Sample records for zebra finch chromosome

  1. Comparative Cytogenetics between Two Important Songbird, Models: The Zebra Finch and the Canary

    PubMed Central

    dos Santos, Michelly da Silva; Kretschmer, Rafael; Frankl-Vilches, Carolina; Bakker, Antje; Gahr, Manfred; O´Brien, Patricia C. M.; Ferguson-Smith, Malcolm A.

    2017-01-01

    Songbird species (order Passeriformes, suborder Oscines) are important models in various experimental fields spanning behavioural genomics to neurobiology. Although the genomes of some songbird species were sequenced recently, the chromosomal organization of these species is mostly unknown. Here we focused on the two most studied songbird species in neuroscience, the zebra finch (Taeniopygia guttata) and the canary (Serinus canaria). In order to clarify these issues and also to integrate chromosome data with their assembled genomes, we used classical and molecular cytogenetics in both zebra finch and canary to define their chromosomal homology, localization of heterochromatic blocks and distribution of rDNA clusters. We confirmed the same diploid number (2n = 80) in both species, as previously reported. FISH experiments confirmed the occurrence of multiple paracentric and pericentric inversions previously found in other species of Passeriformes, providing a cytogenetic signature for this order, and corroborating data from in silico analyses. Additionally, compared to other Passeriformes, we detected differences in the zebra finch karyotype concerning the morphology of some chromosomes, in the distribution of 5S rDNA clusters, and an inversion in chromosome 1. PMID:28129381

  2. Sex bias and dosage compensation in the zebra finch versus chicken genomes: General and specialized patterns among birds

    PubMed Central

    Itoh, Yuichiro; Replogle, Kirstin; Kim, Yong-Hwan; Wade, Juli; Clayton, David F.; Arnold, Arthur P.

    2010-01-01

    We compared global patterns of gene expression between two bird species, the chicken and zebra finch, with regard to sex bias of autosomal versus Z chromosome genes, dosage compensation, and evolution of sex bias. Both species appear to lack a Z chromosome–wide mechanism of dosage compensation, because both have a similar pattern of significantly higher expression of Z genes in males relative to females. Unlike the chicken Z chromosome, which has female-specific expression of the noncoding RNA MHM (male hypermethylated) and acetylation of histone 4 lysine 16 (H4K16) near MHM, the zebra finch Z chromosome appears to lack the MHM sequence and acetylation of H4K16. The zebra finch also does not show the reduced male-to-female (M:F) ratio of gene expression near MHM similar to that found in the chicken. Although the M:F ratios of Z chromosome gene expression are similar across tissues and ages within each species, they differ between the two species. Z genes showing the greatest species difference in M:F ratio were concentrated near the MHM region of the chicken Z chromosome. This study shows that the zebra finch differs from the chicken because it lacks a specialized region of greater dosage compensation along the Z chromosome, and shows other differences in sex bias. These patterns suggest that different avian taxa may have evolved specific compensatory mechanisms. PMID:20357053

  3. Gene duplication and fragmentation in the zebra finch major histocompatibility complex.

    PubMed

    Balakrishnan, Christopher N; Ekblom, Robert; Völker, Martin; Westerdahl, Helena; Godinez, Ricardo; Kotkiewicz, Holly; Burt, David W; Graves, Tina; Griffin, Darren K; Warren, Wesley C; Edwards, Scott V

    2010-04-01

    Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the history of the MHC in birds, and highlight striking differences in MHC structure and organization among avian lineages.

  4. Gene duplication and fragmentation in the zebra finch major histocompatibility complex

    PubMed Central

    2010-01-01

    Background Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. Results The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. Conclusion The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the history of the MHC in birds, and highlight striking differences in MHC structure and organization among avian lineages. PMID:20359332

  5. Discovery of the First Germline-Restricted Gene by Subtractive Transcriptomic Analysis in the Zebra Finch, Taeniopygia guttata.

    PubMed

    Biederman, Michelle K; Nelson, Megan M; Asalone, Kathryn C; Pedersen, Alyssa L; Saldanha, Colin J; Bracht, John R

    2018-05-21

    Developmentally programmed genome rearrangements are rare in vertebrates, but have been reported in scattered lineages including the bandicoot, hagfish, lamprey, and zebra finch (Taeniopygia guttata) [1]. In the finch, a well-studied animal model for neuroendocrinology and vocal learning [2], one such programmed genome rearrangement involves a germline-restricted chromosome, or GRC, which is found in germlines of both sexes but eliminated from mature sperm [3, 4]. Transmitted only through the oocyte, it displays uniparental female-driven inheritance, and early in embryonic development is apparently eliminated from all somatic tissue in both sexes [3, 4]. The GRC comprises the longest finch chromosome at over 120 million base pairs [3], and previously the only known GRC-derived sequence was repetitive and non-coding [5]. Because the zebra finch genome project was sourced from male muscle (somatic) tissue [6], the remaining genomic sequence and protein-coding content of the GRC remain unknown. Here we report the first protein-coding gene from the GRC: a member of the α-soluble N-ethylmaleimide sensitive fusion protein (NSF) attachment protein (α-SNAP) family hitherto missing from zebra finch gene annotations. In addition to the GRC-encoded α-SNAP, we find an additional paralogous α-SNAP residing in the somatic genome (a somatolog)-making the zebra finch the first example in which α-SNAP is not a single-copy gene. We show divergent, sex-biased expression for the paralogs and also that positive selection is detectable across the bird α-SNAP lineage, including the GRC-encoded α-SNAP. This study presents the identification and evolutionary characterization of the first protein-coding GRC gene in any organism. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Fitness consequences of polymorphic inversions in the zebra finch genome.

    PubMed

    Knief, Ulrich; Hemmrich-Stanisak, Georg; Wittig, Michael; Franke, Andre; Griffith, Simon C; Kempenaers, Bart; Forstmeier, Wolfgang

    2016-09-29

    Inversion polymorphisms constitute an evolutionary puzzle: they should increase embryo mortality in heterokaryotypic individuals but still they are widespread in some taxa. Some insect species have evolved mechanisms to reduce the cost of embryo mortality but humans have not. In birds, a detailed analysis is missing although intraspecific inversion polymorphisms are regarded as common. In Australian zebra finches (Taeniopygia guttata), two polymorphic inversions are known cytogenetically and we set out to detect these two and potentially additional inversions using genomic tools and study their effects on embryo mortality and other fitness-related and morphological traits. Using whole-genome SNP data, we screened 948 wild zebra finches for polymorphic inversions and describe four large (12-63 Mb) intraspecific inversion polymorphisms with allele frequencies close to 50 %. Using additional data from 5229 birds and 9764 eggs from wild and three captive zebra finch populations, we show that only the largest inversions increase embryo mortality in heterokaryotypic males, with surprisingly small effect sizes. We test for a heterozygote advantage on other fitness components but find no evidence for heterosis for any of the inversions. Yet, we find strong additive effects on several morphological traits. The mechanism that has carried the derived inversion haplotypes to such high allele frequencies remains elusive. It appears that selection has effectively minimized the costs associated with inversions in zebra finches. The highly skewed distribution of recombination events towards the chromosome ends in zebra finches and other estrildid species may function to minimize crossovers in the inverted regions.

  7. Sex Reversal and Comparative Data Undermine the W Chromosome and Support Z-linked DMRT1 as the Regulator of Gonadal Sex Differentiation in Birds.

    PubMed

    Hirst, Claire E; Major, Andrew T; Ayers, Katie L; Brown, Rosie J; Mariette, Mylene; Sackton, Timothy B; Smith, Craig A

    2017-09-01

    The exact genetic mechanism regulating avian gonadal sex differentiation has not been completely resolved. The most likely scenario involves a dosage mechanism, whereby the Z-linked DMRT1 gene triggers testis development. However, the possibility still exists that the female-specific W chromosome may harbor an ovarian determining factor. In this study, we provide evidence that the universal gene regulating gonadal sex differentiation in birds is Z-linked DMRT1 and not a W-linked (ovarian) factor. Three candidate W-linked ovarian determinants are HINTW, female-expressed transcript 1 (FET1), and female-associated factor (FAF). To test the association of these genes with ovarian differentiation in the chicken, we examined their expression following experimentally induced female-to-male sex reversal using the aromatase inhibitor fadrozole (FAD). Administration of FAD on day 3 of embryogenesis induced a significant loss of aromatase enzyme activity in female gonads and masculinization. However, expression levels of HINTW, FAF, and FET1 were unaltered after experimental masculinization. Furthermore, comparative analysis showed that FAF and FET1 expression could not be detected in zebra finch gonads. Additionally, an antibody raised against the predicted HINTW protein failed to detect it endogenously. These data do not support a universal role for these genes or for the W sex chromosome in ovarian development in birds. We found that DMRT1 (but not the recently identified Z-linked HEMGN gene) is male upregulated in embryonic zebra finch and emu gonads, as in the chicken. As chicken, zebra finch, and emu exemplify the major evolutionary clades of birds, we propose that Z-linked DMRT1, and not the W sex chromosome, regulates gonadal sex differentiation in birds. Copyright © 2017 Endocrine Society.

  8. Song Recognition in Zebra Finches: Are There Sensitive Periods for Song Memorization?

    ERIC Educational Resources Information Center

    Braaten, Richard F.

    2010-01-01

    Male zebra finches learn to sing songs that they hear between 25 and 65 days of age, the sensitive period for song learning. In this experiment, male and female zebra finches were exposed to zebra finch songs either before (n = 9) or during (n = 4) the sensitive period. Following song exposure, recognition memory for the songs was assessed with an…

  9. The disassociation of visual and acoustic conspecific cues decreases discrimination by female zebra finches (Taeniopygia guttata).

    PubMed

    Campbell, Dana L M; Hauber, Mark E

    2009-08-01

    Female zebra finches (Taeniopygia guttata) use visual and acoustic traits for accurate recognition of male conspecifics. Evidence from video playbacks confirms that both sensory modalities are important for conspecific and species discrimination, but experimental evidence of the individual roles of these cue types affecting live conspecific recognition is limited. In a spatial paradigm to test discrimination, the authors used live male zebra finch stimuli of 2 color morphs, wild-type (conspecific) and white with a painted black beak (foreign), producing 1 of 2 vocalization types: songs and calls learned from zebra finch parents (conspecific) or cross-fostered songs and calls learned from Bengalese finch (Lonchura striata vars. domestica) foster parents (foreign). The authors found that female zebra finches consistently preferred males with conspecific visual and acoustic cues over males with foreign cues, but did not discriminate when the conspecific and foreign visual and acoustic cues were mismatched. These results indicate the importance of both visual and acoustic features for female zebra finches when discriminating between live conspecific males. Copyright 2009 APA, all rights reserved.

  10. Developmental Experience Alters Information Coding in Auditory Midbrain and Forebrain Neurons

    PubMed Central

    Woolley, Sarah M. N.; Hauber, Mark E.; Theunissen, Frederic E.

    2010-01-01

    In songbirds, species identity and developmental experience shape vocal behavior and behavioral responses to vocalizations. The interaction of species identity and developmental experience may also shape the coding properties of sensory neurons. We tested whether responses of auditory midbrain and forebrain neurons to songs differed between species and between groups of conspecific birds with different developmental exposure to song. We also compared responses of individual neurons to conspecific and heterospecific songs. Zebra and Bengalese finches that were raised and tutored by conspecific birds, and zebra finches that were cross-tutored by Bengalese finches were studied. Single-unit responses to zebra and Bengalese finch songs were recorded and analyzed by calculating mutual information, response reliability, mean spike rate, fluctuations in time-varying spike rate, distributions of time-varying spike rates, and neural discrimination of individual songs. Mutual information quantifies a response’s capacity to encode information about a stimulus. In midbrain and forebrain neurons, mutual information was significantly higher in normal zebra finch neurons than in Bengalese finch and cross-tutored zebra finch neurons, but not between Bengalese finch and cross-tutored zebra finch neurons. Information rate differences were largely due to spike rate differences. Mutual information did not differ between responses to conspecific and heterospecific songs. Therefore, neurons from normal zebra finches encoded more information about songs than did neurons from other birds, but conspecific and heterospecific songs were encoded equally. Neural discrimination of songs and mutual information were highly correlated. Results demonstrate that developmental exposure to vocalizations shapes the information coding properties of songbird auditory neurons. PMID:20039264

  11. Neural expression and post-transcriptional dosage compensation of the steroid metabolic enzyme 17β-HSD type 4

    PubMed Central

    2010-01-01

    Background Steroids affect many tissues, including the brain. In the zebra finch, the estrogenic steroid estradiol (E2) is especially effective at promoting growth of the neural circuit specialized for song. In this species, only the males sing and they have a much larger and more interconnected song circuit than females. Thus, it was surprising that the gene for 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4), an enzyme that converts E2 to a less potent estrogen, had been mapped to the Z sex chromosome. As a consequence, it was likely that HSD17B4 was differentially expressed in males (ZZ) and females (ZW) because dosage compensation of Z chromosome genes is incomplete in birds. If a higher abundance of HSD17B4 mRNA in males than females was translated into functional enzyme in the brain, then contrary to expectation, males could produce less E2 in their brains than females. Results Here, we used molecular and biochemical techniques to confirm the HSD17B4 Z chromosome location in the zebra finch and to determine that HSD17B4 mRNA and activity were detectable in the early developing and adult brain. As expected, HSD17B4 mRNA expression levels were higher in males compared to females. This provides further evidence of the incomplete Z chromosome inactivation mechanisms in birds. We detected HSD17B4 mRNA in regions that suggested a role for this enzyme in the early organization and adult function of song nuclei. We did not, however, detect significant sex differences in HSD17B4 activity levels in the adult brain. Conclusions Our results demonstrate that the HSD17B4 gene is expressed and active in the zebra finch brain as an E2 metabolizing enzyme, but that dosage compensation of this Z-linked gene may occur via post-transcriptional mechanisms. PMID:20359329

  12. Susceptibility and antibody response of the laboratory model zebra finch (Taeniopygia guttata) to West Nile Virus

    USGS Publications Warehouse

    Hofmeister, Erik K.; Lund, Melissa; Shearn-Bochsler, Valerie I.; Balakrishnan, Christopher N.

    2017-01-01

    Since the introduction of West Nile virus (WNV) into North America in 1999 a number of passerine bird species have been found to play a role in the amplification of the virus. Arbovirus surveillance, observational studies and experimental studies have implicated passerine birds (songbirds, e.g., crows, American robins, house sparrows, and house finches) as significant reservoirs of WNV in North America, yet we lack a tractable passerine animal model for controlled studies of the virus. The zebra finch (Taeniopygia guttata) serves as a model system across a diversity of fields, and here we develop the zebra finch a songbird model for WNV. Like many natural hosts of WNV, we found that zebra finches developed sufficient viremia to serve as a competent host, yet in general resisted mortality from infection. In the Australian zebra finch (AZF) T. g. castanotis, we detected WNV in the majority of sampled tissues by 4 days post injection (dpi). However, WNV was not detected in tissues of sacrificed birds at 14 dpi, shortly after the development of detectable anti-WNV antibodies in the majority of birds indicating successful viral clearance. We compared susceptibility between the two zebra finch subspecies AZF and Timor zebra finch (TZF) T. g. guttata. Compared to AZF, WNV RNA was detected in a larger proportion of challenged TZF and molecular detection of virus in the serum of TZF was significantly higher than in AZF. Given the observed moderate host competence and disease susceptibility, we suggest that zebra finches are appropriate as models for the study of WNV and although underutilized in this respect, may be ideal models for the study of the many diseases carried and transmitted by songbirds.

  13. Heterologous Synapsis and Crossover Suppression in Heterozygotes for a Pericentric Inversion in the Zebra Finch.

    PubMed

    del Priore, Lucía; Pigozzi, María I

    2015-01-01

    In the zebra finch, 2 alternative morphs regarding centromere position were described for chromosome 6. This polymorphism was interpreted to be the result of a pericentric inversion, but other causes of the centromere repositioning were not ruled out. We used immunofluorescence localization to examine the distribution of MLH1 foci on synaptonemal complexes to test the prediction that pericentric inversions cause synaptic irregularities and/or crossover suppression in heterozygotes. We found complete suppression of crossing over in the region involved in the rearrangement in male and female heterozygotes. In contrast, the same region showed high levels of crossing over in homozygotes for the acrocentric form of this chromosome. No inversion loops or synaptic irregularities were detected along bivalent 6 in heterozygotes suggesting that heterologous pairing is achieved during zygotene or early pachytene. Altogether these findings strongly indicate that the polymorphic chromosome 6 originated by a pericentric inversion. Since inversions are common rearrangements in karyotypic evolution in birds, it seems likely that early heterologous pairing could help to fix these rearrangements, preventing crossing overs in heterozygotes and their deleterious effects on fertility. © 2015 S. Karger AG, Basel.

  14. Exploring the zebra finch Taeniopygia guttata as a novel animal model for the speech-language deficit of fragile X syndrome.

    PubMed

    Winograd, Claudia; Ceman, Stephanie

    2012-01-01

    Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability and presents with markedly atypical speech-language, likely due to impaired vocal learning. Although current models have been useful for studies of some aspects of FXS, zebra finch is the only tractable lab model for vocal learning. The neural circuits for vocal learning in the zebra finch have clear relationships to the pathways in the human brain that may be affected in FXS. Further, finch vocal learning may be quantified using software designed specifically for this purpose. Knockdown of the zebra finch FMR1 gene may ultimately enable novel tests of therapies that are modality-specific, using drugs or even social strategies, to ameliorate deficits in vocal development and function. In this chapter, we describe the utility of the zebra finch model and present a hypothesis for the role of FMRP in the developing neural circuitry for vocalization.

  15. Mind the gap: Neural coding of species identity in birdsong prosody.

    PubMed

    Araki, Makoto; Bandi, M M; Yazaki-Sugiyama, Yoko

    2016-12-09

    Juvenile songbirds learn vocal communication from adult tutors of the same species but not from adults of other species. How species-specific learning emerges from the basic features of song prosody remains unknown. In the zebra finch auditory cortex, we discovered a class of neurons that register the silent temporal gaps between song syllables and are distinct from neurons encoding syllable morphology. Behavioral learning and neuronal coding of temporal gap structure resisted song tutoring from other species: Zebra finches fostered by Bengalese finch parents learned Bengalese finch song morphology transposed onto zebra finch temporal gaps. During the vocal learning period, temporal gap neurons fired selectively to zebra finch song. The innate temporal coding of intersyllable silent gaps suggests a neuronal barcode for conspecific vocal learning and social communication in acoustically diverse environments. Copyright © 2016, American Association for the Advancement of Science.

  16. Using Digital Images of the Zebra Finch Song System as a Tool to Teach Organizational Effects of Steroid Hormones: A Free Downloadable Module

    ERIC Educational Resources Information Center

    Grisham, William; Schottler, Natalie A.; Beck McCauley, Lisa M.; Pham, Anh P.; Ruiz, Maureen L.; Fong, Michelle C.; Cui, Xinran

    2011-01-01

    Zebra finch song behavior is sexually dimorphic: males sing and females do not. The neural system underlying this behavior is sexually dimorphic, and this sex difference is easy to quantify. During development, the zebra finch song system can be altered by steroid hormones, specifically estradiol, which actually masculinizes it. Because of the…

  17. Dissection and Downstream Analysis of Zebra Finch Embryos at Early Stages of Development

    PubMed Central

    Murray, Jessica R.; Stanciauskas, Monika E.; Aralere, Tejas S.; Saha, Margaret S.

    2014-01-01

    The zebra finch (Taeniopygiaguttata) has become an increasingly important model organism in many areas of research including toxicology1,2, behavior3, and memory and learning4,5,6. As the only songbird with a sequenced genome, the zebra finch has great potential for use in developmental studies; however, the early stages of zebra finch development have not been well studied. Lack of research in zebra finch development can be attributed to the difficulty of dissecting the small egg and embryo. The following dissection method minimizes embryonic tissue damage, which allows for investigation of morphology and gene expression at all stages of embryonic development. This permits both bright field and fluorescence quality imaging of embryos, use in molecular procedures such as in situ hybridization (ISH), cell proliferation assays, and RNA extraction for quantitative assays such as quantitative real-time PCR (qtRT-PCR). This technique allows investigators to study early stages of development that were previously difficult to access. PMID:24999108

  18. Using Digital Images of the Zebra Finch Song System as a Tool to Teach Organizational Effects of Steroid Hormones: A Free Downloadable Module

    PubMed Central

    Grisham, William; Schottler, Natalie A.; McCauley, Lisa M. Beck; Pham, Anh P.; Ruiz, Maureen L.; Fong, Michelle C.; Cui, Xinran

    2011-01-01

    Zebra finch song behavior is sexually dimorphic: males sing and females do not. The neural system underlying this behavior is sexually dimorphic, and this sex difference is easy to quantify. During development, the zebra finch song system can be altered by steroid hormones, specifically estradiol, which actually masculinizes it. Because of the ease of quantification and experimental manipulation, the zebra finch song system has great potential for use in undergraduate labs. Unfortunately, the underlying costs prohibit use of this system in undergraduate labs. Further, the time required to perform a developmental study renders such undertakings unrealistic within a single academic term. We have overcome these barriers by creating digital tools, including an image library of song nuclei from zebra finch brains. Students using this library replicate and extend a published experiment examining the dose of estradiol required to masculinize the female zebra finch brain. We have used this library for several terms, and students not only obtain significant experimental results but also make gains in understanding content, experimental controls, and inferential statistics (analysis of variance and post hoc tests). We have provided free access to these digital tools at the following website: http://mdcune.psych.ucla.edu/modules/birdsong. PMID:21633071

  19. Dynamics of zebra finch and mockingbird vocalizations

    NASA Astrophysics Data System (ADS)

    Cimenser, Aylin

    Along with humans, whales, and bats, three groups of birds which include songbirds (oscines) such as the Zebra Finch (Taeniopygia guttata) and Mockingbird (Mimus polyglottos) are the only creatures known to learn sounds by imitation. Numerous similarities between human and songbird vocalizations exist and, recently, it has been shown that Zebra Finch in particular possesses a gene, FoxP2, known to be involved in human language. This thesis investigates song development in Zebra Finches, as well as the temporal dynamics of song in Mockingbirds. Zebra Finches have long been the system of choice for studying vocal development, ontogeny, and complexity in birdsong. Physicists find them intriguing because the spectrally complex vocalizations of the Zebra Finch can exhibit sudden transitions to chaotic dynamics, period doubling & mode-locking phenomena. Mockingbirds, by contrast, provide an ideal system to examine the richness of an avian repertoire, since these musically versatile songbirds typically know upwards of 200 songs. To analyse birdsong data, we have developed a novel clustering algorithm that can be applied to the bird's syllables, tracing their dynamics back to the earliest stages of vocal development. To characterize birdsong we have used Fourier techniques, based upon multitaper spectral analysis, to optimally work around the constraints imposed by (Heisenberg's) time-frequency uncertainty principle. Furthermore, estimates that provide optimal compromise between frequency and temporal resolution have beautiful connections with solutions to the Helmholtz wave equation in prolate spheroidal coordinates. We have used this connection to provide firm foundation for certain heuristics used in the literature to compute associated spectral derivatives and supply a pedagogical account here in this thesis. They are of interest because spectral derivatives emphasize sudden changes in the dynamics of the underlying phenomenon, and often provide a nice way to visualize such dynamics. Our Zebra Finch data consist of continuous recordings of six tutored birds from the early, plastic stages of sound production to the development of fully crystallized mature song. Our analysis reveals that well before the Zebra Finch hears adult song, identifiably distinct clusters are observable for all birds in the same regions of feature space. (Abstract shortened by UMI.)

  20. Accelerated Evolution of PAK3- and PIM1-like Kinase Gene Families in the Zebra Finch, Taeniopygia guttata

    PubMed Central

    Kong, Lesheng; Lovell, Peter V.; Heger, Andreas; Mello, Claudio V.; Ponting, Chris P.

    2010-01-01

    Genes encoding protein kinases tend to evolve slowly over evolutionary time, and only rarely do they appear as recent duplications in sequenced vertebrate genomes. Consequently, it was a surprise to find two families of kinase genes that have greatly and recently expanded in the zebra finch (Taeniopygia guttata) lineage. In contrast to other amniotic genomes (including chicken) that harbor only single copies of p21-activated serine/threonine kinase 3 (PAK3) and proviral integration site 1 (PIM1) genes, the zebra finch genome appeared at first to additionally contain 67 PAK3-like (PAK3L) and 51 PIM1-like (PIM1L) protein kinase genes. An exhaustive analysis of these gene models, however, revealed most to be incomplete, owing to the absence of terminal exons. After reprediction, 31 PAK3L genes and 10 PIM1L genes remain, and all but three are predicted, from the retention of functional sites and open reading frames, to be enzymatically active. PAK3L, but not PIM1L, gene sequences show evidence of recurrent episodes of positive selection, concentrated within structures spatially adjacent to N- and C-terminal protein regions that have been discarded from zebra finch PAK3L genes. At least seven zebra finch PAK3L genes were observed to be expressed in testis, whereas two sequences were found transcribed in the brain, one broadly including the song nuclei and the other in the ventricular zone and in cells resembling Bergmann's glia in the cerebellar Purkinje cell layer. Two PIM1L sequences were also observed to be expressed with broad distributions in the zebra finch brain, one in both the ventricular zone and the cerebellum and apparently associated with glial cells and the other showing neuronal cell expression and marked enrichment in midbrain/thalamic nuclei. These expression patterns do not correlate with zebra finch-specific features such as vocal learning. Nevertheless, our results show how ancient and conserved intracellular signaling molecules can be co-opted, following duplication, thereby resulting in lineage-specific functions, presumably affecting the zebra finch testis and brain. PMID:20237222

  1. Song exposure regulates known and novel microRNAs in the zebra finch auditory forebrain

    PubMed Central

    2011-01-01

    Background In an important model for neuroscience, songbirds learn to discriminate songs they hear during tape-recorded playbacks, as demonstrated by song-specific habituation of both behavioral and neurogenomic responses in the auditory forebrain. We hypothesized that microRNAs (miRNAs or miRs) may participate in the changing pattern of gene expression induced by song exposure. To test this, we used massively parallel Illumina sequencing to analyse small RNAs from auditory forebrain of adult zebra finches exposed to tape-recorded birdsong or silence. Results In the auditory forebrain, we identified 121 known miRNAs conserved in other vertebrates. We also identified 34 novel miRNAs that do not align to human or chicken genomes. Five conserved miRNAs showed significant and consistent changes in copy number after song exposure across three biological replications of the song-silence comparison, with two increasing (tgu-miR-25, tgu-miR-192) and three decreasing (tgu-miR-92, tgu-miR-124, tgu-miR-129-5p). We also detected a locus on the Z sex chromosome that produces three different novel miRNAs, with supporting evidence from Northern blot and TaqMan qPCR assays for differential expression in males and females and in response to song playbacks. One of these, tgu-miR-2954-3p, is predicted (by TargetScan) to regulate eight song-responsive mRNAs that all have functions in cellular proliferation and neuronal differentiation. Conclusions The experience of hearing another bird singing alters the profile of miRNAs in the auditory forebrain of zebra finches. The response involves both known conserved miRNAs and novel miRNAs described so far only in the zebra finch, including a novel sex-linked, song-responsive miRNA. These results indicate that miRNAs are likely to contribute to the unique behavioural biology of learned song communication in songbirds. PMID:21627805

  2. The perception of regularity in an isochronous stimulus in zebra finches (Taeniopygia guttata) and humans.

    PubMed

    van der Aa, Jeroen; Honing, Henkjan; ten Cate, Carel

    2015-06-01

    Perceiving temporal regularity in an auditory stimulus is considered one of the basic features of musicality. Here we examine whether zebra finches can detect regularity in an isochronous stimulus. Using a go/no go paradigm we show that zebra finches are able to distinguish between an isochronous and an irregular stimulus. However, when the tempo of the isochronous stimulus is changed, it is no longer treated as similar to the training stimulus. Training with three isochronous and three irregular stimuli did not result in improvement of the generalization. In contrast, humans, exposed to the same stimuli, readily generalized across tempo changes. Our results suggest that zebra finches distinguish the different stimuli by learning specific local temporal features of each individual stimulus rather than attending to the global structure of the stimuli, i.e., to the temporal regularity. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Zebra Finch Song Phonology and Syntactical Structure across Populations and Continents-A Computational Comparison.

    PubMed

    Lachlan, Robert F; van Heijningen, Caroline A A; Ter Haar, Sita M; Ten Cate, Carel

    2016-01-01

    Learned bird songs are often characterized by a high degree of variation between individuals and sometimes between populations, while at the same time maintaining species specificity. The evolution of such songs depends on the balance between plasticity and constraints. Captive populations provide an opportunity to examine signal variation and differentiation in detail, so we analyzed adult male zebra finch (Taeniopygia guttata) songs recorded from 13 populations across the world, including one sample of songs from wild-caught males in their native Australia. Cluster analysis suggested some, albeit limited, evidence that zebra finch song units belonged to universal, species-wide categories, linked to restrictions in vocal production and non-song parts of the vocal repertoire. Across populations, songs also showed some syntactical structure, although any song unit could be placed anywhere within the song. On the other hand, there was a statistically significant differentiation between populations, but the effect size was very small, and its communicative significance dubious. Our results suggest that variation in zebra finch songs within a population is largely determined by species-wide constraints rather than population-specific features. Although captive zebra finch populations have been sufficiently isolated to allow them to genetically diverge, there does not appear to have been any divergence in the genetically determined constraints that underlie song learning. Perhaps more surprising is the lack of locally diverged cultural traditions. Zebra finches serve as an example of a system where frequent learning errors may rapidly create within-population diversity, within broad phonological and syntactical constraints, and prevent the formation of long-term cultural traditions that allow populations to diverge.

  4. Selective auditory grouping by zebra finches: testing the iambic-trochaic law.

    PubMed

    Spierings, Michelle; Hubert, Jeroen; Ten Cate, Carel

    2017-07-01

    Humans have a strong tendency to spontaneously group visual or auditory stimuli together in larger patterns. One of these perceptual grouping biases is formulated as the iambic/trochaic law, where humans group successive tones alternating in pitch and intensity as trochees (high-low and loud-soft) and alternating in duration as iambs (short-long). The grouping of alternations in pitch and intensity into trochees is a human universal and is also present in one non-human animal species, rats. The perceptual grouping of sounds alternating in duration seems to be affected by native language in humans and has so far not been found among animals. In the current study, we explore to which extent these perceptual biases are present in a songbird, the zebra finch. Zebra finches were trained to discriminate between short strings of pure tones organized as iambs and as trochees. One group received tones that alternated in pitch, a second group heard tones alternating in duration, and for a third group, tones alternated in intensity. Those zebra finches that showed sustained correct discrimination were next tested with longer, ambiguous strings of alternating sounds. The zebra finches in the pitch condition categorized ambiguous strings of alternating tones as trochees, similar to humans. However, most of the zebra finches in the duration and intensity condition did not learn to discriminate between training stimuli organized as iambs and trochees. This study shows that the perceptual bias to group tones alternating in pitch as trochees is not specific to humans and rats, but may be more widespread among animals.

  5. Sex chromosome linked genetic variance and the evolution of sexual dimorphism of quantitative traits.

    PubMed

    Husby, Arild; Schielzeth, Holger; Forstmeier, Wolfgang; Gustafsson, Lars; Qvarnström, Anna

    2013-03-01

    Theory predicts that sex chromsome linkage should reduce intersexual genetic correlations thereby allowing the evolution of sexual dimorphism. Empirical evidence for sex linkage has come largely from crosses and few studies have examined how sexual dimorphism and sex linkage are related within outbred populations. Here, we use data on an array of different traits measured on over 10,000 individuals from two pedigreed populations of birds (collared flycatcher and zebra finch) to estimate the amount of sex-linked genetic variance (h(2)z ). Of 17 traits examined, eight showed a nonzero h(2)Z estimate but only four were significantly different from zero (wing patch size and tarsus length in collared flycatchers, wing length and beak color in zebra finches). We further tested how sexual dimorphism and the mode of selection operating on the trait relate to the proportion of sex-linked genetic variance. Sexually selected traits did not show higher h(2)Z than morphological traits and there was only a weak positive relationship between h(2)Z and sexual dimorphism. However, given the relative scarcity of empirical studies, it is premature to make conclusions about the role of sex chromosome linkage in the evolution of sexual dimorphism. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  6. Identification, localisation and functional implication of 26RFa orthologue peptide in the brain of zebra finch (Taeniopygia guttata).

    PubMed

    Tobari, Y; Iijima, N; Tsunekawa, K; Osugi, T; Haraguchi, S; Ubuka, T; Ukena, K; Okanoya, K; Tsutsui, K; Ozawa, H

    2011-09-01

    Several neuropeptides with the C-terminal Arg-Phe-NH(2) (RFa) sequence have been identified in the hypothalamus of a variety of vertebrates. The present study was conducted to isolate novel RFa peptides from the zebra finch brain. Peptides were isolated by immunoaffinity purification using an antibody that recognises avian RFa peptides. The isolated peptide consisted of 25 amino acids with RFa at its C-terminus. The sequence was SGTLGNLAEEINGYNRRKGGFTFRFa. Alignment of the peptide with vertebrate 26RFa has revealed that the identified peptide is the zebra finch 26RFa. We also cloned the precursor cDNA encoding this peptide. Synteny analysis of the gene showed a high conservation of this gene among vertebrates. In addition, we cloned the cDNA encoding a putative 26RFa receptor, G protein-coupled receptor 103 (GPR103) in the zebra finch brain. GPR103 cDNA encoded a 432 amino acid protein that has seven transmembrane domains. In situ hybridisation analysis in the brain showed that the expression of 26RFa mRNA is confined to the anterior-medial hypothalamic area, ventromedial nucleus of the hypothalamus and the lateral hypothalamic area, the brain regions that are involved in the regulation of feeding behaviour, whereas GPR103 mRNA is distributed throughout the brain in addition to the hypothalamic nuclei. When administered centrally in free-feeding male zebra finches, 26RFa increased food intake 24 h after injection without body mass change. Diencephalic GPR103 mRNA expression was up-regulated by fasting for 10 h. Our data suggest that the hypothalamic 26RFa-its receptor system plays an important role in the central control of food intake and energy homeostasis in the zebra finch. © 2011 The Authors. Journal of Neuroendocrinology © 2011 Blackwell Publishing Ltd.

  7. Acoustic fine structure may encode biologically relevant information for zebra finches.

    PubMed

    Prior, Nora H; Smith, Edward; Lawson, Shelby; Ball, Gregory F; Dooling, Robert J

    2018-04-18

    The ability to discriminate changes in the fine structure of complex sounds is well developed in birds. However, the precise limit of this discrimination ability and how it is used in the context of natural communication remains unclear. Here we describe natural variability in acoustic fine structure of male and female zebra finch calls. Results from psychoacoustic experiments demonstrate that zebra finches are able to discriminate extremely small differences in fine structure, which are on the order of the variation in acoustic fine structure that is present in their vocal signals. Results from signal analysis methods also suggest that acoustic fine structure may carry information that distinguishes between biologically relevant categories including sex, call type and individual identity. Combined, our results are consistent with the hypothesis that zebra finches can encode biologically relevant information within the fine structure of their calls. This study provides a foundation for our understanding of how acoustic fine structure may be involved in animal communication.

  8. Mate call as reward: Acoustic communication signals can acquire positive reinforcing values during adulthood in female zebra finches (Taeniopygia guttata).

    PubMed

    Hernandez, Alexandra M; Perez, Emilie C; Mulard, Hervé; Mathevon, Nicolas; Vignal, Clémentine

    2016-02-01

    Social stimuli can have rewarding properties and promote learning. In birds, conspecific vocalizations like song can act as a reinforcer, and specific song variants can acquire particular rewarding values during early life exposure. Here we ask if, during adulthood, an acoustic signal simpler and shorter than song can become a reward for a female songbird because of its particular social value. Using an operant choice apparatus, we showed that female zebra finches display a preferential response toward their mate's calls. This reinforcing value of mate's calls could be involved in the maintenance of the monogamous pair-bond of the zebra finch. (c) 2016 APA, all rights reserved).

  9. ZENK expression following conspecific and heterospecific playback in the zebra finch auditory forebrain.

    PubMed

    Scully, Erin N; Hahn, Allison H; Campbell, Kimberley A; McMillan, Neil; Congdon, Jenna V; Sturdy, Christopher B

    2017-07-28

    Zebra finches (Taeniopygia guttata) are sexually dimorphic songbirds, not only in appearance but also in vocal production: while males produce both calls and songs, females only produce calls. This dimorphism provides a means to contrast the auditory perception of vocalizations produced by songbird species of varying degrees of relatedness in a dimorphic species to that of a monomorphic species, species in which both males and females produce calls and songs (e.g., black-capped chickadees, Poecile atricapillus). In the current study, we examined neuronal expression after playback of acoustically similar hetero- and conspecific calls produced by species of differing phylogenetic relatedness to our subject species, zebra finch. We measured the immediate early gene (IEG) ZENK in two auditory areas of the forebrain (caudomedial mesopallium, CMM, and caudomedial nidopallium, NCM). We found no significant differences in ZENK expression in either male or female zebra finches regardless of playback condition. We also discuss comparisons between our results and the results of a previous study conducted by Avey et al. [1] on black-capped chickadees that used similar stimulus types. These results are consistent with the previous study which also found no significant differences in expression following playback of calls produced by various heterospecific species and conspecifics [1]. Our results suggest that, similar to black-capped chickadees, IEG expression in zebra finch CMM and NCM is tied to the acoustic similarity of vocalizations and not the phylogenetic relatedness of the species producing the vocalizations. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Song decrystallization in adult zebra finches does not require the song nucleus NIf.

    PubMed

    Roy, Arani; Mooney, Richard

    2009-08-01

    In adult male zebra finches, transecting the vocal nerve causes previously stable (i.e., crystallized) song to slowly degrade, presumably because of the resulting distortion in auditory feedback. How and where distorted feedback interacts with song motor networks to induce this process of song decrystallization remains unknown. The song premotor nucleus HVC is a potential site where auditory feedback signals could interact with song motor commands. Although the forebrain nucleus interface of the nidopallium (NIf) appears to be the primary auditory input to HVC, NIf lesions made in adult zebra finches do not trigger song decrystallization. One possibility is that NIf lesions do not interfere with song maintenance, but do compromise the adult zebra finch's ability to express renewed vocal plasticity in response to feedback perturbations. To test this idea, we bilaterally lesioned NIf and then transected the vocal nerve in adult male zebra finches. We found that bilateral NIf lesions did not prevent nerve section-induced song decrystallization. To test the extent to which the NIf lesions disrupted auditory processing in the song system, we made in vivo extracellular recordings in HVC and a downstream anterior forebrain pathway (AFP) in NIf-lesioned birds. We found strong and selective auditory responses to the playback of the birds' own song persisted in HVC and the AFP following NIf lesions. These findings suggest that auditory inputs to the song system other than NIf, such as the caudal mesopallium, could act as a source of auditory feedback signals to the song motor network.

  11. Colour Cues That Are Not Directly Attached to the Body of Males Do Not Influence the Mate Choice of Zebra Finches.

    PubMed

    Krause, E Tobias

    2016-01-01

    Mate choice decisions of female zebra finches are generally thought to rely on the assessment of male quality, which includes the specific ornamentation of males. A commonly used paradigm to experimentally manipulate a male's attractiveness is to add a coloured leg ring to the bird. Some studies have shown that female zebra finches prefer or alter their investment in males that have an additional red leg ring compared with males with green leg rings. Whether the coloured artificial ornaments need to be attached to the male's body or whether environmental colouration could have a similar effect on male attractiveness remains unclear. Here, I investigated this novel context to determine whether female choice between males is affected by environmental colour cues that are not directly attached to the male's body in four experiments involving 220 zebra finches (Taeniopygia guttata). A first experiment revealed that females chose males with red colour cues in the environmental background over males with green cues in the background. Based on this finding, I conducted follow-up experiments to obtain a deeper understanding of how environmental colour cues affect mate choice. Therefore, I examined whether female choice behaviour or male behaviour was altered in two additional experiments. Both experiments failed to show any effects of environmental colour cues on female choice or on male behaviour. Therefore, I replicated the initial experiment in a fourth experiment. Again replication failed; thus, the initial results indicating that environmental colouration affects mate choice behaviour of female zebra finches were not supported by the three subsequent experiments; thus, the outcome of the first experiment seems to be a false positive. Taking my results together, I found no robust support for the idea that environmental colour cues that are not directly attached to the body of male zebra finches affect female mate choice decisions.

  12. Same-sex partner preference in zebra finches: pairing flexibility and choice.

    PubMed

    Tomaszycki, Michelle L; Zatirka, Brendon P

    2014-11-01

    This study examined flexibility and choice in same-sex pair-bonding behavior in adult zebra finches (Taeniopygia guttata). Zebra finches form life-long monogamous relationships and extra pair behavior is very low, making them an ideal species in which to study same-sex pairing. We examined same-sex behaviors using both semi-naturalistic choice paradigms and skewed sex ratios. In the first experiment, we allowed zebra finches to pair in aviaries with equal sex ratios as part of multiple experiments. On average, 6.4% (N = 78) of unmanipulated pairs were same-sex: all but one was female-female. In a second experiment, we identified pairs from same-sex cages and selected 20 total same-sex pairs (10 of each sex). We then gave pairs a chance to court and pair with members of the opposite sex and observed their behavior for three days. Females did not retain their partner, but most paired with males. In contrast, some males did retain their partner. Similarly, females were more likely to engage in pairing behaviors with males than with their partners or other females whereas males were equally likely to engage in same-sex and opposite-sex pairing behaviors. These findings suggest that same-sex partnerships in zebra finches can be facultative, based on the sex ratio of the group in which they live, but can also be a choice, when opportunities to pair with opposite-sex individuals are possible. Furthermore, it is possible that females are more flexible in this choice of same-sex partnerships than are males.

  13. Quality of public information matters in mate-choice copying in female zebra finches.

    PubMed

    Kniel, Nina; Schmitz, Jennifer; Witte, Klaudia

    2015-01-01

    Mate-choice copying is a form of social learning in which an individual gains information about potential mates by observing conspecifics. However, it is still unknown what kind of information drives the decision of an individual to copy the mate choice of others. Among zebra finches (Taeniopygia guttata castanotis), only females (not males) copy the mate choice of others. We tested female zebra finches in a binary choice test where they, first, could choose between two males of different phenotypes: one unadorned male and one male artificially adorned with a red feather on the forehead. After this mate-choice test, females could observe a single unadorned male and a pair of zebra finches, i.e. a wild-type female and her adorned mate. Pair interactions were either restricted to acoustic and visual communication (clear glass screen between pair mates) or acoustic communication alone (opaque screen between pair mates). After the observation period, females could again choose between new males of the two phenotypes in a second mate-choice test. In experiments with a clear glass screen, time spent with the respective males changed between the two mate-choice tests, and females preferred adorned over unadorned males during the second mate-choice test. In experiments with an opaque screen, time spent with the respective males did not change between the two mate-choice tests, although females lost an initial preference for unadorned males. Our results demonstrate that the quality of the received public information (visual and acoustic interaction of the observed pair) influences mate-choice copying in female zebra finches.

  14. Song Decrystallization in Adult Zebra Finches Does Not Require the Song Nucleus NIf

    PubMed Central

    Roy, Arani; Mooney, Richard

    2009-01-01

    In adult male zebra finches, transecting the vocal nerve causes previously stable (i.e., crystallized) song to slowly degrade, presumably because of the resulting distortion in auditory feedback. How and where distorted feedback interacts with song motor networks to induce this process of song decrystallization remains unknown. The song premotor nucleus HVC is a potential site where auditory feedback signals could interact with song motor commands. Although the forebrain nucleus interface of the nidopallium (NIf) appears to be the primary auditory input to HVC, NIf lesions made in adult zebra finches do not trigger song decrystallization. One possibility is that NIf lesions do not interfere with song maintenance, but do compromise the adult zebra finch's ability to express renewed vocal plasticity in response to feedback perturbations. To test this idea, we bilaterally lesioned NIf and then transected the vocal nerve in adult male zebra finches. We found that bilateral NIf lesions did not prevent nerve section–induced song decrystallization. To test the extent to which the NIf lesions disrupted auditory processing in the song system, we made in vivo extracellular recordings in HVC and a downstream anterior forebrain pathway (AFP) in NIf-lesioned birds. We found strong and selective auditory responses to the playback of the birds' own song persisted in HVC and the AFP following NIf lesions. These findings suggest that auditory inputs to the song system other than NIf, such as the caudal mesopallium, could act as a source of auditory feedback signals to the song motor network. PMID:19515953

  15. Noninvasive diffusive optical imaging of the auditory response to birdsong in the zebra finch

    PubMed Central

    Lee, James V.; Maclin, Edward L.; Low, Kathy A.; Gratton, Gabriele; Fabiani, Monica; Clayton, David F.

    2013-01-01

    Songbirds communicate by learned vocalizations with concomitant changes in neurophysiological and genomic activities in discrete parts of the brain. Here we tested a novel implementation of diffusive optical imaging (also known as diffuse optical imaging, DOI) for monitoring brain physiology associated with vocal signal perception. DOI noninvasively measures brain activity using red and near-infrared light delivered through optic fibers (optodes) resting on the scalp. DOI does not harm subjects, so it raises the possibility of repeatedly measuring brain activity and the effects of accumulated experience in the same subject over an entire life span, all while leaving tissue intact for further study. We developed a custom-made apparatus for interfacing optodes to the zebra finch (Taeniopygia guttata) head using 3D modeling software and rapid prototyping technology, and applied it to record responses to presentations of birdsong in isoflurane-anesthetized zebra finches. We discovered a subtle but significant difference between the hemoglobin spectra of zebra finches and mammals which has a major impact in how hemodynamic responses are interpreted in the zebra finch. Our measured responses to birdsong playback were robust, highly repeatable, and readily observed in single trials. Responses were complex in shape and closely paralleled responses described in mammals. They were localized to the caudal medial portion of the brain, consistent with response localization from prior gene expression, electrophysiological, and functional magnetic resonance imaging studies. These results define an approach for collecting neurophysiological data from songbirds that should be applicable to diverse species and adaptable for studies in awake behaving animals. PMID:23322445

  16. Expression analysis of the speech-related genes FoxP1 and FoxP2 and their relation to singing behavior in two songbird species.

    PubMed

    Chen, Qianqian; Heston, Jonathan B; Burkett, Zachary D; White, Stephanie A

    2013-10-01

    Humans and songbirds are among the rare animal groups that exhibit socially learned vocalizations: speech and song, respectively. These vocal-learning capacities share a reliance on audition and cortico-basal ganglia circuitry, as well as neurogenetic mechanisms. Notably, the transcription factors Forkhead box proteins 1 and 2 (FoxP1, FoxP2) exhibit similar expression patterns in the cortex and basal ganglia of humans and the zebra finch species of songbird, among other brain regions. Mutations in either gene are associated with language disorders in humans. Experimental knock-down of FoxP2 in the basal ganglia song control region Area X during song development leads to imprecise copying of tutor songs. Moreover, FoxP2 levels decrease naturally within Area X when zebra finches sing. Here, we examined neural expression patterns of FoxP1 and FoxP2 mRNA in adult Bengalese finches, a songbird species whose songs exhibit greater sequence complexity and increased reliance on audition for maintaining their quality. We found that FoxP1 and FoxP2 expression in Bengalese finches is similar to that in zebra finches, including strong mRNA signals for both factors in multiple song control nuclei and enhancement of FoxP1 in these regions relative to surrounding brain tissue. As with zebra finches, when Bengalese finches sing, FoxP2 is behaviorally downregulated within basal ganglia Area X over a similar time course, and expression negatively correlates with the amount of singing. This study confirms that in multiple songbird species, FoxP1 expression highlights song control regions, and regulation of FoxP2 is associated with motor control of song.

  17. Expression analysis of the speech-related genes FoxP1 and FoxP2 and their relation to singing behavior in two songbird species

    PubMed Central

    Chen, Qianqian; Heston, Jonathan B.; Burkett, Zachary D.; White, Stephanie A.

    2013-01-01

    SUMMARY Humans and songbirds are among the rare animal groups that exhibit socially learned vocalizations: speech and song, respectively. These vocal-learning capacities share a reliance on audition and cortico-basal ganglia circuitry, as well as neurogenetic mechanisms. Notably, the transcription factors Forkhead box proteins 1 and 2 (FoxP1, FoxP2) exhibit similar expression patterns in the cortex and basal ganglia of humans and the zebra finch species of songbird, among other brain regions. Mutations in either gene are associated with language disorders in humans. Experimental knock-down of FoxP2 in the basal ganglia song control region Area X during song development leads to imprecise copying of tutor songs. Moreover, FoxP2 levels decrease naturally within Area X when zebra finches sing. Here, we examined neural expression patterns of FoxP1 and FoxP2 mRNA in adult Bengalese finches, a songbird species whose songs exhibit greater sequence complexity and increased reliance on audition for maintaining their quality. We found that FoxP1 and FoxP2 expression in Bengalese finches is similar to that in zebra finches, including strong mRNA signals for both factors in multiple song control nuclei and enhancement of FoxP1 in these regions relative to surrounding brain tissue. As with zebra finches, when Bengalese finches sing, FoxP2 is behaviorally downregulated within basal ganglia Area X over a similar time course, and expression negatively correlates with the amount of singing. This study confirms that in multiple songbird species, FoxP1 expression highlights song control regions, and regulation of FoxP2 is associated with motor control of song. PMID:24006346

  18. Zebra finch mates use their forebrain song system in unlearned call communication.

    PubMed

    Ter Maat, Andries; Trost, Lisa; Sagunsky, Hannes; Seltmann, Susanne; Gahr, Manfred

    2014-01-01

    Unlearned calls are produced by all birds whereas learned songs are only found in three avian taxa, most notably in songbirds. The neural basis for song learning and production is formed by interconnected song nuclei: the song control system. In addition to song, zebra finches produce large numbers of soft, unlearned calls, among which "stack" calls are uttered frequently. To determine unequivocally the calls produced by each member of a group, we mounted miniature wireless microphones on each zebra finch. We find that group living paired males and females communicate using bilateral stack calling. To investigate the role of the song control system in call-based male female communication, we recorded the electrical activity in a premotor nucleus of the song control system in freely behaving male birds. The unique combination of acoustic monitoring together with wireless brain recording of individual zebra finches in groups shows that the neuronal activity of the song system correlates with the production of unlearned stack calls. The results suggest that the song system evolved from a brain circuit controlling simple unlearned calls to a system capable of producing acoustically rich, learned vocalizations.

  19. Zebra Finch Mates Use Their Forebrain Song System in Unlearned Call Communication

    PubMed Central

    Ter Maat, Andries; Trost, Lisa; Sagunsky, Hannes; Seltmann, Susanne; Gahr, Manfred

    2014-01-01

    Unlearned calls are produced by all birds whereas learned songs are only found in three avian taxa, most notably in songbirds. The neural basis for song learning and production is formed by interconnected song nuclei: the song control system. In addition to song, zebra finches produce large numbers of soft, unlearned calls, among which “stack” calls are uttered frequently. To determine unequivocally the calls produced by each member of a group, we mounted miniature wireless microphones on each zebra finch. We find that group living paired males and females communicate using bilateral stack calling. To investigate the role of the song control system in call-based male female communication, we recorded the electrical activity in a premotor nucleus of the song control system in freely behaving male birds. The unique combination of acoustic monitoring together with wireless brain recording of individual zebra finches in groups shows that the neuronal activity of the song system correlates with the production of unlearned stack calls. The results suggest that the song system evolved from a brain circuit controlling simple unlearned calls to a system capable of producing acoustically rich, learned vocalizations. PMID:25313846

  20. A Daily Oscillation in the Fundamental Frequency and Amplitude of Harmonic Syllables of Zebra Finch Song

    PubMed Central

    Wood, William E.; Osseward, Peter J.; Roseberry, Thomas K.; Perkel, David J.

    2013-01-01

    Complex motor skills are more difficult to perform at certain points in the day (for example, shortly after waking), but the daily trajectory of motor-skill error is more difficult to predict. By undertaking a quantitative analysis of the fundamental frequency (FF) and amplitude of hundreds of zebra finch syllables per animal per day, we find that zebra finch song follows a previously undescribed daily oscillation. The FF and amplitude of harmonic syllables rises across the morning, reaching a peak near mid-day, and then falls again in the late afternoon until sleep. This oscillation, although somewhat variable, is consistent across days and across animals and does not require serotonin, as animals with serotonergic lesions maintained daily oscillations. We hypothesize that this oscillation is driven by underlying physiological factors which could be shared with other taxa. Song production in zebra finches is a model system for studying complex learned behavior because of the ease of gathering comprehensive behavioral data and the tractability of the underlying neural circuitry. The daily oscillation that we describe promises to reveal new insights into how time of day affects the ability to accomplish a variety of complex learned motor skills. PMID:24312654

  1. Differences in depredation by small predators limit the use of plasticine and zebra finch eggs in artificial-nest studies

    Treesearch

    Thomas J. Maier; Richard M. DeGraaf

    2001-01-01

    Small mammals, such as mice and voles, have been implicated as major egg predators of Neotropical migrant passerines by field studies using soft plasticine eggs or the very small eggs of Zebra Finch (Taeniopygia guttata). Nevertheless, the effort required to depredate these commonly used egg surrogates may be less than that required to depredate the...

  2. Sex- and Age-Related Differences in Ribosomal Proteins L17 and L37, as well as Androgen Receptor Protein, in the Song Control System of Zebra Finches

    PubMed Central

    Tang, Yu Ping; Wade, Juli

    2010-01-01

    The zebra finch song system is sexually dimorphic – only males sing, and the morphology of forebrain regions controlling the learning and production of this song is greatly enhanced in males compared to females. Masculinization appears to involve effects of steroid hormones as well as other factors, perhaps including the expression of sex chromosome genes (males: ZZ, females: ZW). The present study investigated three proteins – two encoded by Z-linked genes, ribosomal proteins L17 and L37 (RPL 17 and RPL37), including their co-localization with androgen receptor (AR), from post-hatching day 25 to adulthood. Extensive co-expression of AR with the ribosomal proteins was detected in the three song nuclei investigated (HVC, RA, and Area X) across these ages. In general, more cells expressed each of these proteins in males compared to females, and the sex differences increased as animals matured. Specific patterns differed across regions and between RPL17 and RPL37, which suggest potential roles of one or both of these proteins in the incorporation and/or differentiation of song system cells. PMID:20933575

  3. Caudal thoracic air sac cannulation in zebra finches for isoflurane anesthesia.

    PubMed

    Nilson, Paige Crystal; Teramitsu, Ikuko; White, Stephanie Ann

    2005-04-30

    Small songbirds such as the zebra finch are commonly used for studies on the neural mechanisms that underlie vocal learning. For these studies, survival surgeries are often performed that involve animal anesthesia and stereotaxic stabilization for localization of specific brain regions. Here we describe air sac cannulation as a novel method for delivering isoflurane gas to zebra finches for anesthesia during neurosurgery. Advantages of this method include that it leaves the bird's head free for stereotaxic targeting and does not interfere with the beak clamps that are often used to position and stabilize the head. It additionally allows for the use of the inhalant anesthetic, isoflurane, which is an appealing alternative to injectable anesthetics because it provides fast, minimally stressful induction, and low subject and personnel toxicity. The use of isoflurane also prevents overdosing and lengthy postoperative recovery times.

  4. C-fos induction in forebrain areas of two different visual pathways during consolidation of sexual imprinting in the zebra finch (Taeniopygia guttata).

    PubMed

    Sadananda, Monika; Bischof, Hans-Joachim

    2006-10-16

    Two forebrain areas in the hyperpallium apicale and in the lateral nidopallium of isolated male zebra finches are highly active (2-deoxyglucose technique) on exposure to females for the first time, that is first courtship. These areas also demonstrate enhanced neuronal plasticity when screened with c-fos immunocytochemistry. Both are areas involved in the processing of visual information conveyed by the two major visual pathways in birds, strengthening our hypothesis that courtship in the zebra finch is a visually guided behaviour. First courtship and chased birds show enhanced c-fos induction in the hyperpallial area, which could represent neuronal activity reflecting changes in the immediate environment. The enhanced expression of fos in first courtship birds in lateral nidopallial neurons indicates imminent long-lasting changes at the synaptic level that form the substrate for imprinting, a stable form of learning in birds.

  5. Curation of microarray oligonucleotides and corresponding ESTs/cDNAs used for gene expression analysis in zebra finches.

    PubMed

    Lovell, Peter V; Huizinga, Nicole A; Getachew, Abel; Mees, Brianna; Friedrich, Samantha R; Wirthlin, Morgan; Mello, Claudio V

    2018-05-18

    Zebra finches are a major model organism for investigating mechanisms of vocal learning, a trait that enables spoken language in humans. The development of cDNA collections with expressed sequence tags (ESTs) and microarrays has allowed for extensive molecular characterizations of circuitry underlying vocal learning and production. However, poor database curation can lead to errors in transcriptome and bioinformatics analyses, limiting the impact of these resources. Here we used genomic alignments and synteny analysis for orthology verification to curate and reannotate ~ 35% of the oligonucleotides and corresponding ESTs/cDNAs that make-up Agilent microarrays for gene expression analysis in finches. We found that: (1) 5475 out of 43,084 oligos (a) failed to align to the zebra finch genome, (b) aligned to multiple loci, or (c) aligned to Chr_un only, and thus need to be flagged until a better genome assembly is available, or (d) reflect cloning artifacts; (2) Out of 9635 valid oligos examined further, 3120 were incorrectly named, including 1533 with no known orthologs; and (3) 2635 oligos required name update. The resulting curated dataset provides a reference for correcting gene identification errors in previous finch microarrays studies, and avoiding such errors in future studies.

  6. Exploring sex differences in the adult zebra finch brain: In vivo diffusion tensor imaging and ex vivo super-resolution track density imaging.

    PubMed

    Hamaide, Julie; De Groof, Geert; Van Steenkiste, Gwendolyn; Jeurissen, Ben; Van Audekerke, Johan; Naeyaert, Maarten; Van Ruijssevelt, Lisbeth; Cornil, Charlotte; Sijbers, Jan; Verhoye, Marleen; Van der Linden, Annemie

    2017-02-01

    Zebra finches are an excellent model to study the process of vocal learning, a complex socially-learned tool of communication that forms the basis of spoken human language. So far, structural investigation of the zebra finch brain has been performed ex vivo using invasive methods such as histology. These methods are highly specific, however, they strongly interfere with performing whole-brain analyses and exclude longitudinal studies aimed at establishing causal correlations between neuroplastic events and specific behavioral performances. Therefore, the aim of the current study was to implement an in vivo Diffusion Tensor Imaging (DTI) protocol sensitive enough to detect structural sex differences in the adult zebra finch brain. Voxel-wise comparison of male and female DTI parameter maps shows clear differences in several components of the song control system (i.e. Area X surroundings, the high vocal center (HVC) and the lateral magnocellular nucleus of the anterior nidopallium (LMAN)), which corroborate previous findings and are in line with the clear behavioral difference as only males sing. Furthermore, to obtain additional insights into the 3-dimensional organization of the zebra finch brain and clarify findings obtained by the in vivo study, ex vivo DTI data of the male and female brain were acquired as well, using a recently established super-resolution reconstruction (SRR) imaging strategy. Interestingly, the SRR-DTI approach led to a marked reduction in acquisition time without interfering with the (spatial and angular) resolution and SNR which enabled to acquire a data set characterized by a 78μm isotropic resolution including 90 diffusion gradient directions within 44h of scanning time. Based on the reconstructed SRR-DTI maps, whole brain probabilistic Track Density Imaging (TDI) was performed for the purpose of super resolved track density imaging, further pushing the resolution up to 40μm isotropic. The DTI and TDI maps realized atlas-quality anatomical maps that enable a clear delineation of most components of the song control and auditory systems. In conclusion, this study paves the way for longitudinal in vivo and high-resolution ex vivo experiments aimed at disentangling neuroplastic events that characterize the critical period for vocal learning in zebra finch ontogeny. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Evaluation of Best Practices for the Euthanasia of Zebra Finches (Taeniopygia guttata)

    PubMed Central

    Scott, Kathleen E; Bracchi, Lauren A; Lieberman, Mia T; Hill, Nichola J; Caron, Tyler J; Patterson, Mary M

    2017-01-01

    Although zebra finches (Taeniopygia guttata) have been used in biomedical research for many years, no published reports are available about euthanizing these small birds. In this study, we compared 5 methods for zebra finch euthanasia: sodium pentobarbital (NaP) given intracoelomically with physical restraint but no anesthesia; isoflurane anesthesia followed by intracoelomic injection of NaP; and CO2 asphyxiation at 20%, 40%, and 80% chamber displacement rates (percentage of chamber volume per minute). Birds undergoing euthanasia were videorecorded and scored by 2 observers for behaviors potentially related to discomfort or distress. Time to recumbency and time until respiratory arrest (RA) were also assessed. RA was achieved faster by using NaP in a conscious bird compared to using isoflurane anesthesia followed by NaP; however, neither method caused behaviors that might affect animal welfare, such as open-mouth breathing, to any appreciable extent. Among the CO2 treatment groups, there was an inverse correlation between the chamber displacement rate used and the duration of open-mouth breathing, onset of head retroflexion, and time to RA. The results demonstrate that the intracoelomic administration of NaP in an awake, restrained zebra finch is a rapid and effective method of euthanasia. If CO2 is used to euthanize these birds, a high displacement rate (for example, 80%) will minimize the duration of the procedure and associated behaviors. PMID:29256376

  8. Evaluation of Best Practices for the Euthanasia of Zebra Finches (Taeniopygia guttata).

    PubMed

    Scott, Kathleen E; Bracchi, Lauren A; Lieberman, Mia T; Hill, Nichola J; Caron, Tyler J; Patterson, Mary M

    2017-11-01

    Although zebra finches (Taeniopygia guttata) have been used in biomedical research for many years, no published reports are available about euthanizing these small birds. In this study, we compared 5 methods for zebra finch euthanasia: sodium pentobarbital (NaP) given intracoelomically with physical restraint but no anesthesia; isoflurane anesthesia followed by intracoelomic injection of NaP; and CO2 asphyxiation at 20%, 40%, and 80% chamber displacement rates (percentage of chamber volume per minute). Birds undergoing euthanasia were videorecorded and scored by 2 observers for behaviors potentially related to discomfort or distress. Time to recumbency and time until respiratory arrest (RA) were also assessed. RA was achieved faster by using NaP in a conscious bird compared to using isoflurane anesthesia followed by NaP; however, neither method caused behaviors that might affect animal welfare, such as open-mouth breathing, to any appreciable extent. Among the CO2 treatment groups, there was an inverse correlation between the chamber displacement rate used and the duration of open-mouth breathing, onset of head retroflexion, and time to RA. The results demonstrate that the intracoelomic administration of NaP in an awake, restrained zebra finch is a rapid and effective method of euthanasia. If CO2 is used to euthanize these birds, a high displacement rate (for example, 80%) will minimize the duration of the procedure and associated behaviors.

  9. Immediate early gene expression following exposure to acoustic and visual components of courtship in zebra finches.

    PubMed

    Avey, Marc T; Phillmore, Leslie S; MacDougall-Shackleton, Scott A

    2005-12-07

    Sensory driven immediate early gene expression (IEG) has been a key tool to explore auditory perceptual areas in the avian brain. Most work on IEG expression in songbirds such as zebra finches has focused on playback of acoustic stimuli and its effect on auditory processing areas such as caudal medial mesopallium (CMM) caudal medial nidopallium (NCM). However, in a natural setting, the courtship displays of songbirds (including zebra finches) include visual as well as acoustic components. To determine whether the visual stimulus of a courting male modifies song-induced expression of the IEG ZENK in the auditory forebrain we exposed male and female zebra finches to acoustic (song) and visual (dancing) components of courtship. Birds were played digital movies with either combined audio and video, audio only, video only, or neither audio nor video (control). We found significantly increased levels of Zenk response in the auditory region CMM in the two treatment groups exposed to acoustic stimuli compared to the control group. The video only group had an intermediate response, suggesting potential effect of visual input on activity in these auditory brain regions. Finally, we unexpectedly found a lateralization of Zenk response that was independent of sex, brain region, or treatment condition, such that Zenk immunoreactivity was consistently higher in the left hemisphere than in the right and the majority of individual birds were left-hemisphere dominant.

  10. Differential coexpression of FoxP1, FoxP2, and FoxP4 in the Zebra Finch (Taeniopygia guttata) song system.

    PubMed

    Mendoza, Ezequiel; Tokarev, Kirill; Düring, Daniel N; Retamosa, Eva Camarillo; Weiss, Michael; Arpenik, Nshdejan; Scharff, Constance

    2015-06-15

    Heterozygous disruptions of the Forkhead transcription factor FoxP2 impair acquisition of speech and language. Experimental downregulation in brain region Area X of the avian ortholog FoxP2 disrupts song learning in juvenile male zebra finches. In vitro, transcriptional activity of FoxP2 requires dimerization with itself or with paralogs FoxP1 and FoxP4. Whether this is the case in vivo is unknown. To provide the means for future functional studies we cloned FoxP4 from zebra finches and compared regional and cellular coexpression of FoxP1, FoxP2, and FoxP4 mRNA and protein in brains of juvenile and adult male zebra finches. In the telencephalic song nuclei HVC, RA, and Area X, the three investigated FoxPs were either expressed alone or occurred in specific combinations with each other, as shown by double in situ hybridization and triple immunohistochemistry. FoxP1 and FoxP4 but not FoxP2 were expressed in RA and in the HVCRA and HVCX projection neurons. In Area X and the surrounding striatum the density of neurons expressing all three FoxPs together or FoxP1 and FoxP4 together was significantly higher than the density of neurons expressing other combinations. Interestingly, the proportions of Area X neurons expressing particular combinations of FoxPs remained constant at all ages. In addition, FoxP-expressing neurons in adult Area X express dopamine receptors 1A, 1B, and 2. Together, these data provide the first evidence that Area X neurons can coexpress all avian FoxP subfamily members, thus allowing for a variety of regulatory possibilities via heterodimerization that could impact song behavior in zebra finches. © 2014 Wiley Periodicals, Inc.

  11. miR-9 and miR-140-5p target FoxP2 and are regulated as a function of the social context of singing behavior in zebra finches.

    PubMed

    Shi, Zhimin; Luo, Guanzheng; Fu, Lijuan; Fang, Zhide; Wang, XiuJie; Li, XiaoChing

    2013-10-16

    Mutations in the FOXP2 gene cause speech and language impairments, accompanied by structural and functional abnormalities in brain regions underlying speech-related sensory-motor processing, including the striatum and cerebellum. The sequence and expression patterns of FOXP2 are highly conserved among higher vertebrates. In the zebra finch brain, FoxP2 is expressed in Area X, a striatal nucleus required for vocal learning, and reduced FoxP2 expression impairs dendritic development and vocal learning. The FoxP2 gene encodes a transcription factor that controls the expression of many downstream genes. However, how FOXP2 gene expression is regulated is not clearly understood. miRNAs regulate gene expression post-transcriptionally by targeting the 3'-untranslated regions (UTRs) of mRNAs, leading to translational suppression or mRNA degradation. In this study, we identified miR-9 and miR-140-5p as potential regulators of the FoxP2 gene. We show that both miR-9 and miR-140-5p target specific sequences in the FoxP2 3'-UTR and downregulate FoxP2 protein and mRNA expression in vitro. We also show that the expression of miR-9 and miR-140-5p in Area X of the zebra finch brain is regulated during song development in juvenile zebra finches. We further show that in adult zebra finches the expression of miR-9 and miR-140-5p in Area X is regulated as a function of the social context of song behavior in males singing undirected songs. Our findings reveal a post-transcriptional mechanism that regulates FoxP2 expression and suggest that social vocal behavior can influence the basal ganglia circuit controlling vocal learning via a miRNA-FoxP2 gene regulatory network.

  12. miR-9 and miR-140-5p Target FoxP2 and Are Regulated as a Function of the Social Context of Singing Behavior in Zebra Finches

    PubMed Central

    Shi, Zhimin; Luo, Guanzheng; Fu, Lijuan; Fang, Zhide; Wang, XiuJie

    2013-01-01

    Mutations in the FOXP2 gene cause speech and language impairments, accompanied by structural and functional abnormalities in brain regions underlying speech-related sensory-motor processing, including the striatum and cerebellum. The sequence and expression patterns of FOXP2 are highly conserved among higher vertebrates. In the zebra finch brain, FoxP2 is expressed in Area X, a striatal nucleus required for vocal learning, and reduced FoxP2 expression impairs dendritic development and vocal learning. The FoxP2 gene encodes a transcription factor that controls the expression of many downstream genes. However, how FOXP2 gene expression is regulated is not clearly understood. miRNAs regulate gene expression post-transcriptionally by targeting the 3′-untranslated regions (UTRs) of mRNAs, leading to translational suppression or mRNA degradation. In this study, we identified miR-9 and miR-140-5p as potential regulators of the FoxP2 gene. We show that both miR-9 and miR-140-5p target specific sequences in the FoxP2 3′-UTR and downregulate FoxP2 protein and mRNA expression in vitro. We also show that the expression of miR-9 and miR-140-5p in Area X of the zebra finch brain is regulated during song development in juvenile zebra finches. We further show that in adult zebra finches the expression of miR-9 and miR-140-5p in Area X is regulated as a function of the social context of song behavior in males singing undirected songs. Our findings reveal a post-transcriptional mechanism that regulates FoxP2 expression and suggest that social vocal behavior can influence the basal ganglia circuit controlling vocal learning via a miRNA-FoxP2 gene regulatory network. PMID:24133256

  13. Housing conditions and sacrifice protocol affect neural activity and vocal behavior in a songbird species, the zebra finch (Taeniopygia guttata).

    PubMed

    Elie, Julie Estelle; Soula, Hédi Antoine; Trouvé, Colette; Mathevon, Nicolas; Vignal, Clémentine

    2015-12-01

    Individual cages represent a widely used housing condition in laboratories. This isolation represents an impoverished physical and social environment in gregarious animals. It prevents animals from socializing, even when auditory and visual contact is maintained. Zebra finches are colonial songbirds that are widely used as laboratory animals for the study of vocal communication from brain to behavior. In this study, we investigated the effect of single housing on the vocal behavior and the brain activity of male zebra finches (Taeniopygia guttata): male birds housed in individual cages were compared to freely interacting male birds housed as a social group in a communal cage. We focused on the activity of septo-hypothalamic regions of the "social behavior network" (SBN), a set of limbic regions involved in several social behaviors in vertebrates. The activity of four structures of the SBN (BSTm, medial bed nucleus of the stria terminalis; POM, medial preoptic area; lateral septum; ventromedial hypothalamus) and one associated region (paraventricular nucleus of the hypothalamus) was assessed using immunoreactive nuclei density of the immediate early gene Zenk (egr-1). We further assessed the identity of active cell populations by labeling vasotocin (VT). Brain activity was related to behavioral activities of birds like physical and vocal interactions. We showed that individual housing modifies vocal exchanges between birds compared to communal housing. This is of particular importance in the zebra finch, a model species for the study of vocal communication. In addition, a protocol that daily removes one or two birds from the group affects differently male zebra finches depending of their housing conditions: while communally-housed males changed their vocal output, brains of individually housed males show increased Zenk labeling in non-VT cells of the BSTm and enhanced correlation of Zenk-revealed activity between the studied structures. These results show that housing conditions must gain some attention in behavioral neuroscience protocols. Copyright © 2015. Published by Elsevier SAS.

  14. Sex- and age-related differences in ribosomal proteins L17 and L37, as well as androgen receptor protein, in the song control system of zebra finches.

    PubMed

    Tang, Y P; Wade, J

    2010-12-29

    The zebra finch song system is sexually dimorphic--only males sing, and the morphology of forebrain regions controlling the learning and production of this song is greatly enhanced in males compared to females. Masculinization appears to involve effects of steroid hormones as well as other factors, perhaps including the expression of sex chromosome genes (males: ZZ, females: ZW). The present study investigated three proteins--two encoded by Z-linked genes, ribosomal proteins L17 and L37 (RPL17 and RPL37), including their co-localization with androgen receptor (AR), from post-hatching day 25 to adulthood. Extensive co-expression of AR with the ribosomal proteins was detected in the three song nuclei investigated (HVC, robust nucleus of the arcopallium (RA), and Area X) across these ages. In general, more cells expressed each of these proteins in males compared to females, and the sex differences increased as animals matured. Specific patterns differed across regions and between RPL17 and RPL37, which suggest potential roles of one or both of these proteins in the incorporation and/or differentiation of song system cells. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Amyloidosis in a Captive Zebra Finch (Taeniopygia guttata) Research Colony

    PubMed Central

    Shientag, Lisa J; Garlick, David S; Galati, Erin

    2016-01-01

    Five birds in a captive zebra finch research colony were diagnosed with systemic amyloidosis within a 7-mo period by means of postmortem Congo red staining and green birefringence under polarized light. The liver was the most frequently and usually the most seriously affected organ, followed by the spleen and then the kidney. All 5 birds had been clinically affected with various inflammatory, infectious, and neoplastic conditions associated with amyloid A (AA) amyloidosis in humans and animals. Immunohistochemistry using antisera against duck AA protein revealed that tissues from 2 of the 5 birds were positive for the presence of AA protein and systemic inflammation-associated amyloidosis. Although the development of AA amyloidosis has been associated with chronic inflammation, trauma, and various infectious and neoplastic diseases as well as possible genetic predispositions and stresses linked to overcrowding, the root causes for individual cases of AA amyloidosis are incompletely understood. As far as we know, this report is the first description of AA amyloidosis in captive, research zebra finches. PMID:27298248

  16. Colour preferences in nest-building zebra finches.

    PubMed

    Muth, Felicity; Steele, Matthew; Healy, Susan D

    2013-10-01

    Some bird species are selective in the materials they choose for nest building, preferring, for example, materials of one colour to others. However, in many cases the cause of these preferences is not clear. One of those species is the zebra finch, which exhibits strong preferences for particular colours of nest material. In an attempt to determine why these birds strongly prefer one colour of material over another, we compared the preferences of paired male zebra finches for nest material colour with their preferences for food of the same colours. We found that birds did indeed prefer particular colours of nest material (in most cases blue) but that they did not generally prefer food of one colour over the other colours. It appears, then, that a preference for one colour or another of nest material is specific to the nest-building context. This article is part of a Special Issue entitled: insert SI title. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. FoxP2 isoforms delineate spatiotemporal transcriptional networks for vocal learning in the zebra finch

    PubMed Central

    Day, Nancy F; Kimball, Todd Haswell; Aamodt, Caitlin M; Heston, Jonathan B; Hilliard, Austin T; Xiao, Xinshu; White, Stephanie A

    2018-01-01

    Human speech is one of the few examples of vocal learning among mammals yet ~half of avian species exhibit this ability. Its neurogenetic basis is largely unknown beyond a shared requirement for FoxP2 in both humans and zebra finches. We manipulated FoxP2 isoforms in Area X, a song-specific region of the avian striatopallidum analogous to human anterior striatum, during a critical period for song development. We delineate, for the first time, unique contributions of each isoform to vocal learning. Weighted gene coexpression network analysis of RNA-seq data revealed gene modules correlated to singing, learning, or vocal variability. Coexpression related to singing was found in juvenile and adult Area X whereas coexpression correlated to learning was unique to juveniles. The confluence of learning and singing coexpression in juvenile Area X may underscore molecular processes that drive vocal learning in young zebra finches and, by analogy, humans. PMID:29360038

  18. Heterospecific discrimination of Poecile vocalizations by zebra finches (Taeniopygia guttata).

    PubMed

    Guillette, Lauren M; Hoeschele, Marisa; Hahn, Allison H; Sturdy, Christopher B

    2013-08-01

    Previous perceptual research with black-capped and mountain chickadees has demonstrated that the D note of the namesake chick-a-dee call controlled species-based discrimination compared to other note types in this call. In the current experiment, we sought to determine whether discrimination performance of the chickadees was controlled by stimulus-specific properties or due to learning through experience. To accomplish this, we tested zebra finches, a songbird species that is distantly related to chickadees, and also unfamiliar with black-capped and mountain chickadee vocalizations, on the same species-based discrimination on which black-capped and mountain chickadees were previously trained. We found that zebra finches learned the discrimination in the fewest number of trials with the D note, compared to other note types (i.e., the A, B, and C notes). In addition, we compared the current results to earlier work and found that zebra finches learned the discrimination in fewer trials compared to black-capped chickadees, and, across all species, males learned the discrimination in fewer trials than females. We discuss the roles that acoustic complexity and learning play in classification of the three species of songbirds tested. More generally, these results point to the benefits derived from testing members of each sex in species that vary in their natural history, vocal output, and phylogenetic relatedness as a means to uncover the mechanisms underlying acoustic communication. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  19. Genome evolution in Reptilia, the sister group of mammals.

    PubMed

    Janes, Daniel E; Organ, Christopher L; Fujita, Matthew K; Shedlock, Andrew M; Edwards, Scott V

    2010-01-01

    The genomes of birds and nonavian reptiles (Reptilia) are critical for understanding genome evolution in mammals and amniotes generally. Despite decades of study at the chromosomal and single-gene levels, and the evidence for great diversity in genome size, karyotype, and sex chromosome diversity, reptile genomes are virtually unknown in the comparative genomics era. The recent sequencing of the chicken and zebra finch genomes, in conjunction with genome scans and the online publication of the Anolis lizard genome, has begun to clarify the events leading from an ancestral amniote genome--predicted to be large and to possess a diverse repeat landscape on par with mammals and a birdlike sex chromosome system--to the small and highly streamlined genomes of birds. Reptilia exhibit a wide range of evolutionary rates of different subgenomes and, from isochores to mitochondrial DNA, provide a critical contrast to the genomic paradigms established in mammals.

  20. Protein-Protein Interaction Among the FoxP Family Members and their Regulation of Two Target Genes, VLDLR and CNTNAP2 in the Zebra Finch Song System

    PubMed Central

    Mendoza, Ezequiel; Scharff, Constance

    2017-01-01

    The Forkhead transcription factor FOXP2 is implicated in speech perception and production. The avian homolog, FoxP21 contributes to song learning and production in birds. In human cell lines, transcriptional activity of FOXP2 requires homo-dimerization or dimerization with paralogs FOXP1 or FOXP4. Whether FoxP dimerization occurs in the brain is unknown. We recently showed that FoxP1, FoxP2 and FoxP4 (FoxP1/2/4) proteins are co-expressed in neurons of Area X, a song control region in zebra finches. We now report on dimer- and oligomerization of zebra finch FoxPs and how this affects transcription. In cell lines and in the brain we identify homo- and hetero-dimers, and an oligomer composed of FoxP1/2/4. We further show that FoxP1/2 but not FoxP4 bind to the regulatory region of the target gene Contactin-associated protein-like 2 (CNTNAP2). In addition, we demonstrate that FoxP1/4 bind to the regulatory region of very low density lipoprotein receptor (VLDLR), as has been shown for FoxP2 previously. Interestingly, FoxP1/2/4 individually or in combinations regulate the promoters for SV40, zebra finch VLDLR and CNTNAP2 differentially. These data exemplify the potential for complex transcriptional regulation of FoxP1/2/4, highlighting the need for future functional studies dissecting their differential regulation in the brain. PMID:28507505

  1. In vivo detection of fluctuating brain steroid levels SHORT

    PubMed Central

    Ikeda, Maaya; Rensel, Michelle A.; Schlinger, Barney A.; Remage-Healey, Luke

    2015-01-01

    This protocol describes a method for in vivo measurement of steroid hormones in brain circuits of the zebra finch. In vivo microdialysis has been used successfully to detect fluctuating neurosteroids in the auditory forebrain (Remage-Healey et al., 2008; 2012; Ikeda et al., 2012) and in the hippocampus (Rensel et al., 2012; 2013) of behaving adult zebra finches. In some cases, the steroids measured are derived locally (e.g., ‘neurosteroids’ like estrogens in males) whereas in other cases the steroids measured reflect systemic circulating levels and/or central conversion (e.g., the primary androgen testosterone and the primary glucocorticoid corticosterone). We also describe the method of reverse-microdialysis (‘retrodialysis’) of compounds that can influence local steroid neurochemistry as well as behavior. In vivo microdialysis can now be used to study steroid signaling in the brain for a variety of experimental purposes. Furthermore, similar methods have been developed to examine changing levels of catecholamines in behaving zebra finches (e.g., Sasaki et al., 2006). Thus, the combined study of neurochemistry and behavior in a vocal learning species now has a new set of powerful tools. PMID:25342066

  2. Asynchronous hatching and food limitation: A test of Lack's hypothesis

    USGS Publications Warehouse

    Skagen, Susan Knight

    1988-01-01

    Lack's (1954, 1968) hypothesis that asynchronous hatching of altricial birds is an adaptive response to unpredictable food shortages during the breeding season was examined in the highly granivorous Zebra Finch (Poephila guttata). I compared growth and survival of nestlings in asynchronous and artificially created synchronous broods reared under food-limited and food-abundant conditions in an aviary. I also examined the role of parental experience on survival and growth of nestlings.There was no differential mortality of Zebra Finch nestlings due to either asynchrony or food abundance. Young in abundant food treatments grew more rapidly, however, than those in food-restricted treatments. Heaviest Zebra Finch nestlings in a brood grew more quickly than their lightest siblings when food was limited, supporting Lack's hypothesis. Further, differential survival of light and heavy siblings occurred when food was abundant, suggesting that asynchronous hatching can be maladaptive under some ecological conditions. Nestlings reared by inexperienced parents suffered greater mortality and slower growth when food was abundant than nestlings raised by experienced parents. Prefledging mass was correlated with size at adulthood

  3. Genoarchitecture of the extended amygdala in zebra finch, and expression of FoxP2 in cell corridors of different genetic profile.

    PubMed

    Vicario, Alba; Mendoza, Ezequiel; Abellán, Antonio; Scharff, Constance; Medina, Loreta

    2017-01-01

    We used a battery of genes encoding transcription factors (Pax6, Islet1, Nkx2.1, Lhx6, Lhx5, Lhx9, FoxP2) and neuropeptides to study the extended amygdala in developing zebra finches. We identified different components of the central extended amygdala comparable to those found in mice and chickens, including the intercalated amygdalar cells, the central amygdala, and the lateral bed nucleus of the stria terminalis. Many cells likely originate in the dorsal striatal domain, ventral striatal domain, or the pallidal domain, as is the case in mice and chickens. Moreover, a cell subpopulation of the central extended amygdala appears to originate in the prethalamic eminence. As a general principle, these different cells with specific genetic profiles and embryonic origin form separate or partially intermingled cell corridors along the extended amygdala, which may be involved in different functional pathways. In addition, we identified the medial amygdala of the zebra finch. Like in the chickens and mice, it is located in the subpallium and is rich in cells of pallido-preoptic origin, containing minor subpopulations of immigrant cells from the ventral pallium, alar hypothalamus and prethalamic eminence. We also proposed that the medial bed nucleus of the stria terminalis is composed of several parallel cell corridors with different genetic profile and embryonic origin: preoptic, pallidal, hypothalamic, and prethalamic. Several of these cell corridors with distinct origin express FoxP2, a transcription factor implicated in synaptic plasticity. Our results pave the way for studies using zebra finches to understand the neural basis of social behavior, in which the extended amygdala is involved.

  4. Digital gene expression analysis of the zebra finch genome

    PubMed Central

    2010-01-01

    Background In order to understand patterns of adaptation and molecular evolution it is important to quantify both variation in gene expression and nucleotide sequence divergence. Gene expression profiling in non-model organisms has recently been facilitated by the advent of massively parallel sequencing technology. Here we investigate tissue specific gene expression patterns in the zebra finch (Taeniopygia guttata) with special emphasis on the genes of the major histocompatibility complex (MHC). Results Almost 2 million 454-sequencing reads from cDNA of six different tissues were assembled and analysed. A total of 11,793 zebra finch transcripts were represented in this EST data, indicating a transcriptome coverage of about 65%. There was a positive correlation between the tissue specificity of gene expression and non-synonymous to synonymous nucleotide substitution ratio of genes, suggesting that genes with a specialised function are evolving at a higher rate (or with less constraint) than genes with a more general function. In line with this, there was also a negative correlation between overall expression levels and expression specificity of contigs. We found evidence for expression of 10 different genes related to the MHC. MHC genes showed relatively tissue specific expression levels and were in general primarily expressed in spleen. Several MHC genes, including MHC class I also showed expression in brain. Furthermore, for all genes with highest levels of expression in spleen there was an overrepresentation of several gene ontology terms related to immune function. Conclusions Our study highlights the usefulness of next-generation sequence data for quantifying gene expression in the genome as a whole as well as in specific candidate genes. Overall, the data show predicted patterns of gene expression profiles and molecular evolution in the zebra finch genome. Expression of MHC genes in particular, corresponds well with expression patterns in other vertebrates. PMID:20359325

  5. Behavioural and physiological effects of population density on domesticated Zebra Finches (Taeniopygia guttata) held in aviaries.

    PubMed

    Poot, Hanneke; ter Maat, Andries; Trost, Lisa; Schwabl, Ingrid; Jansen, René F; Gahr, Manfred

    2012-02-01

    Zebra Finches (Taeniopygia guttata) are highly social and monogamous birds that display relatively low levels of aggression and coordinate group life mainly by means of vocal communication. In the wild, small groups may congregate to larger flocks of up to 150-350 birds. Little is known, however, about possible effects of population density on development in captivity. Investigating density effects on physiology and behaviour might be helpful in identifying optimal group size, in order to optimise Zebra Finch wellbeing. A direct effect of population density on development and reproduction was found: birds in lower density conditions produced significantly more and larger (body mass, tarsus length) surviving offspring than birds in high density conditions. Furthermore, offspring in low density aviaries produced slightly longer song motifs and more different syllables than their tutors, whereas offspring in high density aviaries produced shorter motifs and a smaller or similar number of different syllables than their tutors. Aggression levels within the populations were low throughout the experiment, but the number of aggressive interactions was significantly higher in high density aviaries. Baseline corticosterone levels did not differ significantly between high- and low density aviaries for either adult or offspring birds. On day 15 post hatching, brood size and baseline corticosterone levels were positively correlated. On days 60 and 100 post hatching this correlation was no longer present. The results of this study prove that population density affects various aspects of Zebra Finch development, with birds living in low population density conditions having an advantage over those living under higher population density conditions. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Sexually dimorphic expression of the genes encoding ribosomal proteins L17 and L37 in the song control nuclei of juvenile zebra finches

    PubMed Central

    Tang, Yu Ping; Wade, Juli

    2010-01-01

    Studies evaluating the role of steroid hormones in sexual differentiation of the zebra finch song system have produced complicated and at times paradoxical results, and indicate that additional factors may be critical. Therefore, in a previous study we initiated a screen for differential gene expression in the telencephalon of developing male and female zebra finches. The use of cDNA microarrays and real-time quantitative PCR revealed increased expression of the genes encoding ribosomal proteins L17 and L37 (RPL17 and RPL37) in the male forebrain as a whole. Preliminary in situ hybridization data then indicated enhanced expression of both these genes in song control regions. Two experiments in the present study quantified the mRNA expression. The first utilized 25-day-old male and female zebra finches. The second compared a separate set of juveniles to adults of both sexes to both re-confirm enhanced expression in juvenile males and to determine whether it is limited to developing animals. In Experiment 1, males exhibited increased expression of both RPL17 and RPL37 compared to females in Area X, the robust nucleus of the arcopallium (RA), and the ventral ventricular zone (VVZ), which may provide neurons to Area X. Experiment 2 replicated the sexually dimorphic expression of these genes at post-hatching day 25, and documented that the sex differences are eliminated or greatly reduced in adults. The results are consistent with the idea that these ribosomal proteins may influence sexual differentiation of Area X and RA, potentially regulating the genesis and/or survival of neurons. PMID:16938280

  7. Sexually dimorphic expression of the genes encoding ribosomal proteins L17 and L37 in the song control nuclei of juvenile zebra finches.

    PubMed

    Tang, Yu Ping; Wade, Juli

    2006-12-18

    Studies evaluating the role of steroid hormones in sexual differentiation of the zebra finch song system have produced complicated and at times paradoxical results, and indicate that additional factors may be critical. Therefore, in a previous study we initiated a screen for differential gene expression in the telencephalon of developing male and female zebra finches. The use of cDNA microarrays and real-time quantitative PCR revealed increased expression of the genes encoding ribosomal proteins L17 and L37 (RPL17 and RPL37) in the male forebrain as a whole. Preliminary in situ hybridization data then indicated enhanced expression of both these genes in song control regions. Two experiments in the present study quantified the mRNA expression. The first utilized 25-day-old male and female zebra finches. The second compared a separate set of juveniles to adults of both sexes to both re-confirm enhanced expression in juvenile males and to determine whether it is limited to developing animals. In Experiment 1, males exhibited increased expression of both RPL17 and RPL37 compared to females in Area X, the robust nucleus of the arcopallium (RA), and the ventral ventricular zone (VVZ), which may provide neurons to Area X. Experiment 2 replicated the sexually dimorphic expression of these genes at post-hatching day 25, and documented that the sex differences are eliminated or greatly reduced in adults. The results are consistent with the idea that these ribosomal proteins may influence sexual differentiation of Area X and RA, potentially regulating the genesis and/or survival of neurons.

  8. Early exposure to 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) affects mating behavior of zebra finches.

    PubMed

    Eng, Margaret L; Elliott, John E; MacDougall-Shackleton, Scott A; Letcher, Robert J; Williams, Tony D

    2012-05-01

    2,2',4,4',5-Pentabromodiphenyl ether (BDE-99) is a brominated flame retardant congener that has pervaded global food chains, being reported in avian egg and tissue samples throughout the world. Its effects on birds are not well known, but there is evidence in exposed mammals that it directly mediates and causes neurotoxicity, alters thyroid hormone homeostasis, and lowers sex steroid hormone concentrations. In birds, those processes could disrupt the song-control system and male mating behavior. In this study, the effects of nestling exposure to environmentally relevant levels of BDE-99 were assessed in a model songbird species, the zebra finch (Taeniopygia guttata). A tissue residue study in which zebra finch nestlings were orally exposed to 0, 2.5, 15.8, or 50.7 ng BDE-99/g body weight (bw) per day over the 21-day nesting period validated dosing methods and confirmed dose levels were environmentally relevant (332.7 ± 141.0 to 4450.2 ± 1396.2 ng/g plasma lipid). A full-scale study exposing nestlings to 0, 2.5, 15.8, 50.7, or 173.8 ng BDE-99/g bw/day was carried out to investigate long-term effects of BDE-99 on the adult song-control nuclei volumes, song quality, and male mating behavior. Early exposure to BDE-99 had significant effects on male mating behavior and the response of clean experienced females to exposed males. There was no effect on male song-control nuclei or song quality, and there were nondose-dependent effects on female song-control nuclei. The results demonstrate that early exposure to environmentally relevant levels of BDE-99 affects the behavior of zebra finches.

  9. Effect of septal lesions on male song and aggression in the colonial zebra finch (Taeniopygia guttata) and the territorial field sparrow (Spizella pusilla)

    PubMed

    Goodson, J L; Eibach, R; Sakata, J; Adkins-Regan, E

    1999-01-01

    The present investigation assessed the effect of lesions of the septum on male courtship and aggression in the territorial field sparrow (Spizella pusilla) and the colonial zebra finch (Taeniopygia guttata). In addition, pair-bonding and a variety of other social behaviors were examined in the zebra finch and dawn song (both the strictly agonistic song type and the multipurpose song type) was examined in the field sparrow. Zebra finches were tested in three phases both before and after receiving bilateral electrolytic lesions of the septum or sham surgery. These phases were: (1) competition tests in which a subject and a stimulus male were exposed to a female in an adjacent cage; (2) sexual behavior tests with a female; and (3) 10-day group cage tests in which subjects were in a mixed-sex environment. Aggressive behaviors (chases, threats, beak fences and pecks) were significantly reduced by septal lesions but not by sham surgery. Directed song (courtship) was significantly reduced in sexual behavior tests, with similar trends in other testing phases. Male field sparrows were tested 2 days pre-surgery and 2 days post-surgery in outdoor aviaries placed in their natural habitat. Tests consisted of dawn song observations and observations of courtship and aggression following introduction of a female to the subject's aviary, which was followed 10 min later by the introduction of another male (without removing the female). Septal lesions significantly facilitated both overt aggression (chases) and the number of simple (multi-purpose) songs. These results provide evidence that the septum participates in the regulation of male aggression and song in songbirds, and further suggest that variations in septal function may exist between territorial and colonial species.

  10. Effect of septal lesions on male song and aggression in the colonial zebra finch (Taeniopygia guttata) and the territorial field sparrow (Spizella pusilla)

    PubMed

    Goodson, J L; Eibach, R; Sakata, J; Adkins-Regan, E

    1999-05-01

    The present investigation assessed the effect of lesions of the septum on male courtship and aggression in the territorial field sparrow (Spizella pusilla) and the colonial zebra finch (Taeniopygia guttata). In addition, pair-bonding and a variety of other social behaviors were examined in the zebra finch and dawn song (both the strictly agonistic song type and the multipurpose song type) was examined in the field sparrow. Zebra finches were tested in three phases both before and after receiving bilateral electrolytic lesions of the septum or sham surgery. These phases were: (1) competition tests in which a subject and a stimulus male were exposed to a female in an adjacent cage; (2) sexual behavior tests with a female; and (3) 10-day group cage tests in which subjects were in a mixed-sex environment. Aggressive behaviors (chases, threats, beak fences and pecks) were significantly reduced by septal lesions but not by sham surgery. Directed song (courtship) was significantly reduced in sexual behavior tests, with similar trends in other testing phases. Male field sparrows were tested 2 days pre-surgery and 2 days post-surgery in outdoor aviaries placed in their natural habitat. Tests consisted of dawn song observations and observations of courtship and aggression following introduction of a female to the subject's aviary, which was followed 10 min later by the introduction of another male (without removing the female). Septal lesions significantly facilitated both overt aggression (chases) and the number of simple (multi-purpose) songs. These results provide evidence that the septum participates in the regulation of male aggression and song in songbirds, and further suggest that variations in septal function may exist between territorial and colonial species.

  11. Zebra finches have a light-dependent magnetic compass similar to migratory birds.

    PubMed

    Pinzon-Rodriguez, Atticus; Muheim, Rachel

    2017-04-01

    Birds have a light-dependent magnetic compass that provides information about the spatial alignment of the geomagnetic field. It is proposed to be located in the avian retina and mediated by a light-induced, radical-pair mechanism involving cryptochromes as sensory receptor molecules. To investigate how the behavioural responses of birds under different light spectra match with cryptochromes as the primary magnetoreceptor, we examined the spectral properties of the magnetic compass in zebra finches. We trained birds to relocate a food reward in a spatial orientation task using magnetic compass cues. The birds were well oriented along the trained magnetic compass axis when trained and tested under low-irradiance 521 nm green light. In the presence of a 1.4 MHz radio-frequency electromagnetic (RF)-field, the birds were disoriented, which supports the involvement of radical-pair reactions in the primary magnetoreception process. Birds trained and tested under 638 nm red light showed a weak tendency to orient ∼45 deg clockwise of the trained magnetic direction. Under low-irradiance 460 nm blue light, they tended to orient along the trained magnetic compass axis, but were disoriented under higher irradiance light. Zebra finches trained and tested under high-irradiance 430 nm indigo light were well oriented along the trained magnetic compass axis, but disoriented in the presence of a RF-field. We conclude that magnetic compass responses of zebra finches are similar to those observed in nocturnally migrating birds and agree with cryptochromes as the primary magnetoreceptor, suggesting that light-dependent, radical-pair-mediated magnetoreception is a common property for all birds, including non-migratory species. © 2017. Published by The Company of Biologists Ltd.

  12. Sexual imprinting on continuous variation: do female zebra finches prefer or avoid unfamiliar sons of their foster parents?

    PubMed

    Schielzeth, H; Burger, C; Bolund, E; Forstmeier, W

    2008-09-01

    Sexual imprinting on discrete variation that serves the identification of species, morphs or sexes is well documented. By contrast, sexual imprinting on continuous variation leading to individual differences in mating preferences within a single species, morph and sex has been studied only once (in humans). We measured female preferences in a captive population of wild-type zebra finches. Individual cross-fostering ensured that all subjects grew up with unrelated foster parents and nest mates. Females from two cohorts (N = 113) were given a simultaneous choice between (two or four) unfamiliar males, one of which was a genetic son of their foster parents (SFP). We found no significant overall preference for the SFP (combined effect size d = 0.14 +/- 0.15). Additionally, we tested if foster parent traits could potentially explain between-female variation in preferences. However, neither the effectiveness of cooperation between the parents nor male contribution to parental care affected female preferences for the son of the foster father. We conclude that at least in zebra finches sexual imprinting is not a major source of between-individual variation in mating preferences.

  13. Transcriptional response to West Nile virus infection in the zebra finch (Taeniopygia guttata)

    USGS Publications Warehouse

    Newhouse, Daniel J.; Hofmeister, Erik K.; Balakrishnan, Christopher N.

    2017-01-01

    West Nile virus (WNV) is a widespread arbovirus that imposes a significant cost to both human and wildlife health. WNV exists in a bird-mosquito transmission cycle in which passerine birds act as the primary reservoir host. As a public health concern, the mammalian immune response to WNV has been studied in detail. Little, however, is known about the avian immune response to WNV. Avian taxa show variable susceptibility to WNV and what drives this variation is unknown. Thus, to study the immune response to WNV in birds, we experimentally infected captive zebra finches (Taeniopygia guttata). Zebra finches provide a useful model, as like many natural avian hosts they are moderately susceptible to WNV and thus provide sufficient viremia to infect mosquitoes. We performed RNAseq in spleen tissue during peak viremia to provide an overview of the transcriptional response. In general, we find strong parallels with the mammalian immune response to WNV, including upregulation of five genes in the Rig-I-like receptor signalling pathway, and offer insights into avian-specific responses. Together with complementary immunological assays, we provide a model of the avian immune response to WNV and set the stage for future comparative studies among variably susceptible populations and species.

  14. PHA-stimulated immune-responsiveness in mercury-dosed zebra finches does not match results from environmentally exposed songbirds.

    PubMed

    Caudill, Mitchell T; Spear, Eliza L; Varian-Ramos, Claire W; Cristol, Daniel A

    2015-04-01

    Dietary mercury exposure is associated with suppressed immune responsiveness in birds. This study examined the immune-responsiveness of domestic zebra finches (Taeniopygia guttata) experimentally exposed to mercury through their diet. We used the phytohemagglutinin (PHA) skin-swelling test to assay the effect of two modes of mercury exposure. Some finches received exposure to mercury only after reaching sexual maturity, while others were maintained on a mercury-dosed diet throughout life, including development. Each bird received one of five dietary concentrations of methylmercury cysteine (0.0, 0.3, 0.6, 1.2 or 2.4 ppm). In contrast to a study on wild songbirds at a mercury-contaminated site, we detected no relationship between mercury level and immunological response to PHA, regardless of mode of exposure. This result represents the first major difference found by our laboratory between wild birds exposed to environmental mercury and captive birds experimentally exposed to mercury.

  15. Nest destruction elicits indiscriminate con- versus heterospecific brood parasitism in a captive bird.

    PubMed

    Shaw, Rachael C; Feeney, William E; Hauber, Mark E

    2014-12-01

    Following nest destruction, the laying of physiologically committed eggs (eggs that are ovulated, yolked, and making their way through the oviduct) in the nests of other birds is considered a viable pathway for the evolution of obligate interspecific brood parasitism. While intraspecific brood parasitism in response to nest predation has been experimentally demonstrated, this pathway has yet to be evaluated in an interspecific context. We studied patterns of egg laying following experimental nest destruction in captive zebra finches, Taeniopygia guttata, a frequent intraspecific brood parasite. We found that zebra finches laid physiologically committed eggs indiscriminately between nests containing conspecific eggs and nests containing heterospecific eggs (of Bengalese finches, Lonchura striata vars. domestica), despite the con- and heterospecific eggs differing in both size and coloration. This is the first experimental evidence that nest destruction may provide a pathway for the evolution of interspecific brood parasitism in birds.

  16. A sex-chromosome inversion causes strong overdominance for sperm traits that affect siring success.

    PubMed

    Knief, Ulrich; Forstmeier, Wolfgang; Pei, Yifan; Ihle, Malika; Wang, Daiping; Martin, Katrin; Opatová, Pavlína; Albrechtová, Jana; Wittig, Michael; Franke, Andre; Albrecht, Tomáš; Kempenaers, Bart

    2017-08-01

    Male reproductive success depends on the competitive ability of sperm to fertilize the ova, which should lead to strong selection on sperm characteristics. This raises the question of how heritable variation in sperm traits is maintained. Here we show that in zebra finches (Taeniopygia guttata) nearly half of the variance in sperm morphology is explained by an inversion on the Z chromosome with a 40% allele frequency in the wild. The sperm of males that are heterozygous for the inversion had the longest midpieces and the highest velocity. Furthermore, such males achieved the highest fertility and the highest siring success, both within-pair and extra-pair. Males homozygous for the derived allele show detrimental sperm characteristics and the lowest siring success. Our results suggest heterozygote advantage as the mechanism that maintains the inversion polymorphism and hence variance in sperm design and in fitness.

  17. Insights into the evolution of Darwin’s finches from comparative analysis of the Geospiza magnirostris genome sequence

    PubMed Central

    2013-01-01

    Background A classical example of repeated speciation coupled with ecological diversification is the evolution of 14 closely related species of Darwin’s (Galápagos) finches (Thraupidae, Passeriformes). Their adaptive radiation in the Galápagos archipelago took place in the last 2–3 million years and some of the molecular mechanisms that led to their diversification are now being elucidated. Here we report evolutionary analyses of genome of the large ground finch, Geospiza magnirostris. Results 13,291 protein-coding genes were predicted from a 991.0 Mb G. magnirostris genome assembly. We then defined gene orthology relationships and constructed whole genome alignments between the G. magnirostris and other vertebrate genomes. We estimate that 15% of genomic sequence is functionally constrained between G. magnirostris and zebra finch. Genic evolutionary rate comparisons indicate that similar selective pressures acted along the G. magnirostris and zebra finch lineages suggesting that historical effective population size values have been similar in both lineages. 21 otherwise highly conserved genes were identified that each show evidence for positive selection on amino acid changes in the Darwin's finch lineage. Two of these genes (Igf2r and Pou1f1) have been implicated in beak morphology changes in Darwin’s finches. Five of 47 genes showing evidence of positive selection in early passerine evolution have cilia related functions, and may be examples of adaptively evolving reproductive proteins. Conclusions These results provide insights into past evolutionary processes that have shaped G. magnirostris genes and its genome, and provide the necessary foundation upon which to build population genomics resources that will shed light on more contemporaneous adaptive and non-adaptive processes that have contributed to the evolution of the Darwin’s finches. PMID:23402223

  18. Shared neural substrates for song discrimination in parental and parasitic songbirds.

    PubMed

    Louder, Matthew I M; Voss, Henning U; Manna, Thomas J; Carryl, Sophia S; London, Sarah E; Balakrishnan, Christopher N; Hauber, Mark E

    2016-05-27

    In many social animals, early exposure to conspecific stimuli is critical for the development of accurate species recognition. Obligate brood parasitic songbirds, however, forego parental care and young are raised by heterospecific hosts in the absence of conspecific stimuli. Having evolved from non-parasitic, parental ancestors, how brood parasites recognize their own species remains unclear. In parental songbirds (e.g. zebra finch Taeniopygia guttata), the primary and secondary auditory forebrain areas are known to be critical in the differential processing of conspecific vs. heterospecific songs. Here we demonstrate that the same auditory brain regions underlie song discrimination in adult brood parasitic pin-tailed whydahs (Vidua macroura), a close relative of the zebra finch lineage. Similar to zebra finches, whydahs showed stronger behavioral responses during conspecific vs. heterospecific song and tone pips as well as increased neural responses within the auditory forebrain, as measured by both functional magnetic resonance imaging (fMRI) and immediate early gene (IEG) expression. Given parallel behavioral and neuroanatomical patterns of song discrimination, our results suggest that the evolutionary transition to brood parasitism from parental songbirds likely involved an "evolutionary tinkering" of existing proximate mechanisms, rather than the wholesale reworking of the neural substrates of species recognition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Evolutionary Analysis and Expression Profiling of Zebra Finch Immune Genes

    PubMed Central

    Ekblom, Robert; French, Lisa; Slate, Jon; Burke, Terry

    2010-01-01

    Genes of the immune system are generally considered to evolve rapidly due to host–parasite coevolution. They are therefore of great interest in evolutionary biology and molecular ecology. In this study, we manually annotated 144 avian immune genes from the zebra finch (Taeniopygia guttata) genome and conducted evolutionary analyses of these by comparing them with their orthologs in the chicken (Gallus gallus). Genes classified as immune receptors showed elevated dN/dS ratios compared with other classes of immune genes. Immune genes in general also appear to be evolving more rapidly than other genes, as inferred from a higher dN/dS ratio compared with the rest of the genome. Furthermore, ten genes (of 27) for which sequence data were available from at least three bird species showed evidence of positive selection acting on specific codons. From transcriptome data of eight different tissues, we found evidence for expression of 106 of the studied immune genes, with primary expression of most of these in bursa, blood, and spleen. These immune-related genes showed a more tissue-specific expression pattern than other genes in the zebra finch genome. Several of the avian immune genes investigated here provide strong candidates for in-depth studies of molecular adaptation in birds. PMID:20884724

  20. Chick Development and Asynchroneous Hatching in the Zebra Finch (Taeniopygia guttata castanotis).

    PubMed

    Ikebuchi, Maki; Okanoya, Kazuo; Hasegawa, Toshikazu; Bischof, Hans-Joachim

    2017-10-01

    The mode of hatching in birds has important impacts on both parents and chicks, including the costs and risks of breeding for parents, and sibling competition in a clutch. Birds with multiple eggs in a single clutch often begin incubating when most eggs are laid, thereby reducing time of incubation, nursing burden, and sibling competition. In some songbirds and some other species, however, incubation starts immediately after the first egg is laid, and the chicks thus hatch asynchronously. This may result in differences in parental care and in sibling competition based on body size differences among older and younger chicks, which in turn might produce asynchronous development among siblings favoring the first hatchling, and further affect the development and fitness of the chicks after fledging. To determine whether such processes in fact occur in the zebra finch, we observed chick development in 18 clutches of zebra finches. We found that there were effects of asynchronous hatching, but these were smaller than expected and mostly not significant. Our observations suggest that the amount of care given to each chick may be equated with such factors as a camouflage effect of the down feathers, and that the low illumination within the nest also complicates the determination of the hatching order by the parents.

  1. Growth and atrophy of neurons labeled at their birth in a song nucleus of the zebra finch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konishi, M.; Akutagawa, E.

    1990-05-01

    The robust nucleus of the archistriatum (RA) is one of the forebrain nuclei that control song production in birds. In the zebra finch (Poephila guttata), this nucleus contains more and larger neurons in the male than in the female. A single injection of tritiated thymidine into the egg on the 6th or 7th day of incubation resulted in labeling of many RA neurons with tritium. The size of tritium-labeled neurons and the tissue volume containing them did not differ between the sexes at 15 days after hatching. In the adult brain, tritium-labeled neurons and the tissue volume containing them weremore » much larger in the male than in the female. Also, tritium-labeled RA neurons were large in females which received an implant of estrogen immediately after hatching. The gender differences in the neuron size and nuclear volume of the zebra finch RA are, therefore, due not to the replacement of old neurons by new ones during development but to the growth and atrophy of neurons born before hatching. Similarly, the masculinizing effects of estrogen on the female RA are due not to neuronal replacement but to the prevention of atrophy and promotion of growth in preexisting neurons.« less

  2. In Vivo Recording of Single-Unit Activity during Singing in Zebra Finches

    PubMed Central

    Okubo, Tatsuo S.; Mackevicius, Emily L.; Fee, Michale S.

    2015-01-01

    The zebra finch is an important model for investigating the neural mechanisms that underlie vocal production and learning. Previous anatomical and gene expression studies have identified an interconnected set of brain areas in this organism that are important for singing. To advance our understanding of how these various brain areas act together to learn and produce a highly stereotyped song, it is necessary to record the activity of individual neurons during singing. Here, we present a protocol for recording single-unit activity in freely moving zebra finches during singing using a miniature, motorized microdrive. It includes procedures for both the microdrive implant surgery and the electrophysiological recordings. There are several advantages of this technique: (1) high-impedance electrodes can be used in the microdrive to obtain well-isolated single units; (2) a motorized microdrive is used to remotely control the electrode position, allowing neurons to be isolated without handling the bird, and (3) a lateral positioner is used to move electrodes into fresh tissue before each penetration, allowing recordings from well-isolated neurons over the course of several weeks. We also describe the application of the antidromic stimulation and the spike collision test to identify neurons based on the axonal projection patterns. PMID:25342072

  3. Social interaction with a tutor modulates responsiveness of specific auditory neurons in juvenile zebra finches.

    PubMed

    Yanagihara, Shin; Yazaki-Sugiyama, Yoko

    2018-04-12

    Behavioral states of animals, such as observing the behavior of a conspecific, modify signal perception and/or sensations that influence state-dependent higher cognitive behavior, such as learning. Recent studies have shown that neuronal responsiveness to sensory signals is modified when animals are engaged in social interactions with others or in locomotor activities. However, how these changes produce state-dependent differences in higher cognitive function is still largely unknown. Zebra finches, which have served as the premier songbird model, learn to sing from early auditory experiences with tutors. They also learn from playback of recorded songs however, learning can be greatly improved when song models are provided through social communication with tutors (Eales, 1989; Chen et al., 2016). Recently we found a subset of neurons in the higher-level auditory cortex of juvenile zebra finches that exhibit highly selective auditory responses to the tutor song after song learning, suggesting an auditory memory trace of the tutor song (Yanagihara and Yazaki-Sugiyama, 2016). Here we show that auditory responses of these selective neurons became greater when juveniles were paired with their tutors, while responses of non-selective neurons did not change. These results suggest that social interaction modulates cortical activity and might function in state-dependent song learning. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Genomic Landscape of Long Terminal Repeat Retrotransposons (LTR-RTs) and Solo LTRs as Shaped by Ectopic Recombination in Chicken and Zebra Finch.

    PubMed

    Ji, Yanzhu; DeWoody, J Andrew

    2016-06-01

    Transposable elements (TEs) are nearly ubiquitous among eukaryotic genomes, but TE contents vary dramatically among phylogenetic lineages. Several mechanisms have been proposed as drivers of TE dynamics in genomes, including the fixation/loss of a particular TE insertion by selection or drift as well as structural changes in the genome due to mutation (e.g., recombination). In particular, recombination can have a significant and directional effect on the genomic TE landscape. For example, ectopic recombination removes internal regions of long terminal repeat retrotransposons (LTR-RTs) as well as one long terminal repeat (LTR), resulting in a solo LTR. In this study, we focus on the intra-species dynamics of LTR-RTs and solo LTRs in bird genomes. The distribution of LTR-RTs and solo LTRs in birds is intriguing because avian recombination rates vary widely within a given genome. We used published linkage maps and whole genome assemblies to study the relationship between recombination rates and LTR-removal events in the chicken and zebra finch. We hypothesized that regions with low recombination rates would harbor more full-length LTR-RTs (and fewer solo LTRs) than regions with high recombination rates. We tested this hypothesis by comparing the ratio of full-length LTR-RTs and solo LTRs across chromosomes, across non-overlapping megabase windows, and across physical features (i.e., centromeres and telomeres). The chicken data statistically supported the hypothesis that recombination rates are inversely correlated with the ratio of full-length to solo LTRs at both the chromosome level and in 1-Mb non-overlapping windows. We also found that the ratio of full-length to solo LTRs near chicken telomeres was significantly lower than those ratios near centromeres. Our results suggest a potential role of ectopic recombination in shaping the chicken LTR-RT genomic landscape.

  5. "Bird Song Metronomics": Isochronous Organization of Zebra Finch Song Rhythm.

    PubMed

    Norton, Philipp; Scharff, Constance

    2016-01-01

    The human capacity for speech and vocal music depends on vocal imitation. Songbirds, in contrast to non-human primates, share this vocal production learning with humans. The process through which birds and humans learn many of their vocalizations as well as the underlying neural system exhibit a number of striking parallels and have been widely researched. In contrast, rhythm, a key feature of language, and music, has received surprisingly little attention in songbirds. Investigating temporal periodicity in bird song has the potential to inform the relationship between neural mechanisms and behavioral output and can also provide insight into the biology and evolution of musicality. Here we present a method to analyze birdsong for an underlying rhythmic regularity. Using the intervals from one note onset to the next as input, we found for each bird an isochronous sequence of time stamps, a "signal-derived pulse," or pulse(S), of which a subset aligned with all note onsets of the bird's song. Fourier analysis corroborated these results. To determine whether this finding was just a byproduct of the duration of notes and intervals typical for zebra finches but not dependent on the individual duration of elements and the sequence in which they are sung, we compared natural songs to models of artificial songs. Note onsets of natural song deviated from the pulse(S) significantly less than those of artificial songs with randomized note and gap durations. Thus, male zebra finch song has the regularity required for a listener to extract a perceived pulse (pulse(P)), as yet untested. Strikingly, in our study, pulses(S) that best fit note onsets often also coincided with the transitions between sub-note elements within complex notes, corresponding to neuromuscular gestures. Gesture durations often equaled one or more pulse(S) periods. This suggests that gesture duration constitutes the basic element of the temporal hierarchy of zebra finch song rhythm, an interesting parallel to the hierarchically structured components of regular rhythms in human music.

  6. “Bird Song Metronomics”: Isochronous Organization of Zebra Finch Song Rhythm

    PubMed Central

    Norton, Philipp; Scharff, Constance

    2016-01-01

    The human capacity for speech and vocal music depends on vocal imitation. Songbirds, in contrast to non-human primates, share this vocal production learning with humans. The process through which birds and humans learn many of their vocalizations as well as the underlying neural system exhibit a number of striking parallels and have been widely researched. In contrast, rhythm, a key feature of language, and music, has received surprisingly little attention in songbirds. Investigating temporal periodicity in bird song has the potential to inform the relationship between neural mechanisms and behavioral output and can also provide insight into the biology and evolution of musicality. Here we present a method to analyze birdsong for an underlying rhythmic regularity. Using the intervals from one note onset to the next as input, we found for each bird an isochronous sequence of time stamps, a “signal-derived pulse,” or pulseS, of which a subset aligned with all note onsets of the bird's song. Fourier analysis corroborated these results. To determine whether this finding was just a byproduct of the duration of notes and intervals typical for zebra finches but not dependent on the individual duration of elements and the sequence in which they are sung, we compared natural songs to models of artificial songs. Note onsets of natural song deviated from the pulseS significantly less than those of artificial songs with randomized note and gap durations. Thus, male zebra finch song has the regularity required for a listener to extract a perceived pulse (pulseP), as yet untested. Strikingly, in our study, pulsesS that best fit note onsets often also coincided with the transitions between sub-note elements within complex notes, corresponding to neuromuscular gestures. Gesture durations often equaled one or more pulseS periods. This suggests that gesture duration constitutes the basic element of the temporal hierarchy of zebra finch song rhythm, an interesting parallel to the hierarchically structured components of regular rhythms in human music. PMID:27458334

  7. Drinking Songs: Alcohol Effects on Learned Song of Zebra Finches

    PubMed Central

    Olson, Christopher R.; Owen, Devin C.; Ryabinin, Andrey E.; Mello, Claudio V.

    2014-01-01

    Speech impairment is one of the most intriguing and least understood effects of alcohol on cognitive function, largely due to the lack of data on alcohol effects on vocalizations in the context of an appropriate experimental model organism. Zebra finches, a representative songbird and a premier model for understanding the neurobiology of vocal production and learning, learn song in a manner analogous to how humans learn speech. Here we show that when allowed access, finches readily drink alcohol, increase their blood ethanol concentrations (BEC) significantly, and sing a song with altered acoustic structure. The most pronounced effects were decreased amplitude and increased entropy, the latter likely reflecting a disruption in the birds’ ability to maintain the spectral structure of song under alcohol. Furthermore, specific syllables, which have distinct acoustic structures, were differentially influenced by alcohol, likely reflecting a diversity in the neural mechanisms required for their production. Remarkably, these effects on vocalizations occurred without overt effects on general behavioral measures, and importantly, they occurred within a range of BEC that can be considered risky for humans. Our results suggest that the variable effects of alcohol on finch song reflect differential alcohol sensitivity of the brain circuitry elements that control different aspects of song production. They also point to finches as an informative model for understanding how alcohol affects the neuronal circuits that control the production of learned motor behaviors. PMID:25536524

  8. Sex-dependent effects of nutrition on telomere dynamics in zebra finches (Taeniopygia guttata)

    PubMed Central

    Noguera, Jose C.; Metcalfe, Neil B.; Boner, Winnie; Monaghan, Pat

    2015-01-01

    At a cellular level, oxidative stress is known to increase telomere attrition, and hence cellular senescence and risk of disease. It has been proposed that dietary micronutrients play an important role in telomere protection due to their antioxidant properties. We experimentally manipulated dietary micronutrients during early life in zebra finches (Taeniopygia guttata). We found no effects of micronutrient intake on telomere loss during chick growth. However, females given a diet high in micronutrients during sexual maturation showed reduced telomere loss; there was no such effect in males. These results suggest that micronutrients may influence rates of cellular senescence, but differences in micronutrient requirement and allocation strategies, probably linked to the development of sexual coloration, may underlie sex differences in response. PMID:25716087

  9. A comparison of spontaneous problem-solving abilities in three estrildid finch (Taeniopygia guttata, Lonchura striata var. domestica, Stagonopleura guttata) species.

    PubMed

    Schmelz, Martin; Krüger, Oliver; Call, Josep; Krause, E Tobias

    2015-11-01

    Cognition has been extensively studied in primates while other, more distantly related taxa have been neglected for a long time. More recently, there has been an increased interest in avian cognition, with the focus mostly on big-brained species like parrots and corvids. However, the majority of bird species has never systematically been studied in diverse cognitive tasks other than memory and learning tasks, so not much can yet be concluded about the relevant factors for the evolution of cognition. Here we examined 3 species of the estrildid finch family in problem-solving tasks. These granivorous, non-tool-using birds are distributed across 3 continents and are not known for high levels of innovation or spontaneous problem solving in the wild. In this study, our aim was to find such abilities in these species, assess what role domestication might play with a comparison of 4 genetically separated zebra finch strains, and to look for between-species differences between zebra finches, Bengalese finches, and diamond firetails. Furthermore, we established a 3-step spontaneous problem-solving procedure with increasing levels of complexity. Results showed that some estrildid finches were generally capable of spontaneously solving problems of variable complexity to obtain food. We found striking differences in these abilities between species, but not between strains within species, and offer a discussion of potential reasons. Our established methodology can now be applied to a larger number of bird species for phylogenetic comparisons on the behavioral level to get a deeper understanding of the evolution of cognitive abilities. (c) 2015 APA, all rights reserved).

  10. Experimental exposure to urban and pink noise affects brain development and song learning in zebra finches (Taenopygia guttata)

    PubMed Central

    Curcio, Michael T.; Swaddle, John P.; MacDougall-Shackleton, Scott A.

    2016-01-01

    Recently, numerous studies have observed changes in bird vocalizations—especially song—in urban habitats. These changes are often interpreted as adaptive, since they increase the active space of the signal in its environment. However, the proximate mechanisms driving cross-generational changes in song are still unknown. We performed a captive experiment to identify whether noise experienced during development affects song learning and the development of song-control brain regions. Zebra finches (Taeniopygia guttata) were bred while exposed, or not exposed, to recorded traffic urban noise (Study 1) or pink noise (Study 2). We recorded the songs of male offspring and compared these to fathers’ songs. We also measured baseline corticosterone and measured the size of song-control brain regions when the males reached adulthood (Study 1 only). While male zebra finches tended to copy syllables accurately from tutors regardless of noise environment, syntax (the ordering of syllables within songs) was incorrectly copied affected by juveniles exposed to noise. Noise did not affect baseline corticosterone, but did affect the size of brain regions associated with song learning: these regions were smaller in males that had been had been exposed to recorded traffic urban noise in early development. These findings provide a possible mechanism by which noise affects behaviour, leading to potential population differences between wild animals occupying noisier urban environments compared with those in quieter habitats. PMID:27602270

  11. Experimental exposure to urban and pink noise affects brain development and song learning in zebra finches (Taenopygia guttata).

    PubMed

    Potvin, Dominique A; Curcio, Michael T; Swaddle, John P; MacDougall-Shackleton, Scott A

    2016-01-01

    Recently, numerous studies have observed changes in bird vocalizations-especially song-in urban habitats. These changes are often interpreted as adaptive, since they increase the active space of the signal in its environment. However, the proximate mechanisms driving cross-generational changes in song are still unknown. We performed a captive experiment to identify whether noise experienced during development affects song learning and the development of song-control brain regions. Zebra finches (Taeniopygia guttata) were bred while exposed, or not exposed, to recorded traffic urban noise (Study 1) or pink noise (Study 2). We recorded the songs of male offspring and compared these to fathers' songs. We also measured baseline corticosterone and measured the size of song-control brain regions when the males reached adulthood (Study 1 only). While male zebra finches tended to copy syllables accurately from tutors regardless of noise environment, syntax (the ordering of syllables within songs) was incorrectly copied affected by juveniles exposed to noise. Noise did not affect baseline corticosterone, but did affect the size of brain regions associated with song learning: these regions were smaller in males that had been had been exposed to recorded traffic urban noise in early development. These findings provide a possible mechanism by which noise affects behaviour, leading to potential population differences between wild animals occupying noisier urban environments compared with those in quieter habitats.

  12. The influence of inherited plumage colour morph on morphometric traits and breeding investment in zebra finches (Taeniopygia guttata).

    PubMed

    Krause, E Tobias; Krüger, Oliver; Hoffman, Joseph I

    2017-01-01

    Melanin-based plumage polymorphism occurs in many wild bird populations and has been linked to fitness variation in several species. These fitness differences often arise as a consequence of variation in traits such as behaviour, immune responsiveness, body size and reproductive investment. However, few studies have controlled for genetic differences between colour morphs that could potentially generate artefactual associations between plumage colouration and trait variation. Here, we used zebra finches (Taeniopygia guttata) as a model system in order to evaluate whether life-history traits such as adult body condition and reproductive investment could be influenced by plumage morph. To maximise any potential differences, we selected wild-type and white plumage morphs, which differ maximally in their extent of melanisation, while using a controlled three-generation breeding design to homogenise the genetic background. We found that F2 adults with white plumage colouration were on average lighter and had poorer body condition than wild-type F2 birds. However, they appeared to compensate for this by reproducing earlier and producing heavier eggs relative to their own body mass. Our study thus reveals differences in morphological and life history traits that could be relevant to fitness variation, although further studies will be required to evaluate fitness effects under natural conditions as well as to characterise any potential fitness costs of compensatory strategies in white zebra finches.

  13. Developmental effects of vasotocin and nonapeptide receptors on early social attachment and affiliative behavior in the zebra finch.

    PubMed

    Baran, Nicole M; Sklar, Nathan C; Adkins-Regan, Elizabeth

    2016-02-01

    Zebra finches demonstrate selective affiliation between juvenile offspring and parents, which, like affiliation between pair partners, is characterized by proximity, vocal communication and contact behaviors. This experiment tested the hypothesis that the nonapeptide arginine vasotocin (AVT, avian homologue of vasopressin) and nonapeptide receptors play a role prior to fledging in the development of affiliative behavior. Zebra finch hatchlings of both sexes received daily intracranial injections (post-hatch days 2-8) of either AVT, Manning Compound (MC, a potent V1a receptor antagonist) or saline (vehicle control). The social development of both sexes was assessed by measuring responsiveness to isolation from the family and subsequent reunion with the male parent after fledging. In addition, we assessed the changes in affiliation with the parents, unfamiliar males, and unfamiliar females each week throughout juvenile development. Compared to controls, MC subjects showed decreased attachment to the parents and MC males did not show the normal increase in affiliative interest in opposite sex individuals as they reached reproductive maturity. In contrast, AVT subjects showed a sustained affiliative interest in parents throughout development, and males showed increased interest in opposite sex conspecifics as they matured. These results provide the first evidence suggesting that AVT and nonapeptide receptors play organizational roles in social development in a bird. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Three IgH isotypes, IgM, IgA and IgY are expressed in Gentoo penguin and zebra finch.

    PubMed

    Han, Binyue; Li, Yan; Han, Haitang; Zhao, Yaofeng; Pan, Qingjie; Ren, Liming

    2017-01-01

    Previous studies on a limited number of birds suggested that the IgD-encoding gene was absent in birds. However, one of our recent studies showed that the gene was definitely expressed in the ostrich and emu. Interestingly, we also identified subclass diversification of IgM and IgY in these two birds. To better understand immunoglobulin genes in birds, in this study, we analyzed the immunoglobulin heavy chain genes in the zebra finch (Taeniopygia guttata) and Gentoo penguin (Pygoscelis papua), belonging respectively to the order Passeriformes, the most successful bird order in terms of species diversity and numbers, and Sphenisciformes, a relatively primitive avian order. Similar to the results obtained in chickens and ducks, only three genes encoding immunoglobulin heavy chain isotypes, IgM, IgA and IgY, were identified in both species. Besides, we detected a transcript encoding a short membrane-bound IgA lacking the last two CH exons in the Gentoo penguin. We did not find any evidence supporting the presence of IgD gene or subclass diversification of IgM/IgY in penguin or zebra finch. The obtained data in our study provide more insights into the immunoglobulin heavy chain genes in birds and may help to better understand the evolution of immunoglobulin genes in tetrapods.

  15. Courtship song preferences in female zebra finches are shaped by developmental auditory experience.

    PubMed

    Chen, Yining; Clark, Oliver; Woolley, Sarah C

    2017-05-31

    The performance of courtship signals provides information about the behavioural state and quality of the signaller, and females can use such information for social decision-making (e.g. mate choice). However, relatively little is known about the degree to which the perception of and preference for differences in motor performance are shaped by developmental experiences. Furthermore, the neural substrates that development could act upon to influence the processing of performance features remains largely unknown. In songbirds, females use song to identify males and select mates. Moreover, female songbirds are often sensitive to variation in male song performance. Consequently, we investigated how developmental exposure to adult male song affected behavioural and neural responses to song in a small, gregarious songbird, the zebra finch. Zebra finch males modulate their song performance when courting females, and previous work has shown that females prefer the high-performance, female-directed courtship song. However, unlike females allowed to hear and interact with an adult male during development, females reared without developmental song exposure did not demonstrate behavioural preferences for high-performance courtship songs. Additionally, auditory responses to courtship and non-courtship song were altered in adult females raised without developmental song exposure. These data highlight the critical role of developmental auditory experience in shaping the perception and processing of song performance. © 2017 The Author(s).

  16. Juvenile zebra finches learn the underlying structural regularities of their fathers’ song

    PubMed Central

    Menyhart, Otília; Kolodny, Oren; Goldstein, Michael H.; DeVoogd, Timothy J.; Edelman, Shimon

    2015-01-01

    Natural behaviors, such as foraging, tool use, social interaction, birdsong, and language, exhibit branching sequential structure. Such structure should be learnable if it can be inferred from the statistics of early experience. We report that juvenile zebra finches learn such sequential structure in song. Song learning in finches has been extensively studied, and it is generally believed that young males acquire song by imitating tutors (Zann, 1996). Variability in the order of elements in an individual’s mature song occurs, but the degree to which variation in a zebra finch’s song follows statistical regularities has not been quantified, as it has typically been dismissed as production error (Sturdy et al., 1999). Allowing for the possibility that such variation in song is non-random and learnable, we applied a novel analytical approach, based on graph-structured finite-state grammars, to each individual’s full corpus of renditions of songs. This method does not assume syllable-level correspondence between individuals. We find that song variation can be described by probabilistic finite-state graph grammars that are individually distinct, and that the graphs of juveniles are more similar to those of their fathers than to those of other adult males. This grammatical learning is a new parallel between birdsong and language. Our method can be applied across species and contexts to analyze complex variable learned behaviors, as distinct as foraging, tool use, and language. PMID:26005428

  17. The influence of inherited plumage colour morph on morphometric traits and breeding investment in zebra finches (Taeniopygia guttata)

    PubMed Central

    Krüger, Oliver

    2017-01-01

    Melanin-based plumage polymorphism occurs in many wild bird populations and has been linked to fitness variation in several species. These fitness differences often arise as a consequence of variation in traits such as behaviour, immune responsiveness, body size and reproductive investment. However, few studies have controlled for genetic differences between colour morphs that could potentially generate artefactual associations between plumage colouration and trait variation. Here, we used zebra finches (Taeniopygia guttata) as a model system in order to evaluate whether life-history traits such as adult body condition and reproductive investment could be influenced by plumage morph. To maximise any potential differences, we selected wild-type and white plumage morphs, which differ maximally in their extent of melanisation, while using a controlled three-generation breeding design to homogenise the genetic background. We found that F2 adults with white plumage colouration were on average lighter and had poorer body condition than wild-type F2 birds. However, they appeared to compensate for this by reproducing earlier and producing heavier eggs relative to their own body mass. Our study thus reveals differences in morphological and life history traits that could be relevant to fitness variation, although further studies will be required to evaluate fitness effects under natural conditions as well as to characterise any potential fitness costs of compensatory strategies in white zebra finches. PMID:29190647

  18. Effects of early developmental conditions on innate immunity are only evident under favourable adult conditions in zebra finches

    NASA Astrophysics Data System (ADS)

    de Coster, Greet; Verhulst, Simon; Koetsier, Egbert; de Neve, Liesbeth; Briga, Michael; Lens, Luc

    2011-12-01

    Long-term effects of unfavourable conditions during development can be expected to depend on the quality of the environment experienced by the same individuals during adulthood. Yet, in the majority of studies, long-term effects of early developmental conditions have been assessed under favourable adult conditions only. The immune system might be particularly vulnerable to early environmental conditions as its development, maintenance and use are thought to be energetically costly. Here, we studied the interactive effects of favourable and unfavourable conditions during nestling and adult stages on innate immunity (lysis and agglutination scores) of captive male and female zebra finches ( Taeniopygia guttata). Nestling environmental conditions were manipulated by a brood size experiment, while a foraging cost treatment was imposed on the same individuals during adulthood. This combined treatment showed that innate immunity of adult zebra finches is affected by their early developmental conditions and varies between both sexes. Lysis scores, but not agglutination scores, were higher in individuals raised in small broods and in males. However, these effects were only present in birds that experienced low foraging costs. This study shows that the quality of the adult environment may shape the long-term consequences of early developmental conditions on innate immunity, as long-term effects of nestling environment were only evident under favourable adult conditions.

  19. Overexpression of human NR2B receptor subunit in LMAN causes stuttering and song sequence changes in adult zebra finches.

    PubMed

    Chakraborty, Mukta; Chen, Liang-Fu; Fridel, Emma E; Klein, Marguerita E; Senft, Rebecca A; Sarkar, Abhra; Jarvis, Erich D

    2017-04-21

    Zebra finches (Taeniopygia guttata) learn to produce songs in a manner reminiscent of spoken language development in humans. One candidate gene implicated in influencing learning is the N-methyl-D-aspartate (NMDA) subtype 2B glutamate receptor (NR2B). Consistent with this idea, NR2B levels are high in the song learning nucleus LMAN (lateral magnocellular nucleus of the anterior nidopallium) during juvenile vocal learning, and decreases to low levels in adults after learning is complete and the song becomes more stereotyped. To test for the role of NR2B in generating song plasticity, we manipulated NR2B expression in LMAN of adult male zebra finches by increasing its protein levels to those found in juvenile birds, using a lentivirus containing the full-length coding sequence of the human NR2B subunit. We found that increased NR2B expression in adult LMAN induced increases in song sequence diversity and slower song tempo more similar to juvenile songs, but also increased syllable repetitions similar to stuttering. We did not observe these effects in control birds with overexpression of NR2B outside of LMAN or with the green fluorescent protein (GFP) in LMAN. Our results suggest that low NR2B subunit expression in adult LMAN is important in conserving features of stereotyped adult courtship song.

  20. A house finch (Haemorhous mexicanus) spleen transcriptome reveals intra- and interspecific patterns of gene expression, alternative splicing and genetic diversity in passerines.

    PubMed

    Zhang, Qu; Hill, Geoffrey E; Edwards, Scott V; Backström, Niclas

    2014-04-24

    With its plumage color dimorphism and unique history in North America, including a recent population expansion and an epizootic of Mycoplasma gallisepticum (MG), the house finch (Haemorhous mexicanus) is a model species for studying sexual selection, plumage coloration and host-parasite interactions. As part of our ongoing efforts to make available genomic resources for this species, here we report a transcriptome assembly derived from genes expressed in spleen. We characterize transcriptomes from two populations with different histories of demography and disease exposure: a recently founded population in the eastern US that has been exposed to MG for over a decade and a native population from the western range that has never been exposed to MG. We utilize this resource to quantify conservation in gene expression in passerine birds over approximately 50 MY by comparing splenic expression profiles for 9,646 house finch transcripts and those from zebra finch and find that less than half of all genes expressed in spleen in either species are expressed in both species. Comparative gene annotations from several vertebrate species suggest that the house finch transcriptomes contain ~15 genes not yet found in previously sequenced vertebrate genomes. The house finch transcriptomes harbour ~85,000 SNPs, ~20,000 of which are non-synonymous. Although not yet validated by biological or technical replication, we identify a set of genes exhibiting differences between populations in gene expression (n = 182; 2% of all transcripts), allele frequencies (76 FST ouliers) and alternative splicing as well as genes with several fixed non-synonymous substitutions; this set includes genes with functions related to double-strand break repair and immune response. The two house finch spleen transcriptome profiles will add to the increasing data on genome and transcriptome sequence information from natural populations. Differences in splenic expression between house finch and zebra finch imply either significant evolutionary turnover of splenic expression patterns or different physiological states of the individuals examined. The transcriptome resource will enhance the potential to annotate an eventual house finch genome, and the set of gene-based high-quality SNPs will help clarify the genetic underpinnings of host-pathogen interactions and sexual selection.

  1. A Role for Nonapeptides and Dopamine in Nest-Building Behaviour

    PubMed Central

    Hall, Z J; Healy, S D; Meddle, S L

    2015-01-01

    During nest building in zebra finches (Taeniopygia guttata), several regions in the social behaviour network and the dopaminergic reward system, which are two neural circuits involved in social behaviour, appear to be active in male and female nest-building finches. Because the nonapeptides, mesotocin and vasotocin and the neurotransmitter, dopamine, play important roles in avian social behaviour, we tested the hypothesis that mesotocinergic-vasotocinergic and dopaminergic neuronal populations in the social behaviour network and dopaminergic reward system, respectively, are active during nest building. We combined immunohistochemistry for Fos (an indirect marker of neuronal activity) and vasotocin, mesotocin or tyrosine hydroxylase on brain tissue from nest-building and non-nest-building male and female zebra finches and compared Fos immunoreactivity in these neuronal populations with the variation in nest-building behaviour. Fos immunoreactivity in all three types of neuronal populations increased with some aspect of nest building: (i) higher immunoreactivity in a mesotocinergic neuronal population of nest-building finches compared to controls; (ii) increased immunoreactivity in the vasotocinergic neuronal populations in relation to the amount of material picked up by nest-building males and the length of time that a male spent in the nest with his mate; and (iii) increased immunoreactivity in a dopaminergic neuronal population in relation to the length of time that a male nest-building finch spent in the nest with his mate. Taken together, these findings provide evidence for a role of the mesotocinergic-vasotocinergic and dopaminergic systems in avian nest building. PMID:25514990

  2. Form of Dietary Methylmercury does not Affect Total Mercury Accumulation in the Tissues of Zebra Finch.

    PubMed

    Varian-Ramos, Claire W; Whitney, Margaret; Rice, Gary W; Cristol, Daniel A

    2017-07-01

    Exposure to mercury in humans, other mammals, and birds is primarily dietary, with mercury in the methylated form and bound to cysteine in the tissues of prey items. Yet dosing studies are generally carried out using methylmercury chloride. Here we tested whether the accumulation of total mercury in zebra finch blood, egg, muscle, liver, kidney or brain differed depending on whether dietary mercury was complexed with chloride or cysteine. We found no effect of form of mercury on tissue accumulation. Some previous studies have found lower accumulation of mercury in tissues of animals fed complexed mercury. Much remains to be understood about what happens to ingested mercury once it enters the intestines, but our results suggest that dietary studies using methylmercury chloride in birds will produce similar tissue accumulation levels to those using methylmercury cysteine.

  3. Sex-biased investment in yolk androgens depends on female quality and laying order in zebra finches (Taeniopygia guttata)

    NASA Astrophysics Data System (ADS)

    Gilbert, Lucy; Rutstein, Alison N.; Hazon, Neil; Graves, Jefferson A.

    2005-04-01

    The Trivers-Willard hypothesis predicts sex biases in parental investment according to parental condition. In addition, parents may need to sex bias their investment if there is an asymmetry between the sexes in offspring fitness under different conditions. For studying maternal differential investment, egg resources are ideal subjects because they are self contained and allocated unequivocally by the female. Recent studies show that yolk androgens can be beneficial to offspring, so here we test for sex-biased investment with maternal investment of yolk testosterone (T) in zebra finch (Taeniopygia guttata) eggs. From the Trivers-Willard hypothesis, we predicted females to invest more in male eggs in optimum circumstances (e.g. good-condition mother, early-laid egg), and more in female eggs under suboptimal conditions (e.g. poor-condition mother, late-laid egg). This latter prediction is also because in this species there is a female nestling disadvantage in poor conditions and we expected mothers to help compensate for this in female eggs. Indeed, we found more yolk T in female than male eggs. Moreover, in accordance with our predictions, yolk T in male eggs increased with maternal quality relative to female eggs, and decreased with laying order relative to female eggs. This supports our predictions for the different needs and value of male and female offspring in zebra finches. Our results support the idea that females may use yolk androgens as a tool to adaptively manipulate the inequalities between different nestlings.

  4. The Vocal Repertoire of the Domesticated Zebra Finch: a Data Driven Approach to Decipher the Information-bearing Acoustic Features of Communication Signals

    PubMed Central

    Elie, Julie E.; Theunissen, Frédéric E.

    2018-01-01

    Although a universal code for the acoustic features of animal vocal communication calls may not exist, the thorough analysis of the distinctive acoustical features of vocalization categories is important not only to decipher the acoustical code for a specific species but also to understand the evolution of communication signals and the mechanisms used to produce and understand them. Here, we recorded more than 8,000 examples of almost all the vocalizations of the domesticated zebra finch, Taeniopygia guttata: vocalizations produced to establish contact, to form and maintain pair bonds, to sound an alarm, to communicate distress or to advertise hunger or aggressive intents. We characterized each vocalization type using complete representations that avoided any a priori assumptions on the acoustic code, as well as classical bioacoustics measures that could provide more intuitive interpretations. We then used these acoustical features to rigorously determine the potential information-bearing acoustical features for each vocalization type using both a novel regularized classifier and an unsupervised clustering algorithm. Vocalization categories are discriminated by the shape of their frequency spectrum and by their pitch saliency (noisy to tonal vocalizations) but not particularly by their fundamental frequency. Notably, the spectral shape of zebra finch vocalizations contains peaks or formants that vary systematically across categories and that would be generated by active control of both the vocal organ (source) and the upper vocal tract (filter). PMID:26581377

  5. Amygdala and socio-sexual behavior in male zebra finches.

    PubMed

    Ikebuchi, Maki; Hasegawa, Toshikazu; Bischof, Hans-Joachim

    2009-01-01

    Neuroanatomical studies including pathway tracing and cytochemical characterizations have suggested that the avian nucleus taeniae of the amygdala (TnA) might be homologous to a part of the mammalian medial amygdala. Recent behavioral observations in TnA-lesioned birds also reported deficits in the control of motivational aspects of behavior, advancing the concept of homology of the structure in the two classes of animals. To further examine the functional role of TnA, we used a highly social, monogamous song bird species, the zebra finch, for our experiments. Male birds received a focal lesion of TnA, and several aspects of socio-sexual behavior of these animals were compared with control bird behavior. We found that zebra finch males with TnA lesions were never chosen as sexual partners by a female in a triadic situation with another male because they showed less sexually motivated behavior. Because such sexually motivated behavior was shown in dyadic situations with a lesioned male and a female, however, and females in this situation also showed pair bonding behavior towards the lesioned males, TnA might be involved in other behaviors, not just sexual behavior towards females. Instead, it might play a role in the control of a variety of social encounters including male-female and male-male interactions. This research clearly indicates that TnA, by its involvement in the control of socio-sexual behavior, is functionally comparable with the mammalian medial amygdala. 2009 S. Karger AG, Basel.

  6. Small molecule analysis and imaging of fatty acids in the zebra finch song system using time-of-flight-secondary ion mass spectrometry.

    PubMed

    Amaya, Kensey R; Sweedler, Jonathan V; Clayton, David F

    2011-08-01

    Fatty acids are central to brain metabolism and signaling, but their distributions within complex brain circuits have been difficult to study. Here we applied an emerging technique, time-of-flight secondary ion mass spectrometry (ToF-SIMS), to image specific fatty acids in a favorable model system for chemical analyses of brain circuits, the zebra finch (Taeniopygia guttata). The zebra finch, a songbird, produces complex learned vocalizations under the control of an interconnected set of discrete, dedicated brain nuclei 'song nuclei'. Using ToF-SIMS, the major song nuclei were visualized by virtue of differences in their content of essential and non-essential fatty acids. Essential fatty acids (arachidonic acid and docosahexaenoic acid) showed distinctive distributions across the song nuclei, and the 18-carbon fatty acids stearate and oleate discriminated the different core and shell subregions of the lateral magnocellular nucleus of the anterior nidopallium. Principal component analysis of the spectral data set provided further evidence of chemical distinctions between the song nuclei. By analyzing the robust nucleus of the arcopallium at three different ages during juvenile song learning, we obtain the first direct evidence of changes in lipid content that correlate with progression of song learning. The results demonstrate the value of ToF-SIMS to study lipids in a favorable model system for probing the function of lipids in brain organization, development and function. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  7. Genomic resources for songbird research and their use in characterizing gene expression during brain development

    PubMed Central

    Li, XiaoChing; Wang, Xiu-Jie; Tannenhauser, Jonathan; Podell, Sheila; Mukherjee, Piali; Hertel, Moritz; Biane, Jeremy; Masuda, Shoko; Nottebohm, Fernando; Gaasterland, Terry

    2007-01-01

    Vocal learning and neuronal replacement have been studied extensively in songbirds, but until recently, few molecular and genomic tools for songbird research existed. Here we describe new molecular/genomic resources developed in our laboratory. We made cDNA libraries from zebra finch (Taeniopygia guttata) brains at different developmental stages. A total of 11,000 cDNA clones from these libraries, representing 5,866 unique gene transcripts, were randomly picked and sequenced from the 3′ ends. A web-based database was established for clone tracking, sequence analysis, and functional annotations. Our cDNA libraries were not normalized. Sequencing ESTs without normalization produced many developmental stage-specific sequences, yielding insights into patterns of gene expression at different stages of brain development. In particular, the cDNA library made from brains at posthatching day 30–50, corresponding to the period of rapid song system development and song learning, has the most diverse and richest set of genes expressed. We also identified five microRNAs whose sequences are highly conserved between zebra finch and other species. We printed cDNA microarrays and profiled gene expression in the high vocal center of both adult male zebra finches and canaries (Serinus canaria). Genes differentially expressed in the high vocal center were identified from the microarray hybridization results. Selected genes were validated by in situ hybridization. Networks among the regulated genes were also identified. These resources provide songbird biologists with tools for genome annotation, comparative genomics, and microarray gene expression analysis. PMID:17426146

  8. Intracerebral estrogen provision increases cytogenesis and neurogenesis in the injured zebra finch brain

    PubMed Central

    Walters, Bradley J.; Alexiades, Nikita G.; Saldanha, Colin J.

    2010-01-01

    To determine whether or not local, injury-induced aromatization and/orestrogen provision can affect cyto-or neuro-genesis following mechanical brain damage, two groups of adult male zebra finches sustained bilateral penetrating brain injuries. The first received contralateral injections of vehicle or the aromatase inhibitor fadrozole. The second group received contalateral injections of fadrozole, or fadrozole with 17β-estradiol. Subsequent to injury, birds were injected with the thymidine analog 5-Bromo-2′-deoxyuridine (BrdU). Two weeks following injury, the birds were perfused, and coronal sections were labeled using antibodies against BrdU and the neuronal proteins HuC/HuD. In a double blind fashion, BrdU positive cells and BrdU/Hu double-labeled cells in the subventricular zone (SVZ) and at the injury site (INJ) were imaged and sampled. The average numbers of cells per image were compared across brain regions and treatments using repeated measures ANOVAs and, where applicable, post-hoc, pairwise comparisons. Fadrozole administration had no detectable effect on cytogenesis or neurogenesis, however, fadrozole coupled with estradiol significantly increased both measures. The dorsal SVZ had the greatest proportion of new cells that differentiated into neurons, though the highest numbers of BrdU labeled and BrdU, Hu double-labeled cells were detected at the injury site. In the adult zebra finch brain, local estradiol provision can increase cytogenesis and neurogenesis, however, whether or not endogenous glial aromatization is sufficient to similarly affect these processes remains to be seen. PMID:20878945

  9. Zebra finches are able to learn affixation-like patterns.

    PubMed

    Chen, Jiani; Jansen, Naomi; ten Cate, Carel

    2016-01-01

    Adding an affix to transform a word is common across the world languages, with the edges of words more likely to carry out such a function. However, detecting affixation patterns is also observed in learning tasks outside the domain of language, suggesting that the underlying mechanism from which affixation patterns have arisen may not be language or even human specific. We addressed whether a songbird, the zebra finch, is able to discriminate between, and generalize, affixation-like patterns. Zebra finches were trained and tested in a Go/Nogo paradigm to discriminate artificial song element sequences resembling prefixed and suffixed 'words.' The 'stems' of the 'words,' consisted of different combinations of a triplet of song elements, to which a fourth element was added as either a 'prefix' or a 'suffix.' After training, the birds were tested with novel stems, consisting of either rearranged familiar element types or novel element types. The birds were able to generalize the affixation patterns to novel stems with both familiar and novel element types. Hence, the discrimination resulting from the training was not based on memorization of individual stimuli, but on a shared property among Go or Nogo stimuli, i.e., affixation patterns. Remarkably, birds trained with suffixation as Go pattern showed clear evidence of using both prefix and suffix, while those trained with the prefix as the Go stimulus used primarily the prefix. This finding illustrates that an asymmetry in attending to different affixations is not restricted to human languages.

  10. A sensorimotor area in the songbird brain is required for production of vocalizations in the song learning period of development.

    PubMed

    Piristine, Hande C; Choetso, Tenzin; Gobes, Sharon M H

    2016-11-01

    Sensory feedback is essential for acquiring and maintaining complex motor behaviors, including birdsong. In zebra finches, auditory feedback reaches the song control circuits primarily through the nucleus interfacialis nidopalii (Nif), which provides excitatory input to HVC (proper name)-a premotor region essential for the production of learned vocalizations. Despite being one of the major inputs to the song control pathway, the role of Nif in generating vocalizations is not well understood. To address this, we transiently inactivated Nif in late juvenile zebra finches. Upon Nif inactivation (in both hemispheres or on one side only), birds went from singing stereotyped zebra finch song to uttering highly variable and unstructured vocalizations resembling sub-song, an early juvenile song form driven by a basal ganglia circuit. Simultaneously inactivating Nif and LMAN (lateral magnocellular nucleus of the anterior nidopallium), the output nucleus of a basal ganglia circuit, inhibited song production altogether. These results suggest that Nif is required for generating the premotor drive for song. Permanent Nif lesions, in contrast, have only transient effects on vocal production, with song recovering within a day. The sensorimotor nucleus Nif thus produces a premotor drive to the motor pathway that is acutely required for generating learned vocalizations, but once permanently removed, the song system can compensate for its absence. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1213-1225, 2016. © 2016 Wiley Periodicals, Inc.

  11. Temporary inactivation of NCM, an auditory region, increases social interaction and decreases song perception in female zebra finches.

    PubMed

    Tomaszycki, Michelle L; Blaine, Sara K

    2014-10-01

    The caudomedial nidopallium (NCM) is an important site for the storage of auditory memories, particularly song, in passerines. In zebra finches, males sing and females do not, but females use song to choose mates. The extent to which the NCM is necessary for female mate choice is not well understood. To investigate the role of NCM in partner preferences, adult female zebra finches were bilaterally implanted with chronic cannulae directed at the NCM. Lidocaine, a sodium channel blocker, or saline (control) was infused into the NCM of females using a repeated measures design. Females were then tested in 3 separate paradigms: song preference, sexual partner preference, and pairing behavior/partner preference. We hypothesized that lidocaine would increase interactions with males by decreasing song discrimination and that this would be further evident in the song discrimination task. Indeed, females, when treated with lidocaine, had no preference for males singing unaltered song over males singing distorted song. These same females, when treated with saline, demonstrated a significant preference for males singing normal song. Furthermore, females affiliated with males more after receiving lidocaine than after receiving saline in the pairing paradigm, although neither treatment led to the formation of a partner preference. Our results support the hypothesis that NCM plays an important role not only in song discrimination, but also affiliation with a male. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. A role for nonapeptides and dopamine in nest-building behaviour.

    PubMed

    Hall, Z J; Healy, S D; Meddle, S L

    2015-02-01

    During nest building in zebra finches (Taeniopygia guttata), several regions in the social behaviour network and the dopaminergic reward system, which are two neural circuits involved in social behaviour, appear to be active in male and female nest-building finches. Because the nonapeptides, mesotocin and vasotocin and the neurotransmitter, dopamine, play important roles in avian social behaviour, we tested the hypothesis that mesotocinergic-vasotocinergic and dopaminergic neuronal populations in the social behaviour network and dopaminergic reward system, respectively, are active during nest building. We combined immunohistochemistry for Fos (an indirect marker of neuronal activity) and vasotocin, mesotocin or tyrosine hydroxylase on brain tissue from nest-building and non-nest-building male and female zebra finches and compared Fos immunoreactivity in these neuronal populations with the variation in nest-building behaviour. Fos immunoreactivity in all three types of neuronal populations increased with some aspect of nest building: (i) higher immunoreactivity in a mesotocinergic neuronal population of nest-building finches compared to controls; (ii) increased immunoreactivity in the vasotocinergic neuronal populations in relation to the amount of material picked up by nest-building males and the length of time that a male spent in the nest with his mate; and (iii) increased immunoreactivity in a dopaminergic neuronal population in relation to the length of time that a male nest-building finch spent in the nest with his mate. Taken together, these findings provide evidence for a role of the mesotocinergic-vasotocinergic and dopaminergic systems in avian nest building. © 2014 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology.

  13. An Avian Basal Ganglia-Forebrain Circuit Contributes Differentially to Syllable Versus Sequence Variability of Adult Bengalese Finch Song

    PubMed Central

    Hampton, Cara M.; Sakata, Jon T.; Brainard, Michael S.

    2009-01-01

    Behavioral variability is important for motor skill learning but continues to be present and actively regulated even in well-learned behaviors. In adult songbirds, two types of song variability can persist and are modulated by social context: variability in syllable structure and variability in syllable sequencing. The degree to which the control of both types of adult variability is shared or distinct remains unknown. The output of a basal ganglia-forebrain circuit, LMAN (the lateral magnocellular nucleus of the anterior nidopallium), has been implicated in song variability. For example, in adult zebra finches, neurons in LMAN actively control the variability of syllable structure. It is unclear, however, whether LMAN contributes to variability in adult syllable sequencing because sequence variability in adult zebra finch song is minimal. In contrast, Bengalese finches retain variability in both syllable structure and syllable sequencing into adulthood. We analyzed the effects of LMAN lesions on the variability of syllable structure and sequencing and on the social modulation of these forms of variability in adult Bengalese finches. We found that lesions of LMAN significantly reduced the variability of syllable structure but not of syllable sequencing. We also found that LMAN lesions eliminated the social modulation of the variability of syllable structure but did not detect significant effects on the modulation of sequence variability. These results show that LMAN contributes differentially to syllable versus sequence variability of adult song and suggest that these forms of variability are regulated by distinct neural pathways. PMID:19357331

  14. A house finch (Haemorhous mexicanus) spleen transcriptome reveals intra- and interspecific patterns of gene expression, alternative splicing and genetic diversity in passerines

    PubMed Central

    2014-01-01

    Background With its plumage color dimorphism and unique history in North America, including a recent population expansion and an epizootic of Mycoplasma gallisepticum (MG), the house finch (Haemorhous mexicanus) is a model species for studying sexual selection, plumage coloration and host-parasite interactions. As part of our ongoing efforts to make available genomic resources for this species, here we report a transcriptome assembly derived from genes expressed in spleen. Results We characterize transcriptomes from two populations with different histories of demography and disease exposure: a recently founded population in the eastern US that has been exposed to MG for over a decade and a native population from the western range that has never been exposed to MG. We utilize this resource to quantify conservation in gene expression in passerine birds over approximately 50 MY by comparing splenic expression profiles for 9,646 house finch transcripts and those from zebra finch and find that less than half of all genes expressed in spleen in either species are expressed in both species. Comparative gene annotations from several vertebrate species suggest that the house finch transcriptomes contain ~15 genes not yet found in previously sequenced vertebrate genomes. The house finch transcriptomes harbour ~85,000 SNPs, ~20,000 of which are non-synonymous. Although not yet validated by biological or technical replication, we identify a set of genes exhibiting differences between populations in gene expression (n = 182; 2% of all transcripts), allele frequencies (76 FST ouliers) and alternative splicing as well as genes with several fixed non-synonymous substitutions; this set includes genes with functions related to double-strand break repair and immune response. Conclusions The two house finch spleen transcriptome profiles will add to the increasing data on genome and transcriptome sequence information from natural populations. Differences in splenic expression between house finch and zebra finch imply either significant evolutionary turnover of splenic expression patterns or different physiological states of the individuals examined. The transcriptome resource will enhance the potential to annotate an eventual house finch genome, and the set of gene-based high-quality SNPs will help clarify the genetic underpinnings of host-pathogen interactions and sexual selection. PMID:24758272

  15. Patterns of call communication between group-housed zebra finches change during the breeding cycle.

    PubMed

    Gill, Lisa F; Goymann, Wolfgang; Ter Maat, Andries; Gahr, Manfred

    2015-10-06

    Vocal signals such as calls play a crucial role for survival and successful reproduction, especially in group-living animals. However, call interactions and call dynamics within groups remain largely unexplored because their relation to relevant contexts or life-history stages could not be studied with individual-level resolution. Using on-bird microphone transmitters, we recorded the vocalisations of individual zebra finches (Taeniopygia guttata) behaving freely in social groups, while females and males previously unknown to each other passed through different stages of the breeding cycle. As birds formed pairs and shifted their reproductive status, their call repertoire composition changed. The recordings revealed that calls occurred non-randomly in fine-tuned vocal interactions and decreased within groups while pair-specific patterns emerged. Call-type combinations of vocal interactions changed within pairs and were associated with successful egg-laying, highlighting a potential fitness relevance of calling dynamics in communication systems.

  16. Sexual dimorphism in striatal dopaminergic responses promotes monogamy in social songbirds.

    PubMed

    Tokarev, Kirill; Hyland Bruno, Julia; Ljubičić, Iva; Kothari, Paresh J; Helekar, Santosh A; Tchernichovski, Ofer; Voss, Henning U

    2017-08-11

    In many songbird species, males sing to attract females and repel rivals. How can gregarious, non-territorial songbirds such as zebra finches, where females have access to numerous males, sustain monogamy? We found that the dopaminergic reward circuitry of zebra finches can simultaneously promote social cohesion and breeding boundaries. Surprisingly, in unmated males but not in females, striatal dopamine neurotransmission was elevated after hearing songs. Behaviorally too, unmated males but not females persistently exchanged mild punishments in return for songs. Song reinforcement diminished when dopamine receptors were blocked. In females, we observed song reinforcement exclusively to the mate's song, although their striatal dopamine neurotransmission was only slightly elevated. These findings suggest that song-triggered dopaminergic activation serves a dual function in social songbirds: as low-threshold social reinforcement in males and as ultra-selective sexual reinforcement in females. Co-evolution of sexually dimorphic reinforcement systems can explain the coexistence of gregariousness and monogamy.

  17. Sexual dimorphism in striatal dopaminergic responses promotes monogamy in social songbirds

    PubMed Central

    Hyland Bruno, Julia; Ljubičić, Iva; Kothari, Paresh J; Helekar, Santosh A; Tchernichovski, Ofer; Voss, Henning U

    2017-01-01

    In many songbird species, males sing to attract females and repel rivals. How can gregarious, non-territorial songbirds such as zebra finches, where females have access to numerous males, sustain monogamy? We found that the dopaminergic reward circuitry of zebra finches can simultaneously promote social cohesion and breeding boundaries. Surprisingly, in unmated males but not in females, striatal dopamine neurotransmission was elevated after hearing songs. Behaviorally too, unmated males but not females persistently exchanged mild punishments in return for songs. Song reinforcement diminished when dopamine receptors were blocked. In females, we observed song reinforcement exclusively to the mate’s song, although their striatal dopamine neurotransmission was only slightly elevated. These findings suggest that song-triggered dopaminergic activation serves a dual function in social songbirds: as low-threshold social reinforcement in males and as ultra-selective sexual reinforcement in females. Co-evolution of sexually dimorphic reinforcement systems can explain the coexistence of gregariousness and monogamy. PMID:28826502

  18. Increased Mortality in a Colony of Zebra Finches Exposed to Continuous Light

    PubMed Central

    Snyder, Jessica M; Molk, Denise M; Treuting, Piper M

    2013-01-01

    Over a 1-mo period, increased morbidity and mortality occurred in a flock of zebra finches (Taeniopygia guttata). Complete postmortem examination was performed on 6 of the affected birds, 4 of which subsequently were diagnosed with the avian gastric yeast previously known as megabacteriosis (Macrorhabdus ornithogaster). The remaining 2 birds were diagnosed with a cloacal abscess and with large bowel perforation and peritonitis. All the birds had been prophylactically treated with amphotericin B for megabacteria 2 mo previously. An environmental assessment revealed that the light cycle had been altered, and the birds were being exposed to constant light. With correction of the light cycle, the health of the birds improved dramatically. The remaining birds were treated again with amphotericin B, and baseline mortality returned to normal. The birds in this report show several similarities to previous reports of sleep deprivation syndrome in mammals. PMID:23849414

  19. Cannabinoid mitigation of neuronal morphological change important to development and learning: insight from a zebra finch model of psychopharmacology.

    PubMed

    Soderstrom, Ken; Gilbert, Marcoita T

    2013-03-19

    Normal CNS development proceeds through late-postnatal stages of adolescent development. The activity-dependence of this development underscores the significance of CNS-active drug exposure prior to completion of brain maturation. Exogenous modulation of signaling important in regulating normal development is of particular concern. This mini-review presents a summary of the accumulated behavioral, physiological and biochemical evidence supporting such a key regulatory role for endocannabinoid signaling during late-postnatal CNS development. Our focus is on the data obtained using a unique zebra finch model of developmental psychopharmacology. This animal has allowed investigation of neuronal morphological effects essential to establishment and maintenance of neural circuitry, including processes related to synaptogenesis and dendritic spine dynamics. Altered neurophysiology that follows exogenous cannabinoid exposure during adolescent development has the potential to persistently alter cognition, learning and memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. A neural circuit mechanism for regulating vocal variability during song learning in zebra finches.

    PubMed

    Garst-Orozco, Jonathan; Babadi, Baktash; Ölveczky, Bence P

    2014-12-15

    Motor skill learning is characterized by improved performance and reduced motor variability. The neural mechanisms that couple skill level and variability, however, are not known. The zebra finch, a songbird, presents a unique opportunity to address this question because production of learned song and induction of vocal variability are instantiated in distinct circuits that converge on a motor cortex analogue controlling vocal output. To probe the interplay between learning and variability, we made intracellular recordings from neurons in this area, characterizing how their inputs from the functionally distinct pathways change throughout song development. We found that inputs that drive stereotyped song-patterns are strengthened and pruned, while inputs that induce variability remain unchanged. A simple network model showed that strengthening and pruning of action-specific connections reduces the sensitivity of motor control circuits to variable input and neural 'noise'. This identifies a simple and general mechanism for learning-related regulation of motor variability.

  1. Transformation of temporal sequences in the zebra finch auditory system

    PubMed Central

    Lim, Yoonseob; Lagoy, Ryan; Shinn-Cunningham, Barbara G; Gardner, Timothy J

    2016-01-01

    This study examines how temporally patterned stimuli are transformed as they propagate from primary to secondary zones in the thalamorecipient auditory pallium in zebra finches. Using a new class of synthetic click stimuli, we find a robust mapping from temporal sequences in the primary zone to distinct population vectors in secondary auditory areas. We tested whether songbirds could discriminate synthetic click sequences in an operant setup and found that a robust behavioral discrimination is present for click sequences composed of intervals ranging from 11 ms to 40 ms, but breaks down for stimuli composed of longer inter-click intervals. This work suggests that the analog of the songbird auditory cortex transforms temporal patterns to sequence-selective population responses or ‘spatial codes', and that these distinct population responses contribute to behavioral discrimination of temporally complex sounds. DOI: http://dx.doi.org/10.7554/eLife.18205.001 PMID:27897971

  2. The use of the geomagnetic field for short distance orientation in zebra finches.

    PubMed

    Voss, Joe; Keary, Nina; Bischof, Hans-Joachim

    2007-07-02

    Although the ability to use the Earth's magnetic field for long distance orientation and navigation has been demonstrated in many animals, the search for the appropriate receptor has not yet finished. It is also not entirely clear whether the use of magnetic field information is restricted to specialists like migrating birds, or whether it is a sense that is also suited to short distance orientation by avian species. We successfully trained nonmigratory zebra finches in a four-choice food-search task to use the natural magnetic field as well as an experimentally shifted field for short distance orientation, supporting the view that magnetic field perception may be a sense existing in all bird species. By using a conditioning technique in a standard laboratory animal, our experiments will provide an ideal basis for the search for the physiological mechanisms of magnetic field perception.

  3. Dopamine physiology in the basal ganglia of male zebra finches during social stimulation.

    PubMed

    Ihle, Eva C; van der Hart, Marieke; Jongsma, Minke; Tecott, Larry H; Doupe, Allison J

    2015-06-01

    Accumulating evidence suggests that dopamine (DA) is involved in altering neural activity and gene expression in a zebra finch cortical-basal ganglia circuit specialized for singing, upon the shift between solitary singing and singing as a part of courtship. Our objective here was to sample changes in the extracellular concentrations of DA in Area X of adult and juvenile birds, to test the hypothesis that DA levels would change similarly during presentation of a socially salient stimulus in both age groups. We used microdialysis to sample the extracellular milieu of Area X in awake, behaving adult and juvenile male zebra finches, and analysed the dialysate using high-performance liquid chromatography coupled with electrochemical detection. The extracellular levels of DA in Area X increased significantly during both female presentation to adult males and tutor presentation to juvenile males. DA levels were not correlated with the time spent singing. We also reverse-dialysed Area X with pharmacologic agents that act either on DA systems directly or on norepinephrine, and found that all of these agents significantly increased DA levels (3- to 10-fold) in Area X. These findings suggest that changes in extracellular DA levels can be stimulated similarly by very different social contexts (courtship and interaction with tutor), and influenced potently by dopaminergic and noradrenergic drugs. These results raise the possibility that the arousal level or attentional state of the subject (rather than singing behavior) is the common feature eliciting changes in extracellular DA concentration. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Food, stress, and reproduction: short-term fasting alters endocrine physiology and reproductive behavior in the zebra finch.

    PubMed

    Lynn, Sharon E; Stamplis, Teresa B; Barrington, William T; Weida, Nicholas; Hudak, Casey A

    2010-07-01

    Stress is thought to be a potent suppressor of reproduction. However, the vast majority of studies focus on the relationship between chronic stress and reproductive suppression, despite the fact that chronic stress is rare in the wild. We investigated the role of fasting in altering acute stress physiology, reproductive physiology, and reproductive behavior of male zebra finches (Taeniopygia guttata) with several goals in mind. First, we wanted to determine if acute fasting could stimulate an increase in plasma corticosterone and a decrease in corticosteroid binding globulin (CBG) and testosterone. We then investigated whether fasting could alter expression of undirected song and courtship behavior. After subjecting males to fasting periods ranging from 1 to 10h, we collected plasma to measure corticosterone, CBG, and testosterone. We found that plasma corticosterone was elevated, and testosterone was decreased after 4, 6, and 10h of fasting periods compared with samples collected from the same males during nonfasted (control) periods. CBG was lower than control levels only after 10h of fasting. We also found that, coincident with these endocrine changes, males sang less and courted females less vigorously following short-term fasting relative to control conditions. Our data demonstrate that acute fasting resulted in rapid changes in endocrine physiology consistent with hypothalamo-pituitary-adrenal axis activation and hypothalamo-pituitary-gonadal axis deactivation. Fasting also inhibited reproductive behavior. We suggest that zebra finches exhibit physiological and behavioral flexibility that makes them an excellent model system for studying interactions of acute stress and reproduction. Copyright 2010 Elsevier Inc. All rights reserved.

  5. The roles of vocal and visual interactions in social learning zebra finches: A video playback experiment.

    PubMed

    Guillette, Lauren M; Healy, Susan D

    2017-06-01

    The transmission of information from an experienced demonstrator to a naïve observer often depends on characteristics of the demonstrator, such as familiarity, success or dominance status. Whether or not the demonstrator pays attention to and/or interacts with the observer may also affect social information acquisition or use by the observer. Here we used a video-demonstrator paradigm first to test whether video demonstrators have the same effect as using live demonstrators in zebra finches, and second, to test the importance of visual and vocal interactions between the demonstrator and observer on social information use by the observer. We found that female zebra finches copied novel food choices of male demonstrators they saw via live-streaming video while they did not consistently copy from the demonstrators when they were seen in playbacks of the same videos. Although naive observers copied in the absence of vocalizations by the demonstrator, as they copied from playback of videos with the sound off, females did not copy where there was a mis-match between the visual information provided by the video and vocal information from a live male that was out of sight. Taken together these results suggest that video demonstration is a useful methodology for testing social information transfer, at least in a foraging context, but more importantly, that social information use varies according to the vocal interactions, or lack thereof, between the observer and the demonstrator. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Learning to breathe and sing: development of respiratory-vocal coordination in young songbirds

    PubMed Central

    Veit, Lena; Aronov, Dmitriy

    2011-01-01

    How do animals with learned vocalizations coordinate vocal production with respiration? Songbirds such as the zebra finch learn their songs, beginning with highly variable babbling vocalizations known as subsong. After several weeks of practice, zebra finches are able to produce a precisely timed pattern of syllables and silences, precisely coordinated with expiratory and inspiratory pulses (Franz M, Goller F. J Neurobiol 51: 129–141, 2002). While respiration in adult song is well described, relatively little is known about respiratory patterns in subsong or about the processes by which respiratory and vocal patterns become coordinated. To address these questions, we recorded thoracic air sac pressure in juvenile zebra finches prior to the appearance of any consistent temporal or acoustic structure in their songs. We found that subsong contains brief inspiratory pulses (50 ms) alternating with longer pulses of sustained expiratory pressure (50–500 ms). In striking contrast to adult song, expiratory pulses often contained multiple (0–8) variably timed syllables separated by expiratory gaps and were only partially vocalized. During development, expiratory pulses became shorter and more stereotyped in duration with shorter and fewer nonvocalized parts. These developmental changes eventually resulted in the production of a single syllable per expiratory pulse and a single inspiratory pulse filling each gap, forming a coordinated sequence similar to that of adult song. To examine the role of forebrain song-control nuclei in the development of respiratory patterns, we performed pressure recordings before and after lesions of nucleus HVC (proper name) and found that this manipulation reverses the developmental trends in measures of the respiratory pattern. PMID:21697438

  7. Dynamic gene expression in the song system of zebra finches during the song learning period.

    PubMed

    Olson, Christopher R; Hodges, Lisa K; Mello, Claudio V

    2015-12-01

    The brain circuitry that controls song learning and production undergoes marked changes in morphology and connectivity during the song learning period in juvenile zebra finches, in parallel to the acquisition, practice and refinement of song. Yet, the genetic programs and timing of regulatory change that establish the neuronal connectivity and plasticity during this critical learning period remain largely undetermined. To address this question, we used in situ hybridization to compare the expression patterns of a set of 30 known robust molecular markers of HVC and/or area X, major telencephalic song nuclei, between adult and juvenile male zebra finches at different ages during development (20, 35, 50 days post-hatch, dph). We found that several of the genes examined undergo substantial changes in expression within HVC or its surrounds, and/or in other song nuclei. They fit into broad patterns of regulation, including those whose expression within HVC during this period increases (COL12A1, COL 21A1, MPZL1, PVALB, and CXCR7) or decreases (e.g., KCNT2, SAP30L), as well as some that show decreased expression in the surrounding tissue with little change within song nuclei (e.g. SV2B, TAC1). These results reveal a broad range of molecular changes that occur in the song system in concert with the song learning period. Some of the genes and pathways identified are potential modulators of the developmental changes associated with the emergence of the adult properties of the song control system, and/or the acquisition of learned vocalizations in songbirds. © 2015 Wiley Periodicals, Inc.

  8. Learning to breathe and sing: development of respiratory-vocal coordination in young songbirds.

    PubMed

    Veit, Lena; Aronov, Dmitriy; Fee, Michale S

    2011-10-01

    How do animals with learned vocalizations coordinate vocal production with respiration? Songbirds such as the zebra finch learn their songs, beginning with highly variable babbling vocalizations known as subsong. After several weeks of practice, zebra finches are able to produce a precisely timed pattern of syllables and silences, precisely coordinated with expiratory and inspiratory pulses (Franz M, Goller F. J Neurobiol 51: 129-141, 2002). While respiration in adult song is well described, relatively little is known about respiratory patterns in subsong or about the processes by which respiratory and vocal patterns become coordinated. To address these questions, we recorded thoracic air sac pressure in juvenile zebra finches prior to the appearance of any consistent temporal or acoustic structure in their songs. We found that subsong contains brief inspiratory pulses (50 ms) alternating with longer pulses of sustained expiratory pressure (50-500 ms). In striking contrast to adult song, expiratory pulses often contained multiple (0-8) variably timed syllables separated by expiratory gaps and were only partially vocalized. During development, expiratory pulses became shorter and more stereotyped in duration with shorter and fewer nonvocalized parts. These developmental changes eventually resulted in the production of a single syllable per expiratory pulse and a single inspiratory pulse filling each gap, forming a coordinated sequence similar to that of adult song. To examine the role of forebrain song-control nuclei in the development of respiratory patterns, we performed pressure recordings before and after lesions of nucleus HVC (proper name) and found that this manipulation reverses the developmental trends in measures of the respiratory pattern.

  9. Muscle activation patterns and motor anatomy of Anna's hummingbirds Calypte anna and zebra finches Taeniopygia guttata.

    PubMed

    Donovan, Edward R; Keeney, Brooke K; Kung, Eric; Makan, Sirish; Wild, J Martin; Altshuler, Douglas L

    2013-01-01

    Flying animals exhibit profound transformations in anatomy, physiology, and neural architecture. Although much is known about adaptations in the avian skeleton and musculature, less is known about neuroanatomy and motor unit integration for bird flight. Hummingbirds are among the most maneuverable and specialized of vertebrate fliers, and two unusual neuromuscular features have been previously reported: (1) the pectoralis major has a unique distribution pattern of motor end plates (MEPs) compared with all other birds and (2) electromyograms (EMGs) from the hummingbird's pectoral muscles, the pectoralis major and the supracoracoideus, show activation bursts composed of one or a few spikes that appear to have a very consistent pattern. Here, we place these findings in a broader context by comparing the MEPs, EMGs, and organization of the spinal motor neuron pools of flight muscles of Anna's hummingbird Calypte anna, zebra finches Taeniopygia guttata, and, for MEPs, several other species. The previously shown MEP pattern of the hummingbird pectoralis major is not shared with its closest taxonomic relative, the swift, and appears to be unique to hummingbirds. MEP arrangements in previously undocumented wing muscles show patterns that differ somewhat from other avian muscles. In the parallel-fibered strap muscles of the shoulder, MEP patterns appear to relate to muscle length, with the smallest muscles having fibers that span the entire muscle. MEP patterns in pennate distal wing muscles were the same regardless of size, with tightly clustered bands in the middle portion of the muscle, not evenly distributed bands over the muscle's entire length. Muscle activations were examined during slow forward flight in both species, during hovering in hummingbirds, and during slow ascents in zebra finches. The EMG bursts of a wing muscle, the pronator superficialis, were highly variable in peak number, size, and distribution across wingbeats for both species. In the pectoralis major, although the individual EMG bursts were much shorter in duration in hummingbirds relative to zebra finches, the variables describing the normalized amplitude and area of the activation bursts were otherwise indistinguishable between taxa during these flight modes. However, the degree of variation in the time intervals between EMG peaks was much lower in hummingbirds, which is a plausible explanation for the "patterned" EMG signals reported previously.

  10. Flight performance in the altricial zebra finch: Developmental effects and reproductive consequences.

    PubMed

    Crino, Ondi L; Klaassen van Oorschot, Brett; Crandell, Kristen E; Breuner, Creagh W; Tobalske, Bret W

    2017-04-01

    The environmental conditions animals experience during development can have sustained effects on morphology, physiology, and behavior. Exposure to elevated levels of stress hormones (glucocorticoids, GCs) during development is one such condition that can have long-term effects on animal phenotype. Many of the phenotypic effects of GC exposure during development (developmental stress) appear negative. However, there is increasing evidence that developmental stress can induce adaptive phenotypic changes. This hypothesis can be tested by examining the effect of developmental stress on fitness-related traits. In birds, flight performance is an ideal metric to assess the fitness consequences of developmental stress. As fledglings, mastering takeoff is crucial to avoid bodily damage and escape predation. As adults, takeoff can contribute to mating and foraging success as well as escape and, thus, can affect both reproductive success and survival. We examined the effects of developmental stress on flight performance across life-history stages in zebra finches ( Taeniopygia guttata ). Specifically, we examined the effects of oral administration of corticosterone (CORT, the dominant avian glucocorticoid) during development on ground-reaction forces and velocity during takeoff. Additionally, we tested for associations between flight performance and reproductive success in adult male zebra finches. Developmental stress had no effect on flight performance at all ages. In contrast, brood size (an unmanipulated variable) had sustained, negative effects on takeoff performance across life-history stages with birds from small broods performing better than birds from large broods. Flight performance at 100 days posthatching predicted future reproductive success in males; the best fliers had significantly higher reproductive success. Our results demonstrate that some environmental factors experienced during development (e.g. clutch size) have stronger, more sustained effects than others (e.g. GC exposure). Additionally, our data provide the first link between flight performance and a direct measure of reproductive success.

  11. Lowering prolactin reduces post-hatch parental care in male and female zebra finches (Taeniopygia guttata).

    PubMed

    Smiley, Kristina O; Adkins-Regan, Elizabeth

    2018-02-01

    Parental care is a widespread phenomenon observed in many diverse taxa. Neuroendocrine systems have long been thought to play an important role in stimulating the onset of parental behavior. In most birds with altricial young, circulating prolactin (PRL) levels are low during non-breeding times and significantly increase during late incubation and early post-hatch chick care. Because of this pattern, PRL has been suggested to be involved in the initiation of parental care in birds, but rarely has this hypothesis been causally tested. To begin testing the hypothesis, we inhibited the release of endogenous PRL with bromocriptine (BR) on the 3days prior to hatching in incubating parents and the first 2days of post-hatch care, when PRL was found to be highest in zebra finches. Nest temperatures were recorded during all 5days and parental behavior was recorded on days 1-2 post-hatch. In addition to hormonal systems, reproductive experience may also influence parental care; therefore, we tested age-matched inexperienced and experienced pairs in each group. BR either eliminated or drastically reduced chick brooding and feeding behavior, resulting in decreased nest temperatures on days 1 and 2 post-hatch. Experienced control birds fed chicks more than inexperienced birds and control females fed more than males. Chick feeding behavior was positively correlated in control male-female pairs, but not in BR pairs. This is one of the few causal studies to demonstrate that PRL is necessary for post-hatch care in a biparental songbird, and is the first to show this effect in zebra finches. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Novel Song-Stimulated Dendritic Spine Formation and Arc/Arg 3.1 Expression in Zebra Finch Auditory Telencephalon are Disrupted by Cannabinoid Agonism

    PubMed Central

    Gilbert, Marcoita T; Soderstrom, Ken

    2013-01-01

    Cannabinoids are well-established to alter processes of sensory perception; however neurophysiological mechanisms responsible remain unclear. Arc, an immediate-early gene (IEG) product involved in dendritic spine dynamics and necessary for plasticity changes such as long-term potentiation, is rapidly induced within zebra finch caudal medial nidopallium (NCM) following novel song exposure, a response that habituates after repeated stimuli. Arc appears unique in its rapid postsynaptic dendritic expression following excitatory input. Previously, we found that vocal development-altering cannabinoid treatments are associated with elevated dendritic spine densities in motor- (HVC) and learning-related (Area X) song regions of zebra finch telencephalon. Given Arc’s dendritic morphological role, we hypothesized that cannabinoid-altered spine densities may involve Arc-related signaling. To test this, we examined the ability of the cannabinoid agonist WIN55212-2 (WIN) to: (1) acutely disrupt song-induced Arc expression; (2) interfere with habituation to auditory stimuli and; (3) alter dendritic spine densities in auditory regions. We found that WIN (3 mg/kg) acutely reduced Arc expression within both NCM and Field L2 in an antagonist-reversible manner. WIN did not alter Arc expression in thalamic auditory relay Nucleus Ovoidalis (Ov), suggesting cannabinoid signaling selectively alters responses to auditory stimulation. Novel song stimulation rapidly increased dendritic spine densities within auditory telencephalon, an effect blocked by WIN pretreatments. Taken together, cannabinoid inhibition of both Arc induction and its habituation to repeated stimuli, combined with prevention of rapid increases in dendritic spine densities, implicates cannabinoid signaling in modulation of physiological processes important to auditory responsiveness and memory. PMID:24134952

  13. Hippocampal Aromatization Modulates Spatial Memory and Characteristics of the Synaptic Membrane in the Male Zebra Finch

    PubMed Central

    Makeyeva, Yekaterina V.; Paitel, Elizabeth R.; Pedersen, Alyssa L.; Hon, Angel T.; Gunderson, Jordan A.; Saldanha, Colin J.

    2017-01-01

    The estrogen-synthesizing enzyme aromatase is abundant at the synapse in the zebra finch hippocampus (HP), and its inhibition impairs spatial memory function. To more fully test the role of local estradiol (E2) synthesis in memory, the HP of adult male zebra finches was exposed to either control pellets or those containing the aromatase inhibitor 1,4,6-androstatriene-3,17-dione (ATD), ATD and E2, ATD and the G protein-coupled estrogen receptor (GPER) agonist G1, or the antagonist G15 alone. Birds were tested for spatial memory acquisition and performance, and HP levels of the postsynaptic protein PSD95 were measured. ATD-treated birds took longer to reach criterion than control birds, whereas acquisition in ATD+E2 and ATD+G1 birds was indistinguishable from control and ATD treatments. Interestingly, all G15 birds failed to acquire the task. Following a retention interval, ATD birds took the longest to reach the (formerly) baited cup and made the most mistakes. ATD+E2 animals displayed the lowest retention latencies and made fewer mistakes than ATD-treated birds, and ATD+G1 birds did not significantly differ from controls in retention latencies. The amount of PSD95 in the HP was lowest in ATD-treated animals compared with birds with silicone-only–implanted craniotomies, ATD+E2, and ATD+G1 birds, who did not differ in this expression. Thus, spatial memory acquisition and performance appear aromatase and E2 dependent, an effect more reliably revealed after consolidation and/or recall compared to acquisition. E2 may exert this effect via GPERs, resulting in an increase in PSD95 levels that may modify receptor activity or intracellular signaling pathways to increase synaptic strength. PMID:28324066

  14. Anatomically Discrete Sex Differences in Neuroplasticity in Zebra Finches as Reflected by Perineuronal Nets

    PubMed Central

    Cornez, Gilles; ter Haar, Sita M.; Cornil, Charlotte A.; Balthazart, Jacques

    2015-01-01

    Large morphological sex differences in the vertebrate brain were initially identified in song control nuclei of oscines. Besides gross differences between volumes of nuclei in males and females, sex differences also concern the size and dendritic arborization of neurons and various neurochemical markers, such as the calcium-binding protein parvalbumin (PV). Perineuronal nets (PNN) of the extracellular matrix are aggregates of different compounds, mainly chondroitin sulfate proteoglycans, that surround subsets of neurons, often expressing PV. PNN develop in zebra finches song control nuclei around the end of the sensitive period for song learning and tutor deprivation, known to delay the end of the song learning sensitive period, decreases the numbers of PNN in HVC. We demonstrate here the existence in zebra finches of a major sex difference (males > females) affecting the number of PNN (especially those surrounding PV-positive cells) in HVC and to a smaller extent the robust nucleus of the arcopallium, RA, the two main nuclei controlling song production. These differences were not present in Area X and LMAN, the lateral magnocellular nucleus of the anterior nidopallium. A dense expression of material immunoreactive for chondroitin sulfate was also detected in several nuclei of the auditory and visual pathways. This material was often organized in perineuronal rings but quantification of these PNN did not reveal any sex difference with the exception that the percentage of PNN surrounding PV-ir cells in the dorsal lateral mesencephalic nucleus, MLd, was larger in females than in males, a sex difference in the opposite direction compared to what is seen in HVC and RA. These data confirm and extend previous studies demonstrating the sex difference affecting PNN in HVC-RA by showing that this sex difference is anatomically specific and does not concern visual or auditory pathways. PMID:25848776

  15. Distribution of language-related Cntnap2 protein in neural circuits critical for vocal learning.

    PubMed

    Condro, Michael C; White, Stephanie A

    2014-01-01

    Variants of the contactin associated protein-like 2 (Cntnap2) gene are risk factors for language-related disorders including autism spectrum disorder, specific language impairment, and stuttering. Songbirds are useful models for study of human speech disorders due to their shared capacity for vocal learning, which relies on similar cortico-basal ganglia circuitry and genetic factors. Here we investigate Cntnap2 protein expression in the brain of the zebra finch, a songbird species in which males, but not females, learn their courtship songs. We hypothesize that Cntnap2 has overlapping functions in vocal learning species, and expect to find protein expression in song-related areas of the zebra finch brain. We further expect that the distribution of this membrane-bound protein may not completely mirror its mRNA distribution due to the distinct subcellular localization of the two molecular species. We find that Cntnap2 protein is enriched in several song control regions relative to surrounding tissues, particularly within the adult male, but not female, robust nucleus of the arcopallium (RA), a cortical song control region analogous to human layer 5 primary motor cortex. The onset of this sexually dimorphic expression coincides with the onset of sensorimotor learning in developing males. Enrichment in male RA appears due to expression in projection neurons within the nucleus, as well as to additional expression in nerve terminals of cortical projections to RA from the lateral magnocellular nucleus of the nidopallium. Cntnap2 protein expression in zebra finch brain supports the hypothesis that this molecule affects neural connectivity critical for vocal learning across taxonomic classes. Copyright © 2013 Wiley Periodicals, Inc.

  16. Developmental pattern of diacylglycerol lipase-α (DAGLα) immunoreactivity in brain regions important for song learning and control in the zebra finch (Taeniopygia guttata).

    PubMed

    Soderstrom, Ken; Wilson, Ashley R

    2013-11-01

    Zebra finch song is a learned behavior dependent upon successful progress through a sensitive period of late-postnatal development. This learning is associated with maturation of distinct brain nuclei and the fiber tract interconnections between them. We have previously found remarkably distinct and dense CB1 cannabinoid receptor expression within many of these song control brain regions, implying a normal role for endocannabinoid signaling in vocal learning. Activation of CB1 receptors via daily treatments with exogenous agonist during sensorimotor stages of song learning (but not in adulthood) results in persistent alteration of song patterns. Now we are working to understand physiological changes responsible for this cannabinoid-altered vocal learning. We have found that song-altering developmental treatments are associated with changes in expression of endocannabinoid signaling elements, including CB1 receptors and the principal CNS endogenous agonist, 2-AG. Within CNS, 2-AG is produced largely through activity of the α isoform of the enzyme diacylglycerol lipase (DAGLα). To better appreciate the role of 2-AG production in normal vocal development we have determined the spatial distribution of DAGLα expression within zebra finch CNS during vocal development. Early during vocal development at 25 days, DAGLα staining is typically light and of fibroid processes. Staining peaks late in the sensorimotor stage of song learning at 75 days and is characterized by fiber, neuropil and some staining of both small and large cell somata. Results provide insight to the normal role for endocannabinoid signaling in the maturation of brain regions responsible for song learning and vocal-motor output, and suggest mechanisms by which exogenous cannabinoid exposure alters acquisition of this form of vocal communication. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Dissociation between extension of the sensitive period for avian vocal learning and dendritic spine loss in the song nucleus lMAN.

    PubMed

    Heinrich, J E; Nordeen, K W; Nordeen, E J

    2005-03-01

    Several instances of early learning coincide with significant rearrangements of neural connections in regions contributing to these behaviors. In fact developmentally restricted learning may be constrained temporally by the opportunity for experience to selectively maintain appropriate synapses amidst the elimination of exuberant connections. Consistent with this notion, during the normal sensitive period for vocal learning in zebra finches (Taenopygia guttata), there is a decline in the density of dendritic spines within a region essential for song development, the lateral magnocellular nucleus of the anterior nidopallium (lMAN). Moreover, in birds isolated from conspecific song shortly after hatching, both the closure of the sensitive period for vocal learning and the pruning of spines from lMAN neurons is delayed. Here, we employed a more subtle form of deprivation to delay the close of the sensitive period for song learning, and found that late song learning occurred without obvious alterations in the pruning of dendritic spines on lMAN neurons. At posthatch day (PHD) 65 (beyond the end of the normal sensitive period for song memorization in zebra finches), birds isolated from song beginning on PHD30 did not differ from normally reared birds in measures of dendritic spine density on Golgi-Cox stained lMAN neurons. Moreover, tutor exposure from PHD65 to 90 did not increase spine elimination in these isolates (who memorized new song material) relative to controls (who did not). Thus, we conclude that the extent of normally occurring lMAN spine loss is not sufficient to account for the timing of the sensitive period for zebra finch song learning.

  18. Retinal histogenesis in an altricial avian species, the zebra finch (Taeniopygia guttata, Vieillot 1817).

    PubMed

    Álvarez-Hernán, Guadalupe; Sánchez-Resino, Elena; Hernández-Núñez, Ismael; Marzal, Alfonso; Rodríguez-León, Joaquín; Martín-Partido, Gervasio; Francisco-Morcillo, Javier

    2018-07-01

    Comparative developmental studies have shown that the retina of altricial fish and mammals is incompletely developed at birth, and that, during the first days of life, maturation proceeds rapidly. In contrast, precocial fish and mammals are born with fully differentiated retinas. Concerning birds, knowledge about retinal development is generally restricted to a single order of precocial birds, Galliformes, due to the fact that both the chicken and the Japanese quail are considered model systems. However, comparison of embryonic pre-hatchling retinal development between altricial and precocial birds has been poorly explored. The purpose of this study was to examine the morphogenesis and histogenesis of the retina in the altricial zebra finch (Taeniopygia guttata, Vieillot 1817) and compare the results with those from previous studies in the precocial chicken. Several maturational features (morphogenesis of the optic vesicle and optic cup, appearance of the first differentiated neurons, the period in which the non-apical cell divisions are observable, and the emergence of the plexiform layers) were found to occur at later stages in the zebra finch than in the chicken. At hatching, the retina of T. guttata showed the typical cytoarchitecture of the mature tissue, although features of immaturity were still observable, such as a ganglion cell layer containing many thick cells, very thin plexiform layers, and poorly developed photoreceptors. Moreover, abundant mitotic activity was detected in the entire retina, even in the regions where the layering was complete. The circumferential marginal zone was very prominent and showed abundant mitotic activity. The partially undifferentiated stage of maturation at hatching makes the T. guttata retina an appropriate model with which to study avian postnatal retinal neurogenesis. © 2018 Anatomical Society.

  19. Effects of estradiol on incorporation of new cells in the developing zebra finch song system: potential relationship to expression of ribosomal proteins L17 and L37.

    PubMed

    Tang, Yu Ping; Wade, Juli

    2009-06-01

    Mechanisms regulating masculinization of the zebra finch song system are unclear; both estradiol and sex-specific genes may be important. This study was designed to investigate relationships between estrogen and ribosomal proteins (RPL17 and RPL37; sex-linked genes) that exhibit greater expression in song control nuclei in juvenile males than females. Four studies on zebra finches were conducted using bromodeoxyuridine (BrdU) injections on posthatching days 6-10 with immunohistochemistry for the ribosomal proteins and the neuronal marker HuC/D at day 25. Volumes of brain regions were also assessed in Nissl-stained tissue. Most BrdU+ cells expressed RPL17 and RPL37. The density and percentage of cells co-expressing BrdU and HuC/D was greatest in Area X. The density of BrdU+ cells in Area X (or its equivalent) and the percentage of these cells that were neurons were greater in males than females. In RA and HVC, total BrdU+ cells were increased in males. A variety of effects of estradiol were also detected, including inducing an Area X in females with a masculine total number of BrdU+ cells, and increasing the volume and percentage of new neurons in the HVC of females. The same manipulation in males decreased the density of BrdU+ cells in Area X, total number of BrdU+ cells in RA, and density of new neurons in HVC and RA. These data are consistent with the idea that RPL17, RPL37, and estradiol might all influence sexual differentiation, perhaps with the hormone and proteins interacting, such that an appropriate balance is required for normal development.

  20. Effects of Estradiol on Incorporation of New Cells in the Developing Zebra Finch Song System: Potential Relationship to Expression of Ribosomal Proteins L17 and L37

    PubMed Central

    Tang, Yu Ping; Wade, Juli

    2009-01-01

    Mechanisms regulating masculinization of the zebra finch song system are unclear; both estradiol and sex-specific genes may be important. This study was designed to investigate relationships between estrogen and ribosomal proteins (RPL17 and RPL37; sex-linked genes) that exhibit greater expression in song control nuclei in juvenile males than females. Four studies on zebra finches were conducted using bromodeoxyuridine (BrdU) injections on posthatching days 6-10 with immunohistochemistry for the ribosomal proteins and the neuronal marker HuC/D at day 25. Volumes of brain regions were also assessed in Nissl-stained tissue. Most BrdU+ cells expressed RPL17 and RPL37. The density and percentage of cells co-expressing BrdU and HuC/D was greatest in Area X. The density of BrdU+ cells in Area X (or its equivalent) and the percentage of these cells that were neurons were greater in males than females. In RA and HVC, total BrdU+ cells were increased in males. A variety of effects of estradiol were also detected, including inducing an Area X in females with a masculine total number of BrdU+ cells, and increasing the volume and percentage of new neurons in the HVC of females. The same manipulation in males decreased the density of BrdU+ cells in Area X, total number of BrdU+ cells in RA, and density of new neurons in HVC and RA. These data are consistent with the ideas that RPL17, RPL37, and estradiol might all influence sexual differentiation, perhaps with the hormone and proteins interacting, such that an appropriate balance is required for normal development. PMID:19373862

  1. Early life conditions that impact song learning in male zebra finches also impact neural and behavioral responses to song in females.

    PubMed

    Sewall, Kendra B; Anderson, Rindy C; Soha, Jill A; Peters, Susan; Nowicki, Stephen

    2018-04-20

    Early life stressors can impair song in songbirds by negatively impacting brain development and subsequent learning. Even in species in which only males sing, early life stressors might also impact female behavior and its underlying neural mechanisms, but fewer studies have examined this possibility. We manipulated brood size in zebra finches to simultaneously examine the effects of developmental stress on male song learning and female behavioral and neural response to song. Although adult male HVC volume was unaffected, we found that males from larger broods imitated tutor song less accurately. In females, early condition did not affect the direction of song preference: all females preferred tutor song over unfamiliar song in an operant test. However, treatment did affect the magnitude of behavioral response to song: females from larger broods responded less during song preference trials. This difference in activity level did not reflect boldness per se, as a separate measure of this trait did not differ with brood size. Additionally, in females we found a treatment effect on expression of the immediate early gene ZENK in response to tutor song in brain regions involved in song perception (dNCM) and social motivation (LSc.vl, BSTm, TnA), but not in a region implicated in song memory (CMM). These results are consistent with the hypothesis that developmental stressors that impair song learning in male zebra finches also influence perceptual and/or motivational processes in females. However, our results suggest that the learning of tutor song by females is robust to disturbance by developmental stress. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018. © 2018 Wiley Periodicals, Inc.

  2. Hippocampal Aromatization Modulates Spatial Memory and Characteristics of the Synaptic Membrane in the Male Zebra Finch.

    PubMed

    Bailey, David J; Makeyeva, Yekaterina V; Paitel, Elizabeth R; Pedersen, Alyssa L; Hon, Angel T; Gunderson, Jordan A; Saldanha, Colin J

    2017-04-01

    The estrogen-synthesizing enzyme aromatase is abundant at the synapse in the zebra finch hippocampus (HP), and its inhibition impairs spatial memory function. To more fully test the role of local estradiol (E2) synthesis in memory, the HP of adult male zebra finches was exposed to either control pellets or those containing the aromatase inhibitor 1,4,6-androstatriene-3,17-dione (ATD), ATD and E2, ATD and the G protein-coupled estrogen receptor (GPER) agonist G1, or the antagonist G15 alone. Birds were tested for spatial memory acquisition and performance, and HP levels of the postsynaptic protein PSD95 were measured. ATD-treated birds took longer to reach criterion than control birds, whereas acquisition in ATD+E2 and ATD+G1 birds was indistinguishable from control and ATD treatments. Interestingly, all G15 birds failed to acquire the task. Following a retention interval, ATD birds took the longest to reach the (formerly) baited cup and made the most mistakes. ATD+E2 animals displayed the lowest retention latencies and made fewer mistakes than ATD-treated birds, and ATD+G1 birds did not significantly differ from controls in retention latencies. The amount of PSD95 in the HP was lowest in ATD-treated animals compared with birds with silicone-only-implanted craniotomies, ATD+E2, and ATD+G1 birds, who did not differ in this expression. Thus, spatial memory acquisition and performance appear aromatase and E2 dependent, an effect more reliably revealed after consolidation and/or recall compared to acquisition. E2 may exert this effect via GPERs, resulting in an increase in PSD95 levels that may modify receptor activity or intracellular signaling pathways to increase synaptic strength. Copyright © 2017 Endocrine Society.

  3. Individual variation in body burden, lipid status, and reproductive investment is related to maternal transfer of a brominated diphenyl ether (BDE-99) to eggs in the zebra finch.

    PubMed

    Eng, Margaret L; Elliott, John E; Letcher, Robert J; Williams, Tony D

    2013-02-01

    Avian eggs are exposed to hydrophobic contaminants through maternal transfer. How maternal transfer of contaminants within a species is influenced by individual variation in characteristics such as body burden, yolk precursor levels, or reproductive investment is not understood. The authors investigated sources of variation in the maternal transfer of 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) in zebra finches (Taeniopygia guttata). The authors dosed adult female zebra finches with levels of BDE-99 relevant to exposure in wild birds (0, 33.7 or 173.8 ng/g body wt/d) for three weeks prior to pairing. Maternal BDE-99 and very-low-density lipoprotein (VLDL) in plasma were measured during egg formation and at clutch completion, and BDE-99 was measured in the corresponding egg. The lipid-normalized egg-to-maternal tissue BDE-99 relationship decreased with increasing maternal burden. Individual variation in maternal VLDL was related to BDE-99 transfer to the eggs when BDE-99 was at background levels in control birds, but not when BDE-99 was elevated in dosed birds. The decrease in maternal plasma BDE-99 over the laying period was only significant (p < 0.05) in the high-dose birds. Finally, the decrease in BDE-99 in maternal plasma during egg-laying was significantly positively correlated with clutch mass in the high-dose group. These results suggest that the relationship between maternal and egg contaminant levels can be highly variable. This has significant implications for using eggs as indicators of adult or environmental concentrations. Copyright © 2012 SETAC.

  4. Kin recognition and adjustment of reproductive effort in zebra finches.

    PubMed

    Arct, Aneta; Rutkowska, Joanna; Martyka, Rafal; Drobniak, Szymon M; Cichon, Mariusz

    2010-12-23

    The differential allocation theory predicts that females should invest more in offspring produced with attractive partners, and a number of studies support this prediction in birds. Females have been shown to increase reproductive investment when mated to males showing elaborated sexual traits. However, mate attractiveness might also depend on the interaction between male and female genotypes. Accordingly, females should invest more in offspring sired by individuals that are genetically dissimilar or carry superior alleles. Here, we show in zebra finches (Taeniopygia guttata) that pairs of unfamiliar genetic brothers and sisters are less likely to reproduce in comparison with randomly mated pairs. Among the brother-sister pairs, those that attempted to breed laid smaller clutches and of lower total clutch mass. Our results provide the first experimental evidence that females adjust their reproductive effort in response to the genetic similarity of their partners. Importantly, these results imply a female ability to assess relatedness of a social mate without prior association.

  5. Kin recognition and adjustment of reproductive effort in zebra finches

    PubMed Central

    Arct, Aneta; Rutkowska, Joanna; Martyka, Rafał; Drobniak, Szymon M.; Cichoń, Mariusz

    2010-01-01

    The differential allocation theory predicts that females should invest more in offspring produced with attractive partners, and a number of studies support this prediction in birds. Females have been shown to increase reproductive investment when mated to males showing elaborated sexual traits. However, mate attractiveness might also depend on the interaction between male and female genotypes. Accordingly, females should invest more in offspring sired by individuals that are genetically dissimilar or carry superior alleles. Here, we show in zebra finches (Taeniopygia guttata) that pairs of unfamiliar genetic brothers and sisters are less likely to reproduce in comparison with randomly mated pairs. Among the brother–sister pairs, those that attempted to breed laid smaller clutches and of lower total clutch mass. Our results provide the first experimental evidence that females adjust their reproductive effort in response to the genetic similarity of their partners. Importantly, these results imply a female ability to assess relatedness of a social mate without prior association. PMID:20573618

  6. Patterns of call communication between group-housed zebra finches change during the breeding cycle

    PubMed Central

    Gill, Lisa F; Goymann, Wolfgang; Ter Maat, Andries; Gahr, Manfred

    2015-01-01

    Vocal signals such as calls play a crucial role for survival and successful reproduction, especially in group-living animals. However, call interactions and call dynamics within groups remain largely unexplored because their relation to relevant contexts or life-history stages could not be studied with individual-level resolution. Using on-bird microphone transmitters, we recorded the vocalisations of individual zebra finches (Taeniopygia guttata) behaving freely in social groups, while females and males previously unknown to each other passed through different stages of the breeding cycle. As birds formed pairs and shifted their reproductive status, their call repertoire composition changed. The recordings revealed that calls occurred non-randomly in fine-tuned vocal interactions and decreased within groups while pair-specific patterns emerged. Call-type combinations of vocal interactions changed within pairs and were associated with successful egg-laying, highlighting a potential fitness relevance of calling dynamics in communication systems. DOI: http://dx.doi.org/10.7554/eLife.07770.001 PMID:26441403

  7. Experimental Infection and Clearance of Coccidian Parasites in Mercury-Exposed Zebra Finches.

    PubMed

    Ebers Smith, Jessica H; Cristol, Daniel A; Swaddle, John P

    2018-01-01

    Mercury is a globally distributed, persistent environmental contaminant that affects the health of many taxa. It can suppress the immune system, which often plays a role in defense against parasites. However, there have been few investigations of whether mercury affects the abilities of animals to resist parasitic infection. Here, we exposed zebra finches to a lifetime dietary exposure of methylmercury (1.2 μg/g wet weight) and experimentally infected them with coccidian parasites to examine the effect of methylmercury exposure on parasitic infection. The mercury-exposed birds did not have an altered immune response (heterophil:lymphocyte ratio) nor a reduced ability to clear the infection. However, mercury-exposed birds tended to have higher parasite loads at the time when we expected the greatest immune response (2-3 weeks post-infection). Although mercury did not greatly influence the infection-course of this parasite in captivity, responses may be more accentuated in the wild where birds face additional immune challenges.

  8. Behavior-Linked FoxP2 Regulation Enables Zebra Finch Vocal Learning

    PubMed Central

    Heston, Jonathan B.

    2015-01-01

    Mutations in the FOXP2 transcription factor cause an inherited speech and language disorder, but how FoxP2 contributes to learning of these vocal communication signals remains unclear. FoxP2 is enriched in corticostriatal circuits of both human and songbird brains. Experimental knockdown of this enrichment in song control neurons of the zebra finch basal ganglia impairs tutor song imitation, indicating that adequate FoxP2 levels are necessary for normal vocal learning. In unmanipulated birds, vocal practice acutely downregulates FoxP2, leading to increased vocal variability and dynamic regulation of FoxP2 target genes. To determine whether this behavioral regulation is important for song learning, here, we used viral-driven overexpression of FoxP2 to counteract its downregulation. This manipulation disrupted the acute effects of song practice on vocal variability and caused inaccurate song imitation. Together, these findings indicate that dynamic behavior-linked regulation of FoxP2, rather than absolute levels, is critical for vocal learning. PMID:25698728

  9. Social learning in nest-building birds: a role for familiarity.

    PubMed

    Guillette, Lauren M; Scott, Alice C Y; Healy, Susan D

    2016-03-30

    It is becoming apparent that birds learn from their own experiences of nest building. What is not clear is whether birds can learn from watching conspecifics build. As social learning allows an animal to gain information without engaging in costly trial-and-error learning, first-time builders should exploit the successful habits of experienced builders. We presented first-time nest-building male zebra finches with either a familiar or an unfamiliar conspecific male building with material of a colour the observer did not like. When given the opportunity to build, males that had watched a familiar male build switched their material preference to that used by the familiar male. Males that observed unfamiliar birds did not. Thus, first-time nest builders use social information and copy the nest material choices when demonstrators are familiar but not when they are strangers. The relationships between individuals therefore influence how nest-building expertise is socially transmitted in zebra finches. © 2016 The Author(s).

  10. Social learning in nest-building birds: a role for familiarity

    PubMed Central

    Guillette, Lauren M.; Scott, Alice C. Y.; Healy, Susan D.

    2016-01-01

    It is becoming apparent that birds learn from their own experiences of nest building. What is not clear is whether birds can learn from watching conspecifics build. As social learning allows an animal to gain information without engaging in costly trial-and-error learning, first-time builders should exploit the successful habits of experienced builders. We presented first-time nest-building male zebra finches with either a familiar or an unfamiliar conspecific male building with material of a colour the observer did not like. When given the opportunity to build, males that had watched a familiar male build switched their material preference to that used by the familiar male. Males that observed unfamiliar birds did not. Thus, first-time nest builders use social information and copy the nest material choices when demonstrators are familiar but not when they are strangers. The relationships between individuals therefore influence how nest-building expertise is socially transmitted in zebra finches. PMID:27009230

  11. Vocal Communication: Decoding Sexy Songs.

    PubMed

    Gahr, Manfred

    2018-04-02

    Male birds communicate sexual motivation via song performance, and receiving females might eventually respond to such 'ornaments'. A new study now shows that female zebra finches have a specialized higher order sensory (forebrain) region that preferably responds to the males' mating songs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Kinematics of flap-bounding flight in the zebra finch over a wide range of speeds

    PubMed

    Tobalske; Peacock; Dial

    1999-07-01

    It has been proposed elsewhere that flap-bounding, an intermittent flight style consisting of flapping phases interspersed with flexed-wing bounds, should offer no savings in average mechanical power relative to continuous flapping unless a bird flies 1.2 times faster than its maximum range speed (Vmr). Why do some species use intermittent bounds at speeds slower than 1.2Vmr? The 'fixed-gear hypothesis' suggests that flap-bounding is used to vary mean power output in small birds that are otherwise constrained by muscle physiology and wing anatomy to use a fixed muscle shortening velocity and pattern of wing motion at all flight speeds; the 'body-lift hypothesis' suggests that some weight support during bounds could make flap-bounding flight aerodynamically advantageous in comparison with continuous flapping over most forward flight speeds. To test these predictions, we studied high-speed film recordings (300 Hz) of wing and body motion in zebra finches (Taenopygia guttata, mean mass 13.2 g, N=4) taken as the birds flew in a variable-speed wind tunnel (0-14 m s-1). The zebra finches used flap-bounding flight at all speeds, so their flight style was unique compared with that of birds that facultatively shift from continuous flapping or flap-gliding at slow speeds to flap-bounding at fast speeds. There was a significant effect of flight speed on all measured aspects of wing motion except percentage of the wingbeat spent in downstroke. Changes in angular velocity of the wing indicated that contractile velocity in the pectoralis muscle changed with flight speed, which is not consistent with the fixed-gear hypothesis. Although variation in stroke-plane angle relative to the body, pronation angle of the wing and wing span at mid-upstroke showed that the zebra finch changed within-wingbeat geometries according to speed, a vortex-ring gait with a feathered upstroke appeared to be the only gait used during flapping. In contrast, two small species that use continuous flapping during slow flight (0-4 m s-1) either change wingbeat gait according to flight speed or exhibit more variation in stroke-plane and pronation angles relative to the body. Differences in kinematics among species appear to be related to wing design (aspect ratio, skeletal proportions) rather than to pectoralis muscle fiber composition, indicating that the fixed-gear hypothesis should perhaps be modified to exclude muscle physiology and to emphasize constraints due to wing anatomy. Body lift was produced during bounds at speeds from 4 to 14 m s-1. Maximum body lift was 0.0206 N (15.9 % of body weight) at 10 m s-1; body lift:drag ratio declined with increasing air speed. The aerodynamic function of bounds differed with increasing speed from an emphasis on lift production (4-10 m s-1) to an emphasis on drag reduction with a slight loss in lift (12 and 14 m s-1). From a mathematical model of aerodynamic costs, it appeared that flap-bounding offered the zebra finch an aerodynamic advantage relative to continuous flapping at moderate and fast flight speeds (6-14 m s-1), with body lift augmenting any savings offered solely by flap-bounding at speeds faster than 7.1 m s-1. The percentage of time spent flapping during an intermittent flight cycle decreased with increasing speed, so the mechanical cost of transport was likely to be lowest at faster flight speeds (10-14 m s-1).

  13. Sex Differences in Brain Thyroid Hormone Levels during Early Post-Hatching Development in Zebra Finch (Taeniopygia guttata).

    PubMed

    Yamaguchi, Shinji; Hayase, Shin; Aoki, Naoya; Takehara, Akihiko; Ishigohoka, Jun; Matsushima, Toshiya; Wada, Kazuhiro; Homma, Koichi J

    2017-01-01

    Thyroid hormones are closely linked to the hatching process in precocial birds. Previously, we showed that thyroid hormones in brain had a strong impact on filial imprinting, an early learning behavior in newly hatched chicks; brain 3,5,3'-triiodothyronine (T3) peaks around hatching and imprinting training induces additional T3 release, thus, extending the sensitive period for imprinting and enabling subsequent other learning. On the other hand, blood thyroid hormone levels have been reported to increase gradually after hatching in altricial species, but it remains unknown how the brain thyroid hormone levels change during post-hatching development of altricial birds. Here, we determined the changes in serum and brain thyroid hormone levels of a passerine songbird species, the zebra finch using radioimmunoassay. In the serum, we found a gradual increase in thyroid hormone levels during post-hatching development, as well as differences between male and female finches. In the brain, there was clear surge in the hormone levels during development in males and females coinciding with the time of fledging, but the onset of the surge of thyroxine (T4) in males preceded that of females, whereas the onset of the surge of T3 in males succeeded that of females. These findings provide a basis for understanding the functions of thyroid hormones during early development and learning in altricial birds.

  14. Multi-Platform Next-Generation Sequencing of the Domestic Turkey (Meleagris gallopavo): Genome Assembly and Analysis

    PubMed Central

    Aslam, Luqman; Beal, Kathryn; Ann Blomberg, Le; Bouffard, Pascal; Burt, David W.; Crasta, Oswald; Crooijmans, Richard P. M. A.; Cooper, Kristal; Coulombe, Roger A.; De, Supriyo; Delany, Mary E.; Dodgson, Jerry B.; Dong, Jennifer J.; Evans, Clive; Frederickson, Karin M.; Flicek, Paul; Florea, Liliana; Folkerts, Otto; Groenen, Martien A. M.; Harkins, Tim T.; Herrero, Javier; Hoffmann, Steve; Megens, Hendrik-Jan; Jiang, Andrew; de Jong, Pieter; Kaiser, Pete; Kim, Heebal; Kim, Kyu-Won; Kim, Sungwon; Langenberger, David; Lee, Mi-Kyung; Lee, Taeheon; Mane, Shrinivasrao; Marcais, Guillaume; Marz, Manja; McElroy, Audrey P.; Modise, Thero; Nefedov, Mikhail; Notredame, Cédric; Paton, Ian R.; Payne, William S.; Pertea, Geo; Prickett, Dennis; Puiu, Daniela; Qioa, Dan; Raineri, Emanuele; Ruffier, Magali; Salzberg, Steven L.; Schatz, Michael C.; Scheuring, Chantel; Schmidt, Carl J.; Schroeder, Steven; Searle, Stephen M. J.; Smith, Edward J.; Smith, Jacqueline; Sonstegard, Tad S.; Stadler, Peter F.; Tafer, Hakim; Tu, Zhijian (Jake); Van Tassell, Curtis P.; Vilella, Albert J.; Williams, Kelly P.; Yorke, James A.; Zhang, Liqing; Zhang, Hong-Bin; Zhang, Xiaojun; Zhang, Yang; Reed, Kent M.

    2010-01-01

    A synergistic combination of two next-generation sequencing platforms with a detailed comparative BAC physical contig map provided a cost-effective assembly of the genome sequence of the domestic turkey (Meleagris gallopavo). Heterozygosity of the sequenced source genome allowed discovery of more than 600,000 high quality single nucleotide variants. Despite this heterozygosity, the current genome assembly (∼1.1 Gb) includes 917 Mb of sequence assigned to specific turkey chromosomes. Annotation identified nearly 16,000 genes, with 15,093 recognized as protein coding and 611 as non-coding RNA genes. Comparative analysis of the turkey, chicken, and zebra finch genomes, and comparing avian to mammalian species, supports the characteristic stability of avian genomes and identifies genes unique to the avian lineage. Clear differences are seen in number and variety of genes of the avian immune system where expansions and novel genes are less frequent than examples of gene loss. The turkey genome sequence provides resources to further understand the evolution of vertebrate genomes and genetic variation underlying economically important quantitative traits in poultry. This integrated approach may be a model for providing both gene and chromosome level assemblies of other species with agricultural, ecological, and evolutionary interest. PMID:20838655

  15. Subchromosomal karyotype evolution in Equidae.

    PubMed

    Musilova, P; Kubickova, S; Vahala, J; Rubes, J

    2013-04-01

    Equidae is a small family which comprises horses, African and Asiatic asses, and zebras. Despite equids having diverged quite recently, their karyotypes underwent rapid evolution which resulted in extensive differences among chromosome complements in respective species. Comparative mapping using whole-chromosome painting probes delineated genome-wide chromosome homologies among extant equids, enabling us to trace chromosome rearrangements that occurred during evolution. In the present study, we performed subchromosomal comparative mapping among seven Equidae species, representing the whole family. Region-specific painting and bacterial artificial chromosome probes were used to determine the orientation of evolutionarily conserved segments with respect to centromere positions. This allowed assessment of the configuration of all fusions occurring during the evolution of Equidae, as well as revealing discrepancies in centromere location caused by centromere repositioning or inversions. Our results indicate that the prevailing type of fusion in Equidae is centric fusion. Tandem fusions of the type telomere-telomere occur almost exclusively in the karyotype of Hartmann's zebra and are characteristic of this species' evolution. We revealed inversions in segments homologous to horse chromosomes 3p/10p and 13 in zebras and confirmed inversions in segments 4/31 in African ass, 7 in horse and 8p/20 in zebras. Furthermore, our mapping results suggested that centromere repositioning events occurred in segments homologous to horse chromosomes 7, 8q, 10p and 19 in the African ass and an element homologous to horse chromosome 16 in Asiatic asses. Centromere repositioning in chromosome 1 resulted in three different chromosome types occurring in extant species. Heterozygosity of the centromere position of this chromosome was observed in the kiang. Other subtle changes in centromere position were described in several evolutionary conserved chromosomal segments, suggesting that tiny centromere repositioning or pericentric inversions are quite frequent in zebras and asses.

  16. Effect of Egg Size on Predation by White-Footed Mice

    Treesearch

    R. M. DeGraaf; T. J. Maier

    1996-01-01

    We compared predation by wild-trapped, caged white-footed mice (Peromyscus leucopus) on eggs of Japanese Quail (Coturnix coturnix) and Zebra Finches (Poephila guttata) to test the effect of egg size. Nine male and nine female mice were weighed, acclimated to cages for 24 h, and presented with two wicker nests,...

  17. Hemispheric dominance underlying the neural substrate for learned vocalizations develops with experience.

    PubMed

    Chirathivat, Napim; Raja, Sahitya C; Gobes, Sharon M H

    2015-06-22

    Many aspects of song learning in songbirds resemble characteristics of speech acquisition in humans. Genetic, anatomical and behavioural parallels have most recently been extended with demonstrated similarities in hemispheric dominance between humans and songbirds: the avian higher order auditory cortex is left-lateralized for processing song memories in juvenile zebra finches that already have formed a memory of their fathers' song, just like Wernicke's area in the left hemisphere of the human brain is dominant for speech perception. However, it is unclear if hemispheric specialization is due to pre-existing functional asymmetry or the result of learning itself. Here we show that in juvenile male and female zebra finches that had never heard an adult song before, neuronal activation after initial exposure to a conspecific song is bilateral. Thus, like in humans, hemispheric dominance develops with vocal proficiency. A left-lateralized functional system that develops through auditory-vocal learning may be an evolutionary adaptation that could increase the efficiency of transferring information within one hemisphere, benefiting the production and perception of learned communication signals.

  18. Hemispheric dominance underlying the neural substrate for learned vocalizations develops with experience

    PubMed Central

    Chirathivat, Napim; Raja, Sahitya C.; Gobes, Sharon M. H.

    2015-01-01

    Many aspects of song learning in songbirds resemble characteristics of speech acquisition in humans. Genetic, anatomical and behavioural parallels have most recently been extended with demonstrated similarities in hemispheric dominance between humans and songbirds: the avian higher order auditory cortex is left-lateralized for processing song memories in juvenile zebra finches that already have formed a memory of their fathers’ song, just like Wernicke’s area in the left hemisphere of the human brain is dominant for speech perception. However, it is unclear if hemispheric specialization is due to pre-existing functional asymmetry or the result of learning itself. Here we show that in juvenile male and female zebra finches that had never heard an adult song before, neuronal activation after initial exposure to a conspecific song is bilateral. Thus, like in humans, hemispheric dominance develops with vocal proficiency. A left-lateralized functional system that develops through auditory-vocal learning may be an evolutionary adaptation that could increase the efficiency of transferring information within one hemisphere, benefiting the production and perception of learned communication signals. PMID:26098840

  19. Behavior-linked FoxP2 regulation enables zebra finch vocal learning.

    PubMed

    Heston, Jonathan B; White, Stephanie A

    2015-02-18

    Mutations in the FOXP2 transcription factor cause an inherited speech and language disorder, but how FoxP2 contributes to learning of these vocal communication signals remains unclear. FoxP2 is enriched in corticostriatal circuits of both human and songbird brains. Experimental knockdown of this enrichment in song control neurons of the zebra finch basal ganglia impairs tutor song imitation, indicating that adequate FoxP2 levels are necessary for normal vocal learning. In unmanipulated birds, vocal practice acutely downregulates FoxP2, leading to increased vocal variability and dynamic regulation of FoxP2 target genes. To determine whether this behavioral regulation is important for song learning, here, we used viral-driven overexpression of FoxP2 to counteract its downregulation. This manipulation disrupted the acute effects of song practice on vocal variability and caused inaccurate song imitation. Together, these findings indicate that dynamic behavior-linked regulation of FoxP2, rather than absolute levels, is critical for vocal learning. Copyright © 2015 the authors 0270-6474/15/352885-10$15.00/0.

  20. Deprivation of maternal care has long-lasting consequences for the hypothalamic–pituitary–adrenal axis of zebra finches

    PubMed Central

    Banerjee, Sunayana B.; Arterbery, Adam S.; Fergus, Daniel J.; Adkins-Regan, Elizabeth

    2012-01-01

    Early-life stress caused by the deprivation of maternal care has been shown to have long-lasting effects on the hypothalamic–pituitary–adrenal (HPA) axis in offspring of uniparental mammalian species. We asked if deprivation of maternal care in biparental species alters stress responsiveness of offspring, using a biparental avian species—the zebra finch, Taeniopygia guttata. In our experiment, one group of birds was raised by both male and female parents (control), and another was raised by males alone (maternally deprived). During adulthood, offspring of both groups were subjected to two stressors (restraint and isolation), and corticosterone concentrations were measured. Additionally, we measured baseline levels of the two corticosteroid receptors—glucocorticoid receptor (GR) and mineralocorticoid receptor (MR)—in the hippocampus, hypothalamus and cerebellum. Our results suggest that maternally deprived offspring are hyper-responsive to isolation in comparison with controls. Furthermore, mRNA levels of both GR and MR receptors are altered in maternally deprived offspring in comparison with controls. Thus, absence of maternal care has lasting consequences for HPA function in a biparental species where paternal care is available. PMID:21775332

  1. Neural correlates of nesting behavior in zebra finches (Taeniopygia guttata).

    PubMed

    Hall, Zachary J; Bertin, Marion; Bailey, Ida E; Meddle, Simone L; Healy, Susan D

    2014-05-01

    Nest building in birds involves a behavioral sequence (nest material collection and deposition in the nest) that offers a unique model for addressing how the brain sequences motor actions. In this study, we identified brain regions involved in nesting behavior in male and female zebra finches (Taeniopygia guttata). We used Fos immunohistochemistry to quantify production of the immediate early gene protein product Fos (a molecular indicator of neuronal activity) in the brain correlated this expression with the variation in nesting behavior. Using this technique, we found that neural circuitry involved in motor sequencing, social behavior, reward and motivation were active during nesting. Within pairs of nesting birds, the number of times a male picked up or deposited nesting material and the amount of time a female spent in the nest explained the variation in Fos expression in the anterior motor pathway, social behavior network, and reward neural circuits. Identification of the brain regions that are involved in nesting enables us to begin studying the roles of motor sequencing, context, and reward in construction behavior at the neural level. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Neural correlates of nesting behavior in zebra finches (Taeniopygia guttata)

    PubMed Central

    Hall, Zachary J.; Bertin, Marion; Bailey, Ida E.; Meddle, Simone L.; Healy, Susan D.

    2014-01-01

    Nest building in birds involves a behavioral sequence (nest material collection and deposition in the nest) that offers a unique model for addressing how the brain sequences motor actions. In this study, we identified brain regions involved in nesting behavior in male and female zebra finches (Taeniopygia guttata). We used Fos immunohistochemistry to quantify production of the immediate early gene protein product Fos (a molecular indicator of neuronal activity) in the brain correlated this expression with the variation in nesting behavior. Using this technique, we found that neural circuitry involved in motor sequencing, social behavior, reward and motivation were active during nesting. Within pairs of nesting birds, the number of times a male picked up or deposited nesting material and the amount of time a female spent in the nest explained the variation in Fos expression in the anterior motor pathway, social behavior network, and reward neural circuits. Identification of the brain regions that are involved in nesting enables us to begin studying the roles of motor sequencing, context, and reward in construction behavior at the neural level. PMID:24508238

  3. Active immunization against vasoactive intestinal polypeptide decreases neuronal recruitment and inhibits reproduction in zebra finches.

    PubMed

    Vistoropsky, Yulia; Heiblum, Rachel; Smorodinsky, Nechama-Ina; Barnea, Anat

    2016-08-15

    Neurogenesis and neuronal recruitment occur in adult brains of many vertebrates, and the hypothesis is that these phenomena contribute to the brain plasticity that enables organisms to adjust to environmental changes. In mammals, vasoactive intestinal polypeptide (VIP) is known to have many neuroprotective properties, but in the avian brain, although widely distributed, its role in neuronal recruitment is not yet understood. In the present study we actively immunized adult zebra finches against VIP conjugated to KLH and compared neuronal recruitment in their brains, with brains of control birds, which were immunized against KLH. We looked at two forebrain regions: the nidopallium caudale (NC), which plays a role in vocal communication, and the hippocampus (HC), which is involved in the processing of spatial information. Our data demonstrate that active immunization against VIP reduces neuronal recruitment, inhibits reproduction, and induces molting, with no change in plasma prolactin levels. Thus, our observations suggest that VIP has a direct positive role in neuronal recruitment and reproduction in birds. J. Comp. Neurol. 524:2516-2528, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Diurnal and Reproductive Stage-Dependent Variation of Parental Behaviour in Captive Zebra Finches

    PubMed Central

    Morvai, Boglárka; Nanuru, Sabine; Mul, Douwe; Kusche, Nina; Milne, Gregory; Székely, Tamás; Komdeur, Jan; Miklósi, Ádám

    2016-01-01

    Parental care plays a key role in ontogeny, life-history trade-offs, sexual selection and intra-familial conflict. Studies focusing on understanding causes and consequences of variation in parental effort need to quantify parental behaviour accurately. The applied methods are, however, diverse even for a given species and type of parental effort, and rarely validated for accuracy. Here we focus on variability of parental behaviour from a methodological perspective to investigate the effect of different samplings on various estimates of parental effort. We used nest box cameras in a captive breeding population of zebra finches, Taeniopygia guttata, a widely used model system of sexual selection, intra-familial dynamics and parental care. We investigated diurnal and reproductive stage-dependent variation in parental effort (including incubation, brooding, nest attendance and number of feedings) based on 12h and 3h continuous video-recordings taken at various reproductive stages. We then investigated whether shorter (1h) sampling periods provided comparable estimates of overall parental effort and division of labour to those of longer (3h) sampling periods. Our study confirmed female-biased division of labour during incubation, and showed that the difference between female and male effort diminishes with advancing reproductive stage. We found individually consistent parental behaviours within given days of incubation and nestling provisioning. Furthermore, parental behaviour was consistent over the different stages of incubation, however, only female brooding was consistent over nestling provisioning. Parental effort during incubation did not predict parental effort during nestling provisioning. Our analyses revealed that 1h sampling may be influenced heavily by stochastic and diurnal variation. We suggest using a single longer sampling period (3h) may provide a consistent and accurate estimate for overall parental effort during incubation in zebra finches. Due to the large within-individual variation, we suggest repeated longer sampling over the reproductive stage may be necessary for accurate estimates of parental effort post-hatching. PMID:27973549

  5. Pairing Increases Activation of V1aR, but not OTR, in Auditory Regions of Zebra Finches: The Importance of Signal Modality in Nonapeptide-Social Behavior Relationships.

    PubMed

    Tomaszycki, Michelle L; Atchley, Derek

    2017-10-01

    Social relationships are complex, involving the production and comprehension of signals, individual recognition, and close coordination of behavior between two or more individuals. The nonapeptides oxytocin and vasopressin are widely believed to regulate social relationships. These findings come largely from prairie voles, in which nonapeptide receptors in olfactory neural circuits drive pair bonding. This research is assumed to apply to all species. Previous reviews have offered two competing hypotheses. The work of Sarah Newman has implicated a common neural network across species, the Social Behavior Network. In contrast, others have suggested that there are signal modality-specific networks that regulate social behavior. Our research focuses on evaluating these two competing hypotheses in the zebra finch, a species that relies heavily on vocal/auditory signals for communication, specifically the neural circuits underlying singing in males and song perception in females. We have demonstrated that the quality of vocal interactions is highly important for the formation of long-term monogamous bonds in zebra finches. Qualitative evidence at first suggests that nonapeptide receptor distributions are very different between monogamous rodents (olfactory species) and monogamous birds (vocal/auditory species). However, we have demonstrated that social bonding behaviors are not only correlated with activation of nonapeptide receptors in vocal and auditory circuits, but also involve regions of the common Social Behavior Network. Here, we show increased Vasopressin 1a receptor, but not oxytocin receptor, activation in two auditory regions following formation of a pair bond. To our knowledge, this is the first study to suggest a role of nonapeptides in the auditory circuit in pair bonding. Thus, we highlight converging mechanisms of social relationships and also point to the importance of studying multiple species to understand mechanisms of behavior. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  6. Features of the Retinotopic Representation in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata)

    PubMed Central

    Michael, Neethu; Löwel, Siegrid; Bischof, Hans-Joachim

    2015-01-01

    The visual wulst of the zebra finch comprises at least two retinotopic maps of the contralateral eye. As yet, it is not known how much of the visual field is represented in the wulst neuronal maps, how the organization of the maps is related to the retinal architecture, and how information from the ipsilateral eye is involved in the activation of the wulst. Here, we have used autofluorescent flavoprotein imaging and classical anatomical methods to investigate such characteristics of the most posterior map of the multiple retinotopic representations. We found that the visual wulst can be activated by visual stimuli from a large part of the visual field of the contralateral eye. Horizontally, the visual field representation extended from -5° beyond the beak tip up to +125° laterally. Vertically, a small strip from -10° below to about +25° above the horizon activated the visual wulst. Although retinal ganglion cells had a much higher density around the fovea and along a strip extending from the fovea towards the beak tip, these areas were not overrepresented in the wulst map. The wulst area activated from the foveal region of the ipsilateral eye, overlapped substantially with the middle of the three contralaterally activated regions in the visual wulst, and partially with the other two. Visual wulst activity evoked by stimulation of the frontal visual field was stronger with contralateral than with binocular stimulation. This confirms earlier electrophysiological studies indicating an inhibitory influence of the activation of the ipsilateral eye on wulst activity elicited by stimulating the contralateral eye. The lack of a foveal overrepresentation suggests that identification of objects may not be the primary task of the zebra finch visual wulst. Instead, this brain area may be involved in the processing of visual information necessary for spatial orientation. PMID:25853253

  7. MC1R Genotype and Plumage Colouration in the Zebra Finch (Taeniopygia guttata): Population Structure Generates Artefactual Associations

    PubMed Central

    Hoffman, Joseph I.; Krause, E. Tobias; Lehmann, Katrin; Krüger, Oliver

    2014-01-01

    Polymorphisms at the melanocortin-1 receptor (MC1R) gene have been linked to coloration in many vertebrate species. However, the potentially confounding influence of population structure has rarely been controlled for. We explored the role of the MC1R in a model avian system by sequencing the coding region in 162 zebra finches comprising 79 wild type and 83 white individuals from five stocks. Allelic counts differed significantly between the two plumage morphs at multiple segregating sites, but these were mostly synonymous. To provide a control, the birds were genotyped at eight microsatellites and subjected to Bayesian cluster analysis, revealing two distinct groups. We therefore crossed wild type with white individuals and backcrossed the F1s with white birds. No significant associations were detected in the resulting offspring, suggesting that our original findings were a byproduct of genome-wide divergence. Our results are consistent with a previous study that found no association between MC1R polymorphism and plumage coloration in leaf warblers. They also contribute towards a growing body of evidence suggesting that care should be taken to quantify, and where necessary control for, population structure in association studies. PMID:24489736

  8. Melanin-based color of plumage: role of condition and of feathers' microstructure

    USGS Publications Warehouse

    D'Alba, Liliana; Van Hemert, Caroline R.; Spencer, Karen A.; Heidinger, Britt J.; Gill, Lisa; Evans, Neil P.; Monaghan, Pat; Handel, Colleen M.; Shawkey, Matthew D.

    2014-01-01

    Whether melanin-based colors honestly signal a bird's condition during the growth of feathers is controversial, and it is unclear if or how the physiological processes underlying melanogenesis or color-imparting structural feather microstructure may be adversely affected by condition. Here we report results from two experiments designed to measure the effect of condition on expression of eumelanic and pheomelanic coloration in black-capped chickadees (Poecile atricapillus) and zebra finches (Taeniopygia guttata), respectively. In chickadees, we compared feathers of birds affected and unaffected by avian keratin disorder, while in zebra finches we compared feathers of controls with feathers of those subjected to an unpredictable food supply during development. In both cases we found that control birds had brighter feathers (higher total reflectance) and more barbules, but similar densities of melanosomes. In addition, the microstructure of the feathers explained variation in color more strongly than did melanosome density. Together, these results suggest that melanin-based coloration may in part be condition-dependent, but that this may be driven by changes in keratin and feather development, rather than melanogenesis itself. Researchers should be cautious when assigning variation in melanin-based color to melanin alone and microstructure of the feather should be taken into account.

  9. Carbachol-Induced Reduction in the Activity of Adult Male Zebra Finch RA Projection Neurons.

    PubMed

    Meng, Wei; Wang, Song-Hua; Li, Dong-Feng

    2016-01-01

    Cholinergic mechanism is involved in motor behavior. In songbirds, the robust nucleus of the arcopallium (RA) is a song premotor nucleus in the pallium and receives cholinergic inputs from the basal forebrain. The activity of projection neurons in RA determines song motor behavior. Although many evidences suggest that cholinergic system is implicated in song production, the cholinergic modulation of RA is not clear until now. In the present study, the electrophysiological effects of carbachol, a nonselective cholinergic receptor agonist, were investigated on the RA projection neurons of adult male zebra finches through whole-cell patch-clamp techniques in vitro. Our results show that carbachol produced a significant decrease in the spontaneous and evoked action potential (AP) firing frequency of RA projection neurons, accompanying a hyperpolarization of the membrane potential, an increase in the evoked AP latency, afterhyperpolarization (AHP) peak amplitude, and AHP time to peak, and a decrease in the membrane input resistance, membrane time constant, and membrane capacitance. These results indicate that carbachol reduces the activity of RA projection neurons by hyperpolarizing the resting membrane potential and increasing the AHP and the membrane conductance, suggesting that the cholinergic modulation of RA may play an important role in song production.

  10. Long-term social bonds promote cooperation in the iterated Prisoner's Dilemma.

    PubMed

    St-Pierre, Angèle; Larose, Karine; Dubois, Frédérique

    2009-12-07

    Reciprocal altruism, one of the most probable explanations for cooperation among non-kin, has been modelled as a Prisoner's Dilemma. According to this game, cooperation could evolve when individuals, who expect to play again, use conditional strategies like tit-for-tat or Pavlov. There is evidence that humans use such strategies to achieve mutual cooperation, but most controlled experiments with non-human animals have failed to find cooperation. One reason for this could be that subjects fail to cooperate because they behave as if they were to play only once. To assess this hypothesis, we conducted an experiment with monogamous zebra finches (Taeniopygia guttata) that were tested in a two-choice apparatus, with either their social partner or an experimental opponent of the opposite sex. We found that zebra finches maintained high levels of cooperation in an iterated Prisoner's Dilemma game only when interacting with their social partner. Although other mechanisms may have contributed to the observed difference between the two treatments, our results support the hypothesis that animals do not systematically give in to the short-term temptation of cheating when long-term benefits exist. Thus, our findings contradict the commonly accepted idea that reciprocal altruism will be rare in non-human animals.

  11. Low diversity, activity, and density of transposable elements in five avian genomes.

    PubMed

    Gao, Bo; Wang, Saisai; Wang, Yali; Shen, Dan; Xue, Songlei; Chen, Cai; Cui, Hengmi; Song, Chengyi

    2017-07-01

    In this study, we conducted the activity, diversity, and density analysis of transposable elements (TEs) across five avian genomes (budgerigar, chicken, turkey, medium ground finch, and zebra finch) to explore the potential reason of small genome sizes of birds. We found that these avian genomes exhibited low density of TEs by about 10% of genome coverages and low diversity of TEs with the TE landscapes dominated by CR1 and ERV elements, and contrasting proliferation dynamics both between TE types and between species were observed across the five avian genomes. Phylogenetic analysis revealed that CR1 clade was more diverse in the family structure compared with R2 clade in birds; avian ERVs were classified into four clades (alpha, beta, gamma, and ERV-L) and belonged to three classes of ERV with an uneven distributed in these lineages. The activities of DNA and SINE TEs were very low in the evolution history of avian genomes; most LINEs and LTRs were ancient copies with a substantial decrease of activity in recent, with only LTRs and LINEs in chicken and zebra finch exhibiting weak activity in very recent, and very few TEs were intact; however, the recent activity may be underestimated due to the sequencing/assembly technologies in some species. Overall, this study demonstrates low diversity, activity, and density of TEs in the five avian species; highlights the differences of TEs in these lineages; and suggests that the current and recent activity of TEs in avian genomes is very limited, which may be one of the reasons of small genome sizes in birds.

  12. Programmed DNA Elimination: Keeping Germline Genes in Their Place.

    PubMed

    Smith, Jeramiah J

    2018-05-21

    Each of our cells contains a full set of instructions needed to make an entire human: the genome. But a few special species buck this trend. A new study now identifies the first germline-specific gene in zebra finch, one of a small number of vertebrates that are known to undergo developmentally programmed DNA elimination. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Impulsiveness does not prevent cooperation from emerging but reduces its occurrence: an experiment with zebra finches.

    PubMed

    Chia, Camille; Dubois, Frédérique

    2017-08-17

    Reciprocal altruism, the most probable mechanism for cooperation among unrelated individuals, can be modelled as a Prisoner's Dilemma. This game predicts that cooperation should evolve whenever the players, who expect to interact repeatedly, make choices contingent to their partner's behaviour. Experimental evidence, however, indicates that reciprocity is rare among animals. One reason for this would be that animals are very impulsive compared to humans. Several studies have reported that temporal discounting (that is, strong preferences for immediate benefits) has indeed a negative impact on the occurrence of cooperation. Yet, the role of impulsive action, another facet of impulsiveness, remains unexplored. Here, we conducted a laboratory experiment in which male and female zebra finches (Taenyopigia guttata) were paired assortatively with respect to their level of impulsive action and then played an alternating Prisoner's Dilemma. As anticipated, we found that self-controlled pairs achieved high levels of cooperation by using a Generous Tit-for-Tat strategy, while impulsive birds that cooperated at a lower level, chose to cooperate with a fixed probability. If the inability of impulsive individuals to use reactive strategies are due to their reduced working memory capacity, thus our findings might contribute to explaining interspecific differences in cooperative behaviour.

  14. Increased fat catabolism sustains water balance during fasting in zebra finches.

    PubMed

    Rutkowska, Joanna; Sadowska, Edyta T; Cichoń, Mariusz; Bauchinger, Ulf

    2016-09-01

    Patterns of physiological flexibility in response to fasting are well established, but much less is known about the contribution of water deprivation to the observed effects. We investigated body composition and energy and water budget in three groups of zebra finches: birds with access to food and water, food-deprived birds having access to drinking water and food-and-water-deprived birds. Animals were not stimulated by elevated energy expenditure and they were in thermoneutral conditions; thus, based on previous studies, water balance of fasting birds was expected to be maintained by increased catabolism of proteins. In contrast to this expectation, we found that access to water did not prevent reduction of proteinaceous tissue, but it saved fat reserves of the fasting birds. Thus, water balance of birds fasting without access to water seemed to be maintained by elevated fat catabolism, which generated 6 times more metabolic water compared with that in birds that had access to water. Therefore, we revise currently established views and propose fat to serve as the primary source for metabolic water production. Previously assumed increased protein breakdown for maintenance of water budget would occur if fat stores were depleted or if fat catabolism reached its upper limits due to high energy demands. © 2016. Published by The Company of Biologists Ltd.

  15. Early life manipulations of vasopressin-family peptides alter vocal learning.

    PubMed

    Baran, Nicole M; Peck, Samantha C; Kim, Tabitha H; Goldstein, Michael H; Adkins-Regan, Elizabeth

    2017-07-26

    Vocal learning from social partners is crucial for the successful development of communication in a wide range of species. Social interactions organize attention and enhance motivation to learn species-typical behaviour. However, the neurobiological mechanisms connecting social motivation and vocal learning are unknown. Using zebra finches ( Taeniopygia guttata ), a ubiquitous model for vocal learning, we show that manipulations of nonapeptide hormones in the vasopressin family (arginine vasotocin, AVT) early in development can promote or disrupt both song and social motivation. Young male zebra finches, like human infants, are socially gregarious and require interactive feedback from adult tutors to learn mature vocal forms. To investigate the role of social motivational mechanisms in song learning, in two studies, we injected hatchling males with AVT or Manning compound (MC, a nonapeptide receptor antagonist) on days 2-8 post-hatching and recorded song at maturity. In both studies, MC males produced a worse match to tutor song than controls. In study 2, which experimentally controlled for tutor and genetic factors, AVT males also learned song significantly better compared with controls. Furthermore, song similarity correlated with several measures of social motivation throughout development. These findings provide the first evidence that nonapeptides are critical to the development of vocal learning. © 2017 The Author(s).

  16. CNTNAP2 is a direct FoxP2 target in vitro and in vivo in zebra finches: complex regulation by age and activity.

    PubMed

    Adam, I; Mendoza, E; Kobalz, U; Wohlgemuth, S; Scharff, C

    2017-07-01

    Mutations of FOXP2 are associated with altered brain structure, including the striatal part of the basal ganglia, and cause a severe speech and language disorder. Songbirds serve as a tractable neurobiological model for speech and language research. Experimental downregulation of FoxP2 in zebra finch Area X, a nucleus of the striatal song control circuitry, affects synaptic transmission and spine densities. It also renders song learning and production inaccurate and imprecise, similar to the speech impairment of patients carrying FOXP2 mutations. Here we show that experimental downregulation of FoxP2 in Area X using lentiviral vectors leads to reduced expression of CNTNAP2, a FOXP2 target gene in humans. In addition, natural downregulation of FoxP2 by age or by singing also downregulated CNTNAP2 expression. Furthermore, we report that FoxP2 binds to and activates the avian CNTNAP2 promoter in vitro. Taken together these data establish CNTNAP2 as a direct FoxP2 target gene in songbirds, likely affecting synaptic function relevant for song learning and song maintenance. © 2017 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  17. Developmental song learning as a model to understand neural mechanisms that limit and promote the ability to learn.

    PubMed

    London, Sarah E

    2017-11-20

    Songbirds famously learn their vocalizations. Some species can learn continuously, others seasonally, and still others just once. The zebra finch (Taeniopygia guttata) learns to sing during a single developmental "Critical Period," a restricted phase during which a specific experience has profound and permanent effects on brain function and behavioral patterns. The zebra finch can therefore provide fundamental insight into features that promote and limit the ability to acquire complex learned behaviors. For example, what properties permit the brain to come "on-line" for learning? How does experience become encoded to prevent future learning? What features define the brain in receptive compared to closed learning states? This piece will focus on epigenomic, genomic, and molecular levels of analysis that operate on the timescales of development and complex behavioral learning. Existing data will be discussed as they relate to Critical Period learning, and strategies for future studies to more directly address these questions will be considered. Birdsong learning is a powerful model for advancing knowledge of the biological intersections of maturation and experience. Lessons from its study not only have implications for understanding developmental song learning, but also broader questions of learning potential and the enduring effects of early life experience on neural systems and behavior. Copyright © 2017. Published by Elsevier B.V.

  18. Laying-sequence-specific variation in yolk oestrogen levels, and relationship to plasma oestrogen in female zebra finches (Taeniopygia guttata)

    PubMed Central

    Williams, Tony D.; Ames, Caroline E.; Kiparissis, Yiannis; Wynne-Edwards, Katherine E.

    2005-01-01

    We investigated the relationship between plasma and yolk oestrogens in laying female zebra finches (Taeniopygia guttata) by manipulating plasma oestradiol (E2) levels, via injection of oestradiol-17β, in a sequence-specific manner to maintain chronically high plasma levels for later-developing eggs (contrasting with the endogenous pattern of decreasing plasma E2 concentrations during laying). We report systematic variation in yolk oestrogen concentrations, in relation to laying sequence, similar to that widely reported for androgenic steroids. In sham-manipulated females, yolk E2 concentrations decreased with laying sequence. However, in E2-treated females plasma E2 levels were higher during the period of rapid yolk development of later-laid eggs, compared with control females. As a consequence, we reversed the laying-sequence-specific pattern of yolk E2: in E2-treated females, yolk E2 concentrations increased with laying-sequence. In general therefore, yolk E2 levels were a direct reflection of plasma E2 levels. However, in control females there was some inter-individual variability in the endogenous pattern of plasma E2 levels through the laying cycle which could generate variation in sequence-specific patterns of yolk hormone levels even if these primarily reflect circulating steroid levels. PMID:15695208

  19. Selective impairment of song learning following lesions of a forebrain nucleus in the juvenile zebra finch.

    PubMed

    Sohrabji, F; Nordeen, E J; Nordeen, K W

    1990-01-01

    Area X, a large sexually dimorphic nucleus in the avian ventral forebrain, is part of a highly discrete system of interconnected nuclei that have been implicated in either song learning or adult song production. Previously, this nucleus has been included in the song system because of its substantial connections with other vocal control nuclei, and because its volume is positively correlated with the capacity for song. In order to directly assess the role of Area X in song behavior, this nucleus was bilaterally lesioned in both juvenile and adult zebra finches, using ibotenic acid. We report here that lesioning Area X disrupts normal song development in juvenile birds, but does not affect the production of stereotyped song by adult birds. Although juvenile-lesioned birds were consistently judged as being in earlier stages of vocal development than age-matched controls, they continued to produce normal song-like vocalizations. Thus, unlike the lateral magnocellular nucleus of the anterior neostriatum, another avian forebrain nucleus implicated in song learning, Area X does not seem to be necessary for sustaining production of juvenile song. Rather, the behavioral results suggest Area X is important for either the acquisition of a song model or the improvement of song through vocal practice.

  20. Early-Life Stress Triggers Juvenile Zebra Finches to Switch Social Learning Strategies.

    PubMed

    Farine, Damien R; Spencer, Karen A; Boogert, Neeltje J

    2015-08-17

    Stress during early life can cause disease and cognitive impairment in humans and non-humans alike. However, stress and other environmental factors can also program developmental pathways. We investigate whether differential exposure to developmental stress can drive divergent social learning strategies between siblings. In many species, juveniles acquire essential foraging skills by copying others: they can copy peers (horizontal social learning), learn from their parents (vertical social learning), or learn from other adults (oblique social learning). However, whether juveniles' learning strategies are condition dependent largely remains a mystery. We found that juvenile zebra finches living in flocks socially learned novel foraging skills exclusively from adults. By experimentally manipulating developmental stress, we further show that social learning targets are phenotypically plastic. While control juveniles learned foraging skills from their parents, their siblings, exposed as nestlings to experimentally elevated stress hormone levels, learned exclusively from unrelated adults. Thus, early-life conditions triggered individuals to switch strategies from vertical to oblique social learning. This switch could arise from stress-induced differences in developmental rate, cognitive and physical state, or the use of stress as an environmental cue. Acquisition of alternative social learning strategies may impact juveniles' fit to their environment and ultimately change their developmental trajectories. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Duplicated growth hormone genes in a passerine bird, the jungle crow (Corvus macrorhynchos).

    PubMed

    Arai, Natsumi; Iigo, Masayuki

    2010-07-02

    Molecular cloning, molecular phylogeny, gene structure and expression analyses of growth hormone (GH) were performed in a passerine bird, the jungle crow (Corvus macrorhynchos). Unexpectedly, duplicated GH cDNA and genes were identified and designated as GH1A and GH1B. In silico analyses identified the zebra finch orthologs. Both GH genes encode 217 amino acid residues and consist of five exons and four introns, spanning 5.2 kbp in GH1A and 4.2 kbp in GH1B. Predicted GH proteins of the jungle crow and zebra finch contain four conserved cysteine residues, suggesting duplicated GH genes are functional. Molecular phylogenetic analysis revealed that duplication of GH genes occur after divergence of the passerine lineage from the other avian orders as has been suggested from partial genomic DNA sequences of passerine GH genes. RT-PCR analyses confirmed expression of GH1A and GH1B in the pituitary gland. In addition, GH1A gene is expressed in all the tissues examined. However, expression of GH1B is confined to several brain areas and blood cells. These results indicate that the regulatory mechanisms of duplicated GH genes are different and that duplicated GH genes exert both endocrine and autocrine/paracrine functions. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Carbachol-Induced Reduction in the Activity of Adult Male Zebra Finch RA Projection Neurons

    PubMed Central

    Meng, Wei; Wang, Song-Hua; Li, Dong-Feng

    2016-01-01

    Cholinergic mechanism is involved in motor behavior. In songbirds, the robust nucleus of the arcopallium (RA) is a song premotor nucleus in the pallium and receives cholinergic inputs from the basal forebrain. The activity of projection neurons in RA determines song motor behavior. Although many evidences suggest that cholinergic system is implicated in song production, the cholinergic modulation of RA is not clear until now. In the present study, the electrophysiological effects of carbachol, a nonselective cholinergic receptor agonist, were investigated on the RA projection neurons of adult male zebra finches through whole-cell patch-clamp techniques in vitro. Our results show that carbachol produced a significant decrease in the spontaneous and evoked action potential (AP) firing frequency of RA projection neurons, accompanying a hyperpolarization of the membrane potential, an increase in the evoked AP latency, afterhyperpolarization (AHP) peak amplitude, and AHP time to peak, and a decrease in the membrane input resistance, membrane time constant, and membrane capacitance. These results indicate that carbachol reduces the activity of RA projection neurons by hyperpolarizing the resting membrane potential and increasing the AHP and the membrane conductance, suggesting that the cholinergic modulation of RA may play an important role in song production. PMID:26904300

  3. Mercury alters initiation and construction of nests by zebra finches, but not incubation or provisioning behaviors.

    PubMed

    Chin, Stephanie Y; Hopkins, William A; Cristol, Daniel A

    2017-11-01

    Mercury is an environmental contaminant that impairs avian reproduction, but the behavioral and physiological mechanisms underlying this effect are poorly understood. The objective of this study was to determine whether lifetime dietary exposure to mercury (1.2 µg/g wet weight in food) impacted avian parental behaviors, and how this might influence reproductive success. To distinguish between the direct effects of mercury on parents and offspring, we created four treatment groups of captive-bred zebra finches (Taeniopygia guttata), with control and mercury-exposed adults raising cross-fostered control or mercury-exposed eggs (from maternal transfer). Control parents were 23% more likely to fledge young than parents exposed to mercury, regardless of egg exposure. Mercury-exposed parents were less likely to initiate nests than controls and spent less time constructing them. Nests of mercury-exposed pairs were lighter, possibly due to an impaired ability to bring nest material into the nestbox. However, nest temperature, incubation behavior, and provisioning rate did not differ between parental treatments. Unexposed control eggs tended to have shorter incubation periods and higher hatching success than mercury-exposed eggs, but there was no effect of parental exposure on these parameters. We accidentally discovered that parent finches transfer some of their body burden of mercury to nestlings during feeding through secretion in the crop. These results suggest that, in mercury-exposed songbirds, pre-laying parental behaviors, combined with direct exposure of embryos to mercury, likely contribute to reduced reproductive success and should be considered in future studies. Further research is warranted in field settings, where parents are exposed to greater environmental challenges and subtle behavioral differences might have more serious consequences than were observed in captivity.

  4. Short- and long-term consequences of early developmental conditions: a case study on wild and domesticated zebra finches.

    PubMed

    Tschirren, B; Rutstein, A N; Postma, E; Mariette, M; Griffith, S C

    2009-02-01

    Divergent selection pressures among populations can result not only in significant differentiation in morphology, physiology and behaviour, but also in how these traits are related to each other, thereby driving the processes of local adaptation and speciation. In the Australian zebra finch, we investigated whether domesticated stock, bred in captivity over tens of generations, differ in their response to a life-history manipulation, compared to birds taken directly from the wild. In a 'common aviary' experiment, we thereto experimentally manipulated the environmental conditions experienced by nestlings early in life by means of a brood size manipulation, and subsequently assessed its short- and long-term consequences on growth, ornamentation, immune function and reproduction. As expected, we found that early environmental conditions had a marked effect on both short- and long-term morphological and life-history traits in all birds. However, although there were pronounced differences between wild and domesticated birds with respect to the absolute expression of many of these traits, which are indicative of the different selection pressures wild and domesticated birds were exposed to in the recent past, manipulated rearing conditions affected morphology and ornamentation of wild and domesticated finches in a very similar way. This suggests that despite significant differentiation between wild and domesticated birds, selection has not altered the relationships among traits. Thus, life-history strategies and investment trade-offs may be relatively stable and not easily altered by selection. This is a reassuring finding in the light of the widespread use of domesticated birds in studies of life-history evolution and sexual selection, and suggests that adaptive explanations may be legitimate when referring to captive bird studies.

  5. Blood Mercury Levels of Zebra Finches Are Heritable: Implications for the Evolution of Mercury Resistance

    PubMed Central

    Buck, Kenton A.; Varian-Ramos, Claire W.; Cristol, Daniel A.; Swaddle, John P.

    2016-01-01

    Mercury is a ubiquitous metal contaminant that negatively impacts reproduction of wildlife and has many other sub-lethal effects. Songbirds are sensitive bioindicators of mercury toxicity and may suffer population declines as a result of mercury pollution. Current predictions of mercury accumulation and biomagnification often overlook possible genetic variation in mercury uptake and elimination within species and the potential for evolution in affected populations. We conducted a study of dietary mercury exposure in a model songbird species, maintaining a breeding population of zebra finches (Taeniopygia guttata) on standardized diets ranging from 0.0–2.4 μg/g methylmercury. We applied a quantitative genetics approach to examine patterns of variation and heritability of mercury accumulation within dietary treatments using a method of mixed effects modeling known as the 'animal model'. Significant variation in blood mercury accumulation existed within each treatment for birds exposed at the same dietary level; moreover, this variation was highly repeatable for individuals. We observed substantial genetic variation in blood mercury accumulation for birds exposed at intermediate dietary concentrations. Taken together, this is evidence that genetic variation for factors affecting blood mercury accumulation could be acted on by selection. If similar heritability for mercury accumulation exists in wild populations, selection could result in genetic differentiation for populations in contaminated locations, with possible consequences for mercury biomagnification in food webs. PMID:27668745

  6. Development of sexual partner preference in the zebra finch: a socially monogamous, pair-bonding animal.

    PubMed

    Adkins-Regan, Elizabeth

    2002-02-01

    Zebra finches are group living socially monogamous birds that pair for life. Partner preference is strongly sexually differentiated: males prefer to pair with females and females prefer to pair with males. Where do these preferences come from? What occurs during development that produces adult birds that pair with the opposite sex? There is surprisingly little animal research that addresses such questions, especially in species that form pair-bonds. Our research program focuses on two processes that may be involved in the development of adult sexual-partner preference: (1) early (possibly organizational) hormone actions and (2) social experience. Females treated with estradiol or fadrozole (an estrogen synthesis inhibitor) as nestlings or embryos showed masculinized sexual-partner preference as adults, preferring to pair with other females even when potential male partners were available. Removal of adult males from breeding cages, so that young birds were not exposed to males or to male-female pairs during development, eliminated sex-typical partner preferences; these birds were equally interested in both sexes and were more likely than controls to pair with a same-sex partner. These experiments provide insights into the development of sexual-partner preference that may be applicable to other group living pair-bonding animals with biparental care. They also contribute to the foundation of animal research that is necessary for a biological approach to understanding the pair-bonding component of human sexual orientation.

  7. FoxP2 directly regulates the reelin receptor VLDLR developmentally and by singing.

    PubMed

    Adam, Iris; Mendoza, Ezequiel; Kobalz, Ursula; Wohlgemuth, Sandra; Scharff, Constance

    2016-07-01

    Mutations of the transcription factor FOXP2 cause a severe speech and language disorder. In songbirds, FoxP2 is expressed in the medium spiny neurons (MSNs) of the avian basal ganglia song nucleus, Area X, which is crucial for song learning and adult song performance. Experimental downregulation of FoxP2 in Area X affects spine formation, prevents neuronal plasticity induced by social context and impairs song learning. Direct target genes of FoxP2 relevant for song learning and song production are unknown. Here we show that a lentivirally mediated FoxP2 knockdown in Area X of zebra finches downregulates the expression of VLDLR, one of the two reelin receptors. Zebra finch FoxP2 binds to the promoter of VLDLR and activates it, establishing VLDLR as a direct FoxP2 target. Consistent with these findings, VLDLR expression is co-regulated with FoxP2 as a consequence of adult singing and during song learning. We also demonstrate that knockdown of FoxP2 affects glutamatergic transmission at the corticostriatal MSN synapse. These data raise the possibility that the regulatory relationship between FoxP2 and VLDLR guides structural plasticity towards the subset of FoxP2-positive MSNs in an activity dependent manner via the reelin pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Singing with reduced air sac volume causes uniform decrease in airflow and sound amplitude in the zebra finch.

    PubMed

    Plummer, Emily Megan; Goller, Franz

    2008-01-01

    Song of the zebra finch (Taeniopygia guttata) is a complex temporal sequence generated by a drastic change to the regular oscillations of the normal respiratory pattern. It is not known how respiratory functions, such as supply of air volume and gas exchange, are controlled during song. To understand the integration between respiration and song, we manipulated respiration during song by injecting inert dental medium into the air sacs. Increased respiratory rate after injections indicates that the reduction of air affected quiet respiration and that birds compensated for the reduced air volume. During song, air sac pressure, tracheal airflow and sound amplitude decreased substantially with each injection. This decrease was consistently present during each expiratory pulse of the song motif irrespective of the air volume used. Few changes to the temporal pattern of song were noted, such as the increased duration of a minibreath in one bird and the decrease in duration of a long syllable in another bird. Despite the drastic reduction in air sac pressure, airflow and sound amplitude, no increase in abdominal muscle activity was seen. This suggests that during song, birds do not compensate for the reduced physiological or acoustic parameters. Neither somatosensory nor auditory feedback mechanisms appear to effect a correction in expiratory effort to compensate for reduced air sac pressure and sound amplitude.

  9. Stress reactivity, condition, and foraging behavior in zebra finches: effects on boldness, exploration, and sociality.

    PubMed

    Crino, O L; Buchanan, Katherine L; Trompf, Larissa; Mainwaring, Mark C; Griffith, Simon C

    2017-04-01

    The arid and semi-arid zones of Australia are characterized by highly variable and unpredictable environmental conditions which affect resources for flora and fauna. Environments which are highly unpredictable in terms of both resource access and distribution are likely to select for a variety of adaptive behavioral strategies, intrinsically linked to the physiological control of behavior. How unpredictable resource distribution has affected the coevolution of behavioral strategies and physiology has rarely been quantified, particularly not in Australian birds. We used a captive population of wild-derived zebra finches to test the relationships between behavioral strategies relating to food access and physiological responses to stress and body condition. We found that individuals that were in poorer body condition and had higher peak corticosterone levels entered baited feeders earlier in the trapping sequence of birds within the colony. We also found that individuals in poorer body condition fed in smaller social groups. Our data show that the foraging decisions which individuals make represent not only a trade-off between food access and risk of exposure, but their underlying physiological response to stress. Our data also suggest fundamental links between social networks and physiological parameters, which largely remain untested. These data demonstrate the fundamental importance of physiological mechanisms in controlling adaptive behavioral strategies and the dynamic interplay between physiological control of behavior and life-history evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Higher growth rate and gene expression in male zebra finch embryos are independent of manipulation of maternal steroids in the eggs.

    PubMed

    Lutyk, Dorota; Tagirov, Makhsud; Drobniak, Szymon; Rutkowska, Joanna

    2017-12-01

    Sexual dimorphism in prenatal development is widespread among vertebrates, including birds. Its mechanism remains unclear, although it has been attributed to the effect of maternal steroid hormones. The aim of this study was to investigate how increased levels of steroid hormones in the eggs influence early embryonic development of male and female offspring. We also asked whether maternal hormones take part in the control of sex-specific expression of the genes involved in prenatal development. We experimentally manipulated hormones' concentrations in the egg yolk by injecting zebra finch females prior to ovulation with testosterone or corticosterone. We assessed growth rate and expression levels of CDK7, FBP1 and GHR genes in 37h-old embryos. We found faster growth and higher expression of two studied genes in male compared to female embryos. Hormonal treatment, despite clearly differentiating egg steroid levels, had no effect on the sex-specific pattern of the embryonic gene expression, even though we confirmed expression of receptors of androgens and glucocorticoids at such an early stage of development. Thus, our study shows high stability of the early sex differences in the embryonic development before the onset of sexual differentiation and indicates their independence of maternal hormones in the egg. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Mitochondria-targeted molecules determine the redness of the zebra finch bill.

    PubMed

    Cantarero, Alejandro; Alonso-Alvarez, Carlos

    2017-10-01

    The evolution and production mechanisms of red carotenoid-based ornaments in animals are poorly understood. Recently, it has been suggested that enzymes transforming yellow carotenoids to red pigments (ketolases) in animal cells may be positioned in the inner mitochondrial membrane (IMM) intimately linked to the electron transport chain. These enzymes may mostly synthesize coenzyme Q 10 (coQ 10 ), a key redox-cycler antioxidant molecularly similar to yellow carotenoids. It has been hypothesized that this shared pathway favours the evolution of red traits as sexually selected individual quality indices by revealing a well-adjusted oxidative metabolism. We administered mitochondria-targeted molecules to male zebra finches ( Taeniopygia guttata ) measuring their bill redness, a trait produced by transforming yellow carotenoids. One molecule included coQ 10 (mitoquinone mesylate, MitoQ) and the other one (decyl-triphenylphosphonium; dTPP) has the same structure without the coQ 10 aromatic ring. At the highest dose, the bill colour of MitoQ and dTPP birds strongly differed: MitoQ birds' bills were redder and dTPP birds showed paler bills even compared to birds injected with saline only. These results suggest that ketolases are indeed placed at the IMM and that coQ 10 antioxidant properties may improve their efficiency. The implications for evolutionary theories of sexual signalling are discussed. © 2017 The Author(s).

  12. Stress Responses to Heat Exposure in Three Species of Australian Desert Birds.

    PubMed

    Xie, Shangzhe; Romero, L Michael; Htut, Zaw Win; McWhorter, Todd J

    Birds need to respond to weather changes quickly and appropriately for their own well-being and survival. The inability to respond appropriately to heat waves can be fatal to individual birds and can translate into large-scale mortality events. We investigated corticosterone (CORT) and heterophil∶lymphocyte (H∶L) ratio responses of budgerigars (Melopsittacus undulatus), zebra finches (Taeniopygia guttata), and diamond doves (Geopelia cuneata) to heat exposures. The birds were exposed to a temperature similar to what they experience during a typical summer day (35°C) and a higher temperature (45°C) similar to that experienced during a heat wave. There were no significant increases between the CORT concentrations before and after heat exposure in zebra finches and budgerigars at 35° and 45°C, but there was a significant increase in CORT concentrations in diamond doves after exposure to 45°C. The H∶L ratios increased significantly after heat exposure in budgerigars at 35° and 45°C and in diamond doves at 35°C. No significant correlation was found between the changes in CORT and H∶L ratios. The data suggest that there are species differences in birds' stress responses to heat exposure that may reflect their ability to detect and adapt to high temperatures. There appear to be differences between the two types of stress measurements, which may reflect differences in the timescales of these responses.

  13. Genetic mapping of the female mimic morph locus in the ruff

    PubMed Central

    2013-01-01

    Background Ruffs (Aves: Philomachus pugnax) possess a genetic polymorphism for male mating behaviour resulting in three permanent alternative male reproductive morphs: (i) territorial ‘Independents’, (ii) non-territorial ‘Satellites’, and (iii) female-mimicking ‘Faeders’. Development into independent or satellite morphs has previously been shown to be due to a single-locus, two-allele autosomal Mendelian mode of inheritance at the Satellite locus. Here, we use linkage analysis to map the chromosomal location of the Faeder locus, which controls development into the Faeder morph, and draw further conclusions about candidate genes, assuming shared synteny with other birds. Results Segregation data on the Faeder locus were obtained from captive-bred pedigrees comprising 64 multi-generation families (N = 381). There was no evidence that the Faeder locus was linked to the Satellite locus, but it was linked with microsatellite marker Ppu020. Comparative mapping of ruff microsatellite markers against the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata) genomes places the Ppu020 and Faeder loci on a region of chromosome 11 that includes the Melanocortin-1 receptor (MC1R) gene, which regulates colour polymorphisms in numerous birds and other vertebrates. Melanin-based colouration varies with life-history strategies in ruffs and other species, thus the MC1R gene is a strong candidate to play a role in alternative male morph determination. Conclusion Two unlinked loci appear to control behavioural development in ruffs. The Faeder locus is linked to Ppu020, which, assuming synteny, is located on avian chromosome 11. MC1R is a candidate gene involved in alternative male morph determination in ruffs. PMID:24256185

  14. Afferentation of the lateral nidopallium: A tracing study of a brain area involved in sexual imprinting in the zebra finch (Taeniopygia guttata).

    PubMed

    Sadananda, Monika; Bischof, Hans-Joachim

    2006-08-23

    The lateral forebrain of zebra finches that comprises parts of the lateral nidopallium and parts of the lateral mesopallium is supposed to be involved in the storage and processing of visual information acquired by an early learning process called sexual imprinting. This information is later used to select an appropriate sexual partner for courtship behavior. Being involved in such a complicated behavioral task, the lateral nidopallium should be an integrative area receiving input from many other regions of the brain. Our experiments indeed show that the lateral nidopallium receives input from a variety of telencephalic regions including the primary and secondary areas of both visual pathways, the globus pallidus, the caudolateral nidopallium functionally comparable to the prefrontal cortex, the caudomedial nidopallium involved in song perception and storage of song-related memories, and some parts of the arcopallium. There are also a number of thalamic, mesencephalic, and brainstem efferents including the catecholaminergic locus coeruleus and the unspecific activating reticular formation. The spatial distribution of afferents suggests a compartmentalization of the lateral nidopallium into several subdivisions. Based on its connections, the lateral nidopallium should be considered as an area of higher order processing of visual information coming from the tectofugal and the thalamofugal visual pathways. Other sensory modalities and also motivational factors from a variety of brain areas are also integrated here. These findings support the idea of an involvement of the lateral nidopallium in imprinting and the control of courtship behavior.

  15. Interacting effects of early dietary conditions and reproductive effort on the oxidative costs of reproduction

    PubMed Central

    2017-01-01

    The hypothesis that oxidative damage accumulation can mediate the trade-off between reproduction and lifespan has recently been questioned. However, in captive conditions, studies reporting no evidence in support of this hypothesis have usually provided easy access to food which may have mitigated the cost of reproduction. Here, I test the hypothesis that greater investment in reproduction should lead to oxidative damage accumulation and telomere loss in domestic zebra finches Taeniopygia guttata. Moreover, since the change or fluctuation in diet composition between early and late postnatal period can impair the ability to produce antioxidant defences in zebra finches, I also tested if early nutritional conditions (constant vs fluctuating early diet) influenced the magnitude of any subsequent costs of reproduction (e.g., oxidative damage and/or telomere shortening). In comparison to pairs with reduced broods, the birds that had to feed enlarged broods showed a higher level of oxidative DNA damage (8-OHdG), but brood size had no effect on telomeres. Fluctuating early diet composition reduced the capacity to maintain the activity of endogenous antioxidants (GPx), particularly when reproductive costs were increased (enlarged brood). The decline in GPx in birds feeding enlarged broods was accompanied by a change in bill colouration. This suggests that birds with lower endogenous antioxidant defences might have strategically increased the mobilization of antioxidants previously stored in other tissues (i.e., bill and liver) and thus, preventing an excessive accumulation of damage during reproduction. PMID:28316895

  16. Inhibition of hippocampal aromatization impairs spatial memory performance in a male songbird.

    PubMed

    Bailey, David J; Ma, Chunqi; Soma, Kiran K; Saldanha, Colin J

    2013-12-01

    Recent studies have revealed the presence and regulation of aromatase at the vertebrate synapse, and identified a critical role played by presynaptic estradiol synthesis in the electrophysiological response to auditory and other social cues. However, if and how synaptic aromatization affects behavior remains to be directly tested. We have exploited 3 characteristics of the zebra finch hippocampus (HP) to test the role of synaptocrine estradiol provision on spatial memory function. Although the zebra finch HP contains abundant aromatase transcripts and enzyme activity, immunocytochemical studies reveal widespread pre- and postsynaptic, but sparse to undetectable somal, localization of this enzyme. Further, the superficial location of the avian HP makes possible the more exclusive manipulation of its neurochemical characteristics without perturbation of the neuropil and the resultant induction of astroglial aromatase. Last, as in other vertebrates, the HP is critical for spatial memory performance in this species. Here we report that local inhibition of hippocampal aromatization impairs spatial memory performance in an ecologically valid food-finding task. Local aromatase inhibition also resulted in lower levels of estradiol in the HP, but not in adjacent brain areas, and was achieved without the induction of astroglial aromatase. The observed decrement in acquisition and subsequent memory performance as a consequence of lowered aromatization was similar to that achieved by lesioning this locus. Thus, hippocampal aromatization, much of which is achieved at the synapse in this species, is critical for spatial memory performance.

  17. Meaning in the avian auditory cortex: Neural representation of communication calls

    PubMed Central

    Elie, Julie E; Theunissen, Frédéric E

    2014-01-01

    Understanding how the brain extracts the behavioral meaning carried by specific vocalization types that can be emitted by various vocalizers and in different conditions is a central question in auditory research. This semantic categorization is a fundamental process required for acoustic communication and presupposes discriminative and invariance properties of the auditory system for conspecific vocalizations. Songbirds have been used extensively to study vocal learning, but the communicative function of all their vocalizations and their neural representation has yet to be examined. In our research, we first generated a library containing almost the entire zebra finch vocal repertoire and organized communication calls along 9 different categories based on their behavioral meaning. We then investigated the neural representations of these semantic categories in the primary and secondary auditory areas of 6 anesthetized zebra finches. To analyze how single units encode these call categories, we described neural responses in terms of their discrimination, selectivity and invariance properties. Quantitative measures for these neural properties were obtained using an optimal decoder based both on spike counts and spike patterns. Information theoretic metrics show that almost half of the single units encode semantic information. Neurons achieve higher discrimination of these semantic categories by being more selective and more invariant. These results demonstrate that computations necessary for semantic categorization of meaningful vocalizations are already present in the auditory cortex and emphasize the value of a neuro-ethological approach to understand vocal communication. PMID:25728175

  18. Socially transmitted mate preferences in a monogamous bird: a non-genetic mechanism of sexual selection.

    PubMed

    Swaddle, John P; Cathey, Mark G; Correll, Maureen; Hodkinson, Brendan P

    2005-05-22

    There is increasing evidence that animals can acquire mate preferences through the use of public information, notably by observing (and copying) the mate preferences of others in the population. If females acquire preferences through social mechanisms, sexual selection could act very rapidly to spread the preference and drive elaboration of the preferred trait(s). Although there are reports of 'mate-choice copying' in polygynous species, there is no clear evidence for this process in monogamous species. Here, we investigated whether adult female zebra finches Taeniopygia guttata can socially acquire sexual preferences for individual males and, in a separate study, for a generalized trait (coloured leg bands) of males. In both studies, test females observed males in two simultaneous conditions: a ('chosen') mixed-sex situation in which a male was paired with a (model) female, and a ('unchosen') same-sex situation in which a male was paired with another male. In the first experiment, after two weeks of females observing males, test females significantly preferred individual males who had been paired with another female (i.e. chosen males). In the second experiment, test females significantly preferred novel males that were wearing the same leg band colour as the apparently chosen males. Our findings are consistent with the conclusion that female zebra finches' mate preferences are altered by public information. Our study implies that mate preferences can spread rapidly through populations by social mechanisms, affecting the strength of sexual selection in a monogamous species.

  19. An examination of the effect of aerosolized permanone insecticide on zebra finch susceptibility to West Nile virus

    USGS Publications Warehouse

    Jankowski, Mark D.; Murray, E. Moore; Hofmeister, Erik K.

    2017-01-01

    West Nile virus is primarily maintained cryptically primarily in avian (Passerine) populations where it is transmitted by Culex spp. mosquitoes. Mosquito control measures currently include physical activities to reduce mosquito breeding sites, the application of mosquito larvicides, or aerosolized insecticides to kill adults (adulticides) when arboviral diseases such as West Nile virus (WNV) or Zika virus are detected in mosquito populations. Organochlorine, organohosphorus, carbamate and pyrethroid insecticides are often used. Previous work suggests an effect of pyrethroids on the immune system in a variety of vertebrates. We examined the effects of exposure to aerosolized Permanone® 30:30 insecticide (permethrin and piperonyl butoxide in soy oil vehicle) at ∼103−106x potential environmental concentrations on the response of captive zebra finches (Taeniopygia guttata) to experimental challenge with WNV. Compared to vehicle control birds, WNV outcome was unchanged (65% of birds produced a viremia) in the ‘low’ exposure (9.52 mg/m3±3.13 SD permethrin) group, but reduced in the ‘high’ exposure (mean 376.5 mg/m3±27.9 SD permethrin) group (30% were viremic) (p < 0.05). After clearing WNV infection, birds treated with Permanone regained less body mass than vehicle treated birds (p < 0.001). Our study suggests that exposure to aerosolized Permanone insecticide at levels exceeding typical application rates has the potential to not change or mildly enhance a bird's resistance to WNV.

  20. Metabolic and Respiratory Costs of Increasing Song Amplitude in Zebra Finches

    PubMed Central

    Zollinger, Sue Anne; Goller, Franz; Brumm, Henrik

    2011-01-01

    Bird song is a widely used model in the study of animal communication and sexual selection, and several song features have been shown to reflect the quality of the singer. Recent studies have demonstrated that song amplitude may be an honest signal of current condition in males and that females prefer high amplitude songs. In addition, birds raise the amplitude of their songs to communicate in noisy environments. Although it is generally assumed that louder song should be more costly to produce, there has been little empirical evidence to support this assumption. We tested the assumption by measuring oxygen consumption and respiratory patterns in adult male zebra finches (Taeniopygia guttata) singing at different amplitudes in different background noise conditions. As background noise levels increased, birds significantly increased the sound pressure level of their songs. We found that louder songs required significantly greater subsyringeal air sac pressure than quieter songs. Though increased pressure is probably achieved by increasing respiratory muscle activity, these increases did not correlate with measurable increases in oxygen consumption. In addition, we found that oxygen consumption increased in higher background noise, independent of singing behaviour. This observation supports previous research in mammals showing that high levels of environmental noise can induce physiological stress responses. While our study did not find that increasing vocal amplitude increased metabolic costs, further research is needed to determine whether there are other non-metabolic costs of singing louder or costs associated with chronic noise exposure. PMID:21915258

  1. Social context differentially modulates activity of two interneuron populations in an avian basal ganglia nucleus

    PubMed Central

    2016-01-01

    Basal ganglia circuits are critical for the modulation of motor performance across behavioral states. In zebra finches, a cortical-basal ganglia circuit dedicated to singing is necessary for males to adjust their song performance and transition between spontaneous singing, when they are alone (“undirected” song), and a performance state, when they sing to a female (“female-directed” song). However, we know little about the role of different basal ganglia cell types in this behavioral transition or the degree to which behavioral context modulates the activity of different neuron classes. To investigate whether interneurons in the songbird basal ganglia encode information about behavioral state, I recorded from two interneuron types, fast-spiking interneurons (FSI) and external pallidal (GPe) neurons, in the songbird basal ganglia nucleus area X during both female-directed and undirected singing. Both cell types exhibited higher firing rates, more frequent bursting, and greater trial-by-trial variability in firing when male zebra finches produced undirected songs compared with when they produced female-directed songs. However, the magnitude and direction of changes to the firing rate, bursting, and variability of spiking between when birds sat silently and when they sang undirected and female-directed song varied between FSI and GPe neurons. These data indicate that social modulation of activity important for eliciting changes in behavioral state is present in multiple cell types within area X and suggests that social interactions may adjust circuit dynamics during singing at multiple points within the circuit. PMID:27628208

  2. Maternal antibody transfer can lead to suppression of humoral immunity in developing zebra finches (Taeniopygia guttata).

    PubMed

    Merrill, Loren; Grindstaff, Jennifer L

    2014-01-01

    Maternally transferred antibodies have been documented in a wide range of taxa and are thought to adaptively provide protection against parasites and pathogens while the offspring immune system is developing. In most birds, transfer occurs when females deposit immunoglobulin Y into the egg yolk, and it is proportional to the amount in the female's plasma. Maternal antibodies can provide short-term passive protection as well as specific and nonspecific immunological priming, but high levels of maternal antibody can result in suppression of the offspring's humoral immune response. We injected adult female zebra finches (Taeniopygia guttata) with one of two antigens (lipopolysaccharide [LPS] or keyhole limpet hemocyanin [KLH]) or a control and then injected offspring with LPS, KLH, or a control on days 5 and 28 posthatch to examine the impact of maternally transferred antibodies on the ontogeny of the offspring's humoral immune system. We found that offspring of females exposed to KLH had elevated levels of KLH-reactive antibody over the first 17-28 days posthatch but reduced KLH-specific antibody production between days 28 and 36. We also found that offspring exposed to either LPS or KLH exhibited reduced total antibody levels, compared to offspring that received a control injection. These results indicate that high levels of maternal antibodies or antigen exposure during development can have negative repercussions on short-term antibody production and may have long-term fitness repercussions for the offspring.

  3. Maternal Antibody Transfer Can Lead to Suppression of Humoral Immunity in Developing Zebra Finches (Taeniopygia guttata)

    PubMed Central

    Merrill, Loren; Grindstaff, Jennifer L.

    2015-01-01

    Maternally transferred antibodies have been documented in a wide range of taxa and are thought to adaptively provide protection against parasites and pathogens while the offspring immune system is developing. In most birds, transfer occurs when females deposit immunoglobulin Y into the egg yolk, and it is proportional to the amount in the female’s plasma. Maternal antibodies can provide short-term passive protection as well as specific and nonspecific immunological priming, but high levels of maternal antibody can result in suppression of the offspring’s humoral immune response. We injected adult female zebra finches (Taeniopygia guttata) with one of two antigens (lipo-polysaccharide [LPS] or keyhole limpet hemocyanin [KLH]) or a control and then injected offspring with LPS, KLH, or a control on days 5 and 28 posthatch to examine the impact of maternally transferred antibodies on the ontogeny of the offspring’s humoral immune system. We found that offspring of females exposed to KLH had elevated levels of KLH-reactive antibody over the first 17–28 days posthatch but reduced KLH-specific antibody production between days 28 and 36. We also found that offspring exposed to either LPS or KLH exhibited reduced total antibody levels, compared to offspring that received a control injection. These results indicate that high levels of maternal antibodies or antigen exposure during development can have negative repercussions on short-term antibody production and may have long-term fitness repercussions for the offspring. PMID:25244385

  4. Large-scale synchronized activity during vocal deviance detection in the zebra finch auditory forebrain.

    PubMed

    Beckers, Gabriël J L; Gahr, Manfred

    2012-08-01

    Auditory systems bias responses to sounds that are unexpected on the basis of recent stimulus history, a phenomenon that has been widely studied using sequences of unmodulated tones (mismatch negativity; stimulus-specific adaptation). Such a paradigm, however, does not directly reflect problems that neural systems normally solve for adaptive behavior. We recorded multiunit responses in the caudomedial auditory forebrain of anesthetized zebra finches (Taeniopygia guttata) at 32 sites simultaneously, to contact calls that recur probabilistically at a rate that is used in communication. Neurons in secondary, but not primary, auditory areas respond preferentially to calls when they are unexpected (deviant) compared with the same calls when they are expected (standard). This response bias is predominantly due to sites more often not responding to standard events than to deviant events. When two call stimuli alternate between standard and deviant roles, most sites exhibit a response bias to deviant events of both stimuli. This suggests that biases are not based on a use-dependent decrease in response strength but involve a more complex mechanism that is sensitive to auditory deviance per se. Furthermore, between many secondary sites, responses are tightly synchronized, a phenomenon that is driven by internal neuronal interactions rather than by the timing of stimulus acoustic features. We hypothesize that this deviance-sensitive, internally synchronized network of neurons is involved in the involuntary capturing of attention by unexpected and behaviorally potentially relevant events in natural auditory scenes.

  5. Speciation with gene flow in equids despite extensive chromosomal plasticity

    PubMed Central

    Jónsson, Hákon; Seguin-Orlando, Andaine; Ginolhac, Aurélien; Petersen, Lillian; Fumagalli, Matteo; Albrechtsen, Anders; Petersen, Bent; Vilstrup, Julia T.; Lear, Teri; Myka, Jennifer Leigh; Lundquist, Judith; Miller, Donald C.; Alfarhan, Ahmed H.; Alquraishi, Saleh A.; Al-Rasheid, Khaled A. S.; Stagegaard, Julia; Strauss, Günter; Bertelsen, Mads Frost; Antczak, Douglas F.; Bailey, Ernest; Nielsen, Rasmus; Willerslev, Eske; Orlando, Ludovic

    2014-01-01

    Horses, asses, and zebras belong to a single genus, Equus, which emerged 4.0–4.5 Mya. Although the equine fossil record represents a textbook example of evolution, the succession of events that gave rise to the diversity of species existing today remains unclear. Here we present six genomes from each living species of asses and zebras. This completes the set of genomes available for all extant species in the genus, which was hitherto represented only by the horse and the domestic donkey. In addition, we used a museum specimen to characterize the genome of the quagga zebra, which was driven to extinction in the early 1900s. We scan the genomes for lineage-specific adaptations and identify 48 genes that have evolved under positive selection and are involved in olfaction, immune response, development, locomotion, and behavior. Our extensive genome dataset reveals a highly dynamic demographic history with synchronous expansions and collapses on different continents during the last 400 ky after major climatic events. We show that the earliest speciation occurred with gene flow in Northern America, and that the ancestor of present-day asses and zebras dispersed into the Old World 2.1–3.4 Mya. Strikingly, we also find evidence for gene flow involving three contemporary equine species despite chromosomal numbers varying from 16 pairs to 31 pairs. These findings challenge the claim that the accumulation of chromosomal rearrangements drive complete reproductive isolation, and promote equids as a fundamental model for understanding the interplay between chromosomal structure, gene flow, and, ultimately, speciation. PMID:25453089

  6. Speciation with gene flow in equids despite extensive chromosomal plasticity.

    PubMed

    Jónsson, Hákon; Schubert, Mikkel; Seguin-Orlando, Andaine; Ginolhac, Aurélien; Petersen, Lillian; Fumagalli, Matteo; Albrechtsen, Anders; Petersen, Bent; Korneliussen, Thorfinn S; Vilstrup, Julia T; Lear, Teri; Myka, Jennifer Leigh; Lundquist, Judith; Miller, Donald C; Alfarhan, Ahmed H; Alquraishi, Saleh A; Al-Rasheid, Khaled A S; Stagegaard, Julia; Strauss, Günter; Bertelsen, Mads Frost; Sicheritz-Ponten, Thomas; Antczak, Douglas F; Bailey, Ernest; Nielsen, Rasmus; Willerslev, Eske; Orlando, Ludovic

    2014-12-30

    Horses, asses, and zebras belong to a single genus, Equus, which emerged 4.0-4.5 Mya. Although the equine fossil record represents a textbook example of evolution, the succession of events that gave rise to the diversity of species existing today remains unclear. Here we present six genomes from each living species of asses and zebras. This completes the set of genomes available for all extant species in the genus, which was hitherto represented only by the horse and the domestic donkey. In addition, we used a museum specimen to characterize the genome of the quagga zebra, which was driven to extinction in the early 1900s. We scan the genomes for lineage-specific adaptations and identify 48 genes that have evolved under positive selection and are involved in olfaction, immune response, development, locomotion, and behavior. Our extensive genome dataset reveals a highly dynamic demographic history with synchronous expansions and collapses on different continents during the last 400 ky after major climatic events. We show that the earliest speciation occurred with gene flow in Northern America, and that the ancestor of present-day asses and zebras dispersed into the Old World 2.1-3.4 Mya. Strikingly, we also find evidence for gene flow involving three contemporary equine species despite chromosomal numbers varying from 16 pairs to 31 pairs. These findings challenge the claim that the accumulation of chromosomal rearrangements drive complete reproductive isolation, and promote equids as a fundamental model for understanding the interplay between chromosomal structure, gene flow, and, ultimately, speciation.

  7. Natural Changes in Brain Temperature Underlie Variations in Song Tempo during a Mating Behavior

    PubMed Central

    Aronov, Dmitriy; Fee, Michale S.

    2012-01-01

    The song of a male zebra finch is a stereotyped motor sequence whose tempo varies with social context – whether or not the song is directed at a female bird – as well as with the time of day. The neural mechanisms underlying these changes in tempo are unknown. Here we show that brain temperature recorded in freely behaving male finches exhibits a global increase in response to the presentation of a female bird. This increase strongly correlates with, and largely explains, the faster tempo of songs directed at a female compared to songs produced in social isolation. Furthermore, we find that the observed diurnal variations in song tempo are also explained by natural variations in brain temperature. Our findings suggest that brain temperature is an important variable that can influence the dynamics of activity in neural circuits, as well as the temporal features of behaviors that some of these circuits generate. PMID:23112858

  8. Bidirectional manipulation of mTOR signaling disrupts socially mediated vocal learning in juvenile songbirds.

    PubMed

    Ahmadiantehrani, Somayeh; London, Sarah E

    2017-08-29

    Early life experiences can have long-lasting behavioral consequences because they are encoded when the brain is most malleable. The mechanistic target of rapamycin (mTOR) signaling cascade modulates experience-dependent synaptic plasticity, among other processes. mTOR has been almost exclusively examined in adult rodent learning models, but may be especially important in organizing neural circuits required for developmental acquisition of meaningful complex behaviors. It is among the most commonly implicated factors in neurodevelopmental autism spectrum disorders (ASD), characterized, in part, by distinct social and communication phenotypes. Here, we investigated mTOR in juvenile zebra finch songbirds. Much as children learn language, young male zebra finches need to interact socially with an adult tutor to learn a meaningful song. The memory of the tutor's song structure guides the juvenile's own song, which it uses to communicate for the rest of its life. We hypothesized that mTOR is required for juveniles to learn song. To this end, we first discovered that hearing song activates mTOR signaling in a brain area required for tutor song memorization in males old enough to copy song but not in younger males or females, who cannot sing. We then showed that both inhibition and constitutive activation of mTOR during tutor experiences significantly diminished tutor song copying. Finally, we found that constitutive mTOR activation lowered a behavioral measure of the juvenile's social engagement during tutor experiences, mirroring the relationship in humans. These studies therefore advance understanding about the effects of experience in the context of neurodevelopmental disorders and typical neural development.

  9. Immunohistochemical localization of cocaine- and amphetamine-regulated transcript peptide (CARTp) in the brain of the pigeon (Columba livia) and zebra finch (Taeniopygia guttata).

    PubMed

    Gutierrez-Ibanez, Cristian; Iwaniuk, Andrew N; Jensen, Megan; Graham, David J; Pogány, Ákos; Mongomery, Benjamin C; Stafford, James L; Luksch, Harald; Wylie, Douglas R

    2016-12-15

    Cocaine- and amphetamine-regulated transcript peptides (CARTp) are neuropeptides that act as neurotransmitters in the brain of vertebrates. The expression of CARTp has been characterized in teleosts, amphibians, and several mammalian species, but comparative data in reptiles and birds are nonexistent. In this study, we show the distribution of immunoreactivity against CART peptides (CARTp-ir) in the brains of two bird species: the pigeon (Columba livia) and zebra finch (Taeniopygia guttata). We found CARTp-ir cells and terminals in the brains of both, but no major differences between the two species. As in mammals, teleost fish, and amphibians, CARTp-ir terminals and cells were abundant in subpallial regions, particularly the striatum and nucleus accumbens. We also found CARTp-ir cells and terminals in the hypothalamus, and a large number of CARTp-ir terminals in the substantia nigra, ventral tegmental area, periaqueductal gray, parabrachial nucleus, and dorsal vagal complex. However, in contrast to other vertebrates, CARTp-ir was not found in the olfactory bulb. In addition there was almost no CARTp-ir in the pallium or the hippocampal formation, and little CARTp-ir in the cerebellum. The conserved expression of CARTp in the subpallium, hypothalamus, and dorsal vagal complex of birds suggests that some of the functions of CARTp, such as regulation of food intake and interactions with the social control network and mesolimbic reward system, are conserved among vertebrates. J. Comp. Neurol. 524:3747-3773, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Human-like brain hemispheric dominance in birdsong learning.

    PubMed

    Moorman, Sanne; Gobes, Sharon M H; Kuijpers, Maaike; Kerkhofs, Amber; Zandbergen, Matthijs A; Bolhuis, Johan J

    2012-07-31

    Unlike nonhuman primates, songbirds learn to vocalize very much like human infants acquire spoken language. In humans, Broca's area in the frontal lobe and Wernicke's area in the temporal lobe are crucially involved in speech production and perception, respectively. Songbirds have analogous brain regions that show a similar neural dissociation between vocal production and auditory perception and memory. In both humans and songbirds, there is evidence for lateralization of neural responsiveness in these brain regions. Human infants already show left-sided dominance in their brain activation when exposed to speech. Moreover, a memory-specific left-sided dominance in Wernicke's area for speech perception has been demonstrated in 2.5-mo-old babies. It is possible that auditory-vocal learning is associated with hemispheric dominance and that this association arose in songbirds and humans through convergent evolution. Therefore, we investigated whether there is similar song memory-related lateralization in the songbird brain. We exposed male zebra finches to tutor or unfamiliar song. We found left-sided dominance of neuronal activation in a Broca-like brain region (HVC, a letter-based name) of juvenile and adult zebra finch males, independent of the song stimulus presented. In addition, juvenile males showed left-sided dominance for tutor song but not for unfamiliar song in a Wernicke-like brain region (the caudomedial nidopallium). Thus, left-sided dominance in the caudomedial nidopallium was specific for the song-learning phase and was memory-related. These findings demonstrate a remarkable neural parallel between birdsong and human spoken language, and they have important consequences for our understanding of the evolution of auditory-vocal learning and its neural mechanisms.

  11. Nesting Behavior is Associated with VIP Expression and VIP-Fos Colocalization in a Network-Wide Manner

    PubMed Central

    Kingsbury, Marcy A.; Jan, Namratha; Klatt, James D.; Goodson, James L.

    2015-01-01

    Many species, including humans, engage in a series of behaviors that are preparatory to the arrival of offspring. Such "nesting behaviors" are of obvious importance, but relevant neuroendocrine mechanisms remain little studied. We here focus on the potential roles of vasoactive intestinal polypeptide (VIP) in the performance of appetitive and consummatory nesting behaviors in male and female zebra finches (Taeniopygia guttata). Using combined immunocytochemistry for Fos and in situ hybridization for VIP, we now show that many VIP cell groups show increased transcriptional activity in response to nest building in male and female zebra finches. Particularly strong data come from the preoptic area (medial preoptic area and medial preoptic nucleus), where VIP-Fos co-expression correlates positively with three different measures of nesting behavior, as does the number of VIP-expressing cells. Remarkably, we find that VIP mRNA and/or VIP-Fos co-expression is correlated with nesting behavior in virtually every brain area that we examined, including the medial amygdala (anterior and posterior), medial bed nucleus of the stria terminalis, medial preoptic area, medial preoptic nucleus, anterior hypothalamus, ventromedial hypothalamus, periaqueductal gray complex (central gray and nucleus intercollicularis), and ventral tegmental area. Near-significant effects are also obtained in the tuberoinfundibular hypothalamus. Although most correlations are positive, negative correlations are observed for the VIP cell group of the anterior hypothalamus, a population that selectively promotes aggression, and also the periaqueductal gray complex. These data demonstrate a network-wide relationship between peptide production and social behavior that is, to our knowledge, unparalleled by other peptidergic modulators. PMID:25573700

  12. GABA Immunoreactivity in Auditory and Song Control Brain Areas of Zebra Finches

    PubMed Central

    Pinaud, Raphael; Mello, Claudio V.

    2009-01-01

    Inhibitory transmission is critical to sensory and motor processing and is believed to play a role in experience-dependent plasticity. The main inhibitory neurotransmitter in vertebrates, GABA, has been implicated in both sensory and motor aspects of vocalization in songbirds. To understand the role of GABAergic mechanisms in vocal communication, GABAergic elements must be characterized fully. Hence, we investigated GABA immunohistochemistry in the zebra finch brain, emphasizing auditory areas and song control nuclei. Several nuclei of the ascending auditory pathway showed a moderate to high density of GABAergic neurons including the cochlear nuclei, nucleus laminaris, superior olivary nucleus, mesencephalic nucleus lateralis pars dorsalis, and nucleus ovoidalis. Telencephalic auditory areas, including field L subfields L1, L2a and L3, as well as the caudomedial nidopallium (NCM) and mesopallium (CMM), contained GABAergic cells at particularly high densities. Considerable GABA labeling was also seen in the shelf area of caudodorsal nidopallium, and the cup area in the arcopallium, as well as in area X, the lateral magnocellular nucleus of the anterior nidopallium, the robust nucleus of the arcopallium and nidopallial nucleus HVC. GABAergic cells were typically small, most likely local inhibitory interneurons, although large GABA-positive cells that were sparsely distributed were also identified. GABA-positive neurites and puncta were identified in most nuclei of the ascending auditory pathway and in song control nuclei. Our data are in accordance with a prominent role of GABAergic mechanisms in regulating the neural circuits involved in song perceptual processing, motor production, and vocal learning in songbirds. PMID:17466487

  13. Early life stress increases testosterone and corticosterone and alters stress physiology in zebra finches.

    PubMed

    Zito, J Bayley; Hanna, Angy; Kadoo, Nora; Tomaszycki, Michelle L

    2017-09-01

    Early life stress has enduring effects on behavior and physiology. However, the effects on hormones and stress physiology remain poorly understood. In the present study, parents of zebra finches of both sexes were exposed to an increased foraging paradigm from 3 to 33days post hatching. Plasma and brains were collected from chicks at 3 developmental time points: post hatching days 25, 60 and adulthood. Plasma was assayed for testosterone (T), estradiol (E2), and corticosterone (CORT). The paraventricular nucleus of the hypothalamus was assessed for corticotrophin releasing factor (CRH) and glucocorticoid receptor (GR) expression. As expected, body mass was lower in nutritionally stressed animals compared to controls at multiple ages. Nutritionally stressed animals overall had higher levels of CORT than did control and this was particularly apparent in females at post hatching day 25. Nutritionally stressed animals also had a higher number of cells expressing CRH and GR in the paraventricular nucleus of the hypothalamus than did controls. There was an interaction, such that both measures were higher in control animals at PHD 25, but higher in NS animals by adulthood. Females, regardless of treatment, had higher circulating CORT and a higher number of cells expressing CRH than did males. Nutritionally stressed animals also had higher levels of T than did control animals, and this difference was greatest for males at post hatching day 60. There were no effects of nutritional stress on E2. These findings suggest that nutritional stress during development has long-lasting effects on testosterone and stress physiology. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Divorce in the socially monogamous zebra finch: Hormonal mechanisms and reproductive consequences.

    PubMed

    Crino, Ondi L; Buchanan, Katherine L; Fanson, Benjamin G; Hurley, Laura L; Smiley, Kristina O; Griffith, Simon C

    2017-01-01

    Up to 80% of all bird species are socially monogamous. Divorce (switching partners) or pair disruption (due to the death of a partner) has been associated with decreased reproductive success, suggesting social monogamy is a strategy that may maximize fitness via coordination between partners. Previous studies have demonstrated the effects of divorce and pair disruption on immediate reproductive success. Here, we used a paired experimental design in the zebra finch (Taeniopygia guttata) to examine the hormonal mechanisms that modulate parental behavior and reproductive success in response to a partnership change (hereafter divorce). Specifically, we examined the effects of divorce on the avian stress hormone corticosterone (CORT) in both parents and nestlings, parental behaviors (incubation and nestling provisioning), prolactin (PRL), and reproductive success. We found that divorce resulted in delayed clutch initiation, reduced clutch mass, and an increase in nestling CORT response to a standardized stressor. These effects on reproductive investment and chick CORT response were not clearly determined by parental endocrine responses. Divorce had no effect on the level of parental CORT. PRL levels were highly correlated within a pair regardless of treatment, were negatively related to the investment that males made in incubation, and increased in experimental males as a result of pair disruption. This study demonstrates the fundamental impact which divorce has not only on reproduction, but also the physiological stress responses of offspring and suggests that in socially monogamous animals the maintenance of a stable partnership over time could be advantageous for long term fitness. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Characterization of Synaptically Connected Nuclei in a Potential Sensorimotor Feedback Pathway in the Zebra Finch Song System

    PubMed Central

    Williams, Shayna M.; Nast, Alexis; Coleman, Melissa J.

    2012-01-01

    Birdsong is a learned behavior that is controlled by a group of identified nuclei, known collectively as the song system. The cortical nucleus HVC (used as a proper name) is a focal point of many investigations as it is necessary for song production, song learning, and receives selective auditory information. HVC receives input from several sources including the cortical area MMAN (medial magnocellular nucleus of the nidopallium). The MMAN to HVC connection is particularly interesting as it provides potential sensorimotor feedback to HVC. To begin to understand the role of this connection, we investigated the physiological relation between MMAN and HVC activity with simultaneous multiunit extracellular recordings from these two nuclei in urethane anesthetized zebra finches. As previously reported, we found similar timing in spontaneous bursts of activity in MMAN and HVC. Like HVC, MMAN responds to auditory playback of the bird's own song (BOS), but had little response to reversed BOS or conspecific song. Stimulation of MMAN resulted in evoked activity in HVC, indicating functional excitation from MMAN to HVC. However, inactivation of MMAN resulted in no consistent change in auditory responses in HVC. Taken together, these results indicate that MMAN provides functional excitatory input to HVC but does not provide significant auditory input to HVC in anesthetized animals. We hypothesize that MMAN may play a role in motor reinforcement or coordination, or may provide modulatory input to the song system about the internal state of the animal as it receives input from the hypothalamus. PMID:22384172

  16. Song Selectivity in the Pallial-Basal Ganglia Song Circuit of Zebra Finches Raised Without Tutor Song Exposure

    PubMed Central

    Kojima, Satoshi; Doupe, Allison J.

    2008-01-01

    Acoustic experience critically influences auditory cortical development as well as emergence of highly selective auditory neurons in the songbird sensorimotor circuit. In adult zebra finches, these “song-selective” neurons respond better to the bird's own song (BOS) than to songs of other conspecifics. Birds learn their songs by memorizing a tutor's song and then matching auditory feedback of their voice to the tutor song memory. Song-selective neurons in the pallial-basal ganglia circuit called the anterior forebrain pathway (AFP) reflect the development of BOS. However, during learning, they also respond strongly to tutor song and are compromised in their adult selectivity when birds are prevented from matching BOS to tutor, suggesting that selectivity depends on tutor song learning as well as sensorimotor matching of BOS feedback to the tutor song memory. We examined the contribution of sensory learning of tutor song to song selectivity by recording from AFP neurons in birds reared without exposure to adult conspecifics. We found that AFP neurons in these “isolate” birds had highly tuned responses to isolate BOS. The selectivity was as high, and in the striato-pallidal nucleus Area X, even higher than that in normal birds, due to abnormally weak responsiveness to conspecific song. These results demonstrate that sensory learning of tutor song is not necessary for BOS tuning of AFP neurons. Because isolate birds develop their song via sensorimotor learning, our data further illustrate the importance of individual sensorimotor learning for song selectivity and provide insight into possible functions of song-selective neurons. PMID:17625059

  17. Pauses enhance chunk recognition in song element strings by zebra finches.

    PubMed

    Spierings, Michelle; de Weger, Anouk; Ten Cate, Carel

    2015-07-01

    When learning a language, it is crucial to know which syllables of a continuous sound string belong together as words. Human infants achieve this by attending to pauses between words or to the co-occurrence of syllables. It is not only humans that can segment a continuous string. Songbirds learning their song tend to copy 'chunks' from one or more tutors' songs and combine these into their own song. In the tutor songs, these chunks are often separated by pauses and a high co-occurrence of elements, suggesting that these features affect chunking and song learning. We examined experimentally whether the presence of pauses and element co-occurrence affect the ability of adult zebra finches to discriminate strings of song elements. Using a go/no-go design, two groups of birds were trained to discriminate between two strings. In one group (Pause-group), pauses were inserted between co-occurring element triplets in the strings, and in the other group (No-pause group), both strings were continuous. After making a correct discrimination, an individual proceeded to a reversal training using string segments. Segments were element triplets consistent in co-occurrence, triplets that were partly consistent in composition and triplets consisting of elements that did not co-occur in the strings. The Pause-group was faster in discriminating between the two strings. This group also responded differently to consistent triplets in the reversal training, compared to inconsistent triplets. The No-pause group did not differentiate among the triplet types. These results indicate that pauses in strings of song elements aid song discrimination and memorization of co-occurring element groups.

  18. Social experience affects neuronal responses to male calls in adult female zebra finches.

    PubMed

    Menardy, F; Touiki, K; Dutrieux, G; Bozon, B; Vignal, C; Mathevon, N; Del Negro, C

    2012-04-01

    Plasticity studies have consistently shown that behavioural relevance can change the neural representation of sounds in the auditory system, but what occurs in the context of natural acoustic communication where significance could be acquired through social interaction remains to be explored. The zebra finch, a highly social songbird species that forms lifelong pair bonds and uses a vocalization, the distance call, to identify its mate, offers an opportunity to address this issue. Here, we recorded spiking activity in females while presenting distance calls that differed in their degree of familiarity: calls produced by the mate, by a familiar male, or by an unfamiliar male. We focused on the caudomedial nidopallium (NCM), a secondary auditory forebrain region. Both the mate's call and the familiar call evoked responses that differed in magnitude from responses to the unfamiliar call. This distinction between responses was seen both in single unit recordings from anesthetized females and in multiunit recordings from awake freely moving females. In contrast, control females that had not heard them previously displayed responses of similar magnitudes to all three calls. In addition, more cells showed highly selective responses in mated than in control females, suggesting that experience-dependent plasticity in call-evoked responses resulted in enhanced discrimination of auditory stimuli. Our results as a whole demonstrate major changes in the representation of natural vocalizations in the NCM within the context of individual recognition. The functional properties of NCM neurons may thus change continuously to adapt to the social environment. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  19. Reptiles and mammals have differentially retained long conserved noncoding sequences from the amniote ancestor.

    PubMed

    Janes, D E; Chapus, C; Gondo, Y; Clayton, D F; Sinha, S; Blatti, C A; Organ, C L; Fujita, M K; Balakrishnan, C N; Edwards, S V

    2011-01-01

    Many noncoding regions of genomes appear to be essential to genome function. Conservation of large numbers of noncoding sequences has been reported repeatedly among mammals but not thus far among birds and reptiles. By searching genomes of chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and green anole (Anolis carolinensis), we quantified the conservation among birds and reptiles and across amniotes of long, conserved noncoding sequences (LCNS), which we define as sequences ≥500 bp in length and exhibiting ≥95% similarity between species. We found 4,294 LCNS shared between chicken and zebra finch and 574 LCNS shared by the two birds and Anolis. The percent of genomes comprised by LCNS in the two birds (0.0024%) is notably higher than the percent in mammals (<0.0003% to <0.001%), differences that we show may be explained in part by differences in genome-wide substitution rates. We reconstruct a large number of LCNS for the amniote ancestor (ca. 8,630) and hypothesize differential loss and substantial turnover of these sites in descendent lineages. By contrast, we estimated a small role for recruitment of LCNS via acquisition of novel functions over time. Across amniotes, LCNS are significantly enriched with transcription factor binding sites for many developmental genes, and 2.9% of LCNS shared between the two birds show evidence of expression in brain expressed sequence tag databases. These results show that the rate of retention of LCNS from the amniote ancestor differs between mammals and Reptilia (including birds) and that this may reflect differing roles and constraints in gene regulation.

  20. Reptiles and Mammals Have Differentially Retained Long Conserved Noncoding Sequences from the Amniote Ancestor

    PubMed Central

    Janes, D.E.; Chapus, C.; Gondo, Y.; Clayton, D.F.; Sinha, S.; Blatti, C.A.; Organ, C.L.; Fujita, M.K.; Balakrishnan, C.N.; Edwards, S.V.

    2010-01-01

    Many noncoding regions of genomes appear to be essential to genome function. Conservation of large numbers of noncoding sequences has been reported repeatedly among mammals but not thus far among birds and reptiles. By searching genomes of chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and green anole (Anolis carolinensis), we quantified the conservation among birds and reptiles and across amniotes of long, conserved noncoding sequences (LCNS), which we define as sequences ≥500 bp in length and exhibiting ≥95% similarity between species. We found 4,294 LCNS shared between chicken and zebra finch and 574 LCNS shared by the two birds and Anolis. The percent of genomes comprised by LCNS in the two birds (0.0024%) is notably higher than the percent in mammals (<0.0003% to <0.001%), differences that we show may be explained in part by differences in genome-wide substitution rates. We reconstruct a large number of LCNS for the amniote ancestor (ca. 8,630) and hypothesize differential loss and substantial turnover of these sites in descendent lineages. By contrast, we estimated a small role for recruitment of LCNS via acquisition of novel functions over time. Across amniotes, LCNS are significantly enriched with transcription factor binding sites for many developmental genes, and 2.9% of LCNS shared between the two birds show evidence of expression in brain expressed sequence tag databases. These results show that the rate of retention of LCNS from the amniote ancestor differs between mammals and Reptilia (including birds) and that this may reflect differing roles and constraints in gene regulation. PMID:21183607

  1. Developmental stress increases reproductive success in male zebra finches.

    PubMed

    Crino, Ondi L; Prather, Colin T; Driscoll, Stephanie C; Good, Jeffrey M; Breuner, Creagh W

    2014-11-22

    There is increasing evidence that exposure to stress during development can have sustained effects on animal phenotype and performance across life-history stages. For example, developmental stress has been shown to decrease the quality of sexually selected traits (e.g. bird song), and therefore is thought to decrease reproductive success. However, animals exposed to developmental stress may compensate for poor quality sexually selected traits by pursuing alternative reproductive tactics. Here, we examine the effects of developmental stress on adult male reproductive investment and success in the zebra finch (Taeniopygia guttata). We tested the hypothesis that males exposed to developmental stress sire fewer offspring through extra-pair copulations (EPCs), but invest more in parental care. To test this hypothesis, we fed nestlings corticosterone (CORT; the dominant avian stress hormone) during the nestling period and measured their adult reproductive success using common garden breeding experiments. We found that nestlings reared by CORT-fed fathers received more parental care compared with nestlings reared by control fathers. Consequently, males fed CORT during development reared nestlings in better condition compared with control males. Contrary to the prediction that developmental stress decreases male reproductive success, we found that CORT-fed males also sired more offspring and were less likely to rear non-genetic offspring compared with control males, and thus had greater overall reproductive success. These data are the first to demonstrate that developmental stress can have a positive effect on fitness via changes in reproductive success and provide support for an adaptive role of developmental stress in shaping animal phenotype. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Genomics analysis of potassium channel genes in songbirds reveals molecular specializations of brain circuits for the maintenance and production of learned vocalizations

    PubMed Central

    2013-01-01

    Background A fundamental question in molecular neurobiology is how genes that determine basic neuronal properties shape the functional organization of brain circuits underlying complex learned behaviors. Given the growing availability of complete vertebrate genomes, comparative genomics represents a promising approach to address this question. Here we used genomics and molecular approaches to study how ion channel genes influence the properties of the brain circuitry that regulates birdsong, a learned vocal behavior with important similarities to human speech acquisition. We focused on potassium (K-)Channels, which are major determinants of neuronal cell excitability. Starting with the human gene set of K-Channels, we used cross-species mRNA/protein alignments, and syntenic analysis to define the full complement of orthologs, paralogs, allelic variants, as well as novel loci not previously predicted in the genome of zebra finch (Taeniopygia guttata). We also compared protein coding domains in chicken and zebra finch orthologs to identify genes under positive selective pressure, and those that contained lineage-specific insertions/deletions in functional domains. Finally, we conducted comprehensive in situ hybridizations to determine the extent of brain expression, and identify K-Channel gene enrichments in nuclei of the avian song system. Results We identified 107 K-Channel finch genes, including 6 novel genes common to non-mammalian vertebrate lineages. Twenty human genes are absent in songbirds, birds, or sauropsids, or unique to mammals, suggesting K-Channel properties may be lineage-specific. We also identified specific family members with insertions/deletions and/or high dN/dS ratios compared to chicken, a non-vocal learner. In situ hybridization revealed that while most K-Channel genes are broadly expressed in the brain, a subset is selectively expressed in song nuclei, representing molecular specializations of the vocal circuitry. Conclusions Together, these findings shed new light on genes that may regulate biophysical and excitable properties of the song circuitry, identify potential targets for the manipulation of the song system, and reveal genomic specializations that may relate to the emergence of vocal learning and associated brain areas in birds. PMID:23845108

  3. Identification of a feather β-keratin gene exclusively expressed in pennaceous barbule cells of contour feathers in chicken.

    PubMed

    Kowata, Kinue; Nakaoka, Minori; Nishio, Kaori; Fukao, Ayaka; Satoh, Akira; Ogoshi, Maho; Takahashi, Sumio; Tsudzuki, Masaoki; Takeuchi, Sakae

    2014-05-25

    Feathers are elaborate skin appendages shared by birds and theropod dinosaurs that have hierarchical branching of the rachis, barbs, and barbules. Feather filaments consist of β-keratins encoded by multiple genes, most of which are located in tandem arrays on chromosomes 2, 25, and 27 in chicken. The expansion of the genes is thought to have contributed to feather evolution; however, it is unclear how the individual genes are involved in feather formation. The aim of the present study was to identify feather keratin genes involved in the formation of barbules. Using a combination of microarray analysis, reverse-transcription polymerase chain reaction, and in situ hybridization, we found an uncharacterized keratin gene on chromosome 7 that was expressed specifically in barbule cells in regenerating chicken feathers. We have named the gene barbule specific keratin 1 (BlSK1). The BlSK1 gene structure was similar to the gene structure of previously characterized feather keratin genes, and consisted of a non-coding leader exon, an intron, and an exon with an open reading frame (ORF). The ORF was predicted to encode a 98 aa long protein, which shared 59% identity with feather keratin B. Orthologs of BlSK1 were found in the genomes of other avian species, including turkey, duck, zebra finch, and flycatcher, in regions that shared synteny with chromosome 7 of chicken. Interestingly, BlSK1 was expressed in feather follicles that generated pennaceous barbules but not in follicles that generated plumulaceous barbules. These results suggested that the composition of feather keratins probably varies depending on the structure of the feather filaments and, that individual feather keratin genes may be involved in building different portions and/or types of feathers in chicken. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Differential accumulation and pigmenting ability of dietary carotenoids in colorful finches.

    PubMed

    McGraw, Kevin J; Hill, Geoffrey E; Navara, Kristen J; Parker, Robert S

    2004-01-01

    Many animals develop bright red, orange, or yellow carotenoid pigmentation that they use to attract mates. Colorful carotenoid pigments are acquired from the diet and are either directly incorporated as integumentary colorants or metabolized into other forms before deposition. Because animals often obtain several different carotenoids from plant and animal food sources, it is possible that these pigments are accumulated at different levels in the body and may play unique roles in shaping the ultimate color expression of individuals. We studied patterns of carotenoid accumulation and integumentary pigmentation in two colorful finch species--the American goldfinch (Carduelis tristis) and the zebra finch (Taeniopygia guttata). Both species acquire two main hydroxycarotenoids, lutein and zeaxanthin, from their seed diet but transform these into a series of metabolites that are used as colorful pigments in the plumage (goldfinches only) and beak (both species). We conducted a series of carotenoid-supplementation experiments to investigate the relative extent to which lutein and zeaxanthin are accumulated in blood and increase carotenoid coloration in feathers and bare parts. First, we supplemented the diets of both species with either lutein or zeaxanthin and measured plasma pigment status, feather carotenoid concentration (goldfinches only), and integumentary color. Zeaxanthin-supplemented males grew more colorful feathers and beaks than lutein-supplemented males, and in goldfinches incorporated a different ratio of carotenoids in feathers (favoring the accumulation of canary xanthophyll B). We also fed goldfinches different concentrations of a standard lutein-zeaxanthin mix and found that at physiologically normal and high concentrations, birds circulated proportionally more zeaxanthin over lutein than occurred in the diet. Collectively, these results demonstrate that zeaxanthin is preferentially accumulated in the body and serves as a more potent substrate for pigmentation than lutein in these finches.

  5. Transition from leg to wing forces during take-off in birds.

    PubMed

    Provini, Pauline; Tobalske, Bret W; Crandell, Kristen E; Abourachid, Anick

    2012-12-01

    Take-off mechanics are fundamental to the ecology and evolution of flying animals. Recent research has revealed that initial take-off velocity in birds is driven mostly by hindlimb forces. However, the contribution of the wings during the transition to air is unknown. To investigate this transition, we integrated measurements of both leg and wing forces during take-off and the first three wingbeats in zebra finch (Taeniopygia guttata, body mass 15 g, N=7) and diamond dove (Geopelia cuneata, body mass 50 g, N=3). We measured ground reaction forces produced by the hindlimbs using a perch mounted on a force plate, whole-body and wing kinematics using high-speed video, and aerodynamic forces using particle image velocimetry (PIV). Take-off performance was generally similar between species. When birds were perched, an acceleration peak produced by the legs contributed to 85±1% of the whole-body resultant acceleration in finch and 77±6% in dove. At lift-off, coincident with the start of the first downstroke, the percentage of hindlimb contribution to initial flight velocity was 93.6±0.6% in finch and 95.2±0.4% in dove. In finch, the first wingbeat produced 57.9±3.4% of the lift created during subsequent wingbeats compared with 62.5±2.2% in dove. Advance ratios were <0.5 in both species, even when taking self-convection of shed vortices into account, so it was likely that wing-wake interactions dominated aerodynamics during wingbeats 2 and 3. These results underscore the relatively low contribution of the wings to initial take-off, and reveal a novel transitional role for the first wingbeat in terms of force production.

  6. Implications of nutritional stress as nestling or fledgling on subsequent attractiveness and fecundity in zebra finches (Taeniopygia guttata).

    PubMed

    Honarmand, Mariam; Krause, E Tobias; Naguib, Marc

    2017-01-01

    The conditions an organism experiences during early development can have profound and long lasting effects on its subsequent behavior, attractiveness, and life history decisions. Most previous studies have exposed individuals to different conditions throughout development until nutritional independence. Yet under natural conditions, individuals may experience limitations for much shorter periods due to transient environmental fluctuations. Here, we used zebra finches ( Taeniopygia guttata ) in captivity to determine if conditions experienced during distinctly different early developmental phases contribute differently to male and female attractiveness and subsequent reproduction. We conducted a breeding experiment in which offspring were exposed to food regimes with (a) low quality food provided only during the nestling period, (b) low quality food provided only during the fledgling period, or (c) high quality food throughout early development. We show that despite short-term effects on biometry and physiology, there were no effects on either male or female attractiveness, as tested in two-way mate choice free-flight aviary experiments. In a subsequent breeding experiment, the offspring from the initial experiment were allowed to breed themselves. The next generation offspring from mothers raised under lower quality nutrition as either nestling or fledging were lighter at hatching compared to offspring from mothers raised under higher quality nutrition whereas paternal early nutrition had no such effects. The lack of early developmental limitations on attractiveness suggests that attractiveness traits were not affected or that birds compensated for any such effects. Furthermore, maternal trans-generational effects of dietary restrictions emphasize the importance of role of limited periods of early developmental stress in the expression of environmentally determined fitness components.

  7. CB1 Cannabinoid Receptor Activation Dose-Dependently Modulates Neuronal Activity within Caudal but not Rostral Song Control Regions of Adult Zebra Finch Telencephalon

    PubMed Central

    Soderstrom, Ken; Tian, Qiyu

    2008-01-01

    CB1 cannabinoid receptors are distinctly expressed at high density within several regions of zebra finch telencephalon including those known to be involved in song learning (lMAN and Area X) and production (HVC and RA). Because: (1) exposure to cannabinoid agonists during developmental periods of auditory and sensory-motor song learning alters song patterns produced later in adulthood and; (2) densities of song region expression of CB1 waxes-and-wanes during song learning, it is becoming clear that CB1 receptor-mediated signaling is important to normal processes of vocal development. To better understand mechanisms involved in cannabinoid modulation of vocal behavior we have investigated the dose-response relationship between systemic cannabinoid exposure and changes in neuronal activity (as indicated by expression of the transcription factor, c-Fos) within telencephalic brain regions with established involvement in song learning and/or control. In adults we have found that low doses (0.1 mg/kg) of the cannabinoid agonist WIN-55212-2 decrease neuronal activity (as indicated by densities of c-fos-expressing nuclei) within vocal motor regions of caudal telencephalon (HVC and RA) while higher doses (3 mg/kg) stimulate activity. Both effects were reversed by pretreatment with the CB1-selective antagonist rimonabant. Interestingly, no effects of cannabinoid treatment were observed within the rostral song regions lMAN and Area X, despite distinct and dense CB1 receptor expression within these areas. Overall, our results demonstrate that, depending on dosage, CB1 agonism can both inhibit and stimulate neuronal activity within brain regions controlling adult vocal motor output, implicating involvement of multiple CB1-sensitive neuronal circuits. PMID:18509622

  8. De novo establishment of wild-type song culture in the zebra finch.

    PubMed

    Fehér, Olga; Wang, Haibin; Saar, Sigal; Mitra, Partha P; Tchernichovski, Ofer

    2009-05-28

    Culture is typically viewed as consisting of traits inherited epigenetically, through social learning. However, cultural diversity has species-typical constraints, presumably of genetic origin. A celebrated, if contentious, example is whether a universal grammar constrains syntactic diversity in human languages. Oscine songbirds exhibit song learning and provide biologically tractable models of culture: members of a species show individual variation in song and geographically separated groups have local song dialects. Different species exhibit distinct song cultures, suggestive of genetic constraints. Without such constraints, innovations and copying errors should cause unbounded variation over multiple generations or geographical distance, contrary to observations. Here we report an experiment designed to determine whether wild-type song culture might emerge over multiple generations in an isolated colony founded by isolates, and, if so, how this might happen and what type of social environment is required. Zebra finch isolates, unexposed to singing males during development, produce song with characteristics that differ from the wild-type song found in laboratory or natural colonies. In tutoring lineages starting from isolate founders, we quantified alterations in song across tutoring generations in two social environments: tutor-pupil pairs in sound-isolated chambers and an isolated semi-natural colony. In both settings, juveniles imitated the isolate tutors but changed certain characteristics of the songs. These alterations accumulated over learning generations. Consequently, songs evolved towards the wild-type in three to four generations. Thus, species-typical song culture can appear de novo. Our study has parallels with language change and evolution. In analogy to models in quantitative genetics, we model song culture as a multigenerational phenotype partly encoded genetically in an isolate founding population, influenced by environmental variables and taking multiple generations to emerge.

  9. Transient and permanent effects of suboptimal incubation temperatures on growth, metabolic rate, immune function and adrenocortical responses in zebra finches.

    PubMed

    Wada, Haruka; Kriengwatana, Buddhamas; Allen, Natalie; Schmidt, Kimberly L; Soma, Kiran K; MacDougall-Shackleton, Scott A

    2015-09-01

    In birds, incubation temperature can vary by several degrees Celsius among nests of a given species. Parents may alter incubation temperature to cope with environmental conditions and/or to manipulate embryonic development, and such changes in incubation behavior could have long-lasting effects on offspring phenotype. To investigate short- and long-term effects of suboptimal incubation temperatures on survival and physiological functions in zebra finches, eggs were incubated at 36.2, 37.4 or 38.4 °C for the entire incubation period. The post-hatch environment was identical among the treatment groups. We found that hatching success was lowest in the 38.4 °C group, while post-hatch survival was lowest in the 36.2 °C group. Incubation temperature had sex-specific effects on offspring phenotype: incubation temperatures affected body mass (Mb) but not physiological parameters of males and conversely, the physiological parameters but not Mb of females. Specifically, males from the 38.4 °C group weighed significantly less than males from the 36.2 °C group from the nestling period to adulthood, whereas females from different incubation temperature groups did not differ in Mb. In contrast, females incubated at 36.2 °C had transient but significantly elevated basal metabolic rate and adrenocortical responses during the nestling and fledgling periods, whereas no treatment effect was observed in males. Innate immunity was not affected by incubation temperature in either sex. These results suggest that a 1 °C deviation from what is considered an optimal incubation temperature can lower offspring performance and offspring survival. © 2015. Published by The Company of Biologists Ltd.

  10. Effect of laying sequence on egg mercury in captive zebra finches: an interpretation considering individual variation.

    PubMed

    Ou, Langbo; Varian-Ramos, Claire W; Cristol, Daniel A

    2015-08-01

    Bird eggs are used widely as noninvasive bioindicators for environmental mercury availability. Previous studies, however, have found varying relationships between laying sequence and egg mercury concentrations. Some studies have reported that the mercury concentration was higher in first-laid eggs or declined across the laying sequence, whereas in other studies mercury concentration was not related to egg order. Approximately 300 eggs (61 clutches) were collected from captive zebra finches dosed throughout their reproductive lives with methylmercury (0.3 μg/g, 0.6 μg/g, 1.2 μg/g, or 2.4 μg/g wet wt in diet); the total mercury concentration (mean ± standard deviation [SD] dry wt basis) of their eggs was 7.03 ± 1.38 μg/g, 14.15 ± 2.52 μg/g, 26.85 ± 5.85 μg/g, and 49.76 ± 10.37 μg/g, respectively (equivalent to fresh wt egg mercury concentrations of 1.24 μg/g, 2.50 μg/g, 4.74 μg/g, and 8.79 μg/g). The authors observed a significant decrease in the mercury concentration of successive eggs when compared with the first egg and notable variation between clutches within treatments. The mercury level of individual females within and among treatments did not alter this relationship. Based on the results, sampling of a single egg in each clutch from any position in the laying sequence is sufficient for purposes of population risk assessment, but it is not recommended as a proxy for individual female exposure or as an estimate of average mercury level within the clutch. © 2015 SETAC.

  11. Human-like brain hemispheric dominance in birdsong learning

    PubMed Central

    Moorman, Sanne; Gobes, Sharon M. H.; Kuijpers, Maaike; Kerkhofs, Amber; Zandbergen, Matthijs A.; Bolhuis, Johan J.

    2012-01-01

    Unlike nonhuman primates, songbirds learn to vocalize very much like human infants acquire spoken language. In humans, Broca’s area in the frontal lobe and Wernicke’s area in the temporal lobe are crucially involved in speech production and perception, respectively. Songbirds have analogous brain regions that show a similar neural dissociation between vocal production and auditory perception and memory. In both humans and songbirds, there is evidence for lateralization of neural responsiveness in these brain regions. Human infants already show left-sided dominance in their brain activation when exposed to speech. Moreover, a memory-specific left-sided dominance in Wernicke’s area for speech perception has been demonstrated in 2.5-mo-old babies. It is possible that auditory-vocal learning is associated with hemispheric dominance and that this association arose in songbirds and humans through convergent evolution. Therefore, we investigated whether there is similar song memory-related lateralization in the songbird brain. We exposed male zebra finches to tutor or unfamiliar song. We found left-sided dominance of neuronal activation in a Broca-like brain region (HVC, a letter-based name) of juvenile and adult zebra finch males, independent of the song stimulus presented. In addition, juvenile males showed left-sided dominance for tutor song but not for unfamiliar song in a Wernicke-like brain region (the caudomedial nidopallium). Thus, left-sided dominance in the caudomedial nidopallium was specific for the song-learning phase and was memory-related. These findings demonstrate a remarkable neural parallel between birdsong and human spoken language, and they have important consequences for our understanding of the evolution of auditory-vocal learning and its neural mechanisms. PMID:22802637

  12. Song tutoring in presinging zebra finch juveniles biases a small population of higher-order song-selective neurons toward the tutor song.

    PubMed

    Adret, Patrice; Meliza, C Daniel; Margoliash, Daniel

    2012-10-01

    We explored physiological changes correlated with song tutoring by recording the responses of caudal nidopallium neurons of zebra finches aged P21-P24 (days post hatching) to a broad spectrum of natural and synthetic stimuli. Those birds raised with their fathers tended to show behavioral evidence of song memorization but not of singing; thus auditory responses were not confounded by the birds' own vocalizations. In study 1, 37 of 158 neurons (23%) in 17 of 22 tutored and untutored birds were selective for only 1 of 10 stimuli comprising broadband signals, early juvenile songs and calls, female calls, and adult songs. Approximately 30% of the selective neurons (12/37 neurons in 9 birds) were selective for adult conspecific songs. All these were found in the song system nuclei HVC and paraHVC. Of 122 neurons (17 birds) in tutored birds, all of the conspecific song-selective neurons (8 neurons in 6 birds) were selective for the adult tutor song; none was selective for unfamiliar song. In study 2 with a different sampling strategy, we found that 11 of 12 song-selective neurons in 6 of 7 birds preferred the tutor song; none preferred unfamiliar or familiar conspecific songs. Most of these neurons were found in caudal lateral nidopallium (NCL) below HVC. Thus by the time a bird begins to sing, there are small numbers of tutor song-selective neurons distributed in several forebrain regions. We hypothesize that a small population of higher-order auditory neurons is innately selective for complex features of behaviorally relevant stimuli and these responses are modified by specific perceptual/social experience during development.

  13. Correlates of male fitness in captive zebra finches--a comparison of methods to disentangle genetic and environmental effects.

    PubMed

    Bolund, Elisabeth; Schielzeth, Holger; Forstmeier, Wolfgang

    2011-11-08

    It is a common observation in evolutionary studies that larger, more ornamented or earlier breeding individuals have higher fitness, but that body size, ornamentation or breeding time does not change despite of sometimes substantial heritability for these traits. A possible explanation for this is that these traits do not causally affect fitness, but rather happen to be indirectly correlated with fitness via unmeasured non-heritable aspects of condition (e.g. undernourished offspring grow small and have low fitness as adults due to poor health). Whether this explanation applies to a specific case can be examined by decomposing the covariance between trait and fitness into its genetic and environmental components using pedigree-based animal models. We here examine different methods of doing this for a captive zebra finch population where male fitness was measured in communal aviaries in relation to three phenotypic traits (tarsus length, beak colour and song rate). Our case study illustrates how methods that regress fitness over breeding values for phenotypic traits yield biased estimates as well as anti-conservative standard errors. Hence, it is necessary to estimate the genetic and environmental covariances between trait and fitness directly from a bivariate model. This method, however, is very demanding in terms of sample sizes. In our study parameter estimates of selection gradients for tarsus were consistent with the hypothesis of environmentally induced bias (βA=0.035±0.25 (SE), βE=0.57±0.28 (SE)), yet this differences between genetic and environmental selection gradients falls short of statistical significance. To examine the generality of the idea that phenotypic selection gradients for certain traits (like size) are consistently upwardly biased by environmental covariance a meta-analysis across study systems will be needed.

  14. Functional morphology of the sound-generating labia in the syrinx of two songbird species.

    PubMed

    Riede, Tobias; Goller, Franz

    2010-01-01

    In songbirds, two sound sources inside the syrinx are used to produce the primary sound. Laterally positioned labia are passively set into vibration, thus interrupting a passing air stream. Together with subsyringeal pressure, the size and tension of the labia determine the spectral characteristics of the primary sound. Very little is known about how the histological composition and morphology of the labia affect their function as sound generators. Here we related the size and microstructure of the labia to their acoustic function in two songbird species with different acoustic characteristics, the white-crowned sparrow and zebra finch. Histological serial sections of the syrinx and different staining techniques were used to identify collagen, elastin and hyaluronan as extracellular matrix components. The distribution and orientation of elastic fibers indicated that the labia in white-crowned sparrows are multi-layered structures, whereas they are more uniformly structured in the zebra finch. Collagen and hyaluronan were evenly distributed in both species. A multi-layered composition could give rise to complex viscoelastic properties of each sound source. We also measured labia size. Variability was found along the dorso-ventral axis in both species. Lateral asymmetry was identified in some individuals but not consistently at the species level. Different size between the left and right sound sources could provide a morphological basis for the acoustic specialization of each sound generator, but only in some individuals. The inconsistency of its presence requires the investigation of alternative explanations, e.g. differences in viscoelastic properties of the labia of the left and right syrinx. Furthermore, we identified attachments of syringeal muscles to the labia as well as to bronchial half rings and suggest a mechanism for their biomechanical function.

  15. Transition from wing to leg forces during landing in birds.

    PubMed

    Provini, Pauline; Tobalske, Bret W; Crandell, Kristen E; Abourachid, Anick

    2014-08-01

    Transitions to and from the air are critical for aerial locomotion and likely shaped the evolution of flying animals. Research on take-off demonstrates that legs generate greater body accelerations compared with wings, and thereby contribute more to initial flight velocity. Here, we explored coordination between wings and legs in two species with different wingbeat styles, and quantified force production of these modules during the final phase of landing. We used the same birds that we had previously studied during take-off: zebra finch (Taeniopygia guttata, N=4) and diamond dove (Geopelia cuneata, N=3). We measured kinematics using high-speed video, aerodynamics using particle image velocimetry, and ground-reaction forces using a perch mounted on a force plate. In contrast with the first three wingbeats of take-off, the final four wingbeats during landing featured ~2 times greater force production. Thus, wings contribute proportionally more to changes in velocity during the last phase of landing compared with the initial phase of take-off. The two species touched down at the same velocity (~1 m s(-1)), but they exhibited significant differences in the timing of their final wingbeat relative to touchdown. The ratio of average wing force to peak leg force was greater in diamond doves than in zebra finches. Peak ground reaction forces during landing were ~50% of those during take-off, consistent with the birds being motivated to control landing. Likewise, estimations of mechanical energy flux for both species indicate that wings produce 3-10 times more mechanical work within the final wingbeats of flight compared with the kinetic energy of the body absorbed by legs during ground contact. © 2014. Published by The Company of Biologists Ltd.

  16. Correlates of male fitness in captive zebra finches - a comparison of methods to disentangle genetic and environmental effects

    PubMed Central

    2011-01-01

    Backgound It is a common observation in evolutionary studies that larger, more ornamented or earlier breeding individuals have higher fitness, but that body size, ornamentation or breeding time does not change despite of sometimes substantial heritability for these traits. A possible explanation for this is that these traits do not causally affect fitness, but rather happen to be indirectly correlated with fitness via unmeasured non-heritable aspects of condition (e.g. undernourished offspring grow small and have low fitness as adults due to poor health). Whether this explanation applies to a specific case can be examined by decomposing the covariance between trait and fitness into its genetic and environmental components using pedigree-based animal models. We here examine different methods of doing this for a captive zebra finch population where male fitness was measured in communal aviaries in relation to three phenotypic traits (tarsus length, beak colour and song rate). Results Our case study illustrates how methods that regress fitness over breeding values for phenotypic traits yield biased estimates as well as anti-conservative standard errors. Hence, it is necessary to estimate the genetic and environmental covariances between trait and fitness directly from a bivariate model. This method, however, is very demanding in terms of sample sizes. In our study parameter estimates of selection gradients for tarsus were consistent with the hypothesis of environmentally induced bias (βA = 0.035 ± 0.25 (SE), βE = 0.57 ± 0.28 (SE)), yet this differences between genetic and environmental selection gradients falls short of statistical significance. Conclusions To examine the generality of the idea that phenotypic selection gradients for certain traits (like size) are consistently upwardly biased by environmental covariance a meta-analysis across study systems will be needed. PMID:22067225

  17. Knockdown of FoxP2 alters spine density in Area X of the zebra finch.

    PubMed

    Schulz, S B; Haesler, S; Scharff, C; Rochefort, C

    2010-10-01

    Mutations in the gene encoding the transcription factor FoxP2 impair human speech and language. We have previously shown that deficits in vocal learning occur in zebra finches after reduction of FoxP2 in Area X, a striatal nucleus involved in song acquisition. We recently showed that FoxP2 is expressed in newly generated spiny neurons (SN) in adult Area X as well as in the ventricular zone (VZ) from which the SN originates. Moreover, their recruitment to Area X increases transiently during the song learning phase. The present report therefore investigated whether FoxP2 is involved in the structural plasticity of Area X. We assessed the proliferation, differentiation and morphology of SN after lentivirally mediated knockdown of FoxP2 in Area X or in the VZ during the song learning phase. Proliferation rate was not significantly affected by knockdown of FoxP2 in the VZ. In addition, FoxP2 reduction both in the VZ and in Area X did not affect the number of new neurons in Area X. However, at the fine-structural level, SN in Area X bore fewer spines after FoxP2 knockdown. This effect was even more pronounced when neurons received the knockdown before differentiation, i.e. as neuroblasts in the VZ. These results suggest that FoxP2 might directly or indirectly regulate spine dynamics in Area X and thereby influence song plasticity. Together, these data present the first evidence for a role of FoxP2 in the structural plasticity of dendritic spines and complement the emerging evidence of physiological synaptic plasticity in FoxP2 mouse models. Genes, Brain and Behavior © 2010 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society. No claim to original US government works.

  18. Carotenoids buffer the acute phase response on fever, sickness behavior and rapid bill color change in zebra finches.

    PubMed

    George, Deanna B; Schneider, Brent C; McGraw, Kevin J; Ardia, Daniel R

    2017-08-15

    Carotenoids are finite resources that animals can allocate to self-maintenance, attractiveness or reproduction. Here we test how carotenoids affect the acute phase response (APR), an intense rapid systemic response characterized by fever, sickness behavior and production of acute phase proteins, which serves to reduce pathogen persistence. We conducted a 2×2 factorial design experiment in captive adult male and female zebra finches ( Taeniopygia guttata ) to determine the effects of carotenoid supplementation on the intensity of the APR. We measured changes in feeding rate, activity level and body temperature of the birds. We found that, relative to unsupplemented controls, carotenoid-supplemented birds exhibited less severe reductions in feeding and activity, smaller increases in body temperature and lower circulating levels of haptoglobin (an acute phase protein) 24 h after inducing an APR. Among supplemented individuals, those with higher blood carotenoid levels exhibited a lower reduction in activity rate after 24 h. Forty-eight hours after APR induction, birds exhibited a significant decrease in plasma carotenoid levels and a decrease in bill hue, with less reduction in hue in carotenoid-supplemented individuals. These results demonstrate that carotenoids can alleviate several important behavioral and physiological effects of an APR and that bill color can change rapidly following induction of the costly APR immune defense. In particular, immune activation may have caused birds to preferentially draw down carotenoids from the bloodstream, ostensibly for use in health. Rapid bill color changes over a 48-h period support growing evidence that bills may serve as short-term signals of health and condition. © 2017. Published by The Company of Biologists Ltd.

  19. Food for song: expression of c-Fos and ZENK in the zebra finch song nuclei during food aversion learning.

    PubMed

    Tokarev, Kirill; Tiunova, Anna; Scharff, Constance; Anokhin, Konstantin

    2011-01-01

    Specialized neural pathways, the song system, are required for acquiring, producing, and perceiving learned avian vocalizations. Birds that do not learn to produce their vocalizations lack telencephalic song system components. It is not known whether the song system forebrain regions are exclusively evolved for song or whether they also process information not related to song that might reflect their 'evolutionary history'. To address this question we monitored the induction of two immediate-early genes (IEGs) c-Fos and ZENK in various regions of the song system in zebra finches (Taeniopygia guttata) in response to an aversive food learning paradigm; this involves the association of a food item with a noxious stimulus that affects the oropharyngeal-esophageal cavity and tongue, causing subsequent avoidance of that food item. The motor response results in beak and head movements but not vocalizations. IEGs have been extensively used to map neuro-molecular correlates of song motor production and auditory processing. As previously reported, neurons in two pallial vocal motor regions, HVC and RA, expressed IEGs after singing. Surprisingly, c-Fos was induced equivalently also after food aversion learning in the absence of singing. The density of c-Fos positive neurons was significantly higher than that of birds in control conditions. This was not the case in two other pallial song nuclei important for vocal plasticity, LMAN and Area X, although singing did induce IEGs in these structures, as reported previously. Our results are consistent with the possibility that some of the song nuclei may participate in non-vocal learning and the populations of neurons involved in the two tasks show partial overlap. These findings underscore the previously advanced notion that the specialized forebrain pre-motor nuclei controlling song evolved from circuits involved in behaviors related to feeding.

  20. Characterisation of the transcriptome of a wild great tit Parus major population by next generation sequencing

    PubMed Central

    2011-01-01

    Background The recent development of next generation sequencing technologies has made it possible to generate very large amounts of sequence data in species with little or no genome information. Combined with the large phenotypic databases available for wild and non-model species, these data will provide an unprecedented opportunity to "genomicise" ecological model organisms and establish the genetic basis of quantitative traits in natural populations. Results This paper describes the sequencing, de novo assembly and analysis from the transcriptome of eight tissues of ten wild great tits. Approximately 4.6 million sequences and 1.4 billion bases of DNA were generated and assembled into 95,979 contigs, one third of which aligned with known Taeniopygia guttata (zebra finch) and Gallus gallus (chicken) transcripts. The majority (78%) of the remaining contigs aligned within or very close to regions of the zebra finch genome containing known genes, suggesting that they represented precursor mRNA rather than untranscribed genomic DNA. More than 35,000 single nucleotide polymorphisms and 10,000 microsatellite repeats were identified. Eleven percent of contigs were expressed in every tissue, while twenty one percent of contigs were expressed in only one tissue. The function of those contigs with strong evidence for tissue specific expression and contigs expressed in every tissue was inferred from the gene ontology (GO) terms associated with these contigs; heart and pancreas had the highest number of highly tissue specific GO terms (21.4% and 28.5% respectively). Conclusions In summary, the transcriptomic data generated in this study will contribute towards efforts to assemble and annotate the great tit genome, as well as providing the markers required to perform gene mapping studies in wild populations. PMID:21635727

  1. Connections of the Auditory Brainstem in a Songbird, Taeniopygia guttata. II. Projections of Nucleus Angularis and Nucleus Laminaris to the Superior Olive and Lateral Lemniscal Nuclei

    PubMed Central

    Krützfeldt, Nils O.E.; Logerot, Priscilla; Kubke, M. Fabiana; Wild, J. Martin

    2013-01-01

    Three nuclei of the lateral lemniscus are present in the zebra finch, ventral (LLV), intermediate (LLI), and dorsal (LLD). LLV is separate from the superior olive (OS): it lies closer to the spinal lemniscus and extends much further rostrally around the pontine periphery. LLI extends from a caudal position ventrolateral to the principal sensory trigeminal nucleus (LLIc) to a rostral position medial to the ventrolateral parabrachial nucleus (LLIr). LLD consists of posterior (LLDp) and anterior (LLDa) parts, which are largely coextensive rostrocaudally, although LLDa lies medial to LLDp. All nuclei are identifiable on the basis of cytochrome oxidase activity. The cochlear nucleus angularis (NA) and the third-order nucleus laminaris (NL) project on OS predominantly ipsilaterally, on LLV and LLI predominantly contralaterally, and on LLD contralaterally only. The NA projections are heavier than those of NL and differ from them primarily in their terminations within LLD: NA projects to LLDp, whereas NL projects to LLDa. In this the projections are similar to those in the barn owl (Takahashi and Konishi [1988] J Comp Neurol 274:212–238), in which time and intensity pathways remain separate as far as the central nucleus of the inferior colliculus (MLd). In contrast, in the zebra finch, although NA and NL projections remain separate within LLD, the projections of LLDa and LLDp become intermixed within MLd (Wild et al., J Comp Neurol, this issue), consistent with the intermixing of the direct NA and NL projections to MLd (Krützfeldt et al., J Comp Neurol, this issue). J. Comp. Neurol. 518:2135–2148, 2010. PMID:20394062

  2. Activation Changes in Zebra Finch (Taeniopygia guttata) Brain Areas Evoked by Alterations of the Earth Magnetic Field

    PubMed Central

    Keary, Nina; Bischof, Hans-Joachim

    2012-01-01

    Many animals are able to perceive the earth magnetic field and to use it for orientation and navigation within the environment. The mechanisms underlying the perception and processing of magnetic field information within the brain have been thoroughly studied, especially in birds, but are still obscure. Three hypotheses are currently discussed, dealing with ferromagnetic particles in the beak of birds, with the same sort of particles within the lagena organs, or describing magnetically influenced radical-pair processes within retinal photopigments. Each hypothesis is related to a well-known sensory organ and claims parallel processing of magnetic field information with somatosensory, vestibular and visual input, respectively. Changes in activation within nuclei of the respective sensory systems have been shown previously. Most of these previous experiments employed intensity enhanced magnetic stimuli or lesions. We here exposed unrestrained zebra finches to either a stationary or a rotating magnetic field of the local intensity and inclination. C-Fos was used as an activity marker to examine whether the two treatments led to differences in fourteen brain areas including nuclei of the somatosensory, vestibular and visual system. An ANOVA revealed an overall effect of treatment, indicating that the magnetic field change was perceived by the birds. While the differences were too small to be significant in most areas, a significant enhancement of activation by the rotating stimulus was found in a hippocampal subdivision. Part of the hyperpallium showed a strong, nearly significant, increase. Our results are compatible with previous studies demonstrating an involvement of at least three different sensory systems in earth magnetic field perception and suggest that these systems, probably less elaborated, may also be found in nonmigrating birds. PMID:22679515

  3. Song tutoring in presinging zebra finch juveniles biases a small population of higher-order song-selective neurons toward the tutor song

    PubMed Central

    Adret, Patrice; Meliza, C. Daniel

    2012-01-01

    We explored physiological changes correlated with song tutoring by recording the responses of caudal nidopallium neurons of zebra finches aged P21–P24 (days post hatching) to a broad spectrum of natural and synthetic stimuli. Those birds raised with their fathers tended to show behavioral evidence of song memorization but not of singing; thus auditory responses were not confounded by the birds' own vocalizations. In study 1, 37 of 158 neurons (23%) in 17 of 22 tutored and untutored birds were selective for only 1 of 10 stimuli comprising broadband signals, early juvenile songs and calls, female calls, and adult songs. Approximately 30% of the selective neurons (12/37 neurons in 9 birds) were selective for adult conspecific songs. All these were found in the song system nuclei HVC and paraHVC. Of 122 neurons (17 birds) in tutored birds, all of the conspecific song-selective neurons (8 neurons in 6 birds) were selective for the adult tutor song; none was selective for unfamiliar song. In study 2 with a different sampling strategy, we found that 11 of 12 song-selective neurons in 6 of 7 birds preferred the tutor song; none preferred unfamiliar or familiar conspecific songs. Most of these neurons were found in caudal lateral nidopallium (NCL) below HVC. Thus by the time a bird begins to sing, there are small numbers of tutor song-selective neurons distributed in several forebrain regions. We hypothesize that a small population of higher-order auditory neurons is innately selective for complex features of behaviorally relevant stimuli and these responses are modified by specific perceptual/social experience during development. PMID:22786956

  4. Positive effect of dietary lutein and cholesterol on the undirected song activity of an opportunistic breeder

    PubMed Central

    Pinxten, Rianne; Zaid, Erika; Eens, Marcel

    2016-01-01

    Song is a sexually selected trait that is thought to be an honest signal of the health condition of an individual in many bird species. For species that breed opportunistically, the quantity of food may be a determinant of singing activity. However, it is not yet known whether the quality of food plays an important role in this respect. The aim of the present study was to experimentally investigate the role of two calorie-free nutrients (lutein and cholesterol) in determining the expression of a sexually selected behavior (song rate) and other behaviors (locomotor activity, self-maintenance activity, eating and resting) in male zebra finches (Taeniopygia guttata). We predicted that males supplemented with lutein and cholesterol would sing at higher rates than controls because both lutein and cholesterol have important health-related physiological functions in birds and birdsong mirrors individual condition. To control for testosterone secretion that may upregulate birdsong, birds were exposed to a decreasing photoperiod. Our results showed that control males down-regulated testosterone in response to a decreasing photoperiod, while birds treated with lutein or cholesterol maintained a constant singing activity. Both lutein- and cholesterol-supplemented groups sang more than control groups by the end of the experiment, indicating that the quality of food can affect undirected song irrespective of circulating testosterone concentrations. None of the other measured behaviors were affected by the treatment, suggesting that, when individuals have full availability of food, sexually selected song traits are more sensitive to the effect of food quality than other behavioral traits. Overall the results support our prediction that undirected song produced by male zebra finches signals access to high-quality food. PMID:27761321

  5. Spinal motor and sensory neurons are androgen targets in an acrobatic bird.

    PubMed

    Fuxjager, Matthew J; Schultz, J Douglas; Barske, Julia; Feng, Ni Y; Fusani, Leonida; Mirzatoni, Anahid; Day, Lainy B; Hau, Michaela; Schlinger, Barney A

    2012-08-01

    Sex steroids affect the motivation to court mates, but less is known about how they influence motor movements associated with courtship behavior. Steroidal control of motor function may be especially important for species in which courtship requires superior strength, stamina, and neuromuscular coordination. Here we use the golden-collared manakin (Manacus vitellinus) to examine whether the neuromuscular circuitry that controls motoric aspects of courtship activity is sensitive to androgens. Males of this tropical species attract mates by rapidly jumping among branches in a courtship arena and using their wings to produce loud wing snaps. Testosterone activates this display via the androgen receptor (AR), and past work reveals that manakins injected with radio-labeled T ((3)H-T) accumulate radioactivity in the spinal cord. Thus, we used quantitative PCR to measure AR, estrogen receptor-α (ER-α) subtype, and aromatase (AROM) mRNA in spinal cords of male and female manakins and zebra finches. Expression of AR, but not ER-α or aromatase, was higher throughout the manakin spinal cord compared with the zebra finch. Next, we tested whether AR-expressing skeletal muscles are innervated by motor and sensory neurons that also express AR. To do this, we backfilled spinal neurons by injecting fluorescent tracers into select AR-sensitive wing and leg muscles of wild caught male and female manakins. We then removed these spinal cords and measured AR expression with in situ hybridization. Both sexes showed abundant AR mRNA in the cervical and lumbosacral spinal enlargements as well as in dorsal root ganglia attached to these enlargements. Together our findings suggest that androgens act widely on peripheral motor and sensory circuits in golden-collared manakins to influence wing snapping displays.

  6. Effects of acute corticosterone treatment on partner preferences in male and female zebra finches (Taeniopygia guttata).

    PubMed

    LaPlante, Kimberly A; Huremovic, Enida; Tomaszycki, Michelle L

    2014-04-01

    Stress alters physiology and behavior across species. Most research on the effects of stress on behavior uses chronic stressors, and most are correlational. The effects of acute stressors on physiology and behavior have been mixed. Here, we use zebra finches, a highly gregarious species that forms long-term pair bonds, to test the effects of an acute corticosterone (CORT) on opposite-sex partner preferences over a same-sex individual or a group (the latter is a highly appealing option). We had two competing hypotheses. First, we predicted that acute CORT would alter preferences for the opposite sex bird in both conditions in both sexes. However, since there is a sex difference in the effects of CORT on partner preferences in voles, these effects may be more pronounced in males than in females. To test our hypotheses, we administered 2 doses of CORT (10μg and 20μg) or vehicle (control) using a repeated measures design. In the male vs. female test, there was a significant Sex by Treatment interaction, such that in males, 10μg CORT increased preferences for a female over the male compared to when these same males were treated with saline at baseline. There were no effects of treatment in females. In the opposite-sex vs. group condition, there was an overall effect of Treatment, such that the 10μg dose increased preference for the opposite-sex individual over both saline treatments, regardless of sex. These findings further our understanding of the effects of an acute stressor on sexual partner preferences. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Functional morphology of the sound-generating labia in the syrinx of two songbird species

    PubMed Central

    Riede, Tobias; Goller, Franz

    2010-01-01

    In songbirds, two sound sources inside the syrinx are used to produce the primary sound. Laterally positioned labia are passively set into vibration, thus interrupting a passing air stream. Together with subsyringeal pressure, the size and tension of the labia determine the spectral characteristics of the primary sound. Very little is known about how the histological composition and morphology of the labia affect their function as sound generators. Here we related the size and microstructure of the labia to their acoustic function in two songbird species with different acoustic characteristics, the white-crowned sparrow and zebra finch. Histological serial sections of the syrinx and different staining techniques were used to identify collagen, elastin and hyaluronan as extracellular matrix components. The distribution and orientation of elastic fibers indicated that the labia in white-crowned sparrows are multi-layered structures, whereas they are more uniformly structured in the zebra finch. Collagen and hyaluronan were evenly distributed in both species. A multi-layered composition could give rise to complex viscoelastic properties of each sound source. We also measured labia size. Variability was found along the dorso-ventral axis in both species. Lateral asymmetry was identified in some individuals but not consistently at the species level. Different size between the left and right sound sources could provide a morphological basis for the acoustic specialization of each sound generator, but only in some individuals. The inconsistency of its presence requires the investigation of alternative explanations, e.g. differences in viscoelastic properties of the labia of the left and right syrinx. Furthermore, we identified attachments of syringeal muscles to the labia as well as to bronchial half rings and suggest a mechanism for their biomechanical function. PMID:19900184

  8. Perineuronal nets and vocal plasticity in songbirds: A proposed mechanism to explain the difference between closed-ended and open-ended learning.

    PubMed

    Cornez, Gilles; Madison, Farrah N; Van der Linden, Annemie; Cornil, Charlotte; Yoder, Kathleen M; Ball, Gregory F; Balthazart, Jacques

    2017-09-01

    Perineuronal nets (PNN) are aggregations of chondroitin sulfate proteoglycans surrounding the soma and proximal processes of neurons, mostly GABAergic interneurons expressing parvalbumin. They limit the plasticity of their afferent synaptic connections. In zebra finches PNN develop in an experience-dependent manner in the song control nuclei HVC and RA (nucleus robustus arcopallialis) when young birds crystallize their song. Because songbird species that are open-ended learners tend to recapitulate each year the different phases of song learning until their song crystallizes at the beginning of the breeding season, we tested whether seasonal changes in PNN expression would be found in the song control nuclei of a seasonally breeding species such as the European starling. Only minimal changes in PNN densities and total number of cells surrounded by PNN were detected. However, comparison of the density of PNN and of PNN surrounding parvalbumin-positive cells revealed that these structures are far less numerous in starlings that show extensive adult vocal plasticity, including learning of new songs throughout the year, than in the closed-ended learner zebra finches. Canaries that also display some vocal plasticity across season but were never formally shown to learn new songs in adulthood were intermediate in this respect. Together these data suggest that establishment of PNN around parvalbumin-positive neurons in song control nuclei has diverged during evolution to control the different learning capacities observed in songbird species. This differential expression of PNN in different songbird species could represent a key cellular mechanism mediating species variation between closed-ended and open-ended learning strategies. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 975-994, 2017. © 2017 Wiley Periodicals, Inc.

  9. Activation changes in zebra finch (Taeniopygia guttata) brain areas evoked by alterations of the earth magnetic field.

    PubMed

    Keary, Nina; Bischof, Hans-Joachim

    2012-01-01

    Many animals are able to perceive the earth magnetic field and to use it for orientation and navigation within the environment. The mechanisms underlying the perception and processing of magnetic field information within the brain have been thoroughly studied, especially in birds, but are still obscure. Three hypotheses are currently discussed, dealing with ferromagnetic particles in the beak of birds, with the same sort of particles within the lagena organs, or describing magnetically influenced radical-pair processes within retinal photopigments. Each hypothesis is related to a well-known sensory organ and claims parallel processing of magnetic field information with somatosensory, vestibular and visual input, respectively. Changes in activation within nuclei of the respective sensory systems have been shown previously. Most of these previous experiments employed intensity enhanced magnetic stimuli or lesions. We here exposed unrestrained zebra finches to either a stationary or a rotating magnetic field of the local intensity and inclination. C-Fos was used as an activity marker to examine whether the two treatments led to differences in fourteen brain areas including nuclei of the somatosensory, vestibular and visual system. An ANOVA revealed an overall effect of treatment, indicating that the magnetic field change was perceived by the birds. While the differences were too small to be significant in most areas, a significant enhancement of activation by the rotating stimulus was found in a hippocampal subdivision. Part of the hyperpallium showed a strong, nearly significant, increase. Our results are compatible with previous studies demonstrating an involvement of at least three different sensory systems in earth magnetic field perception and suggest that these systems, probably less elaborated, may also be found in nonmigrating birds.

  10. Reward and vocal production: song-associated place preference in songbirds.

    PubMed

    Riters, Lauren V; Stevenson, Sharon A

    2012-05-15

    Vocal production is crucial for successful social interactions in multiple species. Reward can strongly influence behavior; however, the extent to which reward systems influence vocal behavior is unknown. In songbirds, singing occurs in different contexts. It can be spontaneous and undirected (e.g., song produced alone or as part of a large flock) or directed towards a conspecific (e.g., song used to attract a mate or influence a competitor). In this study, we developed a conditioned place preference paradigm to measure reward associated with different types of singing behavior in two songbird species. Both male zebra finches and European starlings developed a preference for a chamber associated with production of undirected song, suggesting that the production of undirected song is tightly coupled to intrinsic reward. In contrast, neither starlings nor zebra finches developed a place preference in association with directed song; however, male starlings singing directed song that failed to attract a female developed a place aversion. Unsuccessful contact calling behavior was also associated with a place aversion. These findings suggest that directed vocal behavior is not tightly linked to intrinsic reward but may be externally reinforced by social interactions. Data across two species thus support the hypothesis that the production of undirected but not directed song is tightly coupled to intrinsic reward. This study is the first to identify song-associated reward and suggests that reward associated with vocal production differs depending upon the context in which communication occurs. The findings have implications for understanding what motivates animals to engage in social behaviors and ways in which distinct reward mechanisms function to direct socially appropriate behaviors. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Circulating breeding and pre-breeding prolactin and LH are not associated with clutch size in the zebra finch (Taeniopygia guttata).

    PubMed

    Ryan, Calen P; Dawson, Alistair; Sharp, Peter J; Meddle, Simone L; Williams, Tony D

    2014-06-01

    Clutch size is a fundamental predictor of avian fitness, widely-studied from evolutionary and ecological perspectives, but surprisingly little is known about the physiological mechanisms regulating clutch size variation. The only formal mechanistic hypothesis for avian clutch-size determination predicts an anti-gonadal effect of circulating prolactin (PRL) via the inhibition of luteinizing hormone (LH), and has become widely-accepted despite little experimental support. Here we investigated the relationship between pre-breeding and breeding plasma PRL and LH and clutch-size in captive-breeding female zebra finches (Taeniopygia guttata). Using a repeated-measures design, we followed individual females from pre-breeding, through multiple breeding attempts, and attempted to decrease PRL using the D2-receptor agonist, bromocriptine. Clutch size was independent of variation in pre-breeding PRL or LH, although pre-breeding LH was negatively correlated with the time between pairing and the onset of laying. Clutch size was independent of variation in plasma PRL on all days of egg-laying. Bromocriptine treatment had no effect on plasma PRL, but in this breeding attempt clutch size was also independent of plasma PRL. Finally, we found no evidence for an inverse relationship between plasma PRL and LH levels, as predicted if PRL had inhibitory effects via LH. Thus, our data fail to provide any support for the involvement of circulating PRL in clutch size determination. These findings suggest that alternative models for hormonal control of avian clutch size need to be considered, perhaps involving downstream regulation of plasma PRL at the level of the ovary, or other hormones that have not been considered to date. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Neurogenomic Mechanisms of Aggression in Songbirds

    PubMed Central

    Maney, Donna L.; Goodson, James L.

    2017-01-01

    Our understanding of the biological basis of aggression in all vertebrates, including humans, has been built largely upon discoveries first made in birds. A voluminous literature now indicates that hormonal mechanisms are shared between humans and a number of avian species. Research on genetics mechanisms in birds has lagged behind the more typical laboratory species because the necessary tools have been lacking until recently. Over the past 30 years, three major technical advances have propelled forward our understanding of the hormonal, neural, and genetic bases of aggression in birds: (1) the development of assays to measure plasma levels of hormones in free-living individuals, or “field endocrinology”; (2) the immunohistochemical labeling of immediate early gene products to map neural responses to social stimuli; and (3) the sequencing of the zebra finch genome, which makes available a tremendous set of genomic tools for studying gene sequences, expression, and chromosomal structure in species for which we already have large datasets on aggressive behavior. This combination of hormonal, neuroendocrine, and genetic tools has established songbirds as powerful models for understanding the neural basis and evolution of aggression in vertebrates. In this chapter, we discuss the contributions of field endocrinology toward a theoretical framework linking aggression with sex steroids, explore evidence that the neural substrates of aggression are conserved across vertebrate species, and describe a promising new songbird model for studying the molecular genetic mechanisms underlying aggression. PMID:22078478

  13. Comparative genomic data of the Avian Phylogenomics Project.

    PubMed

    Zhang, Guojie; Li, Bo; Li, Cai; Gilbert, M Thomas P; Jarvis, Erich D; Wang, Jun

    2014-01-01

    The evolutionary relationships of modern birds are among the most challenging to understand in systematic biology and have been debated for centuries. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae and two of the five Palaeognathae orders, and used the genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomics analyses (Jarvis et al. in press; Zhang et al. in press). Here we release assemblies and datasets associated with the comparative genome analyses, which include 38 newly sequenced avian genomes plus previously released or simultaneously released genomes of Chicken, Zebra finch, Turkey, Pigeon, Peregrine falcon, Duck, Budgerigar, Adelie penguin, Emperor penguin and the Medium Ground Finch. We hope that this resource will serve future efforts in phylogenomics and comparative genomics. The 38 bird genomes were sequenced using the Illumina HiSeq 2000 platform and assembled using a whole genome shotgun strategy. The 48 genomes were categorized into two groups according to the N50 scaffold size of the assemblies: a high depth group comprising 23 species sequenced at high coverage (>50X) with multiple insert size libraries resulting in N50 scaffold sizes greater than 1 Mb (except the White-throated Tinamou and Bald Eagle); and a low depth group comprising 25 species sequenced at a low coverage (~30X) with two insert size libraries resulting in an average N50 scaffold size of about 50 kb. Repetitive elements comprised 4%-22% of the bird genomes. The assembled scaffolds allowed the homology-based annotation of 13,000 ~ 17000 protein coding genes in each avian genome relative to chicken, zebra finch and human, as well as comparative and sequence conservation analyses. Here we release full genome assemblies of 38 newly sequenced avian species, link genome assembly downloads for the 7 of the remaining 10 species, and provide a guideline of genomic data that has been generated and used in our Avian Phylogenomics Project. To the best of our knowledge, the Avian Phylogenomics Project is the biggest vertebrate comparative genomics project to date. The genomic data presented here is expected to accelerate further analyses in many fields, including phylogenetics, comparative genomics, evolution, neurobiology, development biology, and other related areas.

  14. Singing-driven gene expression in the developing songbird brain

    PubMed Central

    Johnson, Frank; Whitney, Osceola

    2014-01-01

    Neural and behavioral development arises from an integration of genetic and environmental influences, yet specifying the nature of this interaction remains a primary problem in neuroscience. Here, we review molecular and behavioral studies that focus on the role of singing-driven gene expression during neural and vocal development in the male zebra finch (Taeniopygia guttata), a songbird that learns a species-typical vocal pattern during juvenile development by imitating an adult male tutor. A primary aim of our lab has been to identify naturally-occurring environmental influences that shape the propensity to sing. This ethological approach underlies our theoretical perspective, which is to integrate the significance of singing-driven gene expression into a broader ecological context. PMID:16129463

  15. DNA Editing of LTR Retrotransposons Reveals the Impact of APOBECs on Vertebrate Genomes

    PubMed Central

    Knisbacher, Binyamin A.; Levanon, Erez Y.

    2016-01-01

    Long terminal repeat retrotransposons (LTR) are widespread in vertebrates and their dynamism facilitates genome evolution. However, these endogenous retroviruses (ERVs) must be restricted to maintain genomic stability. The APOBECs, a protein family that can edit C-to-U in DNA, do so by interfering with reverse transcription and hypermutating retrotransposon DNA. In some cases, a retrotransposon may integrate into the genome despite being hypermutated. Such an event introduces a unique sequence into the genome, increasing retrotransposon diversity and the probability of developing new function at the locus of insertion. The prevalence of this phenomenon and its effects on vertebrate genomes are still unclear. In this study, we screened ERV sequences in the genomes of 123 diverse species and identified hundreds of thousands of edited sites in multiple vertebrate lineages, including placental mammals, marsupials, and birds. Numerous edited ERVs carry high mutation loads, some with greater than 350 edited sites, profoundly damaging their open-reading frames. For many of the species studied, this is the first evidence that APOBECs are active players in their innate immune system. Unexpectedly, some birds and especially zebra finch and medium ground-finch (one of Darwin’s finches) are exceptionally enriched in DNA editing. We demonstrate that edited retrotransposons may be preferentially retained in active genomic regions, as reflected from their enrichment in genes, exons, promoters, and transcription start sites, thereby raising the probability of their exaptation for novel function. In conclusion, DNA editing of retrotransposons by APOBECs has a substantial role in vertebrate innate immunity and may boost genome evolution. PMID:26541172

  16. Midbrain dopamine neurons reflect affiliation phenotypes in finches and are tightly coupled to courtship.

    PubMed

    Goodson, James L; Kabelik, David; Kelly, Aubrey M; Rinaldi, Jacob; Klatt, James D

    2009-05-26

    Mesolimbic dopamine (DA) circuits mediate a wide range of goal-oriented behavioral processes, and DA strongly influences appetitive and consummatory aspects of male sexual behavior. In both birds and mammals, mesolimbic projections arise primarily from the ventral tegmental area (VTA), with a smaller contribution from the midbrain central gray (CG). Despite the well known importance of the VTA cell group for incentive motivation functions, relationships of VTA subpopulations to specific aspects of social phenotype remain wholly undescribed. We now show that in male zebra finches (Estrildidae: Taeniopygia guttata), Fos activity within a subpopulation of tyrosine hydroxylase-immunoreactive (TH-ir; presumably dopaminergic) neurons in the caudal VTA is significantly correlated with courtship singing and coupled to gonadal state. In addition, the number of TH-ir neurons in this caudal subpopulation dichotomously differentiates courting from non-courting male phenotypes, and evolves in relation to sociality (flocking vs. territorial) across several related finch species. Combined, these findings for the VTA suggest that divergent social phenotypes may arise due to the differential assignment of "incentive value" to conspecific stimuli. TH-ir neurons of the CG (a population of unknown function in mammals) exhibit properties that are even more selectively and tightly coupled to the expression of courtship phenotypes (and appetitive courtship singing), both in terms of TH-ir cell number, which correlates significantly with constitutive levels of courtship motivation, and with TH-Fos colocalization, which increases in direct proportion to the phasic expression of song. We propose that these neurons may be core components of social communication circuits across diverse vertebrate taxa.

  17. Sex differences in the representation of call stimuli in a songbird secondary auditory area

    PubMed Central

    Giret, Nicolas; Menardy, Fabien; Del Negro, Catherine

    2015-01-01

    Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the bird's auditory experience in females. PMID:26578918

  18. Mercury Reduces Avian Reproductive Success and Imposes Selection: An Experimental Study with Adult- or Lifetime-Exposure in Zebra Finch

    PubMed Central

    Varian-Ramos, Claire W.; Swaddle, John P.; Cristol, Daniel A.

    2014-01-01

    Mercury is a global pollutant that biomagnifies in food webs, placing wildlife at risk of reduced reproductive fitness and survival. Songbirds are the most diverse branch of the avian evolutionary tree; many are suffering persistent and serious population declines and we know that songbirds are frequently exposed to mercury pollution. Our objective was to determine the effects of environmentally relevant doses of mercury on reproductive success of songbirds exposed throughout their lives or only as adults. The two modes of exposure simulated philopatric species versus dispersive species, and are particularly relevant because of the heightened mercury-sensitivity of developing nervous systems. We performed a dosing study with dietary methylmercury in a model songbird species, the zebra finch (Taeniopygia guttata), at doses from 0.3 – 2.4 parts per million. Birds were exposed to mercury either as adults only or throughout their lives. All doses of mercury reduced reproductive success, with the lowest dose reducing the number of independent offspring produced in one year by 16% and the highest dose, representing approximately half the lethal dose for this species, causing a 50% reduction. While mercury did not affect clutch size or survivorship, it had the most consistent effect on the proportion of chicks that fledged from the nest, regardless of mode of exposure. Among birds exposed as adults, mercury caused a steep increase in the latency to re-nest after loss of a clutch. Birds exposed for their entire lifetimes, which were necessarily the offspring of dosed parents, had up to 50% lower reproductive success than adult-exposed birds at low doses of methylmercury, but increased reproductive success at high doses, suggesting selection for mercury tolerance at the highest level of exposure. Our results indicate that mercury levels in prey items at contaminated sites pose a significant threat to populations of songbirds through reduced reproductive success. PMID:24759822

  19. De novo establishment of wild-type song culture in the zebra finch

    PubMed Central

    Feher, Olga; Wang, Haibin; Saar, Sigal; Mitra, Partha P.; Tchernichovski, Ofer

    2009-01-01

    What sort of culture would evolve in an island colony of naive founders? This question cannot be studied experimentally in humans. We performed the analogous experiment using socially learned birdsong. Culture is typically viewed as consisting of traits inherited epigenetically, via social learning. However, cultural diversity has species-typical constraints1, presumably of genetic origin. A celebrated, if contentious, example is whether a universal grammar constrains syntactic diversity in human languages2. Oscine songbirds exhibit song learning and provide biologically tractable models of culture: members of a species show individual variation in song3 and geographically separated groups have local song dialects 4,5. Different species exhibit distinct song cultures6,7, suggestive of genetic constraints8,9. Absent such constraints, innovations and copying errors should cause unbounded variation over multiple generations or geographical distance, contrary to observations9. We asked if wild-type song culture might emerge over multiple generations in an isolated colony founded by isolates, and if so, how this might happen and what type of social environment is required10. Zebra finch isolates, unexposed to singing males during development, produce song with characteristics that differ from the wild-type song found in laboratory11 or natural colonies. In tutoring lineages starting from isolate founders, we quantified alterations in song across tutoring generations in two social environments: tutor-pupil pairs in sound-isolated chambers and an isolated semi-natural colony. In both settings, juveniles imitated the isolate tutors, but changed certain characteristics of the songs. These alterations accumulated over learning generations. Consequently, songs evolved toward the wild-type in 3–4 generations. Thus, species-typical song culture can appear de novo. Our study has parallels with language change and evolution12,13. In analogy to models in quantitative genetics14,15, we model song culture as a multi-generational phenotype, partly encoded genetically in an isolate founding population, influenced by environmental variables, and taking multiple generations to emerge. PMID:19412161

  20. Food for Song: Expression of C-Fos and ZENK in the Zebra Finch Song Nuclei during Food Aversion Learning

    PubMed Central

    Tokarev, Kirill; Tiunova, Anna

    2011-01-01

    Background Specialized neural pathways, the song system, are required for acquiring, producing, and perceiving learned avian vocalizations. Birds that do not learn to produce their vocalizations lack telencephalic song system components. It is not known whether the song system forebrain regions are exclusively evolved for song or whether they also process information not related to song that might reflect their ‘evolutionary history’. Methodology/Principal Findings To address this question we monitored the induction of two immediate-early genes (IEGs) c-Fos and ZENK in various regions of the song system in zebra finches (Taeniopygia guttata) in response to an aversive food learning paradigm; this involves the association of a food item with a noxious stimulus that affects the oropharyngeal-esophageal cavity and tongue, causing subsequent avoidance of that food item. The motor response results in beak and head movements but not vocalizations. IEGs have been extensively used to map neuro-molecular correlates of song motor production and auditory processing. As previously reported, neurons in two pallial vocal motor regions, HVC and RA, expressed IEGs after singing. Surprisingly, c-Fos was induced equivalently also after food aversion learning in the absence of singing. The density of c-Fos positive neurons was significantly higher than that of birds in control conditions. This was not the case in two other pallial song nuclei important for vocal plasticity, LMAN and Area X, although singing did induce IEGs in these structures, as reported previously. Conclusions/Significance Our results are consistent with the possibility that some of the song nuclei may participate in non-vocal learning and the populations of neurons involved in the two tasks show partial overlap. These findings underscore the previously advanced notion that the specialized forebrain pre-motor nuclei controlling song evolved from circuits involved in behaviors related to feeding. PMID:21695176

  1. Sex differences in the representation of call stimuli in a songbird secondary auditory area.

    PubMed

    Giret, Nicolas; Menardy, Fabien; Del Negro, Catherine

    2015-01-01

    Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the bird's auditory experience in females.

  2. Turnover of muscle lipids and response to exercise differ between neutral and polar fractions in a model songbird, the zebra finch.

    PubMed

    Carter, Wales A; Cooper-Mullin, Clara; McWilliams, Scott R

    2018-03-19

    The turnover rates of tissues and their constituent molecules give us insights into animals' physiological demands and their functional flexibility over time. Thus far, most studies of this kind have focused on protein turnover, and few have considered lipid turnover despite an increasing appreciation of the functional diversity of this class of molecules. We measured the turnover rates of neutral and polar lipids from the pectoralis muscles of a model songbird, the zebra finch ( Taeniopygia guttata , N =65), in a 256 day C 3 /C 4 diet shift experiment, with tissue samples taken at 10 time points. We also manipulated the physiological state of a subset of these birds with a 10 week flight training regimen to test the effect of exercise on lipid turnover. We measured lipid δ 13 C values via isotope ratio mass spectrometry (IRMS) and estimated turnover in different fractions and treatment groups with non-linear mixed-effect regression. We found a significant difference between the mean retention times (τ) of neutral and polar lipids ( t 119 =-2.22, P =0.028), with polar lipids (τ=11.80±1.28 days) having shorter retention times than neutral lipids (τ=19.47±3.22 days). When all birds were considered, we also found a significant decrease in the mean retention time of polar lipids in exercised birds relative to control birds (difference=-2.2±1.83 days, t 56 =-2.37, P =0.021), but not neutral lipids (difference=4.2± 7.41 days, t 56 =0.57, P =0.57). A larger, more variable neutral lipid pool and the exposure of polar lipids in mitochondrial membranes to oxidative damage and increased turnover provide mechanisms consistent with our results. © 2018. Published by The Company of Biologists Ltd.

  3. At the interface of the auditory and vocal motor systems: NIf and its role in vocal processing, production and learning.

    PubMed

    Lewandowski, Brian; Vyssotski, Alexei; Hahnloser, Richard H R; Schmidt, Marc

    2013-06-01

    Communication between auditory and vocal motor nuclei is essential for vocal learning. In songbirds, the nucleus interfacialis of the nidopallium (NIf) is part of a sensorimotor loop, along with auditory nucleus avalanche (Av) and song system nucleus HVC, that links the auditory and song systems. Most of the auditory information comes through this sensorimotor loop, with the projection from NIf to HVC representing the largest single source of auditory information to the song system. In addition to providing the majority of HVC's auditory input, NIf is also the primary driver of spontaneous activity and premotor-like bursting during sleep in HVC. Like HVC and RA, two nuclei critical for song learning and production, NIf exhibits behavioral-state dependent auditory responses and strong motor bursts that precede song output. NIf also exhibits extended periods of fast gamma oscillations following vocal production. Based on the converging evidence from studies of physiology and functional connectivity it would be reasonable to expect NIf to play an important role in the learning, maintenance, and production of song. Surprisingly, however, lesions of NIf in adult zebra finches have no effect on song production or maintenance. Only the plastic song produced by juvenile zebra finches during the sensorimotor phase of song learning is affected by NIf lesions. In this review, we carefully examine what is known about NIf at the anatomical, physiological, and behavioral levels. We reexamine conclusions drawn from previous studies in the light of our current understanding of the song system, and establish what can be said with certainty about NIf's involvement in song learning, maintenance, and production. Finally, we review recent theories of song learning integrating possible roles for NIf within these frameworks and suggest possible parallels between NIf and sensorimotor areas that form part of the neural circuitry for speech processing in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. At the interface of the auditory and vocal motor systems: NIf and its role in vocal processing, production and learning

    PubMed Central

    Lewandowski, Brian; Vyssotski, Alexei; Hahnloser, Richard H.R.; Schmidt, Marc

    2015-01-01

    Communication between auditory and vocal motor nuclei is essential for vocal learning. In songbirds, the nucleus interfacialis of the nidopallium (NIf) is part of a sensorimotor loop, along with auditory nucleus avalanche (Av) and song system nucleus HVC, that links the auditory and song systems. Most of the auditory information comes through this sensorimotor loop, with the projection from NIf to HVC representing the largest single source of auditory information to the song system. In addition to providing the majority of HVC’s auditory input, NIf is also the primary driver of spontaneous activity and premotor-like bursting during sleep in HVC. Like HVC and RA, two nuclei critical for song learning and production, NIf exhibits behavioral-state dependent auditory responses and strong motor bursts that precede song output. NIf also exhibits extended periods of fast gamma oscillations following vocal production. Based on the converging evidence from studies of physiology and functional connectivity it would be reasonable to expect NIf to play an important role in the learning, maintenance, and production of song. Surprisingly, however, lesions of NIf in adult zebra finches have no effect on song production or maintenance. Only the plastic song produced by juvenile zebra finches during the sensorimotor phase of song learning is affected by NIf lesions. In this review, we carefully examine what is known about NIf at the anatomical, physiological, and behavioral levels. We reexamine conclusions drawn from previous studies in the light of our current understanding of the song system, and establish what can be said with certainty about NIf’s involvement in song learning, maintenance, and production. Finally, we review recent theories of song learning integrating possible roles for NIf within these frameworks and suggest possible parallels between NIf and sensorimotor areas that form part of the neural circuitry for speech processing in humans. PMID:23603062

  5. An examination of the effect of aerosolized Permanone insecticide on zebra finch susceptibility to West Nile virus.

    PubMed

    Jankowski, Mark D; Moore, Murray E; Hofmeister, Erik K

    2017-12-01

    West Nile virus (WNV) is maintained cryptically primarily in avian (passerine) populations, where it is transmitted by Culex spp. mosquitoes. Mosquito-control measures currently include physical activities to reduce mosquito-breeding sites and the application of mosquito larvicides or aerosolized insecticides to kill adults (adulticides) when arboviral diseases such as WNV or Zika virus are detected in mosquito populations. Organochlorine, organophosphorus, carbamate, and pyrethroid insecticides are often used. Previous work suggests an effect of pyrethroids on the immune system in a variety of vertebrates. We examined the effects of exposure to aerosolized Permanone® 30:30 insecticide (permethrin and piperonyl butoxide in soy oil vehicle) at approximately 10 3 to 10 6 times potential environmental concentrations on the response of captive zebra finches (Taeniopygia guttata) to experimental challenge with WNV. Compared to vehicle control birds, WNV outcome was unchanged (65% of birds produced a viremia) in the "low" exposure (9.52 ± 3.13 mg/m 3 standard deviation [SD] permethrin) group but reduced in the "high" exposure (mean 376.5 ± 27.9 mg/m 3 SD permethrin) group (30% were viremic; p < 0.05). After clearing WNV infection, birds treated with Permanone regained less body mass than vehicle-treated birds (p < 0.001). The present study suggests that exposure to aerosolized Permanone insecticide at levels exceeding typical application rates has the potential to not change or to mildly enhance a bird's resistance to WNV. Environ Toxicol Chem 2017;36:3376-3386. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  6. Whole-body 3D kinematics of bird take-off: key role of the legs to propel the trunk

    NASA Astrophysics Data System (ADS)

    Provini, Pauline; Abourachid, Anick

    2018-02-01

    Previous studies showed that birds primarily use their hindlimbs to propel themselves into the air in order to take-off. Yet, it remains unclear how the different parts of their musculoskeletal system move to produce the necessary acceleration. To quantify the relative motions of the bones during the terrestrial phase of take-off, we used biplanar fluoroscopy in two species of birds, diamond dove ( Geopelia cuneata) and zebra finch ( Taeniopygia guttata). We obtained a detailed 3D kinematics analysis of the head, the trunk and the three long bones of the left leg. We found that the entire body assisted the production of the needed forces to take-off, during two distinct but complementary phases. The first one, a relatively slow preparatory phase, started with a movement of the head and an alignment of the different groups of bones with the future take-off direction. It was associated with a pitch down of the trunk and a flexion of the ankle, of the hip and, to a lesser extent, of the knee. This crouching movement could contribute to the loading of the leg muscles and store elastic energy that could be released in the propulsive phase of take-off, during the extension of the leg joints. Combined with the fact that the head, together with the trunk, produced a forward momentum, the entire body assisted the production of the needed forces to take-off. The second phase was faster with mostly horizontal forward and vertical upward translation motions, synchronous to an extension of the entire lower articulated musculoskeletal system. It led to the propulsion of the bird in the air with a fundamental role of the hip and ankle joints to move the trunk upward and forward. Take-off kinematics were similar in both studied species, with a more pronounced crouching movement in diamond dove, which can be related to a large body mass compared to zebra finch.

  7. Functional MRI of Auditory Responses in the Zebra Finch Forebrain Reveals a Hierarchical Organisation Based on Signal Strength but Not Selectivity

    PubMed Central

    Boumans, Tiny; Gobes, Sharon M. H.; Poirier, Colline; Theunissen, Frederic E.; Vandersmissen, Liesbeth; Pintjens, Wouter; Verhoye, Marleen; Bolhuis, Johan J.; Van der Linden, Annemie

    2008-01-01

    Background Male songbirds learn their songs from an adult tutor when they are young. A network of brain nuclei known as the ‘song system’ is the likely neural substrate for sensorimotor learning and production of song, but the neural networks involved in processing the auditory feedback signals necessary for song learning and maintenance remain unknown. Determining which regions show preferential responsiveness to the bird's own song (BOS) is of great importance because neurons sensitive to self-generated vocalisations could mediate this auditory feedback process. Neurons in the song nuclei and in a secondary auditory area, the caudal medial mesopallium (CMM), show selective responses to the BOS. The aim of the present study is to investigate the emergence of BOS selectivity within the network of primary auditory sub-regions in the avian pallium. Methods and Findings Using blood oxygen level-dependent (BOLD) fMRI, we investigated neural responsiveness to natural and manipulated self-generated vocalisations and compared the selectivity for BOS and conspecific song in different sub-regions of the thalamo-recipient area Field L. Zebra finch males were exposed to conspecific song, BOS and to synthetic variations on BOS that differed in spectro-temporal and/or modulation phase structure. We found significant differences in the strength of BOLD responses between regions L2a, L2b and CMM, but no inter-stimuli differences within regions. In particular, we have shown that the overall signal strength to song and synthetic variations thereof was different within two sub-regions of Field L2: zone L2a was significantly more activated compared to the adjacent sub-region L2b. Conclusions Based on our results we suggest that unlike nuclei in the song system, sub-regions in the primary auditory pallium do not show selectivity for the BOS, but appear to show different levels of activity with exposure to any sound according to their place in the auditory processing stream. PMID:18781203

  8. Mycobacteriosis due to Mycobacterium genavense in six pet birds.

    PubMed Central

    Hoop, R K; Böttger, E C; Ossent, P; Salfinger, M

    1993-01-01

    Six cases of mycobacteriosis due to Mycobacterium genavense in three budgerigars (Melopsittacus undulatus), one orange-winged amazon (Amazona amazonica), one flycatcher (Cyanoptila cyanomelana), and one zebra finch (Taeniopygia guttata) are discussed. Gross lesions associated with the infection included a high degree of muscular wasting (five cases), hepatomegaly (four cases), and thickening of the wall of the small intestine (four cases). Granulomas were found in the lung (one case) and the subcutis (one case). Acid-fast bacilli were detected in the liver of all six birds. Only the use of acidic BACTEC mediums consistently led to growth, whereas the egg-based medium failed. These findings point to a possible role of the environment as a reservoir for M. genavense. Images PMID:8463407

  9. Partial deletions of the W chromosome due to reciprocal translocation in the silkworm Bombyx mori.

    PubMed

    Abe, H; Seki, M; Ohbayashi, F; Tanaka, N; Yamashita, J; Fujii, T; Yokoyama, T; Takahashi, M; Banno, Y; Sahara, K; Yoshido, A; Ihara, J; Yasukochi, Y; Mita, K; Ajimura, M; Suzuki, M G; Oshiki, T; Shimada, T

    2005-08-01

    In the silkworm, Bombyx mori (female, ZW; male, ZZ), femaleness is determined by the presence of a single W chromosome, irrespective of the number of autosomes or Z chromosomes. The W chromosome is devoid of functional genes, except the putative female-determining gene (Fem). However, there are strains in which chromosomal fragments containing autosomal markers have been translocated on to W. In this study, we analysed the W chromosomal regions of the Zebra-W strain (T(W;3)Ze chromosome) and the Black-egg-W strain (T(W;10)+(w-2) chromosome) at the molecular level. Initially, we undertook a project to identify W-specific RAPD markers, in addition to the three already established W-specific RAPD markers (W-Kabuki, W-Samurai and W-Kamikaze). Following the screening of 3648 arbitrary 10-mer primers, we obtained nine W-specific RAPD marker sequences (W-Bonsai, W-Mikan, W-Musashi, W-Rikishi, W-Sakura, W-Sasuke, W-Yukemuri-L, W-Yukemuri-S and BMC1-Kabuki), almost all of which contained the border regions of retrotransposons, namely portions of nested retrotransposons. We confirmed the presence of eleven out of twelve W-specific RAPD markers in the normal W chromosomes of twenty-five silkworm strains maintained in Japan. These results indicate that the W chromosomes of the strains in Japan are almost identical in type. The Zebra-W strain (T(W;3)Ze chromosome) lacked the W-Samurai and W-Mikan RAPD markers and the Black-egg-W strain (T(W;10)+(w-2) chromosome) lacked the W-Mikan RAPD marker. These results strongly indicate that the regions containing the W-Samurai and W-Mikan RAPD markers or the W-Mikan RAPD marker were deleted in the T(W;3)Ze and T(W;10)+(w-2) chromosomes, respectively, due to reciprocal translocation between the W chromosome and the autosome. This deletion apparently does not affect the expression of Fem; therefore, this deleted region of the W chromosome does not contain the putative Fem gene.

  10. Sensorimotor nucleus NIf is necessary for auditory processing but not vocal motor output in the avian song system.

    PubMed

    Cardin, Jessica A; Raksin, Jonathan N; Schmidt, Marc F

    2005-04-01

    Sensorimotor integration in the avian song system is crucial for both learning and maintenance of song, a vocal motor behavior. Although a number of song system areas demonstrate both sensory and motor characteristics, their exact roles in auditory and premotor processing are unclear. In particular, it is unknown whether input from the forebrain nucleus interface of the nidopallium (NIf), which exhibits both sensory and premotor activity, is necessary for both auditory and premotor processing in its target, HVC. Here we show that bilateral NIf lesions result in long-term loss of HVC auditory activity but do not impair song production. NIf is thus a major source of auditory input to HVC, but an intact NIf is not necessary for motor output in adult zebra finches.

  11. The easy road to genome-wide medium density SNP screening in a non-model species: development and application of a 10 K SNP-chip for the house sparrow (Passer domesticus).

    PubMed

    Hagen, Ingerid J; Billing, Anna M; Rønning, Bernt; Pedersen, Sindre A; Pärn, Henrik; Slate, Jon; Jensen, Henrik

    2013-05-01

    With the advent of next generation sequencing, new avenues have opened to study genomics in wild populations of non-model species. Here, we describe a successful approach to a genome-wide medium density Single Nucleotide Polymorphism (SNP) panel in a non-model species, the house sparrow (Passer domesticus), through the development of a 10 K Illumina iSelect HD BeadChip. Genomic DNA and cDNA derived from six individuals were sequenced on a 454 GS FLX system and generated a total of 1.2 million sequences, in which SNPs were detected. As no reference genome exists for the house sparrow, we used the zebra finch (Taeniopygia guttata) reference genome to determine the most likely position of each SNP. The 10 000 SNPs on the SNP-chip were selected to be distributed evenly across 31 chromosomes, giving on average one SNP per 100 000 bp. The SNP-chip was screened across 1968 individual house sparrows from four island populations. Of the original 10 000 SNPs, 7413 were found to be variable, and 99% of these SNPs were successfully called in at least 93% of all individuals. We used the SNP-chip to demonstrate the ability of such genome-wide marker data to detect population sub-division, and compared these results to similar analyses using microsatellites. The SNP-chip will be used to map Quantitative Trait Loci (QTL) for fitness-related phenotypic traits in natural populations. © 2013 Blackwell Publishing Ltd.

  12. Effects of the social environment during adolescence on the development of social behaviour, hormones and morphology in male zebra finches (Taeniopygia guttata).

    PubMed

    Bölting, Stefanie; von Engelhardt, Nikolaus

    2017-01-01

    Individual differences in behaviour are widespread in the animal kingdom and often influenced by the size or composition of the social group during early development. In many vertebrates the effects of social interactions early in life on adult behaviour are mediated by changes in maturation and physiology. Specifically, increases in androgens and glucocorticoids in response to social stimulation seem to play a prominent role in shaping behaviour during development. In addition to the prenatal and early postnatal phase, adolescence has more recently been identified as an important period during which adult behaviour and physiology are shaped by the social environment, which so far has been studied mostly in mammals. We raised zebra finches ( Taeniopygia guttata ) under three environmental conditions differing in social complexity during adolescence - juvenile pairs, juvenile groups, and mixed-age groups - and studied males' behavioural, endocrine, and morphological maturation, and later their adult behaviour. As expected, group-housed males exhibited higher frequencies of social interactions. Group housing also enhanced song during adolescence, plumage development, and the frequency and intensity of adult courtship and aggression. Some traits, however, were affected more in juvenile groups and others in mixed-age groups. Furthermore, a testosterone peak during late adolescence was suppressed in groups with adults. In contrast, corticosterone concentrations did not differ between rearing environments. Unexpectedly, adult courtship in a test situation was lowest in pair-reared males and aggression depended upon the treatment of the opponent with highest rates shown by group-reared males towards pair-reared males. This contrasts with previous findings, possibly due to differences in photoperiod and the acoustic environment. Our results support the idea that effects of the adolescent social environment on adult behaviour in vertebrates are mediated by changes in social interactions affecting behavioural and morphological maturation. We found no evidence that long-lasting differences in behaviour reflect testosterone or corticosterone levels during adolescence, although differences between juvenile and mixed-age groups suggest that testosterone and song behaviour during late adolescence may be associated.

  13. Social Context–Induced Song Variation Affects Female Behavior and Gene Expression

    PubMed Central

    Woolley, Sarah C; Doupe, Allison J

    2008-01-01

    Social cues modulate the performance of communicative behaviors in a range of species, including humans, and such changes can make the communication signal more salient. In songbirds, males use song to attract females, and song organization can differ depending on the audience to which a male sings. For example, male zebra finches (Taeniopygia guttata) change their songs in subtle ways when singing to a female (directed song) compared with when they sing in isolation (undirected song), and some of these changes depend on altered neural activity from a specialized forebrain-basal ganglia circuit, the anterior forebrain pathway (AFP). In particular, variable activity in the AFP during undirected song is thought to actively enable syllable variability, whereas the lower and less-variable AFP firing during directed singing is associated with more stereotyped song. Consequently, directed song has been suggested to reflect a “performance” state, and undirected song a form of vocal motor “exploration.” However, this hypothesis predicts that directed–undirected song differences, despite their subtlety, should matter to female zebra finches, which is a question that has not been investigated. We tested female preferences for this natural variation in song in a behavioral approach assay, and we found that both mated and socially naive females could discriminate between directed and undirected song—and strongly preferred directed song. These preferences, which appeared to reflect attention especially to aspects of song variability controlled by the AFP, were enhanced by experience, as they were strongest for mated females responding to their mate's directed songs. We then measured neural activity using expression of the immediate early gene product ZENK, and found that social context and song familiarity differentially modulated the number of ZENK-expressing cells in telencephalic auditory areas. Specifically, the number of ZENK-expressing cells in the caudomedial mesopallium (CMM) was most affected by whether a song was directed or undirected, whereas the caudomedial nidopallium (NCM) was most affected by whether a song was familiar or unfamiliar. Together these data demonstrate that females detect and prefer the features of directed song and suggest that high-level auditory areas including the CMM are involved in this social perception. PMID:18351801

  14. Perineuronal satellite neuroglia in the telencephalon of New Caledonian crows and other Passeriformes: evidence of satellite glial cells in the central nervous system of healthy birds?

    PubMed Central

    Medina, Felipe S.; Hunt, Gavin R.; Gray, Russell D.; Wild, J. Martin

    2013-01-01

    Glia have been implicated in a variety of functions in the central nervous system, including the control of the neuronal extracellular space, synaptic plasticity and transmission, development and adult neurogenesis. Perineuronal glia forming groups around neurons are associated with both normal and pathological nervous tissue. Recent studies have linked reduction in the number of perineuronal oligodendrocytes in the prefrontal cortex with human schizophrenia and other psychiatric disorders. Therefore, perineuronal glia may play a decisive role in homeostasis and normal activity of the human nervous system. Here we report on the discovery of novel cell clusters in the telencephala of five healthy Passeriforme, one Psittaciform and one Charadriiforme bird species, which we refer to as Perineuronal Glial Clusters (PGCs). The aim of this study is to describe the structure and distribution of the PGCs in a number of avian species. PGCs were identified with the use of standard histological procedures. Heterochromatin masses visible inside the nuclei of these satellite glia suggest that they may correspond to oligodendrocytes. PGCs were found in the brains of nine New Caledonian crows, two Japanese jungle crows, two Australian magpies, two Indian mynah, three zebra finches (all Passeriformes), one Southern lapwing (Charadriiformes) and one monk parakeet (Psittaciformes). Microscopic survey of the brain tissue suggests that the largest PGCs are located in the hyperpallium densocellulare and mesopallium. No clusters were found in brain sections from one Gruiform (purple swamphen), one Strigiform (barn owl), one Trochiliform (green-backed firecrown), one Falconiform (chimango caracara), one Columbiform (pigeon) and one Galliform (chick). Our observations suggest that PGCs in Aves are brain region- and taxon-specific and that the presence of perineuronal glia in healthy human brains and the similar PGCs in avian gray matter is the result of convergent evolution. The discovery of PGCs in the zebra finch is of great importance because this species has the potential to become a robust animal model in which to study the function of neuron-glia interactions in healthy and diseased adult brains. PMID:23904989

  15. Characterization of the transcriptome of an ecologically important avian species, the Vinous-throated Parrotbill Paradoxornis webbianus bulomachus (Paradoxornithidae; Aves)

    PubMed Central

    2012-01-01

    Background Adaptive divergence driven by environmental heterogeneity has long been a fascinating topic in ecology and evolutionary biology. The study of the genetic basis of adaptive divergence has, however, been greatly hampered by a lack of genomic information. The recent development of transcriptome sequencing provides an unprecedented opportunity to generate large amounts of genomic data for detailed investigations of the genetics of adaptive divergence in non-model organisms. Herein, we used the Illumina sequencing platform to sequence the transcriptome of brain and liver tissues from a single individual of the Vinous-throated Parrotbill, Paradoxornis webbianus bulomachus, an ecologically important avian species in Taiwan with a wide elevational range of sea level to 3100 m. Results Our 10.1 Gbp of sequences were first assembled based on Zebra Finch (Taeniopygia guttata) and chicken (Gallus gallus) RNA references. The remaining reads were then de novo assembled. After filtering out contigs with low coverage (<10X), we retained 67,791 of 487,336 contigs, which covered approximately 5.3% of the P. w. bulomachus genome. Of 7,779 contigs retained for a top-hit species distribution analysis, the majority (about 86%) were matched to known Zebra Finch and chicken transcripts. We also annotated 6,365 contigs to gene ontology (GO) terms: in total, 122 GO-slim terms were assigned, including biological process (41%), molecular function (32%), and cellular component (27%). Many potential genetic markers for future adaptive genomic studies were also identified: 8,589 single nucleotide polymorphisms, 1,344 simple sequence repeats and 109 candidate genes that might be involved in elevational or climate adaptation. Conclusions Our study shows that transcriptome data can serve as a rich genetic resource, even for a single run of short-read sequencing from a single individual of a non-model species. This is the first study providing transcriptomic information for species in the avian superfamily Sylvioidea, which comprises more than 1,000 species. Our data can be used to study adaptive divergence in heterogeneous environments and investigate other important ecological and evolutionary questions in parrotbills from different populations and even in other species in the Sylvioidea. PMID:22530590

  16. c-fos is induced in the hippocampus during consolidation of sexual imprinting in the zebra finch (Taeniopygia guttata).

    PubMed

    Sadananda, Monika; Bischof, Hans-Joachim

    2004-01-01

    c-fos was used to mark regions of enhanced neuronal activity during sexual imprinting, an early learning process by which information about the prospective sexual partner is acquired and consolidated. In the present study, we demonstrate that the hippocampus, already known for its specialized spatial memory capacities in navigating pigeons and in food-storing birds, depicts a selective differential c-fos induction in a situation shown to lead to sexual imprinting, that is, exposing previously isolated male birds to a female for 1 h. c-fos induction is lateralized, the left hippocampus showing more c-fos activity than the right. Our results would indicate a role for the hippocampus in the consolidation process of imprinting, probably in the transfer of information to the other telencephalic areas that show alterations in synaptic connectivity as a result of consolidation of sexual imprinting.

  17. Basal ganglia function, stuttering, sequencing, and repair in adult songbirds.

    PubMed

    Kubikova, Lubica; Bosikova, Eva; Cvikova, Martina; Lukacova, Kristina; Scharff, Constance; Jarvis, Erich D

    2014-10-13

    A pallial-basal-ganglia-thalamic-pallial loop in songbirds is involved in vocal motor learning. Damage to its basal ganglia part, Area X, in adult zebra finches has been noted to have no strong effects on song and its function is unclear. Here we report that neurotoxic damage to adult Area X induced changes in singing tempo and global syllable sequencing in all animals, and considerably increased syllable repetition in birds whose song motifs ended with minor repetitions before lesioning. This stuttering-like behavior started at one month, and improved over six months. Unexpectedly, the lesioned region showed considerable recovery, including immigration of newly generated or repaired neurons that became active during singing. The timing of the recovery and stuttering suggest that immature recovering activity of the circuit might be associated with stuttering. These findings indicate that even after juvenile learning is complete, the adult striatum plays a role in higher level organization of learned vocalizations.

  18. Human mutant huntingtin disrupts vocal learning in transgenic songbirds.

    PubMed

    Liu, Wan-Chun; Kohn, Jessica; Szwed, Sarah K; Pariser, Eben; Sepe, Sharon; Haripal, Bhagwattie; Oshimori, Naoki; Marsala, Martin; Miyanohara, Atsushi; Lee, Ramee

    2015-11-01

    Speech and vocal impairments characterize many neurological disorders. However, the neurogenetic mechanisms of these disorders are not well understood, and current animal models do not have the necessary circuitry to recapitulate vocal learning deficits. We developed germline transgenic songbirds, zebra finches (Taneiopygia guttata) expressing human mutant huntingtin (mHTT), a protein responsible for the progressive deterioration of motor and cognitive function in Huntington's disease (HD). Although generally healthy, the mutant songbirds had severe vocal disorders, including poor vocal imitation, stuttering, and progressive syntax and syllable degradation. Their song abnormalities were associated with HD-related neuropathology and dysfunction of the cortical-basal ganglia (CBG) song circuit. These transgenics are, to the best of our knowledge, the first experimentally created, functional mutant songbirds. Their progressive and quantifiable vocal disorder, combined with circuit dysfunction in the CBG song system, offers a model for genetic manipulation and the development of therapeutic strategies for CBG-related vocal and motor disorders.

  19. A Neural Code That Is Isometric to Vocal Output and Correlates with Its Sensory Consequences

    PubMed Central

    Vyssotski, Alexei L.; Stepien, Anna E.; Keller, Georg B.; Hahnloser, Richard H. R.

    2016-01-01

    What cortical inputs are provided to motor control areas while they drive complex learned behaviors? We study this question in the nucleus interface of the nidopallium (NIf), which is required for normal birdsong production and provides the main source of auditory input to HVC, the driver of adult song. In juvenile and adult zebra finches, we find that spikes in NIf projection neurons precede vocalizations by several tens of milliseconds and are insensitive to distortions of auditory feedback. We identify a local isometry between NIf output and vocalizations: quasi-identical notes produced in different syllables are preceded by highly similar NIf spike patterns. NIf multiunit firing during song precedes responses in auditory cortical neurons by about 50 ms, revealing delayed congruence between NIf spiking and a neural representation of auditory feedback. Our findings suggest that NIf codes for imminent acoustic events within vocal performance. PMID:27723764

  20. Method matters: Experimental evidence for shorter avian sperm in faecal compared to abdominal massage samples.

    PubMed

    Girndt, Antje; Cockburn, Glenn; Sánchez-Tójar, Alfredo; Løvlie, Hanne; Schroeder, Julia

    2017-01-01

    Birds are model organisms in sperm biology. Previous work in zebra finches, suggested that sperm sampled from males' faeces and ejaculates do not differ in size. Here, we tested this assumption in a captive population of house sparrows, Passer domesticus. We compared sperm length in samples from three collection techniques: female dummy, faecal and abdominal massage samples. We found that sperm were significantly shorter in faecal than abdominal massage samples, which was explained by shorter heads and midpieces, but not flagella. This result might indicate that faecal sampled sperm could be less mature than sperm collected by abdominal massage. The female dummy method resulted in an insufficient number of experimental ejaculates because most males ignored it. In light of these results, we recommend using abdominal massage as a preferred method for avian sperm sampling. Where avian sperm cannot be collected by abdominal massage alone, we advise controlling for sperm sampling protocol statistically.

  1. A common neural circuit mechanism for internally guided and externally reinforced forms of motor learning.

    PubMed

    Hisey, Erin; Kearney, Matthew Gene; Mooney, Richard

    2018-04-01

    The complex skills underlying verbal and musical expression can be learned without external punishment or reward, indicating their learning is internally guided. The neural mechanisms that mediate internally guided learning are poorly understood, but a circuit comprising dopamine-releasing neurons in the midbrain ventral tegmental area (VTA) and their targets in the basal ganglia are important to externally reinforced learning. Juvenile zebra finches copy a tutor song in a process that is internally guided and, in adulthood, can learn to modify the fundamental frequency (pitch) of a target syllable in response to external reinforcement with white noise. Here we combined intersectional genetic ablation of VTA neurons, reversible blockade of dopamine receptors in the basal ganglia, and singing-triggered optogenetic stimulation of VTA terminals to establish that a common VTA-basal ganglia circuit enables internally guided song copying and externally reinforced syllable pitch learning.

  2. From electromyographic activity to frequency modulation in zebra finch song.

    PubMed

    Döppler, Juan F; Bush, Alan; Goller, Franz; Mindlin, Gabriel B

    2018-02-01

    Behavior emerges from the interaction between the nervous system and peripheral devices. In the case of birdsong production, a delicate and fast control of several muscles is required to control the configuration of the syrinx (the avian vocal organ) and the respiratory system. In particular, the syringealis ventralis muscle is involved in the control of the tension of the vibrating labia and thus affects the frequency modulation of the sound. Nevertheless, the translation of the instructions (which are electrical in nature) into acoustical features is complex and involves nonlinear, dynamical processes. In this work, we present a model of the dynamics of the syringealis ventralis muscle and the labia, which allows calculating the frequency of the generated sound, using as input the electrical activity recorded in the muscle. In addition, the model provides a framework to interpret inter-syllabic activity and hints at the importance of the biomechanical dynamics in determining behavior.

  3. A cortical motor nucleus drives the basal ganglia-recipient thalamus in singing birds

    PubMed Central

    Goldberg, Jesse H.

    2012-01-01

    The pallido-recipient thalamus transmits information from the basal ganglia (BG) to the cortex and plays a critical role motor initiation and learning. Thalamic activity is strongly inhibited by pallidal inputs from the BG, but the role of non-pallidal inputs, such as excitatory inputs from cortex, is unclear. We have recorded simultaneously from presynaptic pallidal axon terminals and postsynaptic thalamocortical neurons in a BG-recipient thalamic nucleus necessary for vocal variability and learning in zebra finches. We found that song-locked rate modulations in the thalamus could not be explained by pallidal inputs alone, and persisted following pallidal lesion. Instead, thalamic activity was likely driven by inputs from a motor ‘cortical’ nucleus also necessary for singing. These findings suggest a role for cortical inputs to the pallido-recipient thalamus in driving premotor signals important for exploratory behavior and learning. PMID:22327474

  4. Cryptosporidium spp. in pet birds: genetic diversity and potential public health significance.

    PubMed

    Qi, Meng; Wang, Rongjun; Ning, Changshen; Li, Xiaoyu; Zhang, Longxian; Jian, Fuchun; Sun, Yanru; Xiao, Lihua

    2011-08-01

    To characterize the prevalence and assess the zoonotic transmission burden of Cryptosporidium species/genotypes in pet birds in Henan, China, 434 fecal samples were acquired from 14 families of birds in pet shops. The overall prevalence of Cryptopsoridium was 8.1% (35/434) by the Sheather's sugar flotation technique. The Cryptosporidium-positive samples were analyzed by DNA sequence analysis of the small subunit (SSU) rRNA gene. Three Cryptosporidium species and two genotypes were identified, including C. baileyi (18/35 or 51.4%) in five red-billed leiothrixes (Leiothrix lutea), four white Java sparrows (Padda oryzivora), four common mynas (Acridotheres tristis), two zebra finches (Taeniopygia guttata), a crested Lark (Galerida cristata), a Gouldian finch (Chloebia gouldiae), and a black-billed magpie (Pica pica); Cryptosporidium meleagridis (3/35 or 8.6%) in a Bohemian waxwing (Bombycilla garrulus), a Rufous turtle dove (Streptopelia orientalis), and a fan-tailed pigeon (Columba livia); Cryptosporidium galli (5/35 or 14.3%) in four Bohemian waxwings (Bombycilla garrulus) and a silver-eared Mesia (Leiothrix argentauris); Cryptosporidium avian genotype III (3/35 or 8.6%) in two cockatiels (Nymphicus hollandicus) and a red-billed blue magpie (Urocissa erythrorhyncha); and Cryptosporidium avian genotype V (6/35 or 17.1%) in six cockatiels (Nymphicus hollandicus). Among the pet birds, 12 species represented new hosts for Cryptosporidum infections. The presence of C. meleagridis raises questions on potential zoonotic transmission of cryptosporidiosis from pet birds to humans. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Single Neurons in the Avian Auditory Cortex Encode Individual Identity and Propagation Distance in Naturally Degraded Communication Calls.

    PubMed

    Mouterde, Solveig C; Elie, Julie E; Mathevon, Nicolas; Theunissen, Frédéric E

    2017-03-29

    One of the most complex tasks performed by sensory systems is "scene analysis": the interpretation of complex signals as behaviorally relevant objects. The study of this problem, universal to species and sensory modalities, is particularly challenging in audition, where sounds from various sources and localizations, degraded by propagation through the environment, sum to form a single acoustical signal. Here we investigated in a songbird model, the zebra finch, the neural substrate for ranging and identifying a single source. We relied on ecologically and behaviorally relevant stimuli, contact calls, to investigate the neural discrimination of individual vocal signature as well as sound source distance when calls have been degraded through propagation in a natural environment. Performing electrophysiological recordings in anesthetized birds, we found neurons in the auditory forebrain that discriminate individual vocal signatures despite long-range degradation, as well as neurons discriminating propagation distance, with varying degrees of multiplexing between both information types. Moreover, the neural discrimination performance of individual identity was not affected by propagation-induced degradation beyond what was induced by the decreased intensity. For the first time, neurons with distance-invariant identity discrimination properties as well as distance-discriminant neurons are revealed in the avian auditory cortex. Because these neurons were recorded in animals that had prior experience neither with the vocalizers of the stimuli nor with long-range propagation of calls, we suggest that this neural population is part of a general-purpose system for vocalizer discrimination and ranging. SIGNIFICANCE STATEMENT Understanding how the brain makes sense of the multitude of stimuli that it continually receives in natural conditions is a challenge for scientists. Here we provide a new understanding of how the auditory system extracts behaviorally relevant information, the vocalizer identity and its distance to the listener, from acoustic signals that have been degraded by long-range propagation in natural conditions. We show, for the first time, that single neurons, in the auditory cortex of zebra finches, are capable of discriminating the individual identity and sound source distance in conspecific communication calls. The discrimination of identity in propagated calls relies on a neural coding that is robust to intensity changes, signals' quality, and decreases in the signal-to-noise ratio. Copyright © 2017 Mouterde et al.

  6. Characterization of Plasmodium relictum, a cosmopolitan agent of avian malaria

    USGS Publications Warehouse

    Valkiunas, Gediminas; Ilgūnas, Mikas; Bukauskaitė, Dovilė; Fragner, Karin; Weissenböck, Herbert; Atkinson, Carter T.; Iezhova, Tatjana

    2018-01-01

    BackgroundMicroscopic research has shown that Plasmodium relictum is the most common agent of avian malaria. Recent molecular studies confirmed this conclusion and identified several mtDNA lineages, suggesting the existence of significant intra-species genetic variation or cryptic speciation. Most identified lineages have a broad range of hosts and geographical distribution. Here, a rare new lineage of P. relictum was reported and information about biological characters of different lineages of this pathogen was reviewed, suggesting issues for future research.MethodsThe new lineage pPHCOL01 was detected in Common chiffchaff Phylloscopus collybita,and the parasite was passaged in domestic canaries Serinus canaria. Organs of infected birds were examined using histology and chromogenic in situ hybridization methods. Culex quinquefasciatus mosquitoes, Zebra finch Taeniopygia guttata, Budgerigar Melopsittacus undulatus and European goldfinch Carduelis carduelis were exposed experimentally. Both Bayesian and Maximum Likelihood analyses identified the same phylogenetic relationships among different, closely-related lineages pSGS1, pGRW4, pGRW11, pLZFUS01, pPHCOL01 of P. relictum. Morphology of their blood stages was compared using fixed and stained blood smears, and biological properties of these parasites were reviewed.ResultsCommon canary and European goldfinch were susceptible to the parasite pPHCOL01, and had markedly variable individual prepatent periods and light transient parasitaemia. Exo-erythrocytic and sporogonic stages were not seen. The Zebra finch and Budgerigar were resistant. Neither blood stages nor vector stages of all examined P. relictum lineages can be distinguished morphologically.ConclusionWithin the huge spectrum of vertebrate hosts, mosquito vectors, and ecological conditions, different lineages of P. relictum exhibit indistinguishable, markedly variable morphological forms. Parasites of same lineages often develop differently in different bird species. Even more, the variation of biological properties (parasitaemia dynamics, blood pathology, prepatent period) in different isolates of the same lineage might be greater than the variation in different lineages during development in the same species of birds, indicating negligible taxonomic value of such features. Available lineage information is excellent for parasite diagnostics, but is limited in predictions about relationships in certain host-parasite associations. A combination of experiments, field observations, microscopic and molecular diagnostics is essential for understanding the role of different P. relictum lineages in bird health.

  7. High-utility conserved avian microsatellite markers enable parentage and population studies across a wide range of species

    PubMed Central

    2013-01-01

    Background Microsatellites are widely used for many genetic studies. In contrast to single nucleotide polymorphism (SNP) and genotyping-by-sequencing methods, they are readily typed in samples of low DNA quality/concentration (e.g. museum/non-invasive samples), and enable the quick, cheap identification of species, hybrids, clones and ploidy. Microsatellites also have the highest cross-species utility of all types of markers used for genotyping, but, despite this, when isolated from a single species, only a relatively small proportion will be of utility. Marker development of any type requires skill and time. The availability of sufficient “off-the-shelf” markers that are suitable for genotyping a wide range of species would not only save resources but also uniquely enable new comparisons of diversity among taxa at the same set of loci. No other marker types are capable of enabling this. We therefore developed a set of avian microsatellite markers with enhanced cross-species utility. Results We selected highly-conserved sequences with a high number of repeat units in both of two genetically distant species. Twenty-four primer sets were designed from homologous sequences that possessed at least eight repeat units in both the zebra finch (Taeniopygia guttata) and chicken (Gallus gallus). Each primer sequence was a complete match to zebra finch and, after accounting for degenerate bases, at least 86% similar to chicken. We assessed primer-set utility by genotyping individuals belonging to eight passerine and four non-passerine species. The majority of the new Conserved Avian Microsatellite (CAM) markers amplified in all 12 species tested (on average, 94% in passerines and 95% in non-passerines). This new marker set is of especially high utility in passerines, with a mean 68% of loci polymorphic per species, compared with 42% in non-passerine species. Conclusions When combined with previously described conserved loci, this new set of conserved markers will not only reduce the necessity and expense of microsatellite isolation for a wide range of genetic studies, including avian parentage and population analyses, but will also now enable comparisons of genetic diversity among different species (and populations) at the same set of loci, with no or reduced bias. Finally, the approach used here can be applied to other taxa in which appropriate genome sequences are available. PMID:23497230

  8. Characterization of Plasmodium relictum, a cosmopolitan agent of avian malaria.

    PubMed

    Valkiūnas, Gediminas; Ilgūnas, Mikas; Bukauskaitė, Dovilė; Fragner, Karin; Weissenböck, Herbert; Atkinson, Carter T; Iezhova, Tatjana A

    2018-05-02

    Microscopic research has shown that Plasmodium relictum is the most common agent of avian malaria. Recent molecular studies confirmed this conclusion and identified several mtDNA lineages, suggesting the existence of significant intra-species genetic variation or cryptic speciation. Most identified lineages have a broad range of hosts and geographical distribution. Here, a rare new lineage of P. relictum was reported and information about biological characters of different lineages of this pathogen was reviewed, suggesting issues for future research. The new lineage pPHCOL01 was detected in Common chiffchaff Phylloscopus collybita, and the parasite was passaged in domestic canaries Serinus canaria. Organs of infected birds were examined using histology and chromogenic in situ hybridization methods. Culex quinquefasciatus mosquitoes, Zebra finch Taeniopygia guttata, Budgerigar Melopsittacus undulatus and European goldfinch Carduelis carduelis were exposed experimentally. Both Bayesian and Maximum Likelihood analyses identified the same phylogenetic relationships among different, closely-related lineages pSGS1, pGRW4, pGRW11, pLZFUS01, pPHCOL01 of P. relictum. Morphology of their blood stages was compared using fixed and stained blood smears, and biological properties of these parasites were reviewed. Common canary and European goldfinch were susceptible to the parasite pPHCOL01, and had markedly variable individual prepatent periods and light transient parasitaemia. Exo-erythrocytic and sporogonic stages were not seen. The Zebra finch and Budgerigar were resistant. Neither blood stages nor vector stages of all examined P. relictum lineages can be distinguished morphologically. Within the huge spectrum of vertebrate hosts, mosquito vectors, and ecological conditions, different lineages of P. relictum exhibit indistinguishable, markedly variable morphological forms. Parasites of same lineages often develop differently in different bird species. Even more, the variation of biological properties (parasitaemia dynamics, blood pathology, prepatent period) in different isolates of the same lineage might be greater than the variation in different lineages during development in the same species of birds, indicating negligible taxonomic value of such features. Available lineage information is excellent for parasite diagnostics, but is limited in predictions about relationships in certain host-parasite associations. A combination of experiments, field observations, microscopic and molecular diagnostics is essential for understanding the role of different P. relictum lineages in bird health.

  9. Impact of nest sanitation on the immune system of parents and nestlings in a passerine bird.

    PubMed

    Evans, Jessica K; Griffith, Simon C; Klasing, Kirk C; Buchanan, Katherine L

    2016-07-01

    Bacterial communities are thought to have fundamental effects on the growth and development of nestling birds. The antigen exposure hypothesis suggests that, for both nestlings and adult birds, exposure to a diverse range of bacteria would select for stronger immune defences. However, there are relatively few studies that have tested the immune/bacterial relationships outside of domestic poultry. We therefore sought to examine indices of immunity (microbial killing ability in naive birds, which is a measure of innate immunity, and the antibody response to sheep red blood cells, which measures adaptive immunity) in both adult and nestling zebra finches (Taeniopygia guttata). We did this throughout breeding and between reproductive attempts in nests that were experimentally manipulated to change the intensity of bacterial exposure. Our results suggest that nest sanitation and bacterial load affected measures of the adaptive immune system, but not the innate immune parameters tested. Adult finches breeding in clean nests had a lower primary antibody response to sheep red blood cells, particularly males, and a greater difference between primary and secondary responses. Adult microbial killing of Escherichia coli decreased as parents moved from incubation to nestling rearing for both nest treatments; however, killing of Candida albicans remained consistent throughout. In nestlings, both innate microbial killing and the adaptive antibody response did not differ between nest environments. Together, these results suggest that exposure to microorganisms in the environment affects the adaptive immune system in nesting birds, with exposure upregulating the antibody response in adult birds. © 2016. Published by The Company of Biologists Ltd.

  10. Maternal corticosterone exposure has transgenerational effects on grand-offspring.

    PubMed

    Khan, Nicola; Peters, Richard A; Richardson, Emily; Robert, Kylie A

    2016-11-01

    The hormone fluctuations that an animal experiences during ovulation can have lifelong effects on developing offspring. These hormones may act as an adaptive mechanism, allowing offspring to be 'pre-programmed' to survive in an unstable environment. Here, we used a transgenerational approach to examine the effects of elevated maternal corticosterone (CORT) on the future reproductive success of female offspring. We show that female zebra finches (Taeniopygia guttata) exposed to embryonic CORT produce daughters that have equal reproductive success (clutch sizes, fertility, hatching success) compared with the daughters produced from untreated mothers, but their offspring had accelerated post-hatching growth rates and were significantly heavier by nutritional independence. Although there was no significant effect on primary offspring sex ratio, females from CORT-treated mothers produced significantly female-biased clutches by nutritional independence. To the best of our knowledge, this is the first record of a transgenerational sex ratio bias in response to elevated maternal CORT in any avian species. © 2016 The Author(s).

  11. Peregrine and saker falcon genome sequences provide insights into evolution of a predatory lifestyle.

    PubMed

    Zhan, Xiangjiang; Pan, Shengkai; Wang, Junyi; Dixon, Andrew; He, Jing; Muller, Margit G; Ni, Peixiang; Hu, Li; Liu, Yuan; Hou, Haolong; Chen, Yuanping; Xia, Jinquan; Luo, Qiong; Xu, Pengwei; Chen, Ying; Liao, Shengguang; Cao, Changchang; Gao, Shukun; Wang, Zhaobao; Yue, Zhen; Li, Guoqing; Yin, Ye; Fox, Nick C; Wang, Jun; Bruford, Michael W

    2013-05-01

    As top predators, falcons possess unique morphological, physiological and behavioral adaptations that allow them to be successful hunters: for example, the peregrine is renowned as the world's fastest animal. To examine the evolutionary basis of predatory adaptations, we sequenced the genomes of both the peregrine (Falco peregrinus) and saker falcon (Falco cherrug), and we present parallel, genome-wide evidence for evolutionary innovation and selection for a predatory lifestyle. The genomes, assembled using Illumina deep sequencing with greater than 100-fold coverage, are both approximately 1.2 Gb in length, with transcriptome-assisted prediction of approximately 16,200 genes for both species. Analysis of 8,424 orthologs in both falcons, chicken, zebra finch and turkey identified consistent evidence for genome-wide rapid evolution in these raptors. SNP-based inference showed contrasting recent demographic trajectories for the two falcons, and gene-based analysis highlighted falcon-specific evolutionary novelties for beak development and olfaction and specifically for homeostasis-related genes in the arid environment-adapted saker.

  12. From neurons to nests: nest-building behaviour as a model in behavioural and comparative neuroscience.

    PubMed

    Hall, Zachary J; Meddle, Simone L; Healy, Susan D

    Despite centuries of observing the nest building of most extant bird species, we know surprisingly little about how birds build nests and, specifically, how the avian brain controls nest building. Here, we argue that nest building in birds may be a useful model behaviour in which to study how the brain controls behaviour. Specifically, we argue that nest building as a behavioural model provides a unique opportunity to study not only the mechanisms through which the brain controls behaviour within individuals of a single species but also how evolution may have shaped the brain to produce interspecific variation in nest-building behaviour. In this review, we outline the questions in both behavioural and comparative neuroscience that nest building could be used to address, summarize recent findings regarding the neurobiology of nest building in lab-reared zebra finches and across species building different nest structures, and suggest some future directions for the neurobiology of nest building.

  13. EM connectomics reveals axonal target variation in a sequence-generating network

    PubMed Central

    Narayanan, Rajeevan T; Svara, Fabian; Egger, Robert; Oberlaender, Marcel; Denk, Winfried; Long, Michael A

    2017-01-01

    The sequential activation of neurons has been observed in various areas of the brain, but in no case is the underlying network structure well understood. Here we examined the circuit anatomy of zebra finch HVC, a cortical region that generates sequences underlying the temporal progression of the song. We combined serial block-face electron microscopy with light microscopy to determine the cell types targeted by HVC(RA) neurons, which control song timing. Close to their soma, axons almost exclusively targeted inhibitory interneurons, consistent with what had been found with electrical recordings from pairs of cells. Conversely, far from the soma the targets were mostly other excitatory neurons, about half of these being other HVC(RA) cells. Both observations are consistent with the notion that the neural sequences that pace the song are generated by global synaptic chains in HVC embedded within local inhibitory networks. DOI: http://dx.doi.org/10.7554/eLife.24364.001 PMID:28346140

  14. Sperm morphology, adenosine triphosphate (ATP) concentration and swimming velocity: unexpected relationships in a passerine bird.

    PubMed

    Bennison, Clair; Hemmings, Nicola; Brookes, Lola; Slate, Jon; Birkhead, Tim

    2016-08-31

    The relationship between sperm energetics and sperm function is poorly known, but is central to our understanding of the evolution of sperm traits. The aim of this study was to examine how sperm morphology and ATP content affect sperm swimming velocity in the zebra finch Taeniopygia guttata We exploited the high inter-male variation in this species and created extra experimental power by increasing the number of individuals with very long or short sperm through artificial selection. We found a pronounced quadratic relationship between total sperm length and swimming velocity, with velocity increasing with length up to a point, but declining in the very longest sperm. We also found an unexpected negative association between midpiece length and ATP content: sperm with a short midpiece generally contained the highest concentration of ATP. Low intracellular ATP is therefore unlikely to explain reduced swimming velocity among the very longest sperm (which tend to have a shorter midpiece). © 2016 The Authors.

  15. Stable Sequential Activity Underlying the Maintenance of a Precisely Executed Skilled Behavior.

    PubMed

    Katlowitz, Kalman A; Picardo, Michel A; Long, Michael A

    2018-05-21

    A vast array of motor skills can be maintained throughout life. Do these behaviors require stability of individual neuron tuning or can the output of a given circuit remain constant despite fluctuations in single cells? This question is difficult to address due to the variability inherent in most motor actions studied in the laboratory. A notable exception, however, is the courtship song of the adult zebra finch, which is a learned, highly precise motor act mediated by orderly dynamics within premotor neurons of the forebrain. By longitudinally tracking the activity of excitatory projection neurons during singing using two-photon calcium imaging, we find that both the number and the precise timing of song-related spiking events remain nearly identical over the span of several weeks to months. These findings demonstrate that learned, complex behaviors can be stabilized by maintaining precise and invariant tuning at the level of single neurons. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. The duck genome and transcriptome provide insight into an avian influenza virus reservoir species

    PubMed Central

    Chen, Hualan; Zhang, Yong; Qian, Wubin; Kim, Heebal; Gan, Shangquan; Zhao, Yiqiang; Li, Jianwen; Yi, Kang; Feng, Huapeng; Zhu, Pengyang; Li, Bo; Liu, Qiuyue; Fairley, Suan; Magor, Katharine E; Du, Zhenlin; Hu, Xiaoxiang; Goodman, Laurie; Tafer, Hakim; Vignal, Alain; Lee, Taeheon; Kim, Kyu-Won; Sheng, Zheya; An, Yang; Searle, Steve; Herrero, Javier; Groenen, Martien A M; Crooijmans, Richard P M A; Faraut, Thomas; Cai, Qingle; Webster, Robert G; Aldridge, Jerry R; Warren, Wesley C; Bartschat, Sebastian; Kehr, Stephanie; Marz, Manja; Stadler, Peter F; Smith, Jacqueline; Kraus, Robert H S; Zhao, Yaofeng; Ren, Liming; Fei, Jing; Morisson, Mireille; Kaiser, Pete; Griffin, Darren K; Rao, Man; Pitel, Frederique; Wang, Jun; Li, Ning

    2014-01-01

    The duck (Anas platyrhynchos) is one of the principal natural hosts of influenza A viruses. We present the duck genome sequence and perform deep transcriptome analyses to investigate immune-related genes. Our data indicate that the duck possesses a contractive immune gene repertoire, as in chicken and zebra finch, and this repertoire has been shaped through lineage-specific duplications. We identify genes that are responsive to influenza A viruses using the lung transcriptomes of control ducks and ones that were infected with either a highly pathogenic (A/duck/Hubei/49/05) or a weakly pathogenic (A/goose/Hubei/65/05) H5N1 virus. Further, we show how the duck’s defense mechanisms against influenza infection have been optimized through the diversification of its β-defensin and butyrophilin-like repertoires. These analyses, in combination with the genomic and transcriptomic data, provide a resource for characterizing the interaction between host and influenza viruses. PMID:23749191

  17. Method matters: Experimental evidence for shorter avian sperm in faecal compared to abdominal massage samples

    PubMed Central

    Cockburn, Glenn; Sánchez-Tójar, Alfredo; Løvlie, Hanne; Schroeder, Julia

    2017-01-01

    Birds are model organisms in sperm biology. Previous work in zebra finches, suggested that sperm sampled from males' faeces and ejaculates do not differ in size. Here, we tested this assumption in a captive population of house sparrows, Passer domesticus. We compared sperm length in samples from three collection techniques: female dummy, faecal and abdominal massage samples. We found that sperm were significantly shorter in faecal than abdominal massage samples, which was explained by shorter heads and midpieces, but not flagella. This result might indicate that faecal sampled sperm could be less mature than sperm collected by abdominal massage. The female dummy method resulted in an insufficient number of experimental ejaculates because most males ignored it. In light of these results, we recommend using abdominal massage as a preferred method for avian sperm sampling. Where avian sperm cannot be collected by abdominal massage alone, we advise controlling for sperm sampling protocol statistically. PMID:28813481

  18. Basal ganglia function, stuttering, sequencing, and repair in adult songbirds

    PubMed Central

    Kubikova, Lubica; Bosikova, Eva; Cvikova, Martina; Lukacova, Kristina; Scharff, Constance; Jarvis, Erich D.

    2014-01-01

    A pallial-basal-ganglia-thalamic-pallial loop in songbirds is involved in vocal motor learning. Damage to its basal ganglia part, Area X, in adult zebra finches has been noted to have no strong effects on song and its function is unclear. Here we report that neurotoxic damage to adult Area X induced changes in singing tempo and global syllable sequencing in all animals, and considerably increased syllable repetition in birds whose song motifs ended with minor repetitions before lesioning. This stuttering-like behavior started at one month, and improved over six months. Unexpectedly, the lesioned region showed considerable recovery, including immigration of newly generated or repaired neurons that became active during singing. The timing of the recovery and stuttering suggest that immature recovering activity of the circuit might be associated with stuttering. These findings indicate that even after juvenile learning is complete, the adult striatum plays a role in higher level organization of learned vocalizations. PMID:25307086

  19. Early-developmental stress, repeatability, and canalization in a suite of physiological and behavioral traits in female zebra finches.

    PubMed

    Careau, Vincent; Buttemer, William A; Buchanan, Katherine L

    2014-10-01

    Adaptive developmental plasticity allows individuals experiencing poor environmental conditions in early life to adjust their life-history strategy in order to prioritize short-term fitness benefits and maximize reproductive output in challenging environments. Much research has been conducted to test whether such adoption of a "faster" life-history strategy is accompanied by concordant changes in behavior and physiology, with mixed results. As research in this field has focused on comparison of mean-level responses of treatment groups, few studies include repeated measures of response variables and the effect that developmental stress may have on repeatability per se. We investigated how early-developmental stress affects the mean expression of (and repeatability in) a variety of behavioral and physiological traits in female zebra finches. We predicted that: (1) individuals subjected to nutritional restriction in the nestling phase would have higher feeding and activity rates, with associated increases in hematocrit and basal metabolic rates (BMRs), (2) nutritional restriction in early life would alter adults' stress-induced corticosterone level, and (3) developmental stress would, respectively, influence the amount of among-individual and within-individual variation in behavioral and physiological traits, hence affecting the repeatability of these traits. In comparison to control females, stressed females did not differ in activity rate or stress-induced corticosterone level, but they did have higher levels of feeding, hematocrit, and BMR. Among-individual variance and repeatability were generally higher in stressed females than in controls. Finally, we found that developmental dietary restriction significantly reduced the amount of within-individual variance both in activity rate in the novel environment and in stress-induced corticosterone level. Our results not only confirm previous findings on the effect of early-developmental stress on BMR, but also extend its effect to feeding rate and hematocrit, suggesting that developmental plasticity in these traits is ontogenetically linked. Early-developmental stress may disable particular genetic canalizing processes, which would release cryptic genetic variation and explain why repeatability and among-individual variance were generally higher in the stressed groups than in controls. For activity rate in the novel environment and with stress-induced corticosterone level, however, early-developmental stress significantly reduced within-individual variance, which may be a consequence of increased canalization of these traits at the micro-environmental level. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  20. Singing modulates parvalbumin interneurons throughout songbird forebrain vocal control circuitry

    PubMed Central

    Zengin-Toktas, Yildiz

    2017-01-01

    Across species, the performance of vocal signals can be modulated by the social environment. Zebra finches, for example, adjust their song performance when singing to females (‘female-directed’ or FD song) compared to when singing in isolation (‘undirected’ or UD song). These changes are salient, as females prefer the FD song over the UD song. Despite the importance of these performance changes, the neural mechanisms underlying this social modulation remain poorly understood. Previous work in finches has established that expression of the immediate early gene EGR1 is increased during singing and modulated by social context within the vocal control circuitry. Here, we examined whether particular neural subpopulations within those vocal control regions exhibit similar modulations of EGR1 expression. We compared EGR1 expression in neurons expressing parvalbumin (PV), a calcium buffer that modulates network plasticity and homeostasis, among males that performed FD song, males that produced UD song, or males that did not sing. We found that, overall, singing but not social context significantly affected EGR1 expression in PV neurons throughout the vocal control nuclei. We observed differences in EGR1 expression between two classes of PV interneurons in the basal ganglia nucleus Area X. Additionally, we found that singing altered the amount of PV expression in neurons in HVC and Area X and that distinct PV interneuron types in Area X exhibited different patterns of modulation by singing. These data indicate that throughout the vocal control circuitry the singing-related regulation of EGR1 expression in PV neurons may be less influenced by social context than in other neuron types and raise the possibility of cell-type specific differences in plasticity and calcium buffering. PMID:28235074

  1. Neural, not gonadal, origin of brain sex differences in a gynandromorphic finch.

    PubMed

    Agate, Robert J; Grisham, William; Wade, Juli; Mann, Suzanne; Wingfield, John; Schanen, Carolyn; Palotie, Aarno; Arnold, Arthur P

    2003-04-15

    In mammals and birds, sex differences in brain function and disease are thought to derive exclusively from sex differences in gonadal hormone secretions. For example, testosterone in male mammals acts during fetal and neonatal life to cause masculine neural development. However, male and female brain cells also differ in genetic sex; thus, sex chromosome genes acting within cells could contribute to sex differences in cell function. We analyzed the sexual phenotype of the brain of a rare gynandromorphic finch in which the right half of the brain was genetically male and the left half genetically female. The neural song circuit on the right had a more masculine phenotype than that on the left. Because both halves of the brain were exposed to a common gonadal hormone environment, the lateral differences indicate that the genetic sex of brain cells contributes to the process of sexual differentiation. Because both sides of the song circuit were more masculine than that of females, diffusible factors such as hormones of gonadal or neural origin also likely played a role in sexual differentiation.

  2. Comparative cytogenetics of six Indo-Pacific moray eels (Anguilliformes: Muraenidae) by chromosomal banding and fluorescence in situ hybridization.

    PubMed

    Coluccia, E; Deidda, F; Cannas, R; Lobina, C; Cuccu, D; Deiana, A M; Salvadori, S

    2015-09-01

    A comparative cytogenetic analysis, using both conventional staining techniques and fluorescence in situ hybridization, of six Indo-Pacific moray eels from three different genera (Gymnothorax fimbriatus, Gymnothorax flavimarginatus, Gymnothorax javanicus, Gymnothorax undulatus, Echidna nebulosa and Gymnomuraena zebra), was carried out to investigate the chromosomal differentiation in the family Muraenidae. Four species displayed a diploid chromosome number 2n = 42, which is common among the Muraenidae. Two other species, G. javanicus and G. flavimarginatus, were characterized by different chromosome numbers (2n = 40 and 2n = 36). For most species, a large amount of constitutive heterochromatin was detected in the chromosomes, with species-specific C-banding patterns that enabled pairing of the homologous chromosomes. In all species, the major ribosomal genes were localized in the guanine-cytosine-rich region of one chromosome pair, but in different chromosomal locations. The (TTAGGG)n telomeric sequences were mapped onto chromosomal ends in all muraenid species studied. The comparison of the results derived from this study with those available in the literature confirms a substantial conservation of the diploid chromosome number in the Muraenidae and supports the hypothesis that rearrangements have occurred that have diversified their karyotypes. Furthermore, the finding of two species with different diploid chromosome numbers suggests that additional chromosomal rearrangements, such as Robertsonian fusions, have occurred in the karyotype evolution of the Muraenidae. © 2015 The Fisheries Society of the British Isles.

  3. Phylogeny of Darwin's finches as revealed by mtDNA sequences.

    PubMed

    Sato, A; O'hUigin, C; Figueroa, F; Grant, P R; Grant, B R; Tichy, H; Klein, J

    1999-04-27

    Darwin's finches comprise a group of passerine birds first collected by Charles Darwin during his visit to the Galápagos Archipelago. The group, a textbook example of adaptive radiation (the diversification of a founding population into an array of species differentially adapted to diverse environmental niches), encompasses 14 currently recognized species, of which 13 live on the Galápagos Islands and one on the Cocos Island in the Pacific Ocean. Although Darwin's finches have been studied extensively by morphologists, ecologists, and ethologists, their phylogenetic relationships remain uncertain. Here, sequences of two mtDNA segments, the cytochrome b and the control region, have been used to infer the evolutionary history of the group. The data reveal the Darwin's finches to be a monophyletic group with the warbler finch being the species closest to the founding stock, followed by the vegetarian finch, and then by two sister groups, the ground and the tree finches. The Cocos finch is related to the tree finches of the Galápagos Islands. The traditional classification of ground finches into six species and tree finches into five species is not reflected in the molecular data. In these two groups, ancestral polymorphisms have not, as yet, been sorted out among the cross-hybridizing species.

  4. Bilateral LMAN lesions cancel differences in HVC neuronal recruitment induced by unilateral syringeal denervation. Lateral magnocellular nucleus of the anterior neostriatum.

    PubMed

    Wilbrecht, L; Petersen, T; Nottebohm, F

    2002-12-01

    Twenty-six-day-old male zebra finches received (1) unilateral section of their tracheosyringeal nerve, (2) bilateral lesions of the lateral magnocellular nucleus of the anterior neostriatum (LMAN), and (3) both operations. All birds were kept with an adult, singing male as a tutor until day 65. Tracheo-syringeal nerve-cut birds were able to imitate this model, but LMAN-lesioned birds were not. Bromodeoxyuridine, a marker of cell division, was injected intramuscularly during post-hatching days 61-65 and all birds were killed at 91 days of age. The number of bromodeoxyuridine+ neurons in the high vocal center of the tracheosyringeal-cut birds was twice as high in the intact as in the nerve cut side. This asymmetry disappeared when nerve section was combined with bilateral LMAN lesions. The latter operation, by itself, had no effect on new neuron counts. We suggest that the single nerve cut produced a hemispheric asymmetry in learning, reflected in new neuron recruitment, which disappeared when LMAN lesions blocked learning.

  5. Brain transcriptome sequencing and assembly of three songbird model systems for the study of social behavior

    PubMed Central

    Mukai, Motoko; Gonser, Rusty A.; Wingfield, John C.; London, Sarah E.; Tuttle, Elaina M.; Clayton, David F.

    2014-01-01

    Emberizid sparrows (emberizidae) have played a prominent role in the study of avian vocal communication and social behavior. We present here brain transcriptomes for three emberizid model systems, song sparrow Melospiza melodia, white-throated sparrow Zonotrichia albicollis, and Gambel’s white-crowned sparrow Zonotrichia leucophrys gambelii. Each of the assemblies covered fully or in part, over 89% of the previously annotated protein coding genes in the zebra finch Taeniopygia guttata, with 16,846, 15,805, and 16,646 unique BLAST hits in song, white-throated and white-crowned sparrows, respectively. As in previous studies, we find tissue of origin (auditory forebrain versus hypothalamus and whole brain) as an important determinant of overall expression profile. We also demonstrate the successful isolation of RNA and RNA-sequencing from post-mortem samples from building strikes and suggest that such an approach could be useful when traditional sampling opportunities are limited. These transcriptomes will be an important resource for the study of social behavior in birds and for data driven annotation of forthcoming whole genome sequences for these and other bird species. PMID:24883256

  6. Interaction between telencephalic signals and respiratory dynamics in songbirds

    PubMed Central

    Méndez, Jorge M.; Mindlin, Gabriel B.

    2012-01-01

    The mechanisms by which telencephalic areas affect motor activities are largely unknown. They could either take over motor control from downstream motor circuits or interact with the intrinsic dynamics of these circuits. Both models have been proposed for telencephalic control of respiration during learned vocal behavior in birds. The interactive model postulates that simple signals from the telencephalic song control areas are sufficient to drive the nonlinear respiratory network into producing complex temporal sequences. We tested this basic assumption by electrically stimulating telencephalic song control areas and analyzing the resulting respiratory patterns in zebra finches and in canaries. We found strong evidence for interaction between the rhythm of stimulation and the intrinsic respiratory rhythm, including naturally emerging subharmonic behavior and integration of lateralized telencephalic input. The evidence for clear interaction in our experimental paradigm suggests that telencephalic vocal control also uses a similar mechanism. Furthermore, species differences in the response of the respiratory system to stimulation show parallels to differences in the respiratory patterns of song, suggesting that the interactive production of respiratory rhythms is manifested in species-specific specialization of the involved circuitry. PMID:22402649

  7. Imaging auditory representations of song and syllables in populations of sensorimotor neurons essential to vocal communication.

    PubMed

    Peh, Wendy Y X; Roberts, Todd F; Mooney, Richard

    2015-04-08

    Vocal communication depends on the coordinated activity of sensorimotor neurons important to vocal perception and production. How vocalizations are represented by spatiotemporal activity patterns in these neuronal populations remains poorly understood. Here we combined intracellular recordings and two-photon calcium imaging in anesthetized adult zebra finches (Taeniopygia guttata) to examine how learned birdsong and its component syllables are represented in identified projection neurons (PNs) within HVC, a sensorimotor region important for song perception and production. These experiments show that neighboring HVC PNs can respond at markedly different times to song playback and that different syllables activate spatially intermingled PNs within a local (~100 μm) region of HVC. Moreover, noise correlations were stronger between PNs that responded most strongly to the same syllable and were spatially graded within and between classes of PNs. These findings support a model in which syllabic and temporal features of song are represented by spatially intermingled PNs functionally organized into cell- and syllable-type networks within local spatial scales in HVC. Copyright © 2015 the authors 0270-6474/15/355589-17$15.00/0.

  8. Diminished FoxP2 levels affect dopaminergic modulation of corticostriatal signaling important to song variability.

    PubMed

    Murugan, Malavika; Harward, Stephen; Scharff, Constance; Mooney, Richard

    2013-12-18

    Mutations of the FOXP2 gene impair speech and language development in humans and shRNA-mediated suppression of the avian ortholog FoxP2 disrupts song learning in juvenile zebra finches. How diminished FoxP2 levels affect vocal control and alter the function of neural circuits important to learned vocalizations remains unclear. Here we show that FoxP2 knockdown in the songbird striatum disrupts developmental and social modulation of song variability. Recordings in anesthetized birds show that FoxP2 knockdown interferes with D1R-dependent modulation of activity propagation in a corticostriatal pathway important to song variability, an effect that may be partly attributable to reduced D1R and DARPP-32 protein levels. Furthermore, recordings in singing birds reveal that FoxP2 knockdown prevents social modulation of singing-related activity in this pathway. These findings show that reduced FoxP2 levels interfere with the dopaminergic modulation of vocal variability, which may impede song and speech development by disrupting reinforcement learning mechanisms. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Diminished FoxP2 levels affect dopaminergic modulation of corticostriatal signaling important to song variability

    PubMed Central

    Murugan, Malavika; Harward, Stephen; Scharff, Constance; Mooney, Richard

    2013-01-01

    Summary Mutations of the FOXP2 gene impair speech and language development in humans and shRNA-mediated suppression of the avian orthologue FoxP2 disrupts song learning in juvenile zebra finches. How diminished FoxP2 levels affect vocal control and alter the function of neural circuits important to learned vocalizations remains unclear. Here we show that FoxP2 knockdown in the songbird striatum disrupts developmental and social modulation of song variability. Recordings in anaesthetized birds show that FoxP2 knockdown interferes with D1R-dependent modulation of activity propagation in a corticostriatal pathway important to song variability, an effect that may be partly attributable to reduced D1R and DARPP-32 protein levels. Furthermore, recordings in singing birds reveal that FoxP2 knockdown prevents social modulation of singing-related activity in this pathway. These findings show that reduced FoxP2 levels interfere with the dopaminergic modulation of vocal variability, which may impede song and speech development by disrupting reinforcement learning mechanisms. PMID:24268418

  10. Modulation of Perineuronal Nets and Parvalbumin with Developmental Song Learning

    PubMed Central

    Balmer, Timothy S.; Carels, Vanessa M.; Frisch, Jillian L.; Nick, Teresa A.

    2009-01-01

    Neural circuits and behavior are shaped during developmental phases of maximal plasticity known as sensitive or critical periods. Neural correlates of sensory critical periods have been identified, but their roles remain unclear. Factors that define critical periods in sensorimotor circuits and behavior are not known. Birdsong learning in the zebra finch occurs during a sensitive period similar to that for human speech. We now show that perineuronal nets, which correlate with sensory critical periods, surround parvalbumin-positive neurons in brain areas that are dedicated to singing. The percentage of both total and parvalbumin-positive neurons with perineuronal nets increased with development. In HVC (this acronym is the proper name), a song area important for sensorimotor integration, the percentage of parvalbumin neurons with perineuronal nets correlated with song maturity. Shifting the vocal critical period with tutor song deprivation decreased the percentage of neurons that were parvalbumin positive and the relative staining intensity of both parvalbumin and a component of perineuronal nets. Developmental song learning shares key characteristics with sensory critical periods, suggesting shared underlying mechanisms. PMID:19828802

  11. Nestling immunocompetence and testosterone covary with brood size in a songbird.

    PubMed Central

    Naguib, Marc; Riebel, Katharina; Marzal, Alfonso; Gil, Diego

    2004-01-01

    The social and ecological conditions that individuals experience during early development have marked effects on their developmental trajectory. In songbirds, brood size is a key environmental factor affecting development, and experimental increases in brood size have been shown to have negative effects on growth, condition and fitness. Possible causes of decreased growth in chicks from enlarged broods are nutritional stress, crowding and increased social competition, i.e. environmental factors known to affect adult steroid levels (especially of testosterone and corticosteroids) in mammals and birds. Little, however, is known about environmental effects on steroid synthesis in nestlings. We addressed this question by following the development of zebra finch (Taeniopygia guttata) chicks that were cross-fostered and raised in different brood sizes. In line with previous findings, nestling growth and cell-mediated immunocompetence were negatively affected by brood size. Moreover, nestling testosterone levels covaried with treatment: plasma testosterone increased with experimental brood size. This result provides experimental evidence that levels of circulating testosterone in nestlings can be influenced by their physiological response to environmental conditions. PMID:15255102

  12. Core and region-enriched networks of behaviorally regulated genes and the singing genome

    PubMed Central

    Whitney, Osceola; Pfenning, Andreas R.; Howard, Jason T.; Blatti, Charles A; Liu, Fang; Ward, James M.; Wang, Rui; Audet, Jean-Nicolas; Kellis, Manolis; Mukherjee, Sayan; Sinha, Saurabh; Hartemink, Alexander J.; West, Anne E.; Jarvis, Erich D.

    2015-01-01

    Songbirds represent an important model organism for elucidating molecular mechanisms that link genes with complex behaviors, in part because they have discrete vocal learning circuits that have parallels with those that mediate human speech. We found that ~10% of the genes in the avian genome were regulated by singing, and we found a striking regional diversity of both basal and singing-induced programs in the four key song nuclei of the zebra finch, a vocal learning songbird. The region-enriched patterns were a result of distinct combinations of region-enriched transcription factors (TFs), their binding motifs, and presinging acetylation of histone 3 at lysine 27 (H3K27ac) enhancer activity in the regulatory regions of the associated genes. RNA interference manipulations validated the role of the calcium-response transcription factor (CaRF) in regulating genes preferentially expressed in specific song nuclei in response to singing. Thus, differential combinatorial binding of a small group of activity-regulated TFs and predefined epigenetic enhancer activity influences the anatomical diversity of behaviorally regulated gene networks. PMID:25504732

  13. Audience drives male songbird response to partner's voice.

    PubMed

    Vignal, Clémentine; Mathevon, Nicolas; Mottin, Stéphane

    2004-07-22

    According to the social intelligence hypothesis, social context represents an important force driving the selection of animal cognitive abilities such as the capacity to estimate the nature of the social relationships between other individuals. Despite this importance, the influence of this force has been assessed only in primates and never in other animals showing social interactions. In this way, avian communication generally takes place in a network of signallers and receivers, which represents an audience altering individual signalling behaviours. Indeed, vocal amplitude and repertoire are known to be socially regulated and the attitude towards the opposite sex may change depending on the audience. This 'audience effect' provides support for the reality of social awareness in some bird species. However no evidence has yet been found to suggest that birds are able to estimate the characteristics of the social relationships between group-mates. Here we show that the male of a gregarious songbird species--the zebra finch (Taeniopygia guttata)--pays attention to the mating status of conspecific pairs, and uses this information to control its behaviour towards its female partner.

  14. Sexual dimorphisms in avian and reptilian courtship: two systems that do not play by mammalian rules.

    PubMed

    Wade, J

    1999-01-01

    Sexual dimorphisms in the central nervous system exist in numerous vertebrate species, and in many cases these structural differences between males and females parallel differences in the display of reproductive behaviors. Often both the behavioral and anatomical differences are controlled by exposure to gonadal steroid hormones, either during ontogeny or in adulthood. This article reviews some of the evidence supporting the hypothesis that in mammals, testosterone or its metabolites regulate the structure and function of neural and muscle systems involved in the control of masculine sexual behaviors. It then describes data suggesting that the mechanisms regulating sexually dimorphic courtship systems in zebra finches and green anole lizards are not completely parallel to the mammalian systems. Finally, some directions for future study are suggested, with the hope that they will stimulate thought about the nature of comparisons made across vertebrate models when investigators are attempting to determine both which morphological sex differences are important to the control of the reproductive behaviors, and which mechanisms regulating both structure and function are widely employed or are unique.

  15. Attenuated Phenotype of a Recent House Finch-Associated Mycoplasma gallisepticum Isolate in Domestic Poultry.

    PubMed

    Pflaum, K; Tulman, E R; Beaudet, J; Liao, X; Dhondt, K V; Dhondt, A A; Hawley, D M; Ley, D H; Kerr, K M; Geary, S J

    2017-06-01

    Mycoplasma gallisepticum , known primarily as a respiratory pathogen of domestic poultry, has emerged since 1994 as a significant pathogen of the house finch ( Haemorhous mexicanus ) causing severe conjunctivitis and mortality. House finch-associated M. gallisepticum (HFMG) spread rapidly and increased in virulence for the finch host in the eastern United States. In the current study, we assessed virulence in domestic poultry with two temporally distant, and yet geographically consistent, HFMG isolates which differ in virulence for house finches-Virginia 1994 (VA1994), the index isolate of the epidemic, and Virginia 2013 (VA2013), a recent isolate of increased house finch virulence. Here we report a significant difference between VA1994 and VA2013 in their levels of virulence for chickens; notably, this difference correlated inversely to the difference in their levels of virulence for house finches. VA1994, while moderately virulent in house finches, displayed significant virulence in the chicken respiratory tract. VA2013, while highly virulent in the house finch, was significantly attenuated in chickens relative to VA1994, displaying less-severe pathological lesions in, and reduced bacterial recovery from, the respiratory tract. Overall, these data indicate that a recent isolate of HFMG is greatly attenuated in the chicken host relative to the index isolate, notably demonstrating a virulence phenotype in chickens inversely related to that in the finch host. Copyright © 2017 American Society for Microbiology.

  16. 50 CFR 21.44 - Depredation order for horned larks, house finches, and white-crowned sparrows in California.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... finches, and white-crowned sparrows in California. 21.44 Section 21.44 Wildlife and Fisheries UNITED... larks, house finches, and white-crowned sparrows in California. Horned larks (Eremophila alpestris), house finches (Carpodacus mexicanus), and white-crowned sparrows (Zonotrichia leucophrys) may be taken...

  17. Fertility of CMS wheat is restored by two Rf loci located on a recombined acrocentric chromosome

    PubMed Central

    Castillo, Almudena; Atienza, Sergio G.; Martín, Azahara C.

    2014-01-01

    Cytoplasmic male sterility (CMS) results from incompatibility between nuclear and cytoplasmic genomes, and is characterized by the inability to produce viable pollen. The restoration of male fertility generally involves the introgression of nuclear genes, termed restorers of fertility (Rf). CMS has been widely used for hybrid seed production in many crops but not in wheat, partly owing to the complex genetics of fertility restoration. In this study, an acrocentric chromosome that restores pollen fertility of CMS wheat in Hordeum chilense cytoplasm (msH1 system) is studied. The results show that this chromosome, of H. chilense origin and named Hchac, originated from a complex reorganization of the short arm of chromosomes 1Hch (1HchS) and 6Hch (6HchS). Diversity arrays technology (DArT) markers and cytological analysis indicate that Hchac is a kind of `zebra-like′ chromosome composed of chromosome 1HchS and alternate fragments of interstitial and distal regions of chromosome 6HchS. PCR-based markers together with FISH, GISH, and meiotic pairing analysis support this result. A restorer of fertility gene, named Rf 6H ch S, has been identified on the short arm of chromosome 6HchS. Moreover, restoration by the addition of chromosome 1HchS has been observed at a very low frequency and under certain environmental conditions. Therefore, the results indicate the presence of two Rf genes on the acrocentric chromosome: Rf 6H ch S and Rf 1H ch S, the restoration potential of Rf 6H ch S being greater. The stable and high restoration of pollen fertility in the msH1 system is therefore the result of the interaction between these two restorer genes. PMID:25271260

  18. Detection of Mycoplasma gallisepticum in House Finches ( Haemorhous mexicanus) from Arizona.

    PubMed

    Staley, Molly; Bonneaud, Camille; McGraw, Kevin J; Vleck, Carol M; Hill, Geoffrey E

    2018-03-01

    In 1994, an endemic poultry pathogen, Mycoplasma gallisepticum (MG), was identified as the causative agent of a novel disease in house finches ( Haemorhous mexicanus). After an initial outbreak in Maryland, MG spread rapidly throughout eastern North American populations of house finches. Subsequently, MG spread slowly through the northern interior of North America and then into the Pacific Northwest, finally reaching California in 2006. Until 2009, there were no reports of MG in the southwestern United States east of California. In August 2011, after reports of house finches displaying conjunctivitis characteristic of MG infection in Arizona, we trapped house finches at bird feeders in central Arizona (Tempe) and southern Arizona (Tucson and Green Valley) to assay for MG infection. Upon capture, we noted whether birds exhibited conjunctivitis, and we collected choanal swabs to test for the presence of MG DNA using PCR. We detected MG in finches captured from Green Valley (in ∼12% of birds captured), but not in finches from Tucson or Tempe. Based on resampling of house finches at these sites in July 2014, we suggest that central Arizona finches likely remain unexposed to MG. We also suggest that low urban connectivity between arid habitats of southern and central Arizona or a reduction in the prevalence of MG after its initial arrival in Arizona may be limiting the spread of MG from south to north in Arizona. In addition, the observed conjunctivitis-like signs in house finches that were negative for MG by PCR may be caused primarily by avian pox virus.

  19. Species collapse via hybridization in Darwin's tree finches.

    PubMed

    Kleindorfer, Sonia; O'Connor, Jody A; Dudaniec, Rachael Y; Myers, Steven A; Robertson, Jeremy; Sulloway, Frank J

    2014-03-01

    Species hybridization can lead to fitness costs, species collapse, and novel evolutionary trajectories in changing environments. Hybridization is predicted to be more common when environmental conditions change rapidly. Here, we test patterns of hybridization in three sympatric tree finch species (small tree finch Camarhynchus parvulus, medium tree finch Camarhynchus pauper, and large tree finch: Camarhynchus psittacula) that are currently recognized on Floreana Island, Galápagos Archipelago. Genetic analysis of microsatellite data from contemporary samples showed two genetic populations and one hybrid cluster in both 2005 and 2010; hybrid individuals were derived from genetic population 1 (small morph) and genetic population 2 (large morph). Females of the large and rare species were more likely to pair with males of the small common species. Finch populations differed in morphology in 1852-1906 compared with 2005/2010. An unsupervised clustering method showed (a) support for three morphological clusters in the historical tree finch sample (1852-1906), which is consistent with current species recognition; (b) support for two or three morphological clusters in 2005 with some (19%) hybridization; and (c) support for just two morphological clusters in 2010 with frequent (41%) hybridization. We discuss these findings in relation to species demarcations of Camarhynchus tree finches on Floreana Island.

  20. Cloning and expression profiling of the VLDLR gene associated with egg performance in duck (Anas platyrhynchos).

    PubMed

    Wang, Cui; Li, Shi-Jun; Yu, Wen-Hua; Xin, Qing-Wu; Li, Chuang; Feng, Yan-Ping; Peng, Xiu-Li; Gong, Yan-Zhang

    2011-08-05

    The very low density lipoprotein receptor gene (VLDLR), a member of the low density lipoprotein receptor (LDLR) gene family, plays a crucial role in the synthesis of yolk protein precursors in oviparous species. Differential splicing of this gene has been reported in human, rabbit and rat. In chicken, studies showed that the VLDLR protein on the oocyte surface mediates the uptake of yolk protein precursors into growing oocytes. However, information on the VLDLR gene in duck is still scarce. Full-length duck VLDLR cDNA was obtained by comparative cloning and rapid amplification of cDNA ends (RACE). Tissue expression patterns were analysed by semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR). Association between the different genotypes and egg performance traits was investigated with the general linear model (GLM) procedure of the SAS® software package. In duck, two VLDLR transcripts were identified, one transcript (variant-a) containing an O-linked sugar domain and the other (variant-b) not containing this sugar domain. These transcripts share ~70 to 90% identity with their counterparts in other species. A phylogenetic tree based on amino acid sequences showed that duck VLDLR proteins were closely related with those of chicken and zebra finch. The two duck VLDLR transcripts are differentially expressed i.e. VLDLR-a is mainly expressed in muscle tissue and VLDLR-b in reproductive organs. We have localized the duck VLDLR gene on chromosome Z. An association analysis using two completely linked SNP sites (T/C at position 2025 bp of the ORF and G/A in intron 13) and records from two generations demonstrated that the duck VLDLR gene was significantly associated with egg production (P < 0.01), age of first egg (P < 0.01) and body weight of first egg (P < 0.05). Duck and chicken VLDLR genes probably perform similar function in the development of growing oocytes and deposition of yolk lipoprotein. Therefore, VLDLR could be a candidate gene for duck egg performance and be used as a genetic marker to improve egg performance in ducks.

  1. Cloning and expression profiling of the VLDLR gene associated with egg performance in duck (Anas platyrhynchos)

    PubMed Central

    2011-01-01

    Background The very low density lipoprotein receptor gene (VLDLR), a member of the low density lipoprotein receptor (LDLR) gene family, plays a crucial role in the synthesis of yolk protein precursors in oviparous species. Differential splicing of this gene has been reported in human, rabbit and rat. In chicken, studies showed that the VLDLR protein on the oocyte surface mediates the uptake of yolk protein precursors into growing oocytes. However, information on the VLDLR gene in duck is still scarce. Methods Full-length duck VLDLR cDNA was obtained by comparative cloning and rapid amplification of cDNA ends (RACE). Tissue expression patterns were analysed by semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR). Association between the different genotypes and egg performance traits was investigated with the general linear model (GLM) procedure of the SAS® software package. Results In duck, two VLDLR transcripts were identified, one transcript (variant-a) containing an O-linked sugar domain and the other (variant-b) not containing this sugar domain. These transcripts share ~70 to 90% identity with their counterparts in other species. A phylogenetic tree based on amino acid sequences showed that duck VLDLR proteins were closely related with those of chicken and zebra finch. The two duck VLDLR transcripts are differentially expressed i.e. VLDLR-a is mainly expressed in muscle tissue and VLDLR-b in reproductive organs. We have localized the duck VLDLR gene on chromosome Z. An association analysis using two completely linked SNP sites (T/C at position 2025 bp of the ORF and G/A in intron 13) and records from two generations demonstrated that the duck VLDLR gene was significantly associated with egg production (P < 0.01), age of first egg (P < 0.01) and body weight of first egg (P < 0.05). Conclusions Duck and chicken VLDLR genes probably perform similar function in the development of growing oocytes and deposition of yolk lipoprotein. Therefore, VLDLR could be a candidate gene for duck egg performance and be used as a genetic marker to improve egg performance in ducks. PMID:21819592

  2. Sexual imprinting can induce sexual preferences for exaggerated parental traits.

    PubMed

    ten Cate, Carel; Verzijden, Machteld N; Etman, Eric

    2006-06-06

    Sexual preferences in animals are often skewed toward mates with exaggerated traits. In many vertebrates, parents provide, through the learning process of "sexual imprinting," the model for the later sexual preference. How imprinting can result in sexual preferences for mates having exaggerated traits rather than resembling the parental appearance is not clear. We test the hypothesis that a by-product of the learning process, "peak shift", may induce skewed sexual preferences for exaggerated parental phenotypes. To this end, zebra finch (Taeniopygia guttata) males were raised by white parents, with beak color as the most prominent sexual dimorphism. We manipulated this feature with nail varnish. At adult age, each male was given a preference test in which he could choose among eight females with beak colors ranging from more extreme on the paternal to more extreme on the maternal side. The males preferred females with a beak of a more extreme color than that of their mothers, i.e., they showed a peak shift. Sexual imprinting can thus generate skewed sexual preferences for exaggerated maternal phenotypes, phenotypes that have not been present at the time of the learning. We suggest that such preferences can drive the evolution of sexual dimorphism and exaggerated sexual traits.

  3. Learning-related brain hemispheric dominance in sleeping songbirds.

    PubMed

    Moorman, Sanne; Gobes, Sharon M H; van de Kamp, Ferdinand C; Zandbergen, Matthijs A; Bolhuis, Johan J

    2015-03-12

    There are striking behavioural and neural parallels between the acquisition of speech in humans and song learning in songbirds. In humans, language-related brain activation is mostly lateralised to the left hemisphere. During language acquisition in humans, brain hemispheric lateralisation develops as language proficiency increases. Sleep is important for the formation of long-term memory, in humans as well as in other animals, including songbirds. Here, we measured neuronal activation (as the expression pattern of the immediate early gene ZENK) during sleep in juvenile zebra finch males that were still learning their songs from a tutor. We found that during sleep, there was learning-dependent lateralisation of spontaneous neuronal activation in the caudomedial nidopallium (NCM), a secondary auditory brain region that is involved in tutor song memory, while there was right hemisphere dominance of neuronal activation in HVC (used as a proper name), a premotor nucleus that is involved in song production and sensorimotor learning. Specifically, in the NCM, birds that imitated their tutors well were left dominant, while poor imitators were right dominant, similar to language-proficiency related lateralisation in humans. Given the avian-human parallels, lateralised neural activation during sleep may also be important for speech and language acquisition in human infants.

  4. Developmental Modulation of the Temporal Relationship Between Brain and Behavior

    PubMed Central

    Crandall, Shane R.; Aoki, Naoya; Nick, Teresa A.

    2008-01-01

    Humans and songbirds shape learned vocalizations during a sensorimotor sensitive period or “babbling” phase. The brain mechanisms that underlie the shaping of vocalizations by sensory feedback are not known. We examined song behavior and brain activity in zebra finches during singing as they actively shaped their song toward a tutor model. We now show that the temporal relationship of behavior and activity in the premotor area HVC changes with the development of song behavior. During sensorimotor learning, HVC bursting activity both preceded and followed learned vocalizations by hundreds of milliseconds. Correspondingly, the duration of bursts that occurred during ongoing song motif behavior was prolonged in juveniles, as compared with adults, and was inversely correlated with song maturation. Multielectrode single-unit recording in juveniles revealed that single fast-spiking neurons were active both before and after vocalization. These same neurons responded to auditory stimuli. Collectively, these data indicate that a key aspect of sensory critical periods—prolonged bursting—also applies to sensorimotor development. In addition, prolonged motor discharge and sensory input coincide in single neurons of the developing song system, providing the necessary cellular elements for sensorimotor shaping through activity-dependent mechanisms. PMID:17079340

  5. Personality in captivity: more exploratory males reproduce better in an aviary population.

    PubMed

    McCowan, Luke S C; Rollins, Lee Ann; Griffith, Simon C

    2014-09-01

    The existence of animal personality is well-established across a wide range of species, with the majority of evidence for this being obtained from individuals held in captivity. However, there has been little work assessing the influence of commonly-measured personality traits on fitness, which is pertinent when the genetic basis of personality is considered. We measured whether the reproductive behaviour and success of zebra finches in a captive mixed-sex aviary environment was influenced by an aspect of their personality, their exploratory behaviour in a single-sex social aviary. We found that more exploratory males made a greater number of breeding attempts and raised more nestlings than less exploratory males. These results were not confounded by extra-pair paternity, which was not related to personality, or by the individuals that did not initiate any reproductive attempts at all. Our work provides evidence that attributes of personality may influence the degree to which individuals cope with, and thrive in a captive environment and this should be accounted for in both experimental design and the interpretation of results. Furthermore, this suggests that there may be selection on these traits as part of the domestication process. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Juvenile social experience affects pairing success at adulthood: congruence with the loser effect?

    PubMed

    Mariette, Mylene M; Cathaud, Charlène; Chambon, Rémi; Vignal, Clémentine

    2013-09-22

    Social interactions with adults are often critical for the development of mating behaviours. However, the potential role of other primary social partners such as juvenile counterparts is rarely considered. Most interestingly, it is not known whether interactions with juvenile females improve males' courtship and whether, similar to the winner and loser effects in a fighting context--outcome of these interactions shapes males' behaviour in future encounters. We investigated the combined effects of male quality and juvenile social experience on pairing success at adulthood in zebra finches (Taeniopygia guttata). We manipulated brood size to alter male quality and then placed males in either same- or mixed-sex juvenile dyads until adulthood. We found that males from reduced broods obtained more copulations and males from mixed-sex dyads had more complete courtships. Furthermore, independent of their quality, males that failed to pair with juvenile females, but not juvenile males, had a lower pairing success at adulthood. Our study shows that negative social experience with peers during adolescence may be a potent determinant of pairing success that can override the effects of early environmental conditions on male attractiveness and thereby supports the occurrence of an analogous process to the loser effect in a mating context.

  7. Postnatal nutrition influences male attractiveness and promotes plasticity in male mating preferences

    NASA Astrophysics Data System (ADS)

    Noguera, José C.; Metcalfe, Neil B.; Monaghan, Pat

    2017-12-01

    Poor early-life nutrition could reduce adult reproductive success by negatively affecting traits linked to sexual attractiveness such as song complexity. If so, this might favor strategic mate choice, allowing males with less complex songs to tailor their mating tactics to maximize the reproductive benefits. However, this possibility has been ignored in theoretical and empirical studies. By manipulating the micronutrient content of the diet (e.g., low or high) during the postnatal period of male zebra finches, we show for the first time (1) that males reared on a poor (low) micronutrient diet had less complex songs as adults; (2) that these males, in contrast to the high micronutrient diet group, were more selective in their mating strategies, discriminating against those females most likely to reduce their clutch size when paired with males having less complex songs; and (3) that by following different mating strategies, males reared on the contrasting diets obtained similar reproductive benefits. These results suggest that early-life dietary conditions can induce multiple and long-lasting effects on male and female reproductive traits. Moreover, the results seem to reflect a previously unreported case of adaptive plasticity in mate choice in response to a nutritionally mediated reduction in sexual attractiveness.

  8. Detailed temporal structure of communication networks in groups of songbirds.

    PubMed

    Stowell, Dan; Gill, Lisa; Clayton, David

    2016-06-01

    Animals in groups often exchange calls, in patterns whose temporal structure may be influenced by contextual factors such as physical location and the social network structure of the group. We introduce a model-based analysis for temporal patterns of animal call timing, originally developed for networks of firing neurons. This has advantages over cross-correlation analysis in that it can correctly handle common-cause confounds and provides a generative model of call patterns with explicit parameters for the influences between individuals. It also has advantages over standard Markovian analysis in that it incorporates detailed temporal interactions which affect timing as well as sequencing of calls. Further, a fitted model can be used to generate novel synthetic call sequences. We apply the method to calls recorded from groups of domesticated zebra finch (Taeniopygia guttata) individuals. We find that the communication network in these groups has stable structure that persists from one day to the next, and that 'kernels' reflecting the temporal range of influence have a characteristic structure for a calling individual's effect on itself, its partner and on others in the group. We further find characteristic patterns of influences by call type as well as by individual. © 2016 The Authors.

  9. An Automated Procedure for Evaluating Song Imitation

    PubMed Central

    Mandelblat-Cerf, Yael; Fee, Michale S.

    2014-01-01

    Songbirds have emerged as an excellent model system to understand the neural basis of vocal and motor learning. Like humans, songbirds learn to imitate the vocalizations of their parents or other conspecific “tutors.” Young songbirds learn by comparing their own vocalizations to the memory of their tutor song, slowly improving until over the course of several weeks they can achieve an excellent imitation of the tutor. Because of the slow progression of vocal learning, and the large amounts of singing generated, automated algorithms for quantifying vocal imitation have become increasingly important for studying the mechanisms underlying this process. However, methodologies for quantifying song imitation are complicated by the highly variable songs of either juvenile birds or those that learn poorly because of experimental manipulations. Here we present a method for the evaluation of song imitation that incorporates two innovations: First, an automated procedure for selecting pupil song segments, and, second, a new algorithm, implemented in Matlab, for computing both song acoustic and sequence similarity. We tested our procedure using zebra finch song and determined a set of acoustic features for which the algorithm optimally differentiates between similar and non-similar songs. PMID:24809510

  10. Baseline glucose level is an individual trait that is negatively associated with lifespan and increases due to adverse environmental conditions during development and adulthood.

    PubMed

    Montoya, Bibiana; Briga, Michael; Jimeno, Blanca; Moonen, Sander; Verhulst, Simon

    2018-05-01

    High baseline glucose levels are associated with pathologies and shorter lifespan in humans, but little is known about causes and consequences of individual variation in glucose levels in other species. We tested to what extent baseline blood glucose level is a repeatable trait in adult zebra finches, and whether glucose levels were associated with age, manipulated environmental conditions during development (rearing brood size) and adulthood (foraging cost), and lifespan. We found that: (1) repeatability of glucose levels was 30%, both within and between years. (2) Having been reared in a large brood and living with higher foraging costs as adult were independently associated with higher glucose levels. Furthermore, the finding that baseline glucose was low when ambient temperature was high, and foraging costs were low, indicates that glucose is regulated at a lower level when energy turnover is low. (3) Survival probability decreased with increasing baseline glucose. We conclude that baseline glucose is an individual trait negatively associated with survival, and increases due to adverse environmental conditions during development (rearing brood size) and adulthood (foraging cost). Blood glucose may be, therefore, part of the physiological processes linking environmental conditions to lifespan.

  11. Parametric Study of Wall Shear Stress in Idealized Avian Airways

    NASA Astrophysics Data System (ADS)

    Farnsworth, Michael S.; Riede, Tobias; Thomson, Scott L.

    2017-11-01

    Because wall shear stress (WSS) affects cell response, WSS patterns in avian respiratory airways may be related to the origin of the syrinx and corresponding voice-producing tissue structures (e.g., membranes or vocal folds) in birds. To explore possible linkages between WSS patterns and the locations of avian voice-producing structures, a computational model of flow through an idealized portion of the avian respiratory airway, including trachea and primary bronchi sections, has been developed. The flow is governed by the Navier-Stokes equations, with velocity boundary conditions derived from pressure-flow data in an adult zebra finch during quiet respiration. Geometric parameters such as tracheal/bronchial diameter and length, as well as bronchial branching angle, are parametrically varied based on data for different avian species. Simulation results predict elevated WSS in the vicinity of the tracheobronchial juncture, the location at which voice-producing tissues are found in avian species. In this presentation, the model will be described and spatial distributions of WSS during inspiration and expiration will be presented and compared for different geometric configurations and respiration rates and waveforms. Funding for this project from the Gordon and Betty Moore Foundation (Grant 4498) is gratefully acknowledged.

  12. Rhythmic syllable-related activity in a songbird motor thalamic nucleus necessary for learned vocalizations

    PubMed Central

    Danish, Husain H.; Aronov, Dmitriy; Fee, Michale S.

    2017-01-01

    Birdsong is a complex behavior that exhibits hierarchical organization. While the representation of singing behavior and its hierarchical organization has been studied in some detail in avian cortical premotor circuits, our understanding of the role of the thalamus in adult birdsong is incomplete. Using a combination of behavioral and electrophysiological studies, we seek to expand on earlier work showing that the thalamic nucleus Uvaeformis (Uva) is necessary for the production of stereotyped, adult song in zebra finch (Taeniopygia guttata). We confirm that complete bilateral lesions of Uva abolish singing in the ‘directed’ social context, but find that in the ‘undirected’ social context, such lesions result in highly variable vocalizations similar to early babbling song in juvenile birds. Recordings of neural activity in Uva reveal strong syllable-related modulation, maximally active prior to syllable onsets and minimally active prior to syllable offsets. Furthermore, both song and Uva activity exhibit a pronounced coherent modulation at 10Hz—a pattern observed in downstream premotor areas in adult and, even more prominently, in juvenile birds. These findings are broadly consistent with the idea that Uva is critical in the sequential activation of behavioral modules in HVC. PMID:28617829

  13. Learning-related brain hemispheric dominance in sleeping songbirds

    PubMed Central

    Moorman, Sanne; Gobes, Sharon M. H.; van de Kamp, Ferdinand C.; Zandbergen, Matthijs A.; Bolhuis, Johan J.

    2015-01-01

    There are striking behavioural and neural parallels between the acquisition of speech in humans and song learning in songbirds. In humans, language-related brain activation is mostly lateralised to the left hemisphere. During language acquisition in humans, brain hemispheric lateralisation develops as language proficiency increases. Sleep is important for the formation of long-term memory, in humans as well as in other animals, including songbirds. Here, we measured neuronal activation (as the expression pattern of the immediate early gene ZENK) during sleep in juvenile zebra finch males that were still learning their songs from a tutor. We found that during sleep, there was learning-dependent lateralisation of spontaneous neuronal activation in the caudomedial nidopallium (NCM), a secondary auditory brain region that is involved in tutor song memory, while there was right hemisphere dominance of neuronal activation in HVC (used as a proper name), a premotor nucleus that is involved in song production and sensorimotor learning. Specifically, in the NCM, birds that imitated their tutors well were left dominant, while poor imitators were right dominant, similar to language-proficiency related lateralisation in humans. Given the avian-human parallels, lateralised neural activation during sleep may also be important for speech and language acquisition in human infants. PMID:25761654

  14. Maternally derived carotenoid pigments affect offspring survival, sex ratio, and sexual attractiveness in a colorful songbird

    NASA Astrophysics Data System (ADS)

    McGraw, K. J.; Adkins-Regan, E.; Parker, R. S.

    2005-08-01

    In egg-laying animals, mothers can influence the development of their offspring via the suite of biochemicals they incorporate into the nourishing yolk (e.g. lipids, hormones). However, the long-lasting fitness consequences of this early nutritional environment have often proved elusive. Here, we show that the colorful carotenoid pigments that female zebra finches ( Taeniopygia guttata) deposit into egg yolks influence embryonic and nestling survival, the sex ratio of fledged offspring, and the eventual ornamental coloration displayed by their offspring as adults. Mothers experimentally supplemented with dietary carotenoids prior to egg-laying incorporated more carotenoids into eggs, which, due to the antioxidant activity of carotenoids, rendered their embryos less susceptible to free-radical attack during development. These eggs were subsequently more likely to hatch, fledge offspring, produce more sons than daughters, and produce sons who exhibited more brightly colored carotenoid-based beak pigmentation. Provisioned mothers also acquired more colorful beaks, which directly predicted levels of carotenoids found in eggs, thus indicating that these pigments may function not only as physiological ‘damage-protectants’ in adults and offspring but also as morphological signals of maternal reproductive capabilities.

  15. Language-related Cntnap2 gene is differentially expressed in sexually dimorphic song nuclei essential for vocal learning in songbirds

    PubMed Central

    Panaitof, S. Carmen; Abrahams, Brett S.; Dong, Hongmei; Geschwind, Daniel H.; White, Stephanie A.

    2010-01-01

    Multiple studies, involving distinct clinical populations, implicate contactin associated protein-like 2 (CNTNAP2) in aspects of language development and performance. While CNTNAP2 is broadly distributed in developing rodent brain, it shows a striking gradient of frontal cortical enrichment in developing human brain, consistent with a role in patterning circuits that subserve higher cognition and language. To test the hypothesis that CNTNAP2 may be important for learned vocal communication in additional species, we employed in situ hybridization to characterize transcript distribution in the zebra finch, an experimentally tractable songbird for which the neural substrate of this behavior is well-established. Consistent with an important role in learned vocalization, Cntnap2 was enriched or diminished in key song control nuclei relative to adjacent brain tissue. Importantly, this punctuated expression was observed in males, but not females, in accord with the sexual dimorphism of neural circuitry and vocal learning in this species. Ongoing functional work will provide important insights into the relationship between Cntnap2 and vocal communication in songbirds and thereby clarify mechanisms at play in disorders of human cognition and language. PMID:20394055

  16. Physical cognition: birds learn the structural efficacy of nest material.

    PubMed

    Bailey, Ida E; Morgan, Kate V; Bertin, Marion; Meddle, Simone L; Healy, Susan D

    2014-06-07

    It is generally assumed that birds' choice of structurally suitable materials for nest building is genetically predetermined. Here, we tested that assumption by investigating whether experience affected male zebra finches' (Taeniopygia guttata) choice of nest material. After a short period of building with relatively flexible string, birds preferred to build with stiffer string while those that had experienced a stiffer string were indifferent to string type. After building a complete nest with either string type, however, all birds increased their preference for stiff string. The stiffer string appeared to be the more effective building material as birds required fewer pieces of stiffer than flexible string to build a roofed nest. For birds that raised chicks successfully, there was no association between the material they used to build their nest and the type they subsequently preferred. Birds' material preference reflected neither the preference of their father nor of their siblings but juvenile experience of either string type increased their preference for stiffer string. Our results represent two important advances: (i) birds choose nest material based on the structural properties of the material; (ii) nest material preference is not entirely genetically predetermined as both the type and amount of experience influences birds' choices.

  17. Surveillance potential of non-native Hawaiian birds for detection of West Nile Virus

    USGS Publications Warehouse

    Hofmeister, Erik K.; Dusek, Robert J.; Brand, Christopher J.

    2015-01-01

    West Nile virus (WNV) was first detected in North America in 1999. Alaska and Hawaii (HI) remain the only U.S. states in which transmission of WNV has not been detected. Dead bird surveillance has played an important role in the detection of the virus geographically, as well as temporally. In North America, corvids have played a major role in WNV surveillance; however, the only corvid in HI is the endangered Hawaiian crow that exists only in captivity, thus precluding the use of this species for WNV surveillance in HI. To evaluate the suitability of alternate avian species for WNV surveillance, we experimentally challenged seven abundant non-native bird species present in HI with WNV and compared mortality, viremia, oral shedding of virus, and seroconversion. For detection of WNV in oral swabs, we compared viral culture, reverse-transcriptase polymerase chain reaction, and the RAMP® test. For detection of antibodies to WNV, we compared an indirect and a competitive enzyme-linked immunoassay. We found four species (house sparrow, house finch, Japanese white-eye, and Java sparrow) that may be useful in dead bird surveillance for WNV; while common myna, zebra dove, and spotted dove survived infection and may be useful in serosurveillance.

  18. Automated recognition of bird song elements from continuous recordings using dynamic time warping and hidden Markov models: a comparative study.

    PubMed

    Kogan, J A; Margoliash, D

    1998-04-01

    The performance of two techniques is compared for automated recognition of bird song units from continuous recordings. The advantages and limitations of dynamic time warping (DTW) and hidden Markov models (HMMs) are evaluated on a large database of male songs of zebra finches (Taeniopygia guttata) and indigo buntings (Passerina cyanea), which have different types of vocalizations and have been recorded under different laboratory conditions. Depending on the quality of recordings and complexity of song, the DTW-based technique gives excellent to satisfactory performance. Under challenging conditions such as noisy recordings or presence of confusing short-duration calls, good performance of the DTW-based technique requires careful selection of templates that may demand expert knowledge. Because HMMs are trained, equivalent or even better performance of HMMs can be achieved based only on segmentation and labeling of constituent vocalizations, albeit with many more training examples than DTW templates. One weakness in HMM performance is the misclassification of short-duration vocalizations or song units with more variable structure (e.g., some calls, and syllables of plastic songs). To address these and other limitations, new approaches for analyzing bird vocalizations are discussed.

  19. Condition index monitoring supports conservation priorities for the protection of threatened grass-finch populations

    PubMed Central

    French, Kristine; Legge, Sarah; Astheimer, Lee; Garnett, Stephen

    2015-01-01

    Abstract Conservation agencies are often faced with the difficult task of prioritizing what recovery actions receive support. With the number of species under threat of decline growing globally, research that informs conservation priorities is greatly needed. The relative vulnerability of cryptic or nomadic species is often uncertain, because populations are difficult to monitor and local populations often seem stable in the short term. This uncertainty can lead to inaction when populations are in need of protection. We tested the feasibility of using differences in condition indices as an indication of population vulnerability to decline for related threatened Australian finch sub-species. The Gouldian finch represents a relatively well-studied endangered species, which has a seasonal and site-specific pattern of condition index variation that differs from the closely related non-declining long-tailed finch. We used Gouldian and long-tailed finch condition variation as a model to compare with lesser studied, threatened star and black-throated finches. We compared body condition (fat and muscle scores), haematocrit and stress levels (corticosterone) among populations, seasons and years to determine whether lesser studied finch populations matched the model of an endangered species or a non-declining species. While vulnerable finch populations often had lower muscle and higher fat and corticosterone concentrations during moult (seasonal pattern similar to Gouldian finches), haematocrit values did not differ among populations in a predictable way. Star and black-throated finch populations, which were predicted to be vulnerable to decline, showed evidence of poor condition during moult, supporting their status as vulnerable. Our findings highlight how measures of condition can provide insight into the relative vulnerability of animal and plant populations to decline and will allow the prioritization of efforts towards the populations most likely to be in jeopardy of extinction. PMID:27293710

  20. Invasive parasites, habitat change and heavy rainfall reduce breeding success in Darwin's finches.

    PubMed

    Cimadom, Arno; Ulloa, Angel; Meidl, Patrick; Zöttl, Markus; Zöttl, Elisabet; Fessl, Birgit; Nemeth, Erwin; Dvorak, Michael; Cunninghame, Francesca; Tebbich, Sabine

    2014-01-01

    Invasive alien parasites and pathogens are a growing threat to biodiversity worldwide, which can contribute to the extinction of endemic species. On the Galápagos Islands, the invasive parasitic fly Philornis downsi poses a major threat to the endemic avifauna. Here, we investigated the influence of this parasite on the breeding success of two Darwin's finch species, the warbler finch (Certhidea olivacea) and the sympatric small tree finch (Camarhynchus parvulus), on Santa Cruz Island in 2010 and 2012. While the population of the small tree finch appeared to be stable, the warbler finch has experienced a dramatic decline in population size on Santa Cruz Island since 1997. We aimed to identify whether warbler finches are particularly vulnerable during different stages of the breeding cycle. Contrary to our prediction, breeding success was lower in the small tree finch than in the warbler finch. In both species P. downsi had a strong negative impact on breeding success and our data suggest that heavy rain events also lowered the fledging success. On the one hand parents might be less efficient in compensating their chicks' energy loss due to parasitism as they might be less efficient in foraging on days of heavy rain. On the other hand, intense rainfalls might lead to increased humidity and more rapid cooling of the nests. In the case of the warbler finch we found that the control of invasive plant species with herbicides had a significant additive negative impact on the breeding success. It is very likely that the availability of insects (i.e. food abundance)is lower in such controlled areas, as herbicide usage led to the removal of the entire understory. Predation seems to be a minor factor in brood loss.

  1. Condition index monitoring supports conservation priorities for the protection of threatened grass-finch populations.

    PubMed

    Maute, Kimberly; French, Kristine; Legge, Sarah; Astheimer, Lee; Garnett, Stephen

    2015-01-01

    Conservation agencies are often faced with the difficult task of prioritizing what recovery actions receive support. With the number of species under threat of decline growing globally, research that informs conservation priorities is greatly needed. The relative vulnerability of cryptic or nomadic species is often uncertain, because populations are difficult to monitor and local populations often seem stable in the short term. This uncertainty can lead to inaction when populations are in need of protection. We tested the feasibility of using differences in condition indices as an indication of population vulnerability to decline for related threatened Australian finch sub-species. The Gouldian finch represents a relatively well-studied endangered species, which has a seasonal and site-specific pattern of condition index variation that differs from the closely related non-declining long-tailed finch. We used Gouldian and long-tailed finch condition variation as a model to compare with lesser studied, threatened star and black-throated finches. We compared body condition (fat and muscle scores), haematocrit and stress levels (corticosterone) among populations, seasons and years to determine whether lesser studied finch populations matched the model of an endangered species or a non-declining species. While vulnerable finch populations often had lower muscle and higher fat and corticosterone concentrations during moult (seasonal pattern similar to Gouldian finches), haematocrit values did not differ among populations in a predictable way. Star and black-throated finch populations, which were predicted to be vulnerable to decline, showed evidence of poor condition during moult, supporting their status as vulnerable. Our findings highlight how measures of condition can provide insight into the relative vulnerability of animal and plant populations to decline and will allow the prioritization of efforts towards the populations most likely to be in jeopardy of extinction.

  2. The origin of finches on Tristan da Cunha and Gough Island, central South Atlantic ocean.

    PubMed

    Ryan, Peter G; Klicka, Luke B; Barker, Keith F; Burns, Kevin J

    2013-10-01

    The Nesospiza finches of the Tristan da Cunha archipelago and Rowettia goughensis from Gough Island, 380 km distant, are both derived from tanager-finches (Thraupidae) that colonized the islands by crossing more than 3000 km of ocean from South America. Sequences from two mitochondrial and four nuclear genes indicate that the Patagonian bridled finches Melanodera are the closest relatives of the South Atlantic finches. Melanodera typically was sister to Rowettia, although some genes linked it more closely to Nesospiza. There was no evidence that Rowettia and Nesospiza are sister taxa, suggesting that the South Atlantic finches evolved from separate colonization events, as apparently was the case for moorhens Gallinula spp. at the two island groups. Genetic divergence between the two island finch genera thus provides an estimate of the maximum period of time they have been present at the islands, some 3-5 million years. A brief review of colonization histories suggests that island hopping by passerine birds is infrequent among islands more than 100-200 km apart. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Bacterial Pathogen Emergence Requires More than Direct Contact with a Novel Passerine Host

    PubMed Central

    Hill, Geoffrey E.; Josefson, Chloe C.; Armbruster, Jonathan W.

    2018-01-01

    ABSTRACT While direct contact may sometimes be sufficient to allow a pathogen to jump into a new host species, in other cases, fortuitously adaptive mutations that arise in the original donor host are also necessary. Viruses have been the focus of most host shift studies, so less is known about the importance of ecological versus evolutionary processes to successful bacterial host shifts. Here we tested whether direct contact with the novel host was sufficient to enable the mid-1990s jump of the bacterium Mycoplasma gallisepticum from domestic poultry to house finches (Haemorhous mexicanus). We experimentally inoculated house finches with two genetically distinct M. gallisepticum strains obtained either from poultry (Rlow) or from house finches (HF1995) during an epizootic outbreak. All 15 house finches inoculated with HF1995 became infected, whereas Rlow successfully infected 12 of 15 (80%) inoculated house finches. Comparisons among infected birds showed that, relative to HF1995, Rlow achieved substantially lower bacterial loads in the host respiratory mucosa and was cleared faster. Furthermore, Rlow-infected finches were less likely to develop clinical symptoms than HF1995-infected birds and, when they did, displayed milder conjunctivitis. The lower infection success of Rlow relative to HF1995 was not, however, due to a heightened host antibody response to Rlow. Taken together, our results indicate that contact between infected poultry and house finches was not, by itself, sufficient to explain the jump of M. gallisepticum to house finches. Instead, mutations arising in the original poultry host would have been necessary for successful pathogen emergence in the novel finch host. PMID:29311238

  4. Experimental evidence that stripes do not cool zebras.

    PubMed

    Horváth, Gábor; Pereszlényi, Ádám; Száz, Dénes; Barta, András; Jánosi, Imre M; Gerics, Balázs; Åkesson, Susanne

    2018-06-19

    There are as many as 18 theories for the possible functions of the stripes of zebras, one of which is to cool the animal. We performed field experiments and thermographic measurements to investigate whether thermoregulation might work for zebra-striped bodies. A zebra body was modelled by water-filled metal barrels covered with horse, cattle and zebra hides and with various black, white, grey and striped patterns. The barrels were installed in the open air for four months while their core temperature was measured continuously. Using thermography, the temperature distributions of the barrel surfaces were compared to those of living zebras. The sunlit zebra-striped barrels reproduced well the surface temperature characteristics of sunlit zebras. We found that there were no significant core temperature differences between the striped and grey barrels, even on many hot days, independent of the air temperature and wind speed. The average core temperature of the barrels increased as follows: white cattle, grey cattle, real zebra, artificial zebra, grey horse, black cattle. Consequently, we demonstrate that zebra-striped coats do not keep the body cooler than grey coats challenging the hypothesis of a thermoregulatory role of zebra stripes.

  5. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy.

    PubMed

    Siegel, Nisan; Brooker, Gary

    2014-09-22

    FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called "CINCH".

  6. Differing House Finch Cytokine Expression Responses to Original and Evolved Isolates of Mycoplasma gallisepticum.

    PubMed

    Vinkler, Michal; Leon, Ariel E; Kirkpatrick, Laila; Dalloul, Rami A; Hawley, Dana M

    2018-01-01

    The recent emergence of the poultry bacterial pathogen Mycoplasma gallisepticum (MG) in free-living house finches ( Haemorhous mexicanus ), which causes mycoplasmal conjunctivitis in this passerine bird species, resulted in a rapid coevolutionary arms-race between MG and its novel avian host. Despite extensive research on the ecological and evolutionary dynamics of this host-pathogen system over the past two decades, the immunological responses of house finches to MG infection remain poorly understood. We developed seven new probe-based one-step quantitative reverse transcription polymerase chain reaction assays to investigate mRNA expression of house finch cytokine genes ( IL1B, IL6, IL10, IL18, TGFB2, TNFSF15 , and CXCLi2 , syn. IL8L ). These assays were then used to describe cytokine transcription profiles in a panel of 15 house finch tissues collected at three distinct time points during MG infection. Based on initial screening that indicated strong pro-inflammatory cytokine expression during MG infection at the periorbital sites in particular, we selected two key house finch tissues for further characterization: the nictitating membrane, i.e., the internal eyelid in direct contact with MG, and the Harderian gland, the secondary lymphoid tissue responsible for regulation of periorbital immunity. We characterized cytokine responses in these two tissues for 60 house finches experimentally inoculated either with media alone (sham) or one of two MG isolates: the earliest known pathogen isolate from house finches (VA1994) or an evolutionarily more derived isolate collected in 2006 (NC2006), which is known to be more virulent. We show that the more derived and virulent isolate NC2006, relative to VA1994, triggers stronger local inflammatory cytokine signaling, with peak cytokine expression generally occurring 3-6 days following MG inoculation. We also found that the extent of pro-inflammatory interleukin 1 beta signaling was correlated with conjunctival MG loads and the extent of clinical signs of conjunctivitis, the main pathological effect of MG in house finches. These results suggest that the pathogenicity caused by MG infection in house finches is largely mediated by host pro-inflammatory immune responses, with important implications for the dynamics of host-pathogen coevolution.

  7. Nonnative trout impact an alpine-nesting bird by altering aquatic-insect subsidies.

    PubMed

    Epanchin, Peter N; Knapp, Roland A; Lawler, Sharon P

    2010-08-01

    Adjacent food webs may be linked by cross-boundary subsidies: more-productive donor systems can subsidize consumers in less-productive neighboring recipient systems. Introduced species are known to have direct effects on organisms within invaded communities. However, few studies have addressed the indirect effects of nonnative species in donor systems on organisms in recipient systems. We studied the direct role of introduced trout in altering a lake-derived resource subsidy and their indirect effects in altering a passerine bird's response to that subsidy. We compared the abundance of aquatic insects and foraging Gray-crowned Rosy-Finches (Leucosticte tephrocotis dawsoni, "Rosy-Finch") at fish-containing vs. fishless lakes in the Sierra Nevada Mountains of California (USA). Introduced trout outcompeted Rosy-Finches for emerging aquatic insects (i.e., mayflies). Fish-containing lakes had 98% fewer mayflies than did fishless lakes. In lakes without fish, Rosy-Finches showed an aggregative response to emerging aquatic insects with 5.9 times more Rosy-Finches at fishless lakes than at fish-containing lakes. Therefore, the introduction of nonnative fish into the donor system reduced both the magnitude of the resource subsidy and the strength of cross-boundary trophic interactions. Importantly, the timing of the subsidy occurs when Rosy-Finches feed their young. If Rosy-Finches rely on aquatic-insect subsidies to fledge their young, reductions in the subsidy by introduced trout may have decreased Rosy-Finch abundances from historic levels. We recommend that terrestrial recipients of aquatic subsidies be included in conservation and restoration plans for ecosystems with alpine lakes.

  8. Zebra Stripes through the Eyes of Their Predators, Zebras, and Humans.

    PubMed

    Melin, Amanda D; Kline, Donald W; Hiramatsu, Chihiro; Caro, Tim

    2016-01-01

    The century-old idea that stripes make zebras cryptic to large carnivores has never been examined systematically. We evaluated this hypothesis by passing digital images of zebras through species-specific spatial and colour filters to simulate their appearance for the visual systems of zebras' primary predators and zebras themselves. We also measured stripe widths and luminance contrast to estimate the maximum distances from which lions, spotted hyaenas, and zebras can resolve stripes. We found that beyond ca. 50 m (daylight) and 30 m (twilight) zebra stripes are difficult for the estimated visual systems of large carnivores to resolve, but not humans. On moonless nights, stripes are difficult for all species to resolve beyond ca. 9 m. In open treeless habitats where zebras spend most time, zebras are as clearly identified by the lion visual system as are similar-sized ungulates, suggesting that stripes cannot confer crypsis by disrupting the zebra's outline. Stripes confer a minor advantage over solid pelage in masking body shape in woodlands, but the effect is stronger for humans than for predators. Zebras appear to be less able than humans to resolve stripes although they are better than their chief predators. In conclusion, compared to the uniform pelage of other sympatric herbivores it appears highly unlikely that stripes are a form of anti-predator camouflage.

  9. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy

    PubMed Central

    Siegel, Nisan; Brooker, Gary

    2014-01-01

    FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called “CINCH”. PMID:25321701

  10. Darwin’s finches treat their feathers with a natural repellent

    PubMed Central

    Cimadom, Arno; Causton, Charlotte; Cha, Dong H.; Damiens, David; Fessl, Birgit; Hood-Nowotny, Rebecca; Lincango, Piedad; Mieles, Alejandro E.; Nemeth, Erwin; Semler, Elizabeth M.; Teale, Stephen A.; Tebbich, Sabine

    2016-01-01

    Darwin’s finches are highly innovative. Recently we recorded for the first time a behavioural innovation in Darwin’s finches outside the foraging context: individuals of four species rubbed leaves of the endemic tree Psidium galapageium on their feathers. We hypothesised that this behaviour serves to repel ectoparasites and tested the repellency of P. galapageium leaf extracts against parasites that negatively affect the fitness of Darwin’s finches, namely mosquitoes and the invasive hematophagous fly Philornis downsi. Mosquitoes transmit pathogens which have recently been introduced by humans and the larvae of the fly suck blood from nestlings and incubating females. Our experimental evidence demonstrates that P. galapageium leaf extracts repel both mosquitoes and adult P. downsi and also inhibit the growth of P. downsi larvae. It is therefore possible that finches use this plant to repel ectopoarasites. PMID:27721475

  11. Comparative stereology of the mouse and finch left ventricle.

    PubMed

    Bossen, E H; Sommer, J R; Waugh, R A

    1978-01-01

    The volume fractions and surface per unit cell volume of some subcellular components of the left ventricles of the finch and mouse were quantitated by stereologic techniques. These species were chosen for study because they have similar heart rates but differ morphologically in some respects: fiber diameter is larger in the mouse; the mouse has transverse tubules while the finch does not; and the finch has a form of junctional sarcoplasmic reticulum (JSR), extended JSR (EJSR), located in the cell interior with no direct plasmalemmal contact, while the mouse interior JSR (IJSR) abuts on transverse tubules. Our data show that the volume fraction (Vv) and surface area per unit cell volume (Sv) of total SR, and free SR (FSR) are similar. The volume fractions of mitochondria, myofibrils, and total junctional SR were also similar. The Sv of the cell surface of the finch was similar to the Sv of the cell surface of the mouse (Sv-plasmalemma plus Sv of the transverse tubules). The principal difference was in the distribution of JSR; the mouse peripheral JSR (PJSR) represents only 9% of the total JSR, while the finch PJSR accounts for 24% of the bird's JSR. The similar volume fractions of total junctional SR (PJSR + EJSR in the finch; PJSR + IJSR in the mouse) suggest that the EJSR is not an embryologic remnant, and raises the possibility that some function of JSR is independent of plasmalemmal contact.

  12. Juvenile social experience affects pairing success at adulthood: congruence with the loser effect?

    PubMed Central

    Mariette, Mylene M.; Cathaud, Charlène; Chambon, Rémi; Vignal, Clémentine

    2013-01-01

    Social interactions with adults are often critical for the development of mating behaviours. However, the potential role of other primary social partners such as juvenile counterparts is rarely considered. Most interestingly, it is not known whether interactions with juvenile females improve males’ courtship and whether, similar to the winner and loser effects in a fighting context—outcome of these interactions shapes males’ behaviour in future encounters. We investigated the combined effects of male quality and juvenile social experience on pairing success at adulthood in zebra finches (Taeniopygia guttata). We manipulated brood size to alter male quality and then placed males in either same- or mixed-sex juvenile dyads until adulthood. We found that males from reduced broods obtained more copulations and males from mixed-sex dyads had more complete courtships. Furthermore, independent of their quality, males that failed to pair with juvenile females, but not juvenile males, had a lower pairing success at adulthood. Our study shows that negative social experience with peers during adolescence may be a potent determinant of pairing success that can override the effects of early environmental conditions on male attractiveness and thereby supports the occurrence of an analogous process to the loser effect in a mating context. PMID:23902911

  13. Embryonic and postnatal telomere length decrease with ovulation order within clutches

    PubMed Central

    Noguera, José C.; Metcalfe, Neil B.; Reichert, Sophie; Monaghan, Pat

    2016-01-01

    Telomere length (TL) in early life has been found to be predictive of subsequent lifespan. Factors such as parental TL, parental age and environmental conditions during development have been shown to contribute to the observed variation in TL among individuals. One factor that has not hitherto been considered is ovulation order, although it is well established that the last hatched/born offspring in a brood or litter often show relatively poor subsequent performance. We examined the within- and across-clutch effect of ovulation order on TL in embryos of zebra finches experiencing the same controlled incubation conditions (N = 151), and tested whether any such ovulation order effects remained detectable in adults (N = 122). Irrespective of clutch and egg size, TL in early-stage embryos (72 h incubation) markedly decreased with within-clutch ovulation order; the difference in TL of first and last-laid embryos was equivalent to the average within-individual telomere loss over the entire period of nestling and juvenile life. This ovulation-order effect occurred only within but not across clutches, and was still evident in adults. Given that TL in early life predicts lifespan, our results suggest that parental effects on telomere length could contribute to the known poor performance of later-ovulated family members. PMID:27174767

  14. Recurrent interactions between the input and output of a songbird cortico-basal ganglia pathway are implicated in vocal sequence variability

    PubMed Central

    Hamaguchi, Kosuke; Mooney, Richard

    2012-01-01

    Complex brain functions, such as the capacity to learn and modulate vocal sequences, depend on activity propagation in highly distributed neural networks. To explore the synaptic basis of activity propagation in such networks, we made dual in vivo intracellular recordings in anesthetized zebra finches from the input (nucleus HVC) and output (lateral magnocellular nucleus of the anterior nidopallium (LMAN)) neurons of a songbird cortico-basal ganglia (BG) pathway necessary to the learning and modulation of vocal motor sequences. These recordings reveal evidence of bidirectional interactions, rather than only feedforward propagation of activity from HVC to LMAN, as had been previously supposed. A combination of dual and triple recording configurations and pharmacological manipulations was used to map out circuitry by which activity propagates from LMAN to HVC. These experiments indicate that activity travels to HVC through at least two independent ipsilateral pathways, one of which involves fast signaling through a midbrain dopaminergic cell group, reminiscent of recurrent mesocortical loops described in mammals. We then used in vivo pharmacological manipulations to establish that augmented LMAN activity is sufficient to restore high levels of sequence variability in adult birds, suggesting that recurrent interactions through highly distributed forebrain – midbrain pathways can modulate learned vocal sequences. PMID:22915110

  15. Environmental conditions shape the temporal pattern of investment in reproduction and survival.

    PubMed

    Marasco, Valeria; Boner, Winnie; Griffiths, Kate; Heidinger, Britt; Monaghan, Pat

    2018-01-10

    The relationship between environmental stress exposure and ageing is likely to vary with stressor severity, life-history stage and the time scale over which effects are measured. Such factors could influence whether stress exposure accelerates or slows the ageing process, but their interactions have not previously been experimentally investigated. We found that experimental exposure of zebra finches to mildly challenging environmental circumstances from young to old adulthood, which increased exposure to stress hormones, reduced breeding performance during early adulthood, but had positive effects when individuals were bred in old adulthood. This difference was not due to selective mortality, because the effects were evident within individuals, and no evidence of habituation in the response to the stressor was found. The more stressful environment had no effects on survival during young or old adulthood, but substantially improved survival during middle age. Changes in the effects at different ages could be due to the duration and nature of the challenging exposure, or to variation in coping capacity or strategy with age. These results show that living under challenging environmental circumstances can influence ageing trajectories in terms of both reproductive performance and longevity. Our results provide experimental support for the emerging idea that stress exposure needs to be optimized rather than minimized to obtain the best health outcomes. © 2018 The Author(s).

  16. Opposing effects of oxidative challenge and carotenoids on antioxidant status and condition-dependent sexual signalling

    PubMed Central

    Tomášek, Oldřich; Gabrielová, Barbora; Kačer, Petr; Maršík, Petr; Svobodová, Jana; Syslová, Kamila; Vinkler, Michal; Albrecht, Tomáš

    2016-01-01

    Several recent hypotheses consider oxidative stress to be a primary constraint ensuring honesty of condition-dependent carotenoid-based signalling. The key testable difference between these hypotheses is the assumed importance of carotenoids for redox homeostasis, with carotenoids being either antioxidant, pro-oxidant or unimportant. We tested the role of carotenoids in redox balance and sexual signalling by exposing adult male zebra finches (Taeniopygia guttata) to oxidative challenge (diquat dibromide) and manipulating carotenoid intake. As the current controversy over the importance of carotenoids as antioxidants could stem from the hydrophilic basis of commonly-used antioxidant assays, we used the novel measure of in vivo lipophilic antioxidant capacity. Oxidative challenge reduced beak pigmentation but elicited an increase in antioxidant capacity suggesting resource reallocation from signalling to redox homeostasis. Carotenoids counteracted the effect of oxidative challenge on lipophilic (but not hydrophilic) antioxidant capacity, thereby supporting carotenoid antioxidant function in vivo. This is inconsistent with hypotheses proposing that signalling honesty is maintained through either ROS-induced carotenoid degradation or the pro-oxidant effect of high levels of carotenoid-cleavage products acting as a physiological handicap. Our data further suggest that assessment of lipophilic antioxidant capacity is necessary to fully understand the role of redox processes in ecology and evolution. PMID:27000655

  17. Short bouts of vocalization induce long lasting fast gamma oscillations in a sensorimotor nucleus

    PubMed Central

    Lewandowski, Brian; Schmidt, Marc

    2011-01-01

    Performance evaluation is a critical feature of motor learning. In the vocal system, it requires the integration of auditory feedback signals with vocal motor commands. The network activity that supports such integration is unknown, but it has been proposed that vocal performance evaluation occurs offline. Recording from NIf, a sensorimotor structure in the avian song system, we show that short bouts of singing in adult male zebra finches (Taeniopygia guttata) induce persistent increases in firing activity and coherent oscillations in the fast gamma range (90–150 Hz). Single units are strongly phase-locked to these oscillations, which can last up to 30 s, often outlasting vocal activity by an order of magnitude. In other systems, oscillations often are triggered by events or behavioral tasks but rarely outlast the event that triggered them by more than 1 second. The present observations are the longest reported gamma oscillations triggered by an isolated behavioral event. In mammals, gamma oscillations have been associated with memory consolidation and are hypothesized to facilitate communication between brain regions. We suggest that the timing and persistent nature of NIf’s fast gamma oscillations make them well suited to facilitate the integration of auditory and vocal motor traces associated with vocal performance evaluation. PMID:21957255

  18. Species variation in the degree of sex differences in brain and behaviour related to birdsong: adaptations and constraints.

    PubMed

    Ball, Gregory F

    2016-02-19

    The song-control system, a neural circuit that controls the learning and production of birdsong, provided the first example in vertebrates of prominent macro-morphological sex differences in the brain. Forebrain nuclei HVC, robust nucleus of the arcopallium (RA) and area X all exhibit prominent male-biased sex differences in volume in zebra finches and canaries. Subsequent studies compared species that exhibited different degrees of a sex difference in song behaviour and revealed an overall positive correlation between male biases in song behaviour and male biases in the volume of the song nuclei. However, several exceptions have been described in which male biases in HVC and RA are observed even though song behaviour is equal or even female-biased. Other phenotypic measures exhibit lability in both sexes. In the duetting plain-tailed wren (Pheugopedius euophrys), males and females have auditory cells in the song system that are tuned to the joint song the two sexes produce rather than just male or female components. These findings suggest that there may be constraints on the adaptive response of the song system to ecological conditions as assessed by nucleus volume but that other critical variables regulating song can respond so that each sex can modify its song behaviour as needed. © 2016 The Author(s).

  19. Modulation of singing-related activity in the songbird ventral tegmental area by social context.

    PubMed

    Yanagihara, Shin; Hessler, Neal A

    2006-12-01

    Successful reproduction depends critically on social interactions. To understand the neural mechanisms underlying such interactions, the study of courtship singing of songbirds has many advantages. Male zebra finches produce a similar song during courtship of a female and while alone. However, singing-related neural activity in the anterior forebrain pathway (AFP), a basal ganglia-forebrain circuit, is markedly dependent on the social context in which singing occurs. Thus, the AFP should receive a signal of social context from outside the song system. Here, we have begun to investigate the neural source of such a signal by recording from neurons in the ventral tegmental area (VTA), which provides dopaminergic input to Area X, a striatal nucleus of the AFP. The level of activity of most VTA neurons we recorded (32/35) was clearly modulated during singing, especially when males sang to a female bird. Modulation of the level of activity could occur in the presence of a female without singing, but typically was further increased when males sang to the female. In addition, activity of some neurons was patterned in relation to song elements, and appeared related to motor output. These results suggest that VTA activity could carry signals related to motivational aspects of singing, as well as more primary sensory and motor signals.

  20. An open source, wireless capable miniature microscope system

    NASA Astrophysics Data System (ADS)

    Liberti, William A., III; Perkins, L. Nathan; Leman, Daniel P.; Gardner, Timothy J.

    2017-08-01

    Objective. Fluorescence imaging through head-mounted microscopes in freely behaving animals is becoming a standard method to study neural circuit function. Flexible, open-source designs are needed to spur evolution of the method. Approach. We describe a miniature microscope for single-photon fluorescence imaging in freely behaving animals. The device is made from 3D printed parts and off-the-shelf components. These microscopes weigh less than 1.8 g, can be configured to image a variety of fluorophores, and can be used wirelessly or in conjunction with active commutators. Microscope control software, based in Swift for macOS, provides low-latency image processing capabilities for closed-loop, or BMI, experiments. Main results. Miniature microscopes were deployed in the songbird premotor region HVC (used as a proper name), in singing zebra finches. Individual neurons yield temporally precise patterns of calcium activity that are consistent over repeated renditions of song. Several cells were tracked over timescales of weeks and months, providing an opportunity to study learning related changes in HVC. Significance. 3D printed miniature microscopes, composed completely of consumer grade components, are a cost-effective, modular option for head-mounting imaging. These easily constructed and customizable tools provide access to cell-type specific neural ensembles over timescales of weeks.

  1. Hemispheric differences in processing of vocalizations depend on early experience.

    PubMed

    Phan, Mimi L; Vicario, David S

    2010-02-02

    An intriguing phenomenon in the neurobiology of language is lateralization: the dominant role of one hemisphere in a particular function. Lateralization is not exclusive to language because lateral differences are observed in other sensory modalities, behaviors, and animal species. Despite much scientific attention, the function of lateralization, its possible dependence on experience, and the functional implications of such dependence have yet to be clearly determined. We have explored the role of early experience in the development of lateralized sensory processing in the brain, using the songbird model of vocal learning. By controlling exposure to natural vocalizations (through isolation, song tutoring, and muting), we manipulated the postnatal auditory environment of developing zebra finches, and then assessed effects on hemispheric specialization for communication sounds in adulthood. Using bilateral multielectrode recordings from a forebrain auditory area known to selectively process species-specific vocalizations, we found that auditory responses to species-typical songs and long calls, in both male and female birds, were stronger in the right hemisphere than in the left, and that right-side responses adapted more rapidly to stimulus repetition. We describe specific instances, particularly in males, where these lateral differences show an influence of auditory experience with song and/or the bird's own voice during development.

  2. Opposing effects of oxidative challenge and carotenoids on antioxidant status and condition-dependent sexual signalling.

    PubMed

    Tomášek, Oldřich; Gabrielová, Barbora; Kačer, Petr; Maršík, Petr; Svobodová, Jana; Syslová, Kamila; Vinkler, Michal; Albrecht, Tomáš

    2016-03-22

    Several recent hypotheses consider oxidative stress to be a primary constraint ensuring honesty of condition-dependent carotenoid-based signalling. The key testable difference between these hypotheses is the assumed importance of carotenoids for redox homeostasis, with carotenoids being either antioxidant, pro-oxidant or unimportant. We tested the role of carotenoids in redox balance and sexual signalling by exposing adult male zebra finches (Taeniopygia guttata) to oxidative challenge (diquat dibromide) and manipulating carotenoid intake. As the current controversy over the importance of carotenoids as antioxidants could stem from the hydrophilic basis of commonly-used antioxidant assays, we used the novel measure of in vivo lipophilic antioxidant capacity. Oxidative challenge reduced beak pigmentation but elicited an increase in antioxidant capacity suggesting resource reallocation from signalling to redox homeostasis. Carotenoids counteracted the effect of oxidative challenge on lipophilic (but not hydrophilic) antioxidant capacity, thereby supporting carotenoid antioxidant function in vivo. This is inconsistent with hypotheses proposing that signalling honesty is maintained through either ROS-induced carotenoid degradation or the pro-oxidant effect of high levels of carotenoid-cleavage products acting as a physiological handicap. Our data further suggest that assessment of lipophilic antioxidant capacity is necessary to fully understand the role of redox processes in ecology and evolution.

  3. The developmental origin of zygodactyl feet and its possible loss in the evolution of Passeriformes

    PubMed Central

    Botelho, João Francisco; Smith-Paredes, Daniel; Nuñez-Leon, Daniel; Soto-Acuña, Sergio; Vargas, Alexander O.

    2014-01-01

    The zygodactyl orientation of toes (digits II and III pointing forwards, digits I and IV pointing backwards) evolved independently in different extant bird taxa. To understand the origin of this trait in modern birds, we investigated the development of the zygodactyl foot of the budgerigar (Psittaciformes). We compared its muscular development with that of the anisodactyl quail (Galliformes) and show that while the musculus abductor digiti IV (ABDIV) becomes strongly developed at HH36 in both species, the musculus extensor brevis digiti IV (EBDIV) degenerates and almost disappears only in the budgerigar. The asymmetric action of those muscles early in the development of the budgerigar foot causes retroversion of digit IV (dIV). Paralysed budgerigar embryos do not revert dIV and are anisodactyl. Both molecular phylogenetic analysis and palaeontological information suggest that the ancestor of passerines could have been zygodactyl. We followed the development of the zebra finch (Passeriformes) foot muscles and found that in this species, both the primordia of the ABDIV and of the EBDIV fail to develop. These data suggest that loss of asymmetric forces of muscular activity exerted on dIV, caused by the absence of the ABDIV, could have resulted in secondary anisodactyly in Passeriformes. PMID:24966313

  4. The developmental origin of zygodactyl feet and its possible loss in the evolution of Passeriformes.

    PubMed

    Botelho, João Francisco; Smith-Paredes, Daniel; Nuñez-Leon, Daniel; Soto-Acuña, Sergio; Vargas, Alexander O

    2014-08-07

    The zygodactyl orientation of toes (digits II and III pointing forwards, digits I and IV pointing backwards) evolved independently in different extant bird taxa. To understand the origin of this trait in modern birds, we investigated the development of the zygodactyl foot of the budgerigar (Psittaciformes). We compared its muscular development with that of the anisodactyl quail (Galliformes) and show that while the musculus abductor digiti IV (ABDIV) becomes strongly developed at HH36 in both species, the musculus extensor brevis digiti IV (EBDIV) degenerates and almost disappears only in the budgerigar. The asymmetric action of those muscles early in the development of the budgerigar foot causes retroversion of digit IV (dIV). Paralysed budgerigar embryos do not revert dIV and are anisodactyl. Both molecular phylogenetic analysis and palaeontological information suggest that the ancestor of passerines could have been zygodactyl. We followed the development of the zebra finch (Passeriformes) foot muscles and found that in this species, both the primordia of the ABDIV and of the EBDIV fail to develop. These data suggest that loss of asymmetric forces of muscular activity exerted on dIV, caused by the absence of the ABDIV, could have resulted in secondary anisodactyly in Passeriformes. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. The oxidative cost of reproduction depends on early development oxidative stress and sex in a bird species

    PubMed Central

    Romero-Haro, A. A.; Sorci, G.; Alonso-Alvarez, C.

    2016-01-01

    In the early 2000s, a new component of the cost of reproduction was proposed: oxidative stress. Since then the oxidative cost of reproduction hypothesis has, however, received mixed support. Different arguments have been provided to explain this. Among them, the lack of a life-history perspective on most experimental tests was suggested. We manipulated the levels of a key intracellular antioxidant (glutathione) in captive zebra finches (Taeniopygia guttata) during a short period of early life and subsequently tested the oxidative cost of reproduction. Birds were allowed to mate freely in an outdoor aviary for several months. We repeatedly enlarged or reduced their broods to increase or reduce, respectively, breeding effort. Birds whose glutathione levels were reduced during growth showed higher erythrocyte resistance to free radical-induced haemolysis when forced to rear enlarged broods. This supports the hypothesis predicting the occurrence of developing programmes matching early and adult environmental conditions to improve fitness. Moreover, adult males rearing enlarged broods endured higher plasma levels of lipid oxidative damage than control males, whereas adult females showed the opposite trend. As most previous studies reporting non-significant or opposite results used females only, we also discuss some sex-related particularities that may contribute to explain unexpected results. PMID:27358368

  6. Prevalence of blood parasites in eastern versus Western house finches: are eastern birds resistant to infection?

    PubMed

    Davis, Andrew K; Hood, Wendy R; Hill, Geoffrey E

    2013-09-01

    The rapid spread of the bacterial disease, Mycoplasma gallisepticum (MG), throughout the introduced range of house finches (Carpodacus mexicanus) in eastern North America, compared to its slower spread through the native western range, has puzzled researchers and highlights the need to understand the relative differences in health state of finches from both populations. We conducted a light-microscope survey of hemoparasites in populations of finches from Arizona (within the western range) and from Alabama (within the eastern range), and compared our estimates of prevalence to published reports from house finches sampled in both ranges. Of the 33 Arizona birds examined, we recorded hematozoan infections in 16 (48.5%) individuals, compared to 1 infected Alabama bird out of 30 birds examined (3.3%). Based on independent surveys of seven western North American and five eastern North American populations of house finches the average prevalence of blood parasites in western populations is 38.8% (±17.9 SD), while the average prevalence within the eastern range is only 5.9% (±6.1 SD). The average rate of infection among all songbirds sampled in the east is 34.2% (±4.8 SD). Thus, our surveys of wild birds as well as previously published observations point to eastern house finches having a much lower prevalence of blood parasite infections than their western counterparts. Combined with the fact that eastern finches also tend to have lower rates of avian pox infections than do western birds (based on a literature review), these observations suggest that eastern birds have either strong resistance to these infections or high susceptibility and associated mortality.

  7. Draft genome assembly of the Bengalese finch, Lonchura striata domestica, a model for motor skill variability and learning

    PubMed Central

    Mets, David G; Brainard, Michael S

    2018-01-01

    Abstract Background Vocal learning in songbirds has emerged as a powerful model for sensorimotor learning. Neurobehavioral studies of Bengalese finch (Lonchura striata domestica) song, naturally more variable and plastic than songs of other finch species, have demonstrated the importance of behavioral variability for initial learning, maintenance, and plasticity of vocalizations. However, the molecular and genetic underpinnings of this variability and the learning it supports are poorly understood. Findings To establish a platform for the molecular analysis of behavioral variability and plasticity, we generated an initial draft assembly of the Bengalese finch genome from a single male animal to 151× coverage and an N50 of 3.0 MB. Furthermore, we developed an initial set of gene models using RNA-seq data from 8 samples that comprise liver, muscle, cerebellum, brainstem/midbrain, and forebrain tissue from juvenile and adult Bengalese finches of both sexes. Conclusions We provide a draft Bengalese finch genome and gene annotation to facilitate the study of the molecular-genetic influences on behavioral variability and the process of vocal learning. These data will directly support many avenues for the identification of genes involved in learning, including differential expression analysis, comparative genomic analysis (through comparison to existing avian genome assemblies), and derivation of genetic maps for linkage analysis. Bengalese finch gene models and sequences will be essential for subsequent manipulation (molecular or genetic) of genes and gene products, enabling novel mechanistic investigations into the role of variability in learned behavior. PMID:29618046

  8. Draft genome assembly of the Bengalese finch, Lonchura striata domestica, a model for motor skill variability and learning.

    PubMed

    Colquitt, Bradley M; Mets, David G; Brainard, Michael S

    2018-03-01

    Vocal learning in songbirds has emerged as a powerful model for sensorimotor learning. Neurobehavioral studies of Bengalese finch (Lonchura striata domestica) song, naturally more variable and plastic than songs of other finch species, have demonstrated the importance of behavioral variability for initial learning, maintenance, and plasticity of vocalizations. However, the molecular and genetic underpinnings of this variability and the learning it supports are poorly understood. To establish a platform for the molecular analysis of behavioral variability and plasticity, we generated an initial draft assembly of the Bengalese finch genome from a single male animal to 151× coverage and an N50 of 3.0 MB. Furthermore, we developed an initial set of gene models using RNA-seq data from 8 samples that comprise liver, muscle, cerebellum, brainstem/midbrain, and forebrain tissue from juvenile and adult Bengalese finches of both sexes. We provide a draft Bengalese finch genome and gene annotation to facilitate the study of the molecular-genetic influences on behavioral variability and the process of vocal learning. These data will directly support many avenues for the identification of genes involved in learning, including differential expression analysis, comparative genomic analysis (through comparison to existing avian genome assemblies), and derivation of genetic maps for linkage analysis. Bengalese finch gene models and sequences will be essential for subsequent manipulation (molecular or genetic) of genes and gene products, enabling novel mechanistic investigations into the role of variability in learned behavior.

  9. Smart Phones: Platform Enabling Modular, Chemical, Biological, and Explosives Sensing

    DTIC Science & Technology

    2013-07-01

    Smart phones: Platform Enabling Modular, Chemical, Biological, and Explosives Sensing by Amethist S. Finch , Matthew Coppock, Justin R...Chemical, Biological, and Explosives Sensing Amethist S. Finch , Matthew Coppock, Justin R. Bickford, Marvin A. Conn, Thomas J. Proctor, and...Explosives Sensing 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Amethist S. Finch , Matthew Coppock, Justin R

  10. Linda Finch speaks to children during World Flight in New Orleans, La.

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Linda Finch, who re-created the flight of Amelia Earhardt's flight around the world 60 years ago, landed at New Orleans Lakefront Airport to speak to groups of inner-city school children during World Flight 1997. Stennis Space Center's Educator Resource Center played a role in the event by providing SSC-developed Geomap software to aid students in tracking Finch's flight.

  11. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system

    PubMed Central

    Kelner, Roy; Katz, Barak; Rosen, Joseph

    2015-01-01

    We propose a new type of confocal microscope using Fresnel incoherent correlation holography (FINCH). Presented here is a confocal configuration of FINCH using a phase pinhole and point illumination that is able to suppress out-of-focus information from the recorded hologram and hence combine the super-resolution capabilities of FINCH with the sectioning capabilities of confocal microscopy. PMID:26413560

  12. Seasonal effects of the zebra mussel (Dreissena polymorpha) on sediment denitrification rates in Pool 8 of the Upper Mississippi River

    USGS Publications Warehouse

    Bruesewitz, Denise A.; Tank, Jennifer L.; Bernot, Melody J.; Richardson, William B.; Strauss, Eric A.

    2006-01-01

    Zebra mussels (Dreissena polymorpha) have altered the structure of invaded ecosystems and exhibit characteristics that suggest they may influence ecosystem processes such as nitrogen (N) cycling. We measured denitrification rates seasonally on sediments underlying zebra mussel beds collected from the impounded zone of Navigation Pool 8 of the Upper Mississippi River. Denitrification assays were amended with nutrients to characterize variation in nutrient limitation of denitrification in the presence or absence of zebra mussels. Denitrification rates at zebra mussel sites were high relative to sites without zebra mussels in February 2004 (repeated measures analysis of variance (RM ANOVA), p = 0.005), potentially because of high NO3-N variability from nitrification of high NH4+ zebra mussel waste. Denitrification rates were highest in June 2003 (RM ANOVA, p 3-N concentrations during the study (linear regression, R2 = 0.72, p p ≤ 0.01). Examining how zebra mussels influence denitrification rates will aid in developing a more complete understanding of the impact of zebra mussels and more effective management strategies of eutrophic waters.

  13. Influenza A(H7N9) Virus Transmission between Finches and Poultry

    PubMed Central

    Jones, Jeremy C.; Sonnberg, Stephanie; Webby, Richard J.

    2015-01-01

    Low pathogenicity avian influenza A(H7N9) virus has been detected in poultry since 2013, and the virus has caused >450 infections in humans. The mode of subtype H7N9 virus transmission between avian species remains largely unknown, but various wild birds have been implicated as a source of transmission. H7N9 virus was recently detected in a wild sparrow in Shanghai, China, and passerine birds, such as finches, which share space and resources with wild migratory birds, poultry, and humans, can be productively infected with the virus. We demonstrate that interspecies transmission of H7N9 virus occurs readily between society finches and bobwhite quail but only sporadically between finches and chickens. Inoculated finches are better able to infect naive poultry than the reverse. Transmission occurs through shared water but not through the airborne route. It is therefore conceivable that passerine birds may serve as vectors for dissemination of H7N9 virus to domestic poultry. PMID:25811839

  14. Genetic diversity predicts pathogen resistance and cell-mediated immunocompetence in house finches

    PubMed Central

    Hawley, Dana M; Sydenstricker, Keila V; Kollias, George V; Dhondt, André A

    2005-01-01

    Evidence is accumulating that genetic variation within individual hosts can influence their susceptibility to pathogens. However, there have been few opportunities to experimentally test this relationship, particularly within outbred populations of non-domestic vertebrates. We performed a standardized pathogen challenge in house finches (Carpodacus mexicanus) to test whether multilocus heterozygosity across 12 microsatellite loci predicts resistance to a recently emerged strain of the bacterial pathogen, Mycoplasma gallisepticum (MG). We simultaneously tested whether the relationship between heterozygosity and pathogen susceptibility is mediated by differences in cell-mediated or humoral immunocompetence. We inoculated 40 house finches with MG under identical conditions and assayed both humoral and cell-mediated components of the immune response. Heterozygous house finches developed less severe disease when infected with MG, and they mounted stronger cell-mediated immune responses to phytohaemagglutinin. Differences in cell-mediated immunocompetence may, therefore, partly explain why more heterozygous house finches show greater resistance to MG. Overall, our results underscore the importance of multilocus heterozygosity for individual pathogen resistance and immunity. PMID:17148199

  15. Exploratory behavior is linked to stress physiology and social network centrality in free-living house finches (Haemorhous mexicanus).

    PubMed

    Moyers, Sahnzi C; Adelman, James S; Farine, Damien R; Moore, Ignacio T; Hawley, Dana M

    2018-06-01

    Animal personality has been linked to individual variation in both stress physiology and social behaviors, but few studies have simultaneously examined covariation between personality traits, stress hormone levels, and behaviors in free-living animals. We investigated relationships between exploratory behavior (one aspect of animal personality), stress physiology, and social and foraging behaviors in wild house finches (Haemorhous mexicanus). We conducted novel environment assays after collecting samples of baseline and stress-induced plasma corticosterone concentrations from a subset of house finches. We then fitted individuals with Passive Integrated Transponder tags and monitored feeder use and social interactions at radio-frequency identification equipped bird feeders. First, we found that individuals with higher baseline corticosterone concentrations exhibit more exploratory behaviors in a novel environment. Second, more exploratory individuals interacted with more unique conspecifics in the wild, though this result was stronger for female than for male house finches. Third, individuals that were quick to begin exploring interacted more frequently with conspecifics than slow-exploring individuals. Finally, exploratory behaviors were unrelated to foraging behaviors, including the amount of time spent on bird feeders, a behavior previously shown to be predictive of acquiring a bacterial disease that causes annual epidemics in house finches. Overall, our results indicate that individual differences in exploratory behavior are linked to variation in both stress physiology and social network traits in free-living house finches. Such covariation has important implications for house finch ecology, as both traits can contribute to fitness in the wild. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Comparison of learning ability and memory retention in altricial (Bengalese finch, Lonchura striata var. domestica) and precocial (blue-breasted quail, Coturnix chinensis) birds using a color discrimination task.

    PubMed

    Ueno, Aki; Suzuki, Kaoru

    2014-02-01

    The present study sought to assess the potential application of avian models with different developmental modes to studies on cognition and neuroscience. Six altricial Bengalese finches (Lonchura striata var. domestica), and eight precocial blue-breasted quails (Coturnix chinensis) were presented with color discrimination tasks to compare their respective faculties for learning and memory retention within the context of the two developmental modes. Tasks consisted of presenting birds with discriminative cues in the form of colored feeder lids, and birds were considered to have learned a task when 80% of their attempts at selecting the correctly colored lid in two consecutive blocks of 10 trials were successful. All of the finches successfully performed the required experimental tasks, whereas only half of the quails were able to execute the same tasks. In the learning test, finches required significantly fewer trials than quails to learn the task (finches: 13.5 ± 9.14 trials, quails: 45.8 ± 4.35 trials, P < 0.05), with finches scoring significantly more correct responses than quails (finches: 98.3 ± 4.08%, quails: 85.0 ± 5.77% at the peak of the learning curve). In the memory retention tests, which were conducted 45 days after the learning test, finches retained the ability to discriminate between colors correctly (95.0 ± 4.47%), whereas quails did not retain any memory of the experimental procedure and so could not be tested. These results suggested that altricial and precocial birds both possess the faculty for learning and retaining discrimination-type tasks, but that altricial birds perform better than precocial birds in both faculties. The present findings imply that developmental mode is an important consideration for assessing the suitability of bird species for particular experiments. © 2013 Japanese Society of Animal Science.

  17. Do zebra mussels (Dreissena polymorpha) alter lake water chemistry in a way that favours Microcystis growth?

    PubMed

    Bykova, Olga; Laursen, Andrew; Bostan, Vadim; Bautista, Joseph; McCarthy, Lynda

    2006-12-01

    This study examined possible relationships between the presence of zebra mussels (Dreissena polymorpha) and Microcystis spp. abundance. Experiments were conducted in 12 microcosms designed to mimic shallow lake ecosystems. Fresh, aerated water with phytoplankton (pseudokirchneriella spp. and Microcystis spp.) was pumped into each microcosm daily to ensure zebra mussels were exposed to oxygen and food. Microcosms containing zebra mussels experienced significantly higher fluxes of nitrate (p=0.019) and lower fluxes of ortho-phosphate (p=0.047) into sediments. In a second experiment, water column nutrient concentrations were compared in microcosms with and without live zebra mussels. Consistent with results of the previous experiment, microcosms with zebra mussels had significantly less nitrate (p=0.023) and organic nitrogen (p=0.003) in the water column, while ammonium (p=0.074), phosphate (p=0.491), and dissolved organic carbon (p=0.820) in the water column were not different between microcosms with or without zebra mussels. Microcosms with zebra mussels also experienced a reduction in green algae (pseudokirchneriella) (p<0.001) and an increase in abundance of Microcystis (p<0.001) relative to microcosms without zebra mussels. In an experiment without zebra mussels, nutrient ratios (N/P) were manipulated to determine potential links between N/P and relative abundance of each phytoplankton. Manipulation of N/P was intended to mimic differences observed in microcosms with and without zebra mussels in the previous experiment. Low N/P (mimicking microcosms with zebra mussels) was related to an increase in Microcystis (p<0.001) and Microcystis/Pseudokirchneriella biovolume (p<0.001). It is this shift in N/P, and possibly some level of selective feeding, that is believed to have driven changes in the relative abundance of Microcystis. In lakes invaded by zebra mussels, alterations in the processing of nitrogen and phosphorus could contribute to the re-emergence of Microcystis blooms.

  18. Predation on exotic zebra mussels by native fishes: Effects on predator and prey

    USGS Publications Warehouse

    Magoulick, D.D.; Lewis, L.C.

    2002-01-01

    1. Exotic zebra mussels, Dreissena polymorpha, occur in southern U.S. waterways in high densities, but little is known about the interaction between native fish predators and zebra mussels. Previous studies have suggested that exotic zebra mussels are low profitability prey items and native vertebrate predators are unlikely to reduce zebra mussel densities. We tested these hypotheses by observing prey use of fishes, determining energy content of primary prey species of fishes, and conducting predator exclusion experiments in Lake Dardanelle, Arkansas. 2. Zebra mussels were the primary prey eaten by 52.9% of blue catfish, Ictalurus furcatus; 48.2% of freshwater drum, Aplodinotus grunniens; and 100% of adult redear sunfish, Lepomis microlophus. Blue catfish showed distinct seasonal prey shifts, feeding on zebra mussels in summer and shad, Dorosoma spp., during winter. Energy content (joules g-1) of blue catfish prey (threadfin shad, Dorosoma petenense; gizzard shad, D. cepedianum; zebra mussels; and asiatic clams, Corbicula fluminea) showed a significant species by season interaction, but shad were always significantly greater in energy content than bivalves examined as either ash-free dry mass or whole organism dry mass. Fish predators significantly reduced densities of large zebra mussels (>5 mm length) colonising clay tiles in the summers of 1997 and 1998, but predation effects on small zebra mussels (???5 mm length) were less clear. 3. Freshwater drum and redear sunfish process bivalve prey by crushing shells and obtain low amounts of higher-energy food (only the flesh), whereas blue catfish lack a shell-crushing apparatus and ingest large amounts of low-energy food per unit time (bivalves with their shells). Blue catfish appeared to select the abundant zebra mussel over the more energetically rich shad during summer, then shifted to shad during winter when shad experienced temperature-dependent stress and mortality. Native fish predators can suppress adult zebra mussel colonisation, but are ultimately unlikely to limit population density because of zebra mussel reproductive potential.

  19. Genomic variation at the tips of the adaptive radiation of Darwin's finches.

    PubMed

    Chaves, Jaime A; Cooper, Elizabeth A; Hendry, Andrew P; Podos, Jeffrey; De León, Luis F; Raeymaekers, Joost A M; MacMillan, W Owen; Uy, J Albert C

    2016-11-01

    Adaptive radiation unfolds as selection acts on the genetic variation underlying functional traits. The nature of this variation can be revealed by studying the tips of an ongoing adaptive radiation. We studied genomic variation at the tips of the Darwin's finch radiation; specifically focusing on polymorphism within, and variation among, three sympatric species of the genus Geospiza. Using restriction site-associated DNA (RAD-seq), we characterized 32 569 single-nucleotide polymorphisms (SNPs), from which 11 outlier SNPs for beak and body size were uncovered by a genomewide association study (GWAS). Principal component analysis revealed that these 11 SNPs formed four statistically linked groups. Stepwise regression then revealed that the first PC score, which included 6 of the 11 top SNPs, explained over 80% of the variation in beak size, suggesting that selection on these traits influences multiple correlated loci. The two SNPs most strongly associated with beak size were near genes associated with beak morphology across deeper branches of the radiation: delta-like 1 homologue (DLK1) and high-mobility group AT-hook 2 (HMGA2). Our results suggest that (i) key adaptive traits are associated with a small fraction of the genome (11 of 32 569 SNPs), (ii) SNPs linked to the candidate genes are dispersed throughout the genome (on several chromosomes), and (iii) micro- and macro-evolutionary variation (roots and tips of the radiation) involve some shared and some unique genomic regions. © 2016 John Wiley & Sons Ltd.

  20. 18. Photographic copy of photograph (at teh offices of Finch, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photographic copy of photograph (at teh offices of Finch, Pruyn & Company, Glen Street, Glens Falls, New York), Beach?, Photographer, June 31, 1913. Panoramic view east to southwest of the Glens Falls Dam after the 1913 flood taken from the west end of the Finch, Pruyn & Company intake structure. - Glens Falls Dam, 100' to 450' West of U.S. Route 9 Bridge Spanning Hudson River, Glens Falls, Warren County, NY

  1. Zebra Stripes through the Eyes of Their Predators, Zebras, and Humans

    PubMed Central

    Melin, Amanda D.; Kline, Donald W.; Hiramatsu, Chihiro; Caro, Tim

    2016-01-01

    The century-old idea that stripes make zebras cryptic to large carnivores has never been examined systematically. We evaluated this hypothesis by passing digital images of zebras through species-specific spatial and colour filters to simulate their appearance for the visual systems of zebras’ primary predators and zebras themselves. We also measured stripe widths and luminance contrast to estimate the maximum distances from which lions, spotted hyaenas, and zebras can resolve stripes. We found that beyond ca. 50 m (daylight) and 30 m (twilight) zebra stripes are difficult for the estimated visual systems of large carnivores to resolve, but not humans. On moonless nights, stripes are difficult for all species to resolve beyond ca. 9 m. In open treeless habitats where zebras spend most time, zebras are as clearly identified by the lion visual system as are similar-sized ungulates, suggesting that stripes cannot confer crypsis by disrupting the zebra’s outline. Stripes confer a minor advantage over solid pelage in masking body shape in woodlands, but the effect is stronger for humans than for predators. Zebras appear to be less able than humans to resolve stripes although they are better than their chief predators. In conclusion, compared to the uniform pelage of other sympatric herbivores it appears highly unlikely that stripes are a form of anti-predator camouflage. PMID:26799935

  2. Molecular phylogenetics of finches and sparrows: consequences of character state removal in cytochrome b sequences.

    PubMed

    Groth, J G

    1998-12-01

    The complete mitochondrial cytochrome b genes of 53 genera of oscine passerine birds representing the major groups of finches and some allies were compared. Phylogenetic trees resulting from three levels of character partition removal (no data removed, transitions at third positions of codons removed, and all transitions removed [transversion parsimony]) were generally concordant, and all supported several basic statements regarding relationships of finches and finch-like birds, including: (1) larks (Alaudidae) show no close relationship to any finch group; (2) Peucedramus (olive warbler) is phylogenetically far removed from true wood warblers; (3) a clade consisting of fringillids, passerids, motacillids, and emberizids is supported, and this clade is characterized by evolution of a vestigial 10th wing primary; and (4) Hawaiian honeycreepers are derived from within the cardueline finches. Excluding transition substitutions at third positions of codons resulted in phylogenetic trees similar to, but with greater bootstrap nodal support than, trees derived using either all data (equally weighted) or transversion parsimony. Relative to the shortest trees obtained using all data, the topologies obtained after elimination of third-position transitions showed only slight increases in realized treelength and homoplasy. These increases were negligable compared to increases in overall nodal support; therefore, this partition removal scheme may enhance recovery of deep phylogenetic signal in protein-coding DNA datasets. Copyright 1998 Academic Press.

  3. The effect of zebra mussel consumption on growth of freshwater drum in Lake Erie

    USGS Publications Warehouse

    French, John R. P.; Bur, Michael T.

    1996-01-01

    We examined food habits and scale annuli of freshwater drum (Aplodinotus grunniens) from western Lake Erie to determine whether increasing predation on zebra mussels (Dreissena polymorpha) had affected growth of freshwater drum. The volume of zebra mussels in drum guts was greater in older fish. Growth of age classes 3–4, which consumed few zebra mussels, was greater in the most productive year for zebra mussels, July 1990–August 1991, than in three prior years. The total lengths of 5-year-old drum changed little. The mean total length of 6-year-old females has declined since the zebra mussel invaded Lake Erie, even through mussels comprised more than two-thirds of gut samples in these fish. These studies suggest that zebra mussels may not benefit freshwater drum when serving as a staple in the diet. PDF

  4. Predation of the zebra mussel (Dreissena polymorpha) by freshwater drum in western Lake Erie

    USGS Publications Warehouse

    French, John R. P.; Bur, Michael T.; Nalepa, Thomas F.; Schloesser, Donald W.

    1992-01-01

    Environmental and economic problems associated with the colonization of zebra mussels (Dreissena polymorpha) in western Lake Erie created a need to investigate control mechanisms. Predation by fishes is one potential means of control, but predation on zebra mussels by native fishes in Lake Erie is unknown. The freshwater drum (Aplodinotus grunniens) is the most likely fish predator since it is the only fish with pharyngeal teeth capable of crushing mollusk shells. In 1990, freshwater drum were collected in western Lake Erie from 9 sites near rocky reefs and 13 sites with silt or sand bottoms, and gut contents were examined. Predation on zebra mussels increased as drum size increased. Small drum (200-249 mm in length) fed mainly on dipterans, amphipods, and small fish; small zebra mussels (375 mm in length) fed almost exclusively on zebra mussels (seasons and locations combined). The smallest drum capable of crushing zebra mussel shells was 265 mm. Since freshwater drum over 375 mm feed heavily on zebra mussels, they may become a possible biological control mechanism for mussels in portions of North America.

  5. Mitigation of unionid mortality caused by zebra mussel infestation: cleaning of unionids

    USGS Publications Warehouse

    Schloesser, Don W.

    1996-01-01

    Exotic zebra mussels Dreissena polymorpha have infested and caused mortality of native unionids in the Great Lakes since 1986; no other such parasitism of native unionids occurs in North America. Survival of unionids threatened by zebra mussel infestation was tested by suspending uncleaned and cleaned unionids in nearshore waters of western Lake Erie. Survival was determined, and newly settled zebra mussels were removed from clean unionids at eight intervals that ranged from 21 d to 77 d between 5 July 1990 and 3 July 1991. After 1 year, survival rates of uncleaned and cleaned unionids were 0% and 42%, respectively. Of the 10 species examined, only indivduals from 3 species (Amblema plicata plicata, Fusconaia flava, and Quadrula quadrula) survived 1 year. These species have relatively thick shells, which may have contributed to their survival. Removal of newly settled zebra mussels may be important to unionid survival because 98% of the zebra mussels removed after the initial cleaning were small mussels (<10 mm long) that could rapidly grow and cover unionids. At present, we do not know how zebra mussels cause mortality of unionids, but the removal of zebra mussels from unionids is the only method known that successfully reduces unionid mortality in waters colonized by zebra mussels.

  6. Full genome sequences of zebra-borne equine herpesvirus type 1 isolated from zebra, onager and Thomson's gazelle.

    PubMed

    Guo, Xiaoqin; Izume, Satoko; Okada, Ayaka; Ohya, Kenji; Kimura, Takashi; Fukushi, Hideto

    2014-09-01

    A strain of equine herpesvirus type 1 (EHV-1) was isolated from zebra. This strain, called "zebra-borne EHV-1", was also isolated from an onager and a gazelle in zoological gardens in U.S.A. The full genome sequences of the 3 strains were determined. They shared 99% identities with each other, while they shared 98% and 95% identities with the horse derived EHV-1 and equine herpesvirus type 9, respectively. Sequence data indicated that the EHV-1 isolated from a polar bear in Germany is one of the zebra-borne EHV-1 and not a recombinant virus. These results indicated that zebra-borne EHV-1 is a subtype of EHV-1.

  7. Natural selection in avian protein-coding genes expressed in brain.

    PubMed

    Axelsson, Erik; Hultin-Rosenberg, Lina; Brandström, Mikael; Zwahlén, Martin; Clayton, David F; Ellegren, Hans

    2008-06-01

    The evolution of birds from theropod dinosaurs took place approximately 150 million years ago, and was associated with a number of specific adaptations that are still evident among extant birds, including feathers, song and extravagant secondary sexual characteristics. Knowledge about the molecular evolutionary background to such adaptations is lacking. Here, we analyse the evolution of > 5000 protein-coding gene sequences expressed in zebra finch brain by comparison to orthologous sequences in chicken. Mean d(N)/d(S) is 0.085 and genes with their maximal expression in the eye and central nervous system have the lowest mean d(N)/d(S) value, while those expressed in digestive and reproductive tissues exhibit the highest. We find that fast-evolving genes (those which have higher than expected rate of nonsynonymous substitution, indicative of adaptive evolution) are enriched for biological functions such as fertilization, muscle contraction, defence response, response to stress, wounding and endogenous stimulus, and cell death. After alignment to mammalian orthologues, we identify a catalogue of 228 genes that show a significantly higher rate of protein evolution in the two bird lineages than in mammals. These accelerated bird genes, representing candidates for avian-specific adaptations, include genes implicated in vocal learning and other cognitive processes. Moreover, colouration genes evolve faster in birds than in mammals, which may have been driven by sexual selection for extravagant plumage characteristics.

  8. Finding the Beat: From Socially Coordinated Vocalizations in Songbirds to Rhythmic Entrainment in Humans.

    PubMed

    Benichov, Jonathan I; Globerson, Eitan; Tchernichovski, Ofer

    2016-01-01

    Humans and oscine songbirds share the rare capacity for vocal learning. Songbirds have the ability to acquire songs and calls of various rhythms through imitation. In several species, birds can even coordinate the timing of their vocalizations with other individuals in duets that are synchronized with millisecond-accuracy. It is not known, however, if songbirds can perceive rhythms holistically nor if they are capable of spontaneous entrainment to complex rhythms, in a manner similar to humans. Here we review emerging evidence from studies of rhythm generation and vocal coordination across songbirds and humans. In particular, recently developed experimental methods have revealed neural mechanisms underlying the temporal structure of song and have allowed us to test birds' abilities to predict the timing of rhythmic social signals. Surprisingly, zebra finches can readily learn to anticipate the calls of a "vocal robot" partner and alter the timing of their answers to avoid jamming, even in reference to complex rhythmic patterns. This capacity resembles, to some extent, human predictive motor response to an external beat. In songbirds, this is driven, at least in part, by the forebrain song system, which controls song timing and is essential for vocal learning. Building upon previous evidence for spontaneous entrainment in human and non-human vocal learners, we propose a comparative framework for future studies aimed at identifying shared mechanism of rhythm production and perception across songbirds and humans.

  9. When mothers make sons sexy: maternal effects contribute to the increased sexual attractiveness of extra-pair offspring.

    PubMed

    Tschirren, Barbara; Postma, Erik; Rutstein, Alison N; Griffith, Simon C

    2012-03-22

    Quality differences between offspring sired by the social and by an extra-pair partner are usually assumed to have a genetic basis, reflecting genetic benefits of female extra-pair mate choice. In the zebra finch (Taeniopygia guttata), we identified a colour ornament that is under sexual selection and appears to have a heritable basis. Hence, by engaging in extra-pair copulations with highly ornamented males, females could, in theory, obtain genes for increased offspring attractiveness. Indeed, sons sired by extra-pair partners had larger ornaments, seemingly supporting the genetic benefit hypothesis. Yet, when comparing ornament size of the social and extra-pair partners, there was no difference. Hence, the observed differences most likely had an environmental basis, mediated, for example, via differential maternal investment of resources into the eggs fertilized by extra-pair and social partners. Such maternal effects may (at least partly) be mediated by egg size, which we found to be associated with mean ornament expression in sons. Our results are consistent with the idea that maternal effects can shape sexual selection by altering the genotype-phenotype relationship for ornamentation. They also caution against automatically attributing greater offspring attractiveness or viability to an extra-pair mate's superior genetic quality, as without controlling for differential maternal investment we may significantly overestimate the role of genetic benefits in the evolution of extra-pair mating behaviour.

  10. When mothers make sons sexy: maternal effects contribute to the increased sexual attractiveness of extra-pair offspring

    PubMed Central

    Tschirren, Barbara; Postma, Erik; Rutstein, Alison N.; Griffith, Simon C.

    2012-01-01

    Quality differences between offspring sired by the social and by an extra-pair partner are usually assumed to have a genetic basis, reflecting genetic benefits of female extra-pair mate choice. In the zebra finch (Taeniopygia guttata), we identified a colour ornament that is under sexual selection and appears to have a heritable basis. Hence, by engaging in extra-pair copulations with highly ornamented males, females could, in theory, obtain genes for increased offspring attractiveness. Indeed, sons sired by extra-pair partners had larger ornaments, seemingly supporting the genetic benefit hypothesis. Yet, when comparing ornament size of the social and extra-pair partners, there was no difference. Hence, the observed differences most likely had an environmental basis, mediated, for example, via differential maternal investment of resources into the eggs fertilized by extra-pair and social partners. Such maternal effects may (at least partly) be mediated by egg size, which we found to be associated with mean ornament expression in sons. Our results are consistent with the idea that maternal effects can shape sexual selection by altering the genotype–phenotype relationship for ornamentation. They also caution against automatically attributing greater offspring attractiveness or viability to an extra-pair mate's superior genetic quality, as without controlling for differential maternal investment we may significantly overestimate the role of genetic benefits in the evolution of extra-pair mating behaviour. PMID:21957136

  11. Increased Fos expression among midbrain dopaminergic cell groups during birdsong tutoring.

    PubMed

    Nordeen, E J; Holtzman, D A; Nordeen, K W

    2009-08-01

    During avian vocal learning, birds memorize conspecific song patterns and then use auditory feedback to match their vocal output to this acquired template. Some models of song learning posit that during tutoring, conspecific visual, social and/or auditory cues activate neuromodulatory systems that encourage acquisition of the tutor's song and attach incentive value to that specific acoustic pattern. This hypothesis predicts that stimuli experienced during social tutoring activate cell populations capable of signaling reward. Using immunocytochemistry for the protein product of the immediate early gene c-Fos, we found that brief exposure of juvenile male zebra finches to a live familiar male tutor increased the density of Fos+ cells within two brain regions implicated in reward processing: the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). This activation of Fos appears to involve both dopaminergic and non-dopaminergic VTA/SNc neurons. Intriguingly, a familiar tutor was more effective than a novel tutor in stimulating Fos expression within these regions. In the periaqueductal gray, a dopamine-enriched cell population that has been implicated in emotional processing, Fos labeling also was increased after tutoring, with a familiar tutor again being more effective than a novel conspecific. As several neural regions implicated in song acquisition receive strong dopaminergic projections from these midbrain nuclei, their activation in conjunction with hearing the tutor's song could help to establish sensory representations that later guide motor sequence learning.

  12. Epigenetic Control of Gonadal Aromatase (cyp19a1) in Temperature-Dependent Sex Determination of Red-Eared Slider Turtles

    PubMed Central

    Matsumoto, Yuiko; Buemio, Alvin; Chu, Randy; Vafaee, Mozhgon; Crews, David

    2013-01-01

    In the red-eared slider turtle (Trachemys scripta), a species with temperature-dependent sex determination (TSD), the expression of the aromatase gene during gonad development is strictly limited to the female-producing temperature. The underlying mechanism remains unknown. In this study, we identified the upstream 5′-flanking region of the aromatase gene, gonad-specific promoter, and the temperature-dependent DNA methylation signatures during gonad development in the red-eared slider turtle. The 5′-flanking region of the slider aromatase exhibited sequence similarities to the aromatase genes of the American alligator, chicken, quail, and zebra finch. A putative TATA box was located 31 bp upstream of the gonad-specific transcription start site. DNA methylation at the CpG sites between the putative binding sites of the fork head domain factor (FOX) and vertebrate steroidogenic factor 1 (SF1) and adjacent TATA box in the promoter region were significantly lower in embryonic gonads at the female-producing temperature compared the male-producing temperature. A shift from male- to female-, but not from female- to male-, producing temperature changed the level of DNA methylation in gonads. Taken together these results indicate that the temperature, particularly female-producing temperature, allows demethylation at the specific CpG sites of the promoter region which leads the temperature-specific expression of aromatase during gonad development. PMID:23762231

  13. Isolation by environment in White-breasted Nuthatches (Sitta carolinensis) of the Madrean Archipelago sky islands: a landscape genomics approach.

    PubMed

    Manthey, Joseph D; Moyle, Robert G

    2015-07-01

    Understanding landscape processes driving patterns of population genetic differentiation and diversity has been a long-standing focus of ecology and evolutionary biology. Gene flow may be reduced by historical, ecological or geographic factors, resulting in patterns of isolation by distance (IBD) or isolation by environment (IBE). Although IBE has been found in many natural systems, most studies investigating patterns of IBD and IBE in nature have used anonymous neutral genetic markers, precluding inference of selection mechanisms or identification of genes potentially under selection. Using landscape genomics, the simultaneous study of genomic and ecological landscapes, we investigated the processes driving population genetic patterns of White-breasted Nuthatches (Sitta carolinensis) in sky islands (montane forest habitat islands) of the Madrean Archipelago. Using more than 4000 single nucleotide polymorphisms and multiple tests to investigate the relationship between genetic differentiation and geographic or ecological distance, we identified IBE, and a lack of IBD, among sky island populations of S. carolinensis. Using three tests to identify selection, we found 79 loci putatively under selection; of these, seven matched CDS regions in the Zebra Finch. The loci under selection were highly associated with climate extremes (maximum temperature of warmest month and minimum precipitation of driest month). These results provide evidence for IBE - disentangled from IBD - in sky island vertebrates and identify potential adaptive genetic variation. © 2015 John Wiley & Sons Ltd.

  14. A complex mTOR response in habituation paradigms for a social signal in adult songbirds.

    PubMed

    Ahmadiantehrani, Somayeh; Gores, Elisa O; London, Sarah E

    2018-06-01

    Nonassociative learning is considered simple because it depends on presentation of a single stimulus, but it likely reflects complex molecular signaling. To advance understanding of the molecular mechanisms of one form of nonassociative learning, habituation, for ethologically relevant signals we examined song recognition learning in adult zebra finches. These colonial songbirds learn the unique song of individuals, which helps establish and maintain mate and other social bonds, and informs appropriate behavioral interactions with specific birds. We leveraged prior work demonstrating behavioral habituation for individual songs, and extended the molecular framework correlated with this behavior by investigating the mechanistic Target of Rapamycin (mTOR) signaling cascade. We hypothesized that mTOR may contribute to habituation because it integrates a variety of upstream signals and enhances associative learning, and it crosstalks with another cascade previously associated with habituation, ERK/ZENK. To begin probing for a possible role for mTOR in song recognition learning, we used a combination of song playback paradigms and bidirectional dysregulation of mTORC1 activation. We found that mTOR demonstrates the molecular signatures of a habituation mechanism, and that its manipulation reveals the complexity of processes that may be invoked during nonassociative learning. These results thus expand the molecular targets for habituation studies and raise new questions about neural processing of complex natural signals. © 2018 Ahmadiantehrani et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Environmental conditions can modulate the links among oxidative stress, age, and longevity.

    PubMed

    Marasco, Valeria; Stier, Antoine; Boner, Winnie; Griffiths, Kate; Heidinger, Britt; Monaghan, Pat

    2017-06-01

    Understanding the links between environmental conditions and longevity remains a major focus in biological research. We examined within-individual changes between early- and mid-adulthood in the circulating levels of four oxidative stress markers linked to ageing, using zebra finches (Taeniopygia guttata): a DNA damage product (8-hydroxy-2'-deoxyguanosine; 8-OHdG), protein carbonyls (PC), non-enzymatic antioxidant capacity (OXY), and superoxide dismutase activity (SOD). We further examined whether such within-individual changes differed among birds living under control (ad lib food) or more challenging environmental conditions (unpredictable food availability), having previously found that the latter increased corticosterone levels when food was absent but improved survival over a three year period. Our key findings were: (i) 8-OHdG and PC increased with age in both environments, with a higher increase in 8-OHdG in the challenging environment; (ii) SOD increased with age in the controls but not in the challenged birds, while the opposite was true for OXY; (iii) control birds with high levels of 8-OHdG died at a younger age, but this was not the case in challenged birds. Our data clearly show that while exposure to the potentially damaging effects of oxidative stress increases with age, environmental conditions can modulate the pace of this age-related change. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Light at night disrupts nocturnal rest and elevates glucocorticoids at cool color temperatures.

    PubMed

    Alaasam, Valentina J; Duncan, Richard; Casagrande, Stefania; Davies, Scott; Sidher, Abhijaat; Seymoure, Brett; Shen, Yantao; Zhang, Yong; Ouyang, Jenny Q

    2018-05-15

    Nighttime light pollution is quickly becoming a pervasive, global concern. Since the invention and proliferation of light-emitting diodes (LED), it has become common for consumers to select from a range of color temperatures of light with varying spectra. Yet, the biological impacts of these different spectra on organisms remain unclear. We tested if nighttime illumination of LEDs, at two commercially available color temperatures (3000 and 5000 K) and at ecologically relevant illumination levels affected body condition, food intake, locomotor activity, and glucocorticoid levels in zebra finches (Taeniopygia guttata). We found that individuals exposed to 5000 K light had higher rates of nighttime activity (peaking after 1 week of treatment) compared to 3000 K light and controls (no nighttime light). Birds in the 5000 K treatment group also had increased corticosterone levels from pretreatment levels compared to 3000 K and control groups but no changes in body condition or food intake. Individuals that were active during the night did not consequently decrease daytime activity. This study adds to the growing evidence that the spectrum of artificial light at night is important, and we advocate the use of nighttime lighting with warmer color temperatures of 3000 K instead of 5000 K to decrease energetic costs for avian taxa. © 2018 Wiley Periodicals, Inc.

  17. Social Modulation during Songbird Courtship Potentiates Midbrain Dopaminergic Neurons

    PubMed Central

    Huang, Ya-Chun; Hessler, Neal A.

    2008-01-01

    Synaptic transmission onto dopaminergic neurons of the mammalian ventral tegmental area (VTA) can be potentiated by acute or chronic exposure to addictive drugs. Because rewarding behavior, such as social affiliation, can activate the same neural circuitry as addictive drugs, we tested whether the intense social interaction of songbird courtship may also potentiate VTA synaptic function. We recorded glutamatergic synaptic currents from VTA of male zebra finches who had experienced distinct social and behavioral conditions during the previous hour. The level of synaptic transmission to VTA neurons, as assayed by the ratio of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) to N-methyl-D-aspartic acid (NMDA) glutamate receptor mediated synaptic currents, was increased after males sang to females, and also after they saw females without singing, but not after they sang while alone. Potentiation after female exposure alone did not appear to result from stress, as it was not blocked by inhibition of glucocorticoid receptors. This potentiation was restricted to synapses of dopaminergic projection neurons, and appeared to be expressed postsynaptically. This study supports a model in which VTA dopaminergic neurons are more strongly activated during singing used for courtship than during non-courtship singing, and thus can provide social context-dependent modulation to forebrain areas. More generally, these results demonstrate that an intense social encounter can trigger the same pathways of neuronal plasticity as addictive drugs. PMID:18827927

  18. How the songbird brain listens to its own songs

    NASA Astrophysics Data System (ADS)

    Hahnloser, Richard

    2010-03-01

    Songbirds are capable of vocal learning and communication and are ideally suited to the study of neural mechanisms of auditory feedback processing. When a songbird is deafened in the early sensorimotor phase after tutoring, it fails to imitate the song of its tutor and develops a highly aberrant song. It is also known that birds are capable of storing a long-term memory of tutor song and that they need intact auditory feedback to match their own vocalizations to the tutor's song. Based on these behavioral observations, we investigate feedback processing in single auditory forebrain neurons of juvenile zebra finches that are in a late developmental stage of song learning. We implant birds with miniature motorized microdrives that allow us to record the electrical activity of single neurons while birds are freely moving and singing in their cages. Occasionally, we deliver a brief sound through a loudspeaker to perturb the auditory feedback the bird experiences during singing. These acoustic perturbations of auditory feedback reveal complex sensitivity that cannot be predicted from passive playback responses. Some neurons are highly feedback sensitive in that they respond vigorously to song perturbations, but not to unperturbed songs or perturbed playback. These findings suggest that a computational function of forebrain auditory areas may be to detect errors between actual feedback and mirrored feedback deriving from an internal model of the bird's own song or that of its tutor.

  19. Low incidence of N-glycolylneuraminic acid in birds and reptiles and its absence in the platypus.

    PubMed

    Schauer, Roland; Srinivasan, G Vinayaga; Coddeville, Bernadette; Zanetta, Jean-Pierre; Guérardel, Yann

    2009-08-17

    The sialic acids of the platypus, birds, and reptiles were investigated with regard to the occurrence of N-glycolylneuraminic (Neu5Gc) acid. They were released from tissues, eggs, or salivary mucin samples by acid hydrolysis, and purified and analyzed by thin-layer chromatography, high-performance liquid chromatography, and mass spectrometry. In muscle and liver of the platypus only N-acetylneuraminic (Neu5Ac) acid was found. The nine bird species studied also did not express N-glycolylneuraminic acid with the exception of an egg, but not tissues, from the budgerigar and traces in poultry. Among nine reptiles, including one turtle, N-glycolylneuraminic acid was only found in the egg and an adult basilisk, but not in a freshly hatched animal. BLAST analysis of the genomes of the platypus, the chicken, and zebra finch against the CMP-N-acetylneuraminic acid hydroxylase did not reveal the existence of a similar protein structure. Apparently monotremes (platypus) and sauropsids (birds and reptiles) cannot synthesize Neu5Gc. The few animals where Neu5Gc was found, especially in eggs, may have acquired this from the diet or by an alternative pathway. Since Neu5Gc is antigenic to man, the observation that this monosaccharide does not or at least only rarely occur in birds and reptiles, may be of nutritional and clinical significance.

  20. Fitness Benefits of Mate Choice for Compatibility in a Socially Monogamous Species

    PubMed Central

    Ihle, Malika; Kempenaers, Bart; Forstmeier, Wolfgang

    2015-01-01

    Research on mate choice has primarily focused on preferences for quality indicators, assuming that all individuals show consensus about who is the most attractive. However, in some species, mating preferences seem largely individual-specific, suggesting that they might target genetic or behavioral compatibility. Few studies have quantified the fitness consequences of allowing versus preventing such idiosyncratic mate choice. Here, we report on an experiment that controls for variation in overall partner quality and show that zebra finch (Taeniopygia guttata) pairs that resulted from free mate choice achieved a 37% higher reproductive success than pairs that were forced to mate. Cross-fostering of freshly laid eggs showed that embryo mortality (before hatching) primarily depended on the identity of the genetic parents, whereas offspring mortality during the rearing period depended on foster-parent identity. Therefore, preventing mate choice should lead to an increase in embryo mortality if mate choice targets genetic compatibility (for embryo viability), and to an increase in offspring mortality if mate choice targets behavioral compatibility (for better rearing). We found that pairs from both treatments showed equal rates of embryo mortality, but chosen pairs were better at raising offspring. These results thus support the behavioral, but not the genetic, compatibility hypothesis. Further exploratory analyses reveal several differences in behavior and fitness components between “free-choice” and “forced” pairs. PMID:26366558

  1. Vocal exploration is locally regulated during song learning

    PubMed Central

    Ravbar, Primoz; Parra, Lucas C.; Lipkind, Dina; Tchernichovski, Ofer

    2012-01-01

    Exploratory variability is essential for sensory-motor learning, but it is not known how and at what time scales it is regulated. We manipulated song learning in zebra finches to experimentally control the requirements for vocal exploration in different parts of their song. We first trained birds to perform a one-syllable song, and once they mastered it we added a new syllable to the song model. Remarkably, when practicing the modified song, birds rapidly alternated between high and low acoustic variability to confine vocal exploration to the newly added syllable. Further, even within syllables, acoustic variability changed independently across song elements that were only milliseconds apart. Analysis of the entire vocal output during learning revealed that the variability of each song element decreased as it approached the target, correlating with momentary local distance from the target and less so with the overall distance. We conclude that vocal error is computed locally in sub-syllabic time scales and that song elements can be learned and crystalized independently. Songbirds have dedicated brain circuitry for vocal babbling in the anterior forebrain pathway (AFP), which generates exploratory song patterns that drive premotor neurons at the song nucleus RA (robust nucleus of the arcopallium). We hypothesize that either AFP adjusts the gain of vocal exploration in fine time scales, or that the sensitivity of RA premotor neurons to AFP/HVC inputs varies across song elements. PMID:22399765

  2. Female extrapair mating behavior can evolve via indirect selection on males

    PubMed Central

    Forstmeier, Wolfgang; Martin, Katrin; Bolund, Elisabeth; Schielzeth, Holger; Kempenaers, Bart

    2011-01-01

    In many species that form socially monogamous pair bonds, a considerable proportion of the offspring is sired by extrapair males. This observation has remained a puzzle for evolutionary biologists: although mating outside the pair bond can obviously increase the offspring production of males, the benefits of such behavior to females are less clear, yet females are known to actively solicit extrapair copulations. For more than two decades adaptionist explanations have dominated the discussions, yet remain controversial, and genetic constraint arguments have been dismissed without much consideration. An intriguing but still untested hypothesis states that extrapair mating behavior by females may be affected by the same genetic variants (alleles) as extrapair mating behavior by males, such that the female behavior could evolve through indirect selection on the male behavior. Here we show that in the socially monogamous zebra finch, individual differences in extrapair mating behavior have a hereditary component. Intriguingly, this genetic basis is shared between the sexes, as shown by a strong genetic correlation between male and female measurements of extrapair mating behavior. Hence, positive selection on males to sire extrapair young will lead to increased extrapair mating by females as a correlated evolutionary response. This behavior leads to a fundamentally different view of female extrapair mating: it may exist even if females obtain no net benefit from it, simply because the corresponding alleles were positively selected in the male ancestors. PMID:21670288

  3. Factors that influence the onset of parental care in zebra finches: Roles for egg stimuli and prolactin.

    PubMed

    Smiley, Kristina O; Adkins-Regan, Elizabeth

    2018-05-09

    Parental care is a critical component for determining reproductive success both for a current set of offspring but also over the lifetime of the individual. The hormone prolactin has often been implicated as a parental care hormone across taxa but causal relationships have only been strongly demonstrated in mammals and few select species of birds. For instance, in mammals, maternal care towards foster pups can be induced by exogenous treatment with prolactin, in concert with other reproductive hormones involved in pregnancy. We aimed to address this causal mechanism in birds by artificially elevating prolactin during the nest building and egg laying stages using vasoactive intestinal peptide (VIP) and then exposing them to foster chicks. We predicted that increasing prolactin would increase brooding and feeding behaviors towards foster chicks compared to the saline control group. Parental behavior towards foster chicks was only shown by individuals who had initiated clutches regardless of treatment. VIP treatment had no effect on parental behavior; however, a positive relationship was found between male and female feeding rates in the VIP but not control group. Our results suggest that both eggs and chicks are sufficient to stimulate foster care, perhaps through endogenous prolactin signalling, while further elevations of prolactin may serve to synchronize parental behaviors between pairs. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Sex, estradiol, and spatial memory in a food-caching corvid.

    PubMed

    Rensel, Michelle A; Ellis, Jesse M S; Harvey, Brigit; Schlinger, Barney A

    2015-09-01

    Estrogens significantly impact spatial memory function in mammalian species. Songbirds express the estrogen synthetic enzyme aromatase at relatively high levels in the hippocampus and there is evidence from zebra finches that estrogens facilitate performance on spatial learning and/or memory tasks. It is unknown, however, whether estrogens influence hippocampal function in songbirds that naturally exhibit memory-intensive behaviors, such as cache recovery observed in many corvid species. To address this question, we examined the impact of estradiol on spatial memory in non-breeding Western scrub-jays, a species that routinely participates in food caching and retrieval in nature and in captivity. We also asked if there were sex differences in performance or responses to estradiol. Utilizing a combination of an aromatase inhibitor, fadrozole, with estradiol implants, we found that while overall cache recovery rates were unaffected by estradiol, several other indices of spatial memory, including searching efficiency and efficiency to retrieve the first item, were impaired in the presence of estradiol. In addition, males and females differed in some performance measures, although these differences appeared to be a consequence of the nature of the task as neither sex consistently out-performed the other. Overall, our data suggest that a sustained estradiol elevation in a food-caching bird impairs some, but not all, aspects of spatial memory on an innate behavioral task, at times in a sex-specific manner. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. SEX, ESTRADIOL, AND SPATIAL MEMORY IN A FOOD-CACHING CORVID

    PubMed Central

    Rensel, Michelle A.; Ellis, Jesse M.S.; Harvey, Brigit; Schlinger, Barney A.

    2015-01-01

    Estrogens significantly impact spatial memory function in mammalian species. Songbirds express the estrogen synthetic enzyme aromatase at relatively high levels in the hippocampus and there is evidence from zebra finches that estrogens facilitate performance on spatial learning and/or memory tasks. It is unknown, however, whether estrogens influence hippocampal function in songbirds that naturally exhibit memory-intensive behaviors, such as cache recovery observed in many corvid species. To address this question, we examined the impact of estradiol on spatial memory in non-breeding Western scrub-jays, a species that routinely participates in food caching and retrieval in nature and in captivity. We also asked if there were sex differences in performance or responses to estradiol. Utilizing a combination of an aromatase inhibitor, fadrozole, with estradiol implants, we found that while overall cache recovery rates were unaffected by estradiol, several other indices of spatial memory, including searching efficiency and efficiency to retrieve the first item, were impaired in the presence of estradiol. In addition, males and females differed in some performance measures, although these differences appeared to be a consequence of the nature of the task as neither sex consistently out-performed the other. Overall, our data suggest that a sustained estradiol elevation in a food-caching bird impairs some, but not all, aspects of spatial memory on an innate behavioral task, at times in a sex-specific manner. PMID:26232613

  6. Effects of temperature and aerial exposure on the BOD of waste zebra mussels removed from navigational locks.

    PubMed

    Aldridge, D W; Payne, B S

    2001-08-01

    This laboratory study evaluated the effects of temperature and aerial exposure on BOD5 (5-day BOD) of waste zebra mussels of the type generated by maintenance operations on dams and navigational locks. The term waste zebra mussels includes the mussels and their associated debris with the latter including sediment, feces, pseudofeces and other small aquatic organisms. The BOD5 of waste zebra mussel was evaluated after aerial exposure of 3 and 10 days at temperatures of 5, 10, and 20 degrees C. The mean BOD5 values for waste zebra mussels in this study ranged from 18,500 to 30,600 mg O2/l. Factorial ANOVA analysis revealed that both temperature and aerial exposure had a negative effect on waste zebra mussel BOD5 (P<0.05) but there was no significant interaction effect (P = 0.119). Multiple regression analysis predicted that for the range of treatment conditions used in this study each 1 degrees C increase in temperature reduced the waste zebra mussel BOD5 by 284mg O2/l or 0.93% of the maximum mean BOD5. Each I day increase in aerial exposure reduced waste zebra mussel BOD5 by 987 mg O2/l or 3.22% of the maximum mean BOD5. Aerial exposure of waste zebra mussels substantially reduces waste BOD5.

  7. Experimental demonstration of the fitness consequences of an introduced parasite of Darwin's finches.

    PubMed

    Koop, Jennifer A H; Huber, Sarah K; Laverty, Sean M; Clayton, Dale H

    2011-05-11

    Introduced parasites are a particular threat to small populations of hosts living on islands because extinction can occur before hosts have a chance to evolve effective defenses. An experimental approach in which parasite abundance is manipulated in the field can be the most informative means of assessing a parasite's impact on the host. The parasitic fly Philornis downsi, recently introduced to the Galápagos Islands, feeds on nestling Darwin's finches and other land birds. Several correlational studies, and one experimental study of mixed species over several years, reported that the flies reduce host fitness. Here we report the results of a larger scale experimental study of a single species at a single site over a single breeding season. We manipulated the abundance of flies in the nests of medium ground finches (Geospiza fortis) and quantified the impact of the parasites on nestling growth and fledging success. We used nylon nest liners to reduce the number of parasites in 24 nests, leaving another 24 nests as controls. A significant reduction in mean parasite abundance led to a significant increase in the number of nests that successfully fledged young. Nestlings in parasite-reduced nests also tended to be larger prior to fledging. Our results confirm that P. downsi has significant negative effects on the fitness of medium ground finches, and they may pose a serious threat to other species of Darwin's finches. These data can help in the design of management plans for controlling P. downsi in Darwin's finch breeding populations.

  8. Efficacy of Pseudomonas fluorescens (Pf-CL145A) spray dried powder for controlling zebra mussels adhering to test substrates

    USGS Publications Warehouse

    Luoma, James A.; Severson, Todd J.; Weber, Kerry L.; Mayer, Denise A.

    2015-01-01

    Approximately 30 days after exposure, zebra mussels were sorted into live and dead, and enumerated. Mean survival of zebra mussels in control treatments exceeded 95 percent. Mean survival of zebra mussels in the Lake Carlos WWC SDP-treated groups ranged from 0.5 to 2.1 percent and when compared at the same exposure duration, no difference was detected in survival between the 50 and 100 milligrams per liter (mg/L) treatment groups. Similarly, mean survival of zebra mussels in the Shawano Lake WWC SDP-treated groups ranged from 2.0 to 12.6 percent and when compared at the same exposure duration, no difference was detected in survival between the 50- and 100-mg/L treatment groups. Mean survival of zebra mussels in the Lake Carlos BI trial SDP-treated groups did not differ (p = 0.93) and was 18.1 and 18.0 percent in the 50- and 100-mg/L treatment groups, respectively. Mean survival of zebra mussels in the Shawano Lake BI trial SDP-treated groups differed (p < 0.01) and was 2.9 and 0.9 percent in the 50- and 100-mg/L treatment groups, respectively. Survival of zebra mussels assigned to the SDP-treated groups in the Lake Carlos WWC trial (12-hour exposure duration) differed from the survival of zebra mussels assigned to the SDP-treated groups in the Lake Carlos BI trial; however, after modification of the BI application technique, no difference (p = 0.22) was detected between the survival of zebra mussel in the Shawano Lake WWC (12-hour exposure duration) and BI trials.

  9. Zebra mussel infestation of unionid bivalves (Unionidae) in North America

    USGS Publications Warehouse

    Schloesser, Don W.; Nalepa, Thomas F.; Mackie, Gerald L.

    1996-01-01

    In 1989, zebra mussels received national attention in North America when they reached densities exceeding 750,000/m2 in a water withdrawal facility along the shore of western Lake Erie of the Laurentian Great Lakes. Although water withdrawal problems caused by zebra mussels have been of immediate concern, ecological impacts attributed to mussels are likely to be the more important long-term issue for surface waters in North America. To date, the epizoic colonization (i.e., infestation) of unionid bivalve mollusks by zebra mussels has caused the most direct and severe ecological impact. Infestation of and resulting impacts caused by zebra mussels on unionids in the Great Lakes began in 1988. By 1990, mortality of unionids was occurring at some locations; by 1991, extant populations of unionids in western Lake Erie were nearly extirpated; by 1992, unionid populations in the southern half of Lake St. Clair were extirpated; by 1993, unionids in widely separated geographic areas of the Great Lakes and the Mississippi River showed high mortality due to mussel infestation. All infested unionid species in the Great Lakes (23) have become infested and exhibited mortality within two to four years after heavy infestation began. Data indicate that mean zebra mussel densities >5,000–6,000/m2 and infestation intensities >100-200/unionid in the presence of heavy zebra mussel recruitment results in near total mortality of unionids. At present, all unionid species in rivers, streams, and akes that sympatrically occur with zebra mussels have been infested and, in many locations, negatively impacted by zebra mussels. We do not know the potential consequences of infestation on the 297 unionid species found in North America, but believe zebra mussels pose an immediate threat to the abundance and diversity of unionids.

  10. Contrasting results from molecular and pedigree-based population diversity measures in captive zebra highlight challenges facing genetic management of zoo populations.

    PubMed

    Ito, Hideyuki; Ogden, Rob; Langenhorst, Tanya; Inoue-Murayama, Miho

    2017-01-01

    Zoo conservation breeding programs manage the retention of population genetic diversity through analysis of pedigree records. The range of demographic and genetic indices determined through pedigree analysis programs allows the conservation of diversity to be monitored relative to the particular founder population for a species. Such approaches are based on a number of well-documented founder assumptions, however without knowledge of actual molecular genetic diversity there is a risk that pedigree-based measures will be misinterpreted and population genetic diversity misunderstood. We examined the genetic diversity of the captive populations of Grevy's zebra, Hartmann's mountain zebra and plains zebra in Japan and the United Kingdom through analysis of mitochondrial DNA sequences. Very low nucleotide variability was observed in Grevy's zebra. The results were evaluated with respect to current and historic diversity in the wild, and indicate that low genetic diversity in the captive population is likely a result of low founder diversity, which in turn suggests relatively low wild genetic diversity prior to recent population declines. Comparison of molecular genetic diversity measures with analogous diversity indices generated from the studbook data for Grevy's zebra and Hartmann's mountain zebra show contrasting patterns, with Grevy's zebra displaying markedly less molecular diversity than mountain zebra, despite studbook analysis indicating that the Grevy's zebra population has substantially more founders, greater effective population size, lower mean kinship, and has suffered less loss of gene diversity. These findings emphasize the need to validate theoretical estimates of genetic diversity in captive breeding programs with empirical molecular genetic data. Zoo Biol. 36:87-94, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Bioaccumulation of pathogenic bacteria and amoeba by zebra mussels and their presence in watercourses.

    PubMed

    Mosteo, R; Goñi, P; Miguel, N; Abadías, J; Valero, P; Ormad, M P

    2016-01-01

    Dreissena polymorpha (the zebra mussel) has been invading freshwater bodies in Europe since the beginning of the nineteenth century. Filter-feeding organisms can accumulate and concentrate both chemical and biological contaminants in their tissues. Therefore, zebra mussels are recognized as indicators of freshwater quality. In this work, the capacity of the zebra mussel to accumulate human pathogenic bacteria and protozoa has been evaluated and the sanitary risk associated with their presence in surface water has also been assessed. The results show a good correlation between the pathogenic bacteria concentration in zebra mussels and in watercourses. Zebra mussels could therefore be used as an indicator of biological contamination. The bacteria (Escherichia coli, Enterococcus spp., Pseudomonas spp., and Salmonella spp.) and parasites (Cryptosporidium oocysts and free-living amoebae) detected in these mussels reflect a potential sanitary risk in water.

  12. The role of stimulus-specific adaptation in songbird syntax generation

    NASA Astrophysics Data System (ADS)

    Wittenbach, Jason D.

    Sequential behaviors are an important part of the behavioral repertoire of many animals and understanding how neural circuits encode and generate such sequences is a long-standing question in neuroscience. The Bengalese finch is a useful model system for studying variable action sequences. The songs of these birds consist of well-defined vocal elements (syllables) that are strung together to form sequences. The ordering of the syllables within the sequence is variable but not random - it shows complex statistical patterns (syntax). While often thought to be first-order, the syntax of the Bengalese finch song shows a distinct form of history dependence where the probability of repeating a syllable decreases as a function of the number of repetitions that have already occurred. Current models of the Bengalese finch song control circuitry offer no explanation for this repetition adaptation. The Bengalese finch also uses real-time auditory feedback to control the song syntax. Considering these facts, we hypothesize that repetition adaptation in the Bengalese finch syntax may be caused by stimulus-specific adaptation - a wide-spread phenomenon where neural responses to a specific stimulus become weaker with repeated presentations of the same stimulus. We begin by proposing a computational model for the song-control circuit where an auditory feedback signal that undergoes stimulus-specific adaptation helps drive repeated syllables. We show that this model does indeed capture the repetition adaptation observed in Bengalese finch syntax; along the way, we derive a new probabilistic model for repetition adaptation. Key predictions of our model are analyzed in light of experiments performed by collaborators. Next we extend the model in order to predict how the syntax will change as a function of brain temperature. These predictions are compared to experimental results from collaborators where portions of the Bengalese finch song circuit are cooled in awake and behaving birds. Finally we show that repetition adaptation persists even in a simplified dynamical system model when a parameter controlling the repeat probability changes slowly over repetitions.

  13. Occurrence of zebra mussels in near-shore areas of western Lake Erie

    USGS Publications Warehouse

    Custer, Christine M.; Custer, T.W.

    1997-01-01

    Zebra mussels (Dreissena polymorpha) invaded the Great Lakes in the mid-1980s and quickly reached high densities. The objective of this study was to determine current consumption of zebra mussels by waterfowl in the Great Lakes region. Feeding Lesser Scaups (Aythya affinis), Greater Scaups (A. marila), Canvasbacks (A. valisineria), Redheads (A. americana), Buffleheads (Bucephala albeola) and Common Goldeneyes (B. clangula) were collected in western Lake Erie and in Lake St. Clair between fall and spring, 1992-1993 to determine food habits. All 10 Redheads, 97% of Lesser Scaups, 83% of Goldeneyes, 60% of Buffleheads and 9% of Canvasbacks contained one or more zebra mussels in their upper gastrointestinal tracts. The aggregate percent of zebra mussels in the diet of Lesser Scaups was higher in Lake Erie (98.6%) than in Lake St. Clair (54.4%). Zebra mussels, (aggregate percent) dominated the diet of Common Goldeneyes (79.2%) but not in Buffleheads (23.5%), Redheads (21%) or Canvasbacks (9%). Lesser Scaups from Lake Erie fed on larger zebra mussels ( = 10.7 i?? 0.66 mm SE) than did Lesser Scaups from Lake St. Clair ( = 4.4 i?? 0.22 mm). Lesser Scaups, Buffleheads and Common Goldeneyes from Lake Erie consumed zebra mussels of similar size.

  14. Lesser scaup forage on zebra mussels at Cook nuclear plant, Michigan

    USGS Publications Warehouse

    Mitchell, C.A.; Carlson, J.

    1993-01-01

    Nineteen of 21 Lesser Scaup (Aythya affinis) entrained while foraging at the water intake structures of Cook Nuclear Plant, Bridgman, Michigan had consumed zebra mussels (Dreissena polymorpha). The average number of zebra mussels in the upper gastrointestinal tract was 260; maximum number was 987. Migrating Lesser Scaup found this new food source during the first winter following settlement of zebra mussels on the water intake structures of the power plant.

  15. The use of positive reinforcement in training zebra sharks (Stegostoma fasciatum).

    PubMed

    Marranzino, Ashley

    2013-01-01

    Positive reinforcement training (PRT) was used on 4 adult zebra sharks, Stegostoma fasciatum, housed at the Downtown Aquarium, Denver, to determine the ability of zebra sharks to become desensitized to various stimuli associated with veterinary procedures. One male and 3 female sharks were trained for 12 weeks. As a result of PRT, all 4 zebra sharks were desensitized to staying within a closed holding tank off of the main exhibit, the presence of multiple trainers in the closed holding tank, and tactile stimulation. One of the 4 zebra sharks was also successfully desensitized to the presence of a stretcher being brought into the holding tank. All of these procedures are common in veterinary examinations, and it is hoped that desensitization to these stimuli will reduce the stress associated with examinations. The training accomplished has allowed for easier maintenance of the zebra sharks by the aquarium staff and an improvement in the care of the sharks.

  16. Preference of redear sunfish on zebra mussels and rams-horn snails

    USGS Publications Warehouse

    French, John R. P.; Morgan, Michael N.

    1995-01-01

    We tested prey preferences of adult (200- to 222-mm long) redear sunfish (Lepomis microlophus) on two size classes of zebra mussels (Dreissena polymorpha) and two-ridge rams-horns (Helisoma anceps) in experimental aquaria. We also tested physical limitations on consuming these mollusks and determined prey bioenergetic profitability. Redear sunfish strongly preferred rams-horns over zebra mussels, but they displayed no size preference for either prey. Ingestion was not physically limited since both prey species up to 15-mm long fit within the pharyngeal gapes of redear sunfish. Rams-horns were more bioenergetically profitable than zebra mussels and ingestion of rams-horn shell fragments was about three times less than zebra mussels. Rams-horns were somewhat more resistant to shell-crushing, but all size ranges of both prey species tested were crushable by redear sunfish. These studies suggested that the redear sunfish should not be considered a panacea for biological control of zebra mussels.

  17. Evolutionary innovation and diversification of carotenoid-based pigmentation in finches.

    PubMed

    Ligon, Russell A; Simpson, Richard K; Mason, Nicholas A; Hill, Geoffrey E; McGraw, Kevin J

    2016-12-01

    The ornaments used by animals to mediate social interactions are diverse, and by reconstructing their evolutionary pathways we can gain new insights into the mechanisms underlying ornamental innovation and variability. Here, we examine variation in plumage carotenoids among the true finches (Aves: Fringillidae) using biochemical and comparative phylogenetic analyses to reconstruct the evolutionary history of carotenoid states and evaluate competing models of carotenoid evolution. Our comparative analyses reveal that the most likely ancestor of finches used dietary carotenoids as yellow plumage colorants, and that the ability to metabolically modify dietary carotenoids into more complex pigments arose secondarily once finches began to use modified carotenoids to create red plumage. Following the evolutionary "innovation" that enabled modified red carotenoid pigments to be deposited as plumage colorants, many finch species subsequently modified carotenoid biochemical pathways to create yellow plumage. However, no reversions to dietary carotenoids were observed. The finding that ornaments and their underlying mechanisms may be operating under different selection regimes-where ornamental trait colors undergo frequent reversions (e.g., between red and yellow plumage) while carotenoid metabolization mechanisms are more conserved-supports a growing empirical framework suggesting different evolutionary patterns for ornaments and the mechanistic innovations that facilitate their diversification. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  18. Prevalence of Theileria equi and Babesia caballi as well as the identification of associated ticks in sympatric Grevy's zebras (Equus grevyi) and donkeys (Equus africanus asinus) in northern Kenya.

    PubMed

    Hawkins, Elaine; Kock, Richard; McKeever, Declan; Gakuya, Francis; Musyoki, Charles; Chege, Stephen M; Mutinda, Mathew; Kariuki, Edward; Davidson, Zeke; Low, Belinda; Skilton, Robert A; Njahira, Moses N; Wamalwa, Mark; Maina, Elsie

    2015-01-01

    The role of equine piroplasmosis as a factor in the population decline of the Grevy's zebra is not known. We determined the prevalence of Babesia caballi and Theileria equi in cograzing Grevy's zebras (Equus grevyi) and donkeys (Equus africanus asinus) in northern Kenya and identified the associated tick vectors. Blood samples were taken from 71 donkeys and 16 Grevy's zebras from March to May 2011. A nested PCR reaction using 18s ribosomal (r)RNA primers on 87 blood spots showed 72% (51/71; 95% confidence interval [CI] 60.4-81.0%) of donkeys and 100% (16/16; 95% CI, 77.3-100%) of Grevy's zebras were T. equi positive. No samples were positive for B. caballi. Sequence comparison using the National Center for Biotechnology Information's basic local alignment search tool identified homologous 18s rRNA sequences with a global geographic spread. The T. equi-derived sequences were evaluated using Bayesian approaches with independent Metropolis-coupled Markov chain Monte Carlo runs. The sequences clustered with those found in Sudan, Croatia, Mongolia, and the US, with statistical support greater than 80% for the two main clades. Hyalomma tick species were found on both donkeys and Grevy's zebras, whereas Rhipicephalus pulchellus was found exclusively on Grevy's zebras and Hyalomma marginatum rupfipes on donkeys. The prevalence of T. equi was 100% in Grevy's zebras and 72% in donkeys with common tick vectors identified. Our results suggest that donkeys and Grevy's zebras can be asymptomatic carriers and that piroplasmosis is endemic in the study area.

  19. Prevention of zebra mussel infestation and dispersal during aquaculture operations

    USGS Publications Warehouse

    Waller, D.L.; Fisher, S.W.; Dabrowska, H.

    1996-01-01

    The zebra mussel Dreissena polymorpha, an exotic invasive species, poses a major threat to North American fish management programs and the aquaculture industry. Fish hatcheries may become infected with zebra mussels from a variety of sources, including the water supply, fish shipments, boats, and equipment. The hatcheries could then serve as agents for the overland dispersal of zebra mussels into stocked waters and to other fish hatcheries. We evaluated the effectiveness and safety of aquaculture chemicals for use in controlling zebra mussels in fish hatcheries and preventing dispersal of veligers during fish transport. Chemicals were evaluated for use in fish transport and as disinfectants for ponds and equipment. Standardized static toxicity tests were conducted with representative species of warmwater, coolwater, and coldwater fishes and with larval (3-d-old veligers), early juvenile (settling larvae), and adult zebra mussels. Chemical concentrations and exposure durations were based on recommended treatment levels for fish, eggs, and ponds. Recommended treatment levels were also exceeded, if necessary, to establish lethal levels for zebra mussels of different developmental stages. Our results indicate that some chemicals currently in use in hatcheries may be effective for controlling zebra mussels in various operations. Chloride salts were the safest and most effective therapeutants tested for use in fish transport. The toxicity of chloride salts to fish varied among species and with temperature; only one treatment regime (sodium chloride at 10,000 mg/L) was safe to all fish species that we tested, but it was only effective on veliger and settler stages of the zebra mussel. Effective disinfectants were benzalkonium chloride for use on equipment and rotenone for use in ponds after fish are harvested. The regulatory status of the identified chemicals is discussed as well as several nonchemical control alternatives.

  20. Vocal mechanics in Darwin's finches: correlation of beak gape and song frequency.

    PubMed

    Podos, Jeffrey; Southall, Joel A; Rossi-Santos, Marcos R

    2004-02-01

    Recent studies of vocal mechanics in songbirds have identified a functional role for the beak in sound production. The vocal tract (trachea and beak) filters harmonic overtones from sounds produced by the syrinx, and birds can fine-tune vocal tract resonance properties through changes in beak gape. In this study, we examine patterns of beak gape during song production in seven species of Darwin's finches of the Galápagos Islands. Our principal goals were to characterize the relationship between beak gape and vocal frequency during song production and to explore the possible influence therein of diversity in beak morphology and body size. Birds were audio and video recorded (at 30 frames s(-1)) as they sang in the field, and 164 song sequences were analyzed. We found that song frequency regressed significantly and positively on beak gape for 38 of 56 individuals and for all seven species examined. This finding provides broad support for a resonance model of vocal tract function in Darwin's finches. Comparison among species revealed significant variation in regression y-intercept values. Body size correlated negatively with y-intercept values, although not at a statistically significant level. We failed to detect variation in regression slopes among finch species, although the regression slopes of Darwin's finch and two North American sparrow species were found to differ. Analysis within one species (Geospiza fortis) revealed significant inter-individual variation in regression parameters; these parameters did not correlate with song frequency features or plumage scores. Our results suggest that patterns of beak use during song production were conserved during the Darwin's finch adaptive radiation, despite the evolution of substantial variation in beak morphology and body size.

  1. Changes in corticosterone concentrations and behavior during Mycoplasma gallisepticum infection in house finches (Haemorhous mexicanus).

    PubMed

    Love, Ashley C; Foltz, Sarah L; Adelman, James S; Moore, Ignacio T; Hawley, Dana M

    2016-09-01

    Glucocorticoid stress hormones are important for energy mobilization as well as regulation of the immune system, and thus these hormones are particularly likely to both influence and respond to pathogen infection in vertebrates. In this study, we examined how the glucocorticoid stress response in house finches (Haemorhous mexicanus) interacts with experimental infection of the naturally-occurring bacterial pathogen, Mycoplasma gallisepticum (MG). We also investigated whether infection-induced concentrations of corticosterone (CORT), the primary glucocorticoid in birds, were associated with the expression of sickness behavior, the lethargy typically observed in vertebrates early in infection. We found that experimental infection with MG resulted in significantly higher CORT levels on day 5 post-infection, but this effect appeared to be limited to female house finches only. Regardless of sex, infected individuals with greater disease severity had the highest CORT concentrations on day 5 post-infection. House finches exposed to MG exhibited behavioral changes, with infected birds having significantly lower activity levels than sham-inoculated individuals. However, CORT concentrations and the extent of sickness behaviors exhibited among infected birds were not associated. Finally, pre-infection CORT concentrations were associated with reduced inflammation and pathogen load in inoculated males, but not females. Our results suggest that the house finch glucocorticoid stress response may both influence and respond to MG infection in sex-specific ways, but because we had a relatively low sample size of males, future work should confirm these patterns. Finally, manipulative experiments should be performed to test whether the glucocorticoid stress response acts as a brake on the inflammatory response associated with MG infection in house finches. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Chemical regulation of spawning in the zebra mussel (Dreissena polymorpha)

    USGS Publications Warehouse

    Ram, Jeffrey L.; Nichols, S. Jerrine; Nalepa, Thomas F.; Schloesser, Donald W.

    1992-01-01

    Previous literature suggests that spawning in bivalves is chemically regulated, both by environmental chemical cues and by internal chemical mediators. In a model proposed for zebra mussels, chemicals from phytoplankton initially trigger spawning, and chemicals associated with gametes provide further stimulus for spawning. The response to environmental chemicals is internally mediated by a pathway utilizing serotonin (5-hydroxytryptamine, a neurotransmitter), which acts directly on both male and female gonads. The role of serotonin and most other aspects of the model have been tested only on bivalves other than zebra mussels. The effect of serotonin on zebra mussel spawning was tested. Serotonin (10-5 and 10-3 M) injected into ripe males induced spawning, but injection of serotonin into females did not. Gametes were not released by 10-6 serotonin; in most cases, serotonin injection did not release gametes from immature recipients. Serotonin injection provides a reliable means for identifying ripe male zebra mussels and for obtaining zebra mussel sperm without the need for dissection.

  3. How the zebra got its stripes: a problem with too many solutions

    PubMed Central

    Larison, Brenda; Harrigan, Ryan J.; Thomassen, Henri A.; Rubenstein, Daniel I.; Chan-Golston, Alec M.; Li, Elizabeth; Smith, Thomas B.

    2015-01-01

    The adaptive significance of zebra stripes has thus far eluded understanding. Many explanations have been suggested, including social cohesion, thermoregulation, predation evasion and avoidance of biting flies. Identifying the associations between phenotypic and environmental factors is essential for testing these hypotheses and substantiating existing experimental evidence. Plains zebra striping pattern varies regionally, from heavy black and white striping over the entire body in some areas to reduced stripe coverage with thinner and lighter stripes in others. We examined how well 29 environmental variables predict the variation in stripe characteristics of plains zebra across their range in Africa. In contrast to recent findings, we found no evidence that striping may have evolved to escape predators or avoid biting flies. Instead, we found that temperature successfully predicts a substantial amount of the stripe pattern variation observed in plains zebra. As this association between striping and temperature may be indicative of multiple biological processes, we suggest that the selective agents driving zebra striping are probably multifarious and complex. PMID:26064590

  4. Mutations of amino acids in the DNA-recognition domain of Epstein-Barr virus ZEBRA protein alter its sub-nuclear localization and affect formation of replication compartments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Richard; Heston, Lee; Shedd, Duane

    ZEBRA, a transcription factor and DNA replication protein encoded by the Epstein-Barr virus (EBV) BZLF1 gene, plays indispensable roles in the EBV lytic cycle. We recently described the phenotypes of 46 single amino acid substitutions introduced into the DNA-recognition region of ZEBRA [Heston, L., El-Guindy, A., Countryman, J., Dela Cruz, C., Delecluse, H.J., and Miller, G. 2006]. The 27 DNA-binding-proficient mutants exhibited distinct defects in their ability to activate expression of the kinetic classes of viral genes. Four phenotypic variants could be discerned: wild-type, defective at activating Rta, defective at activating early genes, and defective at activating late genes. Heremore » we analyze the distribution of ZEBRA within the nucleus and the localization of EA-D (the viral DNA polymerase processivity factor), an indicator of the development of replication compartments, in representatives of each phenotypic group. Plasmids encoding wild-type (WT) and mutant ZEBRA were transfected into 293 cells containing EBV-bacmids. WT ZEBRA protein was diffusely and smoothly distributed throughout the nucleus, sparing nucleoli, and partially recruited to globular replication compartments. EA-D induced by WT ZEBRA was present diffusely in some cells and concentrated in globular replication compartments in other cells. The distribution of ZEBRA and EA-D proteins was identical to WT following transfection of K188R, a mutant with a conservative change. The distribution of S186A mutant ZEBRA protein, defective for activation of Rta and EA-D, was identical to WT, except that the mutant ZEBRA was never found in globular compartments. Co-expression of Rta with S186A mutant rescued diffuse EA-D but not globular replication compartments. The most striking observation was that several mutant ZEBRA proteins defective in activating EA-D (R179A, K181A and A185V) and defective in activating lytic viral DNA replication and late genes (Y180E and K188A) were localized to numerous punctate foci. The speckled appearance of R179A and Y180E was more regular and clearly defined in EBV-positive than in EBV-negative 293 cells. The Y180E late-mutant induced EA-D, but prevented EA-D from localizing to globular replication compartments. These results show that individual amino acids within the basic domain influence localization of the ZEBRA protein and its capacity to induce EA-D to become located in mature viral replication compartments. Furthermore, these mutant ZEBRA proteins delineate several stages in the processes of nuclear re-organization which accompany lytic EBV replication.« less

  5. EFFECTS OF EXOGENOUS ESTROGEN ON MATE SELECTION OF HOUSE FINCHES

    EPA Science Inventory

    Concern about the potential for endocrine disrupting chemicals to interfere with normal breeding behaviors of wildlife has prompted this study of effects of exogenous estrogen on mate selection in songbirds. The house finch (Carpodacus mexicanus) was selected as a model as it is ...

  6. EFFECTS OF EXTROGENOUS ESTROGEN ON MATE SELECTION OF HOUSE FINCHES

    EPA Science Inventory

    Effects of exogenous estrogen on mate selection of house finches. Clark, J., Fairbrother, A*. Parametrix, Inc., Corvallis, OR; Brewer, L., EBA, Inc., Sisters, OR; Bennett, R.S., USEPA, Mid-Continent Ecology Division, Duluth, MN.

    Concern about the potential for endocrine...

  7. Unpredictable evolution in a 30-year study of Darwin's finches.

    PubMed

    Grant, Peter R; Grant, B Rosemary

    2002-04-26

    Evolution can be predicted in the short term from a knowledge of selection and inheritance. However, in the long term evolution is unpredictable because environments, which determine the directions and magnitudes of selection coefficients, fluctuate unpredictably. These two features of evolution, the predictable and unpredictable, are demonstrated in a study of two populations of Darwin's finches on the Galápagos island of Daphne Major. From 1972 to 2001, Geospiza fortis (medium ground finch) and Geospiza scandens (cactus finch) changed several times in body size and two beak traits. Natural selection occurred frequently in both species and varied from unidirectional to oscillating, episodic to gradual. Hybridization occurred repeatedly though rarely, resulting in elevated phenotypic variances in G. scandens and a change in beak shape. The phenotypic states of both species at the end of the 30-year study could not have been predicted at the beginning. Continuous, long-term studies are needed to detect and interpret rare but important events and nonuniform evolutionary change.

  8. Zebra stripes in the Atacama Desert: Fossil evidence of overland flow

    NASA Astrophysics Data System (ADS)

    Owen, Justine J.; Dietrich, William E.; Nishiizumi, Kuni; Chong, Guillermo; Amundson, Ronald

    2013-01-01

    Some hillslopes in the hyperarid region of the Atacama Desert in northern Chile have surface clasts organized into distinct, contour-parallel bands separated by bare soil. We call the bands "zebra stripes" due to the contrast between the darkly varnished clasts and the light-colored, salt-rich soil. Gravel that comprises the zebra stripes is sorted such that the coarsest clasts are at the downslope front and fine progressively upslope. How and when the zebra stripes formed are perplexing questions, particularly in a region experiencing prolonged hyperaridity. Using GoogleEarth, satellite imagery, and field observations, we report the first quantitative and qualitative observations of zebra stripes in order to test hypotheses of the mechanisms and timing of their formation. We consider soil shrink-swell, seismic shaking, and overland flow as possible formation mechanisms, and find that overland flow is the most likely. Based on cosmogenic 10Be concentrations in surface clasts, salt deposition rates from the atmosphere, and content in the soils, we propose that the salt-rich soils began accumulating ~ 106 y ago and the zebra stripes formed 103-104 y at the latest. The zebra stripe pattern has been preserved due to the self-stabilization of the clasts within the stripes and the continued absence of life (which would disturb the surface, as seen at a wetter site to the south). We conclude that the occurrence of zebra stripes is diagnostic of a set of distinct characteristics of local and/or regional precipitation, soil, hillslope form, and bedrock type.

  9. Review of techniques to prevent introduction of zebra mussels (Dreissena polymorpha) during native mussel (Unionoidea) conservation activities

    USGS Publications Warehouse

    Cope, W.G.; Newton, T.J.; Gatenby, C.M.

    2003-01-01

    Because of the declines in diversity and abundance of native freshwater mussels (superfamily Unionoidea), and the potential decimation of populations of native mussels resulting from the rapid spread of the exotic zebra mussel Dreissena polymorpha, management options to eliminate or reduce the threat of the zebra mussel are needed. Relocating native mussels to refugia (artificial and natural) has been proposed to mitigate the threat of zebra mussels to native species. Relocation of native mussels to refugia such as fish hatchery facilities or natural habitats within their historic range. Which are unlikely to be infested by zebra mussels, necessitates that protocols be developed to prevent the inadvertent introduction of zebra mussels. Several recent studies have developed Such protocols, and have assessed their effectiveness on the health and survival of native mussels during subsequent relocation to various refugia. The purpose of this project is to synthesize and evaluate the current protocols and to develop a set of procedures that resource managers and researchers should consider before conducting conservation activities in zebra mussel infested waters. We found that the existing protocols have many common points of concern, such as facility modification and suitability, zebra mussel risk assessment and management procedures, and health and disease management procedures. These conservation protocols may have broad applicability to other situations and locations. A summary and evaluation of the information in these main areas, along with recommended guidelines, are presented in this article.

  10. New Concerns Emerge as Zebra Mussel Spreads.

    ERIC Educational Resources Information Center

    Walter, Martha L., Ed.

    1992-01-01

    Reports on the Zebra Mussel invasion of North American inland waterways. Discusses United States Army Corps of Engineers operations that may facilitate or be affected by the spread of Zebra Mussels, the threat to native clams, chemical and mechanical control methods, natural solutions, and ongoing research. (MCO)

  11. Development and validation of a house finch interleukin-1β (HfIL-1β) ELISA system.

    PubMed

    Kim, Sungwon; Park, Myeongseon; Leon, Ariel E; Adelman, James S; Hawley, Dana M; Dalloul, Rami A

    2017-08-30

    A unique clade of the bacterium Mycoplasma gallisepticum (MG), which causes chronic respiratory disease in poultry, has resulted in annual epidemics of conjunctivitis in North American house finches since the 1990s. Currently, few immunological tools have been validated for this songbird species. Interleukin-1β (IL-1β) is a prototypic multifunctional cytokine and can affect almost every cell type during Mycoplasma infection. The overall goal of this study was to develop and validate a direct ELISA assay for house finch IL-1β (HfIL-1β) using a cross-reactive chicken antibody. A direct ELISA approach was used to develop this system using two different coating methods, carbonate and dehydration. In both methods, antigens (recombinant HfIL-1b or house finch plasma) were serially diluted in carbonate-bicarbonate coating buffer and either incubated at 4 °C overnight or at 60 °C on a heating block for 2 hr. To generate the standard curve, rHfIL-1b protein was serially diluted at 0, 3, 6, 9, 12, 15, 18, 21, and 24 ng/mL. Following blocking and washing, anti-chicken IL-1b polyclonal antibody was added, plates were later incubated with detecting antibodies, and reactions developed with tetramethylbenzidine solution. A commercially available anti-chicken IL-1β (ChIL-1β) polyclonal antibody (pAb) cross-reacted with house finch plasma IL-1β as well as bacterially expressed recombinant house finch IL-1β (rHfIL-1β) in immunoblotting assays. In a direct ELISA system, rHfIL-1β could not be detected by an anti-ChIL-1β pAb when the antigen was coated with carbonate-bicarbonate buffer at 4°C overnight. However, rHfIL-1β was detected by the anti-ChIL-1β pAb when the antigen was coated using a dehydration method by heat (60°C). Using the developed direct ELISA for HfIL-1β with commercial anti-ChIL-1β pAb, we were able to measure plasma IL-1β levels from house finches. Based on high amino acid sequence homology, we hypothesized and demonstrated cross-reactivity of anti-ChIL-1β pAb and HfIL-1β. Then, we developed and validated a direct ELISA system for HfIL-1β using a commercial anti-ChIL-1β pAb by measuring plasma HfIL-1β in house finches.

  12. Statistical learning in songbirds: from self-tutoring to song culture.

    PubMed

    Fehér, Olga; Ljubičić, Iva; Suzuki, Kenta; Okanoya, Kazuo; Tchernichovski, Ofer

    2017-01-05

    At the onset of vocal development, both songbirds and humans produce variable vocal babbling with broadly distributed acoustic features. Over development, these vocalizations differentiate into the well-defined, categorical signals that characterize adult vocal behaviour. A broadly distributed signal is ideal for vocal exploration, that is, for matching vocal production to the statistics of the sensory input. The developmental transition to categorical signals is a gradual process during which the vocal output becomes differentiated and stable. But does it require categorical input? We trained juvenile zebra finches with playbacks of their own developing song, produced just a few moments earlier, updated continuously over development. Although the vocalizations of these self-tutored (ST) birds were initially broadly distributed, birds quickly developed categorical signals, as fast as birds that were trained with a categorical, adult song template. By contrast, siblings of those birds that received no training (isolates) developed phonological categories much more slowly and never reached the same level of category differentiation as their ST brothers. Therefore, instead of simply mirroring the statistical properties of their sensory input, songbirds actively transform it into distinct categories. We suggest that the early self-generation of phonological categories facilitates the establishment of vocal culture by making the song easier to transmit at the micro level, while promoting stability of shared vocabulary at the group level over generations.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Authors.

  13. BMP signaling controls buckling forces to modulate looping morphogenesis of the gut.

    PubMed

    Nerurkar, Nandan L; Mahadevan, L; Tabin, Clifford J

    2017-02-28

    Looping of the initially straight embryonic gut tube is an essential aspect of intestinal morphogenesis, permitting proper placement of the lengthy small intestine within the confines of the body cavity. The formation of intestinal loops is highly stereotyped within a given species and results from differential-growth-driven mechanical buckling of the gut tube as it elongates against the constraint of a thin, elastic membranous tissue, the dorsal mesentery. Although the physics of this process has been studied, the underlying biology has not. Here, we show that BMP signaling plays a critical role in looping morphogenesis of the avian small intestine. We first exploited differences between chicken and zebra finch gut morphology to identify the BMP pathway as a promising candidate to regulate differential growth in the gut. Next, focusing on the developing chick small intestine, we determined that Bmp2 expressed in the dorsal mesentery establishes differential elongation rates between the gut tube and mesentery, thereby regulating the compressive forces that buckle the gut tube into loops. Consequently, the number and tightness of loops in the chick small intestine can be increased or decreased directly by modulation of BMP activity in the small intestine. In addition to providing insight into the molecular mechanisms underlying intestinal development, our findings provide an example of how biochemical signals act on tissue-level mechanics to drive organogenesis, and suggest a possible mechanism by which they can be modulated to achieve distinct morphologies through evolution.

  14. A higher sensory brain region is involved in reversing reinforcement-induced vocal changes in a songbird.

    PubMed

    Canopoli, Alessandro; Herbst, Joshua A; Hahnloser, Richard H R

    2014-05-14

    Many animals exhibit flexible behaviors that they can adjust to increase reward or avoid harm (learning by positive or aversive reinforcement). But what neural mechanisms allow them to restore their original behavior (motor program) after reinforcement is withdrawn? One possibility is that motor restoration relies on brain areas that have a role in memorization but no role in either motor production or in sensory processing relevant for expressing the behavior and its refinement. We investigated the role of a higher auditory brain area in the songbird for modifying and restoring the stereotyped adult song. We exposed zebra finches to aversively reinforcing white noise stimuli contingent on the pitch of one of their stereotyped song syllables. In response, birds significantly changed the pitch of that syllable to avoid the aversive reinforcer. After we withdrew reinforcement, birds recovered their original song within a few days. However, we found that large bilateral lesions in the caudal medial nidopallium (NCM, a high auditory area) impaired recovery of the original pitch even several weeks after withdrawal of the reinforcing stimuli. Because NCM lesions spared both successful noise-avoidance behavior and birds' auditory discrimination ability, our results show that NCM is not needed for directed motor changes or for auditory discriminative processing, but is implied in memorizing or recalling the memory of the recent song target. Copyright © 2014 the authors 0270-6474/14/347018-09$15.00/0.

  15. Dynamic variation in forebrain estradiol levels during song learning

    PubMed Central

    Chao, Andrew; Paon, Ashley; Remage-Healey, Luke

    2014-01-01

    Estrogens shape brain circuits during development, and the capacity to synthesize estrogens locally has consequences for both sexual differentiation and the acute modulation of circuits during early learning. A recently-optimized method to detect and quantify fluctuations in brain estrogens in vivo provides a direct means to explore how brain estrogen production contributes to both differentiation and neuromodulation during development. Here, we use this method to test the hypothesis that neuroestrogens are sexually-differentiated as well as dynamically responsive to song tutoring (via passive video/audio playback) during the period of song learning in juvenile zebra finches. Our results show that baseline neuroestradiol levels in the caudal forebrain do not differ between males and females during an early critical masculinization window. Instead, we observe a prominent difference between males and females in baseline neuroestradiol that emerges during the subadult stage as animals approach sexual maturity. Second, we observe that fluctuating neuroestradiol levels during periods of passive song tutoring exhibit a markedly different profile in juveniles as compared to adults. Specifically, neuroestrogens in the caudal forebrain are elevated following (rather than during) tutor song exposure in both juvenile males and females, suggesting an important role for the early consolidation of tutor song memories. These results further reveal a circadian influence on the fluctuations in local neuroestrogens during sensory/cognitive tasks. Taken together, these findings uncover several unexpected features of brain estrogen synthesis in juvenile animals that may have implications for secondary masculinization as well as the consolidation of recent sensory experiences. PMID:25205304

  16. A New Mechanism of Sound Generation in Songbirds

    NASA Astrophysics Data System (ADS)

    Goller, Franz; Larsen, Ole N.

    1997-12-01

    Our current understanding of the sound-generating mechanism in the songbird vocal organ, the syrinx, is based on indirect evidence and theoretical treatments. The classical avian model of sound production postulates that the medial tympaniform membranes (MTM) are the principal sound generators. We tested the role of the MTM in sound generation and studied the songbird syrinx more directly by filming it endoscopically. After we surgically incapacitated the MTM as a vibratory source, zebra finches and cardinals were not only able to vocalize, but sang nearly normal song. This result shows clearly that the MTM are not the principal sound source. The endoscopic images of the intact songbird syrinx during spontaneous and brain stimulation-induced vocalizations illustrate the dynamics of syringeal reconfiguration before phonation and suggest a different model for sound production. Phonation is initiated by rostrad movement and stretching of the syrinx. At the same time, the syrinx is closed through movement of two soft tissue masses, the medial and lateral labia, into the bronchial lumen. Sound production always is accompanied by vibratory motions of both labia, indicating that these vibrations may be the sound source. However, because of the low temporal resolution of the imaging system, the frequency and phase of labial vibrations could not be assessed in relation to that of the generated sound. Nevertheless, in contrast to the previous model, these observations show that both labia contribute to aperture control and strongly suggest that they play an important role as principal sound generators.

  17. Hemispheric asymmetry in new neurons in adulthood is associated with vocal learning and auditory memory.

    PubMed

    Tsoi, Shuk C; Aiya, Utsav V; Wasner, Kobi D; Phan, Mimi L; Pytte, Carolyn L; Vicario, David S

    2014-01-01

    Many brain regions exhibit lateral differences in structure and function, and also incorporate new neurons in adulthood, thought to function in learning and in the formation of new memories. However, the contribution of new neurons to hemispheric differences in processing is unknown. The present study combines cellular, behavioral, and physiological methods to address whether 1) new neuron incorporation differs between the brain hemispheres, and 2) the degree to which hemispheric lateralization of new neurons correlates with behavioral and physiological measures of learning and memory. The songbird provides a model system for assessing the contribution of new neurons to hemispheric specialization because songbird brain areas for vocal processing are functionally lateralized and receive a continuous influx of new neurons in adulthood. In adult male zebra finches, we quantified new neurons in the caudomedial nidopallium (NCM), a forebrain area involved in discrimination and memory for the complex vocalizations of individual conspecifics. We assessed song learning and recorded neural responses to song in NCM. We found significantly more new neurons labeled in left than in right NCM; moreover, the degree of asymmetry in new neuron numbers was correlated with the quality of song learning and strength of neuronal memory for recently heard songs. In birds with experimentally impaired song quality, the hemispheric difference in new neurons was diminished. These results suggest that new neurons may contribute to an allocation of function between the hemispheres that underlies the learning and processing of complex signals.

  18. Hemispheric Asymmetry in New Neurons in Adulthood Is Associated with Vocal Learning and Auditory Memory

    PubMed Central

    Wasner, Kobi D.; Phan, Mimi L.; Pytte, Carolyn L.; Vicario, David S.

    2014-01-01

    Many brain regions exhibit lateral differences in structure and function, and also incorporate new neurons in adulthood, thought to function in learning and in the formation of new memories. However, the contribution of new neurons to hemispheric differences in processing is unknown. The present study combines cellular, behavioral, and physiological methods to address whether 1) new neuron incorporation differs between the brain hemispheres, and 2) the degree to which hemispheric lateralization of new neurons correlates with behavioral and physiological measures of learning and memory. The songbird provides a model system for assessing the contribution of new neurons to hemispheric specialization because songbird brain areas for vocal processing are functionally lateralized and receive a continuous influx of new neurons in adulthood. In adult male zebra finches, we quantified new neurons in the caudomedial nidopallium (NCM), a forebrain area involved in discrimination and memory for the complex vocalizations of individual conspecifics. We assessed song learning and recorded neural responses to song in NCM. We found significantly more new neurons labeled in left than in right NCM; moreover, the degree of asymmetry in new neuron numbers was correlated with the quality of song learning and strength of neuronal memory for recently heard songs. In birds with experimentally impaired song quality, the hemispheric difference in new neurons was diminished. These results suggest that new neurons may contribute to an allocation of function between the hemispheres that underlies the learning and processing of complex signals. PMID:25251077

  19. BMP signaling controls buckling forces to modulate looping morphogenesis of the gut

    PubMed Central

    Nerurkar, Nandan L.; Mahadevan, L.; Tabin, Clifford J.

    2017-01-01

    Looping of the initially straight embryonic gut tube is an essential aspect of intestinal morphogenesis, permitting proper placement of the lengthy small intestine within the confines of the body cavity. The formation of intestinal loops is highly stereotyped within a given species and results from differential-growth–driven mechanical buckling of the gut tube as it elongates against the constraint of a thin, elastic membranous tissue, the dorsal mesentery. Although the physics of this process has been studied, the underlying biology has not. Here, we show that BMP signaling plays a critical role in looping morphogenesis of the avian small intestine. We first exploited differences between chicken and zebra finch gut morphology to identify the BMP pathway as a promising candidate to regulate differential growth in the gut. Next, focusing on the developing chick small intestine, we determined that Bmp2 expressed in the dorsal mesentery establishes differential elongation rates between the gut tube and mesentery, thereby regulating the compressive forces that buckle the gut tube into loops. Consequently, the number and tightness of loops in the chick small intestine can be increased or decreased directly by modulation of BMP activity in the small intestine. In addition to providing insight into the molecular mechanisms underlying intestinal development, our findings provide an example of how biochemical signals act on tissue-level mechanics to drive organogenesis, and suggest a possible mechanism by which they can be modulated to achieve distinct morphologies through evolution. PMID:28193855

  20. A micro-scale printable nanoclip for electrical stimulation and recording in small nerves.

    PubMed

    Lissandrello, Charles A; Gillis, Winthrop F; Shen, Jun; Pearre, Ben W; Vitale, Flavia; Pasquali, Matteo; Holinski, Bradley J; Chew, Daniel J; White, Alice E; Gardner, Timothy J

    2017-06-01

    The vision of bioelectronic medicine is to treat disease by modulating the signaling of visceral nerves near various end organs. In small animal models, the nerves of interest can have small diameters and limited surgical access. New high-resolution methods for building nerve interfaces are desirable. In this study, we present a novel nerve interface and demonstrate its use for stimulation and recording in small nerves. We design and fabricate micro-scale electrode-laden nanoclips capable of interfacing with nerves as small as 50 µm in diameter. The nanoclips are fabricated using a direct laser writing technique with a resolution of 200 nm. The resolution of the printing process allows for incorporation of a number of innovations such as trapdoors to secure the device to the nerve, and quick-release mounts that facilitate keyhole surgery, obviating the need for forceps. The nanoclip can be built around various electrode materials; here we use carbon nanotube fibers for minimally invasive tethering. We present data from stimulation-evoked responses of the tracheal syringeal (hypoglossal) nerve of the zebra finch, as well as quantification of nerve functionality at various time points post implant, demonstrating that the nanoclip is compatible with healthy nerve activity over sub-chronic timescales. Our nerve interface addresses key challenges in interfacing with small nerves in the peripheral nervous system. Its small size, ability to remain on the nerve over sub-chronic timescales, and ease of implantation, make it a promising tool for future use in the treatment of disease.

  1. A Mechanism for Frequency Modulation in Songbirds Shared with Humans

    PubMed Central

    Margoliash, Daniel

    2013-01-01

    In most animals that vocalize, control of fundamental frequency is a key element for effective communication. In humans, subglottal pressure controls vocal intensity but also influences fundamental frequency during phonation. Given the underlying similarities in the biomechanical mechanisms of vocalization in humans and songbirds, songbirds offer an attractive opportunity to study frequency modulation by pressure. Here, we present a novel technique for dynamic control of subsyringeal pressure in zebra finches. By regulating the opening of a custom-built fast valve connected to the air sac system, we achieved partial or total silencing of specific syllables, and could modify syllabic acoustics through more complex manipulations of air sac pressure. We also observed that more nuanced pressure variations over a limited interval during production of a syllable concomitantly affected the frequency of that syllable segment. These results can be explained in terms of a mathematical model for phonation that incorporates a nonlinear description for the vocal source capable of generating the observed frequency modulations induced by pressure variations. We conclude that the observed interaction between pressure and frequency was a feature of the source, not a result of feedback control. Our results indicate that, beyond regulating phonation or its absence, regulation of pressure is important for control of fundamental frequencies of vocalizations. Thus, although there are separate brainstem pathways for syringeal and respiratory control of song production, both can affect airflow and frequency. We hypothesize that the control of pressure and frequency is combined holistically at higher levels of the vocalization pathways. PMID:23825417

  2. Evaluation of Reference Genes for Quantitative Real-Time PCR in Songbirds

    PubMed Central

    Zinzow-Kramer, Wendy M.; Horton, Brent M.; Maney, Donna L.

    2014-01-01

    Quantitative real-time PCR (qPCR) is becoming a popular tool for the quantification of gene expression in the brain and endocrine tissues of songbirds. Accurate analysis of qPCR data relies on the selection of appropriate reference genes for normalization, yet few papers on songbirds contain evidence of reference gene validation. Here, we evaluated the expression of ten potential reference genes (18S, ACTB, GAPDH, HMBS, HPRT, PPIA, RPL4, RPL32, TFRC, and UBC) in brain, pituitary, ovary, and testis in two species of songbird: zebra finch and white-throated sparrow. We used two algorithms, geNorm and NormFinder, to assess the stability of these reference genes in our samples. We found that the suitability of some of the most popular reference genes for target gene normalization in mammals, such as 18S, depended highly on tissue type. Thus, they are not the best choices for brain and gonad in these songbirds. In contrast, we identified alternative genes, such as HPRT, RPL4 and PPIA, that were highly stable in brain, pituitary, and gonad in these species. Our results suggest that the validation of reference genes in mammals does not necessarily extrapolate to other taxonomic groups. For researchers wishing to identify and evaluate suitable reference genes for qPCR songbirds, our results should serve as a starting point and should help increase the power and utility of songbird models in behavioral neuroendocrinology. PMID:24780145

  3. Control of Phasic Firing by a Background Leak Current in Avian Forebrain Auditory Neurons

    PubMed Central

    Dagostin, André A.; Lovell, Peter V.; Hilscher, Markus M.; Mello, Claudio V.; Leão, Ricardo M.

    2015-01-01

    Central neurons express a variety of neuronal types and ion channels that promote firing heterogeneity among their distinct neuronal populations. Action potential (AP) phasic firing, produced by low-threshold voltage-activated potassium currents (VAKCs), is commonly observed in mammalian brainstem neurons involved in the processing of temporal properties of the acoustic information. The avian caudomedial nidopallium (NCM) is an auditory area analogous to portions of the mammalian auditory cortex that is involved in the perceptual discrimination and memorization of birdsong and shows complex responses to auditory stimuli We performed in vitro whole-cell patch-clamp recordings in brain slices from adult zebra finches (Taeniopygia guttata) and observed that half of NCM neurons fire APs phasically in response to membrane depolarizations, while the rest fire transiently or tonically. Phasic neurons fired APs faster and with more temporal precision than tonic and transient neurons. These neurons had similar membrane resting potentials, but phasic neurons had lower membrane input resistance and time constant. Surprisingly phasic neurons did not express low-threshold VAKCs, which curtailed firing in phasic mammalian brainstem neurons, having similar VAKCs to other NCM neurons. The phasic firing was determined not by VAKCs, but by the potassium background leak conductances, which was more prominently expressed in phasic neurons, a result corroborated by pharmacological, dynamic-clamp, and modeling experiments. These results reveal a new role for leak currents in generating firing diversity in central neurons. PMID:26696830

  4. A mechanism for frequency modulation in songbirds shared with humans.

    PubMed

    Amador, Ana; Margoliash, Daniel

    2013-07-03

    In most animals that vocalize, control of fundamental frequency is a key element for effective communication. In humans, subglottal pressure controls vocal intensity but also influences fundamental frequency during phonation. Given the underlying similarities in the biomechanical mechanisms of vocalization in humans and songbirds, songbirds offer an attractive opportunity to study frequency modulation by pressure. Here, we present a novel technique for dynamic control of subsyringeal pressure in zebra finches. By regulating the opening of a custom-built fast valve connected to the air sac system, we achieved partial or total silencing of specific syllables, and could modify syllabic acoustics through more complex manipulations of air sac pressure. We also observed that more nuanced pressure variations over a limited interval during production of a syllable concomitantly affected the frequency of that syllable segment. These results can be explained in terms of a mathematical model for phonation that incorporates a nonlinear description for the vocal source capable of generating the observed frequency modulations induced by pressure variations. We conclude that the observed interaction between pressure and frequency was a feature of the source, not a result of feedback control. Our results indicate that, beyond regulating phonation or its absence, regulation of pressure is important for control of fundamental frequencies of vocalizations. Thus, although there are separate brainstem pathways for syringeal and respiratory control of song production, both can affect airflow and frequency. We hypothesize that the control of pressure and frequency is combined holistically at higher levels of the vocalization pathways.

  5. Singing-Related Activity in Anterior Forebrain of Male Zebra Finches Reflects Courtship Motivation for Target Females

    PubMed Central

    Iwasaki, Mai; Poulsen, Thomas M.; Oka, Kotaro; Hessler, Neal A.

    2013-01-01

    A critical function of singing by male songbirds is to attract a female mate. Previous studies have suggested that the anterior forebrain system is involved in this courtship behavior. Neural activity in this system, including the striatal Area X, is strikingly dependent on the function of male singing. When males sing to attract a female bird rather than while alone, less variable neural activity results in less variable song spectral features, which may be attractive to the female. These characteristics of neural activity and singing thus may reflect a male's motivation for courtship. Here, we compared the variability of neural activity and song features between courtship singing directed to a female with whom a male had previously formed a pair-bond or to other females. Surprisingly, across all units, there was no clear tendency for a difference in variability of neural activity or song features between courtship of paired females, nonpaired females, or dummy females. However, across the population of recordings, there was a significant relationship between the relative variability of syllable frequency and neural activity: when syllable frequency was less variable to paired than nonpaired females, neural activity was also less variable (and vice-versa). These results show that the lower variability of neural activity and syllable frequency during directed singing is not a binary distinction from undirected singing, but can vary in intensity, possibly related to the relative preference of a male for his singing target. PMID:24312344

  6. Two distinct modes of forebrain circuit dynamics underlie temporal patterning in the vocalizations of young songbirds

    PubMed Central

    Aronov, Dmitriy; Veit, Lena; Goldberg, Jesse H.; Fee, Michale S.

    2011-01-01

    Accurate timing is a critical aspect of motor control, yet the temporal structure of many mature behaviors emerges during learning from highly variable exploratory actions. How does a developing brain acquire the precise control of timing in behavioral sequences? To investigate the development of timing, we analyzed the songs of young juvenile zebra finches. These highly variable vocalizations, akin to human babbling, gradually develop into temporally-stereotyped adult songs. We find that the durations of syllables and silences in juvenile singing are formed by a mixture of two distinct modes of timing – a random mode producing broadly-distributed durations early in development, and a stereotyped mode underlying the gradual emergence of stereotyped durations. Using lesions, inactivations, and localized brain cooling we investigated the roles of neural dynamics within two premotor cortical areas in the production of these temporal modes. We find that LMAN (lateral magnocellular nucleus of the nidopallium) is required specifically for the generation of the random mode of timing, and that mild cooling of LMAN causes an increase in the durations produced by this mode. On the contrary, HVC (used as a proper name) is required specifically for producing the stereotyped mode of timing, and its cooling causes a slowing of all stereotyped components. These results show that two neural pathways contribute to the timing of juvenile songs, and suggest an interesting organization in the forebrain, whereby different brain areas are specialized for the production of distinct forms of neural dynamics. PMID:22072687

  7. High atmospheric temperatures and ‘ambient incubation’ drive embryonic development and lead to earlier hatching in a passerine bird

    PubMed Central

    Griffith, Simon C.; Mainwaring, Mark C.; Sorato, Enrico; Beckmann, Christa

    2016-01-01

    Tropical and subtropical species typically experience relatively high atmospheric temperatures during reproduction, and are subject to climate-related challenges that are largely unexplored, relative to more extensive work conducted in temperate regions. We studied the effects of high atmospheric and nest temperatures during reproduction in the zebra finch. We characterized the temperature within nests in a subtropical population of this species in relation to atmospheric temperature. Temperatures within nests frequently exceeded the level at which embryo’s develop optimally, even in the absence of parental incubation. We experimentally manipulated internal nest temperature to demonstrate that an average difference of 6°C in the nest temperature during the laying period reduced hatching time by an average of 3% of the total incubation time, owing to ‘ambient incubation’. Given the avian constraint of laying a single egg per day, the first eggs of a clutch are subject to prolonged effects of nest temperature relative to later laid eggs, potentially increasing hatching asynchrony. While birds may ameliorate the negative effects of ambient incubation on embryonic development by varying the location and design of their nests, high atmospheric temperatures are likely to constitute an important selective force on avian reproductive behaviour and physiology in subtropical and tropical regions, particularly in the light of predicted climate change that in many areas is leading to a higher frequency of hot days during the periods when birds breed. PMID:26998315

  8. How visual cues for when to listen aid selective auditory attention.

    PubMed

    Varghese, Lenny A; Ozmeral, Erol J; Best, Virginia; Shinn-Cunningham, Barbara G

    2012-06-01

    Visual cues are known to aid auditory processing when they provide direct information about signal content, as in lip reading. However, some studies hint that visual cues also aid auditory perception by guiding attention to the target in a mixture of similar sounds. The current study directly tests this idea for complex, nonspeech auditory signals, using a visual cue providing only timing information about the target. Listeners were asked to identify a target zebra finch bird song played at a random time within a longer, competing masker. Two different maskers were used: noise and a chorus of competing bird songs. On half of all trials, a visual cue indicated the timing of the target within the masker. For the noise masker, the visual cue did not affect performance when target and masker were from the same location, but improved performance when target and masker were in different locations. In contrast, for the chorus masker, visual cues improved performance only when target and masker were perceived as coming from the same direction. These results suggest that simple visual cues for when to listen improve target identification by enhancing sounds near the threshold of audibility when the target is energetically masked and by enhancing segregation when it is difficult to direct selective attention to the target. Visual cues help little when target and masker already differ in attributes that enable listeners to engage selective auditory attention effectively, including differences in spectrotemporal structure and in perceived location.

  9. Variation in social relationships relates to song preferences and EGR1 expression in a female songbird.

    PubMed

    Schubloom, Hannah E; Woolley, Sarah C

    2016-09-01

    Social experiences can profoundly shape social behavior and the underlying neural circuits. Across species, the formation of enduring social relationships is associated with both neural and behavioral changes. However, it remains unclear how longer-term relationships between individuals influence brain and behavior. Here, we investigated how variation in social relationships relates to variation in female preferences for and neural responses to song in a pair-bonding songbird. We assessed variation in the interactions between individuals in male-female zebra finch pairs and found that female preferences for their mate's song were correlated with the degree of affiliation and amount of socially modulated singing, but not with the frequency of aggressive interactions. Moreover, variation in measures of pair quality and preference correlated with variation in the song-induced expression of EGR1, an immediate early gene related to neural activity and plasticity, in brain regions important for auditory processing and social behavior. For example, females with weaker preferences for their mate's song had greater EGR1 expression in the nucleus Taeniae, the avian homologue of the mammalian medial amygdala, in response to playback of their mate's courtship song. Our data indicate that the quality of social interactions within pairs relates to variation in song preferences and neural responses to ethologically relevant stimuli and lend insight into neural circuits sensitive to social information. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1029-1040, 2016. © 2016 Wiley Periodicals, Inc.

  10. Effects of shell morphology on mechanics of zebra and quagga mussel locomotion

    Treesearch

    S. M. Peyer; J. C. Hermanson; C. E. Lee

    2011-01-01

    Although zebra mussels (Dreissena polymorpha) initially colonized shallow habitats within the North American Great Lakes, quagga mussels (Dreissena bugensis) are becoming dominant in both shallow- and deep-water habitats. Shell morphology differs among zebra, shallow quagga and deep quagga mussels but functional consequences of...

  11. Crayfish (Orconectes virilis) predation on zebra mussels (Dreissena polymorpha)

    USGS Publications Warehouse

    Love, Joy; Savino, Jacqueline F.

    1993-01-01

    In laboratory studies, we quantified predation rates and handling time of crayfish (Orconectes virilis) on zebra mussels (Dreissena polymorpha) and rainbow trout (Oncorhhynchus mykiss) eggs. In single prey species tests, crayfish ate zebra mussels at similar rates as they ate rainbow trout eggs. When both prey were present, crayfish preferred rainbow trout eggs. Handling time of mussels was about twice that of rainbow trout eggs, and energetic content of mussels was lower. Therefore, net benefit for foraging on rainbow trout eggs was about three times that of foraging on zebra mussels.

  12. How to save the rarest Darwin's finch from extinction: the mangrove finch on Isabela Island

    PubMed Central

    Fessl, Birgit; Young, Glyn H.; Young, Richard P.; Rodríguez-Matamoros, Jorge; Dvorak, Michael; Tebbich, Sabine; Fa, John E.

    2010-01-01

    Habitat destruction and predation by invasive alien species has led to the disappearance of several island populations of Darwin's finches but to date none of the 13 recognized species have gone extinct. However, driven by rapid economic growth in the Galápagos, the effects of introduced species have accelerated and severely threatened these iconic birds. The critically endangered mangrove finch (Camarhynchus heliobates) is now confined to three small mangroves on Isabela Island. During 2006–2009, we assessed its population status and monitored nesting success, both before and after rat poisoning. Population size was estimated at around only 100 birds for the two main breeding sites, with possibly 5–10 birds surviving at a third mangrove. Before rat control, 54 per cent of nests during incubation phase were predated with only 18 per cent of nests producing fledglings. Post-rat control, nest predation during the incubation phase fell to 30 per cent with 37 per cent of nests producing fledglings. During the nestling phase, infestation by larvae of the introduced parasitic fly (Philornis downsi) caused 14 per cent additional mortality. Using population viability analysis, we simulated the probability of population persistence under various scenarios of control and showed that with effective management of these invasive species, mangrove finch populations should start to recover. PMID:20194165

  13. Efficacy of spray –Dried Pseudomonas fluorescens, strain CL145A (Zequanox®), for controlling Zebra Mussels (Dreissena polymorpha) within Lake Minnetonka, MN enclosures

    USGS Publications Warehouse

    Luoma, James A.; Severson, Todd J.

    2016-01-01

    The efficacy of whole water column and subsurface applications of the biopesticide Zequanox®, a commercially prepared spray-dried powder formulation of Pseudomonas fluorescens (strain CL145A), were evaluated for controlling zebra mussels (Dreissena polymorpha) within 27-m2 enclosures in Lake Minnetonka (Deephaven, Minnesota). Five treatments consisting of (1) two whole water column Zequanox applications, (2) two subsurface Zequanox applications, and (3) an untreated control were completed on each of three independent treatment days during September 2014. The two types of samplers used in the study were (1) type 1 samplers, which were custom built multi-plate samplers (wood, perforated aluminum, and tile substrates) that were placed into Robinson’s Bay in June of 2013 to allow for natural colonization by zebra mussels, and (2) type 2 samplers, which consisted of zebra mussels adhering to perforated aluminum trays that were placed into mesh containment bags. One day prior to treatment, three individual samplers of each type were distributed to test enclosures and exposed to a randomly assigned treatment. Sampling to determine the zebra mussel biomass adhering to type 1 samplers and the survival assessments for zebra mussels contained in type 2 samplers were completed ~40 days after exposure. The zebra mussel biomass adhering to type 1 samplers and the survival of zebra mussels contained in type 2 samplers were significantly less in groups treated with the highest Zequanox concentrations and in groups that received whole water column applications than comparable groups treated with lower Zequanox concentrations and subsurface applications. However, standardization of biomass and survival results to the amount of Zequanox applied showed that the lower concentrations and subsurface applications were more cost efficient, with respect to product used, at reducing zebra mussel biomass and for inducing zebra mussel mortality. Although the subsurface application methods and lower treatment concentrations were more cost efficient, biological significance and management goals should be evaluated prior to selecting the application method. Development and refinement of additional application techniques may improve the utility of the subsurface Zequanox applications.

  14. How well can fishes prey on zebra mussels in eastern North America?

    USGS Publications Warehouse

    French, John R. P.

    1993-01-01

    Literature on mollusk-eating fishes was reviewed to determine the potential for different species of fish to control zebra mussels in eastern North America. At least six species are potential predators of zebra mussels because they possess (1) both upper and lower pharyngeal teeth or (2) lower pharyngeal teeth and chewing pads located on the dorsal roof for crushing mollusk shells. Freshwater drum (Aplodinotus grunniens) and two centrarchids, redear sunfish (Lepomis microlophus) and pumpkinseed (L. gibbosus), possess both upper and lower pharyngeal teeth and are likely to consume more zebra mussels than fishes with only lower pharyngeal teeth. Only two catostomid species, copper and river redhorses (Moxostoma hubbsi and M. carinatum), have chewing pads that enable them to crush mollusks. The exotic omnivorous common carp (Cyprinus carpio), possessing lower teeth and a chewing pad, may prey on zebra mussels when aquatic insect larvae, its preferred food, become rare. Managing populations of drum, sunfishes and redhorses to reduce exploitation of large individuals and improve their habitats are suggested as means to intensify biological control of zebra mussels in eastern North America. Other Eurasian molluscivores, the roach (Rutilus rutilus) and the black carp (Mylopharyngodon piceus) should not be introduced into North America because research has shown repeatedly that an introduced biological controller usually does not forage for unwanted pests or reside only in preferred habitats of pests. Drum, sunfishes and redhorses should be preferred over these exotics as biological controllers of zebra mussels in North America because these native fishes will likely occupy newly established habitats of zebra mussels.

  15. LC-MS Analysis of Phenolic Compounds in Tubers Showing Zebra Chip Symptoms

    USDA-ARS?s Scientific Manuscript database

    A new potato disorder called zebra chip (ZC) has been identified in the United States and has been especially problematic in Texas where substantial economic losses have been incurred. Upon frying, ZC tubers develop a dark “zebra chip” pattern of discoloration. LC-MS analysis of symptomatic tubers...

  16. Invasion of the Zebra Mussels: A Mock Trial Activity

    ERIC Educational Resources Information Center

    Beck, Judy A.; Czerniak, Charlene M.

    2005-01-01

    In this activity, students learn about the important topic of invasive species, specifically Zebra Mussels. Students role-play different characters in a real-life situation: the trial of the Zebra Mussel for unlawful disruption of the Great Lakes ecosystem. Students will also learn about jurisprudential inquiry by examining the trial process. This…

  17. Predicting the spread of aquatic invaders: insight from 200 years of invasion by zebra mussels.

    PubMed

    Karatayev, Alexander Y; Burlakova, Lyubov E; Mastitsky, Sergey E; Padilla, Dianna K

    2015-03-01

    Understanding factors controlling the introduction and spread of species is crucial to improving the management of both natural populations and introduced species. The zebra mussel, Dreissena polymorpha, is considered the most aggressive freshwater invader in the Northern Hemisphere, and is a convenient model system for invasion biology, offering one of the best aquatic examples for examining the invasion process. We used data on 553 of the 1040 glacial lakes in the Republic of Belarus that were examined for the presence of zebra mussels. We used these data to build, test, and construct modified models to predict the spread of this invader, including selection of important parameters that could limit the spread of this invader. In spite of 200 years of continuous invasion, by 1996, zebra mussels were found in only 16.8% of all lakes studied. Of those lakes without zebra mussels in 1996, 66% were predicted to be susceptible to invasion by zebra mussels in the future, and 33% were predicted to be immune to successful invasion due to their water chemistry. Eighty lakes free of zebra mussels in 1996 were reexamined from 1997 to 2008. Of these, zebra mussels successfully invaded an additional 31 lakes, all of which were classified initially as suitable for zebra mussels; none of the lakes previously classified as unsuitable were invaded. We used the Random Forests classification algorithm with 16 environmental variables to determine the most important factors that differed between invaded lakes and those lakes suitable for invasion that have not yet been invaded. Distance to the nearest infested lakes was found to be the most important variable, followed by the lake area, color, average depth, and concentration of chloride, magnesium, and bicarbonate. This study provides a useful approach for predicting the spread of an invader across a landscape with variable habitat suitability that can be applied to a variety of species and systems.

  18. Faithful reconstruction of digital holograms captured by FINCH using a Hamming window function in the Fresnel propagation.

    PubMed

    Siegel, Nisan; Rosen, Joseph; Brooker, Gary

    2013-10-01

    Recent advances in Fresnel incoherent correlation holography (FINCH) increase the signal-to-noise ratio in hologram recording by interference of images from two diffractive lenses with focal lengths close to the image plane. Holograms requiring short reconstruction distances are created that reconstruct poorly with existing Fresnel propagation methods. Here we show a dramatic improvement in reconstructed fluorescent images when a 2D Hamming window function substituted for the disk window typically used to bound the impulse response in the Fresnel propagation. Greatly improved image contrast and quality are shown for simulated and experimentally determined FINCH holograms using a 2D Hamming window without significant loss in lateral or axial resolution.

  19. Zebras and Biting Flies: Quantitative Analysis of Reflected Light from Zebra Coats in Their Natural Habitat

    PubMed Central

    Britten, Kenneth H.; Thatcher, Timothy D.; Caro, Tim

    2016-01-01

    Experimental and comparative evidence suggests that the striped coats of zebras deter biting fly attack, but the mechanisms by which flies fail to target black-and-white mammals are still opaque. Two hypotheses have been proposed: stripes might serve either to defeat polarotaxis or to obscure the form of the animal. To test these hypotheses, we systematically photographed free-living plains zebras in Africa. We found that black and white stripes both have moderate polarization signatures with a similar angle, though the degree (magnitude) of polarization in white stripes is lower. When we modeled the visibility of these signals from different distances, we found that polarization differences between stripes are invisible to flies more than 10 m away because they are averaged out by the flies’ low visual resolution. At any distance, however, a positively polarotactic insect would have a distinct signal to guide its visual approach to a zebra because we found that polarization of light reflecting from zebras is higher than from surrounding dry grasses. We also found that the stripes themselves are visible to flies at somewhat greater distances (up to 20 m) than the polarization contrast between stripes. Together, these observations support hypotheses in which zebra stripes defeat visually guided orienting behavior in flies by a mechanism independent of polarotaxis. PMID:27223616

  20. Are Horses Like Zebras, or Vice Versa? Children's Sensitivity to the Asymmetries of Directional Comparisons

    ERIC Educational Resources Information Center

    Chestnut, Eleanor K.; Markman, Ellen M.

    2016-01-01

    Adults exhibit strong preferences when framing symmetrical relations. Adults prefer, for example, "A zebra is like a horse" to "A horse is like a zebra," and "The bicycle is near the building" to "The building is near the bicycle." This is because directional syntax requires more typical or prominent items…

  1. USGS Zebra Mussel Monitoring Program for north Texas

    USGS Publications Warehouse

    Churchill, Christopher J.; Baldys, Stanley

    2012-01-01

    The U.S. Geological Survey (USGS) Zebra Mussel Monitoring Program for north Texas provides early detection and monitoring of zebra mussels (Dreissena polymorpha) by using a holistic suite of detection methods. The program is designed to assess zebra mussel occurrence, distribution, and densities in north Texas waters by using four approaches: (1) SCUBA diving, (2) water-sample collection with plankton tow nets (followed by laboratory analyses), (3) artificial substrates, and (4) water-quality sampling. Data collected during this type of monitoring can assist rapid response efforts and can be used to quantify the economic and ecological effects of zebra mussels in the north Texas area. Monitoring under this program began in April 2010. The presence of large zebra mussel populations often causes undesirable economic and ecological effects, including damage to water-processing infrastructure and hydroelectric powerplants (with an estimated 10-year cost of $3.1 billion), displacement of native mussels, increases in concentrations of certain species of cyanobacteria, and increases in concentrations of geosmin (an organic compound that results in taste and odor issues in water). Since no large-scale, environmentally safe eradication method has been developed for zebra mussels, it is difficult to remove established populations. Broad physicochemical adaptability, prolific reproductive capacity, and rapid dispersal methods have enabled zebra mussels, within a period of about 20 years, to establish populations under differing environmental conditions across much of the eastern part of the United States. In Texas, the presence of zebra mussels was first confirmed in April 2009 in Lake Texoma in the Red River Basin along the Texas-Oklahoma border. They were most likely introduced into Lake Texoma through overland transport from an infested water body. Since then, the presence of zebra mussels has been reported in both the Red River and Washita River arms of Lake Texoma, in Sister Grove Creek, and in Ray Roberts Lake. Water managers tasked with supplying the 6.6 million residents of the Dallas-Fort Worth metropolitan area must ensure that the area receives a continuous supply of water that meets both the needs of the current (2012) and the projected (doubling in number by 2050) populations. This metropolitan area depends on surface water captured in area reservoirs, including those in the Trinity River Basin, for the primary source of drinking water. The presence of an established zebra mussel population in a reservoir in the Trinity River Basin could result in increased operations and maintenance costs for water resource managers and could potentially serve as a source population leading to further expansion of this aquatic nuisance species.

  2. A Landscape-Scale, Applied Fire Management Experiment Promotes Recovery of a Population of the Threatened Gouldian Finch, Erythrura gouldiae, in Australia's Tropical Savannas.

    PubMed

    Legge, Sarah; Garnett, Stephen; Maute, Kim; Heathcote, Joanne; Murphy, Steve; Woinarski, John C Z; Astheimer, Lee

    2015-01-01

    Fire is an integral part of savanna ecology and changes in fire patterns are linked to biodiversity loss in savannas worldwide. In Australia, changed fire regimes are implicated in the contemporary declines of small mammals, riparian species, obligate-seeding plants and grass seed-eating birds. Translating this knowledge into management to recover threatened species has proved elusive. We report here on a landscape-scale experiment carried out by the Australian Wildlife Conservancy (AWC) on Mornington Wildlife Sanctuary in northwest Australia. The experiment was designed to understand the response of a key savanna bird guild to fire, and to use that information to manage fire with the aim of recovering a threatened species population. We compared condition indices among three seed-eating bird species--one endangered (Gouldian finch) and two non-threatened (long-tailed finch and double-barred finch)--from two large areas (> 2,830 km2) with initial contrasting fire regimes ('extreme': frequent, extensive, intense fire; versus 'benign': less frequent, smaller, lower intensity fires). Populations of all three species living with the extreme fire regime had condition indices that differed from their counterparts living with the benign fire regime, including higher haematocrit levels in some seasons (suggesting higher levels of activity required to find food), different seasonal haematocrit profiles, higher fat scores in the early wet season (suggesting greater food uncertainty), and then lower muscle scores later in the wet season (suggesting prolonged food deprivation). Gouldian finches also showed seasonally increasing stress hormone concentrations with the extreme fire regime. Cumulatively, these patterns indicated greater nutritional stress over many months for seed-eating birds exposed to extreme fire regimes. We tested these relationships by monitoring finch condition over the following years, as AWC implemented fire management to produce the 'benign' fire regime throughout the property. The condition indices of finch populations originally living with the extreme fire regime shifted to resemble those of their counterparts living with the benign fire regime. This research supports the hypothesis that fire regimes affect food resources for savanna seed-eating birds, with this impact mediated through a range of grass species utilised by the birds over different seasons, and that fire management can effectively moderate that impact. This work provides a rare example of applied research supporting the recovery of a population of a threatened species.

  3. Characterization of host plant resistance to zebra chip disease from species-derived potato genotypes and the identification of new sources of zebra chip resistance

    USDA-ARS?s Scientific Manuscript database

    ‘Candidatus Liberibacter solanacearum’ (Lso), an uncultivable phloem-limited phytopathogenic bacterium, is known to be associated with Zebra Chip disease (ZC), which represents a major threat to potato production in the US and elsewhere. This pathogen is transmitted by the phloem-feeding potato psyl...

  4. Longitudinal patterns in abundance of the zebra mussel (Dreissena polymorpha) in the upper Mississippi River

    USGS Publications Warehouse

    Cope, W.G.; Bartsch, M.R.; Hayden, R.R.

    1997-01-01

    We assessed the abundance of zebra mussels in the upper Mississippi River during 1995, four years after they were first found in the river. Samplers were deployed from May 30 to October 19, 1995, at 19 lock and dam facilities in the upper Mississippi River from Minneapolis, Minnesota, to Muscatine, Iowa. Zebra mussels were found at every lock and dam except the two sites farthest upstream (Minneapolis). Generally, densities of zebra mussels were greatest at sites 161 km and farther downstream of the Minneapolis area. The greatest mean mussel density was 11,432/m(2) at Fulton, Illinois.

  5. Use of on-site refugia to protect unionid populations from zebra mussel-induced mortality

    USGS Publications Warehouse

    Nichols, S. Jerrine; Black, M. Glen; Allen, Jeffrey D.

    2000-01-01

    Protecting unionid populations as zebra mussels spread into inland waterways has relied mainly on relocating at-risk animals into aquaculture facilities. While such relocations are the only viable management technique for some populations, facility availability is limited, leaving many unionids facing extirpation. Another management strategy is in-situ protection either by enhancing natural refugia or by creating managed refugia. We have reviewed all reports of natural refugia and found that refugia for unionids can be found in many areas. There are many habitats where zebra mussel colonization has been limited, or of a temporary nature. Within zebra mussel infested areas, unionid communities continue to survive in some shallow water sites such as estuaries, deltas, and lake-connected wetlands. Managed refugia can be created in areas where natural refugia do not exist. We present a case study on recent efforts to create refugia in an area with rapidly expanding zebra mussel populations. Preliminary analysis of unionid body condition indicates that removal of encrusted zebra mussels only once a year can improve unionid condition factors and decrease mortality. Natural and managed refugia can provide an additional conservation management option in some areas.

  6. Zebra: A striped network file system

    NASA Technical Reports Server (NTRS)

    Hartman, John H.; Ousterhout, John K.

    1992-01-01

    The design of Zebra, a striped network file system, is presented. Zebra applies ideas from log-structured file system (LFS) and RAID research to network file systems, resulting in a network file system that has scalable performance, uses its servers efficiently even when its applications are using small files, and provides high availability. Zebra stripes file data across multiple servers, so that the file transfer rate is not limited by the performance of a single server. High availability is achieved by maintaining parity information for the file system. If a server fails its contents can be reconstructed using the contents of the remaining servers and the parity information. Zebra differs from existing striped file systems in the way it stripes file data: Zebra does not stripe on a per-file basis; instead it stripes the stream of bytes written by each client. Clients write to the servers in units called stripe fragments, which are analogous to segments in an LFS. Stripe fragments contain file blocks that were written recently, without regard to which file they belong. This method of striping has numerous advantages over per-file striping, including increased server efficiency, efficient parity computation, and elimination of parity update.

  7. MASTER'S DEGREE PROGRAMS AND THE LIBERAL ARTS COLLEGE. REPORT AND RECOMMENDATIONS FOR FINCH COLLEGE.

    ERIC Educational Resources Information Center

    HAWKES, CAROL

    A STUDY OF MASTER'S DEGREE PROGRAMS WAS CONDUCTED IN ORDER TO DETERMINE THE FEASIBILITY OF ESTABLISHING SUCH A PROGRAM AT FINCH COLLEGE. THE NEED FOR PROGRAMS ON THE GRADUATE LEVEL, TYPES OF MASTER'S DEGREES OFFERED, AND ADMINISTRATIVE POLICIES AND STANDARDS ARE DISCUSSED IN PART ONE. PART TWO, "PROGRAMS IN OPERATION," DESCRIBES IN…

  8. On the Hypothetico-Deductive Nature of Science--Darwin's Finches

    ERIC Educational Resources Information Center

    Lawson, Anton E.

    2009-01-01

    Allchin (2006) has misinterpreted a classic case of hypothetico-deductive (HD) science in terms of his preferred "let's-gather-some-data-and-see-what-emerges" view. The misrepresentation concerns the research program of Peter and Rosemary Grant on Darwin's finches. The present essay argues that the Grants' research is HD in nature and includes a…

  9. CINCH (confocal incoherent correlation holography) super resolution fluorescence microscopy based upon FINCH (Fresnel incoherent correlation holography).

    PubMed

    Siegel, Nisan; Storrie, Brian; Bruce, Marc; Brooker, Gary

    2015-02-07

    FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called "CINCH". An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution.

  10. Strong effects of predation by fishes on an invasive macroinvertebrate in a large floodplain river

    USGS Publications Warehouse

    Bartsch, M.R.; Bartsch, L.A.; Gutreuter, S.

    2005-01-01

    We assessed the effects of fish predation on zebra mussels (Dreissena polymorpha) in Navigation Pool 8 of the Upper Mississippi River from 13 May to 5 October, 1998. Concrete-block samplers were deployed at 18 randomly chosen sites in the main-channel border, with 6 sites in the upper, middle, and lower segments of the pool. Two blocks, 1 of which was enclosed in a cage to exclude large predatory fishes, were deployed at each site. After 145 d, blocks were retrieved from 12 of the 18 sites, and zebra mussels were found on all blocks. Densities of zebra mussels were higher on caged blocks than uncaged blocks, and the magnitudes of the differences varied spatially. Mean mussel densities on uncaged blocks were reduced by 66%, 86%, and 20% compared to caged blocks in the upper, middle, and lower pool segments, respectively, over the 145-d interval. Mean daily instantaneous zebra mussel mortality rates from large predators ranged from 0.0016 to 0.0138. Similarly, biomass of zebra mussels was higher on caged than uncaged blocks. Mean mussel biomass on uncaged blocks was reduced by 64% pool-wide, relative to biomass on caged blocks. Zebra mussels were consumed by at least 6 fish taxa including redhorse stickers (Moxostoma spp.), common carp (Cyprinus carpio), bluegill (Lepomis macrochirus), quillback carpsucker (Carpiodes cyprinus), flathead catfish (Pylodictis olivaris), and freshwater drum (Aplodinotus grunniens). Fish predation had an important moderating effect on zebra mussel demography in Pool 8.

  11. Development of a molecular diagnostic system to discriminate Dreissena polymorpha (zebra mussel) and Dreissena bugensis (quagga mussel)

    USGS Publications Warehouse

    Hoy, M.S.; Kelly, K.; Rodriguez, R.J.

    2010-01-01

    A 3-primer PCR system was developed to discriminate invasive zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussel. The system is based on: 1) universal primers that amplifies a region of the nuclear 28s rDNA gene from both species and 2) a species-specific primer complementary to either zebra or quagga mussel. The species-specific primers bind to sequences between the binding sites for the universal primers resulting in the amplification of two products from the target species and one product from the nontarget species. Therefore, nontarget products are positive amplification controls. The 3-primer system accurately discriminated zebra and quagga mussels from seven geographically distinct populations.

  12. Examining Natural Selection by Sketching and Making Models of the Finches of the Galapagos Islands

    ERIC Educational Resources Information Center

    Pittman, Phoebe J. Z.; Teske, Jolene K.

    2017-01-01

    This practical lesson describes how students in six eighth grade science classes participated in a lesson combining the National Core Arts Standards with the Next Generation Science Standards. The goal of the lesson was to provide visual representations of finch beak form and function so students could better understand genetic variation and how…

  13. Variability of IN measured with the Fast Ice Nucleus Chamber (FINCH) at the high altitude research station Jungfraujoch during wintertime 2013

    NASA Astrophysics Data System (ADS)

    Frank, Fabian; Nillius, Björn; Bundke, Ulrich; Curtius, Joachim

    2014-05-01

    Ice nuclei (IN) are an important component of the atmospheric aerosol. Despite their low concentrations in the atmosphere, they have an influence on the formation of ice crystals in mixed-phase clouds and therefore on precipitation. The Fast Ice Nucleus CHamber (FINCH)1, a counter for ice nucleating particles developed at the Goethe University Frankfurt am Main allows long-term measurements of the IN number concentration. In FINCH the ice activation of the aerosol particles is achieved by mixing air flows with different temperature and humidity. The IN number concentration measurements at different meteorological conditions during the INUIT-JFJ campaign at the high altitude research station Jungfraujoch in Switzerland are presented and its variability are discussed. The good operational performance of the instrument allowed up to 10 hours of continuous measurements. Acknowledgment: This work was supported by the German Research Foundation, DFG Grant: BU 1432/3-2 BU 1432/4-1 in the framework of INUIT (FOR 1525) and SPP 1294 HALO. 1- Bundke, U., Nillius, B., Jaenicke, R., Wetter, T., Klein, H., and Bingemer, H. (2008). The fast ice nucleus chamber finch. Atmospheric Research, 90:180-186.

  14. Effects of background noise on acoustic characteristics of Bengalese finch songs.

    PubMed

    Shiba, Shintaro; Okanoya, Kazuo; Tachibana, Ryosuke O

    2016-12-01

    Online regulation of vocalization in response to auditory feedback is one of the essential issues for vocal communication. One such audio-vocal interaction is the Lombard effect, an involuntary increase in vocal amplitude in response to the presence of background noise. Along with vocal amplitude, other acoustic characteristics, including fundamental frequency (F0), also change in some species. Bengalese finches (Lonchura striata var. domestica) are a suitable model for comparative, ethological, and neuroscientific studies on audio-vocal interaction because they require real-time auditory feedback of their own songs to maintain normal singing. Here, the changes in amplitude and F0 with a focus on the distinct song elements (i.e., notes) of Bengalese finches under noise presentation are demonstrated. To accurately analyze these acoustic characteristics, two different bandpass-filtered noises at two levels of sound intensity were used. The results confirmed that the Lombard effect occurs at the note level of Bengalese finch song. Further, individually specific modes of changes in F0 are shown. These behavioral changes suggested the vocal control mechanisms on which the auditory feedback is based have a predictable effect on amplitude, but complex spectral effects on individual note production.

  15. SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF A ZEBRA PATTERN IN A SOLAR DECIMETRIC RADIO BURST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Bin; Bastian, T. S.; Gary, D. E.

    2011-07-20

    We present the first interferometric observation of a zebra-pattern radio burst with simultaneous high spectral ({approx}1 MHz) and high time (20 ms) resolution. The Frequency-Agile Solar Radiotelescope Subsystem Testbed (FST) and the Owens Valley Solar Array (OVSA) were used in parallel to observe the X1.5 flare on 2006 December 14. By using OVSA to calibrate the FST, the source position of the zebra pattern can be located on the solar disk. With the help of multi-wavelength observations and a nonlinear force-free field extrapolation, the zebra source is explored in relation to the magnetic field configuration. New constraints are placed onmore » the source size and position as a function of frequency and time. We conclude that the zebra burst is consistent with a double-plasma resonance model in which the radio emission occurs in resonance layers where the upper-hybrid frequency is harmonically related to the electron cyclotron frequency in a coronal magnetic loop.« less

  16. A dominance shift from the zebra mussel to the invasive quagga mussel may alter the trophic transfer of metals.

    PubMed

    Matthews, Jonathan; Schipper, Aafke M; Hendriks, A Jan; Yen Le, T T; Bij de Vaate, Abraham; van der Velde, Gerard; Leuven, Rob S E W

    2015-08-01

    Bioinvasions are a major cause of biodiversity and ecosystem changes. The rapid range expansion of the invasive quagga mussel (Dreissena rostriformis bugensis) causing a dominance shift from zebra mussels (Dreissena polymorpha) to quagga mussels, may alter the risk of secondary poisoning to predators. Mussel samples were collected from various water bodies in the Netherlands, divided into size classes, and analysed for metal concentrations. Concentrations of nickel and copper in quagga mussels were significantly lower than in zebra mussels overall. In lakes, quagga mussels contained significantly higher concentrations of aluminium, iron and lead yet significantly lower concentrations of zinc66, cadmium111, copper, nickel, cobalt and molybdenum than zebra mussels. In the river water type quagga mussel soft tissues contained significantly lower concentrations of zinc66. Our results suggest that a dominance shift from zebra to quagga mussels may reduce metal exposure of predator species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A zebra-band phenotype in maize can be suppressed in constant light, and results from mutation of a PPOXlike gene (protophorphyrinogen oxidase IX-like) for porphyrin biosynthesis

    USDA-ARS?s Scientific Manuscript database

    A zebra-band phenotype was identified in a maize population of transposon-tagged mutants (UniformMu, searchable by sequence at MaizeGDB.org). Genotype-phenotype analysis of an F2 family showed that the zebra stripes co-segregated with a single Mu insertion in the second exon of a Protoporphyrinogen ...

  18. Bioassessment of mercury, cadmium, polychlorinated biphenyls, and pesticides in the upper Mississippi river with Zebra mussels (Dreissena polymorpha)

    USGS Publications Warehouse

    Cope, W. Gregory; Bartsch, Michelle; Rada, Ronald G.; Balogh, Steven J.; Rupprecht, John E.; Young, R. David; Johnson, D. Kent

    1999-01-01

    Zebra mussels (Dreissena polymorpha) were sampled from artificial substrates deployed from May 30 to October 19, 1995, at 19 locks and dams from Minneapolis, MN, to Muscatine, IA. Analyses of composite tissue samples of zebra mussels (10−20-mm length) revealed accumulation of mercury (Hg), cadmium (Cd), and polychlorinated biphenyls (PCBs) during a 143-d exposure period. Concentrations of total Hg ranged from 2.6 to 6.1 ng/g wet weight and methylmercury (CH3Hg) from 1.0 to 3.3 ng/g wet weight. About 50% (range 30−70%) of the mean total Hg in zebra mussels was CH3Hg. Cadmium ranged from 76 to 213 ng/g wet weight. Concentrations of total PCBs (Aroclor 1254) in zebra mussels varied longitudinally (range 1000−7330 ng/g lipid weight), but the composition of PCB congeners (total of 21 measured) was similar throughout the river. Chlordane and dieldrin were the only two pesticides detected of the 15 analyzed. Zebra mussels are sentinels of contaminant bioavailability in the Upper Mississippi River and may be an important link in the trophic transfer of contaminants in the river because of their increasing importance in the diets of certain fish and waterfowl.

  19. Altered trophic pathway and parasitism in a native predator (Lepomis gibbosus) feeding on introduced prey (Dreissena polymorpha).

    PubMed

    Locke, Sean A; Bulté, Grégory; Marcogliese, David J; Forbes, Mark R

    2014-05-01

    Populations of invasive species tend to have fewer parasites in their introduced ranges than in their native ranges and are also thought to have fewer parasites than native prey. This 'release' from parasites has unstudied implications for native predators feeding on exotic prey. In particular, shifts from native to exotic prey should reduce levels of trophically transmitted parasites. We tested this hypothesis in native populations of pumpkinseed sunfish (Lepomis gibbosus) in Lake Opinicon, where fish stomach contents were studied intensively in the 1970s, prior to the appearance of exotic zebra mussels (Dreissena polymorpha) in the mid-1990s. Zebra mussels were common in stomachs of present-day pumpkinseeds, and stable isotopes of carbon and nitrogen confirmed their importance in long-term diets. Because historical parasite data were not available in Lake Opinicon, we also surveyed stomach contents and parasites in pumpkinseed in both Lake Opinicon and an ecologically similar, neighboring lake where zebra mussels were absent. Stomach contents of pumpkinseed in the companion lake did not differ from those of pre-invasion fish from Lake Opinicon. The companion lake, therefore, served as a surrogate "pre-invasion" reference to assess effects of zebra mussel consumption on parasites in pumpkinseed. Trophically transmitted parasites were less species-rich and abundant in Lake Opinicon, where fish fed on zebra mussels, although factors other than zebra mussel consumption may contribute to these differences. Predation on zebra mussels has clearly contributed to a novel trophic coupling between littoral and pelagic food webs in Lake Opinicon.

  20. FindZebra: a search engine for rare diseases.

    PubMed

    Dragusin, Radu; Petcu, Paula; Lioma, Christina; Larsen, Birger; Jørgensen, Henrik L; Cox, Ingemar J; Hansen, Lars Kai; Ingwersen, Peter; Winther, Ole

    2013-06-01

    The web has become a primary information resource about illnesses and treatments for both medical and non-medical users. Standard web search is by far the most common interface to this information. It is therefore of interest to find out how well web search engines work for diagnostic queries and what factors contribute to successes and failures. Among diseases, rare (or orphan) diseases represent an especially challenging and thus interesting class to diagnose as each is rare, diverse in symptoms and usually has scattered resources associated with it. We design an evaluation approach for web search engines for rare disease diagnosis which includes 56 real life diagnostic cases, performance measures, information resources and guidelines for customising Google Search to this task. In addition, we introduce FindZebra, a specialized (vertical) rare disease search engine. FindZebra is powered by open source search technology and uses curated freely available online medical information. FindZebra outperforms Google Search in both default set-up and customised to the resources used by FindZebra. We extend FindZebra with specialized functionalities exploiting medical ontological information and UMLS medical concepts to demonstrate different ways of displaying the retrieved results to medical experts. Our results indicate that a specialized search engine can improve the diagnostic quality without compromising the ease of use of the currently widely popular standard web search. The proposed evaluation approach can be valuable for future development and benchmarking. The FindZebra search engine is available at http://www.findzebra.com/. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Zebrafish as a model to study the role of DNA methylation in environmental toxicology.

    PubMed

    Kamstra, Jorke H; Aleström, Peter; Kooter, Jan M; Legler, Juliette

    2015-11-01

    Environmental epigenetics is a rapidly growing field which studies the effects of environmental factors such as nutrition, stress, and exposure to compounds on epigenetic gene regulation. Recent studies have shown that exposure to toxicants in vertebrates is associated with changes in DNA methylation, a major epigenetic mechanism affecting gene transcription. Zebra fish, a well-known model in toxicology and developmental biology, are emerging as a model species in environmental epigenetics despite their evolutionary distance to rodents and humans. In this review, recent insights in DNA methylation during zebra fish development are discussed and compared to mammalian models in order to evaluate zebra fish as a model to study the role of DNA methylation in environmental toxicology. Differences exist in DNA methylation reprogramming during early development, whereas in later developmental stages, tissue distribution of both 5-methylcytosine and 5-hydroxymethylcytosine seems more conserved between species, as well as basic DNA (de)methylation mechanisms. All DNA methyl transferases identified so far in mammals are present in zebra fish, as well as a number of major demethylation pathways. However, zebra fish appear to lack some methylation pathways present in mammals, such as parental imprinting. Several studies report effects on DNA methylation in zebra fish following exposure to environmental contaminants, such as arsenic, benzo[a]pyrene, and tris(1,3-dichloro-2-propyl)phosphate. Though more research is needed to examine heritable effects of contaminant exposure on DNA methylation, recent data suggests the usefulness of the zebra fish as a model in environmental epigenetics.

  2. ZebraZoom: an automated program for high-throughput behavioral analysis and categorization

    PubMed Central

    Mirat, Olivier; Sternberg, Jenna R.; Severi, Kristen E.; Wyart, Claire

    2013-01-01

    The zebrafish larva stands out as an emergent model organism for translational studies involving gene or drug screening thanks to its size, genetics, and permeability. At the larval stage, locomotion occurs in short episodes punctuated by periods of rest. Although phenotyping behavior is a key component of large-scale screens, it has not yet been automated in this model system. We developed ZebraZoom, a program to automatically track larvae and identify maneuvers for many animals performing discrete movements. Our program detects each episodic movement and extracts large-scale statistics on motor patterns to produce a quantification of the locomotor repertoire. We used ZebraZoom to identify motor defects induced by a glycinergic receptor antagonist. The analysis of the blind mutant atoh7 revealed small locomotor defects associated with the mutation. Using multiclass supervised machine learning, ZebraZoom categorized all episodes of movement for each larva into one of three possible maneuvers: slow forward swim, routine turn, and escape. ZebraZoom reached 91% accuracy for categorization of stereotypical maneuvers that four independent experimenters unanimously identified. For all maneuvers in the data set, ZebraZoom agreed with four experimenters in 73.2–82.5% of cases. We modeled the series of maneuvers performed by larvae as Markov chains and observed that larvae often repeated the same maneuvers within a group. When analyzing subsequent maneuvers performed by different larvae, we found that larva–larva interactions occurred as series of escapes. Overall, ZebraZoom reached the level of precision found in manual analysis but accomplished tasks in a high-throughput format necessary for large screens. PMID:23781175

  3. Making the Best of a Pest: The Potential for Using Invasive Zebra Mussel ( Dreissena Polymorpha) Biomass as a Supplement to Commercial Chicken Feed

    NASA Astrophysics Data System (ADS)

    McLaughlan, Claire; Rose, Paul; Aldridge, David C.

    2014-11-01

    Invasive non-native species frequently occur in very high densities. When such invaders present an economic or ecological nuisance, this biomass is typically removed and landfill is the most common destination, which is undesirable from both an economic and ecological perspective. The zebra mussel, Dreissena polymorpha, has invaded large parts of Europe and North America, and is routinely removed from raw water systems where it creates a biofouling nuisance. We investigated the suitability of dried, whole zebra mussels as a supplement to poultry feed, thus providing a more attractive end-use than disposal to landfill. Measurable outcomes were nutrient and energy composition analyses of the feeds and production parameters of the birds over a 14 day period. Zebra mussels were a palatable feed supplement for chickens. The mussel meal contained high levels of calcium (344.9 g kg-1), essential for egg shell formation, which was absorbed and retained easily by the birds. Compared with standard feed, a mussel-supplemented diet caused no significant effects on production parameters such as egg weight and feed conversion ratio during the study period. However, protein and energy levels in the zebra mussel feed were much lower than expected from the literature. In order for zebra mussels to be a viable long-term feed supplement for poultry, flesh would need to be separated from the shells in an economically viable way. If zebra mussels were to be used with the shells remaining, it seems that the resultant mussel meal would be more suitable as a calcium supplement.

  4. Making the best of a pest: the potential for using invasive zebra mussel (Dreissena polymorpha) biomass as a supplement to commercial chicken feed.

    PubMed

    McLaughlan, Claire; Rose, Paul; Aldridge, David C

    2014-11-01

    Invasive non-native species frequently occur in very high densities. When such invaders present an economic or ecological nuisance, this biomass is typically removed and landfill is the most common destination, which is undesirable from both an economic and ecological perspective. The zebra mussel, Dreissena polymorpha, has invaded large parts of Europe and North America, and is routinely removed from raw water systems where it creates a biofouling nuisance. We investigated the suitability of dried, whole zebra mussels as a supplement to poultry feed, thus providing a more attractive end-use than disposal to landfill. Measurable outcomes were nutrient and energy composition analyses of the feeds and production parameters of the birds over a 14 day period. Zebra mussels were a palatable feed supplement for chickens. The mussel meal contained high levels of calcium (344.9 g kg(-1)), essential for egg shell formation, which was absorbed and retained easily by the birds. Compared with standard feed, a mussel-supplemented diet caused no significant effects on production parameters such as egg weight and feed conversion ratio during the study period. However, protein and energy levels in the zebra mussel feed were much lower than expected from the literature. In order for zebra mussels to be a viable long-term feed supplement for poultry, flesh would need to be separated from the shells in an economically viable way. If zebra mussels were to be used with the shells remaining, it seems that the resultant mussel meal would be more suitable as a calcium supplement.

  5. CINCH (confocal incoherent correlation holography) super resolution fluorescence microscopy based upon FINCH (Fresnel incoherent correlation holography)

    PubMed Central

    Siegel, Nisan; Storrie, Brian; Bruce, Marc

    2016-01-01

    FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called “CINCH”. An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution. PMID:26839443

  6. VizieR Online Data Catalog: The URAT Parallax Catalog (UPC). Update 2018 (Finch+, 2018)

    NASA Astrophysics Data System (ADS)

    Finch, C. T.; Zacharias, N.; Jao, W.-C.

    2018-03-01

    United States Naval Observatory (USNO) Robotic Astrometric Telescope (URAT) Parallax Catalog south (UPCs) and north (UPCn). These data are based on the accepted paper for the Astronomical Journal (2018) by C. Finch, N. Zacharias, and W.-C. Jao, "URAT south parallax results: discovery of new nearby stars" (2018AJ....155..176F). The southern data are new, while the northern data contain a subset of the previously published UPC catalog after applying the more stringent selection criteria of the south data and supplementing the data with columns of the southern data. The previously published URAT Parallax Catalog (UPC) paper is: C. Finch and N. Zacharias (2016AJ....151..160F, Cat. J/AJ/151/160) (arXiv:1604.06739). (3 data files).

  7. Polarized light modulates light-dependent magnetic compass orientation in birds

    PubMed Central

    Muheim, Rachel; Sjöberg, Sissel; Pinzon-Rodriguez, Atticus

    2016-01-01

    Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm “plus” maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth’s magnetic field. PMID:26811473

  8. A micro-scale printable nanoclip for electrical stimulation and recording in small nerves

    NASA Astrophysics Data System (ADS)

    Lissandrello, Charles A.; Gillis, Winthrop F.; Shen, Jun; Pearre, Ben W.; Vitale, Flavia; Pasquali, Matteo; Holinski, Bradley J.; Chew, Daniel J.; White, Alice E.; Gardner, Timothy J.

    2017-06-01

    Objective. The vision of bioelectronic medicine is to treat disease by modulating the signaling of visceral nerves near various end organs. In small animal models, the nerves of interest can have small diameters and limited surgical access. New high-resolution methods for building nerve interfaces are desirable. In this study, we present a novel nerve interface and demonstrate its use for stimulation and recording in small nerves. Approach. We design and fabricate micro-scale electrode-laden nanoclips capable of interfacing with nerves as small as 50 µm in diameter. The nanoclips are fabricated using a direct laser writing technique with a resolution of 200 nm. The resolution of the printing process allows for incorporation of a number of innovations such as trapdoors to secure the device to the nerve, and quick-release mounts that facilitate keyhole surgery, obviating the need for forceps. The nanoclip can be built around various electrode materials; here we use carbon nanotube fibers for minimally invasive tethering. Main results. We present data from stimulation-evoked responses of the tracheal syringeal (hypoglossal) nerve of the zebra finch, as well as quantification of nerve functionality at various time points post implant, demonstrating that the nanoclip is compatible with healthy nerve activity over sub-chronic timescales. Significance. Our nerve interface addresses key challenges in interfacing with small nerves in the peripheral nervous system. Its small size, ability to remain on the nerve over sub-chronic timescales, and ease of implantation, make it a promising tool for future use in the treatment of disease.

  9. Polarized light modulates light-dependent magnetic compass orientation in birds.

    PubMed

    Muheim, Rachel; Sjöberg, Sissel; Pinzon-Rodriguez, Atticus

    2016-02-09

    Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm "plus" maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth's magnetic field.

  10. Dietary antioxidants and flight exercise in female birds affect allocation of nutrients to eggs: how carry-over effects work.

    PubMed

    Skrip, Megan M; Seeram, Navindra P; Yuan, Tao; Ma, Hang; McWilliams, Scott R

    2016-09-01

    Physiological challenges during one part of the annual cycle can carry over and affect performance at a subsequent phase, and antioxidants could be one mediator of trade-offs between phases. We performed a controlled experiment with zebra finches to examine how songbirds use nutrition to manage trade-offs in antioxidant allocation between endurance flight and subsequent reproduction. Our treatment groups included (1) a non-supplemented, non-exercised group (control group) fed a standard diet with no exercise beyond that experienced during normal activity in an aviary; (2) a supplemented non-exercised group fed a water- and lipid-soluble antioxidant-supplemented diet with no exercise; (3) a non-supplemented exercised group fed a standard diet and trained to perform daily endurance flight for 6 weeks; and (4) a supplemented exercised group fed an antioxidant-supplemented diet and trained to perform daily flight for 6 weeks. After flight training, birds were paired within treatment groups for breeding. We analyzed eggs for lutein and vitamin E concentrations and the plasma of parents throughout the experiment for non-enzymatic antioxidant capacity and oxidative damage. Exercised birds had higher oxidative damage levels than non-exercised birds after flight training, despite supplementation with dietary antioxidants. Supplementation with water-soluble antioxidants decreased the deposition of lipid-soluble antioxidants into eggs and decreased yolk size. Flight exercise also lowered deposition of lutein, but not vitamin E, to eggs. These findings have important implications for future studies of wild birds during migration and other oxidative challenges. © 2016. Published by The Company of Biologists Ltd.

  11. Efferent innervation of turtle semicircular canal cristae: comparisons with bird and mouse

    PubMed Central

    Jordan, Paivi M.; Fettis, Margaret; Holt, Joseph C.

    2014-01-01

    In the vestibular periphery of nearly every vertebrate, cholinergic vestibular efferent neurons give rise to numerous presynaptic varicosities that target hair cells and afferent processes in the sensory neuroepithelium. Although pharmacological studies have described the postsynaptic actions of vestibular efferent stimulation in several species, characterization of efferent innervation patterns and the relative distribution of efferent varicosities among hair cells and afferents are also integral to understanding how efferent synapses operate. Vestibular efferent markers, however, have not been well characterized in the turtle, one of the animal models utilized by our laboratory. Here, we sought to identify reliable efferent neuronal markers in the vestibular periphery of turtle, to utilize these markers to understand how efferent synapses are organized, and to compare efferent neuronal labeling patterns in turtle with two other amniotes using some of the same markers. Efferent fibers and varicosities were visualized in the semicircular canal of Red-Eared Turtles (Trachemys scripta elegans), Zebra Finches (Taeniopygia guttata), and mice (Mus musculus) utilizing fluorescent immunohistochemistry with antibodies against choline acetyltransferase (ChAT). Vestibular hair cells and afferents were counterstained using antibodies to myosin VIIa and calretinin. In all species, ChAT labeled a population of small diameter fibers giving rise to numerous spherical varicosities abutting type II hair cells and afferent processes. That these ChAT-positive varicosities represent presynaptic release sites were demonstrated by colabeling with antibodies against the synaptic vesicle proteins synapsin I, SV2, or syntaxin and the neuropeptide calcitonin gene-related peptide (CGRP). Comparisons of efferent innervation patterns among the three species are discussed. PMID:25560461

  12. Efferent innervation of turtle semicircular canal cristae: comparisons with bird and mouse.

    PubMed

    Jordan, Paivi M; Fettis, Margaret; Holt, Joseph C

    2015-06-01

    In the vestibular periphery of nearly every vertebrate, cholinergic vestibular efferent neurons give rise to numerous presynaptic varicosities that target hair cells and afferent processes in the sensory neuroepithelium. Although pharmacological studies have described the postsynaptic actions of vestibular efferent stimulation in several species, characterization of efferent innervation patterns and the relative distribution of efferent varicosities among hair cells and afferents are also integral to understanding how efferent synapses operate. Vestibular efferent markers, however, have not been well characterized in the turtle, one of the animal models used by our laboratory. Here we sought to identify reliable efferent neuronal markers in the vestibular periphery of turtle, to use these markers to understand how efferent synapses are organized, and to compare efferent neuronal labeling patterns in turtle with two other amniotes using some of the same markers. Efferent fibers and varicosities were visualized in the semicircular canal of red-eared turtles (Trachemys scripta elegans), zebra finches (Taeniopygia guttata), and mice (Mus musculus) utilizing fluorescent immunohistochemistry with antibodies against choline acetyltransferase (ChAT). Vestibular hair cells and afferents were counterstained using antibodies to myosin VIIa and calretinin. In all species, ChAT labeled a population of small diameter fibers giving rise to numerous spherical varicosities abutting type II hair cells and afferent processes. That these ChAT-positive varicosities represent presynaptic release sites were demonstrated by colabeling with antibodies against the synaptic vesicle proteins synapsin I, SV2, or syntaxin and the neuropeptide calcitonin gene-related peptide. Comparisons of efferent innervation patterns among the three species are discussed. © 2015 Wiley Periodicals, Inc.

  13. Directed functional connectivity matures with motor learning in a cortical pattern generator.

    PubMed

    Day, Nancy F; Terleski, Kyle L; Nykamp, Duane Q; Nick, Teresa A

    2013-02-01

    Sequential motor skills may be encoded by feedforward networks that consist of groups of neurons that fire in sequence (Abeles 1991; Long et al. 2010). However, there has been no evidence of an anatomic map of activation sequence in motor control circuits, which would be potentially detectable as directed functional connectivity of coactive neuron groups. The proposed pattern generator for birdsong, the HVC (Long and Fee 2008; Vu et al. 1994), contains axons that are preferentially oriented in the rostrocaudal axis (Nottebohm et al. 1982; Stauffer et al. 2012). We used four-tetrode recordings to assess the activity of ensembles of single neurons along the rostrocaudal HVC axis in anesthetized zebra finches. We found an axial, polarized neural network in which sequential activity is directionally organized along the rostrocaudal axis in adult males, who produce a stereotyped song. Principal neurons fired in rostrocaudal order and with interneurons that were rostral to them, suggesting that groups of excitatory neurons fire at the leading edge of travelling waves of inhibition. Consistent with the synchronization of neurons by caudally travelling waves of inhibition, the activity of interneurons was more coherent in the orthogonal mediolateral axis than in the rostrocaudal axis. If directed functional connectivity within the HVC is important for stereotyped, learned song, then it may be lacking in juveniles, which sing a highly variable song. Indeed, we found little evidence for network directionality in juveniles. These data indicate that a functionally directed network within the HVC matures during sensorimotor learning and may underlie vocal patterning.

  14. Directed functional connectivity matures with motor learning in a cortical pattern generator

    PubMed Central

    Day, Nancy F.; Terleski, Kyle L.; Nykamp, Duane Q.

    2013-01-01

    Sequential motor skills may be encoded by feedforward networks that consist of groups of neurons that fire in sequence (Abeles 1991; Long et al. 2010). However, there has been no evidence of an anatomic map of activation sequence in motor control circuits, which would be potentially detectable as directed functional connectivity of coactive neuron groups. The proposed pattern generator for birdsong, the HVC (Long and Fee 2008; Vu et al. 1994), contains axons that are preferentially oriented in the rostrocaudal axis (Nottebohm et al. 1982; Stauffer et al. 2012). We used four-tetrode recordings to assess the activity of ensembles of single neurons along the rostrocaudal HVC axis in anesthetized zebra finches. We found an axial, polarized neural network in which sequential activity is directionally organized along the rostrocaudal axis in adult males, who produce a stereotyped song. Principal neurons fired in rostrocaudal order and with interneurons that were rostral to them, suggesting that groups of excitatory neurons fire at the leading edge of travelling waves of inhibition. Consistent with the synchronization of neurons by caudally travelling waves of inhibition, the activity of interneurons was more coherent in the orthogonal mediolateral axis than in the rostrocaudal axis. If directed functional connectivity within the HVC is important for stereotyped, learned song, then it may be lacking in juveniles, which sing a highly variable song. Indeed, we found little evidence for network directionality in juveniles. These data indicate that a functionally directed network within the HVC matures during sensorimotor learning and may underlie vocal patterning. PMID:23175804

  15. Selective and Efficient Neural Coding of Communication Signals Depends on Early Acoustic and Social Environment

    PubMed Central

    Amin, Noopur; Gastpar, Michael; Theunissen, Frédéric E.

    2013-01-01

    Previous research has shown that postnatal exposure to simple, synthetic sounds can affect the sound representation in the auditory cortex as reflected by changes in the tonotopic map or other relatively simple tuning properties, such as AM tuning. However, their functional implications for neural processing in the generation of ethologically-based perception remain unexplored. Here we examined the effects of noise-rearing and social isolation on the neural processing of communication sounds such as species-specific song, in the primary auditory cortex analog of adult zebra finches. Our electrophysiological recordings reveal that neural tuning to simple frequency-based synthetic sounds is initially established in all the laminae independent of patterned acoustic experience; however, we provide the first evidence that early exposure to patterned sound statistics, such as those found in native sounds, is required for the subsequent emergence of neural selectivity for complex vocalizations and for shaping neural spiking precision in superficial and deep cortical laminae, and for creating efficient neural representations of song and a less redundant ensemble code in all the laminae. Our study also provides the first causal evidence for ‘sparse coding’, such that when the statistics of the stimuli were changed during rearing, as in noise-rearing, that the sparse or optimal representation for species-specific vocalizations disappeared. Taken together, these results imply that a layer-specific differential development of the auditory cortex requires patterned acoustic input, and a specialized and robust sensory representation of complex communication sounds in the auditory cortex requires a rich acoustic and social environment. PMID:23630587

  16. Neural Representation of a Target Auditory Memory in a Cortico-Basal Ganglia Pathway

    PubMed Central

    Bottjer, Sarah W.

    2013-01-01

    Vocal learning in songbirds, like speech acquisition in humans, entails a period of sensorimotor integration during which vocalizations are evaluated via auditory feedback and progressively refined to achieve an imitation of memorized vocal sounds. This process requires the brain to compare feedback of current vocal behavior to a memory of target vocal sounds. We report the discovery of two distinct populations of neurons in a cortico-basal ganglia circuit of juvenile songbirds (zebra finches, Taeniopygia guttata) during vocal learning: (1) one in which neurons are selectively tuned to memorized sounds and (2) another in which neurons are selectively tuned to self-produced vocalizations. These results suggest that neurons tuned to learned vocal sounds encode a memory of those target sounds, whereas neurons tuned to self-produced vocalizations encode a representation of current vocal sounds. The presence of neurons tuned to memorized sounds is limited to early stages of sensorimotor integration: after learning, the incidence of neurons encoding memorized vocal sounds was greatly diminished. In contrast to this circuit, neurons known to drive vocal behavior through a parallel cortico-basal ganglia pathway show little selective tuning until late in learning. One interpretation of these data is that representations of current and target vocal sounds in the shell circuit are used to compare ongoing patterns of vocal feedback to memorized sounds, whereas the parallel core circuit has a motor-related role in learning. Such a functional subdivision is similar to mammalian cortico-basal ganglia pathways in which associative-limbic circuits mediate goal-directed responses, whereas sensorimotor circuits support motor aspects of learning. PMID:24005299

  17. Functional magnetic resonance imaging (FMRI) with auditory stimulation in songbirds.

    PubMed

    Van Ruijssevelt, Lisbeth; De Groof, Geert; Van der Kant, Anne; Poirier, Colline; Van Audekerke, Johan; Verhoye, Marleen; Van der Linden, Annemie

    2013-06-03

    The neurobiology of birdsong, as a model for human speech, is a pronounced area of research in behavioral neuroscience. Whereas electrophysiology and molecular approaches allow the investigation of either different stimuli on few neurons, or one stimulus in large parts of the brain, blood oxygenation level dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) allows combining both advantages, i.e. compare the neural activation induced by different stimuli in the entire brain at once. fMRI in songbirds is challenging because of the small size of their brains and because their bones and especially their skull comprise numerous air cavities, inducing important susceptibility artifacts. Gradient-echo (GE) BOLD fMRI has been successfully applied to songbirds (1-5) (for a review, see (6)). These studies focused on the primary and secondary auditory brain areas, which are regions free of susceptibility artifacts. However, because processes of interest may occur beyond these regions, whole brain BOLD fMRI is required using an MRI sequence less susceptible to these artifacts. This can be achieved by using spin-echo (SE) BOLD fMRI (7,8) . In this article, we describe how to use this technique in zebra finches (Taeniopygia guttata), which are small songbirds with a bodyweight of 15-25 g extensively studied in behavioral neurosciences of birdsong. The main topic of fMRI studies on songbirds is song perception and song learning. The auditory nature of the stimuli combined with the weak BOLD sensitivity of SE (compared to GE) based fMRI sequences makes the implementation of this technique very challenging.

  18. Reconstructing the spectrotemporal modulations of real-life sounds from fMRI response patterns

    PubMed Central

    Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Valente, Giancarlo; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia

    2017-01-01

    Ethological views of brain functioning suggest that sound representations and computations in the auditory neural system are optimized finely to process and discriminate behaviorally relevant acoustic features and sounds (e.g., spectrotemporal modulations in the songs of zebra finches). Here, we show that modeling of neural sound representations in terms of frequency-specific spectrotemporal modulations enables accurate and specific reconstruction of real-life sounds from high-resolution functional magnetic resonance imaging (fMRI) response patterns in the human auditory cortex. Region-based analyses indicated that response patterns in separate portions of the auditory cortex are informative of distinctive sets of spectrotemporal modulations. Most relevantly, results revealed that in early auditory regions, and progressively more in surrounding regions, temporal modulations in a range relevant for speech analysis (∼2–4 Hz) were reconstructed more faithfully than other temporal modulations. In early auditory regions, this effect was frequency-dependent and only present for lower frequencies (<∼2 kHz), whereas for higher frequencies, reconstruction accuracy was higher for faster temporal modulations. Further analyses suggested that auditory cortical processing optimized for the fine-grained discrimination of speech and vocal sounds underlies this enhanced reconstruction accuracy. In sum, the present study introduces an approach to embed models of neural sound representations in the analysis of fMRI response patterns. Furthermore, it reveals that, in the human brain, even general purpose and fundamental neural processing mechanisms are shaped by the physical features of real-world stimuli that are most relevant for behavior (i.e., speech, voice). PMID:28420788

  19. Development of neural responsivity to vocal sounds in higher level auditory cortex of songbirds

    PubMed Central

    Miller-Sims, Vanessa C.

    2014-01-01

    Like humans, songbirds learn vocal sounds from “tutors” during a sensitive period of development. Vocal learning in songbirds therefore provides a powerful model system for investigating neural mechanisms by which memories of learned vocal sounds are stored. This study examined whether NCM (caudo-medial nidopallium), a region of higher level auditory cortex in songbirds, serves as a locus where a neural memory of tutor sounds is acquired during early stages of vocal learning. NCM neurons respond well to complex auditory stimuli, and evoked activity in many NCM neurons habituates such that the response to a stimulus that is heard repeatedly decreases to approximately one-half its original level (stimulus-specific adaptation). The rate of neural habituation serves as an index of familiarity, being low for familiar sounds, but high for novel sounds. We found that response strength across different song stimuli was higher in NCM neurons of adult zebra finches than in juveniles, and that only adult NCM responded selectively to tutor song. The rate of habituation across both tutor song and novel conspecific songs was lower in adult than in juvenile NCM, indicating higher familiarity and a more persistent response to song stimuli in adults. In juvenile birds that have memorized tutor vocal sounds, neural habituation was higher for tutor song than for a familiar conspecific song. This unexpected result suggests that the response to tutor song in NCM at this age may be subject to top-down influences that maintain the tutor song as a salient stimulus, despite its high level of familiarity. PMID:24694936

  20. Conserved mechanisms of vocalization coding in mammalian and songbird auditory midbrain.

    PubMed

    Woolley, Sarah M N; Portfors, Christine V

    2013-11-01

    The ubiquity of social vocalizations among animals provides the opportunity to identify conserved mechanisms of auditory processing that subserve communication. Identifying auditory coding properties that are shared across vocal communicators will provide insight into how human auditory processing leads to speech perception. Here, we compare auditory response properties and neural coding of social vocalizations in auditory midbrain neurons of mammalian and avian vocal communicators. The auditory midbrain is a nexus of auditory processing because it receives and integrates information from multiple parallel pathways and provides the ascending auditory input to the thalamus. The auditory midbrain is also the first region in the ascending auditory system where neurons show complex tuning properties that are correlated with the acoustics of social vocalizations. Single unit studies in mice, bats and zebra finches reveal shared principles of auditory coding including tonotopy, excitatory and inhibitory interactions that shape responses to vocal signals, nonlinear response properties that are important for auditory coding of social vocalizations and modulation tuning. Additionally, single neuron responses in the mouse and songbird midbrain are reliable, selective for specific syllables, and rely on spike timing for neural discrimination of distinct vocalizations. We propose that future research on auditory coding of vocalizations in mouse and songbird midbrain neurons adopt similar experimental and analytical approaches so that conserved principles of vocalization coding may be distinguished from those that are specialized for each species. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives". Copyright © 2013 Elsevier B.V. All rights reserved.

Top