 500 m above the AMC and continues to the seafloor. Just south of the <span class="hlt">hydrothermal</span> field, where the AMC is widest and strongest, the seismicity band lies 500 m above the melt lens in a 800 m thick zone, which does not continue to the seafloor. The presence the weak melt lens reflection could be due to a cooled and crystallised AMC (mush) that permits the penetration of <span class="hlt">hydrothermal</span> fluids down to the top of the AMC indicated by seismicity plume and might be the in-flow zone for <span class="hlt">hydrothermal</span> circulation. The strong AMC reflection could be due to fresh supply of melt in the AMC (pure melt), which has pushed the cracking front 500 m above the AMC. Beneath the <span class="hlt">hydrothermal</span> fields, the strong AMC reflection and seismicity 500 above the AMC to the seafloor could represent cracking along the up-flow zone. The 800 m thick zone of seismicity above the pure melt zone could be the zone of <span class="hlt">hydrothermal</span> cracking zone. We do</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E.148B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E.148B"><span>From Geochemistry to Biochemistry: Simulating Prebiotic Chemistry Driven by Geochemical Gradients in Alkaline <span class="hlt">Hydrothermal</span> Vents</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barge, Laurie</p> <p>2016-07-01</p> <p>Planetary water-rock interfaces generate energy in the form of redox, pH, and thermal gradients, and these disequilibria are particularly focused in <span class="hlt">hydrothermal</span> vent <span class="hlt">systems</span> where the reducing, heated <span class="hlt">hydrothermal</span> fluid feeds back into the more oxidizing ocean. Alkaline <span class="hlt">hydrothermal</span> vents have been proposed as a likely location for the origin of life on the early Earth due to various factors: including the <span class="hlt">hydrothermal</span> pH / Eh gradients that resemble the ubiquitous electrical / proton gradients in biology, the catalytic <span class="hlt">hydrothermal</span> precipitates that resemble inorganic catalysts in enzymes, and the presence of electron donors and acceptors in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> (e.g. H2 + CH4 and CO2) that are thought to have been utilized in the earliest metabolisms. Of particular importance for the emergence of metabolism are the mineral "chimneys" that precipitate at the vent fluid / seawater interface. <span class="hlt">Hydrothermal</span> chimneys are flow-through chemical reactors that form porous and permeable inorganic membranes transecting geochemical gradients; in some ways similar to biological membranes that transect proton / ion gradients and harness these disequilibria to drive metabolism. These emergent chimney structures in the far-from-equilibrium <span class="hlt">system</span> of the alkaline vent have many properties of interest to the origin of life that can be simulated in the laboratory: for example, they can generate electrical energy and drive redox reactions, and produce catalytic minerals (in particular the metal sulfides and iron oxyhydroxides - "green rust") that can facilitate chemical reactions towards proto-metabolic cycles and biosynthesis. Many of the factors prompting interest in alkaline <span class="hlt">hydrothermal</span> vents on Earth may also have been present on early Mars, or even presently within icy worlds such as Europa or Enceladus - thus, understanding the disequilibria and resulting prebiotic chemistry in these <span class="hlt">systems</span> can be of great use in assessing the potential for other environments in the Solar</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PEPS....3...35U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PEPS....3...35U"><span>Reactions between komatiite and CO2-rich seawater at 250 and 350 °C, 500 bars: implications for hydrogen generation in the Hadean seafloor <span class="hlt">hydrothermal</span> <span class="hlt">system</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ueda, Hisahiro; Shibuya, Takazo; Sawaki, Yusuke; Saitoh, Masafumi; Takai, Ken; Maruyama, Shigenori</p> <p>2016-12-01</p> <p>To understand the chemical nature of <span class="hlt">hydrothermal</span> fluids in the komatiite-hosted seafloor <span class="hlt">hydrothermal</span> <span class="hlt">system</span> in the Hadean, we conducted two <span class="hlt">hydrothermal</span> serpentinization experiments involving synthetic komatiite and a CO2-rich acidic NaCl fluid at 250 and 350 °C, 500 bars. During the experiments, the komatiites were strongly carbonated to yield iron-rich dolomite (3-9 wt.% FeO) at 250 °C and calcite (<0.8 wt.% FeO) at 350 °C, respectively. The carbonation of komatiites suppressed H2 generation in the fluids. The steady-state H2 concentrations in the fluid were approximately 0.024 and 2.9 mmol/kg at 250 and 350 °C, respectively. This correlation between the Fe content in carbonate mineral and the H2 concentration in the fluid suggests that the incorporation of ferrous iron into the carbonate mineral probably limited magnetite formation and consequent generation of hydrogen during the serpentinization of komatiites. The H2 concentration of the fluid at 350 °C corresponds to that of modern H2-rich seafloor <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>, such as the Kairei <span class="hlt">hydrothermal</span> field, where hydrogenotrophic methanogens dominate in the prosperous microbial ecosystem. Accordingly, the high-temperature serpentinization of komatiite would provide the H2-rich <span class="hlt">hydrothermal</span> environments that were necessary for the emergence and early evolution of life in the Hadean ocean. In contrast, H2-rich fluids may not have been generated by serpentinization at temperatures below 250 °C because carbonate minerals become more stable with decreasing temperature in the komatiite-H2O-CO2 <span class="hlt">system</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005MAP....89..207L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005MAP....89..207L"><span>Climatology of meteorological ``bombs'' in the New <span class="hlt">Zealand</span> region</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leslie, L. M.; Leplastrier, M.; Buckley, B. W.; Qi, L.</p> <p>2005-06-01</p> <p>The purpose of this paper is to present a recently developed climatology of explosively developing south eastern Tasman Sea extra-tropical cyclones, or meteorological “bombs”, using a latitude dependent definition for meteorological bombs based on that of Simmonds and Keay (2000a, b), and Lim and Simmonds (2002). These highly transient <span class="hlt">systems</span>, which have a damaging impact upon New <span class="hlt">Zealand</span>, are frequently accompanied by destructive winds, flood rains, and coastal storm surges. Two cases are selected from the climatology and briefly described here. The first case study is the major flood and storm force wind event of June 20 to 21, 2002 that affected the Coromandel Peninsula region of the North Island of New <span class="hlt">Zealand</span>. The second case was a “supercyclone” bomb that developed well to the southwest of New <span class="hlt">Zealand</span> region during May 29 to 31, 2004, but which could easily have formed in the New <span class="hlt">Zealand</span> region with catastrophic consequences. It was well-captured by the new high resolution Quikscat scatterometer instrument.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T13B2709L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T13B2709L"><span>An Assessment of Magma-<span class="hlt">Hydrothermal</span> Heat Output at the Costa Rica Rift</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lowell, R. P.; Morales Maqueda, M. A.; Banyte, D.; Zhang, L.; Tong, V.; Hobbs, R. W.; Harris, R. N.</p> <p>2016-12-01</p> <p>A joint geophysical/physical oceanographic investigation of the Costa Rica Ridge as part of the OSCAR (Oceanographic and Seismic Characterization of heat dissipation and alteration by <span class="hlt">hydrothermal</span> fluids at an Axial Ridge) research program enables us to estimate <span class="hlt">hydrothermal</span> heat output and its likely link to a sub-axial magma lens (AML). In December 2014, a number of tow-yo casts were made along and near the ridge axis where seismic reflection data collected in 1994 showed the presence of seismic reflector interpreted to be an AML at a depth of about 2800 m below the seafloor. A decline in beam transmission in a ≈ 200 m thick region located approximately 800 to 900 meters above the seafloor indicated the presence of a <span class="hlt">hydrothermal</span> plume. CTD data collected above the ridge yielded a weighted average buoyancy frequency of approximately 19.3 x 10-8 s-2. Assuming a mean <span class="hlt">hydrothermal</span> vent temperature of 350°C, buoyant plume theory yields a heat output between 400 and 600 MW. Application of the single-pass modeling approach to the <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, yields an estimated mass flow between 210 and 337 kg/s, and the mean product of crustal permeability x discharge area ranges between 6 and 10 x 10-9 m4. A multichannel seismic profile collected in 2015 indicates the presence of a reflector 5 km along-axis and < 100 m wide, in approximately the same location as the 1994 survey, suggesting that magma-driven <span class="hlt">hydrothermal</span> heat output may have exhibited stability on a decadal time scale. The relatively small size of the inferred AML, when coupled to the heat output estimate and the single-pass model, suggests that the conductive boundary layer at the top the AML is 2m thick and that the AML must be frequently replenished to maintain stable heat output. Assuming the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> is driven by magmatic latent heat, a 100 m thick AML could have powered a 100 MW <span class="hlt">hydrothermal</span> <span class="hlt">system</span> for 20 years, while inputting 5 x 107 m3 of melt into the axis. These results indicate</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1982/0980/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1982/0980/report.pdf"><span>Integrated model of the shallow and deep <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> in the East Mesa area, Imperial Valley, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Riney, T. David; Pritchett, J.W.; Rice, L.F.</p> <p>1982-01-01</p> <p>Geological, geophysical, thermal, petrophysical and hydrological data available for the East Mesa <span class="hlt">hydrothermal</span> <span class="hlt">system</span> that are pertinent to the construction of a computer model of the natural flow of heat and fluid mass within the <span class="hlt">system</span> are assembled and correlated. A conceptual model of the full <span class="hlt">system</span> is developed and a subregion selected for quantitative modeling. By invoking the .Boussinesq approximation, valid for describing the natural flow of heat and mass in a liquid <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, it is found practical to carry computer simulations far enough in time to ensure that steady-state conditions are obtained. Initial calculations for an axisymmetric model approximating the <span class="hlt">system</span> demonstrate that the vertical formation permeability of the deep East Mesa <span class="hlt">system</span> must be very low (kv ~ 0.25 to 0.5 md). Since subsurface temperature and surface heat flow data exhibit major deviations from the axisymmetric approximation, exploratory three-dimensional calculations are performed to assess the effects of various mechanisms which might operate to produce such observed asymmetries. A three-dimensional model evolves from this iterative data synthesis and computer analysis which includes a hot fluid convective source distributed along a leaky fault radiating northward from the center of the hot spot and realistic variations in the reservoir formation properties.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005GeCoA..69..675A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005GeCoA..69..675A"><span>REE controls in ultramafic hosted MOR <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>: An experimental study at elevated temperature and pressure</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allen, Douglas E.; Seyfried, W. E.</p> <p>2005-02-01</p> <p>A <span class="hlt">hydrothermal</span> experiment involving peridotite and a coexisting aqueous fluid was conducted to assess the role of dissolved Cl - and redox on REE mobility at 400°C, 500 bars. Data show that the onset of reducing conditions enhances the stability of soluble Eu +2 species. Moreover, Eu +2 forms strong aqueous complexes with dissolved Cl - at virtually all redox conditions. Thus, high Cl - concentrations and reducing conditions can combine to reinforce Eu mobility. Except for La, trivalent REE are not greatly affected by fluid speciation under the chemical and physical condition considered, suggesting control by secondary mineral-fluid partitioning. LREE enrichment and positive Eu anomalies observed in fluids from the experiment are remarkably similar to patterns of REE mobility in vent fluids issuing from basalt- and peridotite-hosted <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. This suggests that the chondrite normalized REE patterns are influenced greatly by fluid speciation effects and secondary mineral formation processes. Accordingly, caution must be exercised when using REE in <span class="hlt">hydrothermal</span> vent fluids to infer REE sources in subseafloor reaction zones from which the fluids are derived. Although vent fluid patterns having LREE enrichment and positive Eu anomalies are typically interpreted to suggest plagioclase recrystallization reactions, this need not always be the case.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GGG....18.3489M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GGG....18.3489M"><span>The Gondou <span class="hlt">hydrothermal</span> field in the Ryukyu Arc: A huge <span class="hlt">hydrothermal</span> <span class="hlt">system</span> on the flank of a caldera volcano</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Minami, H.; Ohara, Y.</p> <p>2017-09-01</p> <p>High-resolution geophysical mapping was conducted from an autonomous underwater vehicle on the flank of Daisan-Kume Knoll in the Ryukyu Arc, southwest of Japan. 1 m resolution bathymetry identified 264 spires, 173 large mounds and 268 small mounds within a depression that is up to 1600 m wide and up to 60 m deep, at water depths between 1330 and 1470 m. <span class="hlt">Hydrothermal</span> venting is strongly inferred from the observation of plumes in sidescan sonar imagery and positive temperature anomalies over the spires and mounds. This field, named the Gondou Field, has a giant mound G1 with a diameter of 280 m and a height of 80 m. Mound G1 has distinctive summit ridges composed of multiple spires where acoustic plumes with temperature anomalies up to 1.12°C are observed, indicative of high-temperature venting. Other than mound G1, a number of active large mounds more than 30 m wide and spires over 10-22 m tall are common and they concentrate in the central and southern areas of the field, suggesting that these areas are the center of present <span class="hlt">hydrothermal</span> activity. Acoustic plumes imaged by side-scan sonar at the Gondou Field are different in character from bubble plumes imaged in other <span class="hlt">hydrothermal</span> fields in the Ryukyu Arc. The plumes are diffused and deflected as they rise through the water column and have a shape consistent with black smokers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V11A0332T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V11A0332T"><span>Distribution of <span class="hlt">hydrothermal</span> fluid around the ore body in the subseafloor of the Izena <span class="hlt">hydrothermal</span> field</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toki, T.; Otake, T.; Ishibashi, J. I.; Matsui, Y.; Kawagucci, S.; Kato, H.; Fuchida, S.; Miyahara, R.; Tsutsumi, A.; Kawakita, R.; Uza, H.; Uehara, R.; Shinjo, R.; Nozaki, T.; Kumagai, H.; Maeda, L.</p> <p>2017-12-01</p> <p>From 16th November to 15th December 2016, D/V Chikyu drilled the sea bottom around <span class="hlt">hydrothermal</span> fields at HAKUREI site in the Izena Hole, Okinawa Trough. Site C9025, C9026, C9027, C9028, and C9032 are located along the transect line from the top of the northern mound of HAKUREI site to the eastward, and Site C9030 for the control site is located about 500 m northwest of the mound. Mg concentrations have generally been used to estimate mixing ratios between <span class="hlt">hydrothermal</span> end-member and seawater in samples from <span class="hlt">hydrothermal</span> vents. Higher Mg concentrations, however, were detected in the interstitial water than that of seawater, which could be due to artificially dissolution of Mg-bearing minerals that had formed in in-situ environments, when the cored sediments had become cool after their recovery on ship. Similar features were observed with regard to sulfate concentrations, and it suggests that these chemical species are not suitable to estimate quantitatively the contribution of <span class="hlt">hydrothermally</span>-derived components. In some layers, chloride concentrations were different from that of seawater, indicating that <span class="hlt">hydrothermal</span> fluids that had been suffered from phase separation flowed into the layers. The deviation, however, was positive or negative relative to that of seawater for an influence of brine or vapor phase, respectively. Therefore chloride concentrations are also not suitable to evaluate a quantitative contribution of <span class="hlt">hydrothermal</span> end-member. On the other hand, K and B showed only enrichments relative to the seawater, and their highest concentrations are consistent with the reported <span class="hlt">hydrothermal</span> end-members of each species at HAKUREI site. Using the concentrations of K and B can be evaluated for an influence of <span class="hlt">hydrothermal</span> components. Furthermore, the headspace gas data are useful in the layers of sulfide minerals and silicified rocks, even though the interstitial waters could not be obtained because of their hardness. Based on these indices, <span class="hlt">hydrothermal</span> fluids</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014941','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014941"><span>Chemical, isotopic, and dissolved gas compositions of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> in Twin Falls and Jerome counties, Idaho</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mariner, R.H.; Young, H.W.; Evans, W. E.; Parliman, D.J.</p> <p>1991-01-01</p> <p>The chemical, isotopic, and gas compositions of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> in Twin Falls and Jerome counties, Idaho, change systematically as the water moves northward from the Idaho-Nevada boundary toward the Snake River. Sodium, chloride, fluoride, alkalinity, dissolved helium, and carbon-13 increase as calcium and carbon-14 decrease. Water-rock reactions may result in dissolution of plagioclase or volcanic glass and calcite, followed by precipitation of zeolites and clays. On the basis of carbon-14 age dating, apparent water ages range from 2,000 to more than 26,000 years; most apparent ages range from about 4,000 to 10,000 years. The older waters, north of the Snake River, are isotopically depleted in deuterium and are enriched in chloride relative to waters to the south. Thermal waters flowing northward beneath the Snake River may join a westward flow of older thermal water slightly north of the river. The direction of flow in the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> seems to parallel the surface drainage.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027272','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027272"><span>Massive collapse of volcano edifices triggered by <span class="hlt">hydrothermal</span> pressurization</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Reid, M.E.</p> <p>2004-01-01</p> <p>Catastrophic collapse of steep volcano flanks threatens lives at stratovolcanoes around the world. Although destabilizing shallow intrusion of magma into the edifice accompanies some collapses (e.g., Mount St. Helens), others have occurred without eruption of juvenile magmatic materials (e.g., Bandai). These latter collapses can be difficult to anticipate. Historic collapses without magmatic eruption are associated with shallow <span class="hlt">hydrothermal</span> groundwater <span class="hlt">systems</span> at the time of collapse. Through the use of numerical models of heat and groundwater flow, I evaluate the efficacy of <span class="hlt">hydrothermally</span> driven collapse. Heating from remote magma intrusion at depth can generate temporarily elevated pore-fluid pressures that propagate upward into an edifice. Effective-stress deformation modeling shows that these pressures are capable of destabilizing the core of an edifice, resulting in massive, deep-seated collapse. Far-field pressurization only occurs with specific rock hydraulic properties; however, data from numerous <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> illustrate that this process can transpire in realistic settings. ?? 2004 Geological Society of America.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V33C2772M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V33C2772M"><span>Changes in Vegetation Reflect Changes in the Mammoth Mountain and Long Valley Caldera <span class="hlt">Hydrothermal</span> <span class="hlt">System</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murphy, F.; Diefenbach, A. K.; Evans, W.; Hurwitz, S.</p> <p>2013-12-01</p> <p>We examined aerial photographs of the area near Mammoth Lakes, CA taken from 1951 to the present, with the goal of determining if visible changes in vegetation might reflect changes in the upflow of gas or heat through the soil zone. Such changes could be related to magmatic intrusion, the development of geothermal resources, groundwater pumping, earthquakes, or to natural changes in the <span class="hlt">hydrothermal</span> flow <span class="hlt">system</span>. We examined the area near Horseshoe Lake at the southern base of Mammoth Mountain where diffuse emissions of carbon dioxide created extensive tree-kill in the 1990s. Analysis of photographs acquired in 1951 suggests that tree density in this area was lower than its surroundings at the time. Whether the low-density tree cover identified in the photographs indicates some lasting effects of a previous episode of tree mortality needs further investigation. We also examine possible effects of geothermal energy production at Casa Diablo that began operation in 1985 on vegetation along the western part of the resurgent dome of Long Valley Caldera. Previous studies have correlated tree-kill in this area with increased steam upflow from the <span class="hlt">hydrothermal</span> <span class="hlt">system</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MarGR..38...71Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MarGR..38...71Y"><span>230Th/238U dating of <span class="hlt">hydrothermal</span> sulfides from Duanqiao <span class="hlt">hydrothermal</span> field, Southwest Indian Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Weifang; Tao, Chunhui; Li, Huaiming; Liang, Jin; Liao, Shili; Long, Jiangping; Ma, Zhibang; Wang, Lisheng</p> <p>2017-06-01</p> <p>Duanqiao <span class="hlt">hydrothermal</span> field is located between the Indomed and Gallieni fracture zones at the central volcano, at 50°28'E in the ultraslow-spreading Southwest Indian Ridge (SWIR). Twenty-eight subsamples from a relict chimney and massive sulfides were dated using the 230Th/238U method. Four main episodes of <span class="hlt">hydrothermal</span> activity were determined according to the restricted results: 68.9-84.3, 43.9-48.4, 25.3-34.8, and 0.7-17.3 kyrs. <span class="hlt">Hydrothermal</span> activity of Duanqiao probably started about 84.3 (±0.5) kyrs ago and ceased about 0.737 (±0.023) kyrs ago. The periodic character of <span class="hlt">hydrothermal</span> activity may be related to the heat source provided by the interaction of local magmatism and tectonism. The estimated mean growth rate of the sulfide chimney is <0.02 mm/yr. This study is the first to estimate the growth rate of chimneys in the SWIR. The maximum age of the relict chimney in Duanqiao <span class="hlt">hydrothermal</span> filed is close to that of the chimneys from Mt. Jourdanne (70 kyrs). The <span class="hlt">hydrothermal</span> activity in Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. The massive sulfides are younger than the sulfides from other <span class="hlt">hydrothermal</span> fields such as Rainbow, Sonne and Ashadze-2. The preliminarily estimated reserves of sulfide ores of Duanqiao are approximately 0.5-2.9 million tons.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JVGR..304..294C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JVGR..304..294C"><span>Carbon dioxide diffuse emission and thermal energy release from <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> at Copahue-Caviahue Volcanic Complex (Argentina)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chiodini, Giovanni; Cardellini, Carlo; Lamberti, María Clara; Agusto, Mariano; Caselli, Alberto; Liccioli, Caterina; Tamburello, Giancarlo; Tassi, Franco; Vaselli, Orlando; Caliro, Stefano</p> <p>2015-10-01</p> <p>The north-western sector of Caviahue caldera (Argentina), close to the active volcanic <span class="hlt">system</span> of Copahue, is characterized by the presence of several <span class="hlt">hydrothermal</span> sites that host numerous fumarolic emissions, anomalous soil diffuse degassing of CO2 and hot soils. In March 2014, measurements of soil CO2 fluxes in 5 of these sites (namely, Las Máquinas, Las Maquinitas I, Las Maquinitas II, Anfiteatro, and Termas de Copahue) allowed an estimation that 165 t of deeply derived CO2 is daily released. The gas source is likely related to a relatively shallow geothermal reservoir containing a single vapor phase as also suggested by both the geochemical data from the 3 deep wells drilled in the 1980s and gas geoindicators applied to the fumarolic discharges. Gas equilibria within the H-C-O gas <span class="hlt">system</span> indicate the presence of a large, probably unique, single phase vapor zone at 200-210 °C feeding the <span class="hlt">hydrothermal</span> manifestations of Las Máquinas, Las Maquinitas I and II and Termas de Copahue. A natural thermal release of 107 MW was computed by using CO2 as a tracer of the original vapor phase. The magmatic signature of the incondensable fumarolic gases, the wide expanse of the <span class="hlt">hydrothermal</span> areas and the remarkable high amount of gas and heat released by fluid expulsion seem to be compatible with an active magmatic intrusion beneath this portion of the Caviahue caldera.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023045','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023045"><span>Carbon dioxide in magmas and implications for <span class="hlt">hydrothermal</span> <span class="hlt">systems</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lowenstern, J. B.</p> <p>2001-01-01</p> <p>This review focuses on the solubility, origin, abundance, and degassing of carbon dioxide (CO2) in magma-<span class="hlt">hydrothermal</span> <span class="hlt">systems</span>, with applications for those workers interested in intrusion-related deposits of gold and other metals. The solubility of CO2 increases with pressure and magma alkalinity. Its solubility is low relative to that of H2O, so that fluids exsolved deep in the crust tend to have high CO2/H2O compared with fluids evolved closer to the surface. Similarly, CO2/H2O will typically decrease during progressive decompression- or crystallization-induced degassing. The temperature dependence of solubility is a function of the speciation of CO2, which dissolves in molecular form in rhyolites (retrograde temperature solubility), but exists as dissolved carbonate groups in basalts (prograde). Magnesite and dolomite are stable under a relatively wide range of mantle conditions, but melt just above the solidus, thereby contributing CO2 to mantle magmas. Graphite, diamond, and a free CO2-bearing fluid may be the primary carbon-bearing phases in other mantle source regions. Growing evidence suggests that most CO2 is contributed to arc magmas via recycling of subducted oceanic crust and its overlying sediment blanket. Additional carbon can be added to magmas during magma-wallrock interactions in the crust. Studies of fluid and melt inclusions from intrusive and extrusive igneous rocks yield ample evidence that many magmas are vapor saturated as deep as the mid crust (10-15 km) and that CO2 is an appreciable part of the exsolved vapor. Such is the case in both basaltic and some silicic magmas. Under most conditions, the presence of a CO2-bearing vapor does not hinder, and in fact may promote, the ascent and eruption of the host magma. Carbonic fluids are poorly miscible with aqueous fluids, particularly at high temperature and low pressure, so that the presence of CO2 can induce immiscibility both within the magmatic volatile phase and in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P43B2883S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P43B2883S"><span>Modeling <span class="hlt">Hydrothermal</span> Activity on Enceladus</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stamper, T., Jr.; Farough, A.</p> <p>2017-12-01</p> <p>Cassini's mass spectrometer data and gravitational field measurements imply water-rock interactions around the porous core of Enceladus. Using such data we characterize global heat and fluid transport properties of the core and model the ongoing <span class="hlt">hydrothermal</span> activity on Enceladus. We assume that within the global ocean beneath the surface ice, seawater percolates downward into the core where it is heated and rises to the oceanfloor where it emanates in the form of diffuse discharge. We utilize the data from Hsu et al., [2015] with models of diffuse flow in seafloor <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> by Lowell et al., [2015] to characterize the global heat transport properties of the Enceladus's core. Based on direct observations the gravitational acceleration (g) is calculated 0.123 m s-2. We assume fluid's density (ρ) is 10­3 kg m-3 and the specific heat of the fluid (cf) is 4000 Jkg-1 °C-1. From these values effective thermal diffusivity (a*) is calculated as 10­-6 m2 s-1. We also assume the coefficient of thermal expansion of fluid (αf) and the kinematic viscosity of fluid (ν) to be 10-4 °C-1 and 10­-6 m2 s-1 respectively. The estimated Rayleigh number (Ra) ranges between 0.11-2468.0, for core porosity (φ) of 5-15%, permeability (k) between 10-12-10-8 m2 and temperature between 90-200 °C and the depth of fluid circulation of 100 m. High values of Rayleigh number, cause vigorous convection within the core of Enceladus. Numerical modeling of reactive transport in multicomponent, multiphase <span class="hlt">systems</span> is required to obtain a full understanding of the characteristics and evolution of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> on Enceladus, but simple scaling laws can provide insight into the physics of water-rock interactions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B11A1656L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B11A1656L"><span>Chemolithoautotrophy in a shallow-sea <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, Milos Island, Greece</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, G. S.; LaRowe, D.; Gilhooly, W., III; Druschel, G. K.; Fike, D. A.; Amend, J.</p> <p>2017-12-01</p> <p>In recent decades, numerous (hyper)thermophilic microorganisms have been isolated from <span class="hlt">hydrothermal</span> venting <span class="hlt">systems</span>. Although they have been shown to have the capabilities to catalyze a wide variety of reactions to gain energy, few pure cultures have been isolated from these environments. In order to more fully understand the catabolic potential of organisms living in and near <span class="hlt">hydrothermal</span> vents, we have calculated the Gibbs energies (ΔGr) of 730 redox reactions that could be supplying energy to organisms in the shallow-sea <span class="hlt">hydrothermal</span> sediments of Paleochori Bay, Milos Island, Greece. This analysis required in-depth geochemical data on the pore fluids and minerals in these sediments near the vent site at several depths. The geochemical profiles of Saganaki vent show steep gradients in temperature, pH, and redox-sensitive compounds resulting from the mixing of hot ( 75oC), acidic ( pH 4), chemically reduced venting fluid with colder, slightly basic and oxidized seawater. We determined values of ΔGr for 47 sediment porewater samples along a 20cm x 2m transect for metabolic reactions involving 23 inorganic H-, O-, C-, N-, S-, Fe-, Mn-, and As- bearing compounds. 379 of the reactions considered were exergonic at one or more sampling locations. The most exergonic reactions were anaerobic CO oxidation with NO2- (136 - 162 kJ/mol e-), followed by the O2/CO, NO3-/CO, and NO2-/ H2S redox pairs. ΔGr values exhibit significant variation among sites as temperature, pH and chemical concentration vary, especially concentrations of Fe2+, Mn2+, and H2S. A great diversity of energy sources are available for microbial populations to exploit: in hotter sediments, sulfide oxidation coupled to nitrite reduction yields large amounts of energy per kg of sediment, whereas aerobic S0 oxidation is more energy-yielding in cooler areas. Our results show that at Saganaki there is a substantial amount of energy available from to microorganisms from sulfur-redox reactions. 16S rRNA pyrotag</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=nz&pg=3&id=ED541649','ERIC'); return false;" href="https://eric.ed.gov/?q=nz&pg=3&id=ED541649"><span>Challenges around Capability Improvements in a <span class="hlt">System</span> of Self-Managed Schools in New <span class="hlt">Zealand</span>. Case Study</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Wylie, Cathy</p> <p>2012-01-01</p> <p>New <span class="hlt">Zealand</span> (NZ), a small country of 4.3 million people, has a single national education <span class="hlt">system</span>. Local authorities have no role in education in NZ, nor are there any school districts. There are four national government education agencies: (1) The Ministry of Education (MOE), established under the Education Act of 1989, is responsible for education…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1512064I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1512064I"><span>Evolution of the Bucium Rodu and Frasin magmatic-<span class="hlt">hydrothermal</span> <span class="hlt">system</span>, Metaliferi Mountains, Romania</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iatan, Elena Luisa; Berbeleac, Ion; Visan, Madalina; Minut, Adrian; Nadasan, Laurentiu</p> <p>2013-04-01</p> <p>The Miocene Bucium Rodu and Frasin maar-diatreme structures and related Au-Ag epithermal low sulfidation with passing to mesothermal mineralizations are located in the Bucium-Rosia Montana-Baia de Aries metallogenetic district, within so called the "Golden Quatrilaterum", in the northeastern part of the Metaliferi Mountains. These structures are situated at about 5 km southeast from Rosia Montana, the largest European Au-Ag deposit. The total reserves for Bucium Rodu-Frasin are estimated at 43.3 Mt with average contents of 1.3 g/t Au and 3 g/t Ag. The Miocene geological evolution of Bucium Rodu and Frasin magmatic-<span class="hlt">hydrothermal</span> <span class="hlt">system</span> took place in closely relationships with tectonic, magmatic and metallogenetic activity from Bucium-Rosia Montana-Baia de Aries district in general, and adjacent areas, in special. The <span class="hlt">hydrothermal</span> alteration is pervasive; adularia followed by phyllic, carbonatization and silicification alterations, usually show a close relationship with the mineralizations. Propylitic alteration occurs dominantly towards the depth; argillic alteration shows a local character. The mineralization occurs in veins, breccias, stockworks and disseminations and is hosted within two volcanic structures emplaced into a sequence of Cretaceous sediments in closely genetically relations with the Miocene phreatomagmatic fracturing and brecciation events. Within Rodu maar-diatreme structure the mineralizations follow especially the contact between the diatreme and Cretaceous flysch. The vein sets with low, moderately and near vertical dippings, cover 400x400m with N-S trend. The most important mineralization style is represented by veins, accompanied by <span class="hlt">hydrothermal</span> breccias and disseminations. The veins spatial distribution relives as "en echelon" tension veins. They carry gold, minor base metal sulphides (pyrite, chalcopyrite, sphalerite, galena, tetrahedrite, arsenopyrite). Gangue is represented by carbonates (calcite, dolomite, ankerite, siderite, rhodochrosite</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=phone+AND+driving&pg=2&id=EJ811751','ERIC'); return false;" href="https://eric.ed.gov/?q=phone+AND+driving&pg=2&id=EJ811751"><span>The Role of Agricultural Consultants in New <span class="hlt">Zealand</span> in Environmental Extension</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Botha, Neels; Coutts, Jeff; Roth, Hein</p> <p>2008-01-01</p> <p>The aim of this study was to understand the role that agricultural consultants in New <span class="hlt">Zealand</span> were undertaking in the Research, Development and Extension (RD&E) <span class="hlt">system</span>--and in particular in relation to environmental extension. New <span class="hlt">Zealand</span> does not have a public extension service and hence there is a strong reliance on consultants and regional…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PNAS..11412413A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PNAS..11412413A"><span>Effect of paleoseawater composition on <span class="hlt">hydrothermal</span> exchange in midocean ridges</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Antonelli, Michael A.; Pester, Nicholas J.; Brown, Shaun T.; DePaolo, Donald J.</p> <p>2017-11-01</p> <p>Variations in the Mg, Ca, Sr, and SO4 concentrations of paleoseawater can affect the chemical exchange between seawater and oceanic basalt in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> at midocean ridges (MOR). We present a model for evaluating the nature and magnitude of these previously unappreciated effects, using available estimates of paleoseawater composition over Phanerozoic time as inputs and 87Sr/86Sr of ophiolite epidosites and epidote-quartz veins as constraints. The results suggest that modern <span class="hlt">hydrothermal</span> fluids are not typical due to low Ca and Sr relative to Mg and SO4 in modern seawater. At other times during the last 500 million years, particularly during the Cretaceous and Ordovician, <span class="hlt">hydrothermal</span> fluids had more seawater-derived Sr and Ca, a prediction that is supported by Sr isotope data. The predicted 87Sr/86Sr of vent fluids varies cyclically in concert with ocean chemistry, with some values much higher than the modern value of ˜0.7037. The seawater chemistry effects can be expressed in terms of the transfer efficiency of basaltic Ca and Sr to seawater in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>, which varies by a factor of ˜1.6 over the Phanerozoic, with minima when seawater Mg and SO4 are low. This effect provides a modest negative feedback on seawater composition and 87Sr/86Sr changes. For the mid-Cretaceous, the low 87Sr/86Sr of seawater requires either exceptionally large amounts of low-temperature exchange with oceanic crust or that the weathering flux of continentally derived Sr was especially small. The model also has implications for MOR <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> in the Precambrian, when low-seawater SO4 could help explain low seawater 87Sr/86Sr.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27607084','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27607084"><span>Protecting New <span class="hlt">Zealand</span> children from exposure to the marketing of unhealthy foods and drinks: a comparison of three nutrient profiling <span class="hlt">systems</span> to classify foods.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mhurchu, Cliona Ni; Mackenzie, Tara; Vandevijvere, Stefanie</p> <p>2016-09-09</p> <p>Promotion of unhealthy foods and drinks is a significant, modifiable risk factor for child obesity and diet-related non-communicable diseases. We compared three accepted nutrient profiling <span class="hlt">systems</span>: the Health Star Rating (HSR), the Ministry of Health Food and Beverage Classification <span class="hlt">System</span> (FBCS) and the World Health Organization (WHO) Regional Office for Europe Nutrient Profiling Model, to identify the best <span class="hlt">system</span> to protect New <span class="hlt">Zealand</span> children from exposure to the marketing of unhealthy foods and beverages. 13,066 packaged foods from the 2014 New <span class="hlt">Zealand</span> Nutritrack database were classified as 'restricted' or 'not restricted' as per the WHO model; 'everyday/sometimes' or 'occasional' as per the FBCS model; and '<3.5 stars' or '≥3.5 stars' as per the HSR model. The proportion and types of packaged foods that met the criteria for all three <span class="hlt">systems</span> or none of the <span class="hlt">systems</span>, and the types of food products classified as 'restricted' under the WHO model but classified as 'everyday/sometimes' (FBCS model) or as having >3.5 stars, were determined. Under any of the three nutrient profiling <span class="hlt">systems</span>, approximately one-third (29-39%) of New <span class="hlt">Zealand</span> packaged foods would be permitted to be marketed to children. The WHO Model would permit marketing of 29% of products; the HSR <span class="hlt">system</span> would permit 36%; and the FBCS <span class="hlt">system</span> would permit 39%. The WHO Model restricts marketing of unhealthy foods more effectively than the other two <span class="hlt">systems</span>. The HSR and FBCS <span class="hlt">systems</span> would permit marketing of a number of food products of concern, particularly high-sugar breakfast cereals, fruit juices and ready meals. The WHO Regional Office for Europe Nutrient Profiling Model should underpin the Advertising Standards Authority revised Children's Code for Advertising Food. The effectiveness of the new Code in reducing New <span class="hlt">Zealand</span> children's exposure to marketing of unhealthy foods and drinks should be subject to evaluation by an independent body.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V23D3014R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V23D3014R"><span>Cu-As Decoupling in <span class="hlt">Hydrothermal</span> <span class="hlt">Systems</span>: A Link Between Pyrite Chemistry and Fluid Composition</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reich, M.; Tardani, D.; Deditius, A.; Chryssoulis, S.; Wrage, J.; Sanchez-Alfaro, P.; Andrea, H.; Cinthia, J.</p> <p>2016-12-01</p> <p>Chemical zonations in pyrite have been recognized in most <span class="hlt">hydrothermal</span> ore deposit types, showing in some cases marked oscillatory alternation of metals and metalloids in pyrite growth zones (e.g., of Cu-rich, As-(Au)-depleted zones and As-(Au)-rich, Cu-depleted zones). This decoupled geochemical behavior of Cu and As has been interpreted as a result of chemical changes in ore-forming fluids, although direct evidence connecting fluctuations in <span class="hlt">hydrothermal</span> fluid composition with metal partitioning into pyrite growth zones is still lacking. Here we report a comprehensive trace element database of pyrite from an active <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, the Tolhuaca Geothermal <span class="hlt">System</span> (TGS) in southern Chile. We combined high-spatial resolution and X-ray mapping capabilities of electron microprobe analysis (EMPA) with low detection limits and depth-profiling capabilities of secondary-ion mass spectrometry (SIMS) in a suite of pyrite samples retrieved from a 1 km drill hole that crosses the argillic and propylitic alteration zones of the geothermal <span class="hlt">system</span>. We show that the concentrations of precious metals (e.g., Au, Ag), metalloids (e.g., As, Sb, Se, Te), and base and heavy metals (e.g., Cu, Co, Ni, Pb) in pyrite at the TGS are significant. Among the elements analyzed, arsenic, Cu and Co are the most abundant with concentrations that vary from sub-ppm levels to a few wt. %. Pyrites from the deeper propylitic zone do not show significant zonation and high Cu-(Co)-As concentrations correlate with each other. In contrast, well-developed zonations were detected in pyrite from the shallow argillic alteration zone, where Cu(Co)-rich, As-depleted cores alternate with Cu(Co)-depleted, As-rich rims. These microanalytical data were contrasted with chemical data of fluid inclusion in quartz veins (high Cu/Na and low As/Na) and borehole fluids (low Cu/Na and high As/Na) reported at the TGS, showing a clear correspondence between Cu and As concentrations in pyrite-forming fluids and chemical</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5392L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5392L"><span><span class="hlt">Hydrothermal</span> fluoride and chloride complexation of indium: an EXAFS study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loges, Anselm; Testemale, Denis; Huotari, Simo; Honkanen, Ari-Pekka; Potapkin, Vasily; Wagner, Thomas</p> <p>2017-04-01</p> <p>Indium (In) is one of the geochemically lesser studied ore metals, and the factors that control the <span class="hlt">hydrothermal</span> transport and deposition are largely unknown. It has no ore deposits of its own and is commonly mined as a by-product of Zn ores, and there are very few minerals that contain In as an essential structural component. Recently, industrial application of In in touch screen devices has drastically increased demand, which is projected to exceed supply from the current sources in the near future. Since the most relevant In sources are <span class="hlt">hydrothermal</span> sphalerite ores and to a lesser extent <span class="hlt">hydrothermal</span> greisen-type deposits in evolved granitic plutons, the aqueous geochemistry of In is of particular interest for understanding its ore forming processes. As a first step towards a comprehensive model for <span class="hlt">hydrothermal</span> In solubility and speciation, we have studied In speciation in fluoride and chloride bearing solutions at 30-400˚ C and 500 bar using X-Ray Absorption Spectroscopy (XAS) measurements. The experiments were conducted in a unique <span class="hlt">hydrothermal</span> autoclave setup at beamline BM30B-FAME at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Our results show that the complexation of In changes dramatically between 30 and 400˚ C. Below ca. 200˚ C, fluoride complexes are the most stable ones, but they break down at higher temperatures. Chloride complexes on the other hand become increasingly stable with increasing temperature. This behavior has interesting consequences for natural ore forming <span class="hlt">systems</span>. In Cl-rich <span class="hlt">systems</span> (e.g. massive sulfide ores formed in sea floor environments), cooling can be an effective precipitating mechanism. In F-rich <span class="hlt">systems</span>, fluoride complexation can extend In mobility to low temperatures and In will only precipitate when F is effectively removed from the fluid, e.g. by mixing with a Ca-rich fluid and precipitation of fluorite (CaF2) as is commonly observed in skarn or greisen-type deposits. Due to In complexing with</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017FrEaS...5...41C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017FrEaS...5...41C"><span>Learning about <span class="hlt">hydrothermal</span> volcanic activity by modeling induced geophysical changes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Currenti, Gilda M.; Napoli, Rosalba</p> <p>2017-05-01</p> <p>Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical), which may help in the characterization and monitoring of <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> through computational experiments. <span class="hlt">Hydrothermal</span> areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e. deformation, gravity and magnetic field) to <span class="hlt">hydrothermal</span> activity on the basis of a sound geological framework (e.g. distribution and pathways of the flows, the presence of fractured zones, caprock). A detailed comprehension and quantification of the evolution and dynamics of the geothermal <span class="hlt">systems</span> and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal <span class="hlt">system</span> may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i) the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii) the elastostatic equation for the deformation field and (iii) the Poisson’s equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that are, however, above the accuracies of the modern</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003E%26PSL.206..555S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003E%26PSL.206..555S"><span>Magnetic fabrics and fluid flow directions in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. A case study in the Chaillac Ba-F-Fe deposits (France)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sizaret, Stanislas; Chen, Yan; Chauvet, Alain; Marcoux, Eric; Touray, Jean Claude</p> <p>2003-02-01</p> <p>This study presents a possible use of anisotropy of magnetic susceptibility (AMS) to describe the mineralizing process in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. Ba-F-Fe-rich deposits within the Chaillac Basin are on the southern border of the Paris Basin. In these deposits <span class="hlt">hydrothermal</span> textures and tectonic structures have been described in veins, sinters, and sandstone cemented by <span class="hlt">hydrothermal</span> goethite. 278 oriented cores from 24 sites have been collected in these formations. In addition, a lateritic duricrust superimposed on the <span class="hlt">hydrothermal</span> formation has been sampled. Rock magnetic investigations show that the principal magnetic carrier is goethite for the <span class="hlt">hydrothermal</span> mineralization and for the laterite level. The AMS measurements show distinguishable behaviors in the different mineralogical and geological contexts. The K1 magnetic lineation (maximum axis) is strongly inclined for the vertical veins. For the horizontally mineralized sinters, the magnetic lineation is almost horizontal with an azimuth similar to the sedimentary flow direction. The AMS of goethite-rich sandstone close to the veins shows strongly inclined K1 as they are probably influenced by the vertical veins; however, when the distance from the vein is larger than 1 m, the AMS presents rather horizontal K1 directions, parallel to the sedimentary flow. The laterite has a foliation dominance of AMS with vertically well-grouped K3 axes and scattered K1 and K2 axes. Field structural observations suggest that the ore deposit is mainly controlled by EW extension tectonics associated with NS trending normal faults. Combining the AMS results on the deposit with vein textures and field data a model is proposed in which AMS results are interpreted in terms of <span class="hlt">hydrothermal</span> fluid flow. This work opens a new investigation field to constrain hydrodynamic models using the AMS method. Textural study combined with efficient AMS fabric measurements should be used for systematic investigation to trace flow direction in fissures</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V51C0358P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V51C0358P"><span>Electron microscopy study of microbial mat in the North Fiji basin <span class="hlt">hydrothermal</span> vent</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, H.; Kim, J. W.; Lee, J. W.</p> <p>2017-12-01</p> <p><span class="hlt">Hydrothermal</span> vent <span class="hlt">systems</span> consisting of <span class="hlt">hydrothermal</span> vent, <span class="hlt">hydrothermal</span> sediment and microbial mat are widely spread around the ocean, particularly spreading axis, continental margin and back-arc basin. Scientists have perceived that the <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>, which reflect the primeval earth environment, are one of the best places to reveal the origin of life and extensive biogeochemical process of microbe-mineral interaction. In the present study multiline of analytical methods (X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)) were utilized to investigate the mineralogy/chemistry of microbe-mineral interaction in <span class="hlt">hydrothermal</span> microbial mat. Microbial mat samples were recovered by Canadian scientific submersible ROPOS on South Pacific North Fiji basin KIOST <span class="hlt">hydrothermal</span> vent expedition 1602. XRD analysis showed that red-colored microbial mat contains Fe-oxides and Fe-oxyhydroxides. Various morphologies of minerals in the red-colored microbial mat observed by SEM are mainly showed sheath shaped, resembled with Leptothrix microbial structure, stalks shaped, similar with Marioprofundus microbial structure and globule shaped microbial structures. They are also detected with DNA analysis. The cross sectional observation of microbial structures encrusted with Fe-oxide and Fe-oxyhydroxide at a nano scale by Transmission Electron Microscopy (TEM) and Focused Ion Beam (FIB) technique was developed to verify the structural/biogeochemical properties in the microbe-mineral interaction. Systematic nano-scale measurements on the biomineralization in the microbial mat leads the understandings of biogeochemical environments around the <span class="hlt">hydrothermal</span> vent.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70186663','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70186663"><span>The role of magmas in the formation of <span class="hlt">hydrothermal</span> ore deposits</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hedenquist, Jeffrey W.; Lowenstern, Jacob B.</p> <p>1994-01-01</p> <p>Magmatic fluids, both vapour and hypersaline liquid, are a primary source of many components in <span class="hlt">hydrothermal</span> ore deposits formed in volcanic arcs. These components, including metals and their ligands, become concentrated in magmas in various ways from various sources, including subducted oceanic crust. Leaching of rocks also contributes components to the <span class="hlt">hydrothermal</span> fluid—a process enhanced where acid magmatic vapours are absorbed by deeply circulating meteoric waters. Advances in understanding the <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> that formed these ore deposits have come from the study of their active equivalents, represented at the surface by hot springs and volcanic fumaroles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.V43D1440S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.V43D1440S"><span>Multi-Sensor Mapping of Diffuse Degassing of C-O-H Compounds in Terrestrial <span class="hlt">Hydrothermal</span> <span class="hlt">Systems</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schwandner, F. M.; Shock, E. L.</p> <p>2004-12-01</p> <p> and partially map a previously-inferred active lineament in the Obsidian Pool area. In addition, reduced gas data are yielding areal ratio distributions of CO/CO2, H2/CH4, and CO/CH4, that may be indicative of reactions such as the catalytic hydrogenation of CO2 (Sabatier-Process) and of CO (Fischer-Tropsch-Process) within the shallow <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. Barberi & Carapezza (1994). Bull. Volcanol. 56(5): 335-342. Brombach, et al. (2001). Geophys. Res. Lett. 28(1): 69-72. Crenshaw et al. (1982). Nature 300: 345-346. Chiodini et al. (1996). Bull. Volcanol. 58(1): 41-50. Schwandner et al. (2004). JGR D 109: D04301, doi:10.1029/2003JD003890. Werner & Brantley (2004) JGR B 105: 10,831-10,846. Werner et al. (2003). Earth Planet. Sci. Lett. 210: 561-577. Williams (1985). Science 229(4713): 551-553. Williams-Jones et al. (2000). Bull. Volcanol. 62: 130-142.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024075','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024075"><span>Geochemistry of fluid phases and sediments: Relevance to <span class="hlt">hydrothermal</span> circulation in Middle Valley, ODP Legs 139 and 169</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gieskes, J.M.; Simoneit, B.R.T.; Shanks, Wayne C.; Goodfellow, W.D.; James, R.H.; Baker, P.A.; Ishibashi, J.-I.</p> <p>2002-01-01</p> <p>Geochemical and isotopic studies of pore fluids and solid phases recovered from the Dead Dog and Bent Hill <span class="hlt">hydrothermal</span> sites in Middle Valley (Ocean Drilling Program Leg 169) have been compared with similar data obtained previously from these sites during Ocean Drilling Program Leg 139. Although generally the <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> reflect non-steady state conditions, the data allow an assessment of the history of the <span class="hlt">hydrothermal</span> processes. Sediment K/A1 ratios as well as the distribution of anhydrite in the sediments suggest that the Dead Dog <span class="hlt">hydrothermal</span> field has been, and still is, active. In contrast, similar data in the Bent Hill <span class="hlt">hydrothermal</span> field indicate a waning of <span class="hlt">hydrothermal</span> activity. Pore fluid and <span class="hlt">hydrothermal</span> vent data in the Dead Dog <span class="hlt">hydrothermal</span> field are similar in nature to the data collected during ODP Leg 139. In the area of the Bent Hill sulfide deposit, however, the pore water data indicate that recent wholesale flushing of the sediment column with relatively unaltered seawater has obliterated a previous record of <span class="hlt">hydrothermal</span> activity in the pore fluids. Data from the deepest part of Hole 1035A in the Bent Hill locality show the presence of <span class="hlt">hydrothermal</span> fluids at greater depths in this area. This suggests the origin of the <span class="hlt">hydrothermal</span> fluids found to be emanating from Hole 1035F, which constitutes one of the first man made <span class="hlt">hydrothermal</span> vents in the Middle Valley <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. Similarly, CORKed Hole 858G, because of seal failures, has acted as a <span class="hlt">hydrothermal</span> vent, with sulfide deposits forming inside the CORK. ?? 2002 Elsevier Science Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70094692','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70094692"><span><span class="hlt">Hydrothermal</span> contamination of public supply wells in Napa and Sonoma Valleys, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Forrest, Matthew J.; Kulongoski, Justin T.; Edwards, Matthew S.; Farrar, Christopher D.; Belitz, Kenneth; Norris, Richard D.</p> <p>2013-01-01</p> <p>Groundwater chemistry and isotope data from 44 public supply wells in the Napa and Sonoma Valleys, California were determined to investigate mixing of relatively shallow groundwater with deeper <span class="hlt">hydrothermal</span> fluids. Multivariate analyses including Cluster Analyses, Multidimensional Scaling (MDS), Principal Components Analyses (PCA), Analysis of Similarities (ANOSIM), and Similarity Percentage Analyses (SIMPER) were used to elucidate constituent distribution patterns, determine which constituents are significantly associated with these <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>, and investigate <span class="hlt">hydrothermal</span> contamination of local groundwater used for drinking water. Multivariate statistical analyses were essential to this study because traditional methods, such as mixing tests involving single species (e.g. Cl or SiO2) were incapable of quantifying component proportions due to mixing of multiple water types. Based on these analyses, water samples collected from the wells were broadly classified as fresh groundwater, saline waters, <span class="hlt">hydrothermal</span> fluids, or mixed <span class="hlt">hydrothermal</span> fluids/meteoric water wells. The Multivariate Mixing and Mass-balance (M3) model was applied in order to determine the proportion of <span class="hlt">hydrothermal</span> fluids, saline water, and fresh groundwater in each sample. Major ions, isotopes, and physical parameters of the waters were used to characterize the <span class="hlt">hydrothermal</span> fluids as Na–Cl type, with significant enrichment in the trace elements As, B, F and Li. Five of the wells from this study were classified as <span class="hlt">hydrothermal</span>, 28 as fresh groundwater, two as saline water, and nine as mixed <span class="hlt">hydrothermal</span> fluids/meteoric water wells. The M3 mixing-model results indicated that the nine mixed wells contained between 14% and 30% <span class="hlt">hydrothermal</span> fluids. Further, the chemical analyses show that several of these mixed-water wells have concentrations of As, F and B that exceed drinking-water standards or notification levels due to contamination by <span class="hlt">hydrothermal</span> fluids.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5021209','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5021209"><span>Subseafloor microbial communities in hydrogen‐rich vent fluids from <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> along the Mid‐Cayman Rise</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Reveillaud, Julie; Reddington, Emily; McDermott, Jill; Algar, Christopher; Meyer, Julie L.; Sylva, Sean; Seewald, Jeffrey; German, Christopher R.</p> <p>2016-01-01</p> <p>Summary Warm fluids emanating from <span class="hlt">hydrothermal</span> vents can be used as windows into the rocky subseafloor habitat and its resident microbial community. Two new vent <span class="hlt">systems</span> on the Mid‐Cayman Rise each exhibits novel geologic settings and distinctively hydrogen‐rich vent fluid compositions. We have determined and compared the chemistry, potential energy yielding reactions, abundance, community composition, diversity, and function of microbes in venting fluids from both sites: Piccard, the world's deepest vent site, hosted in mafic rocks; and Von Damm, an adjacent, ultramafic‐influenced <span class="hlt">system</span>. Von Damm hosted a wider diversity of lineages and metabolisms in comparison to Piccard, consistent with thermodynamic models that predict more numerous energy sources at ultramafic <span class="hlt">systems</span>. There was little overlap in the phylotypes found at each site, although similar and dominant hydrogen‐utilizing genera were present at both. Despite the differences in community structure, depth, geology, and fluid chemistry, energetic modelling and metagenomic analysis indicate near functional equivalence between Von Damm and Piccard, likely driven by the high hydrogen concentrations and elevated temperatures at both sites. Results are compared with <span class="hlt">hydrothermal</span> sites worldwide to provide a global perspective on the distinctiveness of these newly discovered sites and the interplay among rocks, fluid composition and life in the subseafloor. PMID:26663423</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3216847','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3216847"><span>Health equity in the New <span class="hlt">Zealand</span> health care <span class="hlt">system</span>: a national survey</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2011-01-01</p> <p>Introduction In all countries people experience different social circumstances that result in avoidable differences in health. In New <span class="hlt">Zealand</span>, Māori, Pacific peoples, and those with lower socioeconomic status experience higher levels of chronic illness, which is the leading cause of mortality, morbidity and inequitable health outcomes. Whilst the health <span class="hlt">system</span> can enable a fairer distribution of good health, limited national data is available to measure health equity. Therefore, we sought to find out whether health services in New <span class="hlt">Zealand</span> were equitable by measuring the level of development of components of chronic care management <span class="hlt">systems</span> across district health boards. Variation in provision by geography, condition or ethnicity can be interpreted as inequitable. Methods A national survey of district health boards (DHBs) was undertaken on macro approaches to chronic condition management with detail on cardiovascular disease, chronic obstructive pulmonary disease, congestive heart failure, stroke and diabetes. Additional data from expert informant interviews on program reach and the cultural needs of Māori and Pacific peoples was sought. Survey data were analyzed on dimensions of health equity relevant to strategic planning and program delivery. Results are presented as descriptive statistics and free text. Interviews were transcribed and NVivo 8 software supported a general inductive approach to identify common themes. Results Survey responses were received from the majority of DHBs (15/21), some PHOs (21/84) and 31 expert informants. Measuring, monitoring and targeting equity is not systematically undertaken. The Health Equity Assessment Tool is used in strategic planning but not in decisions about implementing or monitoring disease programs. Variable implementation of evidence-based practices in disease management and multiple funding streams made program implementation difficult. Equity for Māori is embedded in policy, this is not so for other ethnic groups or</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036315','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036315"><span>A multitracer approach for characterizing interactions between shallow groundwater and the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> in the Norris Geyser Basin area, Yellowstone National Park</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gardner, W.P.; Susong, D.D.; Solomon, D.K.; Heasler, H.P.</p> <p>2011-01-01</p> <p>Multiple environmental tracers are used to investigate age distribution, evolution, and mixing in local- to regional-scale groundwater circulation around the Norris Geyser Basin area in Yellowstone National Park. Springs ranging in temperature from 3??C to 90??C in the Norris Geyser Basin area were sampled for stable isotopes of hydrogen and oxygen, major and minor element chemistry, dissolved chlorofluorocarbons, and tritium. Groundwater near Norris Geyser Basin is comprised of two distinct <span class="hlt">systems</span>: a shallow, cool water <span class="hlt">system</span> and a deep, high-temperature <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. These two end-member <span class="hlt">systems</span> mix to create springs with intermediate temperature and composition. Using multiple tracers from a large number of springs, it is possible constrain the distribution of possible flow paths and refine conceptual models of groundwater circulation in and around a large, complex <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. Copyright 2011 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812544B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812544B"><span>Resistivity structure of the Furnas <span class="hlt">hydrothermal</span> <span class="hlt">system</span> (Azores archipelago, Portugal) from AMT and ERT imaging.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Byrdina, Svetlana; Vandemeulebrouck, Jean; Rath, Volker; Silva, Catarina; Hogg, Colin; Kiyan, Duygu; Viveiros, Fatima; Eleuterio, Joana; Gresse, Marceau</p> <p>2016-04-01</p> <p>The Furnas volcanic complex is located in the eastern part of the São Miguel Island and comprises a 5 km × 8 km summit depression filled by two nested calderas with several craters and a lake. Present-day volcanic activity of Furnas volcano is mostly located in the northern part of the caldera, within the Furnas village and north to Furnas Lake, where <span class="hlt">hydrothermal</span> manifestations are mainly fumarolic fields, steam vents, thermal springs, and intense soil diffuse degassing. Considering the Furnas volcano as a whole, the total integrated CO2 efflux is extremely high, with a total amount of CO2 close to 1000 ton per day (Viveiros et al., 2009). We present the first results of an electrical resistivity tomography (ERT), combined with audio-magneto-telluric (AMT) measurements aligned along two profiles inside the caldera. The purpose of this survey is to delimit the extent, the geometry, and the depth of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> and to correlate the deep resistivity structure with high resolution cartography of diffuse CO2 flux (Viveiros et al, 2015). The ERT and AMT methods are complementary in terms of resolution and penetration depth: ERT can image the structural details of shallow <span class="hlt">hydrothermal</span> <span class="hlt">system</span> (down to 100 m in our study) while AMT can image at lower resolution deeper structures at the roots of a volcano (down to 4 km in our study). Our first independent 2D inversions of the ERT-AMT data show a good agreement between the surficial and deeper features. Below the main fumarole area we observe a low resistivity body (less than 1 Ohmm) which corresponds well to the high CO2 flux at the surface and is associated with an extended conductive body at larger depth. These results strongly suggest the presence of <span class="hlt">hydrothermal</span> waters at depth or/and the presence of altered clay-rich material. On a larger scale however, the geometry of the conducting zones differs slightly from what was expected from earlier surface studies, and may not be directly related to fault zones</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNS13A0003P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNS13A0003P"><span>Investigating Crustal Scale Fault <span class="hlt">Systems</span> Controlling Volcanic and <span class="hlt">Hydrothermal</span> Fluid Processes in the South-Central Andes, First Results from a Magnetotelluric Survey</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pearce, R.; Mitchell, T. M.; Moorkamp, M.; Araya, J.; Cembrano, J. M.; Yanez, G. A.; Hammond, J. O. S.</p> <p>2017-12-01</p> <p>At convergent plate boundaries, volcanic orogeny is largely controlled by major thrust fault <span class="hlt">systems</span> that act as magmatic and <span class="hlt">hydrothermal</span> fluid conduits through the crust. In the south-central Andes, the volcanically and seismically active Tinguiririca and Planchon-Peteroa volcanoes are considered to be tectonically related to the major El Fierro thrust fault <span class="hlt">system</span>. These large scale reverse faults are characterized by 500 - 1000m wide <span class="hlt">hydrothermally</span> altered fault cores, which possess a distinct conductive signature relative to surrounding lithology. In order to establish the subsurface architecture of these fault <span class="hlt">systems</span>, such conductivity contrasts can be detected using the magnetotelluric method. In this study, LEMI fluxgate-magnetometer long-period and Metronix broadband MT data were collected at 21 sites in a 40km2 survey grid that surrounds this fault <span class="hlt">system</span> and associated volcanic complexes. Multi-remote referencing techniques is used together with robust processing to obtain reliable impedance estimates between 100 Hz and 1,000s. Our preliminary inversion results provide evidence of structures within the 10 - 20 km depth range that are attributed to this fault <span class="hlt">system</span>. Further inversions will be conducted to determine the approximate depth extent of these features, and ultimately provide constraints for future geophysical studies aimed to deduce the role of these faults in volcanic orogeny and <span class="hlt">hydrothermal</span> fluid migration processes in this region of the Andes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.T23A1880N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.T23A1880N"><span>An exploration for <span class="hlt">hydrothermal</span> plume evolution using the AUV "URASHIMA" with fluid sampling <span class="hlt">system</span> at southern Mariana Trough</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Noguchi, T.; Sunamura, M.; Yamamoto, H.; Fukuba, T.; Okino, K.; Sugiyama, T.; Okamura, K.</p> <p>2009-12-01</p> <p><span class="hlt">Hydrothermal</span> fluids contain high concentration of anoxic chemical species, i.e. methane and hydrogen sulfide, helium-3, and heavy metals derived from the rock-water interaction. During the hydothermal plume spreading, it is known that several chemical species are oxidized which include available energy source for microorganism, however, few results have been reported on the spatial variation of both of chemical and microbiological concentration and species. In the southern Mariana Trough, some site surveys have been conducted with CTD hydrocasts, the manned submersible, and ROVs since 2003. In this field, three <span class="hlt">hydrothermal</span> vent sites were discovered within the small area, where the chemistry of each <span class="hlt">hydrothermal</span> fluid was different from each other. These differences of chemistry are prospected to affect the individual plume evolution. In order to discuss the each <span class="hlt">hydrothermal</span> plume evolution, we conducted high-resolution plume mapping by the AUV "URASHIMA" with some chemical sensors. Additionally, we loaded 24 bottles of water sampler for the geochemical and microbial analysis. During this cruise, we detected <span class="hlt">hydrothermal</span> plume anomalies derived from each <span class="hlt">hydrothermal</span> site with the highly precise topographic results. Based on the results, we will discuss the relationships between the spreading of <span class="hlt">hydrothermal</span> plume (geochemical evolution) and the ecology of plume microbes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeCoA.223..107Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeCoA.223..107Y"><span>Effects of iron-containing minerals on <span class="hlt">hydrothermal</span> reactions of ketones</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Ziming; Gould, Ian R.; Williams, Lynda B.; Hartnett, Hilairy E.; Shock, Everett L.</p> <p>2018-02-01</p> <p><span class="hlt">Hydrothermal</span> organic transformations occurring in geochemical processes are influenced by the surrounding environments including rocks and minerals. This work is focused on the effects of five common minerals on reactions of a model ketone substrate, dibenzylketone (DBK), in an experimental <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. Ketones play a central role in many <span class="hlt">hydrothermal</span> organic functional group transformations, such as those converting hydrocarbons to oxygenated compounds; however, how these minerals control the <span class="hlt">hydrothermal</span> chemistry of ketones is poorly understood. Under the <span class="hlt">hydrothermal</span> conditions of 300 °C and 70 MPa for up to 168 h, we observed that, while quartz (SiO2) and corundum (Al2O3) had no detectable effect on the <span class="hlt">hydrothermal</span> reactions of DBK, iron-containing minerals, such as hematite (Fe2O3), magnetite (Fe3O4), and troilite (synthetic FeS), accelerated the reaction of DBK by up to an order of magnitude. We observed that fragmentation products, such as toluene and bibenzyl, dominated in the presence of hematite or magnetite, while use of troilite gave primarily the reduction products, e.g., 1, 3-diphenyl-propane and 1, 3-diphenyl-2-propanol. The roles of the three iron minerals in these transformations were further explored by (1) control experiments with various mineral surface areas, (2) measuring H2 in <span class="hlt">hydrothermal</span> solutions, and (3) determining hydrogen balance among the organic products. These results suggest the reactions catalyzed by iron oxides (hematite and magnetite) are promoted mainly by the mineral surfaces, whereas the sulfide mineral (troilite) facilitated the reduction of ketone in the reaction solution. Therefore, this work not only provides a useful chemical approach to study and uncover complicated <span class="hlt">hydrothermal</span> organic-mineral interactions, but also fosters a mechanistic understanding of ketone reactions in the deep carbon cycle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BVol...75..729Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BVol...75..729Y"><span>A large <span class="hlt">hydrothermal</span> reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric resistivity survey: 2D resistivity modeling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamaya, Y.; Alanis, P. K. B.; Takeuchi, A.; Cordon, J. M.; Mogi, T.; Hashimoto, T.; Sasai, Y.; Nagao, T.</p> <p>2013-07-01</p> <p>Taal Volcano, located in the southwestern part of Luzon Island, Philippines, has frequently experienced catastrophic eruptions from both the Main Crater on Volcano Island and flank eruptions. These eruptions have been magmatic, phreatomagmatic, and <span class="hlt">hydrothermal</span>, with the latter implying the existence of a large-scale <span class="hlt">hydrothermal</span> <span class="hlt">system</span> beneath the volcano. We conducted an electrical resistivity survey using the magnetotelluric method in order to identify the location and geometry of the <span class="hlt">hydrothermal</span> reservoir and sealing cap rock. Two-dimensional inversion using the observed data indicates four similar resistivity sections. The structure at shallow depths corresponds to volcanic deposits and an aquifer. Below 1 km, the structure features a relatively resistive zone beneath the main crater surrounded by a conductive shell. We interpreted these to be a large <span class="hlt">hydrothermal</span> reservoir with an impermeable cap rock sealing it. Recent ground deformation detected by GPS measurements suggests that the <span class="hlt">hydrothermal</span> reservoir is active. The interpreted cap rock thins just beneath the main crater and could easily be destroyed by an imbalance in the <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. We conclude that this <span class="hlt">hydrothermal</span> reservoir plays a significant role in driving catastrophic eruptions that begin with a <span class="hlt">hydrothermal</span> explosion at the main crater.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMOS42A..03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMOS42A..03K"><span>Subseafloor fluid mixing and fossilized microbial life in a Cretaceous 'Lost City'-type <span class="hlt">hydrothermal</span> <span class="hlt">system</span> at the Iberian Margin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klein, F.; Humphris, S. E.; Guo, W.; Schubotz, F.; Schwarzenbach, E. M.; Orsi, W.</p> <p>2015-12-01</p> <p>Subseafloor mixing of reduced <span class="hlt">hydrothermal</span> fluids with seawater is believed to provide the energy and substrates needed to support autotrophic microorganisms in the hydrated oceanic mantle (serpentinite). Despite the potentially significant implications for the distribution of microbial life on Earth and other water-bearing planetary bodies, our understanding of such environments remains elusive. In the present study we examined fossilized microbial communities and fluid mixing processes in the subseafloor of a Cretaceous 'Lost City'-type <span class="hlt">hydrothermal</span> <span class="hlt">system</span> at the passive Iberia Margin (ODP Leg 149, Hole 897D). Brucite and calcite co-precipitated from mixed fluids ca. 65m below the Cretaceous palaeo-seafloor at temperatures of 32±4°C within steep chemical gradients (fO2, pH, CH4, SO4, ΣCO2, etc) between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing <span class="hlt">hydrothermal</span> fluid at moderate temperatures created conditions capable of supporting microbial activity within the oceanic basement. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon but depleted in 13C. We detected a combination of bacterial diether lipid biomarkers, archaeol and archaeal tetraethers analogous to those found in brucite-carbonate chimneys at the active Lost City <span class="hlt">hydrothermal</span> field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin during the Cretaceous, possibly before the onset of seafloor spreading in the Atlantic. 'Lost City'-type serpentinization <span class="hlt">systems</span> have been discovered at mid-ocean ridges, in forearc settings of subduction zones and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments as demonstrated in the present study. Because equivalent <span class="hlt">systems</span> have likely existed throughout most of Earth</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS42A..03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS42A..03K"><span>Subseafloor fluid mixing and fossilized microbial life in a Cretaceous 'Lost City'-type <span class="hlt">hydrothermal</span> <span class="hlt">system</span> at the Iberian Margin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klein, F.; Humphris, S. E.; Guo, W.; Schubotz, F.; Schwarzenbach, E. M.; Orsi, W.</p> <p>2014-12-01</p> <p>Subseafloor mixing of reduced <span class="hlt">hydrothermal</span> fluids with seawater is believed to provide the energy and substrates needed to support autotrophic microorganisms in the hydrated oceanic mantle (serpentinite). Despite the potentially significant implications for the distribution of microbial life on Earth and other water-bearing planetary bodies, our understanding of such environments remains elusive. In the present study we examined fossilized microbial communities and fluid mixing processes in the subseafloor of a Cretaceous 'Lost City'-type <span class="hlt">hydrothermal</span> <span class="hlt">system</span> at the passive Iberia Margin (ODP Leg 149, Hole 897D). Brucite and calcite co-precipitated from mixed fluids ca. 65m below the Cretaceous palaeo-seafloor at temperatures of 32±4°C within steep chemical gradients (fO2, pH, CH4, SO4, ΣCO2, etc) between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing <span class="hlt">hydrothermal</span> fluid at moderate temperatures created conditions capable of supporting microbial activity within the oceanic basement. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon but depleted in 13C. We detected a combination of bacterial diether lipid biomarkers, archaeol and archaeal tetraethers analogous to those found in brucite-carbonate chimneys at the active Lost City <span class="hlt">hydrothermal</span> field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin during the Cretaceous, possibly before the onset of seafloor spreading in the Atlantic. 'Lost City'-type serpentinization <span class="hlt">systems</span> have been discovered at mid-ocean ridges, in forearc settings of subduction zones and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments as demonstrated in the present study. Because equivalent <span class="hlt">systems</span> have likely existed throughout most of Earth</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatGe...8..856H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatGe...8..856H"><span>Efficient removal of recalcitrant deep-ocean dissolved organic matter during <span class="hlt">hydrothermal</span> circulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hawkes, Jeffrey A.; Rossel, Pamela E.; Stubbins, Aron; Butterfield, David; Connelly, Douglas P.; Achterberg, Eric P.; Koschinsky, Andrea; Chavagnac, Valérie; Hansen, Christian T.; Bach, Wolfgang; Dittmar, Thorsten</p> <p>2015-11-01</p> <p>Oceanic dissolved organic carbon (DOC) is an important carbon pool, similar in magnitude to atmospheric CO2, but the fate of its oldest forms is not well understood. Hot <span class="hlt">hydrothermal</span> circulation may facilitate the degradation of otherwise un-reactive dissolved organic matter, playing an important role in the long-term global carbon cycle. The oldest, most recalcitrant forms of DOC, which make up most of oceanic DOC, can be recovered by solid-phase extraction. Here we present measurements of solid-phase extractable DOC from samples collected between 2009 and 2013 at seven vent sites in the Atlantic, Pacific and Southern oceans, along with magnesium concentrations, a conservative tracer of water circulation through <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. We find that magnesium and solid-phase extractable DOC concentrations are correlated, suggesting that solid-phase extractable DOC is almost entirely lost from solution through mineralization or deposition during circulation through <span class="hlt">hydrothermal</span> vents with fluid temperatures of 212-401 °C. In laboratory experiments, where we heated samples to 380 °C for four days, we found a similar removal efficiency. We conclude that thermal degradation alone can account for the loss of solid-phase extractable DOC in natural <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>, and that its maximum lifetime is constrained by the timescale of <span class="hlt">hydrothermal</span> cycling, at about 40 million years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1437974-effect-paleoseawater-composition-hydrothermal-exchange-midocean-ridges','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1437974-effect-paleoseawater-composition-hydrothermal-exchange-midocean-ridges"><span>Effect of paleoseawater composition on <span class="hlt">hydrothermal</span> exchange in midocean ridges</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Antonelli, Michael A.; Pester, Nicholas J.; Brown, Shaun T.</p> <p></p> <p>Variations in the Mg, Ca, Sr, and SO 4 concentrations of paleoseawater can affect the chemical exchange between seawater and oceanic basalt in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> at midocean ridges (MOR). Here, we present a model for evaluating the nature and magnitude of these previously unappreciated effects, using available estimates of paleoseawater composition over Phanerozoic time as inputs and 87Sr/ 86Sr of ophiolite epidosites and epidote-quartz veins as constraints. The results suggest that modern <span class="hlt">hydrothermal</span> fluids are not typical due to low Ca and Sr relative to Mg and SO 4 in modern seawater. At other times during the last 500 millionmore » years, particularly during the Cretaceous and Ordovician, <span class="hlt">hydrothermal</span> fluids had more seawater-derived Sr and Ca, a prediction that is supported by Sr isotope data. The predicted 87Sr/ 86Sr of vent fluids varies cyclically in concert with ocean chemistry, with some values much higher than the modern value of ~0.7037. The seawater chemistry effects can be expressed in terms of the transfer efficiency of basaltic Ca and Sr to seawater in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>, which varies by a factor of ~1.6 over the Phanerozoic, with minima when seawater Mg and SO 4 are low. This effect provides a modest negative feedback on seawater composition and 87Sr/ 86Sr changes. For the mid-Cretaceous, the low 87Sr/ 86Sr of seawater requires either exceptionally large amounts of low-temperature exchange with oceanic crust or that the weathering flux of continentally derived Sr was especially small. Lastly, the model also has implications for MOR <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> in the Precambrian, when low-seawater SO 4 could help explain low seawater 87Sr/ 86Sr.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1437974-effect-paleoseawater-composition-hydrothermal-exchange-midocean-ridges','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1437974-effect-paleoseawater-composition-hydrothermal-exchange-midocean-ridges"><span>Effect of paleoseawater composition on <span class="hlt">hydrothermal</span> exchange in midocean ridges</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Antonelli, Michael A.; Pester, Nicholas J.; Brown, Shaun T.; ...</p> <p>2017-11-06</p> <p>Variations in the Mg, Ca, Sr, and SO 4 concentrations of paleoseawater can affect the chemical exchange between seawater and oceanic basalt in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> at midocean ridges (MOR). Here, we present a model for evaluating the nature and magnitude of these previously unappreciated effects, using available estimates of paleoseawater composition over Phanerozoic time as inputs and 87Sr/ 86Sr of ophiolite epidosites and epidote-quartz veins as constraints. The results suggest that modern <span class="hlt">hydrothermal</span> fluids are not typical due to low Ca and Sr relative to Mg and SO 4 in modern seawater. At other times during the last 500 millionmore » years, particularly during the Cretaceous and Ordovician, <span class="hlt">hydrothermal</span> fluids had more seawater-derived Sr and Ca, a prediction that is supported by Sr isotope data. The predicted 87Sr/ 86Sr of vent fluids varies cyclically in concert with ocean chemistry, with some values much higher than the modern value of ~0.7037. The seawater chemistry effects can be expressed in terms of the transfer efficiency of basaltic Ca and Sr to seawater in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>, which varies by a factor of ~1.6 over the Phanerozoic, with minima when seawater Mg and SO 4 are low. This effect provides a modest negative feedback on seawater composition and 87Sr/ 86Sr changes. For the mid-Cretaceous, the low 87Sr/ 86Sr of seawater requires either exceptionally large amounts of low-temperature exchange with oceanic crust or that the weathering flux of continentally derived Sr was especially small. Lastly, the model also has implications for MOR <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> in the Precambrian, when low-seawater SO 4 could help explain low seawater 87Sr/ 86Sr.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.P12A..07L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.P12A..07L"><span>Mineralized iron oxidizing bacteria from <span class="hlt">hydrothermal</span> vents: targeting biosignatures on Mars</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leveille, R. J.</p> <p>2010-12-01</p> <p>Putative <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> have been identified on Mars based on orbital imagery and rover-based analyses. Based on Earth analogs, <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> on Mars would be highly attractive for their potential for preserving organic and inorganic biosignatures. For example, iron oxidizing bacteria are ubiquitous in marine and terrestrial <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>, where they often display distinctive cell morphologies and are commonly encrusted by minerals, especially bacteriogenic iron oxides and silica. Microfossils of iron oxidizing bacteria have been found in ancient Si-Fe deposits and iron oxidation may be an ancient and widespread metabolic pathway. In order to investigate mineralized iron oxidizing bacteria as a biosignature, we have examined samples collected from extinct <span class="hlt">hydrothermal</span> vents along Explorer Ridge, NE Pacific Ocean. In addition, microaerophilic iron oxidizing bacteria, isolated from active Pacific <span class="hlt">hydrothermal</span> vents, were grown in a Fe-enriched seawater medium at constant pH (6.5) and O2 concentration (5%) in a controlled bioreactor <span class="hlt">system</span>. Samples and experimental products were examined with a combination of variable-pressure and field-emission scanning electron microscopy (SEM), in some cases by preparing samples with a focused ion beam (FIB) milling <span class="hlt">system</span>. Light-toned seafloor samples display abundant filamentous forms resembling, in both size and shape (1-5 microns in diameter and up to several microns in length), the twisted stalks of Gallionella and the elongated filaments of Leptothrix. Some samples consist entirely of low-density masses of silica (>90% Si) encrusted filamentous forms. The presence of unmineralized filamentous matter rich in C and Fe suggests that these are the remains of iron oxidizing bacteria. Mineralized filaments sectioned by FIB show variable internal material within semi-hollow, tubular-like features. Silica encrustations also show pseudo-concentric growth bands. In the bioreactor runs, abundant microbial growth and</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V14A..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V14A..07S"><span>Discovery of Fracture Networks in the Basal Part of Modern <span class="hlt">Hydrothermal</span> <span class="hlt">System</span> in Okinawa Tough, SW Japan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saito, S.; Yamada, Y.; Sanada, Y.; Kido, Y. N.; Hamada, Y.; Shiraishi, K.; Hsiung, K. H.; Tsuji, T.; Eng, C.; Maeda, L.; Kumagai, H.; Nozaki, T.; Ishibashi, J. I.</p> <p>2017-12-01</p> <p>A scientific drilling expedition, CK16-01 was conducted by D/V Chikyu in an active <span class="hlt">hydrothermal</span> field on the Iheya-North Knoll in Okinawa Trough in February-March, 2016 as a part of "Next-generation Technology for Ocean Resources Survey" of the Cross-ministerial Strategic Innovation Promotion Program (SIP). During the expedition logging while drilling (LWD) was deployed to uncover the architecture of modern <span class="hlt">hydrothermal</span> deposits near the seafloor. A downhole sequence of fracture network (stock-work) was discovered by high resolution resistivity images at Site C9023 in the southern part of the knoll. More than 500 structural features were extracted from the borehole images down to 188 meter below the seafloor. Quantitative image analyses were performed and three types of conductive fractures were identified and classified as Generation 1 (G1), Generation 2 (G2), and Generation 3 (G3) based on the crossing or cutting relationship. The average thickness of fractures decrease with generation from G1 (78 mm), G2 (57 mm), to G3 (45 mm). G1 is developed in the entire interval, whereas G2 and G3 are commonly observed in the intervals of lower gamma ray and high resistivity ( 10 ohm-m) at 77-125 m and 167-186 m where sulfide minerals hosted in silicified rocks were observed in recovered core samples. Low angle fractures (<30°) are typically developed in the interval at 120 -125 m, suggesting possible lateral <span class="hlt">hydrothermal</span> conduits. The quantitative analysis of fracture network based on borehole images shows the detailed formation process of stock-work in the basal part of modern <span class="hlt">hydrothermal</span> <span class="hlt">system</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060042927&hterms=BIO&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DBIO','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060042927&hterms=BIO&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DBIO"><span>A deep sea <span class="hlt">Hydrothermal</span> Vent Bio-sampler for large volume in-situ filtration of <span class="hlt">hydrothermal</span> vent fluids</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Behar, Alberto; Matthews, Jaret; Venkateswaran, Kasthuri; Bruckner, James; Basic, Goran; So, Edmond; Rivadeneyra, Cesar</p> <p>2005-01-01</p> <p>This paper provides a physical description of the current <span class="hlt">system</span>, as well as a summary of the preliminary tests conducted in 2005: a pressure chamber test, a dive test in a 30 foot dive pool, and a dive operation at a <span class="hlt">hydrothermal</span> vent off the northern coast of Iceland.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=nz&pg=4&id=EJ913815','ERIC'); return false;" href="https://eric.ed.gov/?q=nz&pg=4&id=EJ913815"><span>Learning from Aotearoa New <span class="hlt">Zealand</span></span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Carter, Margie</p> <p>2010-01-01</p> <p>Last February, in search of expanded thinking, the author led a group of 20 early childhood professionals on a study tour to Aotearoa New <span class="hlt">Zealand</span> (NZ). The group included two Canadians and two Aussies, with everyone else from the United States. While they knew they had much to learn from the overall <span class="hlt">system</span> of early childhood education in NZ, the…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA600228','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA600228"><span>Positron Spectroscopy of <span class="hlt">Hydrothermally</span> Grown Actinide Oxides</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-03-27</p> <p>POSITRON SPECTROSCOPY OF <span class="hlt">HYDROTHERMALLY</span> GROWN ACTINIDE OXIDES THESIS Edward C. Schneider...United States Government. AFIT-ENP-14-M-33 POSITRON SPECTROSCOPY OF <span class="hlt">HYDROTHERMALLY</span> GROWN ACTINIDE OXIDES THESIS...33 POSITRON SPECTROSCOPY OF <span class="hlt">HYDROTHERMALLY</span> GROWN ACTINIDE OXIDES Edward C. Schneider, BS Captain, USAF Approved</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=accrual+AND+accounting&id=EJ904939','ERIC'); return false;" href="https://eric.ed.gov/?q=accrual+AND+accounting&id=EJ904939"><span>School Property Funding in New <span class="hlt">Zealand</span></span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>PEB Exchange, 2004</p> <p>2004-01-01</p> <p>New <span class="hlt">Zealand</span>'s special funding <span class="hlt">system</span> allows state schools a greater level of independence in managing their property compared to most other countries. Schools receive a fixed budget as an entitlement from the three "pots" of the educational property funding structure. The government's unique use of accrual accounting together with a new…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V13C3140I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V13C3140I"><span>Vapor Discharges On Nevado Del Ruiz During The Recent Activity: Clues On The Composition Of The Deep <span class="hlt">Hydrothermal</span> <span class="hlt">System</span> And Its Effects On Thermal Springs</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Inguaggiato, S.; Federico, C.; Chacon, Z.; Londono, J. M.; Alzate, D. M.; Gil, E.</p> <p>2015-12-01</p> <p>The Nevado del ruiz volcano (NdR, 5321m asl), one of the most active in Colombia, threatens about 600,000 people. The existence of an ice cap and several streams channeling in some main rivers increase the risk of lahars and mudflows in case of unrest, as occurred during the November 1985 eruption, which caused 20,000 casualties. The involvement of the local <span class="hlt">hydrothermal</span> <span class="hlt">system</span> has also produced in the past phreatic and phreatomagmatic activity, as in 1985 and 1989. After more than 7 years of relative stability, since 2010, the still ongoing phase of unrest has produced two small eruption in 2012, and still maintains in high levels of seismicity and SO2 degassing. In October 2013, a sampling campaign has been performed on thermal springs and streamwater, located at 2600-5000 m asl, analyzed for water chemistry and stable isotopes. By applying a model of steam-heating, based on mass and enthalpy balances, we have estimated the mass rate of steam discharging in the different steam-heated springs. The composition of the hottest thermal spring (Botero Londoño) is probably representative of a marginal part of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, having a temperature of 250°C and low salinity (Cl ~1500 mg/l), which suggest a chiefly meteoric origin, as also confirmed by the isotope composition retrieved for the <span class="hlt">hydrothermal</span> water. The vapour discharged at the steam vent "Nereidas" (3600 m asl) is hypothesised to be separated from a high-temperature hyrothermal <span class="hlt">system</span>. Based on its composition and on literature data on fluid inclusions, we have retrieved the P-T-X conditions of the deep <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, as well as its pH and fO2. The vapour feeding Nereidas would separate from a byphasic <span class="hlt">hydrothermal</span> <span class="hlt">system</span> characterised by the follow parameters: t= 315°C, P=19 MPa, NaCl= 15 %, CO2 = 9%, and similar proportion between liquid and vapour. Considering also the equilibria involving S-bearing gases and HCl, we obtain pH=2, fO2 fixed by FeO-Fe2O3 buffer, and [Cl]=12000 mg/l. Changes</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MinDe..52..197G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MinDe..52..197G"><span>Noble gases fingerprint a metasedimentary fluid source in the Macraes orogenic gold deposit, New <span class="hlt">Zealand</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goodwin, Nicholas R. J.; Burgess, Ray; Craw, Dave; Teagle, Damon A. H.; Ballentine, Chris J.</p> <p>2017-02-01</p> <p>The world-class Macraes orogenic gold deposit (˜10 Moz resource) formed during the late metamorphic uplift of a metasedimentary schist belt in southern New <span class="hlt">Zealand</span>. Mineralising fluids, metals and metalloids were derived from within the metasedimentary host. Helium and argon extracted from fluid inclusions in sulphide mineral grains (three crush extractions from one sample) have crustal signatures, with no evidence for mantle input (R/Ra = 0.03). Xenon extracted from mineralised quartz samples provides evidence for extensive interaction between fluid and maturing organic material within the metasedimentary host rocks, with 132Xe/36Ar ratios up to 200 times greater than air. Similarly, I/Cl ratios for fluids extracted from mineralised quartz are similar to those of brines from marine sediments that have interacted with organic matter and are ten times higher than typical magmatic/mantle fluids. The Macraes mineralising fluids were compositionally variable, reflecting either mixing of two different crustal fluids in the metasedimentary pile or a single fluid type that has had varying degrees of interaction with the host metasediments. Evidence for additional input of meteoric water is equivocal, but minor meteoric incursion cannot be discounted. The Macraes deposit formed in a metasedimentary belt without associated coeval magmatism, and therefore represents a purely crustal metamorphogenic end member in a spectrum of orogenic <span class="hlt">hydrothermal</span> processes that can include magmatic and/or mantle fluid input elsewhere in the world. There is no evidence for involvement of minor intercalated metabasic rocks in the Macraes mineralising <span class="hlt">system</span>. <span class="hlt">Hydrothermal</span> fluids that formed other, smaller, orogenic deposits in the same metamorphic belt have less pronounced noble gas and halogen evidence for crustal fluid-rock interaction than at Macraes, but these deposits also formed from broadly similar metamorphogenic processes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.B21B0892W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.B21B0892W"><span>Organic Acids as Hetrotrophic Energy Sources in <span class="hlt">Hydrothermal</span> <span class="hlt">Systems</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Windman, T. O.; Zolotova, N.; Shock, E.</p> <p>2004-12-01</p> <p>Many thermophilic microbes are heterotrophs, but little is known about the organic compounds present in <span class="hlt">hydrothermal</span> ecosystems. More is known about what these organisms will metabolize in lab experiments than what they do metabolize in nature. In an effort to bridge this gap, we have begun to incorporate organic analyses into ongoing research on Yellowstone <span class="hlt">hydrothermal</span> ecosystems. After filtering at least a liter of hot spring water to minimize contamination, samples were collected into sixty-milliliter serum vials containing ultra-pure phosphoric acid, sodium hydroxide, or benzalkonium chloride. Approximately 80 sites were sampled spanning temperatures from 60 to 90°C and pH values from 2 to 9. Analytical data for organic acid anions (including formate, acetate, lactate, and succinate) were obtained by ion chromatography. Preliminary results indicate that concentrations of organic acids anions range from 5 to 300 ppb. These results can be used with other field and lab data (sulfate, sulfide, nitrate, ammonia, bicarbonate, pH, hydrogen) in thermodynamic calculations to evaluate the amounts of energy available in heterotrophic reactions. Preliminary results of such calculations show that sulfate reduction to sulfide coupled to succinate oxidation to bicarbonate yields about 6 kcal per mole of electrons transferred. When formate oxidation to bicarbonate or hydrogen oxidation to water is coupled to sulfate reduction there is less energy available by approximately a factor of two. A comparison with nitrate reduction to ammonia involving succinate and/or formate oxidation reveals several similarities. Using formate to reduce nitrate can yield about as much energy as nitrate reduction with hydrogen (typically 12 to 14 kcal per mole of electrons transferred), but using succinate can yield more than twice as much energy. In fact, reduction of nitrate with succinate can provide more energy than any of the inorganic nitrate reduction reactions involving sulfur, iron</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27328679','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27328679"><span>Is the Training of Imaging Informatics Personnel in New <span class="hlt">Zealand</span> Adequate?</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hughes, Kevin; Poletti, John L</p> <p>2016-12-01</p> <p>The purpose of this study of Imaging Informatics Professionals (IIPs) in New <span class="hlt">Zealand</span> was to assess their experience, background, educational qualifications and needs for support and continuing education. The IIP role includes administration of DICOM modalities, picture archiving and communication <span class="hlt">systems</span> (PACS), radiology information <span class="hlt">systems</span> (RIS) and many additional software and hardware <span class="hlt">systems</span>, including the interface to New <span class="hlt">Zealand</span>'s nationwide individual electronic medical records (EMR) <span class="hlt">system</span>. Despite the complexity of current <span class="hlt">systems</span>, training programmes for IIPs are almost non-existent in Australasia. This cross-sectional qualitative case study used triangulated data sources, via online questionnaire, interview and critical incident analysis. Demographic data was also obtained from the questionnaire. Participants included about one third of the IIPs in New <span class="hlt">Zealand</span>. Quantitative results were summarised with descriptive statistics or frequency data. Qualitative data was assessed by iterative multi-staged thematic analysis. This study found that the IIP role is undertaken by personnel from diverse backgrounds. Most of the IIPs learned what they know from vendors and on the job. Many feel that their biggest issue is in not knowing what they do not know and therefore not having sufficient understanding of the imaging informatics field. Only one IIP had any formal certification in PACS administration. Most respondents indicated their desire for some form of additional training. The number of IIPs in New <span class="hlt">Zealand</span> healthcare is very small, so neither a formal training programme nor regulatory body is viable or justified. However, IIPs believe there is a need for education, regulation and recognition that their role is a critical component in healthcare.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GGG....17..375D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GGG....17..375D"><span>Geologic evolution of the Lost City <span class="hlt">Hydrothermal</span> Field</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Denny, Alden R.; Kelley, Deborah S.; Früh-Green, Gretchen L.</p> <p>2016-02-01</p> <p>The Lost City <span class="hlt">Hydrothermal</span> Field (LCHF) is a novel serpentinite-hosted vent field located on the Atlantis Massif southern wall. Results of 2 m resolution bathymetry, side scan, and video and still imagery, integrated with direct submersible observations provide the first high-resolution geologic map of the LCHF. These data form the foundation for an evolutionary model for the vent <span class="hlt">system</span> over the past >120,000 years. The field is located on a down-dropped bench 70 m below the summit of the massif. The bench is capped by breccia and pelagic carbonate deposits underlain by variably deformed and altered serpentinite and gabbroic rocks. <span class="hlt">Hydrothermal</span> activity is focused at the 60 m tall, 100 m across, massive carbonate edifice "Poseidon," which is venting 91°C fluid. <span class="hlt">Hydrothermal</span> activity declines south and west of the Poseidon complex and dies off completely at distances greater than 200 m. East of Poseidon, the most recent stage of <span class="hlt">hydrothermal</span> flow is characterized by egress of diffuse fluids from narrow fissures within a low-angle, anastomosing mylonite zone. South of the area of current <span class="hlt">hydrothermal</span> activity, there is evidence of two discrete previously unrecognized relict fields. Active venting sites defined by carbonate-filled fissures that cut the carbonate cap rock at the summit of the massif mark the present-day northernmost extent of venting. These spatial relationships reflect multiple stages of field development, the northward migration of venting over time, and the likely development of a nascent field at the massif summit.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRB..122.8749G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRB..122.8749G"><span>Three-Dimensional Electrical Resistivity Tomography of the Solfatara Crater (Italy): Implication for the Multiphase Flow Structure of the Shallow <span class="hlt">Hydrothermal</span> <span class="hlt">System</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gresse, Marceau; Vandemeulebrouck, Jean; Byrdina, Svetlana; Chiodini, Giovanni; Revil, André; Johnson, Timothy C.; Ricci, Tullio; Vilardo, Giuseppe; Mangiacapra, Annarita; Lebourg, Thomas; Grangeon, Jacques; Bascou, Pascale; Metral, Laurent</p> <p>2017-11-01</p> <p>The Solfatara volcano is the main degassing area of the Campi Flegrei caldera, characterized by 60 years of unrest. Assessing such renewal activity is a challenging task because <span class="hlt">hydrothermal</span> interactions with magmatic gases remain poorly understood. In this study, we decipher the complex structure of the shallow Solfatara <span class="hlt">hydrothermal</span> <span class="hlt">system</span> by performing the first 3-D, high-resolution, electrical resistivity tomography of the volcano. The 3-D resistivity model was obtained from the inversion of 43,432 resistance measurements performed on an area of 0.68 km2. The proposed interpretation of the multiphase <span class="hlt">hydrothermal</span> structures is based on the resistivity model, a high-resolution infrared surface temperature image, and 1,136 soil CO2 flux measurements. In addition, we realized 27 soil cation exchange capacity and pH measurements demonstrating a negligible contribution of surface conductivity to the shallow bulk electrical conductivity. Hence, we show that the resistivity changes are mainly controlled by fluid content and temperature. The high-resolution tomograms identify for the first time the structure of the gas-dominated reservoir at 60 m depth that feeds the Bocca Grande fumarole through a 10 m thick channel. In addition, the resistivity model reveals a channel-like conductive structure where the liquid produced by steam condensation around the main fumaroles flows down to the Fangaia area within a buried fault. The model delineates the emplacement of the main geological structures: Mount Olibano, Solfatara cryptodome, and tephra deposits. It also reveals the anatomy of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, especially two liquid-dominated plumes, the Fangaia mud pool and the Pisciarelli fumarole, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...629899R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...629899R"><span>Volcano electrical tomography unveils edifice collapse hazard linked to <span class="hlt">hydrothermal</span> <span class="hlt">system</span> structure and dynamics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique</p> <p>2016-07-01</p> <p>Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the <span class="hlt">hydrothermal</span> fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> dynamics on the hazards associated to collapse-prone altered volcanic edifices.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27457494','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27457494"><span>Volcano electrical tomography unveils edifice collapse hazard linked to <span class="hlt">hydrothermal</span> <span class="hlt">system</span> structure and dynamics.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique</p> <p>2016-07-26</p> <p>Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the <span class="hlt">hydrothermal</span> fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> dynamics on the hazards associated to collapse-prone altered volcanic edifices.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMS...180..211C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMS...180..211C"><span>Heavy metals from Kueishantao shallow-sea <span class="hlt">hydrothermal</span> vents, offshore northeast Taiwan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Xue-Gang; Lyu, Shuang-Shuang; Garbe-Schönberg, Dieter; Lebrato, Mario; Li, Xiaohu; Zhang, Hai-Yan; Zhang, Ping-Ping; Chen, Chen-Tung Arthur; Ye, Ying</p> <p>2018-04-01</p> <p>Shallow water <span class="hlt">hydrothermal</span> vents are a source of heavy metals leading to their accumulation in marine organisms that manage to live under extreme environmental conditions. This is the case at Kueishantao (KST) shallow-sea vents <span class="hlt">system</span> offshore northeast Taiwan, where the heavy metal distribution in vent fluids and ambient seawater is poorly understood. This shallow vent is an excellent natural laboratory to understand how heavy and volatile metals behave in the nearby water column and ecosystem. Here, we investigated the submarine venting of heavy metals from KST field and its impact on ambient surface seawater. The total heavy metal concentrations in the vent fluids and vertical plumes were 1-3 orders of magnitude higher than the overlying seawater values. When compared with deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>, the estimated KST end-member fluids exhibited much lower concentrations of transition metals (e.g., Fe and Mn) but comparable concentrations of toxic metals such as Pb and As. This may be attributed to the lower temperature of the KST reaction zone and transporting fluids. Most of the heavy metals (Fe, Mn, As, Y, and Ba) in the plumes and seawater mainly originated from <span class="hlt">hydrothermal</span> venting, while Cd and Pb were largely contributed by external sources such as contaminated waters (anthropogenic origin). The spatial distribution of heavy metals in the surface seawater indicated that seafloor venting impacts ambient seawater. The measurable influence of KST <span class="hlt">hydrothermal</span> activity, however, was quite localized and limited to an area of < 1 km2. The estimated annual fluxes of heavy metals emanating from the yellow KST <span class="hlt">hydrothermal</span> vent were: 430-2600 kg Fe, 24-145 kg Mn, 5-32 kg Ba, 10-60 kg As, 0.3-1.9 kg Cd, and 2-10 kg Pb. This study provides important data on heavy metals from a shallow-sea <span class="hlt">hydrothermal</span> field, and it helps to better understand the environmental impact of submarine shallow <span class="hlt">hydrothermal</span> venting.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26343509','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26343509"><span>Verification of Egg Farming <span class="hlt">Systems</span> from The Netherlands and New <span class="hlt">Zealand</span> Using Stable Isotopes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rogers, Karyne M; van Ruth, Saskia; Alewijn, Martin; Philips, Andy; Rogers, Pam</p> <p>2015-09-30</p> <p>Stable isotopes were used to develop authentication criteria of eggs laid under cage, barn, free range, and organic farming regimens from The Netherlands and New <span class="hlt">Zealand</span>. A training set of commercial poultry feeds and egg albumen from 49 poultry farms across The Netherlands was used to determine the isotopic variability of organic and conventional feeds and to assess trophic effects of these corresponding feeds and barn, free range, and organic farming regimens on corresponding egg albumen. A further 52 brands of New <span class="hlt">Zealand</span> eggs were sampled from supermarket shelves in 2008 (18), 2010 (30), and 2014 (4) to characterize and monitor changes in caged, barn, free range, and organic egg farming regimens. Stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopes of 49 commercial poultry feeds and their corresponding egg albumens reveals that Dutch poultry are fed exclusively on a plant-based feed and that it is possible to discriminate between conventional and organic egg farming regimens in The Netherlands. Similarly, it is possible to discriminate between New <span class="hlt">Zealand</span> organic and conventional egg farming regimens, although in the initial screening in 2008, results showed that some organic eggs had isotope values similar to those of conventional eggs, suggesting hens were not exclusively receiving an organic diet. Dutch and New <span class="hlt">Zealand</span> egg regimens were shown to have a low isotopic correlation between both countries, because of different poultry feed compositions. In New <span class="hlt">Zealand</span>, both conventional and organic egg whites have higher δ(15)N values than corresponding Dutch egg whites, due to the use of fishmeal or meat and bone meal (MBM), which is banned in European countries. This study suggests that stable isotopes (specifically nitrogen) show particular promise as a screening and authentication tool for organically farmed eggs. Criteria to assess truthfulness in labeling of organic eggs were developed, and we propose that Dutch organic egg whites should have a minimum </p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040089178&hterms=petroleum&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpetroleum','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040089178&hterms=petroleum&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpetroleum"><span>Phenols in <span class="hlt">hydrothermal</span> petroleums and sediment bitumen from Guaymas Basin, Gulf of California</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Simoneit, B. R.; Leif, R. N.; Ishiwatari, R.</p> <p>1996-01-01</p> <p>The aliphatic, aromatic and polar (NSO) fractions of seabed petroleums and sediment bitumen extracts from the Guaymas Basin <span class="hlt">hydrothermal</span> <span class="hlt">system</span> have been analyzed by gas chromatography and gas chromatography-mass spectrometry (free and silylated). The oils were collected from the interiors and exteriors of high temperature <span class="hlt">hydrothermal</span> vents and represent <span class="hlt">hydrothermal</span> pyrolyzates that have migrated to the seafloor by <span class="hlt">hydrothermal</span> fluid circulation. The downcore sediments are representative of both thermally unaltered and thermally altered sediments. The survey has revealed the presence of oxygenated compounds in samples with a high degree of thermal maturity. Phenols are one class of oxygenated compounds found in these samples. A group of methyl-, dimethyl- and trimethyl-isoprenoidyl phenols (C27-C29) is present in all of the seabed NSO fractions, with the methyl- and dimethyl-isoprenoidyl phenols occurring as major components, and a trimethyl-isoprenoidyl phenol as a minor component. A homologous series of n-alkylphenols (C13-C33) has also been found in the seabed petroleums. These phenols are most likely derived from the <span class="hlt">hydrothermal</span> alteration of sedimentary organic matter. The n-alkylphenols are probably synthesized under <span class="hlt">hydrothermal</span> conditions, but the isoprenoidyl phenols are probably <span class="hlt">hydrothermal</span> alteration products of natural product precursors. The suites of phenols do not appear to be useful tracers of high temperature <span class="hlt">hydrothermal</span> processes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22502934','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22502934"><span>New <span class="hlt">Zealand</span>'s post-2008 health <span class="hlt">system</span> reforms: toward re-centralization of organizational arrangements.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gauld, Robin</p> <p>2012-07-01</p> <p>The election of a centre-right government in 2008 has spawned a series of ongoing reforms to the structures for governing New <span class="hlt">Zealand</span>'s health <span class="hlt">system</span>. These mainly involve creation of a series of new national agencies designed to stimulate national coordination and centralization of some planning and service delivery functions along with performance improvements in specific areas, namely quality, information technology, service efficiency, reduction of administrative costs, and comparative-effectiveness research. This brief article provides an overview of the post-2008 reforms. It notes that, while there appears to be agreement within the health <span class="hlt">system</span> that the reforms are moving in the right direction, the new institutional arrangements are perhaps overly complicated. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020086497&hterms=grimm&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dgrimm','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020086497&hterms=grimm&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dgrimm"><span>Controls on Martian <span class="hlt">Hydrothermal</span> <span class="hlt">Systems</span>: Application to Valley Network and Magnetic Anomaly Formation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Harrison, Keith P.; Grimm, Robert E.</p> <p>2002-01-01</p> <p>Models of <span class="hlt">hydrothermal</span> groundwater circulation can quantify limits to the role of <span class="hlt">hydrothermal</span> activity in Martian crustal processes. We present here the results of numerical simulations of convection in a porous medium due to the presence of a hot intruded magma chamber. The parameter space includes magma chamber depth, volume, aspect ratio, and host rock permeability and porosity. A primary goal of the models is the computation of surface discharge. Discharge increases approximately linearly with chamber volume, decreases weakly with depth (at low geothermal gradients), and is maximized for equant-shaped chambers. Discharge increases linearly with permeability until limited by the energy available from the intrusion. Changes in the average porosity are balanced by changes in flow velocity and therefore have little effect. Water/rock ratios of approximately 0.1, obtained by other workers from models based on the mineralogy of the Shergotty meteorite, imply minimum permeabilities of 10(exp -16) sq m2 during <span class="hlt">hydrothermal</span> alteration. If substantial vapor volumes are required for soil alteration, the permeability must exceed 10(exp -15) sq m. The principal application of our model is to test the viability of <span class="hlt">hydrothermal</span> circulation as the primary process responsible for the broad spatial correlation of Martian valley networks with magnetic anomalies. For host rock permeabilities as low as 10(exp -17) sq m and intrusion volumes as low as 50 cu km, the total discharge due to intrusions building that part of the southern highlands crust associated with magnetic anomalies spans a comparable range as the inferred discharge from the overlying valley networks.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26663423','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26663423"><span>Subseafloor microbial communities in hydrogen-rich vent fluids from <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> along the Mid-Cayman Rise.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reveillaud, Julie; Reddington, Emily; McDermott, Jill; Algar, Christopher; Meyer, Julie L; Sylva, Sean; Seewald, Jeffrey; German, Christopher R; Huber, Julie A</p> <p>2016-06-01</p> <p>Warm fluids emanating from <span class="hlt">hydrothermal</span> vents can be used as windows into the rocky subseafloor habitat and its resident microbial community. Two new vent <span class="hlt">systems</span> on the Mid-Cayman Rise each exhibits novel geologic settings and distinctively hydrogen-rich vent fluid compositions. We have determined and compared the chemistry, potential energy yielding reactions, abundance, community composition, diversity, and function of microbes in venting fluids from both sites: Piccard, the world's deepest vent site, hosted in mafic rocks; and Von Damm, an adjacent, ultramafic-influenced <span class="hlt">system</span>. Von Damm hosted a wider diversity of lineages and metabolisms in comparison to Piccard, consistent with thermodynamic models that predict more numerous energy sources at ultramafic <span class="hlt">systems</span>. There was little overlap in the phylotypes found at each site, although similar and dominant hydrogen-utilizing genera were present at both. Despite the differences in community structure, depth, geology, and fluid chemistry, energetic modelling and metagenomic analysis indicate near functional equivalence between Von Damm and Piccard, likely driven by the high hydrogen concentrations and elevated temperatures at both sites. Results are compared with <span class="hlt">hydrothermal</span> sites worldwide to provide a global perspective on the distinctiveness of these newly discovered sites and the interplay among rocks, fluid composition and life in the subseafloor. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110011842','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110011842"><span>Characterization and Calibration of the 12-m Antenna in Warkworth, New <span class="hlt">Zealand</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gulyaev, Sergei; Natusch, Tim; Wilson, David</p> <p>2010-01-01</p> <p>The New <span class="hlt">Zealand</span> 12-m antenna is scheduled to start participating in regular IVS VLBI sessions from the middle of 2010. Characterization procedures and results of calibration of the New <span class="hlt">Zealand</span> 12- m radio telescope are presented, including the main reflector surface accuracy measurement, pointing model creation, and the <span class="hlt">system</span> equivalent flux density (SEFD) determination in both S and X bands. Important issues of network connectivity, co-located geodetic <span class="hlt">systems</span>, and the use of the antenna in education are also discussed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OLEB...47..413Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OLEB...47..413Z"><span>Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline <span class="hlt">Hydrothermal</span> Vents</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua</p> <p>2017-12-01</p> <p>Submarine <span class="hlt">hydrothermal</span> vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel <span class="hlt">hydrothermal</span> <span class="hlt">system</span> in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature <span class="hlt">hydrothermal</span> fluids were generated in basalt-hosted <span class="hlt">hydrothermal</span> vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent <span class="hlt">systems</span>. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline <span class="hlt">hydrothermal</span> vents in origin of life in the early ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27663450','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27663450"><span>Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline <span class="hlt">Hydrothermal</span> Vents.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua</p> <p>2017-12-01</p> <p>Submarine <span class="hlt">hydrothermal</span> vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel <span class="hlt">hydrothermal</span> <span class="hlt">system</span> in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature <span class="hlt">hydrothermal</span> fluids were generated in basalt-hosted <span class="hlt">hydrothermal</span> vents, where H 2 and CO 2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent <span class="hlt">systems</span>. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline <span class="hlt">hydrothermal</span> vents in origin of life in the early ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EP%26S...70...72T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EP%26S...70...72T"><span>Contention between supply of <span class="hlt">hydrothermal</span> fluid and conduit obstruction: inferences from numerical simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tanaka, Ryo; Hashimoto, Takeshi; Matsushima, Nobuo; Ishido, Tsuneo</p> <p>2018-05-01</p> <p>We investigate a volcanic <span class="hlt">hydrothermal</span> <span class="hlt">system</span> using numerical simulations, focusing on change in crater temperature. Both increases and decreases in crater temperature have been observed before phreatic eruptions. We follow the <span class="hlt">system</span>'s response for up to a decade after <span class="hlt">hydrothermal</span> fluid flux from the deep part of the <span class="hlt">system</span> is increased and permeability is reduced at a certain depth in a conduit. Our numerical simulations demonstrate that: (1) changes in crater temperature are controlled by the magnitude of the increase in <span class="hlt">hydrothermal</span> fluid flux and the degree of permeability reduction; (2) significant increases in <span class="hlt">hydrothermal</span> flux with decreases in permeability induce substantial pressure changes in shallow depths in the edifice and decreases in crater temperature; (3) the location of maximum pressure change differs between the mechanisms. The results of this study imply that it is difficult to predict eruptions by crater temperature change alone. One should be as wary of large eruptions when crater temperature decreases as when crater temperature increases. It is possible to clarify the implications of changes in crater temperature with simultaneous observation of ground deformation.[Figure not available: see fulltext.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.2236A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.2236A"><span>Vertical Cable Seismic Survey for <span class="hlt">Hydrothermal</span> Deposit</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.</p> <p>2012-04-01</p> <p>The vertical cable seismic is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. This type of survey is generally called VCS (Vertical Cable Seismic). Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the <span class="hlt">hydrothermal</span> deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS <span class="hlt">system</span>, including not only data acquisition hardware but data processing and analysis technique. Our first experiment of VCS surveys has been carried out in Lake Biwa, JAPAN in November 2009 for a feasibility study. Prestack depth migration is applied to the 3D VCS data to obtain a high quality 3D depth volume. Based on the results from the feasibility study, we have developed two autonomous recording VCS <span class="hlt">systems</span>. After we carried out a trial experiment in the actual ocean at a water depth of about 400m and we carried out the second VCS survey at Iheya Knoll with a deep-towed source. In this survey, we could establish the procedures for the deployment/recovery of the <span class="hlt">system</span> and could examine the locations and the fluctuations of the vertical cables at a water depth of around 1000m. The acquired VCS data clearly shows the reflections from the sub-seafloor. Through the experiment, we could confirm that our VCS <span class="hlt">system</span> works well even in the severe circumstances around the locations of seafloor <span class="hlt">hydrothermal</span> deposits. We have, however, also confirmed that the uncertainty in the locations of the source and of the hydrophones could lower the quality of subsurface image. It is, therefore, strongly necessary to develop a total survey <span class="hlt">system</span> that assures a accurate positioning and a deployment techniques</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ExG....44..215S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ExG....44..215S"><span>Geophysical techniques for low enthalpy geothermal exploration in New <span class="hlt">Zealand</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soengkono, Supri; Bromley, Chris; Reeves, Robert; Bennie, Stewart; Graham, Duncan</p> <p>2013-05-01</p> <p>Shallow warm water resources associated with low enthalpy geothermal <span class="hlt">systems</span> are often difficult to explore using geophysical techniques, mainly because the warm water creates an insufficient physical change from the host rocks to be easily detectable. In addition, often the <span class="hlt">system</span> also has a limited or narrow size. However, appropriate use of geophysical techniques can still help the exploration and further investigation of low enthalpy geothermal resources. We present case studies on the use of geophysical techniques for shallow warm water explorations over a variety of settings in New <span class="hlt">Zealand</span> (mostly in the North Island) with variable degrees of success. A simple and direct method for the exploration of warm water <span class="hlt">systems</span> is shallow temperature measurements. In some New <span class="hlt">Zealand</span> examples, measurements of near surface temperatures helped to trace the extent of deeper thermal water. The gravity method was utilised as a structural technique for the exploration of some warm water <span class="hlt">systems</span> in New <span class="hlt">Zealand</span>. Our case studies show the technique can be useful in identifying basement depths and tracing fault <span class="hlt">systems</span> associated with the occurrence of hot springs. Direct current (DC) ground resistivity measurements using a variety of electrode arrays have been the most common method for the exploration of low enthalpy geothermal resources in New <span class="hlt">Zealand</span>. The technique can be used to detect the extent of shallow warm waters that are more electrically conductive than the surrounding cold groundwater. Ground resistivity investigations using the electromagnetic (EM) techniques of audio magnetotellurics (AMT or shallow MT), controlled source audio magnetotellurics (CSAMT) and transient electromagnetic (TEM) methods have also been used. Highly conductive clays of thermal or sedimentary origin often limit the penetration depth of the resistivity techniques and can create some interpretation difficulties. Interpretation of resistivity anomalies needs to be treated in a site specific</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=WA+AND+legislation&id=EJ1024402','ERIC'); return false;" href="https://eric.ed.gov/?q=WA+AND+legislation&id=EJ1024402"><span>Collective Skill Formation: A Historical Analysis of the Least-Likely Case New <span class="hlt">Zealand</span></span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Trampusch, Christine</p> <p>2014-01-01</p> <p>This article is the first study investigating New <span class="hlt">Zealand</span>'s early legislation in apprenticeship from the perspective of historical institutionalism. It shows that, between 1865 and the 1940s, New <span class="hlt">Zealand</span>'s apprenticeship <span class="hlt">system</span> was less liberal in character than it is today, because a collective skill formation regime, involving dual training, was…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Tectp.717..433T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Tectp.717..433T"><span>The eastern Tibetan Plateau geothermal belt, western China: Geology, geophysics, genesis, and <span class="hlt">hydrothermal</span> <span class="hlt">system</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, Xianchun; Zhang, Jian; Pang, Zhonghe; Hu, Shengbiao; Tian, Jiao; Bao, Shujing</p> <p>2017-10-01</p> <p>The eastern Tibetan Plateau geothermal belt (ETGB), which is located in 98-102°E, 28-32°N, belongs to the eastern part of the Mediterranean-Himalayan geothermal belt. Recently, about 248 natural hot springs have been found in the ETGB. > 60% of these springs have temperatures of > 40 °C, and 11 springs have temperature above the local water boiling point. Using the helium isotopic data, gravity, magnetic and seismic data, we analyzed the thermal structure and the relationship between <span class="hlt">hydrothermal</span> activity and geothermal dynamics of the ETGB. Results show that: (1) the 248 springs can be divided into three geothermal fields: Kangding-Luhuo geothermal field (KGF), Litang-Ganzi geothermal field (LGF) and Batang-Xiangcheng geothermal field (BGF). The BGF and LGF have hot crust and warm mantle, and are characterized by the higher heat flux (66.26 mW/m2), and higher ratios of crust-derived heat flux to total flux (47.46-60.62%). The KGF has cool crust and hot mantle, and is characterized by the higher heat flux and lower Qc/Qm; (2) there is a relatively 4-6 m higher gravimetric geoid anomaly dome which is corresponding with the ETGB. And in <span class="hlt">hydrothermal</span> activity areas of the BGF and LGF, there is a northwest - southeast-trending tensile stress area and the upper-middle crust uplift area; (3) an abnormal layer exists in the middle-lower crust at a depth of 13-30 km beneath the ETGB, and this layer is 8-10 km thick and is characterized by lower velocity (Vp < 5.8 km/s, Vs < 3.2 km/s), high Poisson's ratio (> 2.5), high conductivity ( 10 Ω·m) and high temperature (850-1000 °C). Finally, based on the heat source and geological and geophysical background, we propose Kangding-type and Batang-type <span class="hlt">hydrothermal</span> <span class="hlt">system</span> models in the ETGB.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006IAUSS...5E..53G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006IAUSS...5E..53G"><span>Collaboration and Development of Radio Astronomy in Australasia and South-Pacific Region: New <span class="hlt">Zealand</span> Perspectives</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gulyaev, S.; Natusch, T.</p> <p>2006-08-01</p> <p>Radio telescopes in the Asia-Pacific region form a natural network for VLBI observations, similar to the very successful networks in North America (Network Users Group) and Europe (European VLBI Network). New <span class="hlt">Zealand</span>'s VLBI facility, which we are developing since 2005, has the potential to strengthen the Asian-Pacific VLBI network and its role in astronomy, geodesy and geoscience. It will positively influence regional and international activities in geoscience and geodesy that advance New <span class="hlt">Zealand</span>'s national interests. A self-contained radio astronomy <span class="hlt">system</span> for VLBI, including a 1.658 GHz (centre frequency), 16 MHz bandwidth RF <span class="hlt">system</span> (feed and downconversion <span class="hlt">system</span> locked to a Rubidium maser and GPS clock), an 8-bit sampler/digitisation <span class="hlt">system</span>, and a disk-based recording <span class="hlt">system</span> built around a commodity PC was developed in New <span class="hlt">Zealand</span> Centre for Radiophysics and Space Research. This was designed as a portable <span class="hlt">system</span> for use on various radio telescopes. A number of Trans-Tasman tests has been conducted in 2005-2006 between the CRSR <span class="hlt">system</span> installed on a 6 metre dish located in Auckland and the Australia Telescope Compact Array in Narrabri, Australia. This work has been successful, with fringes located from the recorded data and high resolution image of the quasar PKS1921-231 obtained. Experiments were recently conducted with Japan; new tests are planned with Korea and Fiji. Plans have been made to build a new 16.5 m antenna in New <span class="hlt">Zealand</span>'s North Island and to upgrade an 11 m dish in the South Island. A possible future of New <span class="hlt">Zealand</span>'s participation in the SKA is being discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4757712','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4757712"><span>The Guaymas Basin Hiking Guide to <span class="hlt">Hydrothermal</span> Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface <span class="hlt">Hydrothermal</span> Circulation</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Teske, Andreas; de Beer, Dirk; McKay, Luke J.; Tivey, Margaret K.; Biddle, Jennifer F.; Hoer, Daniel; Lloyd, Karen G.; Lever, Mark A.; Røy, Hans; Albert, Daniel B.; Mendlovitz, Howard P.; MacGregor, Barbara J.</p> <p>2016-01-01</p> <p>The <span class="hlt">hydrothermal</span> mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface <span class="hlt">hydrothermal</span> circulation patterns. In this overview, we document the most frequently visited features of this <span class="hlt">hydrothermal</span> area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and <span class="hlt">hydrothermal</span> sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these <span class="hlt">hydrothermal</span> features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region. PMID:26925032</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21676324','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21676324"><span>Ethics, kawa, and the constitution: transformation of the <span class="hlt">system</span> of ethical review in Aotearoa New <span class="hlt">Zealand</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tupara, Hope</p> <p>2011-07-01</p> <p>New <span class="hlt">Zealand</span> is a South Pacific nation with a history of British colonization since the 19th century. It has a population of over four million people and, like other indigenous societies such as in Australia and Canada, Māori are now a minority in their land, and their experience of colonization is that of being dominated by settlers to the detriment of their own <span class="hlt">systems</span> of society.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1977/0060/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1977/0060/report.pdf"><span>A theoretical analysis of fluid flow and energy transport in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Faust, Charles R.; Mercer, James W.</p> <p>1977-01-01</p> <p>A mathematical derivation for fluid flow and energy transport in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> is presented. Specifically, the mathematical model describes the three-dimensional flow of both single- and two-phase, single-component water and the transport of heat in porous media. The derivation begins with the point balance equations for mass, momentum, and energy. These equations are then averaged over a finite volume to obtain the macroscopic balance equations for a porous medium. The macroscopic equations are combined by appropriate constitutive relationships to form two similified partial differential equations posed in terms of fluid pressure and enthalpy. A two-dimensional formulation of the simplified equations is also derived by partial integration in the vertical dimension. (Woodard-USGS)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1761883','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1761883"><span>Electronic Medical Consultation: A New <span class="hlt">Zealand</span> Perspective</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Brebner, Campbell; Jones, Raymond; Marshall, Wendy; Parry, Graham</p> <p>2001-01-01</p> <p>Electronic medical consultation is available worldwide through access to the World Wide Web (WWW). This article outlines a research study on the adoption of electronic medical consultation as a means of health delivery. It focuses on the delivery of healthcare specifically for New <span class="hlt">Zealanders</span>, by New <span class="hlt">Zealanders</span>. It is acknowledged that the WWW is a global marketplace and that it is therefore difficult to identify New <span class="hlt">Zealanders</span>' use of such a global market; nevertheless, we attempt to provide a New <span class="hlt">Zealand</span> perspective on electronic medical consultation. PMID:11720955</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28088716','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28088716"><span>Unveiling the transformation and bioavailability of dissolved organic matter in contrasting <span class="hlt">hydrothermal</span> vents using fluorescence EEM-PARAFAC.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Liyang; Zhuang, Wan-E; Chen, Chen-Tung Arthur; Wang, Bing-Jye; Kuo, Fu-Wen</p> <p>2017-03-15</p> <p>The submarine <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> are extreme environments where active cycling of dissolved organic matter (DOM) may occur. However, little is known about the optical properties and bioavailability of <span class="hlt">hydrothermal</span> DOM, which could provide valuable insights into its transformation processes and biogeochemical reactivity. The quantity, quality, and bioavailability of DOM were investigated for four very different <span class="hlt">hydrothermal</span> vents east of Taiwan, using dissolved organic carbon (DOC), absorption spectroscopy, and fluorescence excitation-emission matrices-parallel factor analysis (EEM-PARAFAC). The DOC and absorption coefficient a 280 were both lower in the two <span class="hlt">hydrothermal</span> vents off the Orchid Island and on the Green Island than in the surrounding seawater and the two vents off the Kueishantao Island, indicating effective removals of DOM in the former two <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> owing to possible adsorption/co-precipitation and thermal degradation respectively. The four <span class="hlt">hydrothermal</span> DOM showed notable differences in the absorption spectral slope S 275-295 , humification index HIX, biological index BIX, EEM spectra, and the relative distributions of seven PARAFAC components. The results demonstrated a high diversity of chemical composition and transformation history of DOM under contrasting <span class="hlt">hydrothermal</span> conditions. The little change in the <span class="hlt">hydrothermal</span> DOC after 28-day microbial incubations indicated a low bioavailability of the bulk DOM, and different PARAFAC components showed contrasting bioavailability. The results have profound implications for understanding the biogeochemical cycling and environmental effects of <span class="hlt">hydrothermal</span> DOM in the marine environments. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/143826-redox-control-gas-compositions-philippine-volcanic-hydrothermal-systems','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/143826-redox-control-gas-compositions-philippine-volcanic-hydrothermal-systems"><span>Redox control of gas compositions in Philippine volcanic-<span class="hlt">hydrothermal</span> <span class="hlt">systems</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Giggenbach, W.F.</p> <p>1993-10-01</p> <p>Gas samples from five volcanic-<span class="hlt">hydrothermal</span> <span class="hlt">systems</span> in the Philippines were analyzed for CO{sub 2}, H{sub 2}S, NH{sub 3}, H{sub 2}, He, Ne, Ar, N{sub 2}, CH{sub 4} and CO. Even in <span class="hlt">systems</span> with sulfate minerals as common components of alteration assemblages, indicating highly immature, oxidizing conditions at depth, the redox potential governing the concentrations of the reactive gases CO{sub 2}, H{sub 2}S, H{sub 2}, CH{sub 4} and CO approaches closely that expected for attainment of equilibrium with rock in more mature, reduced <span class="hlt">systems</span>. The finding suggests that overall fluid compositions reflect more closely redox conditions established at the advancing frontmore » of interaction with primary rock rather than those of equilibrium with the set of secondary minerals left behind. With the exception of CO and NH{sub 3}, the close agreement in the compositions of gas samples, taken from pools and deep wells indicates that the secondary processes have only a slight effect on the vapors during their rise from drilled depths (1.8 km) to the surface and that samples from natural features may be taken to be representative of redox conditions at drilled depths.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026697','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026697"><span>Massive sulfide deposition and trace element remobilization in the Middle Valley sediment-hosted <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, northern Juan de Fuca Rdge</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Houghton, J.L.; Shanks, Wayne C.; Seyfried, W.E.</p> <p>2004-01-01</p> <p>The Bent Hill massive sulfide deposit and ODP Mound deposit in Middle Valley at the northernmost end of the Juan de Fuca Ridge are two of the largest modern seafloor <span class="hlt">hydrothermal</span> deposits yet explored. Trace metal concentrations of sulfide minerals, determined by laser-ablation ICP-MS, were used in conjunction with mineral paragenetic studies and thermodynamic calculations to deduce the history of fluid-mineral reactions during sulfide deposition. Detailed analyses of the distribution of metals in sulfides indicate significant shifts in the physical and chemical conditions responsible for the trace element variability observed in these sulfide deposits. Trace elements (Mn, Co, Ni, As, Se, Ag, Cd, Sb, Pb, and Bi) analyzed in a representative suite of 10 thin sections from these deposits suggest differences in conditions and processes of <span class="hlt">hydrothermal</span> alteration resulting in mass transfer of metals from the center of the deposits to the margins. Enrichments of some trace metals (Pb, Sb, Cd, Ag) in sphalerite at the margins of the deposits are best explained by dissolution/reprecipitation processes consistent with secondary remineralization. Results of reaction-path models clarify mechanisms of mass transfer during remineralization of sulfide deposits due to mixing of <span class="hlt">hydrothermal</span> fluids with seawater. Model results are consistent with patterns of observed mineral paragenesis and help to identify conditions (pH, redox, temperature) that may be responsible for variations in trace metal concentrations in primary and secondary minerals. Differences in trace metal distributions throughout a single deposit and between nearby deposits at Middle Valley can be linked to the history of metal mobilization within this active <span class="hlt">hydrothermal</span> <span class="hlt">system</span> that may have broad implications for sulfide ore formation in other sedimented and unsedimented ridge <span class="hlt">systems</span>. ?? 2004 Elsevier Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JIEIB..95..319B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JIEIB..95..319B"><span>Artificial Bee Colony Optimization for Short-Term <span class="hlt">Hydrothermal</span> Scheduling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Basu, M.</p> <p>2014-12-01</p> <p>Artificial bee colony optimization is applied to determine the optimal hourly schedule of power generation in a <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. Artificial bee colony optimization is a swarm-based algorithm inspired by the food foraging behavior of honey bees. The algorithm is tested on a multi-reservoir cascaded hydroelectric <span class="hlt">system</span> having prohibited operating zones and thermal units with valve point loading. The ramp-rate limits of thermal generators are taken into consideration. The transmission losses are also accounted for through the use of loss coefficients. The algorithm is tested on two <span class="hlt">hydrothermal</span> multi-reservoir cascaded hydroelectric test <span class="hlt">systems</span>. The results of the proposed approach are compared with those of differential evolution, evolutionary programming and particle swarm optimization. From numerical results, it is found that the proposed artificial bee colony optimization based approach is able to provide better solution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16379529','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16379529"><span>Abiotic synthesis of organic compounds from carbon disulfide under <span class="hlt">hydrothermal</span> conditions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rushdi, Ahmed I; Simoneit, Bernd R T</p> <p>2005-12-01</p> <p>Abiotic formation of organic compounds under <span class="hlt">hydrothermal</span> conditions is of interest to bio, geo-, and cosmochemists. Oceanic sulfur-rich <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> have been proposed as settings for the abiotic synthesis of organic compounds. Carbon disulfide is a common component of magmatic and hot spring gases, and is present in marine and terrestrial <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. Thus, its reactivity should be considered as another carbon source in addition to carbon dioxide in reductive aqueous thermosynthesis. We have examined the formation of organic compounds in aqueous solutions of carbon disulfide and oxalic acid at 175 degrees C for 5 and 72 h. The synthesis products from carbon disulfide in acidic aqueous solutions yielded a series of organic sulfur compounds. The major compounds after 5 h of reaction included dimethyl polysulfides (54.5%), methyl perthioacetate (27.6%), dimethyl trithiocarbonate (6.8%), trithianes (2.7%), hexathiepane (1.4%), trithiolanes (0.8%), and trithiacycloheptanes (0.3%). The main compounds after 72 h of reaction consisted of trithiacycloheptanes (39.4%), pentathiepane (11.6%), tetrathiocyclooctanes (11.5%), trithiolanes (10.6%), tetrathianes (4.4%), trithianes (1.2%), dimethyl trisulfide (1.1%), and numerous minor compounds. It is concluded that the abiotic formation of aliphatic straight-chain and cyclic polysulfides is possible under <span class="hlt">hydrothermal</span> conditions and warrants further studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP21A1249M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP21A1249M"><span>600 kyr of <span class="hlt">Hydrothermal</span> Activity on the Cleft Segment of the Juan de Fuca Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Middleton, J. L.; Mukhopadhyay, S.; Langmuir, C. H.; Costa, K.; McManus, J. F.; Katz, R. F.; Huybers, P. J.; Winckler, G.; Li, Y.</p> <p>2017-12-01</p> <p>Pressure fluctuations caused by glacially driven variations in sea level may modulate magmatic and <span class="hlt">hydrothermal</span> output at submarine volcanic centers, with falling sea level driving increased volcanic activity. In turn, glacially paced changes in submarine volcanism could induce globally synchronous variations in the delivery of bioavailable iron and CO2 from mid-ocean ridges and thus provide solid-Earth feedbacks into the climate <span class="hlt">system</span>. While evaluation of submarine volcanic output on orbital-timescales is technically challenging, near-ridge sediment cores hosting <span class="hlt">hydrothermal</span> plume precipitates provide continuous, spatially integrated, and datable records to investigate the long-term behavior of <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. We will present new sedimentary records of <span class="hlt">hydrothermal</span> variability spanning the past 600 kyr on the Cleft Segment of the Juan de Fuca Ridge in the Northeast Pacific. As an intermediate spreading-rate ridge, the Juan de Fuca Ridge is hypothesized to be particularly sensitive to sea level forcing at the Milankovitch frequencies of Pleistocene glacial cycles. Thus, the new records can be used to examine the connection between sea level and <span class="hlt">hydrothermal</span> activity over multiple glacial cycles. <span class="hlt">Hydrothermal</span> input is determined from iron and copper, with a titanium-based correction for lithogenic contributions. Sedimentary fluxes are then constrained using excess thorium-230 and extraterrestrial helium-3 as constant flux proxies. Preliminary results indicate 10-fold changes in <span class="hlt">hydrothermal</span> iron and copper fluxes over the past 600 kyr and suggest a quasiperiodic variability in <span class="hlt">hydrothermal</span> deposition on 100 to 120 kyr cycles. Comparison of the Juan de Fuca record with model predictions for an intermediate spreading ridge forced by Pleistocene glacial cycles finds frequent coincidence between predicted positive anomalies in magmatic output and observed peaks in <span class="hlt">hydrothermal</span> deposition. This work encourages the continued exploration of the relationship between</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914524P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914524P"><span>Revisiting the Euganean Geothermal <span class="hlt">System</span> (NE Italy) - insights from large scale <span class="hlt">hydrothermal</span> modelling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pola, Marco; Cacace, Mauro; Fabbri, Paolo; Piccinini, Leonardo; Zampieri, Dario; Dalla Libera, Nico</p> <p>2017-04-01</p> <p>As one of the largest and most extensive utilized geothermal <span class="hlt">system</span> in northern Italy, the Euganean Geothermal <span class="hlt">System</span> (EGS, Veneto region, NE Italy) has long been the subject of still ongoing studies. <span class="hlt">Hydrothermal</span> waters feeding the <span class="hlt">system</span> are of meteoric origin and infiltrate in the Veneto Prealps, to the north of the main geothermal area. The waters circulate for approximately 100 km in the subsurface of the central Veneto, outflowing with temperatures from 65°C to 86°C to the southwest near the cities of Abano Terme and Montegrotto Terme. The naturally emerging waters are mainly used for balneotherapeutic purposes, forming the famous Euganean spa district. This preferential outflow is thought to have a relevant structural component producing a high secondary permeability localized within an area of limited extent (approx. 25 km2). This peculiar structure is associated with a local network of fractures resulting from transtentional tectonics of the regional Schio-Vicenza fault <span class="hlt">system</span> (SVFS) bounding the Euganean Geothermal Field (EGF). In the present study, a revised conceptual <span class="hlt">hydrothermal</span> model for the EGS based on the regional hydrogeology and structural geology is proposed. Particularly, this work aims to quantify: (1) the role of the regional SVFS, and (2) the impact of the high density local fractures mesh beneath the EGF on the regional-to-local groundwater flow circulation at depths and its thermal configuration. 3D coupled flow and heat transport numerical simulations inspired by the newly developed conceptual model are carried out to properly quantify the results from these interactions. Consistently with the observations, the obtained results provide indication for temperatures in the EGF reservoir being higher than in the surrounding areas, despite a uniform basal regional crustal heat inflow. In addition, they point to the presence of a structural causative process for the localized outflow, in which deep-seated groundwater is preferentially</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.V44A..02M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.V44A..02M"><span>Discoveries From the Cross-Disciplinary, Multi-Institutional South Seas Expedition from Hawaii to New <span class="hlt">Zealand</span> and Back</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malahoff, A.; Wiltshire, J. C.; Smith, J. R.</p> <p>2005-12-01</p> <p>The Hawaii Undersea Research Laboratory organised an international research team to explore the chemistry, geology, biology, <span class="hlt">hydrothermal</span> venting processes, mineral deposition, and biodiversity of seamounts extending south from Hawaii to New <span class="hlt">Zealand</span>, including the submarine volcanoes of the Tonga-Kermadec Island Arc. Research team members came from a Consortium comprising of principal investigators from the NOAA Pacific Marine Environment Lab and VENTS program, the Inst of Geological and Nuclear Sciences and the National Inst of Water and Atmospheric Research both of New <span class="hlt">Zealand</span>, the Univ of Kiel in Germany, the Univ of Mississippi, Univ of Hawaii, the NOAA Marine Fisheries Service, Scripps Institution of Oceanography, Univ of Oregon, Oregon State Univ, Stanford Univ, and the U.S. Fish and Wildlife Service. Funding came from the member organizations of the Consortium and the NOAA Office of Ocean Exploration and National Undersea Research Program. The expedition left Hawaii on 18 March 2005 and returned on 05 August, aboard the R/V Ka`imikai-o-Kanaloa with the submersibles Pisces IV and Pisces V and the ROV RCV-150. Sixty-one science dives were executed during the eight legs of the expedition. Twelve active volcanoes in the Samoa to New <span class="hlt">Zealand</span> legs, one in the Samoan hot spot chain and the flanks of five islands and atolls on the legs between Samoa and Hawaii were investigated. Hundreds of specimens of new and unusual marine life, corals and other benthic organisms, extremophile micro- and macro-organisms, water samples for chemical analysis, polymetallic sulfides and rock samples were collected during the expedition. Unusual processes were observed at the Kermadec submarine volcanoes, including the oozing of liquid sulphur onto the seafloor and profuse carbon dioxide venting into seawater. Extensive submarine <span class="hlt">hydrothermal</span> venting, black smoker activity and extraordinary chimney formations were studied in the caldera of Brothers Volcano. In addition, extensive</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15344934','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15344934"><span>Low archaeal diversity linked to subseafloor geochemical processes at the Lost City <span class="hlt">Hydrothermal</span> Field, Mid-Atlantic Ridge.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schrenk, Matthew O; Kelley, Deborah S; Bolton, Sheryl A; Baross, John A</p> <p>2004-10-01</p> <p>The recently discovered Lost City <span class="hlt">Hydrothermal</span> Field (LCHF) represents a new type of submarine <span class="hlt">hydrothermal</span> <span class="hlt">system</span> driven primarily by exothermic serpentinization reactions in ultramafic oceanic crust. Highly reducing, alkaline <span class="hlt">hydrothermal</span> environments at the LCHF produce considerable quantities of hydrogen, methane and organic molecules through chemo- and biosynthetic reactions. Here, we report the first analyses of microbial communities inhabiting carbonate chimneys awash in warm, high pH fluids at the LCHF and the predominance of a single group of methane-metabolizing Archaea. The predominant phylotype, related to the Methanosarcinales, formed tens of micrometre-thick biofilms in regions adjacent to <span class="hlt">hydrothermal</span> flow. Exterior portions of active structures harboured a diverse microbial community composed primarily of filamentous Eubacteria that resembled sulphide-oxidizing species. Inactive samples, away from regions of <span class="hlt">hydrothermal</span> flow, contained phylotypes related to pelagic microorganisms. The abundance of organisms linked to the volatile chemistry at the LCHF hints that similar metabolic processes may operate in the subseafloor. These results expand the range of known geological settings that support biological activity to include submarine <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> that are not dependent upon magmatic heat sources.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.479..120C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.479..120C"><span><span class="hlt">Hydrothermal</span> deposition on the Juan de Fuca Ridge over multiple glacial-interglacial cycles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Costa, Kassandra M.; McManus, Jerry F.; Middleton, Jennifer L.; Langmuir, Charles H.; Huybers, Peter J.; Winckler, Gisela; Mukhopadhyay, Sujoy</p> <p>2017-12-01</p> <p><span class="hlt">Hydrothermal</span> <span class="hlt">systems</span> play an important role in modern marine chemistry, but little is known about how they may have varied on 100,000 year timescales. Here we present high-resolution records of non-lithogenic metal fluxes within sediment cores covering the last 500,000 years of <span class="hlt">hydrothermal</span> deposition on the flanks of the Juan de Fuca Ridge. Six adjacent, gridded cores were analyzed by x-ray fluorescence for Fe, Mn, and Cu concentrations, corrected for lithogenic inputs with Ti, and normalized to excess initial 230Th to generate non-lithogenic metal flux records that provide the longest orbitally resolved reconstructions of <span class="hlt">hydrothermal</span> activity currently available. Fe fluxes vary with global sea level over the last two glacial cycles, suggesting higher <span class="hlt">hydrothermal</span> deposition during interglacial periods. The observed negative relationship between Fe and Mn indicates variable sediment redox conditions and diagenetic remobilization of sedimentary Mn over time. Thus, Mn fluxes may not be a reliable indicator for <span class="hlt">hydrothermal</span> activity in the Juan de Fuca Ridge sediment cores. Cu fluxes show substantial high-frequency variability that may be linked to changes in vent temperature related to increased magmatic production during glacial periods. Deglacial <span class="hlt">hydrothermal</span> peaks on the Juan de Fuca Ridge are consistent with previously published records from the Mid-Atlantic Ridge and the East Pacific Rise. Moreover, on the Juan de Fuca Ridge, the deglacial peaks in <span class="hlt">hydrothermal</span> activity are followed by relatively high <span class="hlt">hydrothermal</span> fluxes throughout the ensuing interglacial periods relative to the previous glacial period.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS13A1707T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS13A1707T"><span>ESR dating of submarine <span class="hlt">hydrothermal</span> activities using barite in sulfide deposition</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toyoda, S.; Fujiwara, T.; Ishibashi, J.; Isono, Y.; Uchida, A.; Takamasa, A.; Nakai, S.</p> <p>2012-12-01</p> <p>The temporal change of submarine <span class="hlt">hydrothermal</span> activities has been an important issue in the aspect of the evolution of <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> which is related with ore formation (Urabe, 1995) and biological <span class="hlt">systems</span> sustained by the chemical species arising from <span class="hlt">hydrothermal</span> activities (Macdonald et al., 1980). Determining the ages of the <span class="hlt">hydrothermal</span> deposit will provide essential information on such studies. Dating methods using disequilibrium between radioisotopes such as U-Th method (e.g. You and Bickle, 1998), 226}Ra-{210Pb and 228}Ra-{228Th method (e.g. Noguchi et al., 2011) have been applied to date submarine <span class="hlt">hydrothermal</span> deposits. ESR (electron spin resonance) dating method is commonly applied to fossil teeth, shells, and quartz of Quaternay period where the natural accumulated dose is obtained from the intensities of the ESR signals which are created by natural radiation. The natural dose is divided by the dose rate to the mineral/sample to deduce the age. Okumura et al., (2010) made the first practical application of ESR (electron spin resonance) dating technique to a sample of submarine <span class="hlt">hydrothermal</span> barite (BaSO4) to obtain preliminary ages, where Kasuya et al. (1991) first pointed out that barite can be used for ESR dating. Knowing that ESR dating of barite is promising, in this paper, we will present how we have investigated each factor that contributes ESR dating of barite in submarine <span class="hlt">hydrothermal</span> sulfide deposition. (1) The best ESR condition for measuring the SO3- signal in barite is with the microwave power of 1mW and modulation amplitude of 0.1mT. (2) As results of heating experiments, the signal was found to be stable for the dating age range of several thousands. (3) 226Ra replacing Ba in barite is the source of the radiation. The amount of radioactive elements in sulfide mineral surrounding barite is negligible. (4) The external radiation from the sea water is negligible even in the submarine <span class="hlt">hydrothermal</span> area where the radiation level is much</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013OLEB...43...99C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013OLEB...43...99C"><span>Survivability and Abiotic Reactions of Selected Amino Acids in Different <span class="hlt">Hydrothermal</span> <span class="hlt">System</span> Simulators</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chandru, Kuhan; Imai, Eiichi; Kaneko, Takeo; Obayashi, Yumiko; Kobayashi, Kensei</p> <p>2013-04-01</p> <p>We tested the stability and reaction of several amino acids using <span class="hlt">hydrothermal</span> <span class="hlt">system</span> simulators: an autoclave and two kinds of flow reactors at 200-250 °C. This study generally showed that there is a variation in the individual amino acids survivability in the simulators. This is mainly attributed to the following factors; heat time, cold quenching exposure, metal ions and also silica. We observed that, in a rapid heating flow reactor, high aggregation and/or condensation of amino acids could occur even during a heat exposure of 2 min. We also monitored their stability in a reflow-type of simulator for 120 min at 20 min intervals. The non-hydrolyzed and hydrolyzed samples for this <span class="hlt">system</span> showed a similar degradation only in the absence of metal ions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=fox&pg=2&id=EJ1175599','ERIC'); return false;" href="https://eric.ed.gov/?q=fox&pg=2&id=EJ1175599"><span>Performing Manaaki and New <span class="hlt">Zealand</span> Refugee Theatre</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Hazou, Rand T.</p> <p>2018-01-01</p> <p>In September 2015, and in response to the Syrian refugee crisis, there were widespread calls in New <span class="hlt">Zealand</span> urging the Government to raise its annual Refugee Quota. Maori Party co-leader Marama Fox argued that New <span class="hlt">Zealand</span> could afford to take on more refugees as part of its global citizenship and suggested that New <span class="hlt">Zealand</span>'s policy might be shaped…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950024444','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950024444"><span>Laboratory simulated <span class="hlt">hydrothermal</span> alteration of sedimentary organic matter from Guaymas Basin, Gulf of California. Ph.D. Thesis</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Leif, Roald N.</p> <p>1993-01-01</p> <p>High temperature alteration of sedimentary organic matter associated with marine <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> involves complex physical and chemical processes that are not easily measured in most natural <span class="hlt">systems</span>. Many of these processes can be evaluated indirectly by examining the geochemistry of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> in the laboratory. In this investigation, an experimental organic geochemical approach to studying pyrolysis of sedimentary organic matter is applied to the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> in the Guaymas Basin, Gulf of California. A general survey of <span class="hlt">hydrothermal</span> oils and extractable organic matter (bitumen) in <span class="hlt">hydrothermally</span> altered sediments identified several homologous series of alkanones associated with a high temperature <span class="hlt">hydrothermal</span> origin. The alkanones range in carbon number from C11 to C30 with no carbon number preference. Alkan-2-ones are in highest concentrations, with lower amounts of 3-, 4-, 5- (and higher) homologs. The alkanones appear to be pyrolysis products synthesized under extreme <span class="hlt">hydrothermal</span> conditions. Hydrous pyrolysis and confinement pyrolysis experiments were performed to simulate thermally enhanced diagenetic and catagenetic changes in the immature sedimentary organic matter. The extent of alteration was measured by monitoring the n-alkanes, acyclic isoprenoids, steroid and triterpenoid biomarkers, polycyclic aromatic hydrocarbons and alkanones. The results were compared to bitumen extracts from sediments which have been naturally altered by a sill intrusion and accompanied <span class="hlt">hydrothermal</span> fluid flow. These pyrolysis experiments duplicated many of the organic matter transformations observed in the natural <span class="hlt">system</span>. Full hopane and sterane maturation occurred after 48 hr in experiments at 330 deg C with low water/rock mass ratios (0.29). A variety of radical and ionic reactions are responsible for the organic compound conversions which occur under extreme <span class="hlt">hydrothermal</span> conditions. Short duration pyrolysis experiments revealed that a portion of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS41C1962L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS41C1962L"><span>High-resolution Topography of PACMANUS and DESMOS <span class="hlt">Hydrothermal</span> Fields in the Manus Basin through ROV "FAXIAN"</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luan, Z.; Ma, X.; Yan, J.; Zhang, X.; Zheng, C.; Sun, D.</p> <p>2016-12-01</p> <p>High-resolution topography can help us deeply understand the seabed and related geological processes (e.g. <span class="hlt">hydrothermal</span>/cold spring <span class="hlt">systems</span>) in the deep sea areas. However, such studies are rare in China due to the limit of deep-sea detection technology. Here, we report the advances of the application of ROV in China and the newly measured high-resolution topographical data in PACMANUS and DESMOS <span class="hlt">hydrothermal</span> fields. In June 2015, the ROV "FAXIAN" with a multibeam <span class="hlt">system</span> (Kongsberg EM2040) was deployed to measure the topography of PACMANUS and DESMOS <span class="hlt">hydrothermal</span> fields in the Manus basin. A composite positioning <span class="hlt">system</span> on the ROV provided long baseline (LBL) navigation and positioning during measurements, giving a high positioning accuracy (better than 0.5m). The raw bathymetric data obtained were processed using CARIS HIPS (version 8.1). Based on the high-resolution data, we can describe the topographical details of the PACMANUS and DESMOS <span class="hlt">hydrothermal</span> fields. High-resolution terrain clearly shows the detailed characters of the topography in the PACMANUS <span class="hlt">hydrothermal</span> field, and some cones are corresponding to the pre discovered <span class="hlt">hydrothermal</span> points and volcanic area. Most <span class="hlt">hydrothermal</span> points in the PACMANUS <span class="hlt">hydrothermal</span> field mainly developed on the steep slopes with a gradient exceeding 30 °. In contrast, the DESMOS field is a caldera that is approximately 250 m deep in the center with an E-W diameter of approximately1 km and a N-S diameter of approximately 2 km. The seafloor is much steeper on the inner side of the circular fracture. Two highlands occur in the northern and the southern flanks of the caldera. Video record indicated that pillow lava, sulfide talus, breccia, anhydrite, outcrops, and sediment all appeared in the DESMOS field. This is the first time for the ROV "FAXIAN" to be used in near-bottom topography measurements in the <span class="hlt">hydrothermal</span> fields, opening a window of deep-sea researches in China.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/659187-new-zealand-geothermal-wairakei-years','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/659187-new-zealand-geothermal-wairakei-years"><span>New <span class="hlt">Zealand</span> geothermal: Wairakei -- 40 years</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>NONE</p> <p></p> <p>This quarterly bulletin highlights the geothermal developments in New <span class="hlt">Zealand</span> with the following articles: A brief history of the Wairakei geothermal power project; Geothermal resources in New <span class="hlt">Zealand</span> -- An overview; Domestic and commercial heating and bathing -- Rotorua area; Kawerau geothermal development: A case study; Timber drying at Kawerau; Geothermal greenhouses at Kawerau; Drying of fibrous crops using geothermal steam and hot water at the Taupo Lucerne Company; Prawn Park -- Taupo, New <span class="hlt">Zealand</span>; Geothermal orchids; Miranda hot springs; and Geothermal pipeline.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000DPS....32.6505T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000DPS....32.6505T"><span>Potential for <span class="hlt">Hydrothermal</span> Deposits in Large Martian Impact Craters</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thorsos, I. E.; Newsom, H. E.; Davies, A.</p> <p>2000-12-01</p> <p>Investigation of environments on Mars favorable for pre-biotic chemistry or primitive life is a goal of current strategy. Deposits left by <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> on Mars are high priority targets. Impact craters larger than 50 km in diameter should have breached local aquifers and provided sufficient heat to power <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. The amount of heat in craters depends on the size of the melt sheet and uplifted basement forming the central peak. The volume of melt is estimated using scaling relationships (Cintala & Grieve, 1998). The central uplift originates below the transient crater cavity and has a stratigraphic uplift of 1/10 the final crater diameter (Melosh & Ivanov, 1999). The central uplift's temperature with depth profile is estimated using a cylindrical "plug" model and adding the enthalpy profile at the time of maximum impactor penetration (O'Keefe & Ahrens, 1994) to the ambient thermal gradient. The heat from the two sources is estimated over a range of crater diameters. The next phase of this work is to model the longevity and extent of the <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. Cintala, H. J. & R. A. F. Grieve, Meteor. and Plan. Sci. 33, 889-912, 1998. Melosh, H. J. & B. A. Ivanov, Annual Rev. Earth Planet. Sci., 385-415, 1999. O'Keefe, J. D. & T. J. Ahrens, Geol. Soc. Amer. Spec. Paper 293, 103-109, 1994.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16498481','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16498481"><span>Student debt amongst junior doctors in New <span class="hlt">Zealand</span>; part 2: effects on intentions and workforce.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moore, James; Gale, Jesse; Dew, Kevin; Simmers, Don</p> <p>2006-02-17</p> <p>To assess the effects of student debt on the intentions of first-year house officers in relation to location of practice and vocation, and to evaluate the relative importance of incentives to remain practising in New <span class="hlt">Zealand</span> (NZ). A questionnaire sent to all 296 New <span class="hlt">Zealand</span>-graduate first-year house officers practicing in New <span class="hlt">Zealand</span>. The response rate was 53%. Eighty percent of respondents intended to practice in New <span class="hlt">Zealand</span> for the bulk of their careers; however, 65% of respondents intended to leave New <span class="hlt">Zealand</span> within 3 years of graduating. The most important factors influencing the decision to leave NZ were overseas travel, financial opportunities, and job/training opportunities. Fifty-five percent of respondents had considered leaving the country, specifically because of the student loan debt. The most important factors influencing vocational intentions were interest, lifestyle, and intellectual challenge. Forty-three percent of respondents stated that their student debt had influenced their intended specialty, and only 9% of respondents indicated their intention to pursue a career in general practice. The highest rated incentives for staying in New <span class="hlt">Zealand</span> were increased salaries, employer contributions towards student loans, and training opportunities within New <span class="hlt">Zealand</span>. Student debt influences both emigration and specialty choice intentions of junior doctors in New <span class="hlt">Zealand</span>. This effect is an unintended but important consequence of our current tertiary education <span class="hlt">system</span> in New <span class="hlt">Zealand</span>. These results paint a worrying picture for the junior doctor and general practitioner workforce in New <span class="hlt">Zealand</span>'s future.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16403765','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16403765"><span>No-fault compensation in New <span class="hlt">Zealand</span>: harmonizing injury compensation, provider accountability, and patient safety.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bismark, Marie; Paterson, Ron</p> <p>2006-01-01</p> <p>In 1974 New <span class="hlt">Zealand</span> jettisoned a tort-based <span class="hlt">system</span> for compensating medical injuries in favor of a government-funded compensation <span class="hlt">system</span>. Although the <span class="hlt">system</span> retained some residual fault elements, it essentially barred medical malpractice litigation. Reforms in 2005 expanded eligibility for compensation to all "treatment injuries," creating a true no-fault compensation <span class="hlt">system</span>. Compared with a medical malpractice <span class="hlt">system</span>, the New <span class="hlt">Zealand</span> <span class="hlt">system</span> offers more-timely compensation to a greater number of injured patients and more-effective processes for complaint resolution and provider accountability. The unfinished business lies in realizing its full potential for improving patient safety.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4960541','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4960541"><span>Volcano electrical tomography unveils edifice collapse hazard linked to <span class="hlt">hydrothermal</span> <span class="hlt">system</span> structure and dynamics</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rosas-Carbajal, Marina; Komorowski, Jean-Christophe; Nicollin, Florence; Gibert, Dominique</p> <p>2016-01-01</p> <p>Catastrophic collapses of the flanks of stratovolcanoes constitute a major hazard threatening numerous lives in many countries. Although many such collapses occurred following the ascent of magma to the surface, many are not associated with magmatic reawakening but are triggered by a combination of forcing agents such as pore-fluid pressurization and/or mechanical weakening of the volcanic edifice often located above a low-strength detachment plane. The volume of altered rock available for collapse, the dynamics of the <span class="hlt">hydrothermal</span> fluid reservoir and the geometry of incipient collapse failure planes are key parameters for edifice stability analysis and modelling that remain essentially hidden to current volcano monitoring techniques. Here we derive a high-resolution, three-dimensional electrical conductivity model of the La Soufrière de Guadeloupe volcano from extensive electrical tomography data. We identify several highly conductive regions in the lava dome that are associated to fluid saturated host-rock and preferential flow of highly acid hot fluids within the dome. We interpret this model together with the existing wealth of geological and geochemical data on the volcano to demonstrate the influence of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> dynamics on the hazards associated to collapse-prone altered volcanic edifices. PMID:27457494</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26149902','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26149902"><span>Getting serious about protecting New <span class="hlt">Zealand</span> children against unhealthy food marketing.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vandevijvere, Stefanie; Swinburn, Boyd</p> <p>2015-07-03</p> <p>Reducing childhood obesity is now a high priority for Government and New <span class="hlt">Zealand</span> society, and foremost in these efforts should be getting serious about protecting children from being targeted by sophisticated marketing for the very foods and beverages that are making them fat. The marketing of unhealthy food products to children is powerful, pervasive and predatory. Previous studies in New <span class="hlt">Zealand</span> found that food marketing targeted at children through various media is predominantly for unhealthy food products. Statutory comprehensive regulations providing full protections for children against unhealthy food marketing are recommended, but strengthening voluntary codes into a more quasi-regulatory <span class="hlt">system</span> would allow food companies to clearly demonstrate their commitments to becoming part of the solution for New <span class="hlt">Zealand</span>'s unacceptably high rate of childhood obesity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B51A0382G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B51A0382G"><span>Particle Geochemistry of <span class="hlt">Hydrothermal</span> <span class="hlt">Systems</span> and Implications for Mining Seafloor Massive Sulfides</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gartman, A.; Hein, J. R.</p> <p>2016-12-01</p> <p>Seafloor massive sulfide deposits form due to high-temperature <span class="hlt">hydrothermal</span> venting that occurs globally, in every ocean basin, along plate boundaries and intra-plate hotspots. At these sites, the rapid mixing of hot, metal- and sulfur-rich reduced fluids into cold, oxygenated ocean water results in abundant mineral precipitation. The mining of seafloor massive sulfides is likely to occur in the near future and will generate a new class of mainly inorganic particulates, different from those formed in <span class="hlt">hydrothermal</span> `black smoke.' While the major components of both black smoke & SMS tailings are Cu, Fe and Zn sulfides, many other minerals, including those containing technology critical elements, especially tellurium, are present. A comparison of these two classes of particulates will be presented, including chemical composition and reactivity to oxidative dissolution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA23A2545M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA23A2545M"><span>Solar Wind drivers affecting GIC magnitude in New <span class="hlt">Zealand</span>.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mac Manus, D. H.; Rodger, C. J.; Dalzell, M.; Petersen, T.; Clilverd, M. A.</p> <p>2017-12-01</p> <p>Interplanetary shocks arriving at the Earth drive magnetosphere and ionosphere current <span class="hlt">systems</span>. Ground based magnetometers detect the time derivation of the horizontal magnetic field (dBH/dt) which can indicate the strength of these ionospheric currents. The strong dBH/dt spikes have been observed to cause large Geomagnetically Induced Currents (GIC) in New <span class="hlt">Zealand</span>. Such could, potentially lead to large scale damage to technological infrastructure such as power network transformers; one transformer was written off in New <span class="hlt">Zealand</span> after a sudden commencement on 6 November 2001. The strength of the incoming interplanetary shocks are monitored by satellite measurements undertaken at the L1 point. Such measurements could give power network operators a 20-60 minute warning before potentially damaging GIC occurs. In this presentation we examine solar wind measurements from the Advanced Composition Explorer (ACE), Wind, and the Solar and Heliospheric Observatory (SOHO). We contrast those solar wind observations with GIC measured in New <span class="hlt">Zealand</span>'s South Island from 2001 to 2016. We are searching for a consistent relationship between the incoming interplanetary shock and the GIC magnitude. Such a relationship would allow Transpower New <span class="hlt">Zealand</span> Limited a small time window to implement mitigation plans in order to restrict any GIC-caused damage.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=294527','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=294527"><span>Biogeochemistry of <span class="hlt">hydrothermally</span> and adjacent non-altered soils</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>As a field/lab project, students in the Soil Biogeochemistry class of the University of Nevada, Reno described and characterized seven pedons, developed in <span class="hlt">hydrothermally</span> and adjacent non-<span class="hlt">hydrothermally</span> altered andesitic parent material near Reno, NV. <span class="hlt">Hydrothermally</span> altered soils had considerably lo...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28610840','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28610840"><span>Measuring and managing health <span class="hlt">system</span> performance: An update from New <span class="hlt">Zealand</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chalmers, Linda Maree; Ashton, Toni; Tenbensel, Tim</p> <p>2017-08-01</p> <p>In July 2016, New <span class="hlt">Zealand</span> introduced a new approach to measuring and monitoring health <span class="hlt">system</span> performance. This '<span class="hlt">Systems</span> Level Measure Framework' (SLMF) has evolved from the Integrated Performance and Incentive Framework (IPIF) previously reported in this journal. The SLMF is designed to stimulate a 'whole of <span class="hlt">system</span>' approach that requires inter-organisational collaboration. Local 'Alliances' between government and non-government health sector organisations are responsible for planning and achieving improved health <span class="hlt">system</span> outcomes such as reducing ambulatory sensitive hospitalisation for young children, and reducing acute hospital bed days. It marks a shift from the previous regime of output and process targets, and from a pay-for-performance approach to primary care. Some elements of the earlier IPIF proposal, such as general practice quality measures, and tiered levels of performance, were not included in the SLM framework. The focus on health <span class="hlt">system</span> outcomes demonstrates policy commitment to effective integration of health services. However, there remain considerable challenges to successful implementation. An outcomes framework makes it challenging to attribute changes in outcomes to organisational and collaborative strategies. At the local level, the strength and functioning of collaborative relationships between organisations vary considerably. The extent and pace of change may also be constrained by existing funding arrangements in the health <span class="hlt">system</span>. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016035','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016035"><span>Sources and fractionation processes influencing the isotopic distribution of H, O and C in the Long Valley <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, California, U.S.A.</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>White, A.F.; Peterson, M.L.; Wollenberg, H.; Flexser, S.</p> <p>1990-01-01</p> <p>The isotopic ratios of H, O and C in water within the Long Valley caldera, California reflect input from sources external to the <span class="hlt">hydrothermal</span> reservoir. A decrease in ??D in precipitation of 0.5??? km-1, from west to east across Long Valley, is caused by the introduction of less fractionated marine moisture through a low elevation embayment in the Sierra Nevada Mountain Range. Relative to seasonal fluctuations in precipitation (-158 to -35??.), ??D ranges in hot and cold surface and groundwaters are much less variable (-135 to -105??.). Only winter and spring moisture, reflecting higher precipitation rates with lighter isotopic signatures, recharge the hydrological <span class="hlt">system</span>. The <span class="hlt">hydrothermal</span> fluids are mixtures of isotopically heavy recharge (??D = - 115???, ??18O = - 15???) derived from the Mammoth embayment, and isotopically lighter cold water (??D = -135???, ??18O = -18???). This cold water is not representative of current local recharge. The ??13C values for dissolved carbon in hot water are significantly heavier (- 7 to - 3???) than in cold water (-18 to -10???) denoting a separate <span class="hlt">hydrothermal</span> origin. These ??13C values overlie the range generally attributed to magmatic degassing of CO2. However, ??13C values of metamorphosed Paleozoic basement carbonates surrounding Long Valley fall in a similar range, indicating that <span class="hlt">hydrothermal</span> decarbonization reactions are a probable source of CO2. The ??13C and ??18O values of secondary travertime and vein calcite indicate respective fractionation with CO2 and H2O at temperatures approximating current <span class="hlt">hydrothermal</span> conditions. ?? 1990.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMOS12B..02W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMOS12B..02W"><span>The Enduring Legacy of New <span class="hlt">Zealand</span>'s UNCLOS Investment (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wood, R.; Davy, B. W.; Herzer, R. H.; Barnes, P.; Barker, D. H.; Stagpoole, V.; Uruski, C.</p> <p>2013-12-01</p> <p>Data collected by surveys for New <span class="hlt">Zealand</span>'s extended continental shelf project have contributed to research into the tectonic history and resource potential of New <span class="hlt">Zealand</span>. More than 20 scientific papers and a similar number of conference presentations and posters have used the data collected by these surveys. Data collected by these surveys have added significantly to national and international databases. Although the surveys were generally oriented to establish prolongation rather than to cross structural trends, the data have revealed the crustal, basement and sedimentary structure of many parts of the New <span class="hlt">Zealand</span> region. In the area east of New <span class="hlt">Zealand</span>, the data provide insight into the Cretaceous evolution of the New <span class="hlt">Zealand</span> sector of Gondwana. Data collected southwest of New <span class="hlt">Zealand</span> provided details about the relatively sudden transition from sea floor spreading between New <span class="hlt">Zealand</span> and Australia in the Tasman Sea to orthogonal spreading in the Emerald Basin and the development of the modern Australian-Pacific plate boundary, including Late Tertiary motion on the Alpine Fault in the South Island, New <span class="hlt">Zealand</span>. The data have been used to understand the formation of the New Caledonia Basin, the Norfolk Ridge and their associated structures, and they underpin the international collaboration between New <span class="hlt">Zealand</span>, New Caledonia and Australia to promote resource exploration in the Tasman Sea. Data north of New <span class="hlt">Zealand</span> have been used to understand the complex tectonic history of back arc spreading and island arc migration in the South Fiji Basin region. Seismic data collected along the axis of the New Caledonia Basin led to extensive hydrocarbon exploration surveys in the deepwater Taranaki region inside New <span class="hlt">Zealand</span>'s EEZ, and to an application for a hydrocarbon exploration licence in New <span class="hlt">Zealand</span>'s extended continental shelf.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PhDT........20X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PhDT........20X"><span><span class="hlt">Hydrothermal</span> synthesis of barium strontium titanate and bismuth titanate materials</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Huiwen</p> <p></p> <p><span class="hlt">Hydrothermal</span> processing facilitates the synthesis of crystalline ceramic materials of varying composition or complex crystal structure. The present work can be divided into two parts. First is to study the low temperature <span class="hlt">hydrothermal</span> synthesis of bismuth titanate. Second is to study both thermodynamic and kinetic aspects of the <span class="hlt">hydrothermally</span> synthesized barium strontium titanate. A chelating agent was used to form a Bi-Ti gel precursor. By <span class="hlt">hydrothermally</span> treating the Bi-Ti gel, crystalline bismuth titanate has been synthesized at 160°C for the first time. Microstructural evolution during the low temperature synthesis of bismuth titanate can be divided into two stages, including condensation of Bi-Ti gel particles and crystallization of bismuth titanate. Crystallization of bismuth titanate occurred by an in situ transformation mechanism at an early stage followed by a dissolution-reprecipitation mechanism. Phase separation was observed in <span class="hlt">hydrothermally</span> synthesized barium strontium titanate (BST). By <span class="hlt">hydrothermally</span> treating BST powders between 250°C--300°C, an asymmetrical miscibility gap was found in the BaTiO3-SrTiO 3 <span class="hlt">system</span> at low temperatures (T ≤ 320°C). A subregular solid solution model was applied to calculate the equilibrium compositions and the Gibbs free energy of formation of BST solid solution at low temperatures (T ≤ 320°C). The Gibbs free energy of formation of Sr-rich BST phase is larger than that of Ba-rich BST phase. Kinetic studies of single phase BST solid solution at 80°C show that, compared to the BaTiO3 or Ba-rich BST, SrTiO3 and Sr-rich BST powders form at lower reaction rates.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001GeCoA..65..571S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001GeCoA..65..571S"><span>Evidence for a nonmagmatic component in potassic <span class="hlt">hydrothermal</span> fluids of porphyry cu-Au-Mo <span class="hlt">systems</span>, Yukon, Canada</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Selby, David; Nesbitt, Bruce E.; Creaser, Robert A.; Reynolds, Peter H.; Muehlenbachs, Karlis</p> <p>2001-02-01</p> <p>Isotopic (H, Sr, Pb, Ar) and fluid inclusion data for <span class="hlt">hydrothermal</span> fluids associated with potassic alteration from three Late Cretaceous porphyry Cu occurrences, west central Yukon, suggest a nonmagmatic fluid component was present in these <span class="hlt">hydrothermal</span> fluids. Potassic stage quartz veins contain a dominant assemblage of saline and vapor-rich fluid inclusions that have δD values between -120 and -180‰. Phyllic stage quartz veins are dominated by vapor-rich fluid inclusions and have δD values that overlap with but are, on average, heavier (-117 to -132‰) than those in potassic stage quartz veins. These δD values are significantly lower than those from plutonic quartz phenocrysts (-91 to -113‰), and from values typically reported for primary fluids from porphyry-style mineralization (-40 to -100‰). The initial Sr ( 87Sr/ 86Sr i) isotopic values for the plutons are 0.7055 (Casino), 0.7048 (Mt. Nansen), and 0.7055 (Cash). The 87Sr/ 86Sr i compositions of <span class="hlt">hydrothermal</span> K-feldspar ranges from magmatic Sr i values to more radiogenic compositions (Casino: 0.70551-0.70834, n = 8; Mt. Nansen: 0.7063-0.7070, n = 4; Cash: 0.7058, n = 1). The fluid inclusion waters from potassic quartz veins have 87Sr/ 86Sr i values that are similar to those of co-existing <span class="hlt">hydrothermal</span> K-feldspar. The Pb isotopic compositions of <span class="hlt">hydrothermal</span> K-feldspar show a weak positive correlation with Sr i for identical samples. Fluid inclusion waters of phyllic quartz veins also have Sr i compositions more radiogenic than the plutons. The Pb isotopic composition of pyrite and bornite from phyllic alteration veins are similar to, or more radiogenic than, <span class="hlt">hydrothermal</span> K-feldspar Pb isotopic values. <span class="hlt">Hydrothermal</span> K-feldspar samples yield 40Ar/ 39Ar ages (Casino = 71.9 ± 0.7 to 73.4 ± 0.8 Ma; Mt. Nansen = 68.2 ± 0.7 and 69.5 ± 0.6 Ma; Cash = 68.3 ± 0.8 Ma) similar to the U-Pb zircon, K-Ar biotite and Re-Os molybdenite ages of the Late Cretaceous plutons, with the age spectra indicating no excess</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040088582&hterms=PAH&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DPAH','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040088582&hterms=PAH&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DPAH"><span>Hydrous pyrolysis of polycyclic aromatic hydrocarbons and implications for the origin of PAH in <span class="hlt">hydrothermal</span> petroleum</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McCollom, T. M.; Simoneit, B. R.; Shock, E. L.</p> <p>1999-01-01</p> <p>Polycyclic aromatic hydrocarbons (PAH) are found at high concentrations in thermally altered organic matter and <span class="hlt">hydrothermally</span> generated petroleum from sediment-covered seafloor <span class="hlt">hydro-thermal</span> <span class="hlt">systems</span>. To better understand the factors controlling the occurrence of PAH in thermally altered environments, the reactivities of two PAH, phenanthrene and anthracene, were investigated in <span class="hlt">hydrothermal</span> experiments. The compounds were heated with water at 330 degrees C in sealed reaction vessels for durations ranging from 1 to 17 days. Iron oxide and sulfide minerals, formic acid, or sodium for-mate were included in some experiments to vary conditions within the reaction vessel. Phenanthrene was unreactive both in water alone and in the presence of minerals for up to 17 days, while anthracene was partially hydrogenated (5-10%) to di- and tetrahydroanthracene. In the presence of 6-21 vol % formic acid, both phenanthrene and anthracene reacted extensively to form hydrogenated and minor methylated derivatives, with the degree of hydrogenation and methylation increasing with the amount of formic acid. Phenanthrene was slightly hydrogenated in sodium formate solutions. The hydrogenation reactions could be readily reversed; heating a mixture of polysaturated phenanthrenes resulted in extensive dehydrogenation (aromatization) after 3 days at 330 degrees C. While the experiments demonstrate that reaction pathways for the hydrogenation of PAH under <span class="hlt">hydrothermal</span> conditions exist, the reactions apparently require higher concentrations of H2 than are typical of geologic settings. The experiments provide additional evidence that PAH may be generated in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> from progressive aromatization and dealkylation of biologically derived polycyclic precursors such as steroids and terpenoids. Furthermore, the results indicate that PAH initially present in sediments or formed within <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> are resistant to further thermal degradation during <span class="hlt">hydrothermal</span> alteration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000827.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000827.html"><span>New <span class="hlt">Zealand</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>This image taken from the Suomi NPP satellite's VIIRS instrument of New <span class="hlt">Zealand</span> was collected on January 9, 2015 when the phytoplankton were blooming — particularly to the east of the islands and along the Chatham Rise. Derived from the Greek words phyto (plant) and plankton (made to wander or drift), phytoplankton are microscopic organisms that live in watery environments, both salty and fresh. Credit: NASA/Goddard/NPP NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar <span class="hlt">System</span> Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V43A2847A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V43A2847A"><span>Field occurrence and lithology of Archean <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> in the 3.2Ga Dixon Island Formation, Western Australia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aihara, Y.; Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Horie, K.; Sakamoto, R.; Miki, T.</p> <p>2013-12-01</p> <p>Stratigraphic transition of black chert to iron-rich sedimentary rocks above volcanic sequences with <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> is common and characteristic feature of Archean greenstone belts. The 3.2 Ga Dixon Island Formation, exposed along the northern coast of Dixon Island located in the coastal Pilbara terrane, Western Australia, is one of such units and the focus of our study. We introduce field occurrence and lithology of the Dixon Island Formation that preserves features of paleohydrohermal environment in the Mesoarchean ocean. The Dixon Island Formation is composed of the following three members (in ascending order): Komatiite-Rhyolite Tuff, Black Chert, and Varicolored Chert members (Kiyokawa and Taira, 1998). Here we focus on the Komatiite-Rholite Tuff member. It preserves two cycles of highly altered komatiite lavas and well-stratified rhyolite tuff. Komatiite lavas include dendritic crystals of chrome spinel and ghosts of spinifex, euhedral and sheet-like olivines and pyroxenes. These rocks are now composed of granular microcrystalline quartz with chromian muscovite, chrome spinel and chrorite that formed by intense silicification. Its upper part contains <span class="hlt">hydrothermal</span> veining and alteration (i.e., many vein swarms composed of veins of quartz and organic carbon-rich black chert). Most black chert veins intrude vertically into overlying layers, and contain barite, pyrite, monazite and clay minerals which were least affected by silicificatio. Based on the cross-cutting relationship seen in the outcrops, we recognized two generations of black chert veins (type 1 and type 2 veins; Kiyokawa et al., 2006). Type 1 veins are mainly composed of carbonaceous peloids in a microcrystalline quartz matrix. Euhedral and xenocrystic tourmaline are found only in Type1 veins. Type 2 veins are organic carbon-poor and contain fragments of black chert and siliceous volcanic breccia (Kiyokawa et al., 2006). Intense silicification of komatiitic volcaniclastics and lava, enriched in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27806027','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27806027"><span>Traditional Chinese medicine practitioners in New <span class="hlt">Zealand</span>: differences associated with being a practitioner in New <span class="hlt">Zealand</span> compared to China.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Patel, Asmita; Toossi, Vahideh</p> <p>2016-10-28</p> <p>While New <span class="hlt">Zealand</span> has experienced an increase in the use of traditional Chinese medicine (TCM) based acupuncture, very little is known about the practitioners who provide this type of treatment modality. Therefore, this study was designed to identify differences associated with being a TCM practitioner in New <span class="hlt">Zealand</span> compared to China. Ten Auckland-based TCM practitioners were individually interviewed. The interview schedule comprised of questions that were designed to identify any potential differences in practising TCM in New <span class="hlt">Zealand</span> compared to China. Data were analysed using an inductive thematic approach. The main differences in practising between the two countries were related to the role and authority that a TCM practitioner had. This in turn resulted in differences between the conditions that were treated in these two countries. Differences in patient demography were also identified between the two countries. TCM is used as a form of alternative healthcare treatment in New <span class="hlt">Zealand</span> for non-Chinese individuals. Acupuncture is the most utilised form of TCM treatment in New <span class="hlt">Zealand</span>, and is predominantly used for pain management purposes. TCM treatment has been utilised by individuals from a number of different ethnic groups, reflecting the ethnic diversity of the New <span class="hlt">Zealand</span> population.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BGeo...15.1535D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BGeo...15.1535D"><span>Ideas and perspectives: <span class="hlt">hydrothermally</span> driven redistribution and sequestration of early Archaean biomass - the "<span class="hlt">hydrothermal</span> pump hypothesis"</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duda, Jan-Peter; Thiel, Volker; Bauersachs, Thorsten; Mißbach, Helge; Reinhardt, Manuel; Schäfer, Nadine; Van Kranendonk, Martin J.; Reitner, Joachim</p> <p>2018-03-01</p> <p>Archaean <span class="hlt">hydrothermal</span> chert veins commonly contain abundant organic carbon of uncertain origin (abiotic vs. biotic). In this study, we analysed kerogen contained in a <span class="hlt">hydrothermal</span> chert vein from the ca. 3.5 Ga Dresser Formation (Pilbara Craton, Western Australia). Catalytic hydropyrolysis (HyPy) of this kerogen yielded n-alkanes up to n-C22, with a sharp decrease in abundance beyond n-C18. This distribution ( ≤ n-C18) is very similar to that observed in HyPy products of recent bacterial biomass, which was used as reference material, whereas it differs markedly from the unimodal distribution of abiotic compounds experimentally formed via Fischer-Tropsch-type synthesis. We therefore propose that the organic matter in the Archaean chert veins has a primarily microbial origin. The microbially derived organic matter accumulated in anoxic aquatic (surface and/or subsurface) environments and was then assimilated, redistributed and sequestered by the <span class="hlt">hydrothermal</span> fluids (<q><span class="hlt">hydrothermal</span> pump hypothesis</q>).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Digital+AND+%22Business+model%22&id=EJ923089','ERIC'); return false;" href="https://eric.ed.gov/?q=Digital+AND+%22Business+model%22&id=EJ923089"><span>Early Learnings from the National Library of New <span class="hlt">Zealand</span>'s National Digital Heritage Archive Project</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Knight, Steve</p> <p>2010-01-01</p> <p>Purpose: The purpose of this paper is to provide a brief description of the digital preservation programme at the National Library of New <span class="hlt">Zealand</span>. Design/methodology/approach: Following a description of the legislative and strategic context for digital preservation in New <span class="hlt">Zealand</span>, details are provided of the <span class="hlt">system</span> for the National Digital…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMS...180..173Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMS...180..173Y"><span><span class="hlt">Hydrothermal</span> signature in the axial-sediments from the Carlsberg Ridge in the northwest Indian Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Zenghui; Li, Huaiming; Li, Mengxing; Zhai, Shikui</p> <p>2018-04-01</p> <p>30 sediments grabbed from 24 sites between the equator and 10°N along the Carlsberg Ridge (CR) in the northwest Indian Ocean has been analyzed for bulk chemical compositions. <span class="hlt">Hydrothermal</span> components in the sediments are identified and characterized. They mainly occur at 6.3°N as sulfide debris and at 3.6°N as both sulfide and high temperature water-rock interaction products. The enrichment of chalcophile elements such as Zn, Cu, Pb and the depletion of alkalis metals such as K and Rb are the typical features of <span class="hlt">hydrothermal</span> components. High U/Fe, low (Nd/Yb)N and negative Ce anomaly infer the uptake of seawater in the <span class="hlt">hydrothermal</span> deposits by oxidizing after deposition. However, the general enrichment of Mn in <span class="hlt">hydrothermal</span> plumed-derived materials is not found in the sediments, which may indicate the limited diffusion of fluids or plumes, at least in the direction along the Carlsberg spreading center. The <span class="hlt">hydrothermal</span> components show their similarity to the <span class="hlt">hydrothermal</span> deposits from the Indian Ocean Ridge. At 3.6°N ultramafic rocks or gabbroic intrusions, may be involved in the <span class="hlt">hydrothermal</span> <span class="hlt">system</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23898323','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23898323"><span>Diffuse flow environments within basalt- and sediment-based <span class="hlt">hydrothermal</span> vent ecosystems harbor specialized microbial communities.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Campbell, Barbara J; Polson, Shawn W; Zeigler Allen, Lisa; Williamson, Shannon J; Lee, Charles K; Wommack, K Eric; Cary, S Craig</p> <p>2013-01-01</p> <p><span class="hlt">Hydrothermal</span> vents differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from vents at a basalt-based <span class="hlt">hydrothermal</span> <span class="hlt">system</span> along the East Pacific Rise (EPR) and a sediment-based <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea <span class="hlt">hydrothermal</span> environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea <span class="hlt">systems</span>. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and <span class="hlt">hydrothermal</span> <span class="hlt">system</span> type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct <span class="hlt">hydrothermal</span> diffuse flow environments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3721025','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3721025"><span>Diffuse flow environments within basalt- and sediment-based <span class="hlt">hydrothermal</span> vent ecosystems harbor specialized microbial communities</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Campbell, Barbara J.; Polson, Shawn W.; Zeigler Allen, Lisa; Williamson, Shannon J.; Lee, Charles K.; Wommack, K. Eric; Cary, S. Craig</p> <p>2013-01-01</p> <p><span class="hlt">Hydrothermal</span> vents differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from vents at a basalt-based <span class="hlt">hydrothermal</span> <span class="hlt">system</span> along the East Pacific Rise (EPR) and a sediment-based <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea <span class="hlt">hydrothermal</span> environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea <span class="hlt">systems</span>. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and <span class="hlt">hydrothermal</span> <span class="hlt">system</span> type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct <span class="hlt">hydrothermal</span> diffuse flow environments. PMID</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..118a2076L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..118a2076L"><span>Mobility of rare earth element in <span class="hlt">hydrothermal</span> process and weathering product: a review</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lintjewas, L.; Setiawan, I.</p> <p>2018-02-01</p> <p>The Rare Earth Element (REE), consists of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Lu, Ho, Er, Tm, Yb, are important elements to be used as raw materials of advanced technology such as semiconductors, magnets, and lasers. The research of REE in Indonesia has not been done. Several researches were conducted on granitic rocks and weathering product such as Bangka, Sibolga, West Kalimantan, West Sulawesi and Papua. REE can be formed by <span class="hlt">hydrothermal</span> processes such as Bayan Obo, South China. The REE study on active <span class="hlt">hydrothermal</span> <span class="hlt">system</span> (geothermal) in this case also has the potential to produce mineral deposits. The purpose of this review paper is to know the mobility of REE on <span class="hlt">hydrothermal</span> process and weathering products. Mobility of REE in the <span class="hlt">hydrothermal</span> process can change the distribution patterns and REE content such as Ce, Eu, La, Lu, Nd, Sm, and Y. Another process besides the <span class="hlt">hydrothermal</span> is weathering process. REE mobility is influenced by weathering products, where the REE will experience residual and secondary enrichment processes in heavier minerals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP23C2337L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP23C2337L"><span>Buffering of potassium in seawater by alteration of basalt in low-temperature, off-axis, <span class="hlt">hydrothermal</span> <span class="hlt">systems</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Laureijs, C. T.; Coogan, L. A.</p> <p>2016-12-01</p> <p>It is generally accepted that the composition of seawater has varied through the Phanerzoic and that the variation is linked to changes in the same global fluxes that control the long-term carbon cycle. However, K is observed to be stable at a value of 10 mmol/L despite variable river and <span class="hlt">hydrothermal</span> fluxes [1]. Secondary K-bearing phases are widely observed in altered upper oceanic crust, suggesting that reactions between seawater and basalt in low-temperature, off-axis, oceanic <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> could buffer the K concentration of seawater [2]. As K-feldspar is a common secondary K-bearing mineral in Cretaceous and rare in Cenozoic oceanic crust, the formation of K-feldspar by breakdown of plagioclase reacting with a model Cretaceous seawater was modeled at 15 ºC using the PhreeqC code (version 3.2) and the associated llnl.dat database. A fluid with a K-content of 11 mmol/L in equilibrium with K-feldspar and calcite was generated, consistent with K-feldspar acting as a buffer for the K-content in Cretaceous seawater and the production of alkalinity stabilizing atmospheric CO2 levels on the long-term timescales. A compilation of the K2O content of lavas from DSDP and ODP drill cores (from: http://www.earthchem.org/petdb) shows that the average K-content of altered crust was higher in the Cretaceous than the Cenozoic. This data is inconsistent with the model for the composition of seawater presented in [2], but is consistent with an updated and modified version of this model, that uses more realistic fluxes [3]. We conclude that oceanic off-axis <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> probably do buffer the K-content of seawater. [1] Timofeeff et al. (2006), Geochim. Cosmochim. Acta. 70, 1977-1994; [2] Demicco et al. (2005), Geology 33, 877-880. [3] Coogan & Dosso (2012), Earth Planet. Sci. Lett. 323-324, 92-101.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032987','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032987"><span><span class="hlt">Hydrothermal</span> circulation at Mount St. Helens determined by self-potential measurements</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bedrosian, P.A.; Unsworth, M.J.; Johnston, M.J.S.</p> <p>2007-01-01</p> <p>The distribution of <span class="hlt">hydrothermal</span> circulation within active volcanoes is of importance in identifying regions of <span class="hlt">hydrothermal</span> alteration which may in turn control explosivity, slope stability and sector collapse. Self-potential measurements, indicative of fluid circulation, were made within the crater of Mount St. Helens in 2000 and 2001. A strong dipolar anomaly in the self-potential field was detected on the north face of the 1980-86 lava dome. This anomaly reaches a value of negative one volt on the lower flanks of the dome and reverses sign toward the dome summit. The anomaly pattern is believed to result from a combination of thermoelectric, electrokinetic, and fluid disruption effects within and surrounding the dome. Heat supplied from a cooling dacite magma very likely drives a shallow <span class="hlt">hydrothermal</span> convection cell within the dome. The temporal stability of the SP field, low surface recharge rate, and magmatic component to fumarole condensates and thermal waters suggest the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> is maintained by water vapor exsolved from the magma and modulated on short time scales by surface recharge. ?? 2006 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29240740','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29240740"><span>Characteristics of and differences between Pasifika women and New <span class="hlt">Zealand</span> European women diagnosed with breast cancer in New <span class="hlt">Zealand</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brown, Charis; Lao, Chunhuan; Lawrenson, Ross; Tin Tin, Sandar; Schaaf, Michelle; Kidd, Jacquie; Allan-Moetaua, Anne; Herman, Josephine; Raamsroop, Reena; Campbell, Ian; Elwood, Mark</p> <p>2017-12-15</p> <p>Breast cancer in New <span class="hlt">Zealand</span>-based Pasifika women is a significant issue. Although Pasifika women have a lower incidence of breast cancer compared to New <span class="hlt">Zealand</span> European women, they have higher breast cancer mortality and lower five-year survival. The aim of this study was to describe the characteristics and tumour biology of Pasifika women and to compare New <span class="hlt">Zealand</span> European women to identify what factors impact on early (Stage 1 and 2) vs advanced stage (Stage 3 and 4) at diagnosis. Data on all Pasifika and New <span class="hlt">Zealand</span> European women diagnosed with breast cancer (C50) during the period 1 June 2000 to 31 May 2013 was extracted from the Auckland and Waikato Breast Cancer Registries. Descriptive tables and Chi-square test were used to examine differences in characteristics and tumour biology between Pasifika and New <span class="hlt">Zealand</span> European women. Logistic regression was used to identify factors that contributed to an increased risk of advanced stage at diagnosis. A significantly higher proportion of Pasifika women had advanced disease at diagnosis compared to New <span class="hlt">Zealand</span> European women (33.3% and 18.3%, respectively). Cancer biology in Pasifika women was more likely to be: 1) HER2+, 2) ER/PR negative and 3) have a tumour size of ≥50mm. Pasifika women live in higher deprivation areas of 9-10 compared to New <span class="hlt">Zealand</span> European women (55% vs 14%, respectively) and were less likely to have their cancer identified through screening. Logistic regression showed that if Pasifika women were on the screen-detected pathway they had similar odds (not sig.) of having advanced disease at diagnosis to New <span class="hlt">Zealand</span> European women. Mode of detection, deprivation, age and some biological factors contributed to the difference in odds ratio between Pasifika and New <span class="hlt">Zealand</span> European women. For those of screening age, adherence to the screening programme and improvements in access to earlier diagnosis for Pasifika women under the current screening age have the potential to make a substantial</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.V72A1300D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.V72A1300D"><span>Manganese Oxidizing Bacteria in Guaymas Basin <span class="hlt">Hydrothermal</span> Fluids, Sediments, and Plumes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dick, G. J.; Tebo, B. M.</p> <p>2002-12-01</p> <p>The active seafloor <span class="hlt">hydrothermal</span> <span class="hlt">system</span> at Guaymas Basin in the Gulf of California is unique in that spreading centers are covered with thick sediments, and <span class="hlt">hydrothermal</span> fluids are injected into a semi-enclosed basin. This <span class="hlt">hydrothermal</span> activity is the source of a large input of dissolved manganese [Mn(II)] into Guaymas Basin, and the presence of a large standing stock of particulate manganese in this basin has been taken as evidence for a short residence time of dissolved Mn(II) with respect to oxidation, suggestive of bacterial catalysis. During a recent Atlantis/Alvin expedition (R/V Atlantis Cruise #7, Leg 11, Jim Cowen Chief Scientist), large amounts of particulate manganese oxides were again observed in Guaymas Basin <span class="hlt">hydrothermal</span> plumes. The goal of the work presented here was to identify bacteria involved in the oxidation of Mn(II) in Guaymas Basin, and to determine what molecular mechanisms drive this process. Culture-based methods were employed to isolate Mn(II)-oxidizing bacteria from Guaymas Basin <span class="hlt">hydrothermal</span> fluids, sediments, and plumes, and numerous Mn(II)-oxidizing bacteria were identified based on the formation of orange, brown, or black manganese oxides on bacterial colonies on agar plates. The Mn(II)-oxidizing bacteria were able to grow at temperatures from 12 to 50°C, and a selection of the isolates were chosen for phylogenetic (16S rRNA genes) and microscopic characterization. Endospore-forming Bacillus species accounted for many of the Mn(II)-oxidizing isolates obtained from both <span class="hlt">hydrothermal</span> sediments and plumes, while members of the alpha- and gamma-proteobacteria were also found. Mn(II)-oxidizing enzymes from previously characterized Bacillus spores are known to be active at temperatures greater than 50°C. The presence of Mn(II)-oxidizing spores - some of which are capable of growing at elevated temperatures - in <span class="hlt">hydrothermal</span> fluids and sediments at Guaymas Basin suggests that Mn(II) oxidation may be occurring immediately or very soon</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2725499','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2725499"><span>Inactivation of Escherichia coli Endotoxin by Soft <span class="hlt">Hydrothermal</span> Processing▿</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Miyamoto, Toru; Okano, Shinya; Kasai, Noriyuki</p> <p>2009-01-01</p> <p>Bacterial endotoxins, also known as lipopolysaccharides, are a fever-producing by-product of gram-negative bacteria commonly known as pyrogens. It is essential to remove endotoxins from parenteral preparations since they have multiple injurious biological activities. Because of their strong heat resistance (e.g., requiring dry-heat sterilization at 250°C for 30 min) and the formation of various supramolecular aggregates, depyrogenation is more difficult than sterilization. We report here that soft <span class="hlt">hydrothermal</span> processing, which has many advantages in safety and cost efficiency, is sufficient to assure complete depyrogenation by the inactivation of endotoxins. The endotoxin concentration in a sample was measured by using a chromogenic limulus method with an endotoxin-specific limulus reagent. The endotoxin concentration was calculated from a standard curve obtained using a serial dilution of a standard solution. We show that endotoxins were completely inactivated by soft <span class="hlt">hydrothermal</span> processing at 130°C for 60 min or at 140°C for 30 min in the presence of a high steam saturation ratio or with a flow <span class="hlt">system</span>. Moreover, it is easy to remove endotoxins from water by soft <span class="hlt">hydrothermal</span> processing similarly at 130°C for 60 min or at 140°C for 30 min, without any requirement for ultrafiltration, nonselective adsorption with a hydrophobic adsorbent, or an anion exchanger. These findings indicate that soft <span class="hlt">hydrothermal</span> processing, applied in the presence of a high steam saturation ratio or with a flow <span class="hlt">system</span>, can inactivate endotoxins and may be useful for the depyrogenation of parenterals, including end products and medical devices that cannot be exposed to the high temperatures of dry heat treatments. PMID:19502435</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeCoA.226...18S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeCoA.226...18S"><span>Calcium isotope systematics at <span class="hlt">hydrothermal</span> conditions: Mid-ocean ridge vent fluids and experiments in the CaSO4-NaCl-H2O <span class="hlt">system</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scheuermann, Peter P.; Syverson, Drew D.; Higgins, John A.; Pester, Nicholas J.; Seyfried, William E.</p> <p>2018-04-01</p> <p>Two sets of <span class="hlt">hydrothermal</span> experiments were performed to explore Ca isotope fractionation and exchange rates at <span class="hlt">hydrothermal</span> conditions (410-450 °C, 31.0-50.0 MPa). The first set of experiments determined the magnitude of vapor-liquid Ca isotope fractionation and anhydrite solubility in the CaSO4-NaCl-H2O <span class="hlt">system</span>. The data indicate no statistical difference between the Ca isotopic composition of coexisting vapor and liquid. The second set of experiments utilized an anomalous 43Ca spike to determine the rate of Ca exchange between fluid and anhydrite as a function of total dissolved Ca concentration. Results show that the rate of exchange increases with dissolved Ca concentrations (12-23 mM/kg), but no change in exchange rate is observed when the Ca concentration increases from 23 to 44 mM/kg Ca. 74-142 days are required to achieve 90% anhydrite-fluid Ca isotope exchange at the conditions investigated, while only several hours are necessary for vapor-liquid isotopic equilibrium. The lack of vapor-liquid Ca isotope fractionation in our experiments is consistent with δ44Ca of mid-ocean ridge <span class="hlt">hydrothermal</span> vent fluids that remain constant, regardless of chlorinity. Moreover, the narrow range of end member fluid δ44Ca, -0.98 to -1.13‰ (SW), is largely indistinguishable from MORB δ44Ca, suggesting that neither phase separation nor fluid-rock interactions at depth significantly fractionate Ca isotopes in modern high-temperature mid-ocean ridge <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015145','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015145"><span>New evidence on the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> in Long Valley caldera, California, from wells, fluid sampling, electrical geophysics, and age determinations of hot-spring deposits</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sorey, M.L.; Suemnicht, G.A.; Sturchio, N.C.; Nordquist, G.A.</p> <p>1991-01-01</p> <p>Data collected since 1985 from test drilling, fluid sampling, and geologic and geophysical investigations provide a clearer definition of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> in Long Valley caldera than was previously available. This information confirms the existence of high-temperature (> 200??C) reservoirs within the volcanic fill in parts of the west moat. These reservoirs contain fluids which are chemically similar to thermal fluids encountered in the central and eastern parts of the caldera. The roots of the present-day <span class="hlt">hydrothermal</span> <span class="hlt">system</span> (the source reservoir, principal zones of upflow, and the magmatic heat source) most likely occur within metamorphic basement rocks beneath the western part of the caldera. Geothermometer-temperature estimates for the source reservoir range from 214 to 248??C. Zones of upflow of hot water could exist beneath the plateau of moat rhyolite located west of the resurgent dome or beneath Mammoth Mountain. Lateral flow of thermal water away from such upflow zones through reservoirs in the Bishop Tuff and early rhyolite accounts for temperature reversals encountered in most existing wells. Dating of hot-spring deposits from active and inactive thermal areas confirms previous interpretations of the evolution of <span class="hlt">hydrothermal</span> activity that suggest two periods of extensive hot-spring discharge, one peaking about 300 ka and another extending from about 40 ka to the present. The onset of <span class="hlt">hydrothermal</span> activity around 40 ka coincides with the initiation of rhyolitic volcanism along the Mono-Inyo Craters volcanic chain that extends beneath the caldera's west moat. ?? 1991.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPP33B2297Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPP33B2297Z"><span>Stable Isotope Geochemistry of Extremely Well-Preserved 2.45-Billion-Year-Old <span class="hlt">Hydrothermal</span> <span class="hlt">Systems</span> in the Vetreny Belt, Baltic Shield: Insights into Paleohydrosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zakharov, D. O.; Bindeman, I. N.</p> <p>2015-12-01</p> <p>The early Paleoproterozoic was an eventful period in the Earth's history. The first portions of free oxygen emerged in the atmosphere, Snowball Earth glaciations happened several times and the first supercontinent broke up due to extensive rifting. These events should have affected the stable isotopic composition of the hydrosphere. In this study, we use rocks that were altered in underwater <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> to investigate the stable isotopic composition of the hydrosphere 2.39-2.45 billion years ago (hereinafter, Ga). Extremely low-δ18O (down to -27.5‰ SMOW) rocks from 2.39 Ga metamorphosed subglacial <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> of the Belomorian belt, Baltic Shield formed at near-equatorial latitudes suggesting a Snowball (or Slushball) Earth glaciation. These results motivated us to look at temporally and geographically close <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> from the unmetamorhposed 2.45 Ga Vetreny Belt rift. The length of the rift is 250 km and it is composed of high-Mg basalts, mafic-ultramafic intrusions and sedimentary successions. We examined several localities of high-Mg basalt flows that include astonishingly fresh pillow lavas, often with preserved volcanic glass, eruptive breccias, and <span class="hlt">hydrothermal</span> alteration zones. Collected samples serve a great textural evidence of water-rock interaction that occurred in situ while basalts were cooling. The preliminary results from coexisting quartz and epidote (T, D18O=311°C), and from coexisting calcite and quartz (T, D18O=190°C) yield values of δ18O of involved water between -1.6 and -0.9 ‰. The values of δ13C in calcites vary between -4.0 and -2.3 ‰. It is likely that <span class="hlt">hydrothermal</span> fluids operated in the Vetreny Belt rift were derived from seawater that is no different from modern oceanic water in terms of δ18O. Apparently, the rift was a Paleoproterozoic analog of the modern Red Sea, filled with oceanic water. The result is important because the Vetreny Belt rift predates the onset of Snowball Earth glaciation at 2</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018616','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018616"><span><span class="hlt">Hydrothermal</span> mineralization along submarine rift zones, Hawaii</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hein, J.R.; Gibbs, A.E.; Clague, D.A.; Torresan, M.</p> <p>1996-01-01</p> <p>Describes mineralization of midplate submarine rift zones and <span class="hlt">hydrothermal</span> manganese oxide mineralization of midplate volcanic edifices. <span class="hlt">Hydrothermal</span> Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks; both deposit types are composed of todorokite and birnessite. Unlike most other <span class="hlt">hydrothermal</span> Mn oxide deposits, those from Hawaiian rift zones are enriched in the trace metals Zn, Co, Ba, Mo, Sr, V, and especially Ni. Metals are derived from three sources: mafic and ultramafic rocks leached by circulating <span class="hlt">hydrothermal</span> fluids, clastic material (in Mn-cemented sandstone), and seawater that mixed with the <span class="hlt">hydrothermal</span> fluids. Precipitation of Mn oxide below the seafloor is indicated by its occurrence as cement, growth textures that show mineralizing fluids were introduced from below, and pervasive replacement of original matrix of clastic rocks.<span class="hlt">Hydrothermal</span> Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks. Both deposit types are composed of todorokite and birnessite. This article describes in detail the specific characteristics of these Mn oxides.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMS...180..162W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMS...180..162W"><span>Comparative analyses of the bacterial community of <span class="hlt">hydrothermal</span> deposits and seafloor sediments across Okinawa Trough</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Long; Yu, Min; Liu, Yan; Liu, Jiwen; Wu, Yonghua; Li, Li; Liu, Jihua; Wang, Min; Zhang, Xiao-Hua</p> <p>2018-04-01</p> <p>As an ideal place to study back-arc basins and <span class="hlt">hydrothermal</span> eco-<span class="hlt">system</span>, Okinawa Trough has attracted the interests of scientists for decades. However, there are still no in-depth studies targeting the bacterial community of the seafloor sediments and <span class="hlt">hydrothermal</span> deposits in Okinawa Trough. In the present study, we reported the bacterial community of the surface deposits of a newly found <span class="hlt">hydrothermal</span> field in the southern Okinawa Trough, and the horizontal and vertical variation of bacterial communities in the sediments of the northern Okinawa Trough. The <span class="hlt">hydrothermal</span> deposits had a relatively high 16S rRNA gene abundance but low bacterial richness and diversity. Epsilonproteobacteria and Bacteroidetes were predominant in <span class="hlt">hydrothermal</span> deposits whereas Deltaproteobacteria, Gammaproteobacteria and Chloroflexi were abundant across all samples. The bacterial distribution in the seafloor of Okinawa Trough was significantly correlated to the content of total nitrogen, and had consistent relationship with total carbon. Gradual changes of sulfur-oxidizing bacteria were found with the distance away from <span class="hlt">hydrothermal</span> fields, while the <span class="hlt">hydrothermal</span> activity did not influence the distribution of the major clades of sulfate-reducing bacteria. Higher abundance of the sulfur cycle related genes (aprA and dsrB), and lower abundance of the bacterial ammonia-oxidizing related gene (amoA) were quantified in <span class="hlt">hydrothermal</span> deposits. In addition, the present study also compared the inter-field variation of Epsilonproteobacteria among multi-types of <span class="hlt">hydrothermal</span> vents, revealing that the proportion and diversity of this clade were quite various.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26056279','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26056279"><span>Pathways for abiotic organic synthesis at submarine <span class="hlt">hydrothermal</span> fields.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McDermott, Jill M; Seewald, Jeffrey S; German, Christopher R; Sylva, Sean P</p> <p>2015-06-23</p> <p>Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm <span class="hlt">hydrothermal</span> field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single <span class="hlt">system</span> can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced <span class="hlt">systems</span>. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4485091','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4485091"><span>Pathways for abiotic organic synthesis at submarine <span class="hlt">hydrothermal</span> fields</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>McDermott, Jill M.; Seewald, Jeffrey S.; German, Christopher R.; Sylva, Sean P.</p> <p>2015-01-01</p> <p>Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm <span class="hlt">hydrothermal</span> field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single <span class="hlt">system</span> can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced <span class="hlt">systems</span>. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond. PMID:26056279</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JVGR..353....1C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JVGR..353....1C"><span>Gas discharges from the Kueishantao <span class="hlt">hydrothermal</span> vents, offshore northeast Taiwan: Implications for drastic variations of magmatic/<span class="hlt">hydrothermal</span> activities</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Xue-Gang; Lyu, Shuang-Shuang; Zhang, Ping-Ping; Yu, Ming-Zhen; Chen, Chen-Tung Arthur; Chen, Yun-Jie; Li, Xiaohu; Jin, Aimin; Zhang, Hai-Yan; Duan, Wei; Ye, Ying</p> <p>2018-03-01</p> <p>The chemical compositions of gas discharges from the Kueishantao (KST) <span class="hlt">hydrothermal</span> field changed dramatically from 2000 to 2014. In this study, we established a gas mixing model for the KST gases. The N2, Ar, and CO2 contents were mixed from a magmatic endmember with CO2 of about 990 mmol/mol, a <span class="hlt">hydrothermal</span> and an atmospheric endmember enriched in N2 and Ar. More than 71% KST gas components were mantle-derived/magmatic. The calculated endmember N2/Ar ratio and Ar contents of the <span class="hlt">hydrothermal</span> endmember (percolated fluid) are about 140 and 5.28-5.52 mmol/mol, respectively. This relatively elevated N2/Ar ratio was probably caused by the thermogenic addition of N2. The log(CH4/CO2) values of the KST gas samples correlate well with the mixing temperature that estimated from the mixing ratio between the percolated fluid and the magmatic endmember. It is indicated that the KST CH4 and CO2 may have attained chemical equilibrium. The temporal variations of the KST gas compositions are determined by the mixing ratio, which is dependent on the magmatic activity underneath the KST field. With the decreasing of magmatic activity since 2005, the proportion of the <span class="hlt">hydrothermal</span> endmember increased, along with the increasing of N2, Ar, and CH4 contents. This study proposed an effective model to quantitatively assess the sources of gas components discharged from submarine <span class="hlt">hydrothermal</span> vents. In addition, it is suggested that the mixing between a magmatic and a <span class="hlt">hydrothermal</span> endmember may play an important role in the concentrations of CO2 and CH4 in <span class="hlt">hydrothermal</span> gas discharges.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28836818','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28836818"><span>Experimentally Testing <span class="hlt">Hydrothermal</span> Vent Origin of Life on Enceladus and Other Icy/Ocean Worlds.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barge, Laura M; White, Lauren M</p> <p>2017-09-01</p> <p>We review various laboratory strategies and methods that can be utilized to simulate prebiotic processes and origin of life in <span class="hlt">hydrothermal</span> vent <span class="hlt">systems</span> on icy/ocean worlds. Crucial steps that could be simulated in the laboratory include simulations of water-rock chemistry (e.g., serpentinization) to produce <span class="hlt">hydrothermal</span> fluids, the types of mineral catalysts and energy gradients produced in vent interfaces where <span class="hlt">hydrothermal</span> fluids interface with the surrounding seawater, and simulations of biologically relevant chemistry in flow-through gradient <span class="hlt">systems</span> (i.e., far-from-equilibrium experiments). We describe some examples of experimental designs in detail, which are adaptable and could be used to test particular hypotheses about ocean world energetics or mineral/organic chemistry. Enceladus among the ocean worlds provides an ideal test case, since the pressure at the ocean floor is more easily simulated in the lab. Results for Enceladus could be extrapolated with further experiments and modeling to understand other ocean worlds. Key Words: Enceladus-Ocean worlds-Icy worlds-<span class="hlt">Hydrothermal</span> vent-Iron sulfide-Gradient. Astrobiology 17, 820-833.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15108741','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15108741"><span>Does air pollution pose a public health problem for New <span class="hlt">Zealand</span>?</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Scoggins, Amanda</p> <p>2004-02-01</p> <p>Air pollution is increasingly documented as a threat to public health and a major focus of regulatory activity in developed and developing countries. Air quality indicators suggest New <span class="hlt">Zealand</span> has clean air relative to many other countries. However, media releases such as 'Christchurch wood fires pump out deadly smog' and 'Vehicle pollution major killer' have sparked public health concern regarding exposure to ambient air pollution, especially in anticipation of increasing emissions and population growth. Recent evidence is presented on the effects of air quality on health, which has been aided by the application of urban airshed models and Geographic Information <span class="hlt">Systems</span> (GIS). Future directions for research into the effects of air quality on health in New <span class="hlt">Zealand</span> are discussed, including a national ambient air quality management project: HAPINZ--Health and Air Pollution in New <span class="hlt">Zealand</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020068','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020068"><span>Rare earth element metasomatism in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>: The Willsboro-Lewis wollastonite ores, New York, USA</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Whitney, P.R.; Olmsted, J.F.</p> <p>1998-01-01</p> <p>Wollastonite ores and garnet-pyroxene skarns in the Willsboro-Lewis district, New York, USA were formed in a complex <span class="hlt">hydrothermal</span> <span class="hlt">system</span> associated with the emplacement of a large anorthosite pluton. Contact-metamorphic marbles were replaced by wollastonite, garnet, and clinopyroxene during infiltration metasomatism involving large volumes of water of chiefly meteoric origin. Rare earth elements (REE) in these rocks show large departures from the protolith REE distribution, indicative of substantial REE mobility. Three types of chondrite-normalized REE distribution patterns are present. The most common, found in ores and skarns containing andradite-rich garnet, is convex-up in the light REE (LREE) with a maximum at Pr and a positive Eu anomaly. Europium anomalies and Pr/Yb ratios are correlated with X(Ad) in garnet. This pattern (type C) results from uptake of REE from <span class="hlt">hydrothermal</span> fluids by growing crystals of calcsilicate minerals, principally andradite, with amounts of LREE controlled by the difference in ionic radius between Ca++ and REE3+ in garnet X sites. The Eu anomaly results either from prior interaction of the fluids with plagioclase-rich, Eu-positive anorthositic rocks in and near the ore zone, or by enrichment of divalent Eu on growth surfaces of garnet followed by entrapment, or both. Relative enrichment in heavy REE (type H) occurs in ores and skarn where calcsilicates, including grossularitic garnet, in contact-metamorphic marble have been concentrated by dissolution of calcite. In most cases a negative Eu anomaly is inherited from the marble protolith. Skarns containing titanite and apatite exhibit high total REE, relative light REE enrichment, and negative Eu anomalies (type L). These appear to be intrusive igneous rocks (ferrodiorites or anorthositic gabbros) that have been converted to skarn by Ca metasomatism. REE, sequestered in titanite, apatite, and garnet, preserve the approximate REE distribution pattern of the igneous protolith. Post</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28364635','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28364635"><span><span class="hlt">Hydrothermal</span> treatment followed by enzymatic hydrolysis and <span class="hlt">hydrothermal</span> carbonization as means to valorise agro- and forest-based biomass residues.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wikberg, Hanne; Grönqvist, Stina; Niemi, Piritta; Mikkelson, Atte; Siika-Aho, Matti; Kanerva, Heimo; Käsper, Andres; Tamminen, Tarja</p> <p>2017-07-01</p> <p>The suitability of several abundant but underutilized agro and forest based biomass residues for <span class="hlt">hydrothermal</span> treatment followed by enzymatic hydrolysis as well as for <span class="hlt">hydrothermal</span> carbonization was studied. The selected approaches represent simple biotechnical and thermochemical treatment routes suitable for wet biomass. Based on the results, the <span class="hlt">hydrothermal</span> pre-treatment followed by enzymatic hydrolysis seemed to be most suitable for processing of carbohydrate rich corn leaves, corn stover, wheat straw and willow. High content of thermally stable components (i.e. lignin) and low content of ash in the biomass were advantageous for <span class="hlt">hydrothermal</span> carbonization of grape pomace, coffee cake, Scots pine bark and willow. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080013167','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080013167"><span>Sample Return from Ancient <span class="hlt">Hydrothermal</span> Springs</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Allen, Carlton C.; Oehler, Dorothy Z.</p> <p>2008-01-01</p> <p><span class="hlt">Hydrothermal</span> spring deposits on Mars would make excellent candidates for sample return. Molecular phylogeny suggests that that life on Earth may have arisen in <span class="hlt">hydrothermal</span> settings [1-3], and on Mars, such settings not only would have supplied energy-rich waters in which martian life may have evolved [4-7] but also would have provided warm, liquid water to martian life forms as the climate became colder and drier [8]. Since silica, sulfates, and clays associated with <span class="hlt">hydrothermal</span> settings are known to preserve geochemical and morphological remains of ancient terrestrial life [9-11], such settings on Mars might similarly preserve evidence of martian life. Finally, because formation of <span class="hlt">hydrothermal</span> springs includes surface and subsurface processes, martian spring deposits would offer the potential to assess astrobiological potential and hydrological history in a variety of settings, including surface mineralized terraces, associated stream deposits, and subsurface environments where organic remains may have been well protected from oxidation. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data [12-14]. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel, and based on these new data, we have interpreted several features in Vernal Crater, Arabia Terra as ancient <span class="hlt">hydrothermal</span> springs [15, 16].</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMOS11B1488T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMOS11B1488T"><span>First <span class="hlt">hydrothermal</span> active vent discovered on the Galapagos Microplate</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tao, C.; Li, H.; Wu, G.; Su, X.; Zhang, G.; Chinese DY115-21 Leg 3 Scientific Party</p> <p>2011-12-01</p> <p>The Galapagos Microplate (GM) lies on the western Gaplapagos Spreading Center (GSC), representing one of the classic Ridge-Ridge-Ridge (R-R-R) plate boundaries of the Nazca, Cocos, and Pacific plates. The presence of the 'black smoke' and <span class="hlt">hydrothermal</span> vent community were firstly confirmed on the GSC. Lots of <span class="hlt">hydrothermal</span> fields were discovered on the center and eastern GSC, while the western GSC has not been well investigated. During 17th Oct. to 9th Nov. 2009, the 3rd leg of Chinese DY115-21 cruise with R/V Dayangyihao has been launched along 2°N-5°S near equatorial East Pacific Rise (EPR). Two new <span class="hlt">hydrothermal</span> fields were confirmed. One is named 'Precious Stone Mountain', which is the first <span class="hlt">hydrothermal</span> field on the GM. The other is found at 101.47°W, 0.84°S EPR. The 'Precious Stone Mountain' <span class="hlt">hydrothermal</span> field (at 101.49°W, 1.22°N) is located at an off-axial seamount on the southern GM boundary, with a depth from 1,450 to 1,700m. <span class="hlt">Hydrothermal</span> fluids emitting from the fissures and <span class="hlt">hydrothermal</span> fauna were captured by deep-tow video. Few mineral clasts of pyrite and chalcopyrite were separated from one sediment sample, but no sulfide chimney was found yet. <span class="hlt">Hydrothermal</span> fauna such as alive mussels, crabs, shrimps, tubeworms, giant clams, as well as rock samples were collected by TV-Grab. The study of the seafloor classification with Simrad EM120 multi-beam echosounder has been conducted on the 'Precious Stone Mountain' <span class="hlt">hydrothermal</span> field. The result indicates that seafloor materials around the <span class="hlt">hydrothermal</span> field can be characterized into three types, such as the fresh lava, <span class="hlt">hydrothermal</span> sediment, and altered rock.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=new&pg=7&id=EJ975568','ERIC'); return false;" href="https://eric.ed.gov/?q=new&pg=7&id=EJ975568"><span>An Overview of New <span class="hlt">Zealand</span> Career Development Services</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Furbish, Dale</p> <p>2012-01-01</p> <p>Career development services have existed in New <span class="hlt">Zealand</span> since the early part of the 20th century. In many aspects, the profession has developed in New <span class="hlt">Zealand</span> parallel to the development of career guidance and counselling in other Western countries but New <span class="hlt">Zealand</span> also represents a unique context. In acknowledgement of the distinctive…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V24A..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V24A..03W"><span>Anatomy of Old Faithful <span class="hlt">hydrothermal</span> <span class="hlt">system</span> from subsurface seismic imaging of the Yellowstone Upper Geyser Basin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, S. M.; Lin, F. C.; Farrell, J.; Ward, K. M.; Karplus, M. S.; Smith, R. B.</p> <p>2017-12-01</p> <p>The Upper Geyser Basin (UGB) in Yellowstone National Park contains one of the highest concentrations of <span class="hlt">hydrothermal</span> features on Earth including the iconic Old Faithful Geyser (OFG). Although this <span class="hlt">system</span> has been the focus of many geological, geochemical, and geophysical studies, the shallow (<200 m) subsurface structure and the <span class="hlt">hydrothermal</span> tremor behavior remain poorly characterized. To probe the detailed structure that relates to the <span class="hlt">hydrothermal</span> plumbing of the UGB, we deployed dense arrays of 3-C 5-Hz geophones in both November of 2015 and 2016, composed of 133 stations with 50 m spacing, and 519 station locations, with an 20 m spacing, respectively. By applying seismic interferometry techniques, we extracted Rayleigh-wave signals between 1-10 Hz via seismic signals excited by nearby <span class="hlt">hydrothermal</span> features (e.g. geysers and pools). We observe a clear lateral velocity boundary at 3.3 Hz frequency that delineates a higher phase velocity of 1.6 km/sec in the NE and a lower phase velocity of 1.0 km/sec in the SW corresponding to the local geologic formation of rhyolitic and glacial deposits, respectively. We also image a relatively shallow (20-60 m deep) large reservoir with an estimated porosity 30% located 100 meters southwest of the OFG from the significant spatial-dependent waveform distortions and delays between 5-10 Hz frequency. This reservoir is likely controlled by the local geology with a rhyolitic deposit in the NE acting as a relatively impermeable barrier to vertical fluid ascent. To understand the pre-eruption tremor signals from OFG, we first study the seismic waveforms recorded at the closest station to the OFG cone. Many highly repetitive seismic pulses associated with bubble collapse, which compose the tremor signal, can be identified. Using a reference event template and the cross-correlation method, we can determine the onset of each individual bubbling event using a cross-correlation coefficient threshold of 0.8. Based on the detected timing</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V11A0328K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V11A0328K"><span>Exploration Method Development for <span class="hlt">hydrothermal</span> plume hunting by XCTD</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kitagawa, Y.; Ikeda, M.; Kadoshima, K.; Koizumi, Y.; Nakano, J.; Asakawa, E.; Sumi, T.</p> <p>2017-12-01</p> <p>J-MARES (Research and Development Partnership for Next Generation Technology of Marine Resources Survey, JAPAN) has been designing a low-cost and high-efficiency exploration <span class="hlt">system</span> for seafloor <span class="hlt">hydrothermal</span> massive sulfide deposits in "Cross-ministerial Strategic Innovation Promotion Program (SIP)" granted by the Cabinet Office, Government of Japan since 2014. We proposed <span class="hlt">hydrothermal</span> plume hunting by XCTD (eXpendables Conductivity, Temperature and Depth). We applied this method to an area of interest more than 100km x 100km over Okinawa Trough, including some known seafloor massive sulfide deposits. Generally, <span class="hlt">hydrothermal</span> plume exploration has been by ship mounted with MBES (Multi Beam Echo Sounder) or AUV with sound anomaly observation. However, these methods have to charter the sophisticated ship costly. On the other hand, throw-in type water quality meters (eg. XCTD and XBT) can be low-cost and easily operable. Moreover, that can make a quick look at seawater temperature and conductivity even in rough waters.Firstly, we confirmed XCTD probes position on the seafloor by ROV mounted deep-sea high vision camera. As a result of the test, probes swept downstream about 40 m in horizontal distance from throwing positions with about 1,600m in water depth. Following the previous test results, we had performed to the next test that confirmed detection range of <span class="hlt">hydrothermal</span> plume at the chimney of North Mound in Izena Cauldron, so we had caught anomaly of seawater temperature and conductivity successfully which could be possibly derived from <span class="hlt">hydrothermal</span> activities. Although averaged seawater temperature at a depth of 1500 m or more was about 3.95 degrees C, near the chimney was about 4.93 degrees C. The temperature anomalies originated from the <span class="hlt">hydrothermal</span> plumes could be distributed at most 30m in horizontal distance and became smaller away from the chimney. Moreover, temperature anomaly mass of sea water tended to move upward in depth with distance away from the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15544711','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15544711"><span>The safety experience of New <span class="hlt">Zealand</span> adventure tourism operators.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bentley, Tim A; Page, Stephen; Walker, Linda</p> <p>2004-01-01</p> <p>This survey examined parameters of the New <span class="hlt">Zealand</span> adventure tourism industry client injury risk. The research also sought to establish priorities for intervention to reduce adventure tourism risk, and identify client injury control measures currently in place (or absent) in the New <span class="hlt">Zealand</span> adventure tourism industry, with a view to establishing guidelines for the development of effective adventure tourism safety management <span class="hlt">systems</span>. This 2003 survey builds upon an exploratory study of New <span class="hlt">Zealand</span> adventure tourism safety conducted by us during 1999. A postal questionnaire was used to survey all identifiable New <span class="hlt">Zealand</span> adventure tourism operators. The questionnaire asked respondents about their recorded client injury experience, perceptions of client injury risk factors, safety management practices, and barriers to safety. Some 27 adventure tourism activities were represented among the responding sample (n=96). The highest client injury risk was reported in the snow sports, bungee jumping and horse riding sectors, although serious underreporting of minor injuries was evident across the industry. Slips, trips and falls (STF) were the major client injury mechanisms, and a range of risk factors for client injuries were identified. Safety management measures were inconsistently applied across the industry. The industry should consider the implications of poor injury reporting standards and safety management practices generally. Specifically, the industry should consider risk management that focuses on minor (e.g., STF) as well as catastrophic events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.1387S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.1387S"><span>Fault Zone Permeability Decrease Following Large Earthquakes in a <span class="hlt">Hydrothermal</span> <span class="hlt">System</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shi, Zheming; Zhang, Shouchuan; Yan, Rui; Wang, Guangcai</p> <p>2018-02-01</p> <p>Seismic wave shaking-induced permeability enhancement in the shallow crust has been widely observed. Permeability decrease, however, is seldom reported. In this study, we document coseismic discharge and temperature decrease in a hot spring following the 1996 Lijiang Mw 7.0 and the 2004 Mw 9.0 earthquakes in the Balazhang geothermal field. We use three different models to constrain the permeability change and the mechanism of coseismic discharge decrease, and we use an end-member mixing model for the coseismic temperature change. Our results show that the earthquake-induced permeability decrease in the fault zone reduced the recharge from deep hot water, which may be the mechanism that explains the coseismic discharge and temperature responses. The changes in the hot spring response reflect the dynamic changes in the <span class="hlt">hydrothermal</span> <span class="hlt">system</span>; in the future, the earthquake-induced permeability decrease should be considered when discussing controls on permeability.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12159587','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12159587"><span>International migration and New <span class="hlt">Zealand</span> labour markets.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Farmer, R S</p> <p>1986-06-01</p> <p>"This paper seeks to assess the value of the overseas-born members of the labour force in ensuring a flexible labour supply in New <span class="hlt">Zealand</span> since the beginning of the 1970s. Three main issues are considered: first, the role of the labour market in New <span class="hlt">Zealand</span>'s immigration policy; second, international migration trends and the labour market; and third, the evidence on migration and labour market segmentation in New <span class="hlt">Zealand</span>." Data used are from official external migration statistics, quinquennial censuses, and recent research. The author notes that "in New <span class="hlt">Zealand</span> immigration measures are currently being taken that emphasize that immigration continues to add to the flexibility of the labour market while uncontrolled emigration is a major cause of labour market instability." (SUMMARY IN FRE AND SPA) excerpt</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..346...28T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..346...28T"><span><span class="hlt">Hydrothermal</span> <span class="hlt">systems</span> of the Karymsky Volcanic Centre, Kamchatka: Geochemistry, time evolution and solute fluxes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taran, Yuri; Kalacheva, Elena; Inguaggiato, Salvatore; Cardellini, Carlo; Karpov, Gennady</p> <p>2017-10-01</p> <p>Karymsky Volcanic Centre (KVC) at the middle of the frontal volcanic chain of the Kamchatka arc consists of two joined calderas (Akademii Nauk and Karymsky volcano) and hosts two <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>: Akademii Nauk (AN) and Karymsky (K). The AN is a typical boiling <span class="hlt">system</span>, with Na-Cl waters (TDS 1 g/l), low gas content (CO2-N2), with deep calculated temperatures of 200 °C. In contrast, springs of the K <span class="hlt">system</span> have lower temperatures (up to 42 °C), strong gas bubbling, TDS 2.5 g/l, and are enriched in HCO3- and SO42 -, with Mg2 + as the main cation. There are two intriguing characteristics of the K field: (i) their CO2-rich gas (> 97 mol%) has the highest 3He/4He ratios ever measured for <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> in Kamchatka of 8 Ra (where Ra = 1.4 × 10- 6) and (ii) their thermal waters have an unusual cation composition (Mg > Na > Ca). After the 1996 sublimnic eruption within AN caldera, new hot springs appeared close to the eruption site. In this paper we synthesize all published and new geochemical data sets. The Karymsky Lake and post-1996 new thermal springs demonstrate exponential decreases in their main dissolved species, with a characteristic time of 5 to 8 years. The chemistry of AN and K springs did not change after the eruption. However, the concentration of chloride in the lake water approached 35 mg/l, compared with a background of 8-11 mg/l revealing a possible new source of hot water within the Karymsky Lake. All thermal fields of the KVC are drained by the Karymsky River with an outflow rate at the source of 2 m3/s (flowing out from Karymsky Lake) and at the exit from the Karymsky caldera of 4.5 m3/s. Using the measured solute fluxes at the source (AN springs) and at the exit (AN + K springs) the natural heat flux from the two <span class="hlt">systems</span> can be estimated as 67 MW and 120 MW, respectively, and ≥ 20 t/d for the chloride output from both <span class="hlt">systems</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037604','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037604"><span>Using noble gases measured in spring discharge to trace <span class="hlt">hydrothermal</span> processes in the Norris Geyser Basin, Yellowstone National Park, U.S.A.</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gardner, W.P.; Susong, D.D.; Solomon, D.K.; Heasler, H.P.</p> <p>2010-01-01</p> <p>Dissolved noble gas concentrations in springs are used to investigate boiling of <span class="hlt">hydrothermal</span> water and mixing of <span class="hlt">hydrothermal</span> and shallow cool water in the Norris Geyser Basin area. Noble gas concentrations in water are modeled for single stage and continuous steam removal. Limitations on boiling using noble gas concentrations are then used to estimate the isotopic effect of boiling on <span class="hlt">hydrothermal</span> water, allowing the isotopic composition of the parent <span class="hlt">hydrothermal</span> water to be determined from that measured in spring. In neutral chloride springs of the Norris Geyser Basin, steam loss since the last addition of noble gas charged water is less than 30% of the total <span class="hlt">hydrothermal</span> discharge, which results in an isotopic shift due to boiling of ?? 2.5% ??D. Noble gas concentrations in water rapidly and predictably change in dual phase <span class="hlt">systems</span>, making them invaluable tracers of gas-liquid interaction in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. By combining traditional tracers of <span class="hlt">hydrothermal</span> flow such as deuterium with dissolved noble gas measurements, more complex <span class="hlt">hydrothermal</span> processes can be interpreted. ?? 2010 Elsevier B.V.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7525J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7525J"><span>A seismic network to investigate the sedimentary hosted <span class="hlt">hydrothermal</span> Lusi <span class="hlt">system</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Javad Fallahi, Mohammad; Mazzini, Adriano; Lupi, Matteo; Obermann, Anne; Karyono, Karyono</p> <p>2016-04-01</p> <p>The 29th of May 2006 marked the beginning of the sedimentary hosted <span class="hlt">hydrothermal</span> Lusi <span class="hlt">system</span>. During the last 10 years we witnessed numerous alterations of the Lusi <span class="hlt">system</span> behavior that coincide with the frequent seismic and volcanic activity occurring in the region. In order to monitor the effect that the seismicity and the activity of the volcanic arc have on Lusi, we deployed a ad hoc seismic network. This temporary network consist of 10 broadband and 21 short period stations and is currently operating around the Arjuno-Welirang volcanic complex, along the Watukosek fault <span class="hlt">system</span> and around Lusi, in the East Java basin since January 2015. We exploit this dataset to investigate surface wave and shear wave velocity structure of the upper-crust beneath the Arjuno-Welirang-Lusi complex in the framework of the Lusi Lab project (ERC grant n° 308126). Rayleigh and Love waves travelling between each station-pair are extracted by cross-correlating long time series of ambient noise data recorded at the stations. Group and phase velocity dispersion curves are obtained by time-frequency analysis of cross-correlation functions, and are tomographically inverted to provide 2D velocity maps corresponding to different sampling depths. 3D shear wave velocity structure is then acquired by inverting the group velocity maps.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS41C1965C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS41C1965C"><span>The characteristics of <span class="hlt">hydrothermal</span> plumes observed at the Zouyu-1 and Zouyu-2 <span class="hlt">hydrothermal</span> fields in the Southern Mid-Atlantic Ridges</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, S.; Tao, C.; Baker, E. T.; Li, H.</p> <p>2016-12-01</p> <p>The Zouyu-1 (14.41°W, 13.25°S) and Zouyu-2 (14.41°W, 13.28°S) <span class="hlt">hydrothermal</span> fields are located on the neovolcanic Zouyu ridge on axis of a symmetrical spreading ridge, which is on the eastern side of the S14 segment on the southern Mid-Atlantic ridge (the ridge segments were numbered by Chunhui Tao (2016) ). The two <span class="hlt">hydrothermal</span> fields were found during Chinese 22nd cruise in 2011 and 21st cruise in 2009 on board R/V Dayang YiHao, respectively. We collected data recorded by light-scattering and temperature sensors (Miniature Autonomous Plume Recorder, short for MAPR), and H2S and ORP sensors (Electro-chemical sensor, short for ECS) in multiple years (2009, 2011), yielding the following results: (1) The turbidity anomalies were widely distributed in the Zouyu-1 and Zouyu-2 <span class="hlt">hydrothermal</span> fields. And the highest turbidity anomalies were concentrated around Zouyu-2 <span class="hlt">hydrothermal</span> field, with a maximum value of 0.094 △NTU south of Zouyu-2 vent. The horizontal scale of <span class="hlt">hydrothermal</span> plume maximum was 2.5 km. The plume maximum is offset 500 m east of the Zouyu-2 vent location. (2) ORP anomalies were detected near Zouyu-2 in 2011. Sharp and substantial ORP ( 80 mV) and H2S (2.5 nmol/L) anomalies occurred near 14.412°W,13.28°S for 300 m along the track line 22II-L07. (3)Temperature along the track line 21IV-L04 in the Zouyu-2 field increased by as much as 0.03 ° even as the depth of MAPR was largely unchanged. With the evidence of concomitant fluctuations in turbidity, it showed the temperature increases were <span class="hlt">hydrothermally</span> induced. Keywords: <span class="hlt">hydrothermal</span> plume, Zouyu-1 <span class="hlt">hydrothermal</span> field, Zouyu-2 <span class="hlt">hydrothermal</span> field</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027150','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027150"><span>Tracing the history of submarine <span class="hlt">hydrothermal</span> inputs and the significance of <span class="hlt">hydrothermal</span> hafnium for the seawater budget - A combined Pb-Hf-Nd isotope approach</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>van de Flierdt, T.; Frank, M.; Halliday, A.N.; Hein, J.R.; Hattendorf, B.; Gunther, D.; Kubik, P.W.</p> <p>2004-01-01</p> <p>Secular variations in the Pb isotopic composition of a mixed hydrogenous-<span class="hlt">hydrothermal</span> ferromanganese crust from the Bauer Basin in the eastern Equatorial Pacific provide clear evidence for changes in <span class="hlt">hydrothermal</span> contributions during the past 7 Myr. The nearby Galapagos Rise spreading center provided a strong <span class="hlt">hydrothermal</span> flux prior to 6.5 Ma. After 6.5 Ma, the Pb became stepwise more radiogenic and more similar to Equatorial Pacific seawater, reflecting the westward shift of spreading to the presently active East Pacific Rise (EPR). A second, previously unrecognized enhanced <span class="hlt">hydrothermal</span> period occurred between 4.4 and 2.9 Ma, which reflects either off-axis <span class="hlt">hydrothermal</span> activity in the Bauer Basin or a late-stage pulse of <span class="hlt">hydrothermal</span> Pb from the then active, but waning Galapagos Rise spreading center. Hafnium isotope time-series of the same mixed hydrogenous-<span class="hlt">hydrothermal</span> crust show invariant values over the past 7 Myr. Hafnium isotope ratios, as well as Nd isotope ratios obtained for this crust, are identical to that of hydrogenous Equatorial Pacific deep water crusts and clearly indicate that <span class="hlt">hydrothermal</span> Hf, similar to Nd, does not travel far from submarine vents. Therefore, we suggest that <span class="hlt">hydrothermal</span> Hf fluxes do not contribute significantly to the global marine Hf budget. ?? 2004 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeCoA.124...72L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeCoA.124...72L"><span>Modeling microbial reaction rates in a submarine <span class="hlt">hydrothermal</span> vent chimney wall</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>LaRowe, Douglas E.; Dale, Andrew W.; Aguilera, David R.; L'Heureux, Ivan; Amend, Jan P.; Regnier, Pierre</p> <p>2014-01-01</p> <p>The fluids emanating from active submarine <span class="hlt">hydrothermal</span> vent chimneys provide a window into subseafloor processes and, through mixing with seawater, are responsible for steep thermal and compositional gradients that provide the energetic basis for diverse biological communities. Although several models have been developed to better understand the dynamic interplay of seawater, <span class="hlt">hydrothermal</span> fluid, minerals and microorganisms inside chimney walls, none provide a fully integrated approach to quantifying the biogeochemistry of these <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. In an effort to remedy this, a fully coupled biogeochemical reaction-transport model of a <span class="hlt">hydrothermal</span> vent chimney has been developed that explicitly quantifies the rates of microbial catalysis while taking into account geochemical processes such as fluid flow, solute transport and oxidation-reduction reactions associated with fluid mixing as a function of temperature. The metabolisms included in the reaction network are methanogenesis, aerobic oxidation of hydrogen, sulfide and methane and sulfate reduction by hydrogen and methane. Model results indicate that microbial catalysis is generally fastest in the hottest habitable portion of the vent chimney (77-102 °C), and methane and sulfide oxidation peak near the seawater-side of the chimney. The fastest metabolisms are aerobic oxidation of H2 and sulfide and reduction of sulfate by H2 with maximum rates of 140, 900 and 800 pmol cm-3 d-1, respectively. The maximum rate of hydrogenotrophic methanogenesis is just under 0.03 pmol cm-3 d-1, the slowest of the metabolisms considered. Due to thermodynamic inhibition, there is no anaerobic oxidation of methane by sulfate (AOM). These simulations are consistent with vent chimney metabolic activity inferred from phylogenetic data reported in the literature. The model developed here provides a quantitative approach to describing the rates of biogeochemical transformations in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> and can be used to constrain the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GMD.....7.2359K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GMD.....7.2359K"><span>Grassland production under global change scenarios for New <span class="hlt">Zealand</span> pastoral agriculture</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keller, E. D.; Baisden, W. T.; Timar, L.; Mullan, B.; Clark, A.</p> <p>2014-10-01</p> <p>We adapt and integrate the Biome-BGC and Land Use in Rural New <span class="hlt">Zealand</span> models to simulate pastoral agriculture and to make land-use change, intensification of agricultural activity and climate change scenario projections of New <span class="hlt">Zealand</span>'s pasture production at time slices centred on 2020, 2050 and 2100, with comparison to a present-day baseline. Biome-BGC model parameters are optimised for pasture production in both dairy and sheep/beef farm <span class="hlt">systems</span>, representing a new application of the Biome-BGC model. Results show up to a 10% increase in New <span class="hlt">Zealand</span>'s national pasture production in 2020 under intensification and a 1-2% increase by 2050 from economic factors driving land-use change. Climate change scenarios using statistically downscaled global climate models (GCMs) from the IPCC Fourth Assessment Report also show national increases of 1-2% in 2050, with significant regional variations. Projected out to 2100, however, these scenarios are more sensitive to the type of pasture <span class="hlt">system</span> and the severity of warming: dairy <span class="hlt">systems</span> show an increase in production of 4% under mild change but a decline of 1% under a more extreme case, whereas sheep/beef production declines in both cases by 3 and 13%, respectively. Our results suggest that high-fertility <span class="hlt">systems</span> such as dairying could be more resilient under future change, with dairy production increasing or only slightly declining in all of our scenarios. These are the first national-scale estimates using a model to evaluate the joint effects of climate change, CO2 fertilisation and N-cycle feedbacks on New <span class="hlt">Zealand</span>'s unique pastoral production <span class="hlt">systems</span> that dominate the nation's agriculture and economy. Model results emphasise that CO2 fertilisation and N-cycle feedback effects are responsible for meaningful differences in agricultural <span class="hlt">systems</span>. More broadly, we demonstrate that our model output enables analysis of decoupled land-use change scenarios: the Biome-BGC data products at a national or regional level can be re</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GMDD....7.3307K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GMDD....7.3307K"><span>Grassland production under global change scenarios for New <span class="hlt">Zealand</span> pastoral agriculture</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keller, E. D.; Baisden, W. T.; Timar, L.; Mullan, B.; Clark, A.</p> <p>2014-05-01</p> <p>We adapt and integrate the Biome-BGC and Land Use in Rural New <span class="hlt">Zealand</span> (LURNZ) models to simulate pastoral agriculture and to make land-use change, intensification and climate change scenario projections of New <span class="hlt">Zealand</span>'s pasture production at time slices centred on 2020, 2050 and 2100, with comparison to a present-day baseline. Biome-BGC model parameters are optimised for pasture production in both dairy and sheep/beef farm <span class="hlt">systems</span>, representing a new application of the Biome-BGC model. Results show up to a 10% increase in New <span class="hlt">Zealand</span>'s national pasture production in 2020 under intensification and a 1-2% increase by 2050 from economic factors driving land-use change. Climate change scenarios using statistically downscaled global climate models (GCMs) from the IPCC Fourth Assessment Report (AR4) also show national increases of 1-2% in 2050, with significant regional variations. Projected out to 2100, however, these scenarios are more sensitive to the type of pasture <span class="hlt">system</span> and the severity of warming: dairy <span class="hlt">systems</span> show an increase in production of 4% under mild change but a decline of 1% under a more extreme case, whereas sheep/beef production declines in both cases by 3% and 13%, respectively. Our results suggest that high-fertility <span class="hlt">systems</span> such as dairying could be more resilient under future change, with dairy production increasing or only slightly declining in all of our scenarios. These are the first national-scale estimates using a model to evaluate the joint effects of climate change, CO2 fertilisation and N-cycle feedbacks on New <span class="hlt">Zealand</span>'s unique pastoral production <span class="hlt">systems</span> that dominate the nation's agriculture and economy. Model results emphasize that CO2 fertilisation and N cycle feedback effects are responsible for meaningful differences in agricultural <span class="hlt">systems</span>. More broadly, we demonstrate that our model output enables analysis of Decoupled Land-Use Change Scenarios (DLUCS): the Biome-BGC data products at a national or regional level can be re</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1379643','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1379643"><span>An inquiry into good hospital governance: A New <span class="hlt">Zealand</span>-Czech comparison</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ditzel, Elizabeth; Štrach, Pavel; Pirozek, Petr</p> <p>2006-01-01</p> <p>Background This paper contributes to research in health <span class="hlt">systems</span> literature by examining the role of health boards in hospital governance. Health care ranks among the largest public sectors in OECD countries. Efficient governance of hospitals requires the responsible and effective use of funds, professional management and competent governing structures. In this study hospital governance practice in two health care <span class="hlt">systems</span> – Czech Republic and New <span class="hlt">Zealand</span> – is compared and contrasted. These countries were chosen as both, even though they are geographically distant, have a universal right to 'free' health care provided by the state and each has experienced periods of political change and ensuing economic restructuring. Ongoing change has provided the impetus for policy reform in their public hospital governance <span class="hlt">systems</span>. Methods Two comparative case studies are presented. They define key similarities and differences between the two countries' health care <span class="hlt">systems</span>. Each public hospital governance <span class="hlt">system</span> is critically analysed and discussed in light of D W Taylor's nine principles of 'good governance'. Results While some similarities were found to exist, the key difference between the two countries is that while many forms of 'ad hoc' hospital governance exist in Czech hospitals, public hospitals in New <span class="hlt">Zealand</span> are governed in a 'collegiate' way by elected District Health Boards. These findings are discussed in relation to each of the suggested nine principles utilized by Taylor. Conclusion This comparative case analysis demonstrates that although the New <span class="hlt">Zealand</span> and Czech Republic health <span class="hlt">systems</span> appear to show a large degree of convergence, their approaches to public hospital governance differ on several counts. Some of the principles of 'good governance' existed in the Czech hospitals and many were practiced in New <span class="hlt">Zealand</span>. It would appear that the governance styles have evolved from particular historical circumstances to meet each country's specific requirements</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27355225','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27355225"><span>The management of Graves' disease in New <span class="hlt">Zealand</span> 2014.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cox, Stephanie C; Tamatea, Jade Au; Conaglen, John V; Elston, Marianne S</p> <p>2016-06-10</p> <p>Treatment options for Graves' disease (GD), namely anti-thyroid drugs (ATD), surgery or radioiodine (RAI), have not changed over the past two decades. There is no 'gold-standard' treatment for GD. To assess whether the management of GD in New <span class="hlt">Zealand</span> has changed since the previous 1991 New <span class="hlt">Zealand</span> survey and compare current management with that of contemporary international studies. We conducted an online survey of New <span class="hlt">Zealand</span> physicians currently practising internal medicine, diabetes and/or endocrinology, using the cases and questions from the original European and 1991 New <span class="hlt">Zealand</span> studies. The first-line use of RAI was 5.5%, compared to 41% in the 1991 New <span class="hlt">Zealand</span> survey. This corresponded to an increase in ATD use, while the rates of surgery as a first-line treatment have remained static over time. New <span class="hlt">Zealand</span> physicians use technetium scanning for diagnosis, whereas ultrasound and radioiodine uptake were the most commonly selected investigations by European and North American physicians, respectively. The pattern of ATD use in pregnancy was similar to international practice. Treatment of GD in New <span class="hlt">Zealand</span> has shifted away from the use of RAI as first line treatment. There are significant differences in the investigation and treatment of Grave's disease between New <span class="hlt">Zealand</span>, Europe and North America.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..281..228C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..281..228C"><span>Geology and mineralogy of the Auki Crater, Tyrrhena Terra, Mars: A possible post impact-induced <span class="hlt">hydrothermal</span> <span class="hlt">system</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carrozzo, F. G.; Di Achille, G.; Salese, F.; Altieri, F.; Bellucci, G.</p> <p>2017-01-01</p> <p>A variety of <span class="hlt">hydrothermal</span> environments have been documented in terrestrial impact structures. Due to both past water interactions and meteoritic bombardment on the surface of Mars, several authors have predicted various scenarios that include the formation of <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. Geological and mineralogical evidence of past <span class="hlt">hydrothermal</span> activity have only recently been found on Mars. Here, we present a geological and mineralogical study of the Auki Crater using the spectral and visible imagery data acquired by the CRISM (Compact Reconnaissance Imaging Spectrometer for Mars), CTX (Context Camera) and HiRISE (High Resolution Imaging Science Experiment) instruments on board the NASA MRO mission. The Auki Crater is a complex crater that is ∼38 km in diameter located in Tyrrhena Terra (96.8°E and 15.7°S) and shows a correlation between its mineralogy and morphology. The presence of minerals, such as smectite, silica, zeolite, serpentine, carbonate and chlorite, associated with morphological structures, such as mounds, polygonal terrains, fractures and veins, suggests that the Auki Crater may have hosted a post impact-induced <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. Although the distribution of hydrated minerals in and around the central uplift and the stratigraphic relationships of some morphological units could also be explained by the excavation and exhumation of carbonate-rich bedrock units as a consequence of crater formation, we favor the hypothesis of impact-induced <span class="hlt">hydrothermal</span> circulation within fractures and subsequent mineral deposition. The <span class="hlt">hydrothermal</span> <span class="hlt">system</span> could have been active for a relatively long period of time after the impact, thus producing a potential transient habitable environment. It must be a spectrally neutral component to emphasize the spectral features;</ce:para> It is an average of spectra taken in the same column of the numerator spectra to correct the residual instrument artifacts and reduce detector noise that changes from column to column</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS53D1240S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS53D1240S"><span>Methane- and Hydrogen-Influenced Microbial Communities in <span class="hlt">Hydrothermal</span> Plumes above the Atlantis Massif, Mid Atlantic Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stewart, C. L.; Schrenk, M.</p> <p>2017-12-01</p> <p>Ultramafic-hosted <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> associated with slow-spreading mid ocean ridges emit copious amounts of hydrogen and methane into the deep-sea, generated through a process known as serpentinization. <span class="hlt">Hydrothermal</span> plumes carrying the reduced products of water-rock interaction dissipate and mix with deep seawater, and potentially harbor microbial communities adapted to these conditions. Methane and hydrogen enriched <span class="hlt">hydrothermal</span> plumes were sampled from 3 sites near the Atlantis Massif (30°N, Mid Atlantic Ridge) during IODP Expedition 357 and used to initiate cultivation experiments targeting methanotrophic and hydrogenotrophic microorganisms. One set of experiments incubated the cultures at in situ hydrostatic pressures and gas concentrations resulting in the enrichment of gammaproteobacterial assemblages, including Marinobacter spp. That may be involved in hydrocarbon degradation. A second set of experiments pursued the anaerobic enrichment of microbial communities on solid media, resulting in the enrichment of alphaproteobacteria related to Ruegeria. The most prodigious growth in both case occurred in methane-enriched media, which may play a role as both an energy and carbon source. Ongoing work is evaluating the physiological characteristics of these isolates, including their metabolic outputs under different physical-chemical conditions. In addition to providing novel isolates from <span class="hlt">hydrothermal</span> habitats near the Lost City <span class="hlt">Hydrothermal</span> Field, these experiments will provide insight into the ecology of microbial communities from serpentinization influenced <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> that may aid in future exploration of these sites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23793116','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23793116"><span>Challenges of the New <span class="hlt">Zealand</span> healthcare disaster preparedness prior to the Canterbury earthquakes: a qualitative analysis.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Al-Shaqsi, Sultan; Gauld, Robin; Lovell, Sarah; McBride, David; Al-Kashmiri, Ammar; Al-Harthy, Abdullah</p> <p>2013-03-15</p> <p>Disasters are a growing global phenomenon. New <span class="hlt">Zealand</span> has suffered several major disasters in recent times. The state of healthcare disaster preparedness in New <span class="hlt">Zealand</span> prior to the Canterbury earthquakes is not well documented. To investigate the challenges of the New <span class="hlt">Zealand</span> healthcare disaster preparedness prior to the Canterbury earthquakes. Semi-structured interviews with emergency planners in all the District Health Boards (DHBs) in New <span class="hlt">Zealand</span> in the period between January and March 2010. The interview protocol revolved around the domains of emergency planning adopted by the World Health Organization. Seventeen interviews were conducted. The main themes included disinterest of clinical personnel in emergency planning, the need for communication backup, the integration of private services in disaster preparedness, the value of volunteers, the requirement for regular disaster training, and the need to enhance surge capability of the New <span class="hlt">Zealand</span> healthcare <span class="hlt">system</span> to respond to disasters. Prior to the Canterbury earthquakes, healthcare disaster preparedness faced multiple challenges. Despite these challenges, New <span class="hlt">Zealand</span>'s healthcare response was adequate. Future preparedness has to consider the lessons learnt from the 2011 earthquakes to improve healthcare disaster planning in New <span class="hlt">Zealand</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=thunder&pg=5&id=EJ654289','ERIC'); return false;" href="https://eric.ed.gov/?q=thunder&pg=5&id=EJ654289"><span>Bringing Thunder: Tribal College Presidents Explore Indigenous New <span class="hlt">Zealand</span>.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Pease-Pretty, Janine</p> <p>2002-01-01</p> <p>Describes visit of American tribal college and university presidents, faculty, and staff to Maori tribal colleges and schools in Aotearoa, New <span class="hlt">Zealand</span>. Suggests that findings from the study of Maori educational <span class="hlt">systems</span> will affect tribal education in the U.S. (NB)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS22B..01B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS22B..01B"><span>On the global distribution of <span class="hlt">hydrothermal</span> vent fields: One decade later</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beaulieu, S. E.; Baker, E. T.; German, C. R.</p> <p>2012-12-01</p> <p>Since the last global compilation one decade ago, the known number of active submarine <span class="hlt">hydrothermal</span> vent fields has almost doubled. At the end of 2009, a total of 518 active vent fields was catalogued, with about half (245) visually confirmed and others (273) inferred active at the seafloor. About half (52%) of these vent fields are at mid-ocean ridges (MORs), 25% at volcanic arcs, 21% at back-arc spreading centers (BASCs), and 2% at intra-plate volcanoes and other settings. One third are in high seas, and the nations with the most known active vent fields within EEZs are Tonga, USA, Japan, and New <span class="hlt">Zealand</span>. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor <span class="hlt">hydrothermal</span> deposits as mineral resources. Here, we have comprehensively documented the percentage of strike length at MORs and BASCs that has been systematically explored for <span class="hlt">hydrothermal</span> activity. As of the end of 2009, almost 30% of the ~60,000 km of MORs had been surveyed at least with spaced vertical profiles to detect <span class="hlt">hydrothermal</span> plumes. A majority of the vents discovered at MORs in the past decade occurred at segments with < 60 mm/yr full spreading rate. Discoveries at ultra-slow MORs in the past decade included the deepest known vent (Beebe at Mid-Cayman Rise) and high-temperature black smoker vents (e.g., Dragon at SWIR and Loki's Castle at Mohns Ridge), and the highest temperature vent was measured at the slow-spreading S MAR (Turtle Pits). Using a previously published equation for the linear relationship between the number of active vent fields per 100 km strike length (F_s) vs. weighted-average full spreading rate (u_s), we predicted 676 vent fields remaining to be discovered at MORs. Even accounting for the lower F_s at slower spreading rates, almost half of the vents that are predicted remaining to be discovered at MORs are at ultra-slow to slow spreading rates (< 40 mm/yr) and about 1/3 at intermediate rates (40-80 mm</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4284U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4284U"><span>Origin and time-space distribution of <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> in east-central Australian sedimentary basins: Constraints from illite geochronology and isotope geochemistry.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uysal, I. Tonguç</p> <p>2016-04-01</p> <p>Some well-known precious mineral deposits and hydrocarbon resources occur extensively in east-central Australian sedimentary Basins. The metal occurrences are abundant in northwestern and eastern part of Queensland, whereas no significant deposits are known in large areas further south, which may, however, be hidden beneath the Jurassic-Cretaceous sedimentary basins. Important hydrocarbon resources exist within the Jurassic-Cretaceous sedimentary rocks at relatively shallow depths, of which the distribution represent zones of high paleo-geothermal gradients. This study examines the time-space distribution in relation to the regional tectonic history of concealed metal deposits and areas of high paleo-geothermal gradient leading to hydrocarbon maturation. To this end, authigenic illitic clay minerals representing various locations and stratigraphic depths in east-central Australia were investigated, of which the Rb-Sr and Ar-Ar geochronology and stable isotope geochemistry assist in delineating zones of <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> responsible for hydro-carbon maturation/migration and potentially ore deposition. The Late Carboniferous - Early Permian crustal extension that affected large areas of eastern Australia and led to the epithermal mineralisations (e.g., the Drummond Basin) is also recorded in northern South Australia and southwest Queensland. A Late Triassic - Early Jurassic tectonic event being responsible for coal maturation and gas generation in the Bowen Basin and the epithermal mineralisation in the North Arm goldfield in SE Queensland likewise affected the areas much further west in Queensland. Some illites from the basement in outback Queensland and fault gouges from the Demon Fault in NE New South Wales yield younger Rb-Sr and Ar-Ar ages indicating the effect of <span class="hlt">hydrothermal</span> processes as a result of a Middle-Upper Jurassic tectonic event. The majority of illite samples from the crystalline basement rocks, Permian Cooper Basin, and Jurassic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Sociologist+AND+defines+AND+self&id=EJ1070376','ERIC'); return false;" href="https://eric.ed.gov/?q=Sociologist+AND+defines+AND+self&id=EJ1070376"><span>Sustaining Adventure in New <span class="hlt">Zealand</span> Outdoor Education: Perspectives from Renowned New <span class="hlt">Zealand</span> Outdoor Adventurers on the Contested Cultural Understanding of Adventure</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Kane, Maurice; Tucker, Hazel</p> <p>2007-01-01</p> <p>One of the foundations of New <span class="hlt">Zealand</span>'s representation of itself to the world has been as a premier place of adventure. New <span class="hlt">Zealanders</span> who have gained world recognition in outdoor leisure pursuits are used to promote this adventurous depiction of New <span class="hlt">Zealand</span>. They are the focus of and contribute to the discourse which guides the New Zealand…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16330089','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16330089"><span>Marketing fat and sugar to children on New <span class="hlt">Zealand</span> television.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wilson, Nick; Signal, Louise; Nicholls, Sarah; Thomson, George</p> <p>2006-02-01</p> <p>We aimed to determine the frequency and content of television food advertisements during children's viewing times on various New <span class="hlt">Zealand</span> television channels. A content analysis was conducted of two free-to-air channels covering a total of 155 h of television time during children's viewing times (n = 858 food advertisements in 2005). Comparisons were made with data from 1997 and data from Australia. Compared to Australian channels, both New <span class="hlt">Zealand</span> channels (TV3 and TV2) had significantly higher proportions of food advertisements that were classified as being "high in fat and/or sugar" (54% versus 80% and 69%, respectively). Using a more detailed classification <span class="hlt">system</span>, 70.3% of food advertisements on the New <span class="hlt">Zealand</span> channels were for foods "counter to improved nutrition" (95% CI: 67.1%, 73.3%) compared to those "favoring improved nutrition" at 5.1% (95% CI: 3.8%, 6.9%). The number of food advertisements per hour was higher in 2005 than in 1997 for the channel (TV2) for which there was time trend data (12.8 versus 8.0 per hour for the afternoon time slot). These findings provide further evidence that the majority of food advertising on New <span class="hlt">Zealand</span> television is counter to nutritional guidelines. They suggest the need for further regulatory or other controls.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JVGR..328..198T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JVGR..328..198T"><span>The <span class="hlt">hydrothermal</span> <span class="hlt">system</span> of the Domuyo volcanic complex (Argentina): A conceptual model based on new geochemical and isotopic evidences</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tassi, F.; Liccioli, C.; Agusto, M.; Chiodini, G.; Vaselli, O.; Calabrese, S.; Pecoraino, G.; Tempesti, L.; Caponi, C.; Fiebig, J.; Caliro, S.; Caselli, A.</p> <p>2016-12-01</p> <p>The Domuyo volcanic complex (Neuquén Province, Argentina) hosts one of the most promising geothermal <span class="hlt">systems</span> of Patagonia, giving rise to thermal manifestations discharging hot and Cl--rich fluids. This study reports a complete geochemical dataset of gas and water samples collected in three years (2013, 2014 and 2015) from the main fluid discharges of this area. The chemical and isotopic composition (δD-H2O and δ18O-H2O) of waters indicates that rainwater and snow melting are the primary recharge of a <span class="hlt">hydrothermal</span> reservoir located at relative shallow depth (400-600 m) possibly connected to a second deeper (2-3 km) reservoir. Reactive magmatic gases are completely scrubbed by the <span class="hlt">hydrothermal</span> aquifer(s), whereas interaction of meteoric waters at the surface causes a significant air contamination and dilution of the fluid discharges located along the creeks at the foothill of the Cerro Domuyo edifice. Thermal discharges located at relatively high altitude ( 3150 m a.s.l.), namely Bramadora, are less affected by this process, as also shown by their relatively high R/Ra values (up to 6.91) pointing to the occurrence of an actively degassing magma batch located at an unknown depth. Gas and solute geothermometry suggests equilibrium temperatures up to 220-240 °C likely referred to the shallower <span class="hlt">hydrothermal</span> reservoir. These results, confirming the promising indications of the preliminary surveys carried out in the 1980‧s, provide useful information for a reliable estimation of the geothermal potential of this extinct volcanic <span class="hlt">system</span>, although a detailed geophysical measurements is required for the correct estimation of depth and dimensions of the fluid reservoir(s).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Cultural+AND+center&pg=7&id=EJ652562','ERIC'); return false;" href="https://eric.ed.gov/?q=Cultural+AND+center&pg=7&id=EJ652562"><span>Early Childhood Services in New <span class="hlt">Zealand</span>.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Oborn, Glennie</p> <p>2002-01-01</p> <p>Describes the types and characteristics of New <span class="hlt">Zealand</span> early childhood education services. Specific areas addressed include: (1) Te Whaariki, the New <span class="hlt">Zealand</span> early childhood curriculum; (2) great outdoors as a feature of early education; (3) education and care centers; (4) kindergartens and playcenters; and (5) Te Kohanga Reo, Maori language and…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21790871','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21790871"><span>Globalisation, localisation and implications of a transforming nursing workforce in New <span class="hlt">Zealand</span>: opportunities and challenges.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Callister, Paul; Badkar, Juthika; Didham, Robert</p> <p>2011-09-01</p> <p>Severe staff and skill shortages within the health <span class="hlt">systems</span> of developed countries have contributed to increased migration by health professionals. New <span class="hlt">Zealand</span> stands out among countries in the Organisation for Economic Co-operation and Development in terms of the high level of movements in and out of the country of skilled professionals, including nurses. In New <span class="hlt">Zealand</span>, much attention has been given to increasing the number of Māori and Pacific nurses as one mechanism for improving Māori and Pacific health. Against a backdrop of the changing characteristics of the New <span class="hlt">Zealand</span> nursing workforce, this study demonstrates that the globalisation of the nursing workforce is increasing at a faster rate than its localisation (as measured by the growth of the Māori and New <span class="hlt">Zealand</span>-born Pacific workforces in New <span class="hlt">Zealand</span>). This challenges the implementation of culturally appropriate nursing programmes based on the matching of nurse and client ethnicities. © 2011 Blackwell Publishing Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.B51G0474R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.B51G0474R"><span>Arsenic metabolism by microbial communities from an arsenic-rich shallow-water <span class="hlt">hydrothermal</span> <span class="hlt">system</span> in Ambitle Island, Papua New Guinea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruiz Chancho, M.; Pichler, T.; Amend, J. P.; Akerman, N. H.</p> <p>2011-12-01</p> <p>Arsenic, although toxic, is used as an energy source by certain microbes, some of which can catalyse the reduction of arsenate by using different electron donors, while others oxidize arsenite with oxygen or nitrate as electron acceptors. The marine shallow-water <span class="hlt">hydrothermal</span> <span class="hlt">system</span> in Tutum Bay, Ambitle Island, Papua New Guinea is ideal for investigating the metabolism of microbes involved in arsenic cycling, because there <span class="hlt">hydrothermal</span> vents discharge fluids with arsenite concentrations as high as 950 μg/L. Vent fluids are hot (˜100°C), slightly acidic (pH˜6) and reducing. Upon mixing with colder and oxygen-rich seawater the fluid chemistry changes rapidly within a few meters from the <span class="hlt">hydrothermal</span> source. The objective of this work was to study arsenic metabolism due to microbial activity in Tutum Bay. Sediments collected at 7.5 and 30 m along a transect beginning at a <span class="hlt">hydrothermal</span> vent were used as inocula in the microbial culturing experiments. Media were designed using chemical analyses of the <span class="hlt">hydrothermal</span> fluids. Following culture experiments, arsenic species identification and quantification were performed for the growth media with HPLC-ICP(HR)MS, using anion exchange and reversed phase chromatography. Quality control included mass balance calculations and spiking experiments. A fast reduction of arsenate to arsenite was observed in the first 24 hours leading to the conclusion that the microbial communities were capable of reducing arsenic. However, mass balance calculations revealed that more than 30% of the arsenic had been transformed to one or more unknown species, which could not be detected by ion exchange chromatography. The addition of peroxide combined with reversed phase chromatography revealed the presence of several unknown species. Following the addition of peroxide some of the unknown species were identified to be thio-arsenic compounds, because they were oxidized to their oxo-analogues. Nevertheless, a significant fraction of unknown</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28617787','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28617787"><span>Rising levels of New <span class="hlt">Zealand</span> medical student debt.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Verstappen, Antonia; Poole, Phillippa</p> <p>2017-06-16</p> <p>There is little recent data on the debt levels accrued by New <span class="hlt">Zealand</span> medical graduates. We aimed to quantify the level of student loan debt accrued by medical graduates upon completion of their medical degree, and to investigate the association of New <span class="hlt">Zealand</span> Government Student Loan (GSL) debt with gender and age. At graduation each year from 2006-2015, students from one New <span class="hlt">Zealand</span> medical programme were invited to complete a career intention survey that included information on levels of GSL debt and the number of income sources used. The overall response rate was 83.8%. On average, 92% of domestic students reported having some student loan debt, with 28% a debt of $90,000 or more. The proportion of students reporting a student loan debt of $90,000 or more increased over the period of the study (P<0.0001). While older students were more likely to have a larger student loan debt than younger students, there was no difference in debt levels by gender. Students with larger student loans were more likely to rely on a larger number of financial sources to fund their studies. New <span class="hlt">Zealand</span> medical students are carrying higher levels of student loan debt year on year. The effect of this on the future medical workforce is not certain; however, this could be negative if graduates choose to enter careers that are more highly paid over areas of high need. The full impact of large loans on individuals and the health <span class="hlt">system</span> will take years to determine.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021322','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021322"><span><span class="hlt">Hydrothermal</span> synthesis of ammonium illite</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Šucha, Vladimír; Elsass, F.; Eberl, D.D.; Kuchta, L'.; Madejova, J.; Gates, W.P.; Komadel, P.</p> <p>1998-01-01</p> <p>Synthetic gel and glass of illitic composition, natural kaolinite, and mixed-layer illite-smectite were used as starting materials for <span class="hlt">hydrothermal</span> synthesis of ammonium illite. Ammonium illite was prepared from synthetic gel by <span class="hlt">hydrothermal</span> treatment at 300??C. The onset of crystallization began within 3 h, and well-crystallized ammonium illite appeared at 24 h. Increasing reaction time (up to four weeks) led to many illite layers per crystal. In the presence of equivalent proportions of potassium and ammonium, the gel was transformed to illite with equimolar contents of K and NH4. In contrast, synthesis using glass under the same conditions resulted in a mixture of mixed-layer ammonium illite-smectite with large expandability and discrete illite. <span class="hlt">Hydrothermal</span> treatments of the fine fractions of natural kaolinite and illite-smectite produced ammonium illite from kaolinite but the illite-smectite remained unchanged.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T33D0752Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T33D0752Y"><span><span class="hlt">Hydrothermal</span> plume anomalies over the southwest Indian ridge: magmatic control</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yue, X.; Li, H.; Tao, C.; Ren, J.; Zhou, J.; Chen, J.; Chen, S.; Wang, Y.</p> <p>2017-12-01</p> <p>Here we firstly reported the extensive survey results of the <span class="hlt">hydrothermal</span> activity along the ultra-slow spreading southwest Indian ridge (SWIR). The study area is located at segment 27, between the Indomed and Gallieni transform faults, SWIR. The seismic crustal thickness reaches 9.5km in this segment (Li et al., 2015), which is much thicker than normal crustal. The anomaly thickened crust could be affected by the Crozet hotspot or highly focused melt delivery from the mantle. The Duanqiao <span class="hlt">hydrothermal</span> field was reported at the ridge valley of the segment by Tao et al (2009). The Deep-towed <span class="hlt">Hydrothermal</span> Detection <span class="hlt">System</span> (DHDS) was used to collect information related with <span class="hlt">hydrothermal</span> activity, like temperature, turbidity, oxidation-reduction potential (ORP) and seabed types. There are 15 survey lines at the interval of 2 to 3 km which are occupied about 1300 km2 in segment 27. After processing the raw data, including wiping out random noise points, 5-points moving average processing and subtracting the ambient, we got anomalous Nephelometric Turbidity Units values (ΔNTU). And dE/dt was used to identify the ORP anomalous as the raw data is easily influenced by electrode potentials drifting (Baker et al., 2016). According to the results of water column turbidity and ORP distributions, we confirmed three <span class="hlt">hydrothermal</span> anomaly fields named A1, A2 and A3. The three fields are all located in the western part of the segment. The A1 field lies on the ridge valley, west side of Duanqiao field. The A2 and A3 field lie on the northern and southern of the ridge valley, respectively. We propose that recent magmatic activity probably focus on the western part of segment 27.And the extensive distribution of <span class="hlt">hydrothermal</span> plume in the segment is the result of the discrete magma intrusion. References Baker E T, et al. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of <span class="hlt">hydrothermal</span> discharge locations. EPSL, 2016, 449:186-196. Li J</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990PrOce..24...71L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990PrOce..24...71L"><span>Nutritional strategies of the <span class="hlt">hydrothermal</span> ecosystem bivalves</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le Pennec, Marcel; Donval, Anne; Herry, Angèle</p> <p></p> <p>Studies of deep-sea <span class="hlt">hydrothermal</span> bivalves have revealed that the species, which are strictly dependent upon the interstitial fluid emissions, derive their food indirectly via symbiotic relationships with chemosynthetic bacteria present in their gill tissues. As the gill plays the main trophic role, structural and ultrastructural modifications occur in the digestive tract. Scanning and transmission electron microscope studies reveal that the digestive <span class="hlt">system</span> of species belonging to the genera Calyptogena, Bathymodiolus and Bathypecten have anatomical differences. In Calyptogena, the reduction of several parts of the digestive tract and the stomach content which is either empty or full, according to the various species examined indicate that the digestive <span class="hlt">system</span> is hardly if at all functional. In Bathymodiolus, the labial palps are well developed, the stomach is always full with particles and the two cellular types, digestive and secretory, are present in the digestive gland. All these characteristics indicate that the digestive <span class="hlt">system</span> is functional. In Bathypecten, the digestive tract is well developed and it seems that it plays the main trophic role. We conclude that the nutritional strategies of the <span class="hlt">hydrothermal</span> vents bivalves are quite varied. They range from a normal trophic process, through a mixotrophic diet, to one based purely on chemoautotrophic bacteria. The strategy of each species is adapted to and influences its distribution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=sources+AND+finance+AND+expansion&pg=3&id=EJ938263','ERIC'); return false;" href="https://eric.ed.gov/?q=sources+AND+finance+AND+expansion&pg=3&id=EJ938263"><span>The Cost Efficiency New <span class="hlt">Zealand</span>'s Polytechnics</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Abbott, Malcolm; Doucouliagos, Hristos</p> <p>2004-01-01</p> <p>In New <span class="hlt">Zealand</span> the most important institutions that are responsible for the delivery of vocational education and training programs are the government owned and operated tertiary education institutions known as polytechnics. The New <span class="hlt">Zealand</span> polytechnics deliver programs at the certificate, diploma and degree level. During the course of the 1990s,…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH11A0093Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH11A0093Z"><span>Magma-<span class="hlt">Hydrothermal</span> Transition: Basalt Alteration at Supercritical Conditions in Drill Core from Reykjanes, Iceland, Iceland Deep Drilling Project.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zierenberg, R. A.; Fowler, A. P.; Schiffman, P.; Fridleifsson, G. Ó.; Elders, W. A.</p> <p>2017-12-01</p> <p>The Iceland Deep Drilling Project well IDDP-2, drilled to 4,659 m in the Reykjanes geothermal <span class="hlt">system</span>, the on-land extension of the Mid Atlantic Ridge, SW Iceland. Drill core was recovered, for the first time, from a seawater-recharged, basalt-hosted <span class="hlt">hydrothermal</span> <span class="hlt">system</span> at supercritical conditions. The well has not yet been allowed to heat to in situ conditions, but temperature and pressure of 426º C and 340 bar was measured at 4500 m depth prior to the final coring runs. Spot drill cores were recovered between drilling depths of 3648.00 m and 4657.58 m. Analysis of the core is on-going, but we present the following initial observations. The cored material comes from a basaltic sheeted dike complex in the brittle-ductile transition zone. Felsic (plagiogranite) segregation veins are present in minor amounts in dikes recovered below 4300 m. Most core is pervasively altered to hornblende + plagioclase, but shows only minor changes in major and minor element composition. The deepest samples record the transition from the magmatic regime to the presently active <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. Diabase near dike margins has been locally recrystallized to granoblastic-textured orthopyroxene-clinopyroxe-plagioclase hornfels. High temperature <span class="hlt">hydrothermal</span> alteration includes calcic plagioclase (up to An100) and aluminous hornblende (up to 11 Wt. % Al2O3) locally intergrown with <span class="hlt">hydrothermal</span> biotite, clinopyroxene, orthopyroxene and/or olivine. <span class="hlt">Hydrothermal</span> olivine is iron-rich (Mg # 59-64) compared to expected values for igneous olivine. Biotite phenocrysts in felsic segregation veins have higher Cl and Fe compared to <span class="hlt">hydrothermal</span> biotites. Orthopyroxene-clinopyroxene pairs in partially altered quench dike margins give temperature of 955° to 1067° C. Orthopyroxene-clinopyroxene pairs from hornfels and <span class="hlt">hydrothermal</span> veins and replacements give temperature ranging from 774° to 888° C. Downhole fluid sampling is planned following thermal equilibration of the drill hole. Previous work</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11907870','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11907870"><span>New <span class="hlt">Zealand</span> health reforms: effect on ophthalmic practice.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Raynel, S; Reynolds, H</p> <p>1999-01-01</p> <p>Are specialized ophthalmic units with inpatient facilities going to disappear in the New <span class="hlt">Zealand</span> public health <span class="hlt">system</span>? We have entered the era of cost containment, business methodologies, bench marking, day case surgery, and technologic advances. The dilemma for nursing is maintenance of a skill base with dwindling clinical practice areas.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4184897','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4184897"><span>Evolutionary Strategies of Viruses, Bacteria and Archaea in <span class="hlt">Hydrothermal</span> Vent Ecosystems Revealed through Metagenomics</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Anderson, Rika E.; Sogin, Mitchell L.; Baross, John A.</p> <p>2014-01-01</p> <p>The deep-sea <span class="hlt">hydrothermal</span> vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these <span class="hlt">systems</span>, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow <span class="hlt">hydrothermal</span> vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for <span class="hlt">hydrothermal</span> vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts’ functional capabilities. PMID:25279954</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70117573','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70117573"><span><span class="hlt">Hydrothermal</span> monitoring in a quiescent volcanic arc: Cascade Range, northwestern United States</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ingebritsen, S.E.; Randolph-Flagg, N. G.; Gelwick, K.D.; Lundstrom, E.A.; Crankshaw, I.M.; Murveit, A.M.; Schmidt, M.E.; Bergfeld, D.; Spicer, K.R.; Tucker, D.S.; Mariner, R.H.; Evans, William C.</p> <p>2014-01-01</p> <p>Ongoing (1996–present) volcanic unrest near South Sister, Oregon, is accompanied by a striking set of <span class="hlt">hydrothermal</span> anomalies, including elevated temperatures, elevated major ion concentrations, and 3He/4He ratios as large as 8.6 RA in slightly thermal springs. These observations prompted the US Geological Survey to begin a systematic <span class="hlt">hydrothermal</span>-monitoring effort encompassing 25 sites and 10 of the highest-risk volcanoes in the Cascade volcanic arc, from Mount Baker near the Canadian border to Lassen Peak in northern California. A concerted effort was made to develop hourly, multiyear records of temperature and/or <span class="hlt">hydrothermal</span> solute flux, suitable for retrospective comparison with other continuous geophysical monitoring data. Targets included summit fumarole groups and springs/streams that show clear evidence of magmatic influence in the form of high 3He/4He ratios and/or anomalous fluxes of magmatic CO2 or heat. As of 2009–2012, summit fumarole temperatures in the Cascade Range were generally near or below the local pure water boiling point; the maximum observed superheat was 3 during periods of hourly record. <span class="hlt">Hydrothermal</span> responses to these small seismic stimuli were generally undetectable or ambiguous. Evaluation of multiyear to multidecadal trends indicates that whereas the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> at Mount St. Helens is still fast-evolving in response to the 1980–present eruptive cycle, there is no clear evidence of ongoing long-term trends in <span class="hlt">hydrothermal</span> activity at other Cascade Range volcanoes that have been active or restless during the past century (Baker, South Sister, and Lassen). Experience gained during the Cascade Range <span class="hlt">hydrothermal</span>-monitoring experiment informs ongoing efforts to capture entire unrest cycles at more active but generally less accessible volcanoes such as those in the Aleutian arc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28390235','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28390235"><span><span class="hlt">Hydrothermal</span> and alkaline <span class="hlt">hydrothermal</span> pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: Bench-scale research and pilot-scale verification.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Chunxing; Wang, Xingdong; Zhang, Guangyi; Yu, Guangwei; Lin, Jingjiang; Wang, Yin</p> <p>2017-06-15</p> <p>To test the feasibility and practicability of the process combing <span class="hlt">hydrothermal</span> pretreatment for dewatering with biogas production for full utilization of sewage sludge, <span class="hlt">hydrothermal</span>/alkaline <span class="hlt">hydrothermal</span> pretreatments and in turn anaerobic digestion of the filtrates obtained after dewatering the pretreated sludge were performed at bench- and pilot-scales. The <span class="hlt">hydrothermal</span> temperature fell within the range of 140 °C-220 °C and the pretreatment time varied from 30 min to 120 min. For the alkaline <span class="hlt">hydrothermal</span> pretreatment the pH value of the sludge was adjusted to 9.0-11.0 by adding Ca(OH) 2 . The results showed that the dewaterability of the sewage sludge was improved with increasing pretreatment temperature but the impact of the pretreatment time was not significant. The addition of Ca(OH) 2 gave better performance on the subsequent mechanical dewatering of the pretreated sludge compared to pure <span class="hlt">hydrothermal</span> pretreatment, and the higher the pH value was, the better the dewaterability of the pretreated sludge was. The conditions of 180 °C/30 min and 160 °C/60 min/pH = 10.0 (for <span class="hlt">hydrothermal</span> and alkaline <span class="hlt">hydrothermal</span> pretreatments, respectively) resulted in relatively good results in the theoretical energy balance, which were verified in the pilot-scale tests. Based on the data from the pilot tests, the alkaline <span class="hlt">hydrothermal</span> process realized self-sufficiency in energy at the cost of a proper amount of CaO. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080010733','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080010733"><span>Ancient <span class="hlt">Hydrothermal</span> Springs in Arabia Terra, Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Oehler, Dorothy Z.; Allen, Carlton C.</p> <p>2008-01-01</p> <p><span class="hlt">Hydrothermal</span> springs are important astrobiological sites for several reasons: 1) On Earth, molecular phylogeny suggests that many of the most primitive organisms are hyperthermophiles, implying that life on this planet may have arisen in <span class="hlt">hydrothermal</span> settings; 2) on Mars, similar settings would have supplied energy- and nutrient-rich waters in which early martian life may have evolved; 3) such regions on Mars would have constituted oases of continued habitability providing warm, liquid water to primitive life forms as the planet became colder and drier; and 4) mineralization associated with <span class="hlt">hydrothermal</span> settings could have preserved biosignatures from those martian life forms. Accordingly, if life ever developed on Mars, then <span class="hlt">hydrothermal</span> spring deposits would be excellent localities in which to search for morphological or chemical remnants of that life. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel which allows detailed analysis of geologic structure and geomorphology. Based on these new data, we report several features in Vernal Crater, Arabia Terra that we interpret as ancient <span class="hlt">hydrothermal</span> springs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V21A4722T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V21A4722T"><span>Geochemical Evidence for Recent <span class="hlt">Hydrothermal</span> Alteration of Marine Sediments in Mid-Okinawa Trough, Southwest Japan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tanaka, A.; Abe, G.; Yamaguchi, K. E.</p> <p>2014-12-01</p> <p>Recent studies have shown that submarine <span class="hlt">hydrothermal</span> <span class="hlt">system</span> supports diverse microbial life. Bio-essential metals supporting such microbial communities were released from basalts by high-temperature water-rock interaction in deeper part of the oceanic crust and carried by submarine fluid flow. Its total quantity in global <span class="hlt">hydrothermal</span> settings has been estimated to be on the order of ~1019 g/yr, which is surprisingly on the same order of the total river flows (Urabe et al., 2011). Therefore, it is important to explore how submarine river <span class="hlt">system</span> works, i.e., to understand mechanism and extent of elemental transport, which should lead to understanding of the roles of <span class="hlt">hydrothermal</span> circulation in oceanic crust in controlling elemental budget in the global ocean and geochemical conditions to support deep hot biosphere.  We performed REE analysis of marine sediments influenced by submarine <span class="hlt">hydrothermal</span> activity in Mid-Okinawa Trough. The sediment samples used in this study are from IODP site at Iheya North region and JADE site at Izena region. The samples show alternation between volcanic and clastic sediments. <span class="hlt">Hydrothermal</span> fluids of this area contain elevated concentrations of volatile components such as H2, CO2, CH4, NH4+, and H2S, supporting diverse chemoautotrophic microbial community (Nakagawa et al., 2005). The purpose of this study is to examine the effect of <span class="hlt">hydrothermal</span> activity on the REE signature of the sediments. Chondrite-normalized REE patterns of the samples show relative enrichment of light over heavy REEs, weak positive Ce anomalies, and variable degrees of negative Eu anomalies. The REE patterns suggest the sediments source was mainly basalt, suggesting insignificant input of continental materials. Negative Eu anomalies found in the IODP site become more pronounced with increasing depth, suggesting progressive increase of <span class="hlt">hydrothermal</span> alteration where Eu was reductively dissolved into fluids by decomposition of feldspars. Contrary, at the JADE site</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1167674','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1167674"><span>Calibrated <span class="hlt">Hydrothermal</span> Parameters, Barrow, Alaska, 2013</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir</p> <p>2015-01-29</p> <p>A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil <span class="hlt">hydrothermal</span> properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated <span class="hlt">hydrothermal</span> parameters for moss, peat, and mineral soil <span class="hlt">hydrothermal</span> parameters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4771442','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4771442"><span>3.5-Ga <span class="hlt">hydrothermal</span> fields and diamictites in the Barberton Greenstone Belt—Paleoarchean crust in cold environments</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>de Wit, Maarten J.; Furnes, Harald</p> <p>2016-01-01</p> <p>Estimates of ocean temperatures on Earth 3.5 billion years ago (Ga) range between 26° and 85°C. We present new data from 3.47- to 3.43-Ga volcanic rocks and cherts in South Africa suggesting that these temperatures reflect mixing of hot <span class="hlt">hydrothermal</span> fluids with cold marine and terrestrial waters. We describe fossil <span class="hlt">hydrothermal</span> pipes that formed at ~200°C on the sea floor >2 km below sea level. This ocean floor was uplifted tectonically to sea level where a subaerial <span class="hlt">hydrothermal</span> <span class="hlt">system</span> was active at 30° to 270°C. We also describe shallow-water glacial diamictites and diagenetic sulfate mineral growth in abyssal muds. These new observations reveal that both <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> operated in relatively cold environments and that Earth’s surface temperatures in the early Archean were similar to those in more recent times. PMID:26933677</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/41339','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/41339"><span>California's coast redwood in New <span class="hlt">Zealand</span></span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Tom Gaman</p> <p>2012-01-01</p> <p>New <span class="hlt">Zealanders</span> are making a significant effort to develop their forest industry to benefit from rapid growth exhibited by Sequoia sempervirens on both the North Island and South Island. US and New <span class="hlt">Zealand</span> forest products companies have established redwood plantations in the past decade, and have found that microclimate, site preparation, soil chemistry, fertilization...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JAHH...18..261O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JAHH...18..261O"><span>James Henry Marriott: New <span class="hlt">Zealand</span>'s first professional telescope-maker</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orchiston, Wayne; Romick, Carl; Brown, Pendreigh.</p> <p>2015-11-01</p> <p>James Henry Marriott was born in London in 1799 and trained as an optician and scientific instrument- maker. In 1842 he emigrated to New <span class="hlt">Zealand</span> and in January 1843 settled in the newly-established town of Wellington. He was New <span class="hlt">Zealand</span>'s first professional telescope-maker, but we have only been able to locate one telescope made by him while in New <span class="hlt">Zealand</span>, a brass 1-draw marine telescope with a 44-mm objective, which was manufactured in 1844. In 2004 this marine telescope was purchased in Hawaii by the second author of this paper. In this paper we provide biographical information about Marriott, describe his 1844 marine telescope and speculate on its provenance. We conclude that although he may have been New <span class="hlt">Zealand</span>'s first professional telescope-maker Marriot actually made very few telescopes or other scientific instruments. As such, rather than being recognised as a pioneer of telescope-making in New <span class="hlt">Zealand</span> he should be remembered as the founder of New <span class="hlt">Zealand</span> theatre.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15213826','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15213826"><span>Development of an in situ fiber optic Raman <span class="hlt">system</span> to monitor <span class="hlt">hydrothermal</span> vents.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Battaglia, Tina M; Dunn, Eileen E; Lilley, Marvin D; Holloway, John; Dable, Brian K; Marquardt, Brian J; Booksh, Karl S</p> <p>2004-07-01</p> <p>The development of a field portable fiber optic Raman <span class="hlt">system</span> modified from commercially available components that can operate remotely on battery power and withstand the corrosive environment of the <span class="hlt">hydrothermal</span> vents is discussed. The Raman <span class="hlt">system</span> is designed for continuous monitoring in the deep-sea environment. A 785 nm diode laser was used in conjunction with a sapphire ball fiber optic Raman probe, single board computer, and a CCD detector. Using the <span class="hlt">system</span> at ambient conditions the detection limits of SO(4)(2-), CO(3)(2-) and NO(3)(-) were determined to be approximately 0.11, 0.36 and 0.12 g l(-1) respectively. Mimicking the cold conditions of the sea floor by placing the equipment in a refrigerator yielded slightly worse detection limits of approximately 0.16 g l(-1) for SO(4)(-2) and 0.20 g l(-1) for NO(3)(-). Addition of minerals commonly found in vent fluid plumes also decreased the detection limits to approximately 0.33 and 0.34 g l(-1) respectively for SO(4)(-2) and NO(3)(-).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15326496','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15326496"><span>New <span class="hlt">Zealand</span> doctors' attitudes towards the complaints and disciplinary process.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cunningham, Wayne</p> <p>2004-07-23</p> <p>To examine attitudes held by doctors in New <span class="hlt">Zealand</span> towards the complaints and disciplinary process. A questionnaire was sent to New <span class="hlt">Zealand</span> doctors randomly selected to include vocationally registered general practitioners, vocationally registered hospital-based specialists, and general registrants. 598 respondents (33.6% having ever and 66.4% having never received a medical complaint) indicated that New <span class="hlt">Zealand</span> doctors strongly support society's right to complain, having lay input, a sense of completion, and appropriate advice provided to the complaints process. Doctors also support society's notions of rights and responsibilities, and believe that the medical profession is capable of self-regulation. Fifty percent of doctors do not believe that complaints are a useful tool to improve medical practice. Doctor's attitudes diverge about how they believe society interacts with the profession through the complaints process. They are divided in their opinion as to whether complaints are warranted, whether complainants are normal people, and whether complaints are judged by appropriate standards. Doctor's attitudes towards the complaints and disciplinary <span class="hlt">system</span> fall on a continuum between being consistent and divergent. Their attitudes are consistent with notions of professionalism, but suggest that using the complaints <span class="hlt">system</span> to improve the delivery of medical care may be problematic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.V23D2869H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.V23D2869H"><span>Active <span class="hlt">hydrothermal</span> and non-active massive sulfide mound investigation using a new multiparameter chemical sensor</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Han, C.; Wu, G.; Qin, H.; Wang, Z.</p> <p>2012-12-01</p> <p>Investigation of active <span class="hlt">hydrothermal</span> mound as well as non-active massive sulfide mound are studied recently. However, there is still lack of in-situ detection method for the non-active massive sulfide mound. Even though Transient ElectroMagnetic (TEM) and Electric Self-potential (SP) methods are good, they both are labour, time and money cost work. We proposed a new multiparameter chemical sensor method to study the seafloor active <span class="hlt">hydrothermal</span> mound as well as non-active massive sulfide mound. This sensor integrates Eh, S2- ions concentration and pH electrochemical electrodes together, and could found chemical change caused by the active <span class="hlt">hydrothermal</span> vent, even weak chemical abnormalities by non-active massive sulfide <span class="hlt">hydrothermal</span> mound which MARP and CTD sometimes cannot detect. In 2012, the 1st Leg of the Chinese 26th cruise, the multiparameter chemical sensor was carried out with the deepsea camera <span class="hlt">system</span> over the Carlsberg Ridge in Indian Ocean by R/V DAYANGYIHAO. It was shown small Eh and S2- ions concentration abnormal around a site at Northwest Indian ridge. This site was also evidenced by the TV grab. In the 2nd Leg of the same cruise in June, this chemical sensor was carried out with TEM and SP survey <span class="hlt">system</span>. The chemical abnormalities are matched very well with both TEM and SP survey results. The results show that the multiparameter chemical sensor method not only can detect active <span class="hlt">hydrothermal</span> mound, but also can find the non-active massive sulfide <span class="hlt">hydrothermal</span> mound.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=nursing+AND+high+AND+demand&pg=6&id=ED503988','ERIC'); return false;" href="https://eric.ed.gov/?q=nursing+AND+high+AND+demand&pg=6&id=ED503988"><span>Health Workforce and International Migration: Can New <span class="hlt">Zealand</span> Compete? OECD Health Working Papers No. 33</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Zurn, Pascal; Dumont, Jean-Christophe</p> <p>2008-01-01</p> <p>This paper examines health workforce and migration policies in New <span class="hlt">Zealand</span>, with a special focus on the international recruitment of doctors and nurses. The health workforce in New <span class="hlt">Zealand</span>, as in all OECD countries, plays a central role in the health <span class="hlt">system</span>. Nonetheless, maybe more than for any other OECD country, the health workforce in New…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=nz&id=EJ1024809','ERIC'); return false;" href="https://eric.ed.gov/?q=nz&id=EJ1024809"><span>Equality of Educational Opportunity, Merit and the New <span class="hlt">Zealand</span> Education <span class="hlt">System</span></span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Seve-Williams, Nuhisifa</p> <p>2013-01-01</p> <p>Pacific students in New <span class="hlt">Zealand</span> (NZ) quickly learn that they are not very smart. The statistics tell them this. They also come to believe that they do not try very hard. The talk of equal opportunities tells them this, especially when it is coupled with negative statistics. This is not surprising. Education in NZ has been embedded in notions of…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3144064','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3144064"><span>Concerns of <span class="hlt">Hydrothermal</span> Degradation in CAD/CAM Zirconia</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kim, J.-W.; Covel, N.S.; Guess, P.C.; Rekow, E.D.; Zhang, Y.</p> <p>2010-01-01</p> <p>Zirconia-based restorations are widely used in prosthetic dentistry; however, their susceptibility to <span class="hlt">hydrothermal</span> degradation remains elusive. We hypothesized that CAD/CAM machining and subsequent surface treatments, i.e., grinding and/or grit-blasting, have marked effects on the <span class="hlt">hydrothermal</span> degradation behavior of Y-TZP. CAD/CAM-machined Y-TZP plates (0.5 mm thick), both with and without subsequent grinding with various grit sizes or grit-blasting with airborne alumina particles, were subjected to accelerated aging tests in a steam autoclave. Results showed that the CAD/CAM-machined surfaces initially exhibited superior <span class="hlt">hydrothermal</span> degradation resistance, but deteriorated at a faster rate upon prolonged autoclave treatment compared with ground and grit-blasted surfaces. The accelerated <span class="hlt">hydrothermal</span> degradation of CAD/CAM surfaces is attributed to the CAD/CAM machining damage and the absence of surface compressive stresses in the fully sintered material. Clinical relevance for surface treatments of zirconia frameworks in terms of <span class="hlt">hydrothermal</span> and structural stabilities is addressed. PMID:19966039</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V13E2895G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V13E2895G"><span>Molybdenum isotopes in modern marine <span class="hlt">hydrothermal</span> Fe/Mn deposits: Implications for Archean and Paleoproterozoic Mo cycles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goto, K. T.; Hein, J. R.; Shimoda, G.; Aoki, S.; Ishikawa, A.; Suzuki, K.; Gordon, G. W.; Anbar, A. D.</p> <p>2016-12-01</p> <p>Molybdenum isotope (δ98/95Mo) variations recorded in Archean and Paleoproterozoic Fe/Mn-rich sediments have been used to constrain ocean redox conditions at the time of deposition (Canfield et al., 2013 PNAS; Planavsky et al., 2014 Nat. Geo.; Kurzweil et al., 2015 GCA). However, except for hydrogenous Fe-Mn crusts (Siebert et al., 2003), δ98/95Mo variation of modern Fe and Mn oxide deposits has been poorly investigated. Marine <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> are thought to be the major source of Fe and Mn in Archean and Paleoproterozoic Fe- and Mn-rich sediments. Hence, to accurately interpret Mo isotope data of those ancient sedimentary rocks, it is important to evaluate the possible influence of <span class="hlt">hydrothermally</span> derived Mo on δ98/95Mo of modern Fe- and Mn-rich sediments. In this study, we analyzed Mo isotopic compositions of one <span class="hlt">hydrothermal</span> Fe oxide and 15 Mn oxides from five different <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> in the modern ocean. The Fe oxide is composed mainly of goethite, and has a δ98/95Mo of 0.7‰, which is 1.4‰ lighter than that of present-day seawater. The observed offset is similar to isotope fractionation observed during adsorption experiments of Mo on goethite (Δ98/95Mogoethite-solution = -1.4 ± 0.5%; Goldberg et al., 2009 GCA). The 15 <span class="hlt">hydrothermal</span> Mn oxides show large variations in δ98/95Mo ranging from -1.7 to 0.5‰. However, most of the values are similar to those of modern hydrogenous Fe-Mn crusts (Siebert et al., 2003 EPSL), and fall within the range of estimated δ98/95Mo of Mn oxides precipitated from present-day seawater using the isotope offset reported from adsorption experiments (Δ98/95Mo = -2.7 ± 0.3‰; Wasylenki et al., 2008 GCA). These findings indicate that seawater is the dominant source of Mo for modern <span class="hlt">hydrothermal</span> Fe and Mn deposits. However, the observed large variation indicates that the contribution Mo from local <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> is not negligible. The oceanic Mo inventory during the Archean and Paleoproterozoic is thought to be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V24A..02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V24A..02H"><span>Cryptic oxygen oases: Hypolithic photosynthesis in <span class="hlt">hydrothermal</span> areas and implications for Archean surface oxidation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Havig, J. R.; Hamilton, T. L.</p> <p>2017-12-01</p> <p>Mounting geochemical evidence suggests microorganisms capable of oxygenic photosynthesis (e.g., Cyanobacteria) colonized Archean continental surfaces, driving oxidative weathering of detrital pyrites prior to the 2.5 Ga great oxidation event. Modern terrestrial environments dominated by single-celled phototrophs include <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> (e.g., Yellowstone National Park) and hypolithic communities found in arid to hyper-arid deserts (e.g., McMurdo Dry Valleys of Antarctica, Atacama Desert of Chile). Recent work indicates terrestrial <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> date back at least as far as 3.5 Ga. Here, we explore phototrophic communities in both hypolithic (sub-sinter) and <span class="hlt">hydrothermal</span> (subaqueous and subaerial) environments in Yellowstone National Park as potential analogs to Archean continental surfaces. <span class="hlt">Hydrothermal</span> sub-sinter environments provide ideal conditions for phototrophic microbial communities, including blocking of harmful UV radiation, trapping and retention of moisture, and protection from erosion by rain and surface runoff. Hypolithic communities in geothermal settings were similar in both composition and carbon uptake rates to nearby hot spring communities. We hypothesize that <span class="hlt">hydrothermal</span> area hypolithic communities represent modern analogs of phototrophic microbial communities that colonized Archean continental surfaces, producing oxygen locally and facilitating microbially-mediated pyrite oxidation prior to the presence of free oxygen in the global atmosphere. These results have implications for oxidation of the early Earth surface, the search for biosignatures in the rock record, as well as for potential harbors of past life on Mars and the search for life on Exoplanets.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Setting+AND+Priorities&pg=3&id=EJ822545','ERIC'); return false;" href="https://eric.ed.gov/?q=Setting+AND+Priorities&pg=3&id=EJ822545"><span>Professional Development Design: Embedding Educational Reform in New <span class="hlt">Zealand</span></span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Starkey, Louise; Yates, Anne; Meyer, Luanna H.; Hall, Cedric; Taylor, Mike; Stevens, Susan; Toia, Rawiri</p> <p>2009-01-01</p> <p>Teacher professional development variously supports ongoing skill development, new knowledge, and <span class="hlt">systems</span> change. In New <span class="hlt">Zealand</span>, the implementation of major assessment reforms in senior secondary schools provided opportunity to investigate teacher professional development as a function of the particular stage of an educational reform.…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1611335T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1611335T"><span>Electromagnetic outline of the Solfatara-Pisciarelli <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, Campi Flegrei (Southern Italy)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Troiano, Antonio; Giulia Di Giuseppe, Maria; Patella, Domenico; Troise, Claudia; De Natale, Giuseppe</p> <p>2014-05-01</p> <p>We describe the results from a combined CSAMT and MT survey carried out in the Solfatara-Pisciarelli area, located in the central part of the Campi Flegrei composite caldera, west of Naples, Southern Italy. The Solfatara-Pisciarelli area represents the most active zone within the CF area, in terms of <span class="hlt">hydrothermal</span> manifestations and local seismicity. Since 1969, the caldera is experiencing ground deformation, seismicity and geochemical fluid changes, which are particularly evident in this area. A 1 km long, nearly W-E directed CSAMT-MT profile crossing the fumaroles field was carried out with the aim of deducting an EM model of the structural setting of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> in the first 3 km depth. An interpretation of the EM modelled section is given in this paper, taking advantage from already existing seismic, gravity and geochemical data in the same area. Three well distinct EM zones have been outlined. The first EM zone is a very shallow, electrically conductive body localized beneath the westernmost segment of the profile, which, within a short distance of about 100 m, dips westwards from near surface down to some hundred metres depth. Mostly accounting for the very low resistivity (1-10 Ωm) and the exceedingly high values of vP/vS (>4), this shallow zone has been ascribed to a water-saturated, high-pressurized geothermal reservoir. The second EM zone, which has been localized below the west-central portion of the EM transect, appears as a composite body made of a nearly vertical plumelike structure that escapes at about 2.25 km depth from the top edge of the east side of a presumably horizontal platelike body. The plumelike structure rises up to the free surface in correspondence of the fumaroles field, whereas the platelike structure deepens at least down to the 3 km of maximum EM exploration depth. The combined interpretation of resistivity, wave velocity, gravity and geochemical data indicates the plumelike portion is likely associated with a steam</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JVGR..356..331N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JVGR..356..331N"><span>Characterising <span class="hlt">hydrothermal</span> fluid pathways beneath Aluto volcano, Main Ethiopian Rift, using shear wave splitting</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nowacki, Andy; Wilks, Matthew; Kendall, J.-Michael; Biggs, Juliet; Ayele, Atalay</p> <p>2018-05-01</p> <p>Geothermal resources are frequently associated with silicic calderas which show evidence of geologically-recent activity. Hence development of geothermal sites requires both an understanding of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> of these volcanoes, as well as the deeper magmatic processes which drive them. Here we use shear wave splitting to investigate the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> at the silicic peralkaline volcano Aluto in the Main Ethiopian Rift, which has experienced repeated uplift and subsidence since at least 2004. We make over 370 robust observations of splitting, showing that anisotropy is confined mainly to the top ∼3 km of the volcanic edifice. We find up to 10% shear wave anisotropy (SWA) is present with a maximum centred at the geothermal reservoir. Fast shear wave orientations away from the reservoir align NNE-SSW, parallel to the present-day minimum compressive stress. Orientations on the edifice, however, are rotated NE-SW in a manner we predict from field observations of faults at the surface, providing fluid pressures are sufficient to hold two fracture sets open. These fracture sets may be due to the repeated deformation experienced at Aluto and initiated in caldera formation. We therefore attribute the observed anisotropy to aligned cracks held open by over-pressurised gas-rich fluids within and above the reservoir. This study demonstrates that shear wave splitting can be used to map the extent and style of fracturing in volcanic <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. It also lends support to the hypothesis that deformation at Aluto arises from variations of fluid pressures in the <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. These constraints will be crucial for future characterisation of other volcanic and geothermal <span class="hlt">systems</span>, in rift <span class="hlt">systems</span> and elsewhere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T13F..01H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T13F..01H"><span>Heat flow evidence for <span class="hlt">hydrothermal</span> circulation in the volcanic basement of subducting plates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harris, R. N.; Spinelli, G. A.; Fisher, A. T.</p> <p>2017-12-01</p> <p>We summarize and interpret evidence for <span class="hlt">hydrothermal</span> circulation in subducting oceanic basement from the Nankai, Costa Rica, south central Chile, Haida Gwaii, and Cascadia margins and explore the influence of <span class="hlt">hydrothermal</span> circulation on plate boundary temperatures in these settings. Heat flow evidence for <span class="hlt">hydrothermal</span> circulation in the volcanic basement of incoming plates includes: (a) values that are well below conductive (lithospheric) predictions due to advective heat loss, and (b) variability about conductive predictions that cannot be explained by variations in seafloor relief or thermal conductivity. We construct thermal models of these <span class="hlt">systems</span> that include an aquifer in the upper oceanic crust that enhances heat transport via a high Nusselt number proxy for <span class="hlt">hydrothermal</span> circulation. At the subduction zones examined, patterns of seafloor heat flow are not well fit by purely conductive simulations, and are better explained by simulations that include the influence of <span class="hlt">hydrothermal</span> circulation. This result is consistent with the young basement ages (8-35 Ma) of the incoming igneous crust at these sites as well as results from global heat flow analyses showing a significant conductive heat flow deficit for crustal ages less than 65 Ma. <span class="hlt">Hydrothermal</span> circulation within subducting oceanic basement can have a profound influence on temperatures close to the plate boundary and, in general, leads to plate boundary temperatures that are cooler than those where fluid flow does not occur. The magnitude of cooling depends on the permeability structure of the incoming plate and the evolution of permeability with depth and time. Resolving complex relationships between subduction processes, the permeability structure in the ocean crust, and the dynamics of <span class="hlt">hydrothermal</span> circulation remains an interdisciplinary frontier.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20689846','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20689846"><span>Marine biodiversity of Aotearoa New <span class="hlt">Zealand</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gordon, Dennis P; Beaumont, Jennifer; MacDiarmid, Alison; Robertson, Donald A; Ahyong, Shane T</p> <p>2010-08-02</p> <p>The marine-biodiversity assessment of New <span class="hlt">Zealand</span> (Aotearoa as known to Māori) is confined to the 200 nautical-mile boundary of the Exclusive Economic Zone, which, at 4.2 million km(2), is one of the largest in the world. It spans 30 degrees of latitude and includes a high diversity of seafloor relief, including a trench 10 km deep. Much of this region remains unexplored biologically, especially the 50% of the EEZ deeper than 2,000 m. Knowledge of the marine biota is based on more than 200 years of marine exploration in the region. The major oceanographic data repository is the National Institute of Water and Atmospheric Research (NIWA), which is involved in several Census of Marine Life field projects and is the location of the Southwestern Pacific Regional OBIS Node; NIWA is also data manager and custodian for fisheries research data owned by the Ministry of Fisheries. Related data sources cover alien species, environmental measures, and historical information. Museum collections in New <span class="hlt">Zealand</span> hold more than 800,000 registered lots representing several million specimens. During the past decade, 220 taxonomic specialists (85 marine) from 18 countries have been engaged in a project to review New <span class="hlt">Zealand</span>'s entire biodiversity. The above-mentioned marine information sources, published literature, and reports were scrutinized to give the results summarized here for the first time (current to 2010), including data on endemism and invasive species. There are 17,135 living species in the EEZ. This diversity includes 4,315 known undescribed species in collections. Species diversity for the most intensively studied phylum-level taxa (Porifera, Cnidaria, Mollusca, Brachiopoda, Bryozoa, Kinorhyncha, Echinodermata, Chordata) is more or less equivalent to that in the ERMS (European Register of Marine Species) region, which is 5.5 times larger in area than the New <span class="hlt">Zealand</span> EEZ. The implication is that, when all other New <span class="hlt">Zealand</span> phyla are equally well studied, total marine</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2914018','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2914018"><span>Marine Biodiversity of Aotearoa New <span class="hlt">Zealand</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gordon, Dennis P.; Beaumont, Jennifer; MacDiarmid, Alison; Robertson, Donald A.; Ahyong, Shane T.</p> <p>2010-01-01</p> <p>The marine-biodiversity assessment of New <span class="hlt">Zealand</span> (Aotearoa as known to Māori) is confined to the 200 nautical-mile boundary of the Exclusive Economic Zone, which, at 4.2 million km2, is one of the largest in the world. It spans 30° of latitude and includes a high diversity of seafloor relief, including a trench 10 km deep. Much of this region remains unexplored biologically, especially the 50% of the EEZ deeper than 2,000 m. Knowledge of the marine biota is based on more than 200 years of marine exploration in the region. The major oceanographic data repository is the National Institute of Water and Atmospheric Research (NIWA), which is involved in several Census of Marine Life field projects and is the location of the Southwestern Pacific Regional OBIS Node; NIWA is also data manager and custodian for fisheries research data owned by the Ministry of Fisheries. Related data sources cover alien species, environmental measures, and historical information. Museum collections in New <span class="hlt">Zealand</span> hold more than 800,000 registered lots representing several million specimens. During the past decade, 220 taxonomic specialists (85 marine) from 18 countries have been engaged in a project to review New <span class="hlt">Zealand</span>'s entire biodiversity. The above-mentioned marine information sources, published literature, and reports were scrutinized to give the results summarized here for the first time (current to 2010), including data on endemism and invasive species. There are 17,135 living species in the EEZ. This diversity includes 4,315 known undescribed species in collections. Species diversity for the most intensively studied phylum-level taxa (Porifera, Cnidaria, Mollusca, Brachiopoda, Bryozoa, Kinorhyncha, Echinodermata, Chordata) is more or less equivalent to that in the ERMS (European Register of Marine Species) region, which is 5.5 times larger in area than the New <span class="hlt">Zealand</span> EEZ. The implication is that, when all other New <span class="hlt">Zealand</span> phyla are equally well studied, total marine diversity</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1421393','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1421393"><span>A comparison of career satisfaction amongst dental healthcare professionals across three health care <span class="hlt">systems</span>: Comparison of data from the United Kingdom, New <span class="hlt">Zealand</span> and Trinidad & Tobago</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Naidu, Rahul; Newton, J Tim; Ayers, Katie</p> <p>2006-01-01</p> <p>Background The aim of this study was to compare the expressed levels of career satisfaction of three groups of comparable dental healthcare professionals, working in Trinidad, the United Kingdom and New <span class="hlt">Zealand</span>. Methods Three questionnaire surveys were carried out of comparable dental healthcare professionals. Dental nurses in Trinidad and dental therapists in the UK and New <span class="hlt">Zealand</span>. Questionnaires were sent to all registered dental nurses or dental therapists. Results Career satisfaction was lowest amongst Dental Therapists working in Trinidad and Tobago. Approximately 59% of the Therapists working in New <span class="hlt">Zealand</span> reported stated that they felt they were not a valued member of the dental team, the corresponding proportion in the United Kingdom was 32%, and for Trinidad 39%. Conclusion Dental therapists working in different healthcare <span class="hlt">systems</span> report different levels of satisfaction with their career. PMID:16536870</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title7-vol5/pdf/CFR-2010-title7-vol5-sec319-56-32.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title7-vol5/pdf/CFR-2010-title7-vol5-sec319-56-32.pdf"><span>7 CFR 319.56-32 - Peppers from New <span class="hlt">Zealand</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... 7 Agriculture 5 2010-01-01 2010-01-01 false Peppers from New <span class="hlt">Zealand</span>. 319.56-32 Section 319.56-32... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Fruits and Vegetables § 319.56-32 Peppers from New <span class="hlt">Zealand</span>. Peppers (fruit) (Capsicum spp.) from New <span class="hlt">Zealand</span> may be imported into the United...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5614694-strategic-perspective-nuclear-issues-new-zealand-media','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5614694-strategic-perspective-nuclear-issues-new-zealand-media"><span>Strategic perspective: Nuclear issues in the New <span class="hlt">Zealand</span> media</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fridriksson, L.N.</p> <p></p> <p>New <span class="hlt">Zealand</span>'s anti-nuclear policy drew international attention and threw the nation into a foreign policy crisis with the United States over the trilateral mutual security pact ANZUS. After more than a year of diminished intelligence and military cooperation, New <span class="hlt">Zealand</span> was expelled from the alliance. This study involved a content analysis of coverage of these events and other nuclear issues in selected newspapers of New <span class="hlt">Zealand</span> and the United States. Research points to the roles of the media as a critical one in the overall relations among countries. Through their frequent use of official government sources, the media tend tomore » uphold the government line or status quo with regard to foreign affairs. This study sought to identify the nuclear issues covered in the New <span class="hlt">Zealand</span> and US media, the characteristics of that coverage, the sources of that coverage and how coverage varied during changing US-New <span class="hlt">Zealand</span> relations. The official frame prevailed in coverage of nuclear issues. In the New <span class="hlt">Zealand</span> and US newspapers under study, most sources of nuclear issue news were government officials. This research also found that most coverage of nuclear issues in the New <span class="hlt">Zealand</span> media was related to some aspect of US interests, and that coverage of New <span class="hlt">Zealand</span>'s policy in the US media was covered most often when related to the United States. Nuclear issue coverage was most often not crisis-oriented in New <span class="hlt">Zealand</span> and US newspapers, but coverage of all nuclear issues increased dramatically during the period of the ANZUS policy crisis. This study found a number of changes in nuclear issue coverage in the New <span class="hlt">Zealand</span> media after the policy crisis was resolved. Among those changes were a tendency to focus less on economic and trade effects of the anti-nuclear policy, a tendency to focus more on ties with other South Pacific nations, use more sources from those countries, and a tendency to focus less on the moral and ethical position of the country.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70099756','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70099756"><span>The chemistry of <span class="hlt">hydrothermal</span> magnetite: a review</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John</p> <p>2014-01-01</p> <p>Magnetite (Fe3O4) is a well-recognized petrogenetic indicator and is a common accessory mineral in many ore deposits and their host rocks. Recent years have seen an increased interest in the use of <span class="hlt">hydrothermal</span> magnetite for provenance studies and as a pathfinder for mineral exploration. A number of studies have investigated how specific formation conditions are reflected in the composition of the respective magnetite. Two fundamental questions underlie these efforts — (i) How can the composition of igneous and, more importantly, <span class="hlt">hydrothermal</span> magnetite be used to discriminate mineralized areas from barren host rocks, and (ii) how can this assist exploration geologists to target ore deposits at greater and greater distances from the main mineralization? Similar to igneous magnetite, the most important factors that govern compositional variations in <span class="hlt">hydrothermal</span> magnetite are (A) temperature, (B) fluid composition — element availability, (C) oxygen and sulfur fugacity, (D) silicate and sulfide activity, (E) host rock buffering, (F) re-equilibration processes, and (G) intrinsic crystallographic controls such as ionic radius and charge balance. We discuss how specific formation conditions are reflected in the composition of magnetite and review studies that investigate the chemistry of <span class="hlt">hydrothermal</span> and igneous magnetite from various mineral deposits and their host rocks. Furthermore, we discuss the redox-related alteration of magnetite (martitization and mushketovitization) and mineral inclusions in magnetite and their effect on chemical analyses. Our database includes published and previously unpublished magnetite minor and trace element data for magnetite from (1) banded iron formations (BIF) and related high-grade iron ore deposits in Western Australia, India, and Brazil, (2) Ag–Pb–Zn veins of the Coeur d'Alene district, United States, (3) porphyry Cu–(Au)–(Mo) deposits and associated (4) calcic and magnesian skarn deposits in the southwestern United</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5206410','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5206410"><span>Marine Subsurface Microbial Community Shifts Across a <span class="hlt">Hydrothermal</span> Gradient in Okinawa Trough Sediments</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2016-01-01</p> <p>Sediments within the Okinawa back-arc basin overlay a subsurface <span class="hlt">hydrothermal</span> network, creating intense temperature gradients with sediment depth and potential limits for microbial diversity. We investigated taxonomic changes across 45 m of recovered core with a temperature gradient of 3°C/m from the dynamic Iheya North <span class="hlt">Hydrothermal</span> <span class="hlt">System</span>. The interval transitions sharply from low-temperature marine mud to <span class="hlt">hydrothermally</span> altered clay at 10 meters below seafloor (mbsf). Here, we present taxonomic results from an analysis of the 16S rRNA gene that support a conceptual model in which common marine subsurface taxa persist into the subsurface, while high temperature adapted archaeal taxa show localized peaks in abundances in the <span class="hlt">hydrothermal</span> clay horizons. Specifically, the bacterial phylum Chloroflexi accounts for a major proportion of the total microbial community within the upper 10 mbsf, whereas high temperature archaea (Terrestrial Hot Spring Crenarchaeotic Group and methanotrophic archaea) appear in varying local abundances in deeper, <span class="hlt">hydrothermal</span> clay horizons with higher in situ temperatures (up to 55°C, 15 mbsf). In addition, geochemical evidence suggests that methanotrophy may be occurring in various horizons. There is also relict DNA (i.e., DNA preserved after cell death) that persists in horizons where the conditions suitable for microbial communities have ceased. PMID:28096736</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28705087','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28705087"><span>Moving backwards, moving forward: the experiences of older Filipino migrants adjusting to life in New <span class="hlt">Zealand</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Montayre, Jed; Neville, Stephen; Holroyd, Eleanor</p> <p>2017-12-01</p> <p>To explore the experiences of older Filipino migrants adjusting to living permanently in New <span class="hlt">Zealand</span>. The qualitative descriptive approach taken in this study involved 17 individual face-to-face interviews of older Filipino migrants in New <span class="hlt">Zealand</span>. Three main themes emerged from the data. The first theme was "moving backwards and moving forward", which described how these older Filipino migrants adjusted to challenges they experienced with migration. The second theme was "engaging with health services" and presented challenges relating to the New <span class="hlt">Zealand</span> healthcare <span class="hlt">system</span>, including a lack of knowledge of the nature of health services, language barriers, and differences in cultural views. The third theme, "new-found home", highlighted establishing a Filipino identity in New <span class="hlt">Zealand</span> and adjusting to the challenges of relocation. Adjustment to life in New <span class="hlt">Zealand</span> for these older Filipino migrants meant starting over again by building new values through learning the basics and then moving forward from there.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5590625','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5590625"><span>Moving backwards, moving forward: the experiences of older Filipino migrants adjusting to life in New <span class="hlt">Zealand</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Montayre, Jed; Neville, Stephen; Holroyd, Eleanor</p> <p>2017-01-01</p> <p>ABSTRACT Purpose: To explore the experiences of older Filipino migrants adjusting to living permanently in New <span class="hlt">Zealand</span>. Method: The qualitative descriptive approach taken in this study involved 17 individual face-to-face interviews of older Filipino migrants in New <span class="hlt">Zealand</span>. Results: Three main themes emerged from the data. The first theme was “moving backwards and moving forward”, which described how these older Filipino migrants adjusted to challenges they experienced with migration. The second theme was “engaging with health services” and presented challenges relating to the New <span class="hlt">Zealand</span> healthcare <span class="hlt">system</span>, including a lack of knowledge of the nature of health services, language barriers, and differences in cultural views. The third theme, “new-found home”, highlighted establishing a Filipino identity in New <span class="hlt">Zealand</span> and adjusting to the challenges of relocation. Conclusion: Adjustment to life in New <span class="hlt">Zealand</span> for these older Filipino migrants meant starting over again by building new values through learning the basics and then moving forward from there. PMID:28705087</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMOS42A..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMOS42A..06S"><span>Medusa-Isosampler: A modular, network-based observatory <span class="hlt">system</span> for combined physical, chemical and microbiological monitoring, sampling and incubation of <span class="hlt">hydrothermal</span> and cold seep fluids</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schultz, A.; Flynn, M.; Taylor, P.</p> <p>2004-12-01</p> <p>The study of life in extreme environments provides an important context from which we can undertake the search for extraterrestrial life, and through which we can better understand biogeochemical feedback in terrestrial <span class="hlt">hydrothermal</span> and cold seep <span class="hlt">systems</span>. The Medusa-Isosampler project is aimed at fundamental research into understanding the potential for, and limits to, chemolithoautotrophic life, i.e. primary production without photosynthesis. One environment that might foster such life is associated with the high thermal and chemical gradient environment of <span class="hlt">hydrothermal</span> vent structures. Another is associated with the lower thermal and chemical gradient environment of continental margin cold seeps. Under NERC, NASA and industrial support, we have designed a flexible instrumentation <span class="hlt">system</span>, operating as networked, autonomous modules on a local area network, that will make possible simultaneous physical and chemical sampling and monitoring of <span class="hlt">hydrothermal</span> and cold seep fluids, and the in situ and laboratory incubation of chemosynthetic microbes under high pressure, isobaric conditions. The <span class="hlt">system</span> has been designed with long-term observatory operations in mind, and may be reconfigured dynamically as the requirements of the observatory installation change. The modular design will also accommodate new in situ chemical and biosensor technologies, provided by third parties. The <span class="hlt">system</span> may be configured for seafloor use, and can be adapted to use in IODP boreholes. Our overall project goals are provide an instrumentation <span class="hlt">system</span> capable of probing both high and low-gradient water-rock <span class="hlt">systems</span> for chemolithoautotrophic biospheres, to identify the physical and chemical conditions that define these microhabitats and explore the details of the biogeochemical feedback loops that mediate these microhabitats, and to attempt to culture and identify chemolithoautotrophic microbial communities that might exist there. The Medusa-Isosampler <span class="hlt">system</span> has been produced and is now</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17793659','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17793659"><span>Catastrophic volcanic collapse: relation to <span class="hlt">hydrothermal</span> processes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>López, D L; Williams, S N</p> <p>1993-06-18</p> <p>Catastrophic volcanic collapse, without precursory magmatic activity, is characteristic of many volcanic disasters. The extent and locations of <span class="hlt">hydrothermal</span> discharges at Nevado del Ruiz volcano, Colombia, suggest that at many volcanoes collapse may result from the interactions between <span class="hlt">hydrothermal</span> fluids and the volcanic edifice. Rock dissolution and <span class="hlt">hydrothermal</span> mineral alteration, combined with physical triggers such as earth-quakes, can produce volcanic collapse. Hot spring water compositions, residence times, and flow paths through faults were used to model potential collapse at Ruiz. Caldera dimensions, deposits, and alteration mineral volumes are consistent with parameters observed at other volcanoes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=operating+AND+system+AND+concepts&pg=5&id=EJ908694','ERIC'); return false;" href="https://eric.ed.gov/?q=operating+AND+system+AND+concepts&pg=5&id=EJ908694"><span>The New <span class="hlt">Zealand</span> Curriculum: Emergent Insights and Complex Renderings</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Ovens, Alan</p> <p>2010-01-01</p> <p>The launch of New <span class="hlt">Zealand</span> Curriculum (Ministry of Education, 2007) brings into question the future of the reforms introduced in the 1999 curriculum, Health and Physical Education in the New <span class="hlt">Zealand</span> National Curriculum (Ministry of Education, 1999). The aim of this paper is to critique recent physical education curriculum policy in New <span class="hlt">Zealand</span> and…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.B51D0423R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.B51D0423R"><span>Methanethiol abundance in high-temperature <span class="hlt">hydrothermal</span> fluids from the Mid-Atlantic Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reeves, E.; Seewald, J. S.; Saccocia, P.; van der Meer, M.</p> <p>2008-12-01</p> <p>The formation of aqueous organic sulfur compounds in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> remains poorly constrained, despite their potential significance in 'prebiotic' chemistry and the origin of life. The simplest - methanethiol (CH3SH) - has been implicated as a critical abiogenic precursor to the establishment of primitive microbial metabolism in early Earth <span class="hlt">hydrothermal</span> settings. It also represents a readily-utilized substrate for microbial sulfate-reducing communities and a potential intermediate species in abiotic CH4 formation. To assess the abundance of CH3SH and factors regulating its stability under <span class="hlt">hydrothermal</span> conditions we measured CH3SH concentrations in a suite of <span class="hlt">hydrothermal</span> fluids collected from the Rainbow, Lucky Strike, TAG and Lost City <span class="hlt">hydrothermal</span> sites located on the Mid-Atlantic Ridge. Fluids were collected using isobaric gas-tight samplers and analyzed for CH3SH by shipboard purge-and-trap gas chromatography. Measured concentrations at Rainbow (1.2 -- 223nM), Lucky Strike (1.1 -- 26nM), TAG (8.5 -- 11nM) and Lost City (1.6 -- 3.0nM) are all substantially lower than predicted for thermodynamic equilibrium with CO2, H2 and H2S at measured vent conditions. The highest concentrations (91 -- 223nM), however, were observed at Rainbow in intermediate temperature (128 -- 175°C) H2-rich fluids that may have undergone conductive cooling. Increased concentrations with decreasing temperature is consistent with the thermodynamic drive for the formation from CO2, suggesting a possible abiotic origin for CH3SH in some fluids. Substantially lower concentrations in the low temperature fluids at Lost City are consistent with the extremely low levels of CO2 and H2S in these fluids. Other possible sources of CH3SH to vent fluids must be considered, however, and include thermal alteration of biomass present in low-temperature environments and microbial consortia that produce CH3SH as a byproduct of anaerobic methane oxidation. Current models for the emergence of primordial</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNH43A1810B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNH43A1810B"><span>The New <span class="hlt">Zealand</span> Tsunami Database: historical and modern records</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barberopoulou, A.; Downes, G. L.; Cochran, U. A.; Clark, K.; Scheele, F.</p> <p>2016-12-01</p> <p>A database of historical (pre-instrumental) and modern (instrumentally recorded)tsunamis that have impacted or been observed in New <span class="hlt">Zealand</span> has been compiled andpublished online. New <span class="hlt">Zealand</span>'s tectonic setting, astride an obliquely convergenttectonic boundary on the Pacific Rim, means that it is vulnerable to local, regional andcircum-Pacific tsunamis. Despite New <span class="hlt">Zealand</span>'s comparatively short written historicalrecord of c. 200 years there is a wealth of information about the impact of past tsunamis.The New <span class="hlt">Zealand</span> Tsunami Database currently has 800+ entries that describe >50 highvaliditytsunamis. Sources of historical information include witness reports recorded indiaries, notes, newspapers, books, and photographs. Information on recent events comesfrom tide gauges and other instrumental recordings such as DART® buoys, and media ofgreater variety, for example, video and online surveys. The New <span class="hlt">Zealand</span> TsunamiDatabase is an ongoing project with information added as further historical records cometo light. Modern tsunamis are also added to the database once the relevant data for anevent has been collated and edited. This paper briefly overviews the procedures and toolsused in the recording and analysis of New <span class="hlt">Zealand</span>'s historical tsunamis, with emphasison database content.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V12B..06R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V12B..06R"><span>3-D Resistivity Structure of La Soufrière Volcano (Guadeloupe): New Insights into the <span class="hlt">Hydrothermal</span> <span class="hlt">System</span> and Associated Hazards</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosas-Carbajal, M.; Nicollin, F.; Komorowski, J. C.; Gibert, D.; Deroussi, S.</p> <p>2015-12-01</p> <p>The 3-D electrical resistivity model of the dome of La Soufrière of Guadeloupe volcano was obtained by inverting more than 23000 electrical resistivity tomography (ERT) and mise-a-la-masse data points. Data acquisition involved 2-D and 3-D protocols, including several pairs of injection electrodes located on opposite sides of the volcano. For the mise-a-la-masse measurements, the contact with a conductive mass was achieved by immersing one of the current electrodes in the Tarissan acid pond (~25 Siemens/m) located in the volcano's summit. The 3-D inversion was performed using a deterministic smoothness-constrained least-squares algorithm with unstructured grid modeling to accurately account for topography. Resistivity contrasts of more than 4 orders of magnitude are observed. A thick and high-angle conductive structure is located in the volcano's southern flank. It extends from the Tarissan Crater's acid pond on the summit to a hot spring region located close to the dome's southern base. This suggests that a large <span class="hlt">hydrothermal</span> reservoir is located below the southern base of the dome, and connected to the acid pond of the summit's main crater. Therefore, the steep southern flanks of the volcano could be resting on a low-strength, high-angle discontinuity saturated with circulating and possibly pressurized <span class="hlt">hydrothermal</span> fluids. This could favor partial edifice collapse and lateral directed explosions as shown recurrently in the volcano's history. The resistivity model also reveals smaller <span class="hlt">hydrothermal</span> reservoirs in the south-east and northern flanks that are linked to the main historical eruptive fractures and to ancient collapse structures such as the Cratère Amic structure. We discuss the main resistivity structures in relation with the geometry of observed faults, historical eruptive fractures, the dynamics of the near surface <span class="hlt">hydrothermal</span> <span class="hlt">system</span> manifestations on the dome and the potential implications for future hazards scenarios .</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.V41B2076G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.V41B2076G"><span>Bacterial Diets of Primary Consumers at <span class="hlt">Hydrothermal</span> Vents</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Govenar, B.; Shank, T. M.</p> <p>2008-12-01</p> <p>Chemical energy produced by mixing <span class="hlt">hydrothermal</span> fluids and seawater supports dense biological communities on mid-ocean ridges. The base of the food web at deep-sea <span class="hlt">hydrothermal</span> vents is formed by chemolithoautotrophic bacteria that use the energy from the oxidation of reduced chemicals to fix inorganic carbon into simple sugars. With the exception of a few species that have chemolithoautotropic bacterial symbionts, most of the vent-endemic macrofauna are heterotrophs that feed on free-living bacteria, protists, and other invertebrates. The most abundant and diverse group of primary consumers in <span class="hlt">hydrothermal</span> vent communities belong to the Gastropoda, particularly the patellomorph limpets. Gastropod densities can be as high as 2000 individuals m-2, and there can be as many as 13 species of gastropods in a single aggregation of the siboglinid tubeworm Riftia pachyptila and more than 40 species along the East Pacific Rise. Some gastropods are ubiquitous and others are found in specific microhabitats, stages of succession, or associated with different foundation species. To determine the mechanisms of species coexistence (e.g. resource partitioning or competition) among <span class="hlt">hydrothermal</span> vent primary consumers and to track the flow of energy in <span class="hlt">hydrothermal</span> vent communities, we employed molecular genetic techniques to identify the gut contents of four species of co-occurring <span class="hlt">hydrothermal</span> vent gastropods, Eulepetopsis vitrea, Lepetodrilus elevatus, Lepetodrilus ovalis and Lepetodrilus pustulosus, collected from a single diffuse-flow <span class="hlt">hydrothermal</span> vent site on the East Pacific Rise. Unique haplotypes of the 16S gene that fell among the epsilon-proteobacteria were found in the guts of every species, and two species had gut contents that were similar only to epsilon-proteobacteria. Two species had gut contents that also included haplotypes that clustered with delta-proteobacteria, and one species had gut contents that clustered with alpha- proteobacteria. Differences in the diets</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=evaluative+AND+design&pg=4&id=EJ941434','ERIC'); return false;" href="https://eric.ed.gov/?q=evaluative+AND+design&pg=4&id=EJ941434"><span>Building Capacity in a Self-Managing Schooling <span class="hlt">System</span>: The New <span class="hlt">Zealand</span> Experience</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Robinson, Viviane M. J.; McNaughton, Stuart; Timperley, Helen</p> <p>2011-01-01</p> <p>Purpose: The purpose of this paper is to evaluate two recent examples of the New <span class="hlt">Zealand</span> Ministry of Education's approach to reducing the persistent disparities in achievement between students of different social and ethnic groups. The first example is cluster-based school improvement, and the second is the development of national standards for…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/49406','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/49406"><span>The adaptive capacity of New <span class="hlt">Zealand</span> communities to wildfire</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Pamela J. Jakes; E.R. Langer</p> <p>2012-01-01</p> <p>When we think of natural disasters in New <span class="hlt">Zealand</span>, we tend to think of earthquakes or volcanic eruptions. However, a series of events is placing New <span class="hlt">Zealand</span> communities at greater risk of wildfire. In a case study of a rural New <span class="hlt">Zealand</span> community that experienced wildfire, process elements such as networks and relationships among locals, development and application of...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960052041&hterms=headspace+gas+chromatography&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dheadspace%2Bgas%2Bchromatography','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960052041&hterms=headspace+gas+chromatography&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dheadspace%2Bgas%2Bchromatography"><span>Confined-Pyrolysis as an Experimental Method for <span class="hlt">Hydrothermal</span> Organic Synthesis</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Leif, Roald N.; Simoneit, Bernd R. T.</p> <p>1995-01-01</p> <p>A closed pyrolysis <span class="hlt">system</span> has been developed as a tool for studying the reactions of organic compounds under extreme <span class="hlt">hydrothermal</span> conditions. Small high pressure stainless steel vessels in which the ratio of sediment or sample to water has been adjusted to eliminate the headspace at peak experimental conditions confines the organic components to the bulk solid matrix and eliminates the partitioning of the organic compounds away from the inorganic components during the experiment. Confined pyrolysis experiments were performed to simulate thermally driven catagenetic changes in sedimentary organic matter using a solids to water ratio of 3.4 to 1. The extent of alteration was measured by monitoring the steroid and triterpenoid biomarkers and polycyclic aromatic hydrocarbon distributions. These pyrolysis experiments duplicated the <span class="hlt">hydrothermal</span> transformations observed in nature. Molecular probe experiments using alkadienes, alkenes and alkanes in H2O and D2O elucidated the isomerization and hydrogenation reactions of aliphatic and the competing oxidative reactions occurring under <span class="hlt">hydrothermal</span> conditions. This confined pyrolysis technique is being applied to test experiments on organic synthesis of relevance to chemical evolution for the origin of life.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10768471','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10768471"><span>Molecular ecology of <span class="hlt">hydrothermal</span> vent microbial communities.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jeanthon, C</p> <p>2000-02-01</p> <p>The study of the structure and diversity of <span class="hlt">hydrothermal</span> vent microbial communities has long been restricted to the morphological description of microorganisms and the use of enrichment culture-based techniques. Until recently the identification of the culturable fraction required the isolation of pure cultures followed by testing for multiple physiological and biochemical traits. However, peculiar inhabitants of the <span class="hlt">hydrothermal</span> ecosystem such as the invertebrate endosymbionts and the dense microbial mat filaments have eluded laboratory cultivation. Substantial progress has been achieved in recent years in techniques for the identification of microorganisms in natural environments. Application of molecular approaches has revealed the existence of unique and previously unrecognized microorganisms. These have provided fresh insight into the ecology, diversity and evolution of mesophilic and thermophilic microbial communities from the deep-sea <span class="hlt">hydrothermal</span> ecosystem. This review reports the main discoveries made through the introduction of these powerful techniques in the study of deep-sea <span class="hlt">hydrothermal</span> vent microbiology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4406493','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4406493"><span>Post-Drilling Changes in Seabed Landscape and Megabenthos in a Deep-Sea <span class="hlt">Hydrothermal</span> <span class="hlt">System</span>, the Iheya North Field, Okinawa Trough</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nakajima, Ryota; Yamamoto, Hiroyuki; Kawagucci, Shinsuke; Takaya, Yutaro; Nozaki, Tatsuo; Chen, Chong; Fujikura, Katsunori; Miwa, Tetsuya; Takai, Ken</p> <p>2015-01-01</p> <p>There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea <span class="hlt">hydrothermal</span> fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331) on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea <span class="hlt">hydrothermal</span> field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014) where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible <span class="hlt">hydrothermal</span> fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature <span class="hlt">hydrothermal</span> fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, ‘artificially’ creating a new <span class="hlt">hydrothermal</span> vent habitat. Widespread microbial mats developed on the seafloor with the diffusing <span class="hlt">hydrothermal</span> fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established <span class="hlt">hydrothermal</span> vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the ecosystem in the area</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25902075','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25902075"><span>Post-drilling changes in seabed landscape and megabenthos in a deep-sea <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, the Iheya North field, Okinawa Trough.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nakajima, Ryota; Yamamoto, Hiroyuki; Kawagucci, Shinsuke; Takaya, Yutaro; Nozaki, Tatsuo; Chen, Chong; Fujikura, Katsunori; Miwa, Tetsuya; Takai, Ken</p> <p>2015-01-01</p> <p>There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea <span class="hlt">hydrothermal</span> fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331) on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea <span class="hlt">hydrothermal</span> field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014) where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible <span class="hlt">hydrothermal</span> fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature <span class="hlt">hydrothermal</span> fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, 'artificially' creating a new <span class="hlt">hydrothermal</span> vent habitat. Widespread microbial mats developed on the seafloor with the diffusing <span class="hlt">hydrothermal</span> fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established <span class="hlt">hydrothermal</span> vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the ecosystem in the area has</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GGG....13.9006L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GGG....13.9006L"><span>Tectonic and magmatic controls on <span class="hlt">hydrothermal</span> activity in the Woodlark Basin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Laurila, T. E.; Petersen, S.; Devey, C. W.; Baker, E. T.; Augustin, N.; Hannington, M. D.</p> <p>2012-09-01</p> <p>The Woodlark Basin is one of the rare places on earth where the transition from continental breakup to seafloor spreading can be observed. The potential juxtaposition of continental rocks, a large magmatic heat source, crustal-scale faulting, and <span class="hlt">hydrothermal</span> circulation has made the Woodlark Basin a prime target for seafloor mineral exploration. However, over the past 20 years, only two locations of active <span class="hlt">hydrothermalism</span> had been found. In 2009 we surveyed 435 km of the spreading axis for the presence of <span class="hlt">hydrothermal</span> plumes. Only one additional plume was found, bringing the total number of plumes known over 520 km of ridge axis to only 3, much less than at ridges with similar spreading rates globally. Particularly the western half of the basin (280 km of axis) is apparently devoid of high temperature plumes despite having thick crust and a presumably high magmatic budget. This paucity of <span class="hlt">hydrothermal</span> activity may be related to the peculiar tectonic setting at Woodlark, where repeated ridge jumps and a re-location of the rotation pole both lead to axial magmatism being more widely distributed than at many other, more mature and stable mid-ocean ridges. These factors could inhibit the development of both a stable magmatic heat source and the deeply penetrating faults needed to create long-lived <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. We conclude that large seafloor massive sulfide deposits, potential targets for seafloor mineral exploration, will probably not be present along the spreading axis of the Woodlark Basin, especially in its younger, western portion.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008E%26PSL.270..157B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008E%26PSL.270..157B"><span>The distribution and stabilisation of dissolved Fe in deep-sea <span class="hlt">hydrothermal</span> plumes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bennett, Sarah A.; Achterberg, Eric P.; Connelly, Douglas P.; Statham, Peter J.; Fones, Gary R.; German, Christopher R.</p> <p>2008-06-01</p> <p>We have conducted a study of <span class="hlt">hydrothermal</span> plumes overlying the Mid-Atlantic Ridge near 5° S to investigate whether there is a significant export flux of dissolved Fe from <span class="hlt">hydrothermal</span> venting to the oceans. Our study combined measurements of plume-height Fe concentrations from a series of 6 CTD stations together with studies of dissolved Fe speciation in a subset of those samples. At 2.5 km down plume from the nearest known vent site dissolved Fe concentrations were ˜ 20 nM. This is much higher than would be predicted from a combination of plume dilution and dissolved Fe(II) oxidation rates, but consistent with stabilisation due to the presence of organic Fe complexes and Fe colloids. Using Competitive Ligand Exchange-Cathodic Stripping Voltammetry (CLE-CSV), stabilised dissolved Fe complexes were detected within the dissolved Fe fraction on the edges of one non-buoyant <span class="hlt">hydrothermal</span> plume with observed ligand concentrations high enough to account for stabilisation of ˜ 4% of the total Fe emitted from the 5° S vent sites. If these results were representative of all <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>, submarine venting could provide 12-22% of the global deep-ocean dissolved Fe budget.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004IJAsB...3...81G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004IJAsB...3...81G"><span><span class="hlt">Hydrothermal</span> exploration and astrobiology: oases for life in distant oceans?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>German, Christopher R.</p> <p>2004-04-01</p> <p>High-temperature submarine <span class="hlt">hydrothermal</span> fields on Earth's mid-ocean ridges play host to exotic ecosystems with fauna previously unknown to science. Because these <span class="hlt">systems</span> draw significant energy from chemosynthesis rather than photosynthesis, it has been postulated that the study of such <span class="hlt">systems</span> could have relevance to the origins of life and, hence, astrobiology. A major flaw to that argument, however, is that modern basalt-hosted submarine vents are too oxidizing and lack the abundant free hydrogen required to drive abiotic organic synthesis and/or the energy yielding reactions that the most primitive anaerobic thermophiles isolated from submarine vent-sites apparently require. Here, however, the progress over the past decade in which systematic search strategies have been used to identify previously overlooked venting on the slow-spreading Mid-Atlantic Ridge and the ultra-slow spreading Arctic and SW Indian Ridges is described. Preliminary identification of fault-controlled venting in a number of these sites has led to the discovery of at least two high-temperature <span class="hlt">hydrothermal</span> fields hosted in ultramafic rocks which emit complex organic molecules in their greater than 360 °C vent-fluids. Whether these concentrations represent de novo organic synthesis within the <span class="hlt">hydrothermal</span> cell remains open to debate but it is probable that many more such sites exist throughout the Atlantic, Arctic and SW Indian Oceans. One particularly intriguing example is the Gakkel Ridge, which crosses the floor of the Arctic Ocean. On-going collaborations between oceanographers and astrobiologists are actively seeking to develop a new class of free-swimming autonomous underwater vehicle, equipped with appropriate chemical sensors, to conduct long-range missions that will seek out, locate and investigate new sites of <span class="hlt">hydrothermal</span> venting at the bottom of this, and other, ice-covered oceans.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70073840','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70073840"><span>Trace metal-rich Quaternary <span class="hlt">hydrothermal</span> manganese oxide and barite deposit, Milos Island, Greece</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hein, J.R.; Stamatakis, G.; Dowling, J.S.</p> <p>2000-01-01</p> <p>The Cape Vani Mn oxide and barite deposit on Milos Island offers an excellent opportunity to study the three-dimensional characteristics of a shallow-water <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. Milos Island is part of the active Aegean volcanic arc. A 1 km long basin located between two dacitic domes in northwest Milos is filled with a 35-50 m thick section of Quaternary volcaniclastic and pyroclastic rocks capped by reef limestone that were <span class="hlt">hydrothermally</span> mineralized by Mn oxides and barite. Manganese occurs as thin layers, as cement of sandstone and as metasomatic replacement of the limestone, including abundant fossil shells. Manganese minerals include chiefly δ-MnO2, pyrolusite and ramsdellite. The MnO contents for single beds range up to 60%. The Mn oxide deposits are rich in Pb (to 3.4%), BaO (to 3.1%), Zn (to 0.8%), As (to 0.3%), Sb (to 0.2%) and Ag (to 10 ppm). Strontium isotopic compositions of the Mn oxide deposits and sulphur isotopic compositions of the associated barite show that the mineralizing fluids were predominantly sea water. The Mn oxide deposit formed in close geographical proximity to sulphide-sulphate-Au-Ag deposits and the two deposit types probably formed from the same <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. Precipitation of Mn oxide took place at shallow burial depths and was promoted by the mixing of modified sea water (<span class="hlt">hydrothermal</span> fluid) from which the sulphides precipitated at depth and sea water that penetrated along faults and fractures in the Cape Vani volcaniclastic and tuff deposits. The <span class="hlt">hydrothermal</span> fluid was formed from predominantly sea water that was enriched in metals leached from the basement and overlying volcanogenic rocks. The <span class="hlt">hydrothermal</span> fluids were driven by convection sustained by heat from cooling magma chambers. Barite was deposited throughout the time of Mn oxide mineralization, which occurred in at least two episodes. Manganese mineralization occurred by both focused and diffuse flow, the fluids mineralizing the beds of greatest porosity and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H13A1038R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H13A1038R"><span>New <span class="hlt">Zealand</span> Freshwater Management: Changing Policy for a Changing World</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rouse, H. L.; Norton, N.</p> <p>2014-12-01</p> <p>Fresh water is essential to New <span class="hlt">Zealand</span>'s economic, environmental, cultural and social well-being. In line with global trends, New <span class="hlt">Zealand</span>'s freshwater resources are under pressure from increased abstraction and changes in land-use which contribute contaminants to our freshwater <span class="hlt">systems</span>. Recent central government policy reform introduces greater national direction and guidance, to bring about a step-change in freshwater management. An existing national policy for freshwater management introduced in 2011 requires regional authorities to produce freshwater management plans containing clear freshwater objectives (measurable statements about the desired environmental state for water bodies) and associated limits to resource use (such as environmental flows and quantity allocation limits, and loads of contaminants to be discharged). These plans must integrate water quantity and quality management, consider climate change, and incorporate tangata whenua (New <span class="hlt">Zealand</span> māori) roles and interests. In recent (2014) national policy amendments, the regional authorities are also required to implement national 'bottom-line' standards for certain attributes of the <span class="hlt">system</span> to be managed; undertake accounting for all water takes and all sources of contaminants; and to develop and implement their plans in a collaborative way with communities. This rapid change in national policy has necessitated a new way of working for authorities tasked with implementation; many obstacles lie in their path. The scientific methods required to help set water quantity limits are well established, but water quality methods are less so. Collaborative processes have well documented benefits but also raise many challenges, particularly for the communication of complex and often uncertain scientific information. This paper provides background on the national policy changes and offers some early lessons learned by the regional authorities implementing collaborative freshwater management in New <span class="hlt">Zealand</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1351190-hydrothermal-transport-deposition-fractionation-ree-experimental-data-thermodynamic-calculations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1351190-hydrothermal-transport-deposition-fractionation-ree-experimental-data-thermodynamic-calculations"><span><span class="hlt">Hydrothermal</span> transport, deposition, and fractionation of the REE: Experimental data and thermodynamic calculations</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Migdisov, Artaches; Williams-Jones, A. E.; Brugger, J.; ...</p> <p>2016-06-11</p> <p>For many years, our understanding of the behavior of the REE in <span class="hlt">hydrothermal</span> <span class="hlt">systems</span> was based on semi-empirical estimates involving extrapolation of thermodynamic data obtained at 25 °C. Since then, a substantial body of experimental data has accumulated on the stability of aqueous complexes of the REE. These data have shown that some of the predictions of Haas et al. (1995) are accurate, but others may be in error by several orders of magnitude. However, application of the data in modeling <span class="hlt">hydrothermal</span> transport and deposition of the REE has been severely hampered by the lack of data on the thermodynamicmore » properties of even the most common REE minerals. The discrepancies between the predictions and experimental determinations of the thermodynamic properties of aqueous REE species, together with the paucity of data on the stability of REE minerals, raise serious questions about the reliability of some models that have been proposed for the <span class="hlt">hydrothermal</span> mobility of these critical metals. In this contribution, we review a body of high-temperature experimental data collected over the past 15 years on the stability of REE aqueous species and minerals. Using this new thermodynamic dataset, we re-evaluate the mechanisms responsible for <span class="hlt">hydrothermal</span> transport and deposition of the REE. We also discuss the mechanisms that can result in REE fractionation during their <span class="hlt">hydrothermal</span> transport and deposition. Here, our calculations suggest that in <span class="hlt">hydrothermal</span> solutions, the main REE transporting ligands are chloride and sulfate, whereas fluoride, carbonate, and phosphate likely play an important role as depositional ligands. In addition to crystallographic fractionation, which is based on the differing affinity of mineral structures for the REE, our models suggest that the REE can be fractionated <span class="hlt">hydrothermally</span> due to the differences in the stability of the LREE and HREE as aqueous chloride complexes.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23823293','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23823293"><span>Building an educated health informatics workforce--the New <span class="hlt">Zealand</span> experience.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Parry, David; Hunter, Inga; Honey, Michelle; Holt, Alec; Day, Karen; Kirk, Ray; Cullen, Rowena</p> <p>2013-01-01</p> <p>New <span class="hlt">Zealand</span> has a rapidly expanding health information technology (IT) development industry and wide-ranging use of informatics, especially in the primary health sector. The New <span class="hlt">Zealand</span> government through the National Health IT Board (NHITB) has promised to provide shared care health records of core information for all New <span class="hlt">Zealanders</span> by 2014. One of the major barriers to improvement in IT use in healthcare is the dearth of trained and interested clinicians, management and technical workforce. Health Informatics New <span class="hlt">Zealand</span> (HINZ) and the academic community in New <span class="hlt">Zealand</span> are attempting to remedy this by raising awareness of health informatics at the "grass roots" level of the existing workforce via free "primer" workshops and by developing a sustainable cross-institutional model of educational opportunities. Support from the NHITB has been forthcoming, and the workshops started in early 2013, reaching out to clinical and other staff in post around New <span class="hlt">Zealand</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11068728','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11068728"><span>Big bang and the policy prescription: health care meets the market in New <span class="hlt">Zealand</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gauld, R D</p> <p>2000-10-01</p> <p>This article discusses events that led up to and the aftermath of New <span class="hlt">Zealand</span>'s radical health sector restructuring of 1993. It suggests that "big bang" policy change facilitated the introduction of a set of market-oriented ideas describable as a policy prescription. In general, the new <span class="hlt">system</span> performed poorly, in keeping with problems of market failure endemic in health care. The <span class="hlt">system</span> was subsequently restructured, and elements of the 1993 structures were repackaged through a series of incremental changes. Based on the New <span class="hlt">Zealand</span> experience, big bang produces change but not necessarily a predictive model, and the policy prescription has been oversold.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27922459','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27922459"><span>Electroconvulsive Therapy Practice in New <span class="hlt">Zealand</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fisher, Mark Wilkinson; Morrison, John; Jones, Paul Anthony</p> <p>2017-06-01</p> <p>The aim of this study was to describe the contemporary practice of electroconvulsive therapy (ECT) in New <span class="hlt">Zealand</span>. A 53-item questionnaire was sent to all services providing ECT as of December 2015. Electroconvulsive therapy was provided by 16 services covering 15 district health boards funded by the New <span class="hlt">Zealand</span> government. No private facilities provided ECT. All services providing ECT responded to an online survey questionnaire. Rates of ECT utilization were low relative to similar countries. Survey results indicated ECT was practiced to an overall good standard. Several resource and logistical issues potentially contributing to low ECT utilization were identified. Electroconvulsive therapy in New <span class="hlt">Zealand</span> is provided using modern equipment and practices. However, overall rates of utilization remain low, perhaps as a result of controversy surrounding ECT and some resourcing issues.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015BVol...77..100B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015BVol...77..100B"><span>Transport and deposition processes of the <span class="hlt">hydrothermal</span> blast of the 6 August 2012 Te Maari eruption, Mt. Tongariro</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Breard, E. C. P.; Lube, G.; Cronin, S. J.; Valentine, G. A.</p> <p>2015-11-01</p> <p>The 2012 eruption of Tongariro volcano (New <span class="hlt">Zealand</span>) produced highly mobile, low-temperature, blast-derived pyroclastic density currents after partial collapse of the western flank of the Upper Te Maari crater. Despite a low volume (340,000 m3), the flows traveled up to 2.5 km from source, covering a total area of 6.1 km2. Along one of the blast axes, freshly exposed, proximal-to-distal sedimentary structures and grain-size data suggest emplacement of the fining upward tripartite depositional sequence (massive, stratified, and laminated) under a dilute and strongly longitudinally zoned turbulent density current. While the zoning formed in the deposit in the first 1500 m of runout, the current progressively waned to the extent where it transported a nearly homogenous grain-size mixture at the liftoff position. Our data indicate that after the passage of an erosive flow front, massive unit A was deposited under a rapid-suspension sedimentation regime. Unit B was deposited under a traction-dominated regime generated by a subsequent portion of the flow moving at lower velocities and with lower sediment transport capacity than the portion depositing unit A. The final and slowest flow zone deposited the finest particles under weakly tractive conditions. Transport and emplacement dynamics inferred in this study show strong similarities between <span class="hlt">hydrothermal</span> explosions, magmatic blasts, and high-energy dilute PDCs. The common occurrence of <span class="hlt">hydrothermal</span> fields on volcanic flanks points to this hazard being an under-appreciated one at stratovolcanoes worldwide.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GGG....19.1259B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GGG....19.1259B"><span>Depth-Dependent Permeability and Heat Output at Basalt-Hosted <span class="hlt">Hydrothermal</span> <span class="hlt">Systems</span> Across Mid-Ocean Ridge Spreading Rates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barreyre, Thibaut; Olive, Jean-Arthur; Crone, Timothy J.; Sohn, Robert A.</p> <p>2018-04-01</p> <p>The permeability of the oceanic crust exerts a primary influence on the vigor of <span class="hlt">hydrothermal</span> circulation at mid-ocean ridges, but it is a difficult to measure parameter that varies with time, space, and geological setting. Here we develop an analytical model for the poroelastic response of <span class="hlt">hydrothermal</span> exit-fluid velocities and temperatures to ocean tidal loading in a two-layered medium to constrain the discharge zone permeability of each layer. The top layer, corresponding to extrusive lithologies (e.g., seismic layer 2A) overlies a lower permeability layer, corresponding to intrusive lithologies (e.g., layer 2B). We apply the model to three basalt-hosted <span class="hlt">hydrothermal</span> fields (i.e., Lucky Strike, Main Endeavour and 9°46'N L-vent) for which the seismic stratigraphy is well-established, and for which robust exit-fluid temperature data are available. We find that the poroelastic response to tidal loading is primarily controlled by layer 2A permeability, which is about 3 orders of magnitude higher for the Lucky Strike site (˜10-10 m2) than the 9°46'N L-vent site (˜10-13 m2). By contrast, layer 2B permeability does not exert a strong control on the poroelastic response to tidal loading, yet strongly modulates the heat output of <span class="hlt">hydrothermal</span> discharge zones. Taking these constraints into account, we estimate a plausible range of layer 2B permeability between ˜10-15 m2 and an upper-bound value of ˜10-14 (9°46'N L-vent) to ˜10-12 m2 (Lucky Strike). These permeability structures reconcile the short-term response and long-term thermal output of <span class="hlt">hydrothermal</span> sites, and provide new insights into the links between permeability and tectono-magmatic processes along the global mid-ocean ridge.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=credentialism&pg=6&id=ED354579','ERIC'); return false;" href="https://eric.ed.gov/?q=credentialism&pg=6&id=ED354579"><span>Structural Change, Professional Change: The New <span class="hlt">Zealand</span> School Principal.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Cusack, Brian O.</p> <p></p> <p>The New <span class="hlt">Zealand</span> education structures were reorganized on a national scale in the late 1980s. In 18 months, a 100-year-old education <span class="hlt">system</span> was radically restructured to create new administrative structures, new career paths, and new professional expectations for personnel. This paper summarizes these structural changes, reviews research reports…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24866915','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24866915"><span>An unfortunate experiment? The future of ethical review in New <span class="hlt">Zealand</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McMillan, John; Bowyer, Lynne</p> <p>2014-07-01</p> <p>This report describes the <span class="hlt">system</span> of ethical review that was adopted in New <span class="hlt">Zealand</span> based on the findings and recommendations from the Cartwright Inquiry in 1988. It discusses the changes made to this <span class="hlt">system</span> under recent governmental initiatives enacted by the National Party, and some of the implications of those changes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24583568','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24583568"><span>Sites of institutional racism in public health policy making in New <span class="hlt">Zealand</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Came, Heather</p> <p>2014-04-01</p> <p>Although New <span class="hlt">Zealanders</span> have historically prided ourselves on being a country where everyone has a 'fair go', the <span class="hlt">systemic</span> and longstanding existence of health inequities between Māori and non-Māori suggests something isn't working. This paper informed by critical race theory, asks the reader to consider the counter narrative viewpoints of Māori health leaders; that suggest institutional racism has permeated public health policy making in New <span class="hlt">Zealand</span> and is a contributor to health inequities alongside colonisation and uneven access to the determinants of health. Using a mixed methods approach and critical anti-racism scholarship this paper identifies five specific sites of institutional racism. These sites are: majoritarian decision making, the misuse of evidence, deficiencies in both cultural competencies and consultation processes and the impact of Crown filters. These findings suggest the failure of quality assurance <span class="hlt">systems</span>, existing anti-racism initiatives and health sector leadership to detect and eliminate racism. The author calls for institutional racism to be urgently addressed within New <span class="hlt">Zealand</span> and this paper serves as a reminder to policy makers operating within other colonial contexts to be vigilant for such racism. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025764','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025764"><span><span class="hlt">Hydrothermal</span> and tectonic activity in northern Yellowstone Lake, Wyoming</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Johnson, S.Y.; Stephenson, W.J.; Morgan, L.A.; Shanks, Wayne C.; Pierce, K.L.</p> <p>2003-01-01</p> <p>Yellowstone National Park is the site of one of the world's largest calderas. The abundance of geothermal and tectonic activity in and around the caldera, including historic uplift and subsidence, makes it necessary to understand active geologic processes and their associated hazards. To that end, we here use an extensive grid of high-resolution seismic reflection profiles (???450 km) to document <span class="hlt">hydrothermal</span> and tectonic features and deposits in northern Yellowstone Lake. Sublacustrine geothermal features in northern Yellowstone Lake include two of the largest known <span class="hlt">hydrothermal</span> explosion craters, Mary Bay and Elliott's. Mary Bay explosion breccia is distributed uniformly around the crater, whereas Elliott's crater breccia has an asymmetric distribution and forms a distinctive, ???2-km-long, hummocky lobe on the lake floor. <span class="hlt">Hydrothermal</span> vents and low-relief domes are abundant on the lake floor; their greatest abundance is in and near explosion craters and along linear fissures. Domed areas on the lake floor that are relatively unbreached (by vents) are considered the most likely sites of future large <span class="hlt">hydrothermal</span> explosions. Four submerged shoreline terraces along the margins of northern Yellowstone Lake add to the Holocene record or postglacial lake-level fluctuations attributed to "heavy breathing" of the Yellowstone magma reservoir and associated geothermal <span class="hlt">system</span>. The Lake Hotel fault cuts through northwestern Yellowstone Lake and represents part of a 25-km-long distributed extensional deformation zone. Three postglacial ruptures indicate a slip rate of ???0.27 to 0.34 mm/yr. The largest (3.0 m slip) and most recent event occurred in the past ???2100 yr. Although high heat flow in the crust limits the rupture area of this fault zone, future earthquakes of magnitude ???5.3 to 6.5 are possible. Earthquakes and <span class="hlt">hydrothermal</span> explosions have probably triggered landslides, common features around the lake margins. Few high-resolution seismic reflection surveys have</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9346022','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9346022"><span>The New <span class="hlt">Zealand</span> graduated driver licensing <span class="hlt">system</span>: teenagers' attitudes towards and experiences with this car driver licensing <span class="hlt">system</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Begg, D J; Langley, J D; Reeder, A I; Chalmers, D J</p> <p>1995-09-01</p> <p>This study examined the attitudes of teenagers towards the New <span class="hlt">Zealand</span> graduated driver licensing <span class="hlt">system</span> (GDLS), and the extent to which it affected them. Teenagers, who are members of a longitudinal study of a birth cohort, were interviewed at 15 years of age when the GDLS was first introduced and before they had begun licensure, and again at 18 years of age after they had experience with this licensing <span class="hlt">system</span>. At both ages the majority (over 70%) agreed with the driving restrictions imposed by this <span class="hlt">system</span>. After experience with the restrictions, however, significantly more reported being affected a lot by them, than had expected to be at age 15. This was especially true of the restrictions on the carrying of passengers and the night time curfew (10 pm - 5 am). However, few reported that they were affected by the alcohol restriction. Sixty eight per cent of those with a graduated licence reported breaking at least one of the conditions, most frequently carrying passengers. Very few were penalised by the police for this. Generally these young drivers were positively disposed towards the driving restrictions, but noncompliance was common. A full evaluation of all aspects of this licensing <span class="hlt">system</span> is recommended.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28267660','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28267660"><span>Coupling <span class="hlt">hydrothermal</span> liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Posmanik, Roy; Labatut, Rodrigo A; Kim, Andrew H; Usack, Joseph G; Tester, Jefferson W; Angenent, Largus T</p> <p>2017-06-01</p> <p><span class="hlt">Hydrothermal</span> liquefaction converts food waste into oil and a carbon-rich <span class="hlt">hydrothermal</span> aqueous phase. The <span class="hlt">hydrothermal</span> aqueous phase may be converted to biomethane via anaerobic digestion. Here, the feasibility of coupling <span class="hlt">hydrothermal</span> liquefaction and anaerobic digestion for the conversion of food waste into energy products was examined. A mixture of polysaccharides, proteins, and lipids, representing food waste, underwent <span class="hlt">hydrothermal</span> processing at temperatures ranging from 200 to 350°C. The anaerobic biodegradability of the <span class="hlt">hydrothermal</span> aqueous phase was examined through conducting biochemical methane potential assays. The results demonstrate that the anaerobic biodegradability of the <span class="hlt">hydrothermal</span> aqueous phase was lower when the temperature of <span class="hlt">hydrothermal</span> processing increased. The chemical composition of the <span class="hlt">hydrothermal</span> aqueous phase affected the anaerobic biodegradability. However, no inhibition of biodegradation was observed for most samples. Combining <span class="hlt">hydrothermal</span> and anaerobic digestion may, therefore, yield a higher energetic return by converting the feedstock into oil and biomethane. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=impacts+AND+delinquency+AND+community&pg=6&id=EJ798042','ERIC'); return false;" href="https://eric.ed.gov/?q=impacts+AND+delinquency+AND+community&pg=6&id=EJ798042"><span>New <span class="hlt">Zealand</span> Police and Restorative Justice Philosophy</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Winfree, L. Thomas, Jr.</p> <p>2004-01-01</p> <p>In New <span class="hlt">Zealand</span>, selected sworn police officers called youth aid officers participate in discussions and deliberations concerning the actions required to restore the sense of community balance upset by the actions of juvenile offenders. The author explores a representative sample of all sworn police officers serving in the New <span class="hlt">Zealand</span> Police,…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=database%2bdata+AND+analysis&pg=4&id=EJ961763','ERIC'); return false;" href="https://eric.ed.gov/?q=database%2bdata+AND+analysis&pg=4&id=EJ961763"><span>Obesity and Intellectual Disability in New <span class="hlt">Zealand</span></span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Stedman, Kurstyn V.; Leland, Louis S., Jr.</p> <p>2010-01-01</p> <p>Background: The international literature suggests that obesity is likely to be more pronounced in the population of people with intellectual disability (ID). However, there are no published New <span class="hlt">Zealand</span> data for this population. Method: We accessed a database containing anonymous data for a New <span class="hlt">Zealand</span> ID population. Ninety-eight people of 141 had…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17..982L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17..982L"><span>Spatial Distribution of b-value of the Copahue volcano during 2012-2014 eruptive period: Relationship between magmatic and <span class="hlt">hydrothermal</span> <span class="hlt">system</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lazo, Jonathan; Basualto, Daniel; Bengoa, Cintia; Cardona, Carlos; Franco, Luis; Gil-Cruz, Fernando; Hernández, Erasmo; Lara, Luis; Lundgren, Paul; Medina, Roxana; Morales, Sergio; Peña, Paola; Quijada, Jonathan; Samsonov, Sergey; San Martin, Juan; Valderrama, Oscar</p> <p>2015-04-01</p> <p>Temporal and spatial variations of b-value have been interpreted as regional stress changes on active tectonic zones or magma ascent and/or <span class="hlt">hydrothermal</span> fluids mobilization that could affect to active volcanic arc. Increasing of fluids pressure, medium heterogeneities or temperature changes would be the cause of these variations. The Copahue volcano is a shield strato-volcano that has been edified on the western margin of the Caviahue Caldera, located in the international border between Chile and Argentina, which contain an important geothermic field and is located at a horse-tail structure of the Liquiñe-Ofqui Fault Zone. The pre-fracture nature of its basement, as well as an extensive geothermic field, would be producing very complex conditions to fluids movement that could be exploring to use the 'b' value of the recorded seismicity between 2012 and 2014. Based in the database of VT seismic events, we used 2.073 events to calculate the b-value to obtain the 2D and 3D distribution maps. Results showed two anomalous zones: the first one located 9 Km to NE of the active crater, 3-6 Km depth, with high b-values (>1.2) that is associated with a very high production rate of small earthquakes that could suggest a brittle zone, located in the active geothermal field. The second zone, showed a low b-values (~ 0.7), located to east of the volcano edifice at <3 Km depth, associated to a zone where were generated larger magnitude events, suggesting a zone with more stress accumulation that well correlated with the deformation center detected by InSAR measurements. This zone could be interpreted as the magmatic source that interacts with the shallow <span class="hlt">hydrothermal</span> <span class="hlt">system</span>. Thus, in a very complex setting as a volcano sitting on top of a geothermal <span class="hlt">system</span>, the b-value offers a tool to understand the distribution of the seismic sources and hence a physical constrain for the coupled magmatic/<span class="hlt">hydrothermal</span> <span class="hlt">system</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20825605','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20825605"><span>Corporal punishment and child maltreatment in New <span class="hlt">Zealand</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kelly, Patrick</p> <p>2011-01-01</p> <p>On 2 May, 2007, the New <span class="hlt">Zealand</span> Parliament passed a law repealing Section 59 of the Crimes Act. In so doing, New <span class="hlt">Zealand</span> became the first English-speaking nation in the world to make corporal punishment of a child illegal. The passage of this legislation was surrounded by intense and persistent public debate, and supporters of corporal punishment continue to advocate against the law change to the present day. In Sweden, where the first stage of similar repeal took place in 1957, it may be difficult for many to understand the strength of the public opposition to this change in New <span class="hlt">Zealand</span>. This article will present a viewpoint on the evolution of the debate in New <span class="hlt">Zealand</span>, review the wider context of child maltreatment and family violence in New <span class="hlt">Zealand</span> and summarize a range of attempts to prevent or intervene effectively in the cycle of dysfunction. Child maltreatment and family violence are public health issues of great importance, and a stain on all societies. While corporal punishment may be a significant contributing factor, there is no single 'solution'. Change must occur on multiple levels (political, economic, cultural, familial and professional) before the tide will turn.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JVGR..277....9T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JVGR..277....9T"><span>Electromagnetic outline of the Solfatara-Pisciarelli <span class="hlt">hydrothermal</span> <span class="hlt">system</span>, Campi Flegrei (Southern Italy)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Troiano, A.; Di Giuseppe, M. G.; Patella, D.; Troise, C.; De Natale, G.</p> <p>2014-05-01</p> <p>We describe the results from a combined controlled source audio magnetotelluric (CSAMT) and natural source magnetotelluric (MT) survey carried out in the Solfatara-Pisciarelli (S-P) area, located in the central part of the Campi Flegrei (CF) composite caldera, west of Naples, Southern Italy. The S-P area represents the most active zone within the CF caldera, in terms of <span class="hlt">hydrothermal</span> manifestations and local seismicity. Since 1969, the CF caldera is experiencing ground deformation, seismicity and geochemical fluid changes, which are particularly evident in the S-P area. A 1 km long, nearly W-E directed CSAMT-MT profile crossing the fumarole field was carried out in the S-P area with the aim of deducting a resistivity model of the structural setting of the <span class="hlt">hydrothermal</span> <span class="hlt">system</span> in the first 3 km depth. An interpretation of the modelled section across the profile is given in this paper, taking advantage from already existing seismic, gravity and geochemical data in the same area. Three well distinct zones have been outlined. The first zone is a very shallow, electrically conductive body localized beneath the westernmost segment of the profile, which, within a short distance of about 100 m, dips westwards from near surface down to some hundred metres in depth. Mostly accounting for the very low resistivity (1-10 Ω m) and the exceedingly high values of vP/vS (> 4), this shallow zone has been ascribed to a water-saturated, high-pressurized geothermal reservoir. The second zone, which has been localized below the west-central portion of the CSAMT-MT transect, appears as a composite body made up of a nearly vertical plumelike structure that escapes at about 2.25 km depth from the top edge of the east side of a presumably horizontal platelike body. The plumelike structure rises up to the free surface in correspondence of the fumarole field, whereas the platelike structure deepens at least down to the 3 km of maximum exploration depth. The combined interpretation of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA218651','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA218651"><span>Fluid Flow and Sound Generation at <span class="hlt">Hydrothermal</span> Vent Fields</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1988-04-01</p> <p>Pacific Rise The first evidence of vent sound generation came from data collected near <span class="hlt">hydrothermal</span> vents at 21 N on the EPR where an array of ocean...associated with <span class="hlt">hydrothermal</span> centers, one at 21 N on the East Pacific Rise (EPR) (Reidesel et al., 1982) and one on the Juan de Fuca Ridge (Bibee and Jacobson... East Pacific Rise at 210 N : the volcanic, tectonic and <span class="hlt">hydrothermal</span> processes at</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=education+AND+disability+AND+inclusion+AND+canada&pg=5&id=EJ667926','ERIC'); return false;" href="https://eric.ed.gov/?q=education+AND+disability+AND+inclusion+AND+canada&pg=5&id=EJ667926"><span>Inclusion in Aotearoa/New <span class="hlt">Zealand</span>: From Rhetoric to Reality.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>McDonald, Trevor</p> <p>2002-01-01</p> <p>This article argues that the education <span class="hlt">system</span> in Aotearoa/New <span class="hlt">Zealand</span> relegates children with disabilities, along with Maori and children of minority groups, to the margins of education. It stresses the need for teachers to focus on ways in which inclusion practices are reinforcing the marginal position of many students. (Contains references.)…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12529639','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12529639"><span>Discovery of abundant <span class="hlt">hydrothermal</span> venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Edmonds, H N; Michael, P J; Baker, E T; Connelly, D P; Snow, J E; Langmuir, C H; Dick, H J B; Mühe, R; German, C R; Graham, D W</p> <p>2003-01-16</p> <p>Submarine <span class="hlt">hydrothermal</span> venting along mid-ocean ridges is an important contributor to ridge thermal structure, and the global distribution of such vents has implications for heat and mass fluxes from the Earth's crust and mantle and for the biogeography of vent-endemic organisms. Previous studies have predicted that the incidence of <span class="hlt">hydrothermal</span> venting would be extremely low on ultraslow-spreading ridges (ridges with full spreading rates <2 cm x yr(-1)-which make up 25 per cent of the global ridge length), and that such vent <span class="hlt">systems</span> would be hosted in ultramafic in addition to volcanic rocks. Here we present evidence for active <span class="hlt">hydrothermal</span> venting on the Gakkel ridge, which is the slowest spreading (0.6-1.3 cm x yr(-1)) and least explored mid-ocean ridge. On the basis of water column profiles of light scattering, temperature and manganese concentration along 1,100 km of the rift valley, we identify <span class="hlt">hydrothermal</span> plumes dispersing from at least nine to twelve discrete vent sites. Our discovery of such abundant venting, and its apparent localization near volcanic centres, requires a reassessment of the geologic conditions that control <span class="hlt">hydrothermal</span> circulation on ultraslow-spreading ridges.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=292375','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=292375"><span>Evolution of campylobacter species in New <span class="hlt">Zealand</span></span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>New <span class="hlt">Zealand</span> is an isolated archipelago in the South-West Pacific with a unique fauna and flora, a feature partly attributable to it being the last sizable land mass to be colonized by man. In this chapter we test the hypothesis that different periods in the history of New <span class="hlt">Zealand</span> – from pre-history ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=asia&pg=5&id=EJ1024608','ERIC'); return false;" href="https://eric.ed.gov/?q=asia&pg=5&id=EJ1024608"><span>Asia-Born New <span class="hlt">Zealand</span>-Educated Business Graduates' Transition to Work</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Anderson, Vivienne; McGrath, Terry; Butcher, Andrew</p> <p>2014-01-01</p> <p>In 2008 the Asia New <span class="hlt">Zealand</span> Foundation commissioned a three-year project examining Asia-born New <span class="hlt">Zealand</span>-educated business graduates' study to work transitions. Data were collected through annual online surveys and in-depth interviews. Graduates were asked to discuss their post-study experiences, reflections on studying in New <span class="hlt">Zealand</span>, and…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H33B0804R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H33B0804R"><span><span class="hlt">Hydrothermal</span> convection and mordenite precipitation in the cooling Bishop Tuff, California, USA</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Randolph-Flagg, N. G.; Breen, S. J.; Hernandez, A.; Self, S.; Manga, M.</p> <p>2014-12-01</p> <p>We present field observations of erosional columns in the Bishop Tuff and then use laboratory results and numerical models to argue that these columns are evidence of relict convection in a cooling ignimbrite. Many square kilometers of the Bishop Tuff have evenly-spaced, vertical to semi-vertical erosional columns, a result of <span class="hlt">hydrothermal</span> alteration. These altered regions are more competent than the surrounding tuff, are 0.1-0.7 m in diameter, are separated by ~ 1 m, and in some cases are more than 8 m in height. JE Bailey (U. of Hawaii, dissertation, 2005) suggested that similar columns in the Bandelier Tuff were formed when slumping allowed water to pool at the surface of the still-cooling ignimbrite. As water percolated downward it boiled generating evenly spaced convection cells similar to heat pipes. We quantify this conceptual model and apply it the Bishop Tuff to understand the physics within ignimbrite-borne <span class="hlt">hydrothermal</span> <span class="hlt">systems</span>. We use thin sections to measure changing porosity and use scanning electron microscope (SEM) and x-ray diffraction (XRD) analyses to show that pore spaces in the columns are cemented by the mineral mordenite, a low temperature zeolite that precipitates between 120-200 oC (Bish et al., 1982), also found in the Bandelier Tuff example. We then use scaling to show 1) that water percolating into the cooling Bishop Tuff would convect and 2) that the geometry and spacing of the columns is predicted by the ignimbrite temperature and permeability. We use the computer program <span class="hlt">HYDROTHERM</span> (Hayba and Ingebritsen, 1994; Kipp et al., 2008) to model 2-phase convection in the Bishop Tuff. By systematically changing permeability, initial temperature, and topography we can identify the pattern of flows that develop when the ignimbrite is cooled by water from above. <span class="hlt">Hydrothermally</span> altered columns in ignimbrite are the natural product of coupled heat, mass, and chemical transport and have similarities to other geothermal <span class="hlt">systems</span>, economic ore deposits</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.4233W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.4233W"><span>On the early fate of <span class="hlt">hydrothermal</span> iron at deep-sea vents: A reassessment after in situ filtration</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Waeles, M.; Cotte, L.; Pernet-Coudrier, B.; Chavagnac, V.; Cathalot, C.; Leleu, T.; Laës-Huon, A.; Perhirin, A.; Riso, R. D.; Sarradin, P.-M.</p> <p>2017-05-01</p> <p>Deep-sea <span class="hlt">hydrothermal</span> venting is now recognized as a major source of iron (Fe), an essential trace element that controls marine productivity. However, the reactions occurring during dispersal from buoyant plumes to neutrally buoyant <span class="hlt">hydrothermal</span> plumes are still poorly constrained. Here we report for the first time on the dissolved-particulate partition of Fe after in situ filtration at the early stage of mixing at different <span class="hlt">hydrothermal</span> discharges, i.e., Lucky Strike (37°N), TAG (26°N), and Snakepit (23°N) on the Mid-Atlantic Ridge. We found that <span class="hlt">hydrothermal</span> iron is almost completely preserved (>90%) in the dissolved fraction, arguing for low iron-bearing sulfide precipitation of iron in basalt-hosted <span class="hlt">systems</span> with low Fe:H2S ratios. This result can only be explained by a kinetically limited formation of pyrite. The small part of Fe being precipitated as sulfides in the mixing gradient (<10%) is restricted to the inclusion of Fe in minerals of high Cu and Zn content. We also show that secondary venting is a source of Fe-depleted <span class="hlt">hydrothermal</span> solutions. These results provide new constrains on Fe fluxes from <span class="hlt">hydrothermal</span> venting.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PhDT.......176A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PhDT.......176A"><span>Hydroxyl defects and conversion thermodynamics and kinetics of <span class="hlt">hydrothermal</span> barium titanate</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Atakan, Vahit</p> <p></p> <p>The main objectives of this study are to investigate the possibility of <span class="hlt">hydrothermal</span> conversion of carboxylate based solid-state precursors to BaTiO3 and to characterize residual H or commonly referred as hydroxyls, which are common defects in <span class="hlt">hydrothermally</span> synthesized ceramic oxides. Neutron scattering techniques, prompt gamma activation analysis (PGAA) and neutron powder diffraction (NPD) were selected as the main tools for characterization of residual H due to high interaction capability of neutrons with H. Residual H was classified as surface and lattice H. Total H content was measured by PGAA and surface H was measured by Karl Fischer Titration (KFT). NPD was used for estimating lattice H. It was found that 75% of the residual H was in the lattice. Even though more than half of the residual H was removed at low temperatures like 200°C, it was tough to remove H completely even at 1200°C. Residual H caused expansion in the unit cell and presence of lattice H was compensated by Ti vacancies. Yield diagrams were generated depending on a thermodynamic model to theoretically verify that <span class="hlt">hydrothermal</span> conversion of carboxylate based solid-state precursors to BaTiO3 is possible. Theoretical results were then verified experimentally. It was found that BaC2O 4 and TiO2, and BaTiO(C2O4)2 can be successfully converted to BaTiO3 under <span class="hlt">hydrothermal</span> conditions. However, BaCO3 and TiO2 precursors were not fully converted. Among barium oxalate and titania, and barium titanly oxalate (BTO) <span class="hlt">systems</span>, conversion of BTO was more favorable in terms of reaction temperature and KOH concentration. BTO can be <span class="hlt">hydrothermally</span> converted to BaTiO3 at temperatures as low as room temperature. Further studies on <span class="hlt">hydrothermal</span> conversion of BTO showed that, reaction time can be reduced from 12 h to less than 5 seconds under atmospheric pressure at ˜103°C.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V13C2626D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V13C2626D"><span>Reconstructing Magmatic-<span class="hlt">Hydrothermal</span> <span class="hlt">Systems</span> via Geologic Mapping of the Tilted, Cross-sectional Exposures of the Yerington District, Nevada</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dilles, J. H.; Proffett, J. M.</p> <p>2011-12-01</p> <p>The Jurassic Yerington batholith was cut by Miocene to recent normal faults and tilted ~90° west (Proffett, 1977). Exposures range from the volcanic environment to ~6 km depth in the batholith. Magmatic-<span class="hlt">hydrothermal</span> fluids derived from the Luhr Hill granite and associated porphyry dikes produced characteristic porphyry copper mineralization and rock alteration (K-silicate, sericitic, and advanced argillic) in near-vertical columnar zones above cupolas on the deep granite. In addition, saline brines derived from the early Mesozoic volcanic and sedimentary section intruded by the batholith were heated and circulated through the batholith producing voluminous sodic-calcic and propylitic alteration. The magnetite-copper ore body at Pumpkin Hollow is hosted in early Mesozoic sedimentary rocks in the contact aureole of the batholith, and appears to be an IOCG type deposit produced where the sedimentary brines exited the batholith. Although many advances in understanding of Yerington have been made by lab-based geochronology and geochemistry studies, the first order igneous and <span class="hlt">hydrothermal</span> features were recognized first in the 1960s and 1970s and are best documented by geological mapping at a variety of scales ranging from 1:500 to 1:24,000. The Anaconda technique of mapping mine benches, trenches, and drill cores was perfected here (Einaudi, 1997), and other techniques were used for surface exposures. The geologic and <span class="hlt">hydrothermal</span> alteration maps establish that <span class="hlt">hydrothermal</span> alteration accompanied each of several porphyry dike intrusions, and affected more than 100 km3 of rock. Both zonation in alteration mineralogy and vein orientations allow reconstruction of source areas and >5 km-long flow-paths of <span class="hlt">hydrothermal</span> fluids through the batholith and contact aureole.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28081553','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28081553"><span>Changes in the age pattern of New <span class="hlt">Zealand</span> suicide rates.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Snowdon, John</p> <p>2017-01-13</p> <p>It is timely to examine changes in male and female suicide rates across the age range in New <span class="hlt">Zealand</span>, comparing them to some of the changes recorded in Australia. Data regarding suicide and population figures in New <span class="hlt">Zealand</span> and Australia were obtained. The suicide rates of different age-groups in the two countries were calculated and compared. Data concerning 'open verdicts' were also obtained. The age patterns of suicide rates in New <span class="hlt">Zealand</span> and Australia have changed markedly and similarly. Suicide rates of New <span class="hlt">Zealand</span> males in their twenties increased threefold between the 1960s and 1990s, with a fall since then. Nevertheless, the 2009-13 youth suicide rates in New <span class="hlt">Zealand</span> were double the corresponding rates in Australia. Since 1979-88 a decrease in suicide rates of men and women aged 60-79 has been even greater than in Australia. The Māori suicide rate is high in young men but almost zero in old age. The persistently high suicide rate of New <span class="hlt">Zealand</span> youths (Māori much more than non-Māori) remains of concern. The rate is equally high among indigenous young Australians. There has been a welcome decrease in late-life suicide rates in New <span class="hlt">Zealand</span> and Australia.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>