Sample records for zebra mussel species

  1. Evaluation of several chemical disinfectants for removing zebra mussels from unionid mussels

    USGS Publications Warehouse

    Waller, D.L.; Fisher, S.W.

    1998-01-01

    We evaluated the safety and effectiveness of chemical treatments for killing veliger and juvenile stages of the zebra mussel Dreissena polymorpha attached to unionid mussels. Static toxicity tests were conducted on eight unionid mussel species with common aquaculture chemicals (benzalkonium chloride, formalin, hydrogen peroxide, calcium chloride, potassium chloride, and sodium chloride). The concentration and duration of each chemical treatment tested had previously been found to kill zebra mussel veligers and juveniles. Several species (e.g., Elliptio dilatata, Lampsilis cardium, and Lasmigona complanata) incurred less than 10% mortality in chloride salt treatments, while in other species (e.g., Obliquaria reflexa and Leptodea fragilis) mortality varied greatly among treatment regimes. Treatments with benzalkonium chloride, formalin, and hydrogen peroxide were less than 90% effective on juvenile stages of zebra mussels and, therefore, were ruled out after preliminary trials. Limited application of specific chemical treatments may be feasible for more tolerant species; however, effective disinfection of unionid shells will require the use of chemical treatment followed by a quarantine period to completely remove zebra mussel larvae and juveniles.

  2. Zebra mussel infestation of unionid bivalves (Unionidae) in North America

    USGS Publications Warehouse

    Schloesser, Don W.; Nalepa, Thomas F.; Mackie, Gerald L.

    1996-01-01

    In 1989, zebra mussels received national attention in North America when they reached densities exceeding 750,000/m2 in a water withdrawal facility along the shore of western Lake Erie of the Laurentian Great Lakes. Although water withdrawal problems caused by zebra mussels have been of immediate concern, ecological impacts attributed to mussels are likely to be the more important long-term issue for surface waters in North America. To date, the epizoic colonization (i.e., infestation) of unionid bivalve mollusks by zebra mussels has caused the most direct and severe ecological impact. Infestation of and resulting impacts caused by zebra mussels on unionids in the Great Lakes began in 1988. By 1990, mortality of unionids was occurring at some locations; by 1991, extant populations of unionids in western Lake Erie were nearly extirpated; by 1992, unionid populations in the southern half of Lake St. Clair were extirpated; by 1993, unionids in widely separated geographic areas of the Great Lakes and the Mississippi River showed high mortality due to mussel infestation. All infested unionid species in the Great Lakes (23) have become infested and exhibited mortality within two to four years after heavy infestation began. Data indicate that mean zebra mussel densities >5,000–6,000/m2 and infestation intensities >100-200/unionid in the presence of heavy zebra mussel recruitment results in near total mortality of unionids. At present, all unionid species in rivers, streams, and akes that sympatrically occur with zebra mussels have been infested and, in many locations, negatively impacted by zebra mussels. We do not know the potential consequences of infestation on the 297 unionid species found in North America, but believe zebra mussels pose an immediate threat to the abundance and diversity of unionids.

  3. Zebra mussels invade Lake Erie muds

    USGS Publications Warehouse

    Berkman, Paul Arthur; Haltuch, Melissa A.; Tichich, Emily; Garton, David W.; Kennedy, Gregory W.; Gannon, John E.; Mackey, Scudder D.; Fuller, Jonathan A.; Liebenthal, Dale L.

    1998-01-01

    Zebra mussels (Dreissena polymorpha) originated in western Russia but have now become widespread in Europe and North America. They are widely known for their conspicuous invasion of rocks and other hard substrates in North American and European watersheds. We have found beds of zebra mussels directly colonizing sand and mud sediments each year across hundreds of square kilometres of North America's Lake Erie. This transformation of sedimentary habitats into mussel beds represents an unforeseen change in the invasive capacity of this species.

  4. Mitigation of unionid mortality caused by zebra mussel infestation: cleaning of unionids

    USGS Publications Warehouse

    Schloesser, Don W.

    1996-01-01

    Exotic zebra mussels Dreissena polymorpha have infested and caused mortality of native unionids in the Great Lakes since 1986; no other such parasitism of native unionids occurs in North America. Survival of unionids threatened by zebra mussel infestation was tested by suspending uncleaned and cleaned unionids in nearshore waters of western Lake Erie. Survival was determined, and newly settled zebra mussels were removed from clean unionids at eight intervals that ranged from 21 d to 77 d between 5 July 1990 and 3 July 1991. After 1 year, survival rates of uncleaned and cleaned unionids were 0% and 42%, respectively. Of the 10 species examined, only indivduals from 3 species (Amblema plicata plicata, Fusconaia flava, and Quadrula quadrula) survived 1 year. These species have relatively thick shells, which may have contributed to their survival. Removal of newly settled zebra mussels may be important to unionid survival because 98% of the zebra mussels removed after the initial cleaning were small mussels (<10 mm long) that could rapidly grow and cover unionids. At present, we do not know how zebra mussels cause mortality of unionids, but the removal of zebra mussels from unionids is the only method known that successfully reduces unionid mortality in waters colonized by zebra mussels.

  5. Crayfish (Orconectes virilis) predation on zebra mussels (Dreissena polymorpha)

    USGS Publications Warehouse

    Love, Joy; Savino, Jacqueline F.

    1993-01-01

    In laboratory studies, we quantified predation rates and handling time of crayfish (Orconectes virilis) on zebra mussels (Dreissena polymorpha) and rainbow trout (Oncorhhynchus mykiss) eggs. In single prey species tests, crayfish ate zebra mussels at similar rates as they ate rainbow trout eggs. When both prey were present, crayfish preferred rainbow trout eggs. Handling time of mussels was about twice that of rainbow trout eggs, and energetic content of mussels was lower. Therefore, net benefit for foraging on rainbow trout eggs was about three times that of foraging on zebra mussels.

  6. Prevention of zebra mussel infestation and dispersal during aquaculture operations

    USGS Publications Warehouse

    Waller, D.L.; Fisher, S.W.; Dabrowska, H.

    1996-01-01

    The zebra mussel Dreissena polymorpha, an exotic invasive species, poses a major threat to North American fish management programs and the aquaculture industry. Fish hatcheries may become infected with zebra mussels from a variety of sources, including the water supply, fish shipments, boats, and equipment. The hatcheries could then serve as agents for the overland dispersal of zebra mussels into stocked waters and to other fish hatcheries. We evaluated the effectiveness and safety of aquaculture chemicals for use in controlling zebra mussels in fish hatcheries and preventing dispersal of veligers during fish transport. Chemicals were evaluated for use in fish transport and as disinfectants for ponds and equipment. Standardized static toxicity tests were conducted with representative species of warmwater, coolwater, and coldwater fishes and with larval (3-d-old veligers), early juvenile (settling larvae), and adult zebra mussels. Chemical concentrations and exposure durations were based on recommended treatment levels for fish, eggs, and ponds. Recommended treatment levels were also exceeded, if necessary, to establish lethal levels for zebra mussels of different developmental stages. Our results indicate that some chemicals currently in use in hatcheries may be effective for controlling zebra mussels in various operations. Chloride salts were the safest and most effective therapeutants tested for use in fish transport. The toxicity of chloride salts to fish varied among species and with temperature; only one treatment regime (sodium chloride at 10,000 mg/L) was safe to all fish species that we tested, but it was only effective on veliger and settler stages of the zebra mussel. Effective disinfectants were benzalkonium chloride for use on equipment and rotenone for use in ponds after fish are harvested. The regulatory status of the identified chemicals is discussed as well as several nonchemical control alternatives.

  7. Quagga and zebra mussels: biology, impacts, and control

    USGS Publications Warehouse

    Nalepa, Thomas F.; Schloesser, Don W.; Nalepa, Thomas F.; Schloesser, Don W.

    2013-01-01

    Quagga and Zebra Mussels: Biology, Impacts, and Control, Second Edition provides a broad view of the zebra/quagga mussel issue, offering a historic perspective and up-to-date information on mussel research. Comprising 48 chapters, this second edition includes reviews of mussel morphology, physiology, and behavior. It details mussel distribution and spread in Europe and across North America, and examines policy and regulatory responses, management strategies, and mitigation efforts. In addition, this book provides extensive coverage of the impact of invasive mussel species on freshwater ecosystems, including effects on water clarity, phytoplankton, water quality, food web changes, and consequences to other aquatic fauna. It also reviews and offers new insights on how zebra and quagga mussels respond and adapt to varying environmental conditions. This new edition includes seven video clips that complement chapter text and, through visual documentation, provide a greater understanding of mussel behavior and distribution.

  8. USGS Zebra Mussel Monitoring Program for north Texas

    USGS Publications Warehouse

    Churchill, Christopher J.; Baldys, Stanley

    2012-01-01

    The U.S. Geological Survey (USGS) Zebra Mussel Monitoring Program for north Texas provides early detection and monitoring of zebra mussels (Dreissena polymorpha) by using a holistic suite of detection methods. The program is designed to assess zebra mussel occurrence, distribution, and densities in north Texas waters by using four approaches: (1) SCUBA diving, (2) water-sample collection with plankton tow nets (followed by laboratory analyses), (3) artificial substrates, and (4) water-quality sampling. Data collected during this type of monitoring can assist rapid response efforts and can be used to quantify the economic and ecological effects of zebra mussels in the north Texas area. Monitoring under this program began in April 2010. The presence of large zebra mussel populations often causes undesirable economic and ecological effects, including damage to water-processing infrastructure and hydroelectric powerplants (with an estimated 10-year cost of $3.1 billion), displacement of native mussels, increases in concentrations of certain species of cyanobacteria, and increases in concentrations of geosmin (an organic compound that results in taste and odor issues in water). Since no large-scale, environmentally safe eradication method has been developed for zebra mussels, it is difficult to remove established populations. Broad physicochemical adaptability, prolific reproductive capacity, and rapid dispersal methods have enabled zebra mussels, within a period of about 20 years, to establish populations under differing environmental conditions across much of the eastern part of the United States. In Texas, the presence of zebra mussels was first confirmed in April 2009 in Lake Texoma in the Red River Basin along the Texas-Oklahoma border. They were most likely introduced into Lake Texoma through overland transport from an infested water body. Since then, the presence of zebra mussels has been reported in both the Red River and Washita River arms of Lake Texoma, in

  9. Development of a molecular diagnostic system to discriminate Dreissena polymorpha (zebra mussel) and Dreissena bugensis (quagga mussel)

    USGS Publications Warehouse

    Hoy, M.S.; Kelly, K.; Rodriguez, R.J.

    2010-01-01

    A 3-primer PCR system was developed to discriminate invasive zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussel. The system is based on: 1) universal primers that amplifies a region of the nuclear 28s rDNA gene from both species and 2) a species-specific primer complementary to either zebra or quagga mussel. The species-specific primers bind to sequences between the binding sites for the universal primers resulting in the amplification of two products from the target species and one product from the nontarget species. Therefore, nontarget products are positive amplification controls. The 3-primer system accurately discriminated zebra and quagga mussels from seven geographically distinct populations.

  10. Habitat shift in invading species: Zebra and quagga mussel population characteristics on shallow soft substrates

    USGS Publications Warehouse

    Berkman, P.A.; Garton, D.W.; Haltuch, M.A.; Kennedy, G.W.; Febo, L.R.

    2000-01-01

    Unexpected habitat innovations among invading species are illustrated by the expansion of dreissenid mussels across sedimentary environments in shallow water unlike the hard substrates where they are conventionally known. In this note, records of population characteristics of invading zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussels from 1994 through 1998 are reported from shallow (less than 20 m) sedimentary habitats in western Lake Erie. Haphazard SCUBA collections of these invading species indicated that combined densities of zebra and quagga mussels ranged from 0 to 32,500 individuals per square meter between 1994 and 1998, with D. polymorpha comprising 75-100% of the assemblages. These mixed mussel populations, which were attached by byssal threads to each other and underlying sand-grain sediments, had size-frequency distributions that were typical of colonizing populations on hard substrates. Moreover, the presence of two mussel cohorts within the 1994 samples indicated that these species began expanding onto soft substrates not later than 1992, within 4 years of their initial invasion in western Lake Erie. Such historical data provide baselines for interpreting adaptive innovations, ecological interactions and habitat shifts among the two invading dreissenid mussel species in North America.

  11. Preference of redear sunfish on zebra mussels and rams-horn snails

    USGS Publications Warehouse

    French, John R. P.; Morgan, Michael N.

    1995-01-01

    We tested prey preferences of adult (200- to 222-mm long) redear sunfish (Lepomis microlophus) on two size classes of zebra mussels (Dreissena polymorpha) and two-ridge rams-horns (Helisoma anceps) in experimental aquaria. We also tested physical limitations on consuming these mollusks and determined prey bioenergetic profitability. Redear sunfish strongly preferred rams-horns over zebra mussels, but they displayed no size preference for either prey. Ingestion was not physically limited since both prey species up to 15-mm long fit within the pharyngeal gapes of redear sunfish. Rams-horns were more bioenergetically profitable than zebra mussels and ingestion of rams-horn shell fragments was about three times less than zebra mussels. Rams-horns were somewhat more resistant to shell-crushing, but all size ranges of both prey species tested were crushable by redear sunfish. These studies suggested that the redear sunfish should not be considered a panacea for biological control of zebra mussels.

  12. Invasion of the Zebra Mussels: A Mock Trial Activity

    ERIC Educational Resources Information Center

    Beck, Judy A.; Czerniak, Charlene M.

    2005-01-01

    In this activity, students learn about the important topic of invasive species, specifically Zebra Mussels. Students role-play different characters in a real-life situation: the trial of the Zebra Mussel for unlawful disruption of the Great Lakes ecosystem. Students will also learn about jurisprudential inquiry by examining the trial process. This…

  13. Review of techniques to prevent introduction of zebra mussels (Dreissena polymorpha) during native mussel (Unionoidea) conservation activities

    USGS Publications Warehouse

    Cope, W.G.; Newton, T.J.; Gatenby, C.M.

    2003-01-01

    Because of the declines in diversity and abundance of native freshwater mussels (superfamily Unionoidea), and the potential decimation of populations of native mussels resulting from the rapid spread of the exotic zebra mussel Dreissena polymorpha, management options to eliminate or reduce the threat of the zebra mussel are needed. Relocating native mussels to refugia (artificial and natural) has been proposed to mitigate the threat of zebra mussels to native species. Relocation of native mussels to refugia such as fish hatchery facilities or natural habitats within their historic range. Which are unlikely to be infested by zebra mussels, necessitates that protocols be developed to prevent the inadvertent introduction of zebra mussels. Several recent studies have developed Such protocols, and have assessed their effectiveness on the health and survival of native mussels during subsequent relocation to various refugia. The purpose of this project is to synthesize and evaluate the current protocols and to develop a set of procedures that resource managers and researchers should consider before conducting conservation activities in zebra mussel infested waters. We found that the existing protocols have many common points of concern, such as facility modification and suitability, zebra mussel risk assessment and management procedures, and health and disease management procedures. These conservation protocols may have broad applicability to other situations and locations. A summary and evaluation of the information in these main areas, along with recommended guidelines, are presented in this article.

  14. Predation on exotic zebra mussels by native fishes: Effects on predator and prey

    USGS Publications Warehouse

    Magoulick, D.D.; Lewis, L.C.

    2002-01-01

    1. Exotic zebra mussels, Dreissena polymorpha, occur in southern U.S. waterways in high densities, but little is known about the interaction between native fish predators and zebra mussels. Previous studies have suggested that exotic zebra mussels are low profitability prey items and native vertebrate predators are unlikely to reduce zebra mussel densities. We tested these hypotheses by observing prey use of fishes, determining energy content of primary prey species of fishes, and conducting predator exclusion experiments in Lake Dardanelle, Arkansas. 2. Zebra mussels were the primary prey eaten by 52.9% of blue catfish, Ictalurus furcatus; 48.2% of freshwater drum, Aplodinotus grunniens; and 100% of adult redear sunfish, Lepomis microlophus. Blue catfish showed distinct seasonal prey shifts, feeding on zebra mussels in summer and shad, Dorosoma spp., during winter. Energy content (joules g-1) of blue catfish prey (threadfin shad, Dorosoma petenense; gizzard shad, D. cepedianum; zebra mussels; and asiatic clams, Corbicula fluminea) showed a significant species by season interaction, but shad were always significantly greater in energy content than bivalves examined as either ash-free dry mass or whole organism dry mass. Fish predators significantly reduced densities of large zebra mussels (>5 mm length) colonising clay tiles in the summers of 1997 and 1998, but predation effects on small zebra mussels (???5 mm length) were less clear. 3. Freshwater drum and redear sunfish process bivalve prey by crushing shells and obtain low amounts of higher-energy food (only the flesh), whereas blue catfish lack a shell-crushing apparatus and ingest large amounts of low-energy food per unit time (bivalves with their shells). Blue catfish appeared to select the abundant zebra mussel over the more energetically rich shad during summer, then shifted to shad during winter when shad experienced temperature-dependent stress and mortality. Native fish predators can suppress adult zebra

  15. How well can fishes prey on zebra mussels in eastern North America?

    USGS Publications Warehouse

    French, John R. P.

    1993-01-01

    Literature on mollusk-eating fishes was reviewed to determine the potential for different species of fish to control zebra mussels in eastern North America. At least six species are potential predators of zebra mussels because they possess (1) both upper and lower pharyngeal teeth or (2) lower pharyngeal teeth and chewing pads located on the dorsal roof for crushing mollusk shells. Freshwater drum (Aplodinotus grunniens) and two centrarchids, redear sunfish (Lepomis microlophus) and pumpkinseed (L. gibbosus), possess both upper and lower pharyngeal teeth and are likely to consume more zebra mussels than fishes with only lower pharyngeal teeth. Only two catostomid species, copper and river redhorses (Moxostoma hubbsi and M. carinatum), have chewing pads that enable them to crush mollusks. The exotic omnivorous common carp (Cyprinus carpio), possessing lower teeth and a chewing pad, may prey on zebra mussels when aquatic insect larvae, its preferred food, become rare. Managing populations of drum, sunfishes and redhorses to reduce exploitation of large individuals and improve their habitats are suggested as means to intensify biological control of zebra mussels in eastern North America. Other Eurasian molluscivores, the roach (Rutilus rutilus) and the black carp (Mylopharyngodon piceus) should not be introduced into North America because research has shown repeatedly that an introduced biological controller usually does not forage for unwanted pests or reside only in preferred habitats of pests. Drum, sunfishes and redhorses should be preferred over these exotics as biological controllers of zebra mussels in North America because these native fishes will likely occupy newly established habitats of zebra mussels.

  16. A dominance shift from the zebra mussel to the invasive quagga mussel may alter the trophic transfer of metals.

    PubMed

    Matthews, Jonathan; Schipper, Aafke M; Hendriks, A Jan; Yen Le, T T; Bij de Vaate, Abraham; van der Velde, Gerard; Leuven, Rob S E W

    2015-08-01

    Bioinvasions are a major cause of biodiversity and ecosystem changes. The rapid range expansion of the invasive quagga mussel (Dreissena rostriformis bugensis) causing a dominance shift from zebra mussels (Dreissena polymorpha) to quagga mussels, may alter the risk of secondary poisoning to predators. Mussel samples were collected from various water bodies in the Netherlands, divided into size classes, and analysed for metal concentrations. Concentrations of nickel and copper in quagga mussels were significantly lower than in zebra mussels overall. In lakes, quagga mussels contained significantly higher concentrations of aluminium, iron and lead yet significantly lower concentrations of zinc66, cadmium111, copper, nickel, cobalt and molybdenum than zebra mussels. In the river water type quagga mussel soft tissues contained significantly lower concentrations of zinc66. Our results suggest that a dominance shift from zebra to quagga mussels may reduce metal exposure of predator species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Comparative biology of zebra mussels in Europe and North America: an overview

    USGS Publications Warehouse

    Mackie, Gerald L.; Schloesser, Don W.

    1996-01-01

    SYNOPSIS. Since the discovery of the zebra mussel, Dreissena polymorpha, in the Great Lakes in 1988 comparisons have been made with mussel populations in Europe and the former Soviet Union. These comparisons include: Population dynamics, growth and mortality rates, ecological tolerances and requirements, dispersal rates and patterns, and ecological impacts. North American studies, mostly on the zebra mussel and a few on a second introduced species, the quagga mussel, Dreissena bugensis, have revealed some similarities and some differences. To date it appears that North American populations of zebra mussels are similar to European populations in their basic biological characteristics, population growth and mortality rates, and dispersal mechanisms and rates. Relative to European populations differences have been demonstrated for: (1) individual growth rates; (2) life spans; (3) calcium and pH tolerances and requirements; (4) potential distribution limits; and (5) population densities of veligers and adults. In addition, studies on the occurrence of the two dreissenid species in the Great Lakes are showing differences in their modes of life, depth distributions, and growth rates. As both species spread throughout North America, comparisons between species and waterbodies will enhance our ability to more effectively control these troublesome species.

  18. Will the Displacement of Zebra Mussels by Quagga Mussels Increase Water Clarity in Shallow Lakes during Summer? Results from a Mesocosm Experiment.

    PubMed

    Mei, Xueying; Zhang, Xiufeng; Kassam, Sinan-Saleh; Rudstam, Lars G

    2016-01-01

    Zebra mussels (Dreissena polymorpha) are known to increase water clarity and affect ecosystem processes in invaded lakes. During the last decade, the conspecific quagga mussels (D. rostriformis bugensis) have displaced zebra mussels in many ecosystems including shallow lakes such as Oneida Lake, New York. In this study, an eight-week mesocosm experiment was conducted to test the hypothesis that the displacement of zebra mussels by quagga mussels leads to further decreases in phytoplankton and increases in water clarity resulting in increases in benthic algae. We found that the presence of zebra mussels alone (ZM), quagga mussels alone (QM), or an equal number of both species (ZQ) reduced total phosphorus (TP) and phytoplankton Chl a. Total suspended solids (TSS) was reduced in ZM and ZQ treatments. Light intensity at the sediment surface was higher in all three mussel treatments than in the no-mussel controls but there was no difference among the mussel treatments. There was no increase in benthic algae biomass in the mussel treatments compared with the no-mussel controls. Importantly, there was no significant difference in nutrient (TP, soluble reactive phosphorus and NO3-) levels, TSS, phytoplankton Chl a, benthic algal Chl a, or light intensity on the sediment surface between ZM, QM and ZQ treatments. These results confirm the strong effect of both mussel species on water clarity and indicate that the displacement of zebra mussel by an equivalent biomass of quagga mussel is not likely to lead to further increases in water clarity, at least for the limnological conditions, including summer temperature, tested in this experiment.

  19. Will the Displacement of Zebra Mussels by Quagga Mussels Increase Water Clarity in Shallow Lakes during Summer? Results from a Mesocosm Experiment

    PubMed Central

    Kassam, Sinan-Saleh; Rudstam, Lars G.

    2016-01-01

    Zebra mussels (Dreissena polymorpha) are known to increase water clarity and affect ecosystem processes in invaded lakes. During the last decade, the conspecific quagga mussels (D. rostriformis bugensis) have displaced zebra mussels in many ecosystems including shallow lakes such as Oneida Lake, New York. In this study, an eight-week mesocosm experiment was conducted to test the hypothesis that the displacement of zebra mussels by quagga mussels leads to further decreases in phytoplankton and increases in water clarity resulting in increases in benthic algae. We found that the presence of zebra mussels alone (ZM), quagga mussels alone (QM), or an equal number of both species (ZQ) reduced total phosphorus (TP) and phytoplankton Chl a. Total suspended solids (TSS) was reduced in ZM and ZQ treatments. Light intensity at the sediment surface was higher in all three mussel treatments than in the no-mussel controls but there was no difference among the mussel treatments. There was no increase in benthic algae biomass in the mussel treatments compared with the no-mussel controls. Importantly, there was no significant difference in nutrient (TP, soluble reactive phosphorus and NO3-) levels, TSS, phytoplankton Chl a, benthic algal Chl a, or light intensity on the sediment surface between ZM, QM and ZQ treatments. These results confirm the strong effect of both mussel species on water clarity and indicate that the displacement of zebra mussel by an equivalent biomass of quagga mussel is not likely to lead to further increases in water clarity, at least for the limnological conditions, including summer temperature, tested in this experiment. PMID:28005940

  20. Predicting the spread of aquatic invaders: insight from 200 years of invasion by zebra mussels.

    PubMed

    Karatayev, Alexander Y; Burlakova, Lyubov E; Mastitsky, Sergey E; Padilla, Dianna K

    2015-03-01

    Understanding factors controlling the introduction and spread of species is crucial to improving the management of both natural populations and introduced species. The zebra mussel, Dreissena polymorpha, is considered the most aggressive freshwater invader in the Northern Hemisphere, and is a convenient model system for invasion biology, offering one of the best aquatic examples for examining the invasion process. We used data on 553 of the 1040 glacial lakes in the Republic of Belarus that were examined for the presence of zebra mussels. We used these data to build, test, and construct modified models to predict the spread of this invader, including selection of important parameters that could limit the spread of this invader. In spite of 200 years of continuous invasion, by 1996, zebra mussels were found in only 16.8% of all lakes studied. Of those lakes without zebra mussels in 1996, 66% were predicted to be susceptible to invasion by zebra mussels in the future, and 33% were predicted to be immune to successful invasion due to their water chemistry. Eighty lakes free of zebra mussels in 1996 were reexamined from 1997 to 2008. Of these, zebra mussels successfully invaded an additional 31 lakes, all of which were classified initially as suitable for zebra mussels; none of the lakes previously classified as unsuitable were invaded. We used the Random Forests classification algorithm with 16 environmental variables to determine the most important factors that differed between invaded lakes and those lakes suitable for invasion that have not yet been invaded. Distance to the nearest infested lakes was found to be the most important variable, followed by the lake area, color, average depth, and concentration of chloride, magnesium, and bicarbonate. This study provides a useful approach for predicting the spread of an invader across a landscape with variable habitat suitability that can be applied to a variety of species and systems.

  1. New Concerns Emerge as Zebra Mussel Spreads.

    ERIC Educational Resources Information Center

    Walter, Martha L., Ed.

    1992-01-01

    Reports on the Zebra Mussel invasion of North American inland waterways. Discusses United States Army Corps of Engineers operations that may facilitate or be affected by the spread of Zebra Mussels, the threat to native clams, chemical and mechanical control methods, natural solutions, and ongoing research. (MCO)

  2. Environmentally Safe Control of Zebra Mussel Fouling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel Molloy

    2008-02-29

    The two primary objectives of this USDOE-NETL contract were successfully achieved during the project: (1) to accelerate research on the development of the bacterium Pseudomonas fluorescens strain CL145A (Pf-CL145A) as a biocontrol agent for zebra mussels (Dreissena polymorpha) and quagga mussels (Dreissena rostriformis bugensis)--two invasive freshwater bivalve species that are infesting water pipes in power plants; and (2) to identify a private-sector company that would move forward to commercialize Pf-CL145A as a substitute for the current polluting use of biocide chemicals for control of these dreissenid mussels in power plant pipes.

  3. Chemical regulation of spawning in the zebra mussel (Dreissena polymorpha)

    USGS Publications Warehouse

    Ram, Jeffrey L.; Nichols, S. Jerrine; Nalepa, Thomas F.; Schloesser, Donald W.

    1992-01-01

    Previous literature suggests that spawning in bivalves is chemically regulated, both by environmental chemical cues and by internal chemical mediators. In a model proposed for zebra mussels, chemicals from phytoplankton initially trigger spawning, and chemicals associated with gametes provide further stimulus for spawning. The response to environmental chemicals is internally mediated by a pathway utilizing serotonin (5-hydroxytryptamine, a neurotransmitter), which acts directly on both male and female gonads. The role of serotonin and most other aspects of the model have been tested only on bivalves other than zebra mussels. The effect of serotonin on zebra mussel spawning was tested. Serotonin (10-5 and 10-3 M) injected into ripe males induced spawning, but injection of serotonin into females did not. Gametes were not released by 10-6 serotonin; in most cases, serotonin injection did not release gametes from immature recipients. Serotonin injection provides a reliable means for identifying ripe male zebra mussels and for obtaining zebra mussel sperm without the need for dissection.

  4. Identification of larvae: The zebra mussel (Dreissena polymorpha), quagga mussel (Dreissena rosteriformis bugensis), and Asian clam (Corbicula fluminea)

    USGS Publications Warehouse

    Nichols, S. Jerrine; Black, M.G.

    1994-01-01

    There are presently four freshwater bivalves in the United States that produce larvae or veligers commonly found in the water column: two forms of Asian clams and two species of dreissenids. Portions of the geographic range of three of these bivalves, one species of Asian clam (Corbicula fluminea), zebra mussels (Dreissena polymorpha), and quagga mussels (Dreissena rosteriformis bugensis), overlap, causing problems with larval identification. To determine which characteristics can be used to separate larval forms, adult Asian clams, quaggas, and zebra mussels were brought into the laboratory and induced to spawn, and the resulting larvae were reared. Hybrids between quaggas and zebra mussels were also produced, but not reared to maturity. Characteristics allowing for the most rapid and accurate separation of larvae were hinge length, shell length/height, shell shape, shell size, and the presence or absence of a foot and velum. These characteristics were observed in laboratory-reared larvae of known parentage and field-caught larvae of unknown parentage. In most cases, larvae of the Asian clam can be readily separated from those produced by either type of dreissenid on the basis of shell size and presence of a foot. Separating the gametes and embryos of the two types of dreissenids is not possible, but after shell formation, most of the larval stages can be distinguished. Hinge length, shell length/height, and the similarity in size of the shell valves can be used to separate straight-hinged, umbonal, pediveliger, and plantigrade larvae. Quagga × zebra mussel hybrids show characteristics of both parents and are difficult to identify.

  5. Molecular ecology of zebra mussel invasions.

    PubMed

    May, Gemma E; Gelembiuk, Gregory W; Panov, Vadim E; Orlova, Marina I; Lee, Carol Eunmi

    2006-04-01

    The invasion of the zebra mussel, Dreissena polymorpha, into North American waters has resulted in profound ecological disturbances and large monetary losses. This study examined the invasion history and patterns of genetic diversity among endemic and invading populations of zebra mussels using DNA sequences from the mitochondrial cytochrome oxidase I (COI) gene. Patterns of haplotype frequency indicate that all invasive populations of zebra mussels from North America and Europe originated from the Ponto-Caspian Sea region. The distribution of haplotypes was consistent with invasive populations arising from the Black Sea drainage, but could not exclude the possibility of an origin from the Caspian Sea drainage. Similar haplotype frequencies among North American populations of D. polymorpha suggest colonization by a single founding population. There was no evidence of invasive populations arising from tectonic lakes in Turkey, while lakes in Greece and Macedonia contained only Dreissena stankovici. Populations in Turkey might be members of a sibling species complex of D. polymorpha. Ponto-Caspian derived populations of D. polymorpha (theta = 0.0011) and Dreissena bugensis (one haplotype) exhibited low levels of genetic diversity at the COI gene, perhaps as a result of repeated population bottlenecks. In contrast, geographically isolated tectonic lake populations exhibited relatively high levels of genetic diversity (theta = 0.0032 to 0.0134). It is possible that the fluctuating environment of the Ponto-Caspian basin facilitated the colonizing habit of invasive populations of D. polymorpha and D. bugensis. Our findings were concordant with the general trend of destructive freshwater invaders in the Great Lakes arising from the Ponto-Caspian Sea basin.

  6. IMPACT OF WATER PH ON ZEBRA MUSSEL MORTALITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel P. Molloy

    2002-10-15

    The experiments conducted this past quarter have suggested that the bacterium Pseudomonas fluorescens strain CL0145A is effective at killing zebra mussels throughout the entire range of pH values tested (7.2 to 8.6). Highest mortality was achieved at pH values characteristic of preferred zebra mussel waterbodies, i.e., hard waters with a range of 7.8 to 8.6. In all water types tested, however, ranging from very soft to very hard, considerable mussel kill was achieved (83 to 99% mean mortality), suggesting that regardless of the pH or hardness of the treated water, significant mussel kill can be achieved upon treatment with P.more » fluorescens strain CL0145A. These results further support the concept that this bacterium has significant potential for use as a zebra mussel control agent in power plant pipes receiving waters with a wide range of physical and chemical characteristics.« less

  7. Invasive zebra mussels (Driessena polymorpha) and Asian clams (Corbicula fluminea) survive gut passage of migratory fish species: implications for dispersal

    USGS Publications Warehouse

    Gatlin, Michael R.; Shoup, Daniel E.; Long, James M.

    2013-01-01

    The introduction and spread of invasive species is of great concern to natural resource managers in the United States. To effectively control the spread of these species, managers must be aware of the multitude of dispersal methods used by the organisms. We investigated the potential for survival through the gut of a migrating fish (blue catfish, Ictalurus furcatus) as a dispersal mechanism for two invasive bivalves: zebra mussel (Driessena polymorpha) and Asian clam (Corbicula fluminea). Blue catfish (N = 62) were sampled over several months from Sooner Lake, Oklahoma, transported to a laboratory and held in individual tanks for 48 h. All fecal material was collected and inspected for live mussels. Survival was significantly related to water temperature in the lake at the time of collection, with no mussels surviving above 21.1 C°, whereas 12 % of zebra mussels (N = 939) and 39 % of Asian clams (N = 408) consumed in cooler water survived gut passage. This research demonstrates the potential for blue catfish to serve as a dispersal vector for invasive bivalves at low water temperatures.

  8. Occurrence of zebra mussels in near-shore areas of western Lake Erie

    USGS Publications Warehouse

    Custer, Christine M.; Custer, T.W.

    1997-01-01

    Zebra mussels (Dreissena polymorpha) invaded the Great Lakes in the mid-1980s and quickly reached high densities. The objective of this study was to determine current consumption of zebra mussels by waterfowl in the Great Lakes region. Feeding Lesser Scaups (Aythya affinis), Greater Scaups (A. marila), Canvasbacks (A. valisineria), Redheads (A. americana), Buffleheads (Bucephala albeola) and Common Goldeneyes (B. clangula) were collected in western Lake Erie and in Lake St. Clair between fall and spring, 1992-1993 to determine food habits. All 10 Redheads, 97% of Lesser Scaups, 83% of Goldeneyes, 60% of Buffleheads and 9% of Canvasbacks contained one or more zebra mussels in their upper gastrointestinal tracts. The aggregate percent of zebra mussels in the diet of Lesser Scaups was higher in Lake Erie (98.6%) than in Lake St. Clair (54.4%). Zebra mussels, (aggregate percent) dominated the diet of Common Goldeneyes (79.2%) but not in Buffleheads (23.5%), Redheads (21%) or Canvasbacks (9%). Lesser Scaups from Lake Erie fed on larger zebra mussels ( = 10.7 i?? 0.66 mm SE) than did Lesser Scaups from Lake St. Clair ( = 4.4 i?? 0.22 mm). Lesser Scaups, Buffleheads and Common Goldeneyes from Lake Erie consumed zebra mussels of similar size.

  9. Lesser scaup forage on zebra mussels at Cook nuclear plant, Michigan

    USGS Publications Warehouse

    Mitchell, C.A.; Carlson, J.

    1993-01-01

    Nineteen of 21 Lesser Scaup (Aythya affinis) entrained while foraging at the water intake structures of Cook Nuclear Plant, Bridgman, Michigan had consumed zebra mussels (Dreissena polymorpha). The average number of zebra mussels in the upper gastrointestinal tract was 260; maximum number was 987. Migrating Lesser Scaup found this new food source during the first winter following settlement of zebra mussels on the water intake structures of the power plant.

  10. The effect of zebra mussel consumption on growth of freshwater drum in Lake Erie

    USGS Publications Warehouse

    French, John R. P.; Bur, Michael T.

    1996-01-01

    We examined food habits and scale annuli of freshwater drum (Aplodinotus grunniens) from western Lake Erie to determine whether increasing predation on zebra mussels (Dreissena polymorpha) had affected growth of freshwater drum. The volume of zebra mussels in drum guts was greater in older fish. Growth of age classes 3–4, which consumed few zebra mussels, was greater in the most productive year for zebra mussels, July 1990–August 1991, than in three prior years. The total lengths of 5-year-old drum changed little. The mean total length of 6-year-old females has declined since the zebra mussel invaded Lake Erie, even through mussels comprised more than two-thirds of gut samples in these fish. These studies suggest that zebra mussels may not benefit freshwater drum when serving as a staple in the diet. PDF

  11. Predation of the zebra mussel (Dreissena polymorpha) by freshwater drum in western Lake Erie

    USGS Publications Warehouse

    French, John R. P.; Bur, Michael T.; Nalepa, Thomas F.; Schloesser, Donald W.

    1992-01-01

    Environmental and economic problems associated with the colonization of zebra mussels (Dreissena polymorpha) in western Lake Erie created a need to investigate control mechanisms. Predation by fishes is one potential means of control, but predation on zebra mussels by native fishes in Lake Erie is unknown. The freshwater drum (Aplodinotus grunniens) is the most likely fish predator since it is the only fish with pharyngeal teeth capable of crushing mollusk shells. In 1990, freshwater drum were collected in western Lake Erie from 9 sites near rocky reefs and 13 sites with silt or sand bottoms, and gut contents were examined. Predation on zebra mussels increased as drum size increased. Small drum (200-249 mm in length) fed mainly on dipterans, amphipods, and small fish; small zebra mussels (375 mm in length) fed almost exclusively on zebra mussels (seasons and locations combined). The smallest drum capable of crushing zebra mussel shells was 265 mm. Since freshwater drum over 375 mm feed heavily on zebra mussels, they may become a possible biological control mechanism for mussels in portions of North America.

  12. Effects of shell morphology on mechanics of zebra and quagga mussel locomotion

    Treesearch

    S. M. Peyer; J. C. Hermanson; C. E. Lee

    2011-01-01

    Although zebra mussels (Dreissena polymorpha) initially colonized shallow habitats within the North American Great Lakes, quagga mussels (Dreissena bugensis) are becoming dominant in both shallow- and deep-water habitats. Shell morphology differs among zebra, shallow quagga and deep quagga mussels but functional consequences of...

  13. Do zebra mussels (Dreissena polymorpha) alter lake water chemistry in a way that favours Microcystis growth?

    PubMed

    Bykova, Olga; Laursen, Andrew; Bostan, Vadim; Bautista, Joseph; McCarthy, Lynda

    2006-12-01

    This study examined possible relationships between the presence of zebra mussels (Dreissena polymorpha) and Microcystis spp. abundance. Experiments were conducted in 12 microcosms designed to mimic shallow lake ecosystems. Fresh, aerated water with phytoplankton (pseudokirchneriella spp. and Microcystis spp.) was pumped into each microcosm daily to ensure zebra mussels were exposed to oxygen and food. Microcosms containing zebra mussels experienced significantly higher fluxes of nitrate (p=0.019) and lower fluxes of ortho-phosphate (p=0.047) into sediments. In a second experiment, water column nutrient concentrations were compared in microcosms with and without live zebra mussels. Consistent with results of the previous experiment, microcosms with zebra mussels had significantly less nitrate (p=0.023) and organic nitrogen (p=0.003) in the water column, while ammonium (p=0.074), phosphate (p=0.491), and dissolved organic carbon (p=0.820) in the water column were not different between microcosms with or without zebra mussels. Microcosms with zebra mussels also experienced a reduction in green algae (pseudokirchneriella) (p<0.001) and an increase in abundance of Microcystis (p<0.001) relative to microcosms without zebra mussels. In an experiment without zebra mussels, nutrient ratios (N/P) were manipulated to determine potential links between N/P and relative abundance of each phytoplankton. Manipulation of N/P was intended to mimic differences observed in microcosms with and without zebra mussels in the previous experiment. Low N/P (mimicking microcosms with zebra mussels) was related to an increase in Microcystis (p<0.001) and Microcystis/Pseudokirchneriella biovolume (p<0.001). It is this shift in N/P, and possibly some level of selective feeding, that is believed to have driven changes in the relative abundance of Microcystis. In lakes invaded by zebra mussels, alterations in the processing of nitrogen and phosphorus could contribute to the re-emergence of

  14. Bioaccumulation of pathogenic bacteria and amoeba by zebra mussels and their presence in watercourses.

    PubMed

    Mosteo, R; Goñi, P; Miguel, N; Abadías, J; Valero, P; Ormad, M P

    2016-01-01

    Dreissena polymorpha (the zebra mussel) has been invading freshwater bodies in Europe since the beginning of the nineteenth century. Filter-feeding organisms can accumulate and concentrate both chemical and biological contaminants in their tissues. Therefore, zebra mussels are recognized as indicators of freshwater quality. In this work, the capacity of the zebra mussel to accumulate human pathogenic bacteria and protozoa has been evaluated and the sanitary risk associated with their presence in surface water has also been assessed. The results show a good correlation between the pathogenic bacteria concentration in zebra mussels and in watercourses. Zebra mussels could therefore be used as an indicator of biological contamination. The bacteria (Escherichia coli, Enterococcus spp., Pseudomonas spp., and Salmonella spp.) and parasites (Cryptosporidium oocysts and free-living amoebae) detected in these mussels reflect a potential sanitary risk in water.

  15. Assessing the potential for fish predation to impact zebra mussels (Dreissena polymorpha): Insight from bioenergetics models

    USGS Publications Warehouse

    Eggleton, M.A.; Miranda, L.E.; Kirk, J.P.

    2004-01-01

    Rates of annual food consumption and biomass were modeled for several fish species across representative rivers and lakes in eastern North America. Results were combined to assess the relative potential of fish predation to impact zebra mussels (Dreissena polymorpha). Predicted annual food consumption by fishes in southern waters was over 100% greater than that in northern systems because of warmer annual water temperatures and presumed increases in metabolic demand. Although generally increasing with latitude, biomasses of several key zebra mussel fish predators did not change significantly across latitudes. Biomasses of some less abundant fish predators did increase significantly with latitude, but increases were not of the magnitude to offset predicted decreases in food consumption. Our results generally support the premise that fishes in rivers and lakes of the southern United States (U.S.) have inherently greater potential to impact zebra mussels by predation. Our simulations may provide a partial explanation of why zebra mussel invasions have not been as rapid and widespread in southern U.S. waters compared to the Great Lakes region. ?? Blackwell Munksgaard, 2004.

  16. Early responses to zebra mussels in the Great Lakes: a journey from information vacuum to policy and regulation

    USGS Publications Warehouse

    Griffiths, Ronald W.; Schloesser, Don W.; Kovalak, William P.

    2013-01-01

    Invasive species such as zebra mussels pose a threat to the economies and environments of coastal and fresh-water habitats around the world. Consequently, it is important that government policies and programs be adequate to protect these waters from invaders. This chapter documents key events that took place in the early years (1988-1991) of zebra mussel colonization of the Laurentian Great Lakes and evaluates government responses (policies and programs) to this disruptive, invasive, freshwater species.

  17. Control Strategies for Zebra Mussel Infestations at Public Facilities

    DTIC Science & Technology

    1992-07-01

    detailed examina- tion of hard -to-reach surfaces or specific components (such as fire protection systems or intake pipes for sensor devices) should...trash racks. Trash racks could become partially clogged with zebra mussels, shells , and other debris. Flow through the openings would be reduced, and... shells to the top of the lock wall. These are now used by Ontario Hydro for removing zebra mussels. At most facilities, the culvert is totally dewatered

  18. Mortality of zebra mussel, Dreissena polymorpha, veligers during downstream transport

    USGS Publications Warehouse

    Horvath, T.G.; Lamberti, G.A.

    1999-01-01

    1. Streams flowing from lakes which contain zebra mussels, Dreissena polymorpha, provide apparently suitable habitats for mussel colonization and downstream range expansion, yet most such streams contain few adult mussels. We postulated that mussel veligers experience high mortality during dispersal via downstream transport. They tested this hypothesis in Christiana Creek, a lake-outlet stream in south-western Michigan, U.S.A., in which adult mussel density declined exponentially with distance downstream. 2. A staining technique using neutral red was developed and tested to distinguish quickly live and dead veligers. Live and dead veligers were distinguishable after an exposure of fresh samples to 13.3 mg L-1 of neutral red for 3 h. 3. Neutral red was used to determine the proportion of live veligers in samples taken longitudinally along Christiana Creek. The proportion of live veligers (mean ?? SE) declined from 90 ?? 3% at the lake outlet to 40 ?? 8% 18 km downstream. 4. Veligers appear to be highly susceptible to damage by physical forces (e.g. shear), and therefore, mortality in turbulent streams could be an important mechanism limiting zebra mussel dispersal to downstream reaches. Predictions of zebra mussel spread and population growth should consider lake-stream linkages and high mortality in running waters.

  19. Book review: Biology and management of invasive quagga and zebra mussels in the western United States

    USGS Publications Warehouse

    Benson, Amy J.

    2017-01-01

    Water is a precious and limited commodity in the western United States and its conveyance is extremely important. Therefore, it is critical to do as much as possible to prevent the spread of two species of dreissenid mussels, both non-native and highly invasive aquatic species already well-established in the eastern half of the United States. This book addresses the occurrences of the two dreissenid mussels in the West, the quagga mussel and the zebra mussel, that are both known to negatively impact water delivery systems and natural ecosystems. It is edited by two researchers whom have extensive experience working with the mussels in the West and is composed of 34 chapters, or articles, written by a variety of experts.Book information: Biology and Management of Invasive Quagga and Zebra Mussels in the Western United States. Edited by Wai Hing Wong and Shawn L. Gerstenberger. Boca Raton (Florida): CRC Press (Taylor & Francis Group). $149.95. xx + 545 p.; ill.; index. ISBN: 978-1-4665-9561-3. [Compact Disc included.] 2015.

  20. Effects of temperature and aerial exposure on the BOD of waste zebra mussels removed from navigational locks.

    PubMed

    Aldridge, D W; Payne, B S

    2001-08-01

    This laboratory study evaluated the effects of temperature and aerial exposure on BOD5 (5-day BOD) of waste zebra mussels of the type generated by maintenance operations on dams and navigational locks. The term waste zebra mussels includes the mussels and their associated debris with the latter including sediment, feces, pseudofeces and other small aquatic organisms. The BOD5 of waste zebra mussel was evaluated after aerial exposure of 3 and 10 days at temperatures of 5, 10, and 20 degrees C. The mean BOD5 values for waste zebra mussels in this study ranged from 18,500 to 30,600 mg O2/l. Factorial ANOVA analysis revealed that both temperature and aerial exposure had a negative effect on waste zebra mussel BOD5 (P<0.05) but there was no significant interaction effect (P = 0.119). Multiple regression analysis predicted that for the range of treatment conditions used in this study each 1 degrees C increase in temperature reduced the waste zebra mussel BOD5 by 284mg O2/l or 0.93% of the maximum mean BOD5. Each I day increase in aerial exposure reduced waste zebra mussel BOD5 by 987 mg O2/l or 3.22% of the maximum mean BOD5. Aerial exposure of waste zebra mussels substantially reduces waste BOD5.

  1. Competitive replacement of invasive congeners may relax impact on native species: Interactions among zebra, quagga, and native unionid mussels

    USGS Publications Warehouse

    Burlakova, Lyubov E.; Tulumello, Brianne L.; Karatayev, Alexander Y.; Krebs, Robert A.; Schloesser, Donald W.; Paterson, Wendy L.; Griffith, Traci A.; Scott, Mariah W.; Crail, Todd D.; Zanatta, David T.

    2014-01-01

    Determining when and where the ecological impacts of invasive species will be most detrimental and whether the effects of multiple invaders will be superadditive, or subadditive, is critical for developing global management priorities to protect native species in advance of future invasions. Over the past century, the decline of freshwater bivalves of the family Unionidae has been greatly accelerated by the invasion of Dreissena. The purpose of this study was to evaluate the current infestation rates of unionids by zebra (Dreissena polymorpha) and quagga (D. rostriformis bugensis) mussels in the lower Great Lakes region 25 years after they nearly extirpated native unionids. In 2011–2012, we collected infestation data for over 4000 unionids from 26 species at 198 nearshore sites in lakes Erie, Ontario, and St. Clair, the Detroit River, and inland Michigan lakes and compared those results to studies from the early 1990s. We found that the frequency of unionid infestation by Dreissena recently declined, and the number of dreissenids attached to unionids in the lower Great Lakes has fallen almost ten-fold since the early 1990s. We also found that the rate of infestation depends on the dominant Dreissena species in the lake: zebra mussels infested unionids much more often and in greater numbers. Consequently, the proportion of infested unionids, as well as the number and weight of attached dreissenids were lower in waterbodies dominated by quagga mussels. This is the first large-scale systematic study that revealed how minor differences between two taxonomically and functionally related invaders may have large consequences for native communities they invade.

  2. Zebra mussel beds: an effective feeding ground for Ponto-Caspian gobies or suitable shelter for their prey?

    PubMed

    Kobak, Jarosław; Poznańska, Małgorzata; Jermacz, Łukasz; Kakareko, Tomasz; Prądzynski, Daniel; Łodygowska, Małgorzata; Montowska, Karolina; Bącela-Spychalska, Karolina

    2016-01-01

    Aggregations of the Ponto-Caspian invasive zebra mussel ( Dreissena polymorpha ) constitute a suitable habitat for macroinvertebrates, considerably increasing their abundance and providing effective antipredator protection. Thus, the overall effect of a mussel bed on particular predator species may vary from positive to negative, depending on both prey density increase and predator ability to prey in a structurally complex habitat. Alien Ponto-Caspian goby fish are likely to be facilitated when introduced into new areas by zebra mussels, provided that they are capable of utilizing mussel beds as habitat and feeding grounds. We ran laboratory experiments to find which prey (chironomid larvae) densities (from ca. 500 to 2,000 individuals m -2 ) in a mussel bed make it a more beneficial feeding ground for the racer goby Babka gymnotrachelus (RG) and western tubenose goby Proterorhinus semilunaris (WTG) compared to sandy and stone substrata (containing the basic prey density of 500 ind. m -2 ). Moreover, we checked how food availability affects habitat selection by fish. Mussel beds became more suitable for fish than alternative mineral substrata when food abundance was at least two times higher (1,000 vs. 500 ind. m -2 ), regardless of fish size and species. WTG was associated with mussel beds regardless of its size and prey density, whereas RG switched to this habitat when it became a better feeding ground than alternative substrata. Larger RG exhibited a stronger affinity for mussels than small individuals. WTG fed more efficiently from a mussel bed at high food abundances than RG. A literature review has shown that increasing chironomid density, which in our study was sufficient to make a mussel habitat an attractive feeding ground for the gobies, is commonly observed in mussel beds in the field. Therefore, we conclude that zebra mussels may positively affect the alien goby species and are likely to facilitate their establishment in novel areas, contributing to an

  3. Factorial microarray analysis of zebra mussel (Dreissena polymorpha: Dreissenidae, Bivalvia) adhesion

    PubMed Central

    2010-01-01

    Background The zebra mussel (Dreissena polymorpha) has been well known for its expertise in attaching to substances under the water. Studies in past decades on this underwater adhesion focused on the adhesive protein isolated from the byssogenesis apparatus of the zebra mussel. However, the mechanism of the initiation, maintenance, and determination of the attachment process remains largely unknown. Results In this study, we used a zebra mussel cDNA microarray previously developed in our lab and a factorial analysis to identify the genes that were involved in response to the changes of four factors: temperature (Factor A), current velocity (Factor B), dissolved oxygen (Factor C), and byssogenesis status (Factor D). Twenty probes in the microarray were found to be modified by one of the factors. The transcription products of four selected genes, DPFP-BG20_A01, EGP-BG97/192_B06, EGP-BG13_G05, and NH-BG17_C09 were unique to the zebra mussel foot based on the results of quantitative reverse transcription PCR (qRT-PCR). The expression profiles of these four genes under the attachment and non-attachment were also confirmed by qRT-PCR and the result is accordant to that from microarray assay. The in situ hybridization with the RNA probes of two identified genes DPFP-BG20_A01 and EGP-BG97/192_B06 indicated that both of them were expressed by a type of exocrine gland cell located in the middle part of the zebra mussel foot. Conclusions The results of this study suggested that the changes of D. polymorpha byssogenesis status and the environmental factors can dramatically affect the expression profiles of the genes unique to the foot. It turns out that the factorial design and analysis of the microarray experiment is a reliable method to identify the influence of multiple factors on the expression profiles of the probesets in the microarray; therein it provides a powerful tool to reveal the mechanism of zebra mussel underwater attachment. PMID:20509938

  4. Competitive Replacement of Invasive Congeners May Relax Impact on Native Species: Interactions among Zebra, Quagga, and Native Unionid Mussels

    PubMed Central

    Burlakova, Lyubov E.; Tulumello, Brianne L.; Karatayev, Alexander Y.; Krebs, Robert A.; Schloesser, Donald W.; Paterson, Wendy L.; Griffith, Traci A.; Scott, Mariah W.; Crail, Todd; Zanatta, David T.

    2014-01-01

    Determining when and where the ecological impacts of invasive species will be most detrimental and whether the effects of multiple invaders will be superadditive, or subadditive, is critical for developing global management priorities to protect native species in advance of future invasions. Over the past century, the decline of freshwater bivalves of the family Unionidae has been greatly accelerated by the invasion of Dreissena. The purpose of this study was to evaluate the current infestation rates of unionids by zebra (Dreissena polymorpha) and quagga (D. rostriformis bugensis) mussels in the lower Great Lakes region 25 years after they nearly extirpated native unionids. In 2011–2012, we collected infestation data for over 4000 unionids from 26 species at 198 nearshore sites in lakes Erie, Ontario, and St. Clair, the Detroit River, and inland Michigan lakes and compared those results to studies from the early 1990s. We found that the frequency of unionid infestation by Dreissena recently declined, and the number of dreissenids attached to unionids in the lower Great Lakes has fallen almost ten-fold since the early 1990s. We also found that the rate of infestation depends on the dominant Dreissena species in the lake: zebra mussels infested unionids much more often and in greater numbers. Consequently, the proportion of infested unionids, as well as the number and weight of attached dreissenids were lower in waterbodies dominated by quagga mussels. This is the first large-scale systematic study that revealed how minor differences between two taxonomically and functionally related invaders may have large consequences for native communities they invade. PMID:25490103

  5. Use of on-site refugia to protect unionid populations from zebra mussel-induced mortality

    USGS Publications Warehouse

    Nichols, S. Jerrine; Black, M. Glen; Allen, Jeffrey D.

    2000-01-01

    Protecting unionid populations as zebra mussels spread into inland waterways has relied mainly on relocating at-risk animals into aquaculture facilities. While such relocations are the only viable management technique for some populations, facility availability is limited, leaving many unionids facing extirpation. Another management strategy is in-situ protection either by enhancing natural refugia or by creating managed refugia. We have reviewed all reports of natural refugia and found that refugia for unionids can be found in many areas. There are many habitats where zebra mussel colonization has been limited, or of a temporary nature. Within zebra mussel infested areas, unionid communities continue to survive in some shallow water sites such as estuaries, deltas, and lake-connected wetlands. Managed refugia can be created in areas where natural refugia do not exist. We present a case study on recent efforts to create refugia in an area with rapidly expanding zebra mussel populations. Preliminary analysis of unionid body condition indicates that removal of encrusted zebra mussels only once a year can improve unionid condition factors and decrease mortality. Natural and managed refugia can provide an additional conservation management option in some areas.

  6. Seasonal effects of the zebra mussel (Dreissena polymorpha) on sediment denitrification rates in Pool 8 of the Upper Mississippi River

    USGS Publications Warehouse

    Bruesewitz, Denise A.; Tank, Jennifer L.; Bernot, Melody J.; Richardson, William B.; Strauss, Eric A.

    2006-01-01

    Zebra mussels (Dreissena polymorpha) have altered the structure of invaded ecosystems and exhibit characteristics that suggest they may influence ecosystem processes such as nitrogen (N) cycling. We measured denitrification rates seasonally on sediments underlying zebra mussel beds collected from the impounded zone of Navigation Pool 8 of the Upper Mississippi River. Denitrification assays were amended with nutrients to characterize variation in nutrient limitation of denitrification in the presence or absence of zebra mussels. Denitrification rates at zebra mussel sites were high relative to sites without zebra mussels in February 2004 (repeated measures analysis of variance (RM ANOVA), p = 0.005), potentially because of high NO3-N variability from nitrification of high NH4+ zebra mussel waste. Denitrification rates were highest in June 2003 (RM ANOVA, p 3-N concentrations during the study (linear regression, R2 = 0.72, p p ≤ 0.01). Examining how zebra mussels influence denitrification rates will aid in developing a more complete understanding of the impact of zebra mussels and more effective management strategies of eutrophic waters.

  7. Longitudinal patterns in abundance of the zebra mussel (Dreissena polymorpha) in the upper Mississippi River

    USGS Publications Warehouse

    Cope, W.G.; Bartsch, M.R.; Hayden, R.R.

    1997-01-01

    We assessed the abundance of zebra mussels in the upper Mississippi River during 1995, four years after they were first found in the river. Samplers were deployed from May 30 to October 19, 1995, at 19 lock and dam facilities in the upper Mississippi River from Minneapolis, Minnesota, to Muscatine, Iowa. Zebra mussels were found at every lock and dam except the two sites farthest upstream (Minneapolis). Generally, densities of zebra mussels were greatest at sites 161 km and farther downstream of the Minneapolis area. The greatest mean mussel density was 11,432/m(2) at Fulton, Illinois.

  8. Making the Best of a Pest: The Potential for Using Invasive Zebra Mussel ( Dreissena Polymorpha) Biomass as a Supplement to Commercial Chicken Feed

    NASA Astrophysics Data System (ADS)

    McLaughlan, Claire; Rose, Paul; Aldridge, David C.

    2014-11-01

    Invasive non-native species frequently occur in very high densities. When such invaders present an economic or ecological nuisance, this biomass is typically removed and landfill is the most common destination, which is undesirable from both an economic and ecological perspective. The zebra mussel, Dreissena polymorpha, has invaded large parts of Europe and North America, and is routinely removed from raw water systems where it creates a biofouling nuisance. We investigated the suitability of dried, whole zebra mussels as a supplement to poultry feed, thus providing a more attractive end-use than disposal to landfill. Measurable outcomes were nutrient and energy composition analyses of the feeds and production parameters of the birds over a 14 day period. Zebra mussels were a palatable feed supplement for chickens. The mussel meal contained high levels of calcium (344.9 g kg-1), essential for egg shell formation, which was absorbed and retained easily by the birds. Compared with standard feed, a mussel-supplemented diet caused no significant effects on production parameters such as egg weight and feed conversion ratio during the study period. However, protein and energy levels in the zebra mussel feed were much lower than expected from the literature. In order for zebra mussels to be a viable long-term feed supplement for poultry, flesh would need to be separated from the shells in an economically viable way. If zebra mussels were to be used with the shells remaining, it seems that the resultant mussel meal would be more suitable as a calcium supplement.

  9. Making the best of a pest: the potential for using invasive zebra mussel (Dreissena polymorpha) biomass as a supplement to commercial chicken feed.

    PubMed

    McLaughlan, Claire; Rose, Paul; Aldridge, David C

    2014-11-01

    Invasive non-native species frequently occur in very high densities. When such invaders present an economic or ecological nuisance, this biomass is typically removed and landfill is the most common destination, which is undesirable from both an economic and ecological perspective. The zebra mussel, Dreissena polymorpha, has invaded large parts of Europe and North America, and is routinely removed from raw water systems where it creates a biofouling nuisance. We investigated the suitability of dried, whole zebra mussels as a supplement to poultry feed, thus providing a more attractive end-use than disposal to landfill. Measurable outcomes were nutrient and energy composition analyses of the feeds and production parameters of the birds over a 14 day period. Zebra mussels were a palatable feed supplement for chickens. The mussel meal contained high levels of calcium (344.9 g kg(-1)), essential for egg shell formation, which was absorbed and retained easily by the birds. Compared with standard feed, a mussel-supplemented diet caused no significant effects on production parameters such as egg weight and feed conversion ratio during the study period. However, protein and energy levels in the zebra mussel feed were much lower than expected from the literature. In order for zebra mussels to be a viable long-term feed supplement for poultry, flesh would need to be separated from the shells in an economically viable way. If zebra mussels were to be used with the shells remaining, it seems that the resultant mussel meal would be more suitable as a calcium supplement.

  10. Zebra Mussel Antifouling Activity of the Marine Natural Product Aaptamine and Analogs

    PubMed Central

    Diers, Jeffrey A.; Bowling, John J.; Duke, Stephen O.; Wahyuono, Subagus; Kelly, Michelle; Hamann, Mark T.

    2016-01-01

    Several aaptamine derivatives were selected as potential zebra mussel (Dreissena polymorpha) antifoulants because of the noteworthy absence of fouling observed on Aaptos sponges. Sponges of the genus Aaptos collected in Manado, Indonesia consistently produce aaptamine-type alkaloids. To date, aaptamine and its derivatives have not been carefully evaluated for their antifoulant properties. Structure–activity relationship studies were conducted using several aaptamine derivatives in a zebra mussel antifouling assay. From these data, three analogs have shown significant antifouling activity against zebra mussel attachment. Aaptamine, isoaaptamine, and the demethylated aaptamine compounds used in the zebra mussel assay produced EC50 values of 24.2, 11.6, and 18.6 μM, respectively. In addition, neither aaptamine nor isoaaptamine produced a phytotoxic response (as high as 300 μM) toward a nontarget organism, Lemna pausicostata, in a 7-day exposure. The use of these aaptamine derivatives from Aaptos sp. as potential environmentally benign antifouling alternatives to metal-based paints and preservatives is significant, not only as a possible control of fouling organisms, but also to highlight the ecological importance of these and similar biochemical defenses. PMID:16718618

  11. Comparative morphology of zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussel sperm: Light and electron microscopy

    USGS Publications Warehouse

    Walker, G.K.; Black, M.G.; Edwards, C.A.

    1996-01-01

    Adult zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussels were induced to release large quantities of live spermatozoa by the administration of 5-hydroxytryptamine (serotonin). Sperm were photographed alive using phase-contrast microscopy and were fixed subsequently with glutaraldehyde followed by osmium tetroxide for eventual examination by transmission or scanning electron microscopy. The sperm of both genera are of the ect-aquasperm type. Their overall dimensions and shape allow for easy discrimination at the light and scanning electron microscopy level. Transmission electron microscopy of the cells reveals a barrel-shaped nucleus in zebra mussel sperm and an elongated nucleus in quagga mussel sperm. In both species, an acrosome is cradled in a nuclear fossa. The ultrastructure of the acrosome and axial body, however, is distinctive for each species. The structures of the midpiece are shown, including a unique mitochondrial "skirt" that includes densely packed parallel cristae and extends in a narrow sheet from the mitochondria.

  12. The Effects of Zebra Mussels (Dreissena polymorpha) on the Foraging Success of Eurasian Perch (Perca fluviatilis) and Ruffe (Gymnocephalus cernuus)

    NASA Astrophysics Data System (ADS)

    Dieterich, Axel; Mörtl, Martin; Eckmann, Reiner

    2004-07-01

    Complex habitat structures can influence the foraging success of fish. Competition for food between fish species can therefore depend on the competitors' abilities to cope with structural complexity. In laboratory experiments, we comparatively assessed effects of zebra mussels (Dreissena polymorpha Pall.) on the foraging success of Eurasian perch (Perca fluviatilis L.) and ruffe (Gymnocephalus cernuus (L.)). In single-species and mixed-species experiments, the fish were fed caddisfly larvae (Tinodes waeneri (L.)) over complex (mussel-covered stones) and less-complex (bare stones) substrates. With intraspecific competition, food consumption by perch and ruffe decreased significantly when the complex substrate was used. With interspecific competition, food consumption by perch and ruffe did not change with substrate complexity, but perch clearly out-competed ruffe on both substrates. Zebra mussel beds provide a refuge for macrozoobenthos against predation by ruffe and probably also by perch. (

  13. Efficacy of Pseudomonas fluorescens (Pf-CL145A) spray dried powder for controlling zebra mussels adhering to test substrates

    USGS Publications Warehouse

    Luoma, James A.; Severson, Todd J.; Weber, Kerry L.; Mayer, Denise A.

    2015-01-01

    Approximately 30 days after exposure, zebra mussels were sorted into live and dead, and enumerated. Mean survival of zebra mussels in control treatments exceeded 95 percent. Mean survival of zebra mussels in the Lake Carlos WWC SDP-treated groups ranged from 0.5 to 2.1 percent and when compared at the same exposure duration, no difference was detected in survival between the 50 and 100 milligrams per liter (mg/L) treatment groups. Similarly, mean survival of zebra mussels in the Shawano Lake WWC SDP-treated groups ranged from 2.0 to 12.6 percent and when compared at the same exposure duration, no difference was detected in survival between the 50- and 100-mg/L treatment groups. Mean survival of zebra mussels in the Lake Carlos BI trial SDP-treated groups did not differ (p = 0.93) and was 18.1 and 18.0 percent in the 50- and 100-mg/L treatment groups, respectively. Mean survival of zebra mussels in the Shawano Lake BI trial SDP-treated groups differed (p < 0.01) and was 2.9 and 0.9 percent in the 50- and 100-mg/L treatment groups, respectively. Survival of zebra mussels assigned to the SDP-treated groups in the Lake Carlos WWC trial (12-hour exposure duration) differed from the survival of zebra mussels assigned to the SDP-treated groups in the Lake Carlos BI trial; however, after modification of the BI application technique, no difference (p = 0.22) was detected between the survival of zebra mussel in the Shawano Lake WWC (12-hour exposure duration) and BI trials.

  14. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  15. Genotoxic effects induced by the exposure to an environmental mixture of illicit drugs to the zebra mussel.

    PubMed

    Parolini, Marco; Magni, Stefano; Castiglioni, Sara; Binelli, Andrea

    2016-10-01

    Despite the growing interest on the presence of illicit drugs in freshwater ecosystems, just recently the attention has been focused on their potential toxicity towards non-target aquatic species. However, these studies largely neglected the effects induced by exposure to complex mixtures of illicit drugs, which could be different compared to those caused by single psychoactive molecules. This study was aimed at investigating the genetic damage induced by a 14-day exposure to a realistic mixture of the most common illicit drugs found in surface waters worldwide (cocaine, benzoylecgonine, amphetamine, morphine and 3,4-methylenedioxymethamphetamine) on the zebra mussel (Dreissena polymorpha). The mixture caused a significant increase of DNA fragmentation and triggered the apoptotic process and micronuclei formation in zebra mussel hemocytes, pointing out its potential genotoxicity towards this bivalve species. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Preliminary characterization of digestive enzymes in freshwater mussels

    USGS Publications Warehouse

    Sauey, Blake W.; Amberg, Jon J.; Cooper, Scott T.; Grunwald, Sandra K.; Newton, Teresa J.; Haro, Roger J.

    2015-01-01

    Resource managers lack an effective chemical tool to control the invasive zebra mussel Dreissena polymorpha. Zebra mussels clog water intakes for hydroelectric companies, harm unionid mussel species, and are believed to be a reservoir of avian botulism. Little is known about the digestive physiology of zebra mussels and unionid mussels. The enzymatic profile of the digestive glands of zebra mussels and native threeridge (Amblema plicata) and plain pocketbook mussels (Lampsilis cardium) are characterized using a commercial enzyme kit, api ZYM, and validated the kit with reagent-grade enzymes. A linear correlation was shown for only one of nineteen enzymes, tested between the api ZYM kit and a specific enzyme kit. Thus, the api ZYM kit should only be used to make general comparisons of enzyme presence and to observe trends in enzyme activities. Enzymatic trends were seen in the unionid mussel species, but not in zebra mussels sampled 32 days apart from the same location. Enzymatic classes, based on substrate, showed different trends, with proteolytic and phospholytic enzymes having the most change in relative enzyme activity.

  17. The zebra mussel (Dreissena polymorpha), a new pest in North America: reproductive mechanisms as possible targets of control strategies

    USGS Publications Warehouse

    Ram, Jeffrey L.; Fong, Peter; Croll, Roger P.; Nichols, Susan J.; Wall, Darcie

    1992-01-01

    The zebra mussel (Dreissena polymorpha) has spread rapidly in temperate fresh waters of North America since its introduction into the Great Lakes in 1985 or 1986. It attaches to hard substrates, forming layers, occluding water intakes, encrusting and killing native mussels, filtering algae in competition with other planktivores, and possibly interfering with fish spawning. It reproduces prolifically, suggesting that an approach to its control may be by controlling its reproduction. Previous literature suggests that spawning in bivalves is regulated by both environmental and internal chemical cues. A suggested sequence is that phytoplankton chemicals initially trigger spawning; chemicals associated with gametes provide a species-specific pheromonal positive feedback for spawning; and the response to environmental chemicals is mediated internally by serotonin (5-HT). The role of 5-HT in zebra mussels is under investigation. Both males and females can be induced to spawn by either injection or external application of 5-HT. The response can also be activated by 8-hydroxy-2-(di-n-propylamino)-tetralin, an agonist at 5-HT1A receptors. HPLC analysis has detected 5-HT as the major biogenic amine in both male and female gonads. 5-HT immunocytochemistry demonstrates nerves containing serotonergic fibers innervating gonads of both males and females, with prominent varicosities surrounding the follicles in both sexes. A role of 5-HT in mediating spawning responses in zebra mussels is thus strongly supported. These studies have shown that reproductive behavior of zebra mussels can be modified by outside chemicals, a property that may be exploited for purposes of control.

  18. Zebra mussels (Dreissena polymorpha) limit food for larval fish (Pimephales promelas) in turbulent systems: A bioenergetics analysis

    USGS Publications Warehouse

    Bartsch, L.A.; Richardson, W.B.; Sandheinrich, M.B.

    2003-01-01

    We conducted a factorial experiment, in outdoor mesocosms, on the effects of zebra mussels and water column mixing (i.e., turbulence) on the diet, growth, and survival of larval fathead minnows (Pimephales promelas). Significant (P < 0.05) larval mortality occurred by the end of the experiment with the highest mortality (90%) occurring in the presence of both turbulence and zebra mussels, whereas mortality was 37% in treatment with turbulence and 17% and 18% in the zebra mussels treatment, and the control, respectively. The size of individual fish was significantly different among treatments at the end of the experiment and was inversely related to survival. Levels of trophic resources (i.e., phyto and zooplankton) varied among treatments and were treatment specific. Turbulent mixing facilitated removal of phytoplankton by zebra mussels by making the entire water column of the tanks available to these benthic filter feeders. Early in the experiment (Day = 0 to 14) the physical process of turbulent mixing likely caused a reduction in standing stocks of zooplankton. The interactive effect of turbulence and mussels reduced copepod and rotifer stocks, through physical processes and through filtration by zebra mussels, relative to the turbulence treatment. The reductions in the number of total zooplankton in the turbulent mixing mesocosms and the further reduction of rotifer and copepod in the turbulence and mussels treatment coincided with a period of increased reliance of larval fathead minnows on these prey. Estimates of consumption from bioenergetics modeling and measured prey standing stocks indicated caloric resources of suitable prey in turbulence treatments during the early weeks of the experiment were insufficient to prevent starvation. Early mortality in the turbulence and mussels treatment likely released surviving fish from intense intraspecific competition and resulted in higher individual growth rates. A combination of high abundance of zebra mussels in an

  19. Zebra mussels (Dreissena polymorpha) limit food for larval fish (Pimephales promelas) in turbulent systems: a bioenergetics analysis

    USGS Publications Warehouse

    Bartsch, L.A.; Richardson, W.B.; Sandheinrich, M.B.

    2003-01-01

    We conducted a factorial experiment, in outdoor mesocosms, on the effects of zebra mussels and water column mixing (i.e., turbulence) on the diet, growth, and survival of larval fathead minnows (Pimephales promelas). Significant (P < 0.05) larval mortality occurred by the end of the experiment with the highest mortality (90%) occurring in the presence of both turbulence and zebra mussels, whereas mortality was 37% in treatment with turbulence and 17% and 18% in the zebra mussels treatment, and the control, respectively. The size of individual fish was significantly different among treatments at the end of the experiment and was inversely related to survival. Levels of trophic resources (i.e., phyto and zooplankton) varied among treatments and were treatment specific. Turbulent mixing facilitated removal of phytoplankton by zebra mussels by making the entire water column of the tanks available to these benthic filter feeders. Early in the experiment (Day = 0 to 14) the physical process of turbulent mixing likely caused a reduction in standing stocks of zooplankton. The interactive effect of turbulence and mussels reduced copepod and rotifer stocks, through physical processes and through filtration by zebra mussels, relative to the turbulence treatment. The reductions in the number of total zooplankton in the turbulent mixing mesocosms and the further reduction of rotifer and copepod in the turbulence and mussels treatment coincided with a period of increased reliance of larval fathead minnows on these prey. Estimates of consumption from bioenergetics modeling and measured prey standing stocks indicated caloric resources of suitable prey in turbulence treatments during the early weeks of the experiment were insufficient to prevent starvation. Early mortality in the turbulence and mussels treatment likely released surviving fish from intense intraspecific competition and resulted in higher individual growth rates. A combination of high abundance of zebra mussels in an

  20. Use of alternating and pulsed direct current electrified fields for zebra mussel control

    USGS Publications Warehouse

    Luoma, James A.; Dean, Jan C.; Severson, Todd J.; Wise, Jeremy K.; Barbour, Matthew

    2017-01-01

    Alternatives to chemicals for controlling dreissenid mussels are desirable for environmental compatibility, but few alternatives exist. Previous studies have evaluated the use of electrified fields for stunning and/or killing planktonic life stages of dreissenid mussels, however, the available literature on the use of electrified fields to control adult dreissenid mussels is limited. We evaluated the effects of sinusoidal alternating current (AC) and 20% duty cycle square-wave pulsed direct current (PDC) exposure on the survival of adult zebra mussels at water temperatures of 10, 15, and 22 °C. Peak voltage gradients of ~ 17 and 30 Vp/cm in the AC and PDC exposures, respectively, were continuously applied for 24, 48, or 72 h. Peak power densities ranged from 77,999 to 107,199 µW/cm3 in the AC exposures and 245,320 to 313,945 µW/cm3 in the PDC exposures. The peak dose ranged from 6,739 to 27,298 Joules/cm3 and 21,306 to 80,941 Joules/cm3 in the AC and PDC exposures, respectively. The applied power ranged from 16.6 to 68.9 kWh in the AC exposures and from 22.2 to 86.4 kWh in the PDC exposures. Mortality ranged from 2.7 to 92.7% in the AC exposed groups and from 24.0 to 98.7% in PDC exposed groups. Mortality increased with corresponding increases in water temperature and exposure duration, and we observed more zebra mussel mortality in the PDC exposures. Exposures conducted with AC required less of a peak dose (Joules/cm3) but more applied power (kWh) to achieve the same level of adult zebra mussel mortality as corresponding PDC exposures. The results demonstrate that 20% duty cycle square-wave PDC requires less energy than sinusoidal AC to inducing the same level of adult zebra mussel mortality.

  1. The Importance of Non-Native Prey, the Zebra Mussel Dreissena polymorpha, for the Declining Greater Scaup Aythya marila: A Case Study at a Key European Staging and Wintering Site.

    PubMed

    Marchowski, Dominik; Neubauer, Grzegorz; Ławicki, Łukasz; Woźniczka, Adam; Wysocki, Dariusz; Guentzel, Sebastian; Jarzemski, Maciej

    2015-01-01

    The European population of Greater Scaup Aythya marila has experienced an alarming, ~60% decline in numbers over the last two decades. The brackish lagoons of the Odra River Estuary (ORE) in the south-western Baltic Sea, represent an important area for the species during the non-breeding season in Europe. The lagoons regularly support over 20 000 Scaup, with peaks exceeding 100 000 (38%-70% of the population wintering in NW Europe and the highest number recorded in April 2011-105 700). In the ORE, Scaup feed almost exclusively on the non-native Zebra Mussel Dreissena polymorpha. This mussel was present in the ORE already in the 19th century and continues to be superabundant. Using the results of 22 Scaup censuses (November to April 2002/2003 to 2013/2014) from the whole ORE (523 km2 of water), we show that Scaup flocks follow areas with the greatest area of occurrence and biomass of the Zebra Mussel, while areas with low mussel densities are ignored. The numbers of Scaup in the ORE are primarily related to the area of Zebra Mussel occurrence on the lagoon's bottom (km2) in a non-linear fashion. Zebra Mussels were absolutely prevalent (97% of biomass) in the digestive tracts of birds unintentionally by-caught in fishing nets (n = 32). We estimate that Scaup alone consume an average of 5 400 tons of Zebra Mussels annually, which represents 5.6% of the total resources of the mussel in the ORE. Our results provide a clear picture of the strong dependence of the declining, migratory duck species on the non-native mussel, its primary food in the ORE. Our findings are particularly important as they can form the basis for the conservation action plan aimed at saving the north-western European populations of Scaup.

  2. The Importance of Non-Native Prey, the Zebra Mussel Dreissena polymorpha, for the Declining Greater Scaup Aythya marila: A Case Study at a Key European Staging and Wintering Site

    PubMed Central

    Marchowski, Dominik; Neubauer, Grzegorz; Ławicki, Łukasz; Woźniczka, Adam; Wysocki, Dariusz; Guentzel, Sebastian; Jarzemski, Maciej

    2015-01-01

    The European population of Greater Scaup Aythya marila has experienced an alarming, ~60% decline in numbers over the last two decades. The brackish lagoons of the Odra River Estuary (ORE) in the south-western Baltic Sea, represent an important area for the species during the non-breeding season in Europe. The lagoons regularly support over 20 000 Scaup, with peaks exceeding 100 000 (38%–70% of the population wintering in NW Europe and the highest number recorded in April 2011–105 700). In the ORE, Scaup feed almost exclusively on the non-native Zebra Mussel Dreissena polymorpha. This mussel was present in the ORE already in the 19th century and continues to be superabundant. Using the results of 22 Scaup censuses (November to April 2002/2003 to 2013/2014) from the whole ORE (523 km2 of water), we show that Scaup flocks follow areas with the greatest area of occurrence and biomass of the Zebra Mussel, while areas with low mussel densities are ignored. The numbers of Scaup in the ORE are primarily related to the area of Zebra Mussel occurrence on the lagoon’s bottom (km2) in a non-linear fashion. Zebra Mussels were absolutely prevalent (97% of biomass) in the digestive tracts of birds unintentionally by-caught in fishing nets (n = 32). We estimate that Scaup alone consume an average of 5 400 tons of Zebra Mussels annually, which represents 5.6% of the total resources of the mussel in the ORE. Our results provide a clear picture of the strong dependence of the declining, migratory duck species on the non-native mussel, its primary food in the ORE. Our findings are particularly important as they can form the basis for the conservation action plan aimed at saving the north-western European populations of Scaup. PMID:26709707

  3. Bioassessment of mercury, cadmium, polychlorinated biphenyls, and pesticides in the upper Mississippi river with Zebra mussels (Dreissena polymorpha)

    USGS Publications Warehouse

    Cope, W. Gregory; Bartsch, Michelle; Rada, Ronald G.; Balogh, Steven J.; Rupprecht, John E.; Young, R. David; Johnson, D. Kent

    1999-01-01

    Zebra mussels (Dreissena polymorpha) were sampled from artificial substrates deployed from May 30 to October 19, 1995, at 19 locks and dams from Minneapolis, MN, to Muscatine, IA. Analyses of composite tissue samples of zebra mussels (10−20-mm length) revealed accumulation of mercury (Hg), cadmium (Cd), and polychlorinated biphenyls (PCBs) during a 143-d exposure period. Concentrations of total Hg ranged from 2.6 to 6.1 ng/g wet weight and methylmercury (CH3Hg) from 1.0 to 3.3 ng/g wet weight. About 50% (range 30−70%) of the mean total Hg in zebra mussels was CH3Hg. Cadmium ranged from 76 to 213 ng/g wet weight. Concentrations of total PCBs (Aroclor 1254) in zebra mussels varied longitudinally (range 1000−7330 ng/g lipid weight), but the composition of PCB congeners (total of 21 measured) was similar throughout the river. Chlordane and dieldrin were the only two pesticides detected of the 15 analyzed. Zebra mussels are sentinels of contaminant bioavailability in the Upper Mississippi River and may be an important link in the trophic transfer of contaminants in the river because of their increasing importance in the diets of certain fish and waterfowl.

  4. Body size-dependent Cd accumulation in the zebra mussel Dreissena polymorpha from different routes.

    PubMed

    Tang, Wen-Li; Evans, Douglas; Kraemer, Lisa; Zhong, Huan

    2017-02-01

    Understanding body size-dependent metal accumulation in aquatic organisms (i.e., metal allometry) is critical in interpreting biomonitoring data. While growth has received the most attention, little is known about controls of metal exposure routes on metal allometry. Here, size-dependent Cd accumulation in zebra mussels (Dreissena polymorpha) from different routes were investigated by exposing mussels to A.( 111 Cd spiked algae+ 113 Cd spiked river water) or B.( 111 Cd spiked sediments+ 113 Cd spiked river water). After exposure, 111 Cd or 113 Cd levels in mussel tissue were found to be negatively correlated with tissue weight, while Cd allometry coefficients (b values) were dependent on Cd exposure routes: -0.664 for algae, -0.241 for sediments and -0.379 for river water, compared to -0.582 in un-exposed mussels. By comparing different Cd exposure routes, we found that size-dependent Cd bioaccumulation from algae or river water could be more responsible for the overall size-dependent Cd accumulation in mussels, and the relative importance of the two sources was dependent on mussel size ranges: Cadmium obtained from algae (algae-Cd) was more important in size-dependent Cd accumulation in smaller mussels (tissue dry weight < 5 mg), while river water-Cd became more important in larger individuals (tissue dry weight > 5 mg). In contrast, sediment-Cd contributed only a small amount to Cd accumulation in zebra mussels and may have little effect on size-dependent Cd bioaccumulation. Our results suggest that size-dependent Cd accumulation in mussels could be largely affected by exposure routes, which should be considered when trying to interpret Cd biomonitoring data of zebra mussels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Pseudomonas fluorescens strain CL145A - a biopesticide for the control of zebra and quagga mussels (Bivalvia: Dreissenidae).

    PubMed

    Molloy, Daniel P; Mayer, Denise A; Gaylo, Michael J; Morse, John T; Presti, Kathleen T; Sawyko, Paul M; Karatayev, Alexander Y; Burlakova, Lyubov E; Laruelle, Franck; Nishikawa, Kimi C; Griffin, Barbara H

    2013-05-01

    Zebra mussels (Dreissena polymorpha) and quagga mussels (Dreissena rostriformis bugensis) are the "poster children" of high-impact aquatic invasive species. In an effort to develop an effective and environmentally acceptable method to control their fouling of raw-water conduits, we have investigated the potential use of bacteria and their natural metabolic products as selective biological control agents. An outcome of this effort was the discovery of Pseudomonas fluorescens strain CL145A - an environmental isolate that kills these dreissenid mussels by intoxication (i.e., not infection). In the present paper, we use molecular methods to reconfirm that CL145A is a strain of the species P. fluorescens, and provide a phylogenetic analysis of the strain in relation to other Pseudomonas spp. We also provide evidence that the natural product lethal to dreissenids is associated with the cell wall of P. fluorescens CL145A, is a heat-labile secondary metabolite, and has degradable toxicity within 24 h when applied to water. CL145A appears to be an unusual strain of P. fluorescens since it was the only one among the ten strains tested to cause high mussel mortality. Pipe trials conducted under once-through conditions indicated: (1) P. fluorescens CL145A cells were efficacious against both zebra and quagga mussels, with high mortalities achieved against both species, and (2) as long as the total quantity of bacterial cells applied during the entire treatment period was the same, similar mussel mortality could be achieved in treatments lasting 1.5-12.0 h, with longer treatment durations achieving lower mortalities. The efficacy data presented herein, in combination with prior demonstration of its low risk of non-target impact, indicate that P. fluorescens CL145A cells have significant promise as an effective and environmentally safe control agent against these invasive mussels. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Zebra Mussel Chemical Control Guide, Version 2.0

    DTIC Science & Technology

    2015-07-01

    delivery systems, including potable water treatment, agriculture, industry, power generation, and fire protection. Since this invasive organism’s...delivery systems, including potable water treatment, agriculture, industry, power generation, and fire protection (Mackie and Claudi 2010). Zebra mussels...generators, pipes, valves, sensing equipment (level, flow, and pressure) and fire protection (Mackie and Claudi 2010; Prescott et al. 2014). Other USACE

  7. Involvement of Apoptosis in Host-Parasite Interactions in the Zebra Mussel

    PubMed Central

    Minguez, Laëtitia; Brulé, Nelly; Sohm, Bénédicte; Devin, Simon; Giambérini, Laure

    2013-01-01

    The question of whether cell death by apoptosis plays a biological function during infection is key to understanding host-parasite interactions. We investigated the involvement of apoptosis in several host-parasite systems, using zebra mussels Dreissena polymorpha as test organisms and their micro- and macroparasites. As a stress response associated with parasitism, heat shock proteins (Hsp) can be induced. In this protein family, Hsp70 are known to be apoptosis inhibitors. Mussels were diagnosed for their respective infections by standard histological methods; apoptosis was detected using the TUNEL methods on paraffin sections and Hsp70 by immunohistochemistry on cryosections. Circulating hemocytes were the main cells observed in apoptosis whereas infected tissues displayed no or few apoptotic cells. Parasitism by intracellular bacteria Rickettsiales-like and the trematode Bucephalus polymorphus were associated with the inhibition of apoptosis whereas ciliates Ophryoglena spp. or the trematode Phyllodistomum folium did not involve significant differences in apoptosis. Even if some parasites were able to modulate apoptosis in zebra mussels, we did not see evidence of any involvement of Hsp70 on this mechanism. PMID:23785455

  8. Great Lakes clams find refuge from zebra mussels in restored, lake-connected marsh (Ohio)

    USGS Publications Warehouse

    Nichols, S. Jerrine; Wilcox, Douglas A.

    2004-01-01

    Since the early 1990s, more than 95 percent of the freshwater clams once found in Lake Erie have died due to the exotic zebara mussel (Dreissena polymorpha). Zebra mussels attach themselves to native clams in large numbers, impeding the ability of the clams to eat and burrow. However, in 1996, we discovered a population of native clams in Metzger Marsh in western Lake Erie (about 50 miles [80 km] east of Toledo) that were thriving despite the longtime presence of zebra mussel in surrounding waters. At that time, Metzger Marsh was undergoing extensive restoration, including construction of a dike to replace the eroded barrier beach and of a water-control structure to maintain hydrologic connections with the lake (Wilcox and Whillans 1999). The restoration plan called for a drawdown of water levels to promote plant growth from the seedbank -- a process that would also destroy most of the clam population. State and federal resource managers recommended removing as many clams as possible to a site that was isolated from zebra mussels, and then returning them to the marsh after it was restored. We removed about 7,000 native clams in 1996 and moved them back to Metzger Marsh in 1999.

  9. A food web modeling analysis of a Midwestern, USA eutrophic lake dominated by non-native Common Carp and Zebra Mussels

    USGS Publications Warehouse

    Colvin, Michael E.; Pierce, Clay; Stewart, Timothy W.

    2015-01-01

    Food web modeling is recognized as fundamental to understanding the complexities of aquatic systems. Ecopath is the most common mass-balance model used to represent food webs and quantify trophic interactions among groups. We constructed annual Ecopath models for four consecutive years during the first half-decade of a zebra mussel invasion in shallow, eutrophic Clear Lake, Iowa, USA, to evaluate changes in relative biomass and total system consumption among food web groups, evaluate food web impacts of non-native common carp and zebra mussels on food web groups, and to interpret food web impacts in light of on-going lake restoration. Total living biomass increased each year of the study; the majority of the increase due to a doubling in planktonic blue green algae, but several other taxa also increased including a more than two-order of magnitude increase in zebra mussels. Common carp accounted for the largest percentage of total fish biomass throughout the study even with on-going harvest. Chironomids, common carp, and zebra mussels were the top-three ranking consumer groups. Non-native common carp and zebra mussels accounted for an average of 42% of the total system consumption. Despite the relatively high biomass densities of common carp and zebra mussel, food web impacts was minimal due to excessive benthic and primary production in this eutrophic system. Consumption occurring via benthic pathways dominated system consumption in Clear Lake throughout our study, supporting the argument that benthic food webs are significant in shallow, eutrophic lake ecosystems and must be considered if ecosystem-level understanding is to be obtained.

  10. Efficacy of spray –Dried Pseudomonas fluorescens, strain CL145A (Zequanox®), for controlling Zebra Mussels (Dreissena polymorpha) within Lake Minnetonka, MN enclosures

    USGS Publications Warehouse

    Luoma, James A.; Severson, Todd J.

    2016-01-01

    The efficacy of whole water column and subsurface applications of the biopesticide Zequanox®, a commercially prepared spray-dried powder formulation of Pseudomonas fluorescens (strain CL145A), were evaluated for controlling zebra mussels (Dreissena polymorpha) within 27-m2 enclosures in Lake Minnetonka (Deephaven, Minnesota). Five treatments consisting of (1) two whole water column Zequanox applications, (2) two subsurface Zequanox applications, and (3) an untreated control were completed on each of three independent treatment days during September 2014. The two types of samplers used in the study were (1) type 1 samplers, which were custom built multi-plate samplers (wood, perforated aluminum, and tile substrates) that were placed into Robinson’s Bay in June of 2013 to allow for natural colonization by zebra mussels, and (2) type 2 samplers, which consisted of zebra mussels adhering to perforated aluminum trays that were placed into mesh containment bags. One day prior to treatment, three individual samplers of each type were distributed to test enclosures and exposed to a randomly assigned treatment. Sampling to determine the zebra mussel biomass adhering to type 1 samplers and the survival assessments for zebra mussels contained in type 2 samplers were completed ~40 days after exposure. The zebra mussel biomass adhering to type 1 samplers and the survival of zebra mussels contained in type 2 samplers were significantly less in groups treated with the highest Zequanox concentrations and in groups that received whole water column applications than comparable groups treated with lower Zequanox concentrations and subsurface applications. However, standardization of biomass and survival results to the amount of Zequanox applied showed that the lower concentrations and subsurface applications were more cost efficient, with respect to product used, at reducing zebra mussel biomass and for inducing zebra mussel mortality. Although the subsurface application methods

  11. Characteristics of a refuge for native freshwater mussels (Bivalvia: Unionidae) in Lake St. Clair

    USGS Publications Warehouse

    McGoldrick, D.J.; Metcalfe-Smith, J. L.; Arts, M.T.; Schloesser, D.W.; Newton, T.J.; Mackie, G.L.; Monroe, E.M.; Biberhofer, J.; Johnson, K.

    2009-01-01

    The Lake St. Clair delta (??? 100??km2) provides an important refuge for native freshwater mussels (Unionidae) wherein 22 of the ??? 35 historical species co-occur with invasive dreissenids. A total of 1875 live unionids representing 22 species were found during snorkeling surveys of 32 shallow (??? 1??m) sites throughout the delta. Richness and density of unionids and zebra mussel infestation rates varied among sites from 3 to 13 unionid species, 0.02 to 0.12 unionids/m2, and < 1 to 35 zebra mussels/unionid, respectively. Zebra mussel infestation of unionids in the delta appears to be mitigated by dominant offshore currents, which limit densities of zebra mussel veligers in nearshore compared to offshore waters (13,600 vs. 28,000/m3, respectively). Glycogen concentrations in the tissues of a common and widespread species in the delta (Lampsilis siliquoidea) suggest that zebra mussels may be adversely affecting physiological condition of unionids in a portion of the Lake St. Clair delta. Physiological condition and community structure of unionids within the delta may also be influenced by differences in food quantity and quality resulting from the uneven distribution of water flowing from the St. Clair River. The delta likely supports the largest living unionid community in the lower Great Lakes and includes several species that have been listed as Endangered or Threatened in Canada and/or the state of Michigan, making it an important refuge for the conservation of native unionids. Crown Copyright ?? 2009.

  12. Spatio-temporal spawning and larval dynamics of a zebra mussel (Dreissena polymorpha) population in a North Texas Reservoir: implications for invasions in the southern United States

    USGS Publications Warehouse

    Churchill, Christopher John

    2013-01-01

    Zebra mussels were first observed in Texas in 2009 in a reservoir (Lake Texoma) on the Texas-Oklahoma border. In 2012, an established population was found in a near-by reservoir, Ray Roberts Lake, and in June 2013, settled mussels were detected in a third north Texas reservoir, Lake Lewisville. An established population was detected in Belton Lake in September 2013. With the exception of Louisiana, these occurrences in Texas mark the current southern extent of the range of this species in the United States. Previous studies indicate that zebra mussel populations could be affected by environmental conditions, especially increased temperatures and extreme droughts, which are characteristic of surface waters of the southern and southwestern United States. Data collected during the first three years (2010–12) of a long-term monitoring program were analyzed to determine if spatio-temporal zebra mussel spawning and larval dynamics were related to physicochemical water properties in Lake Texoma. Reproductive output of the local population was significantly related to water temperature and lake elevation. Estimated mean date of first spawn in Lake Texoma was approximately 1.5 months earlier and peak veliger densities were observed two months earlier than in Lake Erie. Annual maximum veliger density declined significantly during the study period (p < 0.0001). A population crash occurred as a result of thermal stress and variability of lake elevation. In summer 2011, water temperatures peaked at 34.3°C and lake elevation declined to the lowest level recorded during the previous 18 years, which resulted in desiccation of substantial numbers of settled mussels in littoral zones. Veliger spatial distributions were associated with physicochemical stratification characteristics. Veligers were observed in the deepest oxygenated water after lake stratification, which occurred in late spring. Results of this study indicate environmental conditions can influence variability of

  13. Modelling the Risk Posed by the Zebra Mussel Dreissena polymorpha: Italy as a Case Study

    NASA Astrophysics Data System (ADS)

    Bosso, Luciano; De Conno, Carmelina; Russo, Danilo

    2017-08-01

    We generated a risk map to forecast the potential effects of the spreading of zebra mussels Dreissena polymorpha across the Italian territory. We assessed the invader's potential impact on rivers, lakes, watersheds and dams at a fine-grained scale and detected those more at risk that should be targeted with appropriate monitoring. We developed a MaxEnt model and employed weighted overlay analyses to detect the species' potential distribution and generate risk maps for Italy. D. polymorpha has a greater probability of occurring at low to medium altitudes in areas characterised by fluviatile deposits of major streams. Northern and central Italy appear more at risk. Some hydroelectric power dams are at high risk, while most dams for irrigation, drinkable water reservoirs and other dam types are at medium to low risk. The lakes and rivers reaches (representing likely expansion pathways) at medium-high or high risk mostly occur in northern and central Italy. We highlight the importance of modelling potential invasions on a country scale to achieve the sufficient resolution needed to develop appropriate monitoring plans and prevent the invader's harmful effects. Further high-resolution risk maps are needed for other regions partly or not yet colonised by the zebra mussel.

  14. A cost-benefit analysis of preventative management for zebra and quagga mussels in the Colorado-Big Thompson System

    USGS Publications Warehouse

    Thomas, Catherine M.

    2010-01-01

    chapter provides background information including a history of the zebra mussel invasion in the U.S. and in the West, and details about the Colorado preventative management program and the Colorado-Big Thompson system. The chapter also includes a literature review of mussel dispersal models and economic studies that address control costs and preventative management for aquatic invasive species. Chapter 2 presents the methodological approach used to analyze the costs and benefits of preventative management in the Colorado-Big Thompson system and provides details of the bioeconomic simulation model used to predict invasion patterns and the net benefits of preventative management. Results of the analysis and sensitivity testing of model parameters are presented in Chapter 3. Chapter 4 provides a summary of the analysis and conclusions. A discussion of the limitations of the model and areas for future research is presented in Chapter 5.

  15. Spawning of zebra mussels (Dreissena polymorpha) and rearing of veligers under laboratory conditions

    USGS Publications Warehouse

    Nichols, S. Jerrine; Nalepa, Thomas F.; Schloesser, Donald W.

    1992-01-01

    The spawning cycle of the zebra mussel, Dreissena polymorpha, is amenable to laboratory manipulations. Techniques are presented that can be used to initiate spawning and rear veligers from fertilized egg to settlement stage. Spawning can be induced in sexually mature mussels by temperature flucuations or by the addition of ripe gametes. Embryonic survival is excellent until the straight-hinge stage when the first wave of mortality occurs, usually due to improper food. The second critical stage of development occurs just prior to settlement when mortality increases again. Veliger mortality averaged over 90% from egg to settlement. The results indicate that obtaining large numbers of veligers for laboratory experiments to be conducted year-round is difficult.

  16. Copper in indigenous and transplanted zebra mussels in relation to changing water concentrations and body weight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mersch, J.; Wagner, P.; Pihan, J.C.

    Zebra mussels, Dreissena polymorpha, were collected monthly from a copper-contaminated reservoir over a period of nearly 3 years. Copper concentrations in the organisms showed marked fluctuations reflecting changes in the water contamination. Bioconcentration patterns were influenced by the specific capacity of this sentinel organism to biologically integrate the continuously evolving water pollution; the sampling pattern, which inevitably introduced a certain subjectivity into monitoring results; and weight changes in the animals within the yearly cycle. Consequently, the successive monthly indications obtained with the zebra mussels provided a current biological assessment of a complex dynamic contamination situation. In a second experiment, cagedmore » mussels from three different populations were transferred for 3 months into the reservoir and sampled on six occasions. Mortality rates, attachment capacity, and a condition index revealed no substantial fitness disturbances in the transplanted organisms. Differences in dry weight throughout the experiment were attributable to the initial characteristics of each population. The influence of body mass on monitoring results was eliminated by replacing copper concentrations ({micro}g/g dry weight) with copper burdens ({micro}g/specimen). In terms of copper burdens, the three transplanted populations exhibited very similar metal patterns. Moderate quantitative differences between introduced and indigenous populations were interpreted as the result of physiological adaptation of the indigenous mussels to their contaminated environment. This study showed that the transfer technique with D. polymorpha is a useful tool for active biomonitoring programs.« less

  17. In situ growth of juvenile zebra mussels in a regulated stream

    USGS Publications Warehouse

    French, John R. P.; Nichols, S. Jerrine; Craig, Jaquelyn M.; Allen, Jeffery D.; Black, M. Glen

    2006-01-01

    We investigated the in situ growth of juvenile zebra mussels (Dreissena polymorpha) in a reach of the Huron River (southeast Michigan) below a dam with a control gate that regulates water levels. Growth was significantly different among sample dates over a five-month-long monitoring season. Mean growth of mussels generally decreased from 0.093 mm/day just above the dam to 0.067 mm/day 4 km downstream, then increased to 0.091 mm/day at end of the 17-km-long study area. Significant differences among sites were most numerous in August during a severe drought when discharges fell substantially. Growth was positively correlated with discharges (R2 = 0.94, p a levels in the study area, however, was weak (R2 = 0.69, p < 0.1). Our study suggests that discharge may be one controlling factor for dreissenid populations in small streams.

  18. Nutrient Recycling Impacts by Zebra Mussels in Harper’s Ferry Slough, Upper Mississippi River

    DTIC Science & Technology

    2000-12-01

    ing pro duc tiv ity in the slough (also see Caraco et al. (1997)). In Harper’s Ferry Slough and other aquatic sys tems, the mag ni tude of ze bra mus...the Upper Mississippi River with zebra mussels (Dreissena polymorpha),” Environ. Sci. Technol. 33, 4385-4390. ERDC WQTN-PD-07 December 2000 11 Caraco , N

  19. An assessment of total and leachable contaminants in zebra mussels (Dreissena polymorpha) from Lake Erie

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doherty, F.G.; Evans, D.W.; Neuhauser, E.F.

    Samples of zebra mussels, Dreissena polymorpha, from populations infesting two power generating stations on Lake Erie were subjected to tests assessing the potential for leaching of metals and other (inorganic and organic) contaminants from mussel waste destined for disposal in conventional landfills. These tests revealed that mussels collected from Ontario Hydro's Nanticoke Thermal Generating Station and Niagara Mohawk Power Corporation's Dunkirk Steam Station did not release hazardous materials in excess of limits set forth in Canadian and U.S. regulations, respectively. A variety of metals and inorganic materials leached from Nanticoke mussels at levels significantly lower than the registration limits formore » those analytes. Detectable levels of chloroform (0.080 mg/liter) and barium (3.3 mg/liter) leached from Dunkirk mussels at > 30-fold lower levels than U.S. regulatory action limits for those materials. Whole body analyses revealed a lack of detectable levels of herbicides and pesticides in either population with a variety of metals and inorganic constituents in all samples from both populations. The physiological condition of Dunkirk mussels appeared to be consistent with that of other Lake Erie populations based on percentage water and total fat content of soft tissues.« less

  20. An assessment of total and leachable contaminants in zebra mussels (Dreissena polymorpha) from Lake Erie.

    PubMed

    Doherty, F G; Evans, D W; Neuhauser, E F

    1993-06-01

    Samples of zebra mussels, Dreissena polymorpha, from populations infesting two power generating stations on Lake Erie were subjected to tests assessing the potential for leaching of metals and other (inorganic and organic) contaminants from mussel waste destined for disposal in conventional landfills. These tests revealed that mussels collected from Ontario Hydro's Nanticoke Thermal Generating Station and Niagara Mohawk Power Corporation's Dunkirk Steam Station did not release hazardous materials in excess of limits set forth in Canadian and U.S. regulations, respectively. A variety of metals and inorganic materials leached from Nanticoke mussels at levels significantly lower than the registration limits for those analytes. Detectable levels of chloroform (0.080 mg/liter) and barium (3.3 mg/liter) leached from Dunkirk mussels at > 30-fold lower levels than U.S. regulatory action limits for those materials. Whole body analyses revealed a lack of detectable levels of herbicides and pesticides in either population with a variety of metals and inorganic constituents in all samples from both populations. The physiological condition of Dunkirk mussels appeared to be consistent with that of other Lake Erie populations based on percentage water and total fat content of soft tissues.

  1. Lessons from a transplantation of zebra mussels into a small urban river: An integrated ecotoxicological assessment.

    PubMed

    Bourgeault, A; Gourlay-Francé, C; Vincent-Hubert, F; Palais, F; Geffard, A; Biagianti-Risbourg, S; Pain-Devin, S; Tusseau-Vuillemin, M-H

    2010-10-01

    It is often difficult to evaluate the level of contamination in small urban rivers because pollution is mainly diffuse, with low levels of numerous substances. The use of a coupled approach using both chemical and biological measurements may provide an integrated evaluation of the impact of micro-pollution on the river. Zebra mussels were transplanted along a metal and organic pollution gradient in spring 2008. For two months, mussels and water samples were collected from two sites every two weeks and analyzed for metal and PAH content as well as water physicochemical parameters. Diffusive gradients in thin film (DGT) were also used to assess levels of labile metals. Exposure of mussels to contaminants and potential impact were evaluated using physiological indices and various biomarkers including condition index (CI), defense mechanisms (glutathione-S-transferase: GST), digestive enzymes (amylase and cellulase) and genotoxicity (micronucleus test: MN and comet assay: CA). For most contaminants, the water contamination was significantly higher downstream. Bioaccumulation in zebra mussels was related to water contamination in the framework of the biodynamic model, which allowed us to take into account the biological dilution that was caused by the growth of soft tissue downstream. Thus, metal influxes were on average two times higher downstream than upstream in particular for Zn, Cr, Cu and Cd. Significant differences in condition index were observed (final CI was 0.42 ± 0.03 downstream and 0.31 ± 0.03 upstream) reflecting a better food availability downstream. Moreover a significant decrease of GST activity and digestive enzymes activity in the cristalline style was observed downstream. Interpreting this decrease requires considering not only micro-pollution but also the trophic status related to the water's physicochemistry. The MN test and the CA on gill cells highlighted genotoxicity in mussels transplanted downstream compared to upstream. © 2010 Wiley

  2. Underwater cleaning techniqued used for removal of zebra mussels at the FitzPatrick Nuclear Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, B.; Kahabka, J.

    1995-06-01

    This paper discusses the use of a mechanical brush cleaning technology recently used to remove biofouling from the Circulating Water (CW) System at New York Power Authority`s James A. FitzPatrick Nuclear Power Plant. The FitzPatrick plant had previously used chemical molluscicide to treat zebra mussels in the CW system. Full system treatment was performed in 1992 with limited forebay/screenwell treatment in 1993. The New York Power Authority (NYPA) decided to conduct a mechanical cleaning of the intake system in 1994. Specific project objectives included: (1) Achieve a level of surface cleaniness greater than 98%; (2) Remove 100% of debris, bothmore » existing sediment and debris generated as a result of cleaning; (3) Inspect all surfaces and components, identifying any problem areas; (4) Complete the task in a time frame within the 1994-95 refueling outage schedule window, and; (5) Determine if underwater mechanical cleaning is a cost-effective zebra mussel control method suitable for future application at FitzPatrick. A pre-cleaning inspection, including underwater video photography, was conducted of each area. Cleaning was accomplished using diver-controlled, multi-brush equipment included the electro-hydraulic powered Submersible Cleaning and Maintenance Platform (SCAMP), and several designs of hand-held machines. The brushes swept all zebra mussels off surfaces, restoring concrete and metal substrates to their original condition. Sensitive areas including pump housings, standpipes, sensor piping and chlorine injection tubing, were cleaned without degradation. Submersible vortex vacuum pumps were used to remove debris from the cavity. More than 46,000 ft{sup 2} of surface area was cleaned and over 460 cubic yards of dewatered debris were removed. As each area was completed, a post-clean inspection with photos and video was performed.« less

  3. The Quagga mussel invades the Lake Superior basin - journal article

    EPA Science Inventory

    Prior studies recognized the presence of a single dreissenid species in Lake Superior--the zebra mussel Dreissena polymorpha. However, taxonomic keys based on traditional shell morphology are not always able to differentiate dreissenid species with confidence. We thus employed ge...

  4. Organochlorine and trace element contamination in wintering and migrating diving ducks in the southern Great Lakes, USA, since the zebra mussel invasion

    USGS Publications Warehouse

    Custer, Christine M.; Custer, T.W.

    2000-01-01

    Because of the potential for increased trophic transfer of contaminants by zebra mussels (Dreissena sp.) to higher trophic levels, we collected four species of waterfowl (n = 65 ducks) from four locations in Lake Erie, Lake St. Clair, and Lake Michigan, USA, between 1991 and 1993 for organochlorine contaminant and trace element analyses. Geometric mean concentrations of total polychlorinated biphenyls (PCBs) and p,pa??-dichlorodiphenyldichloroethylene (DDE) were 1.35 and 0.15 I?g/g wet weight in lesser scaup (Aythya affinis) carcasses and were below known effect levels. Total PCBs in 80% of carcasses, however, were above the U.S. Food and Drug Administration's threshold of 3.0 I?g/g lipid weight for consumption of poultry. With the exception of selenium, trace elements were also at background or no-effect levels. Selenium concentrations in livers of 95% of lesser scaup, 90% of bufflehead (Bucephala albeola), and 72% of common goldeneye (Bucephala clangula) were in the elevated (>10 I?g/g dry wt) or potentially harmful range (>33 I?g/g dry wt). The effects of these high selenium concentrations are unknown but should be investigated further based on reproductive effects observed in field and laboratory studies of dabbling ducks and because lesser scaup populations are declining. Concentrations of total PCBs in dreissenid mussels in western Lake Erie were 10 times higher than in the upper Mississippi River but were similar to concentrations in other industrialized rivers in Europe and the United States. Metal concentrations were similar to other industrialized sites where zebra mussels have been sampled.

  5. Population dynamics of zebra mussels Dreissena polymorpha (Pallas, 1771) during the initial invasion of the Upper Mississippi River, USA

    USGS Publications Warehouse

    Cope, W.G.; Bartsch, M.R.; Hightower, J.E.

    2006-01-01

    The aim of this study was to document and model the population dynamics of zebra mussels Dreissena polymorpha (Pallas, 1771) in Pool 8 of the Upper Mississippi River (UMR), USA, for five consecutive years (1992-1996) following their initial discovery in September 1991. Artificial substrates (concrete blocks, 0.49 m2 surface area) were deployed on or around the first of May at two sites within each of two habitat types (main channel border and contiguous backwater). Blocks were removed monthly (30 ?? 10 d) from the end of May to the end of October to obtain density and growth information. Some blocks deployed in May 1995 were retrieved in April 1996 to obtain information about overwinter growth and survival. The annual density of zebra mussels in Pool 8 of the UMR increased from 3.5/m2 in 1992 to 14,956/m 2 in 1996. The average May-October growth rate of newly recruited individuals, based on a von Bertalanffy growth model fitted to monthly shell-length composition data, was 0.11 mm/d. Model estimates of the average survival rate varied from 21 to 100% per month. Estimated recruitment varied substantially among months, with highest levels occurring in September-October of 1994 and 1996, and in July of 1995. Recruitment and density in both habitat types increased by two orders of magnitude in 1996. Follow-up studies will be necessary to assess the long-term stability of zebra mussel populations in the UMR; this study provides the critical baseline information needed for those future comparisons. ?? Published by Oxford University Press on behalf of The Malacological Society of London 2006.

  6. Heterozygosity and fitness: No strong association in Great Lakes populations of the zebra mussel, Dreissena Polymorpha (Pallas)

    USGS Publications Warehouse

    Lewis, K.M.; Feder, J.L.; Horvath, T.G.; Lamberti, G.A.

    2000-01-01

    A number of studies have found positive associations between allozyme heterozygosity and fitness surrogates (e.g., body size and growth rate) for marine molluscs. We investigated whether similar relationships exist for freshwater populations of the zebra mussel, Dreissena polymorpha. Only one significant correlation between multi-locus heterozygosity and shell length was observed for a total of 22 D. polymorpha populations surveyed from midwestern U.S.A. lakes and streams, and the result was not significant on a table-wide basis. Meta-analysis revealed a significant common correlation coefficient (effect magnitude) between multi-locus heterozygosity and shell length across all 22 sites (rc = 0.052, P = 0.019, 1557 df). However, the variance in shell length explained by multi-locus heterozygosity was small (rc2 = 0.0027), implying a weak causal relationship if any. Also, we saw no relationship between heterozygosity and growth rate in a one-year field enclosure experiment. A significant heterozygosity-shell length correlation previously reported for a zebra mussel population at Put-in-Bay, Lake Erie, Ohio, may have been the product of unique population dynamics, rather than natural selection. Similar demographic considerations may contribute to inconsistencies in heterozygosity-fitness correlations seen for other molluscs.

  7. Pharyngeal teeth of the freshwater drum (Aplodinotus grunniens) a predator of the zebra mussel (Dreissena polymorpha)

    USGS Publications Warehouse

    French, John R. P.

    1997-01-01

    The morphology of pharyngeal teeth of freshwater drum (Aplodinotus grunniens) was studied to determine changes that occur during growth of drum that may relate to consumption of zebra mussel (Dreissena polymorpha) by larger fish. Pharyngeal teeth were of three types. Cardiform teeth were replaced by villiform teeth, which were replaced by molariform teeth as the size class of drum increased. Molariform teeth comprised over 85% of total surface area of dentition in fish 265 mm long.

  8. Evaluation of relocation of unionid mussels into artificial ponds

    USGS Publications Warehouse

    Newton, T.J.; Monroe, E.M.; Kenyon, R.; Gutreuter, S.; Welke, K.I.; Thiel, P.A.

    2001-01-01

    Relocation of unionid mussels into refuges (e.g., hatchery ponds) has been suggested as a management tool to protect these animals from the threat of zebra mussel (Dreissena polymorpha) invasion. To evaluate the efficacy of relocation, we experimentally relocated 768 mussels, representing 5 species (Leptodea fragilis, Obliquaria reflexa, Fusconaia flava, Amblema plicata, and Quadrula quadrula) into an earthen pond at a National Fish Hatchery or back into the river. In both locations, mussels were placed into 1 of 4 treatments (mesh bags, corrals, and buried or suspended substrate-filled trays). Mussels were examined annually for survival, growth (shell length and wet mass), and physiological condition (glycogen concentration in foot and mantle and tissue condition index) for 36 mo in the pond or 40 mo in the river. We observed significant differences in mortality rates between locations (mortality was 4 times greater in the pond than in the river), among treatments (lowest mortality in the suspended trays), and among species (lower mortality in the amblemines than lamp-silines). Overall survival in both locations averaged 80% the 1st year; survival in the pond decreased dramatically after that. Although length and weight varied between locations and over time, these changes were small, suggesting that their utility as short-term measures of well being in long-lived unionids is questionable. Mussels relocated to the pond were in poor physiological condition relative to those in the river, but the magnitude of these differences was small compared to the inherent variability in physiological condition of reference mussels. These data suggest that relocation of unionids into artificial ponds is a high-risk conservation strategy; alternatives such as introduction of infected host fish, identification of mussel beds at greatest risk from zebra mussels, and a critical, large-scale assessment of the factors contributing to their decline should be explored.

  9. Effects of zebra mussels on food webs: Interactions with juvenile bluegill and water residence time

    USGS Publications Warehouse

    Richardson, W.B.; Bartsch, L.A.

    1997-01-01

    We evaluated how water residence time mediated the impact of zebra mussels Dreissena polymorpha and bluegill sunfish Lepomis macrochirus on experimental food webs established in 1100-1 outdoor mesocosms. Water residence time was manipulated as a surrogate for seston resupply - a critical variable affecting growth and survival of suspension-feeding invertebrates. We used a 2 x 2 x 2 factorial experimental design with eight treatment combinations (3 replicates/treatment) including the presence or absence of Dreissena (2000 per m2), juvenile bluegill (40 per mesocosm), and short (1100 1 per d) or long (220 1 per d) water residence time. Measures of seston concentration (chlorophyll a, turbidity and suspended solids) were greater in the short- compared to long water-residence mesocosms, but intermediate in short water-residence mesocosms containing Dreissena. Abundance of rotifers (Keratella and Polyarthra) was reduced in Dreissena mesocosms and elevated in short residence time mesocosms. Cladocera abundance, in general, was unaffected by the presence of Dreissena; densities were higher in short-residence time mesocosms, and reduced in the presence of Lepomis. The growth of juvenile Lepomis were unaffected by Dreissena because of abundant benthic food. The final total mass of Dreissena was significantly greater in short- than long-residence mesocosms. Impacts of Dreissena on planktonic food webs may not only depend on the density of zebra mussels but also on the residence time of the surrounding water and the resupply of seston. ?? 1997 Kluwer Academic Publishers.

  10. Activation of AMP-activated protein kinase in response to temperature elevation shows seasonal variation in the zebra mussel, Dreissena polymorpha.

    PubMed

    Jost, Jennifer A; Keshwani, Sarah S; Abou-Hanna, Jacob J

    2015-04-01

    Global climate change is affecting ectothermic species, and a variety of studies are needed on thermal tolerances, especially from cellular and physiological perspectives. This study utilized AMP-activated protein kinase (AMPK), a key regulator of cellular energy levels, to examine the effects of high water temperatures on zebra mussel (Dreissena polymorpha) physiology. During heating, AMPK activity increased as water temperature increased to a point, and maximum AMPK activity was detected at high, but sublethal, water temperatures. This pattern varied with season, suggesting that cellular mechanisms of seasonal thermal acclimatization affect basic metabolic processes during sublethal heat stress. There was a greater seasonal variation in the water temperature at which maximum AMPK activity was measured than in lethal water temperature. Furthermore, baseline AMPK activity varied significantly across seasons, most likely reflecting altered metabolic states during times of growth and reproduction. In addition, when summer-collected mussels were lab-acclimated to winter and spring water temperatures, patterns of heat stress mirrored those of field-collected animals. These data suggest that water temperature is the main driver of the seasonal variation in physiology. This study concluded that AMPK activity, which reflects changes in energy supply and demand during heat stress, can serve as a sensitive and early indicator of temperature stress in mussels. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Validated methodology for quantifying infestation levels of dreissenid mussels in environmental DNA (eDNA) samples.

    PubMed

    Peñarrubia, Luis; Alcaraz, Carles; Vaate, Abraham Bij de; Sanz, Nuria; Pla, Carles; Vidal, Oriol; Viñas, Jordi

    2016-12-14

    The zebra mussel (Dreissena polymorpha Pallas, 1771) and the quagga mussel (D. rostriformis Deshayes, 1838) are successful invasive bivalves with substantial ecological and economic impacts in freshwater systems once they become established. Since their eradication is extremely difficult, their detection at an early stage is crucial to prevent spread. In this study, we optimized and validated a qPCR detection method based on the histone H2B gene to quantify combined infestation levels of zebra and quagga mussels in environmental DNA samples. Our results show specific dreissenid DNA present in filtered water samples for which microscopic diagnostic identification for larvae failed. Monitoring a large number of locations for invasive dreissenid species based on a highly specific environmental DNA qPCR assay may prove to be an essential tool for management and control plans focused on prevention of establishment of dreissenid mussels in new locations.

  12. Validated methodology for quantifying infestation levels of dreissenid mussels in environmental DNA (eDNA) samples

    PubMed Central

    Peñarrubia, Luis; Alcaraz, Carles; Vaate, Abraham bij de; Sanz, Nuria; Pla, Carles; Vidal, Oriol; Viñas, Jordi

    2016-01-01

    The zebra mussel (Dreissena polymorpha Pallas, 1771) and the quagga mussel (D. rostriformis Deshayes, 1838) are successful invasive bivalves with substantial ecological and economic impacts in freshwater systems once they become established. Since their eradication is extremely difficult, their detection at an early stage is crucial to prevent spread. In this study, we optimized and validated a qPCR detection method based on the histone H2B gene to quantify combined infestation levels of zebra and quagga mussels in environmental DNA samples. Our results show specific dreissenid DNA present in filtered water samples for which microscopic diagnostic identification for larvae failed. Monitoring a large number of locations for invasive dreissenid species based on a highly specific environmental DNA qPCR assay may prove to be an essential tool for management and control plans focused on prevention of establishment of dreissenid mussels in new locations. PMID:27966602

  13. Ecotoxicological impact of Zequanox®, a novel biocide, on selected non-target Irish aquatic species.

    PubMed

    Meehan, Sara; Shannon, Adam; Gruber, Bridget; Rackl, Sarahann M; Lucy, Frances E

    2014-09-01

    Effective, species-specific zebra mussel control is needed urgently for Ireland׳s freshwater bodies, which became infested with non-native zebra mussels in the 1990s. Zequanox®, a newly commercialized product for zebra and quagga mussel control, is composed of dead Pseudomonas fluorescens CL 145A cells. This paper describes ecotoxicology tests on three representative native Irish freshwater species: Anodonta (duck mussel), Chironomus plumosus (non-biting midge), and Austropotamobius pallipes (white-clawed crayfish). The species were exposed to Zequanox in a 72-h static renewal toxicity test at concentrations of 100-750mg active ingredient per liter (mga.i./L). Water quality parameters were measured every 12-24h before and after water and product renewal. After 72h, endpoints were reported as LC10, LC50, and LC100. The LC50 values derived were (1) Anodonta: ≥500mga.i./L (2) C. plumosus: 1075mga.i./L, and (3) A. pallipes: ≥750mga.i./L. These results demonstrate that Zequanox does not negatively affect these organisms at the concentration required for >80percent zebra mussel mortality (150mg a.i/L) and the maximum allowable treatment concentration in the United Sates (200mga.i./L). They also show the overall species-specificity of Zequanox, and support its use in commercial facilities and open waters. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Invasive species research to meet the needs of resource management and planning.

    PubMed

    Papeş, M; Sällström, M; Asplund, T R; Vander Zanden, M J

    2011-10-01

    As zebra mussels (Dreissena polymorpha) continue to spread among inland lakes of the United States and Canada, there is growing interest from professionals, citizens, and other stakeholders to know which lakes are likely to be colonized by zebra mussels. Thus, we developed a classification of lake suitability for zebra mussels on the basis of measured or estimated concentrations of dissolved calcium in lake water and applied the classification to >11,500 lakes in Wisconsin and the Upper Peninsula of Michigan. The majority of lakes (58%) were classified as unsuitable (<10 mg/L Ca) for survival and reproduction of zebra mussels, 27% were identified as suitable (≥21 mg/L Ca), and 15% were classified as borderline suitable (≥10 and <21 mg/L Ca). Of the 77 inland lakes with confirmed zebra mussel records for which data on dissolved calcium were available, our method classified 74 as suitable and 3 as borderline suitable. To communicate this lake-specific suitability information and to help prioritize regional efforts to monitor and prevent the expansion of zebra mussels and other invasive species, we developed a web-based interface (available from http://www.aissmartprevention.wisc.edu/). Although we are still uncertain of how access to suitability information ultimately affects decision making, we believe this is a useful case study of building communication channels among researchers, practitioners, and the public. ©2011 Society for Conservation Biology.

  15. Rapid molecular detection of invasive species in ballast and harbor water by integrating environmental DNA and light transmission spectroscopy.

    PubMed

    Egan, Scott P; Grey, Erin; Olds, Brett; Feder, Jeffery L; Ruggiero, Steven T; Tanner, Carol E; Lodge, David M

    2015-04-07

    Invasive species introduced via the ballast water of commercial ships cause enormous environmental and economic damage worldwide. Accurate monitoring for these often microscopic and morphologically indistinguishable species is challenging but critical for mitigating damages. We apply eDNA sampling, which involves the filtering and subsequent DNA extraction of microscopic bits of tissue suspended in water, to ballast and harbor water sampled during a commercial ship's 1400 km voyage through the North American Great Lakes. Using a lab-based gel electrophoresis assay and a rapid, field-ready light transmission spectroscopy (LTS) assay, we test for the presence of two invasive species: quagga (Dreissena bugensis) and zebra (D. polymorpha) mussels. Furthermore, we spiked a set of uninfested ballast and harbor samples with zebra mussel tissue to further test each assay's detection capabilities. In unmanipulated samples, zebra mussel was not detected, while quagga mussel was detected in all samples at a rate of 85% for the gel assay and 100% for the LTS assay. In the spiked experimental samples, both assays detected zebra mussel in 94% of spiked samples and 0% of negative controls. Overall, these results demonstrate that eDNA sampling is effective for monitoring ballast-mediated invasions and that LTS has the potential for rapid, field-based detection.

  16. Exposure of zebra mussels to extracorporeal shock waves demonstrates formation of new mineralized tissue inside and outside the focus zone.

    PubMed

    Sternecker, Katharina; Geist, Juergen; Beggel, Sebastian; Dietz-Laursonn, Kristin; de la Fuente, Matias; Frank, Hans-Georg; Furia, John P; Milz, Stefan; Schmitz, Christoph

    2018-04-03

    The success rate of extracorporeal shock wave therapy (ESWT) for fracture nonunions in human medicine (i.e., radiographic union at six months after ESWT) is only approximately 75%. Detailed knowledge regarding the underlying mechanisms that induce bio-calcification after ESWT is limited. We analyzed the biological response within mineralized tissue of a new invertebrate model organism, the zebra mussel Dreissena polymorpha , after exposure with extracorporeal shock waves (ESWs). Mussels were exposed to ESWs with positive energy density of 0.4 mJ/mm 2 (A) or were sham exposed (B). Detection of newly calcified tissue was performed by exposing the mussels to fluorescent markers. Two weeks later, the A-mussels showed a higher mean fluorescence signal intensity within the shell zone than the B-mussels (p<0.05). Acoustic measurements revealed that the increased mean fluorescence signal intensity within the shell of the A-mussels was independent of the size and position of the focal point of the ESWs. These data demonstrate that induction of bio-calcification after ESWT may not be restricted to the region of direct energy transfer of ESWs into calcified tissue. The results of the present study are of relevance for better understanding of the molecular and cellular mechanisms that induce formation of new mineralized tissue after ESWT. © 2018. Published by The Company of Biologists Ltd.

  17. Evaluation of freshwater mussel relocation as a conservation and management strategy

    USGS Publications Warehouse

    Cope, W. Gregory; Waller, Diane L.

    1995-01-01

    The relocation of unionacean mussels is commonly used as a conservation and management tool in large rivers and streams. Relocation has been used to recolonize areas where mussel populations have been eliminated by prior pollution events, to remove mussels from construction zones and to re-establish populations of endangered species. More recently, relocation has been used to protect native freshwater mussels from colonization by the exotic zebra mussel Dreissena polymorpha. We conducted a literature review of mussel relocations and evaluated their relative success as a conservation and management strategy. We found that 43% of all relocations were conducted because of construction projects that were forced to comply with the Endangered Species Act 1973 and that only 16% were monitored for five or more consecutive years. Most (43%) relocation projects were conducted from July to September, presumably a period when reproductive stress is relatively low for most species and the metabolic rate is sufficient for reburrowing in the substrate. The mortality of relocated mussels was unreported in 27% of projects; reported mortality varied widely among projects and species and was difficult to assess. The mean mortality of relocated mussels was 49% based on an average recovery rate of 43%. There is little guidance on the methods for relocation or for monitoring the subsequent long-term status of relocated mussels. Based on this evaluation, research is needed to develop criteria for selecting a suitable relocation site and to establish appropriate methods and guidelines for conducting relocation projects.

  18. Dreissenid mussel research priorities workshop

    USGS Publications Warehouse

    Sytsma, Mark; Phillips, Stephen; Counihan, Timothy D.

    2015-01-01

    Currently, dreissenid mussels have yet to be detected in the northwestern part of the United States and western Canada. Infestation of one of the jurisdictions within the mussel-free Pacific Northwest would likely have significant economic, soci­etal and environmental implications for the entire region. Understanding the biology and environmental tolerances of dreissenid mussels, and effectiveness of various man­agement strategies, is key to prevention.On November 4-5, 2015, the Aquatic Bioinvasion Research and Policy Institute and the Center for Lakes and Reservoirs at Portland State University, the US Geological Survey, and the Pacific States Marine Fisheries Commission, convened a Dreissenid Mussel Research Priorities Workshop funded by the Great Northern Landscape Conservation Cooperative. The purpose of the workshop was to review dreissenid research priorities in the 2010 Quagga-Zebra Mussel Action Plan for Western U.S. Waters, reassess those priorities, incorporate new information and emerging trends, and develop priorities to strategically focus research efforts on zebra and quagga mussels in the Pacific Northwest and ensure that future research is focused on the highest priorities. It is important to note that there is some repetition among dreissenid research priority categories (e.g., prevention, detection, control, monitoring, and biology).Workshop participants with research experience in dreissenid mussel biology and management were identified by a literature review. State and federal agency managers were also invited to the workshop to ensure relevancy and practicality of the work­shop outcomes. A total of 28 experts (see sidebar) in mussel biology, ecology, and management attended the workshop.

  19. Canal construction destroys the barrier between major European invasion lineages of the zebra mussel.

    PubMed Central

    Müller, Jakob C; Hidde, Dennis; Seitz, Alfred

    2002-01-01

    Since the mid-1980s the zebra mussel, Dreissena polymorpha, Pallas 1771, has become the protagonist of a spectacular freshwater invasion in North America due to its large economic and biological impact. Several genetic studies on American populations have failed to detect any large-scale geographical patterns. In western Europe, where D. polymorpha has been a classical invader from the Pontocaspian since the early 19th century, the situation is strikingly different. Here, we show with genetic markers that two major western European invasion lineages with lowered genetic variability within and among populations can be discriminated. These two invasion lineages correspond with two separate navigable waterways to western Europe. We found a rapid and asymmetrical genetic interchange of the two invasion lines after the construction of the Main-Danube canal in 1992, which interconnected the two waterways across the main watershed. PMID:12061957

  20. Dreissenid mussels from the Great Lakes contain elevated thiaminase activity

    USGS Publications Warehouse

    Tillitt, D.E.; Riley, S.C.; Evans, A.N.; Nichols, S.J.; Zajicek, J.L.; Rinchard, J.; Richter, C.A.; Krueger, C.C.

    2009-01-01

    We examined thiaminase activity in dreissenid mussels collected at different depths and seasons, and from various locations in Lakes Michigan, Ontario, and Huron. Here we present evidence that two dreissenid mussel species (Dreissena bugensis and D. polymorpha) contain thiaminase activity that is 5-100 fold greater than observed in Great Lakes fishes. Thiaminase activity in zebra mussels ranged from 10,600 to 47,900??pmol g- 1??min- 1 and activities in quagga mussels ranged from 19,500 to 223,800??pmol g- 1??min- 1. Activity in the mussels was greatest in spring, less in summer, and least in fall. Additionally, we observed greater thiaminase activity in dreissenid mussels collected at shallow depths compared to mussels collected at deeper depths. Dreissenids constitute a significant and previously unknown pool of thiaminase in the Great Lakes food web compared to other known sources of this thiamine (vitamin B1)-degrading enzyme. Thiaminase in forage fish of the Great Lakes has been causally linked to thiamine deficiency in salmonines. We currently do not know whether linkages exist between thiaminase activities observed in dreissenids and the thiaminase activities in higher trophic levels of the Great Lakes food web. However, the extreme thiaminase activities observed in dreissenids from the Great Lakes may represent a serious unanticipated negative effect of these exotic species on Great Lakes ecosystems.

  1. Characterization of the multixenobiotic resistance (MXR) mechanism in embryos and larvae of the zebra mussel (Dreissena polymorpha) and studies on its role in tolerance to single and mixture combinations of toxicants.

    PubMed

    Faria, Melissa; Navarro, Ana; Luckenbach, Till; Piña, Benjamin; Barata, Carlos

    2011-01-17

    The study of the cellular mechanisms of tolerance of organisms to pollution is a key issue in aquatic environmental risk assessment. Recent evidence indicates that multixenobiotic resistance (MXR) mechanisms represent a general biological defense of many marine and freshwater organisms against environmental toxicants. In this work, toxicologically relevant xenobiotic efflux transporters were studied in early life stages of zebra mussels (Dreissena polymorpha). Expression of a P-gp1 (ABCB1) transporter gene and its associated efflux activities during development were studied, using qRT-PCR and the fluorescent transporter substrates rhodamine B and calcein-AM combined with specific transporter inhibitors (chemosensitizers). Toxicity bioassays with the model P-gp1 chemotherapeutic drug vinblastine applied singly and in combination with different chemosensitizers were performed to elucidate the tolerance role of the P-gp1 efflux transporter. Results evidenced that the gene expression and associated efflux activities of ABC transporters were low or absent in eggs and increased significantly in 1-3d old trochophora and veliger larvae. Specific inhibitors of Pgp1 and/or MRP transport activities including cyclosporine A, MK571, verapamil and reversin 205 and the musk celestolide resulted in a concentration dependent inhibition of related transport activities in zebra mussel veliger larvae, with IC50 values in the lower micromolar range and similar to those reported for mammals, fish and mussels. Binary mixtures of the tested transporter inhibitors except celestolide with the anticancer drug and P-gp1 substrate vinblastine increased the toxicity of the former compound more than additively. These results indicate that MXR transporter activity is high in early life-stages of the zebra mussel and that may play an important role in the tolerance to environmental contaminants. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. The influence of suspended particles on the acute toxicity of 2-chloro-4-nitro-aniline, cadmium, and pentachlorophenol on the valve movement response of the zebra mussel (Dreissena polymorpha).

    PubMed

    Borcherding, J; Wolf, J

    2001-05-01

    The Dreissena-Monitor is a biological early warning system for the continuous monitoring of river water quality, based on the valve movements of two groups of 42 zebra mussels (Dreissena polymorpha). Laboratory experiments with Cd, PCP, and 2-chloro-4-nitro-aniline were conducted in combination with suspended particles (a mixture of stinging nettle powder, bentonite, and quartz powder). An increase of suspended particles up to a nominal concentration of 540 mg/L within 5 min did not evoke any reactions by the mussels significantly different from normal. The distribution between water and solids was analyzed for Cd and 2-chloro-4-nitroaniline, with the result that the former quickly adsorbed to the particles, whereas the latter did not bind to the particles at all. The behavior of the zebra mussels revealed that the detection of 2-chloro-4-nitro-aniline was not affected by the presence of suspended matter. In the cases of Cd and PCP, D. polymorpha was able to detect these substances when they were particle-associated at least as well or better as when they were dissolved in the water. The results are discussed with respect to the physiology of the organisms and the bioavailability of toxicants, as well as to the consequences these results may have under field conditions.

  3. Using Massive Parallel Sequencing for the Development, Validation, and Application of Population Genetics Markers in the Invasive Bivalve Zebra Mussel (Dreissena polymorpha)

    PubMed Central

    Peñarrubia, Luis; Sanz, Nuria; Pla, Carles; Vidal, Oriol; Viñas, Jordi

    2015-01-01

    The zebra mussel (Dreissena polymorpha, Pallas, 1771) is one of the most invasive species of freshwater bivalves, due to a combination of biological and anthropogenic factors. Once this species has been introduced to a new area, individuals form dense aggregations that are very difficult to remove, leading to many adverse socioeconomic and ecological consequences. In this study, we identified, tested, and validated a new set of polymorphic microsatellite loci (also known as SSRs, Single Sequence Repeats) using a Massive Parallel Sequencing (MPS) platform. After several pruning steps, 93 SSRs could potentially be amplified. Out of these SSRs, 14 were polymorphic, producing a polymorphic yield of 15.05%. These 14 polymorphic microsatellites were fully validated in a first approximation of the genetic population structure of D. polymorpha in the Iberian Peninsula. Based on this polymorphic yield, we propose a criterion for establishing the number of SSRs that require validation in similar species, depending on the final use of the markers. These results could be used to optimize MPS approaches in the development of microsatellites as genetic markers, which would reduce the cost of this process. PMID:25780924

  4. Bibliography of Dreissena polymorpha (zebra mussels) and Dreissena rostriformis Bugensis (QUAGGA mussels): 1989 to 2011

    USGS Publications Warehouse

    Schloesser, Don W.; Schmuckal, Christine

    2012-01-01

    Dreissenid mussels invaded and colonized waters of the Laurentian Great Lakes during the late 1980s. Their colonization and resulting impact have been characterized as one of the most important ecological changes in freshwater systems in North America. The need for information on dreissenid mussels has grown during the past 2 decades, which has prompted the compilation of this bibliography. Two previous bibliographies of dreissenid mussels indicate average publication rates were 6 publications/year between 1771 and 1964 (1,180 in 194 y) and 30 publications/year between 1964 and 1993 (885 in 30 y). In the current bibliography, the average rate of publication doubled during the past 23 y (1989 to 2011) to 66 publications/year based on a total of 1,502 publications. These rates may be biased by increased numbers of researchers and journals over time but, at a minimum, these rates indicate continued interest and concern by humans about the impact of dreissenid mussels on water availability and the expanding range of dreissenids throughout the world. The current bibliography has a 94% efficiency rate for subject and 100% efficiency for title search criteria when compared with references in published studies of dreissenid mussels in 2011. In addition to publications, we included 206 student theses and 225 chapters in 26 books including 6 books devoted solely to dreissenid mussels. A vast majority of student theses were about dreissenid mussels in North America, especially in the Laurentian Great Lakes. The 6 books devoted to dreissenid mussels contained a variety of chapters that described biology, impact, control, and ecology of dreissenid mussels in both Europe (published in 1992 and 2010) and North America (1993, 1994, 1997, and 2000). In addition, there is a 7th book devoted solely to dreissenid mussels that is near completion.

  5. Polymethylene-interrupted fatty acids: Biomarkers for native and exotic mussels in the Laurentian Great Lakes

    USGS Publications Warehouse

    Mezek, Tadej; Sverko, Ed; Ruddy, Martina D.; Zaruk, Donna; Capretta, Alfredo; Hebert, Craig E.; Fisk, Aaron T.; McGoldrick, Daryl J.; Newton, Teresa J.; Sutton, Trent M.; Koops, Marten A.; Muir, Andrew M.; Johnson, Timothy B.; Ebener, Mark P.; Arts, Michael T.

    2011-01-01

    Freshwater organisms synthesize a wide variety of fatty acids (FAs); however, the ability to synthesize and/or subsequently modify a particular FA is not universal, making it possible to use certain FAs as biomarkers. Herein we document the occurrence of unusual FAs (polymethylene-interrupted fatty acids; PMI-FAs) in select freshwater organisms in the Laurentian Great Lakes. We did not detect PMI-FAs in: (a) natural seston from Lake Erie and Hamilton Harbor (Lake Ontario), (b) various species of laboratory-cultured algae including a green alga (Scenedesmus obliquus), two cyanobacteria (Aphanizomenon flos-aquae and Synechococystis sp.), two diatoms (Asterionella formosa, Diatoma elongatum) and a chrysophyte (Dinobryon cylindricum) or, (c) zooplankton (Daphnia spp., calanoid or cyclopoid copepods) from Lake Ontario, suggesting that PMI-FAs are not substantively incorporated into consumers at the phytoplankton–zooplankton interface. However, these unusual FAs comprised 4-6% of total fatty acids (on a dry tissue weight basis) of native fat mucket (Lampsilis siliquoidea) and plain pocketbook (L. cardium) mussels and in invasive zebra (Dreissena polymorpha) and quagga (D. bugensis) mussels. We were able to clearly partition Great Lakes' mussels into three separate groups (zebra, quagga, and native mussels) based solely on their PMI-FA profiles. We also provide evidence for the trophic transfer of PMI-FAs from mussels to various fishes in Lakes Ontario and Michigan, further underlining the potential usefulness of PMI-FAs for tracking the dietary contribution of mollusks in food web and contaminant-fate studies.

  6. Realistic mixture of illicit drugs impaired the oxidative status of the zebra mussel (Dreissena polymorpha).

    PubMed

    Parolini, Marco; Magni, Stefano; Castiglioni, Sara; Zuccato, Ettore; Binelli, Andrea

    2015-06-01

    Illicit drugs are considered to be emerging aquatic pollutants since they are commonly found in freshwater ecosystems in the high ng L(-1) to low μg L(-1) range concentrations. Although the environmental occurrence of the most common psychoactive compounds is well known, recently some investigations showed their potential toxicity toward non-target aquatic organisms. However, to date, these studies completely neglected that organisms in the real environment are exposed to a complex mixture, which could lead to dissimilar adverse effects. The present study investigated the oxidative alterations of the freshwater bivalve Dreissena polymorpha induced by a 14-d exposure to an environmentally relevant mixture of the most common illicit drugs found in the aquatic environment, namely cocaine (50 ng L(-1)), benzoylecgonine (300 ng L(-1)), amphetamine (300 ng L(-1)), morphine (100 ng L(-1)) and 3,4-methylenedioxymethamphetamine (50 ng L(-1)). The total oxidant status (TOS) was measured to investigate the increase in the reactive oxygen species' levels, while the activity of antioxidant enzymes and glutathione S-transferase were measured to note the eventual imbalances between pro-oxidant and antioxidant molecules. In addition, oxidative damage was assessed by measuring the levels of lipid peroxidation and protein carbonylation. Significant time-dependent increases of all the antioxidant activities were induced by the mixture. Moreover, the illicit drug mixture significantly increased the levels of carbonylated proteins and caused a slight variation in lipid peroxidation. Our results showed that a mixture of illicit drugs at realistic environmental concentrations can impair the oxidative status of the zebra mussel, posing a serious hazard to the health status of this bivalve species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Relations of Environmental Factors with Mussel-Species Richness in the Neversink River, New York

    USGS Publications Warehouse

    Baldigo, Barry P.; Ernst, Anne G.; Schuler, George E.; Apse, Colin D.

    2007-01-01

    INTRODUCTION Declines in the distribution, abundance, and diversity of freshwater-mussel species (family Unionidae1) have been reported worldwide (Bogan, 1993; Strayer and Jirka, 1997). The principal causes of the observed declines are difficult to confirm, however, because only a few of the many factors that affect mussel-species populations have been identified (Strayer and Ralley, 1993; Strayer, 1999; Baldigo and others, 2003; Strayer and others, 2006). The Neversink River, which drains the Catskill Mountains in southeastern New York (fig. 1), contains seven species of mussels (Strayer and Ralley, 1991; Strayer and Jirka, 1997). Populations of the endangered dwarf wedgemussel (Alasmidonta heterodon) and the threatened swollen wedgemussel (Alasmidonta varicosa) coexist with other unionid mussels in the Neversink River (Strayer and Ralley, 1991, 1993; Baldigo and others, 2003). Dwarf wedgemussel populations had previously been found only downstream from the site of an abandoned dam in the lower part of the river at Cuddebackville (fig. 1), and swollen wedgemussels were only found in the lower and middle reaches of the river. The limited distribution of these two species suggests that they may be susceptible to local extinctions. The distribution of mussel populations can be limited by impoundments. Mussel larvae develop in species-specific host fish; thus, impoundments that restrict passage of these host fish also restrict the extent of mussels. The Neversink River is impounded by the Neversink Reservoir [241 square kilometers (km2)], a major source of drinking water for the City of New York, and was also impounded 50 km downstream by the Cuddebackville Dam until 2004, when the latter was removed by The Nature Conservancy (TNC) and the U.S. Army Corps of Engineers to improve fish passage. The removal of this dam has provided previously unavailable habitat for diadromous and other fish species that act as hosts for rare mussel species. In addition, releases from

  8. Zebra Stripes through the Eyes of Their Predators, Zebras, and Humans.

    PubMed

    Melin, Amanda D; Kline, Donald W; Hiramatsu, Chihiro; Caro, Tim

    2016-01-01

    The century-old idea that stripes make zebras cryptic to large carnivores has never been examined systematically. We evaluated this hypothesis by passing digital images of zebras through species-specific spatial and colour filters to simulate their appearance for the visual systems of zebras' primary predators and zebras themselves. We also measured stripe widths and luminance contrast to estimate the maximum distances from which lions, spotted hyaenas, and zebras can resolve stripes. We found that beyond ca. 50 m (daylight) and 30 m (twilight) zebra stripes are difficult for the estimated visual systems of large carnivores to resolve, but not humans. On moonless nights, stripes are difficult for all species to resolve beyond ca. 9 m. In open treeless habitats where zebras spend most time, zebras are as clearly identified by the lion visual system as are similar-sized ungulates, suggesting that stripes cannot confer crypsis by disrupting the zebra's outline. Stripes confer a minor advantage over solid pelage in masking body shape in woodlands, but the effect is stronger for humans than for predators. Zebras appear to be less able than humans to resolve stripes although they are better than their chief predators. In conclusion, compared to the uniform pelage of other sympatric herbivores it appears highly unlikely that stripes are a form of anti-predator camouflage.

  9. Laterality of suckling behaviour in three zebra species.

    PubMed

    Pluháček, Jan; Olléová, Michaela; Bartošová, Jitka; Pluháčková, Jana; Bartoš, Luděk

    2013-01-01

    Although side preference while suckling is an easily characterised lateralised behaviour, few studies have been conducted. We observed laterality in suckling behaviour in three captive zebra species to test two hypotheses: laterality affected by the foal (motor laterality) and laterality affected by the mother. In total we observed 35 foals of Grevy's, plains, and mountain zebra in two zoos and recorded 5128 successful suckling bouts and 9095 unsuccessful suckling attempts. At the population level the only factor affecting side preference of suckling bouts and attempts was the identity of the individual foal. Ten foals showed individual preferences: seven foals preferred suckling from the left side of the mother, three preferred suckling from the right side of the mother. The individual preferences increased with increasing age of the foal. Only one foal was refused more often from the opposite side than the preferred side used for suckling whereas three other foals were refused from the preferred side. Foals that preferred suckling either from left or right side were refused by the mare more often than foals which showed non-preference. Thus lateral preferences in suckling behaviour of zebra foals seem to be in line with the motor laterality hypotheses.

  10. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Southwest) California Sea Mussel and Bay Mussel

    DTIC Science & Technology

    1988-09-01

    FishesS and Invertebrates (Pacific Southwest) CALIFORNIA SEA MUSSEL AND BAY MUSSEL Cn Coastal Ecology Group *Fish and Wildlife Service Waterways...September 1988 Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Southwest) CALIFORNIA SEA MUSSEL...AND BAY MUSSEL by William N. Shaw Fred Telonicher Marine Laboratory Humboldt State University Trinidad, CA 95570 Thomas J. Hassler U.S. Fish anu

  11. Zebra mussel effects on benthic invertebrates: physical or biotic?

    USGS Publications Warehouse

    Botts, P. Silver; Patterson, Benjamin A.; Schloesser, Don W.

    1996-01-01

    In soft sediments, Dreissena spp. create firm substrate in the form of aggregates of living mussels (druses) that roll free on the sediments. Druses provide physical structure which increases habitat heterogeneity, and the mussels increase benthic organic matter through the production of pseudofeces and feces. Descriptive and experimental studies were used to determine: 1) whether the density of benthic invertebrates in soft sediments increased in the presence of druses, and 2) whether the invertebrate assemblage responded to the physical structure provided by a druse or to some biotic effect associated with the presence of living mussels. In core samples collected biweekly during summer in Presque Isle Bay, Erie, Pennsylvania, amphipods, chironomids, oligochaetes, turbellarians, and hydrozoans were significantly more abundant in sand with druses than in bare sand. When mesh bags containing either a living druse, non-living druse, or no druse were incubated in the bay for 33 d, we found that chironomids were significantly more abundant in treatments with living druses than with non-living druses, and in treatments with non-living druses than with no druse; turbellarians, amphipods, and hydrozoans were significantly more abundant in treatments with living or non-living druses than with no druse; oligochaetes showed no significant differences among treatments. This study demonstrates that most taxa of benthic invertebrates in soft substrate respond specifically to the physical structure associated with aggregates of mussel shells, but further study is needed to examine chironomid responses to some biotic effect dependent on the presence of living mussels.

  12. CONDITIONS FOR COEXISTENCE OF FRESHWATER MUSSEL SPECIES VIA PARTITIONING OF FISH HOST RESOURCES

    EPA Science Inventory

    Riverine freshwater mussel species can be found in highly diverse communities where many similar species coexist. Mussel species potentially compete for food and space as adults, and for fish host resources during the larval (glochidial) stage. Resource partitioning at the larv...

  13. Developmental plasticity of shell morphology of quagga mussels from shallow and deep-water habitats of the Great Lakes

    Treesearch

    Suzanne Peyer; John C. Hermanson; Carol Eunmi Lee

    2010-01-01

    The invasive zebra mussel (Dreissena polymorpha) has quickly colonized shallow-water habitats in the North American Great Lakes since the 1980s but the quagga mussel (Dreissena bugensis) is becoming dominant in both shallow and deep-water habitats. While quagga mussel shell morphology differs between shallow and deep habitats, functional causes and consequences of such...

  14. Biochemical composition of three species of unionid mussels after emersion

    USGS Publications Warehouse

    Greseth, Shari L.; Cope, W.G.; Rada, R.G.; Waller, D.L.; Bartsch, M.R.

    2003-01-01

    Freshwater mussels are emersed (exposed to air) during conservation activities such as surveys and relocations. Success of these activities depends upon the ability of mussels to survive emersion and to re-burrow in the substratum. We evaluated the acute sublethal effects of emersion on three species of unionid mussels [pocketbook, Lampsilis cardium (Rafinesque, 1820); pimpleback, Quadrula pustulosa pustulosa (I. Lea, 1831); spike, Elliptio dilatata (Rafinesque, 1820)] by measuring three biochemicals (carbohydrate, lipid, protein) indicative of biochemical function and energy storage. Mussels were acclimated in water at 25??C and exposed to five air temperatures (15, 20, 25, 35 and 45??C) for 15, 30 and 60 min. After emersion, mussels were returned to water at 25??C and observed for 14 days. Samples of mantle tissue were taken after the 14-day postexposure period and analysed for carbohydrate, lipid and protein. Three-way analysis of variance (ANOVA) did not reveal consistent trends in carbohydrate, lipid or protein concentrations due to sex of mussels, duration of emersion, air temperature or their interaction terms that indicated biological compensation to stress. Overall mean carbohydrate concentrations were greatest (range 447-615 mg/g dry wt) among the species, followed by protein (179-289 mg/g dry wt) and lipids (26.7-38.1 mg/g dry wt). These results have positive implications for conducting conservation activities, because emersion over the range of temperatures (15-35??C) and durations (15-60 min) examined did not appear acutely harmful to mussels.

  15. Zebra Stripes through the Eyes of Their Predators, Zebras, and Humans

    PubMed Central

    Melin, Amanda D.; Kline, Donald W.; Hiramatsu, Chihiro; Caro, Tim

    2016-01-01

    The century-old idea that stripes make zebras cryptic to large carnivores has never been examined systematically. We evaluated this hypothesis by passing digital images of zebras through species-specific spatial and colour filters to simulate their appearance for the visual systems of zebras’ primary predators and zebras themselves. We also measured stripe widths and luminance contrast to estimate the maximum distances from which lions, spotted hyaenas, and zebras can resolve stripes. We found that beyond ca. 50 m (daylight) and 30 m (twilight) zebra stripes are difficult for the estimated visual systems of large carnivores to resolve, but not humans. On moonless nights, stripes are difficult for all species to resolve beyond ca. 9 m. In open treeless habitats where zebras spend most time, zebras are as clearly identified by the lion visual system as are similar-sized ungulates, suggesting that stripes cannot confer crypsis by disrupting the zebra’s outline. Stripes confer a minor advantage over solid pelage in masking body shape in woodlands, but the effect is stronger for humans than for predators. Zebras appear to be less able than humans to resolve stripes although they are better than their chief predators. In conclusion, compared to the uniform pelage of other sympatric herbivores it appears highly unlikely that stripes are a form of anti-predator camouflage. PMID:26799935

  16. Biochemical composition of three species of unionid mussels after emersion

    USGS Publications Warehouse

    Greseth, Shari L.; Cope, W.G.; Rada, R.G.; Waller, D.L.; Bartsch, M.R.

    2003-01-01

    Freshwater mussels are emersed (exposed to air) during conservation activities such as surveys and relocations. Success of these activities depends upon the ability of mussels to survive emersion and to re-burrow in the substratum. We evaluated the acute sublethal effects of emersion on three species of unionid mussels [pocketbook, Lampsilis cardium (Rafinesque, 1820); pimpleback, Quadrula pustulosa pustulosa (I. Lea, 1831); spike, Elliptio dilatata (Rafinesque, 1820)] by measuring three biochemicals (carbohydrate, lipid, protein) indicative of biochemical function and energy storage. Mussels were acclimated in water at 25A?C and exposed to five air temperatures (15, 20, 25, 35 and 45A?C) for 15, 30 and 60 min. After emersion, mussels were returned to water at 25A?C and observed for 14 days. Samples of mantle tissue were taken after the 14-day postexposure period and analysed for carbohydrate, lipid and protein. Three-way analysis of variance (ANOVA) did not reveal consistent trends in carbohydrate, lipid or protein concentrations due to sex of mussels, duration of emersion, air temperature or their interaction terms that indicated biological compensation to stress. Overall mean carbohydrate concentrations were greatest (range 447a??615 mg/g dry wt) among the species, followed by protein (179a??289 mg/g dry wt) and lipids (26.7a??38.1 mg/g dry wt). These results have positive implications for conducting conservation activities, because emersion over the range of temperatures (15a??35A?C) and durations (15a??60 min) examined did not appear acutely harmful to mussels.

  17. ANALYSIS OF MATERIALS IN AN EXPERIMENTAL TESTING PIPE SYSTEM FOR AN INHIBITOR OF MUSSEL KILL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel P. Molloy

    2003-06-04

    A comprehensive series of 16 laboratory experiments demonstrated that the presence of vinyl tubing within a recirculating pipe system was responsible for lowering zebra mussel kill following treatment with the bacterium Pseudomonas fluorescens. All vinyl tubing was replaced in all testing units with silicone tubing, and high mussel kill (>95%) was then obtained.

  18. Mussel dynamics model: A hydroinformatics tool for analyzing the effects of different stressors on the dynamics of freshwater mussel communities

    USGS Publications Warehouse

    Morales, Y.; Weber, L.J.; Mynett, A.E.; Newton, T.J.

    2006-01-01

    A model for simulating freshwater mussel population dynamics is presented. The model is a hydroinformatics tool that integrates principles from ecology, river hydraulics, fluid mechanics and sediment transport, and applies the individual-based modelling approach for simulating population dynamics. The general model layout, data requirements, and steps of the simulation process are discussed. As an illustration, simulation results from an application in a 10 km reach of the Upper Mississippi River are presented. The model was used to investigate the spatial distribution of mussels and the effects of food competition in native unionid mussel communities, and communities infested by Dreissena polymorpha, the zebra mussel. Simulation results were found to be realistic and coincided with data obtained from the literature. These results indicate that the model can be a useful tool for assessing the potential effects of different stressors on long-term population dynamics, and consequently, may improve the current understanding of cause and effect relationships in freshwater mussel communities. ?? 2006 Elsevier B.V. All rights reserved.

  19. Cumulative effects of ibuprofen and air emersion in zebra mussels Dreissena polymorpha.

    PubMed

    André, C; Gagné, F

    2017-10-01

    Municipal effluents are major source of pharmaceutical products in the environment. The purpose of this study was to examine the toxicity of a largely used drug, ibuprofen (Ibu), in Dresseina polymorpha mussels and its impact on air survival time. The mussels were exposed to increasing concentration of Ibu (0, 1, 10 and 100μg/L) for 96 at 15°C and a sub-group of mussels was maintain in air for another 96h. Post-exposure mussels (Ibu and Ibu+Air) were analyzed for weight loss, total triglycerides, neutral lipids, lipid peroxidation (LPO), arachidonate-dependent cyclooxygenase (COX) and glutathione S-transferase activity. Lipid extracts of mussel tissues were also analyzed by 1 H-nuclear resonance spectroscopy. The data revealed that mussels exposed to Ibu had increased signs of lipid oxidation, neutral lipids and decreased triglycerides, LPO and GST activity. COX activity was significantly reduced by Ibu in keeping with mode of action of the drug. Following exposure to air, increased weight loss, neutral lipids (lipid degradation), were observed in mussels exposed to Ibu but no changes in COX activity were observed. Air stress limited the decrease in triglycerides and the increase in GST in mussels exposed to 100μg/L Ibu indicating decreased anti-oxidant response/phase II biotransformation and limited lipid metabolism. In conclusion, exposure to Ibu has some anti-inflammatory effects to mussels based on COX activity but resulted in increased oxidative damage and lipid catabolism. Exposure to air stress could enhance some of these responses and contribute to decreased resistance to air exposures. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  20. Extirpation of freshwater mussels (Bivalvia: Unionidae) following the invasion of dreissenid mussels in an interconnecting river of the Laurentian Great Lakes

    USGS Publications Warehouse

    Schloesser, Don W.; Metcalfe-Smith, Janice L.; Kovalak, William P.; Longton, Gary D.; Smithee, Rick D.

    2006-01-01

    Previous (1992-1994) surveys for native freshwater mussels (Unionidae) along main channels of the Detroit River showed that unionids had been extirpated from all but four sites in the upper reaches of the river due to impacts of dreissenid mussels (Dreissena polymorpha and D. bugensis). These four sites were surveyed again in 1998 using the same sampling method (timed-random searches) to determine if they may serve as ''refugia'' where unionids and dreissenids co-exist. Two additional sites were sampled using additional methods (excavated-quadrat and line-transect searches) for comparison with unpublished data collected in 1987 and 1990. A total of four individuals of four species (Actinonaias ligamentina, Cyclonaias tuberculata, Lasmigona complanata and Pleurobema sintoxia) were found by timed-random searches at four sites in 1998 compared to 720 individuals of 24 species in 1992 and 39 individuals of 13 species in 1994. Excavated-quadrat and line-transect searches at the two additional sites yielded only one live specimen of Ptychobranchus fasciolaris compared to 288 individuals of 18 species in 1987 and 1990. Results of this study suggest that remaining densities of unionids in channels of the Detroit River are too low to support viable reproducing populations of any species. Therefore, we conclude that unionids have been extirpated from main channels of the Detroit River due to dreissenid infestation. As the Detroit River was one of the first water bodies in North America to be invaded by dreissenids, it is likely that unionids will also be extirpated from many other rivers and lakes across eastern North America over the next few decades. Resource agencies should be encouraged to implement active management programs to protect remaining unionid populations from zebra mussels.

  1. Misidentification of freshwater mussel species (Bivalvia:Unionidae): contributing factors, management implications, and potential solutions

    USGS Publications Warehouse

    Shea, Colin P.; Peterson, James T.; Wisniewski, Jason M.; Johnson, Nathan A.

    2011-01-01

    Surveys of freshwater mussel populations are used frequently to inform conservation decisions by providing information about the status and distribution of species. It is generally accepted that not all mussels or species are collected during surveys, and incomplete detection of individuals and species can bias data and can affect inferences. However, considerably less attention has been given to the potential effects of species misidentification. To evaluate the prevalence of and potential reasons for species misidentification, we conducted a laboratory-based identification exercise and quantified the relationships between mussel species characteristics, observer experience, and misidentification rate. We estimated that misidentification was fairly common, with rates averaging 27% across all species and ranging from 0 to 56%, and was related to mussel shell characteristics and observer experience. Most notably, species with shell texturing were 6.09× less likely than smooth-shelled species to be misidentified. Misidentification rates declined with observer experience, but for many species the risk of misidentification averaged >10% even for observers with moderate levels of experience (5–6 y). In addition, misidentification rates among observers showed substantial variability after controlling for experience. Our results suggest that species misidentification may be common in field surveys of freshwater mussels and could potentially bias estimates of population status and trends. Misidentification rates possibly could be reduced through use of regional workshops, testing and certification programs, and the availability of archived specimens and tissue samples in museum collections.

  2. Altered trophic pathway and parasitism in a native predator (Lepomis gibbosus) feeding on introduced prey (Dreissena polymorpha).

    PubMed

    Locke, Sean A; Bulté, Grégory; Marcogliese, David J; Forbes, Mark R

    2014-05-01

    Populations of invasive species tend to have fewer parasites in their introduced ranges than in their native ranges and are also thought to have fewer parasites than native prey. This 'release' from parasites has unstudied implications for native predators feeding on exotic prey. In particular, shifts from native to exotic prey should reduce levels of trophically transmitted parasites. We tested this hypothesis in native populations of pumpkinseed sunfish (Lepomis gibbosus) in Lake Opinicon, where fish stomach contents were studied intensively in the 1970s, prior to the appearance of exotic zebra mussels (Dreissena polymorpha) in the mid-1990s. Zebra mussels were common in stomachs of present-day pumpkinseeds, and stable isotopes of carbon and nitrogen confirmed their importance in long-term diets. Because historical parasite data were not available in Lake Opinicon, we also surveyed stomach contents and parasites in pumpkinseed in both Lake Opinicon and an ecologically similar, neighboring lake where zebra mussels were absent. Stomach contents of pumpkinseed in the companion lake did not differ from those of pre-invasion fish from Lake Opinicon. The companion lake, therefore, served as a surrogate "pre-invasion" reference to assess effects of zebra mussel consumption on parasites in pumpkinseed. Trophically transmitted parasites were less species-rich and abundant in Lake Opinicon, where fish fed on zebra mussels, although factors other than zebra mussel consumption may contribute to these differences. Predation on zebra mussels has clearly contributed to a novel trophic coupling between littoral and pelagic food webs in Lake Opinicon.

  3. IMPACT OF FIVE TREATMENT FACTORS ON MUSSEL MORTALITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel P. Molloy

    2003-12-08

    Under this USDOE-NETL contract, the bacterium Pseudomonas fluorescens is being developed as a biocontrol agent for zebra mussels. The specific purpose of the contract is to identify factors that affect mussel kill. Test results reported herein indicate that mussel kill should not be affected by: (1) air bubbles being carried by currents through power plant pipes; (2) pipe orientation (e.g., vertical or horizontal); (3) whether the bacterial cell concentration during a treatment is constant or slightly varying; (4) whether a treatment is between 3 hr and 12 hr in duration, given that the total quantity of bacteria being applied tomore » the pipe is a constant; and (5) whether the water temperature is between 13 C and 23 C.« less

  4. Concentrations of 17 elements in the zebra mussel (Dreissena polymorpha), in different tissues of perch (Perca fluviatilis), and in perch intestinal parasites (Acanthocephalus lucii) from the subalpine lake Mondsee, Austria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sures, B.; Steiner, W.; Rydlo, M.

    1999-11-01

    Concentrations of the elements Al, Ag, Ba, ca, Cd, Co, Cr, cu, Fe, Ga, Mg, Mn, Ni, Pb, Sr, Tl, and Zn were analyzed by inductively coupled plasma mass spectrometry in the acanthocephalan Acanthocephalus lucii (Mueller); in its host, Perca fluviatilis (L.), and in the soft tissue of the zebra mussel, Dreissena polymorpha (Pallas). All animals were collected from the same sampling site in a subalpine lake, Mondsee, in Austria. Most of the elements were found at significantly higher concentrations in the acanthocephalan than in different tissues (muscle, liver, and intestinal wall) of its perch host. Only Co was concentratedmore » in the liver of perch to a level that was significantly higher than that found in the parasite. Most of the analyzed elements were also present at significantly higher concentrations in A. lucii than in D. polymorpha. Barium and Cr were the only elements recorded at higher concentrations in the mussel compared with the acanthocephalan. Thus, when comparing the accumulation of elements, the acanthocephalans appear to be even more suitable than the zebra mussels in terms of their use in the detection of metal contamination within aquatic biotopes. Spearman correlation analysis revealed that the concentrations of several elements within the parasites decreased with increasing infrapopulation. Furthermore, the levels of some elements in the perch liver were negatively correlated with the weight of A. lucii in the intestine. Thus, it emerged that not only is there competition for elements between acanthocephalans inside the gut but there is also competition for these elements between the host and the parasites. The elevated element concentrations demonstrated here in the parasitic worm A. lucii provide support for further investigations of these common helminthes and of their accumulation properties.« less

  5. Species traits and catchment-scale habitat factors influence the occurrence of freshwater mussel populations and assemblages

    USGS Publications Warehouse

    Pandolfo, Tamara J.; Kwak, Thomas J.; Cope, W. Gregory; Heise, Ryan J.; Nichols, Robert B.; Pacifici, Krishna

    2016-01-01

    Conservation of freshwater unionid mussels presents unique challenges due to their distinctive life cycle, cryptic occurrence and imperilled status. Relevant ecological information is urgently needed to guide their management and conservation.We adopted a modelling approach, which is a novel application to freshwater mussels to enhance inference on rare species, by borrowing data among species in a hierarchical framework to conduct the most comprehensive occurrence analysis for freshwater mussels to date. We incorporated imperfect detection to more accurately examine effects of biotic and abiotic factors at multiple scales on the occurrence of 14 mussel species and the entire assemblage of the Tar River Basin of North Carolina, U.S.A.The single assemblage estimate of detection probability for all species was 0.42 (95% CI, 0.36–0.47) with no species- or site-specific detection effects identified. We empirically observed 15 mussel species in the basin but estimated total species richness at 21 (95% CI, 16–24) when accounting for imperfect detection.Mean occurrence probability among species ranged from 0.04 (95% CI, 0.01–0.16) for Alasmidonta undulata, an undescribed Lampsilis sp., and Strophitus undulatus to 0.67 (95% CI, 0.42–0.86) for Elliptio icterina. Median occurrence probability among sites was <0.30 for all species with the exception of E. icterina. Site occurrence probability generally related to mussel conservation status, with reduced occurrence for endangered and threatened species.Catchment-scale abiotic variables (stream power, agricultural land use) and species traits (brood time, host specificity, tribe) influenced the occurrence of mussel assemblages more than reach- or microhabitat-scale features.Our findings reflect the complexity of mussel ecology and indicate that habitat restoration alone may not be adequate for mussel conservation. Catchment-scale management can benefit an entire assemblage, but species-specific strategies may be

  6. Changes in the dreissenid community in the lower Great Lakes with emphasis on southern Lake Ontario

    USGS Publications Warehouse

    Mills, Edward L.; Chrisman, Jana R.; Baldwin, Brad; Owens, Randall W.; O'Gorman, Robert; Howell, Todd; Roseman, Edward F.; Raths, Melinda K.

    1999-01-01

    A field study was conducted in the lower Great Lakes to assess changes in spatial distribution and population structure of dreissenid mussel populations. More specifically, the westward range expansion of quagga mussel into western Lake Erie and toward Lake Huron was investigated and the shell size, density, and biomass of zebra and quagga mussel with depth in southern Lake Ontario in 1992 and 1995 were compared. In Lake Erie, quagga mussel dominated the dreissenid community in the eastern basin and zebra mussel dominated in the western basin. In southern Lake Ontario, an east to west gradient was observed with the quagga mussel dominant at western sites and zebra mussel dominant at eastern locations. Mean shell size of quagga mussel was generally larger than that of zebra mussel except in western Lake Erie and one site in eastern Lake Erie. Although mean shell size and our index of numbers and biomass of both dreissenid species increased sharply in southern Lake Ontario between 1992 and 1995, the increase in density and biomass was much greater for quagga mussels over the 3-year period. In 1995, zebra mussels were most abundant at 15 to 25 m whereas the highest numbers and biomass of quagga mussel were at 35 to 45 m. The quagga mussel is now the most abundant dreissenid in areas of southern Lake Ontario where the zebra mussel was once the most abundant dreissenid; this trend parallels that observed for dreissenid populations in the Dneiper River basin in the Ukraine.

  7. Distribution and ecology of Dreissena polymorpha (pallas) and Dreissena bugensis (andrusov) in the upper Volga basin

    USGS Publications Warehouse

    Shcherbina, G. Kh; Buckler, D.R.

    2006-01-01

    This paper presents data on contemporary distribution patterns of two species of Dreissenidae, the zebra mussel (Dreissena polymorpha) and the Quagga mussel (Dreissena bugensis), and their role in ecosystem processes in the Ivan'kovo, Uglich, Rybinsk, and Gorky Reservoirs of the Upper Volga River basin. The role of zebra mussel was also studied in experimental mesocosms of 15 m3. Maximum abundance and species diversity of macroinvertebrates, especially of leeches, polychaetes, crustaceans, and heterotopic insects, were attained in the portions of reservoirs where Dreissenidae were present and in experimental mesocosms where zebra mussel biomass was the highest. In the mesocosm studies, the presence of zebra mussel druses (colonies) provided shelter for macroinvertebrates, reducing their vulnerability to predation by perch (Perca fluviatills) larvae and yearlings, thereby increasing macroinvertebrate species diversity. It was shown that in addition to its role in aquatic biocenosis (ecological community) formation and water purification, Dreissenidae are important food objects for benthophagous fishes, especially roach (Rutilus rutilus). Examination of intestines of benthophagous fishes showed that the length of Dreissenidae ranged from 5 to 20 mm in roach; from 4 to 14 mm in silver bream (Blicca bjoerkna), and from 2 to 10 mm in bream (Abramis brama). The largest mussels consumed were Quagga mussels up to 30 mm, noted in the predatory cyprinid, ide (Leuciscus idus). Copyright ?? 2006 by ASTM International.

  8. Aquatic Nuisance Species Locator

    EPA Pesticide Factsheets

    Data in this map has been collected by the United States Geological Survey's Nonindigenous Aquatic Species program located in Gainesville, Florida (http://nas.er.usgs.gov/default.aspx). This dataset may have some inaccuracies and is only current to June 15, 2012. The species identified in this dataset are not inclusive of all aquatic nuisance species, but rather a subset identified to be at risk for transport by recreational activities such as boating and angling. Additionally, the locations where organisims have been identified are also not inclusive and should be treated as a guide. Organisms are limited to the following: American bullfrog, Asian clam, Asian shore crab, Asian tunicate, Australian spotted jellyfish, Chinese mitten crab, New Zealand mudsnail, Colonial sea squirt, Alewife, Bighead carp, Black carp, Flathead catfish, Grass carp, Green crab, Lionfish, Northern snakehead, Quagga mussel, Round Goby, Ruffe, Rusty crayfish, Sea lamprey, Silver carp, Spiny water flea, Veined rapa whelk, Zebra mussel

  9. Pathogens and diseases of freshwater mussels in the United States: Studies on bacterial transmission and depuration

    USGS Publications Warehouse

    Starliper, Clifford E.; Cipriano, R.C.; Bruckner, A.W.; Shchelkunov, I.S.

    2011-01-01

    Unionid mussels are recognized as important contributors to healthy aquatic ecosystems, as well as bioindicators of environmental perturbations. Because they are sedentary, filter feeding animals and require hosts (i.e., fishes) to transform embryonic glochidia, mussels are susceptible to direct adverse environmental parameters, and indirect parameters that restrict the timely presence of the host(s). Their numbers have declined in recent decades to a point that this fauna is regarded as one of the most imperiled in North America. The most significant threat to populations of native unionids in recent years has been the introduction and spread of zebra mussels Dreissena polymorpha. Many federal and state agencies, and private interests are now engaged in mussel conservation efforts, including collecting selected imperiled species from impacted rivers and lakes and propagating them at refuges for future population augmentations. One essential consideration with mussel propagation and their intensive culture at refugia is the prevention of pathogen introductions and control of diseases. Currently, there are few reports of etiological agents causing diseases among freshwater mussels; however, because of increased observations of mussel die-offs in conjunction with transfers of live animals between natural waters and refugia, disease problems can be anticipated to emerge. This review summarizes research to develop bacterial isolation techniques, study pathogen transmission between fish and mussels, identify causes of seasonal mussel die-offs, and develop non-destructive methods for pathogen detection. These efforts were done to develop disease preventative techniques for use by resource managers to avoid potential large-scale disease problems in restoration and population augmentation efforts among imperiled populations.

  10. Molecular markers for genetic diversity, gene flow and genetic population structure of freshwater mussel species.

    PubMed

    Choupina, A B; Martins, I M

    2014-08-01

    Freshwater mussel species are in global decline. Anthropogenic changes of river channels and the decrease of autochthonous fish population, the natural hosts of mussels larval stages (glochidia), are the main causes. Therefore, the conservation of mussel species depends not only on habitat conservation, but also on the availability of the fish host. In Portugal, information concerning most of the mussel species is remarkably scarce. One of the most known species, Unio pictorum is also in decline however, in the basins of the rivers Tua and Sabor (Northeast of Portugal), there is some indication of relatively large populations. The aforementioned rivers can be extremely important for this species conservation not only in Portugal, but also in the remaining Iberian Peninsula. Thus, it is important to obtain data concerning Unio pictorum bioecology (distribution, habitat requirements, population structure, genetic variability, reproductive cycle and recruitment rates), as well as the genetic variability and structure of the population. Concomitantly, information concerning fish population structure, the importance of the different fish species as "glochidia" hosts and their appropriate density to allow effective mussel recruitment, will also be assessed. The achieved data is crucial to obtain information to develop effective management measures in order to promote the conservation of this bivalve species, the conservation of autochthonous fish populations, and consequently the integrity of the river habitats.

  11. Using DNA barcoding to differentiate invasive Dreissena species (Mollusca, Bivalvia)

    PubMed Central

    Marescaux, Jonathan; Van Doninck, Karine

    2013-01-01

    Abstract The zebra mussel (Dreissena polymorpha) and the quagga mussel (Dreissena rostriformis bugensis) are considered as the most competitive invaders in freshwaters of Europe and North America. Although shell characteristics exist to differentiate both species, phenotypic plasticity in the genus Dreissena does not always allow a clear identification. Therefore, the need to find an accurate identification method is essential. DNA barcoding has been proven to be an adequate procedure to discriminate species. The cytochrome c oxidase subunit I mitochondrial gene (COI) is considered as the standard barcode for animals. We tested the use of this gene as an efficient DNA barcode and found that it allow rapid and accurate identification of adult Dreissena individuals. PMID:24453560

  12. Incidence and Management Costs of Freshwater Aquatic Nuisance Species at Projects Operated by the U.S. Army Corps of Engineers

    DTIC Science & Technology

    2010-07-01

    the occurrence of ANS impacts (Yes or No) from freshwater algae, large aquatic plants, fish, zebra mussels, Asiatic clams, water fleas, crayfish...2005. Freshwater aquatic nuisance species impacts and management costs and benefits at federal water resources projects. ERDC/TN ANSRP-06-3...ER D C/ EL T R- 10 -1 3 Aquatic Nuisance Species Research Program Incidence and Management Costs of Freshwater Aquatic Nuisance Species

  13. Acute toxicity of six freshwater mussel species (Glochidia) to six chemicals: Implications for daphnids and Utterbackia imbecillis as surrogates for protection of freshwater mussels (Unionidae)

    USGS Publications Warehouse

    Milam, C.D.; Farris, J.L.; Dwyer, F.J.; Hardesty, D.K.

    2005-01-01

    Acute (24-h) toxicity tests were used in this study to compare lethality responses in early life stages (glochidia) of six freshwater mussel species, Leptodea fragilis, U. imbecillis, Lampsilis cardium, Lampsilis siliquoidea, Megalonaias nervosa, and Ligumia subrostrata, and two standard test organisms, Ceriodaphnia dubia and Daphnia magna. Concentrations of carbaryl, copper, 4-nonylphenol, pentachlorophenol, permethrin, and 2,4-D were used in acute exposures to represent different chemical classes and modes of action. The relative sensitivities of species were evaluated by ranking their LC 50 values for each chemical. We used these ranks to determine the extent to which U. imbecillis (one of the most commonly used unionids in toxicity tests) was representative of the tolerances of other mussels. We also calculated geometric mean LC50s for the families Unionidae and Daphnidae. Rankings of these data were used to assess the extent to which Daphnidae can be used as surrogates for freshwater mussels relative to chemical sensitivity. While no single chemical elicited consistently high or low toxicity estimates, carbaryl and 2,4-D were generally the least toxic to all species tested. No species was always the most sensitive, and Daphnidae were generally protective of Unionidae. Utterbackia imbecillis, while often proposed as a standard unionid mussel test species, did not always qualify as a sufficient surrogate (i.e., a substitute organism that often elicits similar sensitivity responses to the same contaminant exposure) for other species of mussels, since it was usually one of the more tolerant species in our rankings. U. imbecillis should be used as a surrogate species only with this caution on its relative insensitivity. ?? 2005 Springer Science+Business Media, Inc.

  14. In vivo exposure of Dreissena polymorpha mussels to the quinones menadione and lawsone: menadione is more toxic to mussels than lawsone.

    PubMed

    Osman, A M; Rotteveel, S; den Besten, P J; van Noort, P C M

    2004-01-01

    The principal aim of this study was to assess whether the two quinones, menadione (2-methyl-1,4-naphthoquinone) and lawsone (2-hydroxy-1,4-naphthoquinone), elicit differential toxicity in mussels as has been reported for higher organisms. Therefore, the effects of short-term (48 h) and long-term (20 days) exposure of the two quinones at concentrations of 0.56 and 1 mg l(-1) to zebra mussels, Dreissena polymorpha, under laboratory conditions were studied. After the short-term exposure, the specific activities of the two-electron quinone oxidoreductase (DT-diaphorase) and the one-electron catalysing quinone reductases NADPH-cytochrome c reductase and NADH-cytochrome c reductase were determined in the gills and the rest of the soft tissues (soft mussel tissues minus the gills) of both treated and control mussels. At the higher concentrations of menadione and lawsone used, a significant reduction of the activity of NADPH-cytochrome c reductase in the gills and in the rest of the soft mussel tissues (by 33-34% and 31-43%, respectively) was observed. The activities of DT-diaphorase and NADH-cytochrome c reductase were not significantly affected. Interestingly, DT-diaphorase was observed in the gills, an organ requiring protection against antioxidants. Furthermore, a single-cell electrophoretic assay (comet assay) performed with gill cells to assess DNA damage by the quinones did not show any significant difference between the treated and the control organisms. This indicates that the formation of reactive species by the quinone metabolism in vivo in the mussels was possibly suppressed through the concerted action of DT-diaphorase and antioxidant enzymes. The results of in vitro experiments with gill extracts confirmed the protective role of DT-diaphorase. The rate of the two-electron quinone reduction was found to be five times that of the one-electron quinone reduction. The results of the long-term exposure unambiguously demonstrated that in mussels menadione, unlike in

  15. Shell-free biomass and population dynamics of dreissenids in offshore Lake Michigan, 2001-2003

    USGS Publications Warehouse

    French, J. R. P.; Adams, J.V.; Craig, J.; Stickel, R.G.; Nichols, S.J.; Fleischer, G.W.

    2007-01-01

    The USGS-Great Lakes Science Center has collected dreissenid mussels annually from Lake Michigan since zebra mussels (Dreissena polymorpha) became a significant portion of the bottom-trawl catch in 1999. For this study, we investigated dreissenid distribution, body mass, and recruitment at different depths in Lake Michigan during 2001-2003. The highest densities of dreissenid biomass were observed from depths of 27 to 46 m. The biomass of quagga mussels (Dreissena bugensis) increased exponentially during 2001-2003, while that of zebra mussels did not change significantly. Body mass (standardized for a given shell length) of both species was lowest from depths of 27 to 37m, highest from 55 to 64 m, and declined linearly at deeper depths during 2001-2003. Recruitment in 2003, as characterized by the proportion of mussels < 11 mm in the catch, varied with depth and lake region. For quagga mussels, recruitment declined linearly with depth, and was highest in northern Lake Michigan. For zebra mussels, recruitment generally declined non-linearly with depth, although the pattern was different for north, mid, and southern Lake Michigan. Our analyses suggest that quagga mussels could overtake zebra mussels and become the most abundant mollusk in terms of biomass in Lake Michigan.

  16. A Probability Co-Kriging Model to Account for Reporting Bias and Recognize Areas at High Risk for Zebra Mussels and Eurasian Watermilfoil Invasions in Minnesota

    PubMed Central

    Kanankege, Kaushi S. T.; Alkhamis, Moh A.; Phelps, Nicholas B. D.; Perez, Andres M.

    2018-01-01

    Zebra mussels (ZMs) (Dreissena polymorpha) and Eurasian watermilfoil (EWM) (Myriophyllum spicatum) are aggressive aquatic invasive species posing a conservation burden on Minnesota. Recognizing areas at high risk for invasion is a prerequisite for the implementation of risk-based prevention and mitigation management strategies. The early detection of invasion has been challenging, due in part to the imperfect observation process of invasions including the absence of a surveillance program, reliance on public reporting, and limited resource availability, which results in reporting bias. To predict the areas at high risk for invasions, while accounting for underreporting, we combined network analysis and probability co-kriging to estimate the risk of ZM and EWM invasions. We used network analysis to generate a waterbody-specific variable representing boater traffic, a known high risk activity for human-mediated transportation of invasive species. In addition, co-kriging was used to estimate the probability of species introduction, using waterbody-specific variables. A co-kriging model containing distance to the nearest ZM infested location, boater traffic, and road access was used to recognize the areas at high risk for ZM invasions (AUC = 0.78). The EWM co-kriging model included distance to the nearest EWM infested location, boater traffic, and connectivity to infested waterbodies (AUC = 0.76). Results suggested that, by 2015, nearly 20% of the waterbodies in Minnesota were at high risk of ZM (12.45%) or EWM (12.43%) invasions, whereas only 125/18,411 (0.67%) and 304/18,411 (1.65%) are currently infested, respectively. Prediction methods presented here can support decisions related to solving the problems of imperfect detection, which subsequently improve the early detection of biological invasions. PMID:29354638

  17. Host fishes and reproductive biology of 6 freshwater mussel species from the Mobile Basin, USA

    Treesearch

    Wendell R. Haag; Melvin L. Warren

    1997-01-01

    Host fishes were identified for 6 species of freshwater mussels (Unionidae) from the Black Warrior River drainage, Mobile Basin, USA: Stropkitus subwxus, Pleurohema furvum, Ptyckobranchus greeni, Lampsilis perovalis, Medionidus acutissimus, and Villosa nebulosna. Hosts were determined as those that produced juvenile mussels from...

  18. Primary structure of pancreatic polypeptide from four species of Perissodactyla (Przewalski's horse, zebra, rhino, tapir).

    PubMed

    Henry, J S; Lance, V A; Conlon, J M

    1991-12-01

    Pancreatic polypeptide (PP) has been purified from extracts of the pancreas of four species of odd-toed ungulates (Perissodactyla): Przewalski's horse, mountain zebra, white rhinoceros, and mountain tapir. The amino acid sequence of Przewalski's horse pancreatic polypeptide was established as Ala-Pro-Met-Glu-Pro-Val-Tyr-Pro-Gly-Asp10-Asn- Ala-Thr-Pro-Glu-Gln-Met-Ala-Gln-Tyr20-Ala-Ala-Glu-Leu-Arg-Arg-Tyr- Ile-Asn-Met30 - Leu-Thr-Arg-Pro-Arg-Tyr.NH2. Zebra PP was identical to Przewalski's horse PP, rhinoceros PP contained three substitutions relative to the horse (Ser for Ala1, Leu for Met3, and Glu for Gln16), and tapir PP contained one substitution relative to the horse (Leu for Met3). On the basis of morphological characteristics and the fossil record, the rhinocerotids are classified with the tapirids in the suborder Ceratomorpha, whereas the horse and zebra belong to a separate suborder, Hippomorpha. On the basis of structural similarity of the PP molecules, however, it would appear that the tapir is more closely related to the horse than to the rhinoceros. These observations provide a further example of the need for extreme caution when inferring taxonomic or phylogenetic relationships between species from the structures of homologous peptides.

  19. Efficacy of Pseudomonas fluorescens strain CL145A spray dried powder for controlling zebra mussels adhering to native unionid mussels within field enclosures

    USGS Publications Warehouse

    Luoma, James A.; Weber, Kerry L.; Severson, Todd J.; Mayer, Denise A.

    2015-01-01

    Group 1 mussel survival did not differ between treatment groups (p > 0.05); however, a difference was detected (p < 0.01) in the survival of Group 2 mussels. The survival of Group 2 mussels did not differ (p > 0.23) between control and treated groups. A difference in Group 2 mussel survival was detected (p = 0.03; odds ratio [OR] = 0.290) between the 50- and 100-mg/L treatment groups (that is, the survival was highest in the 50-mg/L treatment group and lowest in the 100-mg/L treatment group), however, the biological significance of the difference is indeterminate.

  20. Integrated use of biomarkers and bioaccumulation data in Zebra mussel (Dreissena polymorpha) for site-specific quality assessment.

    PubMed

    Binelli, A; Ricciardi, F; Riva, C; Provini, A

    2006-01-01

    One of the useful biological tools for environmental management is the measurement of biomarkers whose changes are related to the exposure to chemicals or environmental stress. Since these responses might vary with different contaminants or depending on the pollutant concentration reached in the organism, the support of bioaccumulation data is needed to prevent false conclusions. In this study, several persistent organic pollutants -- 23 polychlorinated biphenyl (PCB) congeners, 11 polycyclic aromatic hydrocarbons (PAHs), six dichlorodiphenyltricholroethane (DDT) relatives, hexachlorobenzene (HCB), chlorpyrifos and its oxidized metabolite -- and some herbicides (lindane and the isomers alpha, beta, delta; terbutilazine; alachlor; metolachlor) were measured in the soft tissues of the freshwater mollusc Zebra mussel (Dreissena polymorpha) from 25 sampling sites in the Italian portions of the sub-alpine great lakes along with the measure of ethoxyresorufin dealkylation (EROD) and acetylcholinesterase (AChE) activity. The linkage between bioaccumulation and biomarker data allowed us to create site-specific environmental quality indexes towards man-made chemicals. This classification highlighted three different degrees of xenobiotic contamination of the Italian sub-alpine great lakes: a high water quality in Lake Lugano with negligible pollutant levels and no effects on enzyme activities, an homogeneous poor quality for Lakes Garda, Iseo and Como, and the presence of some xenobiotic point-sources in Lake Maggiore, whose ecological status could be jeopardized, also due to the heavy DDT contamination revealed since 1996.

  1. An Examination of Body Temperature for the Rocky Intertidal Mussel species, Mytilus californianus, Using Remotely Sensed Satellite Observations

    NASA Astrophysics Data System (ADS)

    Price, J.; Liff, H.; Lakshmi, V.

    2012-12-01

    Temperature is considered to be one of the most important physical factors in determining organismal distribution and physiological performance of species in rocky intertidal ecosystems, especially the growth and survival of mussels. However, little is known about the spatial and temporal patterns of temperature in intertidal ecosystems or how those patterns affect intertidal mussel species because of limitations in data collection. We collected in situ temperature at Strawberry Hill, Oregon USA using mussel loggers embedded among the intertidal mussel species, Mytilus californianus. Remotely sensed surface temperatures were used in conjunction with in situ weather and ocean data to determine if remotely sensed surface temperatures can be used as a predictor for changes in the body temperature of a rocky intertidal mussel species. The data used in this study was collected between January 2003 and December 2010. The mussel logger temperatures were compared to in situ weather data collected from a local weather station, ocean data collected from a NOAA buoy, and remotely sensed surface temperatures collected from NASA's sun-synchronous Moderate Resolution Imaging Spectroradiometer aboard the Earth Observing System Aqua and EOS Terra satellites. Daily surface temperatures were collected from four pixel locations which included two sea surface temperature (SST) locations and two land surface temperature (LST) locations. One of the land pixels was chosen to represent the intertidal surface temperature (IST) because it was located within the intertidal zone. As expected, all surface temperatures collected via satellite were significantly correlated to each other and the associated in situ temperatures. Examination of temperatures from the off-shore NOAA buoy and the weather station provide evidence that remotely sensed temperatures were similar to in situ temperature data and explain more variability in mussel logger temperatures than the in situ temperatures. Our

  2. Commercially important species associated with horse mussel (Modiolus modiolus) biogenic reefs: A priority habitat for nature conservation and fisheries benefits.

    PubMed

    Kent, Flora E A; Mair, James M; Newton, Jason; Lindenbaum, Charles; Porter, Joanne S; Sanderson, William G

    2017-05-15

    Horse mussel reefs (Modiolus modiolus) are biodiversity hotspots afforded protection by Marine Protected Areas (MPAs) in the NE Atlantic. In this study, horse mussel reefs, cobble habitats and sandy habitats were assessed using underwater visual census and drop-down video techniques in three UK regions. Megafauna were enumerated, differences in community composition and individual species abundances were analysed. Samples of conspicuous megafauna were also collected from horse mussel reefs in Orkney for stable isotope analysis. Communities of conspicuous megafauna were different between horse mussel habitats and other habitats throughout their range. Three commercially important species: whelks (Buccinum undatum), queen scallops (Aequipecten opercularis) and spider crabs (Maja brachydactyla) were significantly more abundant (by as much as 20 times) on horse mussel reefs than elsewhere. Isotopic analysis provided insights into their trophic relationship with the horse mussel reef. Protection of M. modiolus habitat can achieve biodiversity conservation objectives whilst benefiting fisheries also. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Toxicity of potassium chloride to veliger and byssal stage dreissenid mussels related to water quality

    USGS Publications Warehouse

    Moffitt, Christine M.; Stockton-Fiti, Kelly A.; Claudi, Renata

    2016-01-01

    Natural resource managers are seeking appropriate chemical eradication and control protocols for infestations of zebra mussels, Dreissena polymorpha (Pallas, 1769), and quagga mussels. D. rostiformis bugensis (Andrusov, 1897) that have limited effect on non-target species. Applications of low concentrations of potassium salt (as potash) have shown promise for use where the infestation and treatment can be contained or isolated. To further our understanding of such applications and obtain data that could support a pesticide registration, we conducted studies of the acute and chronic toxicity of potassium chloride to dreissenid mussels in four different water sources from infested and non-infested locations (ground water from northern Idaho, surface water from the Snake River, Idaho, USA, surface water from Lake Ontario, Ontario, Canada, and surface water from the Colorado River, Arizona, USA). We found short term exposure of veligers (< 24 h) to concentrations of 960 mg/L KCl produced rapid mortality in water from three locations, but veligers tested in Colorado River water were resistant. We used probit models to compare the mortality responses, predicted median lethal times and 95% confidence intervals. In separate experiments, we explored the sensitivity of byssal stage mussels in chronic exposures (>29 d) at concentrations of 100 and 200 mg/L KCl. Rapid mortality occurred within 10 d of exposure to concentrations of 200 mg/L KCl, regardless of water source. Kaplan-Meier estimates of mean survival of byssal mussels in 100 mg/L KCl prepared in surface water from Idaho and Lake Ontario were 4.9 or 6.9 d, respectively; however, mean survival of mussels tested in the Colorado River water was > 23 d. The sodium content of the Colorado River water was nearly three times that measured in waters from the other locations, and we hypothesized sodium concentrations may affect mussel survival. To test our hypothesis, we supplemented Snake River and Lake Ontario water with Na

  4. Lake Michigan faces exotic species, dune sand mining, other challenges

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    As Steve Pothoven scooped out his bottom trawl catch on the deck of a U.S. government research vessel in June, he expected the regular monitoring exercise to land alewives and a mound of zebra mussels. These two now-ubiquitous exotic aquatic species are among more than 130 that have entered the Great Lakes ecosystem over the past century. They have invaded by various means: hiding in ballast water, navigating through connecting channels such as the Welland Canal that was completed in 1829 as a route around Niagara Falls, or introduced on purpose.

  5. Thiaminase activity in native freshwater mussels

    USGS Publications Warehouse

    Blakeslee, Carrie J.; Sweet, Stephanie; Galbraith, Heather S.; Honeyfield, Dale C.

    2015-01-01

    Thiamine (vitamin B1) deficiency in the Great Lakes has been attributed to elevated levels of thiaminase I enzyme activity in invasive prey species; however, few studies have investigated thiaminase activity in native prey species. Some of the highest levels of thiaminase activity have been measured in invasive dreissenid mussels with little understanding of background levels contributed by native freshwater mussels (Bivalvia: Unionidae). In this study, thiaminase activity was measured in two freshwater mussel species, Elliptio complanata and Strophitus undulatus, from the Delaware and Susquehanna River drainage basins located in north eastern United States. Thiaminase activity was also measured in gravid and non-gravid S. undulatus. Average thiaminase activity differed significantly between species (7.2 and 42.4 μmol/g/min, for E. complanata and S. undulatus respectively) with no differences observed between drainage basins. Gravid S. undulatus had significantly lower thiaminase activity (28.0 μmol/g/min) than non-gravid mussels (42.4 μmol/g/min). Our results suggest that a suite of factors may regulate thiaminase activity in freshwater mussels and that native freshwater mussel thiaminase activity is within the range observed for invasive dreissenids. These results add to our understanding of the complexities in identifying the ecological conditions that set the stage for thiamine deficiency.

  6. Mussels (Perna perna) as bioindicator of environmental contamination by Cryptosporidium species with zoonotic potential

    PubMed Central

    Mariné Oliveira, Geisi Ferreira; do Couto, Melissa Carvalho Machado; de Freitas Lima, Marcelo; do Bomfim, Teresa Cristina Bergamo

    2016-01-01

    Sources of contamination such as animal feces runoff, organic fertilizer application, and the release of partially treated or untreated sewage can lead to the contamination of aquatic environments by Cryptosporidium spp. The quality of mussels as food is closely related to the sanitary conditions of the marine environment where these bivalves are found. Marine mollusks are filter feeders that are able to retain Cryptosporidium oocysts in their tissue, thus functioning as bioindicators. A total of 72 pooled mussel samples of the species Perna perna were collected at two sites (A and B) in the municipality of Mangaratiba, Rio de Janeiro State, Brazil. Sampling involved removal of 30 mussels, from each collection site every month for one year. The 30 mussels from each sampling were then allocated into three groups of 10. Two Cryptosporidium spp. genes (18S and GP60) were targeted for DNA amplification from the samples obtained. After purification, all of the products obtained were sequenced and phylogenetic analyses were performed. Of the 72 samples analyzed using the nested-PCR for the 18S gene target, 29.2% were positive for the presence of Cryptosporidium spp. Of these samples, 52.4% were collected at site A (ie 11/21) and 47.6% at site B (ie 10/21). The 18S genes of all the samples considered positive for Cryptosporidium spp. were sequenced, and the following three species were identified: Cryptosporidium parvum, C. meleagridis, and C. andersoni. Three distinct C. parvum subtypes (IIaA19G2R2; IIaA20G2R2; IIaA20G3R2) were identified using the GP60 gene. More studies to evaluate the zoonotic potential of this species should be performed as both sampling locations contain human and/or animal fecal contaminants. PMID:26977402

  7. A bibliography of "Dreissena polymorpha in European and Russian waters: 1964-1993"

    USGS Publications Warehouse

    Schloesser, Don W.; bij de Vaate, Abraham; Zimmerman, Ann

    1994-01-01

    A bibliography of over 1000 papers on the biology, impacts, and control of the zebra mussel (Dreissena polymorpha) in European and Russian waters is compiled to aid scientists and managers in addressing this species of economic and ecological importance. The bibliography primarily includes publications between the early 1960s and early 1990s but does contain some earlier references not found in another extensive bibliography published in 1964. This bibliography will be a valuable tool, especially to water users and environmental scientists in North America where zebra mussels have recently invaded and become established.

  8. Strong effects of predation by fishes on an invasive macroinvertebrate in a large floodplain river

    USGS Publications Warehouse

    Bartsch, M.R.; Bartsch, L.A.; Gutreuter, S.

    2005-01-01

    We assessed the effects of fish predation on zebra mussels (Dreissena polymorpha) in Navigation Pool 8 of the Upper Mississippi River from 13 May to 5 October, 1998. Concrete-block samplers were deployed at 18 randomly chosen sites in the main-channel border, with 6 sites in the upper, middle, and lower segments of the pool. Two blocks, 1 of which was enclosed in a cage to exclude large predatory fishes, were deployed at each site. After 145 d, blocks were retrieved from 12 of the 18 sites, and zebra mussels were found on all blocks. Densities of zebra mussels were higher on caged blocks than uncaged blocks, and the magnitudes of the differences varied spatially. Mean mussel densities on uncaged blocks were reduced by 66%, 86%, and 20% compared to caged blocks in the upper, middle, and lower pool segments, respectively, over the 145-d interval. Mean daily instantaneous zebra mussel mortality rates from large predators ranged from 0.0016 to 0.0138. Similarly, biomass of zebra mussels was higher on caged than uncaged blocks. Mean mussel biomass on uncaged blocks was reduced by 64% pool-wide, relative to biomass on caged blocks. Zebra mussels were consumed by at least 6 fish taxa including redhorse stickers (Moxostoma spp.), common carp (Cyprinus carpio), bluegill (Lepomis macrochirus), quillback carpsucker (Carpiodes cyprinus), flathead catfish (Pylodictis olivaris), and freshwater drum (Aplodinotus grunniens). Fish predation had an important moderating effect on zebra mussel demography in Pool 8.

  9. Polychlorinated naphthalenes and polychlorinated biphenyls in benthic organisms of a Great Lakes food chain.

    PubMed

    Hanari, N; Kannan, K; Horii, Y; Taniyasu, S; Yamashita, N; Jude, D J; Berg, M B

    2004-07-01

    Invasion of zebra mussels, Dreissena polymorpha, and round gobies, Neogobius melanostomus, into the Great Lakes has altered the food web structure and thereby the pathways of toxic contaminants such as polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs). In this study, concentrations of PCNs and PCBs were measured in organisms of a Great Lakes benthic food chain encompassing zebra mussels. PCNs were found in all of the benthic organisms, including phytoplankton, algae, amphipods, zebra mussels, round goby, and smallmouth bass, Micropterus dolomieui. Concentrations of PCNs were greater in samples collected from the Raisin River than in samples from the St. Clair River. Biomagnification factors (BMF) for tetra- through octa-CN congeners in going from algae to zebra mussels from the St. Clair River ranged from 3 to 10. No major biomagnification of PCNs was found in round gobies, when concentrations were related to those in their prey species, zebra mussels. The biomagnification potential of PCNs appears to be similar to that of PCBs in the benthic food chain investigated in this study, despite the fact that PCNs may be metabolized by organisms higher in the food chain. Among several congeners, the BMFs of PCN congeners 35, 42, 43/45, 52/60, 58, and 66/67 were highest in round gobies. PCNs accounted for 1-22% of the total TEQs (toxic equivalents) of PCBs and PCNs in benthic organisms analyzed in this study. PCB congener 126 was the major contributor to TEQs, accounting for 72-99% of the PCB-TEQs in the food chain organisms analyzed.

  10. Effects of the pharmaceuticals gemfibrozil and diclofenac on biomarker expression in the zebra mussel (Dreissena polymorpha) and their comparison with standardised toxicity tests.

    PubMed

    Quinn, Brian; Schmidt, Wiebke; O'Rourke, Kathleen; Hernan, Robert

    2011-07-01

    Pharmaceuticals, including the lipid regulator gemfibrozil and the non-steroidal anti-inflammatory drug diclofenac have been identified in waste water treatment plant effluents and receiving waters throughout the western world. The acute and chronic toxicity of these compounds was assessed for three freshwater species (Daphnia magna, Pseudokirchneriella subcapitata, Lemna minor) using standardised toxicity tests with toxicity found in the non-environmentally relevant mid mg L(-1) concentration range. For the acute endpoints (IC(50) and EC(50)) gemfibrozil showed higher toxicity ranging from 29 to 59 mg L(-1) (diclofenac 47-67 mg L(-1)), while diclofenac was more toxic for the chronic D. magna 21 d endpoints ranging from 10 to 56 mg L(-1) (gemfibrozil 32-100 mg L(-1)). These results were compared with the expression of several biomarkers in the zebra mussel (Dreissena polymorpha) 24 and 96 h after exposure by injection to concentrations of 21 and 21,000 μg L(-1) corresponding to nominal concentrations of 1 and 1000 μg L(-1). Exposure to gemfibrozil and diclofenac at both concentrations significantly increased the level of lipid peroxidation, a biomarker of damage. At the elevated nominal concentration of 1000 μg L(-1) the biomarkers of defence glutathione transferase and metallothionein were significantly elevated for gemfibrozil and diclofenac respectively, as was DNA damage after 96 h exposure to gemfibrozil. No evidence of endocrine disruption was observed using the alkali-labile phosphate technique. Results from this suite of biomarkers indicate these compounds can cause significant stress at environmentally relevant concentrations acting primarily through oxidation pathways with significant destabilization of the lysosomal membrane and that biomarker expression is a more sensitive endpoint than standardised toxicity tests. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Valve movement of three species of North American freshwater mussels exposed to elevated carbon dioxide.

    PubMed

    Hasler, Caleb T; Hannan, Kelly D; Jeffrey, Jennifer D; Suski, Cory D

    2017-06-01

    Freshwater mussels are at-risk taxa and may be exposed to high levels of carbon dioxide (CO 2 ) because of the potential use of CO 2 to control the movement of invasive aquatic fish species. One potential behavioral response to a change in the partial pressure of CO 2 (pCO 2 ) may be altered valve movement. In this study, three species of mussels were fitted with modified sensors and exposed to two regimes of pCO 2 to define thresholds of impaired valve movement. The first experiment demonstrated that Pyganodon grandis were much more tolerant to rising pCO 2 relative to Lampsilis siliquoidea (acute closure at ∼200,000 μatm in comparison to ∼80,000 μatm). The second experiment consisted of monitoring mussels for 6 days and exposing them to elevated pCO 2 (∼70,000 μatm) over a 2-day period. During exposure to high pCO 2 , Lampsilis cardium were open for nearly the entire high pCO 2 period. Conversely, P. grandis were closed for most of the period following exposure to high pCO 2 . For L. siliquoidea, the number of closures decreased nearly 40-fold during high pCO 2 . The valve movement responses observed suggest species differences, and exposure to elevated pCO 2 requires a reactive response.

  12. Freshwater mussels of Florida

    USGS Publications Warehouse

    Williams, James D.; Butler, Robert S.; Warren, Gary L.; Johnson, Nathan A.

    2014-01-01

    An exhaustive guide to all aspects of the freshwater mussel fauna in Florida,Freshwater Mussels of Florida covers the ecology, biology, distribution, and conservation of the many species of bivalve mollusks in the Sunshine State. In the past three decades, researchers, the public, businesses that depend on wildlife, and policy makers have given more attention to the threatened natural diversity of the Southeast, including freshwater mussels. This compendium meets the increasingly urgent need to catalog this imperiled group of aquatic organisms in the United States.

  13. Identification of 'extinct' freshwater mussel species using DNA barcoding.

    PubMed

    Campbell, David C; Johnson, Paul D; Williams, James D; Rindsberg, Andrew K; Serb, Jeanne M; Small, Kory K; Lydeard, Charles

    2008-07-01

    Freshwater mollusks are highly imperiled, with 70% of the North American species extinct, endangered, or at risk of extinction. Impoundments and other human impacts on the Coosa River of Alabama, Georgia and Tennessee of the southeastern USA alone are believed to have caused 50 mollusk species extinctions, but uncertainty over boundaries among several putatively closely related species makes this number preliminary. Our examination of freshwater mussels collected during an extensive survey of the upper-drainage basin, DNA barcoding and molecular phylogenetic analyses confirm the rediscovery of four morphospecies in the genus Pleurobema (Unionidae) previously thought to be extinct from the upper Coosa basin. A fifth 'extinct' form was found in an adjoining basin. Molecular data show that the Coosa morphologies represent at least three species-level taxa: Pleurobema decisum, P. hanleyianum and P. stabile. Endemism is higher than currently recognized, both at the species level and for multispecies clades. Prompt conservation efforts may preserve some of these taxa and their ecosystem. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.

  14. Differential sensitivity to cadmium of immunomarkers measured in hemocyte subpopulations of zebra mussel Dreissena polymorpha.

    PubMed

    Evariste, Lauris; Rioult, Damien; Brousseau, Pauline; Geffard, Alain; David, Elise; Auffret, Michel; Fournier, Michel; Betoulle, Stéphane

    2017-03-01

    Increasing discharge of industrial wastes into the environment results in pollution transfer towards hydrosystems. These activities release heavy metals such as cadmium, known as persistent pollutant that is accumulated by molluscs and exercise immunotoxicological effects. Among molluscs, the zebra mussel, Dreissena polymorpha constitutes a suitable support for freshwater ecotoxicological studies. In molluscs, homeostasis maintain is ensured in part by hemocytes that are composed of several cell populations involved in multiple physiological processes such as cell-mediated immune response or metal metabolism. Thus, hemocytes constitute a target of concern to study adverse effects of heavy metals. The objectives of this work were to determine whether immune-related endpoints assessed were of different sensitivity to cadmium and whether hemocyte functionalities were differentially affected depending on hemocyte subpopulation considered. Hemocytes were exposed ex vivo to concentrations of cadmium ranging from 10 -6 M to 10 -3 M for 21h prior flow cytometric analysis of cellular markers. Measured parameters (viability, phagocytosis, oxidative activity, lysosomal content) decreased in a dose-dependent manner with sensitivity differences depending on endpoint and cell type considered. Our results indicated that phagocytosis related endpoints were the most sensitive studied mechanisms to cadmium compared to other markers with EC 50 of 3.71±0.53×10 -4 M for phagocytic activity and 2.79±0.19×10 -4 M considering mean number of beads per phagocytic cell. Lysosomal content of granulocytes was less affected compared to other cell types, indicating lower sensitivity to cadmium. This suggests that granulocyte population is greatly involved in metal metabolism. Mitochondrial activity was reduced only in blast-like hemocytes that are considered to be cell precursors. Impairment of these cell functionalities may potentially compromise functions ensured by differentiated cells

  15. A survey of the indigenous microbiota (bacteria) in three species of mussels from the Clinch and Holston Rivers, Virginia

    USGS Publications Warehouse

    Starliper, Clifford E.; Neves, Richard J.; Hanlon, Shane D.; Whittington, Pamela

    2008-01-01

    Freshwater mussel conservation efforts by many federal and state agencies have increased in recent years. This has led to a greater number of stream surveys, in which mussel die-offs involving high numbers of dead and moribund animals are being observed and reported with greater frequency. Typically, die-offs have been incidentally observed while research was being done for other purposes, therefore, accurate mortality data have been difficult to obtain. Specifically, seasonal die-offs were noted in localized areas of the Clinch and Holston Rivers, Virginia, and to lesser degrees, in neighboring rivers in this geographic region, including southeast Virginia. The observed mussel species affected were primarily the slabside pearlymussel (Lexingtonia dolabelloides) and to lesser extents, the pheasantshell (Actinonaias pectorosa), rainbow mussel (Villosa iris), and the endangered shiny pigtoe (Fusconaia cor). To determine if a bacterial pathogen might be involved in these recurring mussel die-offs, this study examined characteristics of the indigenous microbiota (bacteria) from healthy mussels from sites on the Clinch and Holston Rivers where die-offs were previously observed. These baseline data will allow for recognition of bacterial pathogens in future mussel die-offs. Means for total bacteria from soft tissues ranged from 1.77 × 105 to 3.55 × 106 cfu/g; whereas, the range in means from fluids was 2.92 × 104 to 8.60 × 105 cfu/mL. A diverse microbiota were recovered, including species that are common in freshwater aquatic environments. The most common bacterial groups recovered were motile Aeromonas spp. and nonfermenting bacteria. Flavobacterium columnare, a pathogen to cool- and warm-water fishes was recovered from one specimen, a Villosa iris from the Clinch River.

  16. Impacts of aquatic nonindigenous invasive species on the Lake Erie ecosystem

    USGS Publications Warehouse

    Austen, Madeline J.W.; Ciborowski, Jan J.H.; Corkum, Lynda D.; Johnson, Tim B.; MacIsaac, Hugh J.; Metcalfe-Smith, Janice L.; Schloesser, Donald W.; George, Sandra E.

    2002-01-01

    Lake Erie is particularly vulnerable to the introduction and establishment of aquatic nonindigenous invasive species (NIS) populations. A minimum of 144 aquatic NIS have been recorded in the Lake Erie basin including several species [e.g., Eurasian watermilfoil (Myriophyllum spicatum); zebra mussel (Dreissena polymorpha); quagga mussel (Dreissena bugensis); an amphipod (Echinogammarus ischnus); round goby (Neogobius melanostomus); and sea lamprey (Petromyzon marinus)] that have had discernible impacts on the lake's ecology. NIS pose threats to the Lake Erie ecosystem for a variety of reasons including their ability to proliferate quickly, compete with native species, and transfer contaminants (e.g., PCBs) and disease through the food web. Six of the 14 beneficial use impairments listed in Annex 2 of the Great Lakes Water Quality Agreement are impaired in Lake Erie, in part as a result of the introduction of NIS. The Lake Erie Lakewide Management Plan (LaMP) has adopted an ecosystem approach to restore beneficial use impairments in the lake. Furthermore, a research consortium, known as the Lake Erie Millennium Network, is working alongside the LaMP, to address research problems regarding NIS, the loss of habitat, and the role of contaminants in the Lake Erie ecosystem.

  17. Simulated mussel mortality thresholds as a function of mussel biomass and nutrient loading

    USGS Publications Warehouse

    Bril, Jeremy S.; Langenfeld, Kathryn; Just, Craig L.; Spak, Scott N.; Newton, Teresa

    2017-01-01

    A freshwater “mussel mortality threshold” was explored as a function of porewater ammonium (NH4+) concentration, mussel biomass, and total nitrogen (N) utilizing a numerical model calibrated with data from mesocosms with and without mussels. A mortality threshold of 2 mg-N L−1 porewater NH4+ was selected based on a study that estimated 100% mortality of juvenile Lampsilis mussels exposed to 1.9 mg-N L−1NH4+ in equilibrium with 0.18 mg-N L−1 NH3. At the highest simulated mussel biomass (560 g m−2) and the lowest simulated influent water “food” concentration (0.1 mg-N L−1), the porewater NH4+ concentration after a 2,160 h timespan without mussels was 0.5 mg-N L−1 compared to 2.25 mg-N L−1 with mussels. Continuing these simulations while varying mussel biomass and N content yielded a mortality threshold contour that was essentially linear which contradicted the non-linear and non-monotonic relationship suggested by Strayer (2014). Our model suggests that mussels spatially focus nutrients from the overlying water to the sediments as evidenced by elevated porewater NH4+ in mesocosms with mussels. However, our previous work and the model utilized here show elevated concentrations of nitrite and nitrate in overlying waters as an indirect consequence of mussel activity. Even when the simulated overlying water food availability was quite low, the mortality threshold was reached at a mussel biomass of about 480 g m−2. At a food concentration of 10 mg-N L−1, the mortality threshold was reached at a biomass of about 250 g m−2. Our model suggests the mortality threshold for juvenile Lampsilis species could be exceeded at low mussel biomass if exposed for even a short time to the highly elevated total N loadings endemic to the agricultural Midwest.

  18. Are Mussels Always the Best Bioindicators? Comparative Study on Biochemical Responses of Three Marine Invertebrate Species to Chronic Port Pollution.

    PubMed

    Laitano, María V; Fernández-Gimenez, Analía V

    2016-07-01

    Bivalves have traditionally been considered good bioindicators due to their sensitivity to pollution, among other features. This characteristic is shared by several other non-bivalve species as well, though studies in this respect remain scarce. This work aims to compare biomarker sensitivity to chronic port pollution among three intertidal invertebrate species with good bioindicator characteristics. Mussels' immunological (phenoloxidase and peroxidases) and biotransformation (glutathione-S-transferase) responses were contrasted against those of limpets and barnacles. The three species under study evidenced activity of all the enzymes measured, although with differences. Barnacle Balanus glandula was the most sensitive species showing pollution modulation of the three enzymes, which suggests that mussels would not always be the best bioindicator species among marine invertebrates depending on the responses that are assessed.

  19. A holistic approach to taxonomic evaluation of two closely related endangered freshwater mussel species, the oyster mussel Epioblasma capsaeformis and tan riffleshell Epioblasma florentina walkeri (Bivalvia: Unionidae)

    USGS Publications Warehouse

    Jones, J.W.; Neves, R.J.; Ahlstedt, S.A.; Hallerman, E.M.

    2006-01-01

    Species in the genus Epioblasma have specialized life history requirements and represent the most endangered genus of freshwater mussels (Unionidae) in the world. A genetic characterization of extant populations of the oyster mussel E. capsaeformis and tan riffleshell E. florentina walkeri sensu late was conducted to assess taxonomic validity and to resolve conservation issues for recovery planning. These mussel species exhibit pronounced phenotypic variation, but were difficult to characterize phylogenetically using DNA sequences. Monophyletic lineages, congruent with phenotypic variation among species, were obtained only after extensive analysis of combined mitochondrial (1396 bp of 16S, cytochrome-b, and ND1) and nuclear (515 bp of ITS-1) DNA sequences. In contrast, analysis of variation at 10 hypervariable DNA microsatellite loci showed moderately to highly diverged populations based on FST and R ST values, which ranged from 0.12 to 0.39 and 0.15 to 0.71, respectively. Quantitative variation between species was observed in fish-host specificity, with transformation success of glochidia of E. capsaeformis significantly greater (P<0.05) on greenside darter Etheostoma blennioides, and that of E. f. walkeri significantly greater (P<0.05) on fantail darter Etheostoma flabellare. Lengths of glochidia differed significantly (P<0.001) among species and populations, with mean sizes ranging from 241 to 272 ??m. The texture and colour of the mantle-pad of E. capsaeformis sensu stricto is smooth and bluish-white, whereas that of E. f. walkeri is pustuled and brown, with tan mottling. Based on extensive molecular, morphological and life history data, the population of E. capsaeformis from the Duck River, Tennessee, USA is proposed as a separate species, and the population of E. f. walkeri from Indian Creek, upper Clinch River, Virginia, USA is proposed as a distinct subspecies.

  20. Procedures for conducting underwater searches for invasive mussels (Dreissena sp.)

    USGS Publications Warehouse

    Adams, Noah

    2010-01-01

    Zebra mussels (Dreissena polymorpha) were first detected in the Great Lakes in 1988. They were likely transported as larvae or young adults inside the ballast tanks of large ocean-going ships originating from Europe. Since their introduction, they have spread throughout the Eastern, Midwestern, and Southern United States. In 2007, Quagga mussels (Dreissena rostriformis bugensis) were found in the Western United States in Lake Mead, Nevada; part of the Lower Colorado River Basin. State and Federal managers are concerned that the mussels (hereafter referred to as dreissenid mussels or mussels) will continue to spread to the Columbia River Basin and have a major impact on the region?s ecosystem, water delivery infrastructure, hydroelectric projects, and the economy. The transport and use of recreational watercraft throughout the Western United States could easily result in spreading mussels to the Columbia River Basin. The number of recreational watercraft using Lake Mead can range from 350 to 3,500 a day (Bryan Moore, National Park Service, oral commun., June 21, 2008). Because recreational watercrafts are readily moved around and mussels may survive for a period of time when they are out of the water, there is a high potential to spread mussels from Lake Mead to other waterways in the Western United States. Efforts are being made to prevent the spread of mussels; however, there is great concern that these efforts will not be 100 percent successful. When prevention efforts fail, early detection of mussels may provide an opportunity to implement rapid response management actions to minimize the impact. Control and eradication efforts are more likely to be successful if they are implemented when the density of mussels is low and the area of infestation is small. Once the population grows and becomes established, the mussels are extremely difficult, if not impossible, to control. Although chemicals may be used to kill the mussels, the chemicals that are currently

  1. Genetic management guidelines for captive propagation of freshwater mussels (unionoidea)

    USGS Publications Warehouse

    Jones, J.W.; Hallerman, E.M.; Neves, R.J.

    2006-01-01

    Although the greatest global diversity of freshwater mussels (???300 species) resides in the United States, the superfamily Unionoidea is also the most imperiled taxon of animals in the nation. Thirty-five species are considered extinct, 70 species are listed as endangered or threatened, and approximately 100 more are species of conservation concern. To prevent additional species losses, biologists have developed methods for propagating juvenile mussels for release into the wild to restore or augment populations. Since 1997, mussel propagation facilities in the United States have released over 1 million juveniles of more than a dozen imperiled species, and survival of these juveniles in the wild has been documented. With the expectation of continued growth of these programs, agencies and facilities involved with mussel propagation must seriously consider the genetic implications of releasing captive-reared progeny. We propose 10 guidelines to help maintain the genetic resources of cultured and wild populations. Preservation of genetic diversity will require robust genetic analysis of source populations to define conservation units for valid species, subspecies, and unique populations. Hatchery protocols must be implemented that minimize risks of artificial selection and other genetic hazards affecting adaptive traits of progeny subsequently released to the wild. We advocate a pragmatic, adaptive approach to species recovery that incorporates the principles of conservation genetics into breeding programs, and prioritizes the immediate demographic needs of critically endangered mussel species.

  2. Ecosystem transformations of the Laurentian Great Lake Michigan by nonindigenous biological invaders.

    PubMed

    Cuhel, Russell L; Aguilar, Carmen

    2013-01-01

    Lake Michigan, a 58,000-km(2) freshwater inland sea, is large enough to have persistent basin-scale circulation yet small enough to enable development of approximately balanced budgets for water, energy, and elements including carbon and silicon. Introduction of nonindigenous species-whether through invasion, intentional stocking, or accidental transplantation-has transformed the lake's ecosystem function and habitat structure. Of the 79 nonindigenous species known to have established reproductive populations in the lake, only a few have brought considerable ecological pressure to bear. Four of these were chosen for this review to exemplify top-down (sea lamprey, Petromyzon marinus), middle-out (alewife, Alosa pseudoharengus), and bottom-up (the dreissenid zebra and quagga mussels, Dreissena polymorpha and Dreissena rostriformis bugensis, respectively) transformations of Lake Michigan ecology, habitability, and ultimately physical environment. Lampreys attacked and extirpated indigenous lake trout, the top predator. Alewives outcompeted native planktivorous fish and curtailed invertebrate populations. Dreissenid mussels-especially quagga mussels, which have had a much greater impact than the preceding zebra mussels-moved ecosystem metabolism basin-wide from water column to bottom dominance and engineered structures throughout the lake. Each of these non indigenous species exerted devastating effects on commercial and sport fisheries through ecosystem structure modification.

  3. ZENK expression following conspecific and heterospecific playback in the zebra finch auditory forebrain.

    PubMed

    Scully, Erin N; Hahn, Allison H; Campbell, Kimberley A; McMillan, Neil; Congdon, Jenna V; Sturdy, Christopher B

    2017-07-28

    Zebra finches (Taeniopygia guttata) are sexually dimorphic songbirds, not only in appearance but also in vocal production: while males produce both calls and songs, females only produce calls. This dimorphism provides a means to contrast the auditory perception of vocalizations produced by songbird species of varying degrees of relatedness in a dimorphic species to that of a monomorphic species, species in which both males and females produce calls and songs (e.g., black-capped chickadees, Poecile atricapillus). In the current study, we examined neuronal expression after playback of acoustically similar hetero- and conspecific calls produced by species of differing phylogenetic relatedness to our subject species, zebra finch. We measured the immediate early gene (IEG) ZENK in two auditory areas of the forebrain (caudomedial mesopallium, CMM, and caudomedial nidopallium, NCM). We found no significant differences in ZENK expression in either male or female zebra finches regardless of playback condition. We also discuss comparisons between our results and the results of a previous study conducted by Avey et al. [1] on black-capped chickadees that used similar stimulus types. These results are consistent with the previous study which also found no significant differences in expression following playback of calls produced by various heterospecific species and conspecifics [1]. Our results suggest that, similar to black-capped chickadees, IEG expression in zebra finch CMM and NCM is tied to the acoustic similarity of vocalizations and not the phylogenetic relatedness of the species producing the vocalizations. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Mussel remains from prehistoric salt works, clarke county, Alabama

    USGS Publications Warehouse

    McGregor, S.W.; Dumas, A.A.

    2010-01-01

    Archaeological research at salt springs in Clarke County, AL (Tombigbee River drainage), documented bivalve mollusk exploitation by late prehistoric American Indians. A total of 582 valves representing 19 species of freshwater mussels (Unionidae) and an estuarine clam (Mactridae) from the Lower Salt Works Site (ca. A.D. 900-1550) and 41 valve fragments representing 6 mussel species from the Stimpson Site (ca. A.D. 1200-1550) were documented. The Lower Salt Works fauna was dominated numerically by Fusconaia ebena and Quadrula asperata, the dominant species reported during recent local surveys. The mussel species represented are known from medium to large streams in sand and gravel habitats and include four federally protected species and other species of conservation concern in Alabama. Results offer comparative data for other archaeological and ecological studies in the region.

  5. Assessing variability in chemical acute toxicity of unionid mussels: Influence of intra- and inter-laboratory testing, life stage, and species

    USGS Publications Warehouse

    Raimondo, Sandy; Lilavois, Crystal R.; Lee, Larisa; Augspurger, Tom; Wang, Ning; Ingersoll, Christopher G.; Bauer, Candice R.; Hammer, Edward J.; Barron, Mace G.

    2016-01-01

    We developed a toxicity database for unionid mussels to examine the extent of intra- and inter-laboratory variability in acute toxicity tests with mussel larvae (glochidia) and juveniles; the extent of differential sensitivity of the two life stages; and the variation in sensitivity among commonly tested mussels (Lampsilis siliquoidea, Utterbackia imbecillis, Villosa iris), commonly tested cladocerans (Daphnia magna, Ceriodaphnia dubia) and fish (Oncorhynchus mykiss, Pimephales promelas, Lepomis macrochirus). The results of these analyses indicate intra-laboratory variability for median effect concentrations (EC50) averaged about 2 fold for both life stages, while inter-laboratory variability averaged 3.6 fold for juvenile mussels and 6.3 fold for glochidia. The EC50s for juveniles and glochidia were within a factor of 2 of each other for 50% of paired records across chemicals, with juveniles more sensitive than glochidia by more than 2 fold for 33% of the comparisons made between life stages. There was a high concurrence of the sensitivity of commonly tested L. siliquoidea, U. imbecillis, and V. iris to that of other mussels. However, this concurrence decreases as the taxonomic distance of the commonly tested cladocerans and fish to mussels increases. The compiled mussel database and determination of data variability will advance risk assessments by including more robust species sensitivity distributions, interspecies correlation estimates, and availability of taxon-specific empirically derived application factors for risk assessment.

  6. Past climate change drives current genetic structure of an endangered freshwater mussel species.

    PubMed

    Inoue, Kentaro; Lang, Brian K; Berg, David J

    2015-04-01

    Historical-to-recent climate change and anthropogenic disturbance affect species distributions and genetic structure. The Rio Grande watershed of the United States and Mexico encompasses ecosystems that are intensively exploited, resulting in substantial degradation of aquatic habitats. While significant anthropogenic disturbances in the Rio Grande are recent, inhospitable conditions for freshwater organisms likely existed prior to such disturbances. A combination of anthropogenic and past climate factors may contribute to current distributions of aquatic fauna in the Rio Grande basin. We used mitochondrial DNA and 18 microsatellite loci to infer evolutionary history and genetic structure of an endangered freshwater mussel, Popenaias popeii, throughout the Rio Grande drainage. We estimated spatial connectivity and gene flow across extant populations of P. popeii and used ecological niche models (ENMs) and approximate Bayesian computation (ABC) to infer its evolutionary history during the Pleistocene. structure results recovered regional and local population clusters in the Rio Grande. ENMs predicted drastic reductions in suitable habitat during the last glacial maximum. ABC analyses suggested that regional population structure likely arose in this species during the mid-to-late Pleistocene and was followed by a late Pleistocene population bottleneck in New Mexico populations. The local population structure arose relatively recently, perhaps due to anthropogenic factors. Popenaias popeii, one of the few freshwater mussel species native to the Rio Grande basin, is a case study for understanding how both geological and anthropogenic factors shape current population genetic structure. Conservation strategies for this species should account for the fragmented nature of contemporary populations. © 2015 John Wiley & Sons Ltd.

  7. Fitness consequences of polymorphic inversions in the zebra finch genome.

    PubMed

    Knief, Ulrich; Hemmrich-Stanisak, Georg; Wittig, Michael; Franke, Andre; Griffith, Simon C; Kempenaers, Bart; Forstmeier, Wolfgang

    2016-09-29

    Inversion polymorphisms constitute an evolutionary puzzle: they should increase embryo mortality in heterokaryotypic individuals but still they are widespread in some taxa. Some insect species have evolved mechanisms to reduce the cost of embryo mortality but humans have not. In birds, a detailed analysis is missing although intraspecific inversion polymorphisms are regarded as common. In Australian zebra finches (Taeniopygia guttata), two polymorphic inversions are known cytogenetically and we set out to detect these two and potentially additional inversions using genomic tools and study their effects on embryo mortality and other fitness-related and morphological traits. Using whole-genome SNP data, we screened 948 wild zebra finches for polymorphic inversions and describe four large (12-63 Mb) intraspecific inversion polymorphisms with allele frequencies close to 50 %. Using additional data from 5229 birds and 9764 eggs from wild and three captive zebra finch populations, we show that only the largest inversions increase embryo mortality in heterokaryotypic males, with surprisingly small effect sizes. We test for a heterozygote advantage on other fitness components but find no evidence for heterosis for any of the inversions. Yet, we find strong additive effects on several morphological traits. The mechanism that has carried the derived inversion haplotypes to such high allele frequencies remains elusive. It appears that selection has effectively minimized the costs associated with inversions in zebra finches. The highly skewed distribution of recombination events towards the chromosome ends in zebra finches and other estrildid species may function to minimize crossovers in the inverted regions.

  8. Heterospecific discrimination of Poecile vocalizations by zebra finches (Taeniopygia guttata).

    PubMed

    Guillette, Lauren M; Hoeschele, Marisa; Hahn, Allison H; Sturdy, Christopher B

    2013-08-01

    Previous perceptual research with black-capped and mountain chickadees has demonstrated that the D note of the namesake chick-a-dee call controlled species-based discrimination compared to other note types in this call. In the current experiment, we sought to determine whether discrimination performance of the chickadees was controlled by stimulus-specific properties or due to learning through experience. To accomplish this, we tested zebra finches, a songbird species that is distantly related to chickadees, and also unfamiliar with black-capped and mountain chickadee vocalizations, on the same species-based discrimination on which black-capped and mountain chickadees were previously trained. We found that zebra finches learned the discrimination in the fewest number of trials with the D note, compared to other note types (i.e., the A, B, and C notes). In addition, we compared the current results to earlier work and found that zebra finches learned the discrimination in fewer trials compared to black-capped chickadees, and, across all species, males learned the discrimination in fewer trials than females. We discuss the roles that acoustic complexity and learning play in classification of the three species of songbirds tested. More generally, these results point to the benefits derived from testing members of each sex in species that vary in their natural history, vocal output, and phylogenetic relatedness as a means to uncover the mechanisms underlying acoustic communication. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  9. Prodigious polyphyly in imperilled freshwater pearly-mussels (Bivalvia: Unionidae): a phylogenetic test of species and generic designations

    USGS Publications Warehouse

    Lydeard, Charles; Minton, Russell L.; Williams, James D.

    2000-01-01

    Unionid bivalves or freshwater pearly-mussels (Unionoidea: Unionidae) serve as an exemplary system for examining many of the problems facing systematists and conservation biologists today. Most of the species and genera were described in the late 1800s and early 1900s, but few phylogenetic studies have been conducted to test conventional views of species and classification. Pearly-mussels of Gulf Coastal drainages of the southeastern United States from the Escambia (southern Alabama to Florida) to the Suwannee Rivers (Florida) are a unique fauna comprised of approximately 100 species, with about 30 endemic to the region. In this study, mitochondrial cytochrome c oxidase subunit I and 16S rRNA gene sequences were used to test the monophyly and to estimate evolutionary relationships of five unionid species representing three different genera. The molecular phylogenies depict all three genera as polyphyletic. The prodigious polyphyly exhibited within unionids is due to incorrect notions of homology and false assumptions about missing anatomical data. In contrast, the molecular phylogeny provides evidence to support the recognition of all five unionid species as distinct evolutionary entities. Furthermore, molecular genealogical evidence supports the elevation of Quincuncina infucata (Conrad) of the Suwannee River to species level, for which Q. kleiniana (Lea) is available.

  10. Evaluation of the mussel fishery in Wheeler Reservoir, Tennessee River

    USGS Publications Warehouse

    Bowen, Zack H.; Malvestuto, S. P.; Davies, W. D.; Crance, J. H.

    1994-01-01

    We evaluated the freshwater mussel fishery on Wheeler Reservoir, a 27,155-hectare mainstream impoundment of the Tennessee River in Alabama. During July 1991 through June 1992, we used a roving creel survey to conduct 285 interviews over 57 weekdays and 12 weekend days. Total harvest during the 12-month survey period was estimated to be 570 metric tons, and included 15 mussel species. The most frequently harvested species were the washboard Megalonaias nervosa. Ohio pigtoe Pleurobema cordatum, and butterfly Ellipsaria lineolata. Harvest peaked in June at 290,414 mussels. Among collection techniques, total estimated effort was highest for divers (71,160 musseler-hours). The total estimated value of the 12-month mussel harvest (in terms of money paid to harvesters) from Wheeler Reservoir was US$2,119,921.

  11. Comparative Cytogenetics between Two Important Songbird, Models: The Zebra Finch and the Canary

    PubMed Central

    dos Santos, Michelly da Silva; Kretschmer, Rafael; Frankl-Vilches, Carolina; Bakker, Antje; Gahr, Manfred; O´Brien, Patricia C. M.; Ferguson-Smith, Malcolm A.

    2017-01-01

    Songbird species (order Passeriformes, suborder Oscines) are important models in various experimental fields spanning behavioural genomics to neurobiology. Although the genomes of some songbird species were sequenced recently, the chromosomal organization of these species is mostly unknown. Here we focused on the two most studied songbird species in neuroscience, the zebra finch (Taeniopygia guttata) and the canary (Serinus canaria). In order to clarify these issues and also to integrate chromosome data with their assembled genomes, we used classical and molecular cytogenetics in both zebra finch and canary to define their chromosomal homology, localization of heterochromatic blocks and distribution of rDNA clusters. We confirmed the same diploid number (2n = 80) in both species, as previously reported. FISH experiments confirmed the occurrence of multiple paracentric and pericentric inversions previously found in other species of Passeriformes, providing a cytogenetic signature for this order, and corroborating data from in silico analyses. Additionally, compared to other Passeriformes, we detected differences in the zebra finch karyotype concerning the morphology of some chromosomes, in the distribution of 5S rDNA clusters, and an inversion in chromosome 1. PMID:28129381

  12. Assess the presence and potential habitat for reintroduction of priority freshwater mussel species in the Shenango River.

    DOT National Transportation Integrated Search

    2010-12-31

    The Shenango River is a principal tributary of the Beaver River, which may provide an opportunity for the relocation of clubshell and northern riffleshell. These federally listed mussels and other species of concern may be present in the Shenango Riv...

  13. Heavy metal contamination along the China coastline: A comprehensive study using Artificial Mussels and native mussels.

    PubMed

    Degger, Natalie; Chiu, Jill M Y; Po, Beverly H K; Tse, Anna C K; Zheng, Gene J; Zhao, Dong-Mei; Xu, Di; Cheng, Yu-Shan; Wang, Xin-Hong; Liu, Wen-Hua; Lau, T C; Wu, Rudolf S S

    2016-09-15

    A comprehensive study was carried out to assess metal contamination in five cities spanning from temperate to tropical environment along the coastal line of China with different hydrographical conditions. At each of the five cities, Artificial Mussels (AM) were deployed together with a native species of mussel at a control site and a polluted site. High levels of Cr, Cu and Hg were found in Qingdao, high level of Cd, Hg and Pb was found in Shanghai, and high level of Zn was found in Dalian. Furthermore, level of Cu contamination in all the five cities was consistently much higher than those reported in similar studies in other countries (e.g., Australia, Portugal, Scotland, Iceland, Korea, South Africa and Bangladesh). Levels of individual metal species in the AM showed a highly significant correlation with that in the native mussels (except for Zn in Mytilus edulis and Cd in Perna viridis), while no significant difference can be found between the regression relationships of metal in the AM and each of the two native mussel species. The results demonstrated that AM can provide a reliable time-integrated estimate of metal concentration in contrasting environments over large biogeographic areas and different hydrographic conditions, and overcome the shortcomings of monitoring metals in water, sediment and the use of biomonitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Critical swimming speed of brown trout (Salmo trutta) infested with freshwater pearl mussel (Margaritifera margaritifera) glochidia and implications for artificial breeding of an endangered mussel species.

    PubMed

    Taeubert, Jens-Eike; Geist, Juergen

    2013-04-01

    Unionid freshwater mussels need to attach to a host fish for completion of their life cycle. It remains unclear whether the relationship between these mussels and their host fishes can be considered parasitic, mutualistic, or commensal. Herein, we studied the effects of Margaritifera margaritifera infestation on Salmo trutta, the most important host of this endangered mussel species in Central Europe. Glochidial load of host fish increased with increasing glochidial concentration, but the highest ratios of encysted glochidia to exposed glochidia were found at low concentration (15,000 glochidia L(-1)) during infestation. Host fish mortality occurred at infestation rates of ~350 glochidia per g fish weight and was highest (60%) at the highest infestation rates (~900 glochidia per g fish weight). On a sublethal level, swimming performance of hosts was inversely related to infestation rates, with infestation of ~900 glochidia per g fish weight reducing critical swimming speed of S. trutta significantly by ~20% compared to infestation with 6 glochidia per g fish weight. The high mortality and the impaired swimming capability of highly infested hosts indicate a parasitic interaction between M. margaritifera and its host. For conservation and reintroduction of M. margaritifera via glochidia-infested S. trutta, we recommend glochidial loads of 5-100 glochidia per g fish weight, while for artificial breeding of juvenile M. margaritifera under laboratory conditions, higher infestation rates of up to 300 glochidia per g fish weight are ideal to balance high yields of mussels and welfare of host fishes.

  15. Restoration and colonization of freshwater mussels and fish in a southeastern United States tailwater

    USGS Publications Warehouse

    Layzer, J.B.; Scott, E.M.

    2006-01-01

    The French Broad River originates in North Carolina, flows west into Tennessee and at its confluence with the Holston River forms the Tennessee River. Douglas Dam, located on the French Broad River 52 km above its mouth, is operated primarily for peaking hydroelectric power and flood control. Prior to completion of the dam in 1943, the lower French Broad River contained about 53 species of freshwater mussels and 100 species of fish. By 1977, the fauna in the 52-km-long tailwater was reduced to 12 species of mussels and 42 native species of fish. Improvements in tailwater conditions occurred following initiation of minimum flows in 1987, and consistent reaeration of discharge in 1993. From 1988 to 2002, we sampled three sites (4, 28, and 39 km downstream of the dam) to monitor the fish assemblage. Each year since 1988, we have collected one or more additional species, indicating continued immigration. We collected 82 native and 9 exotic species of fish overall, but the maximum of 67 species in 1 year suggests that some species reside in the tailwater at low densities or all immigrants may not successfully colonize the tailwater. There is limited potential for most extirpated species of mussels to naturally recolonize the tailwater because source populations are isolated. Consequently, 19 754 adult mussels of 19 species were introduced between 1997 and 2000. Survival of translocated mussels has been high, and successful reproduction of at least one translocated species has occurred. Additionally, four mussel species are naturally colonizing the tailwater. Colonization and recruitment of additional mussel species is expected as populations of their host fishes increase. We believe that the improved conditions of the tailwater may allow for the re-establishment of sustaining populations of 30 mussel species of historic occurrence, but the continued operation of Douglas Dam as a peaking hydroelectric project will reduce the probability of successfully reintroducing some

  16. Switch from sexual to parthenogenetic reproduction in a zebra shark

    PubMed Central

    Dudgeon, Christine L.; Coulton, Laura; Bone, Ren; Ovenden, Jennifer R.; Thomas, Severine

    2017-01-01

    Parthenogenesis is a natural form of asexual reproduction in which embryos develop in the absence of fertilisation. Most commonly found in plants and invertebrate organisms, an increasing number of vertebrate species have recently been reported employing this reproductive strategy. Here we use DNA genotyping to report the first demonstration of an intra-individual switch from sexual to parthenogenetic reproduction in a shark species, the zebra shark Stegostoma fasciatum. A co-housed, sexually produced daughter zebra shark also commenced parthenogenetic reproduction at the onset of maturity without any prior mating. The demonstration of parthenogenesis in these two conspecific individuals with different sexual histories provides further support that elasmobranch fishes may flexibly adapt their reproductive strategy to environmental circumstances. PMID:28091617

  17. Switch from sexual to parthenogenetic reproduction in a zebra shark.

    PubMed

    Dudgeon, Christine L; Coulton, Laura; Bone, Ren; Ovenden, Jennifer R; Thomas, Severine

    2017-01-16

    Parthenogenesis is a natural form of asexual reproduction in which embryos develop in the absence of fertilisation. Most commonly found in plants and invertebrate organisms, an increasing number of vertebrate species have recently been reported employing this reproductive strategy. Here we use DNA genotyping to report the first demonstration of an intra-individual switch from sexual to parthenogenetic reproduction in a shark species, the zebra shark Stegostoma fasciatum. A co-housed, sexually produced daughter zebra shark also commenced parthenogenetic reproduction at the onset of maturity without any prior mating. The demonstration of parthenogenesis in these two conspecific individuals with different sexual histories provides further support that elasmobranch fishes may flexibly adapt their reproductive strategy to environmental circumstances.

  18. Colour preferences in nest-building zebra finches.

    PubMed

    Muth, Felicity; Steele, Matthew; Healy, Susan D

    2013-10-01

    Some bird species are selective in the materials they choose for nest building, preferring, for example, materials of one colour to others. However, in many cases the cause of these preferences is not clear. One of those species is the zebra finch, which exhibits strong preferences for particular colours of nest material. In an attempt to determine why these birds strongly prefer one colour of material over another, we compared the preferences of paired male zebra finches for nest material colour with their preferences for food of the same colours. We found that birds did indeed prefer particular colours of nest material (in most cases blue) but that they did not generally prefer food of one colour over the other colours. It appears, then, that a preference for one colour or another of nest material is specific to the nest-building context. This article is part of a Special Issue entitled: insert SI title. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Application of adaptive cluster sampling to low-density populations of freshwater mussels

    USGS Publications Warehouse

    Smith, D.R.; Villella, R.F.; Lemarie, D.P.

    2003-01-01

    Freshwater mussels appear to be promising candidates for adaptive cluster sampling because they are benthic macroinvertebrates that cluster spatially and are frequently found at low densities. We applied adaptive cluster sampling to estimate density of freshwater mussels at 24 sites along the Cacapon River, WV, where a preliminary timed search indicated that mussels were present at low density. Adaptive cluster sampling increased yield of individual mussels and detection of uncommon species; however, it did not improve precision of density estimates. Because finding uncommon species, collecting individuals of those species, and estimating their densities are important conservation activities, additional research is warranted on application of adaptive cluster sampling to freshwater mussels. However, at this time we do not recommend routine application of adaptive cluster sampling to freshwater mussel populations. The ultimate, and currently unanswered, question is how to tell when adaptive cluster sampling should be used, i.e., when is a population sufficiently rare and clustered for adaptive cluster sampling to be efficient and practical? A cost-effective procedure needs to be developed to identify biological populations for which adaptive cluster sampling is appropriate.

  20. Early detection monitoring for larval dreissenid mussels: How much plankton sampling is enough?

    USGS Publications Warehouse

    Counihan, Timothy D.; Bollens, Stephen M.

    2017-01-01

    The development of quagga and zebra mussel (dreissenids) monitoring programs in the Pacific Northwest provides a unique opportunity to evaluate a regional invasive species detection effort early in its development. Recent studies suggest that the ecological and economic costs of a dreissenid infestation in the Pacific Northwest of the USA would be significant. Consequently, efforts are underway to monitor for the presence of dreissenids. However, assessments of whether these efforts provide for early detection are lacking. We use information collected from 2012 to 2014 to characterize the development of larval dreissenid monitoring programs in the states of Idaho, Montana, Oregon, and Washington in the context of introduction and establishment risk. We also estimate the effort needed for high-probability detection of rare planktonic taxa in four Columbia and Snake River reservoirs and assess whether the current level of effort provides for early detection. We found that the effort expended to monitor for dreissenid mussels increased substantially from 2012 to 2014, that efforts were distributed across risk categories ranging from high to very low, and that substantial gaps in our knowledge of both introduction and establishment risk exist. The estimated volume of filtered water required to fully census planktonic taxa or to provide high-probability detection of rare taxa was high for the four reservoirs examined. We conclude that the current level of effort expended does not provide for high-probability detection of larval dreissenids or other planktonic taxa when they are rare in these reservoirs. We discuss options to improve early detection capabilities.

  1. Temporal and basin-specific population trends of quagga mussels on soft sediment of a multi-basin reservoir

    USGS Publications Warehouse

    Caldwell, Timothy J; Rosen, Michael R.; Chandra, Sudeep; Acharya, Kumud; Caires, Andrea M; Davis, Clinton J.; Thaw, Melissa; Webster, Daniel M.

    2015-01-01

    Invasive quagga (Dreissena bugnesis) and zebra (Dreissena ploymorpha) mussels have rapidly spread throughout North America. Understanding the relationships between environmental variables and quagga mussels during the early stages of invasion will help management strategies and allow researchers to predict patterns of future invasions. Quagga mussels were detected in Lake Mead, NV/AZ in 2007, we monitored early invasion dynamics in 3 basins (Boulder Basin, Las Vegas Bay, Overton Arm) bi-annually from 2008-2011. Mean quagga density increased over time during the first year of monitoring and stabilized for the subsequent two years at the whole-lake scale (8 to 132 individuals·m-2, geometric mean), in Boulder Basin (73 to 875 individuals·m-2), and in Overton Arm(2 to 126 individuals·m-2). In Las Vegas Bay, quagga mussel density was low (9 to 44 individuals·m-2), which was correlated with high sediment metal concentrations and warmer (> 30°C) water temperatures associated with that basin. Carbon content in the sediment increased with depth in Lake Mead and during some sampling periods quagga density was also positively correlated with depth, but more research is required to determine the significance of this interaction. Laboratory growth experiments suggested that food quantity may limit quagga growth in Boulder Basin, indicating an opportunity for population expansion in this basin if primary productivity were to increase, but was not the case in Overton Arm. Overall quagga mussel density in Lake Mead is highly variable and patchy, suggesting that temperature, sediment size, and sediment metal concentrations, and sediment carbon content all contribute to mussel distribution patterns. Quagga mussel density in the soft sediment of Lake Mead expanded during initial colonization, and began to stabilize approximately 3 years after the initial invasion.

  2. Acute sensitivity of a broad range of freshwater mussels to chemicals with different modes of toxic action

    USGS Publications Warehouse

    Wang, Ning; Ivey, Chris D.; Ingersoll, Christopher G.; Brumbaugh, William G.; Alvarez, David; Hammer, Edward J.; Bauer, Candice R.; Augspurger, Tom; Raimondo, Sandy; Barnhart, M.Christopher

    2017-01-01

    Freshwater mussels, one of the most imperiled groups of animals in the world, are generally underrepresented in toxicity databases used for the development of ambient water quality criteria and other environmental guidance values. Acute 96-h toxicity tests were conducted to evaluate the sensitivity of 5 species of juvenile mussels from 2 families and 4 tribes to 10 chemicals (ammonia, metals, major ions, and organic compounds) and to screen 10 additional chemicals (mainly organic compounds) with a commonly tested mussel species, fatmucket (Lampsilis siliquoidea). In the multi-species study, median effect concentrations (EC50s) among the 5 species differed by a factor of ≤2 for chloride, potassium, sulfate, and zinc; a factor of ≤5 for ammonia, chromium, copper, and nickel; and factors of 6 and 12 for metolachlor and alachlor, respectively, indicating that mussels representing different families or tribes had similar sensitivity to most of the tested chemicals, regardless of modes of action. There was a strong linear relationship between EC50s for fatmucket and the other 4 mussel species across the 10 chemicals (r2 = 0.97, slope close to 1.0), indicating that fatmucket was similar to other mussel species; thus, this commonly tested species can be a good surrogate for protecting other mussels in acute exposures. The sensitivity of juvenile fatmucket among different populations or cultured from larvae of wild adults and captive-cultured adults was also similar in acute exposures to copper or chloride, indicating captive-cultured adult mussels can reliably be used to reproduce juveniles for toxicity testing. In compiled databases for all freshwater species, 1 or more mussel species were among the 4 most sensitive species for alachlor, ammonia, chloride, potassium, sulfate, copper, nickel, and zinc; therefore, the development of water quality criteria and other environmental guidance values for these chemicals should reflect the sensitivity of mussels. In

  3. Predator Diversity Effects in an Exotic Freshwater Food Web

    PubMed Central

    Naddafi, Rahmat; Rudstam, Lars G.

    2013-01-01

    Cascading trophic interactions are often defined as the indirect effects of a predator on primary producers through the effect of the predator on herbivores. These effects can be both direct through removal of herbivores [density-mediated indirect interactions (DMIIs)] or indirect through changes in the behavior of the herbivores [trait-mediated indirect interactions (TMIIs)]. How the relative importance of these two indirect interactions varies with predator diversity remains poorly understood. We tested the effect of predator diversity on both TMIIs and DMIIs on phytoplankton using two competitive invasive dreissenid mussel species (zebra mussel and quagga mussel) as the herbivores and combinations of one, two or all three species of the predators pumpkinseed sunfish, round goby, and rusty crayfish. Predators had either direct access to mussels and induced both TMII and DMII, or no direct access and induced only TMII through the presence of risk cues. In both sets of treatments, the predators induced a trophic cascade which resulted in more phytoplankton remaining with predators present than with only mussels present. The trophic cascade was weaker in three-predator and two-predator treatments than in one-predator treatments when predators had direct access to dreissenids (DMIIs and TMIIs). Crayfish had higher cascading effects on phytoplankton than both pumpkinseed and round goby. Increased predator diversity decreased the strength of DMIIs but had no effect on the strength of TMIIs. The strength of TMIIs was higher with zebra than quagga mussels. Our study suggests that inter-specific interference among predators in multi-species treatments weakens the consumptive cascading effects of predation on lower trophic levels whereas the importance of predator diversity on trait mediated effects depends on predator identity. PMID:23991126

  4. Seasonal and species-specific patterns in abundance of freshwater mussel glochidia in stream drift

    Treesearch

    Jacob J. Culp; Wendell R. Haag; D. Albrey Arrington; Thomas B. Kennedy

    2011-01-01

    Abstract. We examined seasonal patterns of abundance of mussel larvae (glochidia) in stream drift in a diverse, large-stream mussel assemblage in the Sipsey River, Alabama, across 1 y. We used recently developed techniques for glochidial identification combined with information about mussel fecundity and benthic assemblages to evaluate how well observed glochidial...

  5. Experimental evidence that stripes do not cool zebras.

    PubMed

    Horváth, Gábor; Pereszlényi, Ádám; Száz, Dénes; Barta, András; Jánosi, Imre M; Gerics, Balázs; Åkesson, Susanne

    2018-06-19

    There are as many as 18 theories for the possible functions of the stripes of zebras, one of which is to cool the animal. We performed field experiments and thermographic measurements to investigate whether thermoregulation might work for zebra-striped bodies. A zebra body was modelled by water-filled metal barrels covered with horse, cattle and zebra hides and with various black, white, grey and striped patterns. The barrels were installed in the open air for four months while their core temperature was measured continuously. Using thermography, the temperature distributions of the barrel surfaces were compared to those of living zebras. The sunlit zebra-striped barrels reproduced well the surface temperature characteristics of sunlit zebras. We found that there were no significant core temperature differences between the striped and grey barrels, even on many hot days, independent of the air temperature and wind speed. The average core temperature of the barrels increased as follows: white cattle, grey cattle, real zebra, artificial zebra, grey horse, black cattle. Consequently, we demonstrate that zebra-striped coats do not keep the body cooler than grey coats challenging the hypothesis of a thermoregulatory role of zebra stripes.

  6. Changing perspectives on pearly mussels, North America's most imperiled animals

    USGS Publications Warehouse

    Strayer, David L.; Downing, John A.; Haag, Wendell R.; King, Timothy L.; Layzer, James B.; Newton, Teresa J.; Nichols, S. Jerrine

    2004-01-01

    Pearly mussels (Unionacea) are widespread, abundant, and important in freshwater ecosystems around the world. Catastrophic declines in pearly mussel populations in North America and other parts of the world have led to a flurry of research on mussel biology, ecology, and conservation. Recent research on mussel feeding, life history, spatial patterning, and declines has augmented, modified, or overturned long-held ideas about the ecology of these animals. Pearly mussel research has begun to benefit from and contribute to current ideas about suspension feeding, life-history theory, metapopulations, flow refuges, spatial patterning and its effects, and management of endangered species. At the same time, significant gaps in understanding and apparent paradoxes in pearly mussel ecology have been exposed. To conserve remaining mussel populations, scientists and managers must simultaneously and aggressively pursue both rigorous research and conservation actions.

  7. DIAGNOSING CAUSES OF NATIVE FISH AND MUSSEL SPECIES DECLINE IN THE CLINCH AND POWELL RIVER WATERSHED, VIRGINIA, USA.

    EPA Science Inventory

    The free-flowing Clinch and Powell watershed in Virginia, USA harbors a high number of endemic mussel and fish species but they are declining or going extinct at an alarming rate. In order to prioritize resource management strategies with respect to these fauna, a Graphical Info...

  8. Zebra Finch Song Phonology and Syntactical Structure across Populations and Continents-A Computational Comparison.

    PubMed

    Lachlan, Robert F; van Heijningen, Caroline A A; Ter Haar, Sita M; Ten Cate, Carel

    2016-01-01

    Learned bird songs are often characterized by a high degree of variation between individuals and sometimes between populations, while at the same time maintaining species specificity. The evolution of such songs depends on the balance between plasticity and constraints. Captive populations provide an opportunity to examine signal variation and differentiation in detail, so we analyzed adult male zebra finch (Taeniopygia guttata) songs recorded from 13 populations across the world, including one sample of songs from wild-caught males in their native Australia. Cluster analysis suggested some, albeit limited, evidence that zebra finch song units belonged to universal, species-wide categories, linked to restrictions in vocal production and non-song parts of the vocal repertoire. Across populations, songs also showed some syntactical structure, although any song unit could be placed anywhere within the song. On the other hand, there was a statistically significant differentiation between populations, but the effect size was very small, and its communicative significance dubious. Our results suggest that variation in zebra finch songs within a population is largely determined by species-wide constraints rather than population-specific features. Although captive zebra finch populations have been sufficiently isolated to allow them to genetically diverge, there does not appear to have been any divergence in the genetically determined constraints that underlie song learning. Perhaps more surprising is the lack of locally diverged cultural traditions. Zebra finches serve as an example of a system where frequent learning errors may rapidly create within-population diversity, within broad phonological and syntactical constraints, and prevent the formation of long-term cultural traditions that allow populations to diverge.

  9. PIT tags increase effectiveness of freshwater mussel recaptures

    USGS Publications Warehouse

    Kurth, J.; Loftin, C.; Zydlewski, Joseph D.; Rhymer, Judith

    2007-01-01

    Translocations are used increasingly to conserve populations of rare freshwater mussels. Recovery of translocated mussels is essential to accurate assessment of translocation success. We designed an experiment to evaluate the use of passive integrated transponder (PIT) tags to mark and track individual freshwater mussels. We used eastern lampmussels (Lampsilis radiata radiata) as a surrogate for 2 rare mussel species. We assessed internal and external PIT-tag retention in the laboratory and field. Internal tag retention was high (75-100%), and tag rejection occurred primarily during the first 3 wk after tagging. A thin layer of nacre coated internal tags 3 to 4 mo after insertion, suggesting that long-term retention is likely. We released mussels with external PIT tags at 3 field study sites and recaptured them with a PIT pack (mobile interrogation unit) 8 to 10 mo and 21 to 23 mo after release. Numbers of recaptured mussels differed among study sites; however, we found more tagged mussels with the PIT-pack searches with visual confirmation (72-80%) than with visual searches alone (30-47%) at all sites. PIT tags offer improved recapture of translocated mussels and increased accuracy of posttranslocation monitoring. ?? 2007 by The North American Benthological Society.

  10. Threats of habitat and water-quality degradation to mussel diversity in the Meramec River Basin, Missouri, USA

    USGS Publications Warehouse

    Hinck, Jo Ellen; Ingersoll, Christopher G.; Wang, Ning; Augspurger, Tom; Barnhart, M. Christopher; McMurray, Stephen E.; Roberts, Andrew D.; Schrader, Lynn

    2011-01-01

    The Meramec River Basin in east-central Missouri is an important stronghold for native freshwater mussels (Order: Unionoida) in the United States. Whereas the basin supports more than 40 mussel species, previous studies indicate that the abundance and distribution of most species are declining. Therefore, resource managers have identified the need to prioritize threats to native mussel populations in the basin and to design a mussel monitoring program. The objective of this study was to identify threats of habitat and water-quality degradation to mussel diversity in the basin. Affected habitat parameters considered as the main threats to mussel conservation included excess sedimentation, altered stream geomorphology and flow, effects on riparian vegetation and condition, impoundments, and invasive non-native species. Evaluating water-quality parameters for conserving mussels was a main focus of this study. Mussel toxicity data for chemical contaminants were compared to national water quality criteria (NWQC) and Missouri water quality standards (MWQS). However, NWQC and MWQS have not been developed for many chemical contaminants and some MWQS may not be protective of native mussel populations. Toxicity data indicated that mussels are sensitive to ammonia, copper, temperature, certain pesticides, pharmaceuticals, and personal care products; these compounds were identified as the priority water-quality parameters for mussel conservation in the basin. Measures to conserve mussel diversity in the basin include expanding the species and life stages of mussels and the list of chemical contaminants that have been assessed, establishing a long term mussel monitoring program that measures physical and chemical parameters of high priority, conducting landscape scale modeling to predict mussel distributions, determining sublethal effects of primary contaminants of concern, deriving risk-based guidance values for mussel conservation, and assessing the effects of wastewater

  11. Spatial and temporal trends of freshwater mussel assemblages in the Meramec River Basin, Missouri, USA

    USGS Publications Warehouse

    Hinck, Jo Ellen; McMurray, Stephen E.; Roberts, Andrew D.; Barnhart, M. Christopher; Ingersoll, Christopher G.; Wang, Ning; Augspurger, Tom

    2012-01-01

    The Meramec River basin in east-central Missouri has one of the most diverse unionoid mussel faunas in the central United States with >40 species identified. Data were analyzed from historical surveys to test whether diversity and abundance of mussels in the Meramec River basin (Big, Bourbeuse, and Meramec rivers, representing >400 river miles) decreased between 1978 and 1997. We found that over 20y, species richness and diversity decreased significantly in the Bourbeuse and Meramec rivers but not in the Big River. Most species were found at fewer sites and in lower numbers in 1997 than in 1978. Federally endangered species and Missouri Species of Conservation Concern with the most severe temporal declines were Alasmidonta viridis, Arcidens confragosus, Elliptio crassidens, Epioblasma triquetra, Fusconaia ebena, Lampsilis abrupta, Lampsilis brittsi, and Simpsonaias ambigua. Averaged across all species, mussels were generally being extirpated from historical sampling sites more rapidly than colonization was occurring. An exception was one reach of the Meramec River between river miles 28.4 and 59.5, where mussel abundance and diversity were greater than in other reaches and where colonization of Margaritiferidae, Lampsilini, and Quadrulini exceeded extirpation. The exact reasons mussel diversity and abundance have remained robust in this 30- mile reach is uncertain, but the reach is associated with increased gradients, few long pools, and vertical rock faces, all of which are preferable for mussels. Complete loss of mussel communities at eight sites (16%) with relatively diverse historical assemblages was attributed to physical habitat changes including bank erosion, unstable substrate, and sedimentation. Mussel conservation efforts, including restoring and protecting riparian habitats, limiting the effects of in-stream sand and gravel mining, monitoring and controlling invasive species, and protecting water quality, may be warranted in the Meramec River basin.

  12. Digestive physiology comparisons of aquatic invertebrates in the Upper Mississippi River Basin

    USGS Publications Warehouse

    Sauey, Blake W.; Amberg, Jon J.; Cooper, Scott T.; Grunwald, Sandra K.; Haro, Roger J.; Gaikowski, Mark

    2016-01-01

    Limited information is available on the composition of digestive enzymes present in unionid mussels and the zebra mussel, Dreissena polymorpha. Available information is nearly exclusive to species used for culture purposes. A commercially available enzyme assay kit was used to examine the effect of habitat within an ecosystem, season, and species on the activities of several digestive enzymes. We used Amblema plicata to represent native unionids, D. polymorpha, and also Hydropsyche orris as an outgroup to compare differences between mussels and other macroinvertebrates. The data indicated that neither location nor time affect the activities of the digestive enzymes tested; species was the only factor to affect the activity. Differences were found mostly between four enzymes: naphthol-AS-BI-phosphohydrolase, acid phosphatase, alkaline phosphatase, and β-galactosidase.

  13. Evaluation of relocation of unionid mussels to in situ refugia

    USGS Publications Warehouse

    Cope, W.G.; Hove, M.C.; Waller, D.L.; Hornbach, D.J.; Bartsch, M.R.; Cunningham, L.A.; Dunn, H.L.; Kapuscinski, A.R.

    2003-01-01

    The aim of this study was to evaluate the recovery and survival of four species of unionid mussles [pimpleback, Quadrula pustulosa pustulosa (I. Lea, 1831); spike, Elliptio dilatata (Rafinesque, 1820); Higgins eye, Lampsilis higginsii (I. Lea, 1857); and pocketbook, Lampsilis cardium (Rafinesque, 1820)] that were experimentally relocated to in situ refugia in the St Croix River of Minnesota and Wisconsin, USA. In 1996, 150 mussels of each of the first three species (450 total) were relocated to three 5 x 5 m study grids (Site A), one near Lakeland, Minnesota, which served as a source-site control, and two in the experimental refuge 48 km upstream, near Franconia, Minnesota. In a second relocation in 1997, L. Cardium was substituted for L. Higginsii and 150 mussels of this and each of the other two species (450 total), were relocated to two study grids (Site B). The source site control was near Sunrise, Minnesota and the experimental refuge was 14 km downstream near Almelund, Minnesota. Mussel recovery, survival and substratum characteristics were evaluated annually at Site A for 2 years and for 3 years at Site B. Mean annual recovery of all three species ranged from 90 to 100% at Site A, and from 34 to 70% at site B. The mean annual survival of recaptured mussels ranged from 85 to 100% at Site A, and from 88 to 100% at Site B. The textural characteristics of the substratum differed significantly between the control and the two refuge locations at the beginning of the study, but did not differ from this initial status among subsequent years at Site A. At Site B, there was a significant shift in textural characteristics from large to smaller fractions over the four years. The relatively high survival of mussels during this study demonstrates the importance of proper handling and transport protocols when relocating mussels and the selection of suitable relocation habitat with stable substratum. When established correctly, in situ refugia may be a viable tool for

  14. Evaluation of relocation of unionid mussels to in situ refugia

    USGS Publications Warehouse

    Cope, W.G.; Hove, M.C.; Waller, D.L.; Hornbach, D.J.; Bartsch, M.R.; Cunningham, L.A.; Dunn, H.L.; Kapuscinski, A.R.

    2003-01-01

    The aim of this study was to evaluate the recovery and survival of four species of unionid mussles [pimpleback, Quadrula pustulosa pustulosa (I. Lea, 1831); spike, Elliptio dilatata (Rafinesque, 1820); Higgins eye, Lampsilis higginsii (I. Lea, 1857); and pocketbook, Lampsilis cardium (Rafinesque, 1820)] that were experimentally relocated to in situ refugia in the St Croix River of Minnesota and Wisconsin, USA. In 1996, 150 mussels of each of the first three species (450 total) were relocated to three 5 ?? 5 m study grids (Site A), one near Lakeland, Minnesota, which served as a source-site control, and two in the experimental refuge 48 km upstream, near Franconia, Minnesota. In a second relocation in 1997, L. cardium was substituted for L. higginsii and 150 mussels of this and each of the other two species (450 total), were relocated to two study grids (Site B). The source site control was near Sunrise, Minnesota and the experimental refuge was 14 km downstream near Almelund, Minnesota. Mussel recovery, survival and substratum characteristics were evaluated annually at Site A for 2 years and for 3 years at Site B. Mean annual recovery of all three species ranged from 90 to 100% at Site A, and from 34 to 70% at site B. The mean annual survival of recaptured mussels ranged from 85 to 100% at Site A, and from 88 to 100% at Site B. The textural characteristics of the substratum differed significantly between the control and the two refuge locations at the beginning of the study, but did not differ from this initial status among subsequent years at Site A. At Site B, there was a significant shift in textural characteristics from large to smaller fractions over the four years. The relatively high survival of mussels during this study demonstrates the importance of proper handling and transport protocols when relocating mussels and the selection of suitable relocation habitat with stable substratum. When established correctly, in situ refugia may be a viable tool for

  15. An evaluation of freshwater mussel toxicity data in the derivation of water quality guidance and standards for copper

    USGS Publications Warehouse

    March, F.A.; Dwyer, F.J.; Augspurger, T.; Ingersoll, C.G.; Wang, N.; Mebane, C.A.

    2007-01-01

    The state of Oklahoma has designated several areas as freshwater mussel sanctuaries in an attempt to provide freshwater mussel species a degree of protection and to facilitate their reproduction. We evaluated the protection afforded freshwater mussels by the U.S. Environmental Protection Agency (U.S. EPA) hardness-based 1996 ambient copper water quality criteria, the 2007 U.S. EPA water quality criteria based on the biotic ligand model and the 2005 state of Oklahoma copper water quality standards. Both the criterion maximum concentration and criterion continuous concentration were evaluated. Published acute and chronic copper toxicity data that met American Society for Testing and Materials guidance for test acceptability were obtained for exposures conducted with glochidia or juvenile freshwater mussels. We tabulated toxicity data for glochidia and juveniles to calculate 20 species mean acute values for freshwater mussels. Generally, freshwater mussel species mean acute values were similar to those of the more sensitive species included in the U.S. EPA water quality derivation database. When added to the database of genus mean acute values used in deriving 1996 copper water quality criteria, 14 freshwater mussel genus mean acute values included 10 of the lowest 15 genus mean acute values, with three mussel species having the lowest values. Chronic exposure and sublethal effects freshwater mussel data available for four species and acute to chronic ratios were used to evaluate the criterion continuous concentration. On the basis of the freshwater mussel toxicity data used in this assessment, the hardness-based 1996 U.S. EPA water quality criteria, the 2005 Oklahoma water quality standards, and the 2007 U.S. EPA water quality criteria based on the biotic ligand model might need to be revised to afford protection to freshwater mussels. ?? 2007 SETAC.

  16. Advances and opportunities in assessing contaminant sensitivity of freshwater mussel (unionidae) early life stages

    USGS Publications Warehouse

    Augspurger, T; Dwyer, F.J.; Ingersoll, C.G.; Kane, C.M.

    2007-01-01

    Freshwater mussels (family Unionidae, also referred to as freshwater pearly mussels, unionids, or naiades) are one of North America’s most endangered faunal groups. Near unanimity exists in characterizations of the imperilment of these ecologically, economically, and culturally important bivalve mollusks. Freshwater mussels are a renewable resource supporting a shell industry in the United States valued at $40–50 million annually [1]. In addition to being a food source for aquatic and terrestrial vertebrates, this diverse fauna helps stabilize sediment [2] and provides critical nutrient and energy cycling in streams and lakes by filtering phytoplankton, bacteria, and particulate organic matter from the water column [3]. Thirty-five species of freshwater mussels are extinct [4], 70 species are listed as threatened or endangered under the U.S. Endangered Species Act (www.fws.gov/endangered/wildlife.html), and nearly 180 species are identified as critically imperiled or vulnerable (www.natureserve.org/explorer). Declines in freshwater mussels are not unique to North America [5], but because the taxon reaches its greatest richness here, impacts are especially noteworthy.

  17. Proximate and fatty acid composition of zebra (Equus quagga burchellii) muscle and subcutaneous fat.

    PubMed

    Hoffman, Louwrens C; Geldenhuys, Greta; Cawthorn, Donna-Mareè

    2016-08-01

    The meat from African game species is healthy, naturally produced and increasingly popular with consumers. Among these species, zebra (Equus quagga burchellii) are growing in number in South Africa, with the meat from surplus animals holding potential to contribute to food security and economic stability. Despite being consumed locally and globally, little information exists on the composition of zebra meat. This study aimed to determine the proximate composition of zebra meat as well as the fatty acid composition of the intramuscular (IMF) and subcutaneous (SCF) fat. Zebra longissimus lumborum muscle was shown to have a high mean protein content (22.29 g per 100 g) and low mean fat content (1.47 g per 100 g). High proportions of polyunsaturated fatty acids (PUFAs) were found in the IMF (41.15%) and SCF (37.71%), mainly comprising α-linolenic (C18:3n-3) and linoleic (C18:2n-6) acids. Furthermore, the IMF and SCF had favourable PUFA/saturated fatty acid ratios (>0.4) and omega-6/omega-3 ratios (<4), indicating that both components are healthy lipid food sources. This study has shed new light on the nutritional value of zebra meat, which will not only be important for food product labelling, nutritional education and incorporation into food composition databases, but will also be indispensable for marketing and export purposes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Current Distributional Information on Freshwater Mussels (family Unionidae) in Mississippi National Forests

    Treesearch

    Wendell R. Haag; Melvin L. Warren

    1995-01-01

    Little is known about the distribution of freshwater mussels in Mississippi national forests. Review of the scant available information revealed that the national forests harbor a diverse mussel fauna of possibly 46 or more species (including confirmed, probable, and potential occurrences). Occurrence of 33 species is confirmed. Because of the geographic, physiographic...

  19. Discrimination of Mediterranean mussel (Mytilus galloprovincialis) feces in deposited materials by fecal morphology.

    PubMed

    Akiyama, Yoshihiro B; Iseri, Erina; Kataoka, Tomoya; Tanaka, Makiko; Katsukoshi, Kiyonori; Moki, Hirotada; Naito, Ryoji; Hem, Ramrav; Okada, Tomonari

    2017-02-15

    In the present study, we determined the common morphological characteristics of the feces of Mytilus galloprovincialis to develop a method for visually discriminating the feces of this mussel in deposited materials. This method can be used to assess the effect of mussel feces on benthic environments. The accuracy of visual morphology-based discrimination of mussel feces in deposited materials was confirmed by DNA analysis. Eighty-nine percent of mussel feces shared five common morphological characteristics. Of the 372 animal species investigated, only four species shared all five of these characteristics. More than 96% of the samples were visually identified as M. galloprovincialis feces on the basis of morphology of the particles containing the appropriate mitochondrial DNA. These results suggest that mussel feces can be discriminated with high accuracy on the basis of their morphological characteristics. Thus, our method can be used to quantitatively assess the effect of mussel feces on local benthic environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Transcriptomic Profiling of Differential Responses to Drought in Two Freshwater Mussel Species, the Giant Floater Pyganodon grandis and the Pondhorn Uniomerus tetralasmus

    PubMed Central

    Landis, Andrew Gascho; Wang, Guiling; Stoeckel, James; Peatman, Eric

    2014-01-01

    The southeastern US has experienced recurrent drought during recent decades. Increasing demand for water, as precipitation decreases, exacerbates stress on the aquatic biota of the Southeast: a global hotspot for freshwater mussel, crayfish, and fish diversity. Freshwater unionid mussels are ideal candidates to study linkages between ecophysiological and behavioral responses to drought. Previous work on co-occurring mussel species suggests a coupling of physiology and behavior along a gradient ranging from intolerant species such as Pyganodon grandis (giant floater) that track receding waters and rarely burrow in the substrates to tolerant species such as Uniomerus tetralasmus (pondhorn) that rarely track receding waters, but readily burrow into the drying sediments. We utilized a next-generation sequencing-based RNA-Seq approach to examine heat/desiccation-induced transcriptomic profiles of these two species in order to identify linkages between patterns of gene expression, physiology and behavior. Sequencing produced over 425 million 100 bp reads. Using the de novo assembly package Trinity, we assembled the short reads into 321,250 contigs from giant floater (average length 835 bp) and 385,735 contigs from pondhorn (average length 929 bp). BLAST-based annotation and gene expression analysis revealed 2,832 differentially expressed genes in giant floater and 2,758 differentially expressed genes in pondhorn. Trancriptomic responses included changes in molecular chaperones, oxidative stress profiles, cell cycling, energy metabolism, immunity, and cytoskeletal rearrangements. Comparative analyses between species indicated significantly higher induction of molecular chaperones and cytoskeletal elements in the intolerant P. grandis as well as important differences in genes regulating apoptosis and immunity. PMID:24586812

  1. Toward a global information system for invasive species

    USGS Publications Warehouse

    Ricciardi, Anthony; Steiner, William W.M.; Mack, Richard N.; Simberloff, Daniel

    2000-01-01

    The growing frequency and impact of biological invasions worldwide threaten biodiversity, ecosystem functioning, resource availability, national economies, and human health (Ruesink et al. 1995, Simberloff 1996, Vitousek et al. 1997). Organisms are spreading into new regions at unprecedented rates. As a result, hundreds to thousands of nonindigenous species of invertebrates, vertebrates, plants, bacteria, and fungi have become established in all but the most remote areas of the planet (Vitousek et al. 1997). Recent examples are abundant and, in some cases, alarming. Cholera bacteria and toxic dinoflagellates have been discovered in the ballast waters of cargo ships (McCarthy and Khambaty 1994, Hallegraeff 1998). Asian tiger mosquitos—vectors of yellow fever and encephalitis—have spread to new continents in imported truck tires (Moore et al. 1988). Pasture and crop lands in Australia are being invaded by Parthenium, an aggressive Caribbean weed that causes severe allergic reactions in livestock and humans (Evans 1997). Rapid and widespread dieoffs of native freshwater mussels are occurring in the wake of the zebra mussel invasion in North America (Ricciardi et al. 1998). [[AQ4]Hardwood trees in American cities are being killed by Asian long-horned beetles introduced with wooden packing crates (Haack et al. 1997).

  2. Role of ecological factors and reproductive strategies in structuring freshwater mussel communities

    Treesearch

    Wendell R. Haag; Melvin L. Warren

    1998-01-01

    Freshwater mussel community composition within two drainage basins in Alabama, U.S.A., was better explained by patterns of variability in the fish community and the type of strategy used by mussels for infecting host-fishes than by patterns of variability in microhabitat. Mussel species richness increased in a downstream direction, and large-stream sites were...

  3. Acute sensitivity of a broad range of freshwater mussels to chemicals with different modes of toxic action.

    PubMed

    Wang, Ning; Ivey, Christopher D; Ingersoll, Christopher G; Brumbaugh, William G; Alvarez, David; Hammer, Edward J; Bauer, Candice R; Augspurger, Tom; Raimondo, Sandy; Barnhart, M Christopher

    2017-03-01

    Freshwater mussels, one of the most imperiled groups of animals in the world, are generally underrepresented in toxicity databases used for the development of ambient water quality criteria and other environmental guidance values. Acute 96-h toxicity tests were conducted to evaluate the sensitivity of 5 species of juvenile mussels from 2 families and 4 tribes to 10 chemicals (ammonia, metals, major ions, and organic compounds) and to screen 10 additional chemicals (mainly organic compounds) with a commonly tested mussel species, fatmucket (Lampsilis siliquoidea). In the multi-species study, median effect concentrations (EC50s) among the 5 species differed by a factor of ≤2 for chloride, potassium, sulfate, and zinc; a factor of ≤5 for ammonia, chromium, copper, and nickel; and factors of 6 and 12 for metolachlor and alachlor, respectively, indicating that mussels representing different families or tribes had similar sensitivity to most of the tested chemicals, regardless of modes of action. There was a strong linear relationship between EC50s for fatmucket and the other 4 mussel species across the 10 chemicals (r 2  = 0.97, slope close to 1.0), indicating that fatmucket was similar to other mussel species; thus, this commonly tested species can be a good surrogate for protecting other mussels in acute exposures. The sensitivity of juvenile fatmucket among different populations or cultured from larvae of wild adults and captive-cultured adults was also similar in acute exposures to copper or chloride, indicating captive-cultured adult mussels can reliably be used to reproduce juveniles for toxicity testing. In compiled databases for all freshwater species, 1 or more mussel species were among the 4 most sensitive species for alachlor, ammonia, chloride, potassium, sulfate, copper, nickel, and zinc; therefore, the development of water quality criteria and other environmental guidance values for these chemicals should reflect the sensitivity of mussels. In

  4. Hydrology and grazing jointly control a large-river food web.

    PubMed

    Strayer, David L; Pace, Michael L; Caraco, Nina F; Cole, Jonathan J; Findlay, Stuart E G

    2008-01-01

    Inputs of fresh water and grazing both can control aquatic food webs, but little is known about the relative strengths of and interactions between these controls. We use long-term data on the food web of the freshwater Hudson River estuary to investigate the importance of, and interactions between, inputs of fresh water and grazing by the invasive zebra mussel (Dreissena polymorpha). Both freshwater inputs and zebra mussel grazing have strong, pervasive effects on the Hudson River food web. High flow tended to reduce population size in most parts of the food web. High grazing also reduced populations in the planktonic food web, but increased populations in the littoral food web, probably as a result of increases in water clarity. The influences of flow and zebra mussel grazing were roughly equal (i.e., within a factor of 2) for many variables over the period of our study. Zebra mussel grazing made phytoplankton less sensitive to freshwater inputs, but water clarity and the littoral food web more sensitive to freshwater inputs, showing that interactions between these two controlling factors can be strong and varied.

  5. Upper thermal tolerances of early life stages of freshwater mussels

    USGS Publications Warehouse

    Pandolfo, Tamara J.; Cope, W. Gregory; Arellano, Consuelo; Bringolf, Robert B.; Barnhart, M. Christopher; Hammer, E

    2010-01-01

    Freshwater mussels (order Unioniformes) fulfill an essential role in benthic aquatic communities, but also are among the most sensitive and rapidly declining faunal groups in North America. Rising water temperatures, caused by global climate change, industrial discharges, drought, or land development, could further challenge imperiled unionid communities. The aim of our study was to determine the upper thermal tolerances of the larval (glochidia) and juvenile life stages of freshwater mussels. Glochidia of 8 species of mussels were tested: Lampsilis siliquoidea, Potamilus alatus, Ligumia recta, Ellipsaria lineolata,Lasmigona complanata, Megalonaias nervosa, Alasmidonta varicosa, and Villosa delumbis. Seven of these species also were tested as juveniles. Survival trends were monitored while mussels held at 3 acclimation temperatures (17, 22, and 27°C) were exposed to a range of common and extreme water temperatures (20–42°C) in standard acute laboratory tests. The average median lethal temperature (LT50) among species in 24-h tests with glochidia was 31.6°C and ranged from 21.4 to 42.7°C. The mean LT50 in 96-h juvenile tests was 34.7°C and ranged from 32.5 to 38.8°C. Based on comparisons of LT50s, thermal tolerances differed among species for glochidia, but not for juveniles. Acclimation temperature did not affect thermal tolerance for either life stage. Our results indicate that freshwater mussels already might be living close to their upper thermal tolerances in some systems and, thus, might be at risk from rising environmental temperatures.

  6. Effects of light and presence of fish on lure display and larval release behaviours in two species of freshwater mussels

    Treesearch

    Wendell R. Haag; Melvin L. Warren

    2000-01-01

    We investigated how two sympatric species of freshwater mussels transmit their parasitic larvae to fish hosts. We found that Villosa nebulosa and V. vibex both display large mantle lures to attract potential host fish, but V. nebulosa displayed only at night and V....

  7. Widespread introgression in deep-sea hydrothermal vent mussels.

    PubMed

    Breusing, Corinna; Vrijenhoek, Robert C; Reusch, Thorsten B H

    2017-01-13

    The analysis of hybrid zones is crucial for gaining a mechanistic understanding of the process of speciation and the maintenance of species boundaries. Hybrid zones have been studied intensively in terrestrial and shallow-water ecosystems, but very little is known about their occurrence in deep-sea environments. Here we used diagnostic, single nucleotide polymorphisms in combination with one mitochondrial gene to re-examine prior hypotheses about a contact zone involving deep-sea hydrothermal vent mussels, Bathymodiolus azoricus and B. puteoserpentis, living along the Mid-Atlantic Ridge. Admixture was found to be asymmetric with respect to the parental species, while introgression was more widespread geographically than previously recognized. Admixed individuals with a majority of alleles from one of the parental species were most frequent in habitats corresponding to that species. Mussels found at a geographically intermediate vent field constituted a genetically mixed population that showed no evidence for hybrid incompatibilities, a finding that does not support a previously inferred tension zone model. Our analyses indicate that B. azoricus and B. puteoserpentis hybridize introgressively across a large geographic area without evidence for general hybrid incompatibilities. While these findings shed new light onto the genetic structure of this hybrid zone, many aspects about its nature still remain obscure. Our study sets a baseline for further research that should primarily focus on the acquisition of additional mussel samples and environmental data, a detailed exploration of vent areas and hidden populations as well as genomic analyses in both mussel hosts and their bacterial symbionts.

  8. Invasive plant species: Inventory, mapping, and monitoring - A national strategy

    USGS Publications Warehouse

    Ludke, J. Larry; D'Erchia, Frank; Coffelt, Jan; Hanson, Leanne

    2002-01-01

    America is under siege by invasive species of plants and animals, and by diseases. The current environmental, economic, and health-related costs of invasive species could exceed $138 billion per year-more than all other natural disasters combined. Notorious examples include West Nile virus, Dutch elm disease, chestnut blight, and purple loose- strife in the Northeast; kudzu, Brazilian peppertree, water hyacinth, nutria, and fire ants in the Southeast; zebra mussels, leafy spurge, and Asian long-horn beetles in the Midwest; salt cedar, Russian olive, and Africanized bees in the Southwest; yellow star thistle, European wild oats, oak wilt disease, Asian clams, and white pine blister rust in California; cheatgrass, various knapweeds, and thistles in the Great Basin; whirling disease of salmonids in the Northwest; hundreds of invasive species from microbes to mammals in Hawaii; and the brown tree snake in Guam. Thousands of species from other countries are introduced intentionally or accidentally into the United States each year. Based on past experience, 10-15 percent can be expected to establish free-living populations and about 1 percent can be expected to cause significant impacts to ecosystems, native species, economic productivity, and (or) human health.

  9. Housing conditions and sacrifice protocol affect neural activity and vocal behavior in a songbird species, the zebra finch (Taeniopygia guttata).

    PubMed

    Elie, Julie Estelle; Soula, Hédi Antoine; Trouvé, Colette; Mathevon, Nicolas; Vignal, Clémentine

    2015-12-01

    Individual cages represent a widely used housing condition in laboratories. This isolation represents an impoverished physical and social environment in gregarious animals. It prevents animals from socializing, even when auditory and visual contact is maintained. Zebra finches are colonial songbirds that are widely used as laboratory animals for the study of vocal communication from brain to behavior. In this study, we investigated the effect of single housing on the vocal behavior and the brain activity of male zebra finches (Taeniopygia guttata): male birds housed in individual cages were compared to freely interacting male birds housed as a social group in a communal cage. We focused on the activity of septo-hypothalamic regions of the "social behavior network" (SBN), a set of limbic regions involved in several social behaviors in vertebrates. The activity of four structures of the SBN (BSTm, medial bed nucleus of the stria terminalis; POM, medial preoptic area; lateral septum; ventromedial hypothalamus) and one associated region (paraventricular nucleus of the hypothalamus) was assessed using immunoreactive nuclei density of the immediate early gene Zenk (egr-1). We further assessed the identity of active cell populations by labeling vasotocin (VT). Brain activity was related to behavioral activities of birds like physical and vocal interactions. We showed that individual housing modifies vocal exchanges between birds compared to communal housing. This is of particular importance in the zebra finch, a model species for the study of vocal communication. In addition, a protocol that daily removes one or two birds from the group affects differently male zebra finches depending of their housing conditions: while communally-housed males changed their vocal output, brains of individually housed males show increased Zenk labeling in non-VT cells of the BSTm and enhanced correlation of Zenk-revealed activity between the studied structures. These results show that

  10. Variation in fecundity and other reproductive traits in freshwater mussels

    Treesearch

    Wendell R. Haag; J. Leann Staton

    2003-01-01

    1. Life histories of the highly diverse and endangered North American freshwater mussel fauna are poorly known. We investigated reproductive traits of eight riverine mussel species in Alabama and Mississippi, U.S.A.: Amblema plicata, Elliptio arca, Fusconaia cerina, Lampsilis ornata, Obliquaria reflexa, Pleurobema decisum, Quadrula asperata and

  11. North American freshwater mussels: natural history, ecology, and conservation

    Treesearch

    Wendell R. Haag

    2012-01-01

    Interest in freshwater mussels is growing for two important reasons. First, freshwater mussels are among the most endangered organisms on Earth, and many species are already extinct or face imminent extinction. Their desperate conservation plight has gained intense interest from natural resource agencies, nongovernmental conservation organizations, academia, and...

  12. Freshwater mussel response to bedform movement: experimental stream studies

    NASA Astrophysics Data System (ADS)

    Kozarek, J. L.; MacGregor, K. R.; Hornbach, D.; Hove, M.

    2017-12-01

    Freshwater mussels are intrinsically linked to near-bed sediment dynamics, but it remains unclear how mussels respond to changing sediment loads across spatial and temporal scales. The interactions between mussels and sediment transport are complex and often involve feedback loops. Mussels are filter feeders removing suspended particles from the water column and the physical presence of mussels can have significant impacts on the structure of riverbed habitat. We investigated the feedbacks between mussels, flow, and migrating bedforms during flood experiments in the St. Anthony Falls Laboratory Outdoor StreamLab (OSL) at the University of Minnesota. The OSL is a field-scale sand-bed meandering stream channel with independent control over sediment feed (recirculated) and water flow (diverted from the Mississippi River). Mussel location, orientation to flow, and protrusion from sediment was surveyed immediately before, after, and one and two days after each flood event. Flow fields, bed shear stress, bedform migration, and bar topography were measured during each flooding event with and without mussels present (density = 4/m2 and 8/m2) to quantify the influence of mussels on channel morphology and bedform migration. Mobile bedforms (up to 14 cm high) were present for all flood events with quasi-equilibrium, aggrading, and degrading bed conditions. Mussels moved little horizontally during all flood events, but were shown to move quickly to deeper water after the flood receded. However, mussels moved vertically, burrowing or being buried under mobile bedforms, during each flood event. The research presented here will focus on feedbacks between three mussel species with different shell sculptures, flow conditions, and migrating bedforms during flooding events. These results reveal how freshwater mussels respond to and affect flow and sediment transport during flood events that are difficult to observe in the field.

  13. A new species of freshwater mussel (Bivalvia: Unionidae), Pleurobema athearni, from the Coosa River Drainage of Alabama, USA

    USGS Publications Warehouse

    Gangloff, M.M.; Williams, J.D.; Feminella, J.W.

    2006-01-01

    The Mobile Basin historically supported one of the most diverse freshwater mussel (Bivalvia: Unionidae) assemblages in North America. More than 65 species of mussels are known from the Basin, but it is difficult to determine how many species were present historically. The drainage's unique physical habitat was largely destroyed between the late 1800s and mid-1900s by impoundment and channel modifications of most of the larger rivers. Many species that were once common are now restricted to small headwater rivers and mid-sized tributaries. Recent Coosa River tributary surveys revealed a new, undescribed species of Pleurobema. This new species, Pleurobema athearni, is distinctive in outward appearance, shell morphometry and reproductive morphology, and can be distinguished from other Coosa River drainage unionids. Our analysis indicates that P. athearni is morphologically different from other similar taxa. It differs both in shell width/length and width/height ratios and thus provides a simple, quantitative means to differentiate this species from P. georgianum (Lea, 1841) Fusconaia barnesiana (Lea, 1838), and F. cerina (Conrad, 1838), which it superficially resembles and that also occur in the area. Our morphological diagnosis of this species is supported by recent molecular analyses that suggest this species is a Pleurobema and one closely related to other endemic Coosa River drainage unionids. The discovery of a new species of large, long-lived macroinvertebrate from a relatively well-sampled drainage in a populated region of the southeast United States underscores the need for more detailed surveys in isolated stretches of tributary streams. It should also serve as a reminder that almost 40 species of aquatic mollusks have been extirpated from the Mobile Basin before anything could be learned about their habitat or life history requirements. Copyright ?? 2006 Magnolia Press.

  14. Similar but Different: Dynamic Social Network Analysis Highlights Fundamental Differences between the Fission-Fusion Societies of Two Equid Species, the Onager and Grevy’s Zebra

    PubMed Central

    Rubenstein, Daniel I.; Sundaresan, Siva R.; Fischhoff, Ilya R.; Tantipathananandh, Chayant; Berger-Wolf, Tanya Y.

    2015-01-01

    Understanding why animal societies take on the form that they do has benefited from insights gained by applying social network analysis to patterns of individual associations. Such analyses typically aggregate data over long time periods even though most selective forces that shape sociality have strong temporal elements. By explicitly incorporating the temporal signal in social interaction data we re-examine the network dynamics of the social systems of the evolutionarily closely-related Grevy’s zebras and wild asses that show broadly similar social organizations. By identifying dynamic communities, previously hidden differences emerge: Grevy’s zebras show more modularity than wild asses and in wild asses most communities consist of solitary individuals; and in Grevy’s zebras, lactating females show a greater propensity to switch communities than non-lactating females and males. Both patterns were missed by static network analyses and in general, adding a temporal dimension provides insights into differences associated with the size and persistence of communities as well as the frequency and synchrony of their formation. Dynamic network analysis provides insights into the functional significance of these social differences and highlights the way dynamic community analysis can be applied to other species. PMID:26488598

  15. Pervasive hydrologic effects on freshwater mussels and riparian trees in southeastern floodplain ecosystems

    Treesearch

    Andrew L. Rypel; Wendell R. Haag; Robert H. Findlay

    2009-01-01

    We present long-term growth trends for 13 freshwater mussel species from two unregulated rivers and one regulated river in the southeastern U.S. Coastal Plain. We also collected baldcypress (Taxodium distichum (L.) Rich.) tree cores adjacent to mussel collection sites in one river and directly compared tree and mussel chronologies in this river. To extend our analysis...

  16. Sex bias and dosage compensation in the zebra finch versus chicken genomes: General and specialized patterns among birds

    PubMed Central

    Itoh, Yuichiro; Replogle, Kirstin; Kim, Yong-Hwan; Wade, Juli; Clayton, David F.; Arnold, Arthur P.

    2010-01-01

    We compared global patterns of gene expression between two bird species, the chicken and zebra finch, with regard to sex bias of autosomal versus Z chromosome genes, dosage compensation, and evolution of sex bias. Both species appear to lack a Z chromosome–wide mechanism of dosage compensation, because both have a similar pattern of significantly higher expression of Z genes in males relative to females. Unlike the chicken Z chromosome, which has female-specific expression of the noncoding RNA MHM (male hypermethylated) and acetylation of histone 4 lysine 16 (H4K16) near MHM, the zebra finch Z chromosome appears to lack the MHM sequence and acetylation of H4K16. The zebra finch also does not show the reduced male-to-female (M:F) ratio of gene expression near MHM similar to that found in the chicken. Although the M:F ratios of Z chromosome gene expression are similar across tissues and ages within each species, they differ between the two species. Z genes showing the greatest species difference in M:F ratio were concentrated near the MHM region of the chicken Z chromosome. This study shows that the zebra finch differs from the chicken because it lacks a specialized region of greater dosage compensation along the Z chromosome, and shows other differences in sex bias. These patterns suggest that different avian taxa may have evolved specific compensatory mechanisms. PMID:20357053

  17. Full genome sequences of zebra-borne equine herpesvirus type 1 isolated from zebra, onager and Thomson's gazelle.

    PubMed

    Guo, Xiaoqin; Izume, Satoko; Okada, Ayaka; Ohya, Kenji; Kimura, Takashi; Fukushi, Hideto

    2014-09-01

    A strain of equine herpesvirus type 1 (EHV-1) was isolated from zebra. This strain, called "zebra-borne EHV-1", was also isolated from an onager and a gazelle in zoological gardens in U.S.A. The full genome sequences of the 3 strains were determined. They shared 99% identities with each other, while they shared 98% and 95% identities with the horse derived EHV-1 and equine herpesvirus type 9, respectively. Sequence data indicated that the EHV-1 isolated from a polar bear in Germany is one of the zebra-borne EHV-1 and not a recombinant virus. These results indicated that zebra-borne EHV-1 is a subtype of EHV-1.

  18. The extremely divergent maternally- and paternally-transmitted mitochondrial genomes are co-expressed in somatic tissues of two freshwater mussel species with doubly uniparental inheritance of mtDNA

    USGS Publications Warehouse

    Breton, Sophie; Bouvet, Karim; Auclair, Gabrielle; Ghazal, Stephanie; Sietman, Bernard E.; Johnson, Nathan A.; Bettinazzi, Stefano; Dtewart, Donald T.; Guerra, Davide

    2017-01-01

    Freshwater mussel species with doubly uniparental inheritance (DUI) of mtDNA are unique because they are naturally heteroplasmic for two extremely divergent mtDNAs with ~50% amino acid differences for protein-coding genes. The paternally-transmitted mtDNA (or M mtDNA) clearly functions in sperm in these species, but it is still unknown whether it is transcribed when present in male or female soma. In the present study, we used PCR and RT-PCR to detect the presence and expression of the M mtDNA in male and female somatic and gonadal tissues of the freshwater mussel species Venustaconcha ellipsiformis and Utterbackia peninsularis (Unionidae). This is the first study demonstrating that the M mtDNA is transcribed not only in male gonads, but also in male and female soma in freshwater mussels with DUI. Because of the potentially deleterious nature of heteroplasmy, we suggest the existence of different mechanisms in DUI species to deal with this possibly harmful situation, such as silencing mechanisms for the M mtDNA at the transcriptional, post-transcriptional and/or post-translational levels. These hypotheses will necessitate additional studies in distantly-related DUI species that could possess different mechanisms of action to deal with heteroplasmy.

  19. Gene duplication and fragmentation in the zebra finch major histocompatibility complex

    PubMed Central

    2010-01-01

    Background Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. Results The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. Conclusion The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene

  20. Gene duplication and fragmentation in the zebra finch major histocompatibility complex.

    PubMed

    Balakrishnan, Christopher N; Ekblom, Robert; Völker, Martin; Westerdahl, Helena; Godinez, Ricardo; Kotkiewicz, Holly; Burt, David W; Graves, Tina; Griffin, Darren K; Warren, Wesley C; Edwards, Scott V

    2010-04-01

    Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the

  1. An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species.

    PubMed

    Leung, Brian; Lodge, David M; Finnoff, David; Shogren, Jason F; Lewis, Mark A; Lamberti, Gary

    2002-12-07

    Numbers of non-indigenous species--species introduced from elsewhere - are increasing rapidly worldwide, causing both environmental and economic damage. Rigorous quantitative risk-analysis frameworks, however, for invasive species are lacking. We need to evaluate the risks posed by invasive species and quantify the relative merits of different management strategies (e.g. allocation of resources between prevention and control). We present a quantitative bioeconomic modelling framework to analyse risks from non-indigenous species to economic activity and the environment. The model identifies the optimal allocation of resources to prevention versus control, acceptable invasion risks and consequences of invasion to optimal investments (e.g. labour and capital). We apply the model to zebra mussels (Dreissena polymorpha), and show that society could benefit by spending up to US$324 000 year(-1) to prevent invasions into a single lake with a power plant. By contrast, the US Fish and Wildlife Service spent US$825 000 in 2001 to manage all aquatic invaders in all US lakes. Thus, greater investment in prevention is warranted.

  2. Evaluation of methods for assessing physiological biomarkers of stress in freshwater mussels

    USGS Publications Warehouse

    Fritts, Andrea K.; Peterson, James T.; Hazelton, Peter D.; Bringolf, Robert B.

    2015-01-01

    Freshwater mussel populations are highly susceptible to environmental alterations because of their diminished numbers and primarily sessile behaviors; nonlethal biomonitoring programs are needed to evaluate the health of populations prior to mass mortality events. Our objectives were to determine (i) which biochemical parameters in freshwater mussel hemolymph could be consistently quantified, (ii) how hemolymph parameters and tissue glycogen respond to a thermal stress gradient (25, 30, and 35 °C), and (iii) the effects of tissue and hemolymph extraction on long-term growth and survival of smaller- and larger-bodied mussel species. Glucose exhibited elevated expression in both species with increasing water temperature. Two transaminase enzymes had elevated expression in the 30 °C treatment. The effects of hemolymph extraction and tissue biopsies were evaluated with a large-bodied species, Elliptio crassidens, and a smaller species, Villosa vibex. Individuals were monitored for 820 to 945 days after one of four treatments: hemolymph extraction, tissue biopsy, tissue and hemolymph extraction, and control. Hemolymph extraction and tissue biopsy adversely affected survival of V. vibex, suggesting that these extraction methods may add some risk of reduced survival to smaller-bodied species. Survival of E. crassidens was not impaired by any of the treatments, supporting the use of these techniques in nonlethal biomonitoring programs for larger-bodied mussel species.

  3. Host fishes and infection strategies of freshwater mussels in large Mobile Basin streams, USA

    Treesearch

    Wendell R. Haag; Melvin L. Warren

    2003-01-01

    We investigated host fishes, timing and modes of glochidial release, and host-attraction strategies for 7 species of freshwater mussels from the Buttahatchee and Sipsey rivers (Mobile Basin), Alabama and Mississippi, USA. We determined hosts as fish species that produced juvenile mussels from laboratory-induced glochidial infections. We established the following...

  4. Susceptibility of selected potato varieties to zebra chip potato disease

    USDA-ARS?s Scientific Manuscript database

    Zebra chip (ZC), an emerging and serious disease of potato has caused millions of dollars in losses to the potato industry in the United States, Mexico, Central America, and New Zealand. The disease has recently been associated with a previously undescribed species of liberibacter tentatively named ...

  5. Evolution of active host-attraction strategies in the freshwater mussel tribe Lampsilini (Bivalvia: Unionidae).

    PubMed

    Zanatta, David T; Murphy, Robert W

    2006-10-01

    Most freshwater mussels (Bivalvia: Unionoida) require a host, usually a fish, to complete their life cycle. Most species of mussels show adaptations that increase the chances of glochidia larvae contacting a host. We investigated the evolutionary relationships of the freshwater mussel tribe Lampsilini including 49 of the approximately 100 extant species including 21 of the 24 recognized genera. Mitochondrial DNA sequence data (COI, 16S, and ND1) were used to create a molecular phylogeny for these species. Parsimony and Bayesian likelihood topologies revealed that the use of an active lure arose early in the evolution of the Lampsiline mussels. The mantle flap lure appears to have been the first to evolve with other lure types being derived from this condition. Apparently, lures were lost independently in several clades. Hypotheses are discussed as to how some of these lure strategies may have evolved in response to host fish prey preferences.

  6. The disassociation of visual and acoustic conspecific cues decreases discrimination by female zebra finches (Taeniopygia guttata).

    PubMed

    Campbell, Dana L M; Hauber, Mark E

    2009-08-01

    Female zebra finches (Taeniopygia guttata) use visual and acoustic traits for accurate recognition of male conspecifics. Evidence from video playbacks confirms that both sensory modalities are important for conspecific and species discrimination, but experimental evidence of the individual roles of these cue types affecting live conspecific recognition is limited. In a spatial paradigm to test discrimination, the authors used live male zebra finch stimuli of 2 color morphs, wild-type (conspecific) and white with a painted black beak (foreign), producing 1 of 2 vocalization types: songs and calls learned from zebra finch parents (conspecific) or cross-fostered songs and calls learned from Bengalese finch (Lonchura striata vars. domestica) foster parents (foreign). The authors found that female zebra finches consistently preferred males with conspecific visual and acoustic cues over males with foreign cues, but did not discriminate when the conspecific and foreign visual and acoustic cues were mismatched. These results indicate the importance of both visual and acoustic features for female zebra finches when discriminating between live conspecific males. Copyright 2009 APA, all rights reserved.

  7. The brown mussel Perna perna (L., 1758) as a sentinel species for chlorinated pesticide and dioxin-like compounds.

    PubMed

    Galvao, Petrus; Henkelmann, Bernhard; Longo, Renan; Torres, João Paulo Machado; Malm, Olaf; Schramm, Karl-Werner

    2015-09-01

    To contribute to the use of the tropical brown mussel Perna perna as a sentinel species for organochlorine pesticides (OCP) and polychlorinated biphenyls (PCB), the present study reports data on the toxicokinetics of these compounds in P. perna. Specifically, the authors present data on OCP and PCB bioaccumulation for eight sampling months from three bays (SE Brazil) and two transplant experiments (each 1 month long). Although seasonality is observed in the total lipid content of the whole soft tissue, with summer samples showing higher values, no such seasonality is observed in the OCP and PCB concentrations bioaccumulated by the mussel P. perna. Because no seasonal effect is observed in the annual OCP and PCB concentrations bioaccumulated by P. perna, the use of this species as a sentinel organism to monitor organochlorinated compounds is encouraged. One month of transplantation is not enough to allow the transplanted specimens to reach the concentrations observed in animals reared at the destination site. Nevertheless, P. perna showed a clear tendency to depurate the DDT metabolites p,p'-DDD and p,p'-DDE after 1 month of transplantation.

  8. Freshwater mussel survey for the Columbia Dam removal, Paulins Kill, New Jersey

    USGS Publications Warehouse

    Galbraith, Heather S.; Blakeslee, Carrie J.; Cole, Jeffrey C.; Silldorff, Erik L.

    2018-06-04

    Semi-quantitative mussel surveys, conducted by the U.S. Geological Survey and the Delaware Riverkeeper Network in cooperation with The Nature Conservancy, were completed in the vicinity of the Columbia Dam, on the Paulins Kill, New Jersey, in August 2017 in order to document the mussel species composition and relative abundance prior to removal of the dam. Surveys were conducted from the Brugler Road Bridge downriver approximately 2,000 meters (m) to the Columbia Dam and downriver from the dam about 300 m to 75 m upriver from the confluence of the Paulins Kill with the Delaware River. Sixteen sections (average length=175 m) were surveyed by personnel snorkeling or SCUBA diving; 13 sections were upriver from the dam, and 3 were downriver from the dam. Mussels, as they were encountered by surveyors, were removed from the sediment, immediately identified to species, and replaced in their original collection locations. Habitat data were collected for each surveyed section. Upriver and downriver from the dam, river margins with dense vegetation were examined for mussels by personnel using snorkels in transects (approximately 25 meters) perpendicular to river flow every 50 m on both sides of the river. Only two species were found upriver from the dam, and those were present in relatively low numbers. Catch per unit effort is reported here within parentheses as the average across upriver sections in number of mussels per person hour of survey time: 42 Elliptio complanata (2.6) and 1 Pyganodon cataracta (0.1) were found upriver from the dam. No mussels were found in the dense vegetation either upriver or downriver of the dam by surveyors using snorkels. Significantly higher species richness and mussel catch per unit effort were found downriver from the dam than upriver, including 106 E. complanta (32.5), 27 Utterbackiana implicata (8.2), 1 Alasmidonta undulata (0.4), 2 Lampsilis cariosa (0.5), 6 Lampsilis radiata (2.1), 4 P. cataracta (1.1), and 1 Strophitus undulatus (0

  9. Selective auditory grouping by zebra finches: testing the iambic-trochaic law.

    PubMed

    Spierings, Michelle; Hubert, Jeroen; Ten Cate, Carel

    2017-07-01

    Humans have a strong tendency to spontaneously group visual or auditory stimuli together in larger patterns. One of these perceptual grouping biases is formulated as the iambic/trochaic law, where humans group successive tones alternating in pitch and intensity as trochees (high-low and loud-soft) and alternating in duration as iambs (short-long). The grouping of alternations in pitch and intensity into trochees is a human universal and is also present in one non-human animal species, rats. The perceptual grouping of sounds alternating in duration seems to be affected by native language in humans and has so far not been found among animals. In the current study, we explore to which extent these perceptual biases are present in a songbird, the zebra finch. Zebra finches were trained to discriminate between short strings of pure tones organized as iambs and as trochees. One group received tones that alternated in pitch, a second group heard tones alternating in duration, and for a third group, tones alternated in intensity. Those zebra finches that showed sustained correct discrimination were next tested with longer, ambiguous strings of alternating sounds. The zebra finches in the pitch condition categorized ambiguous strings of alternating tones as trochees, similar to humans. However, most of the zebra finches in the duration and intensity condition did not learn to discriminate between training stimuli organized as iambs and trochees. This study shows that the perceptual bias to group tones alternating in pitch as trochees is not specific to humans and rats, but may be more widespread among animals.

  10. Population assessment and potential functional roles of native mussels in the Upper Mississippi River

    USGS Publications Warehouse

    Newton, Teresa J.; Zigler, Steven J.; Rogala, James T.; Gray, Brian R.; Davis, Mike

    2011-01-01

    1. Despite a heightened global concern for native mussels, fundamental research on mussel ecology in large rivers is lacking. These gaps in knowledge about where mussels occur, and why, are limiting habitat restoration activities. 2. Large-scale systematic surveys for native mussels in three reaches of the Upper Mississippi River documented mussel communities composed of 16–23 species and ranging from 2.9–4.5 live mussels m-2 that were actively recruiting new cohorts into their populations (87–100% of the species were found as juveniles 5 years old). Estimates of mean tissue biomass and production in these reaches ranged from 2.1–3.1 g C m-2 and 0.4–0.6 g C m-2year-1, respectively. 3. Mussels filtered a significant amount of water (range, 0.05–0.07 m3m-2d-1) over a 480 km reach of the Upper Mississippi River — amounting to a filtration rate of 53.1 million m3day-1. The filtration rate of mussels as a percentage of river discharge ranged from 0.5–1.4% at high flows (5% exceedance), from 1.5–4.4% at moderate flows (50% exceedance) and from 4.4–12.2% during low flows (95% exceedance). 4. Collectively, these data suggest that native mussels play an integral role in this ecosystem by sequestering suspended materials that can be used by other benthic organisms.

  11. Environmental Habitat Conditions Associated with Freshwater Dreissenids

    DTIC Science & Technology

    2010-12-01

    Figure 1. Important biological effects of temperature on dreissenids. Temperature effects . Ambient temperature regulates metabolic rate in...is often reported separately because of its effect on osmoregulation and shell formation in zebra mussels (Vinogradov et al. 1993; McMahon 1996...Ramcharan et al. 1992; Mellina and Rasmussen 1994). As with pH, zebra mussels demonstrate less effective osmoregulation at moderate or low pH levels than

  12. Physical and chemical constraints limit the habitat window for an endangered mussel

    USGS Publications Warehouse

    Campbell, Cara; Prestegaard, Karen L.

    2016-01-01

    Development of effective conservation and restoration strategies for freshwater pearly mussels requires identification of environmental constraints on the distributions of individual mussel species. We examined whether the spatial distribution of the endangered Alasmidonta heterodon in Flat Brook, a tributary of the upper Delaware River, was constrained by water chemistry (i.e., calcium availability), bed mobility, or both. Alasmidonta heterodon populations were bracketed between upstream reaches that were under-saturated with respect to aragonite and downstream reaches that were saturated for aragonite during summer baseflow but had steep channels with high bed mobility. Variability in bed mobility and water chemistry along the length of Flat Brook create a “habitat window” for A. heterodon defined by bed stability (mobility index ≤1) and aragonite saturation (saturation index ≥1). We suggest the species may exist in a narrow biogeochemical window that is seasonally near saturation. Alasmidonta heterodon populations may be susceptible to climate change or anthropogenic disturbances that increase discharge, decrease groundwater inflow or chemistry, and thus affect either bed mobility or aragonite saturation. Identifying the biogeochemical microhabitats and requirements of individual mussel species and incorporating this knowledge into management decisions should enhance the conservation and restoration of endangered mussel species.

  13. Public Education To Thwart Aquatic Nuisances.

    ERIC Educational Resources Information Center

    Cassell, Jodi L.

    1997-01-01

    Describes efforts to prevent the introduction and spread of nonindigenous species in U.S. waters, most notably the zebra mussel, a native of Russia, which has spread to 19 states and 2 Canadian provinces since its introduction to the Great Lakes in 1988. California Sea Grant Extension's boater education program augments federal and California laws…

  14. Accumulation patterns of lipophilic organic contaminants in surface sediments and in economic important mussel and fish species from Jakarta Bay, Indonesia.

    PubMed

    Dwiyitno; Dsikowitzky, Larissa; Nordhaus, Inga; Andarwulan, Nuri; Irianto, Hari Eko; Lioe, Hanifah Nuryani; Ariyani, Farida; Kleinertz, Sonja; Schwarzbauer, Jan

    2016-09-30

    Non-target screening analyses were conducted in order to identify a wide range of organic contaminants in sediment and animal tissue samples from Jakarta Bay. High concentrations of di-iso-propylnaphthalenes (DIPNs), linear alkylbenzenes (LABs) and polycyclic aromatic hydrocarbons (PAHs) were detected in all samples, whereas phenylmethoxynaphthalene (PMN), DDT and DDT metabolites (DDX) were detected at lower concentrations. In order to evaluate the uptake and accumulation by economic important mussel (Perna viridis) and fish species, contaminant patterns of DIPNs, LABs and PAHs in different compartments were compared. Different patterns of these contaminant groups were found in sediment and animal tissue samples, suggesting compound-specific accumulation and metabolism processes. Significantly higher concentrations of these three contaminant groups in mussel tissue as compared to fish tissue from Jakarta Bay were found. Because P. viridis is an important aquaculture species in Asia, this result is relevant for food safety. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Zebra: A striped network file system

    NASA Technical Reports Server (NTRS)

    Hartman, John H.; Ousterhout, John K.

    1992-01-01

    The design of Zebra, a striped network file system, is presented. Zebra applies ideas from log-structured file system (LFS) and RAID research to network file systems, resulting in a network file system that has scalable performance, uses its servers efficiently even when its applications are using small files, and provides high availability. Zebra stripes file data across multiple servers, so that the file transfer rate is not limited by the performance of a single server. High availability is achieved by maintaining parity information for the file system. If a server fails its contents can be reconstructed using the contents of the remaining servers and the parity information. Zebra differs from existing striped file systems in the way it stripes file data: Zebra does not stripe on a per-file basis; instead it stripes the stream of bytes written by each client. Clients write to the servers in units called stripe fragments, which are analogous to segments in an LFS. Stripe fragments contain file blocks that were written recently, without regard to which file they belong. This method of striping has numerous advantages over per-file striping, including increased server efficiency, efficient parity computation, and elimination of parity update.

  16. Effect of sediment settling on controlling golden mussel invasion in water transfer project

    NASA Astrophysics Data System (ADS)

    Xu, Mengzhen; Wang, Zhaoyin; Bogen, Jim; Pan, Baozhu

    2013-04-01

    Inter-basin water transfer projects have been widely used to solve uneven distribution of water resources and water shortage in China. Along with the transferring of water resources, golden mussel (Limnoperna fortunei), the filter-collector macro-invertebrate species originating from southern China has also been inadvertently transferred to new aquatic environment, resulting in quick and uncontrolled spread of the species. The golden mussels are invasive by nature and endowed with a strong byssus for attaching onto their habitat, allowing them to easily invade natural and artificial aquatic systems, which was resulted in high-density golden mussel attachment that causes serious bio-fouling. Invasion and bio-fouling by golden mussels in water transfer systems has drawn attention widely because it has resulted in high resistance to water flow, corrosion of pipe walls and even clogging of tunnels, as well as causing water pollution and ecological imbalance in the regions that receive water infested with golden mussels. Field investigation was conducted along the East River, which is the main drinking water resource for Cantong province and Hongkong, China, to study the natural habitats of golden mussels. Surveys of water transfer tunnels which carry water from the East River to several big cities in Cantong province were done to study golden mussel invasion and attachment in tunnels. It is found that in the natural habitat, golden mussels mainly attach to bedrock and bank stones and solid surfaces facing upstream, while no golden mussels are attached on the surfaces facing downstream and suffering sediment deposition. In the water transfer tunnels, golden mussel attachment densities of 40,000 individuals/m2 mainly occurred on the portion of tunnel walls which face downwards and thus avoid sedimentation. An experiment was designed to study the effect of sediment settling on golden mussel attachment. The results showed that settling of fine sediment particles affects

  17. Acute toxicity of copper, ammonia, and chlorine to glochidia and juveniles of freshwater mussels (Unionidae)

    USGS Publications Warehouse

    Wang, N.; Ingersoll, C.G.; Hardesty, D.K.; Ivey, C.D.; Kunz, J.L.; May, T.W.; Dwyer, F.J.; Roberts, A.D.; Augspurger, T.; Kane, C.M.; Neves, R.J.; Barnhart, M.C.

    2007-01-01

    The objective of the present study was to determine acute toxicity of copper, ammonia, or chlorine to larval (glochidia) and juvenile mussels using the recently published American Society for Testing and Materials (ASTM) Standard guide for conducting laboratory toxicity tests with freshwater mussels. Toxicity tests were conducted with glochidia (24- to 48-h exposures) and juveniles (96-h exposures) of up to 11 mussel species in reconstituted ASTM hard water using copper, ammonia, or chlorine as a toxicant. Copper and ammonia tests also were conducted with five commonly tested species, including cladocerans (Daphnia magna and Ceriodaphnia dubia; 48-h exposures), amphipod (Hyalella azteca; 48-h exposures), rainbow trout (Oncorhynchus mykiss; 96-h exposures), and fathead minnow (Pimephales promelas; 96-h exposures). Median effective concentrations (EC50s) for commonly tested species were >58 ??g Cu/L (except 15 ??g Cu/L for C. dubia) and >13 mg total ammonia N/L, whereas the EC50s for mussels in most cases were 40 ??g/L and above the FAV in the WQC for chlorine. The results indicate that the early life stages of mussels generally were more sensitive to copper and ammonia than other organisms and that, including mussel toxicity data in a revision to the WQC, would lower the WQC for copper or ammonia. Furthermore, including additional mussel data in 2007 WQC for copper based on biotic ligand model would further lower the WQC. ?? 2007 SETAC.

  18. Characterization of host plant resistance to zebra chip disease from species-derived potato genotypes and the identification of new sources of zebra chip resistance

    USDA-ARS?s Scientific Manuscript database

    ‘Candidatus Liberibacter solanacearum’ (Lso), an uncultivable phloem-limited phytopathogenic bacterium, is known to be associated with Zebra Chip disease (ZC), which represents a major threat to potato production in the US and elsewhere. This pathogen is transmitted by the phloem-feeding potato psyl...

  19. Status of the Mussel Resource in Little South Fork Cumberland River

    Treesearch

    Melvin L. Warren; Wendell R. Haag; Brooks M. Burr

    1999-01-01

    As recently as the 198Os, the Little South Fork Cumberland River of southeastern Kentucky supported a diverse freshwater mussel fauna (Starnes and Bogan 1982; Appendix A). The Little South Fork represented one of the last rivers to support a high number of mussel species in the Cumberland River drainage of Kentucky and Tennessee. The river was first surveyed...

  20. Zebras and Biting Flies: Quantitative Analysis of Reflected Light from Zebra Coats in Their Natural Habitat

    PubMed Central

    Britten, Kenneth H.; Thatcher, Timothy D.; Caro, Tim

    2016-01-01

    Experimental and comparative evidence suggests that the striped coats of zebras deter biting fly attack, but the mechanisms by which flies fail to target black-and-white mammals are still opaque. Two hypotheses have been proposed: stripes might serve either to defeat polarotaxis or to obscure the form of the animal. To test these hypotheses, we systematically photographed free-living plains zebras in Africa. We found that black and white stripes both have moderate polarization signatures with a similar angle, though the degree (magnitude) of polarization in white stripes is lower. When we modeled the visibility of these signals from different distances, we found that polarization differences between stripes are invisible to flies more than 10 m away because they are averaged out by the flies’ low visual resolution. At any distance, however, a positively polarotactic insect would have a distinct signal to guide its visual approach to a zebra because we found that polarization of light reflecting from zebras is higher than from surrounding dry grasses. We also found that the stripes themselves are visible to flies at somewhat greater distances (up to 20 m) than the polarization contrast between stripes. Together, these observations support hypotheses in which zebra stripes defeat visually guided orienting behavior in flies by a mechanism independent of polarotaxis. PMID:27223616

  1. Factors driving changes in freshwater mussel (Bivalvia, Unionida) diversity and distribution in Peninsular Malaysia.

    PubMed

    Zieritz, Alexandra; Lopes-Lima, Manuel; Bogan, Arthur E; Sousa, Ronaldo; Walton, Samuel; Rahim, Khairul Adha A; Wilson, John-James; Ng, Pei-Yin; Froufe, Elsa; McGowan, Suzanne

    2016-11-15

    Freshwater mussels (Bivalvia, Unionida) fulfil important ecosystem functions and are one of the most threatened freshwater taxa globally. Knowledge of freshwater mussel diversity, distribution and ecology in Peninsular Malaysia is extremely poor, and the conservation status of half of the species presumed to occur in the region has yet to be assessed. We conducted the first comprehensive assessment of Peninsular Malaysia's freshwater mussels based on species presence/absence and environmental data collected from 155 sites spanning all major river catchments and diverse habitat types. Through an integrative morphological-molecular approach we recognised nine native and one widespread non-native species, i.e. Sinanodonta woodiana. Two species, i.e. Pilsbryoconcha compressa and Pseudodon cambodjensis, had not been previously recorded from Malaysia, which is likely a result of morphological misidentifications of historical records. Due to their restriction to single river catchments and declining distributions, Hyriopsis bialata, possibly endemic to Peninsular Malaysia, Ensidens ingallsianus, possibly already extinct in the peninsula, and Rectidens sumatrensis, particularly require conservation attention. Equally, the Pahang, the Perak and the north-western river catchments are of particular conservation value due to the presence of a globally unique freshwater mussel fauna. Statistical relationships of 15 water quality parameters and mussel presence/absence identified acidification and nutrient pollution (eutrophication) as the most important anthropogenic factors threatening freshwater mussel diversity in Peninsular Malaysia. These factors can be linked to atmospheric pollution, deforestation, oil-palm plantations and a lack of functioning waste water treatment, and could be mitigated by establishing riparian buffers and improving waste water treatment for rivers running through agricultural and residential land. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Macrofouling control in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekis, E.W. Jr.; Keoplin-Gall, S.M.; McCarthy, R.E.

    1991-11-01

    Macrofouling of cooling-water systems is one of the more significant and costly problems encountered in the nuclear power industry. Both marine and freshwater macroinvertebrates can be responsible for losses in plant availability because of plugged intakes and heat transfer equipment. There is a greater diversity of macrofouling organisms in marine waters than in fresh waters. Marine macrofouling organisms include barnacles, mollusks, bryozoans, and hydroids. Barnacles are crustaceans with feathery appendages, which allow them to attach to a variety of surfaces. They are a major cause of severe macrofouling because they can remain attached even after death. The major freshwater macrofoulingmore » organisms include the Asiatic Clam (Corbicula fluminea) and the newest freshwater macrofouler, the Zebra Mussel (Dreissena polymorpha). The introduction of the Zebra Mussel into the Great Lakes has created economic and ecological problems that will not easily be solved. The threat of intercontinental dispersal of the Zebra Mussel in America is serious. Research programs have been initiated around the country to develop control methods for this macrofouling problem. The various control methodologies can be classified in the following categories: biological, chemical, physical, and mechanical. Laboratory experiments were performed to evaluate the efficacy of Actibrom against mature Zebra Mussels.« less

  3. The role of habitat-selection in restricting invasive blue mussel advancement to protect native populations in San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Mittal, N.; Saarman, N. P.; Pogson, G.

    2013-12-01

    Introduced species contribute to decline of biodiversity and ecosystem services. Introduced species threaten native species by increasing competition for space and resources, changing their habitat, and disrupting species interactions. Protecting native species is crucial to preserving ecosystem services (i.e. medicinal, agricultural, ecological, and cultural benefits) for future generations. In marine communities, the number of invasive species is dramatically increasing every year, further magnifying the negative impact on native species. This research determines if habitat-specific selection can protect native species from their invasive relatives, and could allow targeted habitat restoration for native species to maintain high levels of biodiversity. Blue mussels provide an ideal system for studying the impact of an invasive species (Mytilus galloprovincialis) on native mussels (M. trossulus), because M. galloprovincialis is marked as one of the world's 100 worst invasive species. Hybridization between M. galloprovincialis and M. trossulus occurs wherever their distributions overlap (i.e. Japan, Puget Sound, and central California). In central California, hybrids form in a broad variety of habitats ever since M. galloprovincialis was introduced about 100 years ago. The current level of threat posed to native mussels in central California is unknown. When population growth rate of an invasive species is higher than the native within a hybrid zone, the invader's genes become more prominent in the hybrids than the native species' genes. This uneven mix of genes and decrease of pure native mussels threatens to drive M. trossulus to extinction. Therefore, it is important to research which environment fosters highest success of pure native species. We conducted a field experiment in San Francisco Bay where mussels were reared in different habitats. We then collected samples and extracted DNA from each treatment, and genotyped them by a next-generation sequencing

  4. Microhabitat suitability and niche breadth of common and imperiled Atlantic Slope freshwater mussels

    USGS Publications Warehouse

    Pandolfo, Tamara J.; Kwak, Thomas J.; Cope, W. Gregory

    2016-01-01

    Knowledge of the habitat suitability of freshwater mussels (family Unionidae) is necessary for effective decision making in conservation and management. We empirically measured microhabitat use for 10 unionid mussel species, including the U.S. federally endangered Alasmidonta heterodon, at 20 sites in the Tar River basin, North Carolina, USA. We also quantified habitat availability at each site, and calculated habitat suitability for each mussel species. The majority of available habitat across all sites consisted of shallow, slow-moving water with penetrable silt or sand substrate. Among species, mean water depth of occupied habitats ranged 0.23 – 0.54 m, mean bottom velocity ranged 0.001 – 0.055 m/s, average mean-column velocity ranged 0 – 0.055 m/s, and mean substrate penetrability ranged 0.11 – 11.67 on an index scale. The most commonly measured dominant substrate materials were silt, sand, very coarse sand, pea gravel, and coarse gravel. The most common cover types were coarse woody debris and fine woody debris. These findings revealed a relationship between the niche breadth and conservation status of four species. Federally endangered A. heterodon consistently showed a narrower suite of suitable microhabitats than the common mussel Elliptio complanata. The range of suitable habitat characteristics for Fusconaia masoni and Villosa constricta, listed as North Carolina (USA) state endangered and special concern, respectively, was typically narrower than those of E. complanata and wider than those of A. heterodon. These habitat suitability criteria and relationships will be useful to guide identification of suitable sites for habitat protection, mussel relocation, or site restoration.

  5. Comparative analysis of riverscape genetic structure in rare, threatened and common freshwater mussels

    USGS Publications Warehouse

    Galbraith, Heather S.; Zanatta, David T.; Wilson, Chris C.

    2015-01-01

    Freshwater mussels (Bivalvia: Unionoida) are highly imperiled with many species on the verge of local extirpation or global extinction. This study investigates patterns of genetic structure and diversity in six species of freshwater mussels in the central Great Lakes region of Ontario, Canada. These species vary in their conservation status (endangered to not considered at risk), life history strategy, and dispersal capabilities. Evidence of historical genetic connectivity within rivers was ubiquitous across species and may reflect dispersal abilities of host fish. There was little to no signature of recent disturbance events or bottlenecks, even in endangered species, likely as a function of mussel longevity and historical population sizes (i.e., insufficient time for genetic drift to be detectable). Genetic structure was largely at the watershed scale suggesting that population augmentation via translocation within rivers may be a useful conservation tool if needed, while minimizing genetic risks to recipient sites. Recent interest in population augmentation via translocation and propagation may rely on these results to inform management of unionids in the Great Lakes region.

  6. Divergent induced responses to an invasive predator in marine mussel populations.

    PubMed

    Freeman, Aaren S; Byers, James E

    2006-08-11

    Invasive species may precipitate evolutionary change in invaded communities. In southern New England (USA) the invasive Asian shore crab, Hemigrapsus sanguineus, preys on mussels (Mytlius edulis), but the crab has not yet invaded northern New England. We show that southern New England mussels express inducible shell thickening when exposed to waterborne cues from Hemigrapsus, whereas naïve northern mussel populations do not respond. Yet, both populations thicken their shells in response to a long-established crab, Carcinus maenas. Our findings are consistent with the rapid evolution of an inducible morphological response to Hemigrapsus within 15 years of its introduction.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel Molloy

    Under this USDOE-NETL contract, the bacterium Pseudomonas fluorescens is being developed as a biocontrol agent for zebra mussels. The specific purpose of the contract is to identify biotic and abiotic factors that affect mussel kill. Ingestion of these bacteria by zebra mussels is required to achieve kill, and tests evaluating factors that relate to mussel feeding are contained in this report. Specifically the impact of the following two factors were investigated: (1) Mussel siphoning behavior--In nature, zebra mussels typically have their two shells spread apart and their inhalant siphon tube extended from between their shells for taking food particles intomore » their mantle cavities (Fig. 1). Our tests indicated that there is a direct correlation between mussel siphoning activity and mussel mortality achieved by a bacterial treatment. Therefore, to encourage mussel feeding on bacteria, future pipe treatments within power plants should be carried out using procedures which minimize disturbance to mussel siphoning. 2. Naturally suspended particle loads--Since bacterial cells are lethal only if ingested by mussels, waters containing very high levels of naturally suspended particles might reduce the mortality that can be achieved by a bacterial treatment. If true, this inhibition might occur as a result of particle exclusion, i.e., there could be reduced ingestion of bacterial cells since they represent a reduced percentage of all particles ingested. Our tests indicated that a range of particle concentrations that might naturally exist in a turbid river did not inhibit mussel kill by the bacterial cells, but that an artificially high load of natural particles was capable of causing a reduction in kill. To be conservative, therefore, future pipe treatments should be timed to occur when intake waters have relatively low quantities of naturally suspended particulate matter.« less

  8. Arthropod parasites of springbok, gemsbok, kudus, giraffes and Burchell's and Hartmann's zebras in the Etosha and Hardap Nature Reserves, Namibia.

    PubMed

    Horak, I G; Anthonissen, M; Krecek, R C; Boomker, J

    1992-12-01

    A total of 48 springbok, 48 gemsbok, 23 kudus and 6 giraffes were examined for ticks and lice, while 9 Burchell's zebras and 6 Hartmann's mountain zebras were examined only for ticks. Springbok and gemsbok were shot in both the Etosha National Park in the north and the Hardap Nature Reserve in the south of Namibia. All the other animals were shot in the Etosha National Park. A total of 7 ixodid tick species and 8 lice species were recovered. The springbok carried few ticks. The adults of a Rhipicephalus sp. (near R. oculatus) were most numerous on the gemsbok, especially during November. The kudus were the only animals harbouring Rhipicephalus zambeziensis. Adult Hyalomma truncatum, followed by adult Hyalomma marginatum rufipes, were most abundant on the giraffes and adult Rhipicephalus evertsi mimeticus were commonest on the zebras.

  9. Susceptibility and antibody response of the laboratory model zebra finch (Taeniopygia guttata) to West Nile Virus

    USGS Publications Warehouse

    Hofmeister, Erik K.; Lund, Melissa; Shearn-Bochsler, Valerie I.; Balakrishnan, Christopher N.

    2017-01-01

    Since the introduction of West Nile virus (WNV) into North America in 1999 a number of passerine bird species have been found to play a role in the amplification of the virus. Arbovirus surveillance, observational studies and experimental studies have implicated passerine birds (songbirds, e.g., crows, American robins, house sparrows, and house finches) as significant reservoirs of WNV in North America, yet we lack a tractable passerine animal model for controlled studies of the virus. The zebra finch (Taeniopygia guttata) serves as a model system across a diversity of fields, and here we develop the zebra finch a songbird model for WNV. Like many natural hosts of WNV, we found that zebra finches developed sufficient viremia to serve as a competent host, yet in general resisted mortality from infection. In the Australian zebra finch (AZF) T. g. castanotis, we detected WNV in the majority of sampled tissues by 4 days post injection (dpi). However, WNV was not detected in tissues of sacrificed birds at 14 dpi, shortly after the development of detectable anti-WNV antibodies in the majority of birds indicating successful viral clearance. We compared susceptibility between the two zebra finch subspecies AZF and Timor zebra finch (TZF) T. g. guttata. Compared to AZF, WNV RNA was detected in a larger proportion of challenged TZF and molecular detection of virus in the serum of TZF was significantly higher than in AZF. Given the observed moderate host competence and disease susceptibility, we suggest that zebra finches are appropriate as models for the study of WNV and although underutilized in this respect, may be ideal models for the study of the many diseases carried and transmitted by songbirds.

  10. Effects of flow restoration on mussel growth in a Wild and Scenic North American River

    PubMed Central

    2013-01-01

    Background Freshwater mussels remain among the most imperiled species in North America due primarily to habitat loss or degradation. Understanding how mussels respond to habitat changes can improve conservation efforts. Mussels deposit rings in their shell in which age and growth information can be read, and thus used to evaluate how mussels respond to changes in habitat. However, discrepancies between methodological approaches to obtain life history information from growth rings has led to considerable uncertainty regarding the life history characteristics of many mussel species. In this study we compared two processing methods, internal and external ring examination, to obtain age and growth information of two populations of mussels in the St. Croix River, MN, and evaluated how mussel growth responded to changes in the operation of a hydroelectric dam. Results External ring counts consistently underestimated internal ring counts by 4 years. Despite this difference, internal and external growth patterns were consistent. In 2000, the hydroelectric dam switched from operating on a peaking schedule to run-of-the-river/partial peaking. Growth patterns between an upstream and downstream site of the dam were similar both before and after the change in operation. At the downstream site, however, older mussels had higher growth rates after the change in operation than the same sized mussels collected before the change. Conclusions Because growth patterns between internal and external processing methods were consistent, we suggest that external processing is an effective method to obtain growth information despite providing inaccurate age information. External processing is advantageous over internal processing due to its non-destructive nature. Applying this information to analyze the influence of the operation change in the hydroelectric dam, we suggest that changing to run-of-the-river/partial peaking operation has benefited the growth of older mussels below the dam

  11. Conservation status of freshwater mussels in Europe: state of the art and future challenges.

    PubMed

    Lopes-Lima, Manuel; Sousa, Ronaldo; Geist, Juergen; Aldridge, David C; Araujo, Rafael; Bergengren, Jakob; Bespalaya, Yulia; Bódis, Erika; Burlakova, Lyubov; Van Damme, Dirk; Douda, Karel; Froufe, Elsa; Georgiev, Dilian; Gumpinger, Clemens; Karatayev, Alexander; Kebapçi, Ümit; Killeen, Ian; Lajtner, Jasna; Larsen, Bjørn M; Lauceri, Rosaria; Legakis, Anastasios; Lois, Sabela; Lundberg, Stefan; Moorkens, Evelyn; Motte, Gregory; Nagel, Karl-Otto; Ondina, Paz; Outeiro, Adolfo; Paunovic, Momir; Prié, Vincent; von Proschwitz, Ted; Riccardi, Nicoletta; Rudzīte, Mudīte; Rudzītis, Māris; Scheder, Christian; Seddon, Mary; Şereflişan, Hülya; Simić, Vladica; Sokolova, Svetlana; Stoeckl, Katharina; Taskinen, Jouni; Teixeira, Amílcar; Thielen, Frankie; Trichkova, Teodora; Varandas, Simone; Vicentini, Heinrich; Zajac, Katarzyna; Zajac, Tadeusz; Zogaris, Stamatis

    2017-02-01

    Freshwater mussels of the Order Unionida provide important ecosystem functions and services, yet many of their populations are in decline. We comprehensively review the status of the 16 currently recognized species in Europe, collating for the first time their life-history traits, distribution, conservation status, habitat preferences, and main threats in order to suggest future management actions. In northern, central, and eastern Europe, a relatively homogeneous species composition is found in most basins. In southern Europe, despite the lower species richness, spatially restricted species make these basins a high conservation priority. Information on freshwater mussels in Europe is unevenly distributed with considerable differences in data quality and quantity among countries and species. To make conservation more effective in the future, we suggest greater international cooperation using standardized protocols and methods to monitor and manage European freshwater mussel diversity. Such an approach will not only help conserve this vulnerable group but also, through the protection of these important organisms, will offer wider benefits to freshwater ecosystems. © 2016 Cambridge Philosophical Society.

  12. Freshwater mussels of the Delta National Forest, Mississippi Final Report

    Treesearch

    Wendell R. Haag; Melvin L. Warren

    1998-01-01

    Twenty-three species of freshwater mussels were collected during a survey of aquatic habitats in the Delta National Forest, Mississippi. An additional 6 species not encountered in this survey were reported by an earlier study in the Big Sunflower River near the northern proclamation boundary of the Forest. These species are included here, bringing the total species...

  13. Understanding Marine Mussel Adhesion

    PubMed Central

    Roberto, Francisco F.

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  14. Effects of handling and aerial exposure on the survival of unionid mussels

    USGS Publications Warehouse

    Waller, D.L.; Rach, J.J.; Cope, W.G.; Miller, G.A.

    1995-01-01

    We conducted a relocation study of unionid mussels in Navigation Pool 7 of the upper Mississippi River (river mile 713.2) to evaluate survival after handling and aerial exposure. Two separate studies were conducted to compare seasonal differences in mussel survival; the first was initiated in June and the second in October. Amblema plicata plicata (subfamily Ambleminae) and Obliquaria reflexa (subfamily Lampsilinae) were studied. Mussels were marked, held out of water for either 0, 1, 4, or 8 h, and then placed into a 3 x 3 m grid (divided into nine 1-m super(2) units). The mussels were re-examined after four-five months to measure mortality in the control and treatment groups. Mussels of both species had >90% survival after aerial exposure up to 4 h in both studies. However, survival (number recaptured live / number recaptured live and dead) of mussels showed a decreasing trend with duration of exposure in the first study, but not in the second study. The overall recovery of marked mussels (number recaptured/number marked) was 91% in the first study and 87% in the second study. However, only 37% of O. reflexa mussels in the 8-h treatment were recovered in the first study; the adjusted survival (number live recaptured/number marked) of this treatment group was significantly (p < 0.05) lower (35%) than all other treatments.

  15. Same-sex partner preference in zebra finches: pairing flexibility and choice.

    PubMed

    Tomaszycki, Michelle L; Zatirka, Brendon P

    2014-11-01

    This study examined flexibility and choice in same-sex pair-bonding behavior in adult zebra finches (Taeniopygia guttata). Zebra finches form life-long monogamous relationships and extra pair behavior is very low, making them an ideal species in which to study same-sex pairing. We examined same-sex behaviors using both semi-naturalistic choice paradigms and skewed sex ratios. In the first experiment, we allowed zebra finches to pair in aviaries with equal sex ratios as part of multiple experiments. On average, 6.4% (N = 78) of unmanipulated pairs were same-sex: all but one was female-female. In a second experiment, we identified pairs from same-sex cages and selected 20 total same-sex pairs (10 of each sex). We then gave pairs a chance to court and pair with members of the opposite sex and observed their behavior for three days. Females did not retain their partner, but most paired with males. In contrast, some males did retain their partner. Similarly, females were more likely to engage in pairing behaviors with males than with their partners or other females whereas males were equally likely to engage in same-sex and opposite-sex pairing behaviors. These findings suggest that same-sex partnerships in zebra finches can be facultative, based on the sex ratio of the group in which they live, but can also be a choice, when opportunities to pair with opposite-sex individuals are possible. Furthermore, it is possible that females are more flexible in this choice of same-sex partnerships than are males.

  16. Comparison of freshwater mussel communities from 1988 to 2015 in the Cedar Creek Watershed, Indiana

    USDA-ARS?s Scientific Manuscript database

    Out of the 300 genera of freshwater mussels (Unionidae) represented in North America, most species have shown declines in abundance and distribution largely due to human-mediated factors. This study compares current community composition, abundance and richness of mussels in Cedar Creek, Indiana wit...

  17. Mind the gap: Neural coding of species identity in birdsong prosody.

    PubMed

    Araki, Makoto; Bandi, M M; Yazaki-Sugiyama, Yoko

    2016-12-09

    Juvenile songbirds learn vocal communication from adult tutors of the same species but not from adults of other species. How species-specific learning emerges from the basic features of song prosody remains unknown. In the zebra finch auditory cortex, we discovered a class of neurons that register the silent temporal gaps between song syllables and are distinct from neurons encoding syllable morphology. Behavioral learning and neuronal coding of temporal gap structure resisted song tutoring from other species: Zebra finches fostered by Bengalese finch parents learned Bengalese finch song morphology transposed onto zebra finch temporal gaps. During the vocal learning period, temporal gap neurons fired selectively to zebra finch song. The innate temporal coding of intersyllable silent gaps suggests a neuronal barcode for conspecific vocal learning and social communication in acoustically diverse environments. Copyright © 2016, American Association for the Advancement of Science.

  18. Influence of sediment presence on freshwater mussel thermal tolerance

    USGS Publications Warehouse

    Archambault, Jennifer M.; Cope, W. Gregory; Kwak, Thomas J.

    2014-01-01

    Median lethal temperature (LT50) data from water-only exposures with the early life stages of freshwater mussels suggest that some species may be living near their upper thermal tolerances. However, evaluation of thermal sensitivity has never been conducted in sediment. Mussels live most of their lives burrowed in sediment, so understanding the effect of sediment on thermal sensitivity is a necessary step in evaluating the effectiveness of the water-only standard method, on which the regulatory framework for potential thermal criteria currently is based, as a test of thermal sensitivity. We developed a method for testing thermal sensitivity of juvenile mussels in sediment and used the method to assess thermal tolerance of 4 species across a range of temperatures common during summer. Stream beds may provide a thermal refuge in the wild, but we hypothesized that the presence of sediment alone does not alter thermal sensitivity. We also evaluated the effects of 2 temperature acclimation levels (22 and 27°C) and 2 water levels (watered and dewatered treatments). We then compared results from the sediment tests to those conducted using the water-only standard methods. We also conducted water-only LT tests with mussel larvae (glochidia) for comparison with the juvenile life stage. We found few consistent differences in thermal tolerance between sediment and water-only treatments, between acclimation temperatures, between waterlevel treatments, among species, or between juvenile and glochidial life stages (LT50 range = 33.3-37.2°C; mean = 35.6°C), supporting our hypothesis that the presence of sediment alone does not alter thermal sensitivity. The method we developed has potential for evaluating the role of other stressors (e.g., contaminants) in a more natural and complex environment.

  19. Spatio-temporal patterns of the decline of fresh water mussels in the Little South Fork Cumberland River,USA

    Treesearch

    Melvin L. Warren; Wendell R. Haag

    2005-01-01

    The Little South Fork Cumberland River, Kentucky and Tennessee, USA, was a globally important conservation refugium for freshwater mussels (Mollusca:Unionidae) because it supported an intact example (26 species) of the unique Cumberland River mussel fauna including imperiled species. We used previous surveys and our 1997–1998 survey to reconstruct the historical fauna...

  20. Water and sediment temperatures at mussel beds in the upper Mississippi River basin

    USGS Publications Warehouse

    Newton, Teresa J.; Sauer, Jennifer; Karns, Byron

    2013-01-01

    Native freshwater mussels are in global decline and urgently need protection and conservation. Declines in the abundance and diversity of North American mussels have been attributed to human activities that cause pollution, waterquality degradation, and habitat destruction. Recent studies suggest that effects of climate change may also endanger native mussel assemblages, as many mussel species are living close to their upper thermal tolerances. Adult and juvenile mussels spend a large fraction of their lives burrowed into sediments of rivers and lakes. Our objective was to measure surface water and sediment temperatures at known mussel beds in the Upper Mississippi (UMR) and St. Croix (SCR) rivers to estimate the potential for sediments to serve as thermal refugia. Across four mussel beds in the UMR and SCR, surface waters were generally warmer than sediments in summer, and were cooler than sediments in winter. This suggests that sediments may act as a thermal buffer for mussels in these large rivers. Although the magnitude of this effect was usually <3.0°C, sediments were up to 7.5°C cooler at one site in May, suggesting site-specific variation in the ability of sediments to act as thermal buffers. Sediment temperatures in the UMR exceeded those shown to cause mortality in laboratory studies. These data suggest that elevated water temperatures resulting from global warming, thermal discharges, water extraction, and/or droughts have the potential to adversely affect native mussel assemblages.

  1. A mineralogical record of ocean change: Decadal and centennial patterns in the California mussel.

    PubMed

    McCoy, Sophie J; Kamenos, Nicholas A; Chung, Peter; Wootton, Timothy J; Pfister, Catherine A

    2018-06-01

    Ocean acidification, a product of increasing atmospheric carbon dioxide, may already have affected calcified organisms in the coastal zone, such as bivalves and other shellfish. Understanding species' responses to climate change requires the context of long-term dynamics. This can be particularly difficult given the longevity of many important species in contrast with the relatively rapid onset of environmental changes. Here, we present a unique archival dataset of mussel shells from a locale with recent environmental monitoring and historical climate reconstructions. We compare shell structure and composition in modern mussels, mussels from the 1970s, and mussel shells dating back to 1000-2420 years BP. Shell mineralogy has changed dramatically over the past 15 years, despite evidence for consistent mineral structure in the California mussel, Mytilus californianus, over the prior 2500 years. We present evidence for increased disorder in the calcium carbonate shells of mussels and greater variability between individuals. These changes in the last decade contrast markedly from a background of consistent shell mineralogy for centuries. Our results use an archival record of natural specimens to provide centennial-scale context for altered minerology and variability in shell features as a response to acidification stress and illustrate the utility of long-term studies and archival records in global change ecology. Increased variability between individuals is an emerging pattern in climate change responses, which may equally expose the vulnerability of organisms and the potential of populations for resilience. © 2017 John Wiley & Sons Ltd.

  2. Contrasting results from molecular and pedigree-based population diversity measures in captive zebra highlight challenges facing genetic management of zoo populations.

    PubMed

    Ito, Hideyuki; Ogden, Rob; Langenhorst, Tanya; Inoue-Murayama, Miho

    2017-01-01

    Zoo conservation breeding programs manage the retention of population genetic diversity through analysis of pedigree records. The range of demographic and genetic indices determined through pedigree analysis programs allows the conservation of diversity to be monitored relative to the particular founder population for a species. Such approaches are based on a number of well-documented founder assumptions, however without knowledge of actual molecular genetic diversity there is a risk that pedigree-based measures will be misinterpreted and population genetic diversity misunderstood. We examined the genetic diversity of the captive populations of Grevy's zebra, Hartmann's mountain zebra and plains zebra in Japan and the United Kingdom through analysis of mitochondrial DNA sequences. Very low nucleotide variability was observed in Grevy's zebra. The results were evaluated with respect to current and historic diversity in the wild, and indicate that low genetic diversity in the captive population is likely a result of low founder diversity, which in turn suggests relatively low wild genetic diversity prior to recent population declines. Comparison of molecular genetic diversity measures with analogous diversity indices generated from the studbook data for Grevy's zebra and Hartmann's mountain zebra show contrasting patterns, with Grevy's zebra displaying markedly less molecular diversity than mountain zebra, despite studbook analysis indicating that the Grevy's zebra population has substantially more founders, greater effective population size, lower mean kinship, and has suffered less loss of gene diversity. These findings emphasize the need to validate theoretical estimates of genetic diversity in captive breeding programs with empirical molecular genetic data. Zoo Biol. 36:87-94, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Biochemical composition of three algal species proposed as food for captive freshwater mussels

    USGS Publications Warehouse

    Gatenby, C.M.; Orcutt, D.M.; Kreeger, D.A.; Parker, B.C.; Jones, V.A.; Neves, R.J.

    2003-01-01

    To identify potential diets for rearing captive freshwater mussels, the protein, carbohydrate (CHO), and lipid contents of two green algae, Neochloris oleoabundans, Bracteacoccus grandis, and one diatom, Phaeodactylum tricornutum, were compared at different growth stages. The fatty acid and sterol composition were also identified. Protein was greatest (55-70%) for all species at late log growth stage (LL), and declined in late stationary (LS) growth. CHO was greatest at LS stage for all species (33.9-56.4% dry wt). No significant change in lipid levels occurred with growth stage, but tended to increase in N. oleoabundans. Mean lipid content differed significantly in the order: N. oleoabundans > P. tricornutum > B. grandis. Total fatty acids (TFA) were higher at LS stage compared to other stages in the two green algae, and stationary stage in the diatom. Mean unsaturated fatty acids (UFA) as %TFA was significantly higher in N. oleoabundans than the other species. The green algae contained high percentages of C-18 polyunsaturated fatty acids (PUFAs), while the diatom was abundant in C-16 saturated and mono-unsaturated fatty acids and C-20 PUFA fatty acids. Growth stage had no effect on sterol concentration of any species. B. grandis showed significantly higher sterol levels than the other species except P. tricornutum at S stage. B. grandis was characterized by predominantly ??5, C-29 sterols, while N. oleoabundans synthesized ??5,7, ??5,7,22, and ??7, C-28 sterols. P. tricornutum produced primarily a ??5,22, C-28 sterol, and a small amount of a ??7,22, C-28 sterol.

  4. Using morphometrics to identify glochidia from a diverse freshwater mussel community

    Treesearch

    Thomas B. Kennedy; Wendell R. Haag

    2005-01-01

    We measured shell length, hinge length, and height of glochidia from 21 freshwater mussel species occurring in the Sipsey River, Alabama, to test our ability to identify species based on these glochidial morphometrics. Glochidial size and shape differed widely among species; for all 3 dimensions, mean values for the largest species were 5 to 73 greater than for the...

  5. 78 FR 48898 - Receipt of Applications for Endangered Species Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... the range of these species: Alabama pearlshell (Margaritifera marrianae), Choctaw bean (Villosa...), clubshell pearly mussel (Pleurobema clava), cracking pearly mussel (Hemistena lata), Cumberland bean mussel...), rabbitsfoot (Quadrula cylindrica), rayed bean mussel (Villosa fabalis), ring pink mussel (Obovaria retusa...

  6. Variations in the reproductive cycle of Dreissena polymorpha in Europe, Russia, and North America

    USGS Publications Warehouse

    Nichols, Susan Jerrine

    1996-01-01

    The reproductive cycle of the zebra mussel (Dreissena polymorpha) is highly variable throughout its range in Europe, Russia, and North America. The environmental factors influencing this variation are poorly understood, but successful reproduction is occurring in areas where it was initially believed that adult zebra mussels could not survive (i.e., southern United States). The differences in mussel reproduction occurring from site-to-site make it difficult to predict timing of specific events, such as the start of larval production, that are important in initiating containment or control procedures. For example, the amount of time required for a fertilized egg to develop into a juvenile mussel can be as short as 8 days, or as long as 240 days. Release of gametes by adults can be a highly synchronized event, focused over a 1-2 week period, or it can be completely non-synchronized, occurring throughout the year. Zebra mussels in some localities start spawning at water temperatures of 12-13A?C, but do not start until water temperatures reaches 22A?C at other sites. While some of this variability in reproductive behavior stems from mussel adaptation to local conditions, part is due to difficulties in sampling these events. It is difficult to determine reproductive success of a specific population because of the problems in separating locally produced larvae from larvae drifting in from other areas. Further research is needed not only on the relationship between reproduction and environment at the community level, but also on the variability in response of individual mussels.

  7. Dynamics of zebra finch and mockingbird vocalizations

    NASA Astrophysics Data System (ADS)

    Cimenser, Aylin

    Along with humans, whales, and bats, three groups of birds which include songbirds (oscines) such as the Zebra Finch (Taeniopygia guttata) and Mockingbird (Mimus polyglottos) are the only creatures known to learn sounds by imitation. Numerous similarities between human and songbird vocalizations exist and, recently, it has been shown that Zebra Finch in particular possesses a gene, FoxP2, known to be involved in human language. This thesis investigates song development in Zebra Finches, as well as the temporal dynamics of song in Mockingbirds. Zebra Finches have long been the system of choice for studying vocal development, ontogeny, and complexity in birdsong. Physicists find them intriguing because the spectrally complex vocalizations of the Zebra Finch can exhibit sudden transitions to chaotic dynamics, period doubling & mode-locking phenomena. Mockingbirds, by contrast, provide an ideal system to examine the richness of an avian repertoire, since these musically versatile songbirds typically know upwards of 200 songs. To analyse birdsong data, we have developed a novel clustering algorithm that can be applied to the bird's syllables, tracing their dynamics back to the earliest stages of vocal development. To characterize birdsong we have used Fourier techniques, based upon multitaper spectral analysis, to optimally work around the constraints imposed by (Heisenberg's) time-frequency uncertainty principle. Furthermore, estimates that provide optimal compromise between frequency and temporal resolution have beautiful connections with solutions to the Helmholtz wave equation in prolate spheroidal coordinates. We have used this connection to provide firm foundation for certain heuristics used in the literature to compute associated spectral derivatives and supply a pedagogical account here in this thesis. They are of interest because spectral derivatives emphasize sudden changes in the dynamics of the underlying phenomenon, and often provide a nice way to visualize

  8. Newly documented host fishes for the eastern elliptio mussel (Elliptio complanata)

    USGS Publications Warehouse

    Galbraith, Heather S.

    2013-01-01

    The eastern elliptio (Elliptio complanata) is a common, abundant and ecologically important freshwater mussel that occurs throughout the Atlantic Slope drainage in the United States and Canada. Previous research has shown E. complanata glochidia to be host fish generalists, parasitizing yellow perch (Perca flavescens), banded killifish (Fundulus diaphanus), banded sculpin (Cottus carolinae), and seven centrarchid species. Past laboratory studies have been conducted in the Midwest and glochidia sources typically included lakes the Great Lakes basin or were unreported. The objective of this study was to identify host fishes for E. complanata from streams in the Mid-Atlantic region. We used artificial laboratory infections to test host suitability of 38 fish and two amphibian species with E. complanata glochidia from the Chesapeake Bay drainage. Glochidia successfully metamorphosed into juvenile mussels on five fish species: American eel (Anguilla rostrata), brook trout (Salvelinus fontinalis), lake trout (S. namaycush), mottled sculpin (C. bairdii), and slimy sculpin (C. cognatus). American eel was the most effective host, yielding the highest overall metamorphosis success (percentage of attached glochidia that transformed into juvenile mussels;{greater than or equal to}0.90) and producing 13.2 juveniles per fish overall. No juvenile E. complanata metamorphosed on other fish species tested, including many previously identified host fishes reported in the literature. Reasons for discrepancies in published host fish could include geographic variation in host use across the species' range, differences in host use between lentic and lotic populations, or poorly resolved taxonomy within the genus Elliptio.

  9. Exposure of unionid mussels to electric current: Assessing risks associated with electrofishing

    USGS Publications Warehouse

    Holliman, F.M.; Kwak, T.J.; Cope, W.G.; Levine, Jay F.

    2007-01-01

    Electric current is routinely applied in freshwater for scientific sampling of fish populations (i.e., electrofishing). Freshwater mussels (families Margaritiferidae and Unionidae) are distributed worldwide, but their recent declines in diversity and abundance constitute an imperilment of global significance. Freshwater mussels are not targeted for capture by electrofishing, and any exposure to electric current is unintentional. The effects of electric shock are not fully understood for mussels but could disrupt vital physiological processes and represent an additional threat to their survival. In a controlled laboratory environment, we examined the consequences of exposure to two typical electrofishing currents, 60-Hz pulsed DC and 60-Hz AC, for the survival of adult and early life stages of three unionid species; we included fish as a quality control measure. The outcomes suggest that electrical exposure associated with typical electrofishing poses little direct risk to freshwater mussels. That is, adult mussel survival and righting behaviors (indicators of sublethal stress) were not adversely affected by electrical exposure. Glochidia (larvae that attach to and become parasites on fish gills or fins) showed minimal immediate reduction in viability after exposure. Metamorphosis from glochidia to free-living juvenile mussels was not impaired after electric current simulated capture-prone behaviors (stunning) in infested host fish. In addition, the short-term survival of juvenile mussels was not adversely influenced by exposure to electric current. Any minimal risk to imperiled mussels must be weighed at the population level against the benefits gained by using the gear for scientific sampling of fish in the same waters. However, scientists sampling fish by electrofishing should be aware of mussel reproductive periods and processes in order to minimize the harmful effects to host fish, especially in areas where mussel conservation is a concern. ?? Copyright by the

  10. FindZebra: a search engine for rare diseases.

    PubMed

    Dragusin, Radu; Petcu, Paula; Lioma, Christina; Larsen, Birger; Jørgensen, Henrik L; Cox, Ingemar J; Hansen, Lars Kai; Ingwersen, Peter; Winther, Ole

    2013-06-01

    The web has become a primary information resource about illnesses and treatments for both medical and non-medical users. Standard web search is by far the most common interface to this information. It is therefore of interest to find out how well web search engines work for diagnostic queries and what factors contribute to successes and failures. Among diseases, rare (or orphan) diseases represent an especially challenging and thus interesting class to diagnose as each is rare, diverse in symptoms and usually has scattered resources associated with it. We design an evaluation approach for web search engines for rare disease diagnosis which includes 56 real life diagnostic cases, performance measures, information resources and guidelines for customising Google Search to this task. In addition, we introduce FindZebra, a specialized (vertical) rare disease search engine. FindZebra is powered by open source search technology and uses curated freely available online medical information. FindZebra outperforms Google Search in both default set-up and customised to the resources used by FindZebra. We extend FindZebra with specialized functionalities exploiting medical ontological information and UMLS medical concepts to demonstrate different ways of displaying the retrieved results to medical experts. Our results indicate that a specialized search engine can improve the diagnostic quality without compromising the ease of use of the currently widely popular standard web search. The proposed evaluation approach can be valuable for future development and benchmarking. The FindZebra search engine is available at http://www.findzebra.com/. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Shell microstructures of mussels (Bivalvia: Mytilidae: Bathymodiolinae) from deep-sea chemosynthetic sites: Do they have a phylogenetic significance?

    NASA Astrophysics Data System (ADS)

    Génio, Luciana; Kiel, Steffen; Cunha, Marina R.; Grahame, John; Little, Crispin T. S.

    2012-06-01

    The increasing number of bathymodiolin mussel species being described from deep-sea chemosynthetic environments worldwide has raised many questions about their evolutionary history, and their systematics is still being debated. Mussels are also abundant in fossil chemosynthetic assemblages, but their identification is problematic due to conservative shell morphology within the group and preservation issues. Potential resolution of bathymodiolin taxonomy requires new character sets, including morphological features that are likely to be preserved in fossil specimens. To investigate the phylogenetic significance of shell microstructural features, we studied the shell microstructure and mineralogy of 10 mussel species from hydrothermal vents and hydrocarbon seeps, and 15 taxa from sunken wood and bone habitats, and compared these observations with current molecular phylogenies of the sub-family Bathymodiolinae. In addition, we analyzed the shell microstructure in Adipicola chickubetsuensis from fossil whale carcasses, and in Bathymodiolus cf. willapaensis and “Modiola exbrocchii” from fossil cold seeps, and discussed the usefulness of these characters for identification of fossil chemosymbiotic mussels. Microstructural shell features are quite uniform among vent, seep, wood and bone mussel taxa, and therefore established bathymodiolin lineages cannot be discriminated, nor can the relations between fossil and modern species be determined with these characters. Nevertheless, the uniformity of shell microstructures observed among chemosymbiotic mussels and the similarity with its closest relative, Modiolus modiolus, does not challenge the monophyly of the group. Slight differences are found between the large vent and seep mussels and the small mytilids commonly found in habitats enriched in organic matter. Together with previous data, these results indicate that a repeated pattern of paedomorphism characterizes the evolutionary history of deep-sea mussels, and the

  12. How effective is intermittent chlorination to control adult mussel fouling in cooling water systems?

    PubMed

    Rajagopal, Sanjeevi; Van der Velde, Gerard; Van der Gaag, Marinus; Jenner, Henk A

    2003-01-01

    Mussel control in cooling water systems is generally achieved by means of chlorination. Chlorine is applied continuously or intermittently, depending on cost and discharge criteria. In this paper, we examined whether mussels will be able to survive intermittent chlorination because of their ability to close their valves during periods of chlorination. Experiments were carried out using three common species of mussels: a freshwater mussel, Dreissena polymorpha, a brackish water mussel, Mytilopsis leucophaeata and a marine mussel, Mytilus edulis. The mussels were subjected to continuous or intermittent (4 h chlorination followed by 4 h no chlorination) chlorination at concentrations varying from 1 to 3 mg l(-1) and their responses (lethal and sublethal) were compared to those of control mussels. In addition, shell valve activity of mussels was monitored using a Mussel-monitor. Data clearly indicate that mussels shut their valves as soon as chlorine is detected in the environment and open only after chlorine dosing is stopped. However, under continuous chlorination mussels are constrained to keep the shell valves shut continuously. The mussels subjected to continuous chlorination at 1 mg l(-1) showed 100% mortality after 588 h (D. polymorpha), 966 h (Mytilus edulis) and 1104 h (Mytilopsis leucophaeata), while those subjected to intermittent chlorination at 1 mg l(-1) showed very little or no mortality during the same periods. Filtration rate, foot activity index and shell valve movement of D. polymorpha, Mytilopsis leucophaeata and Mytilus edulis decreased more than 90% at 1 mg l(-1) chlorine residual when compared to control. However, mussels subjected to intermittent chlorination showed a similar reduction (about 90%) in filtration rate, foot activity index and shell valve movement during chlorination and 3% during breaks in chlorination. The data indicate that intermittent chlorination between 1 and 3 mg l(-1) applied at 4 h on and 4 h off cycle is unlikely to

  13. The risk of establishment of aquatic invasive species: joining invasibility and propagule pressure

    PubMed Central

    Leung, Brian; Mandrak, Nicholas E

    2007-01-01

    Invasive species are increasingly becoming a policy priority. This has spurred researchers and managers to try to estimate the risk of invasion. Conceptually, invasions are dependent both on the receiving environment (invasibility) and on the ability to reach these new areas (propagule pressure). However, analyses of risk typically examine only one or the other. Here, we develop and apply a joint model of invasion risk that simultaneously incorporates invasibility and propagule pressure. We present arguments that the behaviour of these two elements of risk differs substantially—propagule pressure is a function of time, whereas invasibility is not—and therefore have different management implications. Further, we use the well-studied zebra mussel (Dreissena polymorpha) to contrast predictions made using the joint model to those made by separate invasibility and propagule pressure models. We show that predictions of invasion progress as well as of the long-term invasion pattern are strongly affected by using a joint model. PMID:17711834

  14. The risk of establishment of aquatic invasive species: joining invasibility and propagule pressure.

    PubMed

    Leung, Brian; Mandrak, Nicholas E

    2007-10-22

    Invasive species are increasingly becoming a policy priority. This has spurred researchers and managers to try to estimate the risk of invasion. Conceptually, invasions are dependent both on the receiving environment (invasibility) and on the ability to reach these new areas (propagule pressure). However, analyses of risk typically examine only one or the other. Here, we develop and apply a joint model of invasion risk that simultaneously incorporates invasibility and propagule pressure. We present arguments that the behaviour of these two elements of risk differs substantially--propagule pressure is a function of time, whereas invasibility is not--and therefore have different management implications. Further, we use the well-studied zebra mussel (Dreissena polymorpha) to contrast predictions made using the joint model to those made by separate invasibility and propagule pressure models. We show that predictions of invasion progress as well as of the long-term invasion pattern are strongly affected by using a joint model.

  15. DNA barcoding and microsatellites help species delimitation and hybrid identification in endangered galaxiid fishes.

    PubMed

    Vanhaecke, Delphine; Garcia de Leaniz, Carlos; Gajardo, Gonzalo; Young, Kyle; Sanzana, Jose; Orellana, Gabriel; Fowler, Daniel; Howes, Paul; Monzon-Arguello, Catalina; Consuegra, Sofia

    2012-01-01

    The conservation of data deficient species is often hampered by inaccurate species delimitation. The galaxiid fishes Aplochiton zebra and Aplochiton taeniatus are endemic to Patagonia (and for A. zebra the Falkland Islands), where they are threatened by invasive salmonids. Conservation of Aplochiton is complicated because species identification is hampered by the presence of resident as well as migratory ecotypes that may confound morphological discrimination. We used DNA barcoding (COI, cytochrome b) and a new developed set of microsatellite markers to investigate the relationships between A. zebra and A. taeniatus and to assess their distributions and relative abundances in Chilean Patagonia and the Falkland Islands. Results from both DNA markers were 100% congruent and revealed that phenotypic misidentification was widespread, size-dependent, and highly asymmetric. While all the genetically classified A. zebra were correctly identified as such, 74% of A. taeniatus were incorrectly identified as A. zebra, the former species being more widespread than previously thought. Our results reveal, for the first time, the presence in sympatry of both species, not only in Chilean Patagonia, but also in the Falkland Islands, where A. taeniatus had not been previously described. We also found evidence of asymmetric hybridisation between female A. taeniatus and male A. zebra in areas where invasive salmonids have become widespread. Given the potential consequences that species misidentification and hybridisation can have for the conservation of these endangered species, we advocate the use of molecular markers in order to reduce epistemic uncertainty.

  16. Behavioral responses of freshwater mussels to experimental dewatering

    USGS Publications Warehouse

    Galbraith, Heather S.; Blakeslee, Carrie J.; Lellis, William A.

    2015-01-01

    Understanding the effects of flow alteration on freshwater ecosystems is critical for predicting species responses and restoring appropriate flow regimes. We experimentally evaluated the effects of 3 dewatering rates on behavior of 6 freshwater mussel species in the context of water-removal rates observed in 21 Atlantic Coast rivers. Horizontal movement differed significantly among species and dewatering rates, but a significant species × dewatering interaction suggested that these factors influence movement in complex ways. Species differences in movement were evident only in controls and under slow dewatering rates, but these differences disappeared at moderate and fast dewatering rates. Burrowing behavior did not differ with respect to species identity or dewatering rate. The proportion of individuals that became stranded did not differ among species, but most individuals became stranded under low and moderate dewatering, and all individuals became stranded under fast dewatering. Mortality after stranding differed strongly among species along a gradient from 25% inPyganodon cataracta to 92% in Alasmidonta marginata. Together, these results suggest that species behavior may differ under gradual dewatering, but all species in our study are poorly adapted for rapid dewatering. Most of the 21 rivers we assessed experienced dewatering events comparable to our moderate rate, and several experienced events comparable to our fast rate. Dewatering events that exceed the movement or survival capability of most mussel species can be expected to result in assemblage-wide impacts. Consequently, the rate of water level change may be important in refining target flow conditions for restoration.

  17. Acute upper thermal limits of three aquatic invasive invertebrates: hot water treatment to prevent upstream transport of invasive species.

    PubMed

    Beyer, Jessica; Moy, Philip; De Stasio, Bart

    2011-01-01

    Transport of aquatic invasive species (AIS) by boats traveling up rivers and streams is an important mechanism of secondary spread of AIS into watersheds. Because physical barriers to AIS movement also prevent navigation, alternate methods for preventing spread are necessary while allowing upstream navigation. One promising approach is to lift boats over physical barriers and then use hot water immersion to kill AIS attached to the hull, motor, or fishing gear. However, few data have been published on the acute upper thermal tolerance limits of potential invaders treated in this manner. To test the potential effectiveness of this approach for a planned boat lift on the Fox River of northeastern WI, USA, acute upper thermal limits were determined for three AIS, adult zebra mussels (Dreissena polymorpha), quagga mussels (Dreissena rostriformis bugensis), and spiny water fleas (Bythotrephes longimanus) from the local area employing temperatures from 32 to 54°C and immersion times from 1 to 20 min. Mortality was determined after immersion followed by a 20-min recovery period. Immersion at 43°C for at least 5 min was required to ensure 100% mortality for all three species, but due to variability in the response by Bythotrephes a 10 min immersion would be more reliable. Overall there were no significant differences between the three species in acute upper thermal limits. Heated water can be an efficient, environmentally sound, and cost effective method of controlling AIS potentially transferred by boats, and our results should have both specific and wide-ranging applications in the prevention of the spread of aquatic invasive species.

  18. A hierarchical classification of freshwater mussel diversity in North America

    Treesearch

    Wendell R. Haag

    2010-01-01

    Aim North America harbours the most diverse freshwater mussel fauna on Earth. This fauna has high endemism at the continental scale and within individual river systems. Previous faunal classifications for North America were based on intuitive, subjective assessments of species distributions, primarily the occurrence of endemic species, and do not portray continent-wide...

  19. Changes in freshwater mussel communities linked to legacy pollution in the Lower Delaware River

    USGS Publications Warehouse

    Blakeslee, Carrie J.; Silldorff, Erik L.; Galbraith, Heather S.

    2018-01-01

    Freshwater mussels are among the most-imperiled organisms worldwide, although they provide a variety of important functions in the streams and rivers they inhabit. Among Atlantic-slope rivers, the Delaware River is known for its freshwater mussel diversity and biomass; however, limited data are available on the freshwater mussel fauna in the lower, non-tidal portion of the river. This section of the Delaware River has experienced decades of water-quality degradation from both industrial and municipal sources, primarily as a function of one of its major tributaries, the Lehigh River. We completed semi-quantitative snorkel surveys in 53.5 of the 121 km of the river to document mussel community composition and the continued impacts from pollution (particularly inputs from the Lehigh River) on mussel fauna. We detected changes in mussel catch per unit effort (CPUE) below the confluence of the Lehigh River, with significant declines in the dominant species Elliptio complanata (Eastern Elliptio) as we moved downstream from its confluence—CPUE dropped from 179 to 21 mussels/h. Patterns in mussel distribution around the Lehigh confluence matched chemical signatures of Lehigh water input. Specifically, Eastern Elliptio CPUE declined more quickly moving downstream on the Pennsylvania bank, where Lehigh River water input was more concentrated compared to the New Jersey bank. A definitive causal link remains to be established between the Lehigh River and the dramatic shifts in mussel community composition, warranting continued investigation as it relates to mussel conservation and restoration in the basin.

  20. Estimation of mussel population response to hydrologic alteration in a southeastern U.S. stream

    USGS Publications Warehouse

    Peterson, J.T.; Wisniewski, J.M.; Shea, C.P.; Rhett, Jackson C.

    2011-01-01

    The southeastern United States has experienced severe, recurrent drought, rapid human population growth, and increasing agricultural irrigation during recent decades, resulting in greater demand for the water resources. During the same time period, freshwater mussels (Unioniformes) in the region have experienced substantial population declines. Consequently, there is growing interest in determining how mussel population declines are related to activities associated with water resource development. Determining the causes of mussel population declines requires, in part, an understanding of the factors influencing mussel population dynamics. We developed Pradel reverse-time, tag-recapture models to estimate survival, recruitment, and population growth rates for three federally endangered mussel species in the Apalachicola- Chattahoochee-Flint River Basin, Georgia. The models were parameterized using mussel tag-recapture data collected over five consecutive years from Sawhatchee Creek, located in southwestern Georgia. Model estimates indicated that mussel survival was strongly and negatively related to high flows during the summer, whereas recruitment was strongly and positively related to flows during the spring and summer. Using these models, we simulated mussel population dynamics under historic (1940-1969) and current (1980-2008) flow regimes and under increasing levels of water use to evaluate the relative effectiveness of alternative minimum flow regulations. The simulations indicated that the probability of simulated mussel population extinction was at least 8 times greater under current hydrologic regimes. In addition, simulations of mussel extinction under varying levels of water use indicated that the relative risk of extinction increased with increased water use across a range of minimum flow regulations. The simulation results also indicated that our estimates of the effects of water use on mussel extinction were influenced by the assumptions about the

  1. Polonium-210 in marine mussels (bivalve molluscs) inhabiting the southern coast of India.

    PubMed

    Khan, M Feroz; Wesley, S Godwin; Rajan, M P

    2014-12-01

    The present study focused on the determination of the alpha-emitter, (210)Po, in two species of marine mussels (bivalve molluscs) commonly available in the southern coastal region of India. The brown mussel, Perna indica was collected from the west coast and the green mussel, Perna viridis from the east coast. The concentration of (210)Po was related to the allometry (length of shell, wet/dry weight of shell/soft tissue) of the mussels and significant results were found. The study period focused on three seasons namely, pre-monsoon, monsoon and post-monsoon for a 1-year period (2010-2011). The results revealed higher activity levels in smaller-sized mussels compared to larger ones. Marked variation in (210)Po activity concentration was noted in the whole-body soft tissues between seasons and sampling site (p < 0.05). The dose rate assessment for mussels was performed using the ERICA Assessment tool. The chronic exposure to mussels due to (210)Po was found to be lesser than the global benchmark dose rate of 10 μGy h(-1). The effective ingestion dose to adults who intake mussels was estimated to be in the range 5.1-34.9 μSv y(-1). The measurement contributes to the furthering of knowledge of (210)Po, since no data exist in this region. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Insights into the innate immunity of the Mediterranean mussel Mytilus galloprovincialis

    PubMed Central

    2011-01-01

    Background Sessile bivalves of the genus Mytilus are suspension feeders relatively tolerant to a wide range of environmental changes, used as sentinels in ecotoxicological investigations and marketed worldwide as seafood. Mortality events caused by infective agents and parasites apparently occur less in mussels than in other bivalves but the molecular basis of such evidence is unknown. The arrangement of Mytibase, interactive catalogue of 7,112 transcripts of M. galloprovincialis, offered us the opportunity to look for gene sequences relevant to the host defences, in particular the innate immunity related genes. Results We have explored and described the Mytibase sequence clusters and singletons having a putative role in recognition, intracellular signalling, and neutralization of potential pathogens in M. galloprovincialis. Automatically assisted searches of protein signatures and manually cured sequence analysis confirmed the molecular diversity of recognition/effector molecules such as the antimicrobial peptides and many carbohydrate binding proteins. Molecular motifs identifying complement C1q, C-type lectins and fibrinogen-like transcripts emerged as the most abundant in the Mytibase collection whereas, conversely, sequence motifs denoting the regulatory cytokine MIF and cytokine-related transcripts represent singular and unexpected findings. Using a cross-search strategy, 1,820 putatively immune-related sequences were selected to design oligonucleotide probes and define a species-specific Immunochip (DNA microarray). The Immunochip performance was tested with hemolymph RNAs from mussels injected with Vibrio splendidus at 3 and 48 hours post-treatment. A total of 143 and 262 differentially expressed genes exemplify the early and late hemocyte response of the Vibrio-challenged mussels, respectively, with AMP trends confirmed by qPCR and clear modulation of interrelated signalling pathways. Conclusions The Mytibase collection is rich in gene transcripts

  3. Comparing and determining the causes of ribbed mussel nitrogen isotope signatures in three New England sub-watersheds

    EPA Science Inventory

    Geukensia demissa, the ribbed mussel, is a useful indicator of sources of nitrogen input into coastal watersheds as it possesses a slow tissue turnover rate and is a common salt marsh species. During the summer of 2016, we sampled ribbed mussels from three New England sub-watersh...

  4. Reducing risks of maintenance dredging on freshwater mussels (Unionidae) in the Big Sunflower River, Mississippi.

    PubMed

    Miller, Andrew C; Payne, Barry S

    2004-11-01

    In response to proposed dredging in a 122-km reach of the Big Sunflower River, Mississippi, we studied freshwater mussels (family: Unionidae) using qualitative, semi-quantitative, and quantitative (0.25 m(2) total substratum removal) methods in 1987, 1993, 1994, 2001, 2002, and 2003. Our objectives were to identify important mussel resources, to devise methods for minimizing dredging risks, and to identify habitat improvement features. Approximately 60% of the fauna was located on two high-density shoals characterized by extreme dominance of the commercially valuable threeridge (Amblema plicata). Shallow nearshore and main channel areas comprised approximately 10 and 88% of the aquatic habitat in the project area; however, these areas were of less importance for mussels and supported densities of approximately 5 and 0.5 individuals/m(2), respectively. Throughout the project area the mussel fauna exhibited little or no evidence of recent recruitment, dominance of relatively few species (either A. plicata, or the bank climber Plectomerus dombeyanus), and low species diversity (H') and evenness. No federally listed endangered or threatened mussels were found, although the pyramid pigtoe (Pleurobema pyramidatum), a species listed as endangered in Mississippi, was collected in and upstream of the project area. Two other state-listed species, Plethobasus cyphyus (sheepnose) and Quadrula cylindrica (rabbitsfoot), were only found on gravelly shoals upriver of the project area. Maintenance plans were redesigned to minimize environmental damage; a hydraulic cutterhead dredge will be used in most of the mainstem to reduce risk to nearshore habitats. High-density assemblages on four shoals will not be dredged and 150 and 100 m buffer zones will be left immediately up and downriver. Enhancements for aquatic biota will be created with gravel substratum and wing dams.

  5. The effects of elevated water temperature on native juvenile mussels: implications for climate change

    USGS Publications Warehouse

    Ganser, Alissa M.; Newton, Teresa J.; Haro, Roger J.

    2013-01-01

    Native freshwater mussels are a diverse but imperiled fauna and may be especially sensitive to increasing water temperatures because many species already may be living near their upper thermal limits. We tested the hypothesis that elevated water temperatures (20, 25, 30, and 35°C) adversely affected the survival and physiology of 2-mo-old juvenile mussels (Lampsilis abrupta, Lampsilis siliquoidea, and Megalonaias nervosa) in 28-d laboratory experiments. The 28-d LT50s (lethal temperature affecting 50% of the population) ranged from 25.3 to 30.3°C across species, and were lowest for L. abrupta and L. siliquoidea. Heart rate of L. siliquoidea was not affected by temperature, but heart rate declined at higher temperatures in L. abrupta and M. nervosa. However, for both of these species, heart rate also declined steadily during the experiment and a strong temperature × time interaction was detected. Juvenile growth was low for all species in all treatments and did not respond directly to temperature, but growth of some species responded to a temperature × time interaction. Responses to thermal stress differed among species, but potential laboratory artifacts may limit applicability of these results to real-world situations. Environmentally relevant estimates of upper thermal tolerances in native mussels are urgently needed to assess the extent of assemblage changes that can be expected in response to global climate change.

  6. Chronic toxicity of copper and ammonia to juvenile freshwater mussels (Unionidae)

    USGS Publications Warehouse

    Wang, N.; Ingersoll, C.G.; Greer, I.E.; Hardesty, D.K.; Ivey, C.D.; Kunz, J.L.; Brumbaugh, W.G.; Dwyer, F.J.; Roberts, A.D.; Augspurger, T.; Kane, C.M.; Neves, R.J.; Barnhart, M.C.

    2007-01-01

    The objectives of the present study were to develop methods for conducting chronic toxicity tests with juvenile mussels under flow-through conditions and to determine the chronic toxicity of copper and ammonia to juvenile mussels using these methods. In two feeding tests, two-month-old fatmucket (Lampsilis siliquoidea) and rainbow mussel (Villosa iris) were fed various live algae or nonviable algal mixture for 28 d. The algal mixture was the best food resulting in high survival (???90%) and growth. Multiple copper and ammonia toxicity tests were conducted for 28 d starting with two-month-old mussels. Six toxicity tests using the algal mixture were successfully completed with a control survival of 88 to 100%. Among copper tests with rainbow mussel, fatmucket, and oyster mussel (Epioblasma capsaeformis), chronic value ([ChV], geometric mean of the no-observed-effect concentration and the lowest-observed-effect concentration) ranged from 8.5 to 9.8 ??g Cu/L for survival and from 4.6 to 8.5 ??g Cu/L for growth. Among ammonia tests with rainbow mussel, fatmucket, and wavy-rayed lampmussel (L. fasciola), the ChV ranged from 0.37 to 1.2 mg total ammonia N/L for survival and from 0.37 to 0.67 mg N/L for growth. These ChVs were below the U.S. Environmental Protection Agency 1996 chronic water quality criterion (WQC) for copper (15 ??g/L; hardness 170 mg/L) and 1999 WQC for total ammonia (1.26 mg N/L; pH 8.2 and 20??C). Results indicate that toxicity tests with two-month-old mussels can be conducted for 28 d with >80% control survival; growth was frequently a more sensitive endpoint compared to survival; and the 1996 chronic WQC for copper and the 1999 chronic WQC for total ammonia might not be adequately protective of the mussel species tested. However, a recently revised 2007 chronic WQC for copper based on the biotic ligand model may be more protective in the water tested. ?? 2007 SETAC.

  7. Freshwater mussel assemblage structure in a regulated river in the Lower Mississippi river Alluvial Basin, USA

    Treesearch

    Wendell R. Haag; Melvin L. Warren

    2007-01-01

    1. This paper documents a diverse, reproducing freshwater mussel community (20 species) in Lower Lake } an impounded, regulated portion of the Little Tallahatchie River below Sardis Dam in Panola Co., Mississippi, USA. 2. Despite being regulated and impounded, the lake has a heterogeneous array of habitats that differ markedly in mussel community attributes...

  8. Biotic interactions at hydrothermal vents: Recruitment inhibition by the mussel Bathymodiolus thermophilus

    NASA Astrophysics Data System (ADS)

    Lenihan, H. S.; Mills, S. W.; Mullineaux, L. S.; Peterson, C. H.; Fisher, C. R.; Micheli, F.

    2008-12-01

    The structure and dynamics of marine communities are regulated in part by variation in recruitment. As in other ecosystems, recruitment at deep-sea hydrothermal vents is controlled by the interplay of propagule supply and behavior, gradients in physical-chemical conditions, and biotic interactions during pre- and post-settlement periods. Recent research along the East Pacific Rise indicates that inhibition of recently settled larvae by mobile predators (mainly limpets) influences patterns of recruitment and subsequent community succession. We conducted a manipulative experiment at the same sites (˜2510 m water depth) to test whether high-density assemblages of the mussel Bathymodiolus thermophilus also inhibit recruitment. In a preliminary study, recruitment of vent invertebrates within the faunal zone dominated by B. thermophilus was strikingly different at two sites, East Wall and Worm Hole. East Wall had high densities of mussels but very low total recruitment. In contrast, Worm Hole had few mussels but high recruitment. Using the submersible Alvin, we transplanted a large number of mussels from East Wall to Worm Hole and quantified recruitment on basalt blocks placed in three treatments: (1) naturally high densities of mussels at East Wall; (2) naturally low densities of mussels at Worm Hole; and (3) high densities of transplanted mussels at Worm Hole. After 11 months, a total of 24 taxa had recruited to the basalt blocks. Recruitment was 44-60% lower in the transplanted high-density mussel patch at Worm Hole and the natural high-density patch at East Wall than within the natural low-density patch at Worm Hole. Biotic processes that may have caused the pattern of recruitment observed included predation of larvae via water filtration by mussels, larval avoidance of superior competitors, interference competition, and enhanced predation by species within the mussel-bed community. Our results indicate that biotic interactions affecting recruitment must be

  9. Metal interactions between the polychaete Branchipolynoe seepensis and the mussel Bathymodiolus azoricus from Mid-Atlantic-Ridge hydrothermal vent fields.

    PubMed

    Bebianno, Maria João; Cardoso, Cátia; Gomes, Tânia; Blasco, Julian; Santos, Ricardo Serrão; Colaço, Ana

    2018-04-01

    The vent blood-red commensal polynoid polychaete Branchipolynoe seepensis is commonly found in the pallial cavity of the vent mussel Bathymodiolus azoricus, the dominant bivalve species along the Mid-Atlantic-Ridge (MAR) and is known to be kleptoparasitic. Mussels were collected from three hydrothermal vent fields in the MAR: Menez Gwen (850 m depth, MG2, MG3 and MG4), Lucky Strike (1700 m depth, Montségur-MS and Eiffel Tower-ET) and Rainbow (2300 m depth). Polychaetes were absent in all Menez Gwen vent mussels, while the highest percentage was detected in mussels from Lucky Strike, where more than 70% of the mussels had at least one polychaete in their mantle cavity, followed by Rainbow with 33% of mussels with polychaetes. Total metal concentrations (Ag, Cd, Co, Cu, Fe, Mn, Ni and Zn) were determined in polychaetes whole body and in the mussel tissues (gills, digestive gland and mantle). To understand the possible metal interactions between symbiont and host, the activity of antioxidant defence (catalase (CAT), metallothioneins (MTs)), biotransformation enzymes (glutathione-s-transferases (GST)) activities and lipid peroxidation (LPO) were determined in polychaete whole soft tissues and in mussel tissues (gills, digestive gland and mantle). Metal concentrations in polychaetes and mussels tissues indicated that the accumulation patterns were species specific and also influenced by, and possibly dependent upon, the inter- and intra-variation of vent physico-chemistry between hydrothermal fields. Despite not detecting any strong correlations between metal and enzymes activities in polychaetes and mussels, when in presence of polychaetes, mussels presented less metal concentrations in the gills and digestive gland and lower activity of enzymatic biomarkers. This leads to infer that the polychaete plays a role on the detoxification process, and the interaction between the polychaete mussel association is probably an adaptation to metals concentrations at the

  10. Freshwater mussel salvage and relocation at the Pond Eddy Bridge, Delaware River, New York and Pennsylvania

    USGS Publications Warehouse

    Galbraith, Heather S.; Blakeslee, Carrie J.; Cole, Jeffrey C.

    2018-03-01

    In a study conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Transportation, freshwater mussels were salvaged and relocated from the anticipated zone of impact for the Pond Eddy Bridge construction project in New York and Pennsylvania. Five 25-meter (m) by 25-m cells along the Pennsylvania bank of the Delaware River were sampled in three generally straight-line passes by four surveyors wearing snorkel gear for a total of 180 survey minutes per cell. All mussels encountered were collected and identified to species. A subset of individuals was marked with shellfish tags, weighed, and measured prior to relocation upstream from the zone of impact. A total of 3,434 mussels, including 3,393 Elliptio complanata (eastern elliptio mussels), 39 Anodonta implicata (alewife floaters), 1 Strophitus undulatus (creeper), and 1 Pyganodon cataracta (eastern floater), were salvaged and relocated. All non-eastern elliptio species were georeferenced using a high-resolution global positioning system unit; a subset of tagged eastern elliptio was placed in transects between georeferenced points. These mussels will be monitored to assess the effects of translocation on mortality and body condition at 1 month, 1 year, and 2 years.

  11. Experimental Transmission of Infectious Pancreatic Necrosis Virus from the Blue Mussel, Mytilus edulis, to Cohabitating Atlantic Salmon (Salmo salar) Smolts

    PubMed Central

    Pietrak, Michael R.; Bricknell, Ian

    2013-01-01

    Integrated multitrophic aquaculture (IMTA) reduces the environmental impacts of commercial aquaculture systems by combining the cultivation of fed species with extractive species. Shellfish play a critical role in IMTA systems by filter-feeding particulate-bound organic nutrients. As bioaccumulating organisms, shellfish may also increase disease risk on farms by serving as reservoirs for important finfish pathogens such as infectious pancreatic necrosis virus (IPNV). The ability of the blue mussel (Mytilus edulis) to bioaccumulate and transmit IPNV to naive Atlantic salmon (Salmo salar) smolts was investigated. To determine the ability of mussels to filter and accumulate viable IPNV, mussels were held in water containing log 4.6 50% tissue culture infective dose(s) (TCID50) of the West Buxton strain of IPNV ml−1. Viable IPNV was detected in the digestive glands (DGs) of IPNV-exposed mussels as early as 2 h postexposure. The viral load in mussel DG tissue significantly increased with time and reached log 5.35 ± 0.25 TCID50 g of DG tissue−1 after 120 h of exposure. IPNV titers never reached levels that were significantly greater than that in the water. Viable IPNV was detected in mussel feces out to 7 days postdepuration, and the virus persisted in DG tissues for at least 18 days of depuration. To determine whether IPNV can be transmitted from mussels to Atlantic salmon, IPNV-exposed mussels were cohabitated with naive Atlantic salmon smolts. Transmission of IPNV did occur from mussels to smolts at a low frequency. The results demonstrate that a nonenveloped virus, such as IPNV, can accumulate in mussels and be transferred to naive fish. PMID:23872575

  12. High Pressure Inactivation of HAV within Mussels

    USDA-ARS?s Scientific Manuscript database

    The potential of hepatitis A virus (HAV) to be inactivated within Mediterranean mussels (Mytilus galloprovincialis) and blue mussels (Mytilus edulis) by high pressure processing was evaluated. HAV was bioaccumulated within mussels to approximately 6-log10 PFU by exposure of mussels to HAV-contamina...

  13. Changes in sex steroid hormone levels reflect the reproductive status of captive female zebra sharks (Stegostoma fasciatum).

    PubMed

    Nozu, Ryo; Murakumo, Kiyomi; Yano, Nagisa; Furuyama, Rina; Matsumoto, Rui; Yanagisawa, Makio; Sato, Keiichi

    2018-03-03

    Captive breeding in aquaria is a useful means for ex situ preservation of threatened elasmobranch species. To promote captive breeding, it is important to determine the female reproductive status. However, information regarding reproductive status in female elasmobranchs is limited. Here, we used zebra sharks, Stegostoma fasciatum, as a model for elasmobranch reproduction in captivity. We investigated the relationships among changes in the sex steroid hormone levels, follicle size, and egg-laying period to develop indicators for the female reproductive status. We confirmed that mature female zebra sharks undergo an annual reproductive cycle. Additionally, we showed that the variations in sex steroid hormone levels correlated with reproductive status in mature female zebra sharks. Plasma estradiol-17ß (E2) concentrations increased two months before ovarian follicle development and decreased along with follicle regression. Interestingly, E2 levels were inversely correlated with water temperature (R = -0.901). Moreover, high levels of testosterone (T) correlated well with the laying period. These results strongly suggest that E2 is an indicator for ovarian follicle development, and that T is a useful indicator for both the onset and end of the egg-laying period in captive zebra sharks. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Zebra Alphaherpesviruses (EHV-1 and EHV-9): Genetic Diversity, Latency and Co-Infections.

    PubMed

    Abdelgawad, Azza; Damiani, Armando; Ho, Simon Y W; Strauss, Günter; Szentiks, Claudia A; East, Marion L; Osterrieder, Nikolaus; Greenwood, Alex D

    2016-09-20

    Alphaherpesviruses are highly prevalent in equine populations and co-infections with more than one of these viruses' strains frequently diagnosed. Lytic replication and latency with subsequent reactivation, along with new episodes of disease, can be influenced by genetic diversity generated by spontaneous mutation and recombination. Latency enhances virus survival by providing an epidemiological strategy for long-term maintenance of divergent strains in animal populations. The alphaherpesviruses equine herpesvirus 1 (EHV-1) and 9 (EHV-9) have recently been shown to cross species barriers, including a recombinant EHV-1 observed in fatal infections of a polar bear and Asian rhinoceros. Little is known about the latency and genetic diversity of EHV-1 and EHV-9, especially among zoo and wild equids. Here, we report evidence of limited genetic diversity in EHV-9 in zebras, whereas there is substantial genetic variability in EHV-1. We demonstrate that zebras can be lytically and latently infected with both viruses concurrently. Such a co-occurrence of infection in zebras suggests that even relatively slow-evolving viruses such as equine herpesviruses have the potential to diversify rapidly by recombination. This has potential consequences for the diagnosis of these viruses and their management in wild and captive equid populations.

  15. The use of positive reinforcement in training zebra sharks (Stegostoma fasciatum).

    PubMed

    Marranzino, Ashley

    2013-01-01

    Positive reinforcement training (PRT) was used on 4 adult zebra sharks, Stegostoma fasciatum, housed at the Downtown Aquarium, Denver, to determine the ability of zebra sharks to become desensitized to various stimuli associated with veterinary procedures. One male and 3 female sharks were trained for 12 weeks. As a result of PRT, all 4 zebra sharks were desensitized to staying within a closed holding tank off of the main exhibit, the presence of multiple trainers in the closed holding tank, and tactile stimulation. One of the 4 zebra sharks was also successfully desensitized to the presence of a stretcher being brought into the holding tank. All of these procedures are common in veterinary examinations, and it is hoped that desensitization to these stimuli will reduce the stress associated with examinations. The training accomplished has allowed for easier maintenance of the zebra sharks by the aquarium staff and an improvement in the care of the sharks.

  16. Mechanical design of mussel byssus: material yield enhances attachment strength

    PubMed

    Bell; Gosline

    1996-01-01

    The competitive dominance of mussels in the wave-swept rocky intertidal zone is in part due to their ability to maintain a secure attachment. Mussels are tethered to the substratum by a byssus composed of numerous extracellular, collagenous threads secreted by the foot. Each byssal thread has three serially arranged parts: a corrugated proximal region, a smooth distal region and an adhesive plaque. This study examines the material and structural properties of the byssal threads of three mussel species: Mytilus californianus, M. trossulus, and M. galloprovincialis. Tensile tests in general reveal similar material properties among species: the proximal region has a lower initial modulus, a lower ultimate stress and a higher ultimate strain than the distal region. The distal region also yields at a stress well below its ultimate value. In whole thread tests, the proximal region and adhesive plaque are common sites of structural failure and are closely matched in strength, while the distal region appears to be excessively strong. We propose that the high strength of the distal region is the byproduct of a material designed to yield and extend before structural failure occurs. Experimental and theoretical evidence is presented suggesting that thread yield and extensibility provide two important mechanisms for increasing the overall attachment strength of the mussel: (1) the reorientation of threads towards the direction of applied load, and (2) the 'recruitment' of more threads into tension and the consequent distribution of applied load over a larger cross-sectional area, thereby reducing the stress on each thread. This distal region yield behavior is most striking for M. californianus and may be a key to its success in extreme wave-swept environments.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giamberini, Laure; Cajaraville, Miren P.

    In order to examine the possible use of lysosomal response as a biomarker of freshwater quality, structural changes of lysosomes were measured by image analysis in the digestive gland of the zebra mussel, Dreissena polymorpha, exposed in laboratory conditions to cadmium. Mussels were exposed to the metal (10 and 200 {mu}g/L) for 3 weeks and randomly collected after 7 and 21 days. At each treatment day, digestive tissues were excised and {beta}-glucuronidase activity was revealed in cryotome sections. Four stereological parameters were calculated: lysosomal volume density, lysosomal surface density, lysosomal surface to volume ratio, and lysosomal numerical density. The changesmore » observed in this study reflected a general activation of the lysosomal system, including an increase in both the number and the size of lysosomes in the digestive gland cells of mussels exposed to cadmium. The digestive lysosomal response in zebra mussels was related to exposure time and to metal concentration, demonstrating the potential of this biomarker in freshwater biomonitoring.« less

  18. Changes in the bottom fauna of western Lake Erie

    USGS Publications Warehouse

    Manny, Bruce A.; Schloesser, D.W.; Munawar, M.; Edsall, T.; Munawar, I.F.

    1999-01-01

    The bottom fauna of western Lake Erie has changed dramatically over the past 50 years in response to environmental degradation and biological invasions. In 1953, low dissolved oxygen reduced the biodiversity of that fauna, especially burrowing mayflies and freshwater mussels (Unionidae). Canada and the United States signed the Great Lakes Water Quality Agreement in 1972. By 1982, over 7 billion dollars were spent to improve wastewater treatment plants in the Great Lakes Basin. To assess how the bottom fauna responded to pollution abatement measures, we studied the distribution, abundance, and diversity of bottom fauna in western Lake Erie in 1982 and compared our findings to those of Carr and Hiltunen (1965). Zebra mussels (Dreissena polymorpha) invaded Lake Erie in 1986 and greatly altered these waters. For perspective, we also compared our results to bottom fauna present at the same stations in 1930 (by reference to data in Carr and Hiltunen, 1965) and reviewed the responses of burrowing mayflies and freshwater mussels to the zebra mussel invasion.

  19. Acute and chronic toxicity of aluminum to a unionid mussel (Lampsilis siliquoidea) and an amphipod (Hyalella azteca) in water‐only exposures

    USGS Publications Warehouse

    Wang, Ning; Ivey, Chris D.; Brunson, Eric L.; Cleveland, Danielle; Ingersoll, Christopher G.; Stubblefield, William A.; Cardwell, Allison S.

    2018-01-01

    The US Environmental Protection Agency (USEPA) is reviewing the protectiveness of the national ambient water quality criteria (WQC) for aluminum (Al) and compiling a toxicity data set to update the WQC. Freshwater mussels are one of the most imperiled groups of animals in the world, but little is known about their sensitivity to Al. The objective of the present study was to evaluate acute 96‐h and chronic 28‐d toxicity of Al to a unionid mussel (Lampsilis siliquoidea) and a commonly tested amphipod (Hyalella azteca) at a pH of 6 and water hardness of 100 mg/L as CaCO3. The acute 50% effect concentration (EC50) for survival of both species was >6200 μg total Al/L. The EC50 was greater than all acute values in the USEPA acute Al data set for freshwater species at a pH range of 5.0 to <6.5 and hardness normalized to 100 mg/L, indicating that the mussel and amphipod were insensitive to Al in acute exposures. The chronic 20% effect concentration (EC20) based on dry weight was 163 μg total Al/L for the mussel and 409 μg total Al/L for the amphipod. Addition of the EC20s to the USEPA chronic Al data set for pH 5.0 to <6.5 would rank the mussel (L. siliquoidea) as the fourth most sensitive species and the amphipod (H. azteca) as the fifth most sensitive species, indicating the 2 species were sensitive to Al in chronic exposures. The USEPA‐proposed acute and chronic WQC for Al would adequately protect the mussel and amphipod tested; however, inclusion of the chronic data from the present study and recalculation of the chronic criterion would likely lower the proposed chronic criterion. 

  20. Comparison of population genetic patterns in two widespread freshwater mussels with contrasting life histories in western North America.

    PubMed

    Mock, K E; Brim Box, J C; Chong, J P; Furnish, J; Howard, J K

    2013-12-01

    We investigate population genetic structuring in Margaritifera falcata, a freshwater mussel native to western North America, across the majority of its geographical range. We find shallow rangewide genetic structure, strong population-level structuring and very low population diversity in this species, using both mitochondrial sequence and nuclear microsatellite data. We contrast these patterns with previous findings in another freshwater mussel species group (Anodonta californiensis/A. nuttalliana) occupying the same continental region and many of the same watersheds. We conclude that differences are likely caused by contrasting life history attributes between genera, particularly host fish requirements and hermaphroditism. Further, we demonstrate the occurrence of a 'hotspot' for genetic diversity in both groups of mussels, occurring in the vicinity of the lower Columbia River drainage. We suggest that stream hierarchy may be responsible for this pattern and may produce similar patterns in other widespread freshwater species. © 2013 John Wiley & Sons Ltd.

  1. Noninvasive diffusive optical imaging of the auditory response to birdsong in the zebra finch

    PubMed Central

    Lee, James V.; Maclin, Edward L.; Low, Kathy A.; Gratton, Gabriele; Fabiani, Monica; Clayton, David F.

    2013-01-01

    Songbirds communicate by learned vocalizations with concomitant changes in neurophysiological and genomic activities in discrete parts of the brain. Here we tested a novel implementation of diffusive optical imaging (also known as diffuse optical imaging, DOI) for monitoring brain physiology associated with vocal signal perception. DOI noninvasively measures brain activity using red and near-infrared light delivered through optic fibers (optodes) resting on the scalp. DOI does not harm subjects, so it raises the possibility of repeatedly measuring brain activity and the effects of accumulated experience in the same subject over an entire life span, all while leaving tissue intact for further study. We developed a custom-made apparatus for interfacing optodes to the zebra finch (Taeniopygia guttata) head using 3D modeling software and rapid prototyping technology, and applied it to record responses to presentations of birdsong in isoflurane-anesthetized zebra finches. We discovered a subtle but significant difference between the hemoglobin spectra of zebra finches and mammals which has a major impact in how hemodynamic responses are interpreted in the zebra finch. Our measured responses to birdsong playback were robust, highly repeatable, and readily observed in single trials. Responses were complex in shape and closely paralleled responses described in mammals. They were localized to the caudal medial portion of the brain, consistent with response localization from prior gene expression, electrophysiological, and functional magnetic resonance imaging studies. These results define an approach for collecting neurophysiological data from songbirds that should be applicable to diverse species and adaptable for studies in awake behaving animals. PMID:23322445

  2. Phylogeny and evolutionary radiation of the marine mussels (Bivalvia: Mytilidae) based on mitochondrial and nuclear genes.

    PubMed

    Liu, Jun; Liu, Helu; Zhang, Haibin

    2018-04-22

    The marine mussels (Mytilidae) are distributed in the oceans worldwide and occupy various habitats with diverse life styles. However, their taxonomy and phylogeny remain unclear from genus to family level due to equivocal morphological and anatomical characters among some taxa. In this study, we inferred the deep phylogenetic relationships among 42 mytiloid species, 19 genera, and five subfamilies of the extant marine mussels by using two mitochondrial (COI and 16S rRNA) and three nuclear (18S and 28S rRNA, and histone H3) genes. Phylogeny was reconstructed with a combination of five genes using Bayesian inference and maximum likelihood method, and divergence time was estimated for the major nodes using a relaxed clock model with three fossil calibrations. Phylogenetic trees revealed two major clades (Clades 1 and 2). In Clade 1, the deep-sea mussels (subfamily Bathymodiolinae) were sister to subfamily Modiolinae (represented by Modiolus), and then was clustered with Leiosolenus (subfamily Lithophaginae). Clade 2 comprised Lithophaga (Lithophaginae) and subfamily Mytilinae. Additionally, a Modiolus species and Musculus senhousia (subfamily Crenellinae) were positioned within the subfamily Mytilinae. The phylogenetic results strongly indicated monophyly of Mytilidae and Bathymodiolinae, polyphyly of Modiolinae and Lithophaginae, and paraphyly of Mytilinae. Divergence time estimation showed an ancient and gradual divergence in most mussel groups, whereas the deep-sea mussels originated recently and diverged rapidly during the Paleogene. The present study provides new insight into the evolutionary history of the marine mussels, and supports taxonomic revision for this important bivalve group. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Zebra stripes in the Atacama Desert: Fossil evidence of overland flow

    NASA Astrophysics Data System (ADS)

    Owen, Justine J.; Dietrich, William E.; Nishiizumi, Kuni; Chong, Guillermo; Amundson, Ronald

    2013-01-01

    Some hillslopes in the hyperarid region of the Atacama Desert in northern Chile have surface clasts organized into distinct, contour-parallel bands separated by bare soil. We call the bands "zebra stripes" due to the contrast between the darkly varnished clasts and the light-colored, salt-rich soil. Gravel that comprises the zebra stripes is sorted such that the coarsest clasts are at the downslope front and fine progressively upslope. How and when the zebra stripes formed are perplexing questions, particularly in a region experiencing prolonged hyperaridity. Using GoogleEarth, satellite imagery, and field observations, we report the first quantitative and qualitative observations of zebra stripes in order to test hypotheses of the mechanisms and timing of their formation. We consider soil shrink-swell, seismic shaking, and overland flow as possible formation mechanisms, and find that overland flow is the most likely. Based on cosmogenic 10Be concentrations in surface clasts, salt deposition rates from the atmosphere, and content in the soils, we propose that the salt-rich soils began accumulating ~ 106 y ago and the zebra stripes formed 103-104 y at the latest. The zebra stripe pattern has been preserved due to the self-stabilization of the clasts within the stripes and the continued absence of life (which would disturb the surface, as seen at a wetter site to the south). We conclude that the occurrence of zebra stripes is diagnostic of a set of distinct characteristics of local and/or regional precipitation, soil, hillslope form, and bedrock type.

  4. Fishes, mussels, crayfishes, and aquatic habitats of the Hoosier-Shawnee ecological assessment area

    Treesearch

    M. Burr Brooks; Justin T. Sipiorski; Matthew R. Thomas; Kevin S. Cummings; Christopher A. Taylor

    2004-01-01

    The Hoosier-Shawnee Ecological Assessment Area, part of the Coastal Plain and Interior Low Plateau physiographic provinces, includes 194 native fish species, 76 native mussel species, and 34 native crayfish species. Five of the subregions (e.g., Mississippi Embayment) that make up the assessment area were recently ranked as either globally or bioregionally outstanding...

  5. Effects of severe drought on freshwater mussel assemblages

    Treesearch

    Wendell Hagg; Jr. Warren Melvin L.

    2008-01-01

    We examined changes in freshwater mussel abundance and species composition at eight sites in Alabama and Mississippi in response to a severe drought in 2000. Five small-stream sites in Bankhead National Forest were heavily impacted by drought; one site dried almost completely, and four sites experienced total or near cessation of flow but retained water in their...

  6. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins

    NASA Astrophysics Data System (ADS)

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N.; Patil, Navinkumar J.; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-10-01

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives.

  7. Song Recognition in Zebra Finches: Are There Sensitive Periods for Song Memorization?

    ERIC Educational Resources Information Center

    Braaten, Richard F.

    2010-01-01

    Male zebra finches learn to sing songs that they hear between 25 and 65 days of age, the sensitive period for song learning. In this experiment, male and female zebra finches were exposed to zebra finch songs either before (n = 9) or during (n = 4) the sensitive period. Following song exposure, recognition memory for the songs was assessed with an…

  8. An evaluation of selective feeding by three age-groups of the rainbow mussel Villosa iris

    USGS Publications Warehouse

    Beck, K.; Neves, R.J.

    2003-01-01

    A tri-algal diet was fed to three age-groups of the rainbow mussel Villosa iris: ages 2-3 d, 50-53 d, and 3-6 years. Changes in the relative abundance of each algal species were determined in 5-h feeding trials from feeding chambers and by gut content analyses. All age-groups rejected Scenedesmus quadricauda and preferentially selected Nannochloropsis oculata and Selenastrum capricornutum, principally on the basis of size. Changes in the relative abundance of algae in feeding chambers did not differ significantly among age-groups. Observed differences in the ingested quantities of the similar-sized N. oculata and S. capricornutum were attributed to other particle-related characteristics. Results indicate that the rainbow mussel can be fed similar-sized algae at ali ages in captive propagation facilities. When developing a suitable algal diet for rearing juvenile mussels, one probably need not investigate different species at each stage of development if the algae used are in the 2.8-8.5-??m size range.

  9. Intrinsic Variability in Shell and Soft Tissue Growth of the Freshwater Mussel Lampsilis siliquoidea

    PubMed Central

    Larson, James H.; Eckert, Nathan L.; Bartsch, Michelle R.

    2014-01-01

    Freshwater mussels are ecologically and economically important members of many aquatic ecosystems, but are globally among the most imperiled taxa. Propagation techniques for mussels have been developed and used to boost declining and restore extirpated populations. Here we use a cohort of propagated mussels to estimate the intrinsic variability in size and growth rate of Lampsilis siliquoidea (a commonly propagated species). Understanding the magnitude and pattern of variation in data is critical to determining whether effects observed in nature or experimental treatments are likely to be important. The coefficient of variation (CV) of L. siliquoidea soft tissues (6.0%) was less than the CV of linear shell dimensions (25.1–66.9%). Size-weight relationships were best when mussel width (the maximum left-right dimension with both valves appressed) was used as a predictor, but 95% credible intervals on these predictions for soft tissues were ∼145 mg wide (about 50% of the mean soft tissue mass). Mussels in this study were treated identically, raised from a single cohort and yet variation in soft tissue mass at a particular size class (as determined by shell dimensions) was still high. High variability in mussel size is often acknowledged, but seldom discussed in the context of mussel conservation. High variability will influence the survival of stocked juvenile cohorts, may affect the ability to experimentally detect sublethal stressors and may lead to incongruities between the effects that mussels have on structure (via hard shells) and biogeochemical cycles (via soft tissue metabolism). Given their imperiled status and longevity, there is often reluctance to destructively sample unionid mussel soft tissues even in metabolic studies (e.g., studies of nutrient cycling). High intrinsic variability suggests that using shell dimensions (particularly shell length) as a response variable in studies of sublethal stressors or metabolic processes will make confident

  10. Intrinsic variability in shell and soft tissue growth of the freshwater mussel Lampsilis siliquoidea

    USGS Publications Warehouse

    Larson, James H.; Eckert, Nathan L.; Bartsch, Michelle

    2014-01-01

    Freshwater mussels are ecologically and economically important members of many aquatic ecosystems, but are globally among the most imperiled taxa. Propagation techniques for mussels have been developed and used to boost declining and restore extirpated populations. Here we use a cohort of propagated mussels to estimate the intrinsic variability in size and growth rate of Lampsilis siliquoidea (a commonly propagated species). Understanding the magnitude and pattern of variation in data is critical to determining whether effects observed in nature or experimental treatments are likely to be important. The coefficient of variation (CV) of L. siliquoidea soft tissues (6.0%) was less than the CV of linear shell dimensions (25.1-66.9%). Size-weight relationships were best when mussel width (the maximum left-right dimension with both valves appressed) was used as a predictor, but 95% credible intervals on these predictions for soft tissues were ~145 mg wide (about 50% of the mean soft tissue mass). Mussels in this study were treated identically, raised from a single cohort and yet variation in soft tissue mass at a particular size class (as determined by shell dimensions) was still high. High variability in mussel size is often acknowledged, but seldom discussed in the context of mussel conservation. High variability will influence the survival of stocked juvenile cohorts, may affect the ability to experimentally detect sublethal stressors and may lead to incongruities between the effects that mussels have on structure (via hard shells) and biogeochemical cycles (via soft tissue metabolism). Given their imperiled status and longevity, there is often reluctance to destructively sample unionid mussel soft tissues even in metabolic studies (e.g., studies of nutrient cycling). High intrinsic variability suggests that using shell dimensions (particularly shell length) as a response variable in studies of sublethal stressors or metabolic processes will make confident

  11. Who wins in the weaning process? Juvenile feeding morphology of two freshwater mussel species.

    PubMed

    Araujo, Rafael; Campos, Miquel; Feo, Carles; Varela, Catuxa; Soler, Joaquín; Ondina, Paz

    2018-01-01

    The global decline of freshwater mussels can be partially attributed to their complex life cycle. Their survival from glochidium to adulthood is like a long obstacle race, with juvenile mortality as a key critical point. Mass mortality shortly after entering into a juvenile state has been reported in both wild and captive populations, thus weakening the effective bivalve population. A similar phenomenon occurs during metamorphosis in natural and hatchery populations of juvenile marine bivalves. Based on a morphological analysis using scanning electron microscopy of newly formed juveniles of the freshwater species Margaritifera margaritifera (L.) (Margaritiferidae) and Unio mancus Lamarck (Unionidae), we show that a second metamorphosis, consisting of drastic morphological changes, occurs that leads to suspension feeding in place of deposit feeding by the ciliated foot. We hypothesize that suspension feeding in these two species improves due to a gradual development of several morphological features including the contact between cilia of the inner gill posterior filaments, the inner gill reflection, the appearance of the ctenidial ventral groove and the formation of the pedal palps. Regardless of the presence of available food, a suspension feeding mode replaces deposit feeding, and juveniles unable to successfully transition morphologically or adapt to the feeding changes likely perish. © 2017 Wiley Periodicals, Inc.

  12. A mechanistic model to study the thermal ecology of a southeastern pacific dominant intertidal mussel and implications for climate change.

    PubMed

    Finke, G R; Bozinovic, F; Navarrete, S A

    2009-01-01

    Developing mechanistic models to predict an organism's body temperature facilitates the study of physiological stresses caused by extreme climatic conditions the species might have faced in the past or making predictions about changes to come in the near future. Because the models combine empirical observation of different climatic variables with essential morphological attributes of the species, it is possible to examine specific aspects of predicted climatic changes. Here, we develop a model for the competitively dominant intertidal mussel Perumytilus purpuratus that estimates body temperature on the basis of meteorological and tidal data with an average difference (+/-SE) of 0.410 degrees +/- 0.0315 degrees C in comparison with a field-deployed temperature logger. Modeled body temperatures of P. purpuratus in central Chile regularly exceeded 30 degrees C in summer months, and values as high as 38 degrees C were found. These results suggest that the temperatures reached by mussels in the intertidal zone in central Chile are not sufficiently high to induce significant mortality on adults of this species; however, because body temperatures >40 degrees C can be lethal for this species, sublethal effects on physiological performance warrant further investigation. Body temperatures of mussels increased sigmoidally with increasing tidal height. Body temperatures of individuals from approximately 70% of the tidal range leveled off and did not increase any further with increasing tidal height. Finally, body size played an important role in determining body temperature. A hypothetical 5-cm-long mussel (only 1 cm longer than mussels found in nature) did reach potentially lethal body temperatures, suggesting that the biophysical environment may play a role in limiting the size of this small species.

  13. Acute toxicity of NaCl and Na2SO4 mixtures to juveniles of a freshwater unionid mussel (fatmucket, Lampsilis siliquoidea)

    EPA Science Inventory

    Native freshwater mussels are in serious global decline and urgently need protection and conservation. Nearly 70% of the 300 species in North America are endangered, threatened, of special concern, or already extinct. Previous studies indicate that freshwater mussels are sensitiv...

  14. Cyanobacteria reduce quagga mussel (Dreissena rostriformis bugensis) spawning and fertilization success

    USGS Publications Warehouse

    Boegehold, Anna G.; Johnson, Nicholas; Ran, Jeffrey L.; Kashian, Donna R.

    2018-01-01

    Quagga mussels (Dreissena rostriformis bugensis) are highly fecund broadcast spawners invasive to freshwaters of North America and western Europe. We hypothesized that environmental cues from phytoplankton can trigger gamete release in quagga mussels. Nutritious algae may stimulate dreissenid spawning, but less palatable food, such as bloom-forming cyanobacteria, could be a hindrance. The objective of our study was to test whether exposure to cyanobacteria can inhibit quagga mussel spawning and fertilization. We assessed spawning in the presence of serotonin, a known spawning inducer, where adult quagga mussels placed in individual vials were exposed to 13 cyanobacteria cultures and purified algal toxin (microcystin-LR) with artificial lake water as the control. Fertilization success was evaluated by combining eggs with sperm in conjunction with cyanobacteria, and enumerating zygote formation marked by cellular cleavage. Several cyanobacterial strains reduced spawning and fertilization success, but microcystin-LR had no effect. Fertilization was more sensitive to cyanobacteria than gamete release. Only 1 culture, Aphanizomenon flos-aquae, inhibited spawning, whereas 6 cultures consisting of Anabaena flos-aquae, Dolichospermum lemmermanii, Gloeotrichia echinulata, Lyngbya wollei, and 2 Microcystis aeruginosa isolates reduced fertilization rates by up to 44%. The effects of cyanobacteria on reproduction in invasive freshwater mussels in the wild have not yet been identified. However, our laboratory studies show that concentrations of cyanobacteria that are possible during bloom conditions probably limit reproduction. Reproductive consequences on wild populations may become more prevalent as cyanobacteria blooms occur earlier in the year, making overlap between blooms and mussel spawning more common. Describing the mechanism by which cyanobacteria inhibit spawning and fertilization could reveal novel control methods to limit reproduction of this invasive

  15. Generic reclassification and species boundaries in the rediscovered freshwater mussel ‘Quadrula’ mitchelli (Simpson in Dall, 1896)

    USGS Publications Warehouse

    Pfeiffer, John M.; Johnson, Nathan A.; Randklev, Charles R.; Howells, Robert G.; Williams, James D.

    2016-01-01

    The Central Texas endemic freshwater mussel, Quadrula mitchelli (Simpson in Dall, 1896), had been presumed extinct until relict populations were recently rediscovered. To help guide ongoing and future conservation efforts focused on Q. mitchelli we set out to resolve several uncertainties regarding its evolutionary history, specifically its unknown generic position and untested species boundaries. We designed a molecular matrix consisting of two loci (cytochrome c oxidase subunit I and internal transcribed spacer I) and 57 terminal taxa to test the generic position of Q. mitchelli using Bayesian inference and maximum likelihood phylogenetic reconstruction. We also employed two Bayesian species validation methods to test five a priori species models (i.e. hypotheses of species delimitation). Our study is the first to test the generic position of Q.mitchelli and we found robust support for its inclusion in the genusFusconaia. Accordingly, we introduce the binomial, Fusconaia mitchelli comb. nov., to accurately represent the systematic position of the species. We resolved F. mitchelli individuals in two well supported and divergent clades that were generally distinguished as distinct species using Bayesian species validation methods, although alternative hypotheses of species delineation were also supported. Despite strong evidence of genetic isolation within F. mitchelli, we do not advocate for species-level status of the two clades as they are allopatrically distributed and no morphological, behavioral, or ecological characters are known to distinguish them. These results are discussed in the context of the systematics, distribution, and conservation ofF. mitchelli.

  16. Mantle displays of freshwater mussels elicit attacks from fish

    Treesearch

    Wendell R. Haag; Melvin L. Warren

    1999-01-01

    Gravid females of some North American freshwater mussel species (Bivalvia: Unionidae) display highly modified mantle margins and other reproductive structures which mimic small fish, terrestrial insects, or aquatic macro-invertebrates. The authors report the responses of fish to these lures, based on the results of laboratory encounters between the following pairs of...

  17. Freshwater mussels in an urban watershed: Impacts of anthropogenic inputs and habitat alterations on populations.

    PubMed

    Gillis, Patricia L; McInnis, Rodney; Salerno, Joseph; de Solla, Shane R; Servos, Mark R; Leonard, Erin M

    2017-01-01

    The substantial increase in urbanization worldwide has resulted in higher emissions of wastewater to riverine systems near urban centers, which often impairs aquatic populations and communities. This study examined the effect of urbanization on freshwater mussel populations, including Species at Risk in two rivers receiving wastewater. The influence of anthropogenic activities was assessed in a watershed in the Laurentian Great Lakes basin, one that historically supported one of the most diverse mussel faunas in Canada. In the Grand River (ON), four sites along a 60km reach spanning from an upstream reference site to an urban-impacted downstream area were examined. In the Speed River, mussel populations at six sites along a 10km reach, selected to bracket specific anthropogenic inputs and structures were assessed. A semi-quantitative visual search method revealed that catch per unit effort in the Grand River declined by >60% from the upstream reference site to the area downstream of an urban center. The size (length) frequency distribution of the most abundant species, Lasmigona costata, was significantly (p≤0.008) different upstream of the majority of urban inputs (45-130mm) compared to downstream of the cities (85-115mm). In the Speed River, impoundments and wastewater treatment plants (WWTP) reduced both the diversity and catch per effort. Most striking were 84 and 95% changes in the number of mussels found on either side of two impoundments, and a 98% drop in mussels immediately downstream of a WWTP outfall. These population level effects of decreased abundance and underrepresentation of smaller mussels downstream of the urban area correspond to previously documented impacts at the biochemical and whole organism level of biological organization in wild mussels at this location. Our results demonstrate that poor water quality and physical barriers in urban environments continue to impair susceptible populations and communities of aquatic animals. Crown

  18. Controlling populations of invasive pygmy mussel (Xenostrobus securis) through citizen science and environmental DNA.

    PubMed

    Miralles, Laura; Dopico, Eduardo; Devlo-Delva, Floriaan; Garcia-Vazquez, Eva

    2016-09-15

    Early detection of dangerous exotic species is crucial for stopping marine invasions. The New Zealand pygmy mussel Xenostrobus securis is a problematic species in coasts of temperate regions in the northern hemisphere. In this study we have controlled a population of this invader that recently expanded in a north Iberian estuary with both a participatory approach involving researchers and citizens, and employing a sensitive eDNA-based tool to monitor the population expansion in the estuary. Results demonstrate successful eradication of pygmy mussels in the outer part of the estuary with citizen science and the practical utility of eDNA for controlling biological invasions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. How the zebra got its stripes: a problem with too many solutions

    PubMed Central

    Larison, Brenda; Harrigan, Ryan J.; Thomassen, Henri A.; Rubenstein, Daniel I.; Chan-Golston, Alec M.; Li, Elizabeth; Smith, Thomas B.

    2015-01-01

    The adaptive significance of zebra stripes has thus far eluded understanding. Many explanations have been suggested, including social cohesion, thermoregulation, predation evasion and avoidance of biting flies. Identifying the associations between phenotypic and environmental factors is essential for testing these hypotheses and substantiating existing experimental evidence. Plains zebra striping pattern varies regionally, from heavy black and white striping over the entire body in some areas to reduced stripe coverage with thinner and lighter stripes in others. We examined how well 29 environmental variables predict the variation in stripe characteristics of plains zebra across their range in Africa. In contrast to recent findings, we found no evidence that striping may have evolved to escape predators or avoid biting flies. Instead, we found that temperature successfully predicts a substantial amount of the stripe pattern variation observed in plains zebra. As this association between striping and temperature may be indicative of multiple biological processes, we suggest that the selective agents driving zebra striping are probably multifarious and complex. PMID:26064590

  20. Assessing variability in chemical acute toxicity of unionid mussels: Influence of intra- and inter-laboratory testing, life stage, and species

    EPA Science Inventory

    The authors developed a toxicity database for unionid mussels to examine the extent of intra- and interlaboratory variability in acute toxicity tests with mussel larvae (glochidia) and juveniles; the extent of differential sensitivity of the 2 life stages; and the variation in se...

  1. Global depression in gene expression as a response to rapid thermal changes in vent mussels

    PubMed Central

    Boutet, Isabelle; Tanguy, Arnaud; Le Guen, Dominique; Piccino, Patrice; Hourdez, Stéphane; Legendre, Pierre; Jollivet, Didier

    2009-01-01

    Hydrothermal vent mussels belonging to the genus Bathymodiolus are distributed worldwide and dominate communities at shallow Atlantic hydrothermal sites. While organisms inhabiting coastal ecosystems are subjected to predictable oscillations of physical and chemical variables owing to tidal cycles, the vent mussels sustain pronounced temperature changes over short periods of time, correlated to the alternation of oxic/anoxic phases. In this context, we focused on the short-term adaptive response of mussels to temperature change at a molecular level. The mRNA expression of 23 genes involved in various cell functions of the vent mussel Bathymodiolus azoricus was followed after heat shocks for either 30 or 120 min, at 25 and 30°C over a 48 h recovery period at 5°C. Mussels were genotyped at 10 enzyme loci to explore a relationship between natural genetic variation, gene expression and temperature adaptation. Results indicate that the mussel response to increasing temperature is a depression in gene expression, such a response being genotypically correlated at least for the Pgm-1 locus. This suggests that an increase in temperature could be a signal triggering anaerobiosis for B. azoricus or this latter alternatively behaves more like a ‘cold’ stenotherm species, an attribute more related to its phylogenetic history, a cold seeps/wood fall origin. PMID:19515664

  2. Species traits and environmental conditions govern the relationship between biodiversity effects across trophic levels

    USGS Publications Warehouse

    Spooner, D.E.; Vaughn, C.C.; Galbraith, H.S.

    2012-01-01

    Changing environments can have divergent effects on biodiversity-ecosystem function relationships at alternating trophic levels. Freshwater mussels fertilize stream foodwebs through nutrient excretion, and mussel species-specific excretion rates depend on environmental conditions. We asked how differences in mussel diversity in varying environments influence the dynamics between primary producers and consumers. We conducted field experiments manipulating mussel richness under summer (low flow, high temperature) and fall (moderate flow and temperature) conditions, measured nutrient limitation, algal biomass and grazing chironomid abundance, and analyzed the data with non-transgressive overyielding and tripartite biodiversity partitioning analyses. Algal biomass and chironomid abundance were best explained by trait-independent complementarity among mussel species, but the relationship between biodiversity effects across trophic levels (algae and grazers) depended on seasonal differences in mussel species' trait expression (nutrient excretion and activity level). Both species identity and overall diversity effects were related to the magnitude of nutrient limitation. Our results demonstrate that biodiversity of a resource-provisioning (nutrients and habitat) group of species influences foodweb dynamics and that understanding species traits and environmental context are important for interpreting biodiversity experiments. ?? 2011 Springer-Verlag.

  3. Geographical structure of endosymbiotic bacteria hosted by Bathymodiolus mussels at eastern Pacific hydrothermal vents.

    PubMed

    Ho, Phuong-Thao; Park, Eunji; Hong, Soon Gyu; Kim, Eun-Hye; Kim, Kangchon; Jang, Sook-Jin; Vrijenhoek, Robert C; Won, Yong-Jin

    2017-05-30

    Chemolithoautotrophic primary production sustains dense invertebrate communities at deep-sea hydrothermal vents and hydrocarbon seeps. Symbiotic bacteria that oxidize dissolved sulfur, methane, and hydrogen gases nourish bathymodiolin mussels that thrive in these environments worldwide. The mussel symbionts are newly acquired in each generation via infection by free-living forms. This study examined geographical subdivision of the thiotrophic endosymbionts hosted by Bathymodiolus mussels living along the eastern Pacific hydrothermal vents. High-throughput sequencing data of 16S ribosomal RNA encoding gene and fragments of six protein-coding genes of symbionts were examined in the samples collected from nine vent localities at the East Pacific Rise, Galápagos Rift, and Pacific-Antarctic Ridge. Both of the parapatric sister-species, B. thermophilus and B. antarcticus, hosted the same numerically dominant phylotype of thiotrophic Gammaproteobacteria. However, sequences from six protein-coding genes revealed highly divergent symbiont lineages living north and south of the Easter Microplate and hosted by these two Bathymodiolus mussel species. High heterogeneity of symbiont haplotypes among host individuals sampled from the same location suggested that stochasticity associated with initial infections was amplified as symbionts proliferated within the host individuals. The mussel species presently contact one another and hybridize along the Easter Microplate, but the northern and southern symbionts appear to be completely isolated. Vicariance associated with orogeny of the Easter Microplate region, 2.5-5.3 million years ago, may have initiated isolation of the symbiont and host populations. Estimates of synonymous substitution rates for the protein-coding bacterial genes examined in this study were 0.77-1.62%/nucleotide/million years. Our present study reports the most comprehensive population genetic analyses of the chemosynthetic endosymbiotic bacteria based on high

  4. Insights into deep-sea adaptations and host-symbiont interactions: A comparative transcriptome study on Bathymodiolus mussels and their coastal relatives.

    PubMed

    Zheng, Ping; Wang, Minxiao; Li, Chaolun; Sun, Xiaoqing; Wang, Xiaocheng; Sun, Yan; Sun, Song

    2017-10-01

    Mussels (Bivalve: Mytilidae) have adapted to various habitats, from fresh water to the deep sea. To understand their adaptive characteristics in different habitats, particularly in the bathymodiolin mussels in deep-sea chemosynthetic ecosystems, we conducted a comparative transcriptomic analysis between deep-sea bathymodiolin mussels and their shallow-water relatives. A number of gene families related to stress responses were shared across all mussels, without specific or significantly expanded families in deep-sea species, indicating that all mussels are capable of adapting to diverse harsh environments, but that different members of the same gene family may be preferentially utilized by different species. One of the most extraordinary trait of bathymodiolin mussels is their endosymbiosis. Lineage-specific and positively selected TLRs and highly expressed C1QDC proteins were identified in the gills of the bathymodiolins, suggesting their possible functions in symbiont recognition. However, pattern recognition receptors of the bathymodiolins were globally reduced, facilitating the invasion and maintenance of the symbionts obtained by either endocytosis or phagocytosis. Additionally, various transporters were positively selected or more highly expressed in the deep-sea mussels, indicating a means by which necessary materials could be provided for the symbionts. Key genes supporting lysosomal activity were also positively selected or more highly expressed in the deep-sea mussels, suggesting that nutrition fixed by the symbionts can be absorbed in a "farming" way wherein the symbionts are digested by lysosomes. Regulation of key physiological processes including lysosome activity, apoptosis and immune reactions is needed to maintain a stable host-symbiont relationship, but the mechanisms are still unclear. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  5. Life stage sensitivity of the marine mussel Mytilus edulis to ammonia.

    PubMed

    Kennedy, Alan J; Lindsay, James H; Biedenbach, James M; Harmon, Ashley R

    2017-01-01

    Ammonia is an important contaminant to consider in all toxicity tests. It is especially important to consider the impacts of ammonia in test methods that use sensitive water column organisms exposed to sediments or sediment extracts, such as porewater and elutriate toxicity tests. Embryo-larval development toxicity tests, such as the 48-h method using Mytilus mussel species, are particularly sensitive to ammonia. To better understand the effect thresholds across different life stages of these mussels, 6 short-term (48-h) development toxicity tests and 3 21-d toxicity tests with different-sized juvenile mussels were conducted. Two of the juvenile mussel tests involved 21-d continuous chronic exposure to ammonia, whereas the third involved an acute 2-d ammonia exposure, followed by a 19-d recovery period. The embryo-larval development test method (50% effect concentration [EC50] = 0.14-0.18 mg/L un-ionized ammonia) was 2.5 times more sensitive than the juvenile mussel 21-d survival endpoint (50% lethal concentration = 0.39 mg/L un-ionized ammonia) and 2 times more sensitive than the most sensitive sublethal juvenile mussel endpoint (EC50 = 0.26 mg/L un-ionized ammonia). Further, it was found that the juveniles recovered from a 48-h exposure to un-ionized ammonia of up to 1.1 mg/L. The data generated suggest that the embryo development endpoint was sufficiently sensitive to un-ionized ammonia to protect the chronically exposed (21 d) juvenile mussels. Environ Toxicol Chem 2017;36:89-95. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  6. Non-invasive method to obtain DNA from freshwater mussels (Bivalvia: Unionidae)

    USGS Publications Warehouse

    Henley, W.F.; Grobler, P.J.; Neves, R.J.

    2006-01-01

    To determine whether DNA could be isolated from tissues obtained by brush-swabbing the mantle, viscera and foot, mantle-clips and swabbed cells were obtained from eight Quadrula pustulosa (Lea, 1831). DNA yields from clips and swabbings were 447.0 and 975.3 ??g/??L, respectively. Furthermore, comparisons of sequences from the ND-1 mitochondrial gene region showed a 100% sequence agreement of DNA from cells obtained by clips and swabs. To determine the number of swabs needed to obtain adequate yields of DNA for analyses, the visceras and feet of 5 Q. pustulosa each were successively swabbed 2, 4 and 6 times. DNA yields from the 2, 4 and 6 swabbed mussel groups were 399.4, 833.8 and 852.6 ng/??L, respectively. ND-1 sequences from the lowest yield still provided 846-901 bp for the ND-1 region. Nevertheless, to ensure adequate DNA yield from cell samples obtained by swabbing, we recommend that 4 swab-strokes of the viscera and foot be obtained. The use of integumental swabbing for collection of cells for determination of genetic relationships among freshwater mussels is noninvasive, when compared with tissue collection by mantle-clipping. Therefore, its use is recommended for freshwater mussels, especially state-protected or federally listed mussel species.

  7. Cyanobacteria reduce quagga mussel (Dreissena rostriformis bugensis) spawning and fertilization success

    USGS Publications Warehouse

    Boegehold, Anna G; Johnson, Nicholas; Ran, Jeffrey L; Kashian, Donna R

    2018-01-01

    exposure to cyanobacteria can inhibit quagga mussel spawning and fertilization. We assessed spawning in the presence of serotonin, a known spawning inducer, where adult quagga mussels placed in individual vials were exposed to 13 cyanobacteria cultures and purified algal toxin (microcystin-LR) with artificial lake water as the control. Fertilization success was evaluated by combining eggs with sperm in conjunction with cyanobacteria, and enumerating zygote formation marked by cellular cleavage. Several cyanobacterial strains reduced spawning and fertilization success, but microcystin-LR had no effect. Fertilization was more sensitive to cyanobacteria than gamete release. Only 1 culture, Aphanizomenon flos-aquae, inhibited spawning, whereas 6 cultures consisting of Anabaena flos-aquae, Dolichospermum lemmermanii, Gloeotrichia echinulata, Lyngbya wollei, and 2 Microcystis aeruginosa isolates reduced fertilization rates by up to 44%. The effects of cyanobacteria on reproduction in invasive freshwater mussels in the wild have not yet been identified. However, our laboratory studies show that concentrations of cyanobacteria that are possible during bloom conditions probably limit reproduction. Reproductive consequences on wild populations may become more prevalent as cyanobacteria blooms occur earlier in the year, making overlap between blooms and mussel spawning more common. Describing the mechanism by which cyanobacteria inhibit spawning and fertilization could reveal novel control methods to limit reproduction of this invasive species.

  8. Drought-induced changes in flow regimes lead to long-term losses in mussel-provided ecosystem services

    PubMed Central

    Vaughn, Caryn C; Atkinson, Carla L; Julian, Jason P

    2015-01-01

    Extreme hydro-meteorological events such as droughts are becoming more frequent, intense, and persistent. This is particularly true in the south central USA, where rapidly growing urban areas are running out of water and human-engineered water storage and management are leading to broad-scale changes in flow regimes. The Kiamichi River in southeastern Oklahoma, USA, has high fish and freshwater mussel biodiversity. However, water from this rural river is desired by multiple urban areas and other entities. Freshwater mussels are large, long-lived filter feeders that provide important ecosystem services. We ask how observed changes in mussel biomass and community composition resulting from drought-induced changes in flow regimes might lead to changes in river ecosystem services. We sampled mussel communities in this river over a 20-year period that included two severe droughts. We then used laboratory-derived physiological rates and river-wide estimates of species-specific mussel biomass to estimate three aggregate ecosystem services provided by mussels over this time period: biofiltration, nutrient recycling (nitrogen and phosphorus), and nutrient storage (nitrogen, phosphorus, and carbon). Mussel populations declined over 60%, and declines were directly linked to drought-induced changes in flow regimes. All ecosystem services declined over time and mirrored biomass losses. Mussel declines were exacerbated by human water management, which has increased the magnitude and frequency of hydrologic drought in downstream reaches of the river. Freshwater mussels are globally imperiled and declining around the world. Summed across multiple streams and rivers, mussel losses similar to those we document here could have considerable consequences for downstream water quality although lost biofiltration and nutrient retention. While we cannot control the frequency and severity of climatological droughts, water releases from reservoirs could be used to augment stream flows and

  9. Mussel adhesion – essential footwork

    PubMed Central

    2017-01-01

    ABSTRACT Robust adhesion to wet, salt-encrusted, corroded and slimy surfaces has been an essential adaptation in the life histories of sessile marine organisms for hundreds of millions of years, but it remains a major impasse for technology. Mussel adhesion has served as one of many model systems providing a fundamental understanding of what is required for attachment to wet surfaces. Most polymer engineers have focused on the use of 3,4-dihydroxyphenyl-l-alanine (Dopa), a peculiar but abundant catecholic amino acid in mussel adhesive proteins. The premise of this Review is that although Dopa does have the potential for diverse cohesive and adhesive interactions, these will be difficult to achieve in synthetic homologs without a deeper knowledge of mussel biology; that is, how, at different length and time scales, mussels regulate the reactivity of their adhesive proteins. To deposit adhesive proteins onto target surfaces, the mussel foot creates an insulated reaction chamber with extreme reaction conditions such as low pH, low ionic strength and high reducing poise. These conditions enable adhesive proteins to undergo controlled fluid–fluid phase separation, surface adsorption and spreading, microstructure formation and, finally, solidification. PMID:28202646

  10. Deeply hidden inside introduced biogenic structures - Pacific oyster reefs reduce detrimental barnacle overgrowth on native blue mussels

    NASA Astrophysics Data System (ADS)

    Buschbaum, Christian; Cornelius, Annika; Goedknegt, M. Anouk

    2016-11-01

    In sedimentary coastal ecosystems shells of epibenthic organisms such as blue mussels (Mytilus edulis) provide the only major attachment surface for barnacle epibionts, which may cause detrimental effects on their mussel basibionts by e.g. reducing growth rate. In the European Wadden Sea, beds of native blue mussels have been invaded by Pacific oysters Crassostrea gigas, which transformed these beds into mixed reefs of oysters with mussels. In this study, we determined the spatial distribution of M. edulis and their barnacle epibionts (Semibalanus balanoides) within the reef matrix. Mean mussel density near the bottom was about twice as high compared to the mussel density near the top of an oyster reef, whereas barnacles on mussels showed a reversed pattern. Barnacle dry weight per mussel was on average 14 times higher near the top than at the bottom. This pattern was confirmed by experimentally placing clean M. edulis at the top and on the bottom of oyster reefs at two sites in the Wadden Sea (island of Texel, The Netherlands; island of Sylt, Germany). After an experimental period of five weeks (April and May 2015, the main settlement period of S. balanoides), the number of barnacles per mussel was at both sites significantly higher on mussels near the top compared to near the bottom. We conclude that the oyster reef matrix offers a refuge for M. edulis: inside reefs they are not only better protected against predators but also against detrimental barnacle overgrowth. This study shows that alien species can cause beneficial effects for native organisms and should not be generally considered as a risk for the recipient marine ecosystems.

  11. Dispersal barriers and isolation among deep-sea mussel populations (Mytilidae: Bathymodiolus) from eastern Pacific hydrothermal vents.

    PubMed

    Won, Y; Young, C R; Lutz, R A; Vrijenhoek, R C

    2003-01-01

    Deep-sea hydrothermal vent species are widely dispersed among habitat islands found along the global mid-ocean ridge system. We examine factors that affect population structure, gene flow and isolation in vent-endemic mussels of the genus Bathymodiolus from the eastern Pacific Ocean. Mussels were sampled from localities including the Galapagos Rift (GAR, 0 degrees 48' N; 86 degrees 10' W) and the East Pacific Rise (EPR, 13 degrees N to 32 degrees S latitude) across a maximum distance of 4900 km. The sampled range crossed a series of topographical features that interrupt linear aspects of the ridge system, and it encompassed regions of strong cross-axis currents that could impede along-axis dispersal of mussel larvae. Examinations of mitochondrial DNA sequences and allozyme variation revealed significant barriers to gene flow along the ridge axis. All populations from the GAR and EPR from 13 degrees N to 11 degrees S were homogeneous genetically and appeared to experience unimpeded high levels of interpopulational gene flow. In contrast, mussels from north and south of the Easter Microplate were highly divergent (4.4%), possibly comprising sister-species that diverged after formation of the microplate approximately 4.5 Ma. Strong cross-axis currents associated with inflated bathymetry of the microplate region may reinforce isolation across this region.

  12. Effects of high salinity wastewater discharges on unionid mussels in the Allegheny River, Pennsylvania

    USGS Publications Warehouse

    Kathleen Patnode,; Hittle, Elizabeth A.; Robert Anderson,; Lora Zimmerman,; Fulton, John W.

    2015-01-01

    We examined the effect of high salinity wastewater (brine) from oil and natural gas drilling on freshwater mussels in the Allegheny River, Pennsylvania, during 2012. Mussel cages (N = 5 per site) were deployed at two sites upstream and four sites downstream of a brine treatment facility on the Allegheny River. Each cage contained 20 juvenile northern riffleshell mussels Epioblasma torulosa rangiana). Continuous specific conductance and temperature data were recorded by water quality probes deployed at each site. To measure the amount of mixing throughout the entire study area, specific conductance surveys were completed two times during low-flow conditions along transects from bank to bank that targeted upstream (reference) reaches, a municipal wastewater treatment plant discharge upstream of the brine-facility discharge, the brine facility, and downstream reaches. Specific conductance data indicated that high specific conductance water from the brine facility (4,000–12,000 µS/cm; mean 7,846) compared to the reference reach (103–188 µS/cm; mean 151) is carried along the left descending bank of the river and that dilution of the discharge via mixing does not occur until 0.5 mi (805 m) downstream. Juvenile northern riffleshell mussel survival was severely impaired within the high specific conductance zone (2 and 34% at and downstream of the brine facility, respectively) and at the municipal wastewater treatment plant (21%) compared to background (84%). We surveyed native mussels (family Unionidae) at 10 transects: 3 upstream, 3 within, and 4 downstream of the high specific conductance zone. Unionid mussel abundance and diversity were lower for all transects within and downstream of the high conductivity zone compared to upstream. The results of this study clearly demonstrate in situ toxicity to juvenile northern riffleshell mussels, a federally endangered species, and to the native unionid mussel assemblage located downstream of a brine discharge to the

  13. Acute toxicity of polyacrylamide flocculants to early life stages of freshwater mussels

    USGS Publications Warehouse

    Buczek, Sean B.; Cope, W. Gregory; McLaughlin, Richard A.; Kwak, Thomas J.

    2017-01-01

    Polyacrylamide has become an effective tool for reducing construction-related suspended sediment and turbidity, which are considered to have significant adverse impacts on aquatic ecosystems and are a leading cause of the degradation of North American streams and rivers. However, little is known about the effects of polyacrylamide on many freshwater organisms, and prior to the present study, no information existed on the toxicity of polyacrylamide compounds to native freshwater mussels (family Unionidae), one of the most imperiled faunal groups globally. Following standard test guidelines, we exposed juvenile mussels (test duration 96 h) and glochidia larvae (test duration 24 h) to 5 different anionic polyacrylamide compounds and 1 non-ionic compound. Species tested included the yellow lampmussel (Lampsilis cariosa), an Atlantic Slope species that is listed as endangered in North Carolina; the Appalachian elktoe (Alasmidonta raveneliana), a federally endangered Interior Basin species; and the washboard (Megalonaias nervosa), a common Interior Basin species. We found that median lethal concentrations (LC50s) of polyacrylamide ranged from 411.7 to >1000 mg/L for glochidia and from 126.8 to >1000 mg/L for juveniles. All LC50s were orders of magnitude greater (2–3) than concentrations typically recommended for turbidity control (1–5 mg/L), regardless of their molecular weight or charge density. The results demonstrate that the polyacrylamide compounds tested were not acutely toxic to the mussel species and life stages tested, indicating minimal risk of short-term exposure from polyacrylamide applications in the environment. However, other potential uses of polyacrylamide in the environment (e.g., wastewater treatment, paper processing, mining, algae removal) and their chronic or sublethal effects remain uncertain and warrant additional investigation.

  14. Behavioral responses to disturbance in freshwater mussels with implications for conservation and management

    USGS Publications Warehouse

    Waller, D.L.; Gutreuter, S.; Rach, J.J.

    1999-01-01

    Knowledge about the ability of freshwater unionid mussels to recover from physical disturbance is important to their conservation and management. Threatened species may be disturbed by relocation to refugia as a conservation measure,and some species are disturbed by size- and species-selective harvesting of shells for use in the production of cultured pearls. The activity of freshwater unionid mussels generally decreases with water temperature, but intra- and interspecific differences in the frequency and distribution of recovery behaviors following disturbances at specific water temperatures have not been previously quantified. We observed righting, moving, and burrowing behavior of 4 mussel species, Amblema plicata plicata, Potamilus alatus, Fusconaia flava, and Lampsilis cardium, at 3 water temperatures (7, 14 and 21 degrees C). The temporal frequency (intensity) and times-to-1st-event of behaviors were analyzed using proportional hazards models. Righting events and consecutive movements occurred at different intensities among temperatures and species. For righting, intensity increased by 8%/degrees C within the range of 7-21 degrees C. Subsequent movements increased in intensity by 10%/degrees C. Amblema plicata was the slowest to respond, and had an intensity of turning upright only 27% of that for P. Alatus. The intensities of movements for A. Plicata and E. Flava were 16% of those for P. Alatus. Lampsilis cardium righted themselves most quickly, and had an intensity of righting 124% of that for I! alatus. The distribution of the 3 behaviors among treatment groups at 1 wk was analyzed with a proportional odds model. The distribution of righting, moving, and burrowing 1 wk after disturbance was described entirely by high-order interactions in our proportional odds model. Therefore, that model revealed little interpretable pattern in the endpoint data and it was less sensitive than our analysis of time-to-event data for measuring the effects of disturbance. We

  15. Toxicity of sediments potentially contaminated by coal mining and natural gas extraction to unionid mussels and commonly tested benthic invertebrates

    USGS Publications Warehouse

    Wang, Ning; Ingersoll, Christopher G.; Kunz, James L.; Brumbaugh, William G.; Kane, Cindy M.; Evans, R. Brian; Alexander, Steven; Walker, Craig; Bakaletz, Steve

    2013-01-01

    Sediment toxicity tests were conducted to assess potential effects of contaminants associated with coal mining or natural gas extraction activities in the upper Tennessee River basin and eastern Cumberland River basin in the United States. Test species included two unionid mussels (rainbow mussel, Villosa iris, and wavy-rayed lampmussel, Lampsilis fasciola, 28-d exposures), and the commonly tested amphipod, Hyalella azteca (28-d exposure) and midge, Chironomus dilutus (10-d exposure). Sediments were collected from seven test sites with mussel communities classified as impacted and in proximity to coal mining or gas extraction activities, and from five reference sites with mussel communities classified as not impacted and no or limited coal mining or gas extraction activities. Additional samples were collected from six test sites potentially with high concentrations of polycyclic aromatic hydrocarbons (PAHs) and from a test site contaminated by a coal ash spill. Mean survival, length, or biomass of one or more test species was reduced in 10 of 14 test samples (71%) from impacted areas relative to the response of organisms in the five reference samples. A higher proportion of samples was classified as toxic to mussels (63% for rainbow mussels, 50% for wavy-rayed lampmussels) compared with amphipods (38%) or midge (38%). Concentrations of total recoverable metals and total PAHs in sediments did not exceed effects-based probable effect concentrations (PECs). However, the survival, length, or biomasses of the mussels were reduced significantly with increasing PEC quotients for metals and for total PAHs, or with increasing sum equilibrium-partitioning sediment benchmark toxic units for PAHs. The growth of the rainbow mussel also significantly decreased with increasing concentrations of a major anion (chloride) and major cations (calcium and magnesium) in sediment pore water. Results of the present study indicated that (1) the findings from laboratory tests were generally

  16. Toxicity decrease in urban wastewaters treated by a new biofiltration process.

    PubMed

    Binelli, A; Magni, S; Della Torre, C; Parolini, M

    2015-12-15

    We carried out a project aimed to evaluate the possible role played by the freshwater zebra mussel (Dreissena polymorpha) in the possible decrease of some environmental pollutants recalcitrant to tradition wastewater treatments. By the help of a pilot-plant built in the largest wastewater treatment plant of Milan (Italy), we tested several waste mixtures in order to measure the chemicals' abatement made by mussels' biofiltration. This study represents the last step of the wider project and it aimed to evaluate if the decrease in the concentration of some urban pollutants measured in wastewaters was followed by a corresponding toxicity reduction. Thus, we performed 7-day exposures under laboratory conditions to test the toxicity of the raw wastewaters and those preliminary filtered by zebra mussels, through the measurement of different end-points of acute and chronic toxicity. Results showed a clear positive effect of mussels' biofiltration mainly to decrease the acute toxicity made by the two tested wastewater mixtures, while the biomarkers' suite used to evaluate the chronic toxicity showed contradictory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Locally extensive meningoencephalitis caused by Miamiensis avidus (syn. Philasterides dicentrarchi) in a zebra shark.

    PubMed

    Li, Wen-Ta; Lo, Chieh; Su, Chen-Yi; Kuo, Hsuan; Lin, Susanne Je-Han; Chang, Hui-Wei; Pang, Victor Fei; Jeng, Chian-Ren

    2017-10-18

    Scuticociliatosis, caused by ciliated protozoa in the subclass Scuticociliatia of the phylum Ciliophora, can cause fatal disease in teleost fish species. However, information on scuticociliatosis in elasmobranchs is still scarce. In this report, we describe a case of locally extensive meningoencephalitis caused by Miamiensis avidus (syn. Philasterides dicentrarchi) in a 2 yr old captive zebra shark Stegostoma fasciatum. Granulocytic meningoencephalitis was observed through histological assessment. Inflammation was confined to the ventral aspect of the brain with a large number of ciliated protozoa, transforming into non-suppurative meningitis in the lateral aspect, and gradually vanished in the dorsal aspect. No histopathological and polymerase chain reaction (PCR) evidence of systemic dissemination of M. avidus was found. PCR targeting the gene coding the small-subunit ribosomal RNA (SSUrRNA) of M. avidus was performed on the brain, liver, and gill tissues, and only brain tissue yielded a positive result. The DNA sequences from amplicons of the protozoal SSUrRNA gene were completely matched to that of M. avidus. The distribution of protozoa in the current case was mainly located in the brain and suggests the possibility of a direct neural invasive pathway of M. avidus through the nasal cavity/ampullary system and/or a unique tissue tropism of M. avidus specific to the brain in zebra sharks. Further investigations on the pathogenesis of M. avidus in elasmobranchs, especially zebra sharks, are needed.

  18. Colwellia and sulfur-oxidizing bacteria: An unusual dual symbiosis in a Terua mussel (Mytilidae: Bathymodiolinae) from whale falls in the Antilles arc

    NASA Astrophysics Data System (ADS)

    Duperron, Sébastien; Gros, Olivier

    2016-09-01

    Seven individuals of a single morphotype of mussels (Bivalvia: Mytilidae) were found attached to a naturally sunken whale intervertebral disk collected in Guadeloupe (Caribbean) at 800 m depth. These specimens resemble small Idas mussels which are found worldwide at cold seeps and hydrothermal vents, and typically harbor ectosymbiotic bacteria on their gills upon which they depend for nutrition. Based on multi-locus gene sequencing, these specimens appear to belong to a new species closely related to two species now included within the genus Terua. Unexpectedly, its closest relatives are found in the Pacific, questioning how this species has reached the Antilles arc. Based on marker gene sequence analysis, electron and fluorescence microscopy, Terua n. sp. harbors two distinct and abundant extracellular bacterial symbionts located between microvilli at the apical surface of host gill epithelial cells. One is a sulfur-oxidizing bacterium similar to the symbionts previously identified in several deep-sea mussels, while the other is related to Colwellia species, a group of cold-adapted heterotrophic bacteria able to degrade organic compounds. This study provides the first evidence for the existence of a dual symbiosis in mussels from whale fall ecosystems in the Caribbean. The evolutionary history of Terua n. sp. and potential role of its Colwellia symbionts are discussed.

  19. Variation in stable isotopes of freshwater mussel shells in a Kentucky river system

    NASA Astrophysics Data System (ADS)

    Erhardt, A. M.; Haag, W.; Price, S.; Weisrock, D.

    2017-12-01

    Isotopic signatures in freshwater mussel shells can reflect environmental differences among streams and human impacts on river systems. In the southeastern United States, mussels exhibit extraordinary biodiversity, serve an important role as filter feeders, and are sensitive to environmental change. Additionally, their long life-span (up to 50 years) and seasonal shell deposition can permit high-resolution environmental reconstructions. We examined variation in shell stable isotope values among mussel species and locations throughout the Licking River system in Kentucky. We sampled 8 species at 11 locations. These species represented a range of life-history traits, and locations were distributed among tributaries and the main stem of the Licking River. Samples of the outer organic periostracum layer were analysed for organic δ13C and δ15N, while organic δ15N and inorganic δ13C and δ18O were measured in the inner carbonate portion of the shell. At the same location, preliminary results show variations 2‰ in δ13C and 1‰ in δ15N between different species. We suspect these relationships are due to variations in diet and/or body size. Some, though not all, specimens show variation along the growth axis. For the same species at different locations, preliminary results showed a range of 4‰ in δ13C and 10‰ in δ15N values. Isotope ratios of specimens from the main stem were distinct from those of specimens from the river's largest tributary. Overall, δ13C shows distinct values for each tributary, while δ15N shows a general decline downstream. These variations are likely the result of environmental factors such as the degree of karstification and the ratio of forest to pasture within the catchment. We hope to use this study to identify if any isotopically distinct sources, such as fertilizers or animal manure, contribute to the high nutrient load in these systems. These results represent an exploratory effort to describe watershed-scale and mussel

  20. Host Fish Identification and Early Life Thermal Requirements for the Federal Endangered Winged Mapleleaf Mussel

    USGS Publications Warehouse

    Steingraeber, Mark; Newton, Teresa J.

    2005-01-01

    The winged mapleleaf mussel (Quadrula fragosa, WML) is a Federal endangered species historically inhabiting at least 34 river systems in 12 Midwestern states. Only four populations are currently known to exist, including one confirmed reproducing population in the St. Croix National Scenic Riverway (NSR) bordering Minnesota and Wisconsin. Recovery efforts are limited by a lack of life history information, particularly which species of fish serve as host to the mussel's parasitic larvae (glochidia). Since 1997, biologists at the University of Minnesota have tried to identify host fish for the WML. Department of the Interior colleagues working in western Wisconsin at the U.S. Fish and Wildlife Service's La Crosse Fishery Resources Office and Genoa National Fish Hatchery, the National Park Service's St. Croix NSR, and the U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) in La Crosse joined the team in 2001 to expand and accelerate the laboratory host fish identification program by making use of the well-equipped aquatic research facilities at UMESC. We report on several WML early life history investigations conducted at UMESC since autumn 2003 to identify suitable host fish species and evaluate thermal requisites for the development of glochidia into free-living juvenile mussels.

  1. Abundance of host fish and frequency of glochidial parasitism in fish assessed in field and laboratory settings and frequency of juvenile mussels or glochidia recovered from hatchery-held fish, central and southeastern Texas, 2012-13

    USGS Publications Warehouse

    Braun, Christopher L.; Stevens, Charrish L.; Echo-Hawk, Patricia D.; Johnson, Nathan A.; Moring, James B.

    2014-01-01

    A total of 19 fish species collected at nine sites was submitted to the hatchery in 2013, and 14 of these species had juvenile mussels or glochidia that were recovered at the hatchery. The three most productive species, in terms of the average number of juvenile mussels or glochidia recovered, were longear sunfish, spotted bass, and largemouth bass, each of which averaged more than two juvenile mussels or glochidia recovered per individual.

  2. Picturing thermal niches and biomass of hydrothermal vent species

    NASA Astrophysics Data System (ADS)

    Husson, Bérengère; Sarradin, Pierre-Marie; Zeppilli, Daniela; Sarrazin, Jozée

    2017-03-01

    In community ecology, niche analysis is a classic tool for investigating species' distribution and dynamics. Components of a species' niche include biotic and abiotic factors. In the hydrothermal vent ecosystem, although composition and temporal variation have been investigated since these deep-sea habitats were discovered nearly 40 years ago, the roles and the factors behind the success of the dominant species of these ecosystems have yet to be fully elucidated. In the Lucky Strike vent field on the Mid-Atlantic Ridge (MAR), the dominant species is the mussel Bathymodiolus azoricus. Data on this species and its associated community were collected during four oceanographic cruises on the Eiffel Tower edifice and integrated in a novel statistical framework for niche analysis. We assessed the thermal range, density, biomass and niche similarities of B. azoricus and its associated fauna. Habitat similarities grouped mussels into three size categories: mussels with lengths ranging from 0.5 to 1.5 cm, from 1.5 to 6 cm, and mussels longer than 6 cm. These size categories were consistent with those found in previous studies based on video imagery. The three size categories featured different associated fauna. The thermal range of mussels was shown to change with organism size, with intermediate sizes having a broader thermal niche than small or large mussels. Temperature maxima seem to drive their distribution along the mixing gradient between warm hydrothermal fluids and cold seawater. B. azoricus constitutes nearly 90% of the biomass (in g dry weight /m2) of the ecosystem. Mean individual weights were calculated for 39 of the 79 known taxa on Eiffel Tower and thermal ranges were obtained for all the inventoried species of this edifice. The analysis showed that temperature is a suitable variable to describe density variations among samples for 71 taxa. However, thermal conditions do not suffice to explain biomass variability. Our results provide valuable insights into

  3. Uncovering the Complex Transcriptome Response of Mytilus chilensis against Saxitoxin: Implications of Harmful Algal Blooms on Mussel Populations.

    PubMed

    Detree, Camille; Núñez-Acuña, Gustavo; Roberts, Steven; Gallardo-Escárate, Cristian

    2016-01-01

    Saxitoxin (STX), a principal phycotoxin contributing to paralytic shellfish poisoning, is largely produced by marine microalgae of the genus Alexandrium. This toxin affects a wide range of species, inducing massive deaths in fish and other marine species. However, marine bivalves can resist and accumulate paralytic shellfish poisons. Despite numerous studies on the impact of STX in marine bivalves, knowledge regarding STX recognition at molecular level by benthic species remains scarce. Therefore, the aim of this study was to identify novel genes that interact with STX in the Chilean mussel Mytilus chilensis. For this, RNA-seq and RT-qPCR approaches were used to evaluate the transcriptomic response of M. chilensis to a purified STX as well as in vivo Alexandrium catenella exposure. Approximately 800 million reads were assembled, generating 138,883 contigs that were blasted against the UniProt Mollusca database. Pattern Recognition Receptors (PRRs) involved in mussel immunity, such as Toll-like receptors, tumor necrosis factor receptors, and scavenger-like receptors were found to be strongly upregulated at 8 and 16 h post-STX injection. These results suggest an involvement of PRRs in the response to STX, as well as identifying potential, novel STX-interacting receptors in this Chilean mussel. This study is the first transcriptomic overview of the STX-response in the edible species M. chilensis. However, the most significant contribution of this work is the identification of immune receptors and pathways potentially involved in the recognition and defense against STX's toxicity and its impact of harmful algae blooms on wild and cultivated mussel populations.

  4. Uncovering the Complex Transcriptome Response of Mytilus chilensis against Saxitoxin: Implications of Harmful Algal Blooms on Mussel Populations

    PubMed Central

    Detree, Camille; Núñez-Acuña, Gustavo; Roberts, Steven; Gallardo-Escárate, Cristian

    2016-01-01

    Saxitoxin (STX), a principal phycotoxin contributing to paralytic shellfish poisoning, is largely produced by marine microalgae of the genus Alexandrium. This toxin affects a wide range of species, inducing massive deaths in fish and other marine species. However, marine bivalves can resist and accumulate paralytic shellfish poisons. Despite numerous studies on the impact of STX in marine bivalves, knowledge regarding STX recognition at molecular level by benthic species remains scarce. Therefore, the aim of this study was to identify novel genes that interact with STX in the Chilean mussel Mytilus chilensis. For this, RNA-seq and RT-qPCR approaches were used to evaluate the transcriptomic response of M. chilensis to a purified STX as well as in vivo Alexandrium catenella exposure. Approximately 800 million reads were assembled, generating 138,883 contigs that were blasted against the UniProt Mollusca database. Pattern Recognition Receptors (PRRs) involved in mussel immunity, such as Toll-like receptors, tumor necrosis factor receptors, and scavenger-like receptors were found to be strongly upregulated at 8 and 16 h post-STX injection. These results suggest an involvement of PRRs in the response to STX, as well as identifying potential, novel STX-interacting receptors in this Chilean mussel. This study is the first transcriptomic overview of the STX-response in the edible species M. chilensis. However, the most significant contribution of this work is the identification of immune receptors and pathways potentially involved in the recognition and defense against STX’s toxicity and its impact of harmful algae blooms on wild and cultivated mussel populations. PMID:27764234

  5. MytiBase: a knowledgebase of mussel (M. galloprovincialis) transcribed sequences

    PubMed Central

    Venier, Paola; De Pittà, Cristiano; Bernante, Filippo; Varotto, Laura; De Nardi, Barbara; Bovo, Giuseppe; Roch, Philippe; Novoa, Beatriz; Figueras, Antonio; Pallavicini, Alberto; Lanfranchi, Gerolamo

    2009-01-01

    Background Although Bivalves are among the most studied marine organisms due to their ecological role, economic importance and use in pollution biomonitoring, very little information is available on the genome sequences of mussels. This study reports the functional analysis of a large-scale Expressed Sequence Tag (EST) sequencing from different tissues of Mytilus galloprovincialis (the Mediterranean mussel) challenged with toxic pollutants, temperature and potentially pathogenic bacteria. Results We have constructed and sequenced seventeen cDNA libraries from different Mediterranean mussel tissues: gills, digestive gland, foot, anterior and posterior adductor muscle, mantle and haemocytes. A total of 24,939 clones were sequenced from these libraries generating 18,788 high-quality ESTs which were assembled into 2,446 overlapping clusters and 4,666 singletons resulting in a total of 7,112 non-redundant sequences. In particular, a high-quality normalized cDNA library (Nor01) was constructed as determined by the high rate of gene discovery (65.6%). Bioinformatic screening of the non-redundant M. galloprovincialis sequences identified 159 microsatellite-containing ESTs. Clusters, consensuses, related similarities and gene ontology searches have been organized in a dedicated, searchable database . Conclusion We defined the first species-specific catalogue of M. galloprovincialis ESTs including 7,112 unique transcribed sequences. Putative microsatellite markers were identified. This annotated catalogue represents a valuable platform for expression studies, marker validation and genetic linkage analysis for investigations in the biology of Mediterranean mussels. PMID:19203376

  6. The physiological effects of oil, dispersant and dispersed oil on the bay mussel, Mytilus trossulus, in Arctic/Subarctic conditions.

    PubMed

    Counihan, Katrina L

    2018-06-01

    Increasing oil development around Alaska and other Arctic regions elevates the risk for another oil spill. Dispersants are used to mitigate the impact of an oil spill by accelerating natural degradation processes, but the reduced hydrophobicity of dispersed oil may increase its bioavailability to marine organisms. There is limited research on the effect of dispersed oil on cold water species and ecosystems. Therefore, spiked exposure tests were conducted with bay mussels (Mytilus trossulus) in seawater with non-dispersed oil, Corexit 9500 and oil dispersed with different concentrations of Corexit 9500. After three weeks of exposure, acute and chronic physiological impacts were determined. The majority of physiological responses occurred during the first seven days of exposure, with mussels exhibiting significant cytochrome P450 activity, superoxide dismutase activity and heat shock protein levels. Mussels exposed to non-dispersed oil also experienced immune suppression, reduced transcription and higher levels of mortality. After 21 days, mussels in all treatments exhibited evidence of genetic damage, tissue loss and a continued stress response. Bay mussels are useful as indicators of ecosystem health and recovery, and this study was an important step in understanding how non-dispersed oil, dispersant and dispersed oil affect the physiology of this sentinel species in Arctic/subarctic conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Evolutionary Analysis and Expression Profiling of Zebra Finch Immune Genes

    PubMed Central

    Ekblom, Robert; French, Lisa; Slate, Jon; Burke, Terry

    2010-01-01

    Genes of the immune system are generally considered to evolve rapidly due to host–parasite coevolution. They are therefore of great interest in evolutionary biology and molecular ecology. In this study, we manually annotated 144 avian immune genes from the zebra finch (Taeniopygia guttata) genome and conducted evolutionary analyses of these by comparing them with their orthologs in the chicken (Gallus gallus). Genes classified as immune receptors showed elevated dN/dS ratios compared with other classes of immune genes. Immune genes in general also appear to be evolving more rapidly than other genes, as inferred from a higher dN/dS ratio compared with the rest of the genome. Furthermore, ten genes (of 27) for which sequence data were available from at least three bird species showed evidence of positive selection acting on specific codons. From transcriptome data of eight different tissues, we found evidence for expression of 106 of the studied immune genes, with primary expression of most of these in bursa, blood, and spleen. These immune-related genes showed a more tissue-specific expression pattern than other genes in the zebra finch genome. Several of the avian immune genes investigated here provide strong candidates for in-depth studies of molecular adaptation in birds. PMID:20884724

  8. Prevalence of Theileria equi and Babesia caballi as well as the identification of associated ticks in sympatric Grevy's zebras (Equus grevyi) and donkeys (Equus africanus asinus) in northern Kenya.

    PubMed

    Hawkins, Elaine; Kock, Richard; McKeever, Declan; Gakuya, Francis; Musyoki, Charles; Chege, Stephen M; Mutinda, Mathew; Kariuki, Edward; Davidson, Zeke; Low, Belinda; Skilton, Robert A; Njahira, Moses N; Wamalwa, Mark; Maina, Elsie

    2015-01-01

    The role of equine piroplasmosis as a factor in the population decline of the Grevy's zebra is not known. We determined the prevalence of Babesia caballi and Theileria equi in cograzing Grevy's zebras (Equus grevyi) and donkeys (Equus africanus asinus) in northern Kenya and identified the associated tick vectors. Blood samples were taken from 71 donkeys and 16 Grevy's zebras from March to May 2011. A nested PCR reaction using 18s ribosomal (r)RNA primers on 87 blood spots showed 72% (51/71; 95% confidence interval [CI] 60.4-81.0%) of donkeys and 100% (16/16; 95% CI, 77.3-100%) of Grevy's zebras were T. equi positive. No samples were positive for B. caballi. Sequence comparison using the National Center for Biotechnology Information's basic local alignment search tool identified homologous 18s rRNA sequences with a global geographic spread. The T. equi-derived sequences were evaluated using Bayesian approaches with independent Metropolis-coupled Markov chain Monte Carlo runs. The sequences clustered with those found in Sudan, Croatia, Mongolia, and the US, with statistical support greater than 80% for the two main clades. Hyalomma tick species were found on both donkeys and Grevy's zebras, whereas Rhipicephalus pulchellus was found exclusively on Grevy's zebras and Hyalomma marginatum rupfipes on donkeys. The prevalence of T. equi was 100% in Grevy's zebras and 72% in donkeys with common tick vectors identified. Our results suggest that donkeys and Grevy's zebras can be asymptomatic carriers and that piroplasmosis is endemic in the study area.

  9. Retinal histogenesis in an altricial avian species, the zebra finch (Taeniopygia guttata, Vieillot 1817).

    PubMed

    Álvarez-Hernán, Guadalupe; Sánchez-Resino, Elena; Hernández-Núñez, Ismael; Marzal, Alfonso; Rodríguez-León, Joaquín; Martín-Partido, Gervasio; Francisco-Morcillo, Javier

    2018-07-01

    Comparative developmental studies have shown that the retina of altricial fish and mammals is incompletely developed at birth, and that, during the first days of life, maturation proceeds rapidly. In contrast, precocial fish and mammals are born with fully differentiated retinas. Concerning birds, knowledge about retinal development is generally restricted to a single order of precocial birds, Galliformes, due to the fact that both the chicken and the Japanese quail are considered model systems. However, comparison of embryonic pre-hatchling retinal development between altricial and precocial birds has been poorly explored. The purpose of this study was to examine the morphogenesis and histogenesis of the retina in the altricial zebra finch (Taeniopygia guttata, Vieillot 1817) and compare the results with those from previous studies in the precocial chicken. Several maturational features (morphogenesis of the optic vesicle and optic cup, appearance of the first differentiated neurons, the period in which the non-apical cell divisions are observable, and the emergence of the plexiform layers) were found to occur at later stages in the zebra finch than in the chicken. At hatching, the retina of T. guttata showed the typical cytoarchitecture of the mature tissue, although features of immaturity were still observable, such as a ganglion cell layer containing many thick cells, very thin plexiform layers, and poorly developed photoreceptors. Moreover, abundant mitotic activity was detected in the entire retina, even in the regions where the layering was complete. The circumferential marginal zone was very prominent and showed abundant mitotic activity. The partially undifferentiated stage of maturation at hatching makes the T. guttata retina an appropriate model with which to study avian postnatal retinal neurogenesis. © 2018 Anatomical Society.

  10. Metal concentrations in the mussel Bathymodiolus platifrons from a cold seep in the South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Xiaocheng; Li, Chaolun; Zhou, Li

    2017-11-01

    Data regarding the concentration and distribution of various metals in different tissues of mussels from the cold seep is scant. We aimed to quantify the presence of twenty elements (Ca, K, Mg, Sr, Ag, Al, As, Ba, Cd, Co, Cr, Cu, Li, Fe, Mn, Mo, Ni, Pb, V, and Zn) in gills, mantles and shells of Bathymodiolus platifrons, a common mussel species in deep-sea cold seep and hydrothermal vent communities. Specimens of B. platifrons were sampled from a cold seep at the northern continental slope of the South China Sea and the elemental contents in its tissues were quantified. Our findings were compared to data from taxonomically similar species at hydrothermal vents and coastal waters. We found that most elements were significantly enriched in the gills, which could be related to food uptake and the existence of endosymbionts. In shells and mantles, Mn was particularly rich, possibly due to its replacement of Ca in the carbonate structure. A significant positive correlation among Ca, Sr, and Mg was found in both gills and mantles, consistent with relationships observed in vent and littoral mussel species. Concentrations of metals were highest in the new-growth outer edges of shells in comparison to older shell material, which suggests that trace metals have become more abundant in the ambient seawater in recent years. Compared with other deep-sea environments and coastal areas, metal accumulation showed local variability but similar overall patterns of uptake and accumulation, indicating that essential elemental requirements in different mussel species may be similar across taxa. The high bioconcentration factor (BCF) values of Mn and Ag suggest that their particular functions and regulation mechanisms are related to specific adaptations and life cycle processes.

  11. Effects of temperature change on mussel, Mytilus.

    PubMed

    Zippay, Mackenzie L; Helmuth, Brian

    2012-09-01

    An increasing body of research has demonstrated the often idiosyncratic responses of organisms to climate-related factors, such as increases in air, sea and land surface temperatures, especially when coupled with non-climatic stressors. This argues that sweeping generalizations about the likely impacts of climate change on organisms and ecosystems are likely less valuable than process-based explorations that focus on key species and ecosystems. Mussels in the genus Mytilus have been studied for centuries, and much is known of their physiology and ecology. Like other intertidal organisms, these animals may serve as early indicators of climate change impacts. As structuring species, their survival has cascading impacts on many other species, making them ecologically important, in addition to their economic value as a food source. Here, we briefly review the categories of information available on the effects of temperature change on mussels within this genus. Although a considerable body of information exists about the genus in general, knowledge gaps still exist, specifically in our ability to predict how specific populations are likely to respond to the effects of multiple stressors, both climate and non-climate related, and how these changes are likely to result in ecosystem-level responses. Whereas this genus provides an excellent model for exploring the effects of climate change on natural and human-managed ecosystems, much work remains if we are to make predictions of likely impacts of environmental change on scales that are relevant to climate adaptation. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  12. Biokinetics of /sup 237/Np in mussels and shrimp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guary, J.C.; Fowler, S.W.

    1977-01-01

    Neptunium-237 kinetics were studied in marine shrimp and mussels using a thick source alpha counting technique. Bioaccumulation of /sup 237/Np from water was relatively slow in both species, reaching whole body concentration factors of only 15 to 20 after three months. Surface adsorption was implicated in the initial uptake. Both uptake and loss of the radioisotope were not significantly affected by temperature; this may be a reflection of the physical nature of the uptake. By virtue of the large amounts of accumulated /sup 237/Np associated with the exoskeleton of shrimp, molting will play an important role in the biogeochemical cyclingmore » of this transuranic in the marine environment. Rapid growth of organisms like mussels acts to reduce the /sup 237/Np concentration in tissues during a period of decontamination.« less

  13. Sediment, land use, and freshwater mussels: Prospects and problems

    USGS Publications Warehouse

    Brim-Box, J.; Mossa, J.

    1999-01-01

    The decline in freshwater mussel populations in many river basins throughout North America has been attributed, in part, to land-use modifications that cause changes in sediment regimes. However, the specific associations that mussels have with stream sediments are poorly understood, making it difficult to assess the impacts of changes in sedimentation rates on unionid mussels. Both bed and suspended materials, and concomitant changes in channel form associated with changes in sediment supply, may affect mussels in numerous ways at various stages in their life cycle. Considerable debate and uncertainty remains regarding the strength of associations between sediments and mussels, including whether increased sedimentation is a cause of recent mussel declines. It is important to be aware of appropriate procedures for sampling and analyzing fluvial sediments, and the nature of sediment sources, to adequately assess relationships between unionid mussels and fluvial sediments.

  14. Thermal criteria for early life stage development of the winged mapleleaf mussel (Quadrilla fragosa)

    USGS Publications Warehouse

    Steingraeber, M.T.; Bartsch, M.R.; Kalas, J.E.; Newton, T.J.

    2007-01-01

    The winged mapleleaf mussel [Quadrula fragosa (Conrad)] is a Federal endangered species. Controlled propagation to aid in recovering this species has been delayed because host fishes for its parasitic glochidia (larvae) are unknown. This study identified blue catfish [Ictaluris furcatus (Lesueur)] and confirmed channel catfish [Ictaluris punctatus (Rafinesque)] as suitable hosts. The time required for glochidia to metamorphose and for peak juvenile excystment to begin was water temperature dependent and ranged from 28 to 37 d in a constant thermal regime (19 C); totaled 70 d in a varied thermal regime (12-19 C); and ranged 260 to 262 d in simulated natural thermal regimes (0-21 C). We developed a quantitative model that describes the thermal-temporal relation and used it to empirically estimate the species-specific low-temperature threshold for development of glochidia into juveniles on channel catfish (9.26 C) and the cumulative temperature units of development required to achieve peak excystment of juveniles from blue catfish (383 C???d) and channel catfish (395 C???d). Long-term tests simulated the development of glochidia into juveniles in natural thermal regimes and consistently affirmed the validity of these estimates, as well as provided evidence for a thermal cue (17-20 C) that presumably is needed to trigger peak juvenile excystment. These findings substantiate our model and provide an approach that could be used to determine corresponding thermal criteria for early life development of other mussel species. These data can be used to improve juvenile mussel production in propagation programs designed to help recover imperiled species and may also be useful in detecting temporal climatic changes within a watershed.

  15. RNA sequencing analysis of transcriptional change in the freshwater mussel Elliptio complanata after environmentally relevant sodium chloride exposure

    USGS Publications Warehouse

    Robertson, Laura S.; Galbraith, Heather S.; Iwanowicz, Deborah; Blakeslee, Carrie J.; Cornman, Robert S.

    2017-01-01

    To identify potential biomarkers of salt stress in a freshwater sentinel species, we examined transcriptional responses of the common mussel Elliptio complanata to controlled sodium chloride (NaCl) exposures. Ribonucleic acid sequencing (RNA-Seq) of mantle tissue identified 481 transcripts differentially expressed in adult mussels exposed to 2 ppt NaCl (1.2 ppt chloride) for 7 d, of which 290 had nonoverlapping intervals. Differentially expressed gene categories included ion and transmembrane transport, oxidoreductase activity, maintenance of protein folding, and amino acid metabolism. The rate-limiting enzyme for synthesis of taurine, an amino acid frequently linked to osmotic stress in aquatic species, was upregulated, as was the transmembrane ion pump sodium/potassium adenosine 5′-triphosphatase. These patterns confirm a primary transcriptional response to the experimental dose, albeit likely overlapping with nonspecific secondary stress responses. Substantial involvement of the heat shock protein 70 chaperone family and the water-transporting aquaporin family was not detected, however, in contrast to some studies in other bivalves. A subset of the most significantly regulated genes was confirmed by quantitative polymerase chain reaction in an independent sample. Cluster analysis showed separation of mussels exposed to 2 ppt NaCl from control mussels in multivariate space, but mussels exposed to 1 ppt NaCl were largely indistinguishable from controls. Transcriptome-scale analysis of salt exposure under laboratory conditions efficiently identified candidate biomarkers for further functional analysis and field validation

  16. Illustrated identification keys to strongylid parasites (Strongylidae: Nematoda) of horses, zebras and asses (Equidae).

    PubMed

    Lichtenfels, J Ralph; Kharchenko, Vitaliy A; Dvojnos, Grigory M

    2008-09-15

    The Equidae (the horse, Equus caballus, the ass, Equus asinus, zebras and their hybrids) are hosts to a great variety of nematode parasites, some of which can cause significant morbidity or mortality if individual hosts are untreated. Worldwide the nematode parasites of horses belong to 7 suborders, 12 families, 29 genera and 83 species. The great majority (19 of 29 genera and 64 of 83 species) are members of the family Strongylidae, which includes the most common and pathogenic nematode parasites of horses. Only the Strongylidae are included in this treatise. The Strongylidae (common name strongylids) of horses--nematodes with a well-developed buccal capsule, a mouth collar with two leaf-crowns, and a strongyloid (common name of superfamily Strongyloidea) copulatory bursa--can be separated into two subfamilies: Strongylinae (common name strongylins), usually large or medium-sized with a globular or funnel-shaped buccal capsule; and Cyathostominae (common name cyathostomins), usually small to medium-sized with a cylindrical buccal capsule. The increased attention to strongylid nematode parasites of horses has resulted in the need for updated diagnostic keys to these parasites using readily recognizable characters and the most recent literature on their systematics. Because the cyathostomins have been historically difficult to identify, and because they have emerged as the most significant nematode pathogens of horses, we provide a brief nomenclatural and taxonomic history and an introduction to the morphology of this group. This treatise is intended to serve as a basic working tool--providing easy identifications to genus and species of adult strongylid nematodes of equids. All strongylid nematodes normally parasitic in horses, the ass (and their hybrids), and zebras are included. The keys are illustrated with line drawings and halftone photomicrographs of each species. A short discussion of the systematics of the genus and species is provided for each genus

  17. Integrative study of a new cold-seep mussel (Mollusca: Bivalvia) associated with chemosynthetic symbionts in the Marmara Sea

    NASA Astrophysics Data System (ADS)

    Ritt, Bénédicte; Duperron, Sébastien; Lorion, Julien; Sara Lazar, Cassandre; Sarrazin, Jozée

    2012-09-01

    Recently, small Idas-like mussels have been discovered living on carbonate crusts associated with cold-seeps in the Marmara Sea. These mussels, here referred to as Idas-like nov. sp., differ morphologically and genetically from another species identified as Idas aff. modiolaeformis, living in the same type of ecosystem in the Nile Deep-Sea Fan (eastern Mediterranean Sea). A phylogenetic analysis confirms the distinction between the two species, which belong to highly divergent lineages. Carbon stable isotope values, as well as the detection of thiotroph-related bacteria in the gill tissue, support the presence of a symbiotic, thiotroph-derived nutrition. In contrast, Idas aff. modiolaeformis displays six different types of symbionts. Finally our size-frequency data suggest that the recruitment is continuous in the examined area. The present study extends the documented distribution of symbiont-bearing mussels to the Marmara Sea, and contributes to the characterisation of biological communities in this recently explored area.

  18. Assessing variability in chemical acute toxicity of unionid mussels: Influence of intra- and inter-laboratory testing, life stage, and species - SETAC Abstract

    EPA Science Inventory

    We developed a toxicity database for unionid mussels to examine the extent of intra- and inter-laboratory variability in acute toxicity tests with mussel larvae (glochidia) and juveniles; the extent of differential sensitivity of the two life stages; and the variation in sensitiv...

  19. Sexual imprinting on continuous variation: do female zebra finches prefer or avoid unfamiliar sons of their foster parents?

    PubMed

    Schielzeth, H; Burger, C; Bolund, E; Forstmeier, W

    2008-09-01

    Sexual imprinting on discrete variation that serves the identification of species, morphs or sexes is well documented. By contrast, sexual imprinting on continuous variation leading to individual differences in mating preferences within a single species, morph and sex has been studied only once (in humans). We measured female preferences in a captive population of wild-type zebra finches. Individual cross-fostering ensured that all subjects grew up with unrelated foster parents and nest mates. Females from two cohorts (N = 113) were given a simultaneous choice between (two or four) unfamiliar males, one of which was a genetic son of their foster parents (SFP). We found no significant overall preference for the SFP (combined effect size d = 0.14 +/- 0.15). Additionally, we tested if foster parent traits could potentially explain between-female variation in preferences. However, neither the effectiveness of cooperation between the parents nor male contribution to parental care affected female preferences for the son of the foster father. We conclude that at least in zebra finches sexual imprinting is not a major source of between-individual variation in mating preferences.

  20. Safety of spray-dried powder formulated Pseudomonas fluorescens strain CL145A exposure to subadult/adult unionid mussels during simulated open-water treatments

    USGS Publications Warehouse

    Luoma, James A.; Weber, Kerry L.; Waller, Diane L.; Wise, Jeremy K.; Mayer, Denise A.; Aloisi, Douglas B.

    2015-01-01

    After exposure, the mussels were consolidated into wire mesh cages and placed in the Black River for a 27-28 day postexposure period, after which time survival of mussels was assessed. Of the 1,170 mussels tested in the study, 3 were confirmed dead and 5 were not recovered and treated as mortalities in the analysis. The effect and interactions of species, SDP exposure concentration, and SDP exposure duration were analyzed and did not affect mussel survival (p > 0.98). The results from this study indicate that SDP exposure at the maximum approved open-water concentration of 100 mg/L for up to 3 times the maximum approved open-water exposure duration of 8 hours (in other words for 24 hours of exposure) is unlikely to reduce survival of subadult or adult mussels.

  1. Evolutionary process of deep-sea bathymodiolus mussels.

    PubMed

    Miyazaki, Jun-Ichi; de Oliveira Martins, Leonardo; Fujita, Yuko; Matsumoto, Hiroto; Fujiwara, Yoshihiro

    2010-04-27

    Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 4 (ND4) genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of symbiosis in that nutritional adaptation to the deep sea proceeded from extracellular

  2. FoxP2 isoforms delineate spatiotemporal transcriptional networks for vocal learning in the zebra finch

    PubMed Central

    Day, Nancy F; Kimball, Todd Haswell; Aamodt, Caitlin M; Heston, Jonathan B; Hilliard, Austin T; Xiao, Xinshu; White, Stephanie A

    2018-01-01

    Human speech is one of the few examples of vocal learning among mammals yet ~half of avian species exhibit this ability. Its neurogenetic basis is largely unknown beyond a shared requirement for FoxP2 in both humans and zebra finches. We manipulated FoxP2 isoforms in Area X, a song-specific region of the avian striatopallidum analogous to human anterior striatum, during a critical period for song development. We delineate, for the first time, unique contributions of each isoform to vocal learning. Weighted gene coexpression network analysis of RNA-seq data revealed gene modules correlated to singing, learning, or vocal variability. Coexpression related to singing was found in juvenile and adult Area X whereas coexpression correlated to learning was unique to juveniles. The confluence of learning and singing coexpression in juvenile Area X may underscore molecular processes that drive vocal learning in young zebra finches and, by analogy, humans. PMID:29360038

  3. Toxic effects of the antihistamine cetirizine in mussel Mytilus galloprovincialis.

    PubMed

    Teixeira, Miguel; Almeida, Ângela; Calisto, Vânia; Esteves, Valdemar I; Schneider, Rudolf J; Wrona, Frederick J; Soares, Amadeu M V M; Figueira, Etelvina; Freitas, Rosa

    2017-05-01

    Recent studies have become increasingly focused on the assessment of pharmaceuticals occurrence in aquatic ecosystems, however the potential toxicity to non-target organisms is still largely unknown. The antihistamine cetirizine is a commonly used pharmaceutical, already detected in surface waters of marine aquatic systems worldwide. In the present study Mytilus galloprovincialis mussels were exposed to a range of cetirizine concentrations (0.3, 3.0, 6.0 and 12.0 μg/L), resembling moderate to highly contaminated areas, over 28 days. The responses of different biochemical markers were evaluated in mussels whole soft tissue, and included energy-related parameters (glycogen content, GLY; protein content, PROT; electron transport system activity, ETS), and oxidative stress markers (superoxide dismutase activity, SOD; catalase activity, CAT; glutathione S-transferases activity, GSTs; lipid peroxidation levels, LPO; reduced (GSH) and oxidized (GSSG) glutathione content). The results obtained demonstrated that with the increase of exposure concentrations mussels tended to increase their energy reserves and maintain their metabolic potential, which was significantly higher only at the highest concentration. Our findings clearly revealed that cetirizine inhibited the activity of GSTs and although induced the activity of antioxidant enzymes (SOD and CAT) mussels were not able to prevent cellular damages observed through the increase of LPO associated to the increase of exposure concentrations. Thus, this study confirmed that cetirizine induces toxic effects in Mytilus galloprovincialis, which, considering their trophic relevance, wide use as bioindicator and wide spatial distribution of this species, can result in ecological and economic negative impacts at a large scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Automatic detection of zebra crossings from mobile LiDAR data

    NASA Astrophysics Data System (ADS)

    Riveiro, B.; González-Jorge, H.; Martínez-Sánchez, J.; Díaz-Vilariño, L.; Arias, P.

    2015-07-01

    An algorithm for the automatic detection of zebra crossings from mobile LiDAR data is developed and tested to be applied for road management purposes. The algorithm consists of several subsequent processes starting with road segmentation by performing a curvature analysis for each laser cycle. Then, intensity images are created from the point cloud using rasterization techniques, in order to detect zebra crossing using the Standard Hough Transform and logical constrains. To optimize the results, image processing algorithms are applied to the intensity images from the point cloud. These algorithms include binarization to separate the painting area from the rest of the pavement, median filtering to avoid noisy points, and mathematical morphology to fill the gaps between the pixels in the border of white marks. Once the road marking is detected, its position is calculated. This information is valuable for inventorying purposes of road managers that use Geographic Information Systems. The performance of the algorithm has been evaluated over several mobile LiDAR strips accounting for a total of 30 zebra crossings. That test showed a completeness of 83%. Non-detected marks mainly come from painting deterioration of the zebra crossing or by occlusions in the point cloud produced by other vehicles on the road.

  5. LC-MS Analysis of Phenolic Compounds in Tubers Showing Zebra Chip Symptoms

    USDA-ARS?s Scientific Manuscript database

    A new potato disorder called zebra chip (ZC) has been identified in the United States and has been especially problematic in Texas where substantial economic losses have been incurred. Upon frying, ZC tubers develop a dark “zebra chip” pattern of discoloration. LC-MS analysis of symptomatic tubers...

  6. Spatial variability in growth-increment chronologies of long-lived freshwater mussels: Implications for climate impacts and reconstructions

    USGS Publications Warehouse

    Black, Bryan A.; Dunham, Jason B.; Blundon, Brett W.; Raggon, Mark F.; Zima, Daniela

    2010-01-01

    Estimates of historical variability in river ecosystems are often lacking, but long-lived freshwater mussels could provide unique opportunities to understand past conditions in these environments. We applied dendrochronology techniques to quantify historical variability in growth-increment widths in valves (shells) of western pearlshell freshwater mussels (Margaritifera falcata). A total of 3 growth-increment chronologies, spanning 19 to 26 y in length, were developed. Growth was highly synchronous among individuals within each site, and to a lesser extent, chronologies were synchronous among sites. All 3 chronologies negatively related to instrumental records of stream discharge, while correlations with measures of water temperature were consistently positive but weaker. A reconstruction of stream discharge was performed using linear regressions based on a mussel growth chronology and the regional Palmer Drought Severity Index (PDSI). Models based on mussel growth and PDSI yielded similar coefficients of prediction (R2Pred) of 0.73 and 0.77, respectively, for predicting out-ofsample observations. From an ecological perspective, we found that mussel chronologies provided a rich source of information for understanding climate impacts. Responses of mussels to changes in climate and stream ecosystems can be very site- and process-specific, underscoring the complex nature of biotic responses to climate change and the need to understand both regional and local processes in projecting climate impacts on freshwater species.

  7. ZebraZoom: an automated program for high-throughput behavioral analysis and categorization

    PubMed Central

    Mirat, Olivier; Sternberg, Jenna R.; Severi, Kristen E.; Wyart, Claire

    2013-01-01

    The zebrafish larva stands out as an emergent model organism for translational studies involving gene or drug screening thanks to its size, genetics, and permeability. At the larval stage, locomotion occurs in short episodes punctuated by periods of rest. Although phenotyping behavior is a key component of large-scale screens, it has not yet been automated in this model system. We developed ZebraZoom, a program to automatically track larvae and identify maneuvers for many animals performing discrete movements. Our program detects each episodic movement and extracts large-scale statistics on motor patterns to produce a quantification of the locomotor repertoire. We used ZebraZoom to identify motor defects induced by a glycinergic receptor antagonist. The analysis of the blind mutant atoh7 revealed small locomotor defects associated with the mutation. Using multiclass supervised machine learning, ZebraZoom categorized all episodes of movement for each larva into one of three possible maneuvers: slow forward swim, routine turn, and escape. ZebraZoom reached 91% accuracy for categorization of stereotypical maneuvers that four independent experimenters unanimously identified. For all maneuvers in the data set, ZebraZoom agreed with four experimenters in 73.2–82.5% of cases. We modeled the series of maneuvers performed by larvae as Markov chains and observed that larvae often repeated the same maneuvers within a group. When analyzing subsequent maneuvers performed by different larvae, we found that larva–larva interactions occurred as series of escapes. Overall, ZebraZoom reached the level of precision found in manual analysis but accomplished tasks in a high-throughput format necessary for large screens. PMID:23781175

  8. Changing perspectives on pearly mussels, North America's most imperiled animals

    Treesearch

    David L. Strayer; John A. Downing; Wendell R. Haag; Timothy L. King; James B. Layzer; Teresa J. Newton; S. Jerrine Nichols

    2004-01-01

    Pearly mussels (Unionacea) are widespread, abundant, and important in freshwater ecosystems around the world. Catastrophic declines in pearly mussel populations in North America and other parts of the world have led to a flurry of research on mussel biology, ecology, and conservation. Recent research on mussel feeding, life history, spatial...

  9. Mussel-Inspired Adhesives and Coatings

    PubMed Central

    Lee, Bruce P.; Messersmith, P.B.; Israelachvili, J.N.; Waite, J.H.

    2011-01-01

    Mussels attach to solid surfaces in the sea. Their adhesion must be rapid, strong, and tough, or else they will be dislodged and dashed to pieces by the next incoming wave. Given the dearth of synthetic adhesives for wet polar surfaces, much effort has been directed to characterizing and mimicking essential features of the adhesive chemistry practiced by mussels. Studies of these organisms have uncovered important adaptive strategies that help to circumvent the high dielectric and solvation properties of water that typically frustrate adhesion. In a chemical vein, the adhesive proteins of mussels are heavily decorated with Dopa, a catecholic functionality. Various synthetic polymers have been functionalized with catechols to provide diverse adhesive, sealant, coating, and anchoring properties, particularly for critical biomedical applications. PMID:22058660

  10. Domoic acid excretion in dungeness crabs, razor clams and mussels.

    PubMed

    Schultz, Irvin R; Skillman, Ann; Woodruff, Dana

    2008-07-01

    Domoic acid (DA) is a neurotoxic amino acid produced by several marine algal species of the Pseudo-nitzschia (PN) genus. We studied the elimination of DA from hemolymph after intravascular (IV) injection in razor clams (Siliqua patula), mussels (Mytilus edulis) and Dungeness crabs (Cancer magister). Crabs were also injected with two other organic acids, dichloroacetic acid (DCAA) and kainic acid (KA). For IV dosing, hemolymph was repetitively sampled and DA concentrations measured by HPLC-UV. Toxicokinetic analysis of DA in crabs suggested most of the injected dose remained within hemolymph compartment with little extravascular distribution. This observation is in sharp contrast to results obtained from clams and mussels which exhibited similarly large apparent volumes of distribution despite large differences in overall clearance. These findings suggest fundamentally different storage and elimination processes are occurring for DA between bivalves and crabs.

  11. Do invasive quagga mussels alter CO2 dynamics in the Laurentian Great Lakes?

    NASA Astrophysics Data System (ADS)

    Lin, Peng; Guo, Laodong

    2016-12-01

    The Laurentian Great Lakes have experienced unprecedented ecological and environmental changes, especially after the introduction of invasive quagga mussel (Dreissena rostriformis bugensis). While impacts on ecological functions have been widely recognized, the response of carbon dynamics to invasive species remains largely unknown. We report new CO2 data showing significant increases in pCO2 (up to 800 μatm in Lake Michigan) and CO2 emission fluxes in most of the Great Lakes compared to those prior to or during the early stage of the colonization of invasive quagga mussels. The increased CO2 supersaturation is most prominent in Lakes Huron and Michigan, followed by Lakes Ontario and Erie, but no evident change was observed in Lake Superior. This trend mirrors the infestation extent of invasive quagga mussels in the Great Lakes and is consistent with the decline in primary production and increase in water clarity observed pre- and post-Dreissena introduction, revealing a close linkage between invasive species and carbon dynamics. The Great Lakes have become a significant CO2 source to the atmosphere, emitting >7.7 ± 1.0 Tg-C annually, which is higher than the organic carbon burial rate in global inland-seas and attesting to the significant role of the Laurentian Great Lakes in regional/global CO2 budget and cycling.

  12. Amygdala and socio-sexual behavior in male zebra finches.

    PubMed

    Ikebuchi, Maki; Hasegawa, Toshikazu; Bischof, Hans-Joachim

    2009-01-01

    Neuroanatomical studies including pathway tracing and cytochemical characterizations have suggested that the avian nucleus taeniae of the amygdala (TnA) might be homologous to a part of the mammalian medial amygdala. Recent behavioral observations in TnA-lesioned birds also reported deficits in the control of motivational aspects of behavior, advancing the concept of homology of the structure in the two classes of animals. To further examine the functional role of TnA, we used a highly social, monogamous song bird species, the zebra finch, for our experiments. Male birds received a focal lesion of TnA, and several aspects of socio-sexual behavior of these animals were compared with control bird behavior. We found that zebra finch males with TnA lesions were never chosen as sexual partners by a female in a triadic situation with another male because they showed less sexually motivated behavior. Because such sexually motivated behavior was shown in dyadic situations with a lesioned male and a female, however, and females in this situation also showed pair bonding behavior towards the lesioned males, TnA might be involved in other behaviors, not just sexual behavior towards females. Instead, it might play a role in the control of a variety of social encounters including male-female and male-male interactions. This research clearly indicates that TnA, by its involvement in the control of socio-sexual behavior, is functionally comparable with the mammalian medial amygdala. 2009 S. Karger AG, Basel.

  13. The impact of expired commercial drugs on non-target marine species: A case study with the use of a battery of biomarkers in hemocytes of mussels.

    PubMed

    Politakis, Nektarios; Belavgeni, Alexia; Efthimiou, Ioanna; Charalampous, Nikolina; Kourkouta, Chara; Dailianis, Stefanos

    2018-02-01

    The present study investigated the effects of two expired commercial medicines, like Buscopan Plus and Mesulid, commonly classified as household medical wastes, on hemocytes of mussel Mytilus galloprovincialis. Mussel hemocytes' lysosomal membrane stability (in terms of neutral red retention assay), superoxide anions (O 2 · - ) and nitric oxides (NO, in terms of nitrites) production, lipid peroxidation (in terms of malondialdehyde/MDA content) and the formation of nuclear abnormalities (using the micronucleus/MN assay) were assessed in hemocytes of mussels treated for 7 days with appropriate amounts of each drug (the concentrations of active substances were considered in each case, due to the absence of data related with the excipients) as well as in hemocytes of post-treated/recovered mussels (7 days post-treatment/recovery period). According to the results, treated mussels showed significantly decreased NRRT values, enhanced O 2 · - , NO and MDA levels, as well as high frequencies of nuclear abnormalities in both cases. Thοse effects showed a drastic reduction in almost all cases, after the post-treatment/recovery period. Moreover, the "stress on stress" method, commonly performed for estimating mussels' ability to survive in air, showed significantly reduced LT 50 values in challenged mussels, compared to values observed in control mussels. The current findings revealed for the first time that both expired commercial drugs could affect mussels, probably via the formation of active substances bioactivated metabolites, as well as excipients, such as TiO 2 and SiO 2 , at least in case of Buscopan plus. Although further research is needed, the current findings indicate the environmental impact of expired commercial drugs, thus revealing the need for the proper disposal of household medical wastes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Sensitivity of early life stages of freshwater mussels (Unionidae) to acute and chronic toxicity of lead, cadmium, and zinc in water

    USGS Publications Warehouse

    Wang, N.; Ingersoll, C.G.; Ivey, C.D.; Hardesty, D.K.; May, T.W.; Augspurger, T.; Roberts, A.D.; Van Genderen, E.; Barnhart, M.C.

    2010-01-01

    Toxicity of lead, cadmium, or zinc to early life stages of freshwater mussels (fatmucket, Lampsilis siliquoidea; Neosho mucket, L. rafinesqueana) was evaluated in 48-h exposures with mussel larvae (glochidia), in 96-h exposures with newly transformed (5-d-old) and two- or six-month-old juvenile mussels, or in 28-d exposures with two- or four-month-old mussels in reconstituted soft water. The 24-h median effect concentrations (EC50s) for fatmucket glochidia (>299??g Pb/L, >227??g Cd/L, 2,685??g Zn/L) and 96-h EC50s for two- or six-month-old fatmucket (>426??g Pb/L, 199??g Cd/L, 1,700??g Zn/L) were much higher than 96-h EC50s for newly transformed fatmucket (142 and 298??g Pb/L, 16??g Cd/L, 151 and 175??g Zn/L) and Neosho mucket (188??g Pb/L, 20??g Cd/L, 145??g Zn/L). Chronic values for fatmucket were 10??g Pb/L, 6.0??g Cd/L, and 63 and 68??g Zn/L. When mussel data from the present study and the literature were included in updated databases for deriving U.S. Environmental Protection Agency water quality criteria, mussel genus mean acute values were in the lower percentiles of the sensitivity distribution of all freshwater species for Pb (the 26th percentile), Cd (the 15th to 29th percentile), or Zn (the 12th to 21st percentile). The mussel (Lampsilis) genus mean chronic value was the lowest value ever reported for Pb (the 9th percentile) but was near the middle of the sensitivity distribution for Cd (the 61st percentile) or Zn (the 44th percentile). These results indicate that mussels were relatively sensitive to the acute toxicity of these three metals and to the chronic toxicity of Pb, but were moderately sensitive to the chronic toxicity of Cd or Zn compared to other freshwater species. ?? 2010 SETAC.

  15. Sensitivity of early life stages of freshwater mussels (Unionidae) to acute and chronic toxicity of lead, cadmium, and zinc in water.

    PubMed

    Wang, Ning; Ingersoll, Christopher G; Ivey, Christopher D; Hardesty, Douglas K; May, Thomas W; Augspurger, Tom; Roberts, Andy D; van Genderen, Eric; Barnhart, M Chris

    2010-09-01

    Toxicity of lead, cadmium, or zinc to early life stages of freshwater mussels (fatmucket, Lampsilis siliquoidea; Neosho mucket, L. rafinesqueana) was evaluated in 48-h exposures with mussel larvae (glochidia), in 96-h exposures with newly transformed (5-d-old) and two- or six-month-old juvenile mussels, or in 28-d exposures with two- or four-month-old mussels in reconstituted soft water. The 24-h median effect concentrations (EC50s) for fatmucket glochidia (>299 microg Pb/L, >227 microg Cd/L, 2,685 microg Zn/L) and 96-h EC50s for two- or six-month-old fatmucket (>426 microg Pb/L, 199 microg Cd/L, 1,700 microg Zn/L) were much higher than 96-h EC50s for newly transformed fatmucket (142 and 298 microg Pb/L, 16 microg Cd/L, 151 and 175 microg Zn/L) and Neosho mucket (188 microg Pb/L, 20 microg Cd/L, 145 microg Zn/L). Chronic values for fatmucket were 10 microg Pb/L, 6.0 microg Cd/L, and 63 and 68 microg Zn/L. When mussel data from the present study and the literature were included in updated databases for deriving U.S. Environmental Protection Agency water quality criteria, mussel genus mean acute values were in the lower percentiles of the sensitivity distribution of all freshwater species for Pb (the 26th percentile), Cd (the 15th to 29th percentile), or Zn (the 12th to 21st percentile). The mussel (Lampsilis) genus mean chronic value was the lowest value ever reported for Pb (the 9th percentile) but was near the middle of the sensitivity distribution for Cd (the 61st percentile) or Zn (the 44th percentile). These results indicate that mussels were relatively sensitive to the acute toxicity of these three metals and to the chronic toxicity of Pb, but were moderately sensitive to the chronic toxicity of Cd or Zn compared to other freshwater species. Copyright 2010 SETAC.

  16. Assessing relationships between human land uses and the decline of native mussels, fish, and macroinvertebrates in the Clinch and Powell River watershed, USA.

    PubMed

    Diamond, Jerome M; Bressler, David W; Serveiss, Victor B

    2002-06-01

    The free-flowing Clinch and Powell watershed in Virginia, USA, harbors a high number of endemic mussel and fish species but they are declining or going extinct at an alarming rate. To prioritize resource management strategies with respect to these fauna, a geographical information system was developed and various statistical approaches were used to relate human land uses with available fish, macroinvertebrate, and native mussel assemblage data. Both the Ephemeroptera, Plecoptera, Trichoptera (EPT) family-level index, and the fish index of biotic integrity (IBI) were lowest in a subwatershed with the greatest coal mining activity (analysis of variance [ANOVA], p < 0.05). Limited analyses in two other subwatersheds suggested that urban and agricultural land uses within a specified riparian corridor were more related to mussel species richness and fish IBI than land uses in entire catchments. Based on land uses within a riparian corridor of 200 m x 2 km for each biological site in the watershed, fish IBI was inversely related to percent cropland and urban area and positively related to pasture area (stepwise multiple regression, R2 = 0.55, p < 0.05). Sites less than 2 km downstream of urban areas, major highways, or coal mine activities had a significantly lower mean IBI value than those more than 2 km away (ANOVA, p < .05). Land use effects included poorer instream cover and higher substrate embeddedness (t test, p < 0.05). Weaker land use relationships were observed for EPT and mussel species richness. Episodic spills of toxic materials, originating from transportation corridors, mines, and industrial facilities, also have resulted in local extirpations of native species. particularly mussels. The number of co-occurring human activities was directly related to stream elevation in the Clinch River, with more human land uses in headwater areas. Approximately 60% of known U.S. Fish and Wildlife mussel concentration sites in the watershed are located within 2 km of at

  17. The role of fecundity and reproductive effort in defining life-history strategies of North American freshwater mussels.

    PubMed

    Haag, Wendell R

    2013-08-01

    Selection is expected to optimize reproductive investment resulting in characteristic trade-offs among traits such as brood size, offspring size, somatic maintenance, and lifespan; relative patterns of energy allocation to these functions are important in defining life-history strategies. Freshwater mussels are a diverse and imperiled component of aquatic ecosystems, but little is known about their life-history strategies, particularly patterns of fecundity and reproductive effort. Because mussels have an unusual life cycle in which larvae (glochidia) are obligate parasites on fishes, differences in host relationships are expected to influence patterns of reproductive output among species. I investigated fecundity and reproductive effort (RE) and their relationships to other life-history traits for a taxonomically broad cross section of North American mussel diversity. Annual fecundity of North American mussel species spans nearly four orders of magnitude, ranging from < 2000 to 10 million, but most species have considerably lower fecundity than previous generalizations, which portrayed the group as having uniformly high fecundity (e.g. > 200000). Estimates of RE also were highly variable, ranging among species from 0.06 to 25.4%. Median fecundity and RE differed among phylogenetic groups, but patterns for these two traits differed in several ways. For example, the tribe Anodontini had relatively low median fecundity but had the highest RE of any group. Within and among species, body size was a strong predictor of fecundity and explained a high percentage of variation in fecundity among species. Fecundity showed little relationship to other life-history traits including glochidial size, lifespan, brooding strategies, or host strategies. The only apparent trade-off evident among these traits was the extraordinarily high fecundity of Leptodea, Margaritifera, and Truncilla, which may come at a cost of greatly reduced glochidial size; there was no relationship between

  18. Increase in cannabis use may indirectly affect the health status of a freshwater species.

    PubMed

    Parolini, Marco; Castiglioni, Sara; Magni, Stefano; Della Torre, Camilla; Binelli, Andrea

    2017-02-01

    Cannabis is the most used illicit drug worldwide and in some countries a new regulatory policy makes it legal under some restrictions. This situation could lead to a substantial increase in environmental levels of the cannabis active principle (Δ-9-tetrahydrocannabinol [Δ-9-THC]) and its main metabolite, 11-nor-9-carboxy-Δ 9 -tetrahydrocannabinol (THC-COOH). Although previous studies have highlighted the toxicity of Δ-9-THC, the adverse effects of THC-COOH on aquatic organisms is completely unknown, even though such effects could be more significant because the environmental concentrations of THC-COOH are higher than those of the parent compound. The present study aimed to assess oxidative and genetic damage to the zebra mussel (Dreissena polymorpha) because of 14-d exposures to 3 THC-COOH concentrations, mimicking a current environmental situation (100 ng/L), as well as exposure to 2 possible worst-case scenarios (500 ng/L and 1000 ng/L), because of the potential increase in THC-COOH in surface waters. Variations in the activity of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione S-transferase (GST) were measured, as well as levels of lipid peroxidation and protein carbonyl content. Genetic injuries were investigated by single-cell gel electrophoresis assay, DNA diffusion assay, and the micronucleus test. A significant imbalance in antioxidant defense enzymes was noted in response to the 3 tested concentrations, whereas oxidative damage was noted only at the higher one. Moreover, an increase in DNA fragmentation in zebra mussel hemocytes, but no fixed genetic damage, was found. Although the results showed that THC-COOH toxicity was lower than that of Δ-9-THC, the increase in cannabis use might increase its levels in freshwaters, enhancing its hazard to bivalves and likely to the whole aquatic community. Environ Toxicol Chem 2017;36:472-479. © 2016 SETAC. © 2016 SETAC.

  19. New environmentally friendly MSPD solid support based on golden mussel shell: characterization and application for extraction of organic contaminants from mussel tissue.

    PubMed

    Rombaldi, Caroline; de Oliveira Arias, Jean Lucas; Hertzog, Gabriel Ianzer; Caldas, Sergiane Souza; Vieira, João P; Primel, Ednei Gilberto

    2015-06-01

    The use of golden mussel shells as a solid support in vortex-assisted matrix solid-phase dispersion (MSPD) was evaluated for the first time for extraction of residues of 11 pesticides and nine pharmaceutical and personal care products from mussel tissue samples. After they had been washed, dried, and milled, the mussel shells were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, infrared spectroscopy, and Brunauer-Emmett-Teller analysis. The MSPD procedure with analysis by liquid chromatography-tandem mass spectrometry allowed the determination of target analytes at trace concentrations (nanograms per gram), with mean recoveries ranging from 61 to 107 % and relative standard deviations lower than 18 %. The optimized method consisted of dispersion of 0.5 g of mussel tissue, 0.5 g of NaSO4, and 0.5 g of golden mussel shell for 5 min, and subsequent extraction with 5 mL of ethyl acetate. The matrix effect was evaluated, and a low effect was found for all compounds. The results showed that mussel shell is an effective material and a less expensive material than materials that have traditionally been used, i.e., it may be used in the MSPD dispersion step during the extraction of pesticides and pharmaceutical and personal care products from golden mussel tissues. Graphical Abstract Vortex-assited matrix solid-phase dispersion for extraction of 11 pesticides and 9 PPCPs care products from mussel tissue samples.

  20. The Pangean origin of 'Candidatus Liberibacter' species

    USDA-ARS?s Scientific Manuscript database

    There are six currently recognized “Candidatus Liberibacter” species. Three are associated with Huanglongbing of citrus, and one with Zebra Chip and Psyllid Yellows in Solanaceous crops and Yellows Decline in carrots. Another is an apparently asymptomatic infection of apple, pear and related specie...

  1. Electromyogram as a measure of heavy metal toxicity in fresh water and salt water mussels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kidder, G.W. III; McCoy, A.A.

    1996-02-01

    The response of bivalves to heavy metals and other toxins has usually been determined by observing valve position. Since mussels close their valves to avoid noxious stimuli, experimental delivery of chemicals ins uncertain. To obtain constant results plastic spacers can be employed to hold the valves apart. This obviates valve position as an index of response and some other method is required. Electromyography of intact mussels is one such index, giving a simple, effective, and quantitative measurement of activity. Experiments are reported in this article on the effects of added mercury on salt water and fresh water species.

  2. Influence of pH on the acute toxicity of ammonia to juvenile freshwater mussels (fatmucket, Lampsills siliquoidea)

    USGS Publications Warehouse

    Wang, N.; Erickson, R.J.; Ingersoll, C.G.; Ivey, C.D.; Brunson, E.L.; Augspurger, T.; Barnhart, M.C.

    2008-01-01

    The objective of the present study was to evaluate the influence of pH on the toxicity of ammonia to juvenile freshwater mussels. Acute 96-h ammonia toxicity tests were conducted with 10-d-old juvenile mussels (fatmucket, Lampsilis siliquoidea) at five pH levels ranging from 6.5 to 9.0 in flow-through diluter systems at 20??C. Acute 48-h tests with amphipods (Hyalella azteca) and 96-h tests with oligochaetes (Lumbriculus variegatus) were conducted concurrently under the same test conditions to determine the sensitivity of mussels relative to these two commonly tested benthic invertebrate species. During the exposure, pH levels were maintained within 0.1 of a pH unit and ammonia concentrations were relatively constant through time (coefficient of variation for ammonia concentrations ranged from 2 to 30% with a median value of 7.9%). The median effective concentrations (EC50s) of total ammonia nitrogen (N) for mussels were at least two to six times lower than the EC50s for amphipods and oligochaetes, and the EC50s for mussels decreased with increasing pH and ranged from 88 mg N/L at pH 6.6 to 0.96 mg N/L at pH 9.0. The EC50s for mussels were at or below the final acute values used to derive the U.S. Environmental Protection Agency's acute water quality criterion (WQC). However, the quantitative relationship between pH and ammonia toxicity to juvenile mussels was similar to the average relationship for other taxa reported in the WQC. These results indicate that including mussel toxicity data in a revision to the WQC would lower the acute criterion but not change the WQC mathematical representation of the relative effect of pH on ammonia toxicity. ?? 2008 SETAC.

  3. Acute toxicity and accumulation of the piscicide 3-trifluoromethyl-4- nitrophenol (TFM) in freshwater mussels (Bivalvia: Unionidae)

    USGS Publications Warehouse

    Waller, D.L.; Rach, J.J.; Luoma, J.A.

    1998-01-01

    We compared the acute toxicity and initial accumulation of the piscicide TFM (3-trifluoromethyl-4-nitrophenol) in the freshwater unionacean mussels, Obliquaria reflexa and Fusconaia flava. Acute 48 h toxicity tests were conducted to determine the LC50 values for each species. The initial uptake clearances of TFM were measured by exposing the mussels to [14C]-TFM and counting the radioactivity in four organ tissues (foot, gill, mantle and viscera) over 48 h. TFM was about 2-fold more toxic to O. reflexa (LC50 1.80 mg I-1) than to F. flava (LC50 3.81 mg L-1) and the difference was not explained by accumulation patterns. The initial uptake clearance rates (0-6 h) for the whole body were similar between the species (11.2 ml g-1 h-2 in O. reflexa and 9.5 ml g-1 h-1 in F. flava). The accumulation of TFM residues among the organ tissues was also similar between species. The uptake clearance rates (ml g-1 h-1) of TFM equivalents were generally highest in the gill, but not significantly different than other organ tissues. The normalized concentration of TFM residues (??g per g whole body) was highest in the viscera. The toxicity data suggest that the mortality of both species would be minimal from sea lamprey control treatments with TFM. However, the behavioural effects and accumulation rates also indicate that mussels do not effectively avoid TFM exposure by valve closure.

  4. Acute toxicity and accumulation of the piscicide 3-trifluoromethyl-4-nitrophenol (TFM) in freshwater mussels (Bivalvia: Unionidae)

    USGS Publications Warehouse

    Waller, Diane L.; Rach, Jeffrey J.; Luoma, James A.

    1998-01-01

    We compared the acute toxicity and initial accumulation of the piscicide TFM (3-trifluoromethyl-4-nitrophenol) in the freshwater unionacean mussels, Obliquaria reflexa and Fusconaia flava. Acute 48 h toxicity tests were conducted to determine the LC50 values for each species. The initial uptake clearances of TFM were measured by exposing the mussels to [14C]-TFM and counting the radioactivity in four organ tissues (foot, gill, mantle and viscera) over 48 h. TFM was about 2-fold more toxic to O. reflexa (LC50 1.80 mg l-1) than to F. flava (LC50 3.81 mg L-1) and the difference was not explained by accumulation patterns. The initial uptake clearance rates (0–6 h) for the whole body were similar between the species (11.2 ml g-1 h-2 in O. reflexa and 9.5 ml g-1 h-1 in F. flava). The accumulation of TFM residues among the organ tissues was also similar between species. The uptake clearance rates (ml g-1 h-1) of TFM equivalents were generally highest in the gill, but not significantly different than other organ tissues. The normalized concentration of TFM residues (μg per g whole body) was highest in the viscera. The toxicity data suggest that the mortality of both species would be minimal from sea lamprey control treatments with TFM. However, the behavioural effects and accumulation rates also indicate that mussels do not effectively avoid TFM exposure by valve closure.

  5. Zebra finches have a light-dependent magnetic compass similar to migratory birds.

    PubMed

    Pinzon-Rodriguez, Atticus; Muheim, Rachel

    2017-04-01

    Birds have a light-dependent magnetic compass that provides information about the spatial alignment of the geomagnetic field. It is proposed to be located in the avian retina and mediated by a light-induced, radical-pair mechanism involving cryptochromes as sensory receptor molecules. To investigate how the behavioural responses of birds under different light spectra match with cryptochromes as the primary magnetoreceptor, we examined the spectral properties of the magnetic compass in zebra finches. We trained birds to relocate a food reward in a spatial orientation task using magnetic compass cues. The birds were well oriented along the trained magnetic compass axis when trained and tested under low-irradiance 521 nm green light. In the presence of a 1.4 MHz radio-frequency electromagnetic (RF)-field, the birds were disoriented, which supports the involvement of radical-pair reactions in the primary magnetoreception process. Birds trained and tested under 638 nm red light showed a weak tendency to orient ∼45 deg clockwise of the trained magnetic direction. Under low-irradiance 460 nm blue light, they tended to orient along the trained magnetic compass axis, but were disoriented under higher irradiance light. Zebra finches trained and tested under high-irradiance 430 nm indigo light were well oriented along the trained magnetic compass axis, but disoriented in the presence of a RF-field. We conclude that magnetic compass responses of zebra finches are similar to those observed in nocturnally migrating birds and agree with cryptochromes as the primary magnetoreceptor, suggesting that light-dependent, radical-pair-mediated magnetoreception is a common property for all birds, including non-migratory species. © 2017. Published by The Company of Biologists Ltd.

  6. Adhesion beyond the interface: Molecular adaptations of the mussel byssus to the intertidal zone

    NASA Astrophysics Data System (ADS)

    MIller, Dusty Rose

    The California mussel, Mytilus californianus, adheres robustly in the high-energy and oxidizing intertidal zone with a fibrous holdfast called the byssus using 3,4-dihydroxyphenyl-L-alanine (Dopa)-containing adhesive mussel foot proteins (mfps). There are many supporting roles to mussel adhesion that are intimately linked and ultimately responsible for mussel byssus's durable and dynamic adhesion. This dissertation explores these supporting mechanisms, including delivery of materials underwater, iron binding, friction, and antioxidant activity. As the outermost covering of the byssus, the cuticle deserves particular attention for its supporting roles to adhesion including the high stiffness and extensibility of the M. californianus byssal cuticle, which make it one of the most energy tolerant materials known. The cuticle's matrix-granule composite structure contributes to its toughness by microcracking between its harder granules and softer matrix. We investigated delivery of cuticular material underwater, cohesion of cuticle proteins, and surface damage mitigation by cuticle protein-based coacervates. To investigate underwater material delivery, we made cuticle matrix mimics by coacervating a key cuticular protein, Mytilus californianus foot protein 1, mfp-1, with hyaluronic acid. These matrix mimics coacervated over a wide range of solution conditions, delivered concentrated material, settled on and coated surfaces underwater. Because the granules are composed of mfp-1 condensed with iron, we used the surface forces apparatus to investigate the effects of iron on the cohesion of mfp-1 from two different species of mussels and found that subtle sequence variations modulate cohesion. Using the coacervate matrix mimics and, modeling the granules as a hard surface (mica), we investigated the wear protection of coacervated mfp-1/HA to mica under frictional shear and found that preventing wear depends critically on the presence of Dopa groups. In addition to cuticle

  7. Changes in steroid profiles of the blue mussel Mytilus trossulus as a function of season, stage of gametogenesis, sex, tissue and mussel bed depth.

    PubMed

    Smolarz, Katarzyna; Zabrzańska, Sandra; Konieczna, Lucyna; Hallmann, Anna

    2018-04-01

    This paper describes changes in the content of free steroid hormones e.g. testosterone (T), estradiol-17β (E2), estrone (E1) and estriol (E3) of Mytilus trossulus from the southern Baltic Sea as a function of season, stage of gametogenesis, sex, tissue (gonadal and somatic) and depth. The highest levels of T, E2, E1 and E3 were found in mussels sampled in spring and summer while the lowest levels were found in winter. This pattern was stable and was seen in both sexes and tissues in mussels from both mussel beds. The spring and summer peaks in steroid levels (SL) coincided with advanced levels of gametogenesis (the highest gonadal index, GI) of our model species. But, the lowest GI (autumn) and the lowest steroids content (winter) did not overlap. Instead, water temperature increase was followed by increase of SL and vice versa. This suggests that steroids may not be actively involved in the early stages of gamete development and does not preclude them from potentially being involved as endogenous modulators in the final stages of reproduction (e.g. spawning). Hence, observed fluctuations in SL in our model species are unlikely to be caused by reproductive cycle but are rather of unknown nature, likely linked with environmental conditions. Sex-related differences in steroid content included estrogen domination in females and androgen domination in males. A trend towards higher level of steroids in gills than in gonads was found, supporting the hypothesis about an exogenous origin of steroids in bivalves. However, based on the present results, we cannot exclude the possibility that these steroids have both an endogenous and exogenous origin. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Dissection and Downstream Analysis of Zebra Finch Embryos at Early Stages of Development

    PubMed Central

    Murray, Jessica R.; Stanciauskas, Monika E.; Aralere, Tejas S.; Saha, Margaret S.

    2014-01-01

    The zebra finch (Taeniopygiaguttata) has become an increasingly important model organism in many areas of research including toxicology1,2, behavior3, and memory and learning4,5,6. As the only songbird with a sequenced genome, the zebra finch has great potential for use in developmental studies; however, the early stages of zebra finch development have not been well studied. Lack of research in zebra finch development can be attributed to the difficulty of dissecting the small egg and embryo. The following dissection method minimizes embryonic tissue damage, which allows for investigation of morphology and gene expression at all stages of embryonic development. This permits both bright field and fluorescence quality imaging of embryos, use in molecular procedures such as in situ hybridization (ISH), cell proliferation assays, and RNA extraction for quantitative assays such as quantitative real-time PCR (qtRT-PCR). This technique allows investigators to study early stages of development that were previously difficult to access. PMID:24999108

  9. Validation of trophic and anthropic underwater noise as settlement trigger in blue mussels

    NASA Astrophysics Data System (ADS)

    Jolivet, Aurélie; Tremblay, Rejean; Olivier, Fréderic; Gervaise, Cédric; Sonier, Rémi; Genard, Bertrand; Chauvaud, Laurent

    2016-09-01

    Like the majority of benthic invertebrates, the blue mussel Mytilus edulis has a bentho-pelagic cycle with its larval settlement being a complex phenomenon involving numerous factors. Among these factors, underwater noise and pelagic trophic conditions have been weakly studied in previous researches. Under laboratory conditions, we tested the hypothesis that picoplankton assimilation by the pediveliger blue mussel larvae acts as a food cue that interacts with anthropic underwater sound to stimulate settlement. We used 13C-labeling microalgae to validate the assimilation of different picoplankton species in the tissues of pediveliger larvae. Our results clearly confirm our hypothesis with a significant synergic effect of these two factors. However, only the picoeukaryotes strains assimilated by larvae stimulated the settlement, whereas the non-ingested picocyanobacteria did not. Similar positive responses were observed with underwater sound characterized by low frequency vessel noises. The combination of both factors (trophic and vessel noise) drastically increased the mussel settlement by an order of 4 compared to the control (without picoplankton and noise). Settlement levels ranged from 16.5 to 67% in 67 h.

  10. The threat of climate change to freshwater pearl mussel populations.

    PubMed

    Hastie, Lee C; Cosgrove, Peter J; Ellis, Noranne; Gaywood, Martin J

    2003-02-01

    Changes in climate are occurring around the world and the effects on ecosystems will vary, depending on the extent and nature of these changes. In northern Europe, experts predict that annual rainfall will increase significantly, along with dramatic storm events and flooding in the next 50-100 years. Scotland is a stronghold of the endangered freshwater pearl mussel, Margaritifera margaritifera (L.), and a number of populations may be threatened. For example, large floods have been shown to adversely affect mussels, and although these stochastic events were historically rare, they may now be occurring more often as a result of climate change. Populations may also be affected by a number of other factors, including predicted changes in temperature, sea level, habitat availability, host fish stocks and human activity. In this paper, we explain how climate change may impact M. margaritifera and discuss the general implications for the conservation management of this species.

  11. RNA sequencing analysis of transcriptional change in the freshwater mussel Elliptio complanata after environmentally relevant sodium chloride exposure.

    PubMed

    Robertson, Laura S; Galbraith, Heather S; Iwanowicz, Deborah; Blakeslee, Carrie J; Cornman, R Scott

    2017-09-01

    To identify potential biomarkers of salt stress in a freshwater sentinel species, we examined transcriptional responses of the common mussel Elliptio complanata to controlled sodium chloride (NaCl) exposures. Ribonucleic acid sequencing (RNA-Seq) of mantle tissue identified 481 transcripts differentially expressed in adult mussels exposed to 2 ppt NaCl (1.2 ppt chloride) for 7 d, of which 290 had nonoverlapping intervals. Differentially expressed gene categories included ion and transmembrane transport, oxidoreductase activity, maintenance of protein folding, and amino acid metabolism. The rate-limiting enzyme for synthesis of taurine, an amino acid frequently linked to osmotic stress in aquatic species, was upregulated, as was the transmembrane ion pump sodium/potassium adenosine 5'-triphosphatase. These patterns confirm a primary transcriptional response to the experimental dose, albeit likely overlapping with nonspecific secondary stress responses. Substantial involvement of the heat shock protein 70 chaperone family and the water-transporting aquaporin family was not detected, however, in contrast to some studies in other bivalves. A subset of the most significantly regulated genes was confirmed by quantitative polymerase chain reaction in an independent sample. Cluster analysis showed separation of mussels exposed to 2 ppt NaCl from control mussels in multivariate space, but mussels exposed to 1 ppt NaCl were largely indistinguishable from controls. Transcriptome-scale analysis of salt exposure under laboratory conditions efficiently identified candidate biomarkers for further functional analysis and field validation. Environ Toxicol Chem 2017;36:2352-2366. © Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. © 2017 SETAC.

  12. Testing the assumption of annual shell ring deposition in freshwater mussels

    Treesearch

    Wendell R. Haag; Amy M. Commens-Carson

    2008-01-01

    We tested the assumption of annual shell ring deposition by freshwater mussels in three rivers using 17 species. In 2000, we notched shell margins, returned animals to the water, and retrieved them in 2001. In 2003, we measured shells, affixed numbered tags, returned animals, and retrieved them in 2004 and 2005. We validated deposition of a single internal annulus per...

  13. Abundance and distribution of benthic macroinvertebrates in offshore soft sediments in Western Lake Huron, 2001-2007

    USGS Publications Warehouse

    French, J. R. P.; Schaeffer, J.S.; Roseman, E.F.; Kiley, C.S.; Fouilleroux, A.

    2009-01-01

    Invasive species have had major impacts on the Great Lakes. This is especially true of exotic dreissenid mussels which are associated with decreased abundance of native macroinvertebrates and changes in food availability for fish. Beginning in 2001, we added a benthic macroinvertebrate survey to the USGS-Great Lakes Science Center's annual fall prey fish assessment of Lake Huron to monitor abundance of macrobenthos. Mean abundance of Diporeia, the most abundant benthic taxon in Lake Huron reported by previous investigators, declined greatly between 2001 and 2007. Diporeia was virtually absent at 27-m sites by 2001, decreased and was lost completely from 46-m depths by 2006, but remained present at reduced densities at 73-m sites. Dreissenids in our samples were almost entirely quagga mussels Dreissena bugensis. Zebra mussels Dreissena polymorpha were virtually absent from our samples, suggesting that they were confined to nearshore areas shallower than we sampled. Loss of Diporeia at individual sites was associated with arrival of quagga mussels, even when mussel densities were low. Quagga mussel density peaked during 2002, then decreased thereafter. During the study quagga mussels became established at most 46-m sites, but remained rare at 73-m sites. Length frequency distributions suggest that initial widespread recruitment may have occurred during 2001-2002. Like other Great Lakes, Lake Huron quagga mussels were associated with decreased abundance of native taxa, but negative effects occurred even though dreissenid densities were much lower. Dreissenid effects may extend well into deep oligotrophic habitats of Lake Huron.

  14. Potential environmental drivers of a regional blue mussel mass mortality event (winter of 2014, Breton Sound, France)

    NASA Astrophysics Data System (ADS)

    Polsenaere, Pierre; Soletchnik, Patrick; Le Moine, Olivier; Gohin, Francis; Robert, Stéphane; Pépin, Jean-François; Stanisière, Jean-Yves; Dumas, Franck; Béchemin, Christian; Goulletquer, Philippe

    2017-05-01

    . Meanwhile, these may have facilitated the apparition of a pathogenic strain of Vibrio splendidus isolated on moribund mussels at that time. Our modelling simulations suggested that this pathogenic strain could spread through hydrodynamic patterns and drive the observed mussel mortalities. If this pathogenic strain recurs in future years, particularly with the added stress associated with climate change, mussel mass mortality events may exceed the resilience of this species.

  15. Water quality, sediment characteristics, aquatic habitat, geomorphology, and mussel population status of the Clinch River, Virginia and Tennessee, 2009-2011

    USGS Publications Warehouse

    Krstolic, Jennifer L.; Johnson, Gregory C.; Ostby, Brett J.K.

    2013-01-01

    Chemical, physical, and biological data were collected during 2009-2011 as part of a study of the Clinch River in Virginia and Tennessee. The data from this study, data-collection methods, and laboratory analytical methods used in the study are documented in this report. The study was conducted to describe the conditions of the Clinch River and to determine if there are measurable differences in chemical, physical, or biological characteristics in a segment of the river where freshwater mussel populations are in decline, have low density, richness, little to no recruitment, and lack endangered species (low-quality reach) compared to a segment of the river where mussel assemblages have relatively high density, richness, evidence of recruitment, and support endangered species (high-quality reach). Five continuous water-quality monitors were installed and operated on the mainstem of the Clinch River and two tributaries. Discrete water-quality sample sets were collected during base-flow and stormflow conditions two sites on the Clinch River and on the Guest River, a tributary to the Clinch River predominantly in the Appalachian Plateaus Physiographic Province. Base-flow water-quality samples were collected in July and August 2011 at 15 sites along the mainstem of the Clinch River. Other analyses included longitudinal sampling along the mainstem of the Clinch River at 10 sites to evaluate bed-sediment chemistry, habitat condition, and mollusk community status. In situ freshwater mussel growth and mortality experiments were conducted with hatchery propogated Villosa iris (rainbow mussels). Tissue from the V. iris as well as tissue from 16 Actinonaias pectorosa mussels were analyzed for trace metals, and V. iris mussel tissue was analyzed for organic compounds. Data collected during this investigation were analyzed by various U.S. Geological Survey or U.S. Fish and Wildlife Service laboratories.

  16. Determination of Irgarol-1051 and its related s-triazine species in coastal sediments and mussel tissues by HPLC-ESI-MS/MS.

    PubMed

    Tsang, Vic Wing-Hang; Lei, Ngai-Yu; Lam, Michael Hon-Wah

    2009-10-01

    A mild, low-temperature analytical approach based on sonication assisted extraction coupled with HPLC electrospray ionization triple quadrupole tandem mass spectrometry has been developed for the simultaneous qualitative and quantitative determination of the four Irgarol-related s-triazine species, namely Irgarol-1051, M1, M2 and M3, in coastal sediments and Green-lipped mussel samples. Mild extraction conditions were necessary for the preservation of the thermally unstable M2. The Multiple Reaction Monitoring (MRM) mode of detection by ESI-MS/MS enabled reliable qualitative identification and sensitive quantitative determination of those s-triazines. This determination method was applied to evaluate the degree of Irgarol-1051 contamination in the sediments and biota of the coastal environment of Hong Kong--one of the busiest maritime ports in the world. All the four s-triazine species were observed in all of the samples. This is the first time that the newly identified M2 and M3 are detected in coastal sediments and biota tissues.

  17. Changes in Benthos Associated with Mussel (Mytilus edulis L.) Farms on the West-Coast of Scotland

    PubMed Central

    Wilding, Thomas A.; Nickell, Thomas D.

    2013-01-01

    Aquaculture, as a means of food production, is growing rapidly in response to an increasing demand for protein and the over-exploitation of wild fisheries. This expansion includes mussels (family Mytilidae) where production currently stands at 1.5 million tonnes per annum. Mussel culture is frequently perceived as having little environmental impact yet mussel biodeposits and shell debris accumulate around the production site and are linked to changes in the benthos. To assess the extent and nature of changes in benthos associated with mussel farming grab and video sampling around seven mussel farms was conducted. Grab samples were analysed for macrofauna and shell-hash content whilst starfish were counted and the shell-hash cover estimated from video imaging. Shell-hash was patchily distributed and occasionally dominated sediments (maximum of 2116 g per 0.1 m2 grab). Mean shell-hash content decreased rapidly at distances >5 m from the line and, over the distance 1–64 m, decreased by three orders of magnitude. The presence of shell-hash and the distance-from-line influenced macrofaunal assemblages but this effect differed between sites. There was no evidence that mussel farming was associated with changes in macrobenthic diversity, species count or feeding strategy. However, total macrofaunal count was estimated to be 2.5 times higher in close proximity to the lines, compared with 64 m distance, and there was evidence that this effect was conditional on the presence of shell-hash. Starfish density varied considerably between sites but, overall, they were approximately 10 times as abundant close to the mussel-lines compared with 64 m distance. There was no evidence that starfish were more abundant in the presence of shell-hash visible on the sediment surface. In terms of farm-scale benthic impacts these data suggest that mussel farming is a relatively benign way of producing food, compared with intensive fish-farming, in similar environments. PMID:23874583

  18. Validation of annual growth rings in freshwater mussel shells using cross dating .Can

    Treesearch

    Andrew L. Rypel; Wendell R. Haag; Robert H. Findlay

    2009-01-01

    We examined the usefulness of dendrochronological cross-dating methods for studying long-term, interannual growth patterns in freshwater mussels, including validation of annual shell ring formation. Using 13 species from three rivers, we measured increment widths between putative annual rings on shell thin sections and then removed age-related variation by...

  19. First report of Toxoplasma gondii sporulated oocysts and Giardia duodenalis in commercial green-lipped mussels (Perna canaliculus) in New Zealand.

    PubMed

    Coupe, Alicia; Howe, Laryssa; Burrows, Elizabeth; Sine, Abigail; Pita, Anthony; Velathanthiri, Niluka; Vallée, Emilie; Hayman, David; Shapiro, Karen; Roe, Wendi D

    2018-05-01

    Pollution of marine ecosystems with the protozoan parasites Toxoplasma gondii, Cryptosporidium spp. and Giardia duodenalis can be studied using bivalve shellfish as biosentinels. Although evidence suggests that these parasites are present in New Zealand coastal waters, the extent of protozoal pollution has not been investigated. This study used optimised molecular methods to detect the presence of Cryptosporidium spp., G. duodenalis and T. gondii in commercially sourced green-lipped mussel (Perna canaliculus), an endemic species found throughout coastal New Zealand. A nested polymerase chain reaction was validated for detection of T. gondii DNA and applied to 104 commercially sourced mussels. Thirteen mussels were positive for T. gondii DNA with an estimated true prevalence of 16.4% using Bayesian statistics, and the presence of T. gondii in mussels was significantly associated with collection during the summer compared with that in the winter (P = 0.003). Consumption of contaminated shellfish may also pose a health risk for humans and marine wildlife. As only sporulated T. gondii oocysts can be infectious, a reverse transcriptase-polymerase chain reaction was used to confirm presence of a sporozoite-specific marker (SporoSAG), detected in four mussels. G. duodenalis assemblage B, known to be pathogenic in humans, was also discovered in 1% mussels, tested by polymerase chain reaction (n = 90). Cryptosporidium spp. was not detected in the sampled mussel haemolymph. Results suggest that New Zealand may have high levels of coastal contamination with T. gondii, particularly in summer months, and that naturally exposed mussels can ingest and retain sporulated oocysts, further establishing shellfish consumption as a health concern.

  20. Native Mussels Alter Nutrient Availability and Reduce Blue ...

    EPA Pesticide Factsheets

    Nutrient cycling is a key process that ties all organisms together. This is especially apparent in stream environments in which nutrients are taken up readily and cycled through the system in a downstream trajectory. Ecological stoichiometry predicts that biogeochemical cycles of different elements are interdependent because the organisms that drive these cycles require fixed ratios of nutrients. There is growing recognition that animals play an important role in biogeochemical cycling across ecosystems. In particular, dense aggregations of consumers can create biogeochemical hotspots in aquatic ecosystems via nutrient translocation. We predicted that filter-feeding freshwater mussels, which occur as speciose, high biomass aggregates, would create biogeochemical hotspots in streams by altering nutrient limitation and algal dynamics. In a field study, we manipulated nitrogen and phosphorus using nutrient-diffusing substrates in areas with high and low mussel abundance, recorded algal growth and community composition, and determined in situ mussel excretion stoichiometry at 18 sites in 3 rivers (Kiamichi, Little, and Mt. Fork rivers, southcentral U.S.). Our results indicate that mussels greatly influence ecosystem processes by modifying the nutrients that limit primary productivity. Sites without mussels were N-limited with ~26% higher abundances of N-fixing blue-green algae, while sites with high mussel densities were co-limited (N and P) and dominated by diatoms

  1. Chick Development and Asynchroneous Hatching in the Zebra Finch (Taeniopygia guttata castanotis).

    PubMed

    Ikebuchi, Maki; Okanoya, Kazuo; Hasegawa, Toshikazu; Bischof, Hans-Joachim

    2017-10-01

    The mode of hatching in birds has important impacts on both parents and chicks, including the costs and risks of breeding for parents, and sibling competition in a clutch. Birds with multiple eggs in a single clutch often begin incubating when most eggs are laid, thereby reducing time of incubation, nursing burden, and sibling competition. In some songbirds and some other species, however, incubation starts immediately after the first egg is laid, and the chicks thus hatch asynchronously. This may result in differences in parental care and in sibling competition based on body size differences among older and younger chicks, which in turn might produce asynchronous development among siblings favoring the first hatchling, and further affect the development and fitness of the chicks after fledging. To determine whether such processes in fact occur in the zebra finch, we observed chick development in 18 clutches of zebra finches. We found that there were effects of asynchronous hatching, but these were smaller than expected and mostly not significant. Our observations suggest that the amount of care given to each chick may be equated with such factors as a camouflage effect of the down feathers, and that the low illumination within the nest also complicates the determination of the hatching order by the parents.

  2. A hybrid zone between Bathymodiolus mussel lineages from eastern Pacific hydrothermal vents.

    PubMed

    Johnson, Shannon B; Won, Yong-Jin; Harvey, Julio Bj; Vrijenhoek, Robert C

    2013-01-24

    The inhabitants of deep-sea hydrothermal vents occupy ephemeral island-like habitats distributed sporadically along tectonic spreading-centers, back-arc basins, and volcanically active seamounts. The majority of vent taxa undergo a pelagic larval phase, and thus varying degrees of geographical subdivision, ranging from no impedance of dispersal to complete isolation, often exist among taxa that span common geomorphological boundaries. Two lineages of Bathymodiolus mussels segregate on either side of the Easter Microplate, a boundary that separates the East Pacific Rise from spreading centers connected to the Pacific-Antarctic Ridge. A recent sample from the northwest flank of the Easter Microplate contained an admixture of northern and southern mitochondrial haplotypes and corresponding alleles at five nuclear gene loci. Genotypic frequencies in this sample did not fit random mating expectation. Significant heterozygote deficiencies at nuclear loci and gametic disequilibria between loci suggested that this transitional region might be a 'Tension Zone' maintained by immigration of parental types and possibly hybrid unfitness. An analysis of recombination history in the nuclear genes suggests a prolonged history of parapatric contact between the two mussel lineages. We hereby elevate the southern lineage to species status as Bathymodiolus antarcticus n. sp. and restrict the use of Bathymodiolus thermophilus to the northern lineage. Because B. thermophilus s.s. exhibits no evidence for subdivision or isolation-by-distance across its 4000 km range along the EPR axis and Galápagos Rift, partial isolation of B. antarcticus n. sp. requires explanation. The time needed to produce the observed degree of mitochondrial differentiation is consistent with the age of the Easter Microplate (2.5 to 5.3 million years). The complex geomorphology of the Easter Microplate region forces strong cross-axis currents that might disrupt self-recruitment of mussels by removing

  3. A Marteilia-like parasite in blue mussels Mytilus edulis in China.

    PubMed

    Wang, Zhongwei; Lu, Xin; Liang, Yubo; Zheng, Zheng

    2012-09-01

    Species of the genus Marteilia (Phylum Paramyxea) are protozoan parasites of marine mollusks. Marteilia spp. have been detected in mollusks from different parts of the world, but the presence of these parasites in China has not been previously reported. Therefore, a survey was conducted to look for the presence of Marteilia spp. in blue mussels Mytilus edulis and Asian green mussels Perna viridis collected along China's coasts. Histological and PCR analyses revealed that 5 of 180 M. edulis (prevalence = 2.8%) were positive for infection with a Marteilia-like organism, whereas the parasite was not detected in any of the 80 P. viridis individuals tested. Total genomic DNA was extracted from the infected tissue sections for PCR amplification. The PCR amplification with Marteilia primers SS1 and SAS1 yielded the expected 641-bp product. Sequencing results showed that the 18S ribosomal RNA gene fragment from the protozoans found in M. edulis from China was 88% similar to that of Marteilia refringens, a species that was reported from M. edulis and European flat oysters Ostrea edulis collected in France. This is the first report of a Marteilia-like organism infecting M. edulis in China.

  4. Mussels can both outweigh and interact with the effects of terrestrial to freshwater resource subsidies on littoral benthic communities.

    PubMed

    Smith, Bethany R; Aldridge, David C; Tanentzap, Andrew J

    2018-05-01

    Litterfall is an important resource subsidy for lake ecosystems that primarily accumulates in littoral zones. Bivalves are abundant within littoral zones and may modify the effects of terrestrial resource subsidies through trophic interactions and engineering their surrounding habitat. Leaf inputs to lakes and freshwater mussel abundances are changing throughout the boreal ecoregion so we set out to investigate how the co-occurring benthic community might respond. We set up an in situ mesocosm experiment in Ramsey Lake, Sudbury, ON, Canada. Mesocosms contained sediments of either 5% or 35% terrestrial organic matter (tOM), into which we placed mussels (Elliptio complanata) at differing densities (0, 0.4 and 2musselsm -2 , with a sham mussel treatment at 0.4musselsm -2 ). Over one month we recorded the sediment chemistry (dissolved organic carbon, nitrogen and phosphorus), littoral organisms (benthic algae and zooplankton) and mussel growth. At high mussel densities we recorded a 90%, 80%, 45% and 40% reduction in phosphorus, dissolved organic carbon, nitrogen and benthic diatoms, respectively, whereas at low mussel densities we observed a 3-fold increase in zooplankton. We discuss that these results were caused by a combination of bioturbation and trophic interactions. Benthic diatom concentrations were also reduced by 20% in sediments of 35% tOM, likely due to shading and competition with bacteria. Mussel growth increased at high mussel densities but was offset at high tOM, likely due to the organic matter interfering with filter feeding. Our results suggest that mussels can alter the geochemical composition of sediments and abundances of associated littoral organisms, in some cases regardless of tOM quantity. Therefore, the dominant top-down control exerted by freshwater mussels may outweigh bottom-up effects of tOM additions. Generally, our study reveals the importance of considering dominant species when studying the effects of cross-ecosystem resource fluxes

  5. Lethal and sub-lethal responses of native freshwater mussels exposed to granular Bayluscide®, a sea lamprey larvicide

    USGS Publications Warehouse

    Newton, Teresa; Boogaard, Michael A.; Gray, Brian R.; Hubert, Terrance D.; Schloesser, Nicholas

    2017-01-01

    The invasive sea lamprey (Petromyzon marinus) poses a substantial threat to fish communities in the Great Lakes. Efforts to control sea lamprey populations typically involve treating tributary streams with lampricides on a recurring cycle. The presence of a substantial population of larval sea lampreys in the aquatic corridor between Lakes Huron and Erie prompted managers to propose a treatment using the granular formulation of Bayluscide® that targets larval sea lampreys that reside in sediments. However, these treatments could cause adverse effects on native freshwater mussels—imperiled animals that also reside in sediments. We estimated the risk of mortality and sub-lethal effects among eight species of adult and sub-adult mussels exposed to Bayluscide® for durations up to 8 h to mimic field applications. Mortality was appreciable in some species, especially in sub-adults (range, 23–51%). The lethal and sub-lethal effects were positively associated with the duration of exposure in most species and life stage combinations. Estimates of the median time of exposure that resulted in lethal and sub-lethal effects suggest that sub-adults were often affected by Bayluscide® earlier than adults. Siphoning activity and burrowing position of mussels during exposure may have moderated the uptake of Bayluscide® and may have influenced lethal and sub-lethal responses. Given that the various species and life stages were differentially affected, it will be difficult to predict the effects of Bayluscide® treatments on mussels.

  6. Influence of parasitism in controlling the health, reproduction and PAH body burden of petroleum seep mussels

    NASA Astrophysics Data System (ADS)

    Powell, Eric N.; Barber, Robert D.; Kennicutt, Mahlon C., II; Ford, Susan E.

    1999-12-01

    Petroleum seep mussels are often exposed to high hydrocarbon concentrations in their natural habitat and, thus, offer the opportunity to examine the relationship between parasitism, disease and contaminant exposure under natural conditions. This is the first report on the histopathology of cold-seep mussels. Seep mussels were collected by submersible from four primary sites in the Gulf of Mexico, lease blocks Green Canyon (GC) 184, GC-234, GC-233, and Garden Banks 425 in 550-650 m water depth. Five types of parasites were identified in section: (1) gill "rosettes" of unknown affinity associated with the gill bacteriocytes, (2) gill "inclusions" similar to chlamydia/rickettsia inclusions, (3) extracellular gill ciliates, (4) body "inclusions" that also resemble chlamydial/rickettsial inclusions, and (5) Bucephalus-like trematodes. Comparison to shallow-water mytilids demonstrates that: (1) both have similar parasite faunas; (2) seep mytilids are relatively heavily parasitized; and (3) infection intensities are extremely high in comparison to shallow-water mytilids for Bucephalus and chlamydia/rickettsia. In this study, the lowest prevalence for chlamydia/rickettsia was 67%. Prevalences of 100% were recorded from three populations. Bucephalus prevalence was ⩾70% in three of 10 populations. The parasite fauna was highly variable between populations. Some important parasites were not observed in some primary sites. Even within primary sites, some important parasites were not observed in some populations. Bucephalus may exert a significant influence on seep mussel population dynamics. Forty percent of the populations in this study are severely reproductively compromised by Bucephalus infection. Only a fraction of petroleum seep mussel populations are maintaining the entire beta-level population structure of this species. Variation in two parasites, gill ciliates and Bucephalus, explained most of the variation in PAH body burden between mussel populations. PAHs are

  7. Prevalence and Molecular Genotyping of Noroviruses in Market Oysters, Mussels, and Cockles in Bangkok, Thailand.

    PubMed

    Kittigul, Leera; Thamjaroen, Anyarat; Chiawchan, Suwat; Chavalitshewinkoon-Petmitr, Porntip; Pombubpa, Kannika; Diraphat, Pornphan

    2016-06-01

    Noroviruses are the most common cause of acute gastroenteritis associated with bivalve shellfish consumption. This study aimed to detect and characterize noroviruses in three bivalve shellfish species: oysters (Saccostrea forskali), cockles (Anadara nodifera), and mussels (Perna viridis). The virus concentration procedure (adsorption-twice elution-extraction) and a molecular method were employed to identify noroviruses in shellfish. RT-nested PCR was able to detect known norovirus GII.4 of 8.8 × 10(-2) genome copies/g of digestive tissues from oyster and cockle concentrates, whereas in mussel concentrates, the positive result was seen at 8.8 × 10(2) copies/g of digestive tissues. From August 2011 to July 2012, a total of 300 shellfish samples, including each of 100 samples from oysters, cockles, and mussels were collected and tested for noroviruses. Norovirus RNA was detected in 12.3 % of shellfish samples. Of the noroviruses, 7.7 % were of the genogroup (G) I, 2.6 % GII, and 2.0 % were mixed GI and GII. The detection rate of norovirus GI was 2.1 times higher than GII. With regards to the different shellfish species, 17 % of the oyster samples were positive, while 14.0 and 6.0 % were positive for noroviruses found in mussels and cockles, respectively. Norovirus contamination in the shellfish occurred throughout the year with the highest peak in September. Seventeen norovirus-positive PCR products were characterized upon a partial sequence analysis of the capsid gene. Based on phylogenetic analysis, five different genotypes of norovirus GI (GI.2, GI.3, GI.4, GI.5, and GI.9) and four different genotypes of GII (GII.1, GII.2, GII.3, and GII.4) were identified. These findings indicate the prevalence and distribution of noroviruses in three shellfish species. The high prevalence of noroviruses in oysters contributes to the optimization of monitoring plans to improve the preventive strategies of acute gastroenteritis.

  8. Shedding of Clostridium difficile PCR ribotype 078 by zoo animals, and report of an unstable metronidazole-resistant isolate from a zebra foal (Equus quagga burchellii).

    PubMed

    Álvarez-Pérez, Sergio; Blanco, José L; Martínez-Nevado, Eva; Peláez, Teresa; Harmanus, Celine; Kuijper, Ed; García, Marta E

    2014-03-14

    Clostridium difficile is an emerging and potentially zoonotic pathogen, but its prevalence in most animal species, including exhibition animals, is currently unknown. In this study we assessed the prevalence of faecal shedding of C. difficile by zoo animals, and determined the ribotype, toxin profile and antimicrobial susceptibility of recovered isolates. A total of 200 samples from 40 animal species (36.5% of which came from plains zebra, Equus quagga burchellii) were analysed. C. difficile was isolated from 7 samples (3.5% of total), which came from the following animal species: chimpanzee (Pan troglodytes troglodytes), dwarf goat (Capra hircus), and Iberian ibex (Capra pyrenaica hispanica), with one positive sample each; and plains zebra, with 4 positive samples from 3 different individuals. Most recovered isolates (4/7, 57.1%) belonged to the epidemic PCR ribotype 078, produced toxins A and B, and had the genes encoding binary toxin (i.e. A(+)B(+)CDT(+) isolates). The remaining three isolates belonged to PCR ribotypes 039 (A(-)B(-)CDT(-)), 042 (A(+)B(+)CDT(-)) and 110 (A(-)B(+)CDT(-)). Regardless of their ribotype, all isolates displayed high-level resistance to the fluoroquinolones ciprofloxacin, enrofloxacin and levofloxacin. Some isolates were also resistant to meropenem and/or ertapenem. A ribotype 078 isolate recovered from a male zebra foal initially showed in vitro resistance to metronidazole (MIC ≥ 256 μg/ml), but lost that trait after subculturing on non-selective media. We conclude that zoo animals belonging to different species can carry ribotype 078 and other toxigenic strains of C. difficile showing resistance to antimicrobial compounds commonly used in veterinary and/or human medicine. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Zebra Mussel Chemical Control Guide.

    DTIC Science & Technology

    2000-01-01

    References 80 Aromatic Hydrocarbons 82 BULAB6009 82 Chemical Name and Formulations 82 Mode of Action 82 Application Strategies 82 Timing of Application...organisms once they are bound to anionic substances (Dobbs et al. 1995). b. Aromatic hydrocarbons . Compounds such as BULAB® 6009 and MEXEL 432™ also...Pallas): A new mollusc in the Great Lakes," Can. J. FishAquat. Sei. 46, 1587-1591. Heitanen, E. (1997). "Toxicity testing of Endod, a natural

  10. Use of mussel casts from archaeological sites as paleoecological indicators: An example from CA-MRN-254, Marin County, Alta California

    USGS Publications Warehouse

    McGann, Mary; Starratt, Scott W.; Powell, Charles L.; Bieling, David G

    2016-01-01

    Archaeological investigations at prehistoric site CA-MRN-254 at the Dominican University of California in Marin County, California, revealed evidence of Native American occupation spanning the past 1,800 years. A dominant source of food for the inhabitants in the San Francisco Bay area was the intertidal, quiet-water dwelling blue mussel (Mytilus trossulus), although rare occurrences of the open coast-dwelling California mussel (Mytilus californianus) suggest that this species was also utilized sporadically. On rare occasions, cultural horizons at this site contain abundant sediment-filled casts of the smaller mussel Modiolus sp. These casts were formed soon after death when the shells filled with sediment and were roasted along with living bivalve shellfish for consumption. Thin sections of these mussel casts display sedimentological and microbiological constituents that shed light on the paleoenvironmental conditions when they were alive. Fine-grained sediment and pelletal muds comprising these casts suggest that the mussels were collected in a low energy, inner bay environment. The rare presence of the diatoms Triceratium dubium and Thalassionema nitzschioides indicate more normal marine (35 psu) and possibly warmer conditions than presently exist in San Francisco Bay. Radiocarbon dating of charcoal associated with the mussel casts containing these diatoms correlates with a 600-year period of warming from ca. A.D. 700–1300, known as the Medieval Climatic Anomaly. Results of this mussel cast study demonstrate that they have great potential for providing paleoenvironmental information at this and other archaeological sites.

  11. Effects of food resources on the fatty acid composition, growth and survival of freshwater mussels

    USGS Publications Warehouse

    Bartsch, Michelle; Bartsch, Lynn; Richardson, William B.; Vallazza, Jon; Moraska Lafrancois, Brenda

    2017-01-01

    Increased nutrient and sediment loading in rivers have caused observable changes in algal community composition, and thereby, altered the quality and quantity of food resources available to native freshwater mussels. Our objective was to characterize the relationship between nutrient conditions and mussel food quality and examine the effects on fatty acid composition, growth and survival of juvenile mussels. Juvenile Lampsilis cardium and L. siliquoidea were deployed in cages for 28 d at four riverine and four lacustrine sites in the lower St. Croix River, Minnesota/Wisconsin, USA. Mussel foot tissue and food resources (four seston fractions and surficial sediment) were analyzed for quantitative fatty acid (FA) composition. Green algae were abundant in riverine sites, whereas cyanobacteria were most abundant in the lacustrine sites. Mussel survival was high (95%) for both species. Lampsilis cardium exhibited lower growth relative to L. siliquoidea (p <0.0001), but growth of L. cardium was not significantly different across sites (p = 0.13). In contrast, growth of L. siliquoidea was significantly greater at the most upstream riverine site compared to the lower three lacustrine sites (p = 0.002). In situ growth of Lampsilis siliquoidea was positively related to volatile solids (10 – 32 μm fraction), total phosphorus (<10 and 10 – 32 μm fractions), and select FA in the seston (docosapentaeonic acid, DPA, 22:5n3; 4,7,10,13,16-docosapentaenoic, 22:5n6; arachidonic acid, ARA, 20:4n6; and 24:0 in the <10 and 10 – 32 μm fractions). Our laboratory feeding experiment also indicated high accumulation ratios for 22:5n3, 22:5n6, and 20:4n6 in mussel tissue relative to supplied algal diet. In contrast, growth of L. siliquiodea was negatively related to nearly all FAs in the largest size fraction (i.e., >63 μm) of seston, including the bacterial FAs, and several of the FAs associated with sediments. Reduced mussel growth was observed in L. siliquoidea when the abundance

  12. Muscle activation patterns and motor anatomy of Anna's hummingbirds Calypte anna and zebra finches Taeniopygia guttata.

    PubMed

    Donovan, Edward R; Keeney, Brooke K; Kung, Eric; Makan, Sirish; Wild, J Martin; Altshuler, Douglas L

    2013-01-01

    Flying animals exhibit profound transformations in anatomy, physiology, and neural architecture. Although much is known about adaptations in the avian skeleton and musculature, less is known about neuroanatomy and motor unit integration for bird flight. Hummingbirds are among the most maneuverable and specialized of vertebrate fliers, and two unusual neuromuscular features have been previously reported: (1) the pectoralis major has a unique distribution pattern of motor end plates (MEPs) compared with all other birds and (2) electromyograms (EMGs) from the hummingbird's pectoral muscles, the pectoralis major and the supracoracoideus, show activation bursts composed of one or a few spikes that appear to have a very consistent pattern. Here, we place these findings in a broader context by comparing the MEPs, EMGs, and organization of the spinal motor neuron pools of flight muscles of Anna's hummingbird Calypte anna, zebra finches Taeniopygia guttata, and, for MEPs, several other species. The previously shown MEP pattern of the hummingbird pectoralis major is not shared with its closest taxonomic relative, the swift, and appears to be unique to hummingbirds. MEP arrangements in previously undocumented wing muscles show patterns that differ somewhat from other avian muscles. In the parallel-fibered strap muscles of the shoulder, MEP patterns appear to relate to muscle length, with the smallest muscles having fibers that span the entire muscle. MEP patterns in pennate distal wing muscles were the same regardless of size, with tightly clustered bands in the middle portion of the muscle, not evenly distributed bands over the muscle's entire length. Muscle activations were examined during slow forward flight in both species, during hovering in hummingbirds, and during slow ascents in zebra finches. The EMG bursts of a wing muscle, the pronator superficialis, were highly variable in peak number, size, and distribution across wingbeats for both species. In the pectoralis

  13. Spatial and temporal relationships among watershed mining, water quality, and freshwater mussel status in an eastern USA river.

    PubMed

    Zipper, Carl E; Donovan, Patricia F; Jones, Jess W; Li, Jing; Price, Jennifer E; Stewart, Roger E

    2016-01-15

    The Powell River of southwestern Virginia and northeastern Tennessee, USA, drains a watershed with extensive coal surface mining, and it hosts exceptional biological richness, including at-risk species of freshwater mussels, downstream of mining-disturbed watershed areas. We investigated spatial and temporal patterns of watershed mining disturbance; their relationship to water quality change in the section of the river that connects mining areas to mussel habitat; and relationships of mining-related water constituents to measures of recent and past mussel status. Freshwater mussels in the Powell River have experienced significant declines over the past 3.5 decades. Over that same period, surface coal mining has influenced the watershed. Water-monitoring data collected by state and federal agencies demonstrate that dissolved solids and associated constituents that are commonly influenced by Appalachian mining (specific conductance, pH, hardness and sulfates) have experienced increasing temporal trends from the 1960s through ~2008; but, of those constituents, only dissolved solids concentrations are available widely within the Powell River since ~2008. Dissolved solids concentrations have stabilized in recent years. Dissolved solids, specific conductance, pH, and sulfates also exhibited spatial patterns that are consistent with dilution of mining influence with increasing distance from mined areas. Freshwater mussel status indicators are correlated negatively with dissolved solids concentrations, spatially and temporally, but the direct causal mechanisms responsible for mussel declines remain unknown. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. NMR Profiling of Metabolites in Larval and Juvenile Blue Mussels (Mytilus edulis) under Ambient and Low Salinity Conditions

    PubMed Central

    Bishop, Karl D.; Rawson, Paul D.

    2017-01-01

    Blue mussels (Mytilus edulis) are ecologically and economically important marine invertebrates whose populations are at risk from climate change-associated variation in their environment, such as decreased coastal salinity. Blue mussels are osmoconfomers and use components of the metabolome (free amino acids) to help maintain osmotic balance and cellular function during low salinity exposure. However, little is known about the capacity of blue mussels during the planktonic larval stages to regulate metabolites during osmotic stress. Metabolite studies in species such as blue mussels can help improve our understanding of the species’ physiology, as well as their capacity to respond to environmental stress. We used 1D 1H nuclear magnetic resonance (NMR) and 2D total correlation spectroscopy (TOCSY) experiments to describe baseline metabolite pools in larval (veliger and pediveliger stages) and juvenile blue mussels (gill, mantle, and adductor tissues) under ambient conditions and to quantify changes in the abundance of common osmolytes in these stages during low salinity exposure. We found evidence for stage- and tissue-specific differences in the baseline metabolic profiles of blue mussels, which reflect variation in the function and morphology of each larval stage or tissue type of juveniles. These differences impacted the utilization of osmolytes during low salinity exposure, likely stemming from innate physiological variation. This study highlights the importance of foundational metabolomic studies that include multiple tissue types and developmental stages to adequately evaluate organismal responses to stress and better place these findings in a broader physiological context. PMID:28684716

  15. Declining occurrence and low colonization probability in freshwater mussel assemblages: A dynamic occurrence modeling approach

    USGS Publications Warehouse

    Pandolfo, Tamara J.; Kwak, Thomas J.; Cope, W. Gregory; Heise, Ryan J.; Nichols, Robert B.; Pacifici, Krishna

    2017-01-01

    Mussel monitoring data are abundant, but methods for analyzing long-term trends in these data are often uninformative or have low power to detect changes. We used a dynamic occurrence model, which accounted for imperfect species detection in surveys, to assess changes in species occurrence in a longterm data set (1986–2011) for the Tar River basin of North Carolina, USA. Occurrence of all species decreased steadily over the time period studied. Occurrence in 1986 ranged from 0.19 for Utterbackia imbecillis to 0.60 for Fusconaia masoni. Occurrence in 2010–2011 ranged from 0.10 for Lampsilis radiata to 0.40 for F. masoni. The maximum difference between occurrence in 1986 and 2011 was a decline of 0.30 for Alasmidonta undulata. Mean persistence for all species was high (0.97, 95% CI ¼ 0.95–0.99); however, mean colonization probability was very low (,0.01, 95% CI ¼ ,0.01–0.01). These results indicate that mussels persisted at sites already occupied but that they have not colonized sites where they had not occurred previously. Our findings highlight the importance of modeling approaches that incorporate imperfect detection in estimating species occurrence and revealing temporal trends to inform conservation planning.

  16. Mussel watch

    NASA Astrophysics Data System (ADS)

    Contamination of U.S. coastal areas may be decreasing as a result of environmental regulations that have banned or curtailed toxic chemicals, concludes a report by the National Oceanic and Atmospheric Administration. The report, “Recent Trends in Coastal Environmental Quality: Results from the Mussel Watch Project,” presents results of analyzing chemical concentrations found in mussel and oyster tissues collected every year since 1986.These mollusks are collected once a year at more than 240 sites nationwide and analyzed for over 70 polycyclic aromatic hydrocarbons, polychlorinated biphenyls, chlorinated pesticides, butyltins, and toxic trace elements such as copper, cadmium, and lead. The report states that from 1986 to 1993 there were many more decreases than increases in chemical concentrations in coastal regions. These decreasing trends were not unexpected; all of the monitored chlorinated hydrocarbons have been banned for use in the United States, and tributyltin has been banned as a biocide on recreational boats.

  17. Species coexistence and the superior ability of an invasive species to exploit a facilitation cascade habitat.

    PubMed

    Altieri, Andrew H; Irving, Andrew D

    2017-01-01

    Facilitation cascades generated by co-occurring foundation species can enhance the abundance and diversity of associated organisms. However, it remains poorly understood how differences among native and invasive species in their ability to exploit these positive interactions contribute to emergent patterns of community structure and biotic acceptance. On intertidal shorelines in New England, we examined the patterns of coexistence between the native mud crabs and the invasive Asian shore crab in and out of a facilitation cascade habitat generated by mid intertidal cordgrass and ribbed mussels. These crab species co-occurred in low intertidal cobbles adjacent to the cordgrass-mussel beds, despite experimental findings that the dominant mud crabs can kill and displace Asian shore crabs and thereby limit their successful recruitment to their shared habitat. A difference between the native and invasive species in their utilization of the facilitation cascade likely contributes to this pattern. Only the Asian shore crabs inhabit the cordgrass-mussel beds, despite experimental evidence that both species can similarly benefit from stress amelioration in the beds. Moreover, only Asian shore crabs settle in the beds, which function as a nursery habitat free of lethal mud crabs, and where their recruitment rates are particularly high (nearly an order of magnitude higher than outside beds). Persistence of invasive adult Asian shore crabs among the dominant native mud crabs in the low cobble zone is likely enhanced by a spillover effect of the facilitation cascade in which recruitment-limited Asian shore crabs settle in the mid intertidal cordgrass-mussel beds and subsidize their vulnerable populations in the adjacent low cobble zone. This would explain why the abundances of Asian shore crabs in cobbles are doubled when adjacent to facilitation cascade habitats. The propensity for this exotic species to utilize habitats created by facilitation cascades, despite the lack of a

  18. Species coexistence and the superior ability of an invasive species to exploit a facilitation cascade habitat

    PubMed Central

    Irving, Andrew D.

    2017-01-01

    Facilitation cascades generated by co-occurring foundation species can enhance the abundance and diversity of associated organisms. However, it remains poorly understood how differences among native and invasive species in their ability to exploit these positive interactions contribute to emergent patterns of community structure and biotic acceptance. On intertidal shorelines in New England, we examined the patterns of coexistence between the native mud crabs and the invasive Asian shore crab in and out of a facilitation cascade habitat generated by mid intertidal cordgrass and ribbed mussels. These crab species co-occurred in low intertidal cobbles adjacent to the cordgrass–mussel beds, despite experimental findings that the dominant mud crabs can kill and displace Asian shore crabs and thereby limit their successful recruitment to their shared habitat. A difference between the native and invasive species in their utilization of the facilitation cascade likely contributes to this pattern. Only the Asian shore crabs inhabit the cordgrass–mussel beds, despite experimental evidence that both species can similarly benefit from stress amelioration in the beds. Moreover, only Asian shore crabs settle in the beds, which function as a nursery habitat free of lethal mud crabs, and where their recruitment rates are particularly high (nearly an order of magnitude higher than outside beds). Persistence of invasive adult Asian shore crabs among the dominant native mud crabs in the low cobble zone is likely enhanced by a spillover effect of the facilitation cascade in which recruitment-limited Asian shore crabs settle in the mid intertidal cordgrass–mussel beds and subsidize their vulnerable populations in the adjacent low cobble zone. This would explain why the abundances of Asian shore crabs in cobbles are doubled when adjacent to facilitation cascade habitats. The propensity for this exotic species to utilize habitats created by facilitation cascades, despite the lack

  19. Lethal and sublethal effects of ammonia to juvenile Lampsilis mussels (Unionidae) in sediment and water-only exposures

    USGS Publications Warehouse

    Newton, T.J.; Bartsch, M.R.

    2007-01-01

    We compared the sensitivity of two juvenile unionid mussels (Lampsilis cardium and Lampsilis higginsii) to ammonia in 96-h water-only and sediment tests by use of mortality and growth measurements. Twenty mussels were placed in chambers buried 2.5 cm into reference sediments to approximate pore-water exposure (sediment tests) or elevated above the bottom of the experimental units (water-only tests). In the sediment tests, a pH gradient existed between the overlying water (mean 8.0), sediment-water interface (mean 7.7), and 2.5 cm depth (mean 7.4). We assumed that mussels were exposed to ammonia in pore water and report effect concentrations in pore water, but if they were exposed to the higher pH water, more of the ammonia would be in the toxic un-ionized (NH 3) form. The only differences in toxicity and growth between mussel species occurred in some of the water-only tests. In sediment tests, median lethal concentrations (LC50s) ranged from 124 to 125 ??g NH3-N/L. In water-only tests, LC50s ranged from 157 to 372 ??g NH3-N/L. In sediment tests, median effective concentrations (EC50s based on growth) ranged from 30 to 32 ??g NH3-N/L. Juvenile mussels in the water-only tests grew poorly and did not exhibit a dose-response relation. These data demonstrate that growth is a sensitive and valuable endpoint for studies on ammonia toxicity with juvenile freshwater mussels and that growth should be measured via sediment tests. ?? 2007 SETAC.

  20. The Impact of Extreme Flooding on Mussel and Microbial Nutrient Dynamics at the Water-Sediment Interface

    NASA Astrophysics Data System (ADS)

    Bril, J.; Just, C. L.; Newton, T.; Young, N.; Parkin, G.

    2009-12-01

    Labeled by the National Academy of Engineering as one of fourteen grand challenges for engineering, the management of the nitrogen cycle has become an increasingly difficult obstacle for sustainable development. In an effort to improve nitrogen cycle management practices, we are attempting to expand on the limited scientific knowledge of how aquatic environments are affected by increasing human- and climate-induced changes. To accomplish this, we are using freshwater mussels as a sentinel species to indicate how natural processes within large river systems may be altered by human activity. Freshwater mussels have been referred to as ‘ecosystem engineers’ because they exert control over food resources and alter habitats for other organisms. Also, mussels and bacteria play a major role in nutrient cycling in large river systems by cycling nutrients taken up by phytoplankton and zooplankton. Under ‘normal’ environmental conditions, mussels appear to process nitrogen more rapidly than denitrifying bacteria. However, substantial deposition of carbon-rich sediment resulting from extreme flooding may increase bacterial nitrogen cycling rates and subsequently alter overall denitrification rates. We hypothesize that intense depositions of particulate matter from recent extreme floods in the Upper Mississippi River Basin (UMRB) have altered the freshwater mussel and microbial food webs through physical and chemical means. This work will be done in a 1200-m reach of the UMRB near Buffalo, Iowa. The reach contains a healthy and diverse assemblage of freshwater mussels. A historic flood event during May-July 2008 coincided with intense spring cultivation and nutrient application activities in the heavily farmed landscape of the Upper Midwest and resulted in a significant pulse of agricultural contaminants to the UMRB. This led scientists to predict an almost unprecedented delivery of sediment and nutrients to the mussel bed, the broader Mississippi River, and ultimately

  1. The importance of methane and thiosulfate in the metabolism of the bacterial symbionts of two deep-sea mussels

    USGS Publications Warehouse

    Fisher, C.R.; Childress, J.J.; Oremland, R.S.; Bidigare, R.R.

    1987-01-01

    Undescribed hydrocarbon-seep mussels were collected from the Louisiana Slope, Gulf of Mexico, during March 1986, and the ultrastructure of their gills was examined and compared to Bathymodiolus thermophilus, a mussel collected from the deep-sea hydrothermal vents on the Gala??pagos Rift in March 1985. These closely related mytilids both contain abundant symbiotic bacteria in their gills. However, the bacteria from the two species are distinctly different in both morphology and biochemistry, and are housed differently within the gills of the two mussels. The symbionts from the seep mussel are larger than the symbionts from B. thermophilus and, unlike the latter, contain stacked intracytoplasmic membranes. In the seep mussel three or fewer symbionts appear to be contained in each host-cell vacuole, while in B. thermophilus there are often more than twenty bacteria visible in a single section through a vacuole. The methanotrophic nature of the seep-mussel symbionts was confirmed in 14C-methane uptake experiments by the appearance of label in both CO2 and acid-stable, non-volatile, organic compounds after a 3 h incubation of isolated gill tissue. Furthermore, methane consumption was correlated with methanol dehydrogenase activity in isolated gill tissue. Activity of ribulose-1,5-biphosphate (RuBP) carboxylase and 14CO2 assimilation studies indicate the presence of either a second type of symbiont or contaminating bacteria on the gills of freshly captured seep mussels. A reevaluation of the nutrition of the symbionts in B. thermophilus indicates that while the major symbiont is not a methanotroph, its status as a sulfur-oxidizing chemoautotroph, as has been suggested previously, is far from proven. ?? 1987 Springer-Verlag.

  2. Stable isotope ratios in freshwater mussel shells as high resolution recorders of riverine environmental variation

    NASA Astrophysics Data System (ADS)

    Kukolich, S.; Kendall, C.; Dettman, D. L.

    2017-12-01

    The geochemical record stored in growth increments of freshwater mussel shells reveals annual to sub-annual changes in environmental conditions during the lifetime of the organism. The carbon, nitrogen, and oxygen stable isotope composition of aragonite shells responds to changes in water chemistry, temperature, streamflow, turbidity, growth rate, size, age, and reproduction. The goals of this study are to determine how stable isotopes can be used to reconstruct the conditions in which the mussels lived and to illuminate any vital effects that might obscure the isotopic record of those conditions. Previous research has suggested that annual δ13C values decrease in older freshwater mussel shells due to lower growth rates and greater incorporation of dietary carbon into the shell with increasing age. However, a high-resolution, seasonal investigation of δ13C, δ15N, and δ18O as they relate to organism age has not yet been attempted in freshwater mussels. A total of 28 Unionid mussels of three different species were collected live in 2011 in the Tennessee River near Paducah, Kentucky, USA. In this study, we analyzed the shell nacre and external organic layers for stable carbon, nitrogen, and oxygen isotope ratios, focusing on growth bands formed between 2006 and 2011. We present a time series of shell δ13C, δ18O, and δ15N values with monthly resolution. We also compare the shell-derived geochemical time series to a time series of the δ13C and δ15N of particulate organic matter, δ13C of DIC, δ18OWater, and water temperature in which the mussels lived. Results show that environmental factors such as water temperature and primary productivity dominate shell chemistry while animal age has little or no effect.

  3. The existence of microplastic in Asian green mussels

    NASA Astrophysics Data System (ADS)

    Khoironi, A.; Anggoro, S.; Sudarno

    2018-03-01

    Due to resistance of polymer as basic properties of plastic, several studies have been conducted to understand the fate of plastic debris in the marine environment. Degradation is the most important process to control distribution of plastic debris a long the marine environment until the existence of plastic in the food chain. The physical and chemical changes of plastic because of degradation process will lead to the release of polluted substances which eventually more toxic for the environment. Furthermore, when plastic degraded become a microplastic will lead to easy ingested by biotic such as mussell which commonly consumed by humans. The aim of this research was to investigate the concentration of microplastic adsorbed and ingested by mussels considering characteristic of sea water. About 30 samples have been collected from 3 different locations that is brackish water (31 ppb), high salinity (36 ppb) and low salinity (33 ppb) for measuring a number of microplastic in mussels on three different salinity. The result of microstructure analysis by microscope showed that mussel evaluated from the marine environment contaminated by microplastic with average size of 211.163 μm. In high salinity sea water, microplastic found in mussel was greater than low salinity and brackish water. The SEM/EDX analysis showed the presence of SIO2 0.14 % (w/w), Na2O 24.27 %(w/w) and Al2O3 0.27 % (w/w) in the microplastic obtained in the mussel indicating the components which are mostly found in the plastic industries. The amount of microplastic in mussell could be used as pollution indicator in the marine environmental by plastic waste.

  4. Heart Rate Sensor for Freshwater Mussels

    NASA Astrophysics Data System (ADS)

    Just, C. L.; Vial, D. P.; Kruger, A.; Niemeier, J. J.; Lee, H. W.; Schroer, H. W.

    2014-12-01

    Researchers have long been interested the cardiac activity of mollusks. First, it is important as a basic measure of the animal's metabolism. Further, activities such as feeding and burrowing affect heart rate, as do environmental factors such as water salinity, water temperature, exposure, and predation. We have developed a small, noninvasive sensor for measuring freshwater mussel heart rate. Its working principle is as follows. An infrared (IR) light-emitting diode is placed in contact with the mussel shell. Some of the IR penetrates through the shell, reflects off internal organs, and traverses back. A photodetector detects this IR, and electronics condition the signal. The heartbeat of the animal modulates the IR, allowing one to measure the heart rate. The technique is widely-used in finger heart-rate monitors in humans. The sensors do not have to be positioned above the heart and several locations on the mussel shell work well. The sensor is small (8 mm × 10 mm) and consumes less than 1 mA, and has a simple one-wire interface that allows for easy integration into data acquisition hardware. We present heart rate measurements for the common pocketbook (lampsilis cardium) freshwater mussel.

  5. Misidentification of sex for Lampsilis teres, Yellow Sandshell, and its implications for mussel conservation and wildlife management.

    PubMed

    Hess, Megan C; Inoue, Kentaro; Tsakiris, Eric T; Hart, Michael; Morton, Jennifer; Dudding, Jack; Robertson, Clinton R; Randklev, Charles R

    2018-01-01

    Correct identification of sex is an important component of wildlife management because changes in sex ratios can affect population viability. Identification of sex often relies on external morphology, which can be biased by intermediate or nondistinctive morphotypes and observer experience. For unionid mussels, research has demonstrated that species misidentification is common but less attention has been given to the reliability of sex identification. To evaluate whether this is an issue, we surveyed 117 researchers on their ability to correctly identify sex of Lampsilis teres (Yellow Sandshell), a wide ranging, sexually dimorphic species. Personal background information of each observer was analyzed to identify factors that may contribute to misidentification of sex. We found that median misidentification rates were ~20% across males and females and that observers falsely identified the number of female specimens more often (~23%) than males (~10%). Misidentification rates were partially explained by geographic region of prior mussel experience and where observers learned how to identify mussels, but there remained substantial variation among observers after controlling for these factors. We also used three morphometric methods (traditional, geometric, and Fourier) to investigate whether sex could be more correctly identified statistically and found that misidentification rates for the geometric and Fourier methods (which characterize shape) were less than 5% (on average 7% and 2% for females and males, respectively). Our results show that misidentification of sex is likely common for mussels if based solely on external morphology, which raises general questions, regardless of taxonomic group, about its reliability for conservation efforts.

  6. Non-lethal assessment of freshwater mussel physiological response to changes in environmental factors

    USGS Publications Warehouse

    Fritts, Andrea K.; Peterson, James T.; Wisniewski, Jason M.; Bringolf, Robert B.

    2015-01-01

    The development of effective nonlethal biomonitoring techniques is imperative for the preservation of imperiled freshwater mussel populations. Changes in hemolymph chemistry profiles and tissue glycogen are potential biomarkers for nonlethally monitoring stress in mussels. We sampled three species in the Flint River Basin over 2 years to evaluate how these hemolymph and tissue biomarkers responded to environmental changes. We used hierarchical linear models to evaluate the relationships between variation in the biomarkers and environmental factors and found that the responses of the hemolymph and tissue parameters were strongly related to stream discharge. Shifts in alanine aminotransferase and glycogen showed the largest relations with discharge at the time of sampling, while magnesium levels were most explained by the discharge for 5 days prior to sampling. Aspartate aminotransferase, bicarbonate, and calcium showed the strongest relations with mean discharge for 15 days prior to sampling. The modeling results indicated that biomarker responses varied substantially among individuals of different size, sex, and species and illustrated the value of hierarchical modeling techniques to account for the inherent complexity of aquatic ecosystems.

  7. Dreissenid mussels are not a "dead end" in Great Lakes food webs

    USGS Publications Warehouse

    Madenijan, Charles P.; Pothoven, Steven A.; Schneeberger, Philip J.; Ebener, Mark P.; Mohr, Lloyd C.; Nalepa, Thomas F.; Bence, James R.

    2010-01-01

    Dreissenid mussels have been regarded as a “dead end” in Great Lakes food webs because the degree of predation on dreissenid mussels, on a lakewide basis, is believed to be low. Waterfowl predation on dreissenid mussels in the Great Lakes has primarily been confined to bays, and therefore its effects on the dreissenid mussel population have been localized rather than operating on a lakewide level. Based on results from a previous study, annual consumption of dreissenid mussels by the round goby (Neogobius melanostomus) population in central Lake Erie averaged only 6 kilotonnes (kt; 1 kt = one thousand metric tons) during 1995–2002. In contrast, our coupling of lake whitefish (Coregonus clupeaformis) population models with a lake whitefish bioenergetics model revealed that lake whitefish populations in Lakes Michigan and Huron consumed 109 and 820 kt, respectively, of dreissenid mussels each year. Our results indicated that lake whitefish can be an important predator on dreissenid mussels in the Great Lakes, and that dreissenid mussels do not represent a “dead end” in Great Lakes food webs. The Lake Michigan dreissenid mussel population has been estimated to be growing more than three times faster than the Lake Huron dreissenid mussel population during the 2000s. One plausible explanation for the higher population growth rate in Lake Michigan would be the substantially higher predation rate by lake whitefish on dreissenid mussels in Lake Huron.

  8. Distribution of native mussel (unionidae) assemblages in coastal areas of Lake Erie, Lake St. Clair, and connecting channels, twenty-five years after a dreissenid invasion

    USGS Publications Warehouse

    Zanatta, David T.; Bossenbroek, Jonathan M.; Burlakova, Lyubov E.; Crail, Todd D.; Szalay, Ferenc de; Griffith, Traci A.; Kapusinski, Douglas; Karatayev, Alexander Y.; Krebs, Robert A.; Meyer, Elizabeth S.; Paterson, Wendy L.; Prescott, Trevor J.; Rowe, Matthew T.; Schloesser, Donald W.; Walsh, Mary C.

    2015-01-01

    Over the past 25 years, unionid mussels in the Laurentian Great Lakes of North America have been adversely impacted by invasive dreissenid mussels, which directly (e.g., by attachment to unionid shells) and indirectly (e.g., by competing for food) cause mortality. Despite the invasion, unionids have survived in several areas in the presence of dreissenid mussels. We investigated current spatial patterns in these native mussel refuges based on surveys for unionid mussels across 48 sampling locations (141 sites) in 2011 and 2012, and documented species abundance and diversity in coastal areas of lakes St. Clair and Erie. The highest-quality assemblages of native mussels (densities, richness, and diversity) appear to be concentrated in the St. Clair delta, where abundance continues to decline, as well as in in Thompson Bay of Presque Isle in Lake Erie and in just a few coastal wetlands and drowned river-mouths in the western basin of Lake Erie. The discovery of several new refuge areas suggests that unionids have a broader distribution within the region than previously thought.

  9. Acoustic fine structure may encode biologically relevant information for zebra finches.

    PubMed

    Prior, Nora H; Smith, Edward; Lawson, Shelby; Ball, Gregory F; Dooling, Robert J

    2018-04-18

    The ability to discriminate changes in the fine structure of complex sounds is well developed in birds. However, the precise limit of this discrimination ability and how it is used in the context of natural communication remains unclear. Here we describe natural variability in acoustic fine structure of male and female zebra finch calls. Results from psychoacoustic experiments demonstrate that zebra finches are able to discriminate extremely small differences in fine structure, which are on the order of the variation in acoustic fine structure that is present in their vocal signals. Results from signal analysis methods also suggest that acoustic fine structure may carry information that distinguishes between biologically relevant categories including sex, call type and individual identity. Combined, our results are consistent with the hypothesis that zebra finches can encode biologically relevant information within the fine structure of their calls. This study provides a foundation for our understanding of how acoustic fine structure may be involved in animal communication.

  10. Transcriptional response to West Nile virus infection in the zebra finch (Taeniopygia guttata)

    USGS Publications Warehouse

    Newhouse, Daniel J.; Hofmeister, Erik K.; Balakrishnan, Christopher N.

    2017-01-01

    West Nile virus (WNV) is a widespread arbovirus that imposes a significant cost to both human and wildlife health. WNV exists in a bird-mosquito transmission cycle in which passerine birds act as the primary reservoir host. As a public health concern, the mammalian immune response to WNV has been studied in detail. Little, however, is known about the avian immune response to WNV. Avian taxa show variable susceptibility to WNV and what drives this variation is unknown. Thus, to study the immune response to WNV in birds, we experimentally infected captive zebra finches (Taeniopygia guttata). Zebra finches provide a useful model, as like many natural avian hosts they are moderately susceptible to WNV and thus provide sufficient viremia to infect mosquitoes. We performed RNAseq in spleen tissue during peak viremia to provide an overview of the transcriptional response. In general, we find strong parallels with the mammalian immune response to WNV, including upregulation of five genes in the Rig-I-like receptor signalling pathway, and offer insights into avian-specific responses. Together with complementary immunological assays, we provide a model of the avian immune response to WNV and set the stage for future comparative studies among variably susceptible populations and species.

  11. Magnetic resonance imaging of live freshwater mussels (Unionidae)

    USGS Publications Warehouse

    Michael, Holliman F.; Davis, Denise; Bogan, Arthur E.; Kwak, Thomas J.; Cope, W. Gregory; Levine, Jay F.

    2008-01-01

    We examined the soft tissues of live freshwater mussels, Eastern elliptio Elliptio complanata, via magnetic resonance imaging (MRI), acquiring data with a widely available human whole-body MRI system. Anatomical features depicted in the profile images included the foot, stomach, intestine, anterior and posterior adductor muscles, and pericardial cavity. Noteworthy observations on soft tissue morphology included a concentration of lipids at the most posterior aspect of the foot, the presence of hemolymph-filled fissures in the posterior adductor muscle, the presence of a relatively large hemolymph-filled sinus adjacent to the posterior adductor muscle (at the ventral-anterior aspect), and segmentation of the intestine (a diagnostic description not reported previously in Unionidae). Relatively little is known about the basic biology and ecological physiology of freshwater mussels. Traditional approaches for studying anatomy and tissue processes, and for measuring sub-lethal physiological stress, are destructive or invasive. Our study, the first to evaluate freshwater mussel soft tissues by MRI, clarifies the body plan of unionid mussels and demonstrates the efficacy of this technology for in vivoevaluation of the structure, function, and integrity of mussel soft tissues.

  12. Propagation of Species at Risk Atlantic Pigtoe on Military Installations

    DTIC Science & Technology

    2010-04-30

    adult mussels are constantly being adapted to meet the needs of each species. 6.0. PROCEDURES 6.1. Potential Host Fish Collection In order to...Watson) o VA freshwater mussel web atlas (Watson) o Freshwater gastropod of VA web atlas, Atlantic slope (Watson) 5) Other Issues of Interest

  13. Assessment of the Particulate Food Supply Available for Mussel ( Mytilus spp.) Farming in a Semi-enclosed, Northern Inlet

    NASA Astrophysics Data System (ADS)

    Penney, R. W.; McKenzie, C. H.; Mills, T. J.

    2001-07-01

    Temporal variability in the quantity, organic content, and phytoplankton composition of the particulate food supply available to a cultured mussel population was assessed for a 3-year period in a small inlet of Notre Dame Bay, Newfoundland, Canada. The study site had a restricted flushing rate estimated at 1-2·75 times wk -1for a complete water exchange. The quantity of both total (TPM) and organic (POM) seston varied temporally from 0·7-23·7 mg l -1and 0·05-1·97 mg l -1respectively during the 3-year sampling period. TPM typically remained relatively high (>10 mg l -1) through the winter and spring period. Most of the seasonal variation in total seston was due to seasonal variability in the PIM component. Both PIM and POM concentrations were seasonally lowest during summer. The organic fraction of the seston (POM/TPM ratio) was seasonally low in winter and increased steadily through spring and summer to reach its maximum in the autumn. The living phytoplankton component of the seston was typically dominated, both numerically and in biomass, by a variety of diatom and autotrophic nanoflagellate species in the 2- 20-μm diameter size range. Discrete diatom population blooms occurred in the autumn of all three years and largely consisted of a single species, Skeletonema costatum. Phytoplankton:detritus ratios were significantly lower during winter. Total phytoplankton biomass levels were seasonally low during winter and summer and were associated with seasonal variation in diatom biomass. We conducted modelling simulations of relationships among seston organic food levels, their temporal variability, tidal flushing rates, cultured mussel biomass and production indices, and estimates of mussel maintenance ration requirements to predict the adequacy of northern inlets to sustain commercial-scale mussel farm development. We conclude from these simulations that small, semi-enclosed, northern inlets likely frequently experience periods when naturally occurring organic

  14. Evaluation of the immune responses of the brown mussel Perna perna as indicators of fecal pollution.

    PubMed

    Silva Dos Santos, Fernanda; Neves, Raquel Almeida Ferrando; Carvalho, Wanderson Fernandes de; Krepsky, Natascha; Crapez, Mirian Araújo Carlos

    2018-06-01

    The mussel Perna perna is an intertidal bivalve that is widely distributed, cultivated and consumed in South Africa, Brazil and Venezuela. Among marine resources, bivalve mollusks are one of the most impacted by anthropogenic pollution, as they can accumulate pathogenic bacteria and water pollutants. Hemocytes are molluscan defense cells, and their abundance and functions can be affected in response to contaminants, such as bacterial load. However, no previous study has investigated the immune response of P. perna hemocytes. The aim of this study was to evaluate several immune parameters in P. perna as indicators of fecal pollution in mussel hemolymph and in seawater. We collected mussels and adjacent seawater from beaches with different levels of fecal contamination in Rio de Janeiro state (Brazil): Vermelha Beach (VB); Icaraí Beach (IB); Urca Beach (UB); and Jurujuba Beach (JB). Hemocyte parameters (density, morphology, phagocytic activity and production of Reactive Oxygen Species - ROS) were evaluated using flow cytometry. We quantified Fecal Indicator Bacteria (FIB) in seawater by the multiple tubes technique for each beach and for hemolymph by the spread-plate technique. In agreement with historical evaluation of fecal contamination levels, UB presented the highest FIB abundance in seawater (thermotolerant coliforms, TEC = 1600 NMP 100 mL -1 ), whereas VB exhibited the lowest (TEC = 17 NMP 100 mL -1 ). UB mussels had six and eight times higher hemocyte density and phagocytic activity, respectively, than mussels from VB. Mussels from VB and IB presented a significantly lower number of total coliforms in hemolymph and a significantly higher relative internal complexity of hemocytes than those from UB and JB (p ≤ 0.01, PERMANOVA). ROS production by hemocytes was significantly lower in mussels from VB compared to those from JB (p = 0.04, ANOVA). Our results indicate a significant relationship between the level of fecal contamination in

  15. Facile preparation of mussel-inspired polyurethane hydrogel and its rapid curing behavior.

    PubMed

    Sun, Peiyu; Wang, Jing; Yao, Xiong; Peng, Ying; Tu, Xiaoxiong; Du, Pengfei; Zheng, Zhen; Wang, Xinling

    2014-08-13

    A facile method was found to incorporate a mussel-inspired adhesive moiety into synthetic polymers, and mussel mimetic polyurethanes were developed as adhesive hydrogels. In these polymers, a urethane backbone was substituted for the polyamide chain of mussel adhesive proteins, and dopamine was appended to mimic the adhesive moiety of adhesive proteins. A series of mussel mimetic polyurethanes were created through a step-growth polymerization based on hexamethylene diisocyanate as a hard segment, PEG having different molecular weights as a soft segment, and lysine-dopamine as a chain extender. Upon a treatment with Fe(3+), the aqueous mussel mimetic polyurethane solutions can be triggered by pH adjustment to form adhesive hydrogels instantaneously; these materials can be used as injectable adhesive hydrogels. Upon a treatment with NaIO4, the mussel mimetic polyurethane solutions can be cured in a controllable period of time. The successful combination of the unique mussel-inspired adhesive moiety with a tunable polyurethane structure can result in a new kind of mussel-inspired adhesive polymers.

  16. California mussels (Mytilus californianus) as sentinels for marine contamination with Sarcocystis neurona.

    PubMed

    Michaels, Lauren; Rejmanek, Daniel; Aguilar, Beatriz; Conrad, Patricia; Shapiro, Karen

    2016-05-01

    Sarcocystis neurona is a terrestrial parasite that can cause fatal encephalitis in the endangered Southern sea otter (Enhydra lutris nereis). To date, neither risk factors associated with marine contamination nor the route of S. neurona infection to marine mammals has been described. This study evaluated coastal S. neurona contamination using California mussels (Mytilus californianus) as sentinels for pathogen pollution. A field investigation was designed to test the hypotheses that (1) mussels can serve as sentinels for S. neurona contamination, and (2) S. neurona contamination in mussels would be highest during the rainy season and in mussels collected near freshwater. Initial validation of molecular assays through sporocyst spiking experiments revealed the ITS-1500 assay to be most sensitive for detection of S. neurona, consistently yielding parasite amplification at concentrations ⩾5 sporocysts/1 mL mussel haemolymph. Assays were then applied on 959 wild-caught mussels, with detection of S. neurona confirmed using sequence analysis in three mussels. Validated molecular assays for S. neurona detection in mussels provide a novel toolset for investigating marine contamination with this parasite, while confirmation of S. neurona in wild mussels suggests that uptake by invertebrates may serve as a route of transmission to susceptible marine animals.

  17. Zebra: a web server for bioinformatic analysis of diverse protein families.

    PubMed

    Suplatov, Dmitry; Kirilin, Evgeny; Takhaveev, Vakil; Svedas, Vytas

    2014-01-01

    During evolution of proteins from a common ancestor, one functional property can be preserved while others can vary leading to functional diversity. A systematic study of the corresponding adaptive mutations provides a key to one of the most challenging problems of modern structural biology - understanding the impact of amino acid substitutions on protein function. The subfamily-specific positions (SSPs) are conserved within functional subfamilies but are different between them and, therefore, seem to be responsible for functional diversity in protein superfamilies. Consequently, a corresponding method to perform the bioinformatic analysis of sequence and structural data has to be implemented in the common laboratory practice to study the structure-function relationship in proteins and develop novel protein engineering strategies. This paper describes Zebra web server - a powerful remote platform that implements a novel bioinformatic analysis algorithm to study diverse protein families. It is the first application that provides specificity determinants at different levels of functional classification, therefore addressing complex functional diversity of large superfamilies. Statistical analysis is implemented to automatically select a set of highly significant SSPs to be used as hotspots for directed evolution or rational design experiments and analyzed studying the structure-function relationship. Zebra results are provided in two ways - (1) as a single all-in-one parsable text file and (2) as PyMol sessions with structural representation of SSPs. Zebra web server is available at http://biokinet.belozersky.msu.ru/zebra .

  18. Seasonal variations of arsenic in mussels Mytilus galloprovincialis

    NASA Astrophysics Data System (ADS)

    Klarić, Sanja; Pavičić-Hamer, Dijana; Lucu, Čedomil

    2004-10-01

    Total arsenic concentration in the edible part of mussels Mytilus galloprovincialis was evaluated seasonally in the coastal area of Rijeka Bay (North Adriatic Sea, Croatia). Sampling stations were located close to the City of Bakar with no industrial facilities (site 1), in the vicinity of the oil refinery and oil thermoelectric power plant (Urinj, site 2), and 4 miles away from the Plomin coal thermoelectric power plant (Brseč village, site 3). Additionally, the concentration of arsenic in the tail muscle of the lobster Nephrops norvegicus, collected in Rijeka Bay, was studied. During winter at sites 2 and 3, the total arsenic in the edible part of the mussels was 16.4 mg As/kg FW (FW=fresh weight) and 4.38 mg As/kg FW, respectively, and increased during springtime at site 2 (6.5 mg As/kg FW) compared to the rest of the year, when individual total arsenic concentration at all sites ranged from 1.7 to 3.7 mg As/kg FW. In the winter (sites 2 and 3) and springtime (site 2) there was no correlation between the length of the mussel shell and the arsenic concentration in the edible part of the mussels. In the other seasons, at sites 1, 2 and 3, there was a correlation between arsenic in the edible part of mussels and shell length in most cases (correlation coefficients r varied from 0.64 to 0.85; P <0.05 to P <0.01). Correlation between shell length (in the narrow range of shell lengths from 3.4 to 5.0 cm) and arsenic in the edible part of the mussels shows linearity with a high regression coefficient (r =0.914; P <0.001). The increase of arsenic in the mussels during winter and spring was suggested at least partially as a result of a low nutritional status, i.e. reduced weight of the mussels' edible part during winter. In addition, a linear relationship was found between body length and arsenic concentration in the tail muscle (mean 17.11±4.48 mg As/kg FW) of the Norway lobster.

  19. SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF A ZEBRA PATTERN IN A SOLAR DECIMETRIC RADIO BURST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Bin; Bastian, T. S.; Gary, D. E.

    2011-07-20

    We present the first interferometric observation of a zebra-pattern radio burst with simultaneous high spectral ({approx}1 MHz) and high time (20 ms) resolution. The Frequency-Agile Solar Radiotelescope Subsystem Testbed (FST) and the Owens Valley Solar Array (OVSA) were used in parallel to observe the X1.5 flare on 2006 December 14. By using OVSA to calibrate the FST, the source position of the zebra pattern can be located on the solar disk. With the help of multi-wavelength observations and a nonlinear force-free field extrapolation, the zebra source is explored in relation to the magnetic field configuration. New constraints are placed onmore » the source size and position as a function of frequency and time. We conclude that the zebra burst is consistent with a double-plasma resonance model in which the radio emission occurs in resonance layers where the upper-hybrid frequency is harmonically related to the electron cyclotron frequency in a coronal magnetic loop.« less

  20. Effect of sulfide, osmotic, and thermal stresses on taurine transporter mRNA levels in the gills of the hydrothermal vent-specific mussel Bathymodiolus septemdierum.

    PubMed

    Nakamura-Kusakabe, Ikumi; Nagasaki, Toshihiro; Kinjo, Azusa; Sassa, Mieko; Koito, Tomoko; Okamura, Kei; Yamagami, Shosei; Yamanaka, Toshiro; Tsuchida, Shinji; Inoue, Koji

    2016-01-01

    Hydrothermal vent environmental conditions are characterized by high sulfide concentrations, fluctuating osmolality, and irregular temperature elevations caused by vent effluents. These parameters represent potential stressors for organisms that inhabit the area around hydrothermal vents. Here, we aimed to obtain a better understanding of the adaptation mechanisms of marine species to hydrothermal vent environments. Specifically, we examined the effect of sulfide, osmolality, and thermal stress on the expression of taurine transporter (TAUT) mRNA in the gill of the deep-sea mussel Bathymodiolus septemdierum, which is a dominant species around hydrothermal vent sites. We analyzed TAUT mRNA levels by quantitative real-time polymerase chain reaction (PCR) in the gill of mussels exposed to sulfide (0.1 or 1mg/L Na2S·9H2O), hyper- (115% seawater) and hypo- (97.5%, 95.5%, and 85% seawater) osmotic conditions, and thermal stresses (12°C and 20°C) for 24 and 48h. The results showed that mussels exposed to relatively low levels of sulfide (0.1mg/L) and moderate heat stress (12°C) exhibited higher TAUT mRNA levels than the control. Although hyper- and hypo-osmotic stress did not significantly change TAUT mRNA levels, slight induction was observed in mussels exposed to low osmolality. Our results indicate that TAUT is involved in the coping mechanism of mussels to various hydrothermal vent stresses. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Conservation genetics of North American freshwater mussels Amblema and Megalonaias

    USGS Publications Warehouse

    Mulvey, M.; Lydeard, C.; Pyer, D.L.; Hicks, K.M.; Brim-Box, J.; Williams, J.D.; Butler, R.S.

    1997-01-01

    Freshwater bivalves are among the most endangered groups of organisms in North America. Efforts to protect the declining mussel fauna are confounded by ambiguities associated with recognition of distinct evolutionary entities or species. This, in part, is due to the paucity of reliable morphological characters for differentiating taxa. We have employed allozymes and DNA sequence data to search for diagnosably distinct evolutionary entities within two problematic genera of unionid mussels, Amblema and Megalonaias. Within the genus Amblema three species are recognized based on our DNA sequence data for the mitochondrial 16S rRNA and allozyme data (Amblema neislerii, A. plicata, and A. elliotti). Only one taxonomically distinct entity is recognized within the genus Megalonaias—M. nervosa. Megalonaias boykiniana of the Apalachicolan Region is not diagnosable and does not warrant specific taxonomic status. Interestingly, Megalonaias from west of the Mississippi River, including the Mississippi, exhibited an allozyme and mtDNA haplotype frequency shift suggestive of an east-west dichotomy. The results of this study eliminate one subspecies of Amblema and increase the range of A. plicata. This should not affect the conservation status of “currently stable” assigned to A. plicata by Williams et al. (1993). The conservation status of A. elliotti needs to be reexamined because its distribution appears to be limited to the Coosa River System in Alabama and Georgia.

  2. Effect of Infection by Beauveria bassiana and Metarhizium anisopliae on the Feeding of Uvarovistia zebra

    PubMed Central

    Mohammadbeigi, A.; Port, G.

    2015-01-01

    To identify the susceptibility of long-horned grasshoppers to entomopathogenic fungi, the effect of infection with the fungi Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Clavicipitaceae) and Metarhizium anisopliae (Metchnikoff) Sorokin (Hypocreales: Clavicipitaceae) on food consumption by Uvarovistia zebra (Uvarov) (Orthoptera: Tettigoniidae) was investigated. Preliminary results showed that both fungi had a negative effect on food consumption of the insects. For both fungi a significant reduction of food consumption and faeces production by insects were observed between the highest spore concentration (5 × 106 spores/ml) and other treatments. Compared with control insects, the insects treated with 5 × 106 spores/ml of B. bassiana and M. anisopliae showed 60 and 63% reduction in mean food consumption/insect, respectively. The corrected cumulative percent mortality of the insects treated with the highest concentration of B. bassiana and M. anisopliae were 57.7 and 55.5%, respectively. This was the first account of these entomopathogenic fungi being used against a species from this family, therefore based on the results obtained from this research, it could be said that the fungi have pathogenicity effect on U. zebra as a long-horned grasshopper.

  3. A hybrid zone between Bathymodiolus mussel lineages from eastern Pacific hydrothermal vents

    PubMed Central

    2013-01-01

    Background The inhabitants of deep-sea hydrothermal vents occupy ephemeral island-like habitats distributed sporadically along tectonic spreading-centers, back-arc basins, and volcanically active seamounts. The majority of vent taxa undergo a pelagic larval phase, and thus varying degrees of geographical subdivision, ranging from no impedance of dispersal to complete isolation, often exist among taxa that span common geomorphological boundaries. Two lineages of Bathymodiolus mussels segregate on either side of the Easter Microplate, a boundary that separates the East Pacific Rise from spreading centers connected to the Pacific-Antarctic Ridge. Results A recent sample from the northwest flank of the Easter Microplate contained an admixture of northern and southern mitochondrial haplotypes and corresponding alleles at five nuclear gene loci. Genotypic frequencies in this sample did not fit random mating expectation. Significant heterozygote deficiencies at nuclear loci and gametic disequilibria between loci suggested that this transitional region might be a ‘Tension Zone’ maintained by immigration of parental types and possibly hybrid unfitness. An analysis of recombination history in the nuclear genes suggests a prolonged history of parapatric contact between the two mussel lineages. We hereby elevate the southern lineage to species status as Bathymodiolus antarcticus n. sp. and restrict the use of Bathymodiolus thermophilus to the northern lineage. Conclusions Because B. thermophilus s.s. exhibits no evidence for subdivision or isolation-by-distance across its 4000 km range along the EPR axis and Galápagos Rift, partial isolation of B. antarcticus n. sp. requires explanation. The time needed to produce the observed degree of mitochondrial differentiation is consistent with the age of the Easter Microplate (2.5 to 5.3 million years). The complex geomorphology of the Easter Microplate region forces strong cross-axis currents that might disrupt self

  4. Effects of hypoxia caused by mussel farming on benthic foraminifera in semi-closed Gamak Bay, South Korea.

    PubMed

    Lee, Yeon Gyu; Jeong, Da Un; Lee, Jung Sick; Choi, Yang Ho; Lee, Moon Ok

    2016-08-15

    Seawater monitoring and geochemical and benthic foraminiferal analysis of sediments were conducted to identify the effects of hypoxia created by a mussel farm on benthic foraminifera in a semi-closed bay. Extremely polluted reductive conditions with a high content of organic matter (OM) at >12.0% and oxygen minimum zones (OMZs) with dissolved oxygen (DO) <0.4mg∙L(-1) were formed below the mussel farm in the northwest area of Gamak Bay, and gradually diffused toward the south. Highly similar patterns of variation were observed in species diversity, abundance frequency, and benthic foraminiferal assemblage distributed from Elphidium subarcticum-Ammonia beccarii in the northwest area through E. subarcticum-A. beccarii-Trochammina hadai, E. subarcticum-A. beccarii-Elphidiumclavatum, and E. clavatum-Ammonia ketienziensis in the southern area. These phenomena were caused by hydrodynamics in the current water mass. It was thought that E. subarcticum is a bioindicator of organic pollution caused by the mussel farm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Control of predacious flatworms Macrostomum sp. in culturing juvenile freshwater mussels

    USGS Publications Warehouse

    Zimmerman, L.L.; Neves, R.J.; Smith, D.G.

    2003-01-01

    Flatworms of the genus Macrostomum are voracious predators on newly metamorphosed juvenile freshwater mussels (Unionidae), which require a fish host to transform mussel larvae into free-living juveniles. Toxicity tests were performed with formalin (paracide-F, 37% formaldehyde) to determine the appropriate levels of treatment for eradicating these flatworms from host fish tanks without adversely affecting the culture of juvenile mussels. Results indicate that a 1-h shock treatment of 250 mg/L formalin or a 3-d continuous exposure to 20 mg/L of formalin kills adult Macrostomum but not fish. Observations indicate that a single treatment is insufficient to kill Macrostomum eggs, so a second treatment after 3 d is necessary to kill newly hatched flatworms. Newly metamorphosed freshwater mussels exposed to similar shock and continuous treatments of formalin were also killed. Thus, all host fish introduced for the purpose of mussel production should be quarantined and treated prophylactically to avoid the infestation of mussel culture systems with predacious flatworms.

  6. Alternative mechanisms alter the emergent properties of self-organization in mussel beds

    PubMed Central

    Liu, Quan-Xing; Weerman, Ellen J.; Herman, Peter M. J.; Olff, Han; van de Koppel, Johan

    2012-01-01

    Theoretical models predict that spatial self-organization can have important, unexpected implications by affecting the functioning of ecosystems in terms of resilience and productivity. Whether and how these emergent effects depend on specific formulations of the underlying mechanisms are questions that are often ignored. Here, we compare two alternative models of regular spatial pattern formation in mussel beds that have different mechanistic descriptions of the facilitative interactions between mussels. The first mechanism involves a reduced mussel loss rate at high density owing to mutual protection between the mussels, which is the basis of prior studies on the pattern formation in mussels. The second mechanism assumes, based on novel experimental evidence, that mussels feed more efficiently on top of mussel-generated hummocks. Model simulations point out that the second mechanism produces very similar types of spatial patterns in mussel beds. Yet the mechanisms predict a strikingly contrasting effect of these spatial patterns on ecosystem functioning, in terms of productivity and resilience. In the first model, where high mussel densities reduce mussel loss rates, patterns are predicted to strongly increase productivity and decrease the recovery time of the bed following a disturbance. When pattern formation is generated by increased feeding efficiency on hummocks, only minor emergent effects of pattern formation on ecosystem functioning are predicted. Our results provide a warning against predictions of the implications and emergent properties of spatial self-organization, when the mechanisms that underlie self-organization are incompletely understood and not based on the experimental study. PMID:22418256

  7. The use of the geomagnetic field for short distance orientation in zebra finches.

    PubMed

    Voss, Joe; Keary, Nina; Bischof, Hans-Joachim

    2007-07-02

    Although the ability to use the Earth's magnetic field for long distance orientation and navigation has been demonstrated in many animals, the search for the appropriate receptor has not yet finished. It is also not entirely clear whether the use of magnetic field information is restricted to specialists like migrating birds, or whether it is a sense that is also suited to short distance orientation by avian species. We successfully trained nonmigratory zebra finches in a four-choice food-search task to use the natural magnetic field as well as an experimentally shifted field for short distance orientation, supporting the view that magnetic field perception may be a sense existing in all bird species. By using a conditioning technique in a standard laboratory animal, our experiments will provide an ideal basis for the search for the physiological mechanisms of magnetic field perception.

  8. The Shell of the Invasive Bivalve Species Dreissena polymorpha: Biochemical, Elemental and Textural Investigations

    PubMed Central

    Broussard, Cédric; Catherinet, Bastien; Plasseraud, Laurent; Alcaraz, Gérard; Bundeleva, Irina; Marin, Frédéric

    2016-01-01

    The zebra mussel Dreissena polymorpha is a well-established invasive model organism. Although extensively used in environmental sciences, virtually nothing is known of the molecular process of its shell calcification. By describing the microstructure, geochemistry and biochemistry/proteomics of the shell, the present study aims at promoting this species as a model organism in biomineralization studies, in order to establish a bridge with ecotoxicology, while sketching evolutionary conclusions. The shell of D. polymorpha exhibits the classical crossed-lamellar/complex crossed lamellar combination found in several heterodont bivalves, in addition to an external thin layer, the characteristics of which differ from what was described in earlier publication. We show that the shell selectively concentrates some heavy metals, in particular uranium, which predisposes D. polymorpha to local bioremediation of this pollutant. We establish the biochemical signature of the shell matrix, demonstrating that it interacts with the in vitro precipitation of calcium carbonate and inhibits calcium carbonate crystal formation, but these two properties are not strongly expressed. This matrix, although overall weakly glycosylated, contains a set of putatively calcium-binding proteins and a set of acidic sulphated proteins. 2D-gels reveal more than fifty proteins, twenty of which we identify by MS-MS analysis. We tentatively link the shell protein profile of D. polymorpha and the peculiar recent evolution of this invasive species of Ponto-Caspian origin, which has spread all across Europe in the last three centuries. PMID:27213644

  9. Levels of PCBs in Oysters Coming from Galicia Coast: Comparison to Mussels from the Same Region.

    PubMed

    Carro, N; García, I; Ignacio, M; Mouteira, A

    2016-05-01

    PCBs were analyzed in two species of oyster (Crassostrea gigas and Ostrea edulis) cultured in intertidal beds and rafts coming from the Galician Rías during the period 2011-2014. PCBs were also analyzed in mussel (Mytilus galloprovincialis) collected in the same Rías during 2011. The main objective of this work is to investigate the distribution of PCBs in Galician oysters and to study their suitability as bioindicator in comparison to mussels. The levels of ΣPCBs (ten congeners) ranged from 5.58 to 179.49 ng g(-1) d.w. The effect of biological parameters (shell length, lipid content and condition index) on bioaccumulation of PCBs was also evaluated. ANOVA showed a statistically significant difference between species for higher chlorinated biphenyls (CBs 153 and 138). The spatial patterns were investigated. Principal Component Analysis (PCA) showed differences between geographical areas (Rías Altas, Centrales and Baixas) in the distribution of PCBs.

  10. The role of host abundance in regulating populations of freshwater mussels with parasitic larvae

    Treesearch

    Wendell R. Haag; James A. Stoeckel

    2015-01-01

    Host–parasite theory makes predictions about the influence of host abundance, competition for hosts, and parasite transmission on parasite population size, but many of these predictions are not well tested empirically. We experimentally examined these factors in ponds using two species of freshwater mussels with parasitic larvae that infect host fishes via different...

  11. Are Horses Like Zebras, or Vice Versa? Children's Sensitivity to the Asymmetries of Directional Comparisons

    ERIC Educational Resources Information Center

    Chestnut, Eleanor K.; Markman, Ellen M.

    2016-01-01

    Adults exhibit strong preferences when framing symmetrical relations. Adults prefer, for example, "A zebra is like a horse" to "A horse is like a zebra," and "The bicycle is near the building" to "The building is near the bicycle." This is because directional syntax requires more typical or prominent items…

  12. Three IgH isotypes, IgM, IgA and IgY are expressed in Gentoo penguin and zebra finch.

    PubMed

    Han, Binyue; Li, Yan; Han, Haitang; Zhao, Yaofeng; Pan, Qingjie; Ren, Liming

    2017-01-01

    Previous studies on a limited number of birds suggested that the IgD-encoding gene was absent in birds. However, one of our recent studies showed that the gene was definitely expressed in the ostrich and emu. Interestingly, we also identified subclass diversification of IgM and IgY in these two birds. To better understand immunoglobulin genes in birds, in this study, we analyzed the immunoglobulin heavy chain genes in the zebra finch (Taeniopygia guttata) and Gentoo penguin (Pygoscelis papua), belonging respectively to the order Passeriformes, the most successful bird order in terms of species diversity and numbers, and Sphenisciformes, a relatively primitive avian order. Similar to the results obtained in chickens and ducks, only three genes encoding immunoglobulin heavy chain isotypes, IgM, IgA and IgY, were identified in both species. Besides, we detected a transcript encoding a short membrane-bound IgA lacking the last two CH exons in the Gentoo penguin. We did not find any evidence supporting the presence of IgD gene or subclass diversification of IgM/IgY in penguin or zebra finch. The obtained data in our study provide more insights into the immunoglobulin heavy chain genes in birds and may help to better understand the evolution of immunoglobulin genes in tetrapods.

  13. A comparative molecular and isotopic investigation of seep carbonates from mussel and tubeworm environments of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Feng, D.; Guan, H.; Wu, N.; Chen, D.

    2017-12-01

    At deep-sea hydrocarbon seeps, macrofauna such as mussels and tubeworms and authigenic carbonate outcrops are common. It has been suggested that the distinct metabolic process of the macrofauna could modify the sedimentary geochemistry of their ambient environments. To better understand if the differences in the geochemical environments of mussels and tubeworms can be archived in the associated carbonates, lipid biomarker inventory and compound-specific isotopes of the carbonates from mussel and tubeworm environments from two seep sites were analyzed. The large δ13C offset (-32‰) of SRB-derived fatty acids (FAs) between tubeworm and mussel carbonates were partially attributed to the distinct effects on isotope fraction by specific metabolic process of the macrofauna. In such processes, the isotope fraction of chemosynthetic symbionts and physical action of mussel activities could result in local 13C enrichment, whereas the sufficient sulfate released through the tubeworm roots resulting in a persistent production of methane-derived bicarbonate and the enrichment of lighter carbon at subsurface sediments. Compared to mussel carbonates, the significantly higher concentrations of DAGEs and FAs as well as the smaller δ13C offset (Δδ13CDAGEs-FAs) than that of the mussel carbonates, suggest that the DAGEs and at least part of FAs found in tubeworm carbonates biosynthesized by SRB species other than DSS cluster. This DAGE-producing SRB is most likely involved in the hydrogen-driven SR instead of methane-fueled SR because a variety of SRB other than members of DSS cluster on hydrogen was isolated in presence of ANME-1 assemblage. The substantial amounts of DAGEs with strong 13C-depletions in tubeworm ecosystem may provide an important clue for their sources and role in the AOM process.

  14. Comprehensive Study of the Influence of Altered Gravity on the Oxidative Burst of Mussel ( Mytilus edulis) Hemocytes

    NASA Astrophysics Data System (ADS)

    Unruh, E.; Brungs, S.; Langer, S.; Bornemann, G.; Frett, T.; Hansen, P.-D.

    2016-06-01

    Microgravity induces alterations in the functioning of immune cell; however, the underlying mechanisms have not yet been identified. In this study, hemocytes (blood cells) of the blue mussel Mytilus edulis were investigated under altered gravity conditions. The study was conducted on the ground in preparation for the BIOLAB TripleLux-B experiment, which will be performed on the International Space Station (ISS). On-line kinetic measurements of reactive oxygen species (ROS) production during the oxidative burst and thus cellular activity of isolated hemocytes were performed in a photomultiplier (PMT)-clinostat (simulated microgravity) and in the 1 g operation mode of the clinostat in hypergravity on the Short-Arm Human Centrifuge (SAHC) as well as during parabolic flights. In addition to studies with isolated hemocytes, the effect of altered gravity conditions on whole animals was investigated. For this purpose, whole mussels were exposed to hypergravity (1.8 g) on a multi-sample incubator centrifuge (MuSIC) or to simulated microgravity in a submersed clinostat. After exposure for 48 h, hemocytes were taken from the mussels and ROS production was measured under 1 g conditions. The results from the parabolic flights and clinostat studies indicate that mussel hemocytes respond to altered gravity in a fast and reversible manner. Hemocytes (after cryo-conservation) exposed to simulated microgravity ( μ g), as well as fresh hemocytes from clinorotated animals, showed a decrease in ROS production. Measurements during a permanent exposure of hemocytes to hypergravity (SAHC) show a decrease in ROS production. Hemocytes of mussels measured after the centrifugation of whole mussels did not show an influence to the ROS response at all. Hypergravity during parabolic flights led to a decrease but also to an increase in ROS production in isolated hemocytes, whereas the centrifugation of whole mussels did not influence the ROS response at all. This study is a good example how

  15. Lake whitefish diet, condition, and energy density in Lake Champlain and the lower four Great Lakes following dreissenid invasions

    USGS Publications Warehouse

    Herbst, Seth J.; Marsden, J. Ellen; Lantry, Brian F.

    2013-01-01

    Lake Whitefish Coregonus clupeaformis support some of the most valuable commercial freshwater fisheries in North America. Recent growth and condition decreases in Lake Whitefish populations in the Great Lakes have been attributed to the invasion of the dreissenid mussels, zebra mussels Dreissena polymorpha and quagga mussels D. bugensis, and the subsequent collapse of the amphipod, Diporeia, a once-abundant high energy prey source. Since 1993, Lake Champlain has also experienced the invasion and proliferation of zebra mussels, but in contrast to the Great Lakes, Diporeia were not historically abundant. We compared the diet, condition, and energy density of Lake Whitefish from Lake Champlain after the dreissenid mussel invasion to values for those of Lake Whitefish from Lakes Michigan, Huron, Erie, and Ontario. Lake Whitefish were collected using gill nets and bottom trawls, and their diets were quantified seasonally. Condition was estimated using Fulton's condition factor (K) and by determining energy density. In contrast to Lake Whitefish from some of the Great Lakes, those from Lake Champlain Lake Whitefish did not show a dietary shift towards dreissenid mussels, but instead fed primarily on fish eggs in spring, Mysis diluviana in summer, and gastropods and sphaeriids in fall and winter. Along with these dietary differences, the condition and energy density of Lake Whitefish from Lake Champlain were high compared with those of Lake Whitefish from Lakes Michigan, Huron, and Ontario after the dreissenid invasion, and were similar to Lake Whitefish from Lake Erie; fish from Lakes Michigan, Huron, and Ontario consumed dreissenids, whereas fish from Lake Erie did not. Our comparisons of Lake Whitefish populations in Lake Champlain to those in the Great Lakes indicate that diet and condition of Lake Champlain Lake Whitefish were not negatively affected by the dreissenid mussel invasion.

  16. Evaluation of single and two-stage adaptive sampling designs for estimation of density and abundance of freshwater mussels in a large river

    USGS Publications Warehouse

    Smith, D.R.; Rogala, J.T.; Gray, B.R.; Zigler, S.J.; Newton, T.J.

    2011-01-01

    Reliable estimates of abundance are needed to assess consequences of proposed habitat restoration and enhancement projects on freshwater mussels in the Upper Mississippi River (UMR). Although there is general guidance on sampling techniques for population assessment of freshwater mussels, the actual performance of sampling designs can depend critically on the population density and spatial distribution at the project site. To evaluate various sampling designs, we simulated sampling of populations, which varied in density and degree of spatial clustering. Because of logistics and costs of large river sampling and spatial clustering of freshwater mussels, we focused on adaptive and non-adaptive versions of single and two-stage sampling. The candidate designs performed similarly in terms of precision (CV) and probability of species detection for fixed sample size. Both CV and species detection were determined largely by density, spatial distribution and sample size. However, designs did differ in the rate that occupied quadrats were encountered. Occupied units had a higher probability of selection using adaptive designs than conventional designs. We used two measures of cost: sample size (i.e. number of quadrats) and distance travelled between the quadrats. Adaptive and two-stage designs tended to reduce distance between sampling units, and thus performed better when distance travelled was considered. Based on the comparisons, we provide general recommendations on the sampling designs for the freshwater mussels in the UMR, and presumably other large rivers.

  17. Occurrence of polycyclic aromatic hydrocarbons (PAHs) in mussel (Mytilus galloprovincialis) and eel (Anguilla anguilla) from Bizerte lagoon, Tunisia, and associated human health risk assessment

    NASA Astrophysics Data System (ADS)

    Barhoumi, Badreddine; El Megdiche, Yassine; Clérandeau, Christelle; Ameur, Walid Ben; Mekni, Sabrine; Bouabdallah, Sondes; Derouiche, Abdelkader; Touil, Soufiane; Cachot, Jérôme; Driss, Mohamed Ridha

    2016-08-01

    The aim of this study is to measure PAHs concentrations in mussels (Mytilus galloprovincialis) and fish (Anguilla anguilla) from the Bizerte lagoon (north Tunisia), and evaluate their distribution and sources, in order to provide a baseline of the state of PAH contamination in this lagoon and assess their human health risk. For this purpose, several native mussel and fish specimens were collected and analyzed using a high-performance liquid chromatography method with fluorescence detection for 15 EPA priority PAHs. PAHs levels in mussels and fish ranged from 107.4 to 430.7 ng g-1 dw and 114.5-133.7 ng g-1 dw, respectively. Naphthalene was the major component measured in mussels (31.5-272.6 ng g-1 dw) and fish (57.9-68.6 ng g-1 dw) and all specimens were classified as moderately contaminated. The PAHs composition pattern was similar for both species and was dominated by the presence of PAHs with 2- to 3-rings. The study of PAH ratios indicated a mixed petrogenic/pyrolytic origin. The health risks by consumption of these species was assessed and showed to present no threat to public health concerning PAH intakes. The results of this study would provide a useful aid for sustainable marine management in the region.

  18. ZEBRA battery meets USABC goals

    NASA Astrophysics Data System (ADS)

    Dustmann, Cord-H.

    In 1990, the California Air Resources Board has established a mandate to introduce electric vehicles in order to improve air quality in Los Angeles and other capitals. The United States Advanced Battery Consortium has been formed by the big car companies, Electric Power Research Institute (EPRI) and the Department of Energy in order to establish the requirements on EV-batteries and to support battery development. The ZEBRA battery system is a candidate to power future electric vehicles. Not only because its energy density is three-fold that of lead acid batteries (50% more than NiMH) but also because of all the other EV requirements such as power density, no maintenance, summer and winter operation, safety, failure tolerance and low cost potential are fulfilled. The electrode material is plain salt and nickel in combination with a ceramic electrolyte. The cell voltage is 2.58 V and the capacity of a standard cell is 32 Ah. Some hundred cells are connected in series and parallel to form a battery with about 300 V OCV. The battery system including battery controller, main circuit-breaker and cooling system is engineered for vehicle integration and ready to be mounted in a vehicle [J. Gaub, A. van Zyl, Mercedes-Benz Electric Vehicles with ZEBRA Batteries, EVS-14, Orlando, FL, Dec. 1997]. The background of these features are described.

  19. Arsenic Speciation in Blue Mussels (Mytilus edulis) Along a Highly Contaminated Arsenic Gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whaley-Martin, K.J.; Koch, I.; Moriarty, M.

    2012-11-01

    Arsenic is naturally present in marine ecosystems, and these can become contaminated from mining activities, which may be of toxicological concern to organisms that bioaccumulate the metalloid into their tissues. The toxic properties of arsenic are dependent on the chemical form in which it is found (e.g., toxic inorganic arsenicals vs nontoxic arsenobetaine), and two analytical techniques, high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and X-ray absorption spectroscopy (XAS), were used in the present study to examine the arsenic species distribution in blue mussels (Mytilus edulis) obtained from an area where there is a strongmore » arsenic concentration gradient as a consequence of mining impacted sediments. A strong positive correlation was observed between the concentration of inorganic arsenic species (arsenic compounds with no As-C bonds) and total arsenic concentrations present in M. edulis tissues (R{sup 2} = 0.983), which could result in significant toxicological consequences to the mussels and higher trophic consumers. However, concentrations of organoarsenicals, dominated by arsenobetaine, remained relatively constant regardless of the increasing As concentration in M. edulis tissue (R{sup 2} = 0.307). XANES bulk analysis and XAS two-dimensional mapping of wet M. edulis tissue revealed the presence of predominantly arsenic-sulfur compounds. The XAS mapping revealed that the As(III)-S and/or As(III) compounds were concentrated in the digestive gland. However, arsenobetaine was found in small and similar concentrations in the digestive gland as well as the surrounding tissue suggesting arsenobetaine may being used in all of the mussel's cells in a physiological function such as an intracellular osmolyte.« less

  20. Proteomic and metabolomic analysis on the toxicological effects of As (III) and As (V) in juvenile mussel Mytilus galloprovincialis.

    PubMed

    Yu, Deliang; Ji, Chenglong; Zhao, Jianmin; Wu, Huifeng

    2016-05-01

    Inorganic arsenic (As) is a known pollutant including two chemical forms (arsenite (As III) and arsenate (As V)), in marine and coastal environment. Marine mussel Mytilus galloprovincialis is an important environmental monitoring species around the world. In this study, we focused on valence-specific responses of As in juvenile mussel M. galloprovincialis using a combined proteomic and metabolomic approach. Metabolic responses indicated that As (III) mainly caused disturbance in osmotic regulation in juvenile mussels. As (V) caused disturbances in both osmotic regulation and energy metabolism marked by different metabolic responses, including betaine, taurine, glucose and glycogen. Proteomic responses exhibited that As (III) had a significant negative effect on cytoskeleton and cell structure (actin and collagen alpha-6(VI) chain). As (V) affected some key enzymes involved in energy metabolism (cytosolic malate dehydrogenase, cMDH) and cell development (ornithine aminotransferase and astacin). Overall, all these results confirmed the valence-specific responses in juvenile mussels to As exposures. These findings demonstrate that a combined metabolomic and proteomic approach could provide an important insight into the toxicological effects of environmental pollutants in organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Zebra chip development during storage: cause for concern?

    USDA-ARS?s Scientific Manuscript database

    Zebra chip disease is associated with infections by ‘Candidatus Liberibacter solanacearum’ (Lso), a bacterium spread by the potato psyllid Bactericera cockerelli. A major concern of the potato industry is the likelihood that Lso could cause asymptomatic infections prior to placement of tubers in col...

  2. What makes a healthy environment for native freshwater mussels?

    USGS Publications Warehouse

    ,

    2000-01-01

    Freshwater mussels are sensitive to contamination of sediment that they inhabit and to the water that they filter, making the presence of live, adult mussels an excellent indicator of ecosystem health and stability. Freshwater mussels are relatively immobile, imbedded in the streambed with part of the shell sticking up into the water so that they can filter water to obtain oxygen and food. This lack of mobility makes them particularly vulnerable to water and sediment contamination, changes in sedimentation, or prolonged drought. Thus, ecosystem health and stability are critical for their reproduction and survival.

  3. Tributyltin Effects on Juvenile Mussel Growth.

    DTIC Science & Technology

    1987-12-01

    of tributyltin ( TBT ) in two site~sjecific, flow- through bioassays with unfiltered seawater. Mean TBT concentrations were 70, 80 and 200 ng/l in Test...lave studied the PETS was evaluated over a 7-month period in effects of tributyltin ( TBT ) on mussel (Mtilus San Diego Bay using TBT leachates. A more...ME38 Z0B38 DN888 -749 11. TITILE (hkcAd S@=tyCnifibibol Tributyltin Effects on Juvenile Mussel Growth 12. PERSONAL AUTHOR(S) M.H. Salazar, S.M. Salazar

  4. Simulated effects of host fish distribution on juvenile unionid mussel dispersal in a large river

    USGS Publications Warehouse

    Daraio, J.A.; Weber, L.J.; Zigler, S.J.; Newton, T.J.; Nestler, J.M.

    2012-01-01

    Larval mussels (Family Unionidae) are obligate parasites on fish, and after excystment from their host, as juveniles, they are transported with flow. We know relatively little about the mechanisms that affect dispersal and subsequent settlement of juvenile mussels in large rivers. We used a three-dimensional hydrodynamic model of a reach of the Upper Mississippi River with stochastic Lagrangian particle tracking to simulate juvenile dispersal. Sensitivity analyses were used to determine the importance of excystment location in two-dimensional space (lateral and longitudinal) and to assess the effects of vertical location (depth in the water column) on dispersal distances and juvenile settling distributions. In our simulations, greater than 50% of juveniles mussels settled on the river bottom within 500 m of their point of excystment, regardless of the vertical location of the fish in the water column. Dispersal distances were most variable in environments with higher velocity and high gradients in velocity, such as along channel margins, near the channel bed, or where effects of river bed morphology caused large changes in hydraulics. Dispersal distance was greater and variance was greater when juvenile excystment occurred in areas where vertical velocity (w) was positive (indicating an upward velocity) than when w was negative. Juvenile dispersal distance is likely to be more variable for mussels species whose hosts inhabit areas with steeper velocity gradients (e.g. channel margins) than a host that generally inhabits low-flow environments (e.g. impounded areas).

  5. Influence of intertidal recreational fisheries and 'bouchot' mussel culture on bivalve recruitment.

    PubMed

    Toupoint, Nicolas; Barbier, Pierrick; Tremblay, Réjean; Archambault, Philippe; McKindsey, Christopher W; Winkler, Gesche; Meziane, Tarik; Olivier, Frédéric

    2016-06-01

    In coastal environments, fishing and aquaculture may be important sources of disturbance to ecosystem functioning, the quantification of which must be assessed to make them more sustainable. In the Chausey Archipelago, France, recreational fishing and commercial shellfish farming are the only two evident anthropogenic activities, dominated by bivalve hand-raking and 'bouchot' mussel culture, respectively. This study evaluates the impact of both activities on bivalve recruitment dynamics by comparing primary recruitment intensity (short-term effect) and recruitment efficiency (medium-term effect) by sampling bivalves in reference (undisturbed) and disturbed (i.e. subjected to hand-raking or in 'bouchot' mussel culture areas) parcels throughout and at the end of the recruitment season, respectively. Specific hypotheses evaluated were that (H1) bivalve hand-raking negatively affects bivalve recruitment and that (H2) 'bouchot' mussel culture promotes bivalve recruitment. Patterns in bivalve community structure in reference parcels (i.e. natural pattern) differed between initial and final recruitment, underlining the great importance of early post-settlement processes, particularly secondary dispersal. Primary recruitment intensity was inhibited in hand-raking parcels whereas it was promoted in 'bouchot' mussel culture parcels, but the effect on recruitment efficiency was muted for both activities due to post-settlement processes. Nevertheless, the importance of effects that occur during the first step of recruitment should not be ignored as they may affect bivalve communities and induce immediate consequences on the trophic web through a cascade effect. Finally, it is highlighted that hand-raking damages all life stages of the common cockle Cerastoderma edule, one of the major target species, suggesting that this activity should be managed with greater caution than is currently done. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Zebra Crossing Spotter: Automatic Population of Spatial Databases for Increased Safety of Blind Travelers

    PubMed Central

    Ahmetovic, Dragan; Manduchi, Roberto; Coughlan, James M.; Mascetti, Sergio

    2016-01-01

    In this paper we propose a computer vision-based technique that mines existing spatial image databases for discovery of zebra crosswalks in urban settings. Knowing the location of crosswalks is critical for a blind person planning a trip that includes street crossing. By augmenting existing spatial databases (such as Google Maps or OpenStreetMap) with this information, a blind traveler may make more informed routing decisions, resulting in greater safety during independent travel. Our algorithm first searches for zebra crosswalks in satellite images; all candidates thus found are validated against spatially registered Google Street View images. This cascaded approach enables fast and reliable discovery and localization of zebra crosswalks in large image datasets. While fully automatic, our algorithm could also be complemented by a final crowdsourcing validation stage for increased accuracy. PMID:26824080

  7. Juvenile zebra finches learn the underlying structural regularities of their fathers’ song

    PubMed Central

    Menyhart, Otília; Kolodny, Oren; Goldstein, Michael H.; DeVoogd, Timothy J.; Edelman, Shimon

    2015-01-01

    Natural behaviors, such as foraging, tool use, social interaction, birdsong, and language, exhibit branching sequential structure. Such structure should be learnable if it can be inferred from the statistics of early experience. We report that juvenile zebra finches learn such sequential structure in song. Song learning in finches has been extensively studied, and it is generally believed that young males acquire song by imitating tutors (Zann, 1996). Variability in the order of elements in an individual’s mature song occurs, but the degree to which variation in a zebra finch’s song follows statistical regularities has not been quantified, as it has typically been dismissed as production error (Sturdy et al., 1999). Allowing for the possibility that such variation in song is non-random and learnable, we applied a novel analytical approach, based on graph-structured finite-state grammars, to each individual’s full corpus of renditions of songs. This method does not assume syllable-level correspondence between individuals. We find that song variation can be described by probabilistic finite-state graph grammars that are individually distinct, and that the graphs of juveniles are more similar to those of their fathers than to those of other adult males. This grammatical learning is a new parallel between birdsong and language. Our method can be applied across species and contexts to analyze complex variable learned behaviors, as distinct as foraging, tool use, and language. PMID:26005428

  8. Evaluation of a recirculating pond system for rearing juvenile freshwater mussels at White Sulphur Springs National Fish Hatchery, West Virginia, U.S.A.

    USGS Publications Warehouse

    Mummert, A.; Newcomb, T.J.; Neves, R.J.; Parker, B.

    2006-01-01

    A recirculating double-pond system at White Sulphur Springs National Fish Hatchery in West Virginia, U.S.A., was evaluated for suitability for culturing juvenile freshwater mussels. Newly metamorphosed juveniles of Villosa iris and Lampsilis fasciola were placed in the system, and their growth and survival were evaluated for 94 days. Throughout the study, parameters of water quality remained within ranges suitable for mussel survival. Planktonic algal densities in the pond system ranged from 2850 to 6892 cells/ml. Thirty-seven algal taxa were identified, primarily green algae (Chlorophyta), diatoms (Bacillariophyceae), and blue-green algae (Cyanoprokaryota). Over the culture period, juveniles of L. fasciola experienced significantly lower (p < 0.001) survival (6.3% ?? 4.5) than those of V. iris (49.8% ?? 14.5). The very low survival rate of L. fasciola may indicate a failure of the flow-through pond environment to meet its habitat requirements or that variable microhabitat conditions within culture containers existed. Growth did not differ significantly between the species (p = 0.13). Survival of V. iris and growth of both species were similar to previous trials to culture juvenile mussels. Survival rates as high as 66.4% at 93 days for V. iris suggest that juveniles of some riverine species can be successfully cultured in a recirculating pond environment.

  9. Acetylcholinesterase inhibition in the threeridge mussel (Amblema plicata) by chlorpyrifos: implications for biomonitoring

    USGS Publications Warehouse

    Doran, W.J.; Cope, W.G.; Rada, R.G.; Sandheinrich, M.B.

    2001-01-01

    The effects of chlorpyrifos, an organophosphorus insecticide, were examined on the activity of the nervous system enzyme acetylcholinesterase (AChE) in the threeridge mussel Amblema plicata in a 24-day laboratory test. Thirty-six mussels in each of seven treatments (18 mussels per duplicate) were exposed to chlorpyrifos (0.1, 0.2, 0.3, 0.6, and 1.2 mg/L), a solvent (acetone), and a solvent-free (well water) control for 12, 24, or 96 h. The activity of AChE was measured in the anterior adductor muscle of eight mussels from each treatment after exposure. To assess potential latent effects, six mussels from each treatment were removed after 24 h of exposure and transferred to untreated water for a 21-day holding period; AChE activity was measured on three mussels from each treatment at 7 and 21 days of the holding period. The activity of AChE in chlorpyrifos-exposed mussels did not differ from controls after 12 or 24 h of exposure (t- test, P>0.05), but was significantly less than controls after 96 h (t- test, P=0.01). AChE activity did not vary among mussels at 24 h of exposure (i.e., Day 0 of holding period) and those at Day 7 and Day 21 of the holding period. Overall changes in AChE activity of mussels during the test were unrelated to individual chlorpyrifos concentrations and exposure times (repeated measure ANOVA; (P=0.06). A power analysis revealed that the sample size must be increased from 2 to 5 replicates (8 to 20 mussels per time interval and test concentration) to increase the probability of detecting significant differences in AChE activity. This calculated increase in sample size has potential implications for future biomonitoring studies with chlorpyrifos and unionid mussels.

  10. Ruinous resident: the hydroid Ectopleura crocea negatively affects suspended culture of the mussel Mytilus galloprovincialis.

    PubMed

    Fitridge, Isla; Keough, Michael J

    2013-01-01

    Hydroids are major biofouling organisms in global aquaculture. Colonies of the hydroid Ectopleura crocea have recently established in Australian commercial mussel leases culturing Mytilus galloprovincialis. This study examined the impacts of E. crocea on mussel culture at two stages of the production cycle: spatfall and grow-out. Hydroids most commonly fouled the body, edge and dorsal regions of the mussel shell and cause a reduction in the length (4%) and weight (23%) of juvenile mussels. They also consumed mussel larvae in the field and in the laboratory. Prey numbers of many taxa, including mussel larvae, were consistent in natural hydroid diets regardless of the temporal variation in prey availability, implying some selectivity in hydroid feeding. In the laboratory, E. crocea consumed settling plantigrade mussel larvae more readily than trochophore or veliger larvae. Fouling by E. crocea is detrimental to mussel condition, and may affect the availability of wild mussel larvae in the commercial culture of M. galloprovincialis.

  11. Transcription-dependent induction of G1 phase during the zebra fish midblastula transition.

    PubMed

    Zamir, E; Kam, Z; Yarden, A

    1997-02-01

    The early development of the zebra fish (Danio rerio) embryo is characterized by a series of rapid and synchronous cell cycles with no detectable transcription. This period is followed by the midblastula transition (MBT), during which the cell cycle gradually lengthens, cell synchrony is lost, and zygotic transcription is initially detected. In this work, we examined the changes in the pattern of the cell cycle during MBT in zebra fish and whether these changes are dependent on the initiation of zygotic transcription. To characterize the pattern of the early zebra fish cell cycles, the embryonic DNA content was determined by flow cytometric analysis. We found that G1 phase is below detection levels during the first 10 cleavages and can be initially detected at the onset of MBT. Inhibition of zygotic transcription, by microinjection of actinomycin D, abolished the appearance of G1 phase at MBT. Premature activation of zygotic transcription, by microinjection of nonspecific DNA, induced G1 phase before the onset of MBT, while coinjection of actinomycin D and nonspecific DNA abolished this early appearance of G1 phase. We therefore suggest that during the early development of the zebra fish embryo, G1 phase appears at the onset of MBT and that the activation of transcription at MBT is essential and sufficient for the G1-phase induction.

  12. Transcriptomic analysis of the mussel Elliptio complanata identifies candidate stress-response genes and an abundance of novel or noncoding transcripts

    USGS Publications Warehouse

    Cornman, Robert S.; Robertson, Laura S.; Galbraith, Heather S.; Blakeslee, Carrie J.

    2014-01-01

    Mussels are useful indicator species of environmental stress and degradation, and the global decline in freshwater mussel diversity and abundance is of conservation concern. Elliptio complanata is a common freshwater mussel of eastern North America that can serve both as an indicator and as an experimental model for understanding mussel physiology and genetics. To support genetic components of these research goals, we assembled transcriptome contigs from Illumina paired-end reads. Despite efforts to collapse similar contigs, the final assembly was in excess of 136,000 contigs with an N50 of 982 bp. Even so, comparisons to the CEGMA database of conserved eukaryotic genes indicated that ∼20% of genes remain unrepresented. However, numerous candidate stress-response genes were present, and we identified lineage-specific patterns of diversification among molluscs for cytochrome P450 detoxification genes and two saccharide-modifying enzymes: 1,3 beta-galactosyltransferase and fucosyltransferase. Less than a quarter of contigs had protein-level similarity based on modest BLAST and Hmmer3 statistical thresholds. These results add comparative genomic resources for molluscs and suggest a wealth of novel proteins and noncoding transcripts.

  13. Genetic structure of the benthic amphipod Diporeia (Amphipoda: Pontoporeiidae) and its relationship to abundance in Lake Superior

    EPA Science Inventory

    The freshwater amphipod Diporeia is a crucial part of the food web in the Laurentian Great Lakes, but has faced serious declines correlated with the invasion of zebra mussels (Dreissena polymorpha), except in Lake Superior, which has seen an increase in Diporeia abundance. Specul...

  14. Equid herpesvirus 9 (EHV-9) isolates from zebras in Ontario, Canada, 1989 to 2007.

    PubMed

    Rebelo, Ana Rita; Carman, Susy; Shapiro, Jan; van Dreumel, Tony; Hazlett, Murray; Nagy, Éva

    2015-04-01

    The objective of this study was to identify and partially characterize 3 equid herpesviruses that were isolated postmortem from zebras in Ontario, Canada in 1989, 2002, and 2007. These 3 virus isolates were characterized by plaque morphology, restriction fragment length polymorphism (RFLP) of their genomic deoxyribonucleic acid (DNA), real-time polymerase chain reaction (PCR) assay, and sequence analyses of the full length of the glycoprotein G (gG) gene (ORF70) and a portion of the DNA polymerase gene (ORF30). The isolates were also compared to 3 reference strains of equid herpesvirus 1 (EHV-1). Using rabbit kidney cells, the plaques for the isolates from the zebras were found to be much larger in size than the EHV-1 reference strains. The RFLP patterns of the zebra viruses differed among each other and from those of the EHV-1 reference strains. Real-time PCR and sequence analysis of a portion of the DNA polymerase gene determined that the herpesvirus isolates from the zebras contained a G at nucleotide 2254 and a corresponding N at amino acid position 752, which suggested that they could be neuropathogenic EHV-1 strains. However, subsequent phylogenetic analysis of the gG gene suggested that they were EHV-9 and not EHV-1.

  15. A hybrid-hierarchical genome assembly strategy to sequence the invasive golden mussel, Limnoperna fortunei

    PubMed Central

    Uliano-Silva, Marcela; Dondero, Francesco; Dan Otto, Thomas; Costa, Igor; Lima, Nicholas Costa Barroso; Americo, Juliana Alves; Mazzoni, Camila Junqueira; Prosdocimi, Francisco; Rebelo, Mauro de Freitas

    2018-01-01

    Abstract Background For more than 25 years, the golden mussel, Limnoperna fortunei, has aggressively invaded South American freshwaters, having travelled more than 5000 km upstream across 5 countries. Along the way, the golden mussel has outcompeted native species and economically harmed aquaculture, hydroelectric powers, and ship transit. We have sequenced the complete genome of the golden mussel to understand the molecular basis of its invasiveness and search for ways to control it. Findings We assembled the 1.6-Gb genome into 20 548 scaffolds with an N50 length of 312 Kb using a hybrid and hierarchical assembly strategy from short and long DNA reads and transcriptomes. A total of 60 717 coding genes were inferred from a customized transcriptome-trained AUGUSTUS run. We also compared predicted protein sets with those of complete molluscan genomes, revealing an exacerbation of protein-binding domains in L. fortunei. Conclusions We built one of the best bivalve genome assemblies available using a cost-effective approach using Illumina paired-end, mate-paired, and PacBio long reads. We expect that the continuous and careful annotation of L. fortunei’s genome will contribute to the investigation of bivalve genetics, evolution, and invasiveness, as well as to the development of biotechnological tools for aquatic pest control. PMID:29267857

  16. A hybrid-hierarchical genome assembly strategy to sequence the invasive golden mussel, Limnoperna fortunei.

    PubMed

    Uliano-Silva, Marcela; Dondero, Francesco; Dan Otto, Thomas; Costa, Igor; Lima, Nicholas Costa Barroso; Americo, Juliana Alves; Mazzoni, Camila Junqueira; Prosdocimi, Francisco; Rebelo, Mauro de Freitas

    2018-02-01

    For more than 25 years, the golden mussel, Limnoperna fortunei, has aggressively invaded South American freshwaters, having travelled more than 5000 km upstream across 5 countries. Along the way, the golden mussel has outcompeted native species and economically harmed aquaculture, hydroelectric powers, and ship transit. We have sequenced the complete genome of the golden mussel to understand the molecular basis of its invasiveness and search for ways to control it. We assembled the 1.6-Gb genome into 20 548 scaffolds with an N50 length of 312 Kb using a hybrid and hierarchical assembly strategy from short and long DNA reads and transcriptomes. A total of 60 717 coding genes were inferred from a customized transcriptome-trained AUGUSTUS run. We also compared predicted protein sets with those of complete molluscan genomes, revealing an exacerbation of protein-binding domains in L. fortunei. We built one of the best bivalve genome assemblies available using a cost-effective approach using Illumina paired-end, mate-paired, and PacBio long reads. We expect that the continuous and careful annotation of L. fortunei's genome will contribute to the investigation of bivalve genetics, evolution, and invasiveness, as well as to the development of biotechnological tools for aquatic pest control.

  17. Assessment of metals bioaccumulation and bioavailability in mussels Mytilus galloprovincialis exposed to outfalls pollution in coastal areas of Casablanca.

    PubMed

    Mejdoub, Zineb; Zaid, Younes; Hmimid, Fouzia; Kabine, Mostafa

    2018-07-01

    The present work aims to study the metallic contamination of four sampling sites located nearby major sewage outfalls of the Casablanca coast (Morocco), using indigenous mussels Mytilus galloprovincialis as bioindicators of pollution. This research offered the opportunity to study trace metals bioaccumulation mechanisms, which represent a major factor in assessment processes of the pollution effects in coastal ecosystem health. The bioavailability and the bioaccumulation of trace metals (Cu, Zn, Ni, Pb) were evaluated in order to compare the metallic contamination in mussels' tissues and find a possible correlation with physiological parameters of this filter feeding species. Our results showed a significant spatiotemporal variation of bioaccumulation, compared to control. A significant correlation coefficient between metals (Zn and Pb) bioavailability and physiological index (CI) was revealed in mussels from the most polluted location. The seasonal variation of trace metal accumulation was also raised; the highest values recorded during the dry period. Copyright © 2018 Elsevier GmbH. All rights reserved.

  18. Migratory herds of wildebeests and zebras indirectly affect calf survival of giraffes.

    PubMed

    Lee, Derek E; Kissui, Bernard M; Kiwango, Yustina A; Bond, Monica L

    2016-12-01

    In long-distance migratory systems, local fluctuations in the predator-prey ratio can exhibit extreme variability within a single year depending upon the seasonal location of migratory species. Such systems offer an opportunity to empirically investigate cyclic population density effects on short-term food web interactions by taking advantage of the large seasonal shifts in migratory prey biomass.We utilized a large-mammal predator-prey savanna food web to evaluate support for hypotheses relating to the indirect effects of "apparent competition" and "apparent mutualism" from migratory ungulate herds on survival of resident megaherbivore calves, mediated by their shared predator. African lions ( Panthera leo ) are generalist predators whose primary, preferred prey are wildebeests ( Connochaetes taurinus ) and zebras ( Equus quagga ), while lion predation on secondary prey such as giraffes ( Giraffa camelopardalis ) may change according to the relative abundance of the primary prey species.We used demographic data from five subpopulations of giraffes in the Tarangire Ecosystem of Tanzania, East Africa, to test hypotheses relating to direct predation and indirect effects of large migratory herds on calf survival of a resident megaherbivore. We examined neonatal survival via apparent reproduction of 860 adult females, and calf survival of 449 giraffe calves, during three precipitation seasons over 3 years, seeking evidence of some effect on neonate and calf survival as a consequence of the movements of large herds of migratory ungulates.We found that local lion predation pressure (lion density divided by primary prey density) was significantly negatively correlated with giraffe neonatal and calf survival probabilities. This supports the apparent mutualism hypothesis that the presence of migratory ungulates reduces lion predation on giraffe calves.Natural predation had a significant effect on giraffe calf and neonate survival, and could significantly affect giraffe

  19. No evidence for host specialization or host-race formation in the European bitterling (Rhodeus amarus), a fish that parasitizes freshwater mussels.

    PubMed

    Reichard, M; Bryja, J; Polačik, M; Smith, C

    2011-09-01

    Coevolutionary relationships between parasites and hosts can elevate the rate of evolutionary changes owing to reciprocal adaptations between coevolving partners. Such relationships can result in the evolution of host specificity. Recent methodological advances have permitted the recognition of cryptic lineages, with important consequences for our understanding of biological diversity. We used the European bitterling (Rhodeus amarus), a freshwater fish that parasitizes unionid mussels, to investigate host specialization across regions of recent and ancient sympatry between coevolving partners. We combined genetic data (12 microsatellite and 2 mitochondrial markers) from five populations with experimental data for possible mechanisms of host species recognition (imprinting and conditioning). We found no strong evidence for the existence of cryptic lineages in R. amarus, though a small proportion of variation among individuals in an area of recent bitterling-mussel association was statistically significant in explaining host specificity. No other measures supported the existence of host-specific lineages. Behavioural data revealed a weak effect of conditioning that biased behavioural preferences towards specific host species. Host imprinting had no effect on oviposition behaviour. Overall, we established that populations of R. amarus show limited potential for specialization, manifested as weak effects of host conditioning and genetic within-population structure. Rhodeus amarus is the only species of mussel-parasitizing fish in Europe, which contrasts with the species-rich communities of bitterling in eastern Asia where several host-specific bitterling occur. We discuss costs and constraints on the evolution of host-specific lineages in our study system and more generally. © 2011 Blackwell Publishing Ltd.

  20. Botulism challenge studies of a modified atmosphere package for fresh mussels: inoculated pack studies.

    PubMed

    Newell, C R; Ma, Li; Doyle, Michael

    2012-06-01

    A series of botulism challenge studies were performed to determine the possibility of production of botulinum toxin in mussels (Mytilus edulis) held under a commercial high-oxygen (60 to 65% O(2)), modified atmosphere packaging (MAP) condition. Spore mixtures of six strains of nonproteolytic Clostridium botulinum were introduced into mussel MAP packages receiving different packaging buffers with or without the addition of lactic acid bacteria. Dye studies and package flipping trials were conducted to ensure internalization of spores by packed mussels. Inoculated mussel packages were stored at normal (4°C) and abusive (12°C) temperatures for 21 and 13 days, respectively, which were beyond the packaged mussels' intended shelf life. Microbiological and chemical analyses were conducted at predetermined intervals (a total of five sampling times at each temperature), including total aerobic plate counts, C. botulinum counts, lactic acid bacterial counts, package headspace gas composition, pH of packaging buffer and mussel meat, and botulinum toxin assays of packaging buffer and mussel meat. Results revealed that C. botulinum inoculated in fresh mussels packed under MAP packaging did not produce toxin, even at an abusive storage temperature and when held beyond their shelf life. No evidence was found that packaging buffers or gas composition influenced the lack of botulinum toxin production in packed mussels.

  1. Sensitivity of freshwater mussels at two life stages to acute or chronic effects of sodium chloride or potassium chloride

    EPA Science Inventory

    Native freshwater mussels are in serious global decline and urgently need protection and conservation. Nearly 70% of the 300 species in North America are endangered, threatened, of special concern, or already extinct. The declines in the abundance and diversity of North American ...

  2. Induction of settlement in mussel (Perna canaliculus) larvae by vessel noise.

    PubMed

    Wilkens, S L; Stanley, J A; Jeffs, A G

    2012-01-01

    Underwater sound plays an important role in the settlement behaviour of many coastal organisms. Large steel-hulled vessels are known to be a major source of underwater sound in the marine environment. The possibility that underwater sound from vessels may promote biofouling of hulls through triggering natural larval settlement cues was investigated for the mussel, Perna canaliculus. The mussel larvae showed significantly faster settlement when exposed to the underwater noise produced by a 125-m long steel-hulled passenger and freight ferry. Median time to attachment on the substrata (ie settlement) was reduced by 22% and the time taken for all experimental larvae to settle was reduced by 40% relative to a silent control. There was no difference in the survival of the mussel larvae among the various noise treatments. The decrease in settlement time of the mussel larvae appeared to correlate with the intensity of the vessel sound, suggesting that underwater sound emanating from vessels may be an important factor in exacerbating hull fouling by mussels.

  3. Edge effects reverse facilitation by a widespread foundation species

    NASA Astrophysics Data System (ADS)

    Jurgens, Laura J.; Gaylord, Brian

    2016-11-01

    Dense aggregations of foundation species often mitigate environmental stresses for organisms living among them. Considerable work documents such benefits by comparing conditions inside versus outside these biogenic habitats. However, environmental gradients commonly arise across the extent of even single patches of habitat-forming species, including cases where stresses diverge between habitat interiors and edges. We ask here whether such edge effects could alter how habitat-forming species influence residents, potentially changing the strength or direction of interactions (i.e., from stress amelioration to exacerbation). We take as a model system the classic marine foundation species, Mytilus californianus, the California mussel. Results demonstrate that mussel beds both increase and decrease thermal stresses. Over a distance of 6 to 10 cm from the bed interior to its upper surface, peak temperatures climb from as much as 20 °C below to 5 °C above those of adjacent bedrock. This directional shift in temperature modification affects interactions with juvenile mussels, such that thermal stresses and associated mortality risk are higher at the bed surface, but substantially reduced deeper within the adult matrix. These findings provide a case example of how stress gradients generated across biogenic habitats can markedly alter ecological interactions even within a single habitat patch.

  4. Edge effects reverse facilitation by a widespread foundation species.

    PubMed

    Jurgens, Laura J; Gaylord, Brian

    2016-11-23

    Dense aggregations of foundation species often mitigate environmental stresses for organisms living among them. Considerable work documents such benefits by comparing conditions inside versus outside these biogenic habitats. However, environmental gradients commonly arise across the extent of even single patches of habitat-forming species, including cases where stresses diverge between habitat interiors and edges. We ask here whether such edge effects could alter how habitat-forming species influence residents, potentially changing the strength or direction of interactions (i.e., from stress amelioration to exacerbation). We take as a model system the classic marine foundation species, Mytilus californianus, the California mussel. Results demonstrate that mussel beds both increase and decrease thermal stresses. Over a distance of 6 to 10 cm from the bed interior to its upper surface, peak temperatures climb from as much as 20 °C below to 5 °C above those of adjacent bedrock. This directional shift in temperature modification affects interactions with juvenile mussels, such that thermal stresses and associated mortality risk are higher at the bed surface, but substantially reduced deeper within the adult matrix. These findings provide a case example of how stress gradients generated across biogenic habitats can markedly alter ecological interactions even within a single habitat patch.

  5. Enrichment and isolation of crude oil degrading bacteria from some mussels collected from the Persian Gulf.

    PubMed

    Bayat, Zeynab; Hassanshahian, Mehdi; Hesni, Majid Askari

    2015-12-15

    To date, little is known about existing relationships between mussels and bacteria in hydrocarbon-contaminated marine environments. The aim of this study is to find crude oil degrading bacteria in some mussels at the Persian Gulf. Twenty eight crude oil degrading bacteria were isolated from three mussels species collected from oil contaminated area at Persian Gulf. According to high growth and degradation of crude oil four strains were selected between 28 isolated strains for more study. Determination the nucleotide sequence of the gene encoding for 16S rRNA show that these isolated strains belong to: Shewanella algae isolate BHA1, Micrococcus luteus isolate BHA7, Pseudoalteromonas sp. isolate BHA8 and Shewanella haliotis isolate BHA35. The residual crude oil in culture medium was analysis by Gas Chromatography (GC). The results confirmed that these strains can degrade: 47.24%, 66.08%, 27.13% and 69.17% of crude oil respectively. These strains had high emulsification activity and biosurfactant production. Also, the effects of some factors on crude oil degradation by isolated strains were studied. The results show that the optimum concentration of crude oil was 2.5% and the best degradation take place at 12% of salinity. This research is the first reports on characterization of crude oil degrading bacteria from mussels at Persian Gulf and by using of these bacteria in the field the effect of oil pollution can be reduce on this marine environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Buried Alive: The Behavioural Response of the Mussels, Modiolus modiolus and Mytilus edulis to Sudden Burial by Sediment

    PubMed Central

    Hutchison, Zoë L.; Hendrick, Vicki J.; Burrows, Michael T.; Wilson, Ben; Last, Kim S.

    2016-01-01

    Sedimentation in the sea occurs through natural processes, such as wave and tidal action, which can be exacerbated during storms and floods. Changes in terrestrial land use, marine aggregate extraction, dredging, drilling and mining are known to result in substantial sediment deposition. Research suggests that deposition will also occur due to the modern development of marine renewable energy. The response to individual burial under three depths of sediment, three sediment fractions and five burial durations was investigated in two mussel species, Modiolus modiolus and Mytilus edulis in specialist mesocosms. Both mussel species showed substantial mortality, which increased with duration of burial and burial by finer sediment fractions. M. modiolus was better able to survive short periods of burial than M. edulis, but at longer durations mortality was more pronounced. No mortality was observed in M. modiolus in burial durations of eight days or less but by 16 days of burial, over 50% cumulative mortality occurred. Under variable temperature regimes, M. edulis mortality increased from 20% at 8°C to over 60% at 14.5 and 20°C. Only M. edulis was able to emerge from burial, facilitated by increased byssus production, laid mostly on vertical surfaces but also on sediment particles. Emergence was higher from coarse sediment and shallow burials. Byssus production in M. edulis was not related to the condition index of the mussels. Results suggest that even marginal burial would result in mortality and be more pronounced in warm summer periods. Our results suggest that in the event of burial, adult M. modiolus would not be able to emerge from burial unless local hydrodynamics assist, whereas a small proportion of M. edulis may regain contact with the sediment water interface. The physiological stress resulting in mortality, contribution of local hydrodynamics to survival and other ecological pressures such as mussels existing in aggregations, are discussed. PMID:26982582

  7. The use of waste mussel shells for the adsorption of dyes and heavy metals

    NASA Astrophysics Data System (ADS)

    Papadimitriou, Chrysi A.; Krey, Grigorios; Stamatis, Nikolaos; Kallaniotis, Argyris

    2016-04-01

    Mussel culture is very important sector of the Greek agricultural economy. The majority of mussel culture activities take place in the area of Central Macedonia, Greece, 60% of total mussel production in Greece producing almost 12 tons of waste mussels shells on a daily basis. Currently there is no legislation concerning the disposal of mussel shells. In the present study the waste shells were used for the removal of dyes and heavy metals from aqueous solutions while powdered mussel shells were added in activated sludge processes for the removal of hexavalent chromium. Mussel shells were cleaned, dried and then crushed in order to form a powder. Powdered mussels shells were used in standard adsorption experiments for the removal of methylene blue and methyl red as well as for the removal of Cr (VI), Cd and Cu. Moreover the powdered mussel shells were added in laboratory scale activated sludge reactors treating synthetic wastewater with hexavalent chromium, in order investigate the effects in activated sludge processes and their potential attribution to the removal of hexavalent chromium. Adsorption experiments indicated almost 100% color removal, while adsorption was directly proportional to the amount of powdered mussel shells added in each case. The isotherms calculated for the case of methylene blue indicated similar adsorption capacity and properties to those of the commercially available activated carbon SAE 2, Norit. High removal efficiencies were observed for the metals, especially in the case of chromium and copper. The addition of powdered mussel shells in the activated sludge processes enhanced the removal of chromium and phosphorus, while enabled the formation of heavier activated sludge flocs and thus enhanced the settling properties of the activated sludge.

  8. Zebra textures in carbonate rocks: Fractures produced by the force of crystallization during mineral replacement

    NASA Astrophysics Data System (ADS)

    Wallace, Malcolm W.; Hood, Ashleigh v. S.

    2018-06-01

    Zebra textures are enigmatic banded fabrics that occur in many carbonate-hosted ore deposits, dolomite hydrocarbon reservoirs and carbonate successions globally. They consist of a variety of minerals and are characterised by parallel light and dark bands that occur at a millimetre- to centimetre-scale. Based on petrological evidence, there is general consensus that the dark bands formed by replacement of the carbonate host rock. Historically, more contention surrounds the origin of the light bands, but the dominant view is that these are mineral-filled cavities, which is supported by overwhelming textural evidence. Overall, the feature common to all versions of zebra textures is mineral replacement of the original carbonate host. We suggest that mineral replacement (and the force of crystallization) in association with open space generation is a viable mechanism for the development of zebra cavity systems. Dissolution and open space generation in either evaporites or carbonates adjacent to the site of replacement reactions is necessary to remove the confining pressure from the rock and to allow the development of fractures. The pressure of the growing replacement crystals within the carbonate pervasively splits the carbonate apart, producing thin strips of carbonate surrounded by open space. The fractures may then be subject to dissolution and are later filled by cements. Very regular stratabound zebra textures (as found in ore deposits like Cadjebut, Australia and San Vicente, Peru) may be related to stratabound dissolution (of evaporites or carbonates), whereas irregularly distributed zebra textures are more likely to be associated with irregular carbonate dissolution.

  9. Influences of water and sediment quality and hydrologic processes on mussels in the Clinch River

    USGS Publications Warehouse

    Johnson, Gregory C.; Krstolic, Jennifer L.; Ostby, Brett J.K.

    2014-01-01

    Segments of the Clinch River in Virginia have experienced declining freshwater mussel populations during the past 40 years, while other segments of the river continue to support some of the richest mussel communities in the country. The close proximity of these contrasting reaches provides a study area where differences in climate, hydrology, and historic mussel distribution are minimal. The USGS conducted a study between 2009 and 2011 to evaluate possible causes of the mussel declines. Evaluation of mussel habitat showed no differences in physical habitat quality, leaving water and sediment quality as possible causes for declines. Three years of continuous water-quality data showed higher turbidity and specific conductance in the reaches with low-quality mussel assemblages compared to reaches with high-quality mussel assemblages. Discrete water-quality samples showed higher major ions and metals concentrations in the low-quality reach. Base-flow samples contained high major ion and metal concentrations coincident to low-quality mussel populations. These results support a conceptual model of dilution and augmentation where increased concentrations of major ions and other dissolved constituents from mined tributaries result in reaches with declining mussel populations. Tributaries from unmined basins provide water with low concentrations of dissolved constituents, diluting reaches of the Clinch River where high-quality mussel populations occur.

  10. Relationships between community structure of freshwater mussels and host fishes in a central Ohio watershed

    USDA-ARS?s Scientific Manuscript database

    The diversity of freshwater mussel communities has declined over the past several decades within watersheds in the Midwestern United States. Host fishes play an important role in the life cycle of freshwater mussels because they serve as hosts for parasitic mussel larvae to ensure successful mussel ...

  11. Fluvial processes and local lithology controlling abundance, structure, and composition of mussel beds.

    PubMed

    Vannote, R L; Minshall, G W

    1982-07-01

    In the Salmon River Canyon, Idaho, the fresh-water pearl mussel, Margaritifera falcata, attains maximum density and age in river reaches where large block-boulders structurally stabilize cobbles and interstitial gravels. We hypothesize that block-boulders prevent significant bed scour during major floods, and these boulder-sheltered mussel beds, although rare, may be critical for population recruitment elsewhere within the river, especially after periodic flood scour of less protected mussel habitat. Mussel shells in Indian middens adjacent to these boulder-stabilized areas suggest that prehistoric tribes selectively exploited the high-density old-aged mussel beds. Locally, canyon reaches are aggrading with sand and gravel, and M. falcata is being replaced by Gonidea angulata.

  12. Kinematics of flap-bounding flight in the zebra finch over a wide range of speeds

    PubMed

    Tobalske; Peacock; Dial

    1999-07-01

    It has been proposed elsewhere that flap-bounding, an intermittent flight style consisting of flapping phases interspersed with flexed-wing bounds, should offer no savings in average mechanical power relative to continuous flapping unless a bird flies 1.2 times faster than its maximum range speed (Vmr). Why do some species use intermittent bounds at speeds slower than 1.2Vmr? The 'fixed-gear hypothesis' suggests that flap-bounding is used to vary mean power output in small birds that are otherwise constrained by muscle physiology and wing anatomy to use a fixed muscle shortening velocity and pattern of wing motion at all flight speeds; the 'body-lift hypothesis' suggests that some weight support during bounds could make flap-bounding flight aerodynamically advantageous in comparison with continuous flapping over most forward flight speeds. To test these predictions, we studied high-speed film recordings (300 Hz) of wing and body motion in zebra finches (Taenopygia guttata, mean mass 13.2 g, N=4) taken as the birds flew in a variable-speed wind tunnel (0-14 m s-1). The zebra finches used flap-bounding flight at all speeds, so their flight style was unique compared with that of birds that facultatively shift from continuous flapping or flap-gliding at slow speeds to flap-bounding at fast speeds. There was a significant effect of flight speed on all measured aspects of wing motion except percentage of the wingbeat spent in downstroke. Changes in angular velocity of the wing indicated that contractile velocity in the pectoralis muscle changed with flight speed, which is not consistent with the fixed-gear hypothesis. Although variation in stroke-plane angle relative to the body, pronation angle of the wing and wing span at mid-upstroke showed that the zebra finch changed within-wingbeat geometries according to speed, a vortex-ring gait with a feathered upstroke appeared to be the only gait used during flapping. In contrast, two small species that use continuous flapping

  13. Trematode Aspidogastrea found in the freshwater mussels in the Yangtze River basin.

    PubMed

    Zhan, Xiaodong; Li, Chaopin; Wu, Hua

    2017-03-30

    To investigate the prevalence of trematode Aspidogastrea in the freshwater mussels in the Yangtze River basin within Anhui province, China. We initially harvested the freshwater mussels living in the Yangtze River running through Anhui area, and labeled them with corresponding number. Then the samples were dissected for isolating the flukes, which were identified by conventional staining. Infection rate of trematode Aspidogastrea in freshwater mussels in the Yangtze River basin within the territory of Anhui province was 30.38% (103/339) in general, and a total of 912 flukes of Aspidogastrea were detected in the 103 mussels, with average infection rate of 8.85 for each mussel. Trematode Aspidogastrea is prevalent in the freshwater bivalves living in the Yangtze River basin running through Anhui area, and the treamatode was identified as Aspidogaster sp. belong to Aspidogaste under Aspidogastridae of Aspidogastrea.

  14. Habitat used by juvenile lake sturgeon (Acipenser fulvescens) in the North Channel of the St. Clair River (Michigan, USA)

    USGS Publications Warehouse

    Boase, James C.; Manny, Bruce A.; Donald, Katherine A.L.; Kennedy, Gregory W.; Diana, James S.; Thomas, Michael V.; Chiotti, Justin A.

    2014-01-01

    Lake sturgeon (Acipenser fulvescens) occupy the St. Clair River, part of a channel connecting lakes Huron and Erie in the Laurentian Great Lakes. In the North Channel of the St. Clair River, juvenile lake sturgeon (3–7 years old and 582–793 mm in length) were studied to determine movement patterns and habitat usage. Fourteen juveniles were implanted with ultrasonic transmitters and tracked June–August of 2004, 2005 and 2006. Telemetry data, Geographic Information System software, side-scan sonar, video images of the river bottom, scuba diving, and benthic substrate samples were used to determine the extent and composition of habitats they occupied. Juvenile lake sturgeon habitat selection was strongly related to water depth. No fish were found in 700 mm in length selected sand and gravel areas mixed with zebra mussels and areas dominated by zebra mussels, while fish < 700 mm used these habitat types in proportion to their availability.

  15. Effects of lampricide exposure on the survival, growth, and behavior of the unionid mussels Elliptio complanata and Pyganadon cataracta

    USGS Publications Warehouse

    Waller, D.L.; Bills, T.D.; Boogaard, M.A.; Johnson, D.A.; Doolittle, T.C.J.

    2003-01-01

    The effects of a 12-h exposure to the lampricide 3-trifluoromethyl-4- nitrophenol (TFM) and a combination of TFM and 1% niclosamide (active ingredient in Bayluscide 70% wettable powder) on the short and long-term (10 mo post exposure) survival and behavior of two unionid freshwater mussel species Elliptio complanata and Pyganadon cataracta were measured. Growth of juvenile E. complanata mussels 10 months after exposure was also compared. Toxicity was determined after 12 h exposures at maximum concentrations from 2- to 2.5- fold higher than the LC99 for sea lamprey larvae. A logistic model was used to estimate the probability of survival among treatments, trials, species, and sizes. Mortality was minimal in all test concentrations of TFM alone and the TFM/1% niclosamide combination. Estimated survival decreased 6% for each unit increase in the relative toxicity of TFM. Survival was greater for E. complanata than for P. cataracta, and for adults relative to juveniles. Lampricide treatment caused narcotization of both mussels (defined as having gaped shells and an extended foot) in concentrations ??? LC99 for sea lamprey larvae and narcotization ranged from 0-50% among treatments. Recovery from narcosis was apparent by 12 h post-exposure and complete by 36 h post-exposure. The rate of growth of E. complanata over the 10-month post-exposure period did not vary among treatments.

  16. Effects of lampricide exposure on the survival, growth, and behavior of the unionid mussels Elliptio complanata and Pyganadon cataracta

    USGS Publications Warehouse

    Waller, D.L.; Bills, T.D.; Boogaard, M.A.; Johnson, D.A.; Doolittle, T.C.J.

    2003-01-01

    The effects of a 12-h exposure to the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) and a combination of TFM and 1% niclosamide (active ingredient in Bayluscide 70% wettable powder) on the short and long-term (10 mo post exposure) survival and behavior of two unionid freshwater mussel species Elliptio complanata and Pyganadon cataracta were measured. Growth of juvenile E. complanata mussels 10 months after exposure was also compared. Toxicity was determined after 12 h exposures at maximum concentrations from 2- to 2.5- fold higher than the LC99 for sea lamprey larvae. A logistic model was used to estimate the probability of survival among treatments, trials, species, and sizes. Mortality was minimal in all test concentrations of TFM alone and the TFM/1% niclosamide combination. Estimated survival decreased 6% for each unit increase in the relative toxicity of TFM. Survival was greater for E. complanata than for P. cataracta, and for adults relative to juveniles. Lampricide treatment caused narcotization of both mussels (defined as having gaped shells and an extended foot) in concentrations greater than or equal to LC99 for sea lamprey larvae and narcotization ranged from 0-50% among treatments. Recovery from narcosis was apparent by 12 h post-exposure and complete by 36 h post-exposure. The rate of growth of E. complanata over the 10-month post-exposure period did not vary among treatments.

  17. Scanning electron microscopy of Strongylus spp. in zebra.

    PubMed

    Els, H J; Malan, F S; Scialdo-Krecek, R C

    1983-12-01

    The external ultrastructure of the anterior and posterior extremities of the nematodes, Strongylus asini , Strongylus vulgaris, Strongylus equinus and Strongylus edentatus, was studied with scanning electron microscopy (SEM). Fresh specimens of S. asini were collected from the caecum, ventral colon and vena portae of Equus burchelli and Equus zebra hartmannae ; S. vulgaris from the caecum, colon and arteria ileocolica of E. burchelli ; S. equinus from the ventral colon of E. z. hartmannae and S. edentatus from the caecum and ventral colon of both zebras , during surveys of parasites in zebras in the Etosha Game Reserve, South West Africa/Namibia, and the Kruger National Park, Republic of South Africa. The worms were cleaned, fixed and mounted by standard methods and photographed in a JEOL JSM - 35C scanning electron microscope (SEM) operating at 12kV . The SEM showed the following differences: the tips of the external leaf-crowns varied and were fine and delicate in S. asini , coarse and broad in S. vulgaris and, in S. equinus and S. edentatus, closely adherent, separating into single elements for half their length. The excretory pores showed only slight variation, and the morphology of the copulatory bursae did not differ from those seen with light microscopy. The genital cones differed markedly: S. asini had a ventral triangular projection and laterally 2 finger-like projections: in S. vulgaris there were numerous bosses on the lateral and ventral aspects of the cone; in S. equinus 2 finger-like processes projected laterocaudally ; and in S. edentatus 2 pairs of papilla-like processes projected laterally on the ventral aspects, and a pair of rounded projections and a pair of hair-like structures adorned the dorsal aspects.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Staged Z-pinch Experiments on Cobra and Zebra

    NASA Astrophysics Data System (ADS)

    Wessel, Frank J.; Anderson, A.; Banasek, J. T.; Byvank, T.; Conti, F.; Darling, T. W.; Dutra, E.; Glebov, V.; Greenly, J.; Hammer, D. A.; Potter, W. M.; Rocco, S. V.; Ross, M. P.; Ruskov, E.; Valenzuela, J.; Beg, F.; Covington, A.; Narkis, J.; Rahman, H. U.

    2017-10-01

    A Staged Z-pinch (SZP), configured as a pre-magnetized, high-Z (Ar, or Kr) annular liner imploding onto a low-Z (H, or D) target, was tested on the Cornell University, Cobra Facility and the University of Nevada, Reno, Zebra Facility; each characterized similarly by a nominal 1-MA current and 100-ns risetime while possessing different diagnostic packages. XUV-fast imaging reveals that the SZP implosion dynamics is similar on both machines and that it is more stable with an axial (Bz) magnetic field, a target, or both, than without. On Zebra, where neutron production is possible, reproducible thermonuclear (DD) yields were recorded at levels in excess of 109/shot. Flux compression in the SZP is also expected to produce magnetic field intensities of the order of kilo-Tesla. Thus, the DD reaction produced tritions should also yield secondary DT neutrons. Indeed, secondaries are measured above the noise threshold at levels approaching 106/shot. Funded by the Advanced Research Projects Agency - Energy, under Grant Number DE-AR0000569.

  19. Zebra finch mates use their forebrain song system in unlearned call communication.

    PubMed

    Ter Maat, Andries; Trost, Lisa; Sagunsky, Hannes; Seltmann, Susanne; Gahr, Manfred

    2014-01-01

    Unlearned calls are produced by all birds whereas learned songs are only found in three avian taxa, most notably in songbirds. The neural basis for song learning and production is formed by interconnected song nuclei: the song control system. In addition to song, zebra finches produce large numbers of soft, unlearned calls, among which "stack" calls are uttered frequently. To determine unequivocally the calls produced by each member of a group, we mounted miniature wireless microphones on each zebra finch. We find that group living paired males and females communicate using bilateral stack calling. To investigate the role of the song control system in call-based male female communication, we recorded the electrical activity in a premotor nucleus of the song control system in freely behaving male birds. The unique combination of acoustic monitoring together with wireless brain recording of individual zebra finches in groups shows that the neuronal activity of the song system correlates with the production of unlearned stack calls. The results suggest that the song system evolved from a brain circuit controlling simple unlearned calls to a system capable of producing acoustically rich, learned vocalizations.

  20. Zebra Finch Mates Use Their Forebrain Song System in Unlearned Call Communication

    PubMed Central

    Ter Maat, Andries; Trost, Lisa; Sagunsky, Hannes; Seltmann, Susanne; Gahr, Manfred

    2014-01-01

    Unlearned calls are produced by all birds whereas learned songs are only found in three avian taxa, most notably in songbirds. The neural basis for song learning and production is formed by interconnected song nuclei: the song control system. In addition to song, zebra finches produce large numbers of soft, unlearned calls, among which “stack” calls are uttered frequently. To determine unequivocally the calls produced by each member of a group, we mounted miniature wireless microphones on each zebra finch. We find that group living paired males and females communicate using bilateral stack calling. To investigate the role of the song control system in call-based male female communication, we recorded the electrical activity in a premotor nucleus of the song control system in freely behaving male birds. The unique combination of acoustic monitoring together with wireless brain recording of individual zebra finches in groups shows that the neuronal activity of the song system correlates with the production of unlearned stack calls. The results suggest that the song system evolved from a brain circuit controlling simple unlearned calls to a system capable of producing acoustically rich, learned vocalizations. PMID:25313846